Socket Programming HOWTO¶
Author: | Gordon McMillan |
---|
Résumé
Sockets are used nearly everywhere, but are one of the most severely misunderstood technologies around. This is a 10,000 foot overview of sockets. It’s not really a tutorial - you’ll still have work to do in getting things operational. It doesn’t cover the fine points (and there are a lot of them), but I hope it will give you enough background to begin using them decently.
Interfaces de connexion (sockets)¶
Je ne vais aborder que les connecteurs INET (i.e. IPv4), mais ils représentent au moins 99% des connecteurs (socket en anglais) utilisés. Et je n’aborderai que les connecteurs STREAM (i.e. TCP) — à moins que vous ne sachiez vraiment ce que vous faites (auquel cas ce HOWTO n’est pas pour vous !), vous obtiendrez un meilleur comportement et de meilleures performances avec un connecteur STREAM que tout autre. Je vais essayer d’éclaircir le mystère de ce qu’est un connecteur, ainsi que quelques conseils sur la façon de travailler avec des connecteurs bloquants et non bloquants. Mais je vais commencer par aborder les connecteurs bloquants. Nous avons besoin de savoir comment ils fonctionnent avant de traiter les connecteurs non bloquants.
Part of the trouble with understanding these things is that « socket » can mean a number of subtly different things, depending on context. So first, let’s make a distinction between a « client » socket - an endpoint of a conversation, and a « server » socket, which is more like a switchboard operator. The client application (your browser, for example) uses « client » sockets exclusively; the web server it’s talking to uses both « server » sockets and « client » sockets.
Historique¶
Of the various forms of IPC, sockets are by far the most popular. On any given platform, there are likely to be other forms of IPC that are faster, but for cross-platform communication, sockets are about the only game in town.
They were invented in Berkeley as part of the BSD flavor of Unix. They spread like wildfire with the Internet. With good reason — the combination of sockets with INET makes talking to arbitrary machines around the world unbelievably easy (at least compared to other schemes).
Créer un socket¶
Roughly speaking, when you clicked on the link that brought you to this page, your browser did something like the following:
# create an INET, STREAMing socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# now connect to the web server on port 80 - the normal http port
s.connect(("www.python.org", 80))
When the connect
completes, the socket s
can be used to send
in a request for the text of the page. The same socket will read the
reply, and then be destroyed. That’s right, destroyed. Client sockets
are normally only used for one exchange (or a small set of sequential
exchanges).
What happens in the web server is a bit more complex. First, the web server creates a « server socket »:
# create an INET, STREAMing socket
serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# bind the socket to a public host, and a well-known port
serversocket.bind((socket.gethostname(), 80))
# become a server socket
serversocket.listen(5)
Quelques remarques : nous avons utilisé socket.gethostname()
pour que le connecteur soit visible par le monde extérieur. Si nous avions utilisé s.bind((('localhost', 80))
ou s.bind((('127.0.0.0.1', 80))
nous aurions encore un connecteur « serveur », mais qui ne serait visible que sur la machine même. s.bind('', 80)]
spécifie que le socket est accessible par toute adresse que la machine possède.
Une deuxième chose à noter : les ports dont le numéro est petit sont généralement réservés aux services « bien connus » (HTTP, SNMP, etc.). Si vous expérimentez, utilisez un nombre suffisamment élevé (4 chiffres).
Enfin, l’argument listen
indique à la bibliothèque de connecteurs que nous voulons qu’elle mette en file d’attente jusqu’à 5 requêtes de connexion (le maximum normal) avant de refuser les connexions externes. Si le reste du code est écrit correctement, cela devrait suffire.
Now that we have a « server » socket, listening on port 80, we can enter the mainloop of the web server:
while True:
# accept connections from outside
(clientsocket, address) = serversocket.accept()
# now do something with the clientsocket
# in this case, we'll pretend this is a threaded server
ct = client_thread(clientsocket)
ct.run()
There’s actually 3 general ways in which this loop could work - dispatching a
thread to handle clientsocket
, create a new process to handle
clientsocket
, or restructure this app to use non-blocking sockets, and
multiplex between our « server » socket and any active clientsocket
s using
select
. More about that later. The important thing to understand now is
this: this is all a « server » socket does. It doesn’t send any data. It doesn’t
receive any data. It just produces « client » sockets. Each clientsocket
is
created in response to some other « client » socket doing a connect()
to the
host and port we’re bound to. As soon as we’ve created that clientsocket
, we
go back to listening for more connections. The two « clients » are free to chat it
up - they are using some dynamically allocated port which will be recycled when
the conversation ends.
Communication Entre Processus¶
Si vous avez besoin d’une communication rapide entre deux processus sur une même machine, vous devriez regarder comment utiliser les pipes ou la mémoire partagée. Si vous décidez d’utiliser les sockets AF_INET, liez le connecteur « serveur » à 'localhost'
. Sur la plupart des plates-formes, cela court-circuitera quelques couches réseau et sera un peu plus rapide.
Voir aussi
The multiprocessing
integrates cross-platform IPC into a higher-level
API.
Using a Socket¶
The first thing to note, is that the web browser’s « client » socket and the web
server’s « client » socket are identical beasts. That is, this is a « peer to peer »
conversation. Or to put it another way, as the designer, you will have to
decide what the rules of etiquette are for a conversation. Normally, the
connect
ing socket starts the conversation, by sending in a request, or
perhaps a signon. But that’s a design decision - it’s not a rule of sockets.
Now there are two sets of verbs to use for communication. You can use send
and recv
, or you can transform your client socket into a file-like beast and
use read
and write
. The latter is the way Java presents its sockets.
I’m not going to talk about it here, except to warn you that you need to use
flush
on sockets. These are buffered « files », and a common mistake is to
write
something, and then read
for a reply. Without a flush
in
there, you may wait forever for the reply, because the request may still be in
your output buffer.
Now we come to the major stumbling block of sockets - send
and recv
operate
on the network buffers. They do not necessarily handle all the bytes you hand
them (or expect from them), because their major focus is handling the network
buffers. In general, they return when the associated network buffers have been
filled (send
) or emptied (recv
). They then tell you how many bytes they
handled. It is your responsibility to call them again until your message has
been completely dealt with.
When a recv
returns 0 bytes, it means the other side has closed (or is in
the process of closing) the connection. You will not receive any more data on
this connection. Ever. You may be able to send data successfully; I’ll talk
more about this later.
Un protocole comme HTTP utilise un connecteur pour un seul transfert. Le client envoie une demande, puis lit une réponse. C’est tout. Le connecteur est mis au rebut. Cela signifie qu’un client peut détecter la fin de la réponse en recevant 0 octet.
Mais si vous prévoyez de réutiliser votre connecteur pour d’autres transferts, vous devez réaliser que il n’y a pas d”EOT sur un connecteur. Je répète : si un connecteur send
ou recv
retourne après avoir manipulé 0 octets, la connexion a été interrompue. Si la connexion n’a pas été interrompue, vous pouvez attendre sur un recv
pour toujours, car le connecteur ne vous dira pas qu’il n’y a plus rien à lire (pour le moment). Maintenant, si vous y réfléchissez un peu, vous allez vous rendre compte d’une vérité fondamentale sur les connecteurs : les messages doivent être de longueur fixe (beurk), ou être délimités (haussement d’épaules), ou indiquer de quelle longueur ils sont (beaucoup mieux), ou terminer en coupant la connexion. Le choix est entièrement de votre côté, (mais certaines façons sont plus justes que d’autres).
En supposant que vous ne vouliez pas terminer la connexion, la solution la plus simple est un message de longueur fixe :
class MySocket:
"""demonstration class only
- coded for clarity, not efficiency
"""
def __init__(self, sock=None):
if sock is None:
self.sock = socket.socket(
socket.AF_INET, socket.SOCK_STREAM)
else:
self.sock = sock
def connect(self, host, port):
self.sock.connect((host, port))
def mysend(self, msg):
totalsent = 0
while totalsent < MSGLEN:
sent = self.sock.send(msg[totalsent:])
if sent == 0:
raise RuntimeError("socket connection broken")
totalsent = totalsent + sent
def myreceive(self):
chunks = []
bytes_recd = 0
while bytes_recd < MSGLEN:
chunk = self.sock.recv(min(MSGLEN - bytes_recd, 2048))
if chunk == b'':
raise RuntimeError("socket connection broken")
chunks.append(chunk)
bytes_recd = bytes_recd + len(chunk)
return b''.join(chunks)
The sending code here is usable for almost any messaging scheme - in Python you
send strings, and you can use len()
to determine its length (even if it has
embedded \0
characters). It’s mostly the receiving code that gets more
complex. (And in C, it’s not much worse, except you can’t use strlen
if the
message has embedded \0
s.)
The easiest enhancement is to make the first character of the message an
indicator of message type, and have the type determine the length. Now you have
two recv
s - the first to get (at least) that first character so you can
look up the length, and the second in a loop to get the rest. If you decide to
go the delimited route, you’ll be receiving in some arbitrary chunk size, (4096
or 8192 is frequently a good match for network buffer sizes), and scanning what
you’ve received for a delimiter.
One complication to be aware of: if your conversational protocol allows multiple
messages to be sent back to back (without some kind of reply), and you pass
recv
an arbitrary chunk size, you may end up reading the start of a
following message. You’ll need to put that aside and hold onto it, until it’s
needed.
Prefixing the message with its length (say, as 5 numeric characters) gets more
complex, because (believe it or not), you may not get all 5 characters in one
recv
. In playing around, you’ll get away with it; but in high network loads,
your code will very quickly break unless you use two recv
loops - the first
to determine the length, the second to get the data part of the message. Nasty.
This is also when you’ll discover that send
does not always manage to get
rid of everything in one pass. And despite having read this, you will eventually
get bit by it!
In the interests of space, building your character, (and preserving my competitive position), these enhancements are left as an exercise for the reader. Lets move on to cleaning up.
Données binaires¶
It is perfectly possible to send binary data over a socket. The major problem is
that not all machines use the same formats for binary data. For example, a
Motorola chip will represent a 16 bit integer with the value 1 as the two hex
bytes 00 01. Intel and DEC, however, are byte-reversed - that same 1 is 01 00.
Socket libraries have calls for converting 16 and 32 bit integers - ntohl,
htonl, ntohs, htons
where « n » means network and « h » means host, « s » means
short and « l » means long. Where network order is host order, these do
nothing, but where the machine is byte-reversed, these swap the bytes around
appropriately.
In these days of 32 bit machines, the ascii representation of binary data is frequently smaller than the binary representation. That’s because a surprising amount of the time, all those longs have the value 0, or maybe 1. The string « 0 » would be two bytes, while binary is four. Of course, this doesn’t fit well with fixed-length messages. Decisions, decisions.
Déconnexion¶
Strictly speaking, you’re supposed to use shutdown
on a socket before you
close
it. The shutdown
is an advisory to the socket at the other end.
Depending on the argument you pass it, it can mean « I’m not going to send
anymore, but I’ll still listen », or « I’m not listening, good riddance! ». Most
socket libraries, however, are so used to programmers neglecting to use this
piece of etiquette that normally a close
is the same as shutdown();
close()
. So in most situations, an explicit shutdown
is not needed.
One way to use shutdown
effectively is in an HTTP-like exchange. The client
sends a request and then does a shutdown(1)
. This tells the server « This
client is done sending, but can still receive. » The server can detect « EOF » by
a receive of 0 bytes. It can assume it has the complete request. The server
sends a reply. If the send
completes successfully then, indeed, the client
was still receiving.
Python takes the automatic shutdown a step further, and says that when a socket
is garbage collected, it will automatically do a close
if it’s needed. But
relying on this is a very bad habit. If your socket just disappears without
doing a close
, the socket at the other end may hang indefinitely, thinking
you’re just being slow. Please close
your sockets when you’re done.
When Sockets Die¶
Probably the worst thing about using blocking sockets is what happens when the
other side comes down hard (without doing a close
). Your socket is likely to
hang. TCP is a reliable protocol, and it will wait a long, long time
before giving up on a connection. If you’re using threads, the entire thread is
essentially dead. There’s not much you can do about it. As long as you aren’t
doing something dumb, like holding a lock while doing a blocking read, the
thread isn’t really consuming much in the way of resources. Do not try to kill
the thread - part of the reason that threads are more efficient than processes
is that they avoid the overhead associated with the automatic recycling of
resources. In other words, if you do manage to kill the thread, your whole
process is likely to be screwed up.
Non-blocking Sockets¶
Si vous avez compris ce qui précède, vous savez déjà tout ce que vous devez savoir sur la mécanique de l’utilisation des connecteurs. Vous utiliserez toujours les mêmes appels, de la même façon. C’est juste que, si vous le faites bien, votre application sera presque dans la poche.
En Python, vous utilisez socket.setblocking(0)
pour le rendre non-bloquant. En C, c’est plus complexe, (pour commencer, vous devez choisir entre la version BSD O_NONBLOCK
et la version Posix presque impossible à distinguer O_NDELAY
, qui est complètement différente de TCP_NODELAY
), mais c’est exactement la même idée. Vous le faites après avoir créé le connecteur mais avant de l’utiliser (en fait, si vous êtes fou, vous pouvez alterner).
The major mechanical difference is that send
, recv
, connect
and
accept
can return without having done anything. You have (of course) a
number of choices. You can check return code and error codes and generally drive
yourself crazy. If you don’t believe me, try it sometime. Your app will grow
large, buggy and suck CPU. So let’s skip the brain-dead solutions and do it
right.
Utiliser select
.
En C, implémenter select
est assez complexe. En Python, c’est du gâteau, mais c’est assez proche de la version C ; aussi, si vous comprenez select
en Python, vous aurez peu de problèmes avec lui en C :
ready_to_read, ready_to_write, in_error = \
select.select(
potential_readers,
potential_writers,
potential_errs,
timeout)
You pass select
three lists: the first contains all sockets that you might
want to try reading; the second all the sockets you might want to try writing
to, and the last (normally left empty) those that you want to check for errors.
You should note that a socket can go into more than one list. The select
call is blocking, but you can give it a timeout. This is generally a sensible
thing to do - give it a nice long timeout (say a minute) unless you have good
reason to do otherwise.
In return, you will get three lists. They contain the sockets that are actually readable, writable and in error. Each of these lists is a subset (possibly empty) of the corresponding list you passed in.
Si un connecteur se trouve dans la liste des sorties que vous pouvez lire, vous pouvez être pratiquement certain qu’un recv
sur ce connecteur retournera quelque chose. Même chose pour la liste des sorties sur lesquelles vous pouvez écrire. Vous pourrez envoyer quelque chose. Peut-être pas tout ce que vous voudrez, mais quelque chose est mieux que rien. (En fait, n’importe quel connecteur raisonnablement sain retournera en écriture — cela signifie simplement que l’espace tampon réseau sortant est disponible).
Si vous avez un connecteur « serveur », mettez-le dans la liste des lecteurs potentiels. Si il apparaît dans la liste des sorties que vous pouvez lire, votre accept
fonctionnera (presque certainement). Si vous avez créé un nouveau connecteur pour connect
à quelqu’un d’autre, mettez-le dans la liste des éditeurs potentiels. Si il apparaît dans la liste des sorties sur lesquelles vous pouvez écrire, vous avez une bonne chance qu’il se soit connecté.
En fait, select
peut être pratique même avec des connecteurs bloquants. C’est une façon de déterminer si vous allez bloquer — le socket redevient lisible lorsqu’il y a quelque chose dans les tampons. Cependant, cela n’aide pas encore à déterminer si l’autre extrémité a terminé, ou si elle est simplement occupée par autre chose.
Alerte de portabilité : Sous Unix, select
fonctionne aussi bien avec les connecteurs qu’avec les fichiers. N’essayez pas cela sous Windows. Sous Windows, select
ne fonctionne qu’avec les connecteurs. Notez également qu’en C, la plupart des options de connecteurs les plus avancées se font différemment sous Windows. En fait, sous Windows, j’utilise habituellement des fils d’exécution (qui fonctionnent très, très bien) avec mes connecteurs.