multiprocessing
--- Process-based parallelism¶
Code source : Lib/multiprocessing/
Availability: not Android, not iOS, not WASI.
This module is not supported on mobile platforms or WebAssembly platforms.
Introduction¶
multiprocessing
is a package that supports spawning processes using an
API similar to the threading
module. The multiprocessing
package
offers both local and remote concurrency, effectively side-stepping the
Global Interpreter Lock by using
subprocesses instead of threads. Due
to this, the multiprocessing
module allows the programmer to fully
leverage multiple processors on a given machine. It runs on both POSIX and
Windows.
Le module multiprocessing
introduit aussi des API sans analogues dans le module threading
. Un exemple est l'objet Pool
qui offre un moyen simple de paralléliser l'exécution d'une fonction sur plusieurs valeurs d'entrée, en distribuant ces valeurs entre les processus (parallélisme de données). L'exemple suivant présente la manière classique de définir une telle fonction dans un module afin que les processus fils puissent importer ce module avec succès. Cet exemple basique de parallélisme de données, utilisant Pool
,
from multiprocessing import Pool
def f(x):
return x*x
if __name__ == '__main__':
with Pool(5) as p:
print(p.map(f, [1, 2, 3]))
affiche sur la sortie standard
[1, 4, 9]
Voir aussi
concurrent.futures.ProcessPoolExecutor
offers a higher level interface
to push tasks to a background process without blocking execution of the
calling process. Compared to using the Pool
interface directly, the concurrent.futures
API more readily allows
the submission of work to the underlying process pool to be separated from
waiting for the results.
La classe Process
¶
Dans le module multiprocessing
, les processus sont instanciés en créant un objet Process
et en appelant sa méthode start()
. La classe Process
suit la même API que threading.Thread
. Un exemple trivial d'un programme multi-processus est
from multiprocessing import Process
def f(name):
print('hello', name)
if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
p.join()
Voici un exemple plus étoffé qui affiche les identifiants des processus créés :
from multiprocessing import Process
import os
def info(title):
print(title)
print('module name:', __name__)
print('parent process:', os.getppid())
print('process id:', os.getpid())
def f(name):
info('function f')
print('hello', name)
if __name__ == '__main__':
info('main line')
p = Process(target=f, args=('bob',))
p.start()
p.join()
La nécessité de la ligne if __name__ == '__main__'
est expliquée dans la section Lignes directrices de programmation.
Contextes et méthodes de démarrage¶
Selon la plateforme, multiprocessing
gère trois manières de démarrer un processus. Ces méthodes de démarrage sont
- spawn
The parent process starts a fresh Python interpreter process. The child process will only inherit those resources necessary to run the process object's
run()
method. In particular, unnecessary file descriptors and handles from the parent process will not be inherited. Starting a process using this method is rather slow compared to using fork or forkserver.Available on POSIX and Windows platforms. The default on Windows and macOS.
- fork
Le processus parent utilise
os.fork()
pour forker l'interpréteur Python. Le processus fils, quand il démarre, est effectivement identique au processus parent. Toutes les ressources du parent sont héritées par le fils. Notez qu'il est problématique de forker sans danger un processus multi-threadé.Available on POSIX systems. Currently the default on POSIX except macOS.
Note
The default start method will change away from fork in Python 3.14. Code that requires fork should explicitly specify that via
get_context()
orset_start_method()
.Modifié dans la version 3.12: If Python is able to detect that your process has multiple threads, the
os.fork()
function that this start method calls internally will raise aDeprecationWarning
. Use a different start method. See theos.fork()
documentation for further explanation.- forkserver
When the program starts and selects the forkserver start method, a server process is spawned. From then on, whenever a new process is needed, the parent process connects to the server and requests that it fork a new process. The fork server process is single threaded unless system libraries or preloaded imports spawn threads as a side-effect so it is generally safe for it to use
os.fork()
. No unnecessary resources are inherited.Available on POSIX platforms which support passing file descriptors over Unix pipes such as Linux.
Modifié dans la version 3.4: spawn added on all POSIX platforms, and forkserver added for some POSIX platforms. Child processes no longer inherit all of the parents inheritable handles on Windows.
Modifié dans la version 3.8: On macOS, the spawn start method is now the default. The fork start method should be considered unsafe as it can lead to crashes of the subprocess as macOS system libraries may start threads. See bpo-33725.
On POSIX using the spawn or forkserver start methods will also
start a resource tracker process which tracks the unlinked named
system resources (such as named semaphores or
SharedMemory
objects) created
by processes of the program. When all processes
have exited the resource tracker unlinks any remaining tracked object.
Usually there should be none, but if a process was killed by a signal
there may be some "leaked" resources. (Neither leaked semaphores nor shared
memory segments will be automatically unlinked until the next reboot. This is
problematic for both objects because the system allows only a limited number of
named semaphores, and shared memory segments occupy some space in the main
memory.)
Pour sélectionner une méthode de démarrage, utilisez la fonction set_start_method()
dans la clause if __name__ == '__main__'
du module principal. Par exemple :
import multiprocessing as mp
def foo(q):
q.put('hello')
if __name__ == '__main__':
mp.set_start_method('spawn')
q = mp.Queue()
p = mp.Process(target=foo, args=(q,))
p.start()
print(q.get())
p.join()
set_start_method()
ne doit pas être utilisée plus d'une fois dans le programme.
Alternativement, vous pouvez utiliser get_context()
pour obtenir un contexte. Les contextes ont la même API que le module multiprocessing, et permettent l'utilisation de plusieurs méthodes de démarrage dans un même programme.
import multiprocessing as mp
def foo(q):
q.put('hello')
if __name__ == '__main__':
ctx = mp.get_context('spawn')
q = ctx.Queue()
p = ctx.Process(target=foo, args=(q,))
p.start()
print(q.get())
p.join()
Notez que les objets relatifs à un contexte ne sont pas forcément compatibles avec les processus d'un contexte différent. En particulier, les verrous créés avec le contexte fork ne peuvent pas être passés aux processus lancés avec les méthodes spawn ou forkserver.
Une bibliothèque qui veut utiliser une méthode de démarrage particulière devrait probablement faire appel à get_context()
pour éviter d'interférer avec le choix de l'utilisateur de la bibliothèque.
Avertissement
The 'spawn'
and 'forkserver'
start methods generally cannot
be used with "frozen" executables (i.e., binaries produced by
packages like PyInstaller and cx_Freeze) on POSIX systems.
The 'fork'
start method may work if code does not use threads.
Échange d'objets entre les processus¶
multiprocessing
gère deux types de canaux de communication entre les processus :
Files (queues)
La classe
Queue
est un clone assez proche dequeue.Queue
. Par exemple :from multiprocessing import Process, Queue def f(q): q.put([42, None, 'hello']) if __name__ == '__main__': q = Queue() p = Process(target=f, args=(q,)) p.start() print(q.get()) # prints "[42, None, 'hello']" p.join()Queues are thread and process safe. Any object put into a
multiprocessing
queue will be serialized.
Tubes (pipes)
La fonction
Pipe()
renvoie une paire d'objets de connexion connectés à un tube qui est par défaut duplex (à double sens). Par exemple :from multiprocessing import Process, Pipe def f(conn): conn.send([42, None, 'hello']) conn.close() if __name__ == '__main__': parent_conn, child_conn = Pipe() p = Process(target=f, args=(child_conn,)) p.start() print(parent_conn.recv()) # prints "[42, None, 'hello']" p.join()Les deux objets de connexion renvoyés par
Pipe()
représentent les deux extrémités d'un tube. Chaque objet de connexion possède (entre autres) des méthodessend()
etrecv()
. Notez que les données d'un tube peuvent être corrompues si deux processus (ou fils d'exécution) essaient de lire ou d'écrire sur la même extrémité du tube en même temps. Bien évidemment, deux processus peuvent utiliser les deux extrémités différentes en même temps sans risque de corruption.The
send()
method serializes the object andrecv()
re-creates the object.
Synchronisation entre processus¶
multiprocessing
contient des équivalents à toutes les primitives de synchronisation de threading
. Par exemple il est possible d'utiliser un verrou pour s'assurer qu'un seul processus à la fois écrit sur la sortie standard :
from multiprocessing import Process, Lock
def f(l, i):
l.acquire()
try:
print('hello world', i)
finally:
l.release()
if __name__ == '__main__':
lock = Lock()
for num in range(10):
Process(target=f, args=(lock, num)).start()
Sans le verrou, les sorties des différents processus risquent d'être mélangées.
Utiliser un pool de workers¶
La classe Pool
représente un pool de processus de travail. Elle possède des méthodes qui permettent aux tâches d'être déchargées vers les processus de travail de différentes manières.
Par exemple :
from multiprocessing import Pool, TimeoutError
import time
import os
def f(x):
return x*x
if __name__ == '__main__':
# start 4 worker processes
with Pool(processes=4) as pool:
# print "[0, 1, 4,..., 81]"
print(pool.map(f, range(10)))
# print same numbers in arbitrary order
for i in pool.imap_unordered(f, range(10)):
print(i)
# evaluate "f(20)" asynchronously
res = pool.apply_async(f, (20,)) # runs in *only* one process
print(res.get(timeout=1)) # prints "400"
# evaluate "os.getpid()" asynchronously
res = pool.apply_async(os.getpid, ()) # runs in *only* one process
print(res.get(timeout=1)) # prints the PID of that process
# launching multiple evaluations asynchronously *may* use more processes
multiple_results = [pool.apply_async(os.getpid, ()) for i in range(4)]
print([res.get(timeout=1) for res in multiple_results])
# make a single worker sleep for 10 seconds
res = pool.apply_async(time.sleep, (10,))
try:
print(res.get(timeout=1))
except TimeoutError:
print("We lacked patience and got a multiprocessing.TimeoutError")
print("For the moment, the pool remains available for more work")
# exiting the 'with'-block has stopped the pool
print("Now the pool is closed and no longer available")
Notez que les méthodes d'un pool ne doivent être utilisées que par le processus qui l'a créée.
Note
Functionality within this package requires that the __main__
module be
importable by the children. This is covered in Lignes directrices de programmation
however it is worth pointing out here. This means that some examples, such
as the multiprocessing.pool.Pool
examples will not work in the
interactive interpreter. For example:
>>> from multiprocessing import Pool
>>> p = Pool(5)
>>> def f(x):
... return x*x
...
>>> with p:
... p.map(f, [1,2,3])
Process PoolWorker-1:
Process PoolWorker-2:
Process PoolWorker-3:
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
AttributeError: Can't get attribute 'f' on <module '__main__' (<class '_frozen_importlib.BuiltinImporter'>)>
AttributeError: Can't get attribute 'f' on <module '__main__' (<class '_frozen_importlib.BuiltinImporter'>)>
AttributeError: Can't get attribute 'f' on <module '__main__' (<class '_frozen_importlib.BuiltinImporter'>)>
Si vous essayez ce code, il affichera trois traces d'appels complètes entrelacées de manière semi-aléatoire, et vous devrez vous débrouiller pour arrêter le processus maître.
Référence¶
Le paquet multiprocessing
reproduit en grande partie l'API du module threading
.
Process
et exceptions¶
- class multiprocessing.Process(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)¶
Les objets process représentent une activité exécutée dans un processus séparé. La classe
Process
a des équivalents à toutes les méthodes dethreading.Thread
.The constructor should always be called with keyword arguments. group should always be
None
; it exists solely for compatibility withthreading.Thread
. target is the callable object to be invoked by therun()
method. It defaults toNone
, meaning nothing is called. name is the process name (seename
for more details). args is the argument tuple for the target invocation. kwargs is a dictionary of keyword arguments for the target invocation. If provided, the keyword-only daemon argument sets the processdaemon
flag toTrue
orFalse
. IfNone
(the default), this flag will be inherited from the creating process.By default, no arguments are passed to target. The args argument, which defaults to
()
, can be used to specify a list or tuple of the arguments to pass to target.Si une sous-classe redéfinit le constructeur, elle doit s'assurer d'invoquer le constructeur de la classe de base (
Process.__init__()
) avant de faire autre chose du processus.Modifié dans la version 3.3: Added the daemon parameter.
- run()¶
Méthode représentant l'activité du processus.
Vous pouvez redéfinir cette méthode dans une sous-classe. La méthode standard
run()
invoque l'objet appelable passé au constructeur comme argument target, si fourni, avec les arguments séquentiels et nommés respectivement pris depuis les paramètres args et kwargs.Using a list or tuple as the args argument passed to
Process
achieves the same effect.Example:
>>> from multiprocessing import Process >>> p = Process(target=print, args=[1]) >>> p.run() 1 >>> p = Process(target=print, args=(1,)) >>> p.run() 1
- start()¶
Démarre l'activité du processus.
Elle doit être appelée au plus une fois par objet processus. Elle s'arrange pour que la méthode
run()
de l'objet soit invoquée dans un processus séparé.
- join([timeout])¶
Si l'argument optionnel timeout est
None
(par défaut), la méthode bloque jusqu'à ce que le processus dont la méthodejoin()
a été appelée se termine. Si timeout est un nombre positif, elle bloque au maximum pendant timeout secondes. Notez que la méthode renvoieNone
si le processus se termine ou si le temps d'exécution expire. Vérifiez l'attributexitcode
du processus pour déterminer s'il s'est terminé.join peut être appelée plusieurs fois sur un même processus.
Un processus ne peut pas s'attendre lui-même car cela causerait un interblocage. C'est une erreur d'essayer d'attendre un processus avant qu'il ne soit démarré.
- name¶
Le nom du processus. Le nom est une chaîne de caractères utilisée uniquement pour l'identification du processus. Il n'a pas de sémantique. Plusieurs processus peuvent avoir le même nom.
Le nom initial est déterminé par le constructeur. Si aucun nom explicite n'est fourni au constructeur, un nom de la forme « Process-N1:N2:...:Nk » est construit, où chaque Nk est le Ne fils de son parent.
- is_alive()¶
Renvoie vrai si le processus est en vie, faux sinon.
Grossièrement, un objet processus est en vie depuis le moment où la méthode
start()
finit de s'exécuter jusqu'à ce que le processus fils se termine.
- daemon¶
L'option daemon du processus, une valeur booléenne. L'option doit être réglée avant que la méthode
start()
ne soit appelée.La valeur initiale est héritée par le processus créateur.
Quand un processus se ferme, il tente de terminer tous ses processus fils daemon.
Notez qu'un processus daemon n'est pas autorisé à créer des processus fils. Sinon un processus daemon laisserait ses fils orphelins lorsqu'il se termine par la fermeture de son parent. De plus, ce ne sont pas des daemons ou services Unix, ce sont des processus normaux qui seront terminés (et non attendus) si un processus non daemon se ferme.
En plus de l'API
threading.Thread
, les objetsProcess
supportent aussi les attributs et méthodes suivants :- pid¶
Renvoie l'ID du processus. Avant que le processus ne soit lancé, la valeur est
None
.
- exitcode¶
The child's exit code. This will be
None
if the process has not yet terminated.If the child's
run()
method returned normally, the exit code will be 0. If it terminated viasys.exit()
with an integer argument N, the exit code will be N.If the child terminated due to an exception not caught within
run()
, the exit code will be 1. If it was terminated by signal N, the exit code will be the negative value -N.
- authkey¶
La clé d'authentification du processus (une chaîne d'octets).
Quand
multiprocessing
est initialisé, une chaîne aléatoire est assignée au processus principal, en utilisantos.urandom()
.Quand un objet
Process
est créé, il hérité de la clé d'authentification de son parent, bien que cela puisse être changé à l'aide du paramètreauthkey
pour une autre chaîne d'octets.Voir Clés d'authentification.
- sentinel¶
Un identifiant numérique de l'objet système qui devient « prêt » quand le processus se termine.
You can use this value if you want to wait on several events at once using
multiprocessing.connection.wait()
. Otherwise callingjoin()
is simpler.On Windows, this is an OS handle usable with the
WaitForSingleObject
andWaitForMultipleObjects
family of API calls. On POSIX, this is a file descriptor usable with primitives from theselect
module.Ajouté dans la version 3.3.
- terminate()¶
Terminate the process. On POSIX this is done using the
SIGTERM
signal; on WindowsTerminateProcess()
is used. Note that exit handlers and finally clauses, etc., will not be executed.Notez que les descendants du processus ne sont pas terminés – ils deviendront simplement orphelins.
Avertissement
Si cette méthode est utilisée quand le processus associé utilise un tube ou une file, alors le tube ou la file sont susceptibles d'être corrompus et peuvent devenir inutilisables par les autres processus. De façon similaire, si le processus a acquis un verrou, un sémaphore ou autre, alors le terminer est susceptible de provoquer des blocages dans les autres processus.
- kill()¶
Same as
terminate()
but using theSIGKILL
signal on POSIX.Ajouté dans la version 3.7.
- close()¶
Ferme l'objet
Process
, libérant toutes les ressources qui lui sont associées. UneValueError
est levée si le processus sous-jacent tourne toujours. Une fois queclose()
se termine avec succès, la plupart des autres méthodes et attributs des objetsProcess
lèveront uneValueError
.Ajouté dans la version 3.7.
Notez que les méthodes
start()
,join()
,is_alive()
,terminate()
etexitcode
ne doivent être appelées que par le processus ayant créé l'objet process.Exemple d'utilisation de quelques méthodes de
Process
:>>> import multiprocessing, time, signal >>> mp_context = multiprocessing.get_context('spawn') >>> p = mp_context.Process(target=time.sleep, args=(1000,)) >>> print(p, p.is_alive()) <...Process ... initial> False >>> p.start() >>> print(p, p.is_alive()) <...Process ... started> True >>> p.terminate() >>> time.sleep(0.1) >>> print(p, p.is_alive()) <...Process ... stopped exitcode=-SIGTERM> False >>> p.exitcode == -signal.SIGTERM True
- exception multiprocessing.ProcessError¶
La classe de base de toutes les exceptions de
multiprocessing
.
- exception multiprocessing.BufferTooShort¶
Exception raised by
Connection.recv_bytes_into()
when the supplied buffer object is too small for the message read.Si
e
est une instance deBufferTooShort
alorse.args[0]
donnera un message sous forme d'une chaîne d'octets.
- exception multiprocessing.AuthenticationError¶
Levée quand il y a une erreur d'authentification.
- exception multiprocessing.TimeoutError¶
Levée par les méthodes avec temps d'exécution limité, quand ce temps expire.
Tubes (pipes) et files (queues)¶
Quand plusieurs processus travaillent ensemble, il est souvent nécessaire de les faire communiquer entre eux pour éviter d'avoir à utiliser des primitives de synchronisation comme les verrous.
Pour échanger des messages vous pouvez utiliser un Pipe()
(pour une connexion entre deux processus) ou une file (qui autorise de plusieurs producteurs et consommateurs).
Les types Queue
, SimpleQueue
et JoinableQueue
sont des files FIFO multi-producteurs et multi-consommateurs modelées sur la classe queue.Queue
de la bibliothèque standard. Elles diffèrent par l'absence dans Queue
des méthodes task_done()
et join()
introduites dans la classe queue.Queue
par Python 2.5.
Si vous utilisez JoinableQueue
alors vous devez appeler JoinableQueue.task_done()
pour chaque tâche retirée de la file, sans quoi le sémaphore utilisé pour compter le nombre de tâches non accomplies pourra éventuellement déborder, levant une exception.
One difference from other Python queue implementations, is that multiprocessing
queues serializes all objects that are put into them using pickle
.
The object return by the get method is a re-created object that does not share memory
with the original object.
Notez que vous pouvez aussi créer une file partagée en utilisant un objet gestionnaire – voir Gestionnaires.
Note
multiprocessing
utilise les exceptions habituelles queue.Empty
et queue.Full
pour signaler un dépassement du temps maximal autorisé. Elles ne sont pas disponibles dans l'espace de nommage multiprocessing
donc vous devez les importer depuis le module queue
.
Note
Quand un objet est placé dans une file, l'objet est sérialisé par pickle et un fil d'exécution en arrière-plan transmettra ensuite les données sérialisées sur un tube sous-jacent. Cela a certaines conséquences qui peuvent être un peu surprenantes, mais ne devrait causer aucune difficulté pratique — si elles vous embêtent vraiment, alors vous pouvez à la place utiliser une file créée avec un manager.
Après avoir placé un objet dans une file vide il peut y avoir un délai infinitésimal avant que la méthode
empty()
de la file renvoieFalse
et queget_nowait()
renvoie une valeur sans lever dequeue.Empty
.Si plusieurs processus placent des objets dans la file, il est possible pour les objets d'être reçus de l'autre côté dans le désordre. Cependant, les objets placés par un même processus seront toujours récupérés dans l'ordre d'insertion.
Avertissement
Si un processus est tué à l'aide de Process.terminate()
ou os.kill()
pendant qu'il tente d'utiliser une Queue
, alors les données de la file peuvent être corrompues. Cela peut par la suite causer des levées d'exceptions dans les autres processus quand ils tenteront d'utiliser la file.
Avertissement
Comme mentionné plus haut, si un processus fils a placé des éléments dans la file (et qu'il n'a pas utilisé JoinableQueue.cancel_join_thread
), alors le processus ne se terminera pas tant que les éléments placés dans le tampon n'auront pas été transmis au tube.
Cela signifie que si vous essayez d'attendre ce processus vous pouvez obtenir un interblocage, à moins que vous ne soyez sûr que tous les éléments placés dans la file ont été consommés. De même, si le processus fils n'est pas un daemon alors le processus parent pourrait bloquer à la fermeture quand il tentera d'attendre tous ses fils non daemons.
Notez que la file créée à l'aide d'un gestionnaire n'a pas ce problème. Voir Lignes directrices de programmation.
Pour un exemple d'utilisation de files pour de la communication entre les processus, voir Exemples.
- multiprocessing.Pipe([duplex])¶
Renvoie une paire
(conn1, conn2)
d'objetsConnection
représentant les extrémités d'un tube.Si duplex vaut
True
(par défaut), alors le tube est bidirectionnel. Si duplex vautFalse
il est unidirectionnel :conn1
ne peut être utilisé que pour recevoir des messages etconn2
que pour en envoyer.The
send()
method serializes the object usingpickle
and therecv()
re-creates the object.
- class multiprocessing.Queue([maxsize])¶
Renvoie une file partagée entre les processus utilisant un tube et quelques verrous / sémaphores. Quand un processus place initialement un élément sur la file, un fil d'exécution chargeur est démarré pour transférer les objets du tampon vers le tube.
Les exceptions habituelles
queue.Empty
etqueue.Full
du modulequeue
de la bibliothèque standard sont levées pour signaler les timeouts.Queue
implémente toutes les méthodes dequeue.Queue
à l'exception detask_done()
etjoin()
.- qsize()¶
Renvoie la taille approximative de la file. Ce nombre n'est pas fiable en raison des problématiques de multithreading et multiprocessing.
Note that this may raise
NotImplementedError
on platforms like macOS wheresem_getvalue()
is not implemented.
- empty()¶
Renvoie
True
si la file est vide,False
sinon. Cette valeur n'est pas fiable en raison des problématiques de multithreading et multiprocessing.May raise an
OSError
on closed queues. (not guaranteed)
- full()¶
Renvoie
True
si la file est pleine,False
sinon. Cette valeur n'est pas fiable en raison des problématiques de multithreading et multiprocessing.
- put(obj[, block[, timeout]])¶
Place obj dans la file. Si l'argument optionnel block vaut
True
(par défaut) est que timeout estNone
(par défaut), bloque jusqu'à ce qu'une place libre soit disponible. Si timeout est un nombre positif, la méthode bloquera au maximum timeout secondes et lève une exceptionqueue.Full
si aucune place libre n'a été trouvée dans le temps imparti. Autrement (block vautFalse
), place un élément dans la file si une place libre est immédiatement disponible, ou lève une exceptionqueue.Full
dans le cas contraire (timeout est ignoré dans ce cas).Modifié dans la version 3.8: si la file a été marquée comme fermée, une
ValueError
est levée. Auparavant, uneAssertionError
était levée.
- put_nowait(obj)¶
Équivalent à
put(obj, False)
.
- get([block[, timeout]])¶
Retire et renvoie un élément de la file. Si l'argument optionnel block vaut
True
(par défaut) et que timeout estNone
(par défaut), bloque jusqu'à ce qu'un élément soit disponible. Si timeout (le délai maximal autorisé) est un nombre positif, la méthode bloque au maximum timeout secondes et lève une exceptionqueue.Empty
si aucun élément n'est disponible dans le temps imparti. Autrement (block vautFalse
), renvoie un élément s'il est immédiatement disponible, ou lève une exceptionqueue.Empty
dans le cas contraire (timeout est ignoré dans ce cas).Modifié dans la version 3.8: si la file a été marquée comme terminée, une
ValueError
est levée. Auparavant, uneOSError
. était levée.
- get_nowait()¶
Équivalent à
get(False)
.
multiprocessing.Queue
possède quelques méthodes additionnelles non présentes dansqueue.Queue
. Ces méthodes ne sont habituellement pas nécessaires pour la plupart des codes :- close()¶
Indique que plus aucune donnée ne peut être placée sur la file par le processus courant. Le fil d'exécution en arrière-plan se terminera quand il aura transféré toutes les données du tampon vers le tube. Elle est appelée automatiquement quand la file est collectée par le ramasse-miettes.
- join_thread()¶
Attend le fil d'exécution d'arrière-plan. Elle peut seulement être utilisée une fois que
close()
a été appelée. Elle bloque jusqu'à ce que le fil d'arrière-plan se termine, assurant que toutes les données du tampon ont été transmises au tube.Par défaut si un processus n'est pas le créateur de la file alors à la fermeture elle essaie d'attendre le fil d'exécution d'arrière-plan de la file. Le processus peut appeler
cancel_join_thread()
pour quejoin_thread()
ne fasse rien.
- cancel_join_thread()¶
Empêche
join_thread()
de bloquer. En particulier, cela empêche le fil d'arrière-plan d'être attendu automatiquement quand le processus se ferme – voirjoin_thread()
.Un meilleur nom pour cette méthode pourrait être
allow_exit_without_flush()
. Cela peut provoquer des pertes de données placées dans la file, et il est très rare d'avoir besoin de l'utiliser. Elle n'est là que si vous souhaitez terminer immédiatement le processus sans transférer les données du tampon, et que vous êtes prêt à perdre des données.
Note
Le fonctionnement de cette classe requiert une implémentation de sémaphore partagé sur le système d'exploitation hôte. Sans cela, la fonctionnalité est désactivée et la tentative d'instancier une
Queue
lève uneImportError
. Voir bpo-3770 pour plus d'informations. Cette remarque reste valable pour les autres types de files spécialisées définies par la suite.
- class multiprocessing.SimpleQueue¶
Un type de
Queue
simplifié, très proche d'unPipe
avec verrou.- close()¶
Ferme la file : libère les ressources internes.
Une file ne doit plus être utilisée après sa fermeture. Par exemple, les méthodes
get()
,put()
etempty()
ne doivent plus être appelées.Ajouté dans la version 3.9.
- empty()¶
Renvoie
True
si la file est vide,False
sinon.Always raises an
OSError
if the SimpleQueue is closed.
- get()¶
Supprime et renvoie un élément de la file.
- put(item)¶
Place item dans la file.
- class multiprocessing.JoinableQueue([maxsize])¶
JoinableQueue
, une sous-classe deQueue
, est une file qui ajoute des méthodestask_done()
etjoin()
.- task_done()¶
Indique qu'une tâche précédemment placée dans la file est achevée. Utilisée par les consommateurs de la file. Pour chaque
get()
utilisée pour récupérer une tâche, un appel ultérieur àtask_done()
indique à la file que le traitement de la tâche est terminé.Si un
join()
est actuellement bloquant, il se débloquera quand tous les éléments auront été traités (signifiant qu'un appel àtask_done()
a été reçu pour chaque élément ayant été placé viaput()
dans la file).Lève une exception
ValueError
si appelée plus de fois qu'il y avait d'éléments dans la file.
- join()¶
Bloque jusqu'à ce que tous les éléments de la file aient été récupérés et traités.
Le compteur des tâches non accomplies augmente chaque fois qu'un élément est ajouté à la file. Le compteur redescend chaque fois qu'un consommateur appelle
task_done()
pour indiquer qu'un élément a été récupéré et que tout le travail qui le concerne est complété. Quand le compteur des tâches non accomplies atteint zéro,join()
est débloquée.
Divers¶
- multiprocessing.active_children()¶
Renvoie la liste de tous les fils vivants du processus courant.
Appeler cette méthode provoque l'effet de bord d'attendre tout processus qui n'a pas encore terminé.
- multiprocessing.cpu_count()¶
Renvoie le nombre de CPUs sur le système.
This number is not equivalent to the number of CPUs the current process can use. The number of usable CPUs can be obtained with
os.process_cpu_count()
(orlen(os.sched_getaffinity(0))
).Une
NotImplementedError
est levée quand il est impossible de déterminer ce nombre.Voir aussi
Modifié dans la version 3.13: The return value can also be overridden using the
-X cpu_count
flag orPYTHON_CPU_COUNT
as this is merely a wrapper around theos
cpu count APIs.
- multiprocessing.current_process()¶
Renvoie l'objet
Process
correspondant au processus courant.Un analogue à
threading.current_thread()
.
- multiprocessing.parent_process()¶
Renvoie l'objet
Process
correspondant au processus père decurrent_process()
. Pour le processus maître,parent_process
vautNone
.Ajouté dans la version 3.8.
- multiprocessing.freeze_support()¶
Ajoute le support des programmes utilisant
multiprocessing
qui ont été figés pour produire un exécutable Windows (testé avec py2exe, PyInstaller et cx_Freeze).Cette fonction doit être appelée juste après la ligne
if __name__ == '__main__'
du module principal. Par exemple :from multiprocessing import Process, freeze_support def f(): print('hello world!') if __name__ == '__main__': freeze_support() Process(target=f).start()
Si la ligne
freeze_support()
est omise, alors tenter de lancer l'exécutable figé lève uneRuntimeError
.Appeler
freeze_support()
n'a pas d'effet quand elle est invoquée sur un système d'exploitation autre que Windows. De plus, si le module est lancé normalement par l'interpréteur Python sous Windows (le programme n'a pas été figé), alorsfreeze_support()
n'a pas d'effet.
- multiprocessing.get_all_start_methods()¶
Returns a list of the supported start methods, the first of which is the default. The possible start methods are
'fork'
,'spawn'
and'forkserver'
. Not all platforms support all methods. See Contextes et méthodes de démarrage.Ajouté dans la version 3.4.
- multiprocessing.get_context(method=None)¶
Renvoie un contexte ayant les mêmes attributs que le module
multiprocessing
.If method is
None
then the default context is returned. Otherwise method should be'fork'
,'spawn'
,'forkserver'
.ValueError
is raised if the specified start method is not available. See Contextes et méthodes de démarrage.Ajouté dans la version 3.4.
- multiprocessing.get_start_method(allow_none=False)¶
Renvoie le nom de la méthode de démarrage utilisée pour démarrer le processus.
Si le nom de la méthode n'a pas été fixé et que allow_none est faux, alors la méthode de démarrage est réglée à celle par défaut et son nom est renvoyé. Si la méthode n'a pas été fixée et que allow_none est vrai,
None
est renvoyé.The return value can be
'fork'
,'spawn'
,'forkserver'
orNone
. See Contextes et méthodes de démarrage.Ajouté dans la version 3.4.
Modifié dans la version 3.8: sur macOS, la méthode de démarrage spawn est maintenant la méthode par défaut. La méthode de démarrage fork doit être considérée comme dangereuse car elle peut entraîner des plantages du sous-processus. Voir bpo-33725.
- multiprocessing.set_executable(executable)¶
Set the path of the Python interpreter to use when starting a child process. (By default
sys.executable
is used). Embedders will probably need to do some thing likeset_executable(os.path.join(sys.exec_prefix, 'pythonw.exe'))
avant de pouvoir créer des processus fils.
Modifié dans la version 3.4: Now supported on POSIX when the
'spawn'
start method is used.Modifié dans la version 3.11: Accepte un path-like object.
- multiprocessing.set_forkserver_preload(module_names)¶
Set a list of module names for the forkserver main process to attempt to import so that their already imported state is inherited by forked processes. Any
ImportError
when doing so is silently ignored. This can be used as a performance enhancement to avoid repeated work in every process.For this to work, it must be called before the forkserver process has been launched (before creating a
Pool
or starting aProcess
).Only meaningful when using the
'forkserver'
start method. See Contextes et méthodes de démarrage.Ajouté dans la version 3.4.
- multiprocessing.set_start_method(method, force=False)¶
Set the method which should be used to start child processes. The method argument can be
'fork'
,'spawn'
or'forkserver'
. RaisesRuntimeError
if the start method has already been set and force is notTrue
. If method isNone
and force isTrue
then the start method is set toNone
. If method isNone
and force isFalse
then the context is set to the default context.Notez que cette fonction ne devrait être appelée qu'une fois au plus, et l'appel devrait être protégé à l'intérieur d'une clause
if __name__ == '__main__'
dans le module principal.See Contextes et méthodes de démarrage.
Ajouté dans la version 3.4.
Note
multiprocessing
ne contient pas d'analogues à threading.active_count()
, threading.enumerate()
, threading.settrace()
, threading.setprofile()
, threading.Timer
, ou threading.local
.
Objets de connexions¶
Les objets de connexion autorisent l'envoi et la réception d'objets sérialisables ou de chaînes de caractères. Ils peuvent être vus comme des interfaces de connexion (sockets) connectées orientées messages.
Les objets de connexion sont habituellement créés via Pipe
– voir aussi Auditeurs et Clients.
- class multiprocessing.connection.Connection¶
- send(obj)¶
Envoie un objet sur l'autre extrémité de la connexion, qui devra être lu avec
recv()
.L'objet doit être sérialisable. Les pickles très larges (approximativement 32 Mo+, bien que cela dépende de l'OS) pourront lever une exception
ValueError
.
- recv()¶
Renvoie un objet envoyé depuis l'autre extrémité de la connexion en utilisant
send()
. Bloque jusqu'à ce que quelque chose soit reçu. Lève uneEOFError
s'il n'y a plus rien à recevoir et que l'autre extrémité a été fermée.
- fileno()¶
Renvoie le descripteur de fichier ou identifiant utilisé par la connexion.
- close()¶
Ferme la connexion.
Elle est appelée automatiquement quand la connexion est collectée par le ramasse-miettes.
- poll([timeout])¶
Renvoie vrai ou faux selon si des données sont disponibles à la lecture.
Si timeout n'est pas spécifié la méthode renverra immédiatement. Si timeout est un nombre alors il spécifie le temps maximum de blocage en secondes. Si timeout est
None
, un temps d'attente infini est utilisé.Notez que plusieurs objets de connexions peuvent être attendus en même temps à l'aide de
multiprocessing.connection.wait()
.
- send_bytes(buffer[, offset[, size]])¶
Envoie des données binaires depuis un bytes-like object comme un message complet.
Si offset est fourni, les données sont lues depuis cette position dans le tampon buffer. Si size est fourni, il indique le nombre d'octets qui seront lus depuis buffer. Les tampons très larges (approximativement 32 MiB+, bien que cela dépende de l'OS) pourront lever une exception
ValueError
.
- recv_bytes([maxlength])¶
Renvoie un message complet de données binaires envoyées depuis l'autre extrémité de la connexion comme une chaîne de caractères. Bloque jusqu'à ce qu'il y ait quelque chose à recevoir. Lève une
EOFError
s'il ne reste rien à recevoir et que l'autre côté de la connexion a été fermé.Si maxlength est précisé que que le message est plus long que maxlength alors une
OSError
est levée et la connexion n'est plus lisible.
- recv_bytes_into(buffer[, offset])¶
Lit et stocke dans buffer un message complet de données binaires envoyées depuis l'autre extrémité de la connexion et renvoie le nombre d'octets du message. Bloque jusqu'à ce qu'il y ait quelque chose à recevoir. Lève une
EOFError
s'il ne reste rien à recevoir et que l'autre côté de la connexion a été fermé.buffer doit être un bytes-like object accessible en écriture. Si offset est donné, le message sera écrit dans le tampon à partir de cette position. offset doit être un entier positif, inférieur à la taille de buffer (en octets).
Si le tampon est trop petit une exception
BufferTooShort
est levée et le message complet est accessible viae.args[0]
oùe
est l'instance de l'exception.
Modifié dans la version 3.3: Les objets de connexions eux-mêmes peuvent maintenant être transférés entre les processus en utilisant
Connection.send()
etConnection.recv()
.Connection objects also now support the context management protocol -- see Le type gestionnaire de contexte.
__enter__()
returns the connection object, and__exit__()
callsclose()
.
Par exemple :
>>> from multiprocessing import Pipe
>>> a, b = Pipe()
>>> a.send([1, 'hello', None])
>>> b.recv()
[1, 'hello', None]
>>> b.send_bytes(b'thank you')
>>> a.recv_bytes()
b'thank you'
>>> import array
>>> arr1 = array.array('i', range(5))
>>> arr2 = array.array('i', [0] * 10)
>>> a.send_bytes(arr1)
>>> count = b.recv_bytes_into(arr2)
>>> assert count == len(arr1) * arr1.itemsize
>>> arr2
array('i', [0, 1, 2, 3, 4, 0, 0, 0, 0, 0])
Avertissement
La méthode Connection.recv()
désérialise automatiquement les données qu'elle reçoit, ce qui peut être un risque de sécurité à moins que vous ne fassiez réellement confiance au processus émetteur du message.
Par conséquent, à moins que l'objet de connexion soit instancié par Pipe()
, vous ne devriez uniquement utiliser les méthodes recv()
et send()
après avoir effectué une quelconque forme d'authentification. Voir Clés d'authentification.
Avertissement
Si un processus est tué pendant qu'il essaye de lire ou écrire sur le tube, alors les données du tube ont des chances d'être corrompues, parce qu'il devient impossible d'être sûr d'où se trouvent les bornes du message.
Primitives de synchronisation¶
Généralement les primitives de synchronisation ne sont pas nécessaire dans un programme multi-processus comme elles le sont dans un programme multi-fils d'exécution. Voir la documentation du module threading
.
Notez que vous pouvez aussi créer des primitives de synchronisation en utilisant un objet gestionnaire – voir Gestionnaires.
- class multiprocessing.Barrier(parties[, action[, timeout]])¶
Un objet barrière : un clone de
threading.Barrier
.Ajouté dans la version 3.3.
- class multiprocessing.BoundedSemaphore([value])¶
Un objet sémaphore lié : un analogue proche de
threading.BoundedSemaphore
.Une seule différence existe avec son proche analogue : le premier argument de sa méthode
acquire
est appelé block, pour la cohérence avecLock.acquire()
.Note
Sur macOS, elle n'est pas distinguable de la classe
Semaphore
parce quesem_getvalue()
n'est pas implémentée sur cette plateforme.
- class multiprocessing.Condition([lock])¶
Une variable conditionnelle : un alias pour
threading.Condition
.Si lock est spécifié il doit être un objet
Lock
ouRLock
du modulemultiprocessing
.Modifié dans la version 3.3: La méthode
wait_for()
a été ajoutée.
- class multiprocessing.Event¶
Un clone de
threading.Event
.
- class multiprocessing.Lock¶
Un verrou non récursif : un analogue proche de
threading.Lock
. Une fois que le processus ou le fil d'exécution a acquis un verrou, les tentatives suivantes d'acquisition depuis n'importe quel processus ou fil d'exécution bloqueront jusqu'à ce qu'il soit libéré ; n'importe quel processus ou fil peut le libérer. Les concepts et comportements dethreading.Lock
qui s'appliquent aux fils d'exécution sont répliqués ici dansmultiprocessing.Lock
et s'appliquent aux processus et aux fils d'exécution, à l'exception de ce qui est indiqué.Notez que
Lock
est en fait une fonction factory qui renvoie une instance demultiprocessing.synchronize.Lock
initialisée avec un contexte par défaut.Lock
supporte le protocole context manager et peut ainsi être utilisé avec une instructionwith
.- acquire(block=True, timeout=None)¶
Acquiert un verrou, bloquant ou non bloquant.
Avec l'argument block à
True
(par défaut), l'appel de méthode bloquera jusqu'à ce que le verrou soit dans déverrouillé, puis le verrouillera avant de renvoyerTrue
. Notez que le nom de ce premier argument diffère de celui dethreading.Lock.acquire()
.Avec l'argument block à
False
, l'appel de méthode ne bloque pas. Si le verrou est actuellement verrouillé, renvoieFalse
; autrement verrouille le verrou et renvoieTrue
.Quand invoqué avec un nombre flottant positif comme timeout, bloque au maximum pendant ce nombre spécifié de secondes, tant que le verrou ne peut être acquis. Les invocations avec une valeur de timeout négatives sont équivalents à zéro. Les invocations avec un timeout à
None
(par défaut) correspondent à un délai d'attente infini. Notez que le traitement des valeurs de timeout négatives etNone
diffère du comportement implémenté dansthreading.Lock.acquire()
. L'argument timeout n'a pas d'implication pratique si l'argument block est mis )False
et est alors ignoré. RenvoieTrue
si le verrou a été acquis etFalse
si le temps de timeout a expiré.
- release()¶
Libère un verrou. Elle peut être appelée depuis n'importe quel processus ou fil d'exécution, pas uniquement le processus ou le fil qui a acquis le verrou à l'origine.
Le comportement est le même que
threading.Lock.release()
excepté que lorsque la méthode est appelée sur un verrou déverrouillé, uneValueError
est levée.
- class multiprocessing.RLock¶
Un objet verrou récursif : un analogue proche de
threading.RLock
. Un verrou récursif doit être libéré par le processus ou le fil d'exécution qui l'a acquis. Quand un processus ou un fil acquiert un verrou récursif, le même processus/fil peut l'acquérir à nouveau sans bloquer ; le processus/fil doit le libérer autant de fois qu'il l'acquiert.Notez que
RLock
est en fait une fonction factory qui renvoie une instance demultiprocessing.synchronize.RLock
initialisée avec un contexte par défaut.RLock
supporte le protocole context manager et peut ainsi être utilisée avec une instructionwith
.- acquire(block=True, timeout=None)¶
Acquiert un verrou, bloquant ou non bloquant.
Quand invoqué avec l'argument block à
True
, bloque jusqu'à ce que le verrou soit déverrouillé (n'appartenant à aucun processus ou fil d'exécution) sauf s'il appartient déjà au processus ou fil d'exécution courant. Le processus ou fil d'exécution courant prend la possession du verrou (s'il ne l'a pas déjà) et incrémente d'un le niveau de récursion du verrou, renvoyant ainsiTrue
. Notez qu'il y a plusieurs différences dans le comportement de ce premier argument comparé à l'implémentation dethreading.RLock.acquire()
, à commencer par le nom de l'argument lui-même.Quand invoqué avec l'argument block à
False
, ne bloque pas. Si le verrou est déjà acquis (et possédé) par un autre processus ou fil d'exécution, le processus/fil courant n'en prend pas la possession et le niveau de récursion n'est pas incrémenté, résultant en une valeur de retour àFalse
. Si le verrou est déverrouillé, le processus/fil courant en prend possession et incrémente son niveau de récursion, renvoyantTrue
.L'usage et les comportements de l'argument timeout sont les mêmes que pour
Lock.acquire()
. Notez que certains de ces comportements diffèrent par rapport à ceux implémentés parthreading.RLock.acquire()
.
- release()¶
Libère un verrou, décrémentant son niveau de récursion. Si après la décrémentation le niveau de récursion est zéro, réinitialise le verrou à un état déverrouillé (n'appartenant à aucun processus ou fil d'exécution) et si des processus/fils attendent que le verrou se déverrouillé, autorise un seul d'entre-eux à continuer. Si après cette décrémentation le niveau de récursion est toujours strictement positif, le verrou reste verrouillé et propriété du processus/fil appelant.
N'appelez cette méthode que si le processus ou fil d'exécution appelant est propriétaire du verrou. Une
AssertionError
est levée si cette méthode est appelée par un processus/fil autre que le propriétaire ou si le verrou n'est pas verrouillé (possédé). Notez que le type d'exception levé dans cette situation diffère du comportement dethreading.RLock.release()
.
- class multiprocessing.Semaphore([value])¶
Un objet sémaphore, proche analogue de
threading.Semaphore
.Une seule différence existe avec son proche analogue : le premier argument de sa méthode
acquire
est appelé block, pour la cohérence avecLock.acquire()
.
Note
Sous macOS, sem_timedwait
n'est pas pris en charge, donc appeler acquire()
avec un temps d'exécution limité émule le comportement de cette fonction en utilisant une boucle d'attente.
Note
Certaines des fonctionnalités de ce paquet requièrent une implémentation fonctionnelle de sémaphores partagés sur le système hôte. Sans cela, le module multiprocessing.synchronize
sera désactivé, et les tentatives de l'importer lèveront une ImportError
. Voir bpo-3770 pour plus d'informations.
Gestionnaires¶
Les gestionnaires fournissent un moyen de créer des données qui peuvent être partagées entre les différents processus, incluant le partage à travers le réseau entre des processus tournant sur des machines différentes. Un objet gestionnaire contrôle un processus serveur qui gère les shared objects. Les autres processus peuvent accéder aux objets partagés à l'aide de mandataires.
- multiprocessing.Manager()¶
Renvoie un objet
SyncManager
démarré qui peut être utilisé pour partager des objets entre les processus. L'objet gestionnaire renvoyé correspond à un processus fils instancié et possède des méthodes pour créer des objets partagés et renvoyer les mandataires correspondants.
Les processus gestionnaires seront arrêtés dès qu'ils seront collectés par le ramasse-miettes ou que leur processus parent se terminera. Les classes gestionnaires sont définies dans le module multiprocessing.managers
:
- class multiprocessing.managers.BaseManager(address=None, authkey=None, serializer='pickle', ctx=None, *, shutdown_timeout=1.0)¶
Crée un objet BaseManager.
Une fois créé il faut appeler
start()
ouget_server().serve_forever()
pour assurer que l'objet gestionnaire référence un processus gestionnaire démarré.address est l'adresse sur laquelle le processus gestionnaire écoute pour de nouvelles connexions. Si address est
None
, une adresse arbitraire est choisie.authkey est la clé d'authentification qui sera utilisée pour vérifier la validité des connexions entrantes sur le processus serveur. Si authkey est
None
alorscurrent_process().authkey
est utilisée. Autrement authkey est utilisée et doit être une chaîne d'octets.serializer must be
'pickle'
(usepickle
serialization) or'xmlrpclib'
(usexmlrpc.client
serialization).ctx is a context object, or
None
(use the current context). See theget_context()
function.shutdown_timeout is a timeout in seconds used to wait until the process used by the manager completes in the
shutdown()
method. If the shutdown times out, the process is terminated. If terminating the process also times out, the process is killed.Modifié dans la version 3.11: Added the shutdown_timeout parameter.
- start([initializer[, initargs]])¶
Démarre un sous-processus pour démarrer le gestionnaire. Si initializer n'est pas
None
alors le sous-processus appellerainitializer(*initargs)
quand il démarrera.
- get_server()¶
Renvoie un objet
Server
qui représente le serveur sous le contrôle du gestionnaire. L'objetServer
supporte la méthodeserve_forever()
:>>> from multiprocessing.managers import BaseManager >>> manager = BaseManager(address=('', 50000), authkey=b'abc') >>> server = manager.get_server() >>> server.serve_forever()
Server
possède en plus un attributaddress
.
- connect()¶
Connecte un objet gestionnaire local au processus gestionnaire distant :
>>> from multiprocessing.managers import BaseManager >>> m = BaseManager(address=('127.0.0.1', 50000), authkey=b'abc') >>> m.connect()
- shutdown()¶
Stoppe le processus utilisé par le gestionnaire. Cela est disponible uniquement si
start()
a été utilisée pour démarrer le processus serveur.Cette méthode peut être appelée plusieurs fois.
- register(typeid[, callable[, proxytype[, exposed[, method_to_typeid[, create_method]]]]])¶
Une méthode de classe qui peut être utilisée pour enregistrer un type ou un appelable avec la classe gestionnaire.
typeif est un « type identifier » qui est utilisé pour identifier un type particulier d'objet partagé. Cela doit être une chaîne de caractères.
callable est un objet appelable utilisé pour créer les objets avec cet identifiant de type. Si une instance de gestionnaire prévoit de se connecter au serveur en utilisant sa méthode
connect()
ou si l'argument create_method vautFalse
alors cet argument peut être laissé àNone
.proxytype est une sous-classe de
BaseProxy
utilisée pour créer des mandataires autour des objets partagés avec ce typeid. S'il estNone
, une classe mandataire sera créée automatiquement.exposed est utilisé pour préciser une séquence de noms de méthodes dont les mandataires pour ce typeid doivent être autorisés à accéder via
BaseProxy._callmethod()
. (Si exposed estNone
alorsproxytype._exposed_
est utilisé à la place s'il existe.) Dans le cas où aucune liste exposed n'est précisée, toutes les « méthodes publiques » de l'objet partagé seront accessibles. (Ici une « méthode publique » signifie n'importe quel attribut qui possède une méthode__call__()
et dont le nom ne commence pas par un'_'
.)method_to_typeid est un tableau associatif utilisé pour préciser le type de retour de ces méthodes exposées qui doivent renvoyer un mandataire. Il associé un nom de méthode à une chaîne de caractères typeid. (Si method_to_typeid est
None
,proxytype._method_to_typeid_
est utilisé à la place s'il existe). Si le nom d'une méthode n'est pas une clé de ce tableau associatif ou si la valeur associée estNone
, l'objet renvoyé par la méthode sera une copie de la valeur.create_method détermine si une méthode devrait être créée avec le nom typeid, qui peut être utilisée pour indiquer au processus serveur de créer un nouvel objet partagé et d'en renvoyer un mandataire. a valeur par défaut est
True
.
Les instances de
BaseManager
ont aussi une propriété en lecture seule :- address¶
L'adresse utilisée par le gestionnaire.
Modifié dans la version 3.3: Les objets gestionnaires supportent le protocole des gestionnaires de contexte – voir Le type gestionnaire de contexte.
__enter__()
démarre le processus serveur (s'il n'a pas déjà été démarré) et renvoie l'objet gestionnaire.__exit__()
appelleshutdown()
.Dans les versions précédentes
__enter__()
ne démarrait pas le processus serveur du gestionnaire s'il n'était pas déjà démarré.
- class multiprocessing.managers.SyncManager¶
Une sous-classe de
BaseManager
qui peut être utilisée pour la synchronisation entre processus. Des objets de ce type sont renvoyés parmultiprocessing.Manager()
.Ces méthodes créent et renvoient des Objets mandataires pour un certain nombre de types de données communément utilisés pour être synchronisés entre les processus. Elles incluent notamment des listes et dictionnaires partagés.
- Barrier(parties[, action[, timeout]])¶
Crée un objet
threading.Barrier
partagé et renvoie un mandataire pour cet objet.Ajouté dans la version 3.3.
- BoundedSemaphore([value])¶
Crée un objet
threading.BoundedSemaphore
partagé et renvoie un mandataire pour cet objet.
- Condition([lock])¶
Crée un objet
threading.Condition
partagé et renvoie un mandataire pour cet objet.Si lock est fourni alors il doit être un mandataire pour un objet
threading.Lock
outhreading.RLock
.Modifié dans la version 3.3: La méthode
wait_for()
a été ajoutée.
- Event()¶
Crée un objet
threading.Event
partagé et renvoie un mandataire pour cet objet.
- Lock()¶
Crée un objet
threading.Lock
partagé et renvoie un mandataire pour cet objet.
- Queue([maxsize])¶
Crée un objet
queue.Queue
partagé et renvoie un mandataire pour cet objet.
- RLock()¶
Crée un objet
threading.RLock
partagé et renvoie un mandataire pour cet objet.
- Semaphore([value])¶
Crée un objet
threading.Semaphore
partagé et renvoie un mandataire pour cet objet.
- Array(typecode, sequence)¶
Crée un tableau et renvoie un mandataire pour cet objet.
- Value(typecode, value)¶
Crée un objet avec un attribut
value
accessible en écriture et renvoie un mandataire pour cet objet.
- dict()¶
- dict(mapping)
- dict(sequence)
Crée un objet
dict
partagé et renvoie un mandataire pour cet objet.
Modifié dans la version 3.6: Les objets partagés peuvent être imbriqués. Par exemple, un conteneur partagé tel qu'une liste partagée peu contenir d'autres objets partagés qui seront aussi gérés et synchronisés par le
SyncManager
.
- class multiprocessing.managers.Namespace¶
Un type qui peut être enregistré avec
SyncManager
.Un espace de nommage n'a pas de méthodes publiques, mais possède des attributs accessibles en écriture. Sa représentation montre les valeurs de ses attributs.
Cependant, en utilisant un mandataire pour un espace de nommage, un attribut débutant par
'_'
est un attribut du mandataire et non de l'objet cible :>>> mp_context = multiprocessing.get_context('spawn') >>> manager = mp_context.Manager() >>> Global = manager.Namespace() >>> Global.x = 10 >>> Global.y = 'hello' >>> Global._z = 12.3 # this is an attribute of the proxy >>> print(Global) Namespace(x=10, y='hello')
Gestionnaires personnalisés¶
Pour créer son propre gestionnaire, il faut créer une sous-classe de BaseManager
et utiliser la méthode de classe register()
pour enregistrer de nouveaux types ou callables au gestionnaire. Par exemple :
from multiprocessing.managers import BaseManager
class MathsClass:
def add(self, x, y):
return x + y
def mul(self, x, y):
return x * y
class MyManager(BaseManager):
pass
MyManager.register('Maths', MathsClass)
if __name__ == '__main__':
with MyManager() as manager:
maths = manager.Maths()
print(maths.add(4, 3)) # prints 7
print(maths.mul(7, 8)) # prints 56
Utiliser un gestionnaire distant¶
Il est possible de lancer un serveur gestionnaire sur une machine et d'avoir des clients l'utilisant sur d'autres machines (en supposant que les pare-feus impliqués l'autorisent).
Exécuter les commandes suivantes crée un serveur pour une file simple partagée à laquelle des clients distants peuvent accéder :
>>> from multiprocessing.managers import BaseManager
>>> from queue import Queue
>>> queue = Queue()
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue', callable=lambda:queue)
>>> m = QueueManager(address=('', 50000), authkey=b'abracadabra')
>>> s = m.get_server()
>>> s.serve_forever()
Un client peut accéder au serveur comme suit :
>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue')
>>> m = QueueManager(address=('foo.bar.org', 50000), authkey=b'abracadabra')
>>> m.connect()
>>> queue = m.get_queue()
>>> queue.put('hello')
Un autre client peut aussi l'utiliser :
>>> from multiprocessing.managers import BaseManager
>>> class QueueManager(BaseManager): pass
>>> QueueManager.register('get_queue')
>>> m = QueueManager(address=('foo.bar.org', 50000), authkey=b'abracadabra')
>>> m.connect()
>>> queue = m.get_queue()
>>> queue.get()
'hello'
Les processus locaux peuvent aussi accéder à cette file, utilisant le code précédent sur le client pour y accéder à distance :
>>> from multiprocessing import Process, Queue
>>> from multiprocessing.managers import BaseManager
>>> class Worker(Process):
... def __init__(self, q):
... self.q = q
... super().__init__()
... def run(self):
... self.q.put('local hello')
...
>>> queue = Queue()
>>> w = Worker(queue)
>>> w.start()
>>> class QueueManager(BaseManager): pass
...
>>> QueueManager.register('get_queue', callable=lambda: queue)
>>> m = QueueManager(address=('', 50000), authkey=b'abracadabra')
>>> s = m.get_server()
>>> s.serve_forever()
Objets mandataires¶
Un mandataire est un objet qui référence un objet partagé appartenant (supposément) à un processus différent. L'objet partagé est appelé le référent du mandataire. Plusieurs mandataires peuvent avoir un même référent.
Un mandataire possède des méthodes qui appellent les méthodes correspondantes du référent (bien que toutes les méthodes du référent ne soient pas nécessairement accessibles à travers le mandataire). De cette manière, un mandataire peut être utilisé comme le serait sont référent :
>>> mp_context = multiprocessing.get_context('spawn')
>>> manager = mp_context.Manager()
>>> l = manager.list([i*i for i in range(10)])
>>> print(l)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> print(repr(l))
<ListProxy object, typeid 'list' at 0x...>
>>> l[4]
16
>>> l[2:5]
[4, 9, 16]
Notez qu'appliquer str()
à un mandataire renvoie la représentation du référent, alors que repr()
renvoie celle du mandataire.
Une fonctionnalité importantes des objets mandataires est qu'ils sont sérialisables et peuvent donc être échangés entre les processus. Ainsi, un référent peut contenir des Objets mandataires. Cela permet d'imbriquer des listes et dictionnaires gérés ainsi que d'autres Objets mandataires :
>>> a = manager.list()
>>> b = manager.list()
>>> a.append(b) # referent of a now contains referent of b
>>> print(a, b)
[<ListProxy object, typeid 'list' at ...>] []
>>> b.append('hello')
>>> print(a[0], b)
['hello'] ['hello']
De même, les mandataires de listes et dictionnaires peuvent être imbriqués dans d'autres :
>>> l_outer = manager.list([ manager.dict() for i in range(2) ])
>>> d_first_inner = l_outer[0]
>>> d_first_inner['a'] = 1
>>> d_first_inner['b'] = 2
>>> l_outer[1]['c'] = 3
>>> l_outer[1]['z'] = 26
>>> print(l_outer[0])
{'a': 1, 'b': 2}
>>> print(l_outer[1])
{'c': 3, 'z': 26}
Si des objets standards (non proxyfiés) list
ou dict
sont contenus dans un référent, les modifications sur ces valeurs mutables ne seront pas propagées à travers le gestionnaire parce que le mandataire n'a aucun moyen de savoir quand les valeurs contenues sont modifiées. Cependant, stocker une valeur dans un conteneur mandataire (qui déclenche un appel à __setitem__
sur le mandataire) propage bien la modification à travers le gestionnaire et modifie effectivement l'élément, il est ainsi possible de réassigner la valeur modifiée au conteneur mandataire :
# create a list proxy and append a mutable object (a dictionary)
lproxy = manager.list()
lproxy.append({})
# now mutate the dictionary
d = lproxy[0]
d['a'] = 1
d['b'] = 2
# at this point, the changes to d are not yet synced, but by
# updating the dictionary, the proxy is notified of the change
lproxy[0] = d
Cette approche est peut-être moins pratique que d'utiliser des Objets mandataires imbriqués pour la majorité des cas d'utilisation, mais démontre aussi un certain niveau de contrôle sur la synchronisation.
Note
Les types de mandataires de multiprocessing
n'implémentent rien pour la comparaison par valeurs. Par exemple, on a :
>>> manager.list([1,2,3]) == [1,2,3]
False
Il faut à la place simplement utiliser une copie du référent pour faire les comparaisons.
- class multiprocessing.managers.BaseProxy¶
Les objets mandataires sont des instances de sous-classes de
BaseProxy
.- _callmethod(methodname[, args[, kwds]])¶
Appelle et renvoie le résultat d'une méthode du référent du mandataire.
Si
proxy
est un mandataire sont le référent estobj
, alors l'expressionproxy._callmethod(methodname, args, kwds)
s'évalue comme
getattr(obj, methodname)(*args, **kwds)
dans le processus du gestionnaire.
La valeur renvoyée sera une copie du résultat de l'appel ou un mandataire sur un nouvel objet partagé – voir l'a documentation de l'argument method_to_typeid de
BaseManager.register()
.Si une exception est levée par l'appel, elle est relayée par
_callmethod()
. Si une autre exception est levée par le processus du gestionnaire, elle est convertie en uneRemoteError
et est levée par_callmethod()
.Notez en particulier qu'une exception est levée si methodname n'est pas exposée.
Un exemple d'utilisation de
_callmethod()
:>>> l = manager.list(range(10)) >>> l._callmethod('__len__') 10 >>> l._callmethod('__getitem__', (slice(2, 7),)) # equivalent to l[2:7] [2, 3, 4, 5, 6] >>> l._callmethod('__getitem__', (20,)) # equivalent to l[20] Traceback (most recent call last): ... IndexError: list index out of range
- _getvalue()¶
Renvoie une copie du référent.
Si le référent n'est pas sérialisable, une exception est levée.
- __repr__()¶
Renvoie la représentation de l'objet mandataire.
- __str__()¶
Renvoie la représentation du référent.
Nettoyage¶
Un mandataire utilise un callback sous une référence faible de façon à ce que quand il est collecté par le ramasse-miettes, il se désenregistre auprès du gestionnaire qui possède le référent.
Un objet partagé est supprimé par le processus gestionnaire quand plus aucun mandataire ne le référence.
Pools de processus¶
On peut créer un pool de processus qui exécuteront les tâches qui lui seront soumises avec la classe Pool
.
- class multiprocessing.pool.Pool([processes[, initializer[, initargs[, maxtasksperchild[, context]]]]])¶
Un objet process pool qui contrôle un pool de processus workers auquel sont soumises des tâches. Il supporte les résultats asynchrones avec des timeouts et des callbacks et possède une implémentation parallèle de map.
processes is the number of worker processes to use. If processes is
None
then the number returned byos.process_cpu_count()
is used.Si initializer n'est pas
None
, chaque processus worker appellerainitializer(*initargs)
en démarrant.maxtasksperchild est le nombre de tâches qu'un processus worker peut accomplir avant de se fermer et d'être remplacé par un worker frais, pour permettre aux ressources inutilisées d'être libérées. Par défaut maxtasksperchild est
None
, ce qui signifie que le worker vit aussi longtemps que le pool.context peut être utilisé pour préciser le contexte utilisé pour démarrer les processus workers. Habituellement un pool est créé à l'aide de la fonction
multiprocessing.Pool()
ou de la méthodePool()
d'un objet de contexte. Dans les deux cas context est réglé de façon appropriée.Notez que les méthodes de l'objet pool ne doivent être appelées que par le processus qui l'a créé.
Avertissement
Les objets
multiprocessing.pool
ont des ressources internes qui doivent être correctement gérées (comme toute autre ressource) en utilisant le pool comme gestionnaire de contexte ou en appelantclose()
etterminate()
manuellement. Si cela n'est pas fait, le processus peut être bloqué à la finalisation.Notez qu'il n'est pas correct de compter sur le ramasse-miette pour détruire le pool car CPython ne garantit pas que le finalizer du pool est appelé (voir
object.__del__()
pour plus d'informations).Modifié dans la version 3.2: Added the maxtasksperchild parameter.
Modifié dans la version 3.4: Added the context parameter.
Modifié dans la version 3.13: processes uses
os.process_cpu_count()
by default, instead ofos.cpu_count()
.Note
Les processus workers à l'intérieur d'une
Pool
vivent par défaut aussi longtemps que la file de travail du pool. Un modèle fréquent chez d'autres systèmes (tels qu'Apache, mod_wsgi, etc.) pour libérer les ressources détenues par les workers est d'autoriser un worker dans le pool à accomplir seulement une certaine charge de travail avant de se fermer, se retrouvant nettoyé et remplacé par un nouveau processus fraîchement lancé. L'argument maxtasksperchild dePool
expose cette fonctionnalité à l'utilisateur final.- apply(func[, args[, kwds]])¶
Appelle func avec les arguments args et les arguments nommés kwds. Bloque jusqu'à ce que que le résultat soit prêt. En raison de ce blocage,
apply_async()
est préférable pour exécuter du travail en parallèle. De plus, func est exécutée sur un seul des workers du pool.
- apply_async(func[, args[, kwds[, callback[, error_callback]]]])¶
Une variante de la méthode
apply()
qui renvoie un objetAsyncResult
.Si callback est précisé alors ce doit être un objet appelable qui accepte un seul argument. Quand le résultat est prêt, callback est appelé avec ce résultat, si l'appel n'échoue pas auquel cas error_callback est appelé à la place.
Si error_callback est précisé alors ce doit être un objet appelable qui accepte un seul argument. Si la fonction cible échoue, alors error_callback est appelé avec l'instance de l'exception.
Les callbacks doivent se terminer immédiatement, autrement le fil d'exécution qui gère les résultats se retrouverait bloqué.
- map(func, iterable[, chunksize])¶
Un équivalent parallèle de la fonction native
map()
(qui ne prend qu'un seul argument itérable ; pour en passer plusieurs, référez-vous àstarmap()
). Elle bloque jusqu'à ce que le résultat soit prêt.La méthode découpe l'itérable en un nombre de morceaux qu'elle envoie au pool de processus comme des tâches séparées. La taille (approximative) de ces morceaux peut être précisée en passant à chunksize un entier positif.
Notez que cela peut entraîner une grosse consommation de mémoire pour les itérables très longs. Envisagez d'utiliser
imap()
ouimap_unordered()
avec l'option chunksize explicite pour une meilleure efficacité.
- map_async(func, iterable[, chunksize[, callback[, error_callback]]])¶
Une variante de la méthode
map()
qui renvoie un objetAsyncResult
.Si callback est précisé alors ce doit être un objet appelable qui accepte un seul argument. Quand le résultat est prêt, callback est appelé avec ce résultat, si l'appel n'échoue pas auquel cas error_callback est appelé à la place.
Si error_callback est précisé alors ce doit être un objet appelable qui accepte un seul argument. Si la fonction cible échoue, alors error_callback est appelé avec l'instance de l'exception.
Les callbacks doivent se terminer immédiatement, autrement le fil d'exécution qui gère les résultats se retrouverait bloqué.
- imap(func, iterable[, chunksize])¶
Une version paresseuse de
map()
.L'argument chunksize est le même que celui utilisé par la méthode
map()
. Pour de très longs itérables, utiliser une grande valeur pour chunksize peut faire s'exécuter la tâche beaucoup plus rapidement qu'en utilisant la valeur par défaut de1
.Aussi, si chucksize vaut
1
alors la méthodenext()
de l'itérateur renvoyé parimap()
prend un paramètre optionnel timeout :next(timeout)
lève unemultiprocessing.TimeoutError
si le résultat ne peut pas être renvoyé avant timeout secondes.
- imap_unordered(func, iterable[, chunksize])¶
Identique à
imap()
si ce n'est que l'ordre des résultats de l'itérateur renvoyé doit être considéré comme arbitraire. (L'ordre n'est garanti que quand il n'y a qu'un worker.)
- starmap(func, iterable[, chunksize])¶
Like
map()
except that the elements of the iterable are expected to be iterables that are unpacked as arguments.Par conséquent un iterable
[(1,2), (3, 4)]
donnera pour résultat[func(1,2), func(3,4)]
.Ajouté dans la version 3.3.
- starmap_async(func, iterable[, chunksize[, callback[, error_callback]]])¶
Une combinaison de
starmap()
etmap_async()
qui itère sur iterable (composé d'itérables) et appelle func pour chaque itérable dépaqueté. Renvoie l'objet résultat.Ajouté dans la version 3.3.
- close()¶
Empêche de nouvelles tâches d'être envoyées à la pool. Les processus workers se terminent une fois que toutes les tâches ont été complétées.
- terminate()¶
Stoppe immédiatement les processus workers sans finaliser les travaux courants. Quand l'objet pool est collecté par le ramasse-miettes, sa méthode
terminate()
est appelée immédiatement.
- join()¶
Attend que les processus workers se terminent. Il est nécessaire d'appeler
close()
outerminate()
avant d'utiliserjoin()
.
Modifié dans la version 3.3: Les pools de workers supportent maintenant le protocole des gestionnaires de contexte – voir Le type gestionnaire de contexte.
__enter__()
renvoie l'objet pool et__exit__()
appelleterminate()
.
- class multiprocessing.pool.AsyncResult¶
La classe des résultats renvoyés par
Pool.apply_async()
etPool.map_async()
.- get([timeout])¶
Renvoie le résultat quand il arrive. Si timeout n'est pas
None
et que le résultat n'arrive pas avant timeout secondes, unemultiprocessing.TimeoutError
est levée. Si l'appel distance lève une exception, alors elle est relayée parget()
.
- wait([timeout])¶
Attend que le résultat soit disponible ou que timeout secondes s'écoulent.
- ready()¶
Renvoie
True
ouFalse
suivant si la tâche est accomplie.
- successful()¶
Renvoie
True
ouFalse
suivant si la tâche est accomplie sans lever d'exception. Lève uneValueError
si le résultat n'est pas prêt.Modifié dans la version 3.7: Si le résultat n'est pas prêt, une
ValueError
est levée au lieu d'uneAssertionError
auparavant.
Les exemples suivants présentent l'utilisation d'un pool de workers :
from multiprocessing import Pool
import time
def f(x):
return x*x
if __name__ == '__main__':
with Pool(processes=4) as pool: # start 4 worker processes
result = pool.apply_async(f, (10,)) # evaluate "f(10)" asynchronously in a single process
print(result.get(timeout=1)) # prints "100" unless your computer is *very* slow
print(pool.map(f, range(10))) # prints "[0, 1, 4,..., 81]"
it = pool.imap(f, range(10))
print(next(it)) # prints "0"
print(next(it)) # prints "1"
print(it.next(timeout=1)) # prints "4" unless your computer is *very* slow
result = pool.apply_async(time.sleep, (10,))
print(result.get(timeout=1)) # raises multiprocessing.TimeoutError
Auditeurs et Clients¶
Habituellement l'échange de messages entre processus est réalisé en utilisant des files ou des objets Connection
renvoyés par Pipe()
.
Cependant, le module multiprocessing.connection
permet un peu plus de flexibilité. Il fournit un message de plus haut-niveau orienté API pour gérer des connecteurs ou des tubes nommés sous Windows. Il gère aussi l'authentification par condensat (digest authentication en anglais) en utilisant le module hmac
, et pour interroger de multiples connexions en même temps.
- multiprocessing.connection.deliver_challenge(connection, authkey)¶
Envoie un message généré aléatoirement à l'autre extrémité de la connexion et attend une réponse.
Si la réponse correspond au condensat du message avec la clé authkey, alors un message de bienvenue est envoyé à l'autre extrémité de la connexion. Autrement, une
AuthenticationError
est levée.
- multiprocessing.connection.answer_challenge(connection, authkey)¶
Reçoit un message, calcule le condensat du message en utilisant la clé authkey, et envoie le condensat en réponse.
Si un message de bienvenue n'est pas reçu, une
AuthenticationError
est levée.
- multiprocessing.connection.Client(address[, family[, authkey]])¶
Essaie d'établir une connexion avec l'auditeur qui utilise l'adresse address, renvoie une
Connection
.Le type de la connexion est déterminé par l'argument family, mais il peut généralement être omis puisqu'il peut être inféré depuis le format d'address. (Voir Formats d'adresses)
If authkey is given and not
None
, it should be a byte string and will be used as the secret key for an HMAC-based authentication challenge. No authentication is done if authkey isNone
.AuthenticationError
is raised if authentication fails. See Clés d'authentification.
- class multiprocessing.connection.Listener([address[, family[, backlog[, authkey]]]])¶
Une enveloppe autour d'un connecteur lié ou un tube nommé sous Windows qui écoute pour des connexions.
address est l'adresse à utiliser par le connecteur lié ou le tube nommé de l'objet auditeur.
Note
Si une adresse '0.0.0.0' est utilisée, l'adresse ne sera pas un point d'accès connectable sous Windows. Si vous avez besoin d'un point d'accès connectable, utilisez '127.0.0.1'.
family est le type de connecteur (ou tube nommé) à utiliser. Cela peut être l'une des chaînes
'AF_INET'
(pour un connecteur TCP),'AF_UNIX'
(pour un connecteur Unix) ou'AF_PIPE'
(pour un tube nommé sous Windows). Seulement le premier d'entre eux est garanti d'être disponible. Si family estNone
, la famille est inférée depuis le format d'address. Si address est aussiNone
, la famille par défaut est utilisée. La famille par défaut est supposée être la plus rapide disponible. Voir Formats d'adresses. Notez que si la family est'AF_UNIX'
et qu'address estNone
, le connecteur est créé dans un répertoire temporaire privé créé avectempfile.mkstemp()
.Si l'objet auditeur utilise un connecteur alors backlog (1 par défaut) est passé à la méthode
listen()
du connecteur une fois qu'il a été lié.If authkey is given and not
None
, it should be a byte string and will be used as the secret key for an HMAC-based authentication challenge. No authentication is done if authkey isNone
.AuthenticationError
is raised if authentication fails. See Clés d'authentification.- accept()¶
Accepte une connexion sur le connecteur lié ou le tube nommé de l'objet auditeur et renvoie un objet
Connection
. Si la tentative d'authentification échoue, uneAuthenticationError
est levée.
- close()¶
Ferme le connecteur lié ou le tube nommé de l'objet auditeur. La méthode est appelée automatiquement quand l'auditeur est collecté par le ramasse-miettes. Il est cependant conseillé de l'appeler explicitement.
Les objets auditeurs ont aussi les propriétés en lecture seule suivantes :
- address¶
L'adresse utilisée par l'objet auditeur.
- last_accepted¶
L'adresse depuis laquelle a été établie la dernière connexion.
None
si aucune n'est disponible.
Modifié dans la version 3.3: Les objets auditeurs supportent maintenant le protocole des gestionnaires de contexte – voir Le type gestionnaire de contexte.
__enter__()
renvoie l'objet auditeur, et__exit__()
appelleclose()
.
- multiprocessing.connection.wait(object_list, timeout=None)¶
Attend qu'un objet d'object_list soit prêt. Renvoie la liste de ces objets d'object_list qui sont prêts. Si timeout est un nombre flottant, l'appel bloquera au maximum ce nombre de secondes. Si timeout est
None
, l'appelle bloquera pour une durée non limitée. Un timeout négatif est équivalent à un timeout nul.For both POSIX and Windows, an object can appear in object_list if it is
un objet
Connection
accessible en lecture ;un objet
socket.socket
connecté et accessible en lecture ; ou
Une connexion (socket en anglais) est prête quand il y a des données disponibles en lecture dessus, ou que l'autre extrémité a été fermée.
POSIX:
wait(object_list, timeout)
almost equivalentselect.select(object_list, [], [], timeout)
. The difference is that, ifselect.select()
is interrupted by a signal, it can raiseOSError
with an error number ofEINTR
, whereaswait()
will not.Windows: An item in object_list must either be an integer handle which is waitable (according to the definition used by the documentation of the Win32 function
WaitForMultipleObjects()
) or it can be an object with afileno()
method which returns a socket handle or pipe handle. (Note that pipe handles and socket handles are not waitable handles.)Ajouté dans la version 3.3.
Exemples
Le code serveur suivant crée un auditeur qui utilise 'secret password'
comme clé d'authentification. Il attend ensuite une connexion et envoie les données au client :
from multiprocessing.connection import Listener
from array import array
address = ('localhost', 6000) # family is deduced to be 'AF_INET'
with Listener(address, authkey=b'secret password') as listener:
with listener.accept() as conn:
print('connection accepted from', listener.last_accepted)
conn.send([2.25, None, 'junk', float])
conn.send_bytes(b'hello')
conn.send_bytes(array('i', [42, 1729]))
Le code suivant se connecte au serveur et en reçoit des données :
from multiprocessing.connection import Client
from array import array
address = ('localhost', 6000)
with Client(address, authkey=b'secret password') as conn:
print(conn.recv()) # => [2.25, None, 'junk', float]
print(conn.recv_bytes()) # => 'hello'
arr = array('i', [0, 0, 0, 0, 0])
print(conn.recv_bytes_into(arr)) # => 8
print(arr) # => array('i', [42, 1729, 0, 0, 0])
Le code suivant utilise wait()
pour attendre des messages depuis plusieurs processus à la fois :
from multiprocessing import Process, Pipe, current_process
from multiprocessing.connection import wait
def foo(w):
for i in range(10):
w.send((i, current_process().name))
w.close()
if __name__ == '__main__':
readers = []
for i in range(4):
r, w = Pipe(duplex=False)
readers.append(r)
p = Process(target=foo, args=(w,))
p.start()
# We close the writable end of the pipe now to be sure that
# p is the only process which owns a handle for it. This
# ensures that when p closes its handle for the writable end,
# wait() will promptly report the readable end as being ready.
w.close()
while readers:
for r in wait(readers):
try:
msg = r.recv()
except EOFError:
readers.remove(r)
else:
print(msg)
Formats d'adresses¶
une adresse
'AF_INET'
est une paire de la forme(hostname, port)
où hostname est une chaîne et port un entier ;une adresse
'AF_UNIX'
est une chaîne représentant un nom de fichier sur le système de fichiers ;An
'AF_PIPE'
address is a string of the formr'\\.\pipe\PipeName'
. To useClient()
to connect to a named pipe on a remote computer called ServerName one should use an address of the formr'\\ServerName\pipe\PipeName'
instead.
Notez que toute chaîne commençant par deux antislashs est considérée par défaut comme l'adresse d'un 'AF_PIPE'
plutôt qu'une adresse 'AF_UNIX'
.
Clés d'authentification¶
Quand Connection.recv
est utilisée, les données reçues sont automatiquement désérialisées par pickle. Malheureusement désérialiser des données depuis une source non sûre constitue un risque de sécurité. Par conséquent Listener
et Client()
utilisent le module hmac
pour fournir une authentification par condensat.
Une clé d'authentification est une chaîne d'octets qui peut être vue comme un mot de passe : quand une connexion est établie, les deux interlocuteurs vont demander à l'autre une preuve qu'il connaît la clé d'authentification. (Démontrer que les deux utilisent la même clé n'implique pas d'échanger la clé sur la connexion.)
Si l'authentification est requise et qu'aucune clé n'est spécifiée alors la valeur de retour de current_process().authkey
est utilisée (voir Process
). Celle valeur est automatiquement héritée par tout objet Process
créé par le processus courant. Cela signifie que (par défaut) tous les processus d'un programme multi-processus partageront une clé d'authentification unique qui peut être utilisée pour mettre en place des connexions entre-eux.
Des clés d'authentification adaptées peuvent aussi être générées par os.urandom()
.
Journalisation¶
Un certain support de la journalisation est disponible. Notez cependant que le le paquet logging
n'utilise pas de verrous partagés entre les processus et il est donc possible (dépendant du type de gestionnaire) que les messages de différents processus soient mélangés.
- multiprocessing.get_logger()¶
Renvoie le journaliseur utilisé par
multiprocessing
. Si nécessaire, un nouveau sera créé.When first created the logger has level
logging.NOTSET
and no default handler. Messages sent to this logger will not by default propagate to the root logger.Notez que sous Windows les processus fils n'hériteront que du niveau du journaliseur du processus parent – toute autre personnalisation du journaliseur ne sera pas héritée.
- multiprocessing.log_to_stderr(level=None)¶
This function performs a call to
get_logger()
but in addition to returning the logger created by get_logger, it adds a handler which sends output tosys.stderr
using format'[%(levelname)s/%(processName)s] %(message)s'
. You can modifylevelname
of the logger by passing alevel
argument.
L'exemple ci-dessous présente une session avec la journalisation activée :
>>> import multiprocessing, logging
>>> logger = multiprocessing.log_to_stderr()
>>> logger.setLevel(logging.INFO)
>>> logger.warning('doomed')
[WARNING/MainProcess] doomed
>>> m = multiprocessing.Manager()
[INFO/SyncManager-...] child process calling self.run()
[INFO/SyncManager-...] created temp directory /.../pymp-...
[INFO/SyncManager-...] manager serving at '/.../listener-...'
>>> del m
[INFO/MainProcess] sending shutdown message to manager
[INFO/SyncManager-...] manager exiting with exitcode 0
Pour un tableau complet des niveaux de journalisation, voir le module logging
.
Le module multiprocessing.dummy
¶
multiprocessing.dummy
réplique toute l'API de multiprocessing
mais n'est rien de plus qu'une interface autour du module threading
.
En particulier, la fonction Pool
du module multiprocessing.dummy
renvoie une instance de ThreadPool
, qui est une sous-classe de Pool
. Elle a la même interface, mais elle utilise un pool de fils d'exécution plutôt qu'un pool de processus.
- class multiprocessing.pool.ThreadPool([processes[, initializer[, initargs]]])¶
Un objet qui contrôle un pool de fils d'exécution auquel des tâches peuvent être envoyées. L'interface des instances de
ThreadPool
est entièrement compatible avec celle des instances dePool
, et leur ressources doivent être aussi correctement gérées, soit en utilisant le pool avec un contexte, soit en appelant explicitementclose()
etterminate()
.processes is the number of worker threads to use. If processes is
None
then the number returned byos.process_cpu_count()
is used.Si initializer n'est pas
None
, chaque processus worker appellerainitializer(*initargs)
en démarrant.À la différence de
Pool
, maxtasksperchild et context ne peuvent pas être passés en arguments.Note
La classe
ThreadPool
a la même interface que la classePool
, dont l'implémentation repose sur un pool de processus, et a été introduite avant le moduleconcurrent.futures
. Par conséquent elle implémente des opérations qui n'ont pas vraiment de sens pour un pool implémenté avec des fils d'exécution et possède son propre type pour représenter le statut de tâches asynchrones,AsyncResult
, qui n'est pas géré par les autres modules.Il est souvent plus judicieux d'utiliser
concurrent.futures.ThreadPoolExecutor
qui a une interface plus simple, qui a été pensée dès l'origine pour les fils d'exécution et qui renvoie des instances deconcurrent.futures.Future
qui sont compatibles avec de nombreux modules, dontasyncio
.
Lignes directrices de programmation¶
Il y a certaines lignes directrices et idiomes à respecter pour utiliser multiprocessing
.
Toutes les méthodes de démarrage¶
Les règles suivantes s'appliquent aux méthodes de démarrage.
Éviter les états partagés
Autant que possible, il faut éviter de transférer de gros volumes de données entre les processus.
Il est souvent plus judicieux de se borner à utiliser des files et des tubes pour gérer la communication entre processus plutôt que d'utiliser des primitives de synchronisation plus bas-niveau.
Sérialisation
Assurez-vous que les arguments passés aux méthodes des mandataires soient sérialisables (pickables).
Sûreté des mandataires à travers les fils d'exécution
N'utilisez pas d'objet mandataire depuis plus d'un fil d'exécution à moins que vous ne le protégiez avec un verrou.
Il n'y a jamais de problème à avoir plusieurs processus qui utilisent un même mandataire.
Attendre les processus zombies
On POSIX when a process finishes but has not been joined it becomes a zombie. There should never be very many because each time a new process starts (or
active_children()
is called) all completed processes which have not yet been joined will be joined. Also calling a finished process'sProcess.is_alive
will join the process. Even so it is probably good practice to explicitly join all the processes that you start.
Mieux vaut hériter que sérialiser - désérialiser
Quand vous utilisez les méthodes de démarrage spawn ou forkserver, de nombreux types de
multiprocessing
nécessitent d'être sérialisés pour que les processus fils puissent les utiliser. Cependant, il faut généralement éviter d'envoyer des objets partagés aux autres processus en utilisant des tubes ou des files. Vous devez plutôt vous arranger pour qu'un processus qui nécessite l'accès à une ressource partagée créée autre part qu'il en hérite depuis un de ses processus ancêtres.
Éviter de terminer les processus
Utiliser la méthode
Process.terminate
pour stopper un processus risque de casser ou de rendre indisponible aux autres processus des ressources partagées (comme des verrous, sémaphores, tubes et files) actuellement utilisées par le processus.Il est donc préférable de n'utiliser
Process.terminate
que sur les processus qui n'utilisent jamais de ressources partagées.
Attendre les processus qui utilisent des files
Gardez à l'esprit qu'un processus qui a placé des éléments dans une file attend que tous les éléments mis en tampon soient consommés par le fil d'exécution « chargeur » du tube sous-jacent avant de se terminer (le processus fils peut appeler la méthode
Queue.cancel_join_thread
de la queue pour éviter ce comportement).Cela signifie que chaque fois que vous utilisez une file, vous devez vous assurer que tous les éléments qui y ont été placés ont été effectivement supprimés avant que le processus ne soit attendu. Autrement vous ne pouvez pas être sûr que les processus qui ont placé des éléments dans la file se termineront. Souvenez-vous aussi que tous les processus non daemons sont attendus automatiquement.
L'exemple suivant provoque un interblocage :
from multiprocessing import Process, Queue def f(q): q.put('X' * 1000000) if __name__ == '__main__': queue = Queue() p = Process(target=f, args=(queue,)) p.start() p.join() # this deadlocks obj = queue.get()Une solution ici consiste à intervertir les deux dernières lignes (ou simplement à supprimer la ligne
p.join()
).
Passer explicitement les ressources aux processus fils
On POSIX using the fork start method, a child process can make use of a shared resource created in a parent process using a global resource. However, it is better to pass the object as an argument to the constructor for the child process.
En plus de rendre le code (potentiellement) compatible avec Windows et les autres méthodes de démarrage, cela assure aussi que tant que le processus fils est en vie, l'objet ne sera pas collecté par le ramasse-miettes du processus parent. Cela peut être important si certaines ressources sont libérées quand l'objet est collecté par le ramasse-miettes du processus parent.
Donc par exemple
from multiprocessing import Process, Lock def f(): ... do something using "lock" ... if __name__ == '__main__': lock = Lock() for i in range(10): Process(target=f).start()devrait être réécrit comme
from multiprocessing import Process, Lock def f(l): ... do something using "l" ... if __name__ == '__main__': lock = Lock() for i in range(10): Process(target=f, args=(lock,)).start()
Faire attention à remplacer sys.stdin
par un objet simili-fichier
À l'origine,
multiprocessing
appelait inconditionnellement :os.close(sys.stdin.fileno())dans la méthode
multiprocessing.Process._bootstrap()
— cela provoquait des problèmes avec les processus imbriqués. Cela peut être changé en :sys.stdin.close() sys.stdin = open(os.open(os.devnull, os.O_RDONLY), closefd=False)Which solves the fundamental issue of processes colliding with each other resulting in a bad file descriptor error, but introduces a potential danger to applications which replace
sys.stdin()
with a "file-like object" with output buffering. This danger is that if multiple processes callclose()
on this file-like object, it could result in the same data being flushed to the object multiple times, resulting in corruption.Si vous écrivez un objet simili-fichier et implémentez votre propre cache, vous pouvez le rendre sûr pour les forks en stockant le pid chaque fois que vous ajoutez des données au cache, et annulez le cache quand le pid change. Par exemple :
@property def cache(self): pid = os.getpid() if pid != self._pid: self._pid = pid self._cache = [] return self._cachePour plus d'informations, voir bpo-5155, bpo-5313 et bpo-5331
Les méthodes de démarrage spawn et forkserver¶
There are a few extra restrictions which don't apply to the fork start method.
Contraintes supplémentaires sur la sérialisation
Assurez-vous que tous les argument de
Process.__init__()
sont sérialisables avec pickle. Aussi, si vous héritez deProcess
, assurez-vous que toutes les instances sont sérialisables quand la méthodeProcess.start
est appelée.
Variables globales
Gardez en tête que si le code exécuté dans un processus fils essaie d'accéder à une variable globale, alors la valeur qu'il voit (s'il y en a une) pourrait ne pas être la même que la valeur du processus parent au moment même où
Process.start
est appelée.Cependant, les variables globales qui sont juste des constantes de modules ne posent pas de problèmes.
Importation sécurisée du module principal
Make sure that the main module can be safely imported by a new Python interpreter without causing unintended side effects (such as starting a new process).
Par exemple, utiliser la méthode de démarrage spawn ou forkserver pour lancer le module suivant échouerait avec une
RuntimeError
:from multiprocessing import Process def foo(): print('hello') p = Process(target=foo) p.start()Vous devriez plutôt protéger le « point d'entrée » du programme en utilisant
if __name__ == '__main__':
comme suit :from multiprocessing import Process, freeze_support, set_start_method def foo(): print('hello') if __name__ == '__main__': freeze_support() set_start_method('spawn') p = Process(target=foo) p.start()(La ligne
freeze_support()
peut être omise si le programme est uniquement lancé normalement et pas figé.)Cela permet aux interpréteurs Python fraîchement instanciés d'importer en toute sécurité le module et d'exécution ensuite la fonction
foo()
.Des restrictions similaires s'appliquent si un pool ou un gestionnaire est créé dans le module principal.
Exemples¶
Démonstration de comment créer et utiliser des gestionnaires et mandataires personnalisés :
from multiprocessing import freeze_support
from multiprocessing.managers import BaseManager, BaseProxy
import operator
##
class Foo:
def f(self):
print('you called Foo.f()')
def g(self):
print('you called Foo.g()')
def _h(self):
print('you called Foo._h()')
# A simple generator function
def baz():
for i in range(10):
yield i*i
# Proxy type for generator objects
class GeneratorProxy(BaseProxy):
_exposed_ = ['__next__']
def __iter__(self):
return self
def __next__(self):
return self._callmethod('__next__')
# Function to return the operator module
def get_operator_module():
return operator
##
class MyManager(BaseManager):
pass
# register the Foo class; make `f()` and `g()` accessible via proxy
MyManager.register('Foo1', Foo)
# register the Foo class; make `g()` and `_h()` accessible via proxy
MyManager.register('Foo2', Foo, exposed=('g', '_h'))
# register the generator function baz; use `GeneratorProxy` to make proxies
MyManager.register('baz', baz, proxytype=GeneratorProxy)
# register get_operator_module(); make public functions accessible via proxy
MyManager.register('operator', get_operator_module)
##
def test():
manager = MyManager()
manager.start()
print('-' * 20)
f1 = manager.Foo1()
f1.f()
f1.g()
assert not hasattr(f1, '_h')
assert sorted(f1._exposed_) == sorted(['f', 'g'])
print('-' * 20)
f2 = manager.Foo2()
f2.g()
f2._h()
assert not hasattr(f2, 'f')
assert sorted(f2._exposed_) == sorted(['g', '_h'])
print('-' * 20)
it = manager.baz()
for i in it:
print('<%d>' % i, end=' ')
print()
print('-' * 20)
op = manager.operator()
print('op.add(23, 45) =', op.add(23, 45))
print('op.pow(2, 94) =', op.pow(2, 94))
print('op._exposed_ =', op._exposed_)
##
if __name__ == '__main__':
freeze_support()
test()
En utilisant Pool
:
import multiprocessing
import time
import random
import sys
#
# Functions used by test code
#
def calculate(func, args):
result = func(*args)
return '%s says that %s%s = %s' % (
multiprocessing.current_process().name,
func.__name__, args, result
)
def calculatestar(args):
return calculate(*args)
def mul(a, b):
time.sleep(0.5 * random.random())
return a * b
def plus(a, b):
time.sleep(0.5 * random.random())
return a + b
def f(x):
return 1.0 / (x - 5.0)
def pow3(x):
return x ** 3
def noop(x):
pass
#
# Test code
#
def test():
PROCESSES = 4
print('Creating pool with %d processes\n' % PROCESSES)
with multiprocessing.Pool(PROCESSES) as pool:
#
# Tests
#
TASKS = [(mul, (i, 7)) for i in range(10)] + \
[(plus, (i, 8)) for i in range(10)]
results = [pool.apply_async(calculate, t) for t in TASKS]
imap_it = pool.imap(calculatestar, TASKS)
imap_unordered_it = pool.imap_unordered(calculatestar, TASKS)
print('Ordered results using pool.apply_async():')
for r in results:
print('\t', r.get())
print()
print('Ordered results using pool.imap():')
for x in imap_it:
print('\t', x)
print()
print('Unordered results using pool.imap_unordered():')
for x in imap_unordered_it:
print('\t', x)
print()
print('Ordered results using pool.map() --- will block till complete:')
for x in pool.map(calculatestar, TASKS):
print('\t', x)
print()
#
# Test error handling
#
print('Testing error handling:')
try:
print(pool.apply(f, (5,)))
except ZeroDivisionError:
print('\tGot ZeroDivisionError as expected from pool.apply()')
else:
raise AssertionError('expected ZeroDivisionError')
try:
print(pool.map(f, list(range(10))))
except ZeroDivisionError:
print('\tGot ZeroDivisionError as expected from pool.map()')
else:
raise AssertionError('expected ZeroDivisionError')
try:
print(list(pool.imap(f, list(range(10)))))
except ZeroDivisionError:
print('\tGot ZeroDivisionError as expected from list(pool.imap())')
else:
raise AssertionError('expected ZeroDivisionError')
it = pool.imap(f, list(range(10)))
for i in range(10):
try:
x = next(it)
except ZeroDivisionError:
if i == 5:
pass
except StopIteration:
break
else:
if i == 5:
raise AssertionError('expected ZeroDivisionError')
assert i == 9
print('\tGot ZeroDivisionError as expected from IMapIterator.next()')
print()
#
# Testing timeouts
#
print('Testing ApplyResult.get() with timeout:', end=' ')
res = pool.apply_async(calculate, TASKS[0])
while 1:
sys.stdout.flush()
try:
sys.stdout.write('\n\t%s' % res.get(0.02))
break
except multiprocessing.TimeoutError:
sys.stdout.write('.')
print()
print()
print('Testing IMapIterator.next() with timeout:', end=' ')
it = pool.imap(calculatestar, TASKS)
while 1:
sys.stdout.flush()
try:
sys.stdout.write('\n\t%s' % it.next(0.02))
except StopIteration:
break
except multiprocessing.TimeoutError:
sys.stdout.write('.')
print()
print()
if __name__ == '__main__':
multiprocessing.freeze_support()
test()
Un exemple montrant comment utiliser des files pour alimenter en tâches une collection de processus workers et collecter les résultats :
import time
import random
from multiprocessing import Process, Queue, current_process, freeze_support
#
# Function run by worker processes
#
def worker(input, output):
for func, args in iter(input.get, 'STOP'):
result = calculate(func, args)
output.put(result)
#
# Function used to calculate result
#
def calculate(func, args):
result = func(*args)
return '%s says that %s%s = %s' % \
(current_process().name, func.__name__, args, result)
#
# Functions referenced by tasks
#
def mul(a, b):
time.sleep(0.5*random.random())
return a * b
def plus(a, b):
time.sleep(0.5*random.random())
return a + b
#
#
#
def test():
NUMBER_OF_PROCESSES = 4
TASKS1 = [(mul, (i, 7)) for i in range(20)]
TASKS2 = [(plus, (i, 8)) for i in range(10)]
# Create queues
task_queue = Queue()
done_queue = Queue()
# Submit tasks
for task in TASKS1:
task_queue.put(task)
# Start worker processes
for i in range(NUMBER_OF_PROCESSES):
Process(target=worker, args=(task_queue, done_queue)).start()
# Get and print results
print('Unordered results:')
for i in range(len(TASKS1)):
print('\t', done_queue.get())
# Add more tasks using `put()`
for task in TASKS2:
task_queue.put(task)
# Get and print some more results
for i in range(len(TASKS2)):
print('\t', done_queue.get())
# Tell child processes to stop
for i in range(NUMBER_OF_PROCESSES):
task_queue.put('STOP')
if __name__ == '__main__':
freeze_support()
test()