26.1. typing — Prise en charge des annotations de type

Nouveau dans la version 3.5.

Code source : Lib/typing.py

Note

The typing module has been included in the standard library on a provisional basis. New features might be added and API may change even between minor releases if deemed necessary by the core developers.


This module supports type hints as specified by PEP 484 and PEP 526. The most fundamental support consists of the types Any, Union, Tuple, Callable, TypeVar, and Generic. For full specification please see PEP 484. For a simplified introduction to type hints see PEP 483.

La fonction ci-dessous prend et renvoie une chaîne de caractères, et est annotée comme suit :

def greeting(name: str) -> str:
    return 'Hello ' + name

La fonction greeting s’attend à ce que l’argument name soit de type str et le type de retour str. Les sous-types sont acceptés comme arguments.

26.1.1. Alias de type

A type alias is defined by assigning the type to the alias. In this example, Vector and List[float] will be treated as interchangeable synonyms:

from typing import List
Vector = List[float]

def scale(scalar: float, vector: Vector) -> Vector:
    return [scalar * num for num in vector]

# typechecks; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])

Les alias de type sont utiles pour simplifier les signatures complexes. Par exemple :

from typing import Dict, Tuple, List

ConnectionOptions = Dict[str, str]
Address = Tuple[str, int]
Server = Tuple[Address, ConnectionOptions]

def broadcast_message(message: str, servers: List[Server]) -> None:
    ...

# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
        message: str,
        servers: List[Tuple[Tuple[str, int], Dict[str, str]]]) -> None:
    ...

Notez que None comme indication de type est un cas particulier et est remplacé par type(None).

26.1.2. NewType

Aidez-vous de la fonction NewType() pour créer des types distincts :

from typing import NewType

UserId = NewType('UserId', int)
some_id = UserId(524313)

Le vérificateur de type statique traite le nouveau type comme s’il s’agissait d’une sous-classe du type original. C’est utile pour aider à détecter les erreurs logiques :

def get_user_name(user_id: UserId) -> str:
    ...

# typechecks
user_a = get_user_name(UserId(42351))

# does not typecheck; an int is not a UserId
user_b = get_user_name(-1)

Vous pouvez toujours effectuer toutes les opérations applicables à un entier (type int) sur une variable de type UserId, mais le résultat sera toujours de type int. Ceci vous permet de passer un UserId partout où un int est attendu, mais vous empêche de créer accidentellement un UserId d’une manière invalide :

# 'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)

Note that these checks are enforced only by the static type checker. At runtime the statement Derived = NewType('Derived', Base) will make Derived a function that immediately returns whatever parameter you pass it. That means the expression Derived(some_value) does not create a new class or introduce any overhead beyond that of a regular function call.

Plus précisément, l’expression some_value is Derived(some_value) est toujours vraie au moment de l’exécution.

Cela signifie également qu’il n’est pas possible de créer un sous-type de Derived puisqu’il s’agit d’une fonction d’identité au moment de l’exécution, pas d’un type réel :

from typing import NewType

UserId = NewType('UserId', int)

# Fails at runtime and does not typecheck
class AdminUserId(UserId): pass

Cependant, il est possible de créer un NewType() basé sur un NewType « dérivé » :

from typing import NewType

UserId = NewType('UserId', int)

ProUserId = NewType('ProUserId', UserId)

et la vérification de type pour ProUserId fonctionne comme prévu.

Voir la PEP 484 pour plus de détails.

Note

Rappelons que l’utilisation d’un alias de type déclare que deux types sont équivalents l’un à l’autre. Écrire Alias = Original fait que le vérificateur de type statique traite Alias comme étant exactement équivalent à Original dans tous les cas. C’est utile lorsque vous voulez simplifier des signatures complexes.

En revanche, NewType déclare qu’un type est un sous-type d’un autre. Écrire Derived = NewType('Derived', Original) fait en sorte que le vérificateur de type statique traite Derived comme une sous-classe de Original, ce qui signifie qu’une valeur de type Original ne peut être utilisée dans les endroits où une valeur de type Derived est prévue. C’est utile lorsque vous voulez éviter les erreurs logiques avec un coût d’exécution minimal.

Nouveau dans la version 3.5.2.

26.1.3. Appelable

Les cadriciels (frameworks en anglais) qui attendent des fonctions de rappel ayant des signatures spécifiques peuvent être typés en utilisant Callable[[Arg1Type, Arg2Type], ReturnType].

Par exemple :

from typing import Callable

def feeder(get_next_item: Callable[[], str]) -> None:
    # Body

def async_query(on_success: Callable[[int], None],
                on_error: Callable[[int, Exception], None]) -> None:
    # Body

Il est possible de déclarer le type de retour d’un appelable sans spécifier la signature de l’appel en indiquant des points de suspension à la liste des arguments dans l’indice de type : Callable[..., ReturnType].

26.1.4. Génériques

Comme les informations de type sur les objets conservés dans des conteneurs ne peuvent pas être déduites statiquement de manière générique, les classes de base abstraites ont été étendues pour prendre en charge la sélection (subscription en anglais) et indiquer les types attendus pour les éléments de conteneur.

from typing import Mapping, Sequence

def notify_by_email(employees: Sequence[Employee],
                    overrides: Mapping[str, str]) -> None: ...

Generics can be parameterized by using a new factory available in typing called TypeVar.

from typing import Sequence, TypeVar

T = TypeVar('T')      # Declare type variable

def first(l: Sequence[T]) -> T:   # Generic function
    return l[0]

26.1.5. Types génériques définis par l’utilisateur

Une classe définie par l’utilisateur peut être définie comme une classe générique.

from typing import TypeVar, Generic
from logging import Logger

T = TypeVar('T')

class LoggedVar(Generic[T]):
    def __init__(self, value: T, name: str, logger: Logger) -> None:
        self.name = name
        self.logger = logger
        self.value = value

    def set(self, new: T) -> None:
        self.log('Set ' + repr(self.value))
        self.value = new

    def get(self) -> T:
        self.log('Get ' + repr(self.value))
        return self.value

    def log(self, message: str) -> None:
        self.logger.info('%s: %s', self.name, message)

Generic[T] en tant que classe de base définit que la classe LoggedVar prend un paramètre de type unique T. Ceci rend également T valide en tant que type dans le corps de la classe.

The Generic base class uses a metaclass that defines __getitem__() so that LoggedVar[t] is valid as a type:

from typing import Iterable

def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
    for var in vars:
        var.set(0)

Un type générique peut avoir un nombre quelconque de variables de type et vous pouvez fixer des contraintes sur les variables de type :

from typing import TypeVar, Generic
...

T = TypeVar('T')
S = TypeVar('S', int, str)

class StrangePair(Generic[T, S]):
    ...

Chaque argument de variable de type Generic doit être distinct. Ceci n’est donc pas valable :

from typing import TypeVar, Generic
...

T = TypeVar('T')

class Pair(Generic[T, T]):   # INVALID
    ...

Vous pouvez utiliser l’héritage multiple avec Generic :

from typing import TypeVar, Generic, Sized

T = TypeVar('T')

class LinkedList(Sized, Generic[T]):
    ...

Lors de l’héritage de classes génériques, certaines variables de type peuvent être corrigées :

from typing import TypeVar, Mapping

T = TypeVar('T')

class MyDict(Mapping[str, T]):
    ...

Dans ce cas, MyDict a un seul paramètre, T.

L’utilisation d’une classe générique sans spécifier de paramètres de type suppose Any pour chaque position. Dans l’exemple suivant, MyIterable n’est pas générique mais hérite implicitement de Iterable[Any] :

from typing import Iterable

class MyIterable(Iterable): # Same as Iterable[Any]

Les alias de type générique définis par l’utilisateur sont également pris en charge. Exemples :

from typing import TypeVar, Iterable, Tuple, Union
S = TypeVar('S')
Response = Union[Iterable[S], int]

# Return type here is same as Union[Iterable[str], int]
def response(query: str) -> Response[str]:
    ...

T = TypeVar('T', int, float, complex)
Vec = Iterable[Tuple[T, T]]

def inproduct(v: Vec[T]) -> T: # Same as Iterable[Tuple[T, T]]
    return sum(x*y for x, y in v)

The metaclass used by Generic is a subclass of abc.ABCMeta. A generic class can be an ABC by including abstract methods or properties, and generic classes can also have ABCs as base classes without a metaclass conflict. Generic metaclasses are not supported. The outcome of parameterizing generics is cached, and most types in the typing module are hashable and comparable for equality.

26.1.6. Le type Any

Un type particulier est Any. Un vérificateur de type statique traite chaque type comme étant compatible avec Any et Any comme étant compatible avec chaque type.

This means that it is possible to perform any operation or method call on a value of type on Any and assign it to any variable:

from typing import Any

a = None    # type: Any
a = []      # OK
a = 2       # OK

s = ''      # type: str
s = a       # OK

def foo(item: Any) -> int:
    # Typechecks; 'item' could be any type,
    # and that type might have a 'bar' method
    item.bar()
    ...

Notez qu’aucun contrôle de typage n’est effectué lors de l’affectation d’une valeur de type Any à un type plus précis. Par exemple, le vérificateur de type statique ne signale pas d’erreur lors de l’affectation de a à s même si s était déclaré être de type str et reçoit une valeur int au moment de son exécution !

De plus, toutes les fonctions sans type de retour ni type de paramètre sont considérées comme utilisant Any implicitement par défaut :

def legacy_parser(text):
    ...
    return data

# A static type checker will treat the above
# as having the same signature as:
def legacy_parser(text: Any) -> Any:
    ...
    return data

Ce comportement permet à Any d’être utilisé comme succédané lorsque vous avez besoin de mélanger du code typé dynamiquement et statiquement.

Comparons le comportement de Any avec celui de object. De la même manière que pour Any, chaque type est un sous-type de object. Cependant, contrairement à Any, l’inverse n’est pas vrai : object n’est pas un sous-type de chaque autre type.

Cela signifie que lorsque le type d’une valeur est object, un vérificateur de type rejette presque toutes les opérations sur celle-ci, et l’affecter à une variable (ou l’utiliser comme une valeur de retour) d’un type plus spécialisé est une erreur de typage. Par exemple :

def hash_a(item: object) -> int:
    # Fails; an object does not have a 'magic' method.
    item.magic()
    ...

def hash_b(item: Any) -> int:
    # Typechecks
    item.magic()
    ...

# Typechecks, since ints and strs are subclasses of object
hash_a(42)
hash_a("foo")

# Typechecks, since Any is compatible with all types
hash_b(42)
hash_b("foo")

Utilisez object pour indiquer qu’une valeur peut être de n’importe quel type de manière sûre. Utiliser Any pour indiquer qu’une valeur est typée dynamiquement.

26.1.7. Classes, functions, and decorators

The module defines the following classes, functions and decorators:

class typing.TypeVar

Variables de type.

Utilisation :

T = TypeVar('T')  # Can be anything
A = TypeVar('A', str, bytes)  # Must be str or bytes

Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function definitions. See class Generic for more information on generic types. Generic functions work as follows:

def repeat(x: T, n: int) -> Sequence[T]:
    """Return a list containing n references to x."""
    return [x]*n

def longest(x: A, y: A) -> A:
    """Return the longest of two strings."""
    return x if len(x) >= len(y) else y

La signature de ce dernier exemple est essentiellement la surcharge de (str, str) -> str et (bytes, bytes) -> bytes. Notez également que si les arguments sont des instances d’une sous-classe de la classe str, le type de retour est toujours la classe str.

Au moment de l’exécution, isinstance(x, T) va lever TypeError. En général, isinstance() et issubclass() ne devraient pas être utilisés avec les types.

Les variables de type peuvent être marquées covariantes ou contravariantes en passant covariant=True ou contravariant=True. Voir la PEP 484 pour plus de détails. Par défaut, les variables de type sont invariantes. Sinon, une variable de type peut spécifier une limite supérieure en utilisant bound=<type>. Cela signifie qu’un type réel substitué (explicitement ou implicitement) à la variable type doit être une sous-classe du type frontière (boundary en anglais), voir la PEP 484.

class typing.Generic

Classe de base abstraite pour les types génériques.

Un type générique est généralement déclaré en héritant d’une instanciation de cette classe avec une ou plusieurs variables de type. Par exemple, un type de correspondance générique peut être défini comme suit :

class Mapping(Generic[KT, VT]):
    def __getitem__(self, key: KT) -> VT:
        ...
        # Etc.

Cette classe peut alors être utilisée comme suit :

X = TypeVar('X')
Y = TypeVar('Y')

def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
    try:
        return mapping[key]
    except KeyError:
        return default
class typing.Type(Generic[CT_co])

Une variable annotée de C peut accepter une valeur de type C. En revanche, une variable annotée avec Type[C] peut accepter des valeurs qui sont elles-mêmes des classes — plus précisément, elle accepte l’objet class de C. Par exemple :

a = 3         # Has type 'int'
b = int       # Has type 'Type[int]'
c = type(a)   # Also has type 'Type[int]'

Notez que Type[C] est covariant :

class User: ...
class BasicUser(User): ...
class ProUser(User): ...
class TeamUser(User): ...

# Accepts User, BasicUser, ProUser, TeamUser, ...
def make_new_user(user_class: Type[User]) -> User:
    # ...
    return user_class()

Le fait que Type[C] soit covariant implique que toutes les sous-classes de C doivent implémenter la même signature de constructeur et les signatures de méthode de classe que C. Le vérificateur de type doit signaler les manquements à cette règle. Il doit également autoriser les appels du constructeur dans les sous-classes qui correspondent aux appels du constructeur dans la classe de base indiquée. La façon dont le vérificateur de type est tenu de traiter ce cas particulier peut changer dans les futures révisions de PEP 484.

The only legal parameters for Type are classes, Any, type variables, and unions of any of these types. For example:

def new_non_team_user(user_class: Type[Union[BaseUser, ProUser]]): ...

Type[Any] est équivalent à Type qui à son tour est équivalent à type, qui est la racine de la hiérarchie des métaclasses de Python.

Nouveau dans la version 3.5.2.

class typing.Iterable(Generic[T_co])

Une version générique de collections.abc.Iterable.

class typing.Iterator(Iterable[T_co])

Une version générique de collections.abc.Iterator.

class typing.Reversible(Iterable[T_co])

Une version générique de collections.abc.Reversible.

class typing.SupportsInt

Une ABC avec une méthode abstraite __int__.

class typing.SupportsFloat

Une ABC avec une méthode abstraite __float__.

class typing.SupportsComplex

Une ABC avec une méthode abstraite __complex__.

class typing.SupportsBytes

Une ABC avec une méthode abstraite __bytes__.

class typing.SupportsAbs

Une ABC avec une méthode abstraite __abs__ qui est covariante dans son type de retour.

class typing.SupportsRound

Une ABC avec une méthode abstraite __round__ qui est covariante dans son type de retour.

class typing.Container(Generic[T_co])

Une version générique de collections.abc.Container.

class typing.Hashable

Un alias pour collections.abc.Hashable

class typing.Sized

Un alias pour collections.abc.Sized

class typing.Collection(Sized, Iterable[T_co], Container[T_co])

Une version générique de collections.abc.Collection

Nouveau dans la version 3.6.

class typing.AbstractSet(Sized, Collection[T_co])

Une version générique de collections.abc.Set.

class typing.MutableSet(AbstractSet[T])

Une version générique de collections.abc.MutableSet.

class typing.Mapping(Sized, Collection[KT], Generic[VT_co])

A generic version of collections.abc.Mapping.

class typing.MutableMapping(Mapping[KT, VT])

Une version générique de collections.abc.MutableMapping.

class typing.Sequence(Reversible[T_co], Collection[T_co])

Une version générique de collections.abc.Sequence.

class typing.MutableSequence(Sequence[T])

Une version générique de collections.abc.MutableSequence.

class typing.ByteString(Sequence[int])

Une version générique de collections.abc.ByteString.

This type represents the types bytes, bytearray, and memoryview.

Comme abréviation pour ce type, bytes peut être utilisé pour annoter des arguments de n’importe quel type mentionné ci-dessus.

class typing.Deque(deque, MutableSequence[T])

Une version générique de collections.deque.

Nouveau dans la version 3.6.1.

class typing.List(list, MutableSequence[T])

Generic version of list. Useful for annotating return types. To annotate arguments it is preferred to use abstract collection types such as Mapping, Sequence, or AbstractSet.

Ce type peut être utilisé comme suit :

T = TypeVar('T', int, float)

def vec2(x: T, y: T) -> List[T]:
    return [x, y]

def keep_positives(vector: Sequence[T]) -> List[T]:
    return [item for item in vector if item > 0]
class typing.Set(set, MutableSet[T])

A generic version of builtins.set.

class typing.FrozenSet(frozenset, AbstractSet[T_co])

Une version générique de builtins.frozenset.

class typing.MappingView(Sized, Iterable[T_co])

Une version générique de collections.abc.MappingView.

class typing.KeysView(MappingView[KT_co], AbstractSet[KT_co])

Une version générique de collections.abc.KeysView.

class typing.ItemsView(MappingView, Generic[KT_co, VT_co])

Une version générique de collections.abc.ItemsView.

class typing.ValuesView(MappingView[VT_co])

Une version générique de collections.abc.ValuesView.

class typing.Awaitable(Generic[T_co])

Une version générique de collections.abc.Awaitable.

class typing.Coroutine(Awaitable[V_co], Generic[T_co T_contra, V_co])

Une version générique de collections.abc.Coroutine. La variance et l’ordre des variables de type correspondent à ceux de la classe Generator, par exemple :

from typing import List, Coroutine
c = None # type: Coroutine[List[str], str, int]
...
x = c.send('hi') # type: List[str]
async def bar() -> None:
    x = await c # type: int
class typing.AsyncIterable(Generic[T_co])

Une version générique de collections.abc.AsyncIterable.

class typing.AsyncIterator(AsyncIterable[T_co])

Une version générique de collections.abc.AsyncIterator.

class typing.ContextManager(Generic[T_co])

Une version générique de contextlib.AbstractContextManager.

Nouveau dans la version 3.6.

class typing.AsyncContextManager(Generic[T_co])

An ABC with async abstract __aenter__() and __aexit__() methods.

Nouveau dans la version 3.6.

class typing.Dict(dict, MutableMapping[KT, VT])

A generic version of dict. The usage of this type is as follows:

def get_position_in_index(word_list: Dict[str, int], word: str) -> int:
    return word_list[word]
class typing.DefaultDict(collections.defaultdict, MutableMapping[KT, VT])

Une version générique de collections.defaultdict.

Nouveau dans la version 3.5.2.

class typing.Counter(collections.Counter, Dict[T, int])

Une version générique de collections.Counter.

Nouveau dans la version 3.6.1.

class typing.ChainMap(collections.ChainMap, MutableMapping[KT, VT])

Une version générique de collections.ChainMap.

Nouveau dans la version 3.6.1.

class typing.Generator(Iterator[T_co], Generic[T_co, T_contra, V_co])

Un générateur peut être annoté par le type générique Generator[YieldType, SendType, ReturnType]. Par exemple :

def echo_round() -> Generator[int, float, str]:
    sent = yield 0
    while sent >= 0:
        sent = yield round(sent)
    return 'Done'

Notez que contrairement à beaucoup d’autres génériques dans le module typing, le SendType de Generator se comporte de manière contravariante, pas de manière covariante ou invariante.

Si votre générateur ne donne que des valeurs, réglez les paramètres SendType et ReturnType sur None :

def infinite_stream(start: int) -> Generator[int, None, None]:
    while True:
        yield start
        start += 1

Alternativement, annotez votre générateur comme ayant un type de retour soit Iterable[YieldType] ou Iterator[YieldType] :

def infinite_stream(start: int) -> Iterator[int]:
    while True:
        yield start
        start += 1
class typing.AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra])

Un générateur asynchrone peut être annoté par le type générique AsyncGenerator[YieldType, SendType]. Par exemple :

async def echo_round() -> AsyncGenerator[int, float]:
    sent = yield 0
    while sent >= 0.0:
        rounded = await round(sent)
        sent = yield rounded

Contrairement aux générateurs normaux, les générateurs asynchrones ne peuvent pas renvoyer une valeur, il n’y a donc pas de paramètre de type ReturnType. Comme avec Generator, le SendType se comporte de manière contravariante.

Si votre générateur ne donne que des valeurs, réglez le paramètre SendType sur None :

async def infinite_stream(start: int) -> AsyncGenerator[int, None]:
    while True:
        yield start
        start = await increment(start)

Alternativement, annotez votre générateur comme ayant un type de retour soit AsyncIterable[YieldType] ou AsyncIterator[YieldType] :

async def infinite_stream(start: int) -> AsyncIterator[int]:
    while True:
        yield start
        start = await increment(start)

Nouveau dans la version 3.5.4.

class typing.Text

Text est un alias pour str. Il est fourni pour obtenir une compatibilité ascendante du code Python 2 : en Python 2, Text est un alias pour unicode.

Utilisez Text pour indiquer qu’une valeur doit contenir une chaîne Unicode d’une manière compatible avec Python 2 et Python 3 :

def add_unicode_checkmark(text: Text) -> Text:
    return text + u' \u2713'

Nouveau dans la version 3.5.2.

class typing.IO
class typing.TextIO
class typing.BinaryIO

Generic type IO[AnyStr] and its subclasses TextIO(IO[str]) and BinaryIO(IO[bytes]) represent the types of I/O streams such as returned by open().

class typing.Pattern
class typing.Match

These type aliases correspond to the return types from re.compile() and re.match(). These types (and the corresponding functions) are generic in AnyStr and can be made specific by writing Pattern[str], Pattern[bytes], Match[str], or Match[bytes].

class typing.NamedTuple

Typed version of namedtuple.

Utilisation :

class Employee(NamedTuple):
    name: str
    id: int

C’est équivalent à :

Employee = collections.namedtuple('Employee', ['name', 'id'])

Pour assigner une valeur par défaut à un champ, vous pouvez lui donner dans le corps de classe :

class Employee(NamedTuple):
    name: str
    id: int = 3

employee = Employee('Guido')
assert employee.id == 3

Les champs avec une valeur par défaut doivent venir après tous les champs sans valeur par défaut.

The resulting class has two extra attributes: _field_types, giving a dict mapping field names to types, and _field_defaults, a dict mapping field names to default values. (The field names are in the _fields attribute, which is part of the namedtuple API.)

Les sous-classes de NamedTuple peuvent aussi avoir des docstrings et des méthodes :

class Employee(NamedTuple):
    """Represents an employee."""
    name: str
    id: int = 3

    def __repr__(self) -> str:
        return f'<Employee {self.name}, id={self.id}>'

Utilisation rétrocompatible :

Employee = NamedTuple('Employee', [('name', str), ('id', int)])

Modifié dans la version 3.6: Ajout de la gestion de la syntaxe d’annotation variable de la PEP 526.

Modifié dans la version 3.6.1: Ajout de la prise en charge des valeurs par défaut, des méthodes et des chaînes de caractères docstrings.

typing.NewType(typ)

A helper function to indicate a distinct types to a typechecker, see NewType. At runtime it returns a function that returns its argument. Usage:

UserId = NewType('UserId', int)
first_user = UserId(1)

Nouveau dans la version 3.5.2.

typing.cast(typ, val)

Convertit une valeur en un type.

Ceci renvoie la valeur inchangée. Pour le vérificateur de type, cela signifie que la valeur de retour a le type désigné mais, à l’exécution, intentionnellement, rien n’est vérifié (afin que cela soit aussi rapide que possible).

typing.get_type_hints(obj[, globals[, locals]])

renvoie un dictionnaire contenant des indications de type pour une fonction, une méthode, un module ou un objet de classe.

C’est souvent équivalent à obj.__annotations__. De plus, les références directes encodées sous forme de chaîne littérales sont traitées en les évaluant dans les espaces de nommage globals et locals. Si nécessaire, Optional[t] est ajouté pour les annotations de fonction et de méthode si une valeur par défaut égale à None est définie. Pour une classe C, renvoie un dictionnaire construit en fusionnant toutes les __annotations__ en parcourant C.__mro__ en ordre inverse.

@typing.overload

The @overload decorator allows describing functions and methods that support multiple different combinations of argument types. A series of @overload-decorated definitions must be followed by exactly one non-@overload-decorated definition (for the same function/method). The @overload-decorated definitions are for the benefit of the type checker only, since they will be overwritten by the non-@overload-decorated definition, while the latter is used at runtime but should be ignored by a type checker. At runtime, calling a @overload-decorated function directly will raise NotImplementedError. An example of overload that gives a more precise type than can be expressed using a union or a type variable:

@overload
def process(response: None) -> None:
    ...
@overload
def process(response: int) -> Tuple[int, str]:
    ...
@overload
def process(response: bytes) -> str:
    ...
def process(response):
    <actual implementation>

Voir la PEP 484 pour plus de détails et la comparaison avec d’autres sémantiques de typage.

@typing.no_type_check

Décorateur pour indiquer que les annotations ne sont pas des indications de type.

Cela fonctionne en tant que classe ou fonction décoratrice. Avec une classe, elle s’applique récursivement à toutes les méthodes définies dans cette classe (mais pas aux méthodes définies dans ses superclasses ou sous-classes).

Cela fait muter la ou les fonctions en place.

@typing.no_type_check_decorator

Décorateur pour donner à un autre décorateur l’effet no_type_check().

Ceci enveloppe le décorateur avec quelque chose qui enveloppe la fonction décorée dans no_type_check().

typing.Any

Type spécial indiquant un type non contraint.

  • Chaque type est compatible avec Any.

  • Any est compatible avec tous les types.

typing.NoReturn

Type spécial indiquant qu’une fonction ne renvoie rien. Par exemple :

from typing import NoReturn

def stop() -> NoReturn:
    raise RuntimeError('no way')

Nouveau dans la version 3.6.5.

typing.Union

Type « union » ; Union[X, Y] signifie X ou Y.

Pour définir une union, utilisez par exemple Union[int, str]. Détail :

  • Les arguments doivent être des types et il doit y en avoir au moins un.

  • Les unions d’unions sont aplanies, par exemple :

    Union[Union[int, str], float] == Union[int, str, float]
    
  • Les unions d’un seul argument disparaissent, par exemple :

    Union[int] == int  # The constructor actually returns int
    
  • Les arguments redondants sont ignorés, par exemple :

    Union[int, str, int] == Union[int, str]
    
  • Lors de la comparaison d’unions, l’ordre des arguments est ignoré, par exemple :

    Union[int, str] == Union[str, int]
    
  • When a class and its subclass are present, the latter is skipped, e.g.:

    Union[int, object] == object
    
  • Vous ne pouvez pas sous-classer ou instancier une union.

  • Vous ne pouvez pas écrire Union[X][Y].

  • Vous pouvez utiliser l’abréviation Optional[X] pour Union[X, None].

typing.Optional

Type « optionnel ».

Optional[X] équivaut à Union[X, None].

Note that this is not the same concept as an optional argument, which is one that has a default. An optional argument with a default does not require the Optional qualifier on its type annotation just because it is optional. For example:

def foo(arg: int = 0) -> None:
    ...

On the other hand, if an explicit value of None is allowed, the use of Optional is appropriate, whether the argument is optional or not. For example:

def foo(arg: Optional[int] = None) -> None:
    ...
typing.Tuple

Tuple type; Tuple[X, Y] is the type of a tuple of two items with the first item of type X and the second of type Y.

Exemple : Tuple[T1, T2] est une paire correspondant aux variables de type T1 et T2. Tuple[int, float, str] est un triplet composé d’un entier, d’un flottant et d’une chaîne de caractères.

Pour spécifier un n-uplet de longueur variable et de type homogène, utilisez une ellipse, par exemple Tuple[int, ....]. Un n-uplet Tuple est équivalent à Tuple[Any, ....] et, à son tour, à tuple.

typing.Callable

Type Appelable. Callable[[int], str] est une fonction de type (int) -> str.

La syntaxe de sélection (subscription en anglais) doit toujours être utilisée avec exactement deux valeurs : la liste d’arguments et le type de retour. La liste d’arguments doit être une liste de types ou une ellipse ; il doit y avoir un seul type de retour.

Il n’y a pas de syntaxe pour indiquer les arguments optionnels ou les arguments par mots-clés ; de tels types de fonctions sont rarement utilisés comme types de rappel. Callable[..., ReturnType] (ellipse) peut être utilisé pour annoter le type d’un appelable, prenant un nombre quelconque d’arguments et renvoyant ReturnType. Un simple Callable est équivalent à Callable[..., Any] et, à son tour, à collections.abc.Callable.

typing.ClassVar

Construction de type particulière pour indiquer les variables de classe.

Telle qu’introduite dans la PEP 526, une annotation de variable enveloppée dans ClassVar indique qu’un attribut donné est destiné à être utilisé comme une variable de classe et ne doit pas être défini sur des instances de cette classe. Utilisation :

class Starship:
    stats: ClassVar[Dict[str, int]] = {} # class variable
    damage: int = 10                     # instance variable

ClassVar n’accepte que les types et ne peut plus être dérivé.

ClassVar n’est pas une classe en soi, et ne devrait pas être utilisée avec isinstance() ou issubclass(). ClassVar ne modifie pas le comportement d’exécution Python, mais il peut être utilisé par des vérificateurs tiers. Par exemple, un vérificateur de type peut marquer le code suivant comme une erreur :

enterprise_d = Starship(3000)
enterprise_d.stats = {} # Error, setting class variable on instance
Starship.stats = {}     # This is OK

Nouveau dans la version 3.5.3.

typing.AnyStr

AnyStr est une variable de type définie comme AnyStr = TypeVar('AnyStr', str, bytes).

Cela est destiné à être utilisé pour des fonctions qui peuvent accepter n’importe quel type de chaîne de caractères sans permettre à différents types de chaînes de caractères de se mélanger. Par exemple :

def concat(a: AnyStr, b: AnyStr) -> AnyStr:
    return a + b

concat(u"foo", u"bar")  # Ok, output has type 'unicode'
concat(b"foo", b"bar")  # Ok, output has type 'bytes'
concat(u"foo", b"bar")  # Error, cannot mix unicode and bytes
typing.TYPE_CHECKING

Constante spéciale qui vaut True pour les vérificateurs de type statiques tiers et False à l’exécution. Utilisation :

if TYPE_CHECKING:
    import expensive_mod

def fun(arg: 'expensive_mod.SomeType') -> None:
    local_var: expensive_mod.AnotherType = other_fun()

Note that the first type annotation must be enclosed in quotes, making it a « forward reference », to hide the expensive_mod reference from the interpreter runtime. Type annotations for local variables are not evaluated, so the second annotation does not need to be enclosed in quotes.

Nouveau dans la version 3.5.2.