typing — Prise en charge des annotations de type¶
Nouveau dans la version 3.5.
Code source : Lib/typing.py
Note
The Python runtime does not enforce function and variable type annotations. They can be used by third party tools such as type checkers, IDEs, linters, etc.
This module provides runtime support for type hints. For the original specification of the typing system, see PEP 484. For a simplified introduction to type hints, see PEP 483.
La fonction ci-dessous prend et renvoie une chaîne de caractères, et est annotée comme suit :
def greeting(name: str) -> str:
return 'Hello ' + name
La fonction greeting s'attend à ce que l'argument name soit de type str et le type de retour str. Les sous-types sont acceptés comme arguments.
Le module typing est fréquemment enrichi de nouvelles fonctionnalités. Le package typing_extensions fournit des rétro-portages de ces fonctionnalités vers les anciennes versions de Python.
Pour un résumé des fonctionnalités obsolètes et leur planification d'obsolescence, consultez les Etapes d'Obsolescence des Fonctionnalités Majeures.
Voir aussi
- "Typing cheat sheet"
A quick overview of type hints (hosted at the mypy docs)
- "Type System Reference" section of the mypy docs
The Python typing system is standardised via PEPs, so this reference should broadly apply to most Python type checkers. (Some parts may still be specific to mypy.)
- "Static Typing with Python"
Type-checker-agnostic documentation written by the community detailing type system features, useful typing related tools and typing best practices.
PEPs pertinentes¶
Since the initial introduction of type hints in PEP 484 and PEP 483, a number of PEPs have modified and enhanced Python's framework for type annotations:
The full list of PEPs
- PEP 544: Protocoles : Sous-typage Structurel (duck-typing statique)
Ajout de
Protocolet du décorateur@runtime_checkable
- PEP 585: Annotations de Type Générique dans les Collections Natives
Ajout de
types.GenericAliaset de la possibilité d'utiliser les classes de bibliothèques natives comme les types génériques
- PEP 604: Permettre l'écriture de types union tels que
X | Y Ajout de
types.UnionTypeet la possibilité d'utiliser l'opérateur binaire|(ou) pour signifier union of types
- PEP 604: Permettre l'écriture de types union tels que
- PEP 612: Variables de Spécification de Paramètre
Ajout de
ParamSpecet deConcatenate
- PEP 646: Génériques Variadiques
Ajout de
TypeVarTuple
- PEP 655: Marquer les items individuels TypedDict comme nécessaires ou potentiellement manquants
Ajout de
Requiredet deNotRequired
- PEP 675: Type String Littéral Arbitraire
Ajout de
LiteralString
- PEP 681: Transformateurs de Classes de Données
Ajout du décorateur
@dataclass_transform
Alias de type¶
A type alias is defined by assigning the type to the alias. In this example,
Vector and list[float] will be treated as interchangeable synonyms:
Vector = list[float]
def scale(scalar: float, vector: Vector) -> Vector:
return [scalar * num for num in vector]
# passes type checking; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])
Les alias de type sont utiles pour simplifier les signatures complexes. Par exemple :
from collections.abc import Sequence
ConnectionOptions = dict[str, str]
Address = tuple[str, int]
Server = tuple[Address, ConnectionOptions]
def broadcast_message(message: str, servers: Sequence[Server]) -> None:
...
# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
message: str,
servers: Sequence[tuple[tuple[str, int], dict[str, str]]]) -> None:
...
Type aliases may be marked with TypeAlias to make it explicit that
the statement is a type alias declaration, not a normal variable assignment:
from typing import TypeAlias
Vector: TypeAlias = list[float]
NewType¶
Utilisez la classe NewType pour créer des types distincts :
from typing import NewType
UserId = NewType('UserId', int)
some_id = UserId(524313)
Le vérificateur de types statiques traite le nouveau type comme s'il s'agissait d'une sous-classe du type original. C'est utile pour aider à détecter les erreurs logiques :
def get_user_name(user_id: UserId) -> str:
...
# passes type checking
user_a = get_user_name(UserId(42351))
# fails type checking; an int is not a UserId
user_b = get_user_name(-1)
Vous pouvez toujours effectuer toutes les opérations applicables à un entier (type int) sur une variable de type UserId, mais le résultat sera toujours de type int. Ceci vous permet de passer un UserId partout où un int est attendu, mais vous empêche de créer accidentellement un UserId d'une manière invalide :
# 'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)
Notez que ces contrôles ne sont exécutés que par le vérificateur de types statique. À l'exécution, l'instruction Derived = NewType('Derived', Base) fait de Derived une fonction qui renvoie immédiatement le paramètre que vous lui passez. Cela signifie que l'expression Derived(some_value) ne crée pas une nouvelle classe et n'introduit pas de surcharge au-delà de celle d'un appel de fonction normal.
Plus précisément, l'expression some_value is Derived(some_value) est toujours vraie au moment de l'exécution.
La création d'un sous-type de Derived est invalide :
from typing import NewType
UserId = NewType('UserId', int)
# Fails at runtime and does not pass type checking
class AdminUserId(UserId): pass
Il est néanmoins possible de créer un NewType basé sur un NewType « dérivé » :
from typing import NewType
UserId = NewType('UserId', int)
ProUserId = NewType('ProUserId', UserId)
et la vérification de type pour ProUserId fonctionne comme prévu.
Voir la PEP 484 pour plus de détails.
Note
Rappelons que l'utilisation d'un alias de type déclare que deux types sont équivalents l'un à l'autre. Écrire Alias = Original fait que le vérificateur de types statiques traite Alias comme étant exactement équivalent à Original dans tous les cas. C'est utile lorsque vous voulez simplifier des signatures complexes.
En revanche, NewType déclare qu'un type est un sous-type d'un autre. Écrire Derived = NewType('Derived', Original) fait que le vérificateur de type statique traite Derived comme une sous-classe de Original, ce qui signifie qu'une valeur de type Original ne peut être utilisée dans les endroits où une valeur de type Derived est prévue. C'est utile lorsque vous voulez éviter les erreurs logiques avec un coût d'exécution minimal.
Nouveau dans la version 3.5.2.
Modifié dans la version 3.10: NewType is now a class rather than a function. As a result, there is
some additional runtime cost when calling NewType over a regular
function.
Modifié dans la version 3.11: The performance of calling NewType has been restored to its level in
Python 3.9.
Annotating callable objects¶
Functions -- or other callable objects -- can be annotated using
collections.abc.Callable or typing.Callable.
Callable[[int], str] signifies a function that takes a single parameter
of type int and returns a str.
For example:
from collections.abc import Callable, Awaitable
def feeder(get_next_item: Callable[[], str]) -> None:
... # Body
def async_query(on_success: Callable[[int], None],
on_error: Callable[[int, Exception], None]) -> None:
... # Body
async def on_update(value: str) -> None:
... # Body
callback: Callable[[str], Awaitable[None]] = on_update
The subscription syntax must always be used with exactly two values: the
argument list and the return type. The argument list must be a list of types,
a ParamSpec, Concatenate, or an ellipsis. The return type must
be a single type.
If a literal ellipsis ... is given as the argument list, it indicates that
a callable with any arbitrary parameter list would be acceptable:
def concat(x: str, y: str) -> str:
return x + y
x: Callable[..., str]
x = str # OK
x = concat # Also OK
Callable cannot express complex signatures such as functions that take a
variadic number of arguments, overloaded functions, or
functions that have keyword-only parameters. However, these signatures can be
expressed by defining a Protocol class with a
__call__() method:
from collections.abc import Iterable
from typing import Protocol
class Combiner(Protocol):
def __call__(self, *vals: bytes, maxlen: int | None = None) -> list[bytes]: ...
def batch_proc(data: Iterable[bytes], cb_results: Combiner) -> bytes:
for item in data:
...
def good_cb(*vals: bytes, maxlen: int | None = None) -> list[bytes]:
...
def bad_cb(*vals: bytes, maxitems: int | None) -> list[bytes]:
...
batch_proc([], good_cb) # OK
batch_proc([], bad_cb) # Error! Argument 2 has incompatible type because of
# different name and kind in the callback
Les appelables qui prennent en argument d'autres appelables peuvent indiquer que leurs types de paramètres dépendent les uns des autres en utilisant ParamSpec. De plus, si un appelable ajoute ou supprime des arguments d'autres appelables, l'opérateur Concatenate peut être utilisé. Ils prennent la forme Callable[ParamSpecVariable, ReturnType] et Callable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType] respectivement.
Modifié dans la version 3.10: Callable prend désormais en charge ParamSpec et Concatenate. Voir PEP 612 pour plus de détails.
Voir aussi
La documentation pour ParamSpec et Concatenate fournit des exemples d'utilisation dans Callable.
Génériques¶
Since type information about objects kept in containers cannot be statically inferred in a generic way, many container classes in the standard library support subscription to denote the expected types of container elements.
from collections.abc import Mapping, Sequence
class Employee: ...
# Sequence[Employee] indicates that all elements in the sequence
# must be instances of "Employee".
# Mapping[str, str] indicates that all keys and all values in the mapping
# must be strings.
def notify_by_email(employees: Sequence[Employee],
overrides: Mapping[str, str]) -> None: ...
Generics can be parameterized by using a factory available in typing
called TypeVar.
from collections.abc import Sequence
from typing import TypeVar
T = TypeVar('T') # Declare type variable "T"
def first(l: Sequence[T]) -> T: # Function is generic over the TypeVar "T"
return l[0]
Annotating tuples¶
For most containers in Python, the typing system assumes that all elements in the container will be of the same type. For example:
from collections.abc import Mapping
# Type checker will infer that all elements in ``x`` are meant to be ints
x: list[int] = []
# Type checker error: ``list`` only accepts a single type argument:
y: list[int, str] = [1, 'foo']
# Type checker will infer that all keys in ``z`` are meant to be strings,
# and that all values in ``z`` are meant to be either strings or ints
z: Mapping[str, str | int] = {}
list only accepts one type argument, so a type checker would emit an
error on the y assignment above. Similarly,
Mapping only accepts two type arguments: the first
indicates the type of the keys, and the second indicates the type of the
values.
Unlike most other Python containers, however, it is common in idiomatic Python
code for tuples to have elements which are not all of the same type. For this
reason, tuples are special-cased in Python's typing system. tuple
accepts any number of type arguments:
# OK: ``x`` is assigned to a tuple of length 1 where the sole element is an int
x: tuple[int] = (5,)
# OK: ``y`` is assigned to a tuple of length 2;
# element 1 is an int, element 2 is a str
y: tuple[int, str] = (5, "foo")
# Error: the type annotation indicates a tuple of length 1,
# but ``z`` has been assigned to a tuple of length 3
z: tuple[int] = (1, 2, 3)
To denote a tuple which could be of any length, and in which all elements are
of the same type T, use tuple[T, ...]. To denote an empty tuple, use
tuple[()]. Using plain tuple as an annotation is equivalent to using
tuple[Any, ...]:
x: tuple[int, ...] = (1, 2)
# These reassignments are OK: ``tuple[int, ...]`` indicates x can be of any length
x = (1, 2, 3)
x = ()
# This reassignment is an error: all elements in ``x`` must be ints
x = ("foo", "bar")
# ``y`` can only ever be assigned to an empty tuple
y: tuple[()] = ()
z: tuple = ("foo", "bar")
# These reassignments are OK: plain ``tuple`` is equivalent to ``tuple[Any, ...]``
z = (1, 2, 3)
z = ()
The type of class objects¶
A variable annotated with C may accept a value of type C. In
contrast, a variable annotated with type[C] (or
typing.Type[C]) may accept values that are classes
themselves -- specifically, it will accept the class object of C. For
example:
a = 3 # Has type ``int``
b = int # Has type ``type[int]``
c = type(a) # Also has type ``type[int]``
Note that type[C] is covariant:
class User: ...
class ProUser(User): ...
class TeamUser(User): ...
def make_new_user(user_class: type[User]) -> User:
# ...
return user_class()
make_new_user(User) # OK
make_new_user(ProUser) # Also OK: ``type[ProUser]`` is a subtype of ``type[User]``
make_new_user(TeamUser) # Still fine
make_new_user(User()) # Error: expected ``type[User]`` but got ``User``
make_new_user(int) # Error: ``type[int]`` is not a subtype of ``type[User]``
The only legal parameters for type are classes, Any,
type variables, and unions of any of these types.
For example:
def new_non_team_user(user_class: type[BasicUser | ProUser]): ...
new_non_team_user(BasicUser) # OK
new_non_team_user(ProUser) # OK
new_non_team_user(TeamUser) # Error: ``type[TeamUser]`` is not a subtype
# of ``type[BasicUser | ProUser]``
new_non_team_user(User) # Also an error
type[Any] is equivalent to type, which is the root of Python's
metaclass hierarchy.
Types génériques définis par l'utilisateur¶
Une classe définie par l'utilisateur peut être définie comme une classe générique.
from typing import TypeVar, Generic
from logging import Logger
T = TypeVar('T')
class LoggedVar(Generic[T]):
def __init__(self, value: T, name: str, logger: Logger) -> None:
self.name = name
self.logger = logger
self.value = value
def set(self, new: T) -> None:
self.log('Set ' + repr(self.value))
self.value = new
def get(self) -> T:
self.log('Get ' + repr(self.value))
return self.value
def log(self, message: str) -> None:
self.logger.info('%s: %s', self.name, message)
Generic[T] en tant que classe mère définit que la classe LoggedVar prend un paramètre de type unique T. Ceci rend également T valide en tant que type dans le corps de la classe.
The Generic base class defines __class_getitem__() so
that LoggedVar[T] is valid as a type:
from collections.abc import Iterable
def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
for var in vars:
var.set(0)
A generic type can have any number of type variables. All varieties of
TypeVar are permissible as parameters for a generic type:
from typing import TypeVar, Generic, Sequence
T = TypeVar('T', contravariant=True)
B = TypeVar('B', bound=Sequence[bytes], covariant=True)
S = TypeVar('S', int, str)
class WeirdTrio(Generic[T, B, S]):
...
Chaque argument de variable de type Generic doit être distinct. Ceci n'est donc pas valable :
from typing import TypeVar, Generic
...
T = TypeVar('T')
class Pair(Generic[T, T]): # INVALID
...
Vous pouvez utiliser l'héritage multiple avec Generic :
from collections.abc import Sized
from typing import TypeVar, Generic
T = TypeVar('T')
class LinkedList(Sized, Generic[T]):
...
When inheriting from generic classes, some type parameters could be fixed:
from collections.abc import Mapping
from typing import TypeVar
T = TypeVar('T')
class MyDict(Mapping[str, T]):
...
Dans ce cas, MyDict a un seul paramètre, T.
Using a generic class without specifying type parameters assumes
Any for each position. In the following example, MyIterable is
not generic but implicitly inherits from Iterable[Any]:
from collections.abc import Iterable
class MyIterable(Iterable): # Same as Iterable[Any]
...
User-defined generic type aliases are also supported. Examples:
from collections.abc import Iterable
from typing import TypeVar
S = TypeVar('S')
Response = Iterable[S] | int
# Return type here is same as Iterable[str] | int
def response(query: str) -> Response[str]:
...
T = TypeVar('T', int, float, complex)
Vec = Iterable[tuple[T, T]]
def inproduct(v: Vec[T]) -> T: # Same as Iterable[tuple[T, T]]
return sum(x*y for x, y in v)
Modifié dans la version 3.7: Generic n'a plus de métaclasse personnalisée.
User-defined generics for parameter expressions are also supported via parameter
specification variables in the form Generic[P]. The behavior is consistent
with type variables' described above as parameter specification variables are
treated by the typing module as a specialized type variable. The one exception
to this is that a list of types can be used to substitute a ParamSpec:
>>> from typing import Generic, ParamSpec, TypeVar
>>> T = TypeVar('T')
>>> P = ParamSpec('P')
>>> class Z(Generic[T, P]): ...
...
>>> Z[int, [dict, float]]
__main__.Z[int, (<class 'dict'>, <class 'float'>)]
Furthermore, a generic with only one parameter specification variable will accept
parameter lists in the forms X[[Type1, Type2, ...]] and also
X[Type1, Type2, ...] for aesthetic reasons. Internally, the latter is converted
to the former, so the following are equivalent:
>>> class X(Generic[P]): ...
...
>>> X[int, str]
__main__.X[(<class 'int'>, <class 'str'>)]
>>> X[[int, str]]
__main__.X[(<class 'int'>, <class 'str'>)]
Note that generics with ParamSpec may not have correct
__parameters__ after substitution in some cases because they
are intended primarily for static type checking.
Modifié dans la version 3.10: Generic can now be parameterized over parameter expressions.
See ParamSpec and PEP 612 for more details.
A user-defined generic class can have ABCs as base classes without a metaclass conflict. Generic metaclasses are not supported. The outcome of parameterizing generics is cached, and most types in the typing module are hashable and comparable for equality.
Le type Any¶
Un type particulier est Any. Un vérificateur de types statiques traite chaque type comme étant compatible avec Any et Any comme étant compatible avec chaque type.
This means that it is possible to perform any operation or method call on a
value of type Any and assign it to any variable:
from typing import Any
a: Any = None
a = [] # OK
a = 2 # OK
s: str = ''
s = a # OK
def foo(item: Any) -> int:
# Passes type checking; 'item' could be any type,
# and that type might have a 'bar' method
item.bar()
...
Notice that no type checking is performed when assigning a value of type
Any to a more precise type. For example, the static type checker did
not report an error when assigning a to s even though s was
declared to be of type str and receives an int value at
runtime!
De plus, toutes les fonctions sans type de retour ni type de paramètre sont considérées comme utilisant Any implicitement par défaut :
def legacy_parser(text):
...
return data
# A static type checker will treat the above
# as having the same signature as:
def legacy_parser(text: Any) -> Any:
...
return data
Ce comportement permet à Any d'être utilisé comme succédané lorsque vous avez besoin de mélanger du code typé dynamiquement et statiquement.
Comparons le comportement de Any avec celui de object. De la même manière que pour Any, chaque type est un sous-type de object. Cependant, contrairement à Any, l'inverse n'est pas vrai : object n'est pas un sous-type de chaque autre type.
Cela signifie que lorsque le type d'une valeur est object, un vérificateur de types rejette presque toutes les opérations sur celle-ci, et l'affecter à une variable (ou l'utiliser comme une valeur de retour) d'un type plus spécialisé est une erreur de typage. Par exemple :
def hash_a(item: object) -> int:
# Fails type checking; an object does not have a 'magic' method.
item.magic()
...
def hash_b(item: Any) -> int:
# Passes type checking
item.magic()
...
# Passes type checking, since ints and strs are subclasses of object
hash_a(42)
hash_a("foo")
# Passes type checking, since Any is compatible with all types
hash_b(42)
hash_b("foo")
Utilisez object pour indiquer qu'une valeur peut être de n'importe quel type de manière sûre. Utiliser Any pour indiquer qu'une valeur est typée dynamiquement.
Sous-typage nominal et sous-typage structurel¶
Initially PEP 484 defined the Python static type system as using
nominal subtyping. This means that a class A is allowed where
a class B is expected if and only if A is a subclass of B.
This requirement previously also applied to abstract base classes, such as
Iterable. The problem with this approach is that a class had
to be explicitly marked to support them, which is unpythonic and unlike
what one would normally do in idiomatic dynamically typed Python code.
For example, this conforms to PEP 484:
from collections.abc import Sized, Iterable, Iterator
class Bucket(Sized, Iterable[int]):
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
La PEP 544 permet de résoudre ce problème en permettant aux utilisateurs d'écrire le code ci-dessus sans classes mères explicites dans la définition de classe, permettant à Bucket d'être implicitement considéré comme un sous-type de Sized et Iterable[int] par des vérificateurs de type statique. C'est ce qu'on appelle le sous-typage structurel (ou typage canard) :
from collections.abc import Iterator, Iterable
class Bucket: # Note: no base classes
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
def collect(items: Iterable[int]) -> int: ...
result = collect(Bucket()) # Passes type check
De plus, en sous-classant une classe spéciale Protocol, un utilisateur peut définir de nouveaux protocoles personnalisés pour profiter pleinement du sous-typage structurel (voir exemples ci-dessous).
Module contents¶
The typing module defines the following classes, functions and decorators.
Special typing primitives¶
Special types¶
These can be used as types in annotations. They do not support subscription
using [].
- typing.Any¶
Type spécial indiquant un type non contraint.
Modifié dans la version 3.11:
Anycan now be used as a base class. This can be useful for avoiding type checker errors with classes that can duck type anywhere or are highly dynamic.
- typing.AnyStr¶
-
Definition:
AnyStr = TypeVar('AnyStr', str, bytes)
AnyStris meant to be used for functions that may acceptstrorbytesarguments but cannot allow the two to mix.Par exemple :
def concat(a: AnyStr, b: AnyStr) -> AnyStr: return a + b concat("foo", "bar") # OK, output has type 'str' concat(b"foo", b"bar") # OK, output has type 'bytes' concat("foo", b"bar") # Error, cannot mix str and bytes
Note that, despite its name,
AnyStrhas nothing to do with theAnytype, nor does it mean "any string". In particular,AnyStrandstr | bytesare different from each other and have different use cases:# Invalid use of AnyStr: # The type variable is used only once in the function signature, # so cannot be "solved" by the type checker def greet_bad(cond: bool) -> AnyStr: return "hi there!" if cond else b"greetings!" # The better way of annotating this function: def greet_proper(cond: bool) -> str | bytes: return "hi there!" if cond else b"greetings!"
- typing.LiteralString¶
Special type that includes only literal strings.
Any string literal is compatible with
LiteralString, as is anotherLiteralString. However, an object typed as juststris not. A string created by composingLiteralString-typed objects is also acceptable as aLiteralString.Example:
def run_query(sql: LiteralString) -> None: ... def caller(arbitrary_string: str, literal_string: LiteralString) -> None: run_query("SELECT * FROM students") # OK run_query(literal_string) # OK run_query("SELECT * FROM " + literal_string) # OK run_query(arbitrary_string) # type checker error run_query( # type checker error f"SELECT * FROM students WHERE name = {arbitrary_string}" )
LiteralStringis useful for sensitive APIs where arbitrary user-generated strings could generate problems. For example, the two cases above that generate type checker errors could be vulnerable to an SQL injection attack.See PEP 675 for more details.
Nouveau dans la version 3.11.
- typing.Never¶
The bottom type, a type that has no members.
This can be used to define a function that should never be called, or a function that never returns:
from typing import Never def never_call_me(arg: Never) -> None: pass def int_or_str(arg: int | str) -> None: never_call_me(arg) # type checker error match arg: case int(): print("It's an int") case str(): print("It's a str") case _: never_call_me(arg) # OK, arg is of type Never
Nouveau dans la version 3.11: On older Python versions,
NoReturnmay be used to express the same concept.Neverwas added to make the intended meaning more explicit.
- typing.NoReturn¶
Special type indicating that a function never returns.
Par exemple :
from typing import NoReturn def stop() -> NoReturn: raise RuntimeError('no way')
NoReturncan also be used as a bottom type, a type that has no values. Starting in Python 3.11, theNevertype should be used for this concept instead. Type checkers should treat the two equivalently.Nouveau dans la version 3.6.2.
- typing.Self¶
Special type to represent the current enclosed class.
Par exemple :
from typing import Self, reveal_type class Foo: def return_self(self) -> Self: ... return self class SubclassOfFoo(Foo): pass reveal_type(Foo().return_self()) # Revealed type is "Foo" reveal_type(SubclassOfFoo().return_self()) # Revealed type is "SubclassOfFoo"
This annotation is semantically equivalent to the following, albeit in a more succinct fashion:
from typing import TypeVar Self = TypeVar("Self", bound="Foo") class Foo: def return_self(self: Self) -> Self: ... return self
In general, if something returns
self, as in the above examples, you should useSelfas the return annotation. IfFoo.return_selfwas annotated as returning"Foo", then the type checker would infer the object returned fromSubclassOfFoo.return_selfas being of typeFoorather thanSubclassOfFoo.Other common use cases include:
classmethods that are used as alternative constructors and return instances of theclsparameter.Annotating an
__enter__()method which returns self.
You should not use
Selfas the return annotation if the method is not guaranteed to return an instance of a subclass when the class is subclassed:class Eggs: # Self would be an incorrect return annotation here, # as the object returned is always an instance of Eggs, # even in subclasses def returns_eggs(self) -> "Eggs": return Eggs()
See PEP 673 for more details.
Nouveau dans la version 3.11.
- typing.TypeAlias¶
Special annotation for explicitly declaring a type alias.
Par exemple :
from typing import TypeAlias Factors: TypeAlias = list[int]
TypeAliasis particularly useful for annotating aliases that make use of forward references, as it can be hard for type checkers to distinguish these from normal variable assignments:from typing import Generic, TypeAlias, TypeVar T = TypeVar("T") # "Box" does not exist yet, # so we have to use quotes for the forward reference. # Using ``TypeAlias`` tells the type checker that this is a type alias declaration, # not a variable assignment to a string. BoxOfStrings: TypeAlias = "Box[str]" class Box(Generic[T]): @classmethod def make_box_of_strings(cls) -> BoxOfStrings: ...
See PEP 613 for more details.
Nouveau dans la version 3.10.
Special forms¶
These can be used as types in annotations. They all support subscription using
[], but each has a unique syntax.
- typing.Union¶
Union type;
Union[X, Y]is equivalent toX | Yand means either X or Y.To define a union, use e.g.
Union[int, str]or the shorthandint | str. Using that shorthand is recommended. Details:Les arguments doivent être des types et il doit y en avoir au moins un.
Les unions d'unions sont aplanies, par exemple :
Union[Union[int, str], float] == Union[int, str, float]
Les unions d'un seul argument disparaissent, par exemple :
Union[int] == int # The constructor actually returns int
Les arguments redondants sont ignorés, par exemple :
Union[int, str, int] == Union[int, str] == int | str
Lors de la comparaison d'unions, l'ordre des arguments est ignoré, par exemple :
Union[int, str] == Union[str, int]
You cannot subclass or instantiate a
Union.Vous ne pouvez pas écrire
Union[X][Y].
Modifié dans la version 3.7: Ne supprime pas les sous-classes explicites des unions à l'exécution.
Modifié dans la version 3.10: Unions can now be written as
X | Y. See union type expressions.
- typing.Optional¶
Optional[X]is equivalent toX | None(orUnion[X, None]).Notez que ce n'est pas le même concept qu'un argument optionnel, qui est un argument qui possède une valeur par défaut. Un argument optionnel (qui a une valeur par défaut) ne nécessite pas, à ce titre, le qualificatif
Optionalsur son annotation de type. Par exemple :def foo(arg: int = 0) -> None: ...
Par contre, si une valeur explicite de
Noneest permise, l'utilisation deOptionalest appropriée, que l'argument soit facultatif ou non. Par exemple :def foo(arg: Optional[int] = None) -> None: ...
Modifié dans la version 3.10: Optional can now be written as
X | None. See union type expressions.
- typing.Concatenate¶
Special form for annotating higher-order functions.
Concatenatecan be used in conjunction with Callable andParamSpecto annotate a higher-order callable which adds, removes, or transforms parameters of another callable. Usage is in the formConcatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable].Concatenateis currently only valid when used as the first argument to a Callable. The last parameter toConcatenatemust be aParamSpecor ellipsis (...).For example, to annotate a decorator
with_lockwhich provides athreading.Lockto the decorated function,Concatenatecan be used to indicate thatwith_lockexpects a callable which takes in aLockas the first argument, and returns a callable with a different type signature. In this case, theParamSpecindicates that the returned callable's parameter types are dependent on the parameter types of the callable being passed in:from collections.abc import Callable from threading import Lock from typing import Concatenate, ParamSpec, TypeVar P = ParamSpec('P') R = TypeVar('R') # Use this lock to ensure that only one thread is executing a function # at any time. my_lock = Lock() def with_lock(f: Callable[Concatenate[Lock, P], R]) -> Callable[P, R]: '''A type-safe decorator which provides a lock.''' def inner(*args: P.args, **kwargs: P.kwargs) -> R: # Provide the lock as the first argument. return f(my_lock, *args, **kwargs) return inner @with_lock def sum_threadsafe(lock: Lock, numbers: list[float]) -> float: '''Add a list of numbers together in a thread-safe manner.''' with lock: return sum(numbers) # We don't need to pass in the lock ourselves thanks to the decorator. sum_threadsafe([1.1, 2.2, 3.3])
Nouveau dans la version 3.10.
Voir aussi
PEP 612 -- Parameter Specification Variables (the PEP which introduced
ParamSpecandConcatenate)
- typing.Literal¶
Special typing form to define "literal types".
Literalcan be used to indicate to type checkers that the annotated object has a value equivalent to one of the provided literals.Par exemple :
def validate_simple(data: Any) -> Literal[True]: # always returns True ... Mode: TypeAlias = Literal['r', 'rb', 'w', 'wb'] def open_helper(file: str, mode: Mode) -> str: ... open_helper('/some/path', 'r') # Passes type check open_helper('/other/path', 'typo') # Error in type checker
Literal[...]ne peut être sous-classé. Lors de l'exécution, une valeur arbitraire est autorisée comme argument de type pourLiteral[...], mais les vérificateurs de type peuvent imposer des restrictions. Voir la PEP 586 pour plus de détails sur les types littéraux.Nouveau dans la version 3.8.
- typing.ClassVar¶
Construction de type particulière pour indiquer les variables de classe.
Telle qu'introduite dans la PEP 526, une annotation de variable enveloppée dans ClassVar indique qu'un attribut donné est destiné à être utilisé comme une variable de classe et ne doit pas être défini sur des instances de cette classe. Utilisation :
class Starship: stats: ClassVar[dict[str, int]] = {} # class variable damage: int = 10 # instance variable
ClassVarn'accepte que les types et ne peut plus être dérivé.ClassVarn'est pas une classe en soi, et ne devrait pas être utilisée avecisinstance()ouissubclass().ClassVarne modifie pas le comportement d'exécution Python, mais il peut être utilisé par des vérificateurs tiers. Par exemple, un vérificateur de types peut marquer le code suivant comme une erreur :enterprise_d = Starship(3000) enterprise_d.stats = {} # Error, setting class variable on instance Starship.stats = {} # This is OK
Nouveau dans la version 3.5.3.
- typing.Final¶
Special typing construct to indicate final names to type checkers.
Final names cannot be reassigned in any scope. Final names declared in class scopes cannot be overridden in subclasses.
Par exemple :
MAX_SIZE: Final = 9000 MAX_SIZE += 1 # Error reported by type checker class Connection: TIMEOUT: Final[int] = 10 class FastConnector(Connection): TIMEOUT = 1 # Error reported by type checker
Ces propriétés ne sont pas vérifiées à l'exécution. Voir la PEP 591 pour plus de détails.
Nouveau dans la version 3.8.
- typing.Required¶
Special typing construct to mark a
TypedDictkey as required.This is mainly useful for
total=FalseTypedDicts. SeeTypedDictand PEP 655 for more details.Nouveau dans la version 3.11.
- typing.NotRequired¶
Special typing construct to mark a
TypedDictkey as potentially missing.See
TypedDictand PEP 655 for more details.Nouveau dans la version 3.11.
- typing.Annotated¶
Special typing form to add context-specific metadata to an annotation.
Add metadata
xto a given typeTby using the annotationAnnotated[T, x]. Metadata added usingAnnotatedcan be used by static analysis tools or at runtime. At runtime, the metadata is stored in a__metadata__attribute.If a library or tool encounters an annotation
Annotated[T, x]and has no special logic for the metadata, it should ignore the metadata and simply treat the annotation asT. As such,Annotatedcan be useful for code that wants to use annotations for purposes outside Python's static typing system.Using
Annotated[T, x]as an annotation still allows for static typechecking ofT, as type checkers will simply ignore the metadatax. In this way,Annotateddiffers from the@no_type_checkdecorator, which can also be used for adding annotations outside the scope of the typing system, but completely disables typechecking for a function or class.The responsibility of how to interpret the metadata lies with the tool or library encountering an
Annotatedannotation. A tool or library encountering anAnnotatedtype can scan through the metadata elements to determine if they are of interest (e.g., usingisinstance()).- Annotated[<type>, <metadata>]
Here is an example of how you might use
Annotatedto add metadata to type annotations if you were doing range analysis:@dataclass class ValueRange: lo: int hi: int T1 = Annotated[int, ValueRange(-10, 5)] T2 = Annotated[T1, ValueRange(-20, 3)]
Details of the syntax:
The first argument to
Annotatedmust be a valid typeMultiple metadata elements can be supplied (
Annotatedsupports variadic arguments):@dataclass class ctype: kind: str Annotated[int, ValueRange(3, 10), ctype("char")]
It is up to the tool consuming the annotations to decide whether the client is allowed to add multiple metadata elements to one annotation and how to merge those annotations.
Annotatedmust be subscripted with at least two arguments (Annotated[int]is not valid)The order of the metadata elements is preserved and matters for equality checks:
assert Annotated[int, ValueRange(3, 10), ctype("char")] != Annotated[ int, ctype("char"), ValueRange(3, 10) ]
Nested
Annotatedtypes are flattened. The order of the metadata elements starts with the innermost annotation:assert Annotated[Annotated[int, ValueRange(3, 10)], ctype("char")] == Annotated[ int, ValueRange(3, 10), ctype("char") ]
Duplicated metadata elements are not removed:
assert Annotated[int, ValueRange(3, 10)] != Annotated[ int, ValueRange(3, 10), ValueRange(3, 10) ]
Annotatedcan be used with nested and generic aliases:@dataclass class MaxLen: value: int T = TypeVar("T") Vec: TypeAlias = Annotated[list[tuple[T, T]], MaxLen(10)] assert Vec[int] == Annotated[list[tuple[int, int]], MaxLen(10)]
Annotatedcannot be used with an unpackedTypeVarTuple:Variadic: TypeAlias = Annotated[*Ts, Ann1] # NOT valid
This would be equivalent to:
Annotated[T1, T2, T3, ..., Ann1]
where
T1,T2, etc. areTypeVars. This would be invalid: only one type should be passed to Annotated.By default,
get_type_hints()strips the metadata from annotations. Passinclude_extras=Trueto have the metadata preserved:>>> from typing import Annotated, get_type_hints >>> def func(x: Annotated[int, "metadata"]) -> None: pass ... >>> get_type_hints(func) {'x': <class 'int'>, 'return': <class 'NoneType'>} >>> get_type_hints(func, include_extras=True) {'x': typing.Annotated[int, 'metadata'], 'return': <class 'NoneType'>}
At runtime, the metadata associated with an
Annotatedtype can be retrieved via the__metadata__attribute:>>> from typing import Annotated >>> X = Annotated[int, "very", "important", "metadata"] >>> X typing.Annotated[int, 'very', 'important', 'metadata'] >>> X.__metadata__ ('very', 'important', 'metadata')
Voir aussi
- PEP 593 - Flexible function and variable annotations
The PEP introducing
Annotatedto the standard library.
Nouveau dans la version 3.9.
- typing.TypeGuard¶
Special typing construct for marking user-defined type guard functions.
TypeGuardcan be used to annotate the return type of a user-defined type guard function.TypeGuardonly accepts a single type argument. At runtime, functions marked this way should return a boolean.TypeGuardaims to benefit type narrowing -- a technique used by static type checkers to determine a more precise type of an expression within a program's code flow. Usually type narrowing is done by analyzing conditional code flow and applying the narrowing to a block of code. The conditional expression here is sometimes referred to as a "type guard":def is_str(val: str | float): # "isinstance" type guard if isinstance(val, str): # Type of ``val`` is narrowed to ``str`` ... else: # Else, type of ``val`` is narrowed to ``float``. ...
Sometimes it would be convenient to use a user-defined boolean function as a type guard. Such a function should use
TypeGuard[...]as its return type to alert static type checkers to this intention.Using
-> TypeGuardtells the static type checker that for a given function:The return value is a boolean.
If the return value is
True, the type of its argument is the type insideTypeGuard.
Par exemple :
def is_str_list(val: list[object]) -> TypeGuard[list[str]]: '''Determines whether all objects in the list are strings''' return all(isinstance(x, str) for x in val) def func1(val: list[object]): if is_str_list(val): # Type of ``val`` is narrowed to ``list[str]``. print(" ".join(val)) else: # Type of ``val`` remains as ``list[object]``. print("Not a list of strings!")
If
is_str_listis a class or instance method, then the type inTypeGuardmaps to the type of the second parameter afterclsorself.In short, the form
def foo(arg: TypeA) -> TypeGuard[TypeB]: ..., means that iffoo(arg)returnsTrue, thenargnarrows fromTypeAtoTypeB.Note
TypeBneed not be a narrower form ofTypeA-- it can even be a wider form. The main reason is to allow for things like narrowinglist[object]tolist[str]even though the latter is not a subtype of the former, sincelistis invariant. The responsibility of writing type-safe type guards is left to the user.TypeGuardalso works with type variables. See PEP 647 for more details.Nouveau dans la version 3.10.
- typing.Unpack¶
Typing operator to conceptually mark an object as having been unpacked.
For example, using the unpack operator
*on a type variable tuple is equivalent to usingUnpackto mark the type variable tuple as having been unpacked:Ts = TypeVarTuple('Ts') tup: tuple[*Ts] # Effectively does: tup: tuple[Unpack[Ts]]
In fact,
Unpackcan be used interchangeably with*in the context oftyping.TypeVarTupleandbuiltins.tupletypes. You might seeUnpackbeing used explicitly in older versions of Python, where*couldn't be used in certain places:# In older versions of Python, TypeVarTuple and Unpack # are located in the `typing_extensions` backports package. from typing_extensions import TypeVarTuple, Unpack Ts = TypeVarTuple('Ts') tup: tuple[*Ts] # Syntax error on Python <= 3.10! tup: tuple[Unpack[Ts]] # Semantically equivalent, and backwards-compatible
Nouveau dans la version 3.11.
Building generic types¶
The following classes should not be used directly as annotations. Their intended purpose is to be building blocks for creating generic types.
- class typing.Generic¶
Classe de base abstraite pour les types génériques.
Un type générique est généralement déclaré en héritant d'une instanciation de cette classe avec une ou plusieurs variables de type. Par exemple, un type de correspondance générique peut être défini comme suit :
class Mapping(Generic[KT, VT]): def __getitem__(self, key: KT) -> VT: ... # Etc.
Cette classe peut alors être utilisée comme suit :
X = TypeVar('X') Y = TypeVar('Y') def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y: try: return mapping[key] except KeyError: return default
- class typing.TypeVar(name, *constraints, bound=None, covariant=False, contravariant=False)¶
Variables de type.
Utilisation :
T = TypeVar('T') # Can be anything S = TypeVar('S', bound=str) # Can be any subtype of str A = TypeVar('A', str, bytes) # Must be exactly str or bytes
Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function and type alias definitions. See
Genericfor more information on generic types. Generic functions work as follows:def repeat(x: T, n: int) -> Sequence[T]: """Return a list containing n references to x.""" return [x]*n def print_capitalized(x: S) -> S: """Print x capitalized, and return x.""" print(x.capitalize()) return x def concatenate(x: A, y: A) -> A: """Add two strings or bytes objects together.""" return x + y
Note that type variables can be bound, constrained, or neither, but cannot be both bound and constrained.
Type variables may be marked covariant or contravariant by passing
covariant=Trueorcontravariant=True. See PEP 484 for more details. By default, type variables are invariant.Bound type variables and constrained type variables have different semantics in several important ways. Using a bound type variable means that the
TypeVarwill be solved using the most specific type possible:x = print_capitalized('a string') reveal_type(x) # revealed type is str class StringSubclass(str): pass y = print_capitalized(StringSubclass('another string')) reveal_type(y) # revealed type is StringSubclass z = print_capitalized(45) # error: int is not a subtype of str
Type variables can be bound to concrete types, abstract types (ABCs or protocols), and even unions of types:
U = TypeVar('U', bound=str|bytes) # Can be any subtype of the union str|bytes V = TypeVar('V', bound=SupportsAbs) # Can be anything with an __abs__ method
Using a constrained type variable, however, means that the
TypeVarcan only ever be solved as being exactly one of the constraints given:a = concatenate('one', 'two') reveal_type(a) # revealed type is str b = concatenate(StringSubclass('one'), StringSubclass('two')) reveal_type(b) # revealed type is str, despite StringSubclass being passed in c = concatenate('one', b'two') # error: type variable 'A' can be either str or bytes in a function call, but not both
At runtime,
isinstance(x, T)will raiseTypeError.- __name__¶
The name of the type variable.
- __covariant__¶
Whether the type var has been marked as covariant.
- __contravariant__¶
Whether the type var has been marked as contravariant.
- __bound__¶
The bound of the type variable, if any.
- __constraints__¶
A tuple containing the constraints of the type variable, if any.
- class typing.TypeVarTuple(name)¶
Type variable tuple. A specialized form of type variable that enables variadic generics.
Utilisation :
T = TypeVar("T") Ts = TypeVarTuple("Ts") def move_first_element_to_last(tup: tuple[T, *Ts]) -> tuple[*Ts, T]: return (*tup[1:], tup[0])
A normal type variable enables parameterization with a single type. A type variable tuple, in contrast, allows parameterization with an arbitrary number of types by acting like an arbitrary number of type variables wrapped in a tuple. For example:
# T is bound to int, Ts is bound to () # Return value is (1,), which has type tuple[int] move_first_element_to_last(tup=(1,)) # T is bound to int, Ts is bound to (str,) # Return value is ('spam', 1), which has type tuple[str, int] move_first_element_to_last(tup=(1, 'spam')) # T is bound to int, Ts is bound to (str, float) # Return value is ('spam', 3.0, 1), which has type tuple[str, float, int] move_first_element_to_last(tup=(1, 'spam', 3.0)) # This fails to type check (and fails at runtime) # because tuple[()] is not compatible with tuple[T, *Ts] # (at least one element is required) move_first_element_to_last(tup=())
Note the use of the unpacking operator
*intuple[T, *Ts]. Conceptually, you can think ofTsas a tuple of type variables(T1, T2, ...).tuple[T, *Ts]would then becometuple[T, *(T1, T2, ...)], which is equivalent totuple[T, T1, T2, ...]. (Note that in older versions of Python, you might see this written usingUnpackinstead, asUnpack[Ts].)Type variable tuples must always be unpacked. This helps distinguish type variable tuples from normal type variables:
x: Ts # Not valid x: tuple[Ts] # Not valid x: tuple[*Ts] # The correct way to do it
Type variable tuples can be used in the same contexts as normal type variables. For example, in class definitions, arguments, and return types:
Shape = TypeVarTuple("Shape") class Array(Generic[*Shape]): def __getitem__(self, key: tuple[*Shape]) -> float: ... def __abs__(self) -> "Array[*Shape]": ... def get_shape(self) -> tuple[*Shape]: ...
Type variable tuples can be happily combined with normal type variables:
DType = TypeVar('DType') Shape = TypeVarTuple('Shape') class Array(Generic[DType, *Shape]): # This is fine pass class Array2(Generic[*Shape, DType]): # This would also be fine pass class Height: ... class Width: ... float_array_1d: Array[float, Height] = Array() # Totally fine int_array_2d: Array[int, Height, Width] = Array() # Yup, fine too
However, note that at most one type variable tuple may appear in a single list of type arguments or type parameters:
x: tuple[*Ts, *Ts] # Not valid class Array(Generic[*Shape, *Shape]): # Not valid pass
Finally, an unpacked type variable tuple can be used as the type annotation of
*args:def call_soon( callback: Callable[[*Ts], None], *args: *Ts ) -> None: ... callback(*args)
In contrast to non-unpacked annotations of
*args- e.g.*args: int, which would specify that all arguments areint-*args: *Tsenables reference to the types of the individual arguments in*args. Here, this allows us to ensure the types of the*argspassed tocall_soonmatch the types of the (positional) arguments ofcallback.See PEP 646 for more details on type variable tuples.
- __name__¶
The name of the type variable tuple.
Nouveau dans la version 3.11.
- class typing.ParamSpec(name, *, bound=None, covariant=False, contravariant=False)¶
Parameter specification variable. A specialized version of type variables.
Utilisation :
P = ParamSpec('P')
Parameter specification variables exist primarily for the benefit of static type checkers. They are used to forward the parameter types of one callable to another callable -- a pattern commonly found in higher order functions and decorators. They are only valid when used in
Concatenate, or as the first argument toCallable, or as parameters for user-defined Generics. SeeGenericfor more information on generic types.For example, to add basic logging to a function, one can create a decorator
add_loggingto log function calls. The parameter specification variable tells the type checker that the callable passed into the decorator and the new callable returned by it have inter-dependent type parameters:from collections.abc import Callable from typing import TypeVar, ParamSpec import logging T = TypeVar('T') P = ParamSpec('P') def add_logging(f: Callable[P, T]) -> Callable[P, T]: '''A type-safe decorator to add logging to a function.''' def inner(*args: P.args, **kwargs: P.kwargs) -> T: logging.info(f'{f.__name__} was called') return f(*args, **kwargs) return inner @add_logging def add_two(x: float, y: float) -> float: '''Add two numbers together.''' return x + y
Without
ParamSpec, the simplest way to annotate this previously was to use aTypeVarwith boundCallable[..., Any]. However this causes two problems:The type checker can't type check the
innerfunction because*argsand**kwargshave to be typedAny.cast()may be required in the body of theadd_loggingdecorator when returning theinnerfunction, or the static type checker must be told to ignore thereturn inner.
- args¶
- kwargs¶
Since
ParamSpeccaptures both positional and keyword parameters,P.argsandP.kwargscan be used to split aParamSpecinto its components.P.argsrepresents the tuple of positional parameters in a given call and should only be used to annotate*args.P.kwargsrepresents the mapping of keyword parameters to their values in a given call, and should be only be used to annotate**kwargs. Both attributes require the annotated parameter to be in scope. At runtime,P.argsandP.kwargsare instances respectively ofParamSpecArgsandParamSpecKwargs.
- __name__¶
The name of the parameter specification.
Parameter specification variables created with
covariant=Trueorcontravariant=Truecan be used to declare covariant or contravariant generic types. Theboundargument is also accepted, similar toTypeVar. However the actual semantics of these keywords are yet to be decided.Nouveau dans la version 3.10.
Note
Only parameter specification variables defined in global scope can be pickled.
Voir aussi
PEP 612 -- Parameter Specification Variables (the PEP which introduced
ParamSpecandConcatenate)
- typing.ParamSpecArgs¶
- typing.ParamSpecKwargs¶
Arguments and keyword arguments attributes of a
ParamSpec. TheP.argsattribute of aParamSpecis an instance ofParamSpecArgs, andP.kwargsis an instance ofParamSpecKwargs. They are intended for runtime introspection and have no special meaning to static type checkers.Calling
get_origin()on either of these objects will return the originalParamSpec:>>> from typing import ParamSpec, get_origin >>> P = ParamSpec("P") >>> get_origin(P.args) is P True >>> get_origin(P.kwargs) is P True
Nouveau dans la version 3.10.
Other special directives¶
These functions and classes should not be used directly as annotations. Their intended purpose is to be building blocks for creating and declaring types.
- class typing.NamedTuple¶
Version typée de
collections.namedtuple().Utilisation :
class Employee(NamedTuple): name: str id: int
Ce qui est équivalent à :
Employee = collections.namedtuple('Employee', ['name', 'id'])
Pour assigner une valeur par défaut à un champ, vous pouvez lui donner dans le corps de classe :
class Employee(NamedTuple): name: str id: int = 3 employee = Employee('Guido') assert employee.id == 3
Les champs avec une valeur par défaut doivent venir après tous les champs sans valeur par défaut.
The resulting class has an extra attribute
__annotations__giving a dict that maps the field names to the field types. (The field names are in the_fieldsattribute and the default values are in the_field_defaultsattribute, both of which are part of thenamedtuple()API.)Les sous-classes de
NamedTuplepeuvent aussi avoir des docstrings et des méthodes :class Employee(NamedTuple): """Represents an employee.""" name: str id: int = 3 def __repr__(self) -> str: return f'<Employee {self.name}, id={self.id}>'
NamedTuplesubclasses can be generic:class Group(NamedTuple, Generic[T]): key: T group: list[T]
Utilisation rétrocompatible :
Employee = NamedTuple('Employee', [('name', str), ('id', int)])
Modifié dans la version 3.6: Ajout de la gestion de la syntaxe d'annotation variable de la PEP 526.
Modifié dans la version 3.6.1: Ajout de la prise en charge des valeurs par défaut, des méthodes et des chaînes de caractères docstrings.
Modifié dans la version 3.8: Les attributs
_field_typeset__annotations__sont maintenant des dictionnaires standards au lieu d'instances deOrderedDict.Modifié dans la version 3.9: rend l'attribut
_field_typesobsolète en faveur de l'attribut plus standard__annotations__qui a la même information.Modifié dans la version 3.11: Added support for generic namedtuples.
- class typing.NewType(name, tp)¶
Helper class to create low-overhead distinct types.
A
NewTypeis considered a distinct type by a typechecker. At runtime, however, calling aNewTypereturns its argument unchanged.Utilisation :
UserId = NewType('UserId', int) # Declare the NewType "UserId" first_user = UserId(1) # "UserId" returns the argument unchanged at runtime
- __module__¶
The module in which the new type is defined.
- __name__¶
The name of the new type.
- __supertype__¶
The type that the new type is based on.
Nouveau dans la version 3.5.2.
Modifié dans la version 3.10:
NewTypeis now a class rather than a function.
- class typing.Protocol(Generic)¶
Base class for protocol classes.
Protocol classes are defined like this:
class Proto(Protocol): def meth(self) -> int: ...
Ces classes sont principalement utilisées avec les vérificateurs statiques de type qui reconnaissent les sous-types structurels (typage canard statique), par exemple :
class C: def meth(self) -> int: return 0 def func(x: Proto) -> int: return x.meth() func(C()) # Passes static type check
See PEP 544 for more details. Protocol classes decorated with
runtime_checkable()(described later) act as simple-minded runtime protocols that check only the presence of given attributes, ignoring their type signatures.Les classes de protocole peuvent être génériques, par exemple :
T = TypeVar("T") class GenProto(Protocol[T]): def meth(self) -> T: ...
Nouveau dans la version 3.8.
- @typing.runtime_checkable¶
Marquez une classe de protocole comme protocole d'exécution.
Such a protocol can be used with
isinstance()andissubclass(). This raisesTypeErrorwhen applied to a non-protocol class. This allows a simple-minded structural check, very similar to "one trick ponies" incollections.abcsuch asIterable. For example:@runtime_checkable class Closable(Protocol): def close(self): ... assert isinstance(open('/some/file'), Closable) @runtime_checkable class Named(Protocol): name: str import threading assert isinstance(threading.Thread(name='Bob'), Named)
Note
runtime_checkable()will check only the presence of the required methods or attributes, not their type signatures or types. For example,ssl.SSLObjectis a class, therefore it passes anissubclass()check against Callable. However, thessl.SSLObject.__init__method exists only to raise aTypeErrorwith a more informative message, therefore making it impossible to call (instantiate)ssl.SSLObject.Note
An
isinstance()check against a runtime-checkable protocol can be surprisingly slow compared to anisinstance()check against a non-protocol class. Consider using alternative idioms such ashasattr()calls for structural checks in performance-sensitive code.Nouveau dans la version 3.8.
- class typing.TypedDict(dict)¶
Special construct to add type hints to a dictionary. At runtime it is a plain
dict.TypedDictdeclares a dictionary type that expects all of its instances to have a certain set of keys, where each key is associated with a value of a consistent type. This expectation is not checked at runtime but is only enforced by type checkers. Usage:class Point2D(TypedDict): x: int y: int label: str a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
To allow using this feature with older versions of Python that do not support PEP 526,
TypedDictsupports two additional equivalent syntactic forms:Using a literal
dictas the second argument:Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
Using keyword arguments:
Point2D = TypedDict('Point2D', x=int, y=int, label=str)
Obsolète depuis la version 3.11, sera supprimé dans la version 3.13: The keyword-argument syntax is deprecated in 3.11 and will be removed in 3.13. It may also be unsupported by static type checkers.
The functional syntax should also be used when any of the keys are not valid identifiers, for example because they are keywords or contain hyphens. Example:
# raises SyntaxError class Point2D(TypedDict): in: int # 'in' is a keyword x-y: int # name with hyphens # OK, functional syntax Point2D = TypedDict('Point2D', {'in': int, 'x-y': int})
By default, all keys must be present in a
TypedDict. It is possible to mark individual keys as non-required usingNotRequired:class Point2D(TypedDict): x: int y: int label: NotRequired[str] # Alternative syntax Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': NotRequired[str]})
This means that a
Point2DTypedDictcan have thelabelkey omitted.It is also possible to mark all keys as non-required by default by specifying a totality of
False:class Point2D(TypedDict, total=False): x: int y: int # Alternative syntax Point2D = TypedDict('Point2D', {'x': int, 'y': int}, total=False)
This means that a
Point2DTypedDictcan have any of the keys omitted. A type checker is only expected to support a literalFalseorTrueas the value of thetotalargument.Trueis the default, and makes all items defined in the class body required.Individual keys of a
total=FalseTypedDictcan be marked as required usingRequired:class Point2D(TypedDict, total=False): x: Required[int] y: Required[int] label: str # Alternative syntax Point2D = TypedDict('Point2D', { 'x': Required[int], 'y': Required[int], 'label': str }, total=False)
It is possible for a
TypedDicttype to inherit from one or more otherTypedDicttypes using the class-based syntax. Usage:class Point3D(Point2D): z: int
Point3Dhas three items:x,yandz. It is equivalent to this definition:class Point3D(TypedDict): x: int y: int z: int
A
TypedDictcannot inherit from a non-TypedDictclass, except forGeneric. For example:class X(TypedDict): x: int class Y(TypedDict): y: int class Z(object): pass # A non-TypedDict class class XY(X, Y): pass # OK class XZ(X, Z): pass # raises TypeError
A
TypedDictcan be generic:T = TypeVar("T") class Group(TypedDict, Generic[T]): key: T group: list[T]
A
TypedDictcan be introspected via annotations dicts (see Bonnes pratiques concernant les annotations for more information on annotations best practices),__total__,__required_keys__, and__optional_keys__.- __total__¶
Point2D.__total__gives the value of thetotalargument. Example:>>> from typing import TypedDict >>> class Point2D(TypedDict): pass >>> Point2D.__total__ True >>> class Point2D(TypedDict, total=False): pass >>> Point2D.__total__ False >>> class Point3D(Point2D): pass >>> Point3D.__total__ True
This attribute reflects only the value of the
totalargument to the currentTypedDictclass, not whether the class is semantically total. For example, aTypedDictwith__total__set to True may have keys marked withNotRequired, or it may inherit from anotherTypedDictwithtotal=False. Therefore, it is generally better to use__required_keys__and__optional_keys__for introspection.
- __required_keys__¶
Nouveau dans la version 3.9.
- __optional_keys__¶
Point2D.__required_keys__andPoint2D.__optional_keys__returnfrozensetobjects containing required and non-required keys, respectively.Keys marked with
Requiredwill always appear in__required_keys__and keys marked withNotRequiredwill always appear in__optional_keys__.For backwards compatibility with Python 3.10 and below, it is also possible to use inheritance to declare both required and non-required keys in the same
TypedDict. This is done by declaring aTypedDictwith one value for thetotalargument and then inheriting from it in anotherTypedDictwith a different value fortotal:>>> class Point2D(TypedDict, total=False): ... x: int ... y: int ... >>> class Point3D(Point2D): ... z: int ... >>> Point3D.__required_keys__ == frozenset({'z'}) True >>> Point3D.__optional_keys__ == frozenset({'x', 'y'}) True
Nouveau dans la version 3.9.
Note
If
from __future__ import annotationsis used or if annotations are given as strings, annotations are not evaluated when theTypedDictis defined. Therefore, the runtime introspection that__required_keys__and__optional_keys__rely on may not work properly, and the values of the attributes may be incorrect.
See PEP 589 for more examples and detailed rules of using
TypedDict.Nouveau dans la version 3.8.
Modifié dans la version 3.11: Added support for marking individual keys as
RequiredorNotRequired. See PEP 655.Modifié dans la version 3.11: Added support for generic
TypedDicts.
Protocoles¶
The following protocols are provided by the typing module. All are decorated
with @runtime_checkable.
- class typing.SupportsAbs¶
Une ABC avec une méthode abstraite
__abs__qui est covariante dans son type de retour.
- class typing.SupportsBytes¶
Une ABC avec une méthode abstraite
__bytes__.
- class typing.SupportsComplex¶
Une ABC avec une méthode abstraite
__complex__.
- class typing.SupportsFloat¶
Une ABC avec une méthode abstraite
__float__.
- class typing.SupportsIndex¶
Une ABC avec une méthode abstraite
__index__.Nouveau dans la version 3.8.
- class typing.SupportsInt¶
Une ABC avec une méthode abstraite
__int__.
- class typing.SupportsRound¶
Une ABC avec une méthode abstraite
__round__qui est covariante dans son type de retour.
ABCs for working with IO¶
Functions and decorators¶
- typing.cast(typ, val)¶
Convertit une valeur en un type.
Ceci renvoie la valeur inchangée. Pour le vérificateur de types, cela signifie que la valeur de retour a le type désigné mais, à l'exécution, intentionnellement, rien n'est vérifié (afin que cela soit aussi rapide que possible).
- typing.assert_type(val, typ, /)¶
Vérifie que val est bien du type typ.
At runtime this does nothing: it returns the first argument unchanged with no checks or side effects, no matter the actual type of the argument.
When a static type checker encounters a call to
assert_type(), it emits an error if the value is not of the specified type:def greet(name: str) -> None: assert_type(name, str) # OK, inferred type of `name` is `str` assert_type(name, int) # type checker error
Cette fonction permet de s'assurer de la compréhension du vérificateur de type d'un script par rapport aux intentions du développeur :
def complex_function(arg: object): # Do some complex type-narrowing logic, # after which we hope the inferred type will be `int` ... # Test whether the type checker correctly understands our function assert_type(arg, int)
Nouveau dans la version 3.11.
- typing.assert_never(arg, /)¶
Demande une confirmation de la part du vérificateur statique de type qu'une ligne de code est inaccessible.
Example:
def int_or_str(arg: int | str) -> None: match arg: case int(): print("It's an int") case str(): print("It's a str") case _ as unreachable: assert_never(unreachable)
Here, the annotations allow the type checker to infer that the last case can never execute, because
argis either anintor astr, and both options are covered by earlier cases.If a type checker finds that a call to
assert_never()is reachable, it will emit an error. For example, if the type annotation forargwas insteadint | str | float, the type checker would emit an error pointing out thatunreachableis of typefloat. For a call toassert_neverto pass type checking, the inferred type of the argument passed in must be the bottom type,Never, and nothing else.Une erreur est levé si la fonction est appelé lors de l'exécution.
Voir aussi
Unreachable Code and Exhaustiveness Checking pour plus détails sur la vérification exhaustive statique de type.
Nouveau dans la version 3.11.
- typing.reveal_type(obj, /)¶
Ask a static type checker to reveal the inferred type of an expression.
When a static type checker encounters a call to this function, it emits a diagnostic with the inferred type of the argument. For example:
x: int = 1 reveal_type(x) # Revealed type is "builtins.int"
Cela est utile afin de comprendre comment le vérificateur de types va traiter un bout de code précis.
At runtime, this function prints the runtime type of its argument to
sys.stderrand returns the argument unchanged (allowing the call to be used within an expression):x = reveal_type(1) # prints "Runtime type is int" print(x) # prints "1"
Note that the runtime type may be different from (more or less specific than) the type statically inferred by a type checker.
Most type checkers support
reveal_type()anywhere, even if the name is not imported fromtyping. Importing the name fromtyping, however, allows your code to run without runtime errors and communicates intent more clearly.Nouveau dans la version 3.11.
- @typing.dataclass_transform(*, eq_default=True, order_default=False, kw_only_default=False, field_specifiers=(), **kwargs)¶
Decorator to mark an object as providing
dataclass-like behavior.dataclass_transformmay be used to decorate a class, metaclass, or a function that is itself a decorator. The presence of@dataclass_transform()tells a static type checker that the decorated object performs runtime "magic" that transforms a class in a similar way to@dataclasses.dataclass.Example usage with a decorator function:
T = TypeVar("T") @dataclass_transform() def create_model(cls: type[T]) -> type[T]: ... return cls @create_model class CustomerModel: id: int name: str
Avec une classe de base :
@dataclass_transform() class ModelBase: ... class CustomerModel(ModelBase): id: int name: str
Avec une métaclasse :
@dataclass_transform() class ModelMeta(type): ... class ModelBase(metaclass=ModelMeta): ... class CustomerModel(ModelBase): id: int name: str
Les classes
CustomerModeldéfinis ci-dessus sont traitées par les vérificateurs de type de la même que les classes créées avec@dataclasses.dataclass. Par exemple, les vérificateurs de type déduisent que ces classes possèdent une méthode__init__acceptantidetnamecomme arguments.Les arguments booléens suivants sont acceptés,les vérificateurs de type supposent qu'ils ont le même effet qu'ils auraient eu sur le décorateur
@dataclasses.dataclass:init,eq,order,unsafe_hash,frozen,match_args,kw_only, etslots. Il est possible d'évaluer statiquement les valeurs de ces arguments (TrueorFalse).Les arguments du décorateur
dataclass_transformpermettent de personnaliser le comportement par défaut de la classe, métaclasse ou fonction décorée :- Paramètres:
eq_default (bool) -- Indicates whether the
eqparameter is assumed to beTrueorFalseif it is omitted by the caller. Defaults toTrue.order_default (bool) -- Indicates whether the
orderparameter is assumed to beTrueorFalseif it is omitted by the caller. Defaults toFalse.kw_only_default (bool) -- Indicates whether the
kw_onlyparameter is assumed to beTrueorFalseif it is omitted by the caller. Defaults toFalse.field_specifiers (tuple[Callable[..., Any], ...]) -- Specifies a static list of supported classes or functions that describe fields, similar to
dataclasses.field(). Defaults to().**kwargs (Any) -- D'autres arguments sont acceptés afin d'autoriser de futurs possibles extensions.
Type checkers recognize the following optional parameters on field specifiers:
Recognised parameters for field specifiers¶ Parameter name
Description
initIndicates whether the field should be included in the synthesized
__init__method. If unspecified,initdefaults toTrue.defaultProvides the default value for the field.
default_factoryProvides a runtime callback that returns the default value for the field. If neither
defaultnordefault_factoryare specified, the field is assumed to have no default value and must be provided a value when the class is instantiated.factoryAn alias for the
default_factoryparameter on field specifiers.kw_onlyIndicates whether the field should be marked as keyword-only. If
True, the field will be keyword-only. IfFalse, it will not be keyword-only. If unspecified, the value of thekw_onlyparameter on the object decorated withdataclass_transformwill be used, or if that is unspecified, the value ofkw_only_defaultondataclass_transformwill be used.aliasProvides an alternative name for the field. This alternative name is used in the synthesized
__init__method.Lors de l'exécution, les arguments de ce décorateur sont enregistrés au sein de l'attribut
__dataclass_transform__de l'objet décoré. Il n'y pas d'autre effet à l'exécution.See PEP 681 for more details.
Nouveau dans la version 3.11.
- @typing.overload¶
Decorator for creating overloaded functions and methods.
The
@overloaddecorator allows describing functions and methods that support multiple different combinations of argument types. A series of@overload-decorated definitions must be followed by exactly one non-@overload-decorated definition (for the same function/method).@overload-decorated definitions are for the benefit of the type checker only, since they will be overwritten by the non-@overload-decorated definition. The non-@overload-decorated definition, meanwhile, will be used at runtime but should be ignored by a type checker. At runtime, calling an@overload-decorated function directly will raiseNotImplementedError.An example of overload that gives a more precise type than can be expressed using a union or a type variable:
@overload def process(response: None) -> None: ... @overload def process(response: int) -> tuple[int, str]: ... @overload def process(response: bytes) -> str: ... def process(response): ... # actual implementation goes here
See PEP 484 for more details and comparison with other typing semantics.
Modifié dans la version 3.11: Les fonctions surchargées peuvent maintenant être inspectées durant l'exécution via
get_overloads().
- typing.get_overloads(func)¶
Return a sequence of
@overload-decorated definitions for func.func is the function object for the implementation of the overloaded function. For example, given the definition of
processin the documentation for@overload,get_overloads(process)will return a sequence of three function objects for the three defined overloads. If called on a function with no overloads,get_overloads()returns an empty sequence.get_overloads()peut être utilisé afin d'inspecter une fonction surchargée durant l'exécution.Nouveau dans la version 3.11.
- typing.clear_overloads()¶
Clear all registered overloads in the internal registry.
This can be used to reclaim the memory used by the registry.
Nouveau dans la version 3.11.
- @typing.final¶
Decorator to indicate final methods and final classes.
Decorating a method with
@finalindicates to a type checker that the method cannot be overridden in a subclass. Decorating a class with@finalindicates that it cannot be subclassed.Par exemple :
class Base: @final def done(self) -> None: ... class Sub(Base): def done(self) -> None: # Error reported by type checker ... @final class Leaf: ... class Other(Leaf): # Error reported by type checker ...
Ces propriétés ne sont pas vérifiées à l'exécution. Voir la PEP 591 pour plus de détails.
Nouveau dans la version 3.8.
Modifié dans la version 3.11: The decorator will now attempt to set a
__final__attribute toTrueon the decorated object. Thus, a check likeif getattr(obj, "__final__", False)can be used at runtime to determine whether an objectobjhas been marked as final. If the decorated object does not support setting attributes, the decorator returns the object unchanged without raising an exception.
- @typing.no_type_check¶
Décorateur pour indiquer que les annotations ne sont pas des indications de type.
This works as a class or function decorator. With a class, it applies recursively to all methods and classes defined in that class (but not to methods defined in its superclasses or subclasses). Type checkers will ignore all annotations in a function or class with this decorator.
@no_type_checkmutates the decorated object in place.
- @typing.no_type_check_decorator¶
Décorateur pour donner à un autre décorateur l'effet
no_type_check().Ceci enveloppe le décorateur avec quelque chose qui enveloppe la fonction décorée dans
no_type_check().
- @typing.type_check_only¶
Decorator to mark a class or function as unavailable at runtime.
Ce décorateur n'est pas disponible à l'exécution. Il est principalement destiné à marquer les classes qui sont définies dans des fichiers séparés d'annotations de type (type stub file, en anglais) si une implémentation renvoie une instance d'une classe privée :
@type_check_only class Response: # private or not available at runtime code: int def get_header(self, name: str) -> str: ... def fetch_response() -> Response: ...
Notez qu'il n'est pas recommandé de renvoyer les instances des classes privées. Il est généralement préférable de rendre ces classes publiques.
Utilitaires d'introspection¶
- typing.get_type_hints(obj, globalns=None, localns=None, include_extras=False)¶
Renvoie un dictionnaire contenant des annotations de type pour une fonction, une méthode, un module ou un objet de classe.
C'est souvent équivalent à
obj.__annotations__. De plus, les références postérieures encodées sous forme de chaîne de caractères sont évaluées dans les espaces de nommageglobalsetlocals. Pour une classeC, elle renvoie un dictionnaire construit en fusionnant toutes les__annotations__en parcourantC.__mro__en ordre inverse.The function recursively replaces all
Annotated[T, ...]withT, unlessinclude_extrasis set toTrue(seeAnnotatedfor more information). For example:class Student(NamedTuple): name: Annotated[str, 'some marker'] assert get_type_hints(Student) == {'name': str} assert get_type_hints(Student, include_extras=False) == {'name': str} assert get_type_hints(Student, include_extras=True) == { 'name': Annotated[str, 'some marker'] }
Note
get_type_hints()ne fonctionne pas avec les alias de type importés contenant des références postérieures. L'activation d'évaluation différée des annotations (PEP 563) permet de supprimer le besoin de références postérieures supplémentaires.Modifié dans la version 3.9: Added
include_extrasparameter as part of PEP 593. See the documentation onAnnotatedfor more information.Modifié dans la version 3.11: Avant,
Optional[t]était ajouté pour les annotations de fonctions et de méthodes dans le cas où une valeur par défaut était égal àNone. Maintenant, les annotations sont renvoyées inchangées.
- typing.get_origin(tp)¶
Get the unsubscripted version of a type: for a typing object of the form
X[Y, Z, ...]returnX.If
Xis a typing-module alias for a builtin orcollectionsclass, it will be normalized to the original class. IfXis an instance ofParamSpecArgsorParamSpecKwargs, return the underlyingParamSpec. ReturnNonefor unsupported objects.Examples:
assert get_origin(str) is None assert get_origin(Dict[str, int]) is dict assert get_origin(Union[int, str]) is Union P = ParamSpec('P') assert get_origin(P.args) is P assert get_origin(P.kwargs) is P
Nouveau dans la version 3.8.
- typing.get_args(tp)¶
Get type arguments with all substitutions performed: for a typing object of the form
X[Y, Z, ...]return(Y, Z, ...).If
Xis a union orLiteralcontained in another generic type, the order of(Y, Z, ...)may be different from the order of the original arguments[Y, Z, ...]due to type caching. Return()for unsupported objects.Examples:
assert get_args(int) == () assert get_args(Dict[int, str]) == (int, str) assert get_args(Union[int, str]) == (int, str)
Nouveau dans la version 3.8.
- typing.is_typeddict(tp)¶
Vérifier si un type est un
TypedDict.For example:
class Film(TypedDict): title: str year: int assert is_typeddict(Film) assert not is_typeddict(list | str) # TypedDict is a factory for creating typed dicts, # not a typed dict itself assert not is_typeddict(TypedDict)
Nouveau dans la version 3.10.
- class typing.ForwardRef¶
Class used for internal typing representation of string forward references.
For example,
List["SomeClass"]is implicitly transformed intoList[ForwardRef("SomeClass")].ForwardRefshould not be instantiated by a user, but may be used by introspection tools.Note
Les types PEP 585 tels que
list["SomeClass"]ne seront pas implicitement transformés enlist[ForwardRef("SomeClass")]et ne seront donc pas automatiquement résolus enlist[SomeClass].Nouveau dans la version 3.7.4.
Constante¶
- typing.TYPE_CHECKING¶
A special constant that is assumed to be
Trueby 3rd party static type checkers. It isFalseat runtime.Utilisation :
if TYPE_CHECKING: import expensive_mod def fun(arg: 'expensive_mod.SomeType') -> None: local_var: expensive_mod.AnotherType = other_fun()
The first type annotation must be enclosed in quotes, making it a "forward reference", to hide the
expensive_modreference from the interpreter runtime. Type annotations for local variables are not evaluated, so the second annotation does not need to be enclosed in quotes.Note
Si
from __future__ import annotationsest utilisé, les annotations ne sont pas évaluées au moment de la définition de fonction. Elles sont alors stockées comme des chaînes de caractères dans__annotations__, ce qui rend inutile l'utilisation de guillemets autour de l'annotation (Voir PEP 563).Nouveau dans la version 3.5.2.
Deprecated aliases¶
This module defines several deprecated aliases to pre-existing
standard library classes. These were originally included in the typing
module in order to support parameterizing these generic classes using [].
However, the aliases became redundant in Python 3.9 when the
corresponding pre-existing classes were enhanced to support [] (see
PEP 585).
The redundant types are deprecated as of Python 3.9. However, while the aliases may be removed at some point, removal of these aliases is not currently planned. As such, no deprecation warnings are currently issued by the interpreter for these aliases.
If at some point it is decided to remove these deprecated aliases, a deprecation warning will be issued by the interpreter for at least two releases prior to removal. The aliases are guaranteed to remain in the typing module without deprecation warnings until at least Python 3.14.
Type checkers are encouraged to flag uses of the deprecated types if the program they are checking targets a minimum Python version of 3.9 or newer.
Aliases to built-in types¶
- class typing.Dict(dict, MutableMapping[KT, VT])¶
Deprecated alias to
dict.Note that to annotate arguments, it is preferred to use an abstract collection type such as
Mappingrather than to usedictortyping.Dict.Ce type peut être utilisé comme suit :
def count_words(text: str) -> Dict[str, int]: ...
Obsolète depuis la version 3.9:
builtins.dictnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.List(list, MutableSequence[T])¶
Deprecated alias to
list.Note that to annotate arguments, it is preferred to use an abstract collection type such as
SequenceorIterablerather than to uselistortyping.List.Ce type peut être utilisé comme suit :
T = TypeVar('T', int, float) def vec2(x: T, y: T) -> List[T]: return [x, y] def keep_positives(vector: Sequence[T]) -> List[T]: return [item for item in vector if item > 0]
Obsolète depuis la version 3.9:
builtins.listnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.Set(set, MutableSet[T])¶
Deprecated alias to
builtins.set.Note that to annotate arguments, it is preferred to use an abstract collection type such as
AbstractSetrather than to usesetortyping.Set.Obsolète depuis la version 3.9:
builtins.setnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.FrozenSet(frozenset, AbstractSet[T_co])¶
Deprecated alias to
builtins.frozenset.Obsolète depuis la version 3.9:
builtins.frozensetnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- typing.Tuple¶
Deprecated alias for
tuple.tupleandTupleare special-cased in the type system; see Annotating tuples for more details.Obsolète depuis la version 3.9:
builtins.tuplenow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.Type(Generic[CT_co])¶
Deprecated alias to
type.See The type of class objects for details on using
typeortyping.Typein type annotations.Nouveau dans la version 3.5.2.
Obsolète depuis la version 3.9:
builtins.typenow supports subscripting ([]). See PEP 585 and Type Alias générique.
Aliases to types in collections¶
- class typing.DefaultDict(collections.defaultdict, MutableMapping[KT, VT])¶
Deprecated alias to
collections.defaultdict.Nouveau dans la version 3.5.2.
Obsolète depuis la version 3.9:
collections.defaultdictnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.OrderedDict(collections.OrderedDict, MutableMapping[KT, VT])¶
Deprecated alias to
collections.OrderedDict.Nouveau dans la version 3.7.2.
Obsolète depuis la version 3.9:
collections.OrderedDictnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.ChainMap(collections.ChainMap, MutableMapping[KT, VT])¶
Deprecated alias to
collections.ChainMap.Nouveau dans la version 3.6.1.
Obsolète depuis la version 3.9:
collections.ChainMapnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.Counter(collections.Counter, Dict[T, int])¶
Deprecated alias to
collections.Counter.Nouveau dans la version 3.6.1.
Obsolète depuis la version 3.9:
collections.Counternow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.Deque(deque, MutableSequence[T])¶
Deprecated alias to
collections.deque.Nouveau dans la version 3.6.1.
Obsolète depuis la version 3.9:
collections.dequenow supports subscripting ([]). See PEP 585 and Type Alias générique.
Aliases to other concrete types¶
- class typing.Pattern¶
- class typing.Match¶
Deprecated aliases corresponding to the return types from
re.compile()andre.match().These types (and the corresponding functions) are generic over
AnyStr.Patterncan be specialised asPattern[str]orPattern[bytes];Matchcan be specialised asMatch[str]orMatch[bytes].Obsolète depuis la version 3.8, sera supprimé dans la version 3.13: The
typing.renamespace is deprecated and will be removed. These types should be directly imported fromtypinginstead.Obsolète depuis la version 3.9: Classes
PatternandMatchfromrenow support[]. See PEP 585 and Type Alias générique.
- class typing.Text¶
Deprecated alias for
str.Textis provided to supply a forward compatible path for Python 2 code: in Python 2,Textis an alias forunicode.Utilisez
Textpour indiquer qu'une valeur doit contenir une chaîne Unicode d'une manière compatible avec Python 2 et Python 3 :def add_unicode_checkmark(text: Text) -> Text: return text + u' \u2713'
Nouveau dans la version 3.5.2.
Obsolète depuis la version 3.11: Python 2 is no longer supported, and most type checkers also no longer support type checking Python 2 code. Removal of the alias is not currently planned, but users are encouraged to use
strinstead ofText.
Aliases to container ABCs in collections.abc¶
- class typing.AbstractSet(Collection[T_co])¶
Deprecated alias to
collections.abc.Set.Obsolète depuis la version 3.9:
collections.abc.Setnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.ByteString(Sequence[int])¶
This type represents the types
bytes,bytearray, andmemoryviewof byte sequences.Obsolète depuis la version 3.9, sera supprimé dans la version 3.14: Prefer
typing_extensions.Buffer, or a union likebytes | bytearray | memoryview.
- class typing.Collection(Sized, Iterable[T_co], Container[T_co])¶
Deprecated alias to
collections.abc.Collection.Nouveau dans la version 3.6.
Obsolète depuis la version 3.9:
collections.abc.Collectionnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.Container(Generic[T_co])¶
Deprecated alias to
collections.abc.Container.Obsolète depuis la version 3.9:
collections.abc.Containernow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.ItemsView(MappingView, AbstractSet[tuple[KT_co, VT_co]])¶
Deprecated alias to
collections.abc.ItemsView.Obsolète depuis la version 3.9:
collections.abc.ItemsViewnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.KeysView(MappingView, AbstractSet[KT_co])¶
Deprecated alias to
collections.abc.KeysView.Obsolète depuis la version 3.9:
collections.abc.KeysViewnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.Mapping(Collection[KT], Generic[KT, VT_co])¶
Deprecated alias to
collections.abc.Mapping.Ce type peut être utilisé comme suit :
def get_position_in_index(word_list: Mapping[str, int], word: str) -> int: return word_list[word]
Obsolète depuis la version 3.9:
collections.abc.Mappingnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.MappingView(Sized)¶
Deprecated alias to
collections.abc.MappingView.Obsolète depuis la version 3.9:
collections.abc.MappingViewnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.MutableMapping(Mapping[KT, VT])¶
Deprecated alias to
collections.abc.MutableMapping.Obsolète depuis la version 3.9:
collections.abc.MutableMappingnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.MutableSequence(Sequence[T])¶
Deprecated alias to
collections.abc.MutableSequence.Obsolète depuis la version 3.9:
collections.abc.MutableSequencenow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.MutableSet(AbstractSet[T])¶
Deprecated alias to
collections.abc.MutableSet.Obsolète depuis la version 3.9:
collections.abc.MutableSetnow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.Sequence(Reversible[T_co], Collection[T_co])¶
Deprecated alias to
collections.abc.Sequence.Obsolète depuis la version 3.9:
collections.abc.Sequencenow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.ValuesView(MappingView, Collection[_VT_co])¶
Deprecated alias to
collections.abc.ValuesView.Obsolète depuis la version 3.9:
collections.abc.ValuesViewnow supports subscripting ([]). See PEP 585 and Type Alias générique.
Aliases to asynchronous ABCs in collections.abc¶
- class typing.Coroutine(Awaitable[ReturnType], Generic[YieldType, SendType, ReturnType])¶
Deprecated alias to
collections.abc.Coroutine.The variance and order of type variables correspond to those of
Generator, for example:from collections.abc import Coroutine c: Coroutine[list[str], str, int] # Some coroutine defined elsewhere x = c.send('hi') # Inferred type of 'x' is list[str] async def bar() -> None: y = await c # Inferred type of 'y' is int
Nouveau dans la version 3.5.3.
Obsolète depuis la version 3.9:
collections.abc.Coroutinenow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.AsyncGenerator(AsyncIterator[YieldType], Generic[YieldType, SendType])¶
Deprecated alias to
collections.abc.AsyncGenerator.Un générateur asynchrone peut être annoté par le type générique
AsyncGenerator[YieldType, SendType]. Par exemple :async def echo_round() -> AsyncGenerator[int, float]: sent = yield 0 while sent >= 0.0: rounded = await round(sent) sent = yield rounded
Contrairement aux générateurs normaux, les générateurs asynchrones ne peuvent pas renvoyer une valeur, il n'y a donc pas de paramètre de type
ReturnType. Comme avecGenerator, leSendTypese comporte de manière contravariante.Si votre générateur ne donne que des valeurs, réglez le paramètre
SendTypesurNone:async def infinite_stream(start: int) -> AsyncGenerator[int, None]: while True: yield start start = await increment(start)
Alternativement, annotez votre générateur comme ayant un type de retour soit
AsyncIterable[YieldType]ouAsyncIterator[YieldType]:async def infinite_stream(start: int) -> AsyncIterator[int]: while True: yield start start = await increment(start)
Nouveau dans la version 3.6.1.
Obsolète depuis la version 3.9:
collections.abc.AsyncGeneratornow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.AsyncIterable(Generic[T_co])¶
Deprecated alias to
collections.abc.AsyncIterable.Nouveau dans la version 3.5.2.
Obsolète depuis la version 3.9:
collections.abc.AsyncIterablenow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.AsyncIterator(AsyncIterable[T_co])¶
Deprecated alias to
collections.abc.AsyncIterator.Nouveau dans la version 3.5.2.
Obsolète depuis la version 3.9:
collections.abc.AsyncIteratornow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.Awaitable(Generic[T_co])¶
Deprecated alias to
collections.abc.Awaitable.Nouveau dans la version 3.5.2.
Obsolète depuis la version 3.9:
collections.abc.Awaitablenow supports subscripting ([]). See PEP 585 and Type Alias générique.
Aliases to other ABCs in collections.abc¶
- class typing.Iterable(Generic[T_co])¶
Deprecated alias to
collections.abc.Iterable.Obsolète depuis la version 3.9:
collections.abc.Iterablenow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.Iterator(Iterable[T_co])¶
Deprecated alias to
collections.abc.Iterator.Obsolète depuis la version 3.9:
collections.abc.Iteratornow supports subscripting ([]). See PEP 585 and Type Alias générique.
- typing.Callable¶
Deprecated alias to
collections.abc.Callable.See Annotating callable objects for details on how to use
collections.abc.Callableandtyping.Callablein type annotations.Obsolète depuis la version 3.9:
collections.abc.Callablenow supports subscripting ([]). See PEP 585 and Type Alias générique.Modifié dans la version 3.10:
Callableprend désormais en chargeParamSpecetConcatenate. Voir PEP 612 pour plus de détails.
- class typing.Generator(Iterator[YieldType], Generic[YieldType, SendType, ReturnType])¶
Deprecated alias to
collections.abc.Generator.Un générateur peut être annoté par le type générique
Generator[YieldType, SendType, ReturnType]. Par exemple :def echo_round() -> Generator[int, float, str]: sent = yield 0 while sent >= 0: sent = yield round(sent) return 'Done'
Notez que contrairement à beaucoup d'autres génériques dans le module typing, le
SendTypedeGeneratorse comporte de manière contravariante, pas de manière covariante ou invariante.Si votre générateur ne donne que des valeurs, réglez les paramètres
SendTypeetReturnTypesurNone:def infinite_stream(start: int) -> Generator[int, None, None]: while True: yield start start += 1
Alternativement, annotez votre générateur comme ayant un type de retour soit
Iterable[YieldType]ouIterator[YieldType]:def infinite_stream(start: int) -> Iterator[int]: while True: yield start start += 1
Obsolète depuis la version 3.9:
collections.abc.Generatornow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.Hashable¶
Alias to
collections.abc.Hashable.
- class typing.Reversible(Iterable[T_co])¶
Deprecated alias to
collections.abc.Reversible.Obsolète depuis la version 3.9:
collections.abc.Reversiblenow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.Sized¶
Alias to
collections.abc.Sized.
Aliases to contextlib ABCs¶
- class typing.ContextManager(Generic[T_co])¶
Deprecated alias to
contextlib.AbstractContextManager.Nouveau dans la version 3.5.4.
Obsolète depuis la version 3.9:
contextlib.AbstractContextManagernow supports subscripting ([]). See PEP 585 and Type Alias générique.
- class typing.AsyncContextManager(Generic[T_co])¶
Deprecated alias to
contextlib.AbstractAsyncContextManager.Nouveau dans la version 3.6.2.
Obsolète depuis la version 3.9:
contextlib.AbstractAsyncContextManagernow supports subscripting ([]). See PEP 585 and Type Alias générique.
Étapes d'Obsolescence des Fonctionnalités Majeures¶
Certaines fonctionnalités dans typing sont obsolètes et peuvent être supprimées dans une future version de Python. Le tableau suivant résume les principales dépréciations. Celui-ci peut changer et toutes les dépréciations ne sont pas listées.
Fonctionnalité |
Obsolète en |
Suppression prévue |
PEP/issue |
|---|---|---|---|
sous-modules |
3.8 |
3.13 |
|
Versions de typage des collections standards |
3.9 |
Undecided (see Deprecated aliases for more information) |
|
3.9 |
3.14 |
||
3.11 |
Non défini |