fractions --- Rational numbers¶
Code source : Lib/fractions.py
Le module fractions fournit un support de l'arithmétique des nombres rationnels.
A Fraction instance can be constructed from a pair of rational numbers, from a single number, or from a string.
- class fractions.Fraction(numerator=0, denominator=1)¶
- class fractions.Fraction(number)
- class fractions.Fraction(string)
The first version requires that numerator and denominator are instances of
numbers.Rationaland returns a newFractioninstance with a value equal tonumerator/denominator. If denominator is zero, it raises aZeroDivisionError.The second version requires that number is an instance of
numbers.Rationalor has theas_integer_ratio()method (this includesfloatanddecimal.Decimal). It returns aFractioninstance with exactly the same value. Assumed, that theas_integer_ratio()method returns a pair of coprime integers and last one is positive. Note that due to the usual issues with binary point (see Floating-Point Arithmetic: Issues and Limitations), the argument toFraction(1.1)is not exactly equal to 11/10, and soFraction(1.1)does not returnFraction(11, 10)as one might expect. (But see the documentation for thelimit_denominator()method below.)The last version of the constructor expects a string. The usual form for this instance is:
[sign] numerator ['/' denominator]
where the optional
signmay be either '+' or '-' andnumeratoranddenominator(if present) are strings of decimal digits (underscores may be used to delimit digits as with integral literals in code). In addition, any string that represents a finite value and is accepted by thefloatconstructor is also accepted by theFractionconstructor. In either form the input string may also have leading and/or trailing whitespace. Here are some examples:>>> from fractions import Fraction >>> Fraction(16, -10) Fraction(-8, 5) >>> Fraction(123) Fraction(123, 1) >>> Fraction() Fraction(0, 1) >>> Fraction('3/7') Fraction(3, 7) >>> Fraction(' -3/7 ') Fraction(-3, 7) >>> Fraction('1.414213 \t\n') Fraction(1414213, 1000000) >>> Fraction('-.125') Fraction(-1, 8) >>> Fraction('7e-6') Fraction(7, 1000000) >>> Fraction(2.25) Fraction(9, 4) >>> Fraction(1.1) Fraction(2476979795053773, 2251799813685248) >>> from decimal import Decimal >>> Fraction(Decimal('1.1')) Fraction(11, 10)
The
Fractionclass inherits from the abstract base classnumbers.Rational, and implements all of the methods and operations from that class.Fractioninstances are hashable, and should be treated as immutable. In addition,Fractionhas the following properties and methods:Modifié dans la version 3.2: Le constructeur de
Fractionaccepte maintenant des instances defloatetdecimal.Decimal.Modifié dans la version 3.9: The
math.gcd()function is now used to normalize the numerator and denominator.math.gcd()always returns aninttype. Previously, the GCD type depended on numerator and denominator.Modifié dans la version 3.11: Underscores are now permitted when creating a
Fractioninstance from a string, following PEP 515 rules.Modifié dans la version 3.11:
Fractionimplements__int__now to satisfytyping.SupportsIntinstance checks.Modifié dans la version 3.12: Space is allowed around the slash for string inputs:
Fraction('2 / 3').Modifié dans la version 3.12:
Fractioninstances now support float-style formatting, with presentation types"e","E","f","F","g","G"and"%"".Modifié dans la version 3.13: Formatting of
Fractioninstances without a presentation type now supports fill, alignment, sign handling, minimum width and grouping.Modifié dans la version 3.14: The
Fractionconstructor now accepts any objects with theas_integer_ratio()method.- numerator¶
Numérateur de la fraction irréductible.
- denominator¶
Denominator of the Fraction in lowest terms. Guaranteed to be positive.
- as_integer_ratio()¶
Return a tuple of two integers, whose ratio is equal to the original Fraction. The ratio is in lowest terms and has a positive denominator.
Ajouté dans la version 3.8.
- is_integer()¶
Return
Trueif the Fraction is an integer.Ajouté dans la version 3.12.
- classmethod from_float(f)¶
Ce constructeur alternatif accepte (uniquement) des nombres à virgule flottante, de classe
float, ou plus généralement des instances denumbers.Integral. Attention,Fraction.from_float(0.3)est différent deFraction(3, 10).
- classmethod from_decimal(dec)¶
Ce constructeur alternatif accepte (uniquement) les instances de
decimal.Decimalounumbers.Integral.Note
Depuis Python 3.2, vous pouvez aussi construire une instance de
Fractiondirectement depuis une instance dedecimal.Decimal.
- classmethod from_number(number)¶
Alternative constructor which only accepts instances of
numbers.Integral,numbers.Rational,floatordecimal.Decimal, and objects with theas_integer_ratio()method, but not strings.Ajouté dans la version 3.14.
- limit_denominator(max_denominator=1000000)¶
Trouve et renvoie la
Fractionla plus proche deselfqui a au plus max_denominator comme dénominateur. Cette méthode est utile pour trouver des approximations rationnelles de nombres flottants donnés :>>> from fractions import Fraction >>> Fraction('3.1415926535897932').limit_denominator(1000) Fraction(355, 113)
ou pour retrouver un nombre rationnel représenté par un flottant :
>>> from math import pi, cos >>> Fraction(cos(pi/3)) Fraction(4503599627370497, 9007199254740992) >>> Fraction(cos(pi/3)).limit_denominator() Fraction(1, 2) >>> Fraction(1.1).limit_denominator() Fraction(11, 10)
- __floor__()¶
Renvoie le plus grand
int<= self. Cette méthode peut aussi être utilisée à travers la fonctionmath.floor():>>> from math import floor >>> floor(Fraction(355, 113)) 3
- __ceil__()¶
Renvoie le plus petit
int>= self. Cette méthode peut aussi être utilisée à travers la fonctionmath.ceil().
- __round__()¶
- __round__(ndigits)
La première version renvoie l'
intle plus proche deself, arrondissant les demis au nombre pair le plus proche. La seconde version arronditselfau plus proche multiple deFraction(1, 10**ndigits)(logiquement, sindigitsest négatif), arrondissant toujours les demis au nombre pair le plus proche. Cette méthode peut aussi être utilisée à via la fonctionround().
- __format__(format_spec, /)¶
Provides support for formatting of
Fractioninstances via thestr.format()method, theformat()built-in function, or Formatted string literals.If the
format_specformat specification string does not end with one of the presentation types'e','E','f','F','g','G'or'%'then formatting follows the general rules for fill, alignment, sign handling, minimum width, and grouping as described in the format specification mini-language. The "alternate form" flag'#'is supported: if present, it forces the output string to always include an explicit denominator, even when the value being formatted is an exact integer. The zero-fill flag'0'is not supported.If the
format_specformat specification string ends with one of the presentation types'e','E','f','F','g','G'or'%'then formatting follows the rules outlined for thefloattype in the Mini-langage de spécification de format section.Voici quelques exemples :
>>> from fractions import Fraction >>> format(Fraction(103993, 33102), '_') '103_993/33_102' >>> format(Fraction(1, 7), '.^+10') '...+1/7...' >>> format(Fraction(3, 1), '') '3' >>> format(Fraction(3, 1), '#') '3/1' >>> format(Fraction(1, 7), '.40g') '0.1428571428571428571428571428571428571429' >>> format(Fraction('1234567.855'), '_.2f') '1_234_567.86' >>> f"{Fraction(355, 113):*>20.6e}" '********3.141593e+00' >>> old_price, new_price = 499, 672 >>> "{:.2%} price increase".format(Fraction(new_price, old_price) - 1) '34.67% price increase'
Voir aussi
- Module
numbers Les classes abstraites représentant la hiérarchie des nombres.