
What’s New in Python
Release 3.6.3

A. M. Kuchling

October 03, 2017

Python Software Foundation
Email: docs@python.org

Contents

1 Summary – Release highlights 4

2 New Features 5
2.1 PEP 498: Formatted string literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 PEP 526: Syntax for variable annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 PEP 515: Underscores in Numeric Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 PEP 525: Asynchronous Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 PEP 530: Asynchronous Comprehensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 PEP 487: Simpler customization of class creation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 PEP 487: Descriptor Protocol Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.8 PEP 519: Adding a file system path protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.9 PEP 495: Local Time Disambiguation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.10 PEP 529: Change Windows filesystem encoding to UTF-8 . . . . . . . . . . . . . . . . . . . . 9
2.11 PEP 528: Change Windows console encoding to UTF-8 . . . . . . . . . . . . . . . . . . . . . 9
2.12 PEP 520: Preserving Class Attribute Definition Order . . . . . . . . . . . . . . . . . . . . . . 10
2.13 PEP 468: Preserving Keyword Argument Order . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.14 New dict implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.15 PEP 523: Adding a frame evaluation API to CPython . . . . . . . . . . . . . . . . . . . . . . 10
2.16 PYTHONMALLOC environment variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.17 DTrace and SystemTap probing support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Other Language Changes 12

4 New Modules 13
4.1 secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Improved Modules 13
5.1 array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 ast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 asyncio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 binascii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.5 cmath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.6 collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.7 concurrent.futures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



5.8 contextlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.9 datetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.10 decimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.11 distutils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.12 email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.13 encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.14 enum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.15 faulthandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.16 fileinput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.17 hashlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.18 http.client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.19 idlelib and IDLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.20 importlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.21 inspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.22 json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.23 logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.24 math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.25 multiprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.26 os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.27 pathlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.28 pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.29 pickle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.30 pickletools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.31 pydoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.32 random . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.33 re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.34 readline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.35 rlcompleter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.36 shlex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.37 site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.38 sqlite3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.39 socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.40 socketserver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.41 ssl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.42 statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.43 struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.44 subprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.45 sys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.46 telnetlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.47 time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.48 timeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.49 tkinter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.50 traceback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.51 tracemalloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.52 typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.53 unicodedata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.54 unittest.mock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.55 urllib.request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.56 urllib.robotparser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.57 venv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.58 warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.59 winreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.60 winsound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.61 xmlrpc.client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



5.62 zipfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.63 zlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Optimizations 25

7 Build and C API Changes 26

8 Other Improvements 26

9 Deprecated 27
9.1 New Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.2 Deprecated Python behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.3 Deprecated Python modules, functions and methods . . . . . . . . . . . . . . . . . . . . . . . 27

asynchat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
asyncore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
dbm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
distutils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
grp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
importlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
re . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
ssl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
tkinter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
venv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9.4 Deprecated functions and types of the C API . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.5 Deprecated Build Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

10 Removed 29
10.1 API and Feature Removals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

11 Porting to Python 3.6 29
11.1 Changes in ‘python’ Command Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11.2 Changes in the Python API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11.3 Changes in the C API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
11.4 CPython bytecode changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

12 Notable changes in Python 3.6.2 32
12.1 New make regen-all build target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12.2 Removal of make touch build target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Index 34

Editors Elvis Pranskevichus <elvis@magic.io>, Yury Selivanov <yury@magic.io>

This article explains the new features in Python 3.6, compared to 3.5. Python 3.6 was released on December
23, 2016. For full details, see the changelog.

See also:

PEP 494 - Python 3.6 Release Schedule

mailto:elvis@magic.io
mailto:yury@magic.io
https://www.python.org/dev/peps/pep-0494


1 Summary – Release highlights

New syntax features:

• PEP 498, formatted string literals.

• PEP 515, underscores in numeric literals.

• PEP 526, syntax for variable annotations.

• PEP 525, asynchronous generators.

• PEP 530: asynchronous comprehensions.

New library modules:

• secrets: PEP 506 – Adding A Secrets Module To The Standard Library.

CPython implementation improvements:

• The dict type has been reimplemented to use a more compact representation based on a proposal by
Raymond Hettinger and similar to the PyPy dict implementation. This resulted in dictionaries using
20% to 25% less memory when compared to Python 3.5.

• Customization of class creation has been simplified with the new protocol.

• The class attribute definition order is now preserved.

• The order of elements in **kwargs now corresponds to the order in which keyword arguments were
passed to the function.

• DTrace and SystemTap probing support has been added.

• The new PYTHONMALLOC environment variable can now be used to debug the interpreter memory
allocation and access errors.

Significant improvements in the standard library:

• The asyncio module has received new features, significant usability and performance improvements,
and a fair amount of bug fixes. Starting with Python 3.6 the asyncio module is no longer provisional
and its API is considered stable.

• A new file system path protocol has been implemented to support path-like objects. All standard
library functions operating on paths have been updated to work with the new protocol.

• The datetime module has gained support for Local Time Disambiguation.

• The typing module received a number of improvements.

• The tracemalloc module has been significantly reworked and is now used to provide better output
for ResourceWarning as well as provide better diagnostics for memory allocation errors. See the
PYTHONMALLOC section for more information.

Security improvements:

• The new secrets module has been added to simplify the generation of cryptographically strong pseudo-
random numbers suitable for managing secrets such as account authentication, tokens, and similar.

• On Linux, os.urandom() now blocks until the system urandom entropy pool is initialized to increase
the security. See the PEP 524 for the rationale.

• The hashlib and ssl modules now support OpenSSL 1.1.0.

• The default settings and feature set of the ssl module have been improved.

https://mail.python.org/pipermail/python-dev/2012-December/123028.html
https://mail.python.org/pipermail/python-dev/2012-December/123028.html
https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html
https://www.python.org/dev/peps/pep-0524


• The hashlib module received support for the BLAKE2, SHA-3 and SHAKE hash algorithms and the
scrypt() key derivation function.

Windows improvements:

• PEP 528 and PEP 529, Windows filesystem and console encoding changed to UTF-8.

• The py.exe launcher, when used interactively, no longer prefers Python 2 over Python 3 when the user
doesn’t specify a version (via command line arguments or a config file). Handling of shebang lines
remains unchanged - “python” refers to Python 2 in that case.

• python.exe and pythonw.exe have been marked as long-path aware, which means that the 260 character
path limit may no longer apply. See removing the MAX_PATH limitation for details.

• A ._pth file can be added to force isolated mode and fully specify all search paths to avoid registry
and environment lookup. See the documentation for more information.

• A python36.zip file now works as a landmark to infer PYTHONHOME. See the documentation for
more information.

2 New Features

2.1 PEP 498: Formatted string literals

PEP 498 introduces a new kind of string literals: f-strings, or formatted string literals.

Formatted string literals are prefixed with 'f' and are similar to the format strings accepted by str.format().
They contain replacement fields surrounded by curly braces. The replacement fields are expressions, which
are evaluated at run time, and then formatted using the format() protocol:

>>> name = "Fred"
>>> f"He said his name is {name}."
'He said his name is Fred.'
>>> width = 10
>>> precision = 4
>>> value = decimal.Decimal("12.34567")
>>> f"result: {value:{width}.{precision}}" # nested fields
'result: 12.35'

See also:

PEP 498 – Literal String Interpolation. PEP written and implemented by Eric V. Smith.

Feature documentation.

2.2 PEP 526: Syntax for variable annotations

PEP 484 introduced the standard for type annotations of function parameters, a.k.a. type hints. This PEP
adds syntax to Python for annotating the types of variables including class variables and instance variables:

primes: List[int] = []

captain: str # Note: no initial value!

class Starship:
stats: Dict[str, int] = {}

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0484


Just as for function annotations, the Python interpreter does not attach any particular meaning to variable
annotations and only stores them in the __annotations__ attribute of a class or module.

In contrast to variable declarations in statically typed languages, the goal of annotation syntax is to provide
an easy way to specify structured type metadata for third party tools and libraries via the abstract syntax
tree and the __annotations__ attribute.

See also:

PEP 526 – Syntax for variable annotations. PEP written by Ryan Gonzalez, Philip House, Ivan Levkivskyi,
Lisa Roach, and Guido van Rossum. Implemented by Ivan Levkivskyi.

Tools that use or will use the new syntax: mypy, pytype, PyCharm, etc.

2.3 PEP 515: Underscores in Numeric Literals

PEP 515 adds the ability to use underscores in numeric literals for improved readability. For example:

>>> 1_000_000_000_000_000
1000000000000000
>>> 0x_FF_FF_FF_FF
4294967295

Single underscores are allowed between digits and after any base specifier. Leading, trailing, or multiple
underscores in a row are not allowed.

The string formatting language also now has support for the '_' option to signal the use of an underscore
for a thousands separator for floating point presentation types and for integer presentation type 'd'. For
integer presentation types 'b', 'o', 'x', and 'X', underscores will be inserted every 4 digits:

>>> '{:_}'.format(1000000)
'1_000_000'
>>> '{:_x}'.format(0xFFFFFFFF)
'ffff_ffff'

See also:

PEP 515 – Underscores in Numeric Literals PEP written by Georg Brandl and Serhiy Storchaka.

2.4 PEP 525: Asynchronous Generators

PEP 492 introduced support for native coroutines and async / await syntax to Python 3.5. A notable
limitation of the Python 3.5 implementation is that it was not possible to use await and yield in the same
function body. In Python 3.6 this restriction has been lifted, making it possible to define asynchronous
generators:

async def ticker(delay, to):
"""Yield numbers from 0 to *to* every *delay* seconds."""
for i in range(to):

yield i
await asyncio.sleep(delay)

The new syntax allows for faster and more concise code.

See also:

PEP 525 – Asynchronous Generators PEP written and implemented by Yury Selivanov.

https://www.python.org/dev/peps/pep-0526
http://github.com/python/mypy
http://github.com/google/pytype
https://www.python.org/dev/peps/pep-0515
https://www.python.org/dev/peps/pep-0515
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525


2.5 PEP 530: Asynchronous Comprehensions

PEP 530 adds support for using async for in list, set, dict comprehensions and generator expressions:

result = [i async for i in aiter() if i % 2]

Additionally, await expressions are supported in all kinds of comprehensions:

result = [await fun() for fun in funcs if await condition()]

See also:

PEP 530 – Asynchronous Comprehensions PEP written and implemented by Yury Selivanov.

2.6 PEP 487: Simpler customization of class creation

It is now possible to customize subclass creation without using a metaclass. The new __init_subclass__
classmethod will be called on the base class whenever a new subclass is created:

class PluginBase:
subclasses = []

def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
cls.subclasses.append(cls)

class Plugin1(PluginBase):
pass

class Plugin2(PluginBase):
pass

In order to allow zero-argument super() calls to work correctly from __init_subclass__() implementa-
tions, custom metaclasses must ensure that the new __classcell__ namespace entry is propagated to type.
__new__ (as described in class-object-creation).

See also:

PEP 487 – Simpler customization of class creation PEP written and implemented by Martin Teichmann.

Feature documentation

2.7 PEP 487: Descriptor Protocol Enhancements

PEP 487 extends the descriptor protocol to include the new optional __set_name__() method. Whenever
a new class is defined, the new method will be called on all descriptors included in the definition, providing
them with a reference to the class being defined and the name given to the descriptor within the class
namespace. In other words, instances of descriptors can now know the attribute name of the descriptor in
the owner class:

class IntField:
def __get__(self, instance, owner):

return instance.__dict__[self.name]

def __set__(self, instance, value):
if not isinstance(value, int):

https://www.python.org/dev/peps/pep-0530
https://www.python.org/dev/peps/pep-0530
https://www.python.org/dev/peps/pep-0487
https://www.python.org/dev/peps/pep-0487


raise ValueError(f'expecting integer in {self.name}')
instance.__dict__[self.name] = value

# this is the new initializer:
def __set_name__(self, owner, name):

self.name = name

class Model:
int_field = IntField()

See also:

PEP 487 – Simpler customization of class creation PEP written and implemented by Martin Teichmann.

Feature documentation

2.8 PEP 519: Adding a file system path protocol

File system paths have historically been represented as str or bytes objects. This has led to people who write
code which operate on file system paths to assume that such objects are only one of those two types (an
int representing a file descriptor does not count as that is not a file path). Unfortunately that assumption
prevents alternative object representations of file system paths like pathlib from working with pre-existing
code, including Python’s standard library.

To fix this situation, a new interface represented by os.PathLike has been defined. By implementing the
__fspath__() method, an object signals that it represents a path. An object can then provide a low-level
representation of a file system path as a str or bytes object. This means an object is considered path-like
if it implements os.PathLike or is a str or bytes object which represents a file system path. Code can use
os.fspath(), os.fsdecode(), or os.fsencode() to explicitly get a str and/or bytes representation of a path-like
object.

The built-in open() function has been updated to accept os.PathLike objects, as have all relevant functions
in the os and os.path modules, and most other functions and classes in the standard library. The os.DirEntry
class and relevant classes in pathlib have also been updated to implement os.PathLike.

The hope is that updating the fundamental functions for operating on file system paths will lead to third-
party code to implicitly support all path-like objects without any code changes, or at least very minimal
ones (e.g. calling os.fspath() at the beginning of code before operating on a path-like object).

Here are some examples of how the new interface allows for pathlib.Path to be used more easily and trans-
parently with pre-existing code:

>>> import pathlib
>>> with open(pathlib.Path("README")) as f:
... contents = f.read()
...
>>> import os.path
>>> os.path.splitext(pathlib.Path("some_file.txt"))
('some_file', '.txt')
>>> os.path.join("/a/b", pathlib.Path("c"))
'/a/b/c'
>>> import os
>>> os.fspath(pathlib.Path("some_file.txt"))
'some_file.txt'

(Implemented by Brett Cannon, Ethan Furman, Dusty Phillips, and Jelle Zijlstra.)

See also:

https://www.python.org/dev/peps/pep-0487


PEP 519 – Adding a file system path protocol PEP written by Brett Cannon and Koos Zevenhoven.

2.9 PEP 495: Local Time Disambiguation

In most world locations, there have been and will be times when local clocks are moved back. In those times,
intervals are introduced in which local clocks show the same time twice in the same day. In these situations,
the information displayed on a local clock (or stored in a Python datetime instance) is insufficient to identify
a particular moment in time.

PEP 495 adds the new fold attribute to instances of datetime.datetime and datetime.time classes to differ-
entiate between two moments in time for which local times are the same:

>>> u0 = datetime(2016, 11, 6, 4, tzinfo=timezone.utc)
>>> for i in range(4):
... u = u0 + i*HOUR
... t = u.astimezone(Eastern)
... print(u.time(), 'UTC =', t.time(), t.tzname(), t.fold)
...
04:00:00 UTC = 00:00:00 EDT 0
05:00:00 UTC = 01:00:00 EDT 0
06:00:00 UTC = 01:00:00 EST 1
07:00:00 UTC = 02:00:00 EST 0

The values of the fold attribute have the value 0 for all instances except those that represent the second
(chronologically) moment in time in an ambiguous case.

See also:

PEP 495 – Local Time Disambiguation PEP written by Alexander Belopolsky and Tim Peters, implemen-
tation by Alexander Belopolsky.

2.10 PEP 529: Change Windows filesystem encoding to UTF-8

Representing filesystem paths is best performed with str (Unicode) rather than bytes. However, there are
some situations where using bytes is sufficient and correct.

Prior to Python 3.6, data loss could result when using bytes paths on Windows. With this change, using
bytes to represent paths is now supported on Windows, provided those bytes are encoded with the encoding
returned by sys.getfilesystemencoding(), which now defaults to 'utf-8'.

Applications that do not use str to represent paths should use os.fsencode() and os.fsdecode() to ensure their
bytes are correctly encoded. To revert to the previous behaviour, set PYTHONLEGACYWINDOWSFSEN-
CODING or call sys._enablelegacywindowsfsencoding().

See PEP 529 for more information and discussion of code modifications that may be required.

2.11 PEP 528: Change Windows console encoding to UTF-8

The default console on Windows will now accept all Unicode characters and provide correctly read str objects
to Python code. sys.stdin, sys.stdout and sys.stderr now default to utf-8 encoding.

This change only applies when using an interactive console, and not when redirecting files or pipes. To revert
to the previous behaviour for interactive console use, set PYTHONLEGACYWINDOWSSTDIO.

See also:

PEP 528 – Change Windows console encoding to UTF-8 PEP written and implemented by Steve Dower.

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0495
https://www.python.org/dev/peps/pep-0495
https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0528


2.12 PEP 520: Preserving Class Attribute Definition Order

Attributes in a class definition body have a natural ordering: the same order in which the names appear in
the source. This order is now preserved in the new class’s __dict__ attribute.

Also, the effective default class execution namespace (returned from type.__prepare__()) is now an
insertion-order-preserving mapping.

See also:

PEP 520 – Preserving Class Attribute Definition Order PEP written and implemented by Eric Snow.

2.13 PEP 468: Preserving Keyword Argument Order

**kwargs in a function signature is now guaranteed to be an insertion-order-preserving mapping.

See also:

PEP 468 – Preserving Keyword Argument Order PEP written and implemented by Eric Snow.

2.14 New dict implementation

The dict type now uses a “compact” representation based on a proposal by Raymond Hettinger which was
first implemented by PyPy. The memory usage of the new dict() is between 20% and 25% smaller compared
to Python 3.5.

The order-preserving aspect of this new implementation is considered an implementation detail and should
not be relied upon (this may change in the future, but it is desired to have this new dict implementation in
the language for a few releases before changing the language spec to mandate order-preserving semantics for
all current and future Python implementations; this also helps preserve backwards-compatibility with older
versions of the language where random iteration order is still in effect, e.g. Python 3.5).

(Contributed by INADA Naoki in bpo-27350. Idea originally suggested by Raymond Hettinger.)

2.15 PEP 523: Adding a frame evaluation API to CPython

While Python provides extensive support to customize how code executes, one place it has not done so is
in the evaluation of frame objects. If you wanted some way to intercept frame evaluation in Python there
really wasn’t any way without directly manipulating function pointers for defined functions.

PEP 523 changes this by providing an API to make frame evaluation pluggable at the C level. This will
allow for tools such as debuggers and JITs to intercept frame evaluation before the execution of Python
code begins. This enables the use of alternative evaluation implementations for Python code, tracking frame
evaluation, etc.

This API is not part of the limited C API and is marked as private to signal that usage of this API is
expected to be limited and only applicable to very select, low-level use-cases. Semantics of the API will
change with Python as necessary.

See also:

PEP 523 – Adding a frame evaluation API to CPython PEP written by Brett Cannon and Dino Viehland.

https://www.python.org/dev/peps/pep-0520
https://www.python.org/dev/peps/pep-0468
https://mail.python.org/pipermail/python-dev/2012-December/123028.html
https://morepypy.blogspot.com/2015/01/faster-more-memory-efficient-and-more.html
https://bugs.python.org/issue27350
https://mail.python.org/pipermail/python-dev/2012-December/123028.html
https://www.python.org/dev/peps/pep-0523
https://www.python.org/dev/peps/pep-0523


2.16 PYTHONMALLOC environment variable

The new PYTHONMALLOC environment variable allows setting the Python memory allocators and in-
stalling debug hooks.

It is now possible to install debug hooks on Python memory allocators on Python compiled in release mode
using PYTHONMALLOC=debug. Effects of debug hooks:

• Newly allocated memory is filled with the byte 0xCB

• Freed memory is filled with the byte 0xDB

• Detect violations of the Python memory allocator API. For example, PyObject_Free() called on a
memory block allocated by PyMem_Malloc().

• Detect writes before the start of a buffer (buffer underflows)

• Detect writes after the end of a buffer (buffer overflows)

• Check that the GIL is held when allocator functions of PYMEM_DOMAIN_OBJ (ex: PyOb-
ject_Malloc()) and PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are called.

Checking if the GIL is held is also a new feature of Python 3.6.

See the PyMem_SetupDebugHooks() function for debug hooks on Python memory allocators.

It is now also possible to force the usage of the malloc() allocator of the C library for all Python memory
allocations using PYTHONMALLOC=malloc. This is helpful when using external memory debuggers like
Valgrind on a Python compiled in release mode.

On error, the debug hooks on Python memory allocators now use the tracemalloc module to get the traceback
where a memory block was allocated.

Example of fatal error on buffer overflow using python3.6 -X tracemalloc=5 (store 5 frames in traces):

Debug memory block at address p=0x7fbcd41666f8: API 'o'
4 bytes originally requested
The 7 pad bytes at p-7 are FORBIDDENBYTE, as expected.
The 8 pad bytes at tail=0x7fbcd41666fc are not all FORBIDDENBYTE (0xfb):

at tail+0: 0x02 *** OUCH
at tail+1: 0xfb
at tail+2: 0xfb
at tail+3: 0xfb
at tail+4: 0xfb
at tail+5: 0xfb
at tail+6: 0xfb
at tail+7: 0xfb

The block was made by call #1233329 to debug malloc/realloc.
Data at p: 1a 2b 30 00

Memory block allocated at (most recent call first):
File "test/test_bytes.py", line 323
File "unittest/case.py", line 600
File "unittest/case.py", line 648
File "unittest/suite.py", line 122
File "unittest/suite.py", line 84

Fatal Python error: bad trailing pad byte

Current thread 0x00007fbcdbd32700 (most recent call first):
File "test/test_bytes.py", line 323 in test_hex
File "unittest/case.py", line 600 in run



File "unittest/case.py", line 648 in __call__
File "unittest/suite.py", line 122 in run
File "unittest/suite.py", line 84 in __call__
File "unittest/suite.py", line 122 in run
File "unittest/suite.py", line 84 in __call__
...

(Contributed by Victor Stinner in bpo-26516 and bpo-26564.)

2.17 DTrace and SystemTap probing support

Python can now be built --with-dtrace which enables static markers for the following events in the interpreter:

• function call/return

• garbage collection started/finished

• line of code executed.

This can be used to instrument running interpreters in production, without the need to recompile specific
debug builds or providing application-specific profiling/debugging code.

More details in instrumentation.

The current implementation is tested on Linux and macOS. Additional markers may be added in the future.

(Contributed by Łukasz Langa in bpo-21590, based on patches by Jesús Cea Avión, David Malcolm, and
Nikhil Benesch.)

3 Other Language Changes

Some smaller changes made to the core Python language are:

• A global or nonlocal statement must now textually appear before the first use of the affected name in
the same scope. Previously this was a SyntaxWarning.

• It is now possible to set a special method to None to indicate that the corresponding operation is not
available. For example, if a class sets __iter__() to None, the class is not iterable. (Contributed by
Andrew Barnert and Ivan Levkivskyi in bpo-25958.)

• Long sequences of repeated traceback lines are now abbreviated as "[Previous line repeated {count}
more times]" (see traceback for an example). (Contributed by Emanuel Barry in bpo-26823.)

• Import now raises the new exception ModuleNotFoundError (subclass of ImportError) when it cannot
find a module. Code that currently checks for ImportError (in try-except) will still work. (Contributed
by Eric Snow in bpo-15767.)

• Class methods relying on zero-argument super() will now work correctly when called from metaclass
methods during class creation. (Contributed by Martin Teichmann in bpo-23722.)

https://bugs.python.org/issue26516
https://bugs.python.org/issue26564
https://bugs.python.org/issue21590
https://bugs.python.org/issue25958
https://bugs.python.org/issue26823
https://bugs.python.org/issue15767
https://bugs.python.org/issue23722


4 New Modules

4.1 secrets

The main purpose of the new secrets module is to provide an obvious way to reliably generate cryptograph-
ically strong pseudo-random values suitable for managing secrets, such as account authentication, tokens,
and similar.

Warning: Note that the pseudo-random generators in the random module should NOT be used for
security purposes. Use secrets on Python 3.6+ and os.urandom() on Python 3.5 and earlier.

See also:

PEP 506 – Adding A Secrets Module To The Standard Library PEP written and implemented by Steven
D’Aprano.

5 Improved Modules

5.1 array

Exhausted iterators of array.array will now stay exhausted even if the iterated array is extended. This is
consistent with the behavior of other mutable sequences.

Contributed by Serhiy Storchaka in bpo-26492.

5.2 ast

The new ast.Constant AST node has been added. It can be used by external AST optimizers for the purposes
of constant folding.

Contributed by Victor Stinner in bpo-26146.

5.3 asyncio

Starting with Python 3.6 the asyncio module is no longer provisional and its API is considered stable.

Notable changes in the asyncio module since Python 3.5.0 (all backported to 3.5.x due to the provisional
status):

• The get_event_loop() function has been changed to always return the currently running loop when
called from couroutines and callbacks. (Contributed by Yury Selivanov in bpo-28613.)

• The ensure_future() function and all functions that use it, such as loop.run_until_complete(), now
accept all kinds of awaitable objects. (Contributed by Yury Selivanov.)

• New run_coroutine_threadsafe() function to submit coroutines to event loops from other threads.
(Contributed by Vincent Michel.)

• New Transport.is_closing() method to check if the transport is closing or closed. (Contributed by
Yury Selivanov.)

• The loop.create_server() method can now accept a list of hosts. (Contributed by Yann Sionneau.)

https://www.python.org/dev/peps/pep-0506
https://bugs.python.org/issue26492
https://bugs.python.org/issue26146
https://bugs.python.org/issue28613


• New loop.create_future() method to create Future objects. This allows alternative event loop imple-
mentations, such as uvloop, to provide a faster asyncio.Future implementation. (Contributed by Yury
Selivanov in bpo-27041.)

• New loop.get_exception_handler() method to get the current exception handler. (Contributed by
Yury Selivanov in bpo-27040.)

• New StreamReader.readuntil() method to read data from the stream until a separator bytes sequence
appears. (Contributed by Mark Korenberg.)

• The performance of StreamReader.readexactly() has been improved. (Contributed by Mark Korenberg
in bpo-28370.)

• The loop.getaddrinfo() method is optimized to avoid calling the system getaddrinfo function if the
address is already resolved. (Contributed by A. Jesse Jiryu Davis.)

• The loop.stop() method has been changed to stop the loop immediately after the current iteration.
Any new callbacks scheduled as a result of the last iteration will be discarded. (Contributed by Guido
van Rossum in bpo-25593.)

• Future.set_exception will now raise TypeError when passed an instance of the StopIteration exception.
(Contributed by Chris Angelico in bpo-26221.)

• New loop.connect_accepted_socket() method to be used by servers that accept connections outside of
asyncio, but that use asyncio to handle them. (Contributed by Jim Fulton in bpo-27392.)

• TCP_NODELAY flag is now set for all TCP transports by default. (Contributed by Yury Selivanov
in bpo-27456.)

• New loop.shutdown_asyncgens() to properly close pending asynchronous generators before closing the
loop. (Contributed by Yury Selivanov in bpo-28003.)

• Future and Task classes now have an optimized C implementation which makes asyncio code up to
30% faster. (Contributed by Yury Selivanov and INADA Naoki in bpo-26081 and bpo-28544.)

5.4 binascii

The b2a_base64() function now accepts an optional newline keyword argument to control whether the
newline character is appended to the return value. (Contributed by Victor Stinner in bpo-25357.)

5.5 cmath

The new cmath.tau (𝜏) constant has been added. (Contributed by Lisa Roach in bpo-12345, see PEP 628
for details.)

New constants: cmath.inf and cmath.nan to match math.inf and math.nan, and also cmath.infj and cmath.
nanj to match the format used by complex repr. (Contributed by Mark Dickinson in bpo-23229.)

5.6 collections

The new Collection abstract base class has been added to represent sized iterable container classes. (Con-
tributed by Ivan Levkivskyi, docs by Neil Girdhar in bpo-27598.)

The new Reversible abstract base class represents iterable classes that also provide the __reversed__()
method. (Contributed by Ivan Levkivskyi in bpo-25987.)

The new AsyncGenerator abstract base class represents asynchronous generators. (Contributed by Yury
Selivanov in bpo-28720.)

https://github.com/MagicStack/uvloop
https://bugs.python.org/issue27041
https://bugs.python.org/issue27040
https://bugs.python.org/issue28370
https://bugs.python.org/issue25593
https://bugs.python.org/issue26221
https://bugs.python.org/issue27392
https://bugs.python.org/issue27456
https://bugs.python.org/issue28003
https://bugs.python.org/issue26081
https://bugs.python.org/issue28544
https://bugs.python.org/issue25357
https://bugs.python.org/issue12345
https://www.python.org/dev/peps/pep-0628
https://bugs.python.org/issue23229
https://bugs.python.org/issue27598
https://bugs.python.org/issue25987
https://bugs.python.org/issue28720


The namedtuple() function now accepts an optional keyword argument module, which, when specified, is
used for the __module__ attribute of the returned named tuple class. (Contributed by Raymond Hettinger
in bpo-17941.)

The verbose and rename arguments for namedtuple() are now keyword-only. (Contributed by Raymond
Hettinger in bpo-25628.)

Recursive collections.deque instances can now be pickled. (Contributed by Serhiy Storchaka in bpo-26482.)

5.7 concurrent.futures

The ThreadPoolExecutor class constructor now accepts an optional thread_name_prefix argument to make
it possible to customize the names of the threads created by the pool. (Contributed by Gregory P. Smith in
bpo-27664.)

5.8 contextlib

The contextlib.AbstractContextManager class has been added to provide an abstract base class for con-
text managers. It provides a sensible default implementation for __enter__() which returns self and
leaves __exit__() an abstract method. A matching class has been added to the typing module as typing.
ContextManager. (Contributed by Brett Cannon in bpo-25609.)

5.9 datetime

The datetime and time classes have the new fold attribute used to disambiguate local time when necessary.
Many functions in the datetime have been updated to support local time disambiguation. See Local Time
Disambiguation section for more information. (Contributed by Alexander Belopolsky in bpo-24773.)

The datetime.strftime() and date.strftime() methods now support ISO 8601 date directives %G, %u and
%V. (Contributed by Ashley Anderson in bpo-12006.)

The datetime.isoformat() function now accepts an optional timespec argument that specifies the number
of additional components of the time value to include. (Contributed by Alessandro Cucci and Alexander
Belopolsky in bpo-19475.)

The datetime.combine() now accepts an optional tzinfo argument. (Contributed by Alexander Belopolsky
in bpo-27661.)

5.10 decimal

New Decimal.as_integer_ratio() method that returns a pair (n, d) of integers that represent the given
Decimal instance as a fraction, in lowest terms and with a positive denominator:

>>> Decimal('-3.14').as_integer_ratio()
(-157, 50)

(Contributed by Stefan Krah amd Mark Dickinson in bpo-25928.)

5.11 distutils

The default_format attribute has been removed from distutils.command.sdist.sdist and the formats attribute
defaults to ['gztar']. Although not anticipated, any code relying on the presence of default_format may
need to be adapted. See bpo-27819 for more details.

https://bugs.python.org/issue17941
https://bugs.python.org/issue25628
https://bugs.python.org/issue26482
https://bugs.python.org/issue27664
https://bugs.python.org/issue25609
https://bugs.python.org/issue24773
https://bugs.python.org/issue12006
https://bugs.python.org/issue19475
https://bugs.python.org/issue27661
https://bugs.python.org/issue25928
https://bugs.python.org/issue27819


5.12 email

The new email API, enabled via the policy keyword to various constructors, is no longer provisional. The
email documentation has been reorganized and rewritten to focus on the new API, while retaining the old
documentation for the legacy API. (Contributed by R. David Murray in bpo-24277.)

The email.mime classes now all accept an optional policy keyword. (Contributed by Berker Peksag in
bpo-27331.)

The DecodedGenerator now supports the policy keyword.

There is a new policy attribute, message_factory, that controls what class is used by default when the parser
creates new message objects. For the email.policy.compat32 policy this is Message, for the new policies it is
EmailMessage. (Contributed by R. David Murray in bpo-20476.)

5.13 encodings

On Windows, added the 'oem' encoding to use CP_OEMCP, and the 'ansi' alias for the existing 'mbcs'
encoding, which uses the CP_ACP code page. (Contributed by Steve Dower in bpo-27959.)

5.14 enum

Two new enumeration base classes have been added to the enum module: Flag and IntFlags. Both are used
to define constants that can be combined using the bitwise operators. (Contributed by Ethan Furman in
bpo-23591.)

Many standard library modules have been updated to use the IntFlags class for their constants.

The new enum.auto value can be used to assign values to enum members automatically:

>>> from enum import Enum, auto
>>> class Color(Enum):
... red = auto()
... blue = auto()
... green = auto()
...
>>> list(Color)
[<Color.red: 1>, <Color.blue: 2>, <Color.green: 3>]

5.15 faulthandler

On Windows, the faulthandler module now installs a handler for Windows exceptions: see faulthandler.
enable(). (Contributed by Victor Stinner in bpo-23848.)

5.16 fileinput

hook_encoded() now supports the errors argument. (Contributed by Joseph Hackman in bpo-25788.)

5.17 hashlib

hashlib supports OpenSSL 1.1.0. The minimum recommend version is 1.0.2. (Contributed by Christian
Heimes in bpo-26470.)

https://bugs.python.org/issue24277
https://bugs.python.org/issue27331
https://bugs.python.org/issue20476
https://bugs.python.org/issue27959
https://bugs.python.org/issue23591
https://bugs.python.org/issue23848
https://bugs.python.org/issue25788
https://bugs.python.org/issue26470


BLAKE2 hash functions were added to the module. blake2b() and blake2s() are always available and support
the full feature set of BLAKE2. (Contributed by Christian Heimes in bpo-26798 based on code by Dmitry
Chestnykh and Samuel Neves. Documentation written by Dmitry Chestnykh.)

The SHA-3 hash functions sha3_224(), sha3_256(), sha3_384(), sha3_512(), and SHAKE hash functions
shake_128() and shake_256() were added. (Contributed by Christian Heimes in bpo-16113. Keccak Code
Package by Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer.)

The password-based key derivation function scrypt() is now available with OpenSSL 1.1.0 and newer. (Con-
tributed by Christian Heimes in bpo-27928.)

5.18 http.client

HTTPConnection.request() and endheaders() both now support chunked encoding request bodies. (Con-
tributed by Demian Brecht and Rolf Krahl in bpo-12319.)

5.19 idlelib and IDLE

The idlelib package is being modernized and refactored to make IDLE look and work better and to make
the code easier to understand, test, and improve. Part of making IDLE look better, especially on Linux and
Mac, is using ttk widgets, mostly in the dialogs. As a result, IDLE no longer runs with tcl/tk 8.4. It now
requires tcl/tk 8.5 or 8.6. We recommend running the latest release of either.

‘Modernizing’ includes renaming and consolidation of idlelib modules. The renaming of files with partial
uppercase names is similar to the renaming of, for instance, Tkinter and TkFont to tkinter and tkinter.font
in 3.0. As a result, imports of idlelib files that worked in 3.5 will usually not work in 3.6. At least a module
name change will be needed (see idlelib/README.txt), sometimes more. (Name changes contributed by
Al Swiegart and Terry Reedy in bpo-24225. Most idlelib patches since have been and will be part of the
process.)

In compensation, the eventual result with be that some idlelib classes will be easier to use, with better APIs
and docstrings explaining them. Additional useful information will be added to idlelib when available.

5.20 importlib

Import now raises the new exception ModuleNotFoundError (subclass of ImportError) when it cannot find
a module. Code that current checks for ImportError (in try-except) will still work. (Contributed by Eric
Snow in bpo-15767.)

importlib.util.LazyLoader now calls create_module() on the wrapped loader, removing the restriction that
importlib.machinery.BuiltinImporter and importlib.machinery.ExtensionFileLoader couldn’t be used with
importlib.util.LazyLoader.

importlib.util.cache_from_source(), importlib.util.source_from_cache(), and importlib.util.
spec_from_file_location() now accept a path-like object.

5.21 inspect

The inspect.signature() function now reports the implicit .0 parameters generated by the compiler for com-
prehension and generator expression scopes as if they were positional-only parameters called implicit0. (Con-
tributed by Jelle Zijlstra in bpo-19611.)

To reduce code churn when upgrading from Python 2.7 and the legacy inspect.getargspec() API, the previ-
ously documented deprecation of inspect.getfullargspec() has been reversed. While this function is convenient

https://bugs.python.org/issue26798
https://bugs.python.org/issue16113
https://bugs.python.org/issue27928
https://bugs.python.org/issue12319
https://bugs.python.org/issue24225
https://bugs.python.org/issue15767
https://bugs.python.org/issue19611


for single/source Python 2/3 code bases, the richer inspect.signature() interface remains the recommended
approach for new code. (Contributed by Nick Coghlan in bpo-27172)

5.22 json

json.load() and json.loads() now support binary input. Encoded JSON should be represented using either
UTF-8, UTF-16, or UTF-32. (Contributed by Serhiy Storchaka in bpo-17909.)

5.23 logging

The new WatchedFileHandler.reopenIfNeeded() method has been added to add the ability to check if the
log file needs to be reopened. (Contributed by Marian Horban in bpo-24884.)

5.24 math

The tau (𝜏) constant has been added to the math and cmath modules. (Contributed by Lisa Roach in
bpo-12345, see PEP 628 for details.)

5.25 multiprocessing

Proxy Objects returned by multiprocessing.Manager() can now be nested. (Contributed by Davin Potts in
bpo-6766.)

5.26 os

See the summary of PEP 519 for details on how the os and os.path modules now support path-like objects.

scandir() now supports bytes paths on Windows.

A new close() method allows explicitly closing a scandir() iterator. The scandir() iterator now supports the
context manager protocol. If a scandir() iterator is neither exhausted nor explicitly closed a ResourceWarning
will be emitted in its destructor. (Contributed by Serhiy Storchaka in bpo-25994.)

On Linux, os.urandom() now blocks until the system urandom entropy pool is initialized to increase the
security. See the PEP 524 for the rationale.

The Linux getrandom() syscall (get random bytes) is now exposed as the new os.getrandom() function.
(Contributed by Victor Stinner, part of the PEP 524)

5.27 pathlib

pathlib now supports path-like objects. (Contributed by Brett Cannon in bpo-27186.)

See the summary of PEP 519 for details.

5.28 pdb

The Pdb class constructor has a new optional readrc argument to control whether .pdbrc files should be
read.

https://bugs.python.org/issue27172
https://bugs.python.org/issue17909
https://bugs.python.org/issue24884
https://bugs.python.org/issue12345
https://www.python.org/dev/peps/pep-0628
https://bugs.python.org/issue6766
https://bugs.python.org/issue25994
https://www.python.org/dev/peps/pep-0524
https://www.python.org/dev/peps/pep-0524
https://bugs.python.org/issue27186


5.29 pickle

Objects that need __new__ called with keyword arguments can now be pickled using pickle protocols older
than protocol version 4. Protocol version 4 already supports this case. (Contributed by Serhiy Storchaka in
bpo-24164.)

5.30 pickletools

pickletools.dis() now outputs the implicit memo index for the MEMOIZE opcode. (Contributed by Serhiy
Storchaka in bpo-25382.)

5.31 pydoc

The pydoc module has learned to respect the MANPAGER environment variable. (Contributed by Matthias
Klose in bpo-8637.)

help() and pydoc can now list named tuple fields in the order they were defined rather than alphabetically.
(Contributed by Raymond Hettinger in bpo-24879.)

5.32 random

The new choices() function returns a list of elements of specified size from the given population with optional
weights. (Contributed by Raymond Hettinger in bpo-18844.)

5.33 re

Added support of modifier spans in regular expressions. Examples: '(?i:p)ython' matches 'python' and
'Python', but not 'PYTHON'; '(?i)g(?-i:v)r' matches 'GvR' and 'gvr', but not 'GVR'. (Contributed
by Serhiy Storchaka in bpo-433028.)

Match object groups can be accessed by __getitem__, which is equivalent to group(). So mo['name'] is
now equivalent to mo.group('name'). (Contributed by Eric Smith in bpo-24454.)

Match objects now support index-like objects as group indices. (Contributed by Jeroen Demeyer and Xiang
Zhang in bpo-27177.)

5.34 readline

Added set_auto_history() to enable or disable automatic addition of input to the history list. (Contributed
by Tyler Crompton in bpo-26870.)

5.35 rlcompleter

Private and special attribute names now are omitted unless the prefix starts with underscores. A space
or a colon is added after some completed keywords. (Contributed by Serhiy Storchaka in bpo-25011 and
bpo-25209.)

https://bugs.python.org/issue24164
https://bugs.python.org/issue25382
https://bugs.python.org/issue8637
https://bugs.python.org/issue24879
https://bugs.python.org/issue18844
https://bugs.python.org/issue433028
https://bugs.python.org/issue24454
https://bugs.python.org/issue27177
https://bugs.python.org/issue26870
https://bugs.python.org/issue25011
https://bugs.python.org/issue25209


5.36 shlex

The shlex has much improved shell compatibility through the new punctuation_chars argument to control
which characters are treated as punctuation. (Contributed by Vinay Sajip in bpo-1521950.)

5.37 site

When specifying paths to add to sys.path in a .pth file, you may now specify file paths on top of directories
(e.g. zip files). (Contributed by Wolfgang Langner in bpo-26587).

5.38 sqlite3

sqlite3.Cursor.lastrowid now supports the REPLACE statement. (Contributed by Alex LordThorsen in
bpo-16864.)

5.39 socket

The ioctl() function now supports the SIO_LOOPBACK_FAST_PATH control code. (Contributed by
Daniel Stokes in bpo-26536.)

The getsockopt() constants SO_DOMAIN, SO_PROTOCOL, SO_PEERSEC, and SO_PASSSEC are now
supported. (Contributed by Christian Heimes in bpo-26907.)

The setsockopt() now supports the setsockopt(level, optname, None, optlen: int) form. (Contributed by
Christian Heimes in bpo-27744.)

The socket module now supports the address family AF_ALG to interface with Linux Kernel crypto API.
ALG_*, SOL_ALG and sendmsg_afalg() were added. (Contributed by Christian Heimes in bpo-27744 with
support from Victor Stinner.)

New Linux constants TCP_USER_TIMEOUT and TCP_CONGESTION were added. (Contributed by
Omar Sandoval, issue:26273).

5.40 socketserver

Servers based on the socketserver module, including those defined in http.server, xmlrpc.server and wsgiref.
simple_server, now support the context manager protocol. (Contributed by Aviv Palivoda in bpo-26404.)

The wfile attribute of StreamRequestHandler classes now implements the io.BufferedIOBase writable inter-
face. In particular, calling write() is now guaranteed to send the data in full. (Contributed by Martin Panter
in bpo-26721.)

5.41 ssl

ssl supports OpenSSL 1.1.0. The minimum recommend version is 1.0.2. (Contributed by Christian Heimes
in bpo-26470.)

3DES has been removed from the default cipher suites and ChaCha20 Poly1305 cipher suites have been
added. (Contributed by Christian Heimes in bpo-27850 and bpo-27766.)

SSLContext has better default configuration for options and ciphers. (Contributed by Christian Heimes in
bpo-28043.)

https://bugs.python.org/issue1521950
https://bugs.python.org/issue26587
https://bugs.python.org/issue16864
https://bugs.python.org/issue26536
https://bugs.python.org/issue26907
https://bugs.python.org/issue27744
https://bugs.python.org/issue27744
https://bugs.python.org/issue26404
https://bugs.python.org/issue26721
https://bugs.python.org/issue26470
https://bugs.python.org/issue27850
https://bugs.python.org/issue27766
https://bugs.python.org/issue28043


SSL session can be copied from one client-side connection to another with the new SSLSession class. TLS
session resumption can speed up the initial handshake, reduce latency and improve performance (Contributed
by Christian Heimes in bpo-19500 based on a draft by Alex Warhawk.)

The new get_ciphers() method can be used to get a list of enabled ciphers in order of cipher priority.

All constants and flags have been converted to IntEnum and IntFlags. (Contributed by Christian Heimes in
bpo-28025.)

Server and client-side specific TLS protocols for SSLContext were added. (Contributed by Christian Heimes
in bpo-28085.)

5.42 statistics

A new harmonic_mean() function has been added. (Contributed by Steven D’Aprano in bpo-27181.)

5.43 struct

struct now supports IEEE 754 half-precision floats via the 'e' format specifier. (Contributed by Eli Stevens,
Mark Dickinson in bpo-11734.)

5.44 subprocess

subprocess.Popen destructor now emits a ResourceWarning warning if the child process is still running. Use
the context manager protocol (with proc: ...) or explicitly call the wait() method to read the exit status of
the child process. (Contributed by Victor Stinner in bpo-26741.)

The subprocess.Popen constructor and all functions that pass arguments through to it now accept encoding
and errors arguments. Specifying either of these will enable text mode for the stdin, stdout and stderr
streams. (Contributed by Steve Dower in bpo-6135.)

5.45 sys

The new getfilesystemencodeerrors() function returns the name of the error mode used to convert between
Unicode filenames and bytes filenames. (Contributed by Steve Dower in bpo-27781.)

On Windows the return value of the getwindowsversion() function now includes the platform_version field
which contains the accurate major version, minor version and build number of the current operating system,
rather than the version that is being emulated for the process (Contributed by Steve Dower in bpo-27932.)

5.46 telnetlib

Telnet is now a context manager (contributed by Stéphane Wirtel in bpo-25485).

5.47 time

The struct_time attributes tm_gmtoff and tm_zone are now available on all platforms.

https://bugs.python.org/issue19500
https://bugs.python.org/issue28025
https://bugs.python.org/issue28085
https://bugs.python.org/issue27181
https://bugs.python.org/issue11734
https://bugs.python.org/issue26741
https://bugs.python.org/issue6135
https://bugs.python.org/issue27781
https://bugs.python.org/issue27932
https://bugs.python.org/issue25485


5.48 timeit

The new Timer.autorange() convenience method has been added to call Timer.timeit() repeatedly so that
the total run time is greater or equal to 200 milliseconds. (Contributed by Steven D’Aprano in bpo-6422.)

timeit now warns when there is substantial (4x) variance between best and worst times. (Contributed by
Serhiy Storchaka in bpo-23552.)

5.49 tkinter

Added methods trace_add(), trace_remove() and trace_info() in the tkinter.Variable class. They replace
old methods trace_variable(), trace(), trace_vdelete() and trace_vinfo() that use obsolete Tcl commands
and might not work in future versions of Tcl. (Contributed by Serhiy Storchaka in bpo-22115).

5.50 traceback

Both the traceback module and the interpreter’s builtin exception display now abbreviate long sequences of
repeated lines in tracebacks as shown in the following example:

>>> def f(): f()
...
>>> f()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 1, in f
File "<stdin>", line 1, in f
File "<stdin>", line 1, in f
[Previous line repeated 995 more times]

RecursionError: maximum recursion depth exceeded

(Contributed by Emanuel Barry in bpo-26823.)

5.51 tracemalloc

The tracemalloc module now supports tracing memory allocations in multiple different address spaces.

The new DomainFilter filter class has been added to filter block traces by their address space (domain).

(Contributed by Victor Stinner in bpo-26588.)

5.52 typing

Since the typing module is provisional, all changes introduced in Python 3.6 have also been backported to
Python 3.5.x.

The typing module has a much improved support for generic type aliases. For example Dict[str, Tuple[S, T]]
is now a valid type annotation. (Contributed by Guido van Rossum in Github #195.)

The typing.ContextManager class has been added for representing contextlib.AbstractContextManager.
(Contributed by Brett Cannon in bpo-25609.)

The typing.Collection class has been added for representing collections.abc.Collection. (Contributed by Ivan
Levkivskyi in bpo-27598.)

https://bugs.python.org/issue6422
https://bugs.python.org/issue23552
https://bugs.python.org/issue22115
https://bugs.python.org/issue26823
https://bugs.python.org/issue26588
https://github.com/python/typing/pull/195
https://bugs.python.org/issue25609
https://bugs.python.org/issue27598


The typing.ClassVar type construct has been added to mark class variables. As introduced in PEP 526, a
variable annotation wrapped in ClassVar indicates that a given attribute is intended to be used as a class
variable and should not be set on instances of that class. (Contributed by Ivan Levkivskyi in Github #280.)

A new TYPE_CHECKING constant that is assumed to be True by the static type chekers, but is False at
runtime. (Contributed by Guido van Rossum in Github #230.)

A new NewType() helper function has been added to create lightweight distinct types for annotations:

from typing import NewType

UserId = NewType('UserId', int)
some_id = UserId(524313)

The static type checker will treat the new type as if it were a subclass of the original type. (Contributed by
Ivan Levkivskyi in Github #189.)

5.53 unicodedata

The unicodedata module now uses data from Unicode 9.0.0. (Contributed by Benjamin Peterson.)

5.54 unittest.mock

The Mock class has the following improvements:

• Two new methods, Mock.assert_called() and Mock.assert_called_once() to check if the mock object
was called. (Contributed by Amit Saha in bpo-26323.)

• The Mock.reset_mock() method now has two optional keyword only arguments: return_value and
side_effect. (Contributed by Kushal Das in bpo-21271.)

5.55 urllib.request

If a HTTP request has a file or iterable body (other than a bytes object) but no Content-Length header,
rather than throwing an error, AbstractHTTPHandler now falls back to use chunked transfer encoding.
(Contributed by Demian Brecht and Rolf Krahl in bpo-12319.)

5.56 urllib.robotparser

RobotFileParser now supports the Crawl-delay and Request-rate extensions. (Contributed by Nikolay Bo-
goychev in bpo-16099.)

5.57 venv

venv accepts a new parameter --prompt. This parameter provides an alternative prefix for the virtual
environment. (Proposed by Łukasz Balcerzak and ported to 3.6 by Stéphane Wirtel in bpo-22829.)

https://www.python.org/dev/peps/pep-0526
https://github.com/python/typing/issues/280
https://github.com/python/typing/issues/230
https://github.com/python/typing/issues/189
http://unicode.org/versions/Unicode9.0.0/
https://bugs.python.org/issue26323
https://bugs.python.org/issue21271
https://bugs.python.org/issue12319
https://bugs.python.org/issue16099
https://bugs.python.org/issue22829


5.58 warnings

A new optional source parameter has been added to the warnings.warn_explicit() function: the destroyed ob-
ject which emitted a ResourceWarning. A source attribute has also been added to warnings.WarningMessage
(contributed by Victor Stinner in bpo-26568 and bpo-26567).

When a ResourceWarning warning is logged, the tracemalloc module is now used to try to retrieve the
traceback where the destroyed object was allocated.

Example with the script example.py:

import warnings

def func():
return open(__file__)

f = func()
f = None

Output of the command python3.6 -Wd -X tracemalloc=5 example.py:

example.py:7: ResourceWarning: unclosed file <_io.TextIOWrapper name='example.py' mode='r' encoding=
→˓'UTF-8'>
f = None

Object allocated at (most recent call first):
File "example.py", lineno 4

return open(__file__)
File "example.py", lineno 6

f = func()

The “Object allocated at” traceback is new and is only displayed if tracemalloc is tracing Python memory
allocations and if the warnings module was already imported.

5.59 winreg

Added the 64-bit integer type REG_QWORD. (Contributed by Clement Rouault in bpo-23026.)

5.60 winsound

Allowed keyword arguments to be passed to Beep, MessageBeep, and PlaySound (bpo-27982).

5.61 xmlrpc.client

The xmlrpc.client module now supports unmarshalling additional data types used by the Apache XML-RPC
implementation for numerics and None. (Contributed by Serhiy Storchaka in bpo-26885.)

5.62 zipfile

A new ZipInfo.from_file() class method allows making a ZipInfo instance from a filesystem file. A new
ZipInfo.is_dir() method can be used to check if the ZipInfo instance represents a directory. (Contributed by
Thomas Kluyver in bpo-26039.)

The ZipFile.open() method can now be used to write data into a ZIP file, as well as for extracting data.
(Contributed by Thomas Kluyver in bpo-26039.)

https://bugs.python.org/issue26568
https://bugs.python.org/issue26567
https://bugs.python.org/issue23026
https://bugs.python.org/issue27982
https://bugs.python.org/issue26885
https://bugs.python.org/issue26039
https://bugs.python.org/issue26039


5.63 zlib

The compress() and decompress() functions now accept keyword arguments. (Contributed by Aviv Palivoda
in bpo-26243 and Xiang Zhang in bpo-16764 respectively.)

6 Optimizations

• The Python interpreter now uses a 16-bit wordcode instead of bytecode which made a number of
opcode optimizations possible. (Contributed by Demur Rumed with input and reviews from Serhiy
Storchaka and Victor Stinner in bpo-26647 and bpo-28050.)

• The asyncio.Future class now has an optimized C implementation. (Contributed by Yury Selivanov
and INADA Naoki in bpo-26081.)

• The asyncio.Task class now has an optimized C implementation. (Contributed by Yury Selivanov in
bpo-28544.)

• Various implementation improvements in the typing module (such as caching of generic types) allow
up to 30 times performance improvements and reduced memory footprint.

• The ASCII decoder is now up to 60 times as fast for error handlers surrogateescape, ignore and replace
(Contributed by Victor Stinner in bpo-24870).

• The ASCII and the Latin1 encoders are now up to 3 times as fast for the error handler surrogateescape
(Contributed by Victor Stinner in bpo-25227).

• The UTF-8 encoder is now up to 75 times as fast for error handlers ignore, replace, surrogateescape,
surrogatepass (Contributed by Victor Stinner in bpo-25267).

• The UTF-8 decoder is now up to 15 times as fast for error handlers ignore, replace and surrogateescape
(Contributed by Victor Stinner in bpo-25301).

• bytes % args is now up to 2 times faster. (Contributed by Victor Stinner in bpo-25349).

• bytearray % args is now between 2.5 and 5 times faster. (Contributed by Victor Stinner in bpo-25399).

• Optimize bytes.fromhex() and bytearray.fromhex(): they are now between 2x and 3.5x faster. (Con-
tributed by Victor Stinner in bpo-25401).

• Optimize bytes.replace(b'', b'.') and bytearray.replace(b'', b'.'): up to 80% faster. (Contributed
by Josh Snider in bpo-26574).

• Allocator functions of the PyMem_Malloc() domain (PYMEM_DOMAIN_MEM) now use the py-
malloc memory allocator instead of malloc() function of the C library. The pymalloc allocator is
optimized for objects smaller or equal to 512 bytes with a short lifetime, and use malloc() for larger
memory blocks. (Contributed by Victor Stinner in bpo-26249).

• pickle.load() and pickle.loads() are now up to 10% faster when deserializing many small objects (Con-
tributed by Victor Stinner in bpo-27056).

• Passing keyword arguments to a function has an overhead in comparison with passing positional argu-
ments. Now in extension functions implemented with using Argument Clinic this overhead is signifi-
cantly decreased. (Contributed by Serhiy Storchaka in bpo-27574).

• Optimized glob() and iglob() functions in the glob module; they are now about 3–6 times faster.
(Contributed by Serhiy Storchaka in bpo-25596).

• Optimized globbing in pathlib by using os.scandir(); it is now about 1.5–4 times faster. (Contributed
by Serhiy Storchaka in bpo-26032).

https://bugs.python.org/issue26243
https://bugs.python.org/issue16764
https://bugs.python.org/issue26647
https://bugs.python.org/issue28050
https://bugs.python.org/issue26081
https://bugs.python.org/issue28544
https://bugs.python.org/issue24870
https://bugs.python.org/issue25227
https://bugs.python.org/issue25267
https://bugs.python.org/issue25301
https://bugs.python.org/issue25349
https://bugs.python.org/issue25399
https://bugs.python.org/issue25401
https://bugs.python.org/issue26574
https://bugs.python.org/issue26249
https://bugs.python.org/issue27056
https://bugs.python.org/issue27574
https://bugs.python.org/issue25596
https://bugs.python.org/issue26032


• xml.etree.ElementTree parsing, iteration and deepcopy performance has been significantly improved.
(Contributed by Serhiy Storchaka in bpo-25638, bpo-25873, and bpo-25869.)

• Creation of fractions.Fraction instances from floats and decimals is now 2 to 3 times faster. (Con-
tributed by Serhiy Storchaka in bpo-25971.)

7 Build and C API Changes

• Python now requires some C99 support in the toolchain to build. Most notably, Python now uses
standard integer types and macros in place of custom macros like PY_LONG_LONG. For more
information, see PEP 7 and bpo-17884.

• Cross-compiling CPython with the Android NDK and the Android API level set to 21 (Android 5.0
Lollilop) or greater runs successfully. While Android is not yet a supported platform, the Python test
suite runs on the Android emulator with only about 16 tests failures. See the Android meta-issue
bpo-26865.

• The --enable-optimizations configure flag has been added. Turning it on will activate expensive opti-
mizations like PGO. (Original patch by Alecsandru Patrascu of Intel in bpo-26359.)

• The GIL must now be held when allocator functions of PYMEM_DOMAIN_OBJ (ex: PyOb-
ject_Malloc()) and PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are called.

• New Py_FinalizeEx() API which indicates if flushing buffered data failed. (Contributed by Martin
Panter in bpo-5319.)

• PyArg_ParseTupleAndKeywords() now supports positional-only parameters. Positional-only param-
eters are defined by empty names. (Contributed by Serhiy Storchaka in bpo-26282).

• PyTraceback_Print method now abbreviates long sequences of repeated lines as "[Previous line re-
peated {count} more times]". (Contributed by Emanuel Barry in bpo-26823.)

• The new PyErr_SetImportErrorSubclass() function allows for specifying a subclass of ImportError to
raise. (Contributed by Eric Snow in bpo-15767.)

• The new PyErr_ResourceWarning() function can be used to generate a ResourceWarning providing
the source of the resource allocation. (Contributed by Victor Stinner in bpo-26567.)

• The new PyOS_FSPath() function returns the file system representation of a path-like object. (Con-
tributed by Brett Cannon in bpo-27186.)

• The PyUnicode_FSConverter() and PyUnicode_FSDecoder() functions will now accept path-like ob-
jects.

8 Other Improvements

• When --version (short form: -V) is supplied twice, Python prints sys.version for detailed information.

$ ./python -VV
Python 3.6.0b4+ (3.6:223967b49e49+, Nov 21 2016, 20:55:04)
[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)]

https://bugs.python.org/issue25638
https://bugs.python.org/issue25873
https://bugs.python.org/issue25869
https://bugs.python.org/issue25971
https://www.python.org/dev/peps/pep-0007
https://bugs.python.org/issue17884
https://bugs.python.org/issue26865
https://bugs.python.org/issue26359
https://bugs.python.org/issue5319
https://bugs.python.org/issue26282
https://bugs.python.org/issue26823
https://bugs.python.org/issue15767
https://bugs.python.org/issue26567
https://bugs.python.org/issue27186


9 Deprecated

9.1 New Keywords

async and await are not recommended to be used as variable, class, function or module names. Introduced
by PEP 492 in Python 3.5, they will become proper keywords in Python 3.7. Starting in Python 3.6, the
use of async or await as names will generate a DeprecationWarning.

9.2 Deprecated Python behavior

Raising the StopIteration exception inside a generator will now generate a DeprecationWarning, and will
trigger a RuntimeError in Python 3.7. See whatsnew-pep-479 for details.

The __aiter__() method is now expected to return an asynchronous iterator directly instead of returning
an awaitable as previously. Doing the former will trigger a DeprecationWarning. Backward compatibility
will be removed in Python 3.7. (Contributed by Yury Selivanov in bpo-27243.)

A backslash-character pair that is not a valid escape sequence now generates a DeprecationWarning. Al-
though this will eventually become a SyntaxError, that will not be for several Python releases. (Contributed
by Emanuel Barry in bpo-27364.)

When performing a relative import, falling back on __name__ and __path__ from the calling module
when __spec__ or __package__ are not defined now raises an ImportWarning. (Contributed by Rose
Ames in bpo-25791.)

9.3 Deprecated Python modules, functions and methods

asynchat

The asynchat has been deprecated in favor of asyncio. (Contributed by Mariatta in bpo-25002.)

asyncore

The asyncore has been deprecated in favor of asyncio. (Contributed by Mariatta in bpo-25002.)

dbm

Unlike other dbm implementations, the dbm.dumb module creates databases with the 'rw' mode and allows
modifying the database opened with the 'r' mode. This behavior is now deprecated and will be removed
in 3.8. (Contributed by Serhiy Storchaka in bpo-21708.)

distutils

The undocumented extra_path argument to the Distribution constructor is now considered deprecated and
will raise a warning if set. Support for this parameter will be removed in a future Python release. See
bpo-27919 for details.

https://www.python.org/dev/peps/pep-0492
https://bugs.python.org/issue27243
https://bugs.python.org/issue27364
https://bugs.python.org/issue25791
https://bugs.python.org/issue25002
https://bugs.python.org/issue25002
https://bugs.python.org/issue21708
https://bugs.python.org/issue27919


grp

The support of non-integer arguments in getgrgid() has been deprecated. (Contributed by Serhiy Storchaka
in bpo-26129.)

importlib

The importlib.machinery.SourceFileLoader.load_module() and importlib.machinery.SourcelessFileLoader.
load_module() methods are now deprecated. They were the only remaining implementations of importlib.
abc.Loader.load_module() in importlib that had not been deprecated in previous versions of Python in
favour of importlib.abc.Loader.exec_module().

The importlib.machinery.WindowsRegistryFinder class is now deprecated. As of 3.6.0, it is still added to
sys.meta_path by default (on Windows), but this may change in future releases.

os

Undocumented support of general bytes-like objects as paths in os functions, compile() and similar functions
is now deprecated. (Contributed by Serhiy Storchaka in bpo-25791 and bpo-26754.)

re

Support for inline flags (?letters) in the middle of the regular expression has been deprecated and will be
removed in a future Python version. Flags at the start of a regular expression are still allowed. (Contributed
by Serhiy Storchaka in bpo-22493.)

ssl

OpenSSL 0.9.8, 1.0.0 and 1.0.1 are deprecated and no longer supported. In the future the ssl module will
require at least OpenSSL 1.0.2 or 1.1.0.

SSL-related arguments like certfile, keyfile and check_hostname in ftplib, http.client, imaplib, poplib, and
smtplib have been deprecated in favor of context. (Contributed by Christian Heimes in bpo-28022.)

A couple of protocols and functions of the ssl module are now deprecated. Some features will no longer be
available in future versions of OpenSSL. Other features are deprecated in favor of a different API. (Con-
tributed by Christian Heimes in bpo-28022 and bpo-26470.)

tkinter

The tkinter.tix module is now deprecated. tkinter users should use tkinter.ttk instead.

venv

The pyvenv script has been deprecated in favour of python3 -m venv. This prevents confusion as to what
Python interpreter pyvenv is connected to and thus what Python interpreter will be used by the virtual
environment. (Contributed by Brett Cannon in bpo-25154.)

https://bugs.python.org/issue26129
https://bugs.python.org/issue25791
https://bugs.python.org/issue26754
https://bugs.python.org/issue22493
https://bugs.python.org/issue28022
https://bugs.python.org/issue28022
https://bugs.python.org/issue26470
https://bugs.python.org/issue25154


9.4 Deprecated functions and types of the C API

Undocumented functions PyUnicode_AsEncodedObject(), PyUnicode_AsDecodedObject(), PyUni-
code_AsEncodedUnicode() and PyUnicode_AsDecodedUnicode() are deprecated now. Use the generic
codec based API instead.

9.5 Deprecated Build Options

The --with-system-ffi configure flag is now on by default on non-macOS UNIX platforms. It may be disabled
by using --without-system-ffi, but using the flag is deprecated and will not be accepted in Python 3.7. macOS
is unaffected by this change. Note that many OS distributors already use the --with-system-ffi flag when
building their system Python.

10 Removed

10.1 API and Feature Removals

• Unknown escapes consisting of '\' and an ASCII letter in regular expressions will now cause an error.
In replacement templates for re.sub() they are still allowed, but deprecated. The re.LOCALE flag can
now only be used with binary patterns.

• inspect.getmoduleinfo() was removed (was deprecated since CPython 3.3). inspect.getmodulename()
should be used for obtaining the module name for a given path. (Contributed by Yury Selivanov in
bpo-13248.)

• traceback.Ignore class and traceback.usage, traceback.modname, traceback.fullmodname, traceback.
find_lines_from_code, traceback.find_lines, traceback.find_strings, traceback.find_executable_lines
methods were removed from the traceback module. They were undocumented methods deprecated since
Python 3.2 and equivalent functionality is available from private methods.

• The tk_menuBar() and tk_bindForTraversal() dummy methods in tkinter widget classes were removed
(corresponding Tk commands were obsolete since Tk 4.0).

• The open() method of the zipfile.ZipFile class no longer supports the 'U' mode (was deprecated since
Python 3.4). Use io.TextIOWrapper for reading compressed text files in universal newlines mode.

• The undocumented IN, CDROM, DLFCN, TYPES, CDIO, and STROPTS modules have been re-
moved. They had been available in the platform specific Lib/plat-*/ directories, but were chronically
out of date, inconsistently available across platforms, and unmaintained. The script that created these
modules is still available in the source distribution at Tools/scripts/h2py.py.

• The deprecated asynchat.fifo class has been removed.

11 Porting to Python 3.6

This section lists previously described changes and other bugfixes that may require changes to your code.

11.1 Changes in ‘python’ Command Behavior

• The output of a special Python build with defined COUNT_ALLOCS, SHOW_ALLOC_COUNT or
SHOW_TRACK_COUNT macros is now off by default. It can be re-enabled using the -X showal-

https://bugs.python.org/issue13248
https://github.com/python/cpython/tree/3.6/Tools/scripts/h2py.py


loccount option. It now outputs to stderr instead of stdout. (Contributed by Serhiy Storchaka in
bpo-23034.)

11.2 Changes in the Python API

• open() will no longer allow combining the 'U' mode flag with '+'. (Contributed by Jeff Balogh and
John O’Connor in bpo-2091.)

• sqlite3 no longer implicitly commits an open transaction before DDL statements.

• On Linux, os.urandom() now blocks until the system urandom entropy pool is initialized to increase
the security.

• When importlib.abc.Loader.exec_module() is defined, importlib.abc.Loader.create_module() must
also be defined.

• PyErr_SetImportError() now sets TypeError when its msg argument is not set. Previously only NULL
was returned.

• The format of the co_lnotab attribute of code objects changed to support a negative line number delta.
By default, Python does not emit bytecode with a negative line number delta. Functions using frame.
f_lineno, PyFrame_GetLineNumber() or PyCode_Addr2Line() are not affected. Functions directly
decoding co_lnotab should be updated to use a signed 8-bit integer type for the line number delta,
but this is only required to support applications using a negative line number delta. See Objects/
lnotab_notes.txt for the co_lnotab format and how to decode it, and see the PEP 511 for the rationale.

• The functions in the compileall module now return booleans instead of 1 or 0 to represent success or
failure, respectively. Thanks to booleans being a subclass of integers, this should only be an issue if
you were doing identity checks for 1 or 0. See bpo-25768.

• Reading the port attribute of urllib.parse.urlsplit() and urlparse() results now raises ValueError for
out-of-range values, rather than returning None. See bpo-20059.

• The imp module now raises a DeprecationWarning instead of PendingDeprecationWarning.

• The following modules have had missing APIs added to their __all__ attributes to match the doc-
umented APIs: calendar, cgi, csv, ElementTree, enum, fileinput, ftplib, logging, mailbox, mimetypes,
optparse, plistlib, smtpd, subprocess, tarfile, threading and wave. This means they will export new
symbols when import * is used. (Contributed by Joel Taddei and Jacek Kołodziej in bpo-23883.)

• When performing a relative import, if __package__ does not compare equal to __spec__.parent
then ImportWarning is raised. (Contributed by Brett Cannon in bpo-25791.)

• When a relative import is performed and no parent package is known, then ImportError will be raised.
Previously, SystemError could be raised. (Contributed by Brett Cannon in bpo-18018.)

• Servers based on the socketserver module, including those defined in http.server, xmlrpc.server and
wsgiref.simple_server, now only catch exceptions derived from Exception. Therefore if a request han-
dler raises an exception like SystemExit or KeyboardInterrupt, handle_error() is no longer called, and
the exception will stop a single-threaded server. (Contributed by Martin Panter in bpo-23430.)

• spwd.getspnam() now raises a PermissionError instead of KeyError if the user doesn’t have privileges.

• The socket.socket.close() method now raises an exception if an error (e.g. EBADF) was reported by
the underlying system call. (Contributed by Martin Panter in bpo-26685.)

• The decode_data argument for the smtpd.SMTPChannel and smtpd.SMTPServer constructors is now
False by default. This means that the argument passed to process_message() is now a bytes object
by default, and process_message() will be passed keyword arguments. Code that has already been
updated in accordance with the deprecation warning generated by 3.5 will not be affected.

https://bugs.python.org/issue23034
https://bugs.python.org/issue2091
https://www.python.org/dev/peps/pep-0511
https://bugs.python.org/issue25768
https://bugs.python.org/issue20059
https://bugs.python.org/issue23883
https://bugs.python.org/issue25791
https://bugs.python.org/issue18018
https://bugs.python.org/issue23430
https://bugs.python.org/issue26685


• All optional arguments of the dump(), dumps(), load() and loads() functions and JSONEncoder and
JSONDecoder class constructors in the json module are now keyword-only. (Contributed by Serhiy
Storchaka in bpo-18726.)

• Subclasses of type which don’t override type.__new__ may no longer use the one-argument form to
get the type of an object.

• As part of PEP 487, the handling of keyword arguments passed to type (other than the metaclass
hint, metaclass) is now consistently delegated to object.__init_subclass__(). This means that
type.__new__() and type.__init__() both now accept arbitrary keyword arguments, but object.
__init_subclass__() (which is called from type.__new__()) will reject them by default. Custom
metaclasses accepting additional keyword arguments will need to adjust their calls to type.__new__()
(whether direct or via super) accordingly.

• In distutils.command.sdist.sdist, the default_format attribute has been removed and is no longer hon-
ored. Instead, the gzipped tarfile format is the default on all platforms and no platform-specific selection
is made. In environments where distributions are built on Windows and zip distributions are required,
configure the project with a setup.cfg file containing the following:

[sdist]
formats=zip

This behavior has also been backported to earlier Python versions by Setuptools 26.0.0.

• In the urllib.request module and the http.client.HTTPConnection.request() method, if no Content-
Length header field has been specified and the request body is a file object, it is now sent with HTTP
1.1 chunked encoding. If a file object has to be sent to a HTTP 1.0 server, the Content-Length value
now has to be specified by the caller. (Contributed by Demian Brecht and Rolf Krahl with tweaks
from Martin Panter in bpo-12319.)

• The DictReader now returns rows of type OrderedDict. (Contributed by Steve Holden in bpo-27842.)

• The crypt.METHOD_CRYPT will no longer be added to crypt.methods if unsupported by the plat-
form. (Contributed by Victor Stinner in bpo-25287.)

• The verbose and rename arguments for namedtuple() are now keyword-only. (Contributed by Raymond
Hettinger in bpo-25628.)

• On Linux, ctypes.util.find_library() now looks in LD_LIBRARY_PATH for shared libraries. (Con-
tributed by Vinay Sajip in bpo-9998.)

• The imaplib.IMAP4 class now handles flags containing the ']' character in messages sent from the
server to improve real-world compatibility. (Contributed by Lita Cho in bpo-21815.)

• The mmap.write() function now returns the number of bytes written like other write methods. (Con-
tributed by Jakub Stasiak in bpo-26335.)

• The pkgutil.iter_modules() and pkgutil.walk_packages() functions now return ModuleInfo named tu-
ples. (Contributed by Ramchandra Apte in bpo-17211.)

• re.sub() now raises an error for invalid numerical group references in replacement templates even if
the pattern is not found in the string. The error message for invalid group references now includes
the group index and the position of the reference. (Contributed by SilentGhost, Serhiy Storchaka in
bpo-25953.)

• zipfile.ZipFile will now raise NotImplementedError for unrecognized compression values. Previously a
plain RuntimeError was raised. Additionally, calling ZipFile methods on a closed ZipFile or calling the
write() method on a ZipFile created with mode 'r' will raise a ValueError. Previously, a RuntimeError
was raised in those scenarios.

https://bugs.python.org/issue18726
https://www.python.org/dev/peps/pep-0487
https://bugs.python.org/issue12319
https://bugs.python.org/issue27842
https://bugs.python.org/issue25287
https://bugs.python.org/issue25628
https://bugs.python.org/issue9998
https://bugs.python.org/issue21815
https://bugs.python.org/issue26335
https://bugs.python.org/issue17211
https://bugs.python.org/issue25953


• when custom metaclasses are combined with zero-argument super() or direct references from methods
to the implicit __class__ closure variable, the implicit __classcell__ namespace entry must now be
passed up to type.__new__ for initialisation. Failing to do so will result in a DeprecationWarning in
3.6 and a RuntimeWarning in the future.

11.3 Changes in the C API

• The PyMem_Malloc() allocator family now uses the pymalloc allocator rather than the system mal-
loc(). Applications calling PyMem_Malloc() without holding the GIL can now crash. Set the
PYTHONMALLOC environment variable to debug to validate the usage of memory allocators in
your application. See bpo-26249.

• Py_Exit() (and the main interpreter) now override the exit status with 120 if flushing buffered data
failed. See bpo-5319.

11.4 CPython bytecode changes

There have been several major changes to the bytecode in Python 3.6.

• The Python interpreter now uses a 16-bit wordcode instead of bytecode. (Contributed by Demur Rumed
with input and reviews from Serhiy Storchaka and Victor Stinner in bpo-26647 and bpo-28050.)

• The new FORMAT_VALUE and BUILD_STRING opcodes as part of the formatted string literal
implementation. (Contributed by Eric Smith in bpo-25483 and Serhiy Storchaka in bpo-27078.)

• The new BUILD_CONST_KEY_MAP opcode to optimize the creation of dictionaries with constant
keys. (Contributed by Serhiy Storchaka in bpo-27140.)

• The function call opcodes have been heavily reworked for better performance and simpler
implementation. The MAKE_FUNCTION, CALL_FUNCTION, CALL_FUNCTION_KW
and BUILD_MAP_UNPACK_WITH_CALL opcodes have been modified, the new
CALL_FUNCTION_EX and BUILD_TUPLE_UNPACK_WITH_CALL have been added,
and CALL_FUNCTION_VAR, CALL_FUNCTION_VAR_KW and MAKE_CLOSURE opcodes
have been removed. (Contributed by Demur Rumed in bpo-27095, and Serhiy Storchaka in bpo-27213,
bpo-28257.)

• The new SETUP_ANNOTATIONS and STORE_ANNOTATION opcodes have been added to support
the new variable annotation syntax. (Contributed by Ivan Levkivskyi in bpo-27985.)

12 Notable changes in Python 3.6.2

12.1 New make regen-all build target

To simplify cross-compilation, and to ensure that CPython can reliably be compiled without requiring an
existing version of Python to already be available, the autotools-based build system no longer attempts to
implicitly recompile generated files based on file modification times.

Instead, a new make regen-all command has been added to force regeneration of these files when desired
(e.g. after an initial version of Python has already been built based on the pregenerated versions).

More selective regeneration targets are also defined - see Makefile.pre.in for details.

(Contributed by Victor Stinner in bpo-23404.)

New in version 3.6.2.

https://bugs.python.org/issue26249
https://bugs.python.org/issue5319
https://bugs.python.org/issue26647
https://bugs.python.org/issue28050
https://bugs.python.org/issue25483
https://bugs.python.org/issue27078
https://bugs.python.org/issue27140
https://bugs.python.org/issue27095
https://bugs.python.org/issue27213
https://bugs.python.org/issue28257
https://bugs.python.org/issue27985
https://github.com/python/cpython/tree/3.6/Makefile.pre.in
https://bugs.python.org/issue23404


12.2 Removal of make touch build target

The make touch build target previously used to request implicit regeneration of generated files by updating
their modification times has been removed.

It has been replaced by the new make regen-all target.

(Contributed by Victor Stinner in bpo-23404.)

Changed in version 3.6.2.

https://bugs.python.org/issue23404


Index

E
environment variable

PYTHONHOME, 5
PYTHONLEGACYWINDOWSFSENCOD-

ING, 9
PYTHONLEGACYWINDOWSSTDIO, 9
PYTHONMALLOC, 11, 32

P
Python Enhancement Proposals

PEP 468, 10
PEP 484, 5
PEP 487, 7, 8, 31
PEP 492, 6, 27
PEP 494, 3
PEP 495, 9
PEP 498, 5
PEP 506, 13
PEP 511, 30
PEP 515, 6
PEP 519, 9
PEP 520, 10
PEP 523, 10
PEP 524, 4, 18
PEP 525, 6
PEP 526, 6, 23
PEP 528, 9
PEP 529, 9
PEP 530, 7
PEP 628, 14, 18
PEP 7, 26

PYTHONHOME, 5
PYTHONLEGACYWINDOWSFSENCODING, 9
PYTHONLEGACYWINDOWSSTDIO, 9
PYTHONMALLOC, 11, 32

34


	Summary – Release highlights
	New Features
	PEP 498: Formatted string literals
	PEP 526: Syntax for variable annotations
	PEP 515: Underscores in Numeric Literals
	PEP 525: Asynchronous Generators
	PEP 530: Asynchronous Comprehensions
	PEP 487: Simpler customization of class creation
	PEP 487: Descriptor Protocol Enhancements
	PEP 519: Adding a file system path protocol
	PEP 495: Local Time Disambiguation
	PEP 529: Change Windows filesystem encoding to UTF-8
	PEP 528: Change Windows console encoding to UTF-8
	PEP 520: Preserving Class Attribute Definition Order
	PEP 468: Preserving Keyword Argument Order
	New dict implementation
	PEP 523: Adding a frame evaluation API to CPython
	PYTHONMALLOC environment variable
	DTrace and SystemTap probing support

	Other Language Changes
	New Modules
	secrets

	Improved Modules
	array
	ast
	asyncio
	binascii
	cmath
	collections
	concurrent.futures
	contextlib
	datetime
	decimal
	distutils
	email
	encodings
	enum
	faulthandler
	fileinput
	hashlib
	http.client
	idlelib and IDLE
	importlib
	inspect
	json
	logging
	math
	multiprocessing
	os
	pathlib
	pdb
	pickle
	pickletools
	pydoc
	random
	re
	readline
	rlcompleter
	shlex
	site
	sqlite3
	socket
	socketserver
	ssl
	statistics
	struct
	subprocess
	sys
	telnetlib
	time
	timeit
	tkinter
	traceback
	tracemalloc
	typing
	unicodedata
	unittest.mock
	urllib.request
	urllib.robotparser
	venv
	warnings
	winreg
	winsound
	xmlrpc.client
	zipfile
	zlib

	Optimizations
	Build and C API Changes
	Other Improvements
	Deprecated
	New Keywords
	Deprecated Python behavior
	Deprecated Python modules, functions and methods
	asynchat
	asyncore
	dbm
	distutils
	grp
	importlib
	os
	re
	ssl
	tkinter
	venv

	Deprecated functions and types of the C API
	Deprecated Build Options

	Removed
	API and Feature Removals

	Porting to Python 3.6
	Changes in ‘python’ Command Behavior
	Changes in the Python API
	Changes in the C API
	CPython bytecode changes

	Notable changes in Python 3.6.2
	New make regen-all build target
	Removal of make touch build target

	Index

