decimal
— Arithmétique décimale en virgule fixe et flottante¶
Code source : Lib/decimal.py
Le module decimal
fournit une arithmétique en virgule flottante rapide et produisant des arrondis mathématiquement corrects. Il possède plusieurs avantages par rapport au type float
:
Le module
decimal
« est basé sur un modèle en virgule flottante conçu pour les humains, qui suit ce principe directeur : l'ordinateur doit fournir un modèle de calcul qui fonctionne de la même manière que le calcul qu'on apprend à l'école » – extrait (traduit) de la spécification de l'arithmétique décimale.Les nombres décimaux peuvent être représentés exactement en base décimale flottante. En revanche, des nombres tels que
1.1
ou1.2
n'ont pas de représentation exacte en base binaire flottante. L'utilisateur final ne s'attend typiquement pas à obtenir3.3000000000000003
lorsqu'il saisit1.1 + 2.2
, ce qui se passe en arithmétique binaire à virgule flottante.Ces inexactitudes ont des conséquences en arithmétique. En base décimale à virgule flottante,
0.1 + 0.1 + 0.1 - 0.3
est exactement égal à zéro. En virgule flottante binaire, l'ordinateur l'évalue à5.5511151231257827e-017
. Bien que très proche de zéro, cette différence induit des erreurs lors des tests d'égalité, erreurs qui peuvent s'accumuler. Pour ces raisonsdecimal
est le module utilisé pour des applications comptables ayant des contraintes strictes de fiabilité.Le module
decimal
incorpore la notion de chiffres significatifs, de façon à ce que1.30 + 1.20
égale2.50
. Le dernier zéro est conservé pour respecter le nombre de chiffres significatifs. C'est l'affichage préféré pour représenter des sommes d'argent. Pour la multiplication, l'approche « scolaire » utilise tous les chiffres présents dans les facteurs. Par exemple,1.3 * 1.2
donne1.56
tandis que1.30 * 1.20
donne1.5600
.Contrairement à l'arithmétique en virgule flottante binaire, le module
decimal
possède un paramètre de précision ajustable (par défaut à 28 chiffres significatifs) qui peut être aussi élevée que nécessaire pour un problème donné :>>> from decimal import * >>> getcontext().prec = 6 >>> Decimal(1) / Decimal(7) Decimal('0.142857') >>> getcontext().prec = 28 >>> Decimal(1) / Decimal(7) Decimal('0.1428571428571428571428571429')
L'arithmétique binaire et décimale en virgule flottante sont implémentées selon des standards publiés. Alors que le type
float
n'expose qu'une faible portion de ses capacités, le moduledecimal
expose tous les composants nécessaires du standard. Lorsque nécessaire, le développeur a un contrôle total de la gestion des signaux et de l'arrondi. Cela inclut la possibilité de forcer une arithmétique exacte en utilisant des exceptions pour bloquer toute opération inexacte.Le module
decimal
a été conçu pour gérer « sans préjugé, à la fois une arithmétique décimale non-arrondie (aussi appelée arithmétique en virgule fixe) et à la fois une arithmétique en virgule flottante » (extrait traduit de la spécification de l'arithmétique décimale).
Le module est conçu autour de trois concepts : le nombre décimal, le contexte arithmétique et les signaux.
Un Decimal
est immuable. Il a un signe, une mantisse et un exposant. Pour préserver le nombre de chiffres significatifs, les zéros en fin de chaîne ne sont pas tronqués. Les décimaux incluent aussi des valeurs spéciales telles que Infinity
, -Infinity
et NaN
. Le standard fait également la différence entre -0
et +0
.
Le contexte de l'arithmétique est un environnement qui permet de configurer une précision, une règle pour l'arrondi, des limites sur l'exposant, des options indiquant le résultat des opérations et si les signaux (remontés lors d'opérations illégales) sont traités comme des exceptions Python. Les options d'arrondi incluent ROUND_CEILING
, ROUND_DOWN
, ROUND_FLOOR
, ROUND_HALF_DOWN
, ROUND_HALF_EVEN
, ROUND_HALF_UP
, ROUND_UP
et ROUND_05UP
.
Les signaux correspondent à des états exceptionnels qui surviennent durant le calcul. Selon les besoins de l'application, les signaux peuvent être ignorés, considérés comme de l'information, ou bien traités comme des exceptions. Les signaux dans le module decimal
sont : Clamped
, InvalidOperation
, DivisionByZero
, Inexact
, Rounded
, Subnormal
, Overflow
, Underflow
et FloatOperation
.
Chaque signal est configurable indépendamment, à travers un drapeau (ou option) et une surveillance. Quand une opération illégale survient, le drapeau du signal est mis à 1
puis, s'il est surveillé, une exception est levée. La mise à 1
du drapeau est persistante, l'utilisateur doit donc remettre les drapeaux à zéro avant de commencer un calcul qu'il souhaite surveiller.
Voir aussi
Spécification d'IBM sur l'arithmétique décimale : The General Decimal Arithmetic Specification (article en anglais).
Introduction pratique¶
Commençons par importer le module, regarder le contexte actuel avec getcontext()
et, si nécessaire, configurer la précision, l'arrondi et la gestion des signaux :
>>> from decimal import *
>>> getcontext()
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])
>>> getcontext().prec = 7 # Set a new precision
Les instances de Decimal
peuvent être construites avec des entiers, des chaînes de caractères, des floats
ou des n-uplets. La construction depuis un entier ou un float
effectue la conversion exacte de cet entier ou de ce float
. Les nombres décimaux incluent des valeurs spéciales telles que NaN
qui signifie en anglais « Not a number », en français « pas un nombre », des Infinity
positifs ou négatifs et -0
:
>>> getcontext().prec = 28
>>> Decimal(10)
Decimal('10')
>>> Decimal('3.14')
Decimal('3.14')
>>> Decimal(3.14)
Decimal('3.140000000000000124344978758017532527446746826171875')
>>> Decimal((0, (3, 1, 4), -2))
Decimal('3.14')
>>> Decimal(str(2.0 ** 0.5))
Decimal('1.4142135623730951')
>>> Decimal(2) ** Decimal('0.5')
Decimal('1.414213562373095048801688724')
>>> Decimal('NaN')
Decimal('NaN')
>>> Decimal('-Infinity')
Decimal('-Infinity')
Si le signal FloatOperation
est surveillé, un mélange accidentel d'objets Decimal
et de float
dans les constructeurs ou des opérations de comparaison lève une exception :
>>> c = getcontext()
>>> c.traps[FloatOperation] = True
>>> Decimal(3.14)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') < 3.7
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal('3.5') == 3.5
True
Nouveau dans la version 3.3.
Le nombre de chiffres significatifs d'un nouvel objet Decimal
est déterminé entièrement par le nombre de chiffres saisis. La précision et les règles d'arrondis n'interviennent que lors d'opérations arithmétiques.
>>> getcontext().prec = 6
>>> Decimal('3.0')
Decimal('3.0')
>>> Decimal('3.1415926535')
Decimal('3.1415926535')
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal('5.85987')
>>> getcontext().rounding = ROUND_UP
>>> Decimal('3.1415926535') + Decimal('2.7182818285')
Decimal('5.85988')
Si les limites internes de la version en C sont dépassées, la construction d'un objet décimal lève l'exception InvalidOperation
:
>>> Decimal("1e9999999999999999999")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]
Modifié dans la version 3.3.
Les objets Decimal
interagissent très bien avec le reste de Python. Voici quelques exemples d'opérations avec des décimaux :
>>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
>>> max(data)
Decimal('9.25')
>>> min(data)
Decimal('0.03')
>>> sorted(data)
[Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
>>> sum(data)
Decimal('19.29')
>>> a,b,c = data[:3]
>>> str(a)
'1.34'
>>> float(a)
1.34
>>> round(a, 1)
Decimal('1.3')
>>> int(a)
1
>>> a * 5
Decimal('6.70')
>>> a * b
Decimal('2.5058')
>>> c % a
Decimal('0.77')
Et certaines fonctions mathématiques sont également disponibles sur des instances de Decimal
:
>>> getcontext().prec = 28
>>> Decimal(2).sqrt()
Decimal('1.414213562373095048801688724')
>>> Decimal(1).exp()
Decimal('2.718281828459045235360287471')
>>> Decimal('10').ln()
Decimal('2.302585092994045684017991455')
>>> Decimal('10').log10()
Decimal('1')
La méthode quantize()
arrondit un nombre à un exposant déterminé. Cette méthode est utile pour des applications monétaires qui arrondissent souvent un résultat à un nombre déterminé de chiffres après la virgule :
>>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Decimal('7.32')
>>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Decimal('8')
Comme montré plus haut, la fonction getcontext()
accède au contexte actuel et permet de modifier les paramètres. Cette approche répond aux besoins de la plupart des applications.
Pour un travail plus avancé, il peut être utile de créer des contextes alternatifs en utilisant le constructeur de Context
. Pour activer cet objet Context
, utilisez la fonction setcontext()
.
En accord avec le standard, le module decimal
fournit des objets Context standards, BasicContext
et ExtendedContext
. Le premier est particulièrement utile pour le débogage car beaucoup des signaux sont surveillés :
>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
>>> setcontext(myothercontext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857142857142857142857142857142857142857142857142857142857')
>>> ExtendedContext
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[])
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857143')
>>> Decimal(42) / Decimal(0)
Decimal('Infinity')
>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal(42) / Decimal(0)
DivisionByZero: x / 0
Les objets Context
ont aussi des options pour détecter des opérations illégales lors des calculs. Ces options restent activées jusqu'à ce qu'elles soit remises à zéro de manière explicite. Il convient donc de remettre à zéro ces options avant chaque inspection de chaque calcul, avec la méthode clear_flags()
.
>>> setcontext(ExtendedContext)
>>> getcontext().clear_flags()
>>> Decimal(355) / Decimal(113)
Decimal('3.14159292')
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
Les options montrent que l'approximation de π par une fraction a été arrondie (les chiffres au-delà de la précision spécifiée par l'objet Context ont été tronqués) et que le résultat est différent (certains des chiffres tronqués étaient différents de zéro).
La surveillance est activée en utilisant un dictionnaire dans l'attribut traps
du contexte :
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(0)
Decimal('Infinity')
>>> getcontext().traps[DivisionByZero] = 1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in -toplevel-
Decimal(1) / Decimal(0)
DivisionByZero: x / 0
La plupart des applications n'ajustent l'objet Context
qu'une seule fois, au démarrage. Et, dans beaucoup d'applications, les données sont converties une fois pour toutes en Decimal
. Une fois le Context
initialisé et les objets Decimal
créés, la majeure partie du programme manipule les données de la même manière qu'avec d'autres types numériques Python.
Les objets Decimal
¶
- class decimal.Decimal(value='0', context=None)¶
Construit un nouvel objet
Decimal
à partir de value.value peut être un entier, une chaîne de caractères, un n-uplet, un
float
ou une autre instance deDecimal
. Si value n'est pas fourni, le constructeur renvoieDecimal('0')
. Si value est une chaîne de caractères, elle doit correspondre à la syntaxe décimale en dehors des espaces de début et de fin, ou des tirets bas, qui sont enlevés :sign ::= '+' | '-' digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' indicator ::= 'e' | 'E' digits ::= digit [digit]... decimal-part ::= digits '.' [digits] | ['.'] digits exponent-part ::= indicator [sign] digits infinity ::= 'Infinity' | 'Inf' nan ::= 'NaN' [digits] | 'sNaN' [digits] numeric-value ::= decimal-part [exponent-part] | infinity numeric-string ::= [sign] numeric-value | [sign] nan
Les chiffres codés en Unicode sont aussi autorisés, dans les emplacements
digit
ci-dessus. Cela inclut des chiffres décimaux venant d'autres alphabets (par exemple les chiffres indo-arabes ou Devanagari) ainsi que les chiffres de pleine largeur'\uff10'
jusqu'à'\uff19'
.Si value est un
n-uplet
, il doit avoir trois éléments, le signe (0
pour positif ou1
pour négatif), unn-uplet
de chiffres et un entier représentant l'exposant. Par exemple,Decimal((0, (1, 4, 1, 4), -3))
construit l'objetDecimal('1.414')
.Si value est un
float
, la valeur en binaire flottant est convertie exactement à son équivalent décimal. Cette conversion peut parfois nécessiter 53 chiffres significatifs ou plus. Par exemple,Decimal(float('1.1'))
devientDecimal('1.100000000000000088817841970012523233890533447265625')
.La précision spécifiée dans le contexte n'affecte pas le nombre de chiffres stockés. Cette valeur est déterminée exclusivement par le nombre de chiffres dans value. Par exemple,
Decimal('3.00000')
enregistre les 5 zéros même si la précision du contexte est de 3.L'objectif de l'argument context est de déterminer ce que Python doit faire si value est une chaîne avec un mauvais format. Si
InvalidOperation
est surveillé, une exception est levée, sinon le constructeur renvoie un objetDecimal
de valeurNaN
.Une fois construit, un objet
Decimal
est immuable.Modifié dans la version 3.2: l'argument du constructeur peut désormais être un objet
float
.Modifié dans la version 3.3: un argument
float
lève une exception siFloatOperation
est surveillé. Par défaut la surveillance n'est pas activée.Modifié dans la version 3.6: les tirets bas sont autorisés pour grouper des chiffres, tout comme pour l'arithmétique en virgule fixe et flottante.
Les objets
Decimal
partagent beaucoup de propriétés avec les autres types numériques natifs tels quefloat
etint
. Toutes les opérations mathématiques et méthodes sont conservées. De même les objetsDecimal
peuvent être copiés, sérialisés via le modulepickle
, affichés, utilisés comme clé de dictionnaire, éléments d'ensembles, comparés, classés et convertis vers un autre type (tel quefloat
ouint
).Il existe quelques différences mineures entre l'arithmétique entre les objets décimaux et l'arithmétique avec les entiers et les
float
. Quand l'opérateur modulo%
est appliqué sur des objets décimaux, le signe du résultat est le signe du dividende plutôt que le signe du diviseur :>>> (-7) % 4 1 >>> Decimal(-7) % Decimal(4) Decimal('-3')
L'opérateur division entière (
//
) se comporte de la même manière, renvoyant la partie entière du quotient plutôt que son arrondi, de manière à préserver l'identité d'Euclidex == (x // y) * y + x % y
:>>> -7 // 4 -2 >>> Decimal(-7) // Decimal(4) Decimal('-1')
Les opérateurs
//
et%
implémentent la division entière et le reste (ou modulo), respectivement, tels que décrits dans la spécification.Les objets
Decimal
ne peuvent généralement pas être combinés avec desfloat
ou des objetsfractions.Fraction
lors d'opérations arithmétiques : toute addition entre unDecimal
et unfloat
, par exemple, lève une exceptionTypeError
. Cependant, il est possible d'utiliser les opérateurs de comparaison entre instances deDecimal
et les autres types numériques. Cela évite d'avoir des résultats absurdes lors des tests d'égalité entre différents types.Modifié dans la version 3.2: les comparaisons inter-types entre
Decimal
et les autres types numériques sont désormais intégralement gérées.En plus des propriétés numériques standard, les objets décimaux à virgule flottante ont également un certain nombre de méthodes spécialisées :
- adjusted()¶
Renvoie l'exposant ajusté après avoir décalé les chiffres les plus à droite de la mantisse jusqu'à ce qu'il ne reste que le premier chiffre :
Decimal('321e+5').adjusted()
renvoie sept. Utilisée pour déterminer la position du chiffre le plus significatif par rapport à la virgule.
- as_integer_ratio()¶
Renvoie un couple d'entiers
(n, d)
qui représentent l'instanceDecimal
donnée sous la forme d'une fraction, avec les termes les plus petits possibles et avec un dénominateur positif :>>> Decimal('-3.14').as_integer_ratio() (-157, 50)
La conversion est exacte. Lève une
OverflowError
sur l'infini etValueError
sur les Nan.
Nouveau dans la version 3.6.
- as_tuple()¶
Renvoie une représentation sous la forme d'un n-uplet nommé du nombre
DecimalTuple(sign, digits, exponent)
.
- canonical()¶
Renvoie la forme canonique de l'argument. Actuellement, la forme d'une instance
Decimal
est toujours canonique, donc cette opération renvoie son argument inchangé.
- compare(other, context=None)¶
Compare les valeurs de deux instances
Decimal
.compare()
renvoie une instanceDecimal
et, si l'un des opérandes est un NaN, alors le résultat est un NaN :a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1')
- compare_signal(other, context=None)¶
Cette opération est identique à la méthode
compare()
, sauf que tous les NaN sont surveillés. Autrement dit, si aucun des opérandes n'est un NaN de signalisation, alors tout opérande NaN silencieux est traité comme s'il s'agissait d'un NaN de signalisation.
- compare_total(other, context=None)¶
Compare deux opérandes en utilisant leur représentation abstraite plutôt que leur valeur numérique. Similaire à la méthode
compare()
, mais le résultat donne un ordre total sur les instancesDecimal
. Deux instances deDecimal
avec la même valeur numérique mais des représentations différentes se comparent de manière inégale dans cet ordre :>>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1')
Les NaN silencieux et de signalisation sont également inclus dans l'ordre total. Le résultat de cette fonction est
Decimal('0')
si les deux opérandes ont la même représentation,Decimal('-1')
si le premier opérande est inférieur au second, etDecimal('1')
si le premier opérande est supérieur au deuxième opérande. Voir les spécifications pour les détails de l'ordre total.Cette opération ne dépend pas du contexte et est silencieuse : aucun indicateur n'est modifié et aucun arrondi n'est effectué. Exceptionnellement, la version C peut lever une InvalidOperation si le deuxième opérande ne peut pas être converti exactement.
- compare_total_mag(other, context=None)¶
Compare deux opérandes en utilisant leur représentation abstraite plutôt que leur valeur comme dans
compare_total()
, mais en ignorant le signe de chaque opérande.x.compare_total_mag(y)
est équivalent àx.copy_abs().compare_total(y.copy_abs())
.Cette opération ne dépend pas du contexte et est silencieuse : aucun indicateur n'est modifié et aucun arrondi n'est effectué. Exceptionnellement, la version C peut lever une InvalidOperation si le deuxième opérande ne peut pas être converti exactement.
- conjugate()¶
Ne fait que renvoyer self ; cette méthode existe uniquement pour se conformer à la spécification.
- copy_abs()¶
Renvoie la valeur absolue de l'argument. Cette opération ne dépend pas du contexte et est silencieuse : aucun drapeau n'est modifié et aucun arrondi n'est effectué.
- copy_negate()¶
Renvoie l'opposé de l'argument. Cette opération ne dépend pas du contexte et est silencieuse : aucun drapeau n'est modifié et aucun arrondi n'est effectué.
- copy_sign(other, context=None)¶
Renvoie une copie du premier opérande mais avec le même signe que celui du deuxième opérande. Par exemple :
>>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3')
Cette opération ne dépend pas du contexte et est silencieuse : aucun indicateur n'est modifié et aucun arrondi n'est effectué. Exceptionnellement, la version C peut lever une InvalidOperation si le deuxième opérande ne peut pas être converti exactement.
- exp(context=None)¶
Renvoie la valeur
e**x
(fonction exponentielle) du nombre donné. Le résultat est correctement arrondi en utilisant le mode d'arrondiROUND_HALF_EVEN
.>>> Decimal(1).exp() Decimal('2.718281828459045235360287471') >>> Decimal(321).exp() Decimal('2.561702493119680037517373933E+139')
- classmethod from_float(f)¶
Constructeur alternatif qui n'accepte que les instances de
float
ouint
.Remarquez que
Decimal.from_float(0.1)
est différent deDecimal('0.1')
. Puisque 0.1 n'est pas exactement représentable en virgule flottante binaire, la valeur est stockée comme la valeur représentable la plus proche qui est0x1.999999999999ap-4
. La valeur équivalente en décimal est0.1000000000000000055511151231257827021181583404541015625
.Note
depuis Python 3.2, une instance
Decimal
peut également être construite directement à partir d'unfloat
.>>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity')
Nouveau dans la version 3.1.
- fma(other, third, context=None)¶
Multiplier-ajouter fusionné. Renvoie
self*other+third
sans arrondir le produit intermédiaireself*other
.>>> Decimal(2).fma(3, 5) Decimal('11')
- is_canonical()¶
Renvoie
True
si l'argument est sous forme canonique etFalse
sinon. Actuellement, une instanceDecimal
est toujours canonique, donc cette opération renvoie toujoursTrue
.
- is_finite()¶
Renvoie
True
si l'argument est un nombre fini etFalse
si l'argument est un infini ou un NaN.
- is_normal(context=None)¶
Renvoie
True
si l'argument est un nombre fini normal. RenvoieFalse
si l'argument est zéro, infini, un nombre dénormalisé ou un NaN.
- is_signed()¶
Renvoie
True
si l'argument est négatif,False
sinon. Remarquez que les zéros et les NaN peuvent être signés.
- is_subnormal(context=None)¶
Renvoie
True
si l'argument est le résultat d'un dépassement par valeur inférieure,False
sinon.
- ln(context=None)¶
Renvoie le logarithme naturel (base e) de l'opérande. Le résultat est arrondi avec le mode
ROUND_HALF_EVEN
.
- log10(context=None)¶
Renvoie le logarithme en base 10 de l'opérande. Le résultat est arrondi avec le mode
ROUND_HALF_EVEN
.
- logb(context=None)¶
Pour un nombre non nul, renvoie l'exposant ajusté de son opérande en tant qu'instance
Decimal
. Si l'opérande est un zéro alorsDecimal('-Infinity')
est renvoyé et le drapeauDivisionByZero
est levé. Si l'opérande est un infini alorsDecimal('Infinity')
est renvoyé.
- logical_and(other, context=None)¶
logical_and()
est une opération logique qui prend deux opérandes logiques (voir Opérandes logiques). Le résultat est le ET des chiffres des deux opérandes.
- logical_invert(context=None)¶
logical_invert()
est une opération logique. Le résultat est l'inversion de chacun des chiffres de l'opérande.
- logical_or(other, context=None)¶
logical_or()
est une opération logique qui prend deux opérandes logiques (voir Opérandes logiques). Le résultat est le OU des chiffres des deux opérandes.
- logical_xor(other, context=None)¶
logical_xor()
est une opération logique qui prend deux opérandes logiques (voir Opérandes logiques). Le résultat est le OU EXCLUSIF des chiffres des deux opérandes.
- max(other, context=None)¶
Comme
max(self, other)
sauf que la règle d'arrondi de context est appliquée avant le retour et les valeursNaN
sont signalées ou ignorées (selon le contexte et suivant qu'elles sont signalisées ou silencieuses).
- max_mag(other, context=None)¶
Semblable à la méthode
max()
, mais la comparaison est effectuée en utilisant les valeurs absolues des opérandes.
- min(other, context=None)¶
Comme
min(self, other)
sauf que la règle d'arrondi de context est appliquée avant le retour et les valeursNaN
sont signalées ou ignorées (selon le contexte et suivant qu'elles sont signalisées ou silencieuses).
- min_mag(other, context=None)¶
Semblable à la méthode
min()
, mais la comparaison est effectuée en utilisant les valeurs absolues des opérandes.
- next_minus(context=None)¶
Renvoie le plus grand nombre représentable dans le context donné (ou dans le contexte du fil d'exécution actuel si aucun contexte n'est donné) qui est plus petit que l'opérande donné.
- next_plus(context=None)¶
Renvoie le plus petit nombre représentable dans le context donné (ou dans le contexte du fil d'exécution actuel si aucun contexte n'est donné) qui est supérieur à l'opérande donné.
- next_toward(other, context=None)¶
Si les deux opérandes ne sont pas égaux, renvoie le nombre le plus proche du premier opérande dans la direction du deuxième opérande. Si les deux opérandes sont numériquement égaux, renvoie une copie du premier opérande avec le signe défini comme étant le même que le signe du second opérande.
- normalize(context=None)¶
Utilisé pour produire des valeurs canoniques d'une classe d'équivalence dans le contexte actuel ou dans le contexte spécifié.
C'est la même sémantique que l'opération unaire plus, sauf que si le résultat final est fini, il est réduit à sa forme la plus simple, avec tous les zéros à droite supprimés et son signe conservé. Autrement dit, tant que la mantisse est différente de zéro et est un multiple de dix, elle est divisée par dix et l'exposant est incrémenté de 1. Sinon (la mantisse est nulle), l'exposant est mis à 0. Dans tous les cas, le signe est inchangé.
Par exemple,
Decimal('32.100')
etDecimal('0.321000e+2')
se normalisent tous deux à la valeur équivalenteDecimal('32.1')
.Notez que l'arrondi est appliqué avant la réduction à la forme la plus simple.
Dans les dernières versions de la spécification, cette opération est également connue sous le nom de
reduce
.
- number_class(context=None)¶
Renvoie une chaîne décrivant la classe de l'opérande. La valeur renvoyée est l'une des dix chaînes suivantes.
"-Infinity"
, indiquant que l'opérande est l'infini négatif ;"-Normal"
, indiquant que l'opérande est un nombre négatif normal ;"-Subnormal"
, indiquant que l'opérande est négatif et qu'il est dénormalisé ;"-Zero"
, indiquant que l'opérande est un zéro négatif ;"+Zero"
, indiquant que l'opérande est un zéro positif ;"+Subnormal"
, indiquant que l'opérande est positif et qu'il est dénormalisé ;"+Normal"
, indiquant que l'opérande est un nombre positif normal ;"+Infinity"
, indiquant que l'opérande est l'infini positif ;"NaN"
, indiquant que l'opérande est un NaN (Not a Number, pas un nombre) silencieux ;"sNaN"
, indiquant que l'opérande est un NaN (Not a Number, pas un nombre) signalisé.
- quantize(exp, rounding=None, context=None)¶
Renvoie une valeur égale au premier opérande après arrondi et ayant l'exposant du second opérande.
>>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414')
Contrairement aux autres opérations, si la longueur de la mantisse après l'opération de quantification est supérieure à la précision, alors une
InvalidOperation
est signalée. Ceci garantit que, sauf condition d'erreur, l'exposant quantifié est toujours égal à celui de l'opérande de droite.Contrairement aux autres opérations, la quantification ne signale jamais de dépassement par valeur inférieure, même si le résultat est inférieur à la valeur minimale représentable et est inexact.
Si l'exposant du deuxième opérande est supérieur à celui du premier, un arrondi peut être nécessaire. Dans ce cas, le mode d'arrondi est déterminé par l'argument
rounding
s'il est donné, sinon par l'argumentcontext
donné ; si aucun argument n'est donné, le mode d'arrondi du contexte du fil d'exécution courant est utilisé.Une erreur est renvoyée chaque fois que l'exposant résultant est supérieur à
Emax
ou inférieur àEtiny()
.
- radix()¶
Renvoie
Decimal(10)
, la base (base) dans laquelle la classeDecimal
fait toute son arithmétique. Inclus pour la compatibilité avec la spécification.
- remainder_near(other, context=None)¶
Renvoie le reste de la division de self par other. La différence avec
self % other
réside dans le signe du reste, qui est choisi de manière à minimiser sa valeur absolue. Plus précisément, la valeur de retour estself - n * other
oùn
est l'entier le plus proche de la valeur exacte deself / other
et, si deux entiers sont également proches, alors l'entier pair est choisi.Si le résultat est zéro, alors son signe est le signe de self.
>>> Decimal(18).remainder_near(Decimal(10)) Decimal('-2') >>> Decimal(25).remainder_near(Decimal(10)) Decimal('5') >>> Decimal(35).remainder_near(Decimal(10)) Decimal('-5')
- rotate(other, context=None)¶
Renvoie le résultat de la rotation des chiffres du premier opérande d'une quantité spécifiée par le deuxième opérande. Le deuxième opérande doit être un entier compris dans la plage -précision à précision. La valeur absolue du deuxième opérande donne le nombre de rotations unitaires à faire. Si le deuxième opérande est positif alors la rotation se fait vers la gauche ; sinon la rotation se fait vers la droite. La mantisse du premier opérande est complétée à gauche avec des zéros à la précision de la longueur si nécessaire. Le signe et l'exposant du premier opérande sont inchangés.
- same_quantum(other, context=None)¶
Teste si self et other ont le même exposant ou si les deux sont
NaN
.Cette opération ne dépend pas du contexte et est silencieuse : aucun indicateur n'est modifié et aucun arrondi n'est effectué. Exceptionnellement, la version C peut lever une InvalidOperation si le deuxième opérande ne peut pas être converti exactement.
- scaleb(other, context=None)¶
Renvoie le premier opérande avec l'exposant ajusté par le second. De manière équivalente, renvoie le premier opérande multiplié par
10**other
. Le deuxième opérande doit être entier.
- shift(other, context=None)¶
Renvoie le résultat du décalage des chiffres du premier opérande d'une quantité spécifiée par le deuxième opérande. Le deuxième opérande doit être un entier compris dans la plage -précision à précision. La valeur absolue du deuxième opérande donne le nombre de décalages unitaires à effectuer. Si le deuxième opérande est positif alors le décalage est vers la gauche ; sinon le décalage est vers la droite. Les chiffres insérés dans le nombre par le décalage sont des zéros. Le signe et l'exposant du premier opérande sont inchangés.
- sqrt(context=None)¶
Renvoie la racine carrée de l'argument avec une précision maximale.
- to_eng_string(context=None)¶
Convertit en chaîne, en utilisant la notation ingénieur si un exposant est nécessaire.
La notation ingénieur possède un exposant qui est un multiple de 3. Cela peut laisser jusqu'à 3 chiffres à gauche de la décimale et peut nécessiter l'ajout d'un ou de deux zéros en fin de mantisse.
Par exemple,
Decimal('123E+1')
est converti enDecimal('1.23E+3')
.
- to_integral(rounding=None, context=None)¶
Identique à la méthode
to_integral_value()
. Le nomto_integral
a été conservé pour la compatibilité avec les anciennes versions.
- to_integral_exact(rounding=None, context=None)¶
Arrondit à l'entier le plus proche, en signalant
Inexact
ouRounded
selon le cas si l'arrondi se produit. Le mode d'arrondi est déterminé par le paramètrerounding
s'il est donné, sinon par lecontext
donné. Si aucun paramètre n'est donné, le mode d'arrondi du contexte courant est utilisé.
Opérandes logiques¶
Les méthodes logical_and()
, logical_invert()
, logical_or()
et logical_xor()
s'attendent à ce que leurs arguments soient des opérandes logiques. Un opérande logique est une instance Decimal
dont l'exposant et le signe sont tous les deux zéro et dont les chiffres sont tous 0
ou 1
.
Objets de contexte¶
Les contextes sont des environnements pour les opérations arithmétiques. Ils régissent la précision, établissent des règles d'arrondi, déterminent quels signaux sont traités comme des exceptions et limitent la plage des exposants.
Chaque fil d'exécution a son propre contexte actuel qui est accessible ou modifié à l'aide des fonctions getcontext()
et setcontext()
:
- decimal.getcontext()¶
Renvoie le contexte actuel du fil d'exécution courant.
- decimal.setcontext(c)¶
Définit le contexte du fil d'exécution courant à c.
Vous pouvez également utiliser l'instruction with
et la fonction localcontext()
pour modifier temporairement le contexte actif.
- decimal.localcontext(ctx=None, \*\*kwargs)¶
Renvoie un gestionnaire de contexte qui définira le contexte actuel du fil d'exécution actif sur une copie de ctx à l'entrée de l'instruction with et restaurera le contexte précédent lors de la sortie de l'instruction with. Si aucun contexte n'est spécifié, une copie du contexte actuel est utilisée. L'argument kwargs est utilisé pour définir les attributs du nouveau contexte.
Par exemple, le code suivant définit la précision décimale actuelle à 42 chiffres, effectue un calcul, puis restaure automatiquement le contexte précédent :
from decimal import localcontext with localcontext() as ctx: ctx.prec = 42 # Perform a high precision calculation s = calculate_something() s = +s # Round the final result back to the default precision
En utilisant des arguments nommés, le code serait le suivant :
from decimal import localcontext with localcontext(prec=42) as ctx: s = calculate_something() s = +s
Lève
TypeError
si kwargs fournit un attribut queContext
ne prend pas en charge. Lève soitTypeError
ouValueError
si kwargs fournit une valeur invalide pour un attribut.Modifié dans la version 3.11:
localcontext()
prend désormais en charge la définition des attributs de contexte grâce à l'utilisation d'arguments nommés.
De nouveaux contextes peuvent également être créés à l'aide du constructeur Context
décrit ci-dessous. De plus, le module fournit trois contextes prédéfinis :
- class decimal.BasicContext¶
Il s'agit d'un contexte standard défini par la General Decimal Arithmetic Specification. La précision est fixée à neuf. L'arrondi est défini sur
ROUND_HALF_UP
. Tous les drapeaux sont effacés. Tous les signaux sont surveillés (ils lèvent des exceptions) saufInexact
,Rounded
etSubnormal
.Étant donné que de nombreuses options sont surveillées, ce contexte est utile pour le débogage.
- class decimal.ExtendedContext¶
Il s'agit d'un contexte standard défini par la General Decimal Arithmetic Specification. La précision est fixée à neuf. L'arrondi est défini sur
ROUND_HALF_EVEN
. Aucun signal n'est surveillé (afin que les exceptions ne soient pas levées pendant les calculs).Comme les interruptions sont désactivées, ce contexte est utile pour les applications qui préfèrent avoir une valeur de résultat
NaN
ouInfinity
au lieu de lever des exceptions. Cela permet à une application de terminer une exécution en présence de conditions qui, autrement, arrêteraient le programme.
- class decimal.DefaultContext¶
Ce contexte est utilisé par le constructeur
Context
comme prototype pour de nouveaux contextes. Changer un champ (par exemple la précision) a pour effet de changer la valeur par défaut pour les nouveaux contextes créés par le constructeurContext
.Ce contexte est particulièrement utile dans les environnements à plusieurs fils d'exécution. La modification de l'un des champs avant le démarrage des fils a pour effet de définir des valeurs par défaut à l'échelle du système. La modification des champs après le démarrage des fils d'exécution n'est pas recommandée car cela nécessiterait une synchronisation des fils d'exécution pour éviter des situations de concurrence.
Dans les environnements à fil d'exécution unique, il est préférable de ne pas utiliser ce contexte du tout. Créez plutôt simplement des contextes explicitement comme décrit ci-dessous.
Les valeurs par défaut sont
Context.prec
=28
,Context.rounding
=ROUND_HALF_EVEN
et les interruptions sont activées pourOverflow
,InvalidOperation
etDivisionByZero
.
En plus des trois contextes fournis, de nouveaux contextes peuvent être créés avec le constructeur Context
.
- class decimal.Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)¶
Crée un nouveau contexte. Si un champ n'est pas spécifié ou est
None
, les valeurs par défaut sont copiées à partir duDefaultContext
. Si le champ flags n'est pas spécifié ou estNone
, tous les indicateurs sont effacés.prec est un entier compris dans la plage [
1
,MAX_PREC
] qui définit la précision des opérations arithmétiques dans le contexte.L'option rounding est l'une des constantes répertoriées dans la section Modes d'arrondi.
Les champs traps et flags répertorient tous les signaux à définir. En général, les nouveaux contextes ne doivent qu'activer des surveillances et laisser les drapeaux baissés.
Les champs Emin et Emax sont des entiers spécifiant les valeurs limites autorisées pour les exposants. Emin doit être dans [
MIN_EMIN
,0
], Emax dans la plage [0
,MAX_EMAX
].Le champ capitals est soit
0
soit1
(la valeur par défaut). S'il est défini à1
, les exposants sont imprimés avec unE
majuscule ; sinon, une
minuscule est utilisé :Decimal('6.02e+23')
.Le champ clamp est soit
0
(la valeur par défaut), soit1
. S'il est défini à1
, l'exposante
d'une instanceDecimal
représentable dans ce contexte est strictement limité à la plageEmin - prec + 1 <= e <= Emax - prec + 1
. Si clamp est0
alors une condition plus faible est vraie : l'exposant ajusté de l'instanceDecimal
est au plusEmax
. Lorsque clamp vaut1
, un grand nombre normal voit, si possible, son exposant réduit et un nombre correspondant de zéros ajouté à sa mantisse, afin de s'adapter aux contraintes d'exposant ; cela préserve la valeur du nombre mais perd des informations sur les zéros significatifs. Par exemple :>>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999') Decimal('1.23000E+999')
Une valeur clamp de
1
permet la compatibilité avec les formats d'échange décimaux à largeur fixe spécifiés dans la norme IEEE 754.La classe
Context
définit plusieurs méthodes à usage général ainsi qu'un grand nombre de méthodes permettant de faire de l'arithmétique directement dans un contexte donné. De plus, pour chacune des méthodesDecimal
décrites ci-dessus (à l'exception des méthodesadjusted()
etas_tuple()
), il existe une méthodeContext
correspondante. Par exemple, pour une instanceContext
C
et une instanceDecimal
x
,C.exp(x)
est équivalent àx.exp(context=C)
. Chaque méthodeContext
accepte un entier Python (une instance deint
) partout où une instance Decimal est acceptée.- clear_flags()¶
Réinitialise tous les drapeaux à
0
.
- clear_traps()¶
Réinitialise toutes les surveillances à
0
.Nouveau dans la version 3.3.
- copy()¶
Renvoie une copie du contexte.
- copy_decimal(num)¶
Renvoie une copie de l'instance
Decimal
num.
- create_decimal(num)¶
Crée une nouvelle instance Decimal à partir de num mais en utilisant self comme contexte. Contrairement au constructeur
Decimal
, la précision du contexte, la méthode d'arrondi, les drapeaux et leurs surveillances sont appliqués à la conversion.C'est utile car les constantes sont souvent données avec une précision supérieure à celle requise par l'application. Un autre avantage est que l’arrondi élimine immédiatement les effets involontaires des chiffres au-delà de la précision actuelle. Dans l'exemple suivant, l'utilisation d'entrées non arrondies signifie que l'ajout de zéro à une somme peut modifier le résultat :
>>> getcontext().prec = 3 >>> Decimal('3.4445') + Decimal('1.0023') Decimal('4.45') >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023') Decimal('4.44')
Cette méthode implémente l'opération to-number de la spécification IBM. Si l’argument est une chaîne, aucun espace ou trait de soulignement de début ou de fin n’est autorisé.
- create_decimal_from_float(f)¶
Crée une nouvelle instance Decimal à partir d'un float f mais en arrondissant en utilisant self comme contexte. Contrairement à la méthode de classe
Decimal.from_float()
, la précision du contexte, la méthode d'arrondi, les drapeaux et leurs surveillances sont appliqués à la conversion.>>> context = Context(prec=5, rounding=ROUND_DOWN) >>> context.create_decimal_from_float(math.pi) Decimal('3.1415') >>> context = Context(prec=5, traps=[Inexact]) >>> context.create_decimal_from_float(math.pi) Traceback (most recent call last): ... decimal.Inexact: None
Nouveau dans la version 3.1.
- Etiny()¶
Renvoie une valeur égale à
Emin - prec + 1
qui est la valeur minimale de l'exposant pour les résultats avec dépassement inférieur. Lorsqu'un dépassement inférieur se produit, l'exposant est défini surEtiny
.
- Etop()¶
Renvoie une valeur égale à
Emax - prec + 1
.
L'approche habituelle pour travailler avec des décimaux consiste à créer des instances
Decimal
, puis à appliquer des opérations arithmétiques qui ont lieu dans le contexte actuel du fil d'exécution actif. Une approche alternative consiste à utiliser des méthodes contextuelles pour calculer dans un contexte spécifique. Les méthodes sont similaires à celles de la classeDecimal
et ne sont décrites que brièvement ici.- abs(x)¶
Renvoie la valeur absolue de x.
- add(x, y)¶
Renvoie la somme de x et y.
- canonical(x)¶
Renvoie l'objet Decimal x lui-même.
- compare(x, y)¶
Compare x et y numériquement.
- compare_signal(x, y)¶
Compare numériquement les valeurs des deux opérandes.
- compare_total(x, y)¶
Compare deux opérandes en utilisant leur représentation abstraite.
- compare_total_mag(x, y)¶
Compare deux opérandes en utilisant leur représentation abstraite, en ignorant le signe.
- copy_abs(x)¶
Renvoie une copie de x avec le signe à 0 (c.-à-d. positif).
- copy_negate(x)¶
Renvoie une copie de x mais de signe opposé.
- copy_sign(x, y)¶
Copie le signe de y vers x.
- divide(x, y)¶
Renvoie x divisé par y.
- divide_int(x, y)¶
Renvoie x divisé par y, tronqué comme entier.
- divmod(x, y)¶
Renvoie la partie entière de la division entre deux nombres.
- exp(x)¶
Renvoie
e ** x
.
- fma(x, y, z)¶
Renvoie x multiplié par y, plus z.
- is_canonical(x)¶
Renvoie
True
si x est canonique ;False
sinon.
- is_finite(x)¶
Renvoie
True
si x est fini ;False
sinon.
- is_infinite(x)¶
Renvoie
True
si x est infini etFalse
sinon.
- is_nan(x)¶
Renvoie
True
si x est un NaN (silencieux ou signalisé),False
sinon.
- is_normal(x)¶
Renvoie
True
si x est un nombre normal ;False
sinon.
- is_qnan(x)¶
Renvoie
True
si x est un NaN silencieux,False
sinon.
- is_signed(x)¶
Renvoie
True
si x est négatif etFalse
sinon.
- is_snan(x)¶
Renvoie
True
si x est un NaN signalisé,False
sinon.
- is_subnormal(x)¶
Renvoie
True
si x est est inférieur à la valeur minimale représentable ; sinon, renvoieFalse
.
- is_zero(x)¶
Renvoie
True
si x est un zéro etFalse
sinon.
- ln(x)¶
Renvoie le logarithme naturel (en base e) de x.
- log10(x)¶
Renvoie le logarithme en base 10 de x.
- logb(x)¶
Renvoie l'exposant correspondant du chiffre de poids fort de la mantisse de l'opérande.
- logical_and(x, y)¶
Applique l'opération logique ET entre les chiffres de chaque opérande.
- logical_invert(x)¶
Inverse tous les chiffres de x.
- logical_or(x, y)¶
Applique l'opération logique OU entre les chiffres de chaque opérande.
- logical_xor(x, y)¶
Applique l'opération logique OU EXCLUSIF entre les chiffres de chaque opérande.
- max(x, y)¶
Renvoie le maximum entre les deux valeurs numériques.
- max_mag(x, y)¶
Compare les valeurs numériquement en ignorant leur signe.
- min(x, y)¶
Compare numériquement deux valeurs et renvoie le minimum.
- min_mag(x, y)¶
Compare les valeurs numériquement en ignorant leur signe.
- minus(x)¶
Correspond à l’opérateur unaire préfixé « moins » en Python.
- multiply(x, y)¶
Renvoie la multiplication de x avec y.
- next_minus(x)¶
Renvoie le plus grand nombre représentable inférieur à x.
- next_plus(x)¶
Renvoie le plus petit nombre représentable supérieur à x.
- next_toward(x, y)¶
Renvoie le nombre le plus proche de x, en direction de y.
- normalize(x)¶
Réduit x à sa forme la plus simple.
- number_class(x)¶
Renvoie une indication de la classe de x.
- plus(x)¶
Correspond à l'opérateur unaire préfixé « plus » en Python. Cette opération applique la précision du contexte et l'arrondi, ce n'est donc pas une opération d'identité.
- power(x, y, modulo=None)¶
Renvoie
x
à la puissancey
, réduit modulomodulo
si celui-ci est donné.Avec deux arguments, calcule
x**y
. Six
est négatif alorsy
doit être entier. Le résultat est inexact à moins quey
soit entier et que le résultat soit fini et puisse être exprimé exactement enprecision
chiffres. Le mode d'arrondi du contexte est utilisé. Les résultats sont toujours correctement arrondis à la manière de Python.Decimal(0) ** Decimal(0)
donneInvalidOperation
et, siInvalidOperation
n'est pas surveillé, cela donneDecimal('NaN')
.Modifié dans la version 3.3: le module C calcule
power()
en termes de fonctionsexp()
etln()
correctement arrondies. Le résultat est bien défini mais seulement « presque toujours correctement arrondi ».Avec trois arguments, calcule
(x**y) % modulo
. Pour la forme à trois arguments, les restrictions suivantes sur les arguments s'appliquent :les trois arguments doivent être entiers ;
y
ne doit pas être négatif ;au moins l'un de
x
ouy
doit être différent de zéro ;modulo
doit être différent de zéro et avoir au plusprecision
chiffres.
La valeur résultant de
Context.power(x, y, modulo)
est égale à la valeur qui serait obtenue en calculant(x**y) % modulo
avec une précision illimitée, mais est calculée plus efficacement. L'exposant du résultat est zéro, quels que soient les exposants dex
,y
etmodulo
. Le résultat est toujours exact.
- quantize(x, y)¶
Renvoie une valeur égale à x (arrondie), ayant l'exposant de y.
- radix()¶
Renvoie 10 car c'est
Decimal
, :)
- remainder(x, y)¶
Renvoie le reste de la division entière.
Le signe du résultat, s'il est différent de zéro, est le même que celui du dividende initial.
- remainder_near(x, y)¶
Renvoie
x - y * n
, où n est l'entier le plus proche de la valeur exacte dex / y
(si le résultat est 0 alors son signe est le signe de x).
- rotate(x, y)¶
Renvoie une copie pivotée de x, y fois.
- same_quantum(x, y)¶
Renvoie
True
si les deux opérandes ont le même exposant.
- scaleb(x, y)¶
Renvoie le premier opérande après avoir ajouté la deuxième valeur à son exp.
- shift(x, y)¶
Renvoie une copie décalée de x, y fois.
- sqrt(x)¶
Renvoie la racine carrée d'un nombre non négatif avec la précision donnée par le contexte.
- subtract(x, y)¶
Renvoie la différence entre x et y.
- to_eng_string(x)¶
Convertit en chaîne, en utilisant la notation ingénieur si un exposant est nécessaire.
La notation ingénieur possède un exposant qui est un multiple de 3. Cela peut laisser jusqu'à 3 chiffres à gauche de la décimale et peut nécessiter l'ajout d'un ou de deux zéros en fin de mantisse.
- to_integral_exact(x)¶
Arrondit à un entier.
- to_sci_string(x)¶
Convertit un nombre en chaîne en utilisant la notation scientifique.
Constantes¶
Les constantes de cette section ne sont pertinentes que pour le module implémenté en C. Elles sont incluses dans la version en Python pur pour raison de compatibilité .
32-bit |
64-bit |
|
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
- decimal.HAVE_THREADS¶
La valeur est
True
. C'est obsolète, car maintenant Python gère toujours les fils d'exécution.
Obsolète depuis la version 3.9.
- decimal.HAVE_CONTEXTVAR¶
La valeur par défaut est
True
. Si Python estconfiguré à l'aide de l'option --without-decimal-contextvar
, la version C utilise un contexte lié au fil d'exécution plutôt qu'un contexte lié à la coroutine et la valeur estFalse
. Ceci est légèrement plus rapide dans certains scénarios où les contextes sont imbriqués.
Nouveau dans la version 3.8.3.
Modes d'arrondi¶
- decimal.ROUND_CEILING¶
Arrondit vers
Infinity
.
- decimal.ROUND_DOWN¶
Arrondit vers zéro.
- decimal.ROUND_FLOOR¶
Arrondit vers
-Infinity
.
- decimal.ROUND_HALF_DOWN¶
Arrondit au plus proche, en allant vers zéro si l'on est au milieu.
- decimal.ROUND_HALF_EVEN¶
Arrondit au plus proche, en allant à l'entier pair le plus proche si l'on est au milieu.
- decimal.ROUND_HALF_UP¶
Arrondit au plus proche, en s'éloignant de zéro si l'on est au milieu.
- decimal.ROUND_UP¶
Arrondit en s'éloignant de zéro.
- decimal.ROUND_05UP¶
Arrondit en s'éloignant de zéro si le dernier chiffre après l'arrondi vers zéro aurait été 0 ou 5 ; sinon arrondit en se rapprochant de zéro.
Signaux¶
Les signaux représentent les états différents pendant le calcul. Chacun de ces états est associé à un drapeau (flag) du contexte courant et peut être surveillé (via un trap) dans le contexte courant.
L'indicateur de contexte est levé chaque fois que l'on rentre dans l'état. Après le calcul, les indicateurs peuvent être vérifiés à des fins d'information (par exemple, pour déterminer si un calcul était exact). Après avoir vérifié les indicateurs, assurez-vous de tous les effacer avant de commencer le calcul suivant.
Si le signal est surveillé dans le contexte, l'entrée dans l'état provoque le déclenchement d'une exception Python. Par exemple, si DivisionByZero
est surveillé, alors une exception DivisionByZero
est levée lorsque cette condition est remplie.
- class decimal.Clamped¶
Modification d'un exposant pour l'adapter aux contraintes de représentation.
En règle générale, cela se produit lorsqu'un exposant se situe en dehors des limites
Emin
etEmax
du contexte. Si possible, l'exposant est réduit pour s'adapter en ajoutant des zéros à la mantisse.
- class decimal.DecimalException¶
Classe mère pour d'autres signaux et une sous-classe de
ArithmeticError
.
- class decimal.DivisionByZero¶
Signale la division d'un nombre non infini par zéro.
Peut se produire lors d’une division, d’une division modulo ou lors de l’élévation d’un nombre à une puissance négative. Si ce signal n'est pas surveillé, renvoie
Infinity
ou-Infinity
avec le signe déterminé par les entrées du calcul.
- class decimal.Inexact¶
Indique qu'un arrondi a eu lieu et que le résultat n'est pas exact.
Se produit lorsque des chiffres non nuls ont été supprimés lors de l'arrondi. Le résultat arrondi est renvoyé. Le drapeau de signalisation ou la surveillance sont utilisés pour détecter lorsque les résultats sont inexacts.
- class decimal.InvalidOperation¶
Une opération non valide a été effectuée.
Indique qu'une opération demandée n'a aucun sens. S'il n'est pas surveillé, renvoie
NaN
. Les causes possibles incluent :Infinity - Infinity 0 * Infinity Infinity / Infinity x % 0 Infinity % x sqrt(-x) and x > 0 0 ** 0 x ** (non-integer) x ** Infinity
- class decimal.Overflow¶
Débordement numérique.
Indique que l'exposant est supérieur à
Context.Emax
après l'arrondi. S'il n'est pas surveillé, le résultat dépend du mode d'arrondi, soit en tirant vers l'intérieur jusqu'au plus grand nombre fini représentable, soit en arrondissant vers l'extérieur àInfinity
. Dans les deux cas,Inexact
etRounded
sont également signalés.
- class decimal.Rounded¶
Des arrondis ont eu lieu, même s'il est possible qu'aucune information n'ait été perdue.
Signalé chaque fois que l'arrondi supprime des chiffres ; même si ces chiffres sont nuls (par exemple en arrondissant
5.00
à5.0
). S'il n'est pas surveillé, renvoie le résultat inchangé. Ce signal est utilisé pour détecter la perte de chiffres significatifs.
- class decimal.Subnormal¶
L'exposant était inférieur à
Emin
avant l'arrondi.Se produit lorsque le résultat d'une opération est dénormalisé (l'exposant est trop petit). S'il n'est pas surveillé, renvoie le résultat inchangé.
- class decimal.Underflow¶
Sous-dépassement numérique avec résultat arrondi à zéro.
Se produit lorsqu'un résultat dénormalisé est ramené à zéro par arrondi.
Inexact
etSubnormal
sont également signalés.
- class decimal.FloatOperation¶
Active une sémantique plus stricte prévenant le mélange non souhaité de flottants et de décimaux.
Si le signal n'est pas surveillé (par défaut), le mélange de flottants et de décimaux est autorisé dans le constructeur
Decimal
,create_decimal()
et tous les opérateurs de comparaison. La conversion et les comparaisons sont exactes. Toute occurrence d'une opération mixte est enregistrée silencieusement en levantFloatOperation
dans les indicateurs de contexte. Les conversions explicites avecfrom_float()
oucreate_decimal_from_float()
ne lèvent pas l'indicateur.Sinon (le signal est surveillé), seules les comparaisons d'égalité et les conversions explicites sont silencieuses. Toutes les autres opérations mixtes lèvent
FloatOperation
.
Le tableau suivant résume la hiérarchie des signaux :
exceptions.ArithmeticError(exceptions.Exception)
DecimalException
Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow(Inexact, Rounded)
Underflow(Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal
FloatOperation(DecimalException, exceptions.TypeError)
Notes pour les nombres à virgule flottante¶
Atténuation des erreurs d'arrondi avec une précision accrue¶
L'utilisation de la virgule flottante décimale élimine l'erreur de représentation décimale (ce qui permet de représenter 0.1
exactement) ; cependant, certaines opérations peuvent toujours entraîner une erreur d'arrondi lorsque des chiffres non nuls dépassent la précision fixée.
Les effets de l’erreur d’arrondi peuvent être amplifiés par l’ajout ou la soustraction de quantités proches de la limite d'arrondi, entraînant une perte de précision. Knuth fournit deux exemples instructifs où l'arithmétique à virgule flottante arrondie avec une précision insuffisante provoque la rupture des propriétés associatives et distributives de l'addition :
# Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext().prec = 8
>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
>>> (u + v) + w
Decimal('9.5111111')
>>> u + (v + w)
Decimal('10')
>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
>>> (u*v) + (u*w)
Decimal('0.01')
>>> u * (v+w)
Decimal('0.0060000')
Le module decimal
permet de rétablir les identités en étendant suffisamment la précision pour éviter la perte de précision :
>>> getcontext().prec = 20
>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
>>> (u + v) + w
Decimal('9.51111111')
>>> u + (v + w)
Decimal('9.51111111')
>>>
>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
>>> (u*v) + (u*w)
Decimal('0.0060000')
>>> u * (v+w)
Decimal('0.0060000')
Valeurs spéciales¶
La représentation des nombres du module decimal
fournit des valeurs spéciales, notamment NaN
, sNaN
, -Infinity
, Infinity
et deux zéros, +0
et -0
.
Les infinis peuvent être construits directement avec Decimal('Infinity')
. En outre, ils peuvent résulter d'une division par zéro lorsque le signal DivisionByZero
n'est pas surveillé. De même, lorsque le signal Overflow
n'est pas surveillé, l'infini peut résulter d'un arrondi au-delà des limites du plus grand nombre représentable.
Les infinis sont signés (« points à l'infini ») et peuvent être utilisés dans des opérations arithmétiques où ils sont traités comme de très grands nombres indéterminés. Par exemple, ajouter une constante à l’infini donne un autre résultat infini.
Certaines opérations sont indéterminées et renvoient NaN
ou, si le signal InvalidOperation
est surveillé, déclenchent une exception. Par exemple, 0/0
renvoie NaN
qui signifie « pas un nombre » (not a number en anglais). Cette espèce de NaN
est silencieuse et, une fois créée, elle peut intervenir dans d'autres calculs, aboutissant toujours à un autre NaN
. Ce comportement peut être utile pour une série de calculs qui comportent parfois des entrées manquantes : il permet au calcul de se poursuivre tout en indiquant que les résultats ne sont pas valides.
Une variante est sNaN
qui lève un signal plutôt que de rester silencieux après chaque opération. Il s'agit d'une valeur de retour utile lorsqu'un résultat non valide doit interrompre un calcul pour effectuer un traitement spécial.
Le comportement des opérateurs de comparaison de Python peut être un peu surprenant lorsqu'un NaN
est impliqué. Un test d'égalité où l'un des opérandes est un NaN
silencieux ou de signalisation renvoie toujours False
(même en faisant Decimal('NaN')==Decimal('NaN')
) , tandis qu'un test d'inégalité renvoie toujours True
. Une tentative de comparaison de deux Decimals en utilisant l'un des opérateurs <
, <=
, >
ou >=
lève une InvalidOperation
si l'un ou l'autre des opérandes est un NaN
, et renvoie False
si ce signal n'est pas surveillé. Notez que la spécification General Decimal Arithmetic ne spécifie pas le comportement des comparaisons directes ; ces règles de comparaison impliquant un NaN
sont tirées de la norme IEEE 854 (voir tableau 3 dans la section 5.7). Pour garantir une stricte conformité aux normes, utilisez plutôt les méthodes compare()
et compare_signal()
.
Les zéros signés peuvent résulter de calculs qui débordent. Ils gardent le signe qui aurait résulté si le calcul avait été effectué avec plus de précision. Puisque leur grandeur est nulle, les zéros positifs et négatifs sont traités comme égaux et leur signe est informatif.
En plus des deux zéros signés, distincts mais égaux, il existe diverses représentations du zéro avec des précisions différentes mais de valeur équivalente. Cela prend un peu de temps pour s’y habituer. Pour un œil habitué aux représentations normalisées à virgule flottante, il n’est pas immédiatement évident que le calcul suivant renvoie une valeur égale à zéro :
>>> 1 / Decimal('Infinity')
Decimal('0E-1000026')
Travailler avec plusieurs fils d'exécution¶
La fonction getcontext()
accède à un objet Context
différent pour chaque fil d'exécution. Avoir des contextes de fil d'exécution séparés signifie que les fils peuvent apporter des modifications (telles que getcontext().prec=10
) sans interférer avec les autres fils.
De même, la fonction setcontext()
assigne automatiquement sa cible au fil d'exécution actuel.
Si setcontext()
n'a pas été appelé avant getcontext()
, alors getcontext()
crée automatiquement un nouveau contexte à utiliser dans le fil actuel.
Le nouveau contexte est copié à partir d'un contexte prototype appelé DefaultContext. Pour contrôler les valeurs par défaut afin que chaque fil utilise les mêmes valeurs dans toute l'application, modifiez directement l'objet DefaultContext. Cela doit être fait avant que les fil d'exécution ne soient démarrés afin qu'il n'y ait pas de situation de concurrence entre les fils appelant getcontext()
. Par exemple :
# Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12
DefaultContext.rounding = ROUND_DOWN
DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1
setcontext(DefaultContext)
# Afterwards, the threads can be started
t1.start()
t2.start()
t3.start()
. . .
Cas pratiques¶
Voici quelques exemples de fonctions utilitaires qui montrent comment travailler avec la classe Decimal
:
def moneyfmt(value, places=2, curr='', sep=',', dp='.',
pos='', neg='-', trailneg=''):
"""Convert Decimal to a money formatted string.
places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)
only specify as blank when places is zero
pos: optional sign for positive numbers: '+', space or blank
neg: optional sign for negative numbers: '-', '(', space or blank
trailneg:optional trailing minus indicator: '-', ')', space or blank
>>> d = Decimal('-1234567.8901')
>>> moneyfmt(d, curr='$')
'-$1,234,567.89'
>>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
'1.234.568-'
>>> moneyfmt(d, curr='$', neg='(', trailneg=')')
'($1,234,567.89)'
>>> moneyfmt(Decimal(123456789), sep=' ')
'123 456 789.00'
>>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
'<0.02>'
"""
q = Decimal(10) ** -places # 2 places --> '0.01'
sign, digits, exp = value.quantize(q).as_tuple()
result = []
digits = list(map(str, digits))
build, next = result.append, digits.pop
if sign:
build(trailneg)
for i in range(places):
build(next() if digits else '0')
if places:
build(dp)
if not digits:
build('0')
i = 0
while digits:
build(next())
i += 1
if i == 3 and digits:
i = 0
build(sep)
build(curr)
build(neg if sign else pos)
return ''.join(reversed(result))
def pi():
"""Compute Pi to the current precision.
>>> print(pi())
3.141592653589793238462643383
"""
getcontext().prec += 2 # extra digits for intermediate steps
three = Decimal(3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:
lasts = s
n, na = n+na, na+8
d, da = d+da, da+32
t = (t * n) / d
s += t
getcontext().prec -= 2
return +s # unary plus applies the new precision
def exp(x):
"""Return e raised to the power of x. Result type matches input type.
>>> print(exp(Decimal(1)))
2.718281828459045235360287471
>>> print(exp(Decimal(2)))
7.389056098930650227230427461
>>> print(exp(2.0))
7.38905609893
>>> print(exp(2+0j))
(7.38905609893+0j)
"""
getcontext().prec += 2
i, lasts, s, fact, num = 0, 0, 1, 1, 1
while s != lasts:
lasts = s
i += 1
fact *= i
num *= x
s += num / fact
getcontext().prec -= 2
return +s
def cos(x):
"""Return the cosine of x as measured in radians.
The Taylor series approximation works best for a small value of x.
For larger values, first compute x = x % (2 * pi).
>>> print(cos(Decimal('0.5')))
0.8775825618903727161162815826
>>> print(cos(0.5))
0.87758256189
>>> print(cos(0.5+0j))
(0.87758256189+0j)
"""
getcontext().prec += 2
i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
while s != lasts:
lasts = s
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
s += num / fact * sign
getcontext().prec -= 2
return +s
def sin(x):
"""Return the sine of x as measured in radians.
The Taylor series approximation works best for a small value of x.
For larger values, first compute x = x % (2 * pi).
>>> print(sin(Decimal('0.5')))
0.4794255386042030002732879352
>>> print(sin(0.5))
0.479425538604
>>> print(sin(0.5+0j))
(0.479425538604+0j)
"""
getcontext().prec += 2
i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
while s != lasts:
lasts = s
i += 2
fact *= i * (i-1)
num *= x * x
sign *= -1
s += num / fact * sign
getcontext().prec -= 2
return +s
FAQ decimal¶
Q. Il est fastidieux de taper decimal.Decimal('1234.5')
. Y a-t-il un moyen de réduire la frappe quand on utilise l'interpréteur interactif ?
R. Certains utilisateurs abrègent le constructeur en une seule lettre :
>>> D = decimal.Decimal
>>> D('1.23') + D('3.45')
Decimal('4.68')
Q. Dans une application à virgule fixe avec deux décimales, certaines entrées comportent plusieurs chiffres excédentaires et doivent être arrondies. D'autres ne sont pas censées avoir de chiffres excédentaires et doivent être validées. Quelles méthodes utiliser ?
R. La méthode quantize()
arrondit à un nombre fixe de décimales. Si Inexact
est surveillé, elle est aussi utile pour la validation :
>>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
>>> # Round to two places
>>> Decimal('3.214').quantize(TWOPLACES)
Decimal('3.21')
>>> # Validate that a number does not exceed two places
>>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Decimal('3.21')
>>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Traceback (most recent call last):
...
Inexact: None
Q. Une fois que mes entrées sont à deux décimales valides, comment maintenir cet invariant dans l'application ?
R. Certaines opérations comme l'addition, la soustraction et la multiplication par un entier préservent automatiquement la virgule fixe. D'autres opérations, comme la division et la multiplication par des non-entiers, changent le nombre de décimales et doivent être suivies d'une étape quantize()
:
>>> a = Decimal('102.72') # Initial fixed-point values
>>> b = Decimal('3.17')
>>> a + b # Addition preserves fixed-point
Decimal('105.89')
>>> a - b
Decimal('99.55')
>>> a * 42 # So does integer multiplication
Decimal('4314.24')
>>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
Decimal('325.62')
>>> (b / a).quantize(TWOPLACES) # And quantize division
Decimal('0.03')
Lors du développement d'applications en virgule fixe, il est pratique de définir des fonctions pour gérer cette étape de quantification par quantize()
:
>>> def mul(x, y, fp=TWOPLACES):
... return (x * y).quantize(fp)
>>> def div(x, y, fp=TWOPLACES):
... return (x / y).quantize(fp)
>>> mul(a, b) # Automatically preserve fixed-point
Decimal('325.62')
>>> div(b, a)
Decimal('0.03')
Q. Il existe de nombreuses façons d’exprimer la même valeur. Les nombres 200
, 200.000
, 2E2
et .02E+4
ont tous la même valeur à différentes précisions. Existe-t-il un moyen de les transformer en une seule valeur canonique reconnaissable ?
R. La méthode normalize()
transforme toutes les valeurs équivalentes en un seul représentant :
>>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
>>> [v.normalize() for v in values]
[Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Q. Quand l’arrondi se produit-il dans un calcul ?
R. Il se produit après le calcul. La philosophie de la spécification décimale est que les nombres sont considérés comme exacts et sont créés indépendamment du contexte actuel. Ils peuvent même avoir une plus grande précision que le contexte actuel. Le processus effectue les calculs avec ces entrées exactes, puis l'arrondi (ou d'autres opérations contextuelles) est appliqué au résultat du calcul :
>>> getcontext().prec = 5
>>> pi = Decimal('3.1415926535') # More than 5 digits
>>> pi # All digits are retained
Decimal('3.1415926535')
>>> pi + 0 # Rounded after an addition
Decimal('3.1416')
>>> pi - Decimal('0.00005') # Subtract unrounded numbers, then round
Decimal('3.1415')
>>> pi + 0 - Decimal('0.00005'). # Intermediate values are rounded
Decimal('3.1416')
Q. Certaines valeurs décimales s'affichent toujours en notation scientifique. Existe-t-il un moyen d'obtenir une représentation sans exposant ?
R. Pour certaines valeurs, la notation scientifique est la seule façon d'exprimer le nombre de chiffres significatifs dans la mantisse. Par exemple, exprimer 5.0E+3
par 5000
maintient la valeur constante mais ne peut pas montrer les deux chiffres significatifs de l'original.
Si une application ne se soucie pas du maintien du nombre de chiffres significatifs, il est facile de supprimer l'exposant et les zéros de fin, ce qui modifie le nombre de chiffres significatifs, mais garde la valeur inchangée :
>>> def remove_exponent(d):
... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
>>> remove_exponent(Decimal('5E+3'))
Decimal('5000')
Q. Existe-t-il un moyen de convertir un float normal en Decimal
?
R. Oui, tout nombre à virgule flottante float peut être exprimé exactement sous forme décimale, bien qu'une conversion exacte puisse nécessiter plus de précision que ne le suggère l'intuition :
>>> Decimal(math.pi)
Decimal('3.141592653589793115997963468544185161590576171875')
Q. Dans un calcul complexe, comment puis-je m'assurer que je n'ai pas obtenu de résultat erroné en raison d'un manque de précision ou d'anomalies d'arrondi.
R. Le module decimal facilite le test des résultats. Une bonne pratique consiste à refaire les calculs avec une plus grande précision et avec différents modes d'arrondi. Des résultats très différents indiquent une précision insuffisante, des problèmes de mode d'arrondi, des entrées mal conditionnées ou un algorithme numériquement instable.
Q. J'ai remarqué que la précision du contexte est appliquée aux résultats des opérations mais pas aux entrées. Y a-t-il quelque chose à surveiller lors du mélange de valeurs de précisions différentes ?
R. Oui. Le principe est que toutes les valeurs sont considérées comme exactes, tout comme l’arithmétique sur ces valeurs. Seuls les résultats sont arrondis. L'avantage des entrées est que « ce que vous tapez est ce que vous obtenez ». Un inconvénient est que les résultats peuvent paraître étranges si vous oubliez que les entrées n'ont pas été arrondies :
>>> getcontext().prec = 3
>>> Decimal('3.104') + Decimal('2.104')
Decimal('5.21')
>>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Decimal('5.20')
La solution consiste soit à augmenter la précision, soit à forcer l'arrondi des entrées à l'aide de l'opération unaire plus :
>>> getcontext().prec = 3
>>> +Decimal('1.23456789') # unary plus triggers rounding
Decimal('1.23')
Autrement, les entrées peuvent être arrondies lors de la création à l'aide de la méthode Context.create_decimal()
:
>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Decimal('1.2345')
Q. L'implémentation de CPython est-elle rapide pour les grands nombres ?
R. Oui. Dans les implémentations CPython et PyPy3, les versions C/CFFI du module décimal intègrent correctement la bibliothèque haute vitesse libmpdec pour une précision arbitraire en arithmétique à virgule flottante décimale arrondie [1]. libmpdec
utilise la multiplication Karatsuba pour les nombres de taille moyenne et la transformation de Fourier discrète pour les très grands nombres.
Le contexte doit être adapté pour une arithmétique de précision arbitraire exacte. Emin
et Emax
doivent toujours être définis sur les valeurs maximales, clamp
doit toujours être 0 (valeur par défaut). Le réglage de prec
nécessite une certaine prudence.
L'approche la plus simple pour essayer l'arithmétique sur les grands nombres est d'utiliser également la valeur maximale pour prec
[2] :
>>> setcontext(Context(prec=MAX_PREC, Emax=MAX_EMAX, Emin=MIN_EMIN))
>>> x = Decimal(2) ** 256
>>> x / 128
Decimal('904625697166532776746648320380374280103671755200316906558262375061821325312')
Pour des résultats inexacts, MAX_PREC
est beaucoup trop volumineux sur les plateformes 64 bits et la mémoire disponible sera insuffisante :
>>> Decimal(1) / 3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
MemoryError
Sur les systèmes avec mémoire virtuelle (par exemple Linux), une approche plus sophistiquée consiste à ajuster prec
à la quantité de RAM disponible. Supposons que vous disposiez de 8 Go de RAM et que vous voulez traiter 10 opérandes simultanés utilisant un maximum de 500 Mo chacun :
>>> import sys
>>>
>>> # Maximum number of digits for a single operand using 500MB in 8-byte words
>>> # with 19 digits per word (4-byte and 9 digits for the 32-bit build):
>>> maxdigits = 19 * ((500 * 1024**2) // 8)
>>>
>>> # Check that this works:
>>> c = Context(prec=maxdigits, Emax=MAX_EMAX, Emin=MIN_EMIN)
>>> c.traps[Inexact] = True
>>> setcontext(c)
>>>
>>> # Fill the available precision with nines:
>>> x = Decimal(0).logical_invert() * 9
>>> sys.getsizeof(x)
524288112
>>> x + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.Inexact: [<class 'decimal.Inexact'>]
En général (et en particulier sur les systèmes sans mémoire virtuelle), il est recommandé d'estimer des limites encore plus strictes et de surveiller Inexact
si l'on veut que tous les calculs soient exacts.