unittest.mock
— Bibliothèque d'objets simulacres¶
Nouveau dans la version 3.3.
Code source : Lib/unittest/mock.py
unittest.mock
est une bibliothèque pour tester en Python. Elle permet de remplacer des parties du système sous tests par des objets simulacres et faire des assertions sur la façon dont ces objets ont été utilisés.
unittest.mock
fournit une classe Mock
pour ne pas avoir besoin de créer manuellement des objets factices dans la suite de tests. Après avoir effectué une action, on peut faire des assertions sur les méthodes / attributs utilisés et les arguments avec lesquels ils ont été appelés. On peut également spécifier des valeurs renvoyées et définir les attributs nécessaires aux tests.
De plus, mock fournit un décorateur patch()
qui est capable de patcher les modules et les classes dans la portée d'un test, ainsi que sentinel
pour créer des objets uniques. Voir le guide rapide quick guide pour quelques exemples d'utilisation de Mock
, MagicMock
et patch()
.
Mock est très facile à utiliser et est conçu pour être utilisé avec unittest
. Mock est basé sur le modèle action -> assertion au lieu de enregistrement -> rejouer utilisé par de nombreux cadriciels d'objets simulacres.
Il y a un portage de unittest.mock
pour les versions antérieures de Python, disponible sur PyPI.
Guide rapide¶
Les classes Mock
et MagicMock
créent tous les attributs et méthodes au fur et à mesure des accès et stockent les détails de la façon dont ils ont été utilisés. On peut les configurer, pour spécifier des valeurs de renvoi ou limiter les attributs utilisables, puis faire des assertions sur la façon dont ils ont été utilisés :
>>> from unittest.mock import MagicMock
>>> thing = ProductionClass()
>>> thing.method = MagicMock(return_value=3)
>>> thing.method(3, 4, 5, key='value')
3
>>> thing.method.assert_called_with(3, 4, 5, key='value')
L'attribut side_effect
permet de spécifier des effets de bords, y compris la levée d'une exception lorsqu'un objet simulacre est appelé :
>>> mock = Mock(side_effect=KeyError('foo'))
>>> mock()
Traceback (most recent call last):
...
KeyError: 'foo'
>>> values = {'a': 1, 'b': 2, 'c': 3}
>>> def side_effect(arg):
... return values[arg]
...
>>> mock.side_effect = side_effect
>>> mock('a'), mock('b'), mock('c')
(1, 2, 3)
>>> mock.side_effect = [5, 4, 3, 2, 1]
>>> mock(), mock(), mock()
(5, 4, 3)
Il existe beaucoup d'autres façons de configurer et de contrôler le comportement de Mock. Par exemple, l'argument spec configure le mock pour qu'il utilise les spécifications d'un autre objet. Tenter d'accéder à des attributs ou méthodes sur le mock qui n'existent pas sur l'objet spec lève une AttributeError
.
Le décorateur / gestionnaire de contexte patch()
permet de simuler facilement des classes ou des objets dans un module sous tests. L'objet spécifié est remplacé par un objet simulacre (ou autre) pendant le test et est restauré à la fin du test :
>>> from unittest.mock import patch
>>> @patch('module.ClassName2')
... @patch('module.ClassName1')
... def test(MockClass1, MockClass2):
... module.ClassName1()
... module.ClassName2()
... assert MockClass1 is module.ClassName1
... assert MockClass2 is module.ClassName2
... assert MockClass1.called
... assert MockClass2.called
...
>>> test()
Note
Lorsque l'on imbrique des décorateurs de patchs, les mocks sont transmis à la fonction décorée dans le même ordre qu'ils ont été déclarés (l'ordre normal Python des décorateurs est appliqué). Cela signifie du bas vers le haut, donc dans l'exemple ci-dessus, l'objet simulacre pour module.ClassName1
est passé en premier.
Avec patch()
, il est important de patcher les objets dans l'espace de nommage où ils sont recherchés. C'est ce qui se fait normalement, mais pour un guide rapide, lisez où patcher.
Comme tout décorateur, patch()
peut être utilisé comme gestionnaire de contexte avec une instruction with :
>>> with patch.object(ProductionClass, 'method', return_value=None) as mock_method:
... thing = ProductionClass()
... thing.method(1, 2, 3)
...
>>> mock_method.assert_called_once_with(1, 2, 3)
Il existe également patch.dict()
pour définir des valeurs d'un dictionnaire au sein d'une portée et restaurer ce dictionnaire à son état d'origine lorsque le test se termine :
>>> foo = {'key': 'value'}
>>> original = foo.copy()
>>> with patch.dict(foo, {'newkey': 'newvalue'}, clear=True):
... assert foo == {'newkey': 'newvalue'}
...
>>> assert foo == original
Mock gère le remplacement des méthodes magiques de Python. La façon la plus simple d'utiliser les méthodes magiques est la classe MagicMock
. Elle permet de faire des choses comme :
>>> mock = MagicMock()
>>> mock.__str__.return_value = 'foobarbaz'
>>> str(mock)
'foobarbaz'
>>> mock.__str__.assert_called_with()
Mock permet d'assigner des fonctions (ou d'autres instances Mock) à des méthodes magiques et elles seront appelées correctement. La classe MagicMock
est juste une variante de Mock qui a toutes les méthodes magiques pré-créées (enfin, toutes les méthodes utiles).
L'exemple suivant est un exemple de création de méthodes magiques avec la classe Mock ordinaire :
>>> mock = Mock()
>>> mock.__str__ = Mock(return_value='wheeeeee')
>>> str(mock)
'wheeeeee'
Pour être sûr que les objets simulacres dans vos tests ont la même API que les objets qu'ils remplacent, utilisez l'auto-spécification. L'auto-spécification peut se faire via l'argument autospec de patch ou par la fonction create_autospec()
. L'auto-spécification crée des objets simulacres qui ont les mêmes attributs et méthodes que les objets qu'ils remplacent, et toutes les fonctions et méthodes (y compris les constructeurs) ont les mêmes signatures d'appel que l'objet réel.
Ceci garantit que vos objets simulacres échouent de la même manière que votre code de production s'ils ne sont pas utilisés correctement :
>>> from unittest.mock import create_autospec
>>> def function(a, b, c):
... pass
...
>>> mock_function = create_autospec(function, return_value='fishy')
>>> mock_function(1, 2, 3)
'fishy'
>>> mock_function.assert_called_once_with(1, 2, 3)
>>> mock_function('wrong arguments')
Traceback (most recent call last):
...
TypeError: <lambda>() takes exactly 3 arguments (1 given)
La fonction create_autospec()
peut aussi être utilisée sur les classes, où elle copie la signature de la méthode __init__
, et sur les objets appelables où elle copie la signature de la méthode __call__
.
La classe Mock¶
La classe Mock
est un objet simulacre flexible destiné à remplacer l'utilisation d'objets bouchons et factices dans votre code. Les Mocks sont appelables et créent des attributs comme de nouveaux Mocks lorsque l'on y accède 1. L'accès au même attribut renvoie toujours le même mock. Les simulacres enregistrent la façon dont ils sont utilisés, ce qui permet de faire des assertions sur ce que le code leur a fait.
La classe MagicMock
est une sous-classe de Mock
avec toutes les méthodes magiques pré-créées et prête à l'emploi. Il existe également des variantes non appelables, utiles lorsque l'on simule des objets qui ne sont pas appelables : NonCallableMock
et NonCallableMagicMock
Le décorateur patch()
facilite le remplacement temporaire de classes d'un module avec un objet Mock
. Par défaut patch()
crée un MagicMock
. On peut spécifier une classe alternative de Mock
en utilisant le paramètre new_callable de patch()
.
-
class
unittest.mock.
Mock
(spec=None, side_effect=None, return_value=DEFAULT, wraps=None, name=None, spec_set=None, unsafe=False, **kwargs)¶ Crée un nouvel objet
Mock
.Mock
prend plusieurs arguments optionnels qui spécifient le comportement de l'objet Mock :spec : une liste de chaînes de caractères ou un objet existant (une classe ou une instance) qui sert de spécification pour l'objet simulacre. Si on passe un objet, alors une liste de chaînes de caractères est formée en appelant la fonction dir sur l'objet (à l'exclusion des attributs et méthodes magiques non pris en charge). L'accès à un attribut qui n'est pas dans cette liste entraîne la levée d'une exception
AttributeError
.Si spec est un objet (plutôt qu'une liste de chaînes de caractères) alors
__class__
renvoie la classe de l'objet spécifié. Ceci permet aux mocks de passer les testsisinstance()
.spec_set : variante plus stricte de spec. S'il est utilisé, essayer d'utiliser la fonction set ou tenter d’accéder à un attribut sur le mock qui n'est pas sur l'objet passé comme spec_set lève une exception
AttributeError
.side_effect : fonction à appeler à chaque fois que le Mock est appelé. Voir l'attribut
side_effect
. Utile pour lever des exceptions ou modifier dynamiquement les valeurs de retour. La fonction est appelée avec les mêmes arguments que la fonction simulée et, à moins qu'elle ne renvoieDEFAULT
, la valeur de retour de cette fonction devient la valeur de retour de la fonction simulée.side_effect peut être soit une classe, soit une instance d'exception. Dans ce cas, l'exception est levée lors de l'appel de l'objet simulacre.
Si side_effect est un itérable alors chaque appel au mock renvoie la valeur suivante de l’itérable.
Utilisez
None
pour remettre à zéro un side_effect.return_value : valeur renvoyée lors de l'appel de l'objet simulacre. Par défaut, il s'agit d'un nouveau Mock (créé lors du premier accès). Voir l'attribut
return_value
.unsafe : par défaut, si un attribut commence par assert ou assret, une exception
AttributeError
est levée. Le fait de passerunsafe=True
permet d'accéder à ces attributs.Nouveau dans la version 3.5.
wraps : élément que le simulacre doit simuler. Si wraps n'est pas
None
alors appeler Mock passe l'appel à l'objet simulé (renvoyant le résultat réel). L'accès à un attribut sur le mock renvoie un objet Mock qui simule l'attribut correspondant de l'objet simulé (donc essayer d'accéder à un attribut qui n'existe pas lève une exceptionAttributeError
).Si l'objet simulacre a un ensemble explicite de return_value alors les appels ne sont pas passés à l'objet simulé et c'est return_value qui est renvoyée à la place.
name : Si le mock a un nom, il est alors utilisé par la fonction repr du mock. C'est utile pour le débogage. Le nom est propagé aux enfants de l'objet mock.
Les mocks peuvent aussi être appelés avec des arguments par mots-clés arbitraires. Ceux-ci sont utilisés pour définir les attributs sur le mock après sa création. Voir la méthode
configure_mock()
pour plus de détails.-
assert_called
()¶ Asserter que le mock a été appelé au moins une fois.
>>> mock = Mock() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.method.assert_called()
Nouveau dans la version 3.6.
-
assert_called_once
()¶ Asserter que le mock a été appelé exactement une fois.
>>> mock = Mock() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.method.assert_called_once() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.method.assert_called_once() Traceback (most recent call last): ... AssertionError: Expected 'method' to have been called once. Called 2 times.
Nouveau dans la version 3.6.
-
assert_called_with
(*args, **kwargs)¶ Cette méthode est un moyen pratique d'asserter que les appels sont effectués d'une manière particulière :
>>> mock = Mock() >>> mock.method(1, 2, 3, test='wow') <Mock name='mock.method()' id='...'> >>> mock.method.assert_called_with(1, 2, 3, test='wow')
-
assert_called_once_with
(*args, **kwargs)¶ Asserter que le simulacre a été appelé exactement une fois et que cet appel était avec les arguments spécifiés.
>>> mock = Mock(return_value=None) >>> mock('foo', bar='baz') >>> mock.assert_called_once_with('foo', bar='baz') >>> mock('other', bar='values') >>> mock.assert_called_once_with('other', bar='values') Traceback (most recent call last): ... AssertionError: Expected 'mock' to be called once. Called 2 times.
-
assert_any_call
(*args, **kwargs)¶ Asserter que le simulacre a été appelé avec les arguments spécifiés.
Asserter que le simulacre a bien été appelé avec les arguments au cours de la vie du simulacre. Contrairement à
assert_called_with()
etassert_called_once_with()
qui passent seulement si l'appel demandé correspond bien au dernier appel, et dans le cas deassert_called_once_with()
l'appel au simulacre doit être unique.>>> mock = Mock(return_value=None) >>> mock(1, 2, arg='thing') >>> mock('some', 'thing', 'else') >>> mock.assert_any_call(1, 2, arg='thing')
-
assert_has_calls
(calls, any_order=False)¶ Asserter que le simulacre a été appelé avec les appels spécifiés. L'attribut
mock_calls
est comparé à la liste des appels.If any_order is false then the calls must be sequential. There can be extra calls before or after the specified calls.
Si any_order est vrai alors les appels peuvent être dans n'importe quel ordre, mais ils doivent tous apparaître dans
mock_calls
.>>> mock = Mock(return_value=None) >>> mock(1) >>> mock(2) >>> mock(3) >>> mock(4) >>> calls = [call(2), call(3)] >>> mock.assert_has_calls(calls) >>> calls = [call(4), call(2), call(3)] >>> mock.assert_has_calls(calls, any_order=True)
-
assert_not_called
()¶ Asserter que le simulacre n'a jamais été appelé.
>>> m = Mock() >>> m.hello.assert_not_called() >>> obj = m.hello() >>> m.hello.assert_not_called() Traceback (most recent call last): ... AssertionError: Expected 'hello' to not have been called. Called 1 times.
Nouveau dans la version 3.5.
-
reset_mock
(*, return_value=False, side_effect=False)¶ La méthode reset_mock réinitialise tous les attributs d'appel sur un simulacre :
>>> mock = Mock(return_value=None) >>> mock('hello') >>> mock.called True >>> mock.reset_mock() >>> mock.called False
Modifié dans la version 3.6: Ajout de deux arguments nommés à la fonction reset_mock.
Utile pour faire une série d'assertions qui réutilisent le même objet. Attention
reset_mock()
ne réinitialise pas la valeur de retour, lesside_effect
ou tout attribut enfant que vous avez défini en utilisant l'affectation normale par défaut. Pour réinitialiser return_value ouside_effect
, utiliser les paramètres correspondants avec la valeurTrue
. Les simulacres enfants et le simulacre de valeur de retour (le cas échéant) seront également réinitialisés.Note
return_value, et
side_effect
sont utilisable uniquement par arguments nommés.
-
mock_add_spec
(spec, spec_set=False)¶ Ajoute une spécification à un simulacre. spec peut être un objet ou une liste de chaînes de caractères. Seuls les attributs de la spécification spec peuvent être récupérés en tant qu'attributs du simulacre.
Si spec_set est vrai, seuls les attributs de la spécification peuvent être définis.
-
attach_mock
(mock, attribute)¶ Attache un simulacre comme attribut de l'instance courante, en remplaçant son nom et son parent. Les appels au simulacre attaché sont enregistrés dans les attributs
method_calls
etmock_calls
de l'instance courante.
-
configure_mock
(**kwargs)¶ Définir les attributs sur le simulacre à l'aide d'arguments nommés.
Les attributs, les valeurs de retour et les effets de bords peuvent être définis sur des simulacres enfants en utilisant la notation par points standard et en dépaquetant un dictionnaire dans l'appel de méthode :
>>> mock = Mock() >>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError} >>> mock.configure_mock(**attrs) >>> mock.method() 3 >>> mock.other() Traceback (most recent call last): ... KeyError
La même chose peut être réalisée en utilisant le constructeur des simulacres :
>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError} >>> mock = Mock(some_attribute='eggs', **attrs) >>> mock.some_attribute 'eggs' >>> mock.method() 3 >>> mock.other() Traceback (most recent call last): ... KeyError
configure_mock()
existe pour faciliter la configuration après la création du simulacre.
-
__dir__
()¶ Les objets
Mock
limitent les résultats dedir(un_mock)
à des résultats utiles. Pour les simulacres avec une spécification spec, cela inclut tous les attributs autorisés du simulacre.Voir
FILTER_DIR
pour savoir ce que fait ce filtrage, et comment le désactiver.
-
_get_child_mock
(**kw)¶ Crée les simulacres enfants pour les attributs et la valeur de retour. Par défaut, les objets simulacre enfants sont du même type que le parent. Les sous-classes de Mock peuvent surcharger cette méthode pour personnaliser la façon dont les simulacres enfants sont créés.
Pour les simulacres non appelables, la variante appelable est utilisée (plutôt qu'une sous-classe personnalisée).
-
called
¶ Un booléen représentant si le simulacre a bien été appelé ou non :
>>> mock = Mock(return_value=None) >>> mock.called False >>> mock() >>> mock.called True
-
call_count
¶ Un entier indiquant combien de fois le simulacre a été appelé :
>>> mock = Mock(return_value=None) >>> mock.call_count 0 >>> mock() >>> mock() >>> mock.call_count 2
-
return_value
¶ Définir cette option pour configurer la valeur renvoyé par appel du simulacre :
>>> mock = Mock() >>> mock.return_value = 'fish' >>> mock() 'fish'
La valeur de revoie par défaut est un simulacre configurable normalement :
>>> mock = Mock() >>> mock.return_value.attribute = sentinel.Attribute >>> mock.return_value() <Mock name='mock()()' id='...'> >>> mock.return_value.assert_called_with()
L'attribut
return_value
peut également être défini dans le constructeur :>>> mock = Mock(return_value=3) >>> mock.return_value 3 >>> mock() 3
-
side_effect
¶ C'est soit une fonction à appeler lors de l'appel du simulacre, soit une exception (classe ou instance) à lever.
Si vous passez une fonction, elle est appelée avec les mêmes arguments que la fonction simulée et à moins que la fonction ne renvoie le singleton
DEFAULT
l'appel le la fonction simulée renvoie ce que la fonction renvoie. Si la fonction renvoieDEFAULT
alors le simulacre renvoie sa valeur normale (celle dereturn_value
).Si vous passez un itérable, il est utilisé pour récupérer un itérateur qui doit renvoyer une valeur à chaque appel. Cette valeur peut être soit une instance d'exception à lever, soit une valeur à renvoyer à l'appel au simulacre (le traitement
DEFAULT
est identique au renvoie de la fonction simulée).Un exemple d'un simulacre qui lève une exception (pour tester la gestion des exceptions d'une API) :
>>> mock = Mock() >>> mock.side_effect = Exception('Boom!') >>> mock() Traceback (most recent call last): ... Exception: Boom!
Utiliser
side_effect
pour renvoyer une séquence de valeurs :>>> mock = Mock() >>> mock.side_effect = [3, 2, 1] >>> mock(), mock(), mock() (3, 2, 1)
Utilisation d'un objet appelable :
>>> mock = Mock(return_value=3) >>> def side_effect(*args, **kwargs): ... return DEFAULT ... >>> mock.side_effect = side_effect >>> mock() 3
Un attribut
side_effect
peut être défini dans le constructeur. Voici un exemple qui ajoute un à la valeur du simulacre appelé et qui le renvoie :>>> side_effect = lambda value: value + 1 >>> mock = Mock(side_effect=side_effect) >>> mock(3) 4 >>> mock(-8) -7
Positionner
side_effect
surNone
l'efface :>>> m = Mock(side_effect=KeyError, return_value=3) >>> m() Traceback (most recent call last): ... KeyError >>> m.side_effect = None >>> m() 3
-
call_args
¶ C'est soit
None
(si le simulacre n'a pas été appelé), soit les arguments avec lesquels le simulacre a été appelé en dernier. Le retour est sous la forme d'un tuple : le premier élément est l'ensemble des arguments ordonnés avec lequel le simulacre a été appelé (ou un tuple vide) et le second élément est l'ensemble des arguments nommés (ou un dictionnaire vide).>>> mock = Mock(return_value=None) >>> print(mock.call_args) None >>> mock() >>> mock.call_args call() >>> mock.call_args == () True >>> mock(3, 4) >>> mock.call_args call(3, 4) >>> mock.call_args == ((3, 4),) True >>> mock(3, 4, 5, key='fish', next='w00t!') >>> mock.call_args call(3, 4, 5, key='fish', next='w00t!')
L'attribut
call_args
, ainsi que les éléments des listescall_args_list
,method_calls
etmock_calls
sont des objetscall
. Ce sont des tuples, que l'on peut dépaqueter afin de faire des affirmations plus complexes sur chacun des arguments. Voir appels comme tuples.
-
call_args_list
¶ This is a list of all the calls made to the mock object in sequence (so the length of the list is the number of times it has been called). Before any calls have been made it is an empty list. The
call
object can be used for conveniently constructing lists of calls to compare withcall_args_list
.>>> mock = Mock(return_value=None) >>> mock() >>> mock(3, 4) >>> mock(key='fish', next='w00t!') >>> mock.call_args_list [call(), call(3, 4), call(key='fish', next='w00t!')] >>> expected = [(), ((3, 4),), ({'key': 'fish', 'next': 'w00t!'},)] >>> mock.call_args_list == expected True
Members of
call_args_list
arecall
objects. These can be unpacked as tuples to get at the individual arguments. See calls as tuples.
-
method_calls
¶ As well as tracking calls to themselves, mocks also track calls to methods and attributes, and their methods and attributes:
>>> mock = Mock() >>> mock.method() <Mock name='mock.method()' id='...'> >>> mock.property.method.attribute() <Mock name='mock.property.method.attribute()' id='...'> >>> mock.method_calls [call.method(), call.property.method.attribute()]
Members of
method_calls
arecall
objects. These can be unpacked as tuples to get at the individual arguments. See calls as tuples.
-
mock_calls
¶ mock_calls
records all calls to the mock object, its methods, magic methods and return value mocks.>>> mock = MagicMock() >>> result = mock(1, 2, 3) >>> mock.first(a=3) <MagicMock name='mock.first()' id='...'> >>> mock.second() <MagicMock name='mock.second()' id='...'> >>> int(mock) 1 >>> result(1) <MagicMock name='mock()()' id='...'> >>> expected = [call(1, 2, 3), call.first(a=3), call.second(), ... call.__int__(), call()(1)] >>> mock.mock_calls == expected True
Members of
mock_calls
arecall
objects. These can be unpacked as tuples to get at the individual arguments. See calls as tuples.Note
The way
mock_calls
are recorded means that where nested calls are made, the parameters of ancestor calls are not recorded and so will always compare equal:>>> mock = MagicMock() >>> mock.top(a=3).bottom() <MagicMock name='mock.top().bottom()' id='...'> >>> mock.mock_calls [call.top(a=3), call.top().bottom()] >>> mock.mock_calls[-1] == call.top(a=-1).bottom() True
-
__class__
¶ Normally the
__class__
attribute of an object will return its type. For a mock object with aspec
,__class__
returns the spec class instead. This allows mock objects to passisinstance()
tests for the object they are replacing / masquerading as:>>> mock = Mock(spec=3) >>> isinstance(mock, int) True
__class__
is assignable to, this allows a mock to pass anisinstance()
check without forcing you to use a spec:>>> mock = Mock() >>> mock.__class__ = dict >>> isinstance(mock, dict) True
-
class
unittest.mock.
NonCallableMock
(spec=None, wraps=None, name=None, spec_set=None, **kwargs)¶ A non-callable version of
Mock
. The constructor parameters have the same meaning ofMock
, with the exception of return_value and side_effect which have no meaning on a non-callable mock.
Mock objects that use a class or an instance as a spec
or
spec_set
are able to pass isinstance()
tests:
>>> mock = Mock(spec=SomeClass)
>>> isinstance(mock, SomeClass)
True
>>> mock = Mock(spec_set=SomeClass())
>>> isinstance(mock, SomeClass)
True
The Mock
classes have support for mocking magic methods. See magic
methods for the full details.
The mock classes and the patch()
decorators all take arbitrary keyword
arguments for configuration. For the patch()
decorators the keywords are
passed to the constructor of the mock being created. The keyword arguments
are for configuring attributes of the mock:
>>> m = MagicMock(attribute=3, other='fish')
>>> m.attribute
3
>>> m.other
'fish'
The return value and side effect of child mocks can be set in the same way,
using dotted notation. As you can't use dotted names directly in a call you
have to create a dictionary and unpack it using **
:
>>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> mock = Mock(some_attribute='eggs', **attrs)
>>> mock.some_attribute
'eggs'
>>> mock.method()
3
>>> mock.other()
Traceback (most recent call last):
...
KeyError
A callable mock which was created with a spec (or a spec_set) will introspect the specification object's signature when matching calls to the mock. Therefore, it can match the actual call's arguments regardless of whether they were passed positionally or by name:
>>> def f(a, b, c): pass
...
>>> mock = Mock(spec=f)
>>> mock(1, 2, c=3)
<Mock name='mock()' id='140161580456576'>
>>> mock.assert_called_with(1, 2, 3)
>>> mock.assert_called_with(a=1, b=2, c=3)
This applies to assert_called_with()
,
assert_called_once_with()
, assert_has_calls()
and
assert_any_call()
. When Autospeccing, it will also
apply to method calls on the mock object.
Modifié dans la version 3.4: Added signature introspection on specced and autospecced mock objects.
-
class
unittest.mock.
PropertyMock
(*args, **kwargs)¶ A mock intended to be used as a property, or other descriptor, on a class.
PropertyMock
provides__get__()
and__set__()
methods so you can specify a return value when it is fetched.Fetching a
PropertyMock
instance from an object calls the mock, with no args. Setting it calls the mock with the value being set.>>> class Foo: ... @property ... def foo(self): ... return 'something' ... @foo.setter ... def foo(self, value): ... pass ... >>> with patch('__main__.Foo.foo', new_callable=PropertyMock) as mock_foo: ... mock_foo.return_value = 'mockity-mock' ... this_foo = Foo() ... print(this_foo.foo) ... this_foo.foo = 6 ... mockity-mock >>> mock_foo.mock_calls [call(), call(6)]
Because of the way mock attributes are stored you can't directly attach a
PropertyMock
to a mock object. Instead you can attach it to the mock type
object:
>>> m = MagicMock()
>>> p = PropertyMock(return_value=3)
>>> type(m).foo = p
>>> m.foo
3
>>> p.assert_called_once_with()
Calling¶
Mock objects are callable. The call will return the value set as the
return_value
attribute. The default return value is a new Mock
object; it is created the first time the return value is accessed (either
explicitly or by calling the Mock) - but it is stored and the same one
returned each time.
Calls made to the object will be recorded in the attributes
like call_args
and call_args_list
.
If side_effect
is set then it will be called after the call has
been recorded, so if side_effect
raises an exception the call is still
recorded.
The simplest way to make a mock raise an exception when called is to make
side_effect
an exception class or instance:
>>> m = MagicMock(side_effect=IndexError)
>>> m(1, 2, 3)
Traceback (most recent call last):
...
IndexError
>>> m.mock_calls
[call(1, 2, 3)]
>>> m.side_effect = KeyError('Bang!')
>>> m('two', 'three', 'four')
Traceback (most recent call last):
...
KeyError: 'Bang!'
>>> m.mock_calls
[call(1, 2, 3), call('two', 'three', 'four')]
If side_effect
is a function then whatever that function returns is what
calls to the mock return. The side_effect
function is called with the
same arguments as the mock. This allows you to vary the return value of the
call dynamically, based on the input:
>>> def side_effect(value):
... return value + 1
...
>>> m = MagicMock(side_effect=side_effect)
>>> m(1)
2
>>> m(2)
3
>>> m.mock_calls
[call(1), call(2)]
If you want the mock to still return the default return value (a new mock), or
any set return value, then there are two ways of doing this. Either return
mock.return_value
from inside side_effect
, or return DEFAULT
:
>>> m = MagicMock()
>>> def side_effect(*args, **kwargs):
... return m.return_value
...
>>> m.side_effect = side_effect
>>> m.return_value = 3
>>> m()
3
>>> def side_effect(*args, **kwargs):
... return DEFAULT
...
>>> m.side_effect = side_effect
>>> m()
3
To remove a side_effect
, and return to the default behaviour, set the
side_effect
to None
:
>>> m = MagicMock(return_value=6)
>>> def side_effect(*args, **kwargs):
... return 3
...
>>> m.side_effect = side_effect
>>> m()
3
>>> m.side_effect = None
>>> m()
6
The side_effect
can also be any iterable object. Repeated calls to the mock
will return values from the iterable (until the iterable is exhausted and
a StopIteration
is raised):
>>> m = MagicMock(side_effect=[1, 2, 3])
>>> m()
1
>>> m()
2
>>> m()
3
>>> m()
Traceback (most recent call last):
...
StopIteration
If any members of the iterable are exceptions they will be raised instead of returned:
>>> iterable = (33, ValueError, 66)
>>> m = MagicMock(side_effect=iterable)
>>> m()
33
>>> m()
Traceback (most recent call last):
...
ValueError
>>> m()
66
Deleting Attributes¶
Mock objects create attributes on demand. This allows them to pretend to be objects of any type.
You may want a mock object to return False
to a hasattr()
call, or raise an
AttributeError
when an attribute is fetched. You can do this by providing
an object as a spec
for a mock, but that isn't always convenient.
You "block" attributes by deleting them. Once deleted, accessing an attribute
will raise an AttributeError
.
>>> mock = MagicMock()
>>> hasattr(mock, 'm')
True
>>> del mock.m
>>> hasattr(mock, 'm')
False
>>> del mock.f
>>> mock.f
Traceback (most recent call last):
...
AttributeError: f
Mock names and the name attribute¶
Since "name" is an argument to the Mock
constructor, if you want your
mock object to have a "name" attribute you can't just pass it in at creation
time. There are two alternatives. One option is to use
configure_mock()
:
>>> mock = MagicMock()
>>> mock.configure_mock(name='my_name')
>>> mock.name
'my_name'
A simpler option is to simply set the "name" attribute after mock creation:
>>> mock = MagicMock()
>>> mock.name = "foo"
Attaching Mocks as Attributes¶
When you attach a mock as an attribute of another mock (or as the return
value) it becomes a "child" of that mock. Calls to the child are recorded in
the method_calls
and mock_calls
attributes of the
parent. This is useful for configuring child mocks and then attaching them to
the parent, or for attaching mocks to a parent that records all calls to the
children and allows you to make assertions about the order of calls between
mocks:
>>> parent = MagicMock()
>>> child1 = MagicMock(return_value=None)
>>> child2 = MagicMock(return_value=None)
>>> parent.child1 = child1
>>> parent.child2 = child2
>>> child1(1)
>>> child2(2)
>>> parent.mock_calls
[call.child1(1), call.child2(2)]
The exception to this is if the mock has a name. This allows you to prevent the "parenting" if for some reason you don't want it to happen.
>>> mock = MagicMock()
>>> not_a_child = MagicMock(name='not-a-child')
>>> mock.attribute = not_a_child
>>> mock.attribute()
<MagicMock name='not-a-child()' id='...'>
>>> mock.mock_calls
[]
Mocks created for you by patch()
are automatically given names. To
attach mocks that have names to a parent you use the attach_mock()
method:
>>> thing1 = object()
>>> thing2 = object()
>>> parent = MagicMock()
>>> with patch('__main__.thing1', return_value=None) as child1:
... with patch('__main__.thing2', return_value=None) as child2:
... parent.attach_mock(child1, 'child1')
... parent.attach_mock(child2, 'child2')
... child1('one')
... child2('two')
...
>>> parent.mock_calls
[call.child1('one'), call.child2('two')]
- 1
The only exceptions are magic methods and attributes (those that have leading and trailing double underscores). Mock doesn't create these but instead raises an
AttributeError
. This is because the interpreter will often implicitly request these methods, and gets very confused to get a new Mock object when it expects a magic method. If you need magic method support see magic methods.
The patchers¶
The patch decorators are used for patching objects only within the scope of the function they decorate. They automatically handle the unpatching for you, even if exceptions are raised. All of these functions can also be used in with statements or as class decorators.
patch¶
Note
patch()
is straightforward to use. The key is to do the patching in the
right namespace. See the section where to patch.
-
unittest.mock.
patch
(target, new=DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)¶ patch()
acts as a function decorator, class decorator or a context manager. Inside the body of the function or with statement, the target is patched with a new object. When the function/with statement exits the patch is undone.If new is omitted, then the target is replaced with a
MagicMock
. Ifpatch()
is used as a decorator and new is omitted, the created mock is passed in as an extra argument to the decorated function. Ifpatch()
is used as a context manager the created mock is returned by the context manager.target should be a string in the form
'package.module.ClassName'
. The target is imported and the specified object replaced with the new object, so the target must be importable from the environment you are callingpatch()
from. The target is imported when the decorated function is executed, not at decoration time.The spec and spec_set keyword arguments are passed to the
MagicMock
if patch is creating one for you.In addition you can pass
spec=True
orspec_set=True
, which causes patch to pass in the object being mocked as the spec/spec_set object.new_callable allows you to specify a different class, or callable object, that will be called to create the new object. By default
MagicMock
is used.A more powerful form of spec is autospec. If you set
autospec=True
then the mock will be created with a spec from the object being replaced. All attributes of the mock will also have the spec of the corresponding attribute of the object being replaced. Methods and functions being mocked will have their arguments checked and will raise aTypeError
if they are called with the wrong signature. For mocks replacing a class, their return value (the 'instance') will have the same spec as the class. See thecreate_autospec()
function and Autospeccing.Instead of
autospec=True
you can passautospec=some_object
to use an arbitrary object as the spec instead of the one being replaced.By default
patch()
will fail to replace attributes that don't exist. If you pass increate=True
, and the attribute doesn't exist, patch will create the attribute for you when the patched function is called, and delete it again after the patched function has exited. This is useful for writing tests against attributes that your production code creates at runtime. It is off by default because it can be dangerous. With it switched on you can write passing tests against APIs that don't actually exist!Note
Modifié dans la version 3.5: If you are patching builtins in a module then you don't need to pass
create=True
, it will be added by default.Patch can be used as a
TestCase
class decorator. It works by decorating each test method in the class. This reduces the boilerplate code when your test methods share a common patchings set.patch()
finds tests by looking for method names that start withpatch.TEST_PREFIX
. By default this is'test'
, which matches the wayunittest
finds tests. You can specify an alternative prefix by settingpatch.TEST_PREFIX
.Patch can be used as a context manager, with the with statement. Here the patching applies to the indented block after the with statement. If you use "as" then the patched object will be bound to the name after the "as"; very useful if
patch()
is creating a mock object for you.patch()
takes arbitrary keyword arguments. These will be passed to theMock
(or new_callable) on construction.patch.dict(...)
,patch.multiple(...)
andpatch.object(...)
are available for alternate use-cases.
patch()
as function decorator, creating the mock for you and passing it into
the decorated function:
>>> @patch('__main__.SomeClass')
... def function(normal_argument, mock_class):
... print(mock_class is SomeClass)
...
>>> function(None)
True
Patching a class replaces the class with a MagicMock
instance. If the
class is instantiated in the code under test then it will be the
return_value
of the mock that will be used.
If the class is instantiated multiple times you could use
side_effect
to return a new mock each time. Alternatively you
can set the return_value to be anything you want.
To configure return values on methods of instances on the patched class
you must do this on the return_value
. For example:
>>> class Class:
... def method(self):
... pass
...
>>> with patch('__main__.Class') as MockClass:
... instance = MockClass.return_value
... instance.method.return_value = 'foo'
... assert Class() is instance
... assert Class().method() == 'foo'
...
If you use spec or spec_set and patch()
is replacing a class, then the
return value of the created mock will have the same spec.
>>> Original = Class
>>> patcher = patch('__main__.Class', spec=True)
>>> MockClass = patcher.start()
>>> instance = MockClass()
>>> assert isinstance(instance, Original)
>>> patcher.stop()
The new_callable argument is useful where you want to use an alternative
class to the default MagicMock
for the created mock. For example, if
you wanted a NonCallableMock
to be used:
>>> thing = object()
>>> with patch('__main__.thing', new_callable=NonCallableMock) as mock_thing:
... assert thing is mock_thing
... thing()
...
Traceback (most recent call last):
...
TypeError: 'NonCallableMock' object is not callable
Another use case might be to replace an object with an io.StringIO
instance:
>>> from io import StringIO
>>> def foo():
... print('Something')
...
>>> @patch('sys.stdout', new_callable=StringIO)
... def test(mock_stdout):
... foo()
... assert mock_stdout.getvalue() == 'Something\n'
...
>>> test()
When patch()
is creating a mock for you, it is common that the first thing
you need to do is to configure the mock. Some of that configuration can be done
in the call to patch. Any arbitrary keywords you pass into the call will be
used to set attributes on the created mock:
>>> patcher = patch('__main__.thing', first='one', second='two')
>>> mock_thing = patcher.start()
>>> mock_thing.first
'one'
>>> mock_thing.second
'two'
As well as attributes on the created mock attributes, like the
return_value
and side_effect
, of child mocks can
also be configured. These aren't syntactically valid to pass in directly as
keyword arguments, but a dictionary with these as keys can still be expanded
into a patch()
call using **
:
>>> config = {'method.return_value': 3, 'other.side_effect': KeyError}
>>> patcher = patch('__main__.thing', **config)
>>> mock_thing = patcher.start()
>>> mock_thing.method()
3
>>> mock_thing.other()
Traceback (most recent call last):
...
KeyError
By default, attempting to patch a function in a module (or a method or an
attribute in a class) that does not exist will fail with AttributeError
:
>>> @patch('sys.non_existing_attribute', 42)
... def test():
... assert sys.non_existing_attribute == 42
...
>>> test()
Traceback (most recent call last):
...
AttributeError: <module 'sys' (built-in)> does not have the attribute 'non_existing'
but adding create=True
in the call to patch()
will make the previous example
work as expected:
>>> @patch('sys.non_existing_attribute', 42, create=True)
... def test(mock_stdout):
... assert sys.non_existing_attribute == 42
...
>>> test()
patch.object¶
-
patch.
object
(target, attribute, new=DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)¶ patch the named member (attribute) on an object (target) with a mock object.
patch.object()
can be used as a decorator, class decorator or a context manager. Arguments new, spec, create, spec_set, autospec and new_callable have the same meaning as forpatch()
. Likepatch()
,patch.object()
takes arbitrary keyword arguments for configuring the mock object it creates.When used as a class decorator
patch.object()
honourspatch.TEST_PREFIX
for choosing which methods to wrap.
You can either call patch.object()
with three arguments or two arguments. The
three argument form takes the object to be patched, the attribute name and the
object to replace the attribute with.
When calling with the two argument form you omit the replacement object, and a mock is created for you and passed in as an extra argument to the decorated function:
>>> @patch.object(SomeClass, 'class_method')
... def test(mock_method):
... SomeClass.class_method(3)
... mock_method.assert_called_with(3)
...
>>> test()
spec, create and the other arguments to patch.object()
have the same
meaning as they do for patch()
.
patch.dict¶
-
patch.
dict
(in_dict, values=(), clear=False, **kwargs)¶ Patch a dictionary, or dictionary like object, and restore the dictionary to its original state after the test.
in_dict can be a dictionary or a mapping like container. If it is a mapping then it must at least support getting, setting and deleting items plus iterating over keys.
in_dict can also be a string specifying the name of the dictionary, which will then be fetched by importing it.
values can be a dictionary of values to set in the dictionary. values can also be an iterable of
(key, value)
pairs.If clear is true then the dictionary will be cleared before the new values are set.
patch.dict()
can also be called with arbitrary keyword arguments to set values in the dictionary.patch.dict()
can be used as a context manager, decorator or class decorator. When used as a class decoratorpatch.dict()
honourspatch.TEST_PREFIX
for choosing which methods to wrap.
patch.dict()
can be used to add members to a dictionary, or simply let a test
change a dictionary, and ensure the dictionary is restored when the test
ends.
>>> foo = {}
>>> with patch.dict(foo, {'newkey': 'newvalue'}):
... assert foo == {'newkey': 'newvalue'}
...
>>> assert foo == {}
>>> import os
>>> with patch.dict('os.environ', {'newkey': 'newvalue'}):
... print(os.environ['newkey'])
...
newvalue
>>> assert 'newkey' not in os.environ
Keywords can be used in the patch.dict()
call to set values in the dictionary:
>>> mymodule = MagicMock()
>>> mymodule.function.return_value = 'fish'
>>> with patch.dict('sys.modules', mymodule=mymodule):
... import mymodule
... mymodule.function('some', 'args')
...
'fish'
patch.dict()
can be used with dictionary like objects that aren't actually
dictionaries. At the very minimum they must support item getting, setting,
deleting and either iteration or membership test. This corresponds to the
magic methods __getitem__()
, __setitem__()
, __delitem__()
and either
__iter__()
or __contains__()
.
>>> class Container:
... def __init__(self):
... self.values = {}
... def __getitem__(self, name):
... return self.values[name]
... def __setitem__(self, name, value):
... self.values[name] = value
... def __delitem__(self, name):
... del self.values[name]
... def __iter__(self):
... return iter(self.values)
...
>>> thing = Container()
>>> thing['one'] = 1
>>> with patch.dict(thing, one=2, two=3):
... assert thing['one'] == 2
... assert thing['two'] == 3
...
>>> assert thing['one'] == 1
>>> assert list(thing) == ['one']
patch.multiple¶
-
patch.
multiple
(target, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, **kwargs)¶ Perform multiple patches in a single call. It takes the object to be patched (either as an object or a string to fetch the object by importing) and keyword arguments for the patches:
with patch.multiple(settings, FIRST_PATCH='one', SECOND_PATCH='two'): ...
Use
DEFAULT
as the value if you wantpatch.multiple()
to create mocks for you. In this case the created mocks are passed into a decorated function by keyword, and a dictionary is returned whenpatch.multiple()
is used as a context manager.patch.multiple()
can be used as a decorator, class decorator or a context manager. The arguments spec, spec_set, create, autospec and new_callable have the same meaning as forpatch()
. These arguments will be applied to all patches done bypatch.multiple()
.When used as a class decorator
patch.multiple()
honourspatch.TEST_PREFIX
for choosing which methods to wrap.
If you want patch.multiple()
to create mocks for you, then you can use
DEFAULT
as the value. If you use patch.multiple()
as a decorator
then the created mocks are passed into the decorated function by keyword.
>>> thing = object()
>>> other = object()
>>> @patch.multiple('__main__', thing=DEFAULT, other=DEFAULT)
... def test_function(thing, other):
... assert isinstance(thing, MagicMock)
... assert isinstance(other, MagicMock)
...
>>> test_function()
patch.multiple()
can be nested with other patch
decorators, but put arguments
passed by keyword after any of the standard arguments created by patch()
:
>>> @patch('sys.exit')
... @patch.multiple('__main__', thing=DEFAULT, other=DEFAULT)
... def test_function(mock_exit, other, thing):
... assert 'other' in repr(other)
... assert 'thing' in repr(thing)
... assert 'exit' in repr(mock_exit)
...
>>> test_function()
If patch.multiple()
is used as a context manager, the value returned by the
context manager is a dictionary where created mocks are keyed by name:
>>> with patch.multiple('__main__', thing=DEFAULT, other=DEFAULT) as values:
... assert 'other' in repr(values['other'])
... assert 'thing' in repr(values['thing'])
... assert values['thing'] is thing
... assert values['other'] is other
...
patch methods: start and stop¶
All the patchers have start()
and stop()
methods. These make it simpler to do
patching in setUp
methods or where you want to do multiple patches without
nesting decorators or with statements.
To use them call patch()
, patch.object()
or patch.dict()
as
normal and keep a reference to the returned patcher
object. You can then
call start()
to put the patch in place and stop()
to undo it.
If you are using patch()
to create a mock for you then it will be returned by
the call to patcher.start
.
>>> patcher = patch('package.module.ClassName')
>>> from package import module
>>> original = module.ClassName
>>> new_mock = patcher.start()
>>> assert module.ClassName is not original
>>> assert module.ClassName is new_mock
>>> patcher.stop()
>>> assert module.ClassName is original
>>> assert module.ClassName is not new_mock
A typical use case for this might be for doing multiple patches in the setUp
method of a TestCase
:
>>> class MyTest(TestCase):
... def setUp(self):
... self.patcher1 = patch('package.module.Class1')
... self.patcher2 = patch('package.module.Class2')
... self.MockClass1 = self.patcher1.start()
... self.MockClass2 = self.patcher2.start()
...
... def tearDown(self):
... self.patcher1.stop()
... self.patcher2.stop()
...
... def test_something(self):
... assert package.module.Class1 is self.MockClass1
... assert package.module.Class2 is self.MockClass2
...
>>> MyTest('test_something').run()
Prudence
If you use this technique you must ensure that the patching is "undone" by
calling stop
. This can be fiddlier than you might think, because if an
exception is raised in the setUp
then tearDown
is not called.
unittest.TestCase.addCleanup()
makes this easier:
>>> class MyTest(TestCase):
... def setUp(self):
... patcher = patch('package.module.Class')
... self.MockClass = patcher.start()
... self.addCleanup(patcher.stop)
...
... def test_something(self):
... assert package.module.Class is self.MockClass
...
As an added bonus you no longer need to keep a reference to the patcher
object.
It is also possible to stop all patches which have been started by using
patch.stopall()
.
-
patch.
stopall
()¶ Stop all active patches. Only stops patches started with
start
.
patch builtins¶
You can patch any builtins within a module. The following example patches
builtin ord()
:
>>> @patch('__main__.ord')
... def test(mock_ord):
... mock_ord.return_value = 101
... print(ord('c'))
...
>>> test()
101
TEST_PREFIX¶
All of the patchers can be used as class decorators. When used in this way
they wrap every test method on the class. The patchers recognise methods that
start with 'test'
as being test methods. This is the same way that the
unittest.TestLoader
finds test methods by default.
It is possible that you want to use a different prefix for your tests. You can
inform the patchers of the different prefix by setting patch.TEST_PREFIX
:
>>> patch.TEST_PREFIX = 'foo'
>>> value = 3
>>>
>>> @patch('__main__.value', 'not three')
... class Thing:
... def foo_one(self):
... print(value)
... def foo_two(self):
... print(value)
...
>>>
>>> Thing().foo_one()
not three
>>> Thing().foo_two()
not three
>>> value
3
Nesting Patch Decorators¶
If you want to perform multiple patches then you can simply stack up the decorators.
You can stack up multiple patch decorators using this pattern:
>>> @patch.object(SomeClass, 'class_method')
... @patch.object(SomeClass, 'static_method')
... def test(mock1, mock2):
... assert SomeClass.static_method is mock1
... assert SomeClass.class_method is mock2
... SomeClass.static_method('foo')
... SomeClass.class_method('bar')
... return mock1, mock2
...
>>> mock1, mock2 = test()
>>> mock1.assert_called_once_with('foo')
>>> mock2.assert_called_once_with('bar')
Note that the decorators are applied from the bottom upwards. This is the standard way that Python applies decorators. The order of the created mocks passed into your test function matches this order.
Where to patch¶
patch()
works by (temporarily) changing the object that a name points to with
another one. There can be many names pointing to any individual object, so
for patching to work you must ensure that you patch the name used by the system
under test.
The basic principle is that you patch where an object is looked up, which is not necessarily the same place as where it is defined. A couple of examples will help to clarify this.
Imagine we have a project that we want to test with the following structure:
a.py
-> Defines SomeClass
b.py
-> from a import SomeClass
-> some_function instantiates SomeClass
Now we want to test some_function
but we want to mock out SomeClass
using
patch()
. The problem is that when we import module b, which we will have to
do then it imports SomeClass
from module a. If we use patch()
to mock out
a.SomeClass
then it will have no effect on our test; module b already has a
reference to the real SomeClass
and it looks like our patching had no
effect.
The key is to patch out SomeClass
where it is used (or where it is looked up).
In this case some_function
will actually look up SomeClass
in module b,
where we have imported it. The patching should look like:
@patch('b.SomeClass')
However, consider the alternative scenario where instead of from a import
SomeClass
module b does import a
and some_function
uses a.SomeClass
. Both
of these import forms are common. In this case the class we want to patch is
being looked up in the module and so we have to patch a.SomeClass
instead:
@patch('a.SomeClass')
Patching Descriptors and Proxy Objects¶
Both patch and patch.object correctly patch and restore descriptors: class methods, static methods and properties. You should patch these on the class rather than an instance. They also work with some objects that proxy attribute access, like the django settings object.
MagicMock and magic method support¶
Mocking Magic Methods¶
Mock
supports mocking the Python protocol methods, also known as
"magic methods". This allows mock objects to replace containers or other
objects that implement Python protocols.
Because magic methods are looked up differently from normal methods 2, this support has been specially implemented. This means that only specific magic methods are supported. The supported list includes almost all of them. If there are any missing that you need please let us know.
You mock magic methods by setting the method you are interested in to a function
or a mock instance. If you are using a function then it must take self
as
the first argument 3.
>>> def __str__(self):
... return 'fooble'
...
>>> mock = Mock()
>>> mock.__str__ = __str__
>>> str(mock)
'fooble'
>>> mock = Mock()
>>> mock.__str__ = Mock()
>>> mock.__str__.return_value = 'fooble'
>>> str(mock)
'fooble'
>>> mock = Mock()
>>> mock.__iter__ = Mock(return_value=iter([]))
>>> list(mock)
[]
One use case for this is for mocking objects used as context managers in a
with
statement:
>>> mock = Mock()
>>> mock.__enter__ = Mock(return_value='foo')
>>> mock.__exit__ = Mock(return_value=False)
>>> with mock as m:
... assert m == 'foo'
...
>>> mock.__enter__.assert_called_with()
>>> mock.__exit__.assert_called_with(None, None, None)
Calls to magic methods do not appear in method_calls
, but they
are recorded in mock_calls
.
Note
If you use the spec keyword argument to create a mock then attempting to
set a magic method that isn't in the spec will raise an AttributeError
.
The full list of supported magic methods is:
__hash__
,__sizeof__
,__repr__
and__str__
__dir__
,__format__
et__subclasses__
__floor__
,__trunc__
et__ceil__
Comparisons:
__lt__
,__gt__
,__le__
,__ge__
,__eq__
and__ne__
Container methods:
__getitem__
,__setitem__
,__delitem__
,__contains__
,__len__
,__iter__
,__reversed__
and__missing__
Context manager:
__enter__
and__exit__
Unary numeric methods:
__neg__
,__pos__
and__invert__
The numeric methods (including right hand and in-place variants):
__add__
,__sub__
,__mul__
,__matmul__
,__div__
,__truediv__
,__floordiv__
,__mod__
,__divmod__
,__lshift__
,__rshift__
,__and__
,__xor__
,__or__
, and__pow__
Numeric conversion methods:
__complex__
,__int__
,__float__
and__index__
Descriptor methods:
__get__
,__set__
and__delete__
Pickling:
__reduce__
,__reduce_ex__
,__getinitargs__
,__getnewargs__
,__getstate__
and__setstate__
The following methods exist but are not supported as they are either in use by mock, can't be set dynamically, or can cause problems:
__getattr__
,__setattr__
,__init__
and__new__
__prepare__
,__instancecheck__
,__subclasscheck__
,__del__
Magic Mock¶
There are two MagicMock
variants: MagicMock
and NonCallableMagicMock
.
-
class
unittest.mock.
MagicMock
(*args, **kw)¶ MagicMock
is a subclass ofMock
with default implementations of most of the magic methods. You can useMagicMock
without having to configure the magic methods yourself.The constructor parameters have the same meaning as for
Mock
.If you use the spec or spec_set arguments then only magic methods that exist in the spec will be created.
-
class
unittest.mock.
NonCallableMagicMock
(*args, **kw)¶ A non-callable version of
MagicMock
.The constructor parameters have the same meaning as for
MagicMock
, with the exception of return_value and side_effect which have no meaning on a non-callable mock.
The magic methods are setup with MagicMock
objects, so you can configure them
and use them in the usual way:
>>> mock = MagicMock()
>>> mock[3] = 'fish'
>>> mock.__setitem__.assert_called_with(3, 'fish')
>>> mock.__getitem__.return_value = 'result'
>>> mock[2]
'result'
By default many of the protocol methods are required to return objects of a specific type. These methods are preconfigured with a default return value, so that they can be used without you having to do anything if you aren't interested in the return value. You can still set the return value manually if you want to change the default.
Methods and their defaults:
__lt__
:NotImplemented
__gt__
:NotImplemented
__le__
:NotImplemented
__ge__
:NotImplemented
__int__
:1
__contains__
:False
__len__
:0
__iter__
:iter([])
__exit__
:False
__complex__
:1j
__float__
:1.0
__bool__
:True
__index__
:1
__hash__
: default hash for the mock__str__
: default str for the mock__sizeof__
: default sizeof for the mock
Par exemple :
>>> mock = MagicMock()
>>> int(mock)
1
>>> len(mock)
0
>>> list(mock)
[]
>>> object() in mock
False
The two equality methods, __eq__()
and __ne__()
, are special.
They do the default equality comparison on identity, using the
side_effect
attribute, unless you change their return value to
return something else:
>>> MagicMock() == 3
False
>>> MagicMock() != 3
True
>>> mock = MagicMock()
>>> mock.__eq__.return_value = True
>>> mock == 3
True
The return value of MagicMock.__iter__()
can be any iterable object and isn't
required to be an iterator:
>>> mock = MagicMock()
>>> mock.__iter__.return_value = ['a', 'b', 'c']
>>> list(mock)
['a', 'b', 'c']
>>> list(mock)
['a', 'b', 'c']
If the return value is an iterator, then iterating over it once will consume it and subsequent iterations will result in an empty list:
>>> mock.__iter__.return_value = iter(['a', 'b', 'c'])
>>> list(mock)
['a', 'b', 'c']
>>> list(mock)
[]
MagicMock
has all of the supported magic methods configured except for some
of the obscure and obsolete ones. You can still set these up if you want.
Magic methods that are supported but not setup by default in MagicMock
are:
__subclasses__
__dir__
__format__
__get__
,__set__
et__delete__
__reversed__
et__missing__
__reduce__
,__reduce_ex__
,__getinitargs__
,__getnewargs__
,__getstate__
and__setstate__
__getformat__
et__setformat__
- 2
Magic methods should be looked up on the class rather than the instance. Different versions of Python are inconsistent about applying this rule. The supported protocol methods should work with all supported versions of Python.
- 3
The function is basically hooked up to the class, but each
Mock
instance is kept isolated from the others.
Helpers¶
sentinel¶
-
unittest.mock.
sentinel
¶ The
sentinel
object provides a convenient way of providing unique objects for your tests.Attributes are created on demand when you access them by name. Accessing the same attribute will always return the same object. The objects returned have a sensible repr so that test failure messages are readable.
Sometimes when testing you need to test that a specific object is passed as an
argument to another method, or returned. It can be common to create named
sentinel objects to test this. sentinel
provides a convenient way of
creating and testing the identity of objects like this.
In this example we monkey patch method
to return sentinel.some_object
:
>>> real = ProductionClass()
>>> real.method = Mock(name="method")
>>> real.method.return_value = sentinel.some_object
>>> result = real.method()
>>> assert result is sentinel.some_object
>>> sentinel.some_object
sentinel.some_object
DEFAULT¶
-
unittest.mock.
DEFAULT
¶ The
DEFAULT
object is a pre-created sentinel (actuallysentinel.DEFAULT
). It can be used byside_effect
functions to indicate that the normal return value should be used.
call¶
-
unittest.mock.
call
(*args, **kwargs)¶ call()
is a helper object for making simpler assertions, for comparing withcall_args
,call_args_list
,mock_calls
andmethod_calls
.call()
can also be used withassert_has_calls()
.>>> m = MagicMock(return_value=None) >>> m(1, 2, a='foo', b='bar') >>> m() >>> m.call_args_list == [call(1, 2, a='foo', b='bar'), call()] True
-
call.
call_list
()¶ For a call object that represents multiple calls,
call_list()
returns a list of all the intermediate calls as well as the final call.
call_list
is particularly useful for making assertions on "chained calls". A
chained call is multiple calls on a single line of code. This results in
multiple entries in mock_calls
on a mock. Manually constructing
the sequence of calls can be tedious.
call_list()
can construct the sequence of calls from the same
chained call:
>>> m = MagicMock()
>>> m(1).method(arg='foo').other('bar')(2.0)
<MagicMock name='mock().method().other()()' id='...'>
>>> kall = call(1).method(arg='foo').other('bar')(2.0)
>>> kall.call_list()
[call(1),
call().method(arg='foo'),
call().method().other('bar'),
call().method().other()(2.0)]
>>> m.mock_calls == kall.call_list()
True
A call
object is either a tuple of (positional args, keyword args) or
(name, positional args, keyword args) depending on how it was constructed. When
you construct them yourself this isn't particularly interesting, but the call
objects that are in the Mock.call_args
, Mock.call_args_list
and
Mock.mock_calls
attributes can be introspected to get at the individual
arguments they contain.
The call
objects in Mock.call_args
and Mock.call_args_list
are two-tuples of (positional args, keyword args) whereas the call
objects
in Mock.mock_calls
, along with ones you construct yourself, are
three-tuples of (name, positional args, keyword args).
You can use their "tupleness" to pull out the individual arguments for more complex introspection and assertions. The positional arguments are a tuple (an empty tuple if there are no positional arguments) and the keyword arguments are a dictionary:
>>> m = MagicMock(return_value=None)
>>> m(1, 2, 3, arg='one', arg2='two')
>>> kall = m.call_args
>>> args, kwargs = kall
>>> args
(1, 2, 3)
>>> kwargs
{'arg2': 'two', 'arg': 'one'}
>>> args is kall[0]
True
>>> kwargs is kall[1]
True
>>> m = MagicMock()
>>> m.foo(4, 5, 6, arg='two', arg2='three')
<MagicMock name='mock.foo()' id='...'>
>>> kall = m.mock_calls[0]
>>> name, args, kwargs = kall
>>> name
'foo'
>>> args
(4, 5, 6)
>>> kwargs
{'arg2': 'three', 'arg': 'two'}
>>> name is m.mock_calls[0][0]
True
create_autospec¶
-
unittest.mock.
create_autospec
(spec, spec_set=False, instance=False, **kwargs)¶ Create a mock object using another object as a spec. Attributes on the mock will use the corresponding attribute on the spec object as their spec.
Functions or methods being mocked will have their arguments checked to ensure that they are called with the correct signature.
If spec_set is
True
then attempting to set attributes that don't exist on the spec object will raise anAttributeError
.If a class is used as a spec then the return value of the mock (the instance of the class) will have the same spec. You can use a class as the spec for an instance object by passing
instance=True
. The returned mock will only be callable if instances of the mock are callable.create_autospec()
also takes arbitrary keyword arguments that are passed to the constructor of the created mock.
See Autospeccing for examples of how to use auto-speccing with
create_autospec()
and the autospec argument to patch()
.
ANY¶
-
unittest.mock.
ANY
¶
Sometimes you may need to make assertions about some of the arguments in a
call to mock, but either not care about some of the arguments or want to pull
them individually out of call_args
and make more complex
assertions on them.
To ignore certain arguments you can pass in objects that compare equal to
everything. Calls to assert_called_with()
and
assert_called_once_with()
will then succeed no matter what was
passed in.
>>> mock = Mock(return_value=None)
>>> mock('foo', bar=object())
>>> mock.assert_called_once_with('foo', bar=ANY)
ANY
can also be used in comparisons with call lists like
mock_calls
:
>>> m = MagicMock(return_value=None)
>>> m(1)
>>> m(1, 2)
>>> m(object())
>>> m.mock_calls == [call(1), call(1, 2), ANY]
True
FILTER_DIR¶
-
unittest.mock.
FILTER_DIR
¶
FILTER_DIR
is a module level variable that controls the way mock objects
respond to dir()
(only for Python 2.6 or more recent). The default is True
,
which uses the filtering described below, to only show useful members. If you
dislike this filtering, or need to switch it off for diagnostic purposes, then
set mock.FILTER_DIR = False
.
With filtering on, dir(some_mock)
shows only useful attributes and will
include any dynamically created attributes that wouldn't normally be shown.
If the mock was created with a spec (or autospec of course) then all the
attributes from the original are shown, even if they haven't been accessed
yet:
>>> dir(Mock())
['assert_any_call',
'assert_called_once_with',
'assert_called_with',
'assert_has_calls',
'attach_mock',
...
>>> from urllib import request
>>> dir(Mock(spec=request))
['AbstractBasicAuthHandler',
'AbstractDigestAuthHandler',
'AbstractHTTPHandler',
'BaseHandler',
...
Many of the not-very-useful (private to Mock
rather than the thing being
mocked) underscore and double underscore prefixed attributes have been
filtered from the result of calling dir()
on a Mock
. If you dislike this
behaviour you can switch it off by setting the module level switch
FILTER_DIR
:
>>> from unittest import mock
>>> mock.FILTER_DIR = False
>>> dir(mock.Mock())
['_NonCallableMock__get_return_value',
'_NonCallableMock__get_side_effect',
'_NonCallableMock__return_value_doc',
'_NonCallableMock__set_return_value',
'_NonCallableMock__set_side_effect',
'__call__',
'__class__',
...
Alternatively you can just use vars(my_mock)
(instance members) and
dir(type(my_mock))
(type members) to bypass the filtering irrespective of
mock.FILTER_DIR
.
mock_open¶
-
unittest.mock.
mock_open
(mock=None, read_data=None)¶ A helper function to create a mock to replace the use of
open()
. It works foropen()
called directly or used as a context manager.The mock argument is the mock object to configure. If
None
(the default) then aMagicMock
will be created for you, with the API limited to methods or attributes available on standard file handles.read_data is a string for the
read()
,readline()
, andreadlines()
methods of the file handle to return. Calls to those methods will take data from read_data until it is depleted. The mock of these methods is pretty simplistic: every time the mock is called, the read_data is rewound to the start. If you need more control over the data that you are feeding to the tested code you will need to customize this mock for yourself. When that is insufficient, one of the in-memory filesystem packages on PyPI can offer a realistic filesystem for testing.Modifié dans la version 3.4: Added
readline()
andreadlines()
support. The mock ofread()
changed to consume read_data rather than returning it on each call.Modifié dans la version 3.5: read_data is now reset on each call to the mock.
Modifié dans la version 3.7.1: Added
__iter__()
to implementation so that iteration (such as in for loops) correctly consumes read_data.
Using open()
as a context manager is a great way to ensure your file handles
are closed properly and is becoming common:
with open('/some/path', 'w') as f:
f.write('something')
The issue is that even if you mock out the call to open()
it is the
returned object that is used as a context manager (and has __enter__()
and
__exit__()
called).
Mocking context managers with a MagicMock
is common enough and fiddly
enough that a helper function is useful.
>>> m = mock_open()
>>> with patch('__main__.open', m):
... with open('foo', 'w') as h:
... h.write('some stuff')
...
>>> m.mock_calls
[call('foo', 'w'),
call().__enter__(),
call().write('some stuff'),
call().__exit__(None, None, None)]
>>> m.assert_called_once_with('foo', 'w')
>>> handle = m()
>>> handle.write.assert_called_once_with('some stuff')
And for reading files:
>>> with patch('__main__.open', mock_open(read_data='bibble')) as m:
... with open('foo') as h:
... result = h.read()
...
>>> m.assert_called_once_with('foo')
>>> assert result == 'bibble'
Autospeccing¶
Autospeccing is based on the existing spec
feature of mock. It limits the
api of mocks to the api of an original object (the spec), but it is recursive
(implemented lazily) so that attributes of mocks only have the same api as
the attributes of the spec. In addition mocked functions / methods have the
same call signature as the original so they raise a TypeError
if they are
called incorrectly.
Before I explain how auto-speccing works, here's why it is needed.
Mock
is a very powerful and flexible object, but it suffers from two flaws
when used to mock out objects from a system under test. One of these flaws is
specific to the Mock
api and the other is a more general problem with using
mock objects.
First the problem specific to Mock
. Mock
has two assert methods that are
extremely handy: assert_called_with()
and
assert_called_once_with()
.
>>> mock = Mock(name='Thing', return_value=None)
>>> mock(1, 2, 3)
>>> mock.assert_called_once_with(1, 2, 3)
>>> mock(1, 2, 3)
>>> mock.assert_called_once_with(1, 2, 3)
Traceback (most recent call last):
...
AssertionError: Expected 'mock' to be called once. Called 2 times.
Because mocks auto-create attributes on demand, and allow you to call them with arbitrary arguments, if you misspell one of these assert methods then your assertion is gone:
>>> mock = Mock(name='Thing', return_value=None)
>>> mock(1, 2, 3)
>>> mock.assret_called_once_with(4, 5, 6)
Your tests can pass silently and incorrectly because of the typo.
The second issue is more general to mocking. If you refactor some of your code, rename members and so on, any tests for code that is still using the old api but uses mocks instead of the real objects will still pass. This means your tests can all pass even though your code is broken.
Note that this is another reason why you need integration tests as well as unit tests. Testing everything in isolation is all fine and dandy, but if you don't test how your units are "wired together" there is still lots of room for bugs that tests might have caught.
mock
already provides a feature to help with this, called speccing. If you
use a class or instance as the spec
for a mock then you can only access
attributes on the mock that exist on the real class:
>>> from urllib import request
>>> mock = Mock(spec=request.Request)
>>> mock.assret_called_with
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'assret_called_with'
The spec only applies to the mock itself, so we still have the same issue with any methods on the mock:
>>> mock.has_data()
<mock.Mock object at 0x...>
>>> mock.has_data.assret_called_with()
Auto-speccing solves this problem. You can either pass autospec=True
to
patch()
/ patch.object()
or use the create_autospec()
function to create a
mock with a spec. If you use the autospec=True
argument to patch()
then the
object that is being replaced will be used as the spec object. Because the
speccing is done "lazily" (the spec is created as attributes on the mock are
accessed) you can use it with very complex or deeply nested objects (like
modules that import modules that import modules) without a big performance
hit.
Here's an example of it in use:
>>> from urllib import request
>>> patcher = patch('__main__.request', autospec=True)
>>> mock_request = patcher.start()
>>> request is mock_request
True
>>> mock_request.Request
<MagicMock name='request.Request' spec='Request' id='...'>
You can see that request.Request
has a spec. request.Request
takes two
arguments in the constructor (one of which is self). Here's what happens if
we try to call it incorrectly:
>>> req = request.Request()
Traceback (most recent call last):
...
TypeError: <lambda>() takes at least 2 arguments (1 given)
The spec also applies to instantiated classes (i.e. the return value of specced mocks):
>>> req = request.Request('foo')
>>> req
<NonCallableMagicMock name='request.Request()' spec='Request' id='...'>
Request
objects are not callable, so the return value of instantiating our
mocked out request.Request
is a non-callable mock. With the spec in place
any typos in our asserts will raise the correct error:
>>> req.add_header('spam', 'eggs')
<MagicMock name='request.Request().add_header()' id='...'>
>>> req.add_header.assret_called_with
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'assret_called_with'
>>> req.add_header.assert_called_with('spam', 'eggs')
In many cases you will just be able to add autospec=True
to your existing
patch()
calls and then be protected against bugs due to typos and api
changes.
As well as using autospec through patch()
there is a
create_autospec()
for creating autospecced mocks directly:
>>> from urllib import request
>>> mock_request = create_autospec(request)
>>> mock_request.Request('foo', 'bar')
<NonCallableMagicMock name='mock.Request()' spec='Request' id='...'>
This isn't without caveats and limitations however, which is why it is not the default behaviour. In order to know what attributes are available on the spec object, autospec has to introspect (access attributes) the spec. As you traverse attributes on the mock a corresponding traversal of the original object is happening under the hood. If any of your specced objects have properties or descriptors that can trigger code execution then you may not be able to use autospec. On the other hand it is much better to design your objects so that introspection is safe 4.
A more serious problem is that it is common for instance attributes to be
created in the __init__()
method and not to exist on the class at all.
autospec can't know about any dynamically created attributes and restricts
the api to visible attributes.
>>> class Something:
... def __init__(self):
... self.a = 33
...
>>> with patch('__main__.Something', autospec=True):
... thing = Something()
... thing.a
...
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'a'
There are a few different ways of resolving this problem. The easiest, but not necessarily the least annoying, way is to simply set the required attributes on the mock after creation. Just because autospec doesn't allow you to fetch attributes that don't exist on the spec it doesn't prevent you setting them:
>>> with patch('__main__.Something', autospec=True):
... thing = Something()
... thing.a = 33
...
There is a more aggressive version of both spec and autospec that does prevent you setting non-existent attributes. This is useful if you want to ensure your code only sets valid attributes too, but obviously it prevents this particular scenario:
>>> with patch('__main__.Something', autospec=True, spec_set=True):
... thing = Something()
... thing.a = 33
...
Traceback (most recent call last):
...
AttributeError: Mock object has no attribute 'a'
Probably the best way of solving the problem is to add class attributes as
default values for instance members initialised in __init__()
. Note that if
you are only setting default attributes in __init__()
then providing them via
class attributes (shared between instances of course) is faster too. e.g.
class Something:
a = 33
This brings up another issue. It is relatively common to provide a default
value of None
for members that will later be an object of a different type.
None
would be useless as a spec because it wouldn't let you access any
attributes or methods on it. As None
is never going to be useful as a
spec, and probably indicates a member that will normally of some other type,
autospec doesn't use a spec for members that are set to None
. These will
just be ordinary mocks (well - MagicMocks):
>>> class Something:
... member = None
...
>>> mock = create_autospec(Something)
>>> mock.member.foo.bar.baz()
<MagicMock name='mock.member.foo.bar.baz()' id='...'>
If modifying your production classes to add defaults isn't to your liking
then there are more options. One of these is simply to use an instance as the
spec rather than the class. The other is to create a subclass of the
production class and add the defaults to the subclass without affecting the
production class. Both of these require you to use an alternative object as
the spec. Thankfully patch()
supports this - you can simply pass the
alternative object as the autospec argument:
>>> class Something:
... def __init__(self):
... self.a = 33
...
>>> class SomethingForTest(Something):
... a = 33
...
>>> p = patch('__main__.Something', autospec=SomethingForTest)
>>> mock = p.start()
>>> mock.a
<NonCallableMagicMock name='Something.a' spec='int' id='...'>
Sealing mocks¶
-
unittest.mock.
seal
(mock)¶ Seal will disable the automatic creation of mocks when accessing an attribute of the mock being sealed or any of its attributes that are already mocks recursively.
If a mock instance with a name or a spec is assigned to an attribute it won't be considered in the sealing chain. This allows one to prevent seal from fixing part of the mock object.
>>> mock = Mock() >>> mock.submock.attribute1 = 2 >>> mock.not_submock = mock.Mock(name="sample_name") >>> seal(mock) >>> mock.new_attribute # This will raise AttributeError. >>> mock.submock.attribute2 # This will raise AttributeError. >>> mock.not_submock.attribute2 # This won't raise.
Nouveau dans la version 3.7.