1. Étendre Python en C ou C++¶
Il est relativement facile d’ajouter de nouveaux modules à Python, si vous savez programmer en C. Ces <modules d’extension> extension modules permettent deux choses qui ne sont pas possible directement en Python: Elles peuvent définir de nouveaux types natifs, et peuvent appeler des fonctions de bibliothèques C ou appels systèmes.
Pour gérer les extensions, l’API Python (Application Programmer Interface) définit un ensemble de fonctions, macros et variables qui donnent accès à la plupart des aspects du système d’exécution de Python. L’API Python est incorporée dans un fichier source C en incluant l’en-tête "Python.h"
.
La compilation d’un module d’extension dépend de l’usage prévu et de la configuration du système, plus de détails peuvent être trouvés dans les chapitres suivants.
Note
L’interface d’extension C est spécifique à CPython, et les modules d’extension ne fonctionne pas sur les autres implémentations de Python. Dans de nombreux cas, il est possible d’éviter la rédaction des extensions en C et ainsi préserver la portabilité vers d’autres implémentations. Par exemple, si vous devez appeler une fonction de la bibliothèque C ou faire un appel système, vous devriez envisager d’utiliser le module ctypes
ou d’utiliser la bibliothèque cffi plutôt que d’écrire du code C sur mesure. Ces modules vous permettent d’écrire du code Python s’interfaçant avec le code C et sont plus portables entre les implémentations de Python que l’écriture et la compilation d’une d’extension C.
1.1. Un exemple simple¶
Créons un module d’extension appelé spam
(la nourriture préférée de fans des Monty Python …) et disons que nous voulons créer une interface Python à la fonction de la bibliothèque C system()
. [1] Cette fonction prend une chaîne de caractères terminée par NULL comme argument et renvoie un entier. Nous voulons que cette fonction soit appelable à partir de Python comme suit :
>>> import spam
>>> status = spam.system("ls -l")
Commencez par créer un fichier spammodule.c
. (Historiquement, si un module se nomme spam
, le fichier C contenant son implémentation est appelé spammodule.c
. Si le nom du module est très long, comme spammify
, le nom du module peut être juste spammify.c
.)
La première ligne de notre fichier peut être :
#include <Python.h>
qui récupère l’API Python (vous pouvez ajouter un commentaire décrivant le but du module et un avis de droit d’auteur si vous le souhaitez).
Note
Python pouvant définir certaines définitions pré-processeur qui affectent les têtes standard sur certains systèmes, vous devez inclure Python.h
avant les en-têtes standards.
Tous les symboles exposés par Python.h
sont préfixés de Py
ou PY
, sauf ceux qui sont définis dans les en-têtes standard. Pour le confort, et comme ils sont largement utilisés par l’interpréteur Python, "Python.h"
inclut lui même quelques d’en-têtes standard : <stdio.h>
, <string.h>
, <errno.h>
et <stdlib.h>
. Si ce dernier n’existe pas sur votre système, il déclare les fonctions malloc()
, free()
et realloc()
directement.
La prochaine chose que nous ajoutons à notre fichier de module est la fonction C qui sera appelée lorsque l’expression Python spam.system(chaîne)
sera évaluée (nous verrons bientôt comment elle finit par être appelée) :
static PyObject *
spam_system(PyObject *self, PyObject *args)
{
const char *command;
int sts;
if (!PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command);
return PyLong_FromLong(sts);
}
Il y a une correspondance directe de la liste des arguments en Python (par exemple, l’expression "ls -l"
) aux arguments passés à la fonction C. La fonction C a toujours deux arguments, appelés par convention self et args.
Pour les fonctions au niveau du module, l’argument self pointe sur l’objet module, pour une méthode, il pointe sur l’instance de l’objet.
L’argument args sera un pointeur vers un tuple Python contenant les arguments. Chaque élément du tuple correspond à un argument dans la liste des arguments de l’appel. Les arguments sont des objets Python — afin d’en faire quelque chose dans notre fonction C, nous devons les convertir en valeurs C. La fonction PyArg_ParseTuple()
de l’API Python vérifie les types des arguments et les convertit en valeurs C. Elle utilise un modèle sous forme de chaîne pour déterminer les types requis des arguments ainsi que les types de variables C dans lequel stocker les valeurs converties. Nous en verront plus, plus tard.
PyArg_ParseTuple()
renvoie vrai (pas zéro) si tous les arguments ont le bon type et que ses composants ont été stockés dans les variables dont les adresses données. Il renvoie faux (zéro) si une liste d’arguments invalide a été passée. Dans ce dernier cas, elle lève également une exception appropriée de sorte que la fonction d’appel puisse renvoyer NULL immédiatement (comme nous l’avons vu dans l’exemple).
1.2. Intermezzo: Les erreurs et exceptions¶
Une convention primordiale imprégnant tout l’interpréteur Python est: quand une fonction échoue, elle devrait laisser une exception et renvoyer une valeur d’erreur (typiquement un pointeur NULL). Dans l’interpréteur, les exceptions sont stockés dans une variable globale statique, si cette variable est NULL, aucune exception n’a eu lieu. Une seconde variable globale stocke la « valeur associée » à l’exception (le deuxième argument de raise
). Une troisième variable contient la trace de la pile dans le cas où l’erreur soit survenue dans du code Python. Ces trois variables sont les équivalents C du résultat de sys.exc_info()
en Python (voir la section sur le module sys
dans The Python Library Reference). Il est important de les connaître pour comprendre comment les erreurs sont propagées.
L’API Python définit un certain nombre de fonctions pour créer différents types d’exceptions.
La plus courante est PyErr_SetString()
. Ses arguments sont un objet exception et une chaîne C. L’objet exception est généralement un objet prédéfini comme PyExc_ZeroDivisionError
. La chaîne C indique la cause de l’erreur et est convertie en une chaîne Python puis stockée en tant que « valeur associée » à l’exception.
Une autre fonction utile est PyErr_SetFromErrno()
, qui construit une exception à partir de la valeur de la variable globale errno
. La fonction la plus générale est PyErr_SetObject()
, qui prend deux arguments: l’exception et sa valeur associée. Vous ne devez pas appliquer Py_INCREF()
aux objets transmis à ces fonctions.
Vous pouvez tester de manière non destructive si une exception a été levée avec PyErr_Occurred()
. Cela renvoie l’objet exception actuel, ou NULL si aucune exception n’a eu lieu. Cependant, vous ne devriez pas avoir besoin d’appeler PyErr_Occurred()
pour voir si une erreur est survenue durant l’appel d’une fonction, puisque vous devriez être en mesure de le déterminer à partir de la valeur de retour.
Lorsqu’une fonction f ayant appelé une autre fonction g détecte que cette dernière a échoué, f devrait donner une valeur d’erreur à son tour (habituellement NULL ou -1
). f ne devrait pas appeler l’une des fonctions PyErr_*()
, l’une d’elles ayant déjà été appelée par g. La fonction appelant f est alors censée renvoyer aussi un code d’erreur à celle qui l’a appelée, toujours sans utiliser PyErr_*()
, et ainsi de suite. La cause la plus détaillée de l’erreur a déjà été signalée par la fonction l’ayant détectée en premier. Une fois l’erreur remontée à la boucle principale de l’interpréteur Python, il interrompt le code en cours d’exécution et essaie de trouver un gestionnaire d’exception spécifié par le développeur Python.
(Il y a des situations où un module peut effectivement donner un message d’erreur plus détaillé en appelant une autre fonction PyErr_*()
, dans de tels cas, il est tout à fait possible de le faire. Cependant, ce n’est généralement pas nécessaire, et peut amener à perdre des informations sur la cause de l’erreur: la plupart des opérations peuvent échouer pour tout un tas de raisons).
Pour ignorer une exception qui aurait été émise lors d’un appel de fonction qui aurait échoué, l’exception doit être retirée explicitement en appelant PyErr_Clear()
. Le seul cas pour lequel du code C devrait appeler PyErr_Clear()
est lorsqu’il ne veut pas passer l’erreur à l’interpréteur, mais souhaite la gérer lui-même (peut-être en essayant quelque chose d’autre, ou en prétendant que rien n’a mal tourné).
Chaque échec de malloc()
doit être transformé en une exception — l’appelant direct de malloc()
(ou realloc()
) doit appeler PyErr_NoMemory()
et prendre l’initiative de renvoyer une valeur d’erreur. Toutes les fonctions construisant des objets (tels que PyLong_FromLong()
) le font déjà, donc cette note ne concerne que ceux qui appellent malloc()
directement.
Notez également que, à l’exception notable de PyArg_ParseTuple()
et compagnie, les fonctions qui renvoient leur statut sous forme d’entier donnent généralement une valeur positive ou zéro en cas de succès et -1
en cas d’échec, comme les appels du système Unix.
Enfin, lorsque vous renvoyez un code d’erreur, n’oubliez pas faire un brin de nettoyage (en appelant Py_XDECREF()
ou Py_DECREF()
avec les objets que vous auriez déjà créés) !
Le choix de l’exception à lever vous incombe. Il existe des objets C correspondant à chaque exception Python, tel que PyExc_ZeroDivisionError
, que vous pouvez utiliser directement. Choisissez judicieusement vos exceptions, typiquement n’utilisez pas PyExc_TypeError
pour indiquer qu’un fichier n’a pas pu être ouvert (qui devrait probablement être PyExc_IOError
). Si quelque chose ne va pas avec la liste des arguments, la fonction PyArg_ParseTuple()
lève habituellement une exception PyExc_TypeError
. Mais si vous avez un argument dont la valeur doit être dans un intervalle particulier ou qui doit satisfaire d’autres conditions, PyExc_ValueError
sera plus appropriée.
Vous pouvez également créer une exception spécifique à votre module. Pour cela, déclarez simplement une variable statique au début de votre fichier :
static PyObject *SpamError;
et initialisez-la dans la fonction d’initialisation de votre module (PyInit_spam()
) avec un objet exception (Passons, pour le moment, la vérification des codes d’erreur) :
PyMODINIT_FUNC
PyInit_spam(void)
{
PyObject *m;
m = PyModule_Create(&spammodule);
if (m == NULL)
return NULL;
SpamError = PyErr_NewException("spam.error", NULL, NULL);
Py_INCREF(SpamError);
PyModule_AddObject(m, "error", SpamError);
return m;
}
Notez que le nom de exception, côté Python, est spam.error
. La fonction PyErr_NewException()
peut créer une classe héritant de Exception
(à moins qu’une autre classe ne lui soit fournie à la place de NULL), voir Exceptions natives.
Notez également que la variable SpamError
contient une référence à la nouvelle classe créée; ceci est intentionnel! Comme l’exception peut être retirée du module par un code externe, une référence à la classe est nécessaire pour assurer qu’il ne sera pas rejeté, causant SpamError
à devenir un pointeur défaillant. S’il devenait un pointeur défaillant, le C code qui lève l’exception peut engendrer un rejet central ou des effets secondaires inattendus.
Nous traiterons de l’utilisation de PyMODINIT_FUNC
comme un type de retour de fonction plus tard dans cette section.
L’exception spam.error
peut être levée dans votre module d’extension en appelant PyErr_SetString()
comme montré ci-dessous :
static PyObject *
spam_system(PyObject *self, PyObject *args)
{
const char *command;
int sts;
if (!PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command);
if (sts < 0) {
PyErr_SetString(SpamError, "System command failed");
return NULL;
}
return PyLong_FromLong(sts);
}
1.3. Retour vers l’exemple¶
En revenant vers notre fonction exemple, vous devriez maintenant être capable de comprendre cette affirmation :
if (!PyArg_ParseTuple(args, "s", &command))
return NULL;
Elle renvoie NULL (l’indicateur d’erreur pour les fonctions renvoyant des pointeurs d’objet) si une erreur est détectée dans la liste des arguments,se fiant à l’exception définie par PyArg_ParseTuple()
. Autrement,la valeur chaîne de l’argument a été copiée dans la variable locale command
. Il s’agit d’une attribution de pointeur et vous n’êtes pas supposés modifier la chaîne qui vers laquelle il pointe (donc en C Standard, la variable command
doit être clairement déclarée comme const char *command
).
La prochaine instruction est un appel à la fonction Unix system()
, en lui passant la chaîne que nous venons d’obtenir à partir de PyArg_ParseTuple()
:
sts = system(command);
Notre fonction spam.system()
doit renvoyer la valeur de sts
comme un objet Python. Cela est effectué par l’utilisation de la fonction PyLong_FromLong()
.
return PyLong_FromLong(sts);
Dans ce cas, elle renverra un objet entier. (Oui, même les entiers sont des objets dans le tas en Python!)
Si vous avez une fonction C qui ne renvoie aucun argument utile (une fonction renvoyant void
), la fonction Python correspondante doit renvoyer None
. Vous aurez besoin de cette locution pour cela (qui est implémentée par la macro Py_RETURN_NONE
) :
Py_INCREF(Py_None);
return Py_None;
Py_None
est le nom C pour l’objet spécial Python None
. C’est un authentique objet Python plutôt qu’un pointeur NULL, qui signifie qu’une erreur est survenue, dans la plupart des situations, comme nous l’avons vu.
1.4. La fonction d’initialisation et le tableau des méthodes du module¶
Nous avons promis de montrer comment spam_system()
est appelée depuis les programmes Python. D’abord, nous avons besoin d’avoir son nom et son adresse dans un « tableau des méthodes »
static PyMethodDef SpamMethods[] = {
...
{"system", spam_system, METH_VARARGS,
"Execute a shell command."},
...
{NULL, NULL, 0, NULL} /* Sentinel */
};
Notez la troisième entrée (METH_VARARGS
). C’est un indicateur du type de convention à utiliser pour la fonction C, à destination de l’interpréteur. Il doit valoir normalement METH_VARARGS
ou METH_VARARGS | METH_KEYWORDS
; la valeur 0
indique qu’une variante obsolète de PyArg_ParseTuple()
est utilisée.
Si seulement METH_VARARGS
est utilisé, la fonction s’attend à ce que les paramètres Python soient passés comme un n-uplet que l’on peut analyser via PyArg_ParseTuple()
; des informations supplémentaires sont fournies plus bas.
Le bit METH_KEYWORDS
peut être mis à un dans le troisième champ si des arguments par mot-clés doivent être passés à la fonction. Dans ce cas, la fonction C doit accepter un troisième paramètre PyObject *
qui est un dictionnaire des mots-clés. Utilisez PyArg_ParseTupleAndKeywords()
pour analyser les arguments d’une telle fonction.
Le tableau des méthodes doit être référencé dans la structure de définition du module :
static struct PyModuleDef spammodule = {
PyModuleDef_HEAD_INIT,
"spam", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,
or -1 if the module keeps state in global variables. */
SpamMethods
};
This structure, in turn, must be passed to the interpreter in the module’s
initialization function. The initialization function must be named
PyInit_name()
, where name is the name of the module, and should be the
only non-static
item defined in the module file:
PyMODINIT_FUNC
PyInit_spam(void)
{
return PyModule_Create(&spammodule);
}
Note that PyMODINIT_FUNC declares the function as PyObject *
return type,
declares any special linkage declarations required by the platform, and for C++
declares the function as extern "C"
.
When the Python program imports module spam
for the first time,
PyInit_spam()
is called. (See below for comments about embedding Python.)
It calls PyModule_Create()
, which returns a module object, and
inserts built-in function objects into the newly created module based upon the
table (an array of PyMethodDef
structures) found in the module definition.
PyModule_Create()
returns a pointer to the module object
that it creates. It may abort with a fatal error for
certain errors, or return NULL if the module could not be initialized
satisfactorily. The init function must return the module object to its caller,
so that it then gets inserted into sys.modules
.
When embedding Python, the PyInit_spam()
function is not called
automatically unless there’s an entry in the PyImport_Inittab
table.
To add the module to the initialization table, use PyImport_AppendInittab()
,
optionally followed by an import of the module:
int
main(int argc, char *argv[])
{
wchar_t *program = Py_DecodeLocale(argv[0], NULL);
if (program == NULL) {
fprintf(stderr, "Fatal error: cannot decode argv[0]\n");
exit(1);
}
/* Add a built-in module, before Py_Initialize */
PyImport_AppendInittab("spam", PyInit_spam);
/* Pass argv[0] to the Python interpreter */
Py_SetProgramName(program);
/* Initialize the Python interpreter. Required. */
Py_Initialize();
/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */
PyImport_ImportModule("spam");
...
PyMem_RawFree(program);
return 0;
}
Note
Removing entries from sys.modules
or importing compiled modules into
multiple interpreters within a process (or following a fork()
without an
intervening exec()
) can create problems for some extension modules.
Extension module authors should exercise caution when initializing internal data
structures.
A more substantial example module is included in the Python source distribution
as Modules/xxmodule.c
. This file may be used as a template or simply
read as an example.
Note
Unlike our spam
example, xxmodule
uses multi-phase initialization
(new in Python 3.5), where a PyModuleDef structure is returned from
PyInit_spam
, and creation of the module is left to the import machinery.
For details on multi-phase initialization, see PEP 489.
1.5. Compilation and Linkage¶
There are two more things to do before you can use your new extension: compiling and linking it with the Python system. If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see the chapters about building extension modules (chapter Construire des extensions C et C++) and additional information that pertains only to building on Windows (chapter Construire des extensions C et C++ sur Windows) for more information about this.
If you can’t use dynamic loading, or if you want to make your module a permanent
part of the Python interpreter, you will have to change the configuration setup
and rebuild the interpreter. Luckily, this is very simple on Unix: just place
your file (spammodule.c
for example) in the Modules/
directory
of an unpacked source distribution, add a line to the file
Modules/Setup.local
describing your file:
spam spammodule.o
and rebuild the interpreter by running make in the toplevel
directory. You can also run make in the Modules/
subdirectory, but then you must first rebuild Makefile
there by running
“make Makefile”. (This is necessary each time you change the
Setup
file.)
If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well, for instance:
spam spammodule.o -lX11
1.6. Calling Python Functions from C¶
So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python functions from C. This is especially the case for libraries that support so-called « callback » functions. If a C interface makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python programmer; the implementation will require calling the Python callback functions from a C callback. Other uses are also imaginable.
Fortunately, the Python interpreter is easily called recursively, and there is a
standard interface to call a Python function. (I won’t dwell on how to call the
Python parser with a particular string as input — if you’re interested, have a
look at the implementation of the -c
command line option in
Modules/main.c
from the Python source code.)
Calling a Python function is easy. First, the Python program must somehow pass
you the Python function object. You should provide a function (or some other
interface) to do this. When this function is called, save a pointer to the
Python function object (be careful to Py_INCREF()
it!) in a global
variable — or wherever you see fit. For example, the following function might
be part of a module definition:
static PyObject *my_callback = NULL;
static PyObject *
my_set_callback(PyObject *dummy, PyObject *args)
{
PyObject *result = NULL;
PyObject *temp;
if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check(temp)) {
PyErr_SetString(PyExc_TypeError, "parameter must be callable");
return NULL;
}
Py_XINCREF(temp); /* Add a reference to new callback */
Py_XDECREF(my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */
/* Boilerplate to return "None" */
Py_INCREF(Py_None);
result = Py_None;
}
return result;
}
This function must be registered with the interpreter using the
METH_VARARGS
flag; this is described in section La fonction d’initialisation et le tableau des méthodes du module. The
PyArg_ParseTuple()
function and its arguments are documented in section
Extracting Parameters in Extension Functions.
The macros Py_XINCREF()
and Py_XDECREF()
increment/decrement the
reference count of an object and are safe in the presence of NULL pointers
(but note that temp will not be NULL in this context). More info on them
in section Reference Counts.
Later, when it is time to call the function, you call the C function
PyObject_CallObject()
. This function has two arguments, both pointers to
arbitrary Python objects: the Python function, and the argument list. The
argument list must always be a tuple object, whose length is the number of
arguments. To call the Python function with no arguments, pass in NULL, or
an empty tuple; to call it with one argument, pass a singleton tuple.
Py_BuildValue()
returns a tuple when its format string consists of zero
or more format codes between parentheses. For example:
int arg;
PyObject *arglist;
PyObject *result;
...
arg = 123;
...
/* Time to call the callback */
arglist = Py_BuildValue("(i)", arg);
result = PyObject_CallObject(my_callback, arglist);
Py_DECREF(arglist);
PyObject_CallObject()
returns a Python object pointer: this is the return
value of the Python function. PyObject_CallObject()
is
« reference-count-neutral » with respect to its arguments. In the example a new
tuple was created to serve as the argument list, which is Py_DECREF()
-ed immediately after the PyObject_CallObject()
call.
The return value of PyObject_CallObject()
is « new »: either it is a brand
new object, or it is an existing object whose reference count has been
incremented. So, unless you want to save it in a global variable, you should
somehow Py_DECREF()
the result, even (especially!) if you are not
interested in its value.
Before you do this, however, it is important to check that the return value
isn’t NULL. If it is, the Python function terminated by raising an exception.
If the C code that called PyObject_CallObject()
is called from Python, it
should now return an error indication to its Python caller, so the interpreter
can print a stack trace, or the calling Python code can handle the exception.
If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear()
. For example:
if (result == NULL)
return NULL; /* Pass error back */
...use result...
Py_DECREF(result);
Depending on the desired interface to the Python callback function, you may also
have to provide an argument list to PyObject_CallObject()
. In some cases
the argument list is also provided by the Python program, through the same
interface that specified the callback function. It can then be saved and used
in the same manner as the function object. In other cases, you may have to
construct a new tuple to pass as the argument list. The simplest way to do this
is to call Py_BuildValue()
. For example, if you want to pass an integral
event code, you might use the following code:
PyObject *arglist;
...
arglist = Py_BuildValue("(l)", eventcode);
result = PyObject_CallObject(my_callback, arglist);
Py_DECREF(arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);
Note the placement of Py_DECREF(arglist)
immediately after the call, before
the error check! Also note that strictly speaking this code is not complete:
Py_BuildValue()
may run out of memory, and this should be checked.
You may also call a function with keyword arguments by using
PyObject_Call()
, which supports arguments and keyword arguments. As in
the above example, we use Py_BuildValue()
to construct the dictionary.
PyObject *dict;
...
dict = Py_BuildValue("{s:i}", "name", val);
result = PyObject_Call(my_callback, NULL, dict);
Py_DECREF(dict);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);
1.7. Extracting Parameters in Extension Functions¶
The PyArg_ParseTuple()
function is declared as follows:
int PyArg_ParseTuple(PyObject *arg, const char *format, ...);
The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format argument must be a format string, whose syntax is explained in Analyse des arguments et construction des valeurs in the Python/C API Reference Manual. The remaining arguments must be addresses of variables whose type is determined by the format string.
Note that while PyArg_ParseTuple()
checks that the Python arguments have
the required types, it cannot check the validity of the addresses of C variables
passed to the call: if you make mistakes there, your code will probably crash or
at least overwrite random bits in memory. So be careful!
Notez que n’importe quelles références sur un objet Python qui sont données à l’appelant sont des références empruntées ; ne décrémentez pas leur compteur de références !
Some example calls:
#define PY_SSIZE_T_CLEAN /* Make "s#" use Py_ssize_t rather than int. */
#include <Python.h>
int ok;
int i, j;
long k, l;
const char *s;
Py_ssize_t size;
ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */
ok = PyArg_ParseTuple(args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */
ok = PyArg_ParseTuple(args, "lls", &k, &l, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */
ok = PyArg_ParseTuple(args, "(ii)s#", &i, &j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */
{
const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:
f('spam')
f('spam', 'w')
f('spam', 'wb', 100000) */
}
{
int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, "((ii)(ii))(ii)",
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
f(((0, 0), (400, 300)), (10, 10)) */
}
{
Py_complex c;
ok = PyArg_ParseTuple(args, "D:myfunction", &c);
/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction(1+2j) */
}
1.8. Keyword Parameters for Extension Functions¶
The PyArg_ParseTupleAndKeywords()
function is declared as follows:
int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject *kwdict,
const char *format, char *kwlist[], ...);
The arg and format parameters are identical to those of the
PyArg_ParseTuple()
function. The kwdict parameter is the dictionary of
keywords received as the third parameter from the Python runtime. The kwlist
parameter is a NULL-terminated list of strings which identify the parameters;
the names are matched with the type information from format from left to
right. On success, PyArg_ParseTupleAndKeywords()
returns true, otherwise
it returns false and raises an appropriate exception.
Note
Nested tuples cannot be parsed when using keyword arguments! Keyword parameters
passed in which are not present in the kwlist will cause TypeError
to
be raised.
Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):
#include "Python.h"
static PyObject *
keywdarg_parrot(PyObject *self, PyObject *args, PyObject *keywds)
{
int voltage;
char *state = "a stiff";
char *action = "voom";
char *type = "Norwegian Blue";
static char *kwlist[] = {"voltage", "state", "action", "type", NULL};
if (!PyArg_ParseTupleAndKeywords(args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;
printf("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf("-- Lovely plumage, the %s -- It's %s!\n", type, state);
Py_RETURN_NONE;
}
static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg_parrot() takes
* three.
*/
{"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS | METH_KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} /* sentinel */
};
static struct PyModuleDef keywdargmodule = {
PyModuleDef_HEAD_INIT,
"keywdarg",
NULL,
-1,
keywdarg_methods
};
PyMODINIT_FUNC
PyInit_keywdarg(void)
{
return PyModule_Create(&keywdargmodule);
}
1.9. Building Arbitrary Values¶
This function is the counterpart to PyArg_ParseTuple()
. It is declared
as follows:
PyObject *Py_BuildValue(const char *format, ...);
It recognizes a set of format units similar to the ones recognized by
PyArg_ParseTuple()
, but the arguments (which are input to the function,
not output) must not be pointers, just values. It returns a new Python object,
suitable for returning from a C function called from Python.
One difference with PyArg_ParseTuple()
: while the latter requires its
first argument to be a tuple (since Python argument lists are always represented
as tuples internally), Py_BuildValue()
does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If
the format string is empty, it returns None
; if it contains exactly one
format unit, it returns whatever object is described by that format unit. To
force it to return a tuple of size 0 or one, parenthesize the format string.
Examples (to the left the call, to the right the resulting Python value):
Py_BuildValue("") None
Py_BuildValue("i", 123) 123
Py_BuildValue("iii", 123, 456, 789) (123, 456, 789)
Py_BuildValue("s", "hello") 'hello'
Py_BuildValue("y", "hello") b'hello'
Py_BuildValue("ss", "hello", "world") ('hello', 'world')
Py_BuildValue("s#", "hello", 4) 'hell'
Py_BuildValue("y#", "hello", 4) b'hell'
Py_BuildValue("()") ()
Py_BuildValue("(i)", 123) (123,)
Py_BuildValue("(ii)", 123, 456) (123, 456)
Py_BuildValue("(i,i)", 123, 456) (123, 456)
Py_BuildValue("[i,i]", 123, 456) [123, 456]
Py_BuildValue("{s:i,s:i}",
"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_BuildValue("((ii)(ii)) (ii)",
1, 2, 3, 4, 5, 6) (((1, 2), (3, 4)), (5, 6))
1.10. Reference Counts¶
In languages like C or C++, the programmer is responsible for dynamic allocation
and deallocation of memory on the heap. In C, this is done using the functions
malloc()
and free()
. In C++, the operators new
and
delete
are used with essentially the same meaning and we’ll restrict
the following discussion to the C case.
Every block of memory allocated with malloc()
should eventually be
returned to the pool of available memory by exactly one call to free()
.
It is important to call free()
at the right time. If a block’s address
is forgotten but free()
is not called for it, the memory it occupies
cannot be reused until the program terminates. This is called a memory
leak. On the other hand, if a program calls free()
for a block and then
continues to use the block, it creates a conflict with re-use of the block
through another malloc()
call. This is called using freed memory.
It has the same bad consequences as referencing uninitialized data — core
dumps, wrong results, mysterious crashes.
Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block of memory, do some calculation, and then free the block again. Now a change in the requirements for the function may add a test to the calculation that detects an error condition and can return prematurely from the function. It’s easy to forget to free the allocated memory block when taking this premature exit, especially when it is added later to the code. Such leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small fraction of all calls, and most modern machines have plenty of virtual memory, so the leak only becomes apparent in a long-running process that uses the leaking function frequently. Therefore, it’s important to prevent leaks from happening by having a coding convention or strategy that minimizes this kind of errors.
Since Python makes heavy use of malloc()
and free()
, it needs a
strategy to avoid memory leaks as well as the use of freed memory. The chosen
method is called reference counting. The principle is simple: every
object contains a counter, which is incremented when a reference to the object
is stored somewhere, and which is decremented when a reference to it is deleted.
When the counter reaches zero, the last reference to the object has been deleted
and the object is freed.
An alternative strategy is called automatic garbage collection.
(Sometimes, reference counting is also referred to as a garbage collection
strategy, hence my use of « automatic » to distinguish the two.) The big
advantage of automatic garbage collection is that the user doesn’t need to call
free()
explicitly. (Another claimed advantage is an improvement in speed
or memory usage — this is no hard fact however.) The disadvantage is that for
C, there is no truly portable automatic garbage collector, while reference
counting can be implemented portably (as long as the functions malloc()
and free()
are available — which the C Standard guarantees). Maybe some
day a sufficiently portable automatic garbage collector will be available for C.
Until then, we’ll have to live with reference counts.
While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to detect reference cycles. This allows applications to not worry about creating direct or indirect circular references; these are the weakness of garbage collection implemented using only reference counting. Reference cycles consist of objects which contain (possibly indirect) references to themselves, so that each object in the cycle has a reference count which is non-zero. Typical reference counting implementations are not able to reclaim the memory belonging to any objects in a reference cycle, or referenced from the objects in the cycle, even though there are no further references to the cycle itself.
The cycle detector is able to detect garbage cycles and can reclaim them.
The gc
module exposes a way to run the detector (the
collect()
function), as well as configuration
interfaces and the ability to disable the detector at runtime. The cycle
detector is considered an optional component; though it is included by default,
it can be disabled at build time using the --without-cycle-gc
option
to the configure script on Unix platforms (including Mac OS X). If
the cycle detector is disabled in this way, the gc
module will not be
available.
1.10.1. Reference Counting in Python¶
There are two macros, Py_INCREF(x)
and Py_DECREF(x)
, which handle the
incrementing and decrementing of the reference count. Py_DECREF()
also
frees the object when the count reaches zero. For flexibility, it doesn’t call
free()
directly — rather, it makes a call through a function pointer in
the object’s type object. For this purpose (and others), every object
also contains a pointer to its type object.
The big question now remains: when to use Py_INCREF(x)
and Py_DECREF(x)
?
Let’s first introduce some terms. Nobody « owns » an object; however, you can
own a reference to an object. An object’s reference count is now defined
as the number of owned references to it. The owner of a reference is
responsible for calling Py_DECREF()
when the reference is no longer
needed. Ownership of a reference can be transferred. There are three ways to
dispose of an owned reference: pass it on, store it, or call Py_DECREF()
.
Forgetting to dispose of an owned reference creates a memory leak.
It is also possible to borrow [2] a reference to an object. The
borrower of a reference should not call Py_DECREF()
. The borrower must
not hold on to the object longer than the owner from which it was borrowed.
Using a borrowed reference after the owner has disposed of it risks using freed
memory and should be avoided completely. [3]
The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference on all possible paths through the code — in other words, with a borrowed reference you don’t run the risk of leaking when a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations where in seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in fact disposed of it.
A borrowed reference can be changed into an owned reference by calling
Py_INCREF()
. This does not affect the status of the owner from which the
reference was borrowed — it creates a new owned reference, and gives full
owner responsibilities (the new owner must dispose of the reference properly, as
well as the previous owner).
1.10.2. Ownership Rules¶
Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification whether ownership is transferred with the reference or not.
Most functions that return a reference to an object pass on ownership with the
reference. In particular, all functions whose function it is to create a new
object, such as PyLong_FromLong()
and Py_BuildValue()
, pass
ownership to the receiver. Even if the object is not actually new, you still
receive ownership of a new reference to that object. For instance,
PyLong_FromLong()
maintains a cache of popular values and can return a
reference to a cached item.
Many functions that extract objects from other objects also transfer ownership
with the reference, for instance PyObject_GetAttrString()
. The picture
is less clear, here, however, since a few common routines are exceptions:
PyTuple_GetItem()
, PyList_GetItem()
, PyDict_GetItem()
, and
PyDict_GetItemString()
all return references that you borrow from the
tuple, list or dictionary.
The function PyImport_AddModule()
also returns a borrowed reference, even
though it may actually create the object it returns: this is possible because an
owned reference to the object is stored in sys.modules
.
When you pass an object reference into another function, in general, the
function borrows the reference from you — if it needs to store it, it will use
Py_INCREF()
to become an independent owner. There are exactly two
important exceptions to this rule: PyTuple_SetItem()
and
PyList_SetItem()
. These functions take over ownership of the item passed
to them — even if they fail! (Note that PyDict_SetItem()
and friends
don’t take over ownership — they are « normal. »)
When a C function is called from Python, it borrows references to its arguments
from the caller. The caller owns a reference to the object, so the borrowed
reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned
reference by calling Py_INCREF()
.
The object reference returned from a C function that is called from Python must be an owned reference — ownership is transferred from the function to its caller.
1.10.3. Thin Ice¶
There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have to do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.
The first and most important case to know about is using Py_DECREF()
on
an unrelated object while borrowing a reference to a list item. For instance:
void
bug(PyObject *list)
{
PyObject *item = PyList_GetItem(list, 0);
PyList_SetItem(list, 1, PyLong_FromLong(0L));
PyObject_Print(item, stdout, 0); /* BUG! */
}
This function first borrows a reference to list[0]
, then replaces
list[1]
with the value 0
, and finally prints the borrowed reference.
Looks harmless, right? But it’s not!
Let’s follow the control flow into PyList_SetItem()
. The list owns
references to all its items, so when item 1 is replaced, it has to dispose of
the original item 1. Now let’s suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class defined a
__del__()
method. If this class instance has a reference count of 1,
disposing of it will call its __del__()
method.
Since it is written in Python, the __del__()
method can execute arbitrary
Python code. Could it perhaps do something to invalidate the reference to
item
in bug()
? You bet! Assuming that the list passed into
bug()
is accessible to the __del__()
method, it could execute a
statement to the effect of del list[0]
, and assuming this was the last
reference to that object, it would free the memory associated with it, thereby
invalidating item
.
The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The correct version of the function reads:
void
no_bug(PyObject *list)
{
PyObject *item = PyList_GetItem(list, 0);
Py_INCREF(item);
PyList_SetItem(list, 1, PyLong_FromLong(0L));
PyObject_Print(item, stdout, 0);
Py_DECREF(item);
}
This is a true story. An older version of Python contained variants of this bug
and someone spent a considerable amount of time in a C debugger to figure out
why his __del__()
methods would fail…
The second case of problems with a borrowed reference is a variant involving
threads. Normally, multiple threads in the Python interpreter can’t get in each
other’s way, because there is a global lock protecting Python’s entire object
space. However, it is possible to temporarily release this lock using the macro
Py_BEGIN_ALLOW_THREADS
, and to re-acquire it using
Py_END_ALLOW_THREADS
. This is common around blocking I/O calls, to
let other threads use the processor while waiting for the I/O to complete.
Obviously, the following function has the same problem as the previous one:
void
bug(PyObject *list)
{
PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
...some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print(item, stdout, 0); /* BUG! */
}
1.10.4. NULL Pointers¶
In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL only to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often pass the objects they receive on to other function — if each function were to test for NULL, there would be a lot of redundant tests and the code would run more slowly.
It is better to test for NULL only at the « source: » when a pointer that may be
NULL is received, for example, from malloc()
or from a function that
may raise an exception.
The macros Py_INCREF()
and Py_DECREF()
do not check for NULL
pointers — however, their variants Py_XINCREF()
and Py_XDECREF()
do.
The macros for checking for a particular object type (Pytype_Check()
) don’t
check for NULL pointers — again, there is much code that calls several of
these in a row to test an object against various different expected types, and
this would generate redundant tests. There are no variants with NULL
checking.
The C function calling mechanism guarantees that the argument list passed to C
functions (args
in the examples) is never NULL — in fact it guarantees
that it is always a tuple. [4]
It is a severe error to ever let a NULL pointer « escape » to the Python user.
1.11. Writing Extensions in C++¶
It is possible to write extension modules in C++. Some restrictions apply. If
the main program (the Python interpreter) is compiled and linked by the C
compiler, global or static objects with constructors cannot be used. This is
not a problem if the main program is linked by the C++ compiler. Functions that
will be called by the Python interpreter (in particular, module initialization
functions) have to be declared using extern "C"
. It is unnecessary to
enclose the Python header files in extern "C" {...}
— they use this form
already if the symbol __cplusplus
is defined (all recent C++ compilers
define this symbol).
1.12. Providing a C API for an Extension Module¶
Many extension modules just provide new functions and types to be used from Python, but sometimes the code in an extension module can be useful for other extension modules. For example, an extension module could implement a type « collection » which works like lists without order. Just like the standard Python list type has a C API which permits extension modules to create and manipulate lists, this new collection type should have a set of C functions for direct manipulation from other extension modules.
At first sight this seems easy: just write the functions (without declaring them
static
, of course), provide an appropriate header file, and document
the C API. And in fact this would work if all extension modules were always
linked statically with the Python interpreter. When modules are used as shared
libraries, however, the symbols defined in one module may not be visible to
another module. The details of visibility depend on the operating system; some
systems use one global namespace for the Python interpreter and all extension
modules (Windows, for example), whereas others require an explicit list of
imported symbols at module link time (AIX is one example), or offer a choice of
different strategies (most Unices). And even if symbols are globally visible,
the module whose functions one wishes to call might not have been loaded yet!
Portability therefore requires not to make any assumptions about symbol
visibility. This means that all symbols in extension modules should be declared
static
, except for the module’s initialization function, in order to
avoid name clashes with other extension modules (as discussed in section
La fonction d’initialisation et le tableau des méthodes du module). And it means that symbols that should be accessible from
other extension modules must be exported in a different way.
Python provides a special mechanism to pass C-level information (pointers) from
one extension module to another one: Capsules. A Capsule is a Python data type
which stores a pointer (void *
). Capsules can only be created and
accessed via their C API, but they can be passed around like any other Python
object. In particular, they can be assigned to a name in an extension module’s
namespace. Other extension modules can then import this module, retrieve the
value of this name, and then retrieve the pointer from the Capsule.
There are many ways in which Capsules can be used to export the C API of an extension module. Each function could get its own Capsule, or all C API pointers could be stored in an array whose address is published in a Capsule. And the various tasks of storing and retrieving the pointers can be distributed in different ways between the module providing the code and the client modules.
Whichever method you choose, it’s important to name your Capsules properly.
The function PyCapsule_New()
takes a name parameter
(const char *
); you’re permitted to pass in a NULL name, but
we strongly encourage you to specify a name. Properly named Capsules provide
a degree of runtime type-safety; there is no feasible way to tell one unnamed
Capsule from another.
In particular, Capsules used to expose C APIs should be given a name following this convention:
modulename.attributename
The convenience function PyCapsule_Import()
makes it easy to
load a C API provided via a Capsule, but only if the Capsule’s name
matches this convention. This behavior gives C API users a high degree
of certainty that the Capsule they load contains the correct C API.
The following example demonstrates an approach that puts most of the burden on
the writer of the exporting module, which is appropriate for commonly used
library modules. It stores all C API pointers (just one in the example!) in an
array of void
pointers which becomes the value of a Capsule. The header
file corresponding to the module provides a macro that takes care of importing
the module and retrieving its C API pointers; client modules only have to call
this macro before accessing the C API.
The exporting module is a modification of the spam
module from section
Un exemple simple. The function spam.system()
does not call
the C library function system()
directly, but a function
PySpam_System()
, which would of course do something more complicated in
reality (such as adding « spam » to every command). This function
PySpam_System()
is also exported to other extension modules.
The function PySpam_System()
is a plain C function, declared
static
like everything else:
static int
PySpam_System(const char *command)
{
return system(command);
}
The function spam_system()
is modified in a trivial way:
static PyObject *
spam_system(PyObject *self, PyObject *args)
{
const char *command;
int sts;
if (!PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = PySpam_System(command);
return PyLong_FromLong(sts);
}
In the beginning of the module, right after the line
#include "Python.h"
two more lines must be added:
#define SPAM_MODULE
#include "spammodule.h"
The #define
is used to tell the header file that it is being included in the
exporting module, not a client module. Finally, the module’s initialization
function must take care of initializing the C API pointer array:
PyMODINIT_FUNC
PyInit_spam(void)
{
PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;
m = PyModule_Create(&spammodule);
if (m == NULL)
return NULL;
/* Initialize the C API pointer array */
PySpam_API[PySpam_System_NUM] = (void *)PySpam_System;
/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New((void *)PySpam_API, "spam._C_API", NULL);
if (c_api_object != NULL)
PyModule_AddObject(m, "_C_API", c_api_object);
return m;
}
Note that PySpam_API
is declared static
; otherwise the pointer
array would disappear when PyInit_spam()
terminates!
The bulk of the work is in the header file spammodule.h
, which looks
like this:
#ifndef Py_SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef __cplusplus
extern "C" {
#endif
/* Header file for spammodule */
/* C API functions */
#define PySpam_System_NUM 0
#define PySpam_System_RETURN int
#define PySpam_System_PROTO (const char *command)
/* Total number of C API pointers */
#define PySpam_API_pointers 1
#ifdef SPAM_MODULE
/* This section is used when compiling spammodule.c */
static PySpam_System_RETURN PySpam_System PySpam_System_PROTO;
#else
/* This section is used in modules that use spammodule's API */
static void **PySpam_API;
#define PySpam_System \
(*(PySpam_System_RETURN (*)PySpam_System_PROTO) PySpam_API[PySpam_System_NUM])
/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception if there's an error.
*/
static int
import_spam(void)
{
PySpam_API = (void **)PyCapsule_Import("spam._C_API", 0);
return (PySpam_API != NULL) ? 0 : -1;
}
#endif
#ifdef __cplusplus
}
#endif
#endif /* !defined(Py_SPAMMODULE_H) */
All that a client module must do in order to have access to the function
PySpam_System()
is to call the function (or rather macro)
import_spam()
in its initialization function:
PyMODINIT_FUNC
PyInit_client(void)
{
PyObject *m;
m = PyModule_Create(&clientmodule);
if (m == NULL)
return NULL;
if (import_spam() < 0)
return NULL;
/* additional initialization can happen here */
return m;
}
The main disadvantage of this approach is that the file spammodule.h
is
rather complicated. However, the basic structure is the same for each function
that is exported, so it has to be learned only once.
Finally it should be mentioned that Capsules offer additional functionality,
which is especially useful for memory allocation and deallocation of the pointer
stored in a Capsule. The details are described in the Python/C API Reference
Manual in the section Capsules and in the implementation of Capsules (files
Include/pycapsule.h
and Objects/pycapsule.c
in the Python source
code distribution).
Notes
[1] | An interface for this function already exists in the standard module os
— it was chosen as a simple and straightforward example. |
[2] | The metaphor of « borrowing » a reference is not completely correct: the owner still has a copy of the reference. |
[3] | Checking that the reference count is at least 1 does not work — the reference count itself could be in freed memory and may thus be reused for another object! |
[4] | These guarantees don’t hold when you use the « old » style calling convention — this is still found in much existing code. |