
Logging Cookbook
Release 3.4.7

Guido van Rossum
and the Python development team

August 09, 2017

Python Software Foundation
Email: docs@python.org

Contents

1 Using logging in multiple modules 2

2 Multiple handlers and formatters 4

3 Logging to multiple destinations 4

4 Configuration server example 5

5 Dealing with handlers that block 6

6 Sending and receiving logging events across a network 7

7 Adding contextual information to your logging output 10
7.1 Using LoggerAdapters to impart contextual information . 10

Using objects other than dicts to pass contextual information . 11
7.2 Using Filters to impart contextual information . 11

8 Logging to a single file from multiple processes 12

9 Using file rotation 16

10 Use of alternative formatting styles 17

11 Customizing LogRecord 19

12 Subclassing QueueHandler - a ZeroMQ example 21

13 Subclassing QueueListener - a ZeroMQ example 21

14 An example dictionary-based configuration 22

15 Using a rotator and namer to customize log rotation processing 23

16 A more elaborate multiprocessing example 23

17 Inserting a BOM into messages sent to a SysLogHandler 27

18 Implementing structured logging 28

19 Customizing handlers with dictConfig() 29

20 Using particular formatting styles throughout your application 31
20.1 Using LogRecord factories . 32
20.2 Using custom message objects . 32

21 Configuring filters with dictConfig() 33

22 Customized exception formatting 34

23 Speaking logging messages 35

24 Buffering logging messages and outputting them conditionally 36

25 Formatting times using UTC (GMT) via configuration 38

Author Vinay Sajip <vinay_sajip at red-dove dot com>

This page contains a number of recipes related to logging, which have been found useful in the past.

1 Using logging in multiple modules

Multiple calls to logging.getLogger('someLogger') return a reference to the same logger object. This is
true not only within the same module, but also across modules as long as it is in the same Python interpreter process.
It is true for references to the same object; additionally, application code can define and configure a parent logger in
one module and create (but not configure) a child logger in a separate module, and all logger calls to the child will
pass up to the parent. Here is a main module:

import logging
import auxiliary_module

create logger with 'spam_application'
logger = logging.getLogger('spam_application')
logger.setLevel(logging.DEBUG)
create file handler which logs even debug messages
fh = logging.FileHandler('spam.log')
fh.setLevel(logging.DEBUG)
create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
add the handlers to the logger
logger.addHandler(fh)
logger.addHandler(ch)

logger.info('creating an instance of auxiliary_module.Auxiliary')
a = auxiliary_module.Auxiliary()
logger.info('created an instance of auxiliary_module.Auxiliary')
logger.info('calling auxiliary_module.Auxiliary.do_something')
a.do_something()
logger.info('finished auxiliary_module.Auxiliary.do_something')
logger.info('calling auxiliary_module.some_function()')
auxiliary_module.some_function()
logger.info('done with auxiliary_module.some_function()')

Here is the auxiliary module:

import logging

create logger
module_logger = logging.getLogger('spam_application.auxiliary')

class Auxiliary:
def __init__(self):

self.logger = logging.getLogger('spam_application.auxiliary.Auxiliary')
self.logger.info('creating an instance of Auxiliary')

def do_something(self):
self.logger.info('doing something')
a = 1 + 1
self.logger.info('done doing something')

def some_function():
module_logger.info('received a call to "some_function"')

The output looks like this:

2005-03-23 23:47:11,663 - spam_application - INFO -
creating an instance of auxiliary_module.Auxiliary

2005-03-23 23:47:11,665 - spam_application.auxiliary.Auxiliary - INFO -
creating an instance of Auxiliary

2005-03-23 23:47:11,665 - spam_application - INFO -
created an instance of auxiliary_module.Auxiliary

2005-03-23 23:47:11,668 - spam_application - INFO -
calling auxiliary_module.Auxiliary.do_something

2005-03-23 23:47:11,668 - spam_application.auxiliary.Auxiliary - INFO -
doing something

2005-03-23 23:47:11,669 - spam_application.auxiliary.Auxiliary - INFO -
done doing something

2005-03-23 23:47:11,670 - spam_application - INFO -
finished auxiliary_module.Auxiliary.do_something

2005-03-23 23:47:11,671 - spam_application - INFO -
calling auxiliary_module.some_function()

2005-03-23 23:47:11,672 - spam_application.auxiliary - INFO -
received a call to 'some_function'

2005-03-23 23:47:11,673 - spam_application - INFO -
done with auxiliary_module.some_function()

2 Multiple handlers and formatters

Loggers are plain Python objects. The addHandler() method has no minimum or maximum quota for the number
of handlers you may add. Sometimes it will be beneficial for an application to log all messages of all severities to a
text file while simultaneously logging errors or above to the console. To set this up, simply configure the appropriate
handlers. The logging calls in the application code will remain unchanged. Here is a slight modification to the previous
simple module-based configuration example:

import logging

logger = logging.getLogger('simple_example')
logger.setLevel(logging.DEBUG)
create file handler which logs even debug messages
fh = logging.FileHandler('spam.log')
fh.setLevel(logging.DEBUG)
create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
create formatter and add it to the handlers
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch.setFormatter(formatter)
fh.setFormatter(formatter)
add the handlers to logger
logger.addHandler(ch)
logger.addHandler(fh)

'application' code
logger.debug('debug message')
logger.info('info message')
logger.warn('warn message')
logger.error('error message')
logger.critical('critical message')

Notice that the ‘application’ code does not care about multiple handlers. All that changed was the addition and
configuration of a new handler named fh.

The ability to create new handlers with higher- or lower-severity filters can be very helpful when writing and testing
an application. Instead of using many print statements for debugging, use logger.debug : Unlike the print
statements, which you will have to delete or comment out later, the logger.debug statements can remain intact in the
source code and remain dormant until you need them again. At that time, the only change that needs to happen is to
modify the severity level of the logger and/or handler to debug.

3 Logging to multiple destinations

Let’s say you want to log to console and file with different message formats and in differing circumstances. Say you
want to log messages with levels of DEBUG and higher to file, and those messages at level INFO and higher to the
console. Let’s also assume that the file should contain timestamps, but the console messages should not. Here’s how
you can achieve this:

import logging

set up logging to file - see previous section for more details
logging.basicConfig(level=logging.DEBUG,

format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',

datefmt='%m-%d %H:%M',
filename='/temp/myapp.log',
filemode='w')

define a Handler which writes INFO messages or higher to the sys.stderr
console = logging.StreamHandler()
console.setLevel(logging.INFO)
set a format which is simpler for console use
formatter = logging.Formatter('%(name)-12s: %(levelname)-8s %(message)s')
tell the handler to use this format
console.setFormatter(formatter)
add the handler to the root logger
logging.getLogger('').addHandler(console)

Now, we can log to the root logger, or any other logger. First the root...
logging.info('Jackdaws love my big sphinx of quartz.')

Now, define a couple of other loggers which might represent areas in your
application:

logger1 = logging.getLogger('myapp.area1')
logger2 = logging.getLogger('myapp.area2')

logger1.debug('Quick zephyrs blow, vexing daft Jim.')
logger1.info('How quickly daft jumping zebras vex.')
logger2.warning('Jail zesty vixen who grabbed pay from quack.')
logger2.error('The five boxing wizards jump quickly.')

When you run this, on the console you will see

root : INFO Jackdaws love my big sphinx of quartz.
myapp.area1 : INFO How quickly daft jumping zebras vex.
myapp.area2 : WARNING Jail zesty vixen who grabbed pay from quack.
myapp.area2 : ERROR The five boxing wizards jump quickly.

and in the file you will see something like

10-22 22:19 root INFO Jackdaws love my big sphinx of quartz.
10-22 22:19 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.
10-22 22:19 myapp.area1 INFO How quickly daft jumping zebras vex.
10-22 22:19 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.
10-22 22:19 myapp.area2 ERROR The five boxing wizards jump quickly.

As you can see, the DEBUG message only shows up in the file. The other messages are sent to both destinations.

This example uses console and file handlers, but you can use any number and combination of handlers you choose.

4 Configuration server example

Here is an example of a module using the logging configuration server:

import logging
import logging.config
import time
import os

read initial config file

logging.config.fileConfig('logging.conf')

create and start listener on port 9999
t = logging.config.listen(9999)
t.start()

logger = logging.getLogger('simpleExample')

try:
loop through logging calls to see the difference
new configurations make, until Ctrl+C is pressed
while True:

logger.debug('debug message')
logger.info('info message')
logger.warn('warn message')
logger.error('error message')
logger.critical('critical message')
time.sleep(5)

except KeyboardInterrupt:
cleanup
logging.config.stopListening()
t.join()

And here is a script that takes a filename and sends that file to the server, properly preceded with the binary-encoded
length, as the new logging configuration:

#!/usr/bin/env python
import socket, sys, struct

with open(sys.argv[1], 'rb') as f:
data_to_send = f.read()

HOST = 'localhost'
PORT = 9999
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print('connecting...')
s.connect((HOST, PORT))
print('sending config...')
s.send(struct.pack('>L', len(data_to_send)))
s.send(data_to_send)
s.close()
print('complete')

5 Dealing with handlers that block

Sometimes you have to get your logging handlers to do their work without blocking the thread you’re logging from.
This is common in Web applications, though of course it also occurs in other scenarios.

A common culprit which demonstrates sluggish behaviour is the SMTPHandler : sending emails can take a long
time, for a number of reasons outside the developer’s control (for example, a poorly performing mail or network
infrastructure). But almost any network-based handler can block: Even a SocketHandler operation may do a
DNS query under the hood which is too slow (and this query can be deep in the socket library code, below the Python
layer, and outside your control).

One solution is to use a two-part approach. For the first part, attach only a QueueHandler to those loggers which
are accessed from performance-critical threads. They simply write to their queue, which can be sized to a large enough
capacity or initialized with no upper bound to their size. The write to the queue will typically be accepted quickly,
though you will probably need to catch the queue.Full exception as a precaution in your code. If you are a library
developer who has performance-critical threads in their code, be sure to document this (together with a suggestion to
attach only QueueHandlers to your loggers) for the benefit of other developers who will use your code.

The second part of the solution is QueueListener , which has been designed as the counterpart to QueueHandler
. A QueueListener is very simple: it’s passed a queue and some handlers, and it fires up an internal thread which
listens to its queue for LogRecords sent from QueueHandlers (or any other source of LogRecords , for that
matter). The LogRecords are removed from the queue and passed to the handlers for processing.

The advantage of having a separate QueueListener class is that you can use the same instance to service multiple
QueueHandlers . This is more resource-friendly than, say, having threaded versions of the existing handler classes,
which would eat up one thread per handler for no particular benefit.

An example of using these two classes follows (imports omitted):

que = queue.Queue(-1) # no limit on size
queue_handler = QueueHandler(que)
handler = logging.StreamHandler()
listener = QueueListener(que, handler)
root = logging.getLogger()
root.addHandler(queue_handler)
formatter = logging.Formatter('%(threadName)s: %(message)s')
handler.setFormatter(formatter)
listener.start()
The log output will display the thread which generated
the event (the main thread) rather than the internal
thread which monitors the internal queue. This is what
you want to happen.
root.warning('Look out!')
listener.stop()

which, when run, will produce:

MainThread: Look out!

6 Sending and receiving logging events across a network

Let’s say you want to send logging events across a network, and handle them at the receiving end. A simple way of
doing this is attaching a SocketHandler instance to the root logger at the sending end:

import logging, logging.handlers

rootLogger = logging.getLogger('')
rootLogger.setLevel(logging.DEBUG)
socketHandler = logging.handlers.SocketHandler('localhost',

logging.handlers.DEFAULT_TCP_LOGGING_PORT)
don't bother with a formatter, since a socket handler sends the event as
an unformatted pickle
rootLogger.addHandler(socketHandler)

Now, we can log to the root logger, or any other logger. First the root...
logging.info('Jackdaws love my big sphinx of quartz.')

Now, define a couple of other loggers which might represent areas in your
application:

logger1 = logging.getLogger('myapp.area1')
logger2 = logging.getLogger('myapp.area2')

logger1.debug('Quick zephyrs blow, vexing daft Jim.')
logger1.info('How quickly daft jumping zebras vex.')
logger2.warning('Jail zesty vixen who grabbed pay from quack.')
logger2.error('The five boxing wizards jump quickly.')

At the receiving end, you can set up a receiver using the socketserver module. Here is a basic working example:

import pickle
import logging
import logging.handlers
import socketserver
import struct

class LogRecordStreamHandler(socketserver.StreamRequestHandler):
"""Handler for a streaming logging request.

This basically logs the record using whatever logging policy is
configured locally.
"""

def handle(self):
"""
Handle multiple requests - each expected to be a 4-byte length,
followed by the LogRecord in pickle format. Logs the record
according to whatever policy is configured locally.
"""
while True:

chunk = self.connection.recv(4)
if len(chunk) < 4:

break
slen = struct.unpack('>L', chunk)[0]
chunk = self.connection.recv(slen)
while len(chunk) < slen:

chunk = chunk + self.connection.recv(slen - len(chunk))
obj = self.unPickle(chunk)
record = logging.makeLogRecord(obj)
self.handleLogRecord(record)

def unPickle(self, data):
return pickle.loads(data)

def handleLogRecord(self, record):
if a name is specified, we use the named logger rather than the one
implied by the record.
if self.server.logname is not None:

name = self.server.logname
else:

name = record.name

logger = logging.getLogger(name)
N.B. EVERY record gets logged. This is because Logger.handle
is normally called AFTER logger-level filtering. If you want
to do filtering, do it at the client end to save wasting
cycles and network bandwidth!
logger.handle(record)

class LogRecordSocketReceiver(socketserver.ThreadingTCPServer):
"""
Simple TCP socket-based logging receiver suitable for testing.
"""

allow_reuse_address = True

def __init__(self, host='localhost',
port=logging.handlers.DEFAULT_TCP_LOGGING_PORT,
handler=LogRecordStreamHandler):

socketserver.ThreadingTCPServer.__init__(self, (host, port), handler)
self.abort = 0
self.timeout = 1
self.logname = None

def serve_until_stopped(self):
import select
abort = 0
while not abort:

rd, wr, ex = select.select([self.socket.fileno()],
[], [],
self.timeout)

if rd:
self.handle_request()

abort = self.abort

def main():
logging.basicConfig(

format='%(relativeCreated)5d %(name)-15s %(levelname)-8s %(message)s')
tcpserver = LogRecordSocketReceiver()
print('About to start TCP server...')
tcpserver.serve_until_stopped()

if __name__ == '__main__':
main()

First run the server, and then the client. On the client side, nothing is printed on the console; on the server side, you
should see something like:

About to start TCP server...
59 root INFO Jackdaws love my big sphinx of quartz.
59 myapp.area1 DEBUG Quick zephyrs blow, vexing daft Jim.
69 myapp.area1 INFO How quickly daft jumping zebras vex.
69 myapp.area2 WARNING Jail zesty vixen who grabbed pay from quack.
69 myapp.area2 ERROR The five boxing wizards jump quickly.

Note that there are some security issues with pickle in some scenarios. If these affect you, you can use an alternative
serialization scheme by overriding the makePickle() method and implementing your alternative there, as well as

adapting the above script to use your alternative serialization.

7 Adding contextual information to your logging output

Sometimes you want logging output to contain contextual information in addition to the parameters passed to the
logging call. For example, in a networked application, it may be desirable to log client-specific information in the
log (e.g. remote client’s username, or IP address). Although you could use the extra parameter to achieve this, it’s
not always convenient to pass the information in this way. While it might be tempting to create Logger instances
on a per-connection basis, this is not a good idea because these instances are not garbage collected. While this is not
a problem in practice, when the number of Logger instances is dependent on the level of granularity you want to
use in logging an application, it could be hard to manage if the number of Logger instances becomes effectively
unbounded.

7.1 Using LoggerAdapters to impart contextual information

An easy way in which you can pass contextual information to be output along with logging event information is to use
the LoggerAdapter class. This class is designed to look like a Logger , so that you can call debug() , info()
, warning() , error() , exception() , critical() and log() . These methods have the same signatures
as their counterparts in Logger , so you can use the two types of instances interchangeably.

When you create an instance of LoggerAdapter , you pass it a Logger instance and a dict-like object which con-
tains your contextual information. When you call one of the logging methods on an instance of LoggerAdapter , it
delegates the call to the underlying instance of Logger passed to its constructor, and arranges to pass the contextual
information in the delegated call. Here’s a snippet from the code of LoggerAdapter :

def debug(self, msg, *args, **kwargs):
"""
Delegate a debug call to the underlying logger, after adding
contextual information from this adapter instance.
"""
msg, kwargs = self.process(msg, kwargs)
self.logger.debug(msg, *args, **kwargs)

The process() method of LoggerAdapter is where the contextual information is added to the logging output.
It’s passed the message and keyword arguments of the logging call, and it passes back (potentially) modified versions
of these to use in the call to the underlying logger. The default implementation of this method leaves the message
alone, but inserts an ‘extra’ key in the keyword argument whose value is the dict-like object passed to the constructor.
Of course, if you had passed an ‘extra’ keyword argument in the call to the adapter, it will be silently overwritten.

The advantage of using ‘extra’ is that the values in the dict-like object are merged into the LogRecord instance’s
__dict__, allowing you to use customized strings with your Formatter instances which know about the keys of the
dict-like object. If you need a different method, e.g. if you want to prepend or append the contextual information to
the message string, you just need to subclass LoggerAdapter and override process() to do what you need.
Here is a simple example:

class CustomAdapter(logging.LoggerAdapter):
"""
This example adapter expects the passed in dict-like object to have a
'connid' key, whose value in brackets is prepended to the log message.
"""
def process(self, msg, kwargs):

return '[%s] %s' % (self.extra['connid'], msg), kwargs

which you can use like this:

logger = logging.getLogger(__name__)
adapter = CustomAdapter(logger, {'connid': some_conn_id})

Then any events that you log to the adapter will have the value of some_conn_id prepended to the log messages.

Using objects other than dicts to pass contextual information

You don’t need to pass an actual dict to a LoggerAdapter - you could pass an instance of a class which implements
__getitem__ and __iter__ so that it looks like a dict to logging. This would be useful if you want to generate
values dynamically (whereas the values in a dict would be constant).

7.2 Using Filters to impart contextual information

You can also add contextual information to log output using a user-defined Filter . Filter instances are allowed
to modify the LogRecords passed to them, including adding additional attributes which can then be output using a
suitable format string, or if needed a custom Formatter .

For example in a web application, the request being processed (or at least, the interesting parts of it) can be stored in
a threadlocal (threading.local) variable, and then accessed from a Filter to add, say, information from the
request - say, the remote IP address and remote user’s username - to the LogRecord , using the attribute names ‘ip’
and ‘user’ as in the LoggerAdapter example above. In that case, the same format string can be used to get similar
output to that shown above. Here’s an example script:

import logging
from random import choice

class ContextFilter(logging.Filter):
"""
This is a filter which injects contextual information into the log.

Rather than use actual contextual information, we just use random
data in this demo.
"""

USERS = ['jim', 'fred', 'sheila']
IPS = ['123.231.231.123', '127.0.0.1', '192.168.0.1']

def filter(self, record):

record.ip = choice(ContextFilter.IPS)
record.user = choice(ContextFilter.USERS)
return True

if __name__ == '__main__':
levels = (logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL)
logging.basicConfig(level=logging.DEBUG,

format='%(asctime)-15s %(name)-5s %(levelname)-8s IP: %(ip)-15s User: %(user)-8s %(message)s')
a1 = logging.getLogger('a.b.c')
a2 = logging.getLogger('d.e.f')

f = ContextFilter()
a1.addFilter(f)
a2.addFilter(f)
a1.debug('A debug message')

a1.info('An info message with %s', 'some parameters')
for x in range(10):

lvl = choice(levels)
lvlname = logging.getLevelName(lvl)
a2.log(lvl, 'A message at %s level with %d %s', lvlname, 2, 'parameters')

which, when run, produces something like:

2010-09-06 22:38:15,292 a.b.c DEBUG IP: 123.231.231.123 User: fred A debug message
2010-09-06 22:38:15,300 a.b.c INFO IP: 192.168.0.1 User: sheila An info message with some parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f ERROR IP: 127.0.0.1 User: jim A message at ERROR level with 2 parameters
2010-09-06 22:38:15,300 d.e.f DEBUG IP: 127.0.0.1 User: sheila A message at DEBUG level with 2 parameters
2010-09-06 22:38:15,300 d.e.f ERROR IP: 123.231.231.123 User: fred A message at ERROR level with 2 parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 192.168.0.1 User: jim A message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f CRITICAL IP: 127.0.0.1 User: sheila A message at CRITICAL level with 2 parameters
2010-09-06 22:38:15,300 d.e.f DEBUG IP: 192.168.0.1 User: jim A message at DEBUG level with 2 parameters
2010-09-06 22:38:15,301 d.e.f ERROR IP: 127.0.0.1 User: sheila A message at ERROR level with 2 parameters
2010-09-06 22:38:15,301 d.e.f DEBUG IP: 123.231.231.123 User: fred A message at DEBUG level with 2 parameters
2010-09-06 22:38:15,301 d.e.f INFO IP: 123.231.231.123 User: fred A message at INFO level with 2 parameters

8 Logging to a single file from multiple processes

Although logging is thread-safe, and logging to a single file from multiple threads in a single process is supported,
logging to a single file from multiple processes is not supported, because there is no standard way to serialize access
to a single file across multiple processes in Python. If you need to log to a single file from multiple processes, one way
of doing this is to have all the processes log to a SocketHandler , and have a separate process which implements
a socket server which reads from the socket and logs to file. (If you prefer, you can dedicate one thread in one of
the existing processes to perform this function.) This section documents this approach in more detail and includes a
working socket receiver which can be used as a starting point for you to adapt in your own applications.

If you are using a recent version of Python which includes the multiprocessing module, you could write your
own handler which uses the Lock class from this module to serialize access to the file from your processes. The
existing FileHandler and subclasses do not make use of multiprocessing at present, though they may do
so in the future. Note that at present, the multiprocessing module does not provide working lock functionality
on all platforms (see https://bugs.python.org/issue3770).

Alternatively, you can use a Queue and a QueueHandler to send all logging events to one of the processes in your
multi-process application. The following example script demonstrates how you can do this; in the example a separate
listener process listens for events sent by other processes and logs them according to its own logging configuration.
Although the example only demonstrates one way of doing it (for example, you may want to use a listener thread
rather than a separate listener process – the implementation would be analogous) it does allow for completely different
logging configurations for the listener and the other processes in your application, and can be used as the basis for
code meeting your own specific requirements:

You'll need these imports in your own code
import logging
import logging.handlers
import multiprocessing

Next two import lines for this demo only
from random import choice, random
import time

#

https://bugs.python.org/issue3770

Because you'll want to define the logging configurations for listener and workers, the
listener and worker process functions take a configurer parameter which is a callable
for configuring logging for that process. These functions are also passed the queue,
which they use for communication.
#
In practice, you can configure the listener however you want, but note that in this
simple example, the listener does not apply level or filter logic to received records.
In practice, you would probably want to do this logic in the worker processes, to avoid
sending events which would be filtered out between processes.
#
The size of the rotated files is made small so you can see the results easily.
def listener_configurer():

root = logging.getLogger()
h = logging.handlers.RotatingFileHandler('mptest.log', 'a', 300, 10)
f = logging.Formatter('%(asctime)s %(processName)-10s %(name)s %(levelname)-8s %(message)s')
h.setFormatter(f)
root.addHandler(h)

This is the listener process top-level loop: wait for logging events
(LogRecords)on the queue and handle them, quit when you get a None for a
LogRecord.
def listener_process(queue, configurer):

configurer()
while True:

try:
record = queue.get()
if record is None: # We send this as a sentinel to tell the listener to quit.

break
logger = logging.getLogger(record.name)
logger.handle(record) # No level or filter logic applied - just do it!

except Exception:
import sys, traceback
print('Whoops! Problem:', file=sys.stderr)
traceback.print_exc(file=sys.stderr)

Arrays used for random selections in this demo

LEVELS = [logging.DEBUG, logging.INFO, logging.WARNING,
logging.ERROR, logging.CRITICAL]

LOGGERS = ['a.b.c', 'd.e.f']

MESSAGES = [
'Random message #1',
'Random message #2',
'Random message #3',

]

The worker configuration is done at the start of the worker process run.
Note that on Windows you can't rely on fork semantics, so each process
will run the logging configuration code when it starts.
def worker_configurer(queue):

h = logging.handlers.QueueHandler(queue) # Just the one handler needed
root = logging.getLogger()

root.addHandler(h)
root.setLevel(logging.DEBUG) # send all messages, for demo; no other level or filter logic applied.

This is the worker process top-level loop, which just logs ten events with
random intervening delays before terminating.
The print messages are just so you know it's doing something!
def worker_process(queue, configurer):

configurer(queue)
name = multiprocessing.current_process().name
print('Worker started: %s' % name)
for i in range(10):

time.sleep(random())
logger = logging.getLogger(choice(LOGGERS))
level = choice(LEVELS)
message = choice(MESSAGES)
logger.log(level, message)

print('Worker finished: %s' % name)

Here's where the demo gets orchestrated. Create the queue, create and start
the listener, create ten workers and start them, wait for them to finish,
then send a None to the queue to tell the listener to finish.
def main():

queue = multiprocessing.Queue(-1)
listener = multiprocessing.Process(target=listener_process,

args=(queue, listener_configurer))
listener.start()
workers = []
for i in range(10):

worker = multiprocessing.Process(target=worker_process,
args=(queue, worker_configurer))

workers.append(worker)
worker.start()

for w in workers:
w.join()

queue.put_nowait(None)
listener.join()

if __name__ == '__main__':
main()

A variant of the above script keeps the logging in the main process, in a separate thread:

import logging
import logging.config
import logging.handlers
from multiprocessing import Process, Queue
import random
import threading
import time

def logger_thread(q):
while True:

record = q.get()
if record is None:

break

logger = logging.getLogger(record.name)
logger.handle(record)

def worker_process(q):
qh = logging.handlers.QueueHandler(q)
root = logging.getLogger()
root.setLevel(logging.DEBUG)
root.addHandler(qh)
levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,

logging.CRITICAL]
loggers = ['foo', 'foo.bar', 'foo.bar.baz',

'spam', 'spam.ham', 'spam.ham.eggs']
for i in range(100):

lvl = random.choice(levels)
logger = logging.getLogger(random.choice(loggers))
logger.log(lvl, 'Message no. %d', i)

if __name__ == '__main__':
q = Queue()
d = {

'version': 1,
'formatters': {

'detailed': {
'class': 'logging.Formatter',
'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s'

}
},
'handlers': {

'console': {
'class': 'logging.StreamHandler',
'level': 'INFO',

},
'file': {

'class': 'logging.FileHandler',
'filename': 'mplog.log',
'mode': 'w',
'formatter': 'detailed',

},
'foofile': {

'class': 'logging.FileHandler',
'filename': 'mplog-foo.log',
'mode': 'w',
'formatter': 'detailed',

},
'errors': {

'class': 'logging.FileHandler',
'filename': 'mplog-errors.log',
'mode': 'w',
'level': 'ERROR',
'formatter': 'detailed',

},
},
'loggers': {

'foo': {
'handlers': ['foofile']

}
},
'root': {

'level': 'DEBUG',
'handlers': ['console', 'file', 'errors']

},
}
workers = []
for i in range(5):

wp = Process(target=worker_process, name='worker %d' % (i + 1), args=(q,))
workers.append(wp)
wp.start()

logging.config.dictConfig(d)
lp = threading.Thread(target=logger_thread, args=(q,))
lp.start()
At this point, the main process could do some useful work of its own
Once it's done that, it can wait for the workers to terminate...
for wp in workers:

wp.join()
And now tell the logging thread to finish up, too
q.put(None)
lp.join()

This variant shows how you can e.g. apply configuration for particular loggers - e.g. the foo logger has a special
handler which stores all events in the foo subsystem in a file mplog-foo.log . This will be used by the logging
machinery in the main process (even though the logging events are generated in the worker processes) to direct the
messages to the appropriate destinations.

9 Using file rotation

Sometimes you want to let a log file grow to a certain size, then open a new file and log to that. You may want to
keep a certain number of these files, and when that many files have been created, rotate the files so that the num-
ber of files and the size of the files both remain bounded. For this usage pattern, the logging package provides a
RotatingFileHandler :

import glob
import logging
import logging.handlers

LOG_FILENAME = 'logging_rotatingfile_example.out'

Set up a specific logger with our desired output level
my_logger = logging.getLogger('MyLogger')
my_logger.setLevel(logging.DEBUG)

Add the log message handler to the logger
handler = logging.handlers.RotatingFileHandler(

LOG_FILENAME, maxBytes=20, backupCount=5)

my_logger.addHandler(handler)

Log some messages
for i in range(20):

my_logger.debug('i = %d' % i)

See what files are created
logfiles = glob.glob('%s*' % LOG_FILENAME)

for filename in logfiles:
print(filename)

The result should be 6 separate files, each with part of the log history for the application:

logging_rotatingfile_example.out
logging_rotatingfile_example.out.1
logging_rotatingfile_example.out.2
logging_rotatingfile_example.out.3
logging_rotatingfile_example.out.4
logging_rotatingfile_example.out.5

The most current file is always logging_rotatingfile_example.out , and each time it reaches the size limit
it is renamed with the suffix .1 . Each of the existing backup files is renamed to increment the suffix (.1 becomes
.2 , etc.) and the .6 file is erased.

Obviously this example sets the log length much too small as an extreme example. You would want to set maxBytes
to an appropriate value.

10 Use of alternative formatting styles

When logging was added to the Python standard library, the only way of formatting messages with variable
content was to use the %-formatting method. Since then, Python has gained two new formatting approaches:
string.Template (added in Python 2.4) and str.format() (added in Python 2.6).

Logging (as of 3.2) provides improved support for these two additional formatting styles. The Formatter class
been enhanced to take an additional, optional keyword parameter named style . This defaults to '%' , but other
possible values are '{' and '$' , which correspond to the other two formatting styles. Backwards compatibility
is maintained by default (as you would expect), but by explicitly specifying a style parameter, you get the ability to
specify format strings which work with str.format() or string.Template . Here’s an example console
session to show the possibilities:

>>> import logging
>>> root = logging.getLogger()
>>> root.setLevel(logging.DEBUG)
>>> handler = logging.StreamHandler()
>>> bf = logging.Formatter('{asctime} {name} {levelname:8s} {message}',
... style='{')
>>> handler.setFormatter(bf)
>>> root.addHandler(handler)
>>> logger = logging.getLogger('foo.bar')
>>> logger.debug('This is a DEBUG message')
2010-10-28 15:11:55,341 foo.bar DEBUG This is a DEBUG message
>>> logger.critical('This is a CRITICAL message')
2010-10-28 15:12:11,526 foo.bar CRITICAL This is a CRITICAL message
>>> df = logging.Formatter('$asctime $name ${levelname} $message',
... style='$')
>>> handler.setFormatter(df)

>>> logger.debug('This is a DEBUG message')
2010-10-28 15:13:06,924 foo.bar DEBUG This is a DEBUG message
>>> logger.critical('This is a CRITICAL message')
2010-10-28 15:13:11,494 foo.bar CRITICAL This is a CRITICAL message
>>>

Note that the formatting of logging messages for final output to logs is completely independent of how an individual
logging message is constructed. That can still use %-formatting, as shown here:

>>> logger.error('This is an%s %s %s', 'other,', 'ERROR,', 'message')
2010-10-28 15:19:29,833 foo.bar ERROR This is another, ERROR, message
>>>

Logging calls (logger.debug() , logger.info() etc.) only take positional parameters for the actual logging
message itself, with keyword parameters used only for determining options for how to handle the actual logging call
(e.g. the exc_info keyword parameter to indicate that traceback information should be logged, or the extra
keyword parameter to indicate additional contextual information to be added to the log). So you cannot directly make
logging calls using str.format() or string.Template syntax, because internally the logging package uses
%-formatting to merge the format string and the variable arguments. There would no changing this while preserving
backward compatibility, since all logging calls which are out there in existing code will be using %-format strings.

There is, however, a way that you can use {}- and $- formatting to construct your individual log messages. Recall
that for a message you can use an arbitrary object as a message format string, and that the logging package will call
str() on that object to get the actual format string. Consider the following two classes:

class BraceMessage:
def __init__(self, fmt, *args, **kwargs):

self.fmt = fmt
self.args = args
self.kwargs = kwargs

def __str__(self):
return self.fmt.format(*self.args, **self.kwargs)

class DollarMessage:
def __init__(self, fmt, **kwargs):

self.fmt = fmt
self.kwargs = kwargs

def __str__(self):
from string import Template
return Template(self.fmt).substitute(**self.kwargs)

Either of these can be used in place of a format string, to allow {}- or $-formatting to be used to build the actual
“message” part which appears in the formatted log output in place of “%(message)s” or “{message}” or “$message”.
It’s a little unwieldy to use the class names whenever you want to log something, but it’s quite palatable if you use
an alias such as __ (double underscore – not to be confused with _, the single underscore used as a synonym/alias for
gettext.gettext() or its brethren).

The above classes are not included in Python, though they’re easy enough to copy and paste into your own code. They
can be used as follows (assuming that they’re declared in a module called wherever):

>>> from wherever import BraceMessage as __
>>> print(__('Message with {0} {name}', 2, name='placeholders'))
Message with 2 placeholders
>>> class Point: pass
...
>>> p = Point()

>>> p.x = 0.5
>>> p.y = 0.5
>>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})',
... point=p))
Message with coordinates: (0.50, 0.50)
>>> from wherever import DollarMessage as __
>>> print(__('Message with $num $what', num=2, what='placeholders'))
Message with 2 placeholders
>>>

While the above examples use print() to show how the formatting works, you would of course use
logger.debug() or similar to actually log using this approach.

One thing to note is that you pay no significant performance penalty with this approach: the actual formatting happens
not when you make the logging call, but when (and if) the logged message is actually about to be output to a log by a
handler. So the only slightly unusual thing which might trip you up is that the parentheses go around the format string
and the arguments, not just the format string. That’s because the __ notation is just syntax sugar for a constructor call
to one of the XXXMessage classes.

If you prefer, you can use a LoggerAdapter to achieve a similar effect to the above, as in the following example:

import logging

class Message(object):
def __init__(self, fmt, args):

self.fmt = fmt
self.args = args

def __str__(self):
return self.fmt.format(*self.args)

class StyleAdapter(logging.LoggerAdapter):
def __init__(self, logger, extra=None):

super(StyleAdapter, self).__init__(logger, extra or {})

def log(self, level, msg, *args, **kwargs):
if self.isEnabledFor(level):

msg, kwargs = self.process(msg, kwargs)
self.logger._log(level, Message(msg, args), (), **kwargs)

logger = StyleAdapter(logging.getLogger(__name__))

def main():
logger.debug('Hello, {}', 'world!')

if __name__ == '__main__':
logging.basicConfig(level=logging.DEBUG)
main()

The above script should log the message Hello,world! when run with Python 3.2 or later.

11 Customizing LogRecord

Every logging event is represented by a LogRecord instance. When an event is logged and not filtered out by a
logger’s level, a LogRecord is created, populated with information about the event and then passed to the handlers

for that logger (and its ancestors, up to and including the logger where further propagation up the hierarchy is disabled).
Before Python 3.2, there were only two places where this creation was done:

• Logger.makeRecord() , which is called in the normal process of logging an event. This invoked
LogRecord directly to create an instance.

• makeLogRecord() , which is called with a dictionary containing attributes to be added to the LogRecord.
This is typically invoked when a suitable dictionary has been received over the network (e.g. in pickle form via
a SocketHandler , or in JSON form via an HTTPHandler).

This has usually meant that if you need to do anything special with a LogRecord , you’ve had to do one of the
following.

• Create your own Logger subclass, which overrides Logger.makeRecord() , and set it using
setLoggerClass() before any loggers that you care about are instantiated.

• Add a Filter to a logger or handler, which does the necessary special manipulation you need when its
filter() method is called.

The first approach would be a little unwieldy in the scenario where (say) several different libraries wanted to do
different things. Each would attempt to set its own Logger subclass, and the one which did this last would win.

The second approach works reasonably well for many cases, but does not allow you to e.g. use a specialized subclass
of LogRecord . Library developers can set a suitable filter on their loggers, but they would have to remember to do
this every time they introduced a new logger (which they would do simply by adding new packages or modules and
doing

logger = logging.getLogger(__name__)

at module level). It’s probably one too many things to think about. Developers could also add the filter to a
NullHandler attached to their top-level logger, but this would not be invoked if an application developer attached
a handler to a lower-level library logger – so output from that handler would not reflect the intentions of the library
developer.

In Python 3.2 and later, LogRecord creation is done through a factory, which you can specify. The factory is just a
callable you can set with setLogRecordFactory() , and interrogate with getLogRecordFactory() . The
factory is invoked with the same signature as the LogRecord constructor, as LogRecord is the default setting for
the factory.

This approach allows a custom factory to control all aspects of LogRecord creation. For example, you could return a
subclass, or just add some additional attributes to the record once created, using a pattern similar to this:

old_factory = logging.getLogRecordFactory()

def record_factory(*args, **kwargs):
record = old_factory(*args, **kwargs)
record.custom_attribute = 0xdecafbad
return record

logging.setLogRecordFactory(record_factory)

This pattern allows different libraries to chain factories together, and as long as they don’t overwrite each other’s
attributes or unintentionally overwrite the attributes provided as standard, there should be no surprises. However, it
should be borne in mind that each link in the chain adds run-time overhead to all logging operations, and the technique
should only be used when the use of a Filter does not provide the desired result.

12 Subclassing QueueHandler - a ZeroMQ example

You can use a QueueHandler subclass to send messages to other kinds of queues, for example a ZeroMQ ‘publish’
socket. In the example below,the socket is created separately and passed to the handler (as its ‘queue’):

import zmq # using pyzmq, the Python binding for ZeroMQ
import json # for serializing records portably

ctx = zmq.Context()
sock = zmq.Socket(ctx, zmq.PUB) # or zmq.PUSH, or other suitable value
sock.bind('tcp://*:5556') # or wherever

class ZeroMQSocketHandler(QueueHandler):
def enqueue(self, record):

data = json.dumps(record.__dict__)
self.queue.send(data)

handler = ZeroMQSocketHandler(sock)

Of course there are other ways of organizing this, for example passing in the data needed by the handler to create the
socket:

class ZeroMQSocketHandler(QueueHandler):
def __init__(self, uri, socktype=zmq.PUB, ctx=None):

self.ctx = ctx or zmq.Context()
socket = zmq.Socket(self.ctx, socktype)
socket.bind(uri)
QueueHandler.__init__(self, socket)

def enqueue(self, record):
data = json.dumps(record.__dict__)
self.queue.send(data)

def close(self):
self.queue.close()

13 Subclassing QueueListener - a ZeroMQ example

You can also subclass QueueListener to get messages from other kinds of queues, for example a ZeroMQ ‘sub-
scribe’ socket. Here’s an example:

class ZeroMQSocketListener(QueueListener):
def __init__(self, uri, *handlers, **kwargs):

self.ctx = kwargs.get('ctx') or zmq.Context()
socket = zmq.Socket(self.ctx, zmq.SUB)
socket.setsockopt(zmq.SUBSCRIBE, '') # subscribe to everything
socket.connect(uri)

def dequeue(self):
msg = self.queue.recv()
return logging.makeLogRecord(json.loads(msg))

See also:

Module logging API reference for the logging module.

Module logging.config Configuration API for the logging module.

Module logging.handlers Useful handlers included with the logging module.

A basic logging tutorial

A more advanced logging tutorial

14 An example dictionary-based configuration

Below is an example of a logging configuration dictionary - it’s taken from the documentation on the Django project.
This dictionary is passed to dictConfig() to put the configuration into effect:

LOGGING = {
'version': 1,
'disable_existing_loggers': True,
'formatters': {

'verbose': {
'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s'

},
'simple': {

'format': '%(levelname)s %(message)s'
},

},
'filters': {

'special': {
'()': 'project.logging.SpecialFilter',
'foo': 'bar',

}
},
'handlers': {

'null': {
'level':'DEBUG',
'class':'django.utils.log.NullHandler',

},
'console':{

'level':'DEBUG',
'class':'logging.StreamHandler',
'formatter': 'simple'

},
'mail_admins': {

'level': 'ERROR',
'class': 'django.utils.log.AdminEmailHandler',
'filters': ['special']

}
},
'loggers': {

'django': {
'handlers':['null'],
'propagate': True,
'level':'INFO',

},
'django.request': {

'handlers': ['mail_admins'],

https://docs.djangoproject.com/en/1.3/topics/logging/#configuring-logging

'level': 'ERROR',
'propagate': False,

},
'myproject.custom': {

'handlers': ['console', 'mail_admins'],
'level': 'INFO',
'filters': ['special']

}
}

}

For more information about this configuration, you can see the relevant section of the Django documentation.

15 Using a rotator and namer to customize log rotation processing

An example of how you can define a namer and rotator is given in the following snippet, which shows zlib-based
compression of the log file:

def namer(name):
return name + ".gz"

def rotator(source, dest):
with open(source, "rb") as sf:

data = sf.read()
compressed = zlib.compress(data, 9)
with open(dest, "wb") as df:

df.write(compressed)
os.remove(source)

rh = logging.handlers.RotatingFileHandler(...)
rh.rotator = rotator
rh.namer = namer

These are not “true” .gz files, as they are bare compressed data, with no “container” such as you’d find in an actual
gzip file. This snippet is just for illustration purposes.

16 A more elaborate multiprocessing example

The following working example shows how logging can be used with multiprocessing using configuration files. The
configurations are fairly simple, but serve to illustrate how more complex ones could be implemented in a real multi-
processing scenario.

In the example, the main process spawns a listener process and some worker processes. Each of the main process,
the listener and the workers have three separate configurations (the workers all share the same configuration). We
can see logging in the main process, how the workers log to a QueueHandler and how the listener implements a
QueueListener and a more complex logging configuration, and arranges to dispatch events received via the queue to
the handlers specified in the configuration. Note that these configurations are purely illustrative, but you should be
able to adapt this example to your own scenario.

Here’s the script - the docstrings and the comments hopefully explain how it works:

import logging
import logging.config
import logging.handlers

https://docs.djangoproject.com/en/1.6/topics/logging/#configuring-logging

from multiprocessing import Process, Queue, Event, current_process
import os
import random
import time

class MyHandler:
"""
A simple handler for logging events. It runs in the listener process and
dispatches events to loggers based on the name in the received record,
which then get dispatched, by the logging system, to the handlers
configured for those loggers.
"""
def handle(self, record):

logger = logging.getLogger(record.name)
The process name is transformed just to show that it's the listener
doing the logging to files and console
record.processName = '%s (for %s)' % (current_process().name, record.processName)
logger.handle(record)

def listener_process(q, stop_event, config):
"""
This could be done in the main process, but is just done in a separate
process for illustrative purposes.

This initialises logging according to the specified configuration,
starts the listener and waits for the main process to signal completion
via the event. The listener is then stopped, and the process exits.
"""
logging.config.dictConfig(config)
listener = logging.handlers.QueueListener(q, MyHandler())
listener.start()
if os.name == 'posix':

On POSIX, the setup logger will have been configured in the
parent process, but should have been disabled following the
dictConfig call.
On Windows, since fork isn't used, the setup logger won't
exist in the child, so it would be created and the message
would appear - hence the "if posix" clause.
logger = logging.getLogger('setup')
logger.critical('Should not appear, because of disabled logger ...')

stop_event.wait()
listener.stop()

def worker_process(config):
"""
A number of these are spawned for the purpose of illustration. In
practice, they could be a heterogeneous bunch of processes rather than
ones which are identical to each other.

This initialises logging according to the specified configuration,
and logs a hundred messages with random levels to randomly selected
loggers.

A small sleep is added to allow other processes a chance to run. This

is not strictly needed, but it mixes the output from the different
processes a bit more than if it's left out.
"""
logging.config.dictConfig(config)
levels = [logging.DEBUG, logging.INFO, logging.WARNING, logging.ERROR,

logging.CRITICAL]
loggers = ['foo', 'foo.bar', 'foo.bar.baz',

'spam', 'spam.ham', 'spam.ham.eggs']
if os.name == 'posix':

On POSIX, the setup logger will have been configured in the
parent process, but should have been disabled following the
dictConfig call.
On Windows, since fork isn't used, the setup logger won't
exist in the child, so it would be created and the message
would appear - hence the "if posix" clause.
logger = logging.getLogger('setup')
logger.critical('Should not appear, because of disabled logger ...')

for i in range(100):
lvl = random.choice(levels)
logger = logging.getLogger(random.choice(loggers))
logger.log(lvl, 'Message no. %d', i)
time.sleep(0.01)

def main():
q = Queue()
The main process gets a simple configuration which prints to the console.
config_initial = {

'version': 1,
'formatters': {

'detailed': {
'class': 'logging.Formatter',
'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s'

}
},
'handlers': {

'console': {
'class': 'logging.StreamHandler',
'level': 'INFO',

},
},
'root': {

'level': 'DEBUG',
'handlers': ['console']

},
}
The worker process configuration is just a QueueHandler attached to the
root logger, which allows all messages to be sent to the queue.
We disable existing loggers to disable the "setup" logger used in the
parent process. This is needed on POSIX because the logger will
be there in the child following a fork().
config_worker = {

'version': 1,
'disable_existing_loggers': True,
'handlers': {

'queue': {
'class': 'logging.handlers.QueueHandler',
'queue': q,

},
},
'root': {

'level': 'DEBUG',
'handlers': ['queue']

},
}
The listener process configuration shows that the full flexibility of
logging configuration is available to dispatch events to handlers however
you want.
We disable existing loggers to disable the "setup" logger used in the
parent process. This is needed on POSIX because the logger will
be there in the child following a fork().
config_listener = {

'version': 1,
'disable_existing_loggers': True,
'formatters': {

'detailed': {
'class': 'logging.Formatter',
'format': '%(asctime)s %(name)-15s %(levelname)-8s %(processName)-10s %(message)s'

},
'simple': {

'class': 'logging.Formatter',
'format': '%(name)-15s %(levelname)-8s %(processName)-10s %(message)s'

}
},
'handlers': {

'console': {
'class': 'logging.StreamHandler',
'level': 'INFO',
'formatter': 'simple',

},
'file': {

'class': 'logging.FileHandler',
'filename': 'mplog.log',
'mode': 'w',
'formatter': 'detailed',

},
'foofile': {

'class': 'logging.FileHandler',
'filename': 'mplog-foo.log',
'mode': 'w',
'formatter': 'detailed',

},
'errors': {

'class': 'logging.FileHandler',
'filename': 'mplog-errors.log',
'mode': 'w',
'level': 'ERROR',
'formatter': 'detailed',

},

},
'loggers': {

'foo': {
'handlers': ['foofile']

}
},
'root': {

'level': 'DEBUG',
'handlers': ['console', 'file', 'errors']

},
}
Log some initial events, just to show that logging in the parent works
normally.
logging.config.dictConfig(config_initial)
logger = logging.getLogger('setup')
logger.info('About to create workers ...')
workers = []
for i in range(5):

wp = Process(target=worker_process, name='worker %d' % (i + 1),
args=(config_worker,))

workers.append(wp)
wp.start()
logger.info('Started worker: %s', wp.name)

logger.info('About to create listener ...')
stop_event = Event()
lp = Process(target=listener_process, name='listener',

args=(q, stop_event, config_listener))
lp.start()
logger.info('Started listener')
We now hang around for the workers to finish their work.
for wp in workers:

wp.join()
Workers all done, listening can now stop.
Logging in the parent still works normally.
logger.info('Telling listener to stop ...')
stop_event.set()
lp.join()
logger.info('All done.')

if __name__ == '__main__':
main()

17 Inserting a BOM into messages sent to a SysLogHandler

RFC 5424 requires that a Unicode message be sent to a syslog daemon as a set of bytes which have the following
structure: an optional pure-ASCII component, followed by a UTF-8 Byte Order Mark (BOM), followed by Unicode
encoded using UTF-8. (See the relevant section of the specification.)

In Python 3.1, code was added to SysLogHandler to insert a BOM into the message, but unfortunately, it was
implemented incorrectly, with the BOM appearing at the beginning of the message and hence not allowing any pure-
ASCII component to appear before it.

As this behaviour is broken, the incorrect BOM insertion code is being removed from Python 3.2.4 and later. However,

http://tools.ietf.org/html/rfc5424
http://tools.ietf.org/html/rfc5424#section-6

it is not being replaced, and if you want to produce RFC 5424-compliant messages which include a BOM, an optional
pure-ASCII sequence before it and arbitrary Unicode after it, encoded using UTF-8, then you need to do the following:

1. Attach a Formatter instance to your SysLogHandler instance, with a format string such as:

'ASCII section\ufeffUnicode section'

The Unicode code point U+FEFF, when encoded using UTF-8, will be encoded as a UTF-8 BOM – the byte-
string b'\xef\xbb\xbf' .

2. Replace the ASCII section with whatever placeholders you like, but make sure that the data that appears in there
after substitution is always ASCII (that way, it will remain unchanged after UTF-8 encoding).

3. Replace the Unicode section with whatever placeholders you like; if the data which appears there after substitu-
tion contains characters outside the ASCII range, that’s fine – it will be encoded using UTF-8.

The formatted message will be encoded using UTF-8 encoding by SysLogHandler . If you follow the above rules,
you should be able to produce RFC 5424-compliant messages. If you don’t, logging may not complain, but your
messages will not be RFC 5424-compliant, and your syslog daemon may complain.

18 Implementing structured logging

Although most logging messages are intended for reading by humans, and thus not readily machine-parseable, there
might be cirumstances where you want to output messages in a structured format which is capable of being parsed by
a program (without needing complex regular expressions to parse the log message). This is straightforward to achieve
using the logging package. There are a number of ways in which this could be achieved, but the following is a simple
approach which uses JSON to serialise the event in a machine-parseable manner:

import json
import logging

class StructuredMessage(object):
def __init__(self, message, **kwargs):

self.message = message
self.kwargs = kwargs

def __str__(self):
return '%s >>> %s' % (self.message, json.dumps(self.kwargs))

_ = StructuredMessage # optional, to improve readability

logging.basicConfig(level=logging.INFO, format='%(message)s')
logging.info(_('message 1', foo='bar', bar='baz', num=123, fnum=123.456))

If the above script is run, it prints:

message 1 >>> {"fnum": 123.456, "num": 123, "bar": "baz", "foo": "bar"}

Note that the order of items might be different according to the version of Python used.

If you need more specialised processing, you can use a custom JSON encoder, as in the following complete example:

from __future__ import unicode_literals

import json
import logging

This next bit is to ensure the script runs unchanged on 2.x and 3.x

try:
unicode

except NameError:
unicode = str

class Encoder(json.JSONEncoder):
def default(self, o):

if isinstance(o, set):
return tuple(o)

elif isinstance(o, unicode):
return o.encode('unicode_escape').decode('ascii')

return super(Encoder, self).default(o)

class StructuredMessage(object):
def __init__(self, message, **kwargs):

self.message = message
self.kwargs = kwargs

def __str__(self):
s = Encoder().encode(self.kwargs)
return '%s >>> %s' % (self.message, s)

_ = StructuredMessage # optional, to improve readability

def main():
logging.basicConfig(level=logging.INFO, format='%(message)s')
logging.info(_('message 1', set_value=set([1, 2, 3]), snowman='\u2603'))

if __name__ == '__main__':
main()

When the above script is run, it prints:

message 1 >>> {"snowman": "\u2603", "set_value": [1, 2, 3]}

Note that the order of items might be different according to the version of Python used.

19 Customizing handlers with dictConfig()

There are times when you want to customize logging handlers in particular ways, and if you use dictConfig()
you may be able to do this without subclassing. As an example, consider that you may want to set the ownership of
a log file. On POSIX, this is easily done using shutil.chown() , but the file handlers in the stdlib don’t offer
built-in support. You can customize handler creation using a plain function such as:

def owned_file_handler(filename, mode='a', encoding=None, owner=None):
if owner:

if not os.path.exists(filename):
open(filename, 'a').close()

shutil.chown(filename, *owner)
return logging.FileHandler(filename, mode, encoding)

You can then specify, in a logging configuration passed to dictConfig() , that a logging handler be created by
calling this function:

LOGGING = {

'version': 1,
'disable_existing_loggers': False,
'formatters': {

'default': {
'format': '%(asctime)s %(levelname)s %(name)s %(message)s'

},
},
'handlers': {

'file':{
The values below are popped from this dictionary and
used to create the handler, set the handler's level and
its formatter.
'()': owned_file_handler,
'level':'DEBUG',
'formatter': 'default',
The values below are passed to the handler creator callable
as keyword arguments.
'owner': ['pulse', 'pulse'],
'filename': 'chowntest.log',
'mode': 'w',
'encoding': 'utf-8',

},
},
'root': {

'handlers': ['file'],
'level': 'DEBUG',

},
}

In this example I am setting the ownership using the pulse user and group, just for the purposes of illustration.
Putting it together into a working script, chowntest.py :

import logging, logging.config, os, shutil

def owned_file_handler(filename, mode='a', encoding=None, owner=None):
if owner:

if not os.path.exists(filename):
open(filename, 'a').close()

shutil.chown(filename, *owner)
return logging.FileHandler(filename, mode, encoding)

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {

'default': {
'format': '%(asctime)s %(levelname)s %(name)s %(message)s'

},
},
'handlers': {

'file':{
The values below are popped from this dictionary and
used to create the handler, set the handler's level and
its formatter.
'()': owned_file_handler,

'level':'DEBUG',
'formatter': 'default',
The values below are passed to the handler creator callable
as keyword arguments.
'owner': ['pulse', 'pulse'],
'filename': 'chowntest.log',
'mode': 'w',
'encoding': 'utf-8',

},
},
'root': {

'handlers': ['file'],
'level': 'DEBUG',

},
}

logging.config.dictConfig(LOGGING)
logger = logging.getLogger('mylogger')
logger.debug('A debug message')

To run this, you will probably need to run as root :

$ sudo python3.3 chowntest.py
$ cat chowntest.log
2013-11-05 09:34:51,128 DEBUG mylogger A debug message
$ ls -l chowntest.log
-rw-r--r-- 1 pulse pulse 55 2013-11-05 09:34 chowntest.log

Note that this example uses Python 3.3 because that’s where shutil.chown() makes an appearance. This ap-
proach should work with any Python version that supports dictConfig() - namely, Python 2.7, 3.2 or later. With
pre-3.3 versions, you would need to implement the actual ownership change using e.g. os.chown() .

In practice, the handler-creating function may be in a utility module somewhere in your project. Instead of the line in
the configuration:

'()': owned_file_handler,

you could use e.g.:

'()': 'ext://project.util.owned_file_handler',

where project.util can be replaced with the actual name of the package where the function resides. In the above
working script, using 'ext://__main__.owned_file_handler' should work. Here, the actual callable is
resolved by dictConfig() from the ext:// specification.

This example hopefully also points the way to how you could implement other types of file change - e.g. setting
specific POSIX permission bits - in the same way, using os.chmod() .

Of course, the approach could also be extended to types of handler other than a FileHandler - for example, one
of the rotating file handlers, or a different type of handler altogether.

20 Using particular formatting styles throughout your application

In Python 3.2, the Formatter gained a style keyword parameter which, while defaulting to % for backward
compatibility, allowed the specification of { or $ to support the formatting approaches supported by str.format()
and string.Template . Note that this governs the formatting of logging messages for final output to logs, and is
completely orthogonal to how an individual logging message is constructed.

Logging calls (debug() , info() etc.) only take positional parameters for the actual logging message itself,
with keyword parameters used only for determining options for how to handle the logging call (e.g. the exc_info
keyword parameter to indicate that traceback information should be logged, or the extra keyword parameter to
indicate additional contextual information to be added to the log). So you cannot directly make logging calls us-
ing str.format() or string.Template syntax, because internally the logging package uses %-formatting
to merge the format string and the variable arguments. There would no changing this while preserving backward
compatibility, since all logging calls which are out there in existing code will be using %-format strings.

There have been suggestions to associate format styles with specific loggers, but that approach also runs into backward
compatibility problems because any existing code could be using a given logger name and using %-formatting.

For logging to work interoperably between any third-party libraries and your code, decisions about formatting need
to be made at the level of the individual logging call. This opens up a couple of ways in which alternative formatting
styles can be accommodated.

20.1 Using LogRecord factories

In Python 3.2, along with the Formatter changes mentioned above, the logging package gained the ability to allow
users to set their own LogRecord subclasses, using the setLogRecordFactory() function. You can use this to
set your own subclass of LogRecord , which does the Right Thing by overriding the getMessage() method. The
base class implementation of this method is where the msg % args formatting happens, and where you can substi-
tute your alternate formatting; however, you should be careful to support all formatting styles and allow %-formatting
as the default, to ensure interoperability with other code. Care should also be taken to call str(self.msg) , just as
the base implementation does.

Refer to the reference documentation on setLogRecordFactory() and LogRecord for more information.

20.2 Using custom message objects

There is another, perhaps simpler way that you can use {}- and $- formatting to construct your individual log messages.
You may recall (from arbitrary-object-messages) that when logging you can use an arbitrary object as a message
format string, and that the logging package will call str() on that object to get the actual format string. Consider
the following two classes:

class BraceMessage(object):
def __init__(self, fmt, *args, **kwargs):

self.fmt = fmt
self.args = args
self.kwargs = kwargs

def __str__(self):
return self.fmt.format(*self.args, **self.kwargs)

class DollarMessage(object):
def __init__(self, fmt, **kwargs):

self.fmt = fmt
self.kwargs = kwargs

def __str__(self):
from string import Template
return Template(self.fmt).substitute(**self.kwargs)

Either of these can be used in place of a format string, to allow {}- or $-formatting to be used to build the actual
“message” part which appears in the formatted log output in place of “%(message)s” or “{message}” or “$message”.

If you find it a little unwieldy to use the class names whenever you want to log something, you can make it more
palatable if you use an alias such as M or _ for the message (or perhaps __ , if you are using _ for localization).

Examples of this approach are given below. Firstly, formatting with str.format() :

>>> __ = BraceMessage
>>> print(__('Message with {0} {1}', 2, 'placeholders'))
Message with 2 placeholders
>>> class Point: pass
...
>>> p = Point()
>>> p.x = 0.5
>>> p.y = 0.5
>>> print(__('Message with coordinates: ({point.x:.2f}, {point.y:.2f})', point=p))
Message with coordinates: (0.50, 0.50)

Secondly, formatting with string.Template :

>>> __ = DollarMessage
>>> print(__('Message with $num $what', num=2, what='placeholders'))
Message with 2 placeholders
>>>

One thing to note is that you pay no significant performance penalty with this approach: the actual formatting happens
not when you make the logging call, but when (and if) the logged message is actually about to be output to a log by a
handler. So the only slightly unusual thing which might trip you up is that the parentheses go around the format string
and the arguments, not just the format string. That’s because the __ notation is just syntax sugar for a constructor call
to one of the XXXMessage classes shown above.

21 Configuring filters with dictConfig()

You can configure filters using dictConfig() , though it might not be obvious at first glance how to do it (hence
this recipe). Since Filter is the only filter class included in the standard library, and it is unlikely to cater to many
requirements (it’s only there as a base class), you will typically need to define your own Filter subclass with an
overridden filter() method. To do this, specify the () key in the configuration dictionary for the filter, specifying
a callable which will be used to create the filter (a class is the most obvious, but you can provide any callable which
returns a Filter instance). Here is a complete example:

import logging
import logging.config
import sys

class MyFilter(logging.Filter):
def __init__(self, param=None):

self.param = param

def filter(self, record):
if self.param is None:

allow = True
else:

allow = self.param not in record.msg
if allow:

record.msg = 'changed: ' + record.msg
return allow

LOGGING = {
'version': 1,
'filters': {

'myfilter': {
'()': MyFilter,
'param': 'noshow',

}
},
'handlers': {

'console': {
'class': 'logging.StreamHandler',
'filters': ['myfilter']

}
},
'root': {

'level': 'DEBUG',
'handlers': ['console']

},
}

if __name__ == '__main__':
logging.config.dictConfig(LOGGING)
logging.debug('hello')
logging.debug('hello - noshow')

This example shows how you can pass configuration data to the callable which constructs the instance, in the form of
keyword parameters. When run, the above script will print:

changed: hello

which shows that the filter is working as configured.

A couple of extra points to note:

• If you can’t refer to the callable directly in the configuration (e.g. if it lives in a different mod-
ule, and you can’t import it directly where the configuration dictionary is), you can use the form
ext://... as described in logging-config-dict-externalobj. For example, you could have used the text
'ext://__main__.MyFilter' instead of MyFilter in the above example.

• As well as for filters, this technique can also be used to configure custom handlers and formatters. See logging-
config-dict-userdef for more information on how logging supports using user-defined objects in its configuration,
and see the other cookbook recipe Customizing handlers with dictConfig() above.

22 Customized exception formatting

There might be times when you want to do customized exception formatting - for argument’s sake, let’s say you want
exactly one line per logged event, even when exception information is present. You can do this with a custom formatter
class, as shown in the following example:

import logging

class OneLineExceptionFormatter(logging.Formatter):
def formatException(self, exc_info):

"""
Format an exception so that it prints on a single line.
"""

result = super(OneLineExceptionFormatter, self).formatException(exc_info)
return repr(result) # or format into one line however you want to

def format(self, record):
s = super(OneLineExceptionFormatter, self).format(record)
if record.exc_text:

s = s.replace('\n', '') + '|'
return s

def configure_logging():
fh = logging.FileHandler('output.txt', 'w')
f = OneLineExceptionFormatter('%(asctime)s|%(levelname)s|%(message)s|',

'%d/%m/%Y %H:%M:%S')
fh.setFormatter(f)
root = logging.getLogger()
root.setLevel(logging.DEBUG)
root.addHandler(fh)

def main():
configure_logging()
logging.info('Sample message')
try:

x = 1 / 0
except ZeroDivisionError as e:

logging.exception('ZeroDivisionError: %s', e)

if __name__ == '__main__':
main()

When run, this produces a file with exactly two lines:

28/01/2015 07:21:23|INFO|Sample message|
28/01/2015 07:21:23|ERROR|ZeroDivisionError: integer division or modulo by zero|'Traceback (most recent call last):\n File "logtest7.py", line 30, in main\n x = 1 / 0\nZeroDivisionError: integer division or modulo by zero'|

While the above treatment is simplistic, it points the way to how exception information can be formatted to your liking.
The traceback module may be helpful for more specialized needs.

23 Speaking logging messages

There might be situations when it is desirable to have logging messages rendered in an audible rather than a visible
format. This is easy to do if you have text- to-speech (TTS) functionality available in your system, even if it doesn’t
have a Python binding. Most TTS systems have a command line program you can run, and this can be invoked from
a handler using subprocess . It’s assumed here that TTS command line programs won’t expect to interact with
users or take a long time to complete, and that the frequency of logged messages will be not so high as to swamp the
user with messages, and that it’s acceptable to have the messages spoken one at a time rather than concurrently, The
example implementation below waits for one message to be spoken before the next is processed, and this might cause
other handlers to be kept waiting. Here is a short example showing the approach, which assumes that the espeak
TTS package is available:

import logging
import subprocess
import sys

class TTSHandler(logging.Handler):

def emit(self, record):
msg = self.format(record)
Speak slowly in a female English voice
cmd = ['espeak', '-s150', '-ven+f3', msg]
p = subprocess.Popen(cmd, stdout=subprocess.PIPE,

stderr=subprocess.STDOUT)
wait for the program to finish
p.communicate()

def configure_logging():
h = TTSHandler()
root = logging.getLogger()
root.addHandler(h)
the default formatter just returns the message
root.setLevel(logging.DEBUG)

def main():
logging.info('Hello')
logging.debug('Goodbye')

if __name__ == '__main__':
configure_logging()
sys.exit(main())

When run, this script should say “Hello” and then “Goodbye” in a female voice.

The above approach can, of course, be adapted to other TTS systems and even other systems altogether which can
process messages via external programs run from a command line.

24 Buffering logging messages and outputting them conditionally

There might be situations where you want to log messages in a temporary area and only output them if a certain
condition occurs. For example, you may want to start logging debug events in a function, and if the function completes
without errors, you don’t want to clutter the log with the collected debug information, but if there is an error, you want
all the debug information to be output as well as the error.

Here is an example which shows how you could do this using a decorator for your functions where you want logging to
behave this way. It makes use of the logging.handlers.MemoryHandler , which allows buffering of logged
events until some condition occurs, at which point the buffered events are flushed - passed to another handler (the
target handler) for processing. By default, the MemoryHandler flushed when its buffer gets filled up or an event
whose level is greater than or equal to a specified threshold is seen. You can use this recipe with a more specialised
subclass of MemoryHandler if you want custom flushing behavior.

The example script has a simple function, foo , which just cycles through all the logging levels, writing to
sys.stderr to say what level it’s about to log at, and then actually logging a message that that level. You can
pass a parameter to foo which, if true, will log at ERROR and CRITICAL levels - otherwise, it only logs at DEBUG,
INFO and WARNING levels.

The script just arranges to decorate foo with a decorator which will do the conditional logging that’s required. The
decorator takes a logger as a parameter and attaches a memory handler for the duration of the call to the decorated func-
tion. The decorator can be additionally parameterised using a target handler, a level at which flushing should occur, and
a capacity for the buffer. These default to a StreamHandler which writes to sys.stderr , logging.ERROR
and 100 respectively.

Here’s the script:

import logging
from logging.handlers import MemoryHandler
import sys

logger = logging.getLogger(__name__)
logger.addHandler(logging.NullHandler())

def log_if_errors(logger, target_handler=None, flush_level=None, capacity=None):
if target_handler is None:

target_handler = logging.StreamHandler()
if flush_level is None:

flush_level = logging.ERROR
if capacity is None:

capacity = 100
handler = MemoryHandler(capacity, flushLevel=flush_level, target=target_handler)

def decorator(fn):
def wrapper(*args, **kwargs):

logger.addHandler(handler)
try:

return fn(*args, **kwargs)
except Exception:

logger.exception('call failed')
raise

finally:
super(MemoryHandler, handler).flush()
logger.removeHandler(handler)

return wrapper

return decorator

def write_line(s):
sys.stderr.write('%s\n' % s)

def foo(fail=False):
write_line('about to log at DEBUG ...')
logger.debug('Actually logged at DEBUG')
write_line('about to log at INFO ...')
logger.info('Actually logged at INFO')
write_line('about to log at WARNING ...')
logger.warning('Actually logged at WARNING')
if fail:

write_line('about to log at ERROR ...')
logger.error('Actually logged at ERROR')
write_line('about to log at CRITICAL ...')
logger.critical('Actually logged at CRITICAL')

return fail

decorated_foo = log_if_errors(logger)(foo)

if __name__ == '__main__':
logger.setLevel(logging.DEBUG)
write_line('Calling undecorated foo with False')
assert not foo(False)

write_line('Calling undecorated foo with True')
assert foo(True)
write_line('Calling decorated foo with False')
assert not decorated_foo(False)
write_line('Calling decorated foo with True')
assert decorated_foo(True)

When this script is run, the following output should be observed:

Calling undecorated foo with False
about to log at DEBUG ...
about to log at INFO ...
about to log at WARNING ...
Calling undecorated foo with True
about to log at DEBUG ...
about to log at INFO ...
about to log at WARNING ...
about to log at ERROR ...
about to log at CRITICAL ...
Calling decorated foo with False
about to log at DEBUG ...
about to log at INFO ...
about to log at WARNING ...
Calling decorated foo with True
about to log at DEBUG ...
about to log at INFO ...
about to log at WARNING ...
about to log at ERROR ...
Actually logged at DEBUG
Actually logged at INFO
Actually logged at WARNING
Actually logged at ERROR
about to log at CRITICAL ...
Actually logged at CRITICAL

As you can see, actual logging output only occurs when an event is logged whose severity is ERROR or greater, but
in that case, any previous events at lower severities are also logged.

You can of course use the conventional means of decoration:

@log_if_errors(logger)
def foo(fail=False):

...

25 Formatting times using UTC (GMT) via configuration

Sometimes you want to format times using UTC, which can be done using a class such as UTCFormatter, shown
below:

import logging
import time

class UTCFormatter(logging.Formatter):
converter = time.gmtime

and you can then use the UTCFormatter in your code instead of Formatter . If you want to do that via
configuration, you can use the dictConfig() API with an approach illustrated by the following complete example:

import logging
import logging.config
import time

class UTCFormatter(logging.Formatter):
converter = time.gmtime

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {

'utc': {
'()': UTCFormatter,
'format': '%(asctime)s %(message)s',

},
'local': {

'format': '%(asctime)s %(message)s',
}

},
'handlers': {

'console1': {
'class': 'logging.StreamHandler',
'formatter': 'utc',

},
'console2': {

'class': 'logging.StreamHandler',
'formatter': 'local',

},
},
'root': {

'handlers': ['console1', 'console2'],
}

}

if __name__ == '__main__':
logging.config.dictConfig(LOGGING)
logging.warning('The local time is %s', time.asctime())

When this script is run, it should print something like:

2015-10-17 12:53:29,501 The local time is Sat Oct 17 13:53:29 2015
2015-10-17 13:53:29,501 The local time is Sat Oct 17 13:53:29 2015

showing how the time is formatted both as local time and UTC, one for each handler.

	Using logging in multiple modules
	Multiple handlers and formatters
	Logging to multiple destinations
	Configuration server example
	Dealing with handlers that block
	Sending and receiving logging events across a network
	Adding contextual information to your logging output
	Using LoggerAdapters to impart contextual information
	Using objects other than dicts to pass contextual information

	Using Filters to impart contextual information

	Logging to a single file from multiple processes
	Using file rotation
	Use of alternative formatting styles
	Customizing LogRecord
	Subclassing QueueHandler - a ZeroMQ example
	Subclassing QueueListener - a ZeroMQ example
	An example dictionary-based configuration
	Using a rotator and namer to customize log rotation processing
	A more elaborate multiprocessing example
	Inserting a BOM into messages sent to a SysLogHandler
	Implementing structured logging
	Customizing handlers with dictConfig()
	Using particular formatting styles throughout your application
	Using LogRecord factories
	Using custom message objects

	Configuring filters with dictConfig()
	Customized exception formatting
	Speaking logging messages
	Buffering logging messages and outputting them conditionally
	Formatting times using UTC (GMT) via configuration

