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This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be
exact and complete. The semantics of non-essential built-in object types and of the built-in functions and modules
are described in library-index. For an informal introduction to the language, see tutorial-index. For C or C++
programmers, two additional manuals exist: extending-index describes the high-level picture of how to write a
Python extension module, and the c-api-index describes the interfaces available to C/C++ programmers in detail.
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CHAPTER

ONE

INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but
will leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python
from this document alone, you might have to guess things and in fact you would probably end up implementing
quite a different language. On the other hand, if you are using Python and wonder what the precise rules about a
particular area of the language are, you should definitely be able to find them here. If you would like to see a more
formal definition of the language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation
may change, and other implementations of the same language may work differently. On the other hand, CPython is
the one Python implementation in widespread use (although alternate implementations continue to gain support),
and its particular quirks are sometimes worth being mentioned, especially where the implementation imposes
additional limitations. Therefore, you’ll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented in
library-index. A few built-in modules are mentioned when they interact in a significant way with the language
definition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate implemen-
tations which are of particular interest to different audiences.

Known implementations include:

CPython This is the original and most-maintained implementation of Python, written in C. New language features
generally appear here first.

Jython Python implemented in Java. This implementation can be used as a scripting language for Java applica-
tions, or can be used to create applications using the Java class libraries. It is also often used to create tests
for Java libraries. More information can be found at the Jython website.

Python for .NET This implementation actually uses the CPython implementation, but is a managed .NET appli-
cation and makes .NET libraries available. It was created by Brian Lloyd. For more information, see the
Python for .NET home page.

IronPython An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that
generates IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the
original creator of Jython. For more information, see the IronPython website.

PyPy An implementation of Python written completely in Python. It supports several advanced features not found
in other implementations like stackless support and a Just in Time compiler. One of the goals of the project
is to encourage experimentation with the language itself by making it easier to modify the interpreter (since
it is written in Python). Additional information is available on the PyPy project’s home page.
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Each of these implementations varies in some way from the language as documented in this manual, or intro-
duces specific information beyond what’s covered in the standard Python documentation. Please refer to the
implementation-specific documentation to determine what else you need to know about the specific implementa-
tion you’re using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following
style of definition:

name ::= lc_letter (lc_letter | “_”)*
lc_letter ::= “a”...”z”

The first line says that a name is an lc_letter followed by a sequence of zero or more lc_letters and
underscores. An lc_letter in turn is any of the single characters ’a’ through ’z’. (This rule is actually
adhered to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and ::=. A vertical bar (|) is used to
separate alternatives; it is the least binding operator in this notation. A star (*) means zero or more repetitions of
the preceding item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets
([ ]) means zero or one occurrences (in other words, the enclosed phrase is optional). The * and + operators
bind as tightly as possible; parentheses are used for grouping. Literal strings are enclosed in quotes. White space
is only meaningful to separate tokens. Rules are normally contained on a single line; rules with many alternatives
may be formatted alternatively with each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by
three dots mean a choice of any single character in the given (inclusive) range of ASCII characters. A phrase
between angular brackets (<...>) gives an informal description of the symbol defined; e.g., this could be used
to describe the notion of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.
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CHAPTER

TWO

LEXICAL ANALYSIS

A Python program is read by a parser. Input to the parser is a stream of tokens, generated by the lexical analyzer.
This chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding dec-
laration and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError
is raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical
line is constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files, any of the
standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows
form using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII
CR (return) character. All of these forms can be used equally, regardless of platform.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions
for newline characters (the \n character, representing ASCII LF, is the line terminator).

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical
line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments
are ignored by the syntax; they are not tokens.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression
coding[=:]\s*([-\w.]+), this comment is processed as an encoding declaration; the first group of this
expression names the encoding of the source code file. The encoding declaration must appear on a line of its own.
If it is the second line, the first line must also be a comment-only line. The recommended forms of an encoding
expression are

# -*- coding: <encoding-name> -*-

5
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which is recognized also by GNU Emacs, and

# vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. In addition, if the first bytes of the file are the
UTF-8 byte-order mark (b’\xef\xbb\xbf’), the declared file encoding is UTF-8 (this is supported, among
others, by Microsoft’s notepad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical
analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a
physical line ends in a backslash that is not part of a string literal or comment, it is joined with the following
forming a single logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date

return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash
does not continue a token except for string literals (i.e., tokens other than string literals cannot be split across
physical lines using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without
using backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly
continued lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line
(i.e. one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of
the line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and
including the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The
total number of spaces preceding the first non-blank character then determines the line’s indentation. Indentation
cannot be split over multiple physical lines using backslashes; the whitespace up to the first backslash determines
the indentation.
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Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning
dependent on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to
use a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different
platforms may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations
above. Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance,
they may reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again.
The numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each
logical line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is
larger, it is pushed on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers
occurring on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a
DEDENT token is generated. At the end of the file, a DEDENT token is generated for each number remaining on
the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
# Compute the list of all permutations of l

if len(l) <= 1:
return [l]

r = []
for i in range(len(l)):

s = l[:i] + l[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)

return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented

s = l[:i] + l[i+1:]
p = perm(l[:i] + l[i+1:]) # error: unexpected indent
for x in p:

r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can
be used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation
could otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, lit-
erals, operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not

2.2. Other tokens 7
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tokens, but serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that
forms a legal token, when read from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes
as defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x:
the uppercase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits 0
through 9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters,
the classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier ::= xid_start xid_continue*
id_start ::= <all characters in general categories Lu, Ll, Lt, Lm, Lo, Nl, the underscore, and characters with the Other_ID_Start property>
id_continue ::= <all characters in id_start, plus characters in the categories Mn, Mc, Nd, Pc and others with the Other_ID_Continue property>
xid_start ::= <all characters in id_start whose NFKC normalization is in “id_start xid_continue*”>
xid_continue ::= <all characters in id_continue whose NFKC normalization is in “id_continue*”>

The Unicode category codes mentioned above stand for:

• Lu - uppercase letters

• Ll - lowercase letters

• Lt - titlecase letters

• Lm - modifier letters

• Lo - other letters

• Nl - letter numbers

• Mn - nonspacing marks

• Mc - spacing combining marks

• Nd - decimal numbers

• Pc - connector punctuations

• Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility

• Other_ID_Continue - likewise

All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on
NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 4.1 can be found at
http://www.dcl.hpi.uni-potsdam.de/home/loewis/table-3131.html.

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

False class finally is return
None continue for lambda try
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True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass
break except in raise

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns
of leading and trailing underscore characters:

_* Not imported by from module import *. The special identifier _ is used in the interactive interpreter to
store the result of the last evaluation; it is stored in the builtins module. When not in interactive mode,
_ has no special meaning and is not defined. See section The import statement.

Note: The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

__*__ System-defined names. These names are defined by the interpreter and its implementation (including the
standard library). Current system names are discussed in the Special method names section and elsewhere.
More will likely be defined in future versions of Python. Any use of __*__ names, in any context, that does
not follow explicitly documented use, is subject to breakage without warning.

__* Class-private names. Names in this category, when used within the context of a class definition, are re-
written to use a mangled form to help avoid name clashes between “private” attributes of base and derived
classes. See section Identifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral ::= [stringprefix](shortstring | longstring)
stringprefix ::= “r” | “u” | “R” | “U”
shortstring ::= “”’ shortstringitem* “”’ | ‘”’ shortstringitem* ‘”’
longstring ::= “’‘”’ longstringitem* “’‘”’ | ‘”“”’ longstringitem* ‘”“”’
shortstringitem ::= shortstringchar | stringescapeseq
longstringitem ::= longstringchar | stringescapeseq
shortstringchar ::= <any source character except “\” or newline or the quote>
longstringchar ::= <any source character except “\”>
stringescapeseq ::= “\” <any source character>

bytesliteral ::= bytesprefix(shortbytes | longbytes)
bytesprefix ::= “b” | “B” | “br” | “Br” | “bR” | “BR” | “rb” | “rB” | “Rb” | “RB”
shortbytes ::= “”’ shortbytesitem* “”’ | ‘”’ shortbytesitem* ‘”’
longbytes ::= “’‘”’ longbytesitem* “’‘”’ | ‘”“”’ longbytesitem* ‘”“”’
shortbytesitem ::= shortbyteschar | bytesescapeseq
longbytesitem ::= longbyteschar | bytesescapeseq
shortbyteschar ::= <any ASCII character except “\” or newline or the quote>
longbyteschar ::= <any ASCII character except “\”>

2.4. Literals 9



The Python Language Reference, Release 3.5.1

bytesescapeseq ::= “\” <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix or bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (’) or double quotes ("). They
can also be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-
quoted strings). The backslash (\) character is used to escape characters that otherwise have a special meaning,
such as newline, backslash itself, or the quote character.

Bytes literals are always prefixed with ’b’ or ’B’; they produce an instance of the bytes type instead of the str
type. They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed
with escapes.

As of Python 3.3 it is possible again to prefix string literals with a u prefix to simplify maintenance of dual 2.x
and 3.x codebases.

Both string and bytes literals may optionally be prefixed with a letter ’r’ or ’R’; such strings are called raw
strings and treat backslashes as literal characters. As a result, in string literals, ’\U’ and ’\u’ escapes in raw
strings are not treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s
the ’ur’ syntax is not supported.

New in version 3.3: The ’rb’ prefix of raw bytes literals has been added as a synonym of ’br’.

New in version 3.3: Support for the unicode legacy literal (u’value’) was reintroduced to simplify the mainte-
nance of dual Python 2.x and 3.x codebases. See PEP 414 for more information.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
quotes in a row terminate the literal. (A “quote” is the character used to open the literal, i.e. either ’ or ".)

Unless an ’r’ or ’R’ prefix is present, escape sequences in string and bytes literals are interpreted according to
rules similar to those used by Standard C. The recognized escape sequences are:

Escape Sequence Meaning Notes
\newline Backslash and newline ignored
\\ Backslash (\)
\’ Single quote (’)
\" Double quote (")
\a ASCII Bell (BEL)
\b ASCII Backspace (BS)
\f ASCII Formfeed (FF)
\n ASCII Linefeed (LF)
\r ASCII Carriage Return (CR)
\t ASCII Horizontal Tab (TAB)
\v ASCII Vertical Tab (VT)
\ooo Character with octal value ooo (1,3)
\xhh Character with hex value hh (2,3)

Escape sequences only recognized in string literals are:

Escape Sequence Meaning Notes
\N{name} Character named name in the Unicode database (4)
\uxxxx Character with 16-bit hex value xxxx (5)
\Uxxxxxxxx Character with 32-bit hex value xxxxxxxx (6)

Notes:

1. As in Standard C, up to three octal digits are accepted.

2. Unlike in Standard C, exactly two hex digits are required.

3. In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal,
these escapes denote a Unicode character with the given value.

10 Chapter 2. Lexical analysis
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4. Changed in version 3.3: Support for name aliases 1 has been added.

5. Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.
Exactly four hex digits are required.

6. Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left
in the result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is
more easily recognized as broken.) It is also important to note that the escape sequences only recognized in string
literals fall into the category of unrecognized escapes for bytes literals.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; r"\" is not a valid
string literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot
end in a single backslash (since the backslash would escape the following quote character). Note also that a
single backslash followed by a newline is interpreted as those two characters as part of the literal, not as a line
continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" ’world’ is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings
conveniently across long lines, or even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore
)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’ operator must
be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings).

2.4.3 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no
complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary
operator ‘-‘ and the literal 1.

2.4.4 Integer literals

Integer literals are described by the following lexical definitions:

integer ::= decimalinteger | octinteger | hexinteger | bininteger
decimalinteger ::= nonzerodigit digit* | “0”+
nonzerodigit ::= “1”...”9”
digit ::= “0”...”9”
octinteger ::= “0” (“o” | “O”) octdigit+
hexinteger ::= “0” (“x” | “X”) hexdigit+
bininteger ::= “0” (“b” | “B”) bindigit+
octdigit ::= “0”...”7”
hexdigit ::= digit | “a”...”f” | “A”...”F”
bindigit ::= “0” | “1”

1 http://www.unicode.org/Public/8.0.0/ucd/NameAliases.txt
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There is no limit for the length of integer literals apart from what can be stored in available memory.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style
octal literals, which Python used before version 3.0.

Some examples of integer literals:

7 2147483647 0o177 0b100110111
3 79228162514264337593543950336 0o377 0xdeadbeef

2.4.5 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber ::= pointfloat | exponentfloat
pointfloat ::= [intpart] fraction | intpart ”.”
exponentfloat ::= (intpart | pointfloat) exponent
intpart ::= digit+
fraction ::= ”.” digit+
exponent ::= (“e” | “E”) [”+” | “-“] digit+

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077e010 is legal,
and denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent.
Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary
operator - and the literal 1.

2.4.6 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber ::= (floatnumber | intpart) (“j” | “J”)

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a
pair of floating point numbers and have the same restrictions on their range. To create a complex number with a
nonzero real part, add a floating point number to it, e.g., (3+4j). Some examples of imaginary literals:

3.14j 10.j 10j .001j 1e100j 3.14e-10j

2.5 Operators

The following tokens are operators:

+ - * ** / // % @
<< >> & | ^ ~
< > <= >= == !=

2.6 Delimiters

The following tokens serve as delimiters in the grammar:
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( ) [ ] { }
, : . ; @ = ->
+= -= *= /= //= %= @=
&= |= ^= >>= <<= **=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special
meaning as an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as
delimiters, but also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant
to the lexical analyzer:

' " # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and
comments is an unconditional error:

$ ? `

2.6. Delimiters 13
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CHAPTER

THREE

DATA MODEL

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer,” code
is also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you
may think of it as the object’s address in memory. The ‘is‘ operator compares the identity of two objects; the
id() function returns an integer representing its identity.

CPython implementation detail: For CPython, id(x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., “does it have a length?”) and also defines
the possible values for objects of that type. The type() function returns an object’s type (which is an object
itself). Like its identity, an object’s type is also unchangeable. 1

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose
value is unchangeable once they are created are called immutable. (The value of an immutable container object
that contains a reference to a mutable object can change when the latter’s value is changed; however the container
is still considered immutable, because the collection of objects it contains cannot be changed. So, immutability is
not strictly the same as having an unchangeable value, it is more subtle.) An object’s mutability is determined by
its type; for instance, numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected.
An implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implemen-
tation quality how garbage collection is implemented, as long as no objects are collected that are still reachable.

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed
detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is
not guaranteed to collect garbage containing circular references. See the documentation of the gc module for
information on controlling the collection of cyclic garbage. Other implementations act differently and CPython
may change. Do not depend on immediate finalization of objects when they become unreachable (so you should
always close files explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would nor-
mally be collectable. Also note that catching an exception with a ‘try ...except‘ statement may keep objects
alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, usually a close() method. Programs
are strongly recommended to explicitly close such objects. The ‘try ...finally‘ statement and the ‘with‘
statement provide convenient ways to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples,
lists and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value

1 It is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it
can lead to some very strange behaviour if it is handled incorrectly.
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of a container, we imply the values, not the identities of the contained objects; however, when we talk about the
mutability of a container, only the identities of the immediately contained objects are implied. So, if an immutable
container (like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object
with the same type and value, while for mutable objects this is not allowed. E.g., after a = 1; b = 1, a and
b may or may not refer to the same object with the value one, depending on the implementation, but after c =
[]; d = [], c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that c
= d = [] assigns the same object to both c and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the
type hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.), although such additions will often
be provided via the standard library instead.

Some of the type descriptions below contain a paragraph listing ‘special attributes.’ These are attributes that
provide access to the implementation and are not intended for general use. Their definition may change in the
future.

None This type has a single value. There is a single object with this value. This object is accessed through the
built-in name None. It is used to signify the absence of a value in many situations, e.g., it is returned from
functions that don’t explicitly return anything. Its truth value is false.

NotImplemented This type has a single value. There is a single object with this value. This object is accessed
through the built-in name NotImplemented. Numeric methods and rich comparison methods should
return this value if they do not implement the operation for the operands provided. (The interpreter will then
try the reflected operation, or some other fallback, depending on the operator.) Its truth value is true.

See implementing-the-arithmetic-operations for more details.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
literal ... or the built-in name Ellipsis. Its truth value is true.

numbers.Number These are created by numeric literals and returned as results by arithmetic operators and
arithmetic built-in functions. Numeric objects are immutable; once created their value never changes.
Python numbers are of course strongly related to mathematical numbers, but subject to the limitations of
numerical representation in computers.

Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral These represent elements from the mathematical set of integers (positive and neg-
ative).

There are two types of integers:

Integers (int)

These represent numbers in an unlimited range, subject to available (virtual) memory only.
For the purpose of shift and mask operations, a binary representation is assumed, and negative
numbers are represented in a variant of 2’s complement which gives the illusion of an infinite
string of sign bits extending to the left.

Booleans (bool) These represent the truth values False and True. The two objects representing
the values False and True are the only Boolean objects. The Boolean type is a subtype of
the integer type, and Boolean values behave like the values 0 and 1, respectively, in almost all
contexts, the exception being that when converted to a string, the strings "False" or "True"
are returned, respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift
and mask operations involving negative integers.
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numbers.Real (float) These represent machine-level double precision floating point numbers. You
are at the mercy of the underlying machine architecture (and C or Java implementation) for the ac-
cepted range and handling of overflow. Python does not support single-precision floating point num-
bers; the savings in processor and memory usage that are usually the reason for using these are dwarfed
by the overhead of using objects in Python, so there is no reason to complicate the language with two
kinds of floating point numbers.

numbers.Complex (complex) These represent complex numbers as a pair of machine-level double
precision floating point numbers. The same caveats apply as for floating point numbers. The real and
imaginary parts of a complex number z can be retrieved through the read-only attributes z.real and
z.imag.

Sequences These represent finite ordered sets indexed by non-negative numbers. The built-in function len()
returns the number of items of a sequence. When the length of a sequence is n, the index set contains the
numbers 0, 1, ..., n-1. Item i of sequence a is selected by a[i].

Sequences also support slicing: a[i:j] selects all items with index k such that i <= k < j. When used as
an expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that
it starts at 0.

Some sequences also support “extended slicing” with a third “step” parameter: a[i:j:k] selects all items
of a with index x where x = i + n*k, n >= 0 and i <= x < j.

Sequences are distinguished according to their mutability:

Immutable sequences An object of an immutable sequence type cannot change once it is created. (If the
object contains references to other objects, these other objects may be mutable and may be changed;
however, the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings A string is a sequence of values that represent Unicode code points. All the code points in
the range U+0000 - U+10FFFF can be represented in a string. Python doesn’t have a char
type; instead, every code point in the string is represented as a string object with length 1. The
built-in function ord() converts a code point from its string form to an integer in the range 0
- 10FFFF; chr() converts an integer in the range 0 - 10FFFF to the corresponding length
1 string object. str.encode() can be used to convert a str to bytes using the given text
encoding, and bytes.decode() can be used to achieve the opposite.

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by
comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affix-
ing a comma to an expression (an expression by itself does not create a tuple, since parentheses
must be usable for grouping of expressions). An empty tuple can be formed by an empty pair of
parentheses.

Bytes A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in
the range 0 <= x < 256. Bytes literals (like b’abc’) and the built-in function bytes() can be
used to construct bytes objects. Also, bytes objects can be decoded to strings via the decode()
method.

Mutable sequences Mutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignment and del (delete) statements.

There are currently two intrinsic mutable sequence types:

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated
list of expressions in square brackets. (Note that there are no special cases needed to form lists of
length 0 or 1.)

Byte Arrays A bytearray object is a mutable array. They are created by the built-in bytearray()
constructor. Aside from being mutable (and hence unhashable), byte arrays otherwise provide the
same interface and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type, as does the
collections module.
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Set types These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed
by any subscript. However, they can be iterated over, and the built-in function len() returns the number
of items in a set. Common uses for sets are fast membership testing, removing duplicates from a sequence,
and computing mathematical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the
normal rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1.0), only one of them
can be contained in a set.

There are currently two intrinsic set types:

Sets These represent a mutable set. They are created by the built-in set() constructor and can be modified
afterwards by several methods, such as add().

Frozen sets These represent an immutable set. They are created by the built-in frozenset() construc-
tor. As a frozenset is immutable and hashable, it can be used again as an element of another set, or as
a dictionary key.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a[k]
selects the item indexed by k from the mapping a; this can be used in expressions and as the target of
assignments or del statements. The built-in function len() returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of
values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity, the reason being that the efficient implementation
of dictionaries requires a key’s hash value to remain constant. Numeric types used for keys obey the
normal rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1.0) then they can
be used interchangeably to index the same dictionary entry.

Dictionaries are mutable; they can be created by the {...} notation (see section Dictionary displays).

The extension modules dbm.ndbm and dbm.gnu provide additional examples of mapping types, as
does the collections module.

Callable types These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions A user-defined function object is created by a function definition (see section
Function definitions). It should be called with an argument list containing the same number of items
as the function’s formal parameter list.

Special attributes:
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Attribute Meaning
__doc__ The function’s documentation string, or None if

unavailable; not inherited by subclasses
Writable

__name__ The function’s name Writable
__qualname__ The function’s qualified name

New in version 3.3.
Writable

__module__ The name of the module the function was defined in, or
None if unavailable.

Writable

__defaults__ A tuple containing default argument values for those
arguments that have defaults, or None if no arguments
have a default value

Writable

__code__ The code object representing the compiled function body. Writable
__globals__ A reference to the dictionary that holds the function’s

global variables — the global namespace of the module in
which the function was defined.

Read-only

__dict__ The namespace supporting arbitrary function attributes. Writable
__closure__ None or a tuple of cells that contain bindings for the

function’s free variables.
Read-only

__annotations__ A dict containing annotations of parameters. The keys of
the dict are the parameter names, and ’return’ for the
return annotation, if provided.

Writable

__kwdefaults__ A dict containing defaults for keyword-only parameters. Writable

Most of the attributes labelled “Writable” check the type of the assigned value.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to
attach metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note
that the current implementation only supports function attributes on user-defined functions. Function
attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object; see the
description of internal types below.

Instance methods An instance method object combines a class, a class instance and any callable object
(normally a user-defined function).

Special read-only attributes: __self__ is the class instance object, __func__ is the function
object; __doc__ is the method’s documentation (same as __func__.__doc__); __name__ is
the method name (same as __func__.__name__); __module__ is the name of the module the
method was defined in, or None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying
function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an in-
stance of that class), if that attribute is a user-defined function object or a class method object.

When an instance method object is created by retrieving a user-defined function object from a class
via one of its instances, its __self__ attribute is the instance, and the method object is said to be
bound. The new method’s __func__ attribute is the original function object.

When a user-defined method object is created by retrieving another method object from a class or
instance, the behaviour is the same as for a function object, except that the __func__ attribute of the
new instance is not the original method object but its __func__ attribute.

When an instance method object is created by retrieving a class method object from a class or instance,
its __self__ attribute is the class itself, and its __func__ attribute is the function object underlying
the class method.

When an instance method object is called, the underlying function (__func__) is called, inserting
the class instance (__self__) in front of the argument list. For instance, when C is a class which
contains a definition for a function f(), and x is an instance of C, calling x.f(1) is equivalent to
calling C.f(x, 1).

3.2. The standard type hierarchy 19



The Python Language Reference, Release 3.5.1

When an instance method object is derived from a class method object, the “class instance” stored in
__self__ will actually be the class itself, so that calling either x.f(1) or C.f(1) is equivalent to
calling f(C,1) where f is the underlying function.

Note that the transformation from function object to instance method object happens each time the
attribute is retrieved from the instance. In some cases, a fruitful optimization is to assign the attribute
to a local variable and call that local variable. Also notice that this transformation only happens
for user-defined functions; other callable objects (and all non-callable objects) are retrieved without
transformation. It is also important to note that user-defined functions which are attributes of a class
instance are not converted to bound methods; this only happens when the function is an attribute of the
class.

Generator functions A function or method which uses the yield statement (see section The yield
statement) is called a generator function. Such a function, when called, always returns an it-
erator object which can be used to execute the body of the function: calling the iterator’s
iterator.__next__() method will cause the function to execute until it provides a value us-
ing the yield statement. When the function executes a return statement or falls off the end, a
StopIteration exception is raised and the iterator will have reached the end of the set of values
to be returned.

Coroutine functions A function or method which is defined using async def is called a coroutine
function. Such a function, when called, returns a coroutine object. It may contain await expressions,
as well as async with and async for statements. See also the Coroutine Objects section.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in
functions are len() and math.sin() (math is a standard built-in module). The number and
type of the arguments are determined by the C function. Special read-only attributes: __doc__
is the function’s documentation string, or None if unavailable; __name__ is the function’s name;
__self__ is set to None (but see the next item); __module__ is the name of the module the
function was defined in or None if unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an ob-
ject passed to the C function as an implicit extra argument. An example of a built-in method is
alist.append(), assuming alist is a list object. In this case, the special read-only attribute
__self__ is set to the object denoted by alist.

Classes Classes are callable. These objects normally act as factories for new instances of themselves, but
variations are possible for class types that override __new__(). The arguments of the call are passed
to __new__() and, in the typical case, to __init__() to initialize the new instance.

Class Instances Instances of arbitrary classes can be made callable by defining a __call__() method
in their class.

Modules Modules are a basic organizational unit of Python code, and are created by the import sys-
tem as invoked either by the import statement (see import), or by calling functions such as
importlib.import_module() and built-in __import__(). A module object has a namespace
implemented by a dictionary object (this is the dictionary referenced by the __globals__ attribute of
functions defined in the module). Attribute references are translated to lookups in this dictionary, e.g., m.x
is equivalent to m.__dict__["x"]. A module object does not contain the code object used to initialize
the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to
m.__dict__["x"] = 1.

Special read-only attribute: __dict__ is the module’s namespace as a dictionary object.

CPython implementation detail: Because of the way CPython clears module dictionaries, the module
dictionary will be cleared when the module falls out of scope even if the dictionary still has live references.
To avoid this, copy the dictionary or keep the module around while using its dictionary directly.

Predefined (writable) attributes: __name__ is the module’s name; __doc__ is the module’s documen-
tation string, or None if unavailable; __file__ is the pathname of the file from which the module was
loaded, if it was loaded from a file. The __file__ attribute may be missing for certain types of modules,
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such as C modules that are statically linked into the interpreter; for extension modules loaded dynamically
from a shared library, it is the pathname of the shared library file.

Custom classes Custom class types are typically created by class definitions (see section Class definitions). A
class has a namespace implemented by a dictionary object. Class attribute references are translated to
lookups in this dictionary, e.g., C.x is translated to C.__dict__["x"] (although there are a num-
ber of hooks which allow for other means of locating attributes). When the attribute name is not found
there, the attribute search continues in the base classes. This search of the base classes uses the C3
method resolution order which behaves correctly even in the presence of ‘diamond’ inheritance struc-
tures where there are multiple inheritance paths leading back to a common ancestor. Additional details
on the C3 MRO used by Python can be found in the documentation accompanying the 2.3 release at
https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into
an instance method object whose __self__ attributes is C. When it would yield a static method object, it
is transformed into the object wrapped by the static method object. See section Implementing Descriptors
for another way in which attributes retrieved from a class may differ from those actually contained in its
__dict__.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.

A class object can be called (see above) to yield a class instance (see below).

Special attributes: __name__ is the class name; __module__ is the module name in which the class was
defined; __dict__ is the dictionary containing the class’s namespace; __bases__ is a tuple (possibly
empty or a singleton) containing the base classes, in the order of their occurrence in the base class list;
__doc__ is the class’s documentation string, or None if undefined.

Class instances A class instance is created by calling a class object (see above). A class instance has a namespace
implemented as a dictionary which is the first place in which attribute references are searched. When an
attribute is not found there, and the instance’s class has an attribute by that name, the search continues with
the class attributes. If a class attribute is found that is a user-defined function object, it is transformed into an
instance method object whose __self__ attribute is the instance. Static method and class method objects
are also transformed; see above under “Classes”. See section Implementing Descriptors for another way in
which attributes of a class retrieved via its instances may differ from the objects actually stored in the class’s
__dict__. If no class attribute is found, and the object’s class has a __getattr__() method, that is
called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class
has a __setattr__() or __delattr__() method, this is called instead of updating the instance
dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special
names. See section Special method names.

Special attributes: __dict__ is the attribute dictionary; __class__ is the instance’s class.

I/O objects (also known as file objects) A file object represents an open file. Various shortcuts are available
to create file objects: the open() built-in function, and also os.popen(), os.fdopen(), and the
makefile() method of socket objects (and perhaps by other functions or methods provided by extension
modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to
the interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow
the interface defined by the io.TextIOBase abstract class.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may
change with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represent byte-compiled executable Python code, or bytecode. The difference
between a code object and a function object is that the function object contains an explicit reference to
the function’s globals (the module in which it was defined), while a code object contains no context;
also the default argument values are stored in the function object, not in the code object (because
they represent values calculated at run-time). Unlike function objects, code objects are immutable and
contain no references (directly or indirectly) to mutable objects.
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Special read-only attributes: co_name gives the function name; co_argcount is the number of
positional arguments (including arguments with default values); co_nlocals is the number of lo-
cal variables used by the function (including arguments); co_varnames is a tuple containing the
names of the local variables (starting with the argument names); co_cellvars is a tuple contain-
ing the names of local variables that are referenced by nested functions; co_freevars is a tuple
containing the names of free variables; co_code is a string representing the sequence of bytecode
instructions; co_consts is a tuple containing the literals used by the bytecode; co_names is a tu-
ple containing the names used by the bytecode; co_filename is the filename from which the code
was compiled; co_firstlineno is the first line number of the function; co_lnotab is a string
encoding the mapping from bytecode offsets to line numbers (for details see the source code of the
interpreter); co_stacksize is the required stack size (including local variables); co_flags is an
integer encoding a number of flags for the interpreter.

The following flag bits are defined for co_flags: bit 0x04 is set if the function uses the
*arguments syntax to accept an arbitrary number of positional arguments; bit 0x08 is set if the
function uses the **keywords syntax to accept arbitrary keyword arguments; bit 0x20 is set if the
function is a generator.

Future feature declarations (from __future__ import division) also use bits in
co_flags to indicate whether a code object was compiled with a particular feature enabled: bit
0x2000 is set if the function was compiled with future division enabled; bits 0x10 and 0x1000
were used in earlier versions of Python.

Other bits in co_flags are reserved for internal use.

If a code object represents a function, the first item in co_consts is the documentation string of the
function, or None if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see be-
low).

Special read-only attributes: f_back is to the previous stack frame (towards the caller), or None
if this is the bottom stack frame; f_code is the code object being executed in this frame;
f_locals is the dictionary used to look up local variables; f_globals is used for global vari-
ables; f_builtins is used for built-in (intrinsic) names; f_lasti gives the precise instruction
(this is an index into the bytecode string of the code object).

Special writable attributes: f_trace, if not None, is a function called at the start of each source code
line (this is used by the debugger); f_lineno is the current line number of the frame — writing to
this from within a trace function jumps to the given line (only for the bottom-most frame). A debugger
can implement a Jump command (aka Set Next Statement) by writing to f_lineno.

Frame objects support one method:

frame.clear()
This method clears all references to local variables held by the frame. Also, if the frame belonged
to a generator, the generator is finalized. This helps break reference cycles involving frame objects
(for example when catching an exception and storing its traceback for later use).

RuntimeError is raised if the frame is currently executing.

New in version 3.4.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is created
when an exception occurs. When the search for an exception handler unwinds the execution stack, at
each unwound level a traceback object is inserted in front of the current traceback. When an exception
handler is entered, the stack trace is made available to the program. (See section The try statement.)
It is accessible as the third item of the tuple returned by sys.exc_info(). When the program
contains no suitable handler, the stack trace is written (nicely formatted) to the standard error stream;
if the interpreter is interactive, it is also made available to the user as sys.last_traceback.

Special read-only attributes: tb_next is the next level in the stack trace (towards the frame where
the exception occurred), or None if there is no next level; tb_frame points to the execution frame
of the current level; tb_lineno gives the line number where the exception occurred; tb_lasti
indicates the precise instruction. The line number and last instruction in the traceback may differ from
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the line number of its frame object if the exception occurred in a try statement with no matching
except clause or with a finally clause.

Slice objects Slice objects are used to represent slices for __getitem__() methods. They are also
created by the built-in slice() function.

Special read-only attributes: start is the lower bound; stop is the upper bound; step is the step
value; each is None if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices(self, length)
This method takes a single integer argument length and computes information about the slice that
the slice object would describe if applied to a sequence of length items. It returns a tuple of three
integers; respectively these are the start and stop indices and the step or stride length of the slice.
Missing or out-of-bounds indices are handled in a manner consistent with regular slices.

Static method objects Static method objects provide a way of defeating the transformation of function
objects to method objects described above. A static method object is a wrapper around any other
object, usually a user-defined method object. When a static method object is retrieved from a class
or a class instance, the object actually returned is the wrapped object, which is not subject to any
further transformation. Static method objects are not themselves callable, although the objects they
wrap usually are. Static method objects are created by the built-in staticmethod() constructor.

Class method objects A class method object, like a static method object, is a wrapper around another ob-
ject that alters the way in which that object is retrieved from classes and class instances. The behaviour
of class method objects upon such retrieval is described above, under “User-defined methods”. Class
method objects are created by the built-in classmethod() constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or
subscripting and slicing) by defining methods with special names. This is Python’s approach to operator over-
loading, allowing classes to define their own behavior with respect to language operators. For instance, if a class
defines a method named __getitem__(), and x is an instance of this class, then x[i] is roughly equiva-
lent to type(x).__getitem__(x, i). Except where mentioned, attempts to execute an operation raise an
exception when no appropriate method is defined (typically AttributeError or TypeError).

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of this is the NodeList
interface in the W3C’s Document Object Model.)

3.3.1 Basic customization

object.__new__(cls[, ...])
Called to create a new instance of class cls. __new__() is a static method (special-cased so you need

not declare it as such) that takes the class of which an instance was requested as its first argument. The
remaining arguments are those passed to the object constructor expression (the call to the class). The return
value of __new__() should be the new object instance (usually an instance of cls).

Typical implementations create a new instance of the class by invoking the superclass’s __new__()
method using super(currentclass, cls).__new__(cls[, ...]) with appropriate argu-
ments and then modifying the newly-created instance as necessary before returning it.

If __new__() returns an instance of cls, then the new instance’s __init__() method will be invoked
like __init__(self[, ...]), where self is the new instance and the remaining arguments are the
same as were passed to __new__().
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If __new__() does not return an instance of cls, then the new instance’s __init__() method will not
be invoked.

__new__() is intended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init__(self [, ...])
Called after the instance has been created (by __new__()), but before it is returned to the caller. The

arguments are those passed to the class constructor expression. If a base class has an __init__()method,
the derived class’s __init__() method, if any, must explicitly call it to ensure proper initialization of the
base class part of the instance; for example: BaseClass.__init__(self, [args...]).

Because __new__() and __init__() work together in constructing objects (__new__() to create it,
and __init__() to customise it), no non-None value may be returned by __init__(); doing so will
cause a TypeError to be raised at runtime.

object.__del__(self)
Called when the instance is about to be destroyed. This is also called a destructor. If a base class has

a __del__() method, the derived class’s __del__() method, if any, must explicitly call it to ensure
proper deletion of the base class part of the instance. Note that it is possible (though not recommended!)
for the __del__() method to postpone destruction of the instance by creating a new reference to it. It
may then be called at a later time when this new reference is deleted. It is not guaranteed that __del__()
methods are called for objects that still exist when the interpreter exits.

Note: del x doesn’t directly call x.__del__() — the former decrements the reference count for x by
one, and the latter is only called when x‘s reference count reaches zero. Some common situations that may
prevent the reference count of an object from going to zero include: circular references between objects (e.g.,
a doubly-linked list or a tree data structure with parent and child pointers); a reference to the object on the
stack frame of a function that caught an exception (the traceback stored in sys.exc_info()[2] keeps
the stack frame alive); or a reference to the object on the stack frame that raised an unhandled exception in
interactive mode (the traceback stored in sys.last_traceback keeps the stack frame alive). The first
situation can only be remedied by explicitly breaking the cycles; the second can be resolved by freeing the
reference to the traceback object when it is no longer useful, and the third can be resolved by storing None
in sys.last_traceback. Circular references which are garbage are detected and cleaned up when the
cyclic garbage collector is enabled (it’s on by default). Refer to the documentation for the gc module for
more information about this topic.

Warning: Due to the precarious circumstances under which __del__() methods are invoked, excep-
tions that occur during their execution are ignored, and a warning is printed to sys.stderr instead.
Also, when __del__() is invoked in response to a module being deleted (e.g., when execution of
the program is done), other globals referenced by the __del__() method may already have been
deleted or in the process of being torn down (e.g. the import machinery shutting down). For this reason,
__del__() methods should do the absolute minimum needed to maintain external invariants. Starting
with version 1.5, Python guarantees that globals whose name begins with a single underscore are deleted
from their module before other globals are deleted; if no other references to such globals exist, this may
help in assuring that imported modules are still available at the time when the __del__() method is
called.

object.__repr__(self)
Called by the repr() built-in function to compute the “official” string representation of an object. If at
all possible, this should look like a valid Python expression that could be used to recreate an object with
the same value (given an appropriate environment). If this is not possible, a string of the form <...some
useful description...> should be returned. The return value must be a string object. If a class
defines __repr__() but not __str__(), then __repr__() is also used when an “informal” string
representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and unam-
biguous.

object.__str__(self)
Called by str(object) and the built-in functions format() and print() to compute the “informal”
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or nicely printable string representation of an object. The return value must be a string object.

This method differs from object.__repr__() in that there is no expectation that __str__() return
a valid Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object.__repr__().

object.__bytes__(self)
Called by bytes() to compute a byte-string representation of an object. This should return a bytes

object.

object.__format__(self, format_spec)
Called by the format() built-in function (and by extension, the str.format() method of class str)
to produce a “formatted” string representation of an object. The format_spec argument is a string that
contains a description of the formatting options desired. The interpretation of the format_spec argument
is up to the type implementing __format__(), however most classes will either delegate formatting to
one of the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.

The return value must be a string object.

Changed in version 3.4: The __format__ method of object itself raises a TypeError if passed any
non-empty string.

object.__lt__(self, other)
object.__le__(self, other)
object.__eq__(self, other)
object.__ne__(self, other)
object.__gt__(self, other)
object.__ge__(self, other)

These are the so-called “rich comparison” methods. The correspondence between operator sym-
bols and method names is as follows: x<y calls x.__lt__(y), x<=y calls x.__le__(y),
x==y calls x.__eq__(y), x!=y calls x.__ne__(y), x>y calls x.__gt__(y), and x>=y calls
x.__ge__(y).

A rich comparison method may return the singleton NotImplemented if it does not implement the op-
eration for a given pair of arguments. By convention, False and True are returned for a successful com-
parison. However, these methods can return any value, so if the comparison operator is used in a Boolean
context (e.g., in the condition of an if statement), Python will call bool() on the value to determine if
the result is true or false.

By default, __ne__() delegates to __eq__() and inverts the result unless it is NotImplemented.
There are no other implied relationships among the comparison operators, for example, the truth of (x<y
or x==y) does not imply x<=y. To automatically generate ordering operations from a single root opera-
tion, see functools.total_ordering().

See the paragraph on __hash__() for some important notes on creating hashable objects which support
custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not
support the operation but the right argument does); rather, __lt__() and __gt__() are each other’s
reflection, __le__() and __ge__() are each other’s reflection, and __eq__() and __ne__() are
their own reflection. If the operands are of different types, and right operand’s type is a direct or indirect
subclass of the left operand’s type, the reflected method of the right operand has priority, otherwise the left
operand’s method has priority. Virtual subclassing is not considered.

object.__hash__(self)
Called by built-in function hash() and for operations on members of hashed collections including set,
frozenset, and dict. __hash__() should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to somehow mix together (e.g. using exclusive
or) the hash values for the components of the object that also play a part in comparison of objects.

Note: hash() truncates the value returned from an object’s custom __hash__() method to the
size of a Py_ssize_t. This is typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds.

3.3. Special method names 25



The Python Language Reference, Release 3.5.1

If an object’s __hash__() must interoperate on builds of different bit sizes, be sure to check
the width on all supported builds. An easy way to do this is with python -c "import sys;
print(sys.hash_info.width)".

If a class does not define an __eq__() method it should not define a __hash__() operation either; if
it defines __eq__() but not __hash__(), its instances will not be usable as items in hashable collec-
tions. If a class defines mutable objects and implements an __eq__() method, it should not implement
__hash__(), since the implementation of hashable collections requires that a key’s hash value is im-
mutable (if the object’s hash value changes, it will be in the wrong hash bucket).

User-defined classes have __eq__() and __hash__() methods by default; with them, all objects com-
pare unequal (except with themselves) and x.__hash__() returns an appropriate value such that x ==
y implies both that x is y and hash(x) == hash(y).

A class that overrides __eq__() and does not define __hash__()will have its __hash__() implicitly
set to None. When the __hash__() method of a class is None, instances of the class will raise an
appropriate TypeError when a program attempts to retrieve their hash value, and will also be correctly
identified as unhashable when checking isinstance(obj, collections.Hashable).

If a class that overrides __eq__() needs to retain the implementation of __hash__()
from a parent class, the interpreter must be told this explicitly by setting __hash__ =
<ParentClass>.__hash__.

If a class that does not override __eq__() wishes to suppress hash support, it should include
__hash__ = None in the class definition. A class which defines its own __hash__() that ex-
plicitly raises a TypeError would be incorrectly identified as hashable by an isinstance(obj,
collections.Hashable) call.

Note: By default, the __hash__() values of str, bytes and datetime objects are “salted” with an unpre-
dictable random value. Although they remain constant within an individual Python process, they are not
predictable between repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully-chosen in-
puts that exploit the worst case performance of a dict insertion, O(n^2) complexity. See
http://www.ocert.org/advisories/ocert-2011-003.html for details.

Changing hash values affects the iteration order of dicts, sets and other mappings. Python has never made
guarantees about this ordering (and it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

Changed in version 3.3: Hash randomization is enabled by default.

object.__bool__(self)
Called to implement truth value testing and the built-in operation bool(); should return False or True.
When this method is not defined, __len__() is called, if it is defined, and the object is considered true
if its result is nonzero. If a class defines neither __len__() nor __bool__(), all its instances are
considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or
deletion of x.name) for class instances.

object.__getattr__(self, name)
Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance
attribute nor is it found in the class tree for self). name is the attribute name. This method should return
the (computed) attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, __getattr__() is not called. (This
is an intentional asymmetry between __getattr__() and __setattr__().) This is done both
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for efficiency reasons and because otherwise __getattr__() would have no way to access other at-
tributes of the instance. Note that at least for instance variables, you can fake total control by not insert-
ing any values in the instance attribute dictionary (but instead inserting them in another object). See the
__getattribute__() method below for a way to actually get total control over attribute access.

object.__getattribute__(self, name)
Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr__(), the latter will not be called unless __getattribute__() either calls it explicitly
or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation
should always call the base class method with the same name to access any attributes it needs, for example,
object.__getattribute__(self, name).

Note: This method may still be bypassed when looking up special methods as the result of implicit invo-
cation via language syntax or built-in functions. See Special method lookup.

object.__setattr__(self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store
the value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If __setattr__() wants to assign to an instance attribute, it should call the base class method with the
same name, for example, object.__setattr__(self, name, value).

object.__delattr__(self, name)
Like __setattr__() but for attribute deletion instead of assignment. This should only be implemented
if del obj.name is meaningful for the object.

object.__dir__(self)
Called when dir() is called on the object. A sequence must be returned. dir() converts the returned
sequence to a list and sorts it.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor
class) appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class
dictionary for one of its parents). In the examples below, “the attribute” refers to the attribute whose name is the
key of the property in the owner class’ __dict__.

object.__get__(self, instance, owner)
Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute access). owner is always the owner class, while instance is the instance that the attribute was
accessed through, or None when the attribute is accessed through the owner. This method should return the
(computed) attribute value or raise an AttributeError exception.

object.__set__(self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.

object.__delete__(self, instance)
Called to delete the attribute on an instance instance of the owner class.

The attribute __objclass__ is interpreted by the inspect module as specifying the class where this ob-
ject was defined (setting this appropriately can assist in runtime introspection of dynamic class attributes). For
callables, it may indicate that an instance of the given type (or a subclass) is expected or required as the first
positional argument (for example, CPython sets this attribute for unbound methods that are implemented in C).

Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been over-
ridden by methods in the descriptor protocol: __get__(), __set__(), and __delete__(). If any of those
methods are defined for an object, it is said to be a descriptor.
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The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For
instance, a.x has a lookup chain starting with a.__dict__[’x’], then type(a).__dict__[’x’], and
continuing through the base classes of type(a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a.x. How the arguments are assembled depends on a:

Direct Call The simplest and least common call is when user code directly invokes a descriptor method:
x.__get__(a).

Instance Binding If binding to an object instance, a.x is transformed into the call:
type(a).__dict__[’x’].__get__(a, type(a)).

Class Binding If binding to a class, A.x is transformed into the call: A.__dict__[’x’].__get__(None,
A).

Super Binding If a is an instance of super, then the binding super(B, obj).m() searches
obj.__class__.__mro__ for the base class A immediately preceding B and then invokes the descrip-
tor with the call: A.__dict__[’m’].__get__(obj, obj.__class__).

For instance bindings, the precedence of descriptor invocation depends on the which descriptor methods are de-
fined. A descriptor can define any combination of __get__(), __set__() and __delete__(). If it does
not define __get__(), then accessing the attribute will return the descriptor object itself unless there is a value
in the object’s instance dictionary. If the descriptor defines __set__() and/or __delete__(), it is a data de-
scriptor; if it defines neither, it is a non-data descriptor. Normally, data descriptors define both __get__() and
__set__(), while non-data descriptors have just the __get__() method. Data descriptors with __set__()
and __get__() defined always override a redefinition in an instance dictionary. In contrast, non-data descriptors
can be overridden by instances.

Python methods (including staticmethod() and classmethod()) are implemented as non-data descrip-
tors. Accordingly, instances can redefine and override methods. This allows individual instances to acquire
behaviors that differ from other instances of the same class.

The property() function is implemented as a data descriptor. Accordingly, instances cannot override the
behavior of a property.

__slots__

By default, instances of classes have a dictionary for attribute storage. This wastes space for objects having very
few instance variables. The space consumption can become acute when creating large numbers of instances.

The default can be overridden by defining __slots__ in a class definition. The __slots__ declaration takes a
sequence of instance variables and reserves just enough space in each instance to hold a value for each variable.
Space is saved because __dict__ is not created for each instance.

object.__slots__
This class variable can be assigned a string, iterable, or sequence of strings with variable names used by in-
stances. __slots__ reserves space for the declared variables and prevents the automatic creation of __dict__
and __weakref__ for each instance.

Notes on using __slots__

• When inheriting from a class without __slots__, the __dict__ attribute of that class will always be accessible,
so a __slots__ definition in the subclass is meaningless.

• Without a __dict__ variable, instances cannot be assigned new variables not listed in the __slots__ defini-
tion. Attempts to assign to an unlisted variable name raises AttributeError. If dynamic assignment of
new variables is desired, then add ’__dict__’ to the sequence of strings in the __slots__ declaration.
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• Without a __weakref__ variable for each instance, classes defining __slots__ do not support weak references
to its instances. If weak reference support is needed, then add ’__weakref__’ to the sequence of strings
in the __slots__ declaration.

• __slots__ are implemented at the class level by creating descriptors (Implementing Descriptors) for each
variable name. As a result, class attributes cannot be used to set default values for instance variables defined
by __slots__; otherwise, the class attribute would overwrite the descriptor assignment.

• The action of a __slots__ declaration is limited to the class where it is defined. As a result, subclasses will
have a __dict__ unless they also define __slots__ (which must only contain names of any additional slots).

• If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of
the program undefined. In the future, a check may be added to prevent this.

• Nonempty __slots__ does not work for classes derived from “variable-length” built-in types such as int,
bytes and tuple.

• Any non-string iterable may be assigned to __slots__. Mappings may also be used; however, in the future,
special meaning may be assigned to the values corresponding to each key.

• __class__ assignment works only if both classes have the same __slots__.

3.3.3 Customizing class creation

By default, classes are constructed using type(). The class body is executed in a new namespace and the class
name is bound locally to the result of type(name, bases, namespace).

The class creation process can be customised by passing the metaclass keyword argument in the class definition
line, or by inheriting from an existing class that included such an argument. In the following example, both
MyClass and MySubclass are instances of Meta:

class Meta(type):
pass

class MyClass(metaclass=Meta):
pass

class MySubclass(MyClass):
pass

Any other keyword arguments that are specified in the class definition are passed through to all metaclass opera-
tions described below.

When a class definition is executed, the following steps occur:

• the appropriate metaclass is determined

• the class namespace is prepared

• the class body is executed

• the class object is created

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:

• if no bases and no explicit metaclass are given, then type() is used

• if an explicit metaclass is given and it is not an instance of type(), then it is used directly as the metaclass

• if an instance of type() is given as the explicit metaclass, or bases are defined, then the most derived
metaclass is used
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The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type(cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these
candidate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail
with TypeError.

Preparing the class namespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has
a __prepare__ attribute, it is called as namespace = metaclass.__prepare__(name, bases,

**kwds) (where the additional keyword arguments, if any, come from the class definition).

If the metaclass has no __prepare__ attribute, then the class namespace is initialised as an empty dict()
instance.

See also:

PEP 3115 - Metaclasses in Python 3000 Introduced the __prepare__ namespace hook

Executing the class body

The class body is executed (approximately) as exec(body, globals(), namespace). The key differ-
ence from a normal call to exec() is that lexical scoping allows the class body (including any methods) to
reference names from the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot
see names defined at the class scope. Class variables must be accessed through the first parameter of instance or
class methods, and cannot be accessed at all from static methods.

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass(name, bases, namespace, **kwds) (the additional keywords passed here are the same
as those passed to __prepare__).

This class object is the one that will be referenced by the zero-argument form of super(). __class__ is an
implicit closure reference created by the compiler if any methods in a class body refer to either __class__ or
super. This allows the zero argument form of super() to correctly identify the class being defined based on
lexical scoping, while the class or instance that was used to make the current call is identified based on the first
argument passed to the method.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the
resulting object is bound in the local namespace as the defined class.

See also:

PEP 3135 - New super Describes the implicit __class__ closure reference

Metaclass example

The potential uses for metaclasses are boundless. Some ideas that have been explored include logging, inter-
face checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource
locking/synchronization.

Here is an example of a metaclass that uses an collections.OrderedDict to remember the order that class
variables are defined:

class OrderedClass(type):

@classmethod
def __prepare__(metacls, name, bases, **kwds):
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return collections.OrderedDict()

def __new__(cls, name, bases, namespace, **kwds):
result = type.__new__(cls, name, bases, dict(namespace))
result.members = tuple(namespace)
return result

class A(metaclass=OrderedClass):
def one(self): pass
def two(self): pass
def three(self): pass
def four(self): pass

>>> A.members
('__module__', 'one', 'two', 'three', 'four')

When the class definition for A gets executed, the process begins with calling the metaclass’s __prepare__()
method which returns an empty collections.OrderedDict. That mapping records the methods and at-
tributes of A as they are defined within the body of the class statement. Once those definitions are executed, the
ordered dictionary is fully populated and the metaclass’s __new__() method gets invoked. That method builds
the new type and it saves the ordered dictionary keys in an attribute called members.

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance() and issubclass()
built-in functions.

In particular, the metaclass abc.ABCMeta implements these methods in order to allow the addition of Abstract
Base Classes (ABCs) as “virtual base classes” to any class or type (including built-in types), including other ABCs.

class.__instancecheck__(self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to
implement isinstance(instance, class).

class.__subclasscheck__(self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to
implement issubclass(subclass, class).

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods
in the actual class. This is consistent with the lookup of special methods that are called on instances, only in this
case the instance is itself a class.

See also:

PEP 3119 - Introducing Abstract Base Classes Includes the specification for customizing isinstance()
and issubclass() behavior through __instancecheck__() and __subclasscheck__(),
with motivation for this functionality in the context of adding Abstract Base Classes (see the abc mod-
ule) to the language.

3.3.5 Emulating callable objects

object.__call__(self [, args...])
Called when the instance is “called” as a function; if this method is defined, x(arg1, arg2, ...) is

a shorthand for x.__call__(arg1, arg2, ...).
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3.3.6 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such
as lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of
methods is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence,
the allowable keys should be the integers k for which 0 <= k < N where N is the length of the sequence,
or slice objects, which define a range of items. It is also recommended that mappings provide the methods
keys(), values(), items(), get(), clear(), setdefault(), pop(), popitem(), copy(),
and update() behaving similar to those for Python’s standard dictionary objects. The collections
module provides a MutableMapping abstract base class to help create those methods from a base set of
__getitem__(), __setitem__(), __delitem__(), and keys(). Mutable sequences should pro-
vide methods append(), count(), index(), extend(), insert(), pop(), remove(), reverse()
and sort(), like Python standard list objects. Finally, sequence types should implement addition (meaning
concatenation) and multiplication (meaning repetition) by defining the methods __add__(), __radd__(),
__iadd__(), __mul__(), __rmul__() and __imul__() described below; they should not define other
numerical operators. It is recommended that both mappings and sequences implement the __contains__()
method to allow efficient use of the in operator; for mappings, in should search the mapping’s keys; for se-
quences, it should search through the values. It is further recommended that both mappings and sequences imple-
ment the __iter__() method to allow efficient iteration through the container; for mappings, __iter__()
should be the same as keys(); for sequences, it should iterate through the values.

object.__len__(self)
Called to implement the built-in function len(). Should return the length of the object, an integer >= 0.

Also, an object that doesn’t define a __bool__() method and whose __len__() method returns zero
is considered to be false in a Boolean context.

object.__length_hint__(self)
Called to implement operator.length_hint(). Should return an estimated length for the object
(which may be greater or less than the actual length). The length must be an integer >= 0. This method is
purely an optimization and is never required for correctness.

New in version 3.4.

Note: Slicing is done exclusively with the following three methods. A call like

a[1:2] = b

is translated to

a[slice(1, 2, None)] = b

and so forth. Missing slice items are always filled in with None.

object.__getitem__(self, key)
Called to implement evaluation of self[key]. For sequence types, the accepted keys should be integers

and slice objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a
sequence type) is up to the __getitem__() method. If key is of an inappropriate type, TypeError
may be raised; if of a value outside the set of indexes for the sequence (after any special interpretation of
negative values), IndexError should be raised. For mapping types, if key is missing (not in the container),
KeyError should be raised.

Note: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection
of the end of the sequence.

object.__missing__(self, key)
Called by dict.__getitem__() to implement self[key] for dict subclasses when key is not in the
dictionary.

object.__setitem__(self, key, value)
Called to implement assignment to self[key]. Same note as for __getitem__(). This should only
be implemented for mappings if the objects support changes to the values for keys, or if new keys can be
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added, or for sequences if elements can be replaced. The same exceptions should be raised for improper key
values as for the __getitem__() method.

object.__delitem__(self, key)
Called to implement deletion of self[key]. Same note as for __getitem__(). This should only
be implemented for mappings if the objects support removal of keys, or for sequences if elements can
be removed from the sequence. The same exceptions should be raised for improper key values as for the
__getitem__() method.

object.__iter__(self)
This method is called when an iterator is required for a container. This method should return a new iterator
object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of
the container.

Iterator objects also need to implement this method; they are required to return themselves. For more
information on iterator objects, see typeiter.

object.__reversed__(self)
Called (if present) by the reversed() built-in to implement reverse iteration. It should return a new
iterator object that iterates over all the objects in the container in reverse order.

If the __reversed__() method is not provided, the reversed() built-in will fall back to using the se-
quence protocol (__len__() and __getitem__()). Objects that support the sequence protocol should
only provide __reversed__() if they can provide an implementation that is more efficient than the one
provided by reversed().

The membership test operators (in and not in) are normally implemented as an iteration through a sequence.
However, container objects can supply the following special method with a more efficient implementation, which
also does not require the object be a sequence.

object.__contains__(self, item)
Called to implement membership test operators. Should return true if item is in self, false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define __contains__(), the membership test first tries iteration via
__iter__(), then the old sequence iteration protocol via __getitem__(), see this section in the
language reference.

3.3.7 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are
not supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers)
should be left undefined.

object.__add__(self, other)
object.__sub__(self, other)
object.__mul__(self, other)
object.__matmul__(self, other)
object.__truediv__(self, other)
object.__floordiv__(self, other)
object.__mod__(self, other)
object.__divmod__(self, other)
object.__pow__(self, other[, modulo])
object.__lshift__(self, other)
object.__rshift__(self, other)
object.__and__(self, other)
object.__xor__(self, other)
object.__or__(self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod(),
pow(), **, <<, >>, &, ^, |). For instance, to evaluate the expression x + y, where x is an instance
of a class that has an __add__() method, x.__add__(y) is called. The __divmod__() method
should be the equivalent to using __floordiv__() and __mod__(); it should not be related to

3.3. Special method names 33



The Python Language Reference, Release 3.5.1

__truediv__(). Note that __pow__() should be defined to accept an optional third argument if the
ternary version of the built-in pow() function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return
NotImplemented.

object.__radd__(self, other)
object.__rsub__(self, other)
object.__rmul__(self, other)
object.__rmatmul__(self, other)
object.__rtruediv__(self, other)
object.__rfloordiv__(self, other)
object.__rmod__(self, other)
object.__rdivmod__(self, other)
object.__rpow__(self, other)
object.__rlshift__(self, other)
object.__rrshift__(self, other)
object.__rand__(self, other)
object.__rxor__(self, other)
object.__ror__(self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod(),
pow(), **, <<, >>, &, ^, |) with reflected (swapped) operands. These functions are only called if the
left operand does not support the corresponding operation and the operands are of different types. 2 For
instance, to evaluate the expression x - y, where y is an instance of a class that has an __rsub__()
method, y.__rsub__(x) is called if x.__sub__(y) returns NotImplemented.

Note that ternary pow() will not try calling __rpow__() (the coercion rules would become too compli-
cated).

Note: If the right operand’s type is a subclass of the left operand’s type and that subclass provides the
reflected method for the operation, this method will be called before the left operand’s non-reflected method.
This behavior allows subclasses to override their ancestors’ operations.

object.__iadd__(self, other)
object.__isub__(self, other)
object.__imul__(self, other)
object.__imatmul__(self, other)
object.__itruediv__(self, other)
object.__ifloordiv__(self, other)
object.__imod__(self, other)
object.__ipow__(self, other[, modulo])
object.__ilshift__(self, other)
object.__irshift__(self, other)
object.__iand__(self, other)
object.__ixor__(self, other)
object.__ior__(self, other)

These methods are called to implement the augmented arithmetic assignments (+=, -=, *=, @=, /=, //=,
%=, **=, <<=, >>=, &=, ^=, |=). These methods should attempt to do the operation in-place (modifying
self ) and return the result (which could be, but does not have to be, self ). If a specific method is not
defined, the augmented assignment falls back to the normal methods. For instance, if x is an instance of
a class with an __iadd__() method, x += y is equivalent to x = x.__iadd__(y) . Otherwise,
x.__add__(y) and y.__radd__(x) are considered, as with the evaluation of x + y. In certain
situations, augmented assignment can result in unexpected errors (see faq-augmented-assignment-tuple-
error), but this behavior is in fact part of the data model.

object.__neg__(self)
object.__pos__(self)
object.__abs__(self)

2 For operands of the same type, it is assumed that if the non-reflected method (such as __add__()) fails the operation is not supported,
which is why the reflected method is not called.
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object.__invert__(self)
Called to implement the unary arithmetic operations (-, +, abs() and ~).

object.__complex__(self)
object.__int__(self)
object.__float__(self)
object.__round__(self [, n])

Called to implement the built-in functions complex(), int(), float() and round(). Should return
a value of the appropriate type.

object.__index__(self)
Called to implement operator.index(), and whenever Python needs to losslessly convert the numeric
object to an integer object (such as in slicing, or in the built-in bin(), hex() and oct() functions).
Presence of this method indicates that the numeric object is an integer type. Must return an integer.

Note: In order to have a coherent integer type class, when __index__() is defined __int__() should
also be defined, and both should return the same value.

3.3.8 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a with state-
ment. The context manager handles the entry into, and the exit from, the desired runtime context for the execution
of the block of code. Context managers are normally invoked using the with statement (described in section The
with statement), but can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking
resources, closing opened files, etc.

For more information on context managers, see typecontextmanager.

object.__enter__(self)
Enter the runtime context related to this object. The with statement will bind this method’s return value to
the target(s) specified in the as clause of the statement, if any.

object.__exit__(self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context
to be exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being
propagated), it should return a true value. Otherwise, the exception will be processed normally upon exit
from this method.

Note that __exit__() methods should not reraise the passed-in exception; this is the caller’s responsibil-
ity.

See also:

PEP 0343 - The “with” statement The specification, background, and examples for the Python with statement.

3.3.9 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises
an exception:

>>> class C:
... pass
...
>>> c = C()
>>> c.__len__ = lambda: 5
>>> len(c)
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Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods such as __hash__() and
__repr__() that are implemented by all objects, including type objects. If the implicit lookup of these methods
used the conventional lookup process, they would fail when invoked on the type object itself:

>>> 1 .__hash__() == hash(1)
True
>>> int.__hash__() == hash(int)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash__' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as ‘metaclass
confusion’, and is avoided by bypassing the instance when looking up special methods:

>>> type(1).__hash__(1) == hash(1)
True
>>> type(int).__hash__(int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup
generally also bypasses the __getattribute__() method even of the object’s metaclass:

>>> class Meta(type):
... def __getattribute__(*args):
... print("Metaclass getattribute invoked")
... return type.__getattribute__(*args)
...
>>> class C(object, metaclass=Meta):
... def __len__(self):
... return 10
... def __getattribute__(*args):
... print("Class getattribute invoked")
... return object.__getattribute__(*args)
...
>>> c = C()
>>> c.__len__() # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__(c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len(c) # Implicit lookup
10

Bypassing the __getattribute__() machinery in this fashion provides significant scope for speed optimi-
sations within the interpreter, at the cost of some flexibility in the handling of special methods (the special method
must be set on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implements an __await__() method. Coroutine objects returned from async
def functions are awaitable.

Note: The generator iterator objects returned from generators decorated with types.coroutine() or
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asyncio.coroutine() are also awaitable, but they do not implement __await__().

object.__await__(self)
Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future
implements this method to be compatible with the await expression.

New in version 3.5.

See also:

PEP 492 for additional information about awaitable objects.

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling __await__()
and iterating over the result. When the coroutine has finished executing and returns, the iterator raises
StopIteration, and the exception’s value attribute holds the return value. If the coroutine raises an ex-
ception, it is propagated by the iterator. Coroutines should not directly raise unhandled StopIteration excep-
tions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator
methods). However, unlike generators, coroutines do not directly support iteration.

coroutine.send(value)
Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator
returned by __await__(). If value is not None, this method delegates to the send() method of the iter-
ator that caused the coroutine to suspend. The result (return value, StopIteration, or other exception)
is the same as when iterating over the __await__() return value, described above.

coroutine.throw(type[, value[, traceback ]])
Raises the specified exception in the coroutine. This method delegates to the throw() method of the
iterator that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised
at the suspension point. The result (return value, StopIteration, or other exception) is the same as
when iterating over the __await__() return value, described above. If the exception is not caught in the
coroutine, it propagates back to the caller.

coroutine.close()
Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates
to the close() method of the iterator that caused the coroutine to suspend, if it has such a method. Then
it raises GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up.
Finally, the coroutine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4.3 Asynchronous Iterators

An asynchronous iterable is able to call asynchronous code in its __aiter__ implementation, and an asyn-
chronous iterator can call asynchronous code in its __anext__ method.

Asynchronous iterators can be used in an async for statement.

object.__aiter__(self)
Must return an awaitable resulting in an asynchronous iterator object.

object.__anext__(self)
Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration
error when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

...
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async def __aiter__(self):
return self

async def __anext__(self):
val = await self.readline()
if val == b'':

raise StopAsyncIteration
return val

New in version 3.5.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter__ and
__aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object.__aenter__(self)
This method is semantically similar to the __enter__(), with only difference that it must return an
awaitable.

object.__aexit__(self, exc_type, exc_value, traceback)
This method is semantically similar to the __exit__(), with only difference that it must return an await-
able.

An example of an asynchronous context manager class:

class AsyncContextManager:
async def __aenter__(self):

await log('entering context')

async def __aexit__(self, exc_type, exc, tb):
await log('exiting context')

New in version 3.5.
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CHAPTER

FOUR

EXECUTION MODEL

4.1 Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is executed
as a unit. The following are blocks: a module, a function body, and a class definition. Each command typed
interactively is a block. A script file (a file given as standard input to the interpreter or specified as a command
line argument to the interpreter) is a code block. A script command (a command specified on the interpreter
command line with the ‘-c‘ option) is a code block. The string argument passed to the built-in functions eval()
and exec() is a code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for
debugging) and determines where and how execution continues after the code block’s execution has completed.

4.2 Naming and binding

4.2.1 Binding of names

Names refer to objects. Names are introduced by name binding operations.

The following constructs bind names: formal parameters to functions, import statements, class and function
definitions (these bind the class or function name in the defining block), and targets that are identifiers if occurring
in an assignment, for loop header, or after as in a with statement or except clause. The import statement
of the form from ... import * binds all names defined in the imported module, except those beginning
with an underscore. This form may only be used at the module level.

A target occurring in a del statement is also considered bound for this purpose (though the actual semantics are
to unbind the name).

Each assignment or import statement occurs within a block defined by a class or function definition or at the
module level (the top-level code block).

If a name is bound in a block, it is a local variable of that block, unless declared as nonlocal or global. If a
name is bound at the module level, it is a global variable. (The variables of the module code block are local and
global.) If a variable is used in a code block but not defined there, it is a free variable.

Each occurrence of a name in the program text refers to the binding of that name established by the following
name resolution rules.

4.2.2 Resolution of names

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes
that block. If the definition occurs in a function block, the scope extends to any blocks contained within the
defining one, unless a contained block introduces a different binding for the name.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes
visible to a code block is called the block’s environment.
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When a name is not found at all, a NameError exception is raised. If the current scope is a function scope, and
the name refers to a local variable that has not yet been bound to a value at the point where the name is used, an
UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated
as references to the current block. This can lead to errors when a name is used within a block before it is bound.
This rule is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code
block. The local variables of a code block can be determined by scanning the entire text of the block for name
binding operations.

If the global statement occurs within a block, all uses of the name specified in the statement refer to the bind-
ing of that name in the top-level namespace. Names are resolved in the top-level namespace by searching the
global namespace, i.e. the namespace of the module containing the code block, and the builtins namespace, the
namespace of the module builtins. The global namespace is searched first. If the name is not found there, the
builtins namespace is searched. The global statement must precede all uses of the name.

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing
scope for a free variable contains a global statement, the free variable is treated as a global.

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest en-
closing function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing
function scope.

The namespace for a module is automatically created the first time a module is imported. The main module for a
script is always called __main__.

Class definition blocks and arguments to exec() and eval() are special in the context of name resolution. A
class definition is an executable statement that may use and define names. These references follow the normal
rules for name resolution with an exception that unbound local variables are looked up in the global namespace.
The namespace of the class definition becomes the attribute dictionary of the class. The scope of names defined
in a class block is limited to the class block; it does not extend to the code blocks of methods – this includes
comprehensions and generator expressions since they are implemented using a function scope. This means that
the following will fail:

class A:
a = 42
b = list(a + i for i in range(10))

4.2.3 Builtins and restricted execution

The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins__ in its global namespace; this should be a dictionary or a module (in the latter case the mod-
ule’s dictionary is used). By default, when in the __main__ module, __builtins__ is the built-in module
builtins; when in any other module, __builtins__ is an alias for the dictionary of the builtins module
itself. __builtins__ can be set to a user-created dictionary to create a weak form of restricted execution.

CPython implementation detail: Users should not touch __builtins__; it is strictly an implementation
detail. Users wanting to override values in the builtins namespace should import the builtins module and
modify its attributes appropriately.

4.2.4 Interaction with dynamic features

Name resolution of free variables occurs at runtime, not at compile time. This means that the following code will
print 42:

i = 10
def f():

print(i)
i = 42
f()
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There are several cases where Python statements are illegal when used in conjunction with nested scopes that
contain free variables.

If a variable is referenced in an enclosing scope, it is illegal to delete the name. An error will be reported at
compile time.

The eval() and exec() functions do not have access to the full environment for resolving names. Names may
be resolved in the local and global namespaces of the caller. Free variables are not resolved in the nearest enclosing
namespace, but in the global namespace. 1 The exec() and eval() functions have optional arguments to
override the global and local namespace. If only one namespace is specified, it is used for both.

4.3 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or
other exceptional conditions. An exception is raised at the point where the error is detected; it may be handled by
the surrounding code block or by any code block that directly or indirectly invoked the code block where the error
occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python
program can also explicitly raise an exception with the raise statement. Exception handlers are specified with
the try ... except statement. The finally clause of such a statement can be used to specify cleanup code
which does not handle the exception, but is executed whether an exception occurred or not in the preceding code.

Python uses the “termination” model of error handling: an exception handler can find out what happened and
continue execution at an outer level, but it cannot repair the cause of the error and retry the failing operation
(except by re-entering the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its
interactive main loop. In either case, it prints a stack backtrace, except when the exception is SystemExit.

Exceptions are identified by class instances. The except clause is selected depending on the class of the instance:
it must reference the class of the instance or a base class thereof. The instance can be received by the handler and
can carry additional information about the exceptional condition.

Note: Exception messages are not part of the Python API. Their contents may change from one version of Python
to the next without warning and should not be relied on by code which will run under multiple versions of the
interpreter.

See also the description of the try statement in section The try statement and raise statement in section The
raise statement.

1 This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.
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CHAPTER

FIVE

THE IMPORT SYSTEM

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions
such as importlib.import_module() and built-in __import__() can also be used to invoke the import
machinery.

The import statement combines two operations; it searches for the named module, then it binds the results of
that search to a name in the local scope. The search operation of the import statement is defined as a call to
the __import__() function, with the appropriate arguments. The return value of __import__() is used to
perform the name binding operation of the import statement. See the import statement for the exact details of
that name binding operation.

A direct call to __import__() performs only the module search and, if found, the module creation operation.
While certain side-effects may occur, such as the importing of parent packages, and the updating of various caches
(including sys.modules), only the import statement performs a name binding operation.

When calling __import__() as part of an import statement, the import system first checks the module global
namespace for a function by that name. If it is not found, then the standard builtin __import__() is called.
Other mechanisms for invoking the import system (such as importlib.import_module()) do not perform
this check and will always use the standard import system.

When a module is first imported, Python searches for the module and if found, it creates a module object 1,
initializing it. If the named module cannot be found, an ImportError is raised. Python implements various
strategies to search for the named module when the import machinery is invoked. These strategies can be modified
and extended by using various hooks described in the sections below.

Changed in version 3.3: The import system has been updated to fully implement the second phase of PEP 302.
There is no longer any implicit import machinery - the full import system is exposed through sys.meta_path.
In addition, native namespace package support has been implemented (see PEP 420).

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example
importlib.import_module() provides a recommended, simpler API than built-in __import__() for
invoking the import machinery. Refer to the importlib library documentation for additional detail.

5.2 Packages

Python has only one type of module object, and all modules are of this type, regardless of whether the module is
implemented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python
has a concept of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take
this analogy too literally since packages and modules need not originate from the file system. For the purposes

1 See types.ModuleType.
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of this documentation, we’ll use this convenient analogy of directories and files. Like file system directories,
packages are organized hierarchically, and packages may themselves contain subpackages, as well as regular
modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another
way, packages are just a special kind of module. Specifically, any module that contains a __path__ attribute is
considered a package.

All modules have a name. Subpackage names are separated from their parent package name by dots, akin to
Python’s standard attribute access syntax. Thus you might have a module called sys and a package called
email, which in turn has a subpackage called email.mime and a module within that subpackage called
email.mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are tradi-
tional packages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory
containing an __init__.py file. When a regular package is imported, this __init__.py file is implicitly
executed, and the objects it defines are bound to names in the package’s namespace. The __init__.py file can
contain the same Python code that any other module can contain, and Python will add some additional attributes
to the module when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/
__init__.py
one/

__init__.py
two/

__init__.py
three/

__init__.py

Importing parent.one will implicitly execute parent/__init__.py and
parent/one/__init__.py. Subsequent imports of parent.two or parent.three will execute
parent/two/__init__.py and parent/three/__init__.py respectively.

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the
parent package. Portions may reside in different locations on the file system. Portions may also be found in zip
files, on the network, or anywhere else that Python searches during import. Namespace packages may or may not
correspond directly to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path__ attribute. They instead use a custom iterable
type which will automatically perform a new search for package portions on the next import attempt within that
package if the path of their parent package (or sys.path for a top level package) changes.

With namespace packages, there is no parent/__init__.py file. In fact, there may be multiple parent
directories found during import search, where each one is provided by a different portion. Thus parent/one
may not be physically located next to parent/two. In this case, Python will create a namespace package for
the top-level parent package whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of
this discussion, the difference is immaterial) being imported. This name may come from various arguments to

44 Chapter 5. The import system

https://www.python.org/dev/peps/pep-0420


The Python Language Reference, Release 3.5.1

the import statement, or from the parameters to the importlib.import_module() or __import__()
functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g.
foo.bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo.bar.baz. If
any of the intermediate imports fail, an ImportError is raised.

5.3.1 The module cache

The first place checked during import search is sys.modules. This mapping serves as a cache of all modules
that have been previously imported, including the intermediate paths. So if foo.bar.baz was previously im-
ported, sys.modules will contain entries for foo, foo.bar, and foo.bar.baz. Each key will have as its
value the corresponding module object.

During import, the module name is looked up in sys.modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then an ImportError is raised.
If the module name is missing, Python will continue searching for the module.

sys.modules is writable. Deleting a key may not destroy the associated module (as other modules may hold
references to it), but it will invalidate the cache entry for the named module, causing Python to search anew for
the named module upon its next import. The key can also be assigned to None, forcing the next import of the
module to result in an ImportError.

Beware though, as if you keep a reference to the module object, invalidate its cache entry in sys.modules,
and then re-import the named module, the two module objects will not be the same. By contrast,
importlib.reload() will reuse the same module object, and simply reinitialise the module contents by
rerunning the module’s code.

5.3.2 Finders and loaders

If the named module is not found in sys.modules, then Python’s import protocol is invoked to find and load
the module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine
whether it can find the named module using whatever strategy it knows about. Objects that implement both of
these interfaces are referred to as importers - they return themselves when they find that they can load the requested
module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules,
and the second knows how to locate frozen modules. A third default finder searches an import path for modules.
The import path is a list of locations that may name file system paths or zip files. It can also be extended to search
for any locatable resource, such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module search-
ing.

Finders do not actually load modules. If they can find the named module, they return a module spec, an en-
capsulation of the module’s import-related information, which the import machinery then uses when loading the
module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create
and register new ones to extend the import machinery.

Changed in version 3.4: In previous versions of Python, finders returned loaders directly, whereas now they return
module specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There
are two types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys.modules cache look up. This allows meta hooks to override sys.path processing, frozen modules, or
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even built-in modules. Meta hooks are registered by adding new finder objects to sys.meta_path, as described
below.

Import path hooks are called as part of sys.path (or package.__path__) processing, at the point
where their associated path item is encountered. Import path hooks are registered by adding new callables to
sys.path_hooks as described below.

5.3.4 The meta path

When the named module is not found in sys.modules, Python next searches sys.meta_path, which con-
tains a list of meta path finder objects. These finders are queried in order to see if they know how to handle the
named module. Meta path finders must implement a method called find_spec() which takes three arguments:
a name, an import path, and (optionally) a target module. The meta path finder can use any strategy it wants to
determine whether it can handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the
named module, it returns None. If sys.meta_path processing reaches the end of its list without returning
a spec, then an ImportError is raised. Any other exceptions raised are simply propagated up, aborting the
import process.

The find_spec() method of meta path finders is called with two or three arguments. The first is the fully
qualified name of the module being imported, for example foo.bar.baz. The second argument is the path
entries to use for the module search. For top-level modules, the second argument is None, but for submodules or
subpackages, the second argument is the value of the parent package’s __path__ attribute. If the appropriate
__path__ attribute cannot be accessed, an ImportError is raised. The third argument is an existing module
object that will be the target of loading later. The import system passes in a target module only during reload.

The meta path may be traversed multiple times for a single import request. For example, assuming
none of the modules involved has already been cached, importing foo.bar.baz will first perform a top
level import, calling mpf.find_spec("foo", None, None) on each meta path finder (mpf). Af-
ter foo has been imported, foo.bar will be imported by traversing the meta path a second time, calling
mpf.find_spec("foo.bar", foo.__path__, None). Once foo.bar has been imported, the final
traversal will call mpf.find_spec("foo.bar.baz", foo.bar.__path__, None).

Some meta path finders only support top level imports. These importers will always return None when anything
other than None is passed as the second argument.

Python’s default sys.meta_path has three meta path finders, one that knows how to import built-in modules,
one that knows how to import frozen modules, and one that knows how to import modules from an import path
(i.e. the path based finder).

Changed in version 3.4: The find_spec() method of meta path finders replaced find_module(), which is
now deprecated. While it will continue to work without change, the import machinery will try it only if the finder
does not implement find_spec().

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the
module. Here is an approximation of what happens during the loading portion of import:

module = None
if spec.loader is not None and hasattr(spec.loader, 'create_module'):

# It is assumed 'exec_module' will also be defined on the loader.
module = spec.loader.create_module(spec)

if module is None:
module = ModuleType(spec.name)

# The import-related module attributes get set here:
_init_module_attrs(spec, module)

if spec.loader is None:
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if spec.submodule_search_locations is not None:
# namespace package
sys.modules[spec.name] = module

else:
# unsupported
raise ImportError

elif not hasattr(spec.loader, 'exec_module'):
module = spec.loader.load_module(spec.name)
# Set __loader__ and __package__ if missing.

else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module(module)
except BaseException:

try:
del sys.modules[spec.name]

except KeyError:
pass

raise
return sys.modules[spec.name]

Note the following details:

• If there is an existing module object with the given name in sys.modules, import will have already
returned it.

• The module will exist in sys.modules before the loader executes the module code. This is crucial
because the module code may (directly or indirectly) import itself; adding it to sys.modules beforehand
prevents unbounded recursion in the worst case and multiple loading in the best.

• If loading fails, the failing module – and only the failing module – gets removed from sys.modules.
Any module already in the sys.modules cache, and any module that was successfully loaded as a side-
effect, must remain in the cache. This contrasts with reloading where even the failing module is left in
sys.modules.

• After the module is created but before execution, the import machinery sets the import-related module
attributes (“_init_module_attrs” in the pseudo-code example above), as summarized in a later section.

• Module execution is the key moment of loading in which the module’s namespace gets populated. Execution
is entirely delegated to the loader, which gets to decide what gets populated and how.

• The module created during loading and passed to exec_module() may not be the one returned at the end of
import 2.

Changed in version 3.4: The import system has taken over the boilerplate responsibilities of loaders. These were
previously performed by the importlib.abc.Loader.load_module() method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the
importlib.abc.Loader.exec_module() method with a single argument, the module object to execute.
Any value returned from exec_module() is ignored.

Loaders must satisfy the following requirements:

• If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the
loader should execute the module’s code in the module’s global name space (module.__dict__).

• If the loader cannot execute the module, it should raise an ImportError, although any other exception
raised during exec_module() will be propagated.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in
sys.modules. The indirect effect of this is that an imported module may replace itself in sys.modules. This is implementation-specific
behavior that is not guaranteed to work in other Python implementations.
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In many cases, the finder and loader can be the same object; in such cases the find_spec() method would just
return a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module() does not need to set any attributes on the module object. If the method returns None, the
import machinery will create the new module itself.

New in version 3.4: The create_module() method of loaders.

Changed in version 3.4: The load_module() method was replaced by exec_module() and the import
machinery assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the load_module() method of loaders
if it exists and the loader does not also implement exec_module(). However, load_module() has been
deprecated and loaders should implement exec_module() instead.

The load_module() method must implement all the boilerplate loading functionality described above in addi-
tion to executing the module. All the same constraints apply, with some additional clarification:

• If there is an existing module object with the given name in sys.modules, the loader must use that
existing module. (Otherwise, importlib.reload() will not work correctly.) If the named module
does not exist in sys.modules, the loader must create a new module object and add it to sys.modules.

• The module must exist in sys.modules before the loader executes the module code, to prevent un-
bounded recursion or multiple loading.

• If loading fails, the loader must remove any modules it has inserted into sys.modules, but it must remove
only the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

Changed in version 3.5: A DeprecationWarning is raised when exec_module() is defined but
create_module() is not. Starting in Python 3.6 it will be an error to not define create_module() on
a loader attached to a ModuleSpec.

5.4.2 Submodules

When a submodule is loaded using any mechanism (e.g. importlib APIs, the import or import-from
statements, or built-in __import__()) a binding is placed in the parent module’s namespace to the submodule
object. For example, if package spam has a submodule foo, after importing spam.foo, spam will have an
attribute foo which is bound to the submodule. Let’s say you have the following directory structure:

spam/
__init__.py
foo.py
bar.py

and spam/__init__.py has the following lines in it:

from .foo import Foo
from .bar import Bar

then executing the following puts a name binding to foo and bar in the spam module:

>>> import spam
>>> spam.foo
<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.bar
<module 'spam.bar' from '/tmp/imports/spam/bar.py'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental
feature of the import system. The invariant holding is that if you have sys.modules[’spam’] and
sys.modules[’spam.foo’] (as you would after the above import), the latter must appear as the foo at-
tribute of the former.

48 Chapter 5. The import system



The Python Language Reference, Release 3.5.1

5.4.3 Module spec

The import machinery uses a variety of information about each module during import, especially before loading.
Most of the information is common to all modules. The purpose of a module’s spec is to encapsulate this import-
related information on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the
finder that creates the module spec and the loader that executes it. Most importantly, it allows the import machinery
to perform the boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

See ModuleSpec for more specifics on what information a module’s spec may hold.

New in version 3.4.

5.4.4 Import-related module attributes

The import machinery fills in these attributes on each module object during loading, based on the module’s spec,
before the loader executes the module.

__name__
The __name__ attribute must be set to the fully-qualified name of the module. This name is used to
uniquely identify the module in the import system.

__loader__
The __loader__ attribute must be set to the loader object that the import machinery used when loading
the module. This is mostly for introspection, but can be used for additional loader-specific functionality, for
example getting data associated with a loader.

__package__
The module’s __package__ attribute must be set. Its value must be a string, but it can be the same value
as its __name__. When the module is a package, its __package__ value should be set to its __name__.
When the module is not a package, __package__ should be set to the empty string for top-level modules,
or for submodules, to the parent package’s name. See PEP 366 for further details.

This attribute is used instead of __name__ to calculate explicit relative imports for main modules, as
defined in PEP 366.

__spec__
The __spec__ attribute must be set to the module spec that was used when importing the module. This is
used primarily for introspection and during reloading. Setting __spec__ appropriately applies equally to
modules initialized during interpreter startup. The one exception is __main__, where __spec__ is set
to None in some cases.

New in version 3.4.

__path__
If the module is a package (either regular or namespace), the module object’s __path__ attribute must be
set. The value must be iterable, but may be empty if __path__ has no further significance. If __path__
is not empty, it must produce strings when iterated over. More details on the semantics of __path__ are
given below.

Non-package modules should not have a __path__ attribute.

__file__

__cached__
__file__ is optional. If set, this attribute’s value must be a string. The import system may opt to leave
__file__ unset if it has no semantic meaning (e.g. a module loaded from a database).

If __file__ is set, it may also be appropriate to set the __cached__ attribute which is the path to any
compiled version of the code (e.g. byte-compiled file). The file does not need to exist to set this attribute;
the path can simply point to where the compiled file would exist (see PEP 3147).
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It is also appropriate to set __cached__ when __file__ is not set. However, that scenario is quite
atypical. Ultimately, the loader is what makes use of __file__ and/or __cached__. So if a loader can
load from a cached module but otherwise does not load from a file, that atypical scenario may be appropriate.

5.4.5 module.__path__

By definition, if a module has an __path__ attribute, it is a package, regardless of its value.

A package’s __path__ attribute is used during imports of its subpackages. Within the import machinery, it
functions much the same as sys.path, i.e. providing a list of locations to search for modules during import.
However, __path__ is typically much more constrained than sys.path.

__path__ must be an iterable of strings, but it may be empty. The same rules used for sys.path also apply to
a package’s __path__, and sys.path_hooks (described below) are consulted when traversing a package’s
__path__.

A package’s __init__.py file may set or alter the package’s __path__ attribute, and this was typically
the way namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace
packages no longer need to supply __init__.py files containing only __path__ manipulation code; the
import machinery automatically sets __path__ correctly for the namespace package.

5.4.6 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s
spec, you can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or
there is no spec, the import system will craft a default repr using whatever information is available on the module.
It will try to use the module.__name__, module.__file__, and module.__loader__ as input into the
repr, with defaults for whatever information is missing.

Here are the exact rules used:

• If the module has a __spec__ attribute, the information in the spec is used to generate the repr. The
“name”, “loader”, “origin”, and “has_location” attributes are consulted.

• If the module has a __file__ attribute, this is used as part of the module’s repr.

• If the module has no __file__ but does have a __loader__ that is not None, then the loader’s repr is
used as part of the module’s repr.

• Otherwise, just use the module’s __name__ in the repr.

Changed in version 3.4: Use of loader.module_repr() has been deprecated and the module spec is now
used by the import machinery to generate a module repr.

For backward compatibility with Python 3.3, the module repr will be generated by calling the loader’s
module_repr() method, if defined, before trying either approach described above. However, the method
is deprecated.

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based
finder (PathFinder), searches an import path, which contains a list of path entries. Each path entry names a
location to search for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries,
associating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling
special file types such as Python source code (.py files), Python byte code (.pyc files) and shared libraries (e.g.

50 Chapter 5. The import system

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420


The Python Language Reference, Release 3.5.1

.so files). When supported by the zipimport module in the standard library, the default path entry finders also
handle loading all of these file types (other than shared libraries) from zipfiles.

Path entries need not be limited to file system locations. They can refer to URLs, database queries, or any other
location that can be specified as a string.

The path based finder provides additional hooks and protocols so that you can extend and customize the types of
searchable path entries. For example, if you wanted to support path entries as network URLs, you could write a
hook that implements HTTP semantics to find modules on the web. This hook (a callable) would return a path
entry finder supporting the protocol described below, which was then used to get a loader for the module from the
web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using
the terms meta path finder and path entry finder. These two types of finders are very similar, support similar
protocols, and function in similar ways during the import process, but it’s important to keep in mind that they are
subtly different. In particular, meta path finders operate at the beginning of the import process, as keyed off the
sys.meta_path traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the
path based finder were to be removed from sys.meta_path, none of the path entry finder semantics would be
invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is
specified with a string path entry. Most path entries name locations in the file system, but they need not be limited
to this.

As a meta path finder, the path based finder implements the find_spec() protocol previously described, how-
ever it exposes additional hooks that can be used to customize how modules are found and loaded from the import
path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and
sys.path_importer_cache. The __path__ attributes on package objects are also used. These
provide additional ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries
in sys.path can name directories on the file system, zip files, and potentially other “locations” (see the site
module) that should be searched for modules, such as URLs, or database queries. Only strings and bytes should
be present on sys.path; all other data types are ignored. The encoding of bytes entries is determined by the
individual path entry finders.

The path based finder is a meta path finder, so the import machinery begins the import path search by call-
ing the path based finder’s find_spec() method as described previously. When the path argument to
find_spec() is given, it will be a list of string paths to traverse - typically a package’s __path__ attribute for
an import within that package. If the path argument is None, this indicates a top level import and sys.path
is used.

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate
path entry finder (PathEntryFinder) for the path entry. Because this can be an expensive operation (e.g.
there may be stat() call overheads for this search), the path based finder maintains a cache mapping path entries
to path entry finders. This cache is maintained in sys.path_importer_cache (despite the name, this cache
actually stores finder objects rather than being limited to importer objects). In this way, the expensive search for a
particular path entry location’s path entry finder need only be done once. User code is free to remove cache entries
from sys.path_importer_cache forcing the path based finder to perform the path entry search again 3.

If the path entry is not present in the cache, the path based finder iterates over every callable in
sys.path_hooks. Each of the path entry hooks in this list is called with a single argument, the path entry
to be searched. This callable may either return a path entry finder that can handle the path entry, or it may raise

3 In legacy code, it is possible to find instances of imp.NullImporter in the sys.path_importer_cache. It is recommended
that code be changed to use None instead. See portingpythoncode for more details.
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ImportError. An ImportError is used by the path based finder to signal that the hook cannot find a path
entry finder. for that path entry. The exception is ignored and import path iteration continues. The hook should
expect either a string or bytes object; the encoding of bytes objects is up to the hook (e.g. it may be a file system
encoding, UTF-8, or something else), and if the hook cannot decode the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec() method will store None in sys.path_importer_cache (to indicate that there is no finder
for this path entry) and return None, indicating that this meta path finder could not find the module.

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory – denoted by an empty string – is handled slightly differently from other
entries on sys.path. First, if the current working directory is found to not exist, no value is stored
in sys.path_importer_cache. Second, the value for the current working directory is looked up
fresh for each module lookup. Third, the path used for sys.path_importer_cache and returned by
importlib.machinery.PathFinder.find_spec() will be the actual current working directory and
not the empty string.

5.5.2 Path entry finder protocol

In order to support imports of modules and initialized packages and also to contribute portions to namespace
packages, path entry finders must implement the find_spec() method.

find_spec() takes two argument, the fully qualified name of the module being imported, and the (optional)
target module. find_spec() returns a fully populated spec for the module. This spec will always have “loader”
set (with one exception).

To indicate to the import machinery that the spec represents a namespace portion. the path entry finder sets
“loader” on the spec to None and “submodule_search_locations” to a list containing the portion.

Changed in version 3.4: find_spec() replaced find_loader() and find_module(), both of which are
now deprecated, but will be used if find_spec() is not defined.

Older path entry finders may implement one of these two deprecated methods instead of find_spec(). The
methods are still respected for the sake of backward compatibility. Howevever, if find_spec() is implemented
on the path entry finder, the legacy methods are ignored.

find_loader() takes one argument, the fully qualified name of the module being imported.
find_loader() returns a 2-tuple where the first item is the loader and the second item is a namespace portion.
When the first item (i.e. the loader) is None, this means that while the path entry finder does not have a loader
for the named module, it knows that the path entry contributes to a namespace portion for the named module.
This will almost always be the case where Python is asked to import a namespace package that has no physical
presence on the file system. When a path entry finder returns None for the loader, the second item of the 2-tuple
return value must be a sequence, although it can be empty.

If find_loader() returns a non-None loader value, the portion is ignored and the loader is returned from the
path based finder, terminating the search through the path entries.

For backwards compatibility with other implementations of the import protocol, many path entry finders also
support the same, traditional find_module()method that meta path finders support. However path entry finder
find_module() methods are never called with a path argument (they are expected to record the appropriate
path information from the initial call to the path hook).

The find_module() method on path entry finders is deprecated, as it does not allow the path entry finder to
contribute portions to namespace packages. If both find_loader() and find_module() exist on a path
entry finder, the import system will always call find_loader() in preference to find_module().
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5.6 Replacing the standard import system

The most reliable mechanism for replacing the entire import system is to delete the default contents of
sys.meta_path, replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the
import system, then replacing the builtin __import__() function may be sufficient. This technique may also
be employed at the module level to only alter the behaviour of import statements within that module.

To selectively prevent import of some modules from a hook early on the meta path (rather than disabling the
standard import system entirely), it is sufficient to raise ImportError directly from find_spec() instead
of returning None. The latter indicates that the meta path search should continue, while raising an exception
terminates it immediately.

5.7 Special considerations for __main__

The __main__ module is a special case relative to Python’s import system. As noted elsewhere, the __main__
module is directly initialized at interpreter startup, much like sys and builtins. However, unlike those two,
it doesn’t strictly qualify as a built-in module. This is because the manner in which __main__ is initialized
depends on the flags and other options with which the interpreter is invoked.

5.7.1 __main__.__spec__

Depending on how __main__ is initialized, __main__.__spec__ gets set appropriately or to None.

When Python is started with the -m option, __spec__ is set to the module spec of the corresponding module or
package. __spec__ is also populated when the __main__ module is loaded as part of executing a directory,
zipfile or other sys.path entry.

In the remaining cases __main__.__spec__ is set to None, as the code used to populate the __main__ does
not correspond directly with an importable module:

• interactive prompt

• -c switch

• running from stdin

• running directly from a source or bytecode file

Note that __main__.__spec__ is always None in the last case, even if the file could technically be imported
directly as a module instead. Use the -m switch if valid module metadata is desired in __main__.

Note also that even when __main__ corresponds with an importable module and __main__.__spec__ is
set accordingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by if
__name__ == "__main__": checks only execute when the module is used to populate the __main__
namespace, and not during normal import.

5.8 Open issues

XXX It would be really nice to have a diagram.

XXX * (import_machinery.rst) how about a section devoted just to the attributes of modules and packages, perhaps
expanding upon or supplanting the related entries in the data model reference page?

XXX runpy, pkgutil, et al in the library manual should all get “See Also” links at the top pointing to the new
import system section.

XXX Add more explanation regarding the different ways in which __main__ is initialized?
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XXX Add more info on __main__ quirks/pitfalls (i.e. copy from PEP 395).

5.9 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages
is still available to read, although some details have changed since the writing of that document.

The original specification for sys.meta_path was PEP 302, with subsequent extension in PEP 420.

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader() pro-
tocol as an alternative to find_module().

PEP 366 describes the addition of the __package__ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed __name__ for semantics PEP
366 would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs
in the import system and also addition of new methods to finders and loaders.
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CHAPTER

SIX

EXPRESSIONS

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not
lexical analysis. When (one alternative of) a syntax rule has the form

name ::= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a
common type,” this means that the operator implementation for built-in types works as follows:

• If either argument is a complex number, the other is converted to complex;

• otherwise, if either argument is a floating point number, the other is converted to floating point;

• otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the ‘%’ operator). Extensions
must define their own conversion behavior.

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed
in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom ::= identifier | literal | enclosure
enclosure ::= parenth_form | list_display | dict_display | set_display

| generator_expression | yield_atom

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section
Naming and binding for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an
attempt to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more
underscore characters and does not end in two or more underscores, it is considered a private name of that class.

55



The Python Language Reference, Release 3.5.1

Private names are transformed to a longer form before code is generated for them. The transformation inserts the
class name, with leading underscores removed and a single underscore inserted, in front of the name. For example,
the identifier __spam occurring in a class named Ham will be transformed to _Ham__spam. This transformation
is independent of the syntactical context in which the identifier is used. If the transformed name is extremely long
(longer than 255 characters), implementation defined truncation may happen. If the class name consists only of
underscores, no transformation is done.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:

literal ::= stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex
number) with the given value. The value may be approximated in the case of floating point and imaginary (com-
plex) literals. See section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value.
Multiple evaluations of literals with the same value (either the same occurrence in the program text or a different
occurrence) may obtain the same object or a different object with the same value.

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form ::= “(” [expression_list] ”)”

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma,
it yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the rules for literals apply
(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The exception is
the empty tuple, for which parentheses are required — allowing unparenthesized “nothing” in expressions would
cause ambiguities and allow common typos to pass uncaught.

6.2.4 Displays for lists, sets and dictionaries

For constructing a list, a set or a dictionary Python provides special syntax called “displays”, each of them in two
flavors:

• either the container contents are listed explicitly, or

• they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension ::= expression comp_for
comp_for ::= “for” target_list “in” or_test [comp_iter]
comp_iter ::= comp_for | comp_if
comp_if ::= “if” expression_nocond [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or
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if clauses. In this case, the elements of the new container are those that would be produced by considering each
of the for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element
each time the innermost block is reached.

Note that the comprehension is executed in a separate scope, so names assigned to in the target list don’t “leak”
into the enclosing scope.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display ::= “[” [expression_list | comprehension] “]”

A list display yields a new list object, the contents being specified by either a list of expressions or a compre-
hension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right
and placed into the list object in that order. When a comprehension is supplied, the list is constructed from the
elements resulting from the comprehension.

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons sepa-
rating keys and values:

set_display ::= “{” (expression_list | comprehension) “}”

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or
a comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left
to right and added to the set object. When a comprehension is supplied, the set is constructed from the elements
resulting from the comprehension.

An empty set cannot be constructed with {}; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display ::= “{” [key_datum_list | dict_comprehension] “}”
key_datum_list ::= key_datum (”,” key_datum)* [”,”]
key_datum ::= expression ”:” expression
dict_comprehension ::= expression ”:” expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of key/datum pairs is given, they are evaluated from left to right to define the
entries of the dictionary: each key object is used as a key into the dictionary to store the corresponding datum.
This means that you can specify the same key multiple times in the key/datum list, and the final dictionary’s value
for that key will be the last one given.

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon
followed by the usual “for” and “if” clauses. When the comprehension is run, the resulting key and value elements
are inserted in the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section The standard type hierarchy. (To summarize,
the key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not
detected; the last datum (textually rightmost in the display) stored for a given key value prevails.
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6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression ::= “(” expression comp_for ”)”

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it
is enclosed in parentheses instead of brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the __next__() method is called for the
generator object (in the same fashion as normal generators). However, the leftmost for clause is immediately
evaluated, so that an error produced by it can be seen before any other possible error in the code that handles the
generator expression. Subsequent for clauses cannot be evaluated immediately since they may depend on the
previous for loop. For example: (x*y for x in range(10) for y in bar(x)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

6.2.9 Yield expressions

yield_atom ::= “(” yield_expression ”)”
yield_expression ::= “yield” [expression_list | “from” expression]

The yield expression is only used when defining a generator function and thus can only be used in the body of a
function definition. Using a yield expression in a function’s body causes that function to be a generator.

When a generator function is called, it returns an iterator known as a generator. That generator then controls
the execution of the generator function. The execution starts when one of the generator’s methods is called. At
that time, the execution proceeds to the first yield expression, where it is suspended again, returning the value of
expression_list to the generator’s caller. By suspended, we mean that all local state is retained, including
the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any
exception handling. When the execution is resumed by calling one of the generator’s methods, the function can
proceed exactly as if the yield expression were just another external call. The value of the yield expression after
resuming depends on the method which resumed the execution. If __next__() is used (typically via either a
for or the next() builtin) then the result is None. Otherwise, if send() is used, then the result will be the
value passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than
one entry point and their execution can be suspended. The only difference is that a generator function cannot
control where the execution should continue after it yields; the control is always transferred to the generator’s
caller.

Yield expressions are allowed anywhere in a try construct. If the generator is not resumed before it is finalized
(by reaching a zero reference count or by being garbage collected), the generator-iterator’s close() method will
be called, allowing any pending finally clauses to execute.

When yield from <expr> is used, it treats the supplied expression as a subiterator. All values produced
by that subiterator are passed directly to the caller of the current generator’s methods. Any values passed in with
send() and any exceptions passed in with throw() are passed to the underlying iterator if it has the appropriate
methods. If this is not the case, then send() will raise AttributeError or TypeError, while throw()
will just raise the passed in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes
the value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically
when the sub-iterator is a generator (by returning a value from the sub-generator).

Changed in version 3.3: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an
assignment statement.
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See also:

PEP 0255 - Simple Generators The proposal for adding generators and the yield statement to Python.

PEP 0342 - Coroutines via Enhanced Generators The proposal to enhance the API and syntax of generators,
making them usable as simple coroutines.

PEP 0380 - Syntax for Delegating to a Subgenerator The proposal to introduce the yield_from syntax,
making delegation to sub-generators easy.

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a
generator function.

Note that calling any of the generator methods below when the generator is already executing raises a
ValueError exception.

generator.__next__()
Starts the execution of a generator function or resumes it at the last executed yield expression. When a
generator function is resumed with a __next__() method, the current yield expression always evaluates
to None. The execution then continues to the next yield expression, where the generator is suspended
again, and the value of the expression_list is returned to __next__()‘s caller. If the generator
exits without yielding another value, a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next() function.

generator.send(value)
Resumes the execution and “sends” a value into the generator function. The value argument becomes the
result of the current yield expression. The send() method returns the next value yielded by the generator,
or raises StopIteration if the generator exits without yielding another value. When send() is called
to start the generator, it must be called with None as the argument, because there is no yield expression that
could receive the value.

generator.throw(type[, value[, traceback ]])
Raises an exception of type type at the point where the generator was paused, and returns the next
value yielded by the generator function. If the generator exits without yielding another value, a
StopIteration exception is raised. If the generator function does not catch the passed-in exception,
or raises a different exception, then that exception propagates to the caller.

generator.close()
Raises a GeneratorExit at the point where the generator function was paused. If the generator function
then exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close
returns to its caller. If the generator yields a value, a RuntimeError is raised. If the generator raises any
other exception, it is propagated to the caller. close() does nothing if the generator has already exited
due to an exception or normal exit.

Examples

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo(value=None):
... print("Execution starts when 'next()' is called for the first time.")
... try:
... while True:
... try:
... value = (yield value)
... except Exception as e:
... value = e
... finally:
... print("Don't forget to clean up when 'close()' is called.")
...
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>>> generator = echo(1)
>>> print(next(generator))
Execution starts when 'next()' is called for the first time.
1
>>> print(next(generator))
None
>>> print(generator.send(2))
2
>>> generator.throw(TypeError, "spam")
TypeError('spam',)
>>> generator.close()
Don't forget to clean up when 'close()' is called.

For examples using yield from, see pep-380 in “What’s New in Python.”

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary ::= atom | attributeref | subscription | slicing | call

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref ::= primary ”.” identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This
object is then asked to produce the attribute whose name is the identifier. This production can be customized by
overriding the __getattr__() method. If this attribute is not available, the exception AttributeError is
raised. Otherwise, the type and value of the object produced is determined by the object. Multiple evaluations of
the same attribute reference may yield different objects.

6.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:

subscription ::= primary “[” expression_list “]”

The primary must evaluate to an object that supports subscription (lists or dictionaries for example). User-defined
objects can support subscription by defining a __getitem__() method.

For built-in objects, there are two types of objects that support subscription:

If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys of the
mapping, and the subscription selects the value in the mapping that corresponds to that key. (The expression list
is a tuple except if it has exactly one item.)

If the primary is a sequence, the expression (list) must evaluate to an integer or a slice (as discussed in the following
section).

The formal syntax makes no special provision for negative indices in sequences; however, built-in sequences all
provide a __getitem__() method that interprets negative indices by adding the length of the sequence to the
index (so that x[-1] selects the last item of x). The resulting value must be a nonnegative integer less than
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the number of items in the sequence, and the subscription selects the item whose index is that value (counting
from zero). Since the support for negative indices and slicing occurs in the object’s __getitem__() method,
subclasses overriding this method will need to explicitly add that support.

A string’s items are characters. A character is not a separate data type but a string of exactly one character.

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as
expressions or as targets in assignment or del statements. The syntax for a slicing:

slicing ::= primary “[” slice_list “]”
slice_list ::= slice_item (”,” slice_item)* [”,”]
slice_item ::= expression | proper_slice
proper_slice ::= [lower_bound] ”:” [upper_bound] [ ”:” [stride] ]
lower_bound ::= expression
upper_bound ::= expression
stride ::= expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice
list, so any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is
disambiguated by defining that in this case the interpretation as a subscription takes priority over the interpretation
as a slicing (this is the case if the slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same __getitem__() method as
normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least
one comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone
slice item is the key. The conversion of a slice item that is an expression is that expression. The conversion of a
proper slice is a slice object (see section The standard type hierarchy) whose start, stop and step attributes
are the values of the expressions given as lower bound, upper bound and stride, respectively, substituting None
for missing expressions.

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call ::= primary “(” [argument_list [”,”] | comprehension] ”)”
argument_list ::= positional_arguments [”,” keyword_arguments]

[”,” “*” expression] [”,” keyword_arguments]
[”,” “**” expression]
| keyword_arguments [”,” “*” expression]
[”,” keyword_arguments] [”,” “**” expression]
| “*” expression [”,” keyword_arguments] [”,” “**” expression]
| “**” expression

positional_arguments ::= expression (”,” expression)*
keyword_arguments ::= keyword_item (”,” keyword_item)*
keyword_item ::= identifier “=” expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the
semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in
objects, class objects, methods of class instances, and all objects having a __call__() method are callable).
All argument expressions are evaluated before the call is attempted. Please refer to section Function definitions
for the syntax of formal parameter lists.
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If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of
unfilled slots is created for the formal parameters. If there are N positional arguments, they are placed in the
first N slots. Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the
identifier is the same as the first formal parameter name, the first slot is used, and so on). If the slot is already
filled, a TypeError exception is raised. Otherwise, the value of the argument is placed in the slot, filling it (even
if the expression is None, it fills the slot). When all arguments have been processed, the slots that are still unfilled
are filled with the corresponding default value from the function definition. (Default values are calculated, once,
when the function is defined; thus, a mutable object such as a list or dictionary used as default value will be shared
by all calls that don’t specify an argument value for the corresponding slot; this should usually be avoided.) If
there are any unfilled slots for which no default value is specified, a TypeError exception is raised. Otherwise,
the list of filled slots is used as the argument list for the call.

CPython implementation detail: An implementation may provide built-in functions whose positional parameters
do not have names, even if they are ‘named’ for the purpose of documentation, and which therefore cannot be sup-
plied by keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple()
to parse their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised,
unless a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives
a tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, un-
less a formal parameter using the syntax **identifier is present; in this case, that formal parameter receives
a dictionary containing the excess keyword arguments (using the keywords as keys and the argument values as
corresponding values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements
from this iterable are treated as if they were additional positional arguments; if there are positional arguments x1,
..., xN, and expression evaluates to a sequence y1, ..., yM, this is equivalent to a call with M+N positional
arguments x1, ..., xN, y1, ..., yM.

A consequence of this is that although the *expression syntax may appear after some keyword arguments, it
is processed before the keyword arguments (and the **expression argument, if any – see below). So:

>>> def f(a, b):
... print(a, b)
...
>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: f() got multiple values for keyword argument 'a'
>>> f(1, *(2,))
1 2

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice
this confusion does not arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the
contents of which are treated as additional keyword arguments. In the case of a keyword appearing in both
expression and as an explicit keyword argument, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument
slots or as keyword argument names.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed
depends on the type of the callable object.

If it is—

a user-defined function: The code block for the function is executed, passing it the argument list. The first
thing the code block will do is bind the formal parameters to the arguments; this is described in section
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Function definitions. When the code block executes a return statement, this specifies the return value of
the function call.

a built-in function or method: The result is up to the interpreter; see built-in-funcs for the descriptions of built-
in functions and methods.

a class object: A new instance of that class is returned.

a class instance method: The corresponding user-defined function is called, with an argument list that is one
longer than the argument list of the call: the instance becomes the first argument.

a class instance: The class must define a __call__() method; the effect is then the same as if that method
was called.

6.4 Await expression

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await ::= [”await”] primary

New in version 3.5.

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators
on its right. The syntax is:

power ::= await [”**” u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left
(this does not constrain the evaluation order for the operands): -1**2 results in -1.

The power operator has the same semantics as the built-in pow() function, when called with two arguments: it
yields its left argument raised to the power of its right argument. The numeric arguments are first converted to a
common type, and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case,
all arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**-2
returns 0.01.

Raising 0.0 to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional
power results in a complex number. (In earlier versions it raised a ValueError.)

6.6 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr ::= power | “-” u_expr | “+” u_expr | “~” u_expr

The unary - (minus) operator yields the negation of its numeric argument.

The unary + (plus) operator yields its numeric argument unchanged.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is
defined as -(x+1). It only applies to integral numbers.
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In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also
apply to certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative
operators and one for additive operators:

m_expr ::= u_expr | m_expr “*” u_expr | m_expr “@” m_expr |
m_expr “//” u_expr| m_expr “/” u_expr |
m_expr “%” u_expr

a_expr ::= m_expr | a_expr “+” m_expr | a_expr “-” m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer and the other must be a sequence. In the former case, the numbers are converted
to a common type and then multiplied together. In the latter case, sequence repetition is performed; a negative
repetition factor yields an empty sequence.

The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this
operator.

New in version 3.5.

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments
are first converted to a common type. Division of integers yields a float, while floor division of integers results in
an integer; the result is that of mathematical division with the ‘floor’ function applied to the result. Division by
zero raises the ZeroDivisionError exception.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError excep-
tion. The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7
+ 0.34.) The modulo operator always yields a result with the same sign as its second operand (or zero); the
absolute value of the result is strictly smaller than the absolute value of the second operand 1.

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y).
Floor division and modulo are also connected with the built-in function divmod(): divmod(x, y) ==
(x//y, x%y). 2.

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to
perform old-style string formatting (also known as interpolation). The syntax for string formatting is described in
the Python Library Reference, section old-string-formatting.

The floor division operator, the modulo operator, and the divmod() function are not defined for complex num-
bers. Instead, convert to a floating point number using the abs() function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both
be sequences of the same type. In the former case, the numbers are converted to a common type and then added
together. In the latter case, the sequences are concatenated.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to
a common type.

1 While abs(x%y) < abs(y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and
assuming a platform on which a Python float is an IEEE 754 double-precision number, in order that -1e-100 % 1e100 have the same sign
as 1e100, the computed result is -1e-100 + 1e100, which is numerically exactly equal to 1e100. The function math.fmod() returns
a result whose sign matches the sign of the first argument instead, and so returns -1e-100 in this case. Which approach is more appropriate
depends on the application.

2 If x is very close to an exact integer multiple of y, it’s possible for x//y to be one larger than (x-x%y)//y due to rounding. In such
cases, Python returns the latter result, in order to preserve that divmod(x,y)[0] * y + x % y be very close to x.
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6.8 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr ::= a_expr | shift_expr ( “<<” | “>>” ) a_expr

These operators accept integers as arguments. They shift the first argument to the left or right by the number of
bits given by the second argument.

A right shift by n bits is defined as floor division by pow(2,n). A left shift by n bits is defined as multiplication
with pow(2,n).

Note: In the current implementation, the right-hand operand is required to be at most sys.maxsize. If the
right-hand operand is larger than sys.maxsize an OverflowError exception is raised.

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr ::= shift_expr | and_expr “&” shift_expr
xor_expr ::= and_expr | xor_expr “^” and_expr
or_expr ::= xor_expr | or_expr “|” xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers.

The ^ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers.

6.10 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conven-
tional in mathematics:

comparison ::= or_expr ( comp_operator or_expr )*
comp_operator ::= “<” | “>” | “==” | “>=” | “<=” | ”!=”

| “is” [”not”] | [”not”] “in”

Comparisons yield boolean values: True or False.

Comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y and y <= z, except that
y is evaluated only once (but in both cases z is not evaluated at all when x < y is found to be false).

Formally, if a, b, c, ..., y, z are expressions and op1, op2, ..., opN are comparison operators, then a op1 b op2
c ... y opN z is equivalent to a op1 b and b op2 c and ... y opN z, except that each ex-
pression is evaluated at most once.

Note that a op1 b op2 c doesn’t imply any kind of comparison between a and c, so that, e.g., x < y > z
is perfectly legal (though perhaps not pretty).
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6.10.1 Value comparisons

The operators <, >, ==, >=, <=, and != compare the values of two objects. The objects do not need to have the
same type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an
object is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value.
Also, there is no requirement that the value of an object should be constructed in a particular way, e.g. comprised
of all its data attributes. Comparison operators implement a particular notion of what the value of an object is.
One can think of them as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior
from object. Types can customize their comparison behavior by implementing rich comparison methods like
__lt__(), described in Basic customization.

The default behavior for equality comparison (== and !=) is based on the identity of the objects. Hence, equality
comparison of instances with the same identity results in equality, and equality comparison of instances with
different identities results in inequality. A motivation for this default behavior is the desire that all objects should
be reflexive (i.e. x is y implies x == y).

A default order comparison (<, >, <=, and >=) is not provided; an attempt raises TypeError. A motivation for
this default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may
be in contrast to what types will need that have a sensible definition of object value and value-based equality. Such
types will need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

• Numbers of built-in numeric types (typesnumeric) and of the standard library types
fractions.Fraction and decimal.Decimal can be compared within and across their types, with
the restriction that complex numbers do not support order comparison. Within the limits of the types
involved, they compare mathematically (algorithmically) correct without loss of precision.

The not-a-number values float(’NaN’) and Decimal(’NaN’) are special. They are identical to
themselves (x is x is true) but are not equal to themselves (x == x is false). Additionally, comparing
any number to a not-a-number value will return False. For example, both 3 < float(’NaN’) and
float(’NaN’) < 3 will return False.

• Binary sequences (instances of bytes or bytearray) can be compared within and across their types.
They compare lexicographically using the numeric values of their elements.

• Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result
of the built-in function ord()) of their characters. 3

Strings and binary sequences cannot be directly compared.

• Sequences (instances of tuple, list, or range) can be compared only within each of their types, with
the restriction that ranges do not support order comparison. Equality comparison across these types results
in unequality, and ordering comparison across these types raises TypeError.

Sequences compare lexicographically using comparison of corresponding elements, whereby reflexivity of
the elements is enforced.

In enforcing reflexivity of elements, the comparison of collections assumes that for a collection element x, x
== x is always true. Based on that assumption, element identity is compared first, and element comparison
is performed only for distinct elements. This approach yields the same result as a strict element comparison

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. “LATIN CAPITAL LETTER A”).
While most abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in
addition be represented using a sequence of more than one code point. For example, the abstract character “LATIN CAPITAL LETTER C
WITH CEDILLA” can be represented as a single precomposed character at code position U+00C7, or as a sequence of a base character at code
position U+0043 (LATIN CAPITAL LETTER C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).

The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example,
"\u00C7" == "\u0043\u0327" is False, even though both strings represent the same abstract character “LATIN CAPITAL LETTER
C WITH CEDILLA”.

To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize().
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would, if the compared elements are reflexive. For non-reflexive elements, the result is different than for
strict element comparison, and may be surprising: The non-reflexive not-a-number values for example result
in the following comparison behavior when used in a list:

>>> nan = float('NaN')
>>> nan is nan
True
>>> nan == nan
False <-- the defined non-reflexive behavior of NaN
>>> [nan] == [nan]
True <-- list enforces reflexivity and tests identity first

Lexicographical comparison between built-in collections works as follows:

– For two collections to compare equal, they must be of the same type, have the same length, and
each pair of corresponding elements must compare equal (for example, [1,2] == (1,2) is false
because the type is not the same).

– Collections that support order comparison are ordered the same as their first unequal elements (for
example, [1,2,x] <= [1,2,y] has the same value as x <= y). If a corresponding element
does not exist, the shorter collection is ordered first (for example, [1,2] < [1,2,3] is true).

• Mappings (instances of dict) compare equal if and only if they have equal (key, value) pairs. Equality
comparison of the keys and elements enforces reflexivity.

Order comparisons (<, >, <=, and >=) raise TypeError.

• Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define
total orderings (for example, the two sets {1,2} and {2,3} are not equal, nor subsets of one another, nor
supersets of one another). Accordingly, sets are not appropriate arguments for functions which depend on
total ordering (for example, min(), max(), and sorted() produce undefined results given a list of sets
as inputs).

Comparison of sets enforces reflexivity of its elements.

• Most other built-in types have no comparison methods implemented, so they inherit the default comparison
behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:

• Equality comparison should be reflexive. In other words, identical objects should compare equal:

x is y implies x == y

• Comparison should be symmetric. In other words, the following expressions should have the same result:

x == y and y == x

x != y and y != x

x < y and y > x

x <= y and y >= x

• Comparison should be transitive. The following (non-exhaustive) examples illustrate that:

x > y and y > z implies x > z

x < y and y <= z implies x < z

• Inverse comparison should result in the boolean negation. In other words, the following expressions should
have the same result:

x == y and not x != y

x < y and not x >= y (for total ordering)

x > y and not x <= y (for total ordering)
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The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings).
See also the total_ordering() decorator.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following
these rules.

6.10.2 Membership test operations

The operators in and not in test for membership. x in s evaluates to true if x is a member of s, and false
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as
well as dictionary, for which in tests whether the dictionary has a given key. For container types such as list,
tuple, set, frozenset, dict, or collections.deque, the expression x in y is equivalent to any(x is e or x
== e for e in y).

For the string and bytes types, x in y is true if and only if x is a substring of y. An equivalent test is y.find(x)
!= -1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return
True.

For user-defined classes which define the __contains__() method, x in y is true if and only if
y.__contains__(x) is true.

For user-defined classes which do not define __contains__() but do define __iter__(), x in y is true
if some value z with x == z is produced while iterating over y. If an exception is raised during the iteration, it
is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem__(), x in y is true if and
only if there is a non-negative integer index i such that x == y[i], and all lower integer indices do not raise
IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not in is defined to have the inverse true value of in.

6.10.3 Identity comparisons

The operators is and is not test for object identity: x is y is true if and only if x and y are the same object.
x is not y yields the inverse truth value. 4

6.11 Boolean operations

or_test ::= and_test | or_test “or” and_test
and_test ::= not_test | and_test “and” not_test
not_test ::= comparison | “not” not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following
values are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (includ-
ing strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined
objects can customize their truth value by providing a __bool__() method.

The operator not yields True if its argument is false, False otherwise.

The expression x and y first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the
resulting value is returned.

The expression x or y first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the
resulting value is returned.

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in
certain uses of the is operator, like those involving comparisons between instance methods, or constants. Check their documentation for more
info.
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(Note that neither and nor or restrict the value and type they return to False and True, but rather return the
last evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value
if it is empty, the expression s or ’foo’ yields the desired value. Because not has to create a new value, it
returns a boolean value regardless of the type of its argument (for example, not ’foo’ produces False rather
than ’’.)

6.12 Conditional expressions

conditional_expression ::= or_test [”if” or_test “else” expression]
expression ::= conditional_expression | lambda_expr
expression_nocond ::= or_test | lambda_expr_nocond

Conditional expressions (sometimes called a “ternary operator”) have the lowest priority of all Python operations.

The expression x if C else y first evaluates the condition, C rather than x. If C is true, x is evaluated and its
value is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.13 Lambdas

lambda_expr ::= “lambda” [parameter_list]: expression
lambda_expr_nocond ::= “lambda” [parameter_list]: expression_nocond

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression
lambda arguments: expression yields a function object. The unnamed object behaves like a function
object defined with

def <lambda>(arguments):
return expression

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expres-
sions cannot contain statements or annotations.

6.14 Expression lists

expression_list ::= expression ( ”,” expression )* [”,”]

An expression list containing at least one comma yields a tuple. The length of the tuple is the number of expres-
sions in the list. The expressions are evaluated from left to right.

The trailing comma is required only to create a single tuple (a.k.a. a singleton); it is optional in all other cases. A
single expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression.
(To create an empty tuple, use an empty pair of parentheses: ().)

6.15 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is
evaluated before the left-hand side.
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In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

expr1, expr2, expr3, expr4
(expr1, expr2, expr3, expr4)
{expr1: expr2, expr3: expr4}
expr1 + expr2 * (expr3 - expr4)
expr1(expr2, expr3, *expr4, **expr5)
expr3, expr4 = expr1, expr2

6.16 Operator precedence

The following table summarizes the operator precedence in Python, from lowest precedence (least binding) to
highest precedence (most binding). Operators in the same box have the same precedence. Unless the syntax is
explicitly given, operators are binary. Operators in the same box group left to right (except for exponentiation,
which groups from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right
chaining feature as described in the Comparisons section.

Operator Description
lambda Lambda expression
if – else Conditional expression
or Boolean OR
and Boolean AND
not x Boolean NOT
in, not in, is, is not, <, <=, >, >=, !=, == Comparisons, including membership tests

and identity tests
| Bitwise OR
^ Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
*, @, /, //, % Multiplication, matrix multiplication

division, remainder 5

+x, -x, ~x Positive, negative, bitwise NOT
** Exponentiation 6

await x Await expression
x[index], x[index:index], x(arguments...),
x.attribute

Subscription, slicing, call, attribute
reference

(expressions...), [expressions...], {key:
value...}, {expressions...}

Binding or tuple display, list display,
dictionary display, set display

5The % operator is also used for string formatting; the same precedence applies.
6The power operator ** binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**-1 is 0.5.
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SEVEN

SIMPLE STATEMENTS

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line
separated by semicolons. The syntax for simple statements is:

simple_stmt ::= expression_stmt
| assert_stmt
| assignment_stmt
| augmented_assignment_stmt
| pass_stmt
| del_stmt
| return_stmt
| yield_stmt
| raise_stmt
| break_stmt
| continue_stmt
| import_stmt
| global_stmt
| nonlocal_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a proce-
dure (a function that returns no meaningful result; in Python, procedures return the value None). Other uses of
expression statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt ::= expression_list

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr() function and
the resulting string is written to standard output on a line by itself (except if the result is None, so that procedure
calls do not cause any output.)

7.2 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt ::= (target_list “=”)+ (expression_list | yield_expression)
target_list ::= target (”,” target)* [”,”]
target ::= identifier
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| “(” target_list ”)”
| “[” target_list “]”
| attributeref
| subscription
| slicing
| “*” target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-
separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left
to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable
object (an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment
and decide about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by
various types and the exceptions raised are given with the definition of the object types (see section The standard
type hierarchy).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively
defined as follows.

• If the target list is a single target: The object is assigned to that target.

• If the target list is a comma-separated list of targets: The object must be an iterable with the same number of
items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding
targets.

– If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must
be a sequence with at least as many items as there are targets in the target list, minus one. The first
items of the sequence are assigned, from left to right, to the targets before the starred target. The final
items of the sequence are assigned to the targets after the starred target. A list of the remaining items
in the sequence is then assigned to the starred target (the list can be empty).

– Else: The object must be a sequence with the same number of items as there are targets in the target
list, and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.

• If the target is an identifier (name):

– If the name does not occur in a global or nonlocal statement in the current code block: the name
is bound to the object in the current local namespace.

– Otherwise: the name is bound to the object in the global namespace or the outer namespace determined
by nonlocal, respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be
called.

• If the target is a target list enclosed in parentheses or in square brackets: The object must be an iterable with
the same number of items as there are targets in the target list, and its items are assigned, from left to right,
to the corresponding targets.

• If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield
an object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked
to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception
(usually but not necessarily AttributeError). Note: If the object is a class instance and the attribute
reference occurs on both sides of the assignment operator, the RHS expression, a.x can access either an
instance attribute or (if no instance attribute exists) a class attribute. The LHS target a.x is always set as
an instance attribute, creating it if necessary. Thus, the two occurrences of a.x do not necessarily refer to
the same attribute: if the RHS expression refers to a class attribute, the LHS creates a new instance attribute
as the target of the assignment:
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class Cls:
x = 3 # class variable

inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with
property().

• If the target is a subscription: The primary expression in the reference is evaluated. It should yield either
a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript
expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is
negative, the sequence’s length is added to it. The resulting value must be a nonnegative integer less than
the sequence’s length, and the sequence is asked to assign the assigned object to its item with that index.
If the index is out of range, IndexError is raised (assignment to a subscripted sequence cannot add new
items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/datum pair which maps the subscript to
the assigned object. This can either replace an existing key/value pair with the same key value, or insert a
new key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem__() method is called with appropriate arguments.

• If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable
sequence object (such as a list). The assigned object should be a sequence object of the same type. Next,
the lower and upper bound expressions are evaluated, insofar they are present; defaults are zero and the
sequence’s length. The bounds should evaluate to integers. If either bound is negative, the sequence’s length
is added to it. The resulting bounds are clipped to lie between zero and the sequence’s length, inclusive.
Finally, the sequence object is asked to replace the slice with the items of the assigned sequence. The length
of the slice may be different from the length of the assigned sequence, thus changing the length of the target
sequence, if the target sequence allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same
as for expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error
messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are
‘simultanenous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to
variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0,
2]:

x = [0, 1]
i = 0
i, x[i] = 1, 2 # i is updated, then x[i] is updated
print(x)

See also:

PEP 3132 - Extended Iterable Unpacking The specification for the *target feature.

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment state-
ment:

augmented_assignment_stmt ::= augtarget augop (expression_list | yield_expression)
augtarget ::= identifier | attributeref | subscription | slicing
augop ::= “+=” | “-=” | “*=” | “@=” | “/=” | “//=” | “%=” | “**=”

| “>>=” | “<<=” | “&=” | “^=” | “|=”

7.2. Assignment statements 73

https://www.python.org/dev/peps/pep-3132


The Python Language Reference, Release 3.5.1

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpack-
ing) and the expression list, performs the binary operation specific to the type of assignment on the two operands,
and assigns the result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation
is performed in-place, meaning that rather than creating a new object and assigning that to the target, the old object
is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand
side. For example, a[i] += f(x) first looks-up a[i], then it evaluates f(x) and performs the addition, and
lastly, it writes the result back to a[i].

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by
augmented assignment statements is handled the same way as normal assignments. Similarly, with the exception
of the possible in-place behavior, the binary operation performed by augmented assignment is the same as the
normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular
assignments.

7.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt ::= “assert” expression [”,” expression]

The simple form, assert expression, is equivalent to

if __debug__:
if not expression: raise AssertionError

The extended form, assert expression1, expression2, is equivalent to

if __debug__:
if not expression1: raise AssertionError(expression2)

These equivalences assume that __debug__ and AssertionError refer to the built-in variables with those
names. In the current implementation, the built-in variable __debug__ is True under normal circumstances,
False when optimization is requested (command line option -O). The current code generator emits no code for
an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the
source code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in variable is determined when the interpreter
starts.

7.4 The pass statement

pass_stmt ::= “pass”

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement
is required syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)
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7.5 The del statement

del_stmt ::= “del” target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full
details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether
the name occurs in a global statement in the same code block. If the name is unbound, a NameError exception
will be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a
slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by
the sliced object).

Changed in version 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free
variable in a nested block.

7.6 The return statement

return_stmt ::= “return” [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is executed
before really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause
StopIteration to be raised. The returned value (if any) is used as an argument to construct
StopIteration and becomes the StopIteration.value attribute.

7.7 The yield statement

yield_stmt ::= yield_expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the
parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield
statements

yield <expr>
yield from <expr>

are equivalent to the yield expression statements

(yield <expr>)
(yield from <expr>)

Yield expressions and statements are only used when defining a generator function, and are only used in the body
of the generator function. Using yield in a function definition is sufficient to cause that definition to create a
generator function instead of a normal function.
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For full details of yield semantics, refer to the Yield expressions section.

7.8 The raise statement

raise_stmt ::= “raise” [expression [”from” expression]]

If no expressions are present, raise re-raises the last exception that was active in the current scope. If no
exception is active in the current scope, a RuntimeError exception is raised indicating that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance
of BaseException. If it is a class, the exception instance will be obtained when needed by instantiating the
class with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback__ attribute, which is writable. You can create an exception and set your own traceback in
one step using the with_traceback() exception method (which returns the same exception instance, with
its traceback set to its argument), like so:

raise Exception("foo occurred").with_traceback(tracebackobj)

The from clause is used for exception chaining: if given, the second expression must be another exception class
or instance, which will then be attached to the raised exception as the __cause__ attribute (which is writable).
If the raised exception is not handled, both exceptions will be printed:

>>> try:
... print(1 / 0)
... except Exception as exc:
... raise RuntimeError("Something bad happened") from exc
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
ZeroDivisionError: int division or modulo by zero

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>

RuntimeError: Something bad happened

A similar mechanism works implicitly if an exception is raised inside an exception handler or a finally clause:
the previous exception is then attached as the new exception’s __context__ attribute:

>>> try:
... print(1 / 0)
... except:
... raise RuntimeError("Something bad happened")
...
Traceback (most recent call last):

File "<stdin>", line 2, in <module>
ZeroDivisionError: int division or modulo by zero

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>

RuntimeError: Something bad happened
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Additional information on exceptions can be found in section Exceptions, and information about handling excep-
tions is in section The try statement.

7.9 The break statement

break_stmt ::= “break”

break may only occur syntactically nested in a for or while loop, but not nested in a function or class
definition within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed
before really leaving the loop.

7.10 The continue statement

continue_stmt ::= “continue”

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class
definition or finally clause within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a try statement with a finally clause, that finally clause is
executed before really starting the next loop cycle.

7.11 The import statement

import_stmt ::= “import” module [”as” name] ( ”,” module [”as” name] )*
| “from” relative_module “import” identifier [”as” name]
( ”,” identifier [”as” name] )*
| “from” relative_module “import” “(” identifier [”as” name]
( ”,” identifier [”as” name] )* [”,”] ”)”
| “from” module “import” “*”

module ::= (identifier ”.”)* identifier
relative_module ::= ”.”* module | ”.”+
name ::= identifier

The basic import statement (no from clause) is executed in two steps:

1. find a module, loading and initializing it if necessary

2. define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for
each clause, just as though the clauses had been separated out into individiual import statements.

The details of the first step, finding and loading modules are described in greater detail in the section on the import
system, which also describes the various types of packages and modules that can be imported, as well as all the
hooks that can be used to customize the import system. Note that failures in this step may indicate either that the
module could not be located, or that an error occurred while initializing the module, which includes execution of
the module’s code.
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If the requested module is retrieved successfully, it will be made available in the local namespace in one of three
ways:

• If the module name is followed by as, then the name following as is bound directly to the imported module.

• If no other name is specified, and the module being imported is a top level module, the module’s name is
bound in the local namespace as a reference to the imported module

• If the module being imported is not a top level module, then the name of the top level package that contains
the module is bound in the local namespace as a reference to the top level package. The imported module
must be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:

1. find the module specified in the from clause, loading and initializing it if necessary;

2. for each of the identifiers specified in the import clauses:

(a) check if the imported module has an attribute by that name

(b) if not, attempt to import a submodule with that name and then check the imported module again for
that attribute

(c) if the attribute is not found, ImportError is raised.

(d) otherwise, a reference to that value is stored in the local namespace, using the name in the as clause
if it is present, otherwise using the attribute name

Examples:

import foo # foo imported and bound locally
import foo.bar.baz # foo.bar.baz imported, foo bound locally
import foo.bar.baz as fbb # foo.bar.baz imported and bound as fbb
from foo.bar import baz # foo.bar.baz imported and bound as baz
from foo import attr # foo imported and foo.attr bound as attr

If the list of identifiers is replaced by a star (’*’), all public names defined in the module are bound in the local
namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__; if defined, it must be a sequence of strings which are names defined or imported by that module. The
names given in __all__ are all considered public and are required to exist. If __all__ is not defined, the
set of public names includes all names found in the module’s namespace which do not begin with an underscore
character (’_’). __all__ should contain the entire public API. It is intended to avoid accidentally exporting
items that are not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting
to use it in class or function definitions will raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute name of the module. When a
module or package is contained within another package it is possible to make a relative import within the same top
package without having to mention the package name. By using leading dots in the specified module or package
after from you can specify how high to traverse up the current package hierarchy without specifying exact names.
One leading dot means the current package where the module making the import exists. Two dots means up one
package level. Three dots is up two levels, etc. So if you execute from . import mod from a module
in the pkg package then you will end up importing pkg.mod. If you execute from ..subpkg2 import
mod from within pkg.subpkg1 you will import pkg.subpkg2.mod. The specification for relative imports
is contained within PEP 328.

importlib.import_module() is provided to support applications that determine dynamically the modules
to be loaded.

7.11.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or
semantics that will be available in a specified future release of Python where the feature becomes standard.
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The future statement is intended to ease migration to future versions of Python that introduce incompatible changes
to the language. It allows use of the new features on a per-module basis before the release in which the feature
becomes standard.

future_statement ::= “from” “__future__” “import” feature [”as” name]
(”,” feature [”as” name])*
| “from” “__future__” “import” “(” feature [”as” name]
(”,” feature [”as” name])* [”,”] ”)”

feature ::= identifier
name ::= identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement
are:

• the module docstring (if any),

• comments,

• blank lines, and

• other future statements.

The features recognized by Python 3.0 are absolute_import, division, generators,
unicode_literals, print_function, nested_scopes and with_statement. They are all
redundant because they are always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs
are often implemented by generating different code. It may even be the case that a new feature introduces new
incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module
differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error
if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

import __future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec() and compile() that occur in a module M containing a
future statement will, by default, use the new syntax or semantics associated with the future statement. This can
be controlled by optional arguments to compile() — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session.
If an interpreter is started with the -i option, is passed a script name to execute, and the script includes a future
statement, it will be in effect in the interactive session started after the script is executed.

See also:

PEP 236 - Back to the __future__ The original proposal for the __future__ mechanism.

7.12 The global statement

global_stmt ::= “global” identifier (”,” identifier)*

The global statement is a declaration which holds for the entire current code block. It means that the listed
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identifiers are to be interpreted as globals. It would be impossible to assign to a global variable without global,
although free variables may refer to globals without being declared global.

Names listed in a global statement must not be used in the same code block textually preceding that global
statement.

Names listed in a global statement must not be defined as formal parameters or in a for loop control target,
class definition, function definition, or import statement.

CPython implementation detail: The current implementation does not enforce the two restrictions, but programs
should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the
program.

Programmer’s note: the global is a directive to the parser. It applies only to code parsed at the same time as
the global statement. In particular, a global statement contained in a string or code object supplied to the
built-in exec() function does not affect the code block containing the function call, and code contained in such
a string is unaffected by global statements in the code containing the function call. The same applies to the
eval() and compile() functions.

7.13 The nonlocal statement

nonlocal_stmt ::= “nonlocal” identifier (”,” identifier)*

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest en-
closing scope excluding globals. This is important because the default behavior for binding is to search the local
namespace first. The statement allows encapsulated code to rebind variables outside of the local scope besides the
global (module) scope.

Names listed in a nonlocal statement, unlike those listed in a global statement, must refer to pre-existing
bindings in an enclosing scope (the scope in which a new binding should be created cannot be determined unam-
biguously).

Names listed in a nonlocal statement must not collide with pre-existing bindings in the local scope.

See also:

PEP 3104 - Access to Names in Outer Scopes The specification for the nonlocal statement.
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CHAPTER

EIGHT

COMPOUND STATEMENTS

Compound statements contain (groups of) other statements; they affect or control the execution of those other
statements in some way. In general, compound statements span multiple lines, although in simple incarnations a
whole compound statement may be contained in one line.

The if, while and for statements implement traditional control flow constructs. try specifies exception
handlers and/or cleanup code for a group of statements, while the with statement allows the execution of ini-
tialization and finalization code around a block of code. Function and class definitions are also syntactically
compound statements.

A compound statement consists of one or more ‘clauses.’ A clause consists of a header and a ‘suite.’ The clause
headers of a particular compound statement are all at the same indentation level. Each clause header begins with
a uniquely identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause.
A suite can be one or more semicolon-separated simple statements on the same line as the header, following the
header’s colon, or it can be one or more indented statements on subsequent lines. Only the latter form of a suite
can contain nested compound statements; the following is illegal, mostly because it wouldn’t be clear to which
if clause a following else clause would belong:

if test1: if test2: print(x)

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either
all or none of the print() calls are executed:

if x < y < z: print(x); print(y); print(z)

Summarizing:

compound_stmt ::= if_stmt
| while_stmt
| for_stmt
| try_stmt
| with_stmt
| funcdef
| classdef
| async_with_stmt
| async_for_stmt
| async_funcdef

suite ::= stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement ::= stmt_list NEWLINE | compound_stmt
stmt_list ::= simple_stmt (”;” simple_stmt)* [”;”]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional con-
tinuation clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the
‘dangling else‘ problem is solved in Python by requiring nested if statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.
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8.1 The if statement

The if statement is used for conditional execution:

if_stmt ::= “if” expression ”:” suite
( “elif” expression ”:” suite )*
[”else” ”:” suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see
section Boolean operations for the definition of true and false); then that suite is executed (and no other part of
the if statement is executed or evaluated). If all expressions are false, the suite of the else clause, if present, is
executed.

8.2 The while statement

The while statement is used for repeated execution as long as an expression is true:

while_stmt ::= “while” expression ”:” suite
[”else” ”:” suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may
be the first time it is tested) the suite of the else clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt ::= “for” target_list “in” expression_list ”:” suite
[”else” ”:” suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of
the expression_list. The suite is then executed once for each item provided by the iterator, in the order
returned by the iterator. Each item in turn is assigned to the target list using the standard rules for assignments
(see Assignment statements), and then the suite is executed. When the items are exhausted (which is immediately
when the sequence is empty or an iterator raises a StopIteration exception), the suite in the else clause, if
present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the else clause if there is no next item.

The for-loop makes assignments to the variables(s) in the target list. This overwrites all previous assignments to
those variables including those made in the suite of the for-loop:

for i in range(10):
print(i)
i = 5 # this will not affect the for-loop

# because i will be overwritten with the next
# index in the range
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Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have
been assigned to at all by the loop. Hint: the built-in function range() returns an iterator of integers suitable to
emulate the effect of Pascal’s for i := a to b do; e.g., list(range(3)) returns the list [0, 1, 2].

Note: There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable
sequences, i.e. lists). An internal counter is used to keep track of which item is used next, and this is incremented
on each iteration. When this counter has reached the length of the sequence the loop terminates. This means that
if the suite deletes the current (or a previous) item from the sequence, the next item will be skipped (since it gets
the index of the current item which has already been treated). Likewise, if the suite inserts an item in the sequence
before the current item, the current item will be treated again the next time through the loop. This can lead to
nasty bugs that can be avoided by making a temporary copy using a slice of the whole sequence, e.g.,

for x in a[:]:
if x < 0: a.remove(x)

8.4 The try statement

The try statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt ::= try1_stmt | try2_stmt
try1_stmt ::= “try” ”:” suite

(“except” [expression [”as” identifier]] ”:” suite)+
[”else” ”:” suite]
[”finally” ”:” suite]

try2_stmt ::= “try” ”:” suite
“finally” ”:” suite

The except clause(s) specify one or more exception handlers. When no exception occurs in the try clause,
no exception handler is executed. When an exception occurs in the try suite, a search for an exception han-
dler is started. This search inspects the except clauses in turn until one is found that matches the exception. An
expression-less except clause, if present, must be last; it matches any exception. For an except clause with an ex-
pression, that expression is evaluated, and the clause matches the exception if the resulting object is “compatible”
with the exception. An object is compatible with an exception if it is the class or a base class of the exception
object or a tuple containing an item compatible with the exception.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code
and on the invocation stack. 1

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a
handler is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is
treated as if the entire try statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword in
that except clause, if present, and the except clause’s suite is executed. All except clauses must have an executable
block. When the end of this block is reached, execution continues normally after the entire try statement. (This
means that if two nested handlers exist for the same exception, and the exception occurs in the try clause of the
inner handler, the outer handler will not handle the exception.)

When an exception has been assigned using as target, it is cleared at the end of the except clause. This is as
if

except E as N:
foo

was translated to
1 The exception is propagated to the invocation stack unless there is a finally clause which happens to raise another exception. That

new exception causes the old one to be lost.

8.4. The try statement 83



The Python Language Reference, Release 3.5.1

except E as N:
try:

foo
finally:

del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause.
Exceptions are cleared because with the traceback attached to them, they form a reference cycle with the stack
frame, keeping all locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, details about the exception are stored in the sys module and can be
accessed via sys.exc_info(). sys.exc_info() returns a 3-tuple consisting of the exception class, the
exception instance and a traceback object (see section The standard type hierarchy) identifying the point in the
program where the exception occurred. sys.exc_info() values are restored to their previous values (before
the call) when returning from a function that handled an exception.

The optional else clause is executed if and when control flows off the end of the try clause. 2 Exceptions in
the else clause are not handled by the preceding except clauses.

If finally is present, it specifies a ‘cleanup’ handler. The try clause is executed, including any except and
else clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved.
The finally clause is executed. If there is a saved exception it is re-raised at the end of the finally clause.
If the finally clause raises another exception, the saved exception is set as the context of the new exception. If
the finally clause executes a return or break statement, the saved exception is discarded:

>>> def f():
... try:
... 1/0
... finally:
... return 42
...
>>> f()
42

The exception information is not available to the program during execution of the finally clause.

When a return, break or continue statement is executed in the try suite of a try ...finally statement,
the finally clause is also executed ‘on the way out.’ A continue statement is illegal in the finally clause.
(The reason is a problem with the current implementation — this restriction may be lifted in the future).

The return value of a function is determined by the last return statement executed. Since the finally clause
always executes, a return statement executed in the finally clause will always be the last one executed:

>>> def foo():
... try:
... return 'try'
... finally:
... return 'finally'
...
>>> foo()
'finally'

Additional information on exceptions can be found in section Exceptions, and information on using the raise
statement to generate exceptions may be found in section The raise statement.

8.5 The with statement

The with statement is used to wrap the execution of a block with methods defined by a context manager (see
section With Statement Context Managers). This allows common try ...except...finally usage patterns to
be encapsulated for convenient reuse.

2 Currently, control “flows off the end” except in the case of an exception or the execution of a return, continue, or break statement.
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with_stmt ::= “with” with_item (”,” with_item)* ”:” suite
with_item ::= expression [”as” target]

The execution of the with statement with one “item” proceeds as follows:

1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.

2. The context manager’s __exit__() is loaded for later use.

3. The context manager’s __enter__() method is invoked.

4. If a target was included in the with statement, the return value from __enter__() is assigned to it.

Note: The with statement guarantees that if the __enter__() method returns without an error, then
__exit__() will always be called. Thus, if an error occurs during the assignment to the target list, it will
be treated the same as an error occurring within the suite would be. See step 6 below.

5. The suite is executed.

6. The context manager’s __exit__() method is invoked. If an exception caused the suite to be exited, its
type, value, and traceback are passed as arguments to __exit__(). Otherwise, three None arguments
are supplied.

If the suite was exited due to an exception, and the return value from the __exit__() method was false,
the exception is reraised. If the return value was true, the exception is suppressed, and execution continues
with the statement following the with statement.

If the suite was exited for any reason other than an exception, the return value from __exit__() is
ignored, and execution proceeds at the normal location for the kind of exit that was taken.

With more than one item, the context managers are processed as if multiple with statements were nested:

with A() as a, B() as b:
suite

is equivalent to

with A() as a:
with B() as b:

suite

Changed in version 3.1: Support for multiple context expressions.

See also:

PEP 0343 - The “with” statement The specification, background, and examples for the Python with statement.

8.6 Function definitions

A function definition defines a user-defined function object (see section The standard type hierarchy):

funcdef ::= [decorators] “def” funcname “(” [parameter_list] ”)” [”->” expression] ”:” suite
decorators ::= decorator+
decorator ::= “@” dotted_name [”(” [parameter_list [”,”]] ”)”] NEWLINE
dotted_name ::= identifier (”.” identifier)*
parameter_list ::= (defparameter ”,”)*

| “*” [parameter] (”,” defparameter)* [”,” “**” parameter]
| “**” parameter
| defparameter [”,”] )

parameter ::= identifier [”:” expression]
defparameter ::= parameter [”=” expression]
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funcname ::= identifier

A function definition is an executable statement. Its execution binds the function name in the current local names-
pace to a function object (a wrapper around the executable code for the function). This function object contains a
reference to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called. 3

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated
when the function is defined, in the scope that contains the function definition. The result must be a callable,
which is invoked with the function object as the only argument. The returned value is bound to the function name
instead of the function object. Multiple decorators are applied in nested fashion. For example, the following code

@f1(arg)
@f2
def func(): pass

is equivalent to

def func(): pass
func = f1(arg)(f2(func))

When one or more parameters have the form parameter = expression, the function is said to have “default parame-
ter values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in which
case the parameter’s default value is substituted. If a parameter has a default value, all following parameters up
until the “*” must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This
means that the expression is evaluated once, when the function is defined, and that the same “pre-computed” value
is used for each call. This is especially important to understand when a default parameter is a mutable object, such
as a list or a dictionary: if the function modifies the object (e.g. by appending an item to a list), the default value
is in effect modified. This is generally not what was intended. A way around this is to use None as the default,
and explicitly test for it in the body of the function, e.g.:

def whats_on_the_telly(penguin=None):
if penguin is None:

penguin = []
penguin.append("property of the zoo")
return penguin

Function call semantics are described in more detail in section Calls. A function call always assigns values to
all parameters mentioned in the parameter list, either from position arguments, from keyword arguments, or from
default values. If the form “*identifier” is present, it is initialized to a tuple receiving any excess positional
parameters, defaulting to the empty tuple. If the form “**identifier” is present, it is initialized to a new
dictionary receiving any excess keyword arguments, defaulting to a new empty dictionary. Parameters after “*”
or “*identifier” are keyword-only parameters and may only be passed used keyword arguments.

Parameters may have annotations of the form “: expression” following the parameter name. Any param-
eter may have an annotation even those of the form *identifier or **identifier. Functions may have
“return” annotation of the form “-> expression” after the parameter list. These annotations can be any valid
Python expression and are evaluated when the function definition is executed. Annotations may be evaluated in
a different order than they appear in the source code. The presence of annotations does not change the semantics
of a function. The annotation values are available as values of a dictionary keyed by the parameters’ names in the
__annotations__ attribute of the function object.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expres-
sions. This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a
shorthand for a simplified function definition; a function defined in a “def” statement can be passed around or
assigned to another name just like a function defined by a lambda expression. The “def” form is actually more
powerful since it allows the execution of multiple statements and annotations.

3 A string literal appearing as the first statement in the function body is transformed into the function’s __doc__ attribute and therefore
the function’s docstring.
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Programmer’s note: Functions are first-class objects. A “def” statement executed inside a function definition
defines a local function that can be returned or passed around. Free variables used in the nested function can
access the local variables of the function containing the def. See section Naming and binding for details.

See also:

PEP 3107 - Function Annotations The original specification for function annotations.

8.7 Class definitions

A class definition defines a class object (see section The standard type hierarchy):

classdef ::= [decorators] “class” classname [inheritance] ”:” suite
inheritance ::= “(” [parameter_list] ”)”
classname ::= identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Cus-
tomizing class creation for more advanced uses), so each item in the list should evaluate to a class object which
allows subclassing. Classes without an inheritance list inherit, by default, from the base class object; hence,

class Foo:
pass

is equivalent to

class Foo(object):
pass

The class’s suite is then executed in a new execution frame (see Naming and binding), using a newly created local
namespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When
the class’s suite finishes execution, its execution frame is discarded but its local namespace is saved. 4 A class
object is then created using the inheritance list for the base classes and the saved local namespace for the attribute
dictionary. The class name is bound to this class object in the original local namespace.

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

@f1(arg)
@f2
class Foo: pass

is equivalent to

class Foo: pass
Foo = f1(arg)(f2(Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result must be a
class object, which is then bound to the class name.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances.
Instance attributes can be set in a method with self.name = value. Both class and instance attributes are
accessible through the notation “self.name”, and an instance attribute hides a class attribute with the same
name when accessed in this way. Class attributes can be used as defaults for instance attributes, but using mutable
values there can lead to unexpected results. Descriptors can be used to create instance variables with different
implementation details.

See also:

PEP 3115 - Metaclasses in Python 3 PEP 3129 - Class Decorators

4 A string literal appearing as the first statement in the class body is transformed into the namespace’s __doc__ item and therefore the
class’s docstring.
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8.8 Coroutines

New in version 3.5.

8.8.1 Coroutine function definition

async_funcdef ::= [decorators] “async” “def” funcname “(” [parameter_list] ”)” [”->” expression] ”:” suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). In the body of a
coroutine, any await and async identifiers become reserved keywords; await expressions, async for and
async with can only be used in coroutine bodies.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await
or async keywords.

It is a SyntaxError to use yield expressions in async def coroutines.

An example of a coroutine function:

async def func(param1, param2):
do_stuff()
await some_coroutine()

8.8.2 The async for statement

async_for_stmt ::= “async” for_stmt

An asynchronous iterable is able to call asynchronous code in its iter implementation, and asynchronous iterator
can call asynchronous code in its next method.

The async for statement allows convenient iteration over asynchronous iterators.

The following code:

async for TARGET in ITER:
BLOCK

else:
BLOCK2

Is semantically equivalent to:

iter = (ITER)
iter = await type(iter).__aiter__(iter)
running = True
while running:

try:
TARGET = await type(iter).__anext__(iter)

except StopAsyncIteration:
running = False

else:
BLOCK

else:
BLOCK2

See also __aiter__() and __anext__() for details.

It is a SyntaxError to use async for statement outside of an async def function.
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8.8.3 The async with statement

async_with_stmt ::= “async” with_stmt

An asynchronous context manager is a context manager that is able to suspend execution in its enter and exit
methods.

The following code:

async with EXPR as VAR:
BLOCK

Is semantically equivalent to:

mgr = (EXPR)
aexit = type(mgr).__aexit__
aenter = type(mgr).__aenter__(mgr)
exc = True

VAR = await aenter
try:

BLOCK
except:

if not await aexit(mgr, *sys.exc_info()):
raise

else:
await aexit(mgr, None, None, None)

See also __aenter__() and __aexit__() for details.

It is a SyntaxError to use async with statement outside of an async def function.

See also:

PEP 492 - Coroutines with async and await syntax
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CHAPTER

NINE

TOP-LEVEL COMPONENTS

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or
as program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in
these cases.

9.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have
a notion of a complete Python program. A complete Python program is executed in a minimally initialized
environment: all built-in and standard modules are available, but none have been initialized, except for sys
(various system services), builtins (built-in functions, exceptions and None) and __main__. The latter is
used to provide the local and global namespace for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete
program but reads and executes one statement (possibly compound) at a time. The initial environment is identical
to that of a complete program; each statement is executed in the namespace of __main__.

Under Unix, a complete program can be passed to the interpreter in three forms: with the -c string command line
option, as a file passed as the first command line argument, or as standard input. If the file or standard input is a
tty device, the interpreter enters interactive mode; otherwise, it executes the file as a complete program.

9.2 File input

All input read from non-interactive files has the same form:

file_input ::= (NEWLINE | statement)*

This syntax is used in the following situations:

• when parsing a complete Python program (from a file or from a string);

• when parsing a module;

• when parsing a string passed to the exec() function;

9.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input ::= [stmt_list] NEWLINE | compound_stmt NEWLINE
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Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed
to help the parser detect the end of the input.

9.4 Expression input

eval() is used for expression input. It ignores leading whitespace. The string argument to eval() must have
the following form:

eval_input ::= expression_list NEWLINE*
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CHAPTER

TEN

FULL GRAMMAR SPECIFICATION

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

# Grammar for Python

# Note: Changing the grammar specified in this file will most likely
# require corresponding changes in the parser module
# (../Modules/parsermodule.c). If you can't make the changes to
# that module yourself, please co-ordinate the required changes
# with someone who can; ask around on python-dev for help. Fred
# Drake <fdrake@acm.org> will probably be listening there.

# NOTE WELL: You should also follow all the steps listed at
# https://docs.python.org/devguide/grammar.html

# Start symbols for the grammar:
# single_input is a single interactive statement;
# file_input is a module or sequence of commands read from an input file;
# eval_input is the input for the eval() functions.
# NB: compound_stmt in single_input is followed by extra NEWLINE!
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER
eval_input: testlist NEWLINE* ENDMARKER

decorator: '@' dotted_name [ '(' [arglist] ')' ] NEWLINE
decorators: decorator+
decorated: decorators (classdef | funcdef | async_funcdef)

async_funcdef: ASYNC funcdef
funcdef: 'def' NAME parameters ['->' test] ':' suite

parameters: '(' [typedargslist] ')'
typedargslist: (tfpdef ['=' test] (',' tfpdef ['=' test])* [','

['*' [tfpdef] (',' tfpdef ['=' test])* [',' '**' tfpdef] | '**' tfpdef]]
| '*' [tfpdef] (',' tfpdef ['=' test])* [',' '**' tfpdef] | '**' tfpdef)

tfpdef: NAME [':' test]
varargslist: (vfpdef ['=' test] (',' vfpdef ['=' test])* [','

['*' [vfpdef] (',' vfpdef ['=' test])* [',' '**' vfpdef] | '**' vfpdef]]
| '*' [vfpdef] (',' vfpdef ['=' test])* [',' '**' vfpdef] | '**' vfpdef)

vfpdef: NAME

stmt: simple_stmt | compound_stmt
simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE
small_stmt: (expr_stmt | del_stmt | pass_stmt | flow_stmt |

import_stmt | global_stmt | nonlocal_stmt | assert_stmt)
expr_stmt: testlist_star_expr (augassign (yield_expr|testlist) |

('=' (yield_expr|testlist_star_expr))*)
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testlist_star_expr: (test|star_expr) (',' (test|star_expr))* [',']
augassign: ('+=' | '-=' | '*=' | '@=' | '/=' | '%=' | '&=' | '|=' | '^=' |

'<<=' | '>>=' | '**=' | '//=')
# For normal assignments, additional restrictions enforced by the interpreter
del_stmt: 'del' exprlist
pass_stmt: 'pass'
flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt | yield_stmt
break_stmt: 'break'
continue_stmt: 'continue'
return_stmt: 'return' [testlist]
yield_stmt: yield_expr
raise_stmt: 'raise' [test ['from' test]]
import_stmt: import_name | import_from
import_name: 'import' dotted_as_names
# note below: the ('.' | '...') is necessary because '...' is tokenized as ELLIPSIS
import_from: ('from' (('.' | '...')* dotted_name | ('.' | '...')+)

'import' ('*' | '(' import_as_names ')' | import_as_names))
import_as_name: NAME ['as' NAME]
dotted_as_name: dotted_name ['as' NAME]
import_as_names: import_as_name (',' import_as_name)* [',']
dotted_as_names: dotted_as_name (',' dotted_as_name)*
dotted_name: NAME ('.' NAME)*
global_stmt: 'global' NAME (',' NAME)*
nonlocal_stmt: 'nonlocal' NAME (',' NAME)*
assert_stmt: 'assert' test [',' test]

compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | with_stmt | funcdef | classdef | decorated | async_stmt
async_stmt: ASYNC (funcdef | with_stmt | for_stmt)
if_stmt: 'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite]
while_stmt: 'while' test ':' suite ['else' ':' suite]
for_stmt: 'for' exprlist 'in' testlist ':' suite ['else' ':' suite]
try_stmt: ('try' ':' suite

((except_clause ':' suite)+
['else' ':' suite]
['finally' ':' suite] |

'finally' ':' suite))
with_stmt: 'with' with_item (',' with_item)* ':' suite
with_item: test ['as' expr]
# NB compile.c makes sure that the default except clause is last
except_clause: 'except' [test ['as' NAME]]
suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT

test: or_test ['if' or_test 'else' test] | lambdef
test_nocond: or_test | lambdef_nocond
lambdef: 'lambda' [varargslist] ':' test
lambdef_nocond: 'lambda' [varargslist] ':' test_nocond
or_test: and_test ('or' and_test)*
and_test: not_test ('and' not_test)*
not_test: 'not' not_test | comparison
comparison: expr (comp_op expr)*
# <> isn't actually a valid comparison operator in Python. It's here for the
# sake of a __future__ import described in PEP 401 (which really works :-)
comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not' 'in'|'is'|'is' 'not'
star_expr: '*' expr
expr: xor_expr ('|' xor_expr)*
xor_expr: and_expr ('^' and_expr)*
and_expr: shift_expr ('&' shift_expr)*
shift_expr: arith_expr (('<<'|'>>') arith_expr)*
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arith_expr: term (('+'|'-') term)*
term: factor (('*'|'@'|'/'|'%'|'//') factor)*
factor: ('+'|'-'|'~') factor | power
power: atom_expr ['**' factor]
atom_expr: [AWAIT] atom trailer*
atom: ('(' [yield_expr|testlist_comp] ')' |

'[' [testlist_comp] ']' |
'{' [dictorsetmaker] '}' |
NAME | NUMBER | STRING+ | '...' | 'None' | 'True' | 'False')

testlist_comp: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] )
trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME
subscriptlist: subscript (',' subscript)* [',']
subscript: test | [test] ':' [test] [sliceop]
sliceop: ':' [test]
exprlist: (expr|star_expr) (',' (expr|star_expr))* [',']
testlist: test (',' test)* [',']
dictorsetmaker: ( ((test ':' test | '**' expr)

(comp_for | (',' (test ':' test | '**' expr))* [','])) |
((test | star_expr)
(comp_for | (',' (test | star_expr))* [','])) )

classdef: 'class' NAME ['(' [arglist] ')'] ':' suite

arglist: argument (',' argument)* [',']

# The reason that keywords are test nodes instead of NAME is that using NAME
# results in an ambiguity. ast.c makes sure it's a NAME.
# "test '=' test" is really "keyword '=' test", but we have no such token.
# These need to be in a single rule to avoid grammar that is ambiguous
# to our LL(1) parser. Even though 'test' includes '*expr' in star_expr,
# we explicitly match '*' here, too, to give it proper precedence.
# Illegal combinations and orderings are blocked in ast.c:
# multiple (test comp_for) arguements are blocked; keyword unpackings
# that precede iterable unpackings are blocked; etc.
argument: ( test [comp_for] |

test '=' test |
'**' test |
'*' test )

comp_iter: comp_for | comp_if
comp_for: 'for' exprlist 'in' or_test [comp_iter]
comp_if: 'if' test_nocond [comp_iter]

# not used in grammar, but may appear in "node" passed from Parser to Compiler
encoding_decl: NAME

yield_expr: 'yield' [yield_arg]
yield_arg: 'from' test | testlist
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A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

... The default Python prompt of the interactive shell when entering code for an indented code block or within
a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as lib2to3; a standalone entry point is provided as
Tools/scripts/2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when
other techniques like hasattr() would be clumsy or subtly wrong (for example with magic methods).
ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance() and issubclass(); see the abc module documentation. Python comes with many
built-in ABCs for data structures (in the collections.abc module), numbers (in the numbers mod-
ule), streams (in the io module), import finders and loaders (in the importlib.abc module). You can
create your own ABCs with the abc module.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:

• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed
as a value in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the
following calls to complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear
at the beginning of an argument list and/or be passed as elements of an iterable preceded by *. For
example, 3 and 5 are both positional arguments in the following calls:

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the Calls section for the
rules governing this assignment. Syntactically, any expression can be used to represent an argument; the
evaluated value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parame-
ters, and PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement
by defining __aenter__() and __aexit__() methods. Introduced by PEP 492.

asynchronous iterable An object, that can be used in an async for statement. Must return an awaitable
from its __aiter__() method, which should in turn be resolved in an asynchronous iterator object.
Introduced by PEP 492.
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asynchronous iterator An object that implements __aiter__() and __anext__() methods, that
must return awaitable objects. async for resolves awaitable returned from asynchronous iterator’s
__anext__() method until it raises StopAsyncIteration exception. Introduced by PEP 492.

attribute A value associated with an object which is referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an
__await__() method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file A file object able to read and write bytes-like objects.

See also:

A text file reads and writes str objects.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous buffer. This includes
all bytes, bytearray, and array.array objects, as well as many common memoryview objects.
Bytes-like objects can be used for various operations that work with binary data; these include compression,
saving to a binary file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as “read-
write bytes-like objects”. Example mutable buffer objects include bytearray and a memoryview of
a bytearray. Other operations require the binary data to be stored in immutable objects (“read-only
bytes-like objects”); examples of these include bytes and a memoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in
the CPython interpreter. The bytecode is also cached in .pyc and .pyo files so that executing the same
file is faster the second time (recompilation from source to bytecode can be avoided). This “intermediate
language” is said to run on a virtual machine that executes the machine code corresponding to each bytecode.
Do note that bytecodes are not expected to work between different Python virtual machines, nor to be stable
between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int(3.15) converts the floating point number to the integer 3,
but in 3+4.5, each argument is of a different type (one int, one float), and both must be converted to the
same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the programmer, e.g., float(3)+4.5
rather than just 3+4.5.

complex number An extension of the familiar real number system in which all numbers are expressed as a sum
of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square
root of -1), often written i in mathematics or j in engineering. Python has built-in support for complex
numbers, which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j.
To get access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly
advanced mathematical feature. If you’re not aware of a need for them, it’s almost certain you can safely
ignore them.

context manager An object which controls the environment seen in a with statement by defining
__enter__() and __exit__() methods. See PEP 343.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-
dimensional buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be layed
out in memory next to each other, in order of increasing indexes starting from zero. In multidimensional C-
contiguous arrays, the last index varies the fastest when visiting items in order of memory address. However,
in Fortran contiguous arrays, the first index varies the fastest.
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coroutine Coroutines is a more generalized form of subroutines. Subroutines are entered at one point and exited
at another point. Coroutines can be entered, exited, and resumed at many different points. They can be
implemented with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with
the async def statement, and may contain await, async for, and async with keywords. These
were introduced by PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The
term “CPython” is used when necessary to distinguish this implementation from others such as Jython or
IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decorators are classmethod() and staticmethod().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
...

f = staticmethod(f)

@staticmethod
def f(...):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a
class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally,
using a.b to get, set or delete an attribute looks up the object named b in the class dictionary for a, but
if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to a
deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, see Implementing Descriptors.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

dictionary view The objects returned from dict.keys(), dict.values(), and dict.items() are
called dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when
the dictionary changes, the view reflects these changes. To force the dictionary view to become a full list
use list(dictview). See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored
when the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the
enclosing class, function or module. Since it is available via introspection, it is the canonical place for
documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right in-
terface; instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like
a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed code im-
proves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests using type() or
isinstance(). (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employs hasattr() tests or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of many try and except statements. The technique contrasts with the
LBYL style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an ac-
cumulation of expression elements like literals, names, attribute access, operators or function calls which
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all return a value. In contrast to many other languages, not all language constructs are expressions. There
are also statements which cannot be used as expressions, such as if. Assignments are also statements, not
expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user
code.

file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to
another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the io module. The canonical way to create a file object is by using the open()
function.

file-like object A synonym for file object.

finder An object that tries to find the loader for a module. It must implement either a method named
find_loader() or a method named find_module(). See PEP 302 and PEP 420 for details and
importlib.abc.Finder for an abstract base class.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division.
Note that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also parameter, method, and the Function definitions
section.

function annotation An arbitrary metadata value associated with a function parameter or return value. Its syntax
is explained in section Function definitions. Annotations may be accessed via the __annotations__
special attribute of a function object.

Python itself does not assign any particular meaning to function annotations. They are intended to be
interpreted by third-party libraries or tools. See PEP 3107, which describes some of their potential uses.

__future__ A pseudo-module which programmers can use to enable new language features which are not com-
patible with the current interpreter.

By importing the __future__ module and evaluating its variables, you can see when a new feature was
first added to the language and when it becomes the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage
collection via reference counting and a cyclic garbage collector that is able to detect and break reference
cycles.

generator A function which returns a generator iterator. It looks like a normal function except that it contains
yield expressions for producing a series of values usable in a for-loop or that can be retrieved one at a
time with the next() function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.

Each yield temporarily suspends processing, remembering the location execution state (including local
variables and pending try-statements). When the generator iterator resumes, it picks-up where it left-off (in
contrast to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optional if expression. The combined expression
generates values for an enclosing function:
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>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed of multiple functions implementing the same operation for different
types. Which implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP
443.

GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes
Python bytecode at a time. This simplifies the CPython implementation by making the object model (in-
cluding critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire
interpreter makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism
afforded by multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released
when doing I/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granular-
ity) have not been successful because performance suffered in the common single-processor case. It is
believed that overcoming this performance issue would make the implementation much more complicated
and therefore costlier to maintain.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__() method), and can be compared to other objects (it needs an __eq__() method). Hash-
able objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use
the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dic-
tionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare
unequal (except with themselves), and their hash value is derived from their id().

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import.
During import, this list of locations usually comes from sys.path, but for subpackages it may also come
from the parent package’s __path__ attribute.

importing The process by which Python code in one module is made available to Python code in another module.

importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the
interpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas
or inspect modules and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See
also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually
releases all allocated resources, such as modules and various critical internal structures. It also makes several
calls to the garbage collector. This can trigger the execution of code in user-defined destructors or weakref
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callbacks. Code executed during the shutdown phase can encounter various exceptions as the resources it
relies on may not function anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as list, str, and tuple) and some non-sequence types like dict, file objects, and objects
of any classes you define with an __iter__() or __getitem__() method. Iterables can be used in
a for loop and in many other places where a sequence is needed (zip(), map(), ...). When an iterable
object is passed as an argument to the built-in function iter(), it returns an iterator for the object. This
iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to call
iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence,
and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or
passing it to the built-in function next()) return successive items in the stream. When no more data are
available a StopIteration exception is raised instead. At this point, the iterator object is exhausted and
any further calls to its __next__() method just raise StopIteration again. Iterators are required to
have an __iter__() method that returns the iterator object itself so every iterator is also iterable and may
be used in most places where other iterables are accepted. One notable exception is code which attempts
multiple iteration passes. A container object (such as a list) produces a fresh new iterator each time you
pass it to the iter() function or use it in a for loop. Attempting this with an iterator will just return the
same exhausted iterator object used in the previous iteration pass, making it appear like an empty container.

More information can be found in typeiter.

key function A key function or collation function is a callable that returns a value used for sorting or ordering.
For example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort
conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They
include min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(),
heapq.nlargest(), and itertools.groupby().

There are several ways to create a key function. For example. the str.lower() method can serve
as a key function for case insensitive sorts. Alternatively, a key function can be built from a lambda
expression such as lambda r: (r[0], r[2]). Also, the operator module provides three key
function constructors: attrgetter(), itemgetter(), and methodcaller(). See the Sorting
HOW TO for examples of how to create and use key functions.

keyword argument See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is lambda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many if statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition be-
tween “the looking” and “the leaping”. For example, the code, if key in mapping: return
mapping[key] can fail if another thread removes key from mapping after the test, but before the lookup.
This issue can be solved with locks or by using the EAFP approach.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements are O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list
with the results. result = [’{:#04x}’.format(x) for x in range(256) if x % 2
== 0] generates a list of strings containing even hex numbers (0x..) in the range from 0 to 255. The
if clause is optional. If omitted, all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.
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mapping A container object that supports arbitrary key lookups and implements the methods spec-
ified in the Mapping or MutableMapping abstract base classes. Examples include dict,
collections.defaultdict, collections.OrderedDict and collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but
different from path entry finders.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

More information can be found in Customizing class creation.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called self). See function and
nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing
arbitrary Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec A namespace containing the import-related information used to load a module.

MRO See method resolution order.

mutable Mutable objects can change their value but keep their id(). See also immutable.

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for
example, time.localtime() returns a tuple-like object where the year is accessible either with an
index such as t[0] or with a named attribute like t.tm_year).

A named tuple can be a built-in type such as time.struct_time, or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple(). The latter approach automatically provides extra features such as a
self-documenting representation like Employee(name=’jones’, title=’programmer’).

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are
the local, global and built-in namespaces as well as nested namespaces in objects (in methods). Names-
paces support modularity by preventing naming conflicts. For instance, the functions builtins.open
and os.open() are distinguished by their namespaces. Namespaces also aid readability and maintain-
ability by making it clear which module implements a function. For instance, writing random.seed()
or itertools.islice() makes it clear that those functions are implemented by the random and
itertools modules, respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace pack-
ages may have no physical representation, and specifically are not like a regular package because they have
no __init__.py file.

See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes by default work only
for reference and not for assignment. Local variables both read and write in the innermost scope. Likewise,
global variables read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions, only
new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

103

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-0420


The Python Language Reference, Release 3.5.1

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of
any new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package
is a Python module with an __path__ attribute.

See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases,
arguments) that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword
argument. This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Python has no syntax for
defining positional-only parameters. However, some built-in functions have positional-only parame-
ters (e.g. abs()).

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters
can be defined by including a single var-positional parameter or bare * in the parameter list of the
function definition before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in ad-
dition to any positional arguments already accepted by other parameters). Such a parameter can be
defined by prepending the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any
keyword arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional
arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parame-
ters, the inspect.Parameter class, the Function definitions section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for im-
porting.

path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows
how to locate modules given a path entry.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to
find modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package,
as defined in PEP 420.

positional argument See argument.

provisional API A provisional API is one which has been deliberately excluded from the standard library’s
backwards compatibility guarantees. While major changes to such interfaces are not expected, as long as
they are marked provisional, backwards incompatible changes (up to and including removal of the interface)
may occur if deemed necessary by core developers. Such changes will not be made gratuitously – they will
occur only if serious fundamental flaws are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every
attempt will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic
design errors for extended periods of time. See PEP 411 for more details.
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provisional package See provisional API.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was
something in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common idiom
in Python is to loop over all elements of an iterable using a for statement. Many other languages don’t
have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

qualified name A dotted name showing the “path” from a module’s global scope to a class, function or method
defined in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is
the same as the object’s name:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPython implementation. The sys module defines a getrefcount() function that programmers can
call to return the reference count for a particular object.

regular package A traditional package, such as a directory containing an __init__.py file.

See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and
eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best
reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__()
special method and defines a __len__() method that returns the length of the sequence. Some built-in
sequence types are list, str, tuple, and bytes. Note that dict also supports __getitem__()
and __len__(), but is considered a mapping rather than a sequence because the lookups use arbitrary
immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__() and __len__(), adding count(), index(), __contains__(), and
__reversed__(). Types that implement this expanded interface can be registered explicitly using
register().
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single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a
single argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, []
with colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket
(subscript) notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as
addition. Such methods have names starting and ending with double underscores. Special methods are
documented in Special method names.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

struct sequence A tuple with named elements. Struct sequences expose an interface similar to named tuple
in that elements can either be accessed either by index or as an attribute. However, they do not have
any of the named tuple methods like _make() or _asdict(). Examples of struct sequences include
sys.float_info and the return value of os.stat().

text encoding A codec which encodes Unicode strings to bytes.

text file A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented
datastream and handles the text encoding automatically.

See also:

A binary file reads and write bytes objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (”) or an apostrophe
(‘). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they
can span multiple lines without the use of the continuation character, making them especially useful when
writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type
is accessible as its __class__ attribute or can be retrieved with type(obj).

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending
a line: the Unix end-of-line convention ’\n’, the Windows convention ’\r\n’, and the old Macintosh
convention ’\r’. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications
to install and upgrade Python distribution packages without interfering with the behaviour of other Python
applications running on the same system.

See also scripts-pyvenv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emit-
ted by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typing “import this” at the interactive prompt.
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ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically writ-
ten for the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you
want to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers
are always welcome!

Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

• the Docutils project for creating reStructuredText and the Docutils suite;

• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation.
See Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation
– Thank You!
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HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (see http://opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 3.5.1

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 3.5.1 software in source or binary form
and its associated documentation.
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2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 3.5.1 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2015 Python Software
Foundation; All Rights Reserved” are retained in Python 3.5.1 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 3.5.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 3.5.1.

4. PSF is making Python 3.5.1 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
3.5.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.5.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.5.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 3.5.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
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Python” logos available at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT

CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
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Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-
mat/MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socketmodule uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

---------------------------------------------------------------------
/ Copyright (c) 1996. \

| The Regents of the University of California. |
| All rights reserved. |
| |
| Permission to use, copy, modify, and distribute this software for |
| any purpose without fee is hereby granted, provided that this en- |
| tire notice is included in all copies of any software which is or |
| includes a copy or modification of this software and in all |
| copies of the supporting documentation for such software. |
| |
| This work was produced at the University of California, Lawrence |
| Livermore National Laboratory under contract no. W-7405-ENG-48 |
| between the U.S. Department of Energy and The Regents of the |
| University of California for the operation of UC LLNL. |
| |
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| DISCLAIMER |
| |
| This software was prepared as an account of work sponsored by an |
| agency of the United States Government. Neither the United States |
| Government nor the University of California nor any of their em- |
| ployees, makes any warranty, express or implied, or assumes any |
| liability or responsibility for the accuracy, completeness, or |
| usefulness of any information, apparatus, product, or process |
| disclosed, or represents that its use would not infringe |
| privately-owned rights. Reference herein to any specific commer- |
| cial products, process, or service by trade name, trademark, |
| manufacturer, or otherwise, does not necessarily constitute or |
| imply its endorsement, recommendation, or favoring by the United |
| States Government or the University of California. The views and |
| opinions of authors expressed herein do not necessarily state or |
| reflect those of the United States Government or the University |
| of California, and shall not be used for advertising or product |
\ endorsement purposes. /
---------------------------------------------------------------------

C.3.4 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.5 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
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notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.6 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.7 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
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not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.8 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.9 test_epoll

The test_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
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distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.10 Select kqueue

The select and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.11 SipHash24

The file Python/pyhash.c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algo-
rithm. The contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
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The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.12 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to
and from strings, is derived from the file of the same name by David M. Gay, currently available from
http://www.netlib.org/fp/. The original file, as retrieved on March 16, 2009, contains the following copyright
and licensing notice:

/****************************************************************
*
* The author of this software is David M. Gay.

*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice

* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED

* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*
***************************************************************/

C.3.13 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of
the OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES
==============

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License
---------------
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/* ====================================================================

* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*
* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

*
* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

*
* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without

* prior written permission. For written permission, please contact

* openssl-core@openssl.org.

*
* 5. Products derived from this software may not be called "OpenSSL"

* nor may "OpenSSL" appear in their names without prior written

* permission of the OpenSSL Project.

*
* 6. Redistributions of any form whatsoever must retain the following

* acknowledgment:

* "This product includes software developed by the OpenSSL Project

* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY

* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

* ====================================================================

*
* This product includes cryptographic software written by Eric Young

* (eay@cryptsoft.com). This product includes software written by Tim

* Hudson (tjh@cryptsoft.com).

*
*/

Original SSLeay License
-----------------------

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

C.3. Licenses and Acknowledgements for Incorporated Software 119



The Python Language Reference, Release 3.5.1

* All rights reserved.

*
* This package is an SSL implementation written

* by Eric Young (eay@cryptsoft.com).

* The implementation was written so as to conform with Netscapes SSL.

*
* This library is free for commercial and non-commercial use as long as

* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation

* included with this distribution is covered by the same copyright terms

* except that the holder is Tim Hudson (tjh@cryptsoft.com).

*
* Copyright remains Eric Young's, and as such any Copyright notices in

* the code are not to be removed.

* If this package is used in a product, Eric Young should be given attribution

* as the author of the parts of the library used.

* This can be in the form of a textual message at program startup or

* in documentation (online or textual) provided with the package.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* "This product includes cryptographic software written by

* Eric Young (eay@cryptsoft.com)"

* The word 'cryptographic' can be left out if the rouines from the library

* being used are not cryptographic related :-).

* 4. If you include any Windows specific code (or a derivative thereof) from

* the apps directory (application code) you must include an acknowledgement:

* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*
* The licence and distribution terms for any publically available version or

* derivative of this code cannot be changed. i.e. this code cannot simply be

* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/
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C.3.14 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.15 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
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C.3.16 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is
too old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.17 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
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INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.18 libmpdec

The _decimal Module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
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COPYRIGHT

Python and this documentation is:

Copyright © 2001-2015 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.
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expression, 68
conditional

expression, 69
constant, 9
constructor

class, 24
container, 15, 21
context manager, 35, 98
contiguous, 98
continue

statement, 77, 82, 84
conversion

arithmetic, 55
string, 25, 71

coroutine, 36, 58, 99
function, 20

coroutine function, 99
CPython, 99

D
dangling

else, 81
data, 15

type, 16
type, immutable, 56
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target list, 75
delimiters, 12
descriptor, 99
destructor, 24, 72
dictionary, 99

display, 57
object, 18, 21, 25, 57, 60, 73

dictionary view, 99
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dictionary, 57
list, 57
set, 57
tuple, 56
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divmod
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E
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object, 16
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empty
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tuple, 17, 56
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environment variable

PYTHONHASHSEED, 26
error handling, 41
errors, 41
escape sequence, 10
eval

built-in function, 80, 92
evaluation

order, 69
exc_info (in module sys), 22
except

keyword, 83
exception, 41, 76

AssertionError, 74
AttributeError, 60
chaining, 76
GeneratorExit, 59
handler, 22
ImportError, 78
NameError, 55
raising, 76
StopIteration, 59, 75
TypeError, 63
ValueError, 65

ZeroDivisionError, 64
exception handler, 41
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or, 65
exec

built-in function, 80
execution

frame, 39, 87
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stack, 22

execution model, 39
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Conditional, 68
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generator, 58
lambda, 69, 86
list, 69, 71
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yield, 58

extension
module, 16

extension module, 100

F
f_back (frame attribute), 22
f_builtins (frame attribute), 22
f_code (frame attribute), 22
f_globals (frame attribute), 22
f_lasti (frame attribute), 22
f_lineno (frame attribute), 22
f_locals (frame attribute), 22
f_trace (frame attribute), 22
False, 16
file object, 100
file-like object, 100
finally

keyword, 75, 77, 83, 84
find_spec

finder, 46
finder, 45, 100

find_spec, 46
float

built-in function, 35
floating point

number, 17
object, 17

floating point literal, 11
floor division, 100
for

statement, 77, 82
form

lambda, 69
format() (built-in function)

__str__() (object method), 24
Fortran contiguous, 98
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execution, 39, 87
object, 22
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free
variable, 39

from
keyword, 77, 78
statement, 39
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object, 18

function, 100
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argument, 18
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generator, 58, 75
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handle an exception, 41
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exception, 22
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ImportError

exception, 78
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statement, 74
path

hooks, 45
path based finder, 50, 104
path entry, 104
path entry finder, 104
path entry hook, 104
path hooks, 45
physical line, 5, 6, 10
plus, 63
popen() (in module os), 21
portion, 104

: package, 44
positional argument, 104
pow

built-in function, 33, 34
precedence

operator, 70
primary, 60
print

built-in function, 25
print() (built-in function)

__str__() (object method), 24
private

names, 55
procedure

call, 71
program, 91
provisional API, 104
provisional package, 105
Python 3000, 105
Python Enhancement Proposals

PEP 0255, 59
PEP 0342, 59
PEP 0343, 35, 85
PEP 0380, 59
PEP 236, 79
PEP 238, 100
PEP 278, 106
PEP 302, 43, 54, 100, 102
PEP 308, 69
PEP 3104, 80
PEP 3107, 87, 100

PEP 3115, 30, 87
PEP 3116, 106
PEP 3119, 31
PEP 3120, 5
PEP 3129, 87
PEP 3131, 8
PEP 3132, 73
PEP 3135, 30
PEP 3147, 49
PEP 3155, 105
PEP 328, 54, 78
PEP 338, 54
PEP 343, 98
PEP 362, 97, 104
PEP 366, 49, 54
PEP 395, 54
PEP 411, 104
PEP 414, 10
PEP 420, 43, 44, 50, 54, 100, 103, 104
PEP 443, 101
PEP 451, 54
PEP 492, 37, 89, 97–99

PYTHONHASHSEED, 26
Pythonic, 105
PYTHONPATH, 51

Q
qualified name, 105

R
raise

statement, 76
raise an exception, 41
raising

exception, 76
range

built-in function, 83
raw string, 10
rebinding

name, 71
reference

attribute, 60
reference count, 105
reference counting, 15
regular

package, 44
regular package, 105
relative

import, 78
repr

built-in function, 71
repr() (built-in function)

__repr__() (object method), 24
representation

integer, 16
reserved word, 8
restricted

execution, 40

Index 135



The Python Language Reference, Release 3.5.1

return
statement, 75, 84

round
built-in function, 35

S
scope, 39
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