functools
--- Higher-order functions and operations on callable objects¶
Code source : Lib/functools.py
Le module functools
concerne les fonctions d'ordre supérieur : des fonctions qui agissent sur, ou renvoient, d'autres fonctions. En général, tout objet appelable peut être considéré comme une fonction dans la description de ce module.
Le module functools
définit les fonctions suivantes :
- @functools.cache(user_function)¶
Fonction de cache très simple et sans limite de taille. Cette technique est parfois appelée « mémoïsation ».
Returns the same as
lru_cache(maxsize=None)
, creating a thin wrapper around a dictionary lookup for the function arguments. Because it never needs to evict old values, this is smaller and faster thanlru_cache()
with a size limit.Par exemple :
@cache def factorial(n): return n * factorial(n-1) if n else 1 >>> factorial(10) # no previously cached result, makes 11 recursive calls 3628800 >>> factorial(5) # just looks up cached value result 120 >>> factorial(12) # makes two new recursive calls, the other 10 are cached 479001600
The cache is threadsafe so that the wrapped function can be used in multiple threads. This means that the underlying data structure will remain coherent during concurrent updates.
It is possible for the wrapped function to be called more than once if another thread makes an additional call before the initial call has been completed and cached.
Ajouté dans la version 3.9.
- @functools.cached_property(func)¶
Transform a method of a class into a property whose value is computed once and then cached as a normal attribute for the life of the instance. Similar to
property()
, with the addition of caching. Useful for expensive computed properties of instances that are otherwise effectively immutable.Exemple :
class DataSet: def __init__(self, sequence_of_numbers): self._data = tuple(sequence_of_numbers) @cached_property def stdev(self): return statistics.stdev(self._data)
The mechanics of
cached_property()
are somewhat different fromproperty()
. A regular property blocks attribute writes unless a setter is defined. In contrast, a cached_property allows writes.The cached_property decorator only runs on lookups and only when an attribute of the same name doesn't exist. When it does run, the cached_property writes to the attribute with the same name. Subsequent attribute reads and writes take precedence over the cached_property method and it works like a normal attribute.
The cached value can be cleared by deleting the attribute. This allows the cached_property method to run again.
The cached_property does not prevent a possible race condition in multi-threaded usage. The getter function could run more than once on the same instance, with the latest run setting the cached value. If the cached property is idempotent or otherwise not harmful to run more than once on an instance, this is fine. If synchronization is needed, implement the necessary locking inside the decorated getter function or around the cached property access.
Note, this decorator interferes with the operation of PEP 412 key-sharing dictionaries. This means that instance dictionaries can take more space than usual.
Also, this decorator requires that the
__dict__
attribute on each instance be a mutable mapping. This means it will not work with some types, such as metaclasses (since the__dict__
attributes on type instances are read-only proxies for the class namespace), and those that specify__slots__
without including__dict__
as one of the defined slots (as such classes don't provide a__dict__
attribute at all).If a mutable mapping is not available or if space-efficient key sharing is desired, an effect similar to
cached_property()
can also be achieved by stackingproperty()
on top oflru_cache()
. See Comment mettre en cache le résultat d'une méthode ? for more details on how this differs fromcached_property()
.Ajouté dans la version 3.8.
Modifié dans la version 3.12: Prior to Python 3.12,
cached_property
included an undocumented lock to ensure that in multi-threaded usage the getter function was guaranteed to run only once per instance. However, the lock was per-property, not per-instance, which could result in unacceptably high lock contention. In Python 3.12+ this locking is removed.
- functools.cmp_to_key(func)¶
Transforme une fonction de comparaison à l'ancienne en une fonction clé. Utilisé avec des outils qui acceptent des fonctions clef (comme
sorted()
,min()
,max()
,heapq.nlargest()
,heapq.nsmallest()
,itertools.groupby()
). Cette fonction est destinée au portage de fonctions python 2 utilisant des fonctions de comparaison vers Python 3.A comparison function is any callable that accepts two arguments, compares them, and returns a negative number for less-than, zero for equality, or a positive number for greater-than. A key function is a callable that accepts one argument and returns another value to be used as the sort key.
Exemple :
sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order
Pour des exemples de tris et un bref tutoriel, consultez Sorting Techniques.
Ajouté dans la version 3.2.
- @functools.lru_cache(user_function)¶
- @functools.lru_cache(maxsize=128, typed=False)
Décorateur qui englobe une fonction avec un appelable mémoïsant qui enregistre jusqu'à maxsize appels récents. Cela peut gagner du temps quand une fonction coûteuse en ressources est souvent appelée avec les mêmes arguments.
The cache is threadsafe so that the wrapped function can be used in multiple threads. This means that the underlying data structure will remain coherent during concurrent updates.
It is possible for the wrapped function to be called more than once if another thread makes an additional call before the initial call has been completed and cached.
Since a dictionary is used to cache results, the positional and keyword arguments to the function must be hashable.
Distinct argument patterns may be considered to be distinct calls with separate cache entries. For example,
f(a=1, b=2)
andf(b=2, a=1)
differ in their keyword argument order and may have two separate cache entries.Si user_function est défini, ce doit être un appelable. Ceci permet à lru_cache d'être appliqué directement sur une fonction de l'utilisateur, sans préciser maxsize (qui est alors défini à sa valeur par défaut, 128) :
@lru_cache def count_vowels(sentence): return sum(sentence.count(vowel) for vowel in 'AEIOUaeiou')
Si maxsize est à
None
, la fonctionnalité LRU est désactivée et le cache peut grossir sans limite.If typed is set to true, function arguments of different types will be cached separately. If typed is false, the implementation will usually regard them as equivalent calls and only cache a single result. (Some types such as str and int may be cached separately even when typed is false.)
Note, type specificity applies only to the function's immediate arguments rather than their contents. The scalar arguments,
Decimal(42)
andFraction(42)
are be treated as distinct calls with distinct results. In contrast, the tuple arguments('answer', Decimal(42))
and('answer', Fraction(42))
are treated as equivalent.The wrapped function is instrumented with a
cache_parameters()
function that returns a newdict
showing the values for maxsize and typed. This is for information purposes only. Mutating the values has no effect.To help measure the effectiveness of the cache and tune the maxsize parameter, the wrapped function is instrumented with a
cache_info()
function that returns a named tuple showing hits, misses, maxsize and currsize.Le décorateur fournit également une fonction
cache_clear()
pour vider ou invalider le cache.La fonction sous-jacente originale est accessible à travers l'attribut
__wrapped__
. Ceci est utile pour l'introspection, pour outrepasser le cache, ou pour ré-englober la fonction avec un cache différent.The cache keeps references to the arguments and return values until they age out of the cache or until the cache is cleared.
If a method is cached, the
self
instance argument is included in the cache. See Comment mettre en cache le résultat d'une méthode ?Un cache LRU (*least recently used*) fonctionne de manière optimale lorsque les appels récents sont les prochains appels les plus probables (par exemple, les articles les plus lus d'un serveur d'actualités ont tendance à ne changer que d'un jour à l'autre). La taille limite du cache permet de s'assurer que le cache ne grossisse pas sans limite dans les processus à longue durée de vie comme les serveurs Web.
In general, the LRU cache should only be used when you want to reuse previously computed values. Accordingly, it doesn't make sense to cache functions with side-effects, functions that need to create distinct mutable objects on each call (such as generators and async functions), or impure functions such as time() or random().
Exemple d'un cache LRU pour du contenu web statique :
@lru_cache(maxsize=32) def get_pep(num): 'Retrieve text of a Python Enhancement Proposal' resource = f'https://peps.python.org/pep-{num:04d}' try: with urllib.request.urlopen(resource) as s: return s.read() except urllib.error.HTTPError: return 'Not Found' >>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991: ... pep = get_pep(n) ... print(n, len(pep)) >>> get_pep.cache_info() CacheInfo(hits=3, misses=8, maxsize=32, currsize=8)
Exemple de calcul efficace de la suite de Fibonacci en utilisant un cache pour implémenter la technique de programmation dynamique :
@lru_cache(maxsize=None) def fib(n): if n < 2: return n return fib(n-1) + fib(n-2) >>> [fib(n) for n in range(16)] [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610] >>> fib.cache_info() CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)
Ajouté dans la version 3.2.
Modifié dans la version 3.3: L'option typed a été ajoutée.
Modifié dans la version 3.8: Ajout de l'option user_function.
Modifié dans la version 3.9: Added the function
cache_parameters()
- @functools.total_ordering¶
A partir d'une classe définissant une ou plusieurs méthodes de comparaison riches, ce décorateur de classe fournit le reste. Ceci simplifie l'effort à fournir dans la spécification de toutes les opérations de comparaison riche :
La classe doit définir au moins une de ces méthodes
__lt__()
,__le__()
,__gt__()
, ou__ge__()
. De plus, la classe doit fournir une méthode__eq__()
.Par exemple :
@total_ordering class Student: def _is_valid_operand(self, other): return (hasattr(other, "lastname") and hasattr(other, "firstname")) def __eq__(self, other): if not self._is_valid_operand(other): return NotImplemented return ((self.lastname.lower(), self.firstname.lower()) == (other.lastname.lower(), other.firstname.lower())) def __lt__(self, other): if not self._is_valid_operand(other): return NotImplemented return ((self.lastname.lower(), self.firstname.lower()) < (other.lastname.lower(), other.firstname.lower()))
Note
Même si ce décorateur permet de créer des types ordonnables facilement, cela vient avec un coût d'exécution et des traces d'exécution complexes pour les méthodes de comparaison dérivées. Si des tests de performances le révèlent comme un goulot d'étranglement, l'implémentation manuelle des six méthodes de comparaison riches résoudra normalement vos problèmes de rapidité.
Note
This decorator makes no attempt to override methods that have been declared in the class or its superclasses. Meaning that if a superclass defines a comparison operator, total_ordering will not implement it again, even if the original method is abstract.
Ajouté dans la version 3.2.
Modifié dans la version 3.4: Returning
NotImplemented
from the underlying comparison function for unrecognised types is now supported.
- functools.partial(func, /, *args, **keywords)¶
Retourne un nouvel objet partiel qui, quand il est appelé, fonctionne comme func appelée avec les arguments positionnels args et les arguments nommés keywords. Si plus d'arguments sont fournis à l'appel, ils sont ajoutés à args. Si plus d'arguments nommés sont fournis, ils étendent et surchargent keywords. À peu près équivalent à :
def partial(func, /, *args, **keywords): def newfunc(*fargs, **fkeywords): newkeywords = {**keywords, **fkeywords} return func(*args, *fargs, **newkeywords) newfunc.func = func newfunc.args = args newfunc.keywords = keywords return newfunc
partial()
est utilisé pour une application de fonction partielle qui "gèle" une portion des arguments et/ou mots-clés d'une fonction donnant un nouvel objet avec une signature simplifiée. Par exemple,partial()
peut être utilisé pour créer un appelable qui se comporte comme la fonctionint()
ou l'argument base est deux par défaut :>>> from functools import partial >>> basetwo = partial(int, base=2) >>> basetwo.__doc__ = 'Convert base 2 string to an int.' >>> basetwo('10010') 18
- class functools.partialmethod(func, /, *args, **keywords)¶
Retourne un nouveau descripteur
partialmethod
qui se comporte commepartial
sauf qu'il est fait pour être utilisé comme une définition de méthode plutôt que d'être appelé directement.func doit être un descriptor ou un appelable (les objets qui sont les deux, comme les fonction normales, sont gérés comme des descripteurs).
Quand func est un descripteur (comme une fonction Python normale,
classmethod()
,staticmethod()
,abstractmethod()
ou une autre instance departialmethod
), les appels à__get__
sont délégués au descripteur sous-jacent, et un objet partiel approprié est renvoyé comme résultat.Quand func est un appelable non-descripteur, une méthode liée appropriée est crée dynamiquement. Elle se comporte comme une fonction Python normale quand elle est utilisée comme méthode : l'argument self sera inséré comme premier argument positionnel, avant les args et keywords fournis au constructeur
partialmethod
.Exemple :
>>> class Cell: ... def __init__(self): ... self._alive = False ... @property ... def alive(self): ... return self._alive ... def set_state(self, state): ... self._alive = bool(state) ... set_alive = partialmethod(set_state, True) ... set_dead = partialmethod(set_state, False) ... >>> c = Cell() >>> c.alive False >>> c.set_alive() >>> c.alive True
Ajouté dans la version 3.4.
- functools.reduce(function, iterable[, initializer])¶
Applique function avec deux arguments cumulativement aux éléments de iterable, de gauche à droite, pour réduire la séquence à une valeur unique. Par exemple,
reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calcule((((1+2)+3)+4)+5)
. L'argument de gauche, x, est la valeur de cumul et celui de droite, y, est la valeur mise à jour depuis iterable. Si l'argument optionnel initializer est présent, il est placé avant les éléments de la séquence dans le calcul, et sert de valeur par défaut quand la séquence est vide. Si initializer n'est pas renseigné et que iterable ne contient qu'un élément, le premier élément est renvoyé.À peu près équivalent à :
def reduce(function, iterable, initializer=None): it = iter(iterable) if initializer is None: value = next(it) else: value = initializer for element in it: value = function(value, element) return value
Voir
itertools.accumulate()
pour un itérateur qui génère toutes les valeurs intermédiaires.
- @functools.singledispatch¶
Transforme une fonction en une fonction générique single-dispatch.
To define a generic function, decorate it with the
@singledispatch
decorator. When defining a function using@singledispatch
, note that the dispatch happens on the type of the first argument:>>> from functools import singledispatch >>> @singledispatch ... def fun(arg, verbose=False): ... if verbose: ... print("Let me just say,", end=" ") ... print(arg)
To add overloaded implementations to the function, use the
register()
attribute of the generic function, which can be used as a decorator. For functions annotated with types, the decorator will infer the type of the first argument automatically:>>> @fun.register ... def _(arg: int, verbose=False): ... if verbose: ... print("Strength in numbers, eh?", end=" ") ... print(arg) ... >>> @fun.register ... def _(arg: list, verbose=False): ... if verbose: ... print("Enumerate this:") ... for i, elem in enumerate(arg): ... print(i, elem)
types.UnionType
andtyping.Union
can also be used:>>> @fun.register ... def _(arg: int | float, verbose=False): ... if verbose: ... print("Strength in numbers, eh?", end=" ") ... print(arg) ... >>> from typing import Union >>> @fun.register ... def _(arg: Union[list, set], verbose=False): ... if verbose: ... print("Enumerate this:") ... for i, elem in enumerate(arg): ... print(i, elem) ...
Pour le code qui n’utilise pas les indications de type, le type souhaité peut être passé explicitement en argument au décorateur :
>>> @fun.register(complex) ... def _(arg, verbose=False): ... if verbose: ... print("Better than complicated.", end=" ") ... print(arg.real, arg.imag) ...
To enable registering lambdas and pre-existing functions, the
register()
attribute can also be used in a functional form:>>> def nothing(arg, verbose=False): ... print("Nothing.") ... >>> fun.register(type(None), nothing)
The
register()
attribute returns the undecorated function. This enables decorator stacking,pickling
, and the creation of unit tests for each variant independently:>>> @fun.register(float) ... @fun.register(Decimal) ... def fun_num(arg, verbose=False): ... if verbose: ... print("Half of your number:", end=" ") ... print(arg / 2) ... >>> fun_num is fun False
Quand elle est appelée, la fonction générique distribue sur le type du premier argument :
>>> fun("Hello, world.") Hello, world. >>> fun("test.", verbose=True) Let me just say, test. >>> fun(42, verbose=True) Strength in numbers, eh? 42 >>> fun(['spam', 'spam', 'eggs', 'spam'], verbose=True) Enumerate this: 0 spam 1 spam 2 eggs 3 spam >>> fun(None) Nothing. >>> fun(1.23) 0.615
Where there is no registered implementation for a specific type, its method resolution order is used to find a more generic implementation. The original function decorated with
@singledispatch
is registered for the baseobject
type, which means it is used if no better implementation is found.If an implementation is registered to an abstract base class, virtual subclasses of the base class will be dispatched to that implementation:
>>> from collections.abc import Mapping >>> @fun.register ... def _(arg: Mapping, verbose=False): ... if verbose: ... print("Keys & Values") ... for key, value in arg.items(): ... print(key, "=>", value) ... >>> fun({"a": "b"}) a => b
To check which implementation the generic function will choose for a given type, use the
dispatch()
attribute:>>> fun.dispatch(float) <function fun_num at 0x1035a2840> >>> fun.dispatch(dict) # note: default implementation <function fun at 0x103fe0000>
Pour accéder à toutes les implémentations enregistrées, utiliser l'attribut en lecture seule
registry
:>>> fun.registry.keys() dict_keys([<class 'NoneType'>, <class 'int'>, <class 'object'>, <class 'decimal.Decimal'>, <class 'list'>, <class 'float'>]) >>> fun.registry[float] <function fun_num at 0x1035a2840> >>> fun.registry[object] <function fun at 0x103fe0000>
Ajouté dans la version 3.4.
Modifié dans la version 3.7: The
register()
attribute now supports using type annotations.Modifié dans la version 3.11: The
register()
attribute now supportstypes.UnionType
andtyping.Union
as type annotations.
- class functools.singledispatchmethod(func)¶
Transforme une méthode en une fonction générique single-dispatch.
To define a generic method, decorate it with the
@singledispatchmethod
decorator. When defining a function using@singledispatchmethod
, note that the dispatch happens on the type of the first non-self or non-cls argument:class Negator: @singledispatchmethod def neg(self, arg): raise NotImplementedError("Cannot negate a") @neg.register def _(self, arg: int): return -arg @neg.register def _(self, arg: bool): return not arg
@singledispatchmethod
supports nesting with other decorators such as@classmethod
. Note that to allow fordispatcher.register
,singledispatchmethod
must be the outer most decorator. Here is theNegator
class with theneg
methods bound to the class, rather than an instance of the class:class Negator: @singledispatchmethod @classmethod def neg(cls, arg): raise NotImplementedError("Cannot negate a") @neg.register @classmethod def _(cls, arg: int): return -arg @neg.register @classmethod def _(cls, arg: bool): return not arg
The same pattern can be used for other similar decorators:
@staticmethod
,@abstractmethod
, and others.Ajouté dans la version 3.8.
- functools.update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)¶
Update a wrapper function to look like the wrapped function. The optional arguments are tuples to specify which attributes of the original function are assigned directly to the matching attributes on the wrapper function and which attributes of the wrapper function are updated with the corresponding attributes from the original function. The default values for these arguments are the module level constants
WRAPPER_ASSIGNMENTS
(which assigns to the wrapper function's__module__
,__name__
,__qualname__
,__annotations__
,__type_params__
, and__doc__
, the documentation string) andWRAPPER_UPDATES
(which updates the wrapper function's__dict__
, i.e. the instance dictionary).Pour autoriser l'accès à la fonction originale pour l'introspection ou à d'autres fins (par ex. outrepasser l'accès à un décorateur de cache comme
lru_cache()
), cette fonction ajoute automatiquement un attribut__wrapped__
qui référence la fonction englobée.La principale utilisation de cette fonction est dans les décorateurs qui renvoient une nouvelle fonction. Si la fonction crée n'est pas mise à jour, ses métadonnées refléteront sa définition dans le décorateur, au lieu de la définition originale, métadonnées souvent bien moins utiles.
update_wrapper()
peut être utilisé avec des appelables autres que des fonctions. Tout attribut défini dans assigned ou updated qui ne sont pas l'objet englobé sont ignorés (cette fonction n'essaiera pas de les définir dans la fonction englobante).AttributeError
est toujours levée si le fonction englobante elle même a des attributs non existants dans updated.Modifié dans la version 3.2: The
__wrapped__
attribute is now automatically added. The__annotations__
attribute is now copied by default. Missing attributes no longer trigger anAttributeError
.Modifié dans la version 3.4: L'attribut
__wrapped__
renvoie toujours la fonction englobée, même si cette fonction définit un attribut__wrapped__
. (voir bpo-17482)Modifié dans la version 3.12: The
__type_params__
attribute is now copied by default.
- @functools.wraps(wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)¶
Ceci est une fonction d'aide pour appeler
update_wrapper()
comme décorateur de fonction lors de la définition d'une fonction englobante. C'est équivalent àpartial(update_wrapper, wrapped=wrapped, assigned=assigned, updated=updated)
. Par exemple :>>> from functools import wraps >>> def my_decorator(f): ... @wraps(f) ... def wrapper(*args, **kwds): ... print('Calling decorated function') ... return f(*args, **kwds) ... return wrapper ... >>> @my_decorator ... def example(): ... """Docstring""" ... print('Called example function') ... >>> example() Calling decorated function Called example function >>> example.__name__ 'example' >>> example.__doc__ 'Docstring'
Sans l'utilisation de cette usine à décorateur, le nom de la fonction d'exemple aurait été
'wrapper'
, et la chaîne de documentation de la fonctionexample()
originale aurait été perdue.
Objets partial
¶
Les objets partial
sont des objets appelables créés par partial()
. Ils ont trois attributs en lecture seule :
- partial.func¶
Un objet ou une fonction appelable. Les appels à l'objet
partial
seront transmis àfunc
avec les nouveaux arguments et mots-clés.
- partial.args¶
Les arguments positionnels qui seront ajoutés avant les arguments fournis lors de l'appel d'un objet
partial
.
partial
objects are like function
objects in that they are
callable, weak referenceable, and can have attributes. There are some important
differences. For instance, the __name__
and __doc__
attributes
are not created automatically. Also, partial
objects defined in
classes behave like static methods and do not transform into bound methods
during instance attribute look-up.