17.1. threading
— Parallélisme basé sur les fils d’exécution (threads)¶
Code source : Lib/threading.py
Ce module élabore des interfaces haut-niveau de fils d’exécutions multiples (threading) conçues en s’appuyant sur le module bas-niveau _thread
. Voir aussi le module queue
.
The dummy_threading
module is provided for situations where
threading
cannot be used because _thread
is missing.
Note
Bien qu’ils ne soient pas listés ci-dessous, ce module gère toujours les noms en camelCase
utilisés pour certaines méthodes et fonctions de ce module dans la série Python 2.x.
Ce module définit les fonctions suivantes :
-
threading.
active_count
()¶ Renvoie le nombre d’objets
Thread
actuellement vivants. Le compte renvoyé est égal à la longueur de la liste renvoyée parenumerate()
.
-
threading.
current_thread
()¶ Renvoie l’objet
Thread
courant, correspondant au fil de contrôle de l’appelant. Si le fil de contrôle de l’appelant n’a pas été créé via le moduleThread
, un objet thread factice aux fonctionnalités limitées est renvoyé.
-
threading.
get_ident
()¶ Renvoie l”« identifiant de fil » du fil d’exécution courant. C’est un entier non nul. Sa valeur n’a pas de signification directe ; il est destiné à être utilisé comme valeur magique opaque, par exemple comme clef de dictionnaire de données pour chaque fil. Les identificateurs de fils peuvent être recyclés lorsqu’un fil se termine et qu’un autre fil est créé.
Nouveau dans la version 3.3.
-
threading.
enumerate
()¶ Renvoie une liste de tous les objets fil d’exécution
Thread
actuellement vivants. La liste inclut les fils démons, les fils factices créés parcurrent_thread()
et le fil principal. Elle exclut les fils terminés et les fils qui n’ont pas encore été lancés.
-
threading.
main_thread
()¶ Renvoie l’objet fil d’exécution
Thread
principal. Dans des conditions normales, le fil principal est le fil à partir duquel l’interpréteur Python a été lancé.Nouveau dans la version 3.4.
-
threading.
settrace
(func)¶ Attache une fonction de traçage pour tous les fils d’exécution démarrés depuis le module
Thread
. La fonction func est passée àsys.settrace()
pour chaque fil, avant que sa méthoderun()
soit appelée.
-
threading.
setprofile
(func)¶ Attache une fonction de profilage pour tous les fils d’exécution démarrés depuis le module
Threading
. La fonction func est passée àsys.setprofile()
pour chaque fil, avant que sa méthoderun()
soit appelée.
-
threading.
stack_size
([size])¶ Return the thread stack size used when creating new threads. The optional size argument specifies the stack size to be used for subsequently created threads, and must be 0 (use platform or configured default) or a positive integer value of at least 32,768 (32 KiB). If size is not specified, 0 is used. If changing the thread stack size is unsupported, a
RuntimeError
is raised. If the specified stack size is invalid, aValueError
is raised and the stack size is unmodified. 32 KiB is currently the minimum supported stack size value to guarantee sufficient stack space for the interpreter itself. Note that some platforms may have particular restrictions on values for the stack size, such as requiring a minimum stack size > 32 KiB or requiring allocation in multiples of the system memory page size - platform documentation should be referred to for more information (4 KiB pages are common; using multiples of 4096 for the stack size is the suggested approach in the absence of more specific information). Availability: Windows, systems with POSIX threads.
Ce module définit également la constante suivante :
-
threading.
TIMEOUT_MAX
¶ La valeur maximale autorisée pour le paramètre timeout des fonctions bloquantes (
Lock.acquire()
,RLock.acquire()
,Condition.wait()
, etc.). Spécifier un délai d’attente supérieur à cette valeur lève uneOverflowError
.Nouveau dans la version 3.2.
Ce module définit un certain nombre de classes, qui sont détaillées dans les sections ci-dessous.
La conception de ce module est librement basée sur le modèle des fils d’exécution de Java. Cependant, là où Java fait des verrous et des variables de condition le comportement de base de chaque objet, ils sont des objets séparés en Python. La classe Python Thread
prend en charge un sous-ensemble du comportement de la classe Thread de Java ; actuellement, il n’y a aucune priorité, aucun groupe de fils d’exécution, et les fils ne peuvent être détruits, arrêtés, suspendus, repris ni interrompus. Les méthodes statiques de la classe Thread de Java, lorsqu’elles sont implémentées, correspondent à des fonctions au niveau du module.
Toutes les méthodes décrites ci-dessous sont exécutées de manière atomique.
17.1.1. Données locales au fil d’exécution¶
Les données locales au fil d’exécution (thread-local data) sont des données dont les valeurs sont propres à chaque fil. Pour gérer les données locales au fil, il suffit de créer une instance de local
(ou une sous-classe) et d’y stocker des données :
mydata = threading.local()
mydata.x = 1
Les valeurs dans l’instance sont différentes pour des threads différents.
-
class
threading.
local
¶ Classe qui représente les données locales au fil d’exécution.
Pour plus de détails et de nombreux exemples, voir la chaîne de documentation du module
_threading_local
.
17.1.2. Objets Threads¶
La classe fil d’exécution Thread
représente une activité qui est exécutée dans un fil d’exécution séparé. Il y a deux façons de spécifier l’activité : en passant un objet appelable au constructeur, ou en ré-implémentant la méthode run()
dans une sous-classe. Aucune autre méthode (à l’exception du constructeur) ne doit être remplacée dans une sous-classe. En d’autres termes, réimplémentez seulement les méthodes __init__()
et run()
de cette classe.
Une fois qu’un objet fil d’exécution est créé, son activité doit être lancée en appelant la méthode start()
du fil. Ceci invoque la méthode run()
dans un fil d’exécution séparé.
Une fois que l’activité du fil d’exécution est lancée, le fil est considéré comme « vivant ». Il cesse d’être vivant lorsque sa méthode run()
se termine – soit normalement, soit en levant une exception non gérée. La méthode is_alive()
teste si le fil est vivant.
D’autres fils d’exécution peuvent appeler la méthode join()
d’un fil. Ceci bloque le fil appelant jusqu’à ce que le fil dont la méthode join()
est appelée soit terminé.
Un fil d’exécution a un nom. Le nom peut être passé au constructeur, et lu ou modifié via l’attribut name
.
Un fil d’exécution peut être marqué comme « fil démon ». Un programme Python se termine quand il ne reste plus que des fils démons. La valeur initiale est héritée du fil d’exécution qui l’a créé. Cette option peut être définie par la propriété daemon
ou par l’argument daemon du constructeur.
Note
Les fils d’exécution démons sont brusquement terminés à l’arrêt du programme Python. Leurs ressources (fichiers ouverts, transactions de base de données, etc.) peuvent ne pas être libérées correctement. Si vous voulez que vos fils s’arrêtent proprement, faites en sorte qu’ils ne soient pas démoniques et utilisez un mécanisme de signalisation approprié tel qu’un objet évènement Event
.
Il y a un objet « fil principal », qui correspond au fil de contrôle initial dans le programme Python. Ce n’est pas un fil démon.
Il y a une possibilité que des objets fil d’exécution « fictifs » soient créés. Ce sont des objets correspondant à des fils d’exécution « étrangers », qui sont des fils de contrôle démarrés en dehors du module de threading, par exemple directement depuis du code C. Les objets fils d’exécution fictifs ont des fonctionnalités limitées ; ils sont toujours considérés comme vivants et démoniques, et ne peuvent pas être attendus via join()
. Ils ne sont jamais supprimés, car il est impossible de détecter la fin des fils d’exécution étrangers.
-
class
threading.
Thread
(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)¶ Ce constructeur doit toujours être appelé avec des arguments nommés. Les arguments sont :
group doit être
None
; cet argument est réservé pour une extension future lorsqu’une classeThreadGroup
sera implémentée.target est l’objet appelable qui doit être invoqué par la méthode
run()
. La valeur par défaut estNone
, ce qui signifie que rien n’est appelé.name est le nom du fil d’exécution. Par défaut, un nom unique est construit de la forme « Thread–N » où N est un petit nombre décimal.
args est le tuple d’arguments pour l’invocation de l’objet appelable. La valeur par défaut est
()
.kwargs est un dictionnaire d’arguments nommés pour l’invocation de l’objet appelable. La valeur par défaut est
{}
.S’il ne vaut pas
None
, daemon définit explicitement si le fil d’exécution est démonique ou pas. S’il vautNone
(par défaut), la valeur est héritée du fil courant.Si la sous-classe réimplémente le constructeur, elle doit s’assurer d’appeler le constructeur de la classe de base (
Thread.__init__()
) avant de faire autre chose au fil d’exécution.Modifié dans la version 3.3: Ajout de l’argument daemon.
-
start
()¶ Lance l’activité du fil d’exécution.
Elle ne doit être appelée qu’une fois par objet de fil. Elle fait en sorte que la méthode
run()
de l’objet soit invoquée dans un fil d’exécution.Cette méthode lève une
RuntimeError
si elle est appelée plus d’une fois sur le même objet fil d’exécution.
-
run
()¶ Méthode représentant l’activité du fil d’exécution.
You may override this method in a subclass. The standard
run()
method invokes the callable object passed to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from the args and kwargs arguments, respectively.
-
join
(timeout=None)¶ Attend que le fil d’exécution se termine. Ceci bloque le fil appelant jusqu’à ce que le fil dont la méthode
join()
est appelée se termine – soit normalement, soit par une exception non gérée – ou jusqu’à ce que le délai optionnel timeout soit atteint.Lorsque l’argument timeout est présent et ne vaut pas
None
, il doit être un nombre en virgule flottante spécifiant un délai pour l’opération en secondes (ou fractions de secondes). Commejoin()
renvoie toujoursNone
, vous devez appeleris_alive()
aprèsjoin()
pour déterminer si le délai a expiré – si le fil d’exécution est toujours vivant, c’est que l’appel àjoin()
a expiré.Lorsque l’argument timeout n’est pas présent ou vaut
None
, l’opération se bloque jusqu’à ce que le fil d’exécution se termine.Un fil d’exécution peut être attendu via
join()
de nombreuses fois.join()
lève uneRuntimeError
si une tentative est faite pour attendre le fil d’exécution courant car cela conduirait à un interblocage (deadlock en anglais). Attendre viajoin()
un fil d’exécution avant son lancement est aussi une erreur et, si vous tentez de le faire, lève la même exception.
-
name
¶ Une chaîne de caractères utilisée à des fins d’identification seulement. Elle n’a pas de sémantique. Plusieurs fils d’exécution peuvent porter le même nom. Le nom initial est défini par le constructeur.
-
getName
()¶ -
setName
()¶ Anciens accesseur et mutateur pour
name
; utilisez plutôt ce dernier directement.
-
ident
¶ « L’identificateur de fil d’exécution » de ce fil ou
None
si le fil n’a pas été lancé. C’est un entier non nul. Voyez également la fonctionget_ident()
. Les identificateurs de fils peuvent être recyclés lorsqu’un fil se termine et qu’un autre fil est créé. L’identifiant est disponible même après que le fil ait terminé.
-
is_alive
()¶ Renvoie si le fil d’exécution est vivant ou pas.
Cette méthode renvoie
True
depuis juste avant le démarrage de la méthoderun()
et jusqu’à juste après la terminaison de la méthoderun()
. La fonctionenumerate()
du module renvoie une liste de tous les fils d’exécution vivants.
-
daemon
¶ Booléen indiquant si ce fil d’exécution est un fil démon (
True
) ou non (False
). Celui-ci doit être défini avant questart()
ne soit appelé, sinonRuntimeError
est levée. Sa valeur initiale est héritée du fil d’exécution créateur ; le fil principal n’est pas un fil démon et donc tous les fils créés dans ce fil principal ont par défaut la valeurdaemon
=False
.Le programme Python se termine lorsqu’il ne reste plus de fils d’exécution non-démons vivants.
-
CPython implementation detail: En CPython, en raison du verrou global de l’interpréteur (Global Interpreter Lock), un seul fil d’exécution peut exécuter du code Python à la fois (même si certaines bibliothèques orientées performance peuvent surmonter cette limitation). Si vous voulez que votre application fasse un meilleur usage des ressources de calcul des machines multi-cœurs, nous vous conseillons d’utiliser multiprocessing
ou concurrent.futures.ProcessPoolExecutor
. Néanmoins, les fils d’exécutions multiples restent un modèle approprié si vous souhaitez exécuter simultanément plusieurs tâches limitées par les performances des entrées-sorties.
17.1.3. Verrous¶
Un verrou primitif n’appartient pas à un fil d’exécution lorsqu’il est verrouillé. En Python, c’est actuellement la méthode de synchronisation la plus bas-niveau qui soit disponible, implémentée directement par le module d’extension _thread
.
Un verrou primitif est soit « verrouillé » soit « déverrouillé ». Il est créé dans un état déverrouillé. Il a deux méthodes, acquire()
et release()
. Lorsque l’état est déverrouillé, acquire()
verrouille et se termine immédiatement. Lorsque l’état est verrouillé, acquire()
bloque jusqu’à ce qu’un appel à release()
provenant d’un autre fil d’exécution le déverrouille. À ce moment acquire()
le verrouille à nouveau et rend la main. La méthode release()
ne doit être appelée que si le verrou est verrouillé, elle le déverrouille alors et se termine immédiatement. Déverrouiller un verrou qui n’est pas verrouillé provoque une RuntimeError
.
Locks also support the context management protocol.
When more than one thread is blocked in acquire()
waiting for the
state to turn to unlocked, only one thread proceeds when a release()
call resets the state to unlocked; which one of the waiting threads proceeds
is not defined, and may vary across implementations.
All methods are executed atomically.
-
class
threading.
Lock
¶ The class implementing primitive lock objects. Once a thread has acquired a lock, subsequent attempts to acquire it block, until it is released; any thread may release it.
Note that
Lock
is actually a factory function which returns an instance of the most efficient version of the concrete Lock class that is supported by the platform.-
acquire
(blocking=True, timeout=-1)¶ Acquiert un verrou, bloquant ou non bloquant.
When invoked with the blocking argument set to
True
(the default), block until the lock is unlocked, then set it to locked and returnTrue
.When invoked with the blocking argument set to
False
, do not block. If a call with blocking set toTrue
would block, returnFalse
immediately; otherwise, set the lock to locked and returnTrue
.When invoked with the floating-point timeout argument set to a positive value, block for at most the number of seconds specified by timeout and as long as the lock cannot be acquired. A timeout argument of
-1
specifies an unbounded wait. It is forbidden to specify a timeout when blocking is false.The return value is
True
if the lock is acquired successfully,False
if not (for example if the timeout expired).Modifié dans la version 3.2: Le paramètre timeout est nouveau.
Modifié dans la version 3.2: Lock acquisition can now be interrupted by signals on POSIX if the underlying threading implementation supports it.
-
release
()¶ Release a lock. This can be called from any thread, not only the thread which has acquired the lock.
When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting for the lock to become unlocked, allow exactly one of them to proceed.
When invoked on an unlocked lock, a
RuntimeError
is raised.Il n’y a pas de valeur de retour.
-
17.1.4. RLock Objects¶
A reentrant lock is a synchronization primitive that may be acquired multiple times by the same thread. Internally, it uses the concepts of « owning thread » and « recursion level » in addition to the locked/unlocked state used by primitive locks. In the locked state, some thread owns the lock; in the unlocked state, no thread owns it.
To lock the lock, a thread calls its acquire()
method; this
returns once the thread owns the lock. To unlock the lock, a thread calls
its release()
method. acquire()
/release()
call pairs may be nested; only the final release()
(the
release()
of the outermost pair) resets the lock to unlocked and
allows another thread blocked in acquire()
to proceed.
Reentrant locks also support the context management protocol.
-
class
threading.
RLock
¶ This class implements reentrant lock objects. A reentrant lock must be released by the thread that acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking; the thread must release it once for each time it has acquired it.
Note that
RLock
is actually a factory function which returns an instance of the most efficient version of the concrete RLock class that is supported by the platform.-
acquire
(blocking=True, timeout=-1)¶ Acquiert un verrou, bloquant ou non bloquant.
When invoked without arguments: if this thread already owns the lock, increment the recursion level by one, and return immediately. Otherwise, if another thread owns the lock, block until the lock is unlocked. Once the lock is unlocked (not owned by any thread), then grab ownership, set the recursion level to one, and return. If more than one thread is blocked waiting until the lock is unlocked, only one at a time will be able to grab ownership of the lock. There is no return value in this case.
When invoked with the blocking argument set to true, do the same thing as when called without arguments, and return true.
When invoked with the blocking argument set to false, do not block. If a call without an argument would block, return false immediately; otherwise, do the same thing as when called without arguments, and return true.
When invoked with the floating-point timeout argument set to a positive value, block for at most the number of seconds specified by timeout and as long as the lock cannot be acquired. Return true if the lock has been acquired, false if the timeout has elapsed.
Modifié dans la version 3.2: Le paramètre timeout est nouveau.
-
release
()¶ Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to unlocked (not owned by any thread), and if any other threads are blocked waiting for the lock to become unlocked, allow exactly one of them to proceed. If after the decrement the recursion level is still nonzero, the lock remains locked and owned by the calling thread.
Only call this method when the calling thread owns the lock. A
RuntimeError
is raised if this method is called when the lock is unlocked.Il n’y a pas de valeur de retour.
-
17.1.5. Condition Objects¶
A condition variable is always associated with some kind of lock; this can be passed in or one will be created by default. Passing one in is useful when several condition variables must share the same lock. The lock is part of the condition object: you don’t have to track it separately.
A condition variable obeys the context management protocol:
using the with
statement acquires the associated lock for the duration of
the enclosed block. The acquire()
and
release()
methods also call the corresponding methods of
the associated lock.
Other methods must be called with the associated lock held. The
wait()
method releases the lock, and then blocks until
another thread awakens it by calling notify()
or
notify_all()
. Once awakened, wait()
re-acquires the lock and returns. It is also possible to specify a timeout.
The notify()
method wakes up one of the threads waiting for
the condition variable, if any are waiting. The notify_all()
method wakes up all threads waiting for the condition variable.
Note: the notify()
and notify_all()
methods
don’t release the lock; this means that the thread or threads awakened will
not return from their wait()
call immediately, but only when
the thread that called notify()
or notify_all()
finally relinquishes ownership of the lock.
The typical programming style using condition variables uses the lock to
synchronize access to some shared state; threads that are interested in a
particular change of state call wait()
repeatedly until they
see the desired state, while threads that modify the state call
notify()
or notify_all()
when they change
the state in such a way that it could possibly be a desired state for one
of the waiters. For example, the following code is a generic
producer-consumer situation with unlimited buffer capacity:
# Consume one item
with cv:
while not an_item_is_available():
cv.wait()
get_an_available_item()
# Produce one item
with cv:
make_an_item_available()
cv.notify()
The while
loop checking for the application’s condition is necessary
because wait()
can return after an arbitrary long time,
and the condition which prompted the notify()
call may
no longer hold true. This is inherent to multi-threaded programming. The
wait_for()
method can be used to automate the condition
checking, and eases the computation of timeouts:
# Consume an item
with cv:
cv.wait_for(an_item_is_available)
get_an_available_item()
To choose between notify()
and notify_all()
,
consider whether one state change can be interesting for only one or several
waiting threads. E.g. in a typical producer-consumer situation, adding one
item to the buffer only needs to wake up one consumer thread.
-
class
threading.
Condition
(lock=None)¶ This class implements condition variable objects. A condition variable allows one or more threads to wait until they are notified by another thread.
If the lock argument is given and not
None
, it must be aLock
orRLock
object, and it is used as the underlying lock. Otherwise, a newRLock
object is created and used as the underlying lock.Modifié dans la version 3.3: changed from a factory function to a class.
-
acquire
(*args)¶ Acquire the underlying lock. This method calls the corresponding method on the underlying lock; the return value is whatever that method returns.
-
release
()¶ Release the underlying lock. This method calls the corresponding method on the underlying lock; there is no return value.
-
wait
(timeout=None)¶ Wait until notified or until a timeout occurs. If the calling thread has not acquired the lock when this method is called, a
RuntimeError
is raised.This method releases the underlying lock, and then blocks until it is awakened by a
notify()
ornotify_all()
call for the same condition variable in another thread, or until the optional timeout occurs. Once awakened or timed out, it re-acquires the lock and returns.When the timeout argument is present and not
None
, it should be a floating point number specifying a timeout for the operation in seconds (or fractions thereof).When the underlying lock is an
RLock
, it is not released using itsrelease()
method, since this may not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of theRLock
class is used, which really unlocks it even when it has been recursively acquired several times. Another internal interface is then used to restore the recursion level when the lock is reacquired.The return value is
True
unless a given timeout expired, in which case it isFalse
.Modifié dans la version 3.2: Previously, the method always returned
None
.
-
wait_for
(predicate, timeout=None)¶ Wait until a condition evaluates to true. predicate should be a callable which result will be interpreted as a boolean value. A timeout may be provided giving the maximum time to wait.
This utility method may call
wait()
repeatedly until the predicate is satisfied, or until a timeout occurs. The return value is the last return value of the predicate and will evaluate toFalse
if the method timed out.Ignoring the timeout feature, calling this method is roughly equivalent to writing:
while not predicate(): cv.wait()
Therefore, the same rules apply as with
wait()
: The lock must be held when called and is re-acquired on return. The predicate is evaluated with the lock held.Nouveau dans la version 3.2.
-
notify
(n=1)¶ By default, wake up one thread waiting on this condition, if any. If the calling thread has not acquired the lock when this method is called, a
RuntimeError
is raised.This method wakes up at most n of the threads waiting for the condition variable; it is a no-op if no threads are waiting.
The current implementation wakes up exactly n threads, if at least n threads are waiting. However, it’s not safe to rely on this behavior. A future, optimized implementation may occasionally wake up more than n threads.
Note: an awakened thread does not actually return from its
wait()
call until it can reacquire the lock. Sincenotify()
does not release the lock, its caller should.
-
notify_all
()¶ Wake up all threads waiting on this condition. This method acts like
notify()
, but wakes up all waiting threads instead of one. If the calling thread has not acquired the lock when this method is called, aRuntimeError
is raised.
-
17.1.6. Semaphore Objects¶
This is one of the oldest synchronization primitives in the history of computer
science, invented by the early Dutch computer scientist Edsger W. Dijkstra (he
used the names P()
and V()
instead of acquire()
and
release()
).
A semaphore manages an internal counter which is decremented by each
acquire()
call and incremented by each release()
call. The counter can never go below zero; when acquire()
finds that it is zero, it blocks, waiting until some other thread calls
release()
.
Semaphores also support the context management protocol.
-
class
threading.
Semaphore
(value=1)¶ This class implements semaphore objects. A semaphore manages an atomic counter representing the number of
release()
calls minus the number ofacquire()
calls, plus an initial value. Theacquire()
method blocks if necessary until it can return without making the counter negative. If not given, value defaults to 1.The optional argument gives the initial value for the internal counter; it defaults to
1
. If the value given is less than 0,ValueError
is raised.Modifié dans la version 3.3: changed from a factory function to a class.
-
acquire
(blocking=True, timeout=None)¶ Acquire a semaphore.
When invoked without arguments:
If the internal counter is larger than zero on entry, decrement it by one and return true immediately.
If the internal counter is zero on entry, block until awoken by a call to
release()
. Once awoken (and the counter is greater than 0), decrement the counter by 1 and return true. Exactly one thread will be awoken by each call torelease()
. The order in which threads are awoken should not be relied on.
When invoked with blocking set to false, do not block. If a call without an argument would block, return false immediately; otherwise, do the same thing as when called without arguments, and return true.
When invoked with a timeout other than
None
, it will block for at most timeout seconds. If acquire does not complete successfully in that interval, return false. Return true otherwise.Modifié dans la version 3.2: Le paramètre timeout est nouveau.
-
release
()¶ Release a semaphore, incrementing the internal counter by one. When it was zero on entry and another thread is waiting for it to become larger than zero again, wake up that thread.
-
-
class
threading.
BoundedSemaphore
(value=1)¶ Class implementing bounded semaphore objects. A bounded semaphore checks to make sure its current value doesn’t exceed its initial value. If it does,
ValueError
is raised. In most situations semaphores are used to guard resources with limited capacity. If the semaphore is released too many times it’s a sign of a bug. If not given, value defaults to 1.Modifié dans la version 3.3: changed from a factory function to a class.
17.1.6.1. Semaphore
Example¶
Semaphores are often used to guard resources with limited capacity, for example, a database server. In any situation where the size of the resource is fixed, you should use a bounded semaphore. Before spawning any worker threads, your main thread would initialize the semaphore:
maxconnections = 5
# ...
pool_sema = BoundedSemaphore(value=maxconnections)
Once spawned, worker threads call the semaphore’s acquire and release methods when they need to connect to the server:
with pool_sema:
conn = connectdb()
try:
# ... use connection ...
finally:
conn.close()
The use of a bounded semaphore reduces the chance that a programming error which causes the semaphore to be released more than it’s acquired will go undetected.
17.1.7. Event Objects¶
This is one of the simplest mechanisms for communication between threads: one thread signals an event and other threads wait for it.
An event object manages an internal flag that can be set to true with the
set()
method and reset to false with the clear()
method. The wait()
method blocks until the flag is true.
-
class
threading.
Event
¶ Class implementing event objects. An event manages a flag that can be set to true with the
set()
method and reset to false with theclear()
method. Thewait()
method blocks until the flag is true. The flag is initially false.Modifié dans la version 3.3: changed from a factory function to a class.
-
is_set
()¶ Return true if and only if the internal flag is true.
-
set
()¶ Set the internal flag to true. All threads waiting for it to become true are awakened. Threads that call
wait()
once the flag is true will not block at all.
-
clear
()¶ Reset the internal flag to false. Subsequently, threads calling
wait()
will block untilset()
is called to set the internal flag to true again.
-
wait
(timeout=None)¶ Block until the internal flag is true. If the internal flag is true on entry, return immediately. Otherwise, block until another thread calls
set()
to set the flag to true, or until the optional timeout occurs.When the timeout argument is present and not
None
, it should be a floating point number specifying a timeout for the operation in seconds (or fractions thereof).This method returns true if and only if the internal flag has been set to true, either before the wait call or after the wait starts, so it will always return
True
except if a timeout is given and the operation times out.Modifié dans la version 3.1: Previously, the method always returned
None
.
-
17.1.8. Timer Objects¶
This class represents an action that should be run only after a certain amount
of time has passed — a timer. Timer
is a subclass of Thread
and as such also functions as an example of creating custom threads.
Timers are started, as with threads, by calling their start()
method. The timer can be stopped (before its action has begun) by calling the
cancel()
method. The interval the timer will wait before
executing its action may not be exactly the same as the interval specified by
the user.
Par exemple :
def hello():
print("hello, world")
t = Timer(30.0, hello)
t.start() # after 30 seconds, "hello, world" will be printed
-
class
threading.
Timer
(interval, function, args=None, kwargs=None)¶ Create a timer that will run function with arguments args and keyword arguments kwargs, after interval seconds have passed. If args is
None
(the default) then an empty list will be used. If kwargs isNone
(the default) then an empty dict will be used.Modifié dans la version 3.3: changed from a factory function to a class.
-
cancel
()¶ Stop the timer, and cancel the execution of the timer’s action. This will only work if the timer is still in its waiting stage.
-
17.1.9. Barrier Objects¶
Nouveau dans la version 3.2.
This class provides a simple synchronization primitive for use by a fixed number
of threads that need to wait for each other. Each of the threads tries to pass
the barrier by calling the wait()
method and will block until
all of the threads have made their wait()
calls. At this point,
the threads are released simultaneously.
The barrier can be reused any number of times for the same number of threads.
As an example, here is a simple way to synchronize a client and server thread:
b = Barrier(2, timeout=5)
def server():
start_server()
b.wait()
while True:
connection = accept_connection()
process_server_connection(connection)
def client():
b.wait()
while True:
connection = make_connection()
process_client_connection(connection)
-
class
threading.
Barrier
(parties, action=None, timeout=None)¶ Create a barrier object for parties number of threads. An action, when provided, is a callable to be called by one of the threads when they are released. timeout is the default timeout value if none is specified for the
wait()
method.-
wait
(timeout=None)¶ Pass the barrier. When all the threads party to the barrier have called this function, they are all released simultaneously. If a timeout is provided, it is used in preference to any that was supplied to the class constructor.
The return value is an integer in the range 0 to parties – 1, different for each thread. This can be used to select a thread to do some special housekeeping, e.g.:
i = barrier.wait() if i == 0: # Only one thread needs to print this print("passed the barrier")
If an action was provided to the constructor, one of the threads will have called it prior to being released. Should this call raise an error, the barrier is put into the broken state.
If the call times out, the barrier is put into the broken state.
This method may raise a
BrokenBarrierError
exception if the barrier is broken or reset while a thread is waiting.
-
reset
()¶ Return the barrier to the default, empty state. Any threads waiting on it will receive the
BrokenBarrierError
exception.Note that using this function may can require some external synchronization if there are other threads whose state is unknown. If a barrier is broken it may be better to just leave it and create a new one.
-
abort
()¶ Put the barrier into a broken state. This causes any active or future calls to
wait()
to fail with theBrokenBarrierError
. Use this for example if one of the needs to abort, to avoid deadlocking the application.It may be preferable to simply create the barrier with a sensible timeout value to automatically guard against one of the threads going awry.
-
parties
¶ The number of threads required to pass the barrier.
-
n_waiting
¶ The number of threads currently waiting in the barrier.
-
broken
¶ A boolean that is
True
if the barrier is in the broken state.
-
-
exception
threading.
BrokenBarrierError
¶ This exception, a subclass of
RuntimeError
, is raised when theBarrier
object is reset or broken.
17.1.10. Using locks, conditions, and semaphores in the with
statement¶
All of the objects provided by this module that have acquire()
and
release()
methods can be used as context managers for a with
statement. The acquire()
method will be called when the block is
entered, and release()
will be called when the block is exited. Hence,
the following snippet:
with some_lock:
# do something...
est équivalente à :
some_lock.acquire()
try:
# do something...
finally:
some_lock.release()
Currently, Lock
, RLock
, Condition
,
Semaphore
, and BoundedSemaphore
objects may be used as
with
statement context managers.