Guide Unicode¶
- Release
1.03
This HOWTO discusses Python 2.x’s support for Unicode, and explains various problems that people commonly encounter when trying to work with Unicode. For the Python 3 version, see <https://docs.python.org/3/howto/unicode.html>.
Introduction à Unicode¶
Histoire des codes de caractères¶
En 1968, l”American Standard Code for Information Interchange, mieux connu sous son acronyme ASCII, a été normalisé. L’ASCII définissait des codes numériques pour différents caractères, les valeurs numériques s’étendant de 0 à 127. Par exemple, la lettre minuscule « a » est assignée à 97 comme valeur de code.
ASCII était une norme développée par les États-Unis, elle ne définissait donc que des caractères non accentués. Il y avait « e », mais pas « é » ou « Í ». Cela signifiait que les langues qui nécessitaient des caractères accentués ne pouvaient pas être fidèlement représentées en ASCII. (En fait, les accents manquants importaient pour l’anglais aussi, qui contient des mots tels que « naïve » et « café », et certaines publications ont des styles propres qui exigent des orthographes tels que « coöperate ».)
For a while people just wrote programs that didn’t display accents. I remember looking at Apple ][ BASIC programs, published in French-language publications in the mid-1980s, that had lines like these:
PRINT "MISE A JOUR TERMINEE"
PRINT "PARAMETRES ENREGISTRES"
Those messages should contain accents, and they just look wrong to someone who can read French.
In the 1980s, almost all personal computers were 8-bit, meaning that bytes could hold values ranging from 0 to 255. ASCII codes only went up to 127, so some machines assigned values between 128 and 255 to accented characters. Different machines had different codes, however, which led to problems exchanging files. Eventually various commonly used sets of values for the 128–255 range emerged. Some were true standards, defined by the International Organization for Standardization, and some were de facto conventions that were invented by one company or another and managed to catch on.
255 characters aren’t very many. For example, you can’t fit both the accented characters used in Western Europe and the Cyrillic alphabet used for Russian into the 128–255 range because there are more than 128 such characters.
Vous pouviez écrire les fichiers avec des codes différents (tous vos fichiers russes dans un système de codage appelé KOI8, tous vos fichiers français dans un système de codage différent appelé Latin1), mais que faire si vous souhaitiez écrire un document français citant du texte russe ? Dans les années 80, les gens ont commencé à vouloir résoudre ce problème, et les efforts de standardisation Unicode ont commencé.
Unicode started out using 16-bit characters instead of 8-bit characters. 16 bits means you have 2^16 = 65,536 distinct values available, making it possible to represent many different characters from many different alphabets; an initial goal was to have Unicode contain the alphabets for every single human language. It turns out that even 16 bits isn’t enough to meet that goal, and the modern Unicode specification uses a wider range of codes, 0–1,114,111 (0x10ffff in base-16).
Il existe une norme ISO connexe, ISO 10646. Unicode et ISO 10646 étaient à l’origine des efforts séparés, mais les spécifications ont été fusionnées avec la révision 1.1 d’Unicode.
(This discussion of Unicode’s history is highly simplified. I don’t think the average Python programmer needs to worry about the historical details; consult the Unicode consortium site listed in the References for more information.)
Définitions¶
A character is the smallest possible component of a text. “A”, “B”, “C”, etc., are all different characters. So are “È” and “Í”. Characters are abstractions, and vary depending on the language or context you’re talking about. For example, the symbol for ohms (Ω) is usually drawn much like the capital letter omega (Ω) in the Greek alphabet (they may even be the same in some fonts), but these are two different characters that have different meanings.
The Unicode standard describes how characters are represented by code points. A code point is an integer value, usually denoted in base 16. In the standard, a code point is written using the notation U+12ca to mean the character with value 0x12ca (4810 decimal). The Unicode standard contains a lot of tables listing characters and their corresponding code points:
0061 'a'; LATIN SMALL LETTER A
0062 'b'; LATIN SMALL LETTER B
0063 'c'; LATIN SMALL LETTER C
...
007B '{'; LEFT CURLY BRACKET
Strictly, these definitions imply that it’s meaningless to say “this is character U+12ca”. U+12ca is a code point, which represents some particular character; in this case, it represents the character “ETHIOPIC SYLLABLE WI”. In informal contexts, this distinction between code points and characters will sometimes be forgotten.
Un caractère est représenté sur un écran ou sur papier par un ensemble d’éléments graphiques appelé glyphe. Le glyphe d’un A majuscule, par exemple, est deux traits diagonaux et un trait horizontal, bien que les détails exacts dépendent de la police utilisée. La plupart du code Python n’a pas besoin de s’inquiéter des glyphes ; trouver le bon glyphe à afficher est généralement le travail d’une boîte à outils GUI ou du moteur de rendu des polices d’un terminal.
Encodages¶
To summarize the previous section: a Unicode string is a sequence of code points, which are numbers from 0 to 0x10ffff. This sequence needs to be represented as a set of bytes (meaning, values from 0–255) in memory. The rules for translating a Unicode string into a sequence of bytes are called an encoding.
The first encoding you might think of is an array of 32-bit integers. In this representation, the string « Python » would look like this:
P y t h o n
0x50 00 00 00 79 00 00 00 74 00 00 00 68 00 00 00 6f 00 00 00 6e 00 00 00
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Cette représentation est simple mais son utilisation pose un certain nombre de problèmes.
Elle n’est pas portable ; des processeurs différents ordonnent les octets différemment.
It’s very wasteful of space. In most texts, the majority of the code points are less than 127, or less than 255, so a lot of space is occupied by zero bytes. The above string takes 24 bytes compared to the 6 bytes needed for an ASCII representation. Increased RAM usage doesn’t matter too much (desktop computers have megabytes of RAM, and strings aren’t usually that large), but expanding our usage of disk and network bandwidth by a factor of 4 is intolerable.
Elle n’est pas compatible avec les fonctions C existantes telles que
strlen()
, il faudrait donc utiliser une nouvelle famille de fonctions, celle des chaînes larges (wide strings).De nombreuses normes Internet sont définies en termes de données textuelles et ne peuvent pas gérer le contenu incorporant des octets zéro.
Généralement, les gens n’utilisent pas cet encodage, mais optent pour d’autres encodages plus efficaces et pratiques. UTF-8 est probablement l’encodage le plus couramment pris en charge ; celui-ci sera abordé ci-dessous.
Encodings don’t have to handle every possible Unicode character, and most encodings don’t. For example, Python’s default encoding is the “ascii” encoding. The rules for converting a Unicode string into the ASCII encoding are simple; for each code point:
Si le point de code est < 128, chaque octet est identique à la valeur du point de code.
Si le point de code est égal à 128 ou plus, la chaîne Unicode ne peut pas être représentée dans ce codage (Python déclenche une exception
UnicodeEncodeError
dans ce cas).
Latin-1, also known as ISO-8859-1, is a similar encoding. Unicode code points 0–255 are identical to the Latin-1 values, so converting to this encoding simply requires converting code points to byte values; if a code point larger than 255 is encountered, the string can’t be encoded into Latin-1.
Les encodages ne doivent pas nécessairement être de simples mappages un à un, comme Latin-1. Prenons l’exemple du code EBCDIC d’IBM, utilisé sur les ordinateurs centraux IBM. Les valeurs de lettre ne faisaient pas partie d’un bloc: les lettres « a » à « i » étaient comprises entre 129 et 137, mais les lettres « j » à « r » étaient comprises entre 145 et 153. Si vous vouliez utiliser EBCDIC comme encodage, vous auriez probablement utilisé une sorte de table de correspondance pour effectuer la conversion, mais il s’agit en surtout d’un détail d’implémentation.
UTF-8 is one of the most commonly used encodings. UTF stands for « Unicode Transformation Format », and the “8” means that 8-bit numbers are used in the encoding. (There’s also a UTF-16 encoding, but it’s less frequently used than UTF-8.) UTF-8 uses the following rules:
If the code point is <128, it’s represented by the corresponding byte value.
If the code point is between 128 and 0x7ff, it’s turned into two byte values between 128 and 255.
Code points >0x7ff are turned into three- or four-byte sequences, where each byte of the sequence is between 128 and 255.
UTF-8 a plusieurs propriétés intéressantes :
Il peut gérer n’importe quel point de code Unicode.
A Unicode string is turned into a string of bytes containing no embedded zero bytes. This avoids byte-ordering issues, and means UTF-8 strings can be processed by C functions such as
strcpy()
and sent through protocols that can’t handle zero bytes.Une chaîne de texte ASCII est également un texte UTF-8 valide.
UTF-8 is fairly compact; the majority of code points are turned into two bytes, and values less than 128 occupy only a single byte.
Si des octets sont corrompus ou perdus, il est possible de déterminer le début du prochain point de code encodé en UTF-8 et de se resynchroniser. Il est également improbable que des données 8-bits aléatoires ressemblent à du UTF-8 valide.
Références¶
The Unicode Consortium site at <http://www.unicode.org> has character charts, a glossary, and PDF versions of the Unicode specification. Be prepared for some difficult reading. <http://www.unicode.org/history/> is a chronology of the origin and development of Unicode.
To help understand the standard, Jukka Korpela has written an introductory guide to reading the Unicode character tables, available at <https://www.cs.tut.fi/~jkorpela/unicode/guide.html>.
Another good introductory article was written by Joel Spolsky <http://www.joelonsoftware.com/articles/Unicode.html>. If this introduction didn’t make things clear to you, you should try reading this alternate article before continuing.
Wikipedia entries are often helpful; see the entries for « character encoding » <http://en.wikipedia.org/wiki/Character_encoding> and UTF-8 <http://en.wikipedia.org/wiki/UTF-8>, for example.
Python 2.x’s Unicode Support¶
Maintenant que vous avez appris les rudiments de l’Unicode, nous pouvons regarder les fonctionnalités Unicode de Python.
The Unicode Type¶
Unicode strings are expressed as instances of the unicode
type, one of
Python’s repertoire of built-in types. It derives from an abstract type called
basestring
, which is also an ancestor of the str
type; you can
therefore check if a value is a string type with isinstance(value,
basestring)
. Under the hood, Python represents Unicode strings as either 16-
or 32-bit integers, depending on how the Python interpreter was compiled.
The unicode()
constructor has the signature unicode(string[, encoding,
errors])
. All of its arguments should be 8-bit strings. The first argument
is converted to Unicode using the specified encoding; if you leave off the
encoding
argument, the ASCII encoding is used for the conversion, so
characters greater than 127 will be treated as errors:
>>> unicode('abcdef')
u'abcdef'
>>> s = unicode('abcdef')
>>> type(s)
<type 'unicode'>
>>> unicode('abcdef' + chr(255))
Traceback (most recent call last):
...
UnicodeDecodeError: 'ascii' codec can't decode byte 0xff in position 6:
ordinal not in range(128)
The errors
argument specifies the response when the input string can’t be
converted according to the encoding’s rules. Legal values for this argument are
“strict” (raise a UnicodeDecodeError
exception), “replace” (add U+FFFD,
“REPLACEMENT CHARACTER”), or “ignore” (just leave the character out of the
Unicode result). The following examples show the differences:
>>> unicode('\x80abc', errors='strict')
Traceback (most recent call last):
...
UnicodeDecodeError: 'ascii' codec can't decode byte 0x80 in position 0:
ordinal not in range(128)
>>> unicode('\x80abc', errors='replace')
u'\ufffdabc'
>>> unicode('\x80abc', errors='ignore')
u'abc'
Encodings are specified as strings containing the encoding’s name. Python 2.7 comes with roughly 100 different encodings; see the Python Library Reference at Standard Encodings for a list. Some encodings have multiple names; for example, “latin-1”, “iso_8859_1” and “8859” are all synonyms for the same encoding.
One-character Unicode strings can also be created with the unichr()
built-in function, which takes integers and returns a Unicode string of length 1
that contains the corresponding code point. The reverse operation is the
built-in ord()
function that takes a one-character Unicode string and
returns the code point value:
>>> unichr(40960)
u'\ua000'
>>> ord(u'\ua000')
40960
Instances of the unicode
type have many of the same methods as the
8-bit string type for operations such as searching and formatting:
>>> s = u'Was ever feather so lightly blown to and fro as this multitude?'
>>> s.count('e')
5
>>> s.find('feather')
9
>>> s.find('bird')
-1
>>> s.replace('feather', 'sand')
u'Was ever sand so lightly blown to and fro as this multitude?'
>>> s.upper()
u'WAS EVER FEATHER SO LIGHTLY BLOWN TO AND FRO AS THIS MULTITUDE?'
Note that the arguments to these methods can be Unicode strings or 8-bit strings. 8-bit strings will be converted to Unicode before carrying out the operation; Python’s default ASCII encoding will be used, so characters greater than 127 will cause an exception:
>>> s.find('Was\x9f')
Traceback (most recent call last):
...
UnicodeDecodeError: 'ascii' codec can't decode byte 0x9f in position 3:
ordinal not in range(128)
>>> s.find(u'Was\x9f')
-1
Much Python code that operates on strings will therefore work with Unicode strings without requiring any changes to the code. (Input and output code needs more updating for Unicode; more on this later.)
Another important method is .encode([encoding], [errors='strict'])
, which
returns an 8-bit string version of the Unicode string, encoded in the requested
encoding. The errors
parameter is the same as the parameter of the
unicode()
constructor, with one additional possibility; as well as “strict”,
“ignore”, and “replace”, you can also pass “xmlcharrefreplace” which uses XML’s
character references. The following example shows the different results:
>>> u = unichr(40960) + u'abcd' + unichr(1972)
>>> u.encode('utf-8')
'\xea\x80\x80abcd\xde\xb4'
>>> u.encode('ascii')
Traceback (most recent call last):
...
UnicodeEncodeError: 'ascii' codec can't encode character u'\ua000' in
position 0: ordinal not in range(128)
>>> u.encode('ascii', 'ignore')
'abcd'
>>> u.encode('ascii', 'replace')
'?abcd?'
>>> u.encode('ascii', 'xmlcharrefreplace')
'ꀀabcd޴'
Python’s 8-bit strings have a .decode([encoding], [errors])
method that
interprets the string using the given encoding:
>>> u = unichr(40960) + u'abcd' + unichr(1972) # Assemble a string
>>> utf8_version = u.encode('utf-8') # Encode as UTF-8
>>> type(utf8_version), utf8_version
(<type 'str'>, '\xea\x80\x80abcd\xde\xb4')
>>> u2 = utf8_version.decode('utf-8') # Decode using UTF-8
>>> u == u2 # The two strings match
True
The low-level routines for registering and accessing the available encodings are
found in the codecs
module. However, the encoding and decoding functions
returned by this module are usually more low-level than is comfortable, so I’m
not going to describe the codecs
module here. If you need to implement a
completely new encoding, you’ll need to learn about the codecs
module
interfaces, but implementing encodings is a specialized task that also won’t be
covered here. Consult the Python documentation to learn more about this module.
The most commonly used part of the codecs
module is the
codecs.open()
function which will be discussed in the section on input and
output.
Littéraux Unicode dans le code source Python¶
In Python source code, Unicode literals are written as strings prefixed with the
“u” or “U” character: u'abcdefghijk'
. Specific code points can be written
using the \u
escape sequence, which is followed by four hex digits giving
the code point. The \U
escape sequence is similar, but expects 8 hex
digits, not 4.
Unicode literals can also use the same escape sequences as 8-bit strings,
including \x
, but \x
only takes two hex digits so it can’t express an
arbitrary code point. Octal escapes can go up to U+01ff, which is octal 777.
>>> s = u"a\xac\u1234\u20ac\U00008000"
... # ^^^^ two-digit hex escape
... # ^^^^^^ four-digit Unicode escape
... # ^^^^^^^^^^ eight-digit Unicode escape
>>> for c in s: print ord(c),
...
97 172 4660 8364 32768
Using escape sequences for code points greater than 127 is fine in small doses,
but becomes an annoyance if you’re using many accented characters, as you would
in a program with messages in French or some other accent-using language. You
can also assemble strings using the unichr()
built-in function, but this is
even more tedious.
Idéalement, vous devriez être capable d’écrire des littéraux dans l’encodage naturel de votre langue. Vous pourriez alors éditer le code source de Python avec votre éditeur favori qui affiche les caractères accentués naturellement, et a les bons caractères utilisés au moment de l’exécution.
Python supports writing Unicode literals in any encoding, but you have to declare the encoding being used. This is done by including a special comment as either the first or second line of the source file:
#!/usr/bin/env python
# -*- coding: latin-1 -*-
u = u'abcdé'
print ord(u[-1])
La syntaxe s’inspire de la notation d’Emacs pour spécifier les variables locales à un fichier. Emacs supporte de nombreuses variables différentes, mais Python ne gère que coding. Les symboles -*-
indiquent à Emacs que le commentaire est spécial ; ils n’ont aucune signification pour Python mais sont une convention. Python cherche coding: name
ou coding=name
dans le commentaire.
If you don’t include such a comment, the default encoding used will be ASCII. Versions of Python before 2.4 were Euro-centric and assumed Latin-1 as a default encoding for string literals; in Python 2.4, characters greater than 127 still work but result in a warning. For example, the following program has no encoding declaration:
#!/usr/bin/env python
u = u'abcdé'
print ord(u[-1])
When you run it with Python 2.4, it will output the following warning:
amk:~$ python2.4 p263.py
sys:1: DeprecationWarning: Non-ASCII character '\xe9'
in file p263.py on line 2, but no encoding declared;
see https://www.python.org/peps/pep-0263.html for details
Python 2.5 and higher are stricter and will produce a syntax error:
amk:~$ python2.5 p263.py
File "/tmp/p263.py", line 2
SyntaxError: Non-ASCII character '\xc3' in file /tmp/p263.py
on line 2, but no encoding declared; see
https://www.python.org/peps/pep-0263.html for details
Propriétés Unicode¶
The Unicode specification includes a database of information about code points. For each code point that’s defined, the information includes the character’s name, its category, the numeric value if applicable (Unicode has characters representing the Roman numerals and fractions such as one-third and four-fifths). There are also properties related to the code point’s use in bidirectional text and other display-related properties.
Le programme suivant affiche des informations sur plusieurs caractères et affiche la valeur numérique d’un caractère particulier :
import unicodedata
u = unichr(233) + unichr(0x0bf2) + unichr(3972) + unichr(6000) + unichr(13231)
for i, c in enumerate(u):
print i, '%04x' % ord(c), unicodedata.category(c),
print unicodedata.name(c)
# Get numeric value of second character
print unicodedata.numeric(u[1])
When run, this prints:
0 00e9 Ll LATIN SMALL LETTER E WITH ACUTE
1 0bf2 No TAMIL NUMBER ONE THOUSAND
2 0f84 Mn TIBETAN MARK HALANTA
3 1770 Lo TAGBANWA LETTER SA
4 33af So SQUARE RAD OVER S SQUARED
1000.0
The category codes are abbreviations describing the nature of the character.
These are grouped into categories such as « Letter », « Number », « Punctuation », or
« Symbol », which in turn are broken up into subcategories. To take the codes
from the above output, 'Ll'
means “Letter, lowercase”, 'No'
means
« Number, other », 'Mn'
is « Mark, nonspacing », and 'So'
is « Symbol,
other ». See
<http://www.unicode.org/reports/tr44/#General_Category_Values> for a
list of category codes.
Références¶
The Unicode and 8-bit string types are described in the Python library reference at Sequence Types — str, unicode, list, tuple, bytearray, buffer, xrange.
La documentation du module unicodedata
.
La documentation du module codecs
.
Marc-André Lemburg gave a presentation at EuroPython 2002 titled « Python and Unicode ». A PDF version of his slides is available at <https://downloads.egenix.com/python/Unicode-EPC2002-Talk.pdf>, and is an excellent overview of the design of Python’s Unicode features.
Lecture et écriture de données Unicode¶
Une fois que vous avez écrit du code qui fonctionne avec des données Unicode, le problème suivant concerne les entrées/sorties. Comment obtenir des chaînes Unicode dans votre programme et comment convertir les chaînes Unicode dans une forme appropriée pour le stockage ou la transmission ?
Il est possible que vous n’ayez rien à faire en fonction de vos sources d’entrée et des destinations de vos données de sortie ; il convient de vérifier si les bibliothèques utilisées dans votre application gèrent l’Unicode nativement. Par exemple, les analyseurs XML renvoient souvent des données Unicode. De nombreuses bases de données relationnelles prennent également en charge les colonnes encodées en Unicode et peuvent renvoyer des valeurs Unicode à partir d’une requête SQL.
Unicode data is usually converted to a particular encoding before it gets
written to disk or sent over a socket. It’s possible to do all the work
yourself: open a file, read an 8-bit string from it, and convert the string with
unicode(str, encoding)
. However, the manual approach is not recommended.
One problem is the multi-byte nature of encodings; one Unicode character can be represented by several bytes. If you want to read the file in arbitrary-sized chunks (say, 1K or 4K), you need to write error-handling code to catch the case where only part of the bytes encoding a single Unicode character are read at the end of a chunk. One solution would be to read the entire file into memory and then perform the decoding, but that prevents you from working with files that are extremely large; if you need to read a 2Gb file, you need 2Gb of RAM. (More, really, since for at least a moment you’d need to have both the encoded string and its Unicode version in memory.)
The solution would be to use the low-level decoding interface to catch the case
of partial coding sequences. The work of implementing this has already been
done for you: the codecs
module includes a version of the open()
function that returns a file-like object that assumes the file’s contents are in
a specified encoding and accepts Unicode parameters for methods such as
.read()
and .write()
.
The function’s parameters are open(filename, mode='rb', encoding=None,
errors='strict', buffering=1)
. mode
can be 'r'
, 'w'
, or 'a'
,
just like the corresponding parameter to the regular built-in open()
function; add a '+'
to update the file. buffering
is similarly parallel
to the standard function’s parameter. encoding
is a string giving the
encoding to use; if it’s left as None
, a regular Python file object that
accepts 8-bit strings is returned. Otherwise, a wrapper object is returned, and
data written to or read from the wrapper object will be converted as needed.
errors
specifies the action for encoding errors and can be one of the usual
values of “strict”, “ignore”, and “replace”.
Lire de l’Unicode à partir d’un fichier est donc simple :
import codecs
f = codecs.open('unicode.rst', encoding='utf-8')
for line in f:
print repr(line)
Il est également possible d’ouvrir des fichiers en mode « mise à jour », permettant à la fois la lecture et l’écriture :
f = codecs.open('test', encoding='utf-8', mode='w+')
f.write(u'\u4500 blah blah blah\n')
f.seek(0)
print repr(f.readline()[:1])
f.close()
Unicode character U+FEFF is used as a byte-order mark (BOM), and is often written as the first character of a file in order to assist with autodetection of the file’s byte ordering. Some encodings, such as UTF-16, expect a BOM to be present at the start of a file; when such an encoding is used, the BOM will be automatically written as the first character and will be silently dropped when the file is read. There are variants of these encodings, such as “utf-16-le” and “utf-16-be” for little-endian and big-endian encodings, that specify one particular byte ordering and don’t skip the BOM.
Noms de fichiers Unicode¶
Most of the operating systems in common use today support filenames that contain
arbitrary Unicode characters. Usually this is implemented by converting the
Unicode string into some encoding that varies depending on the system. For
example, Mac OS X uses UTF-8 while Windows uses a configurable encoding; on
Windows, Python uses the name « mbcs » to refer to whatever the currently
configured encoding is. On Unix systems, there will only be a filesystem
encoding if you’ve set the LANG
or LC_CTYPE
environment variables; if
you haven’t, the default encoding is ASCII.
La fonction sys.getfilesystemencoding()
renvoie l’encodage à utiliser sur votre système actuel, au cas où vous voudriez faire l’encodage manuellement, mais il n’y a pas vraiment de raisons de s’embêter avec ça. Lors de l’ouverture d’un fichier pour la lecture ou l’écriture, vous pouvez généralement simplement fournir la chaîne Unicode comme nom de fichier et elle est automatiquement convertie à l’encodage qui convient :
filename = u'filename\u4500abc'
f = open(filename, 'w')
f.write('blah\n')
f.close()
Les fonctions du module os
telles que os.stat()
acceptent également les noms de fichiers Unicode.
os.listdir()
, which returns filenames, raises an issue: should it return
the Unicode version of filenames, or should it return 8-bit strings containing
the encoded versions? os.listdir()
will do both, depending on whether you
provided the directory path as an 8-bit string or a Unicode string. If you pass
a Unicode string as the path, filenames will be decoded using the filesystem’s
encoding and a list of Unicode strings will be returned, while passing an 8-bit
path will return the 8-bit versions of the filenames. For example, assuming the
default filesystem encoding is UTF-8, running the following program:
fn = u'filename\u4500abc'
f = open(fn, 'w')
f.close()
import os
print os.listdir('.')
print os.listdir(u'.')
produit la sortie suivante :
amk:~$ python t.py
['.svn', 'filename\xe4\x94\x80abc', ...]
[u'.svn', u'filename\u4500abc', ...]
La première liste contient les noms de fichiers encodés en UTF-8 et la seconde contient les versions Unicode.
Conseils pour écrire des programmes compatibles Unicode¶
Cette section fournit quelques suggestions sur l’écriture de logiciels qui traitent de l’Unicode.
Le conseil le plus important est:
Software should only work with Unicode strings internally, converting to a particular encoding on output.
If you attempt to write processing functions that accept both Unicode and 8-bit
strings, you will find your program vulnerable to bugs wherever you combine the
two different kinds of strings. Python’s default encoding is ASCII, so whenever
a character with an ASCII value > 127 is in the input data, you’ll get a
UnicodeDecodeError
because that character can’t be handled by the ASCII
encoding.
It’s easy to miss such problems if you only test your software with data that doesn’t contain any accents; everything will seem to work, but there’s actually a bug in your program waiting for the first user who attempts to use characters > 127. A second tip, therefore, is:
Include characters > 127 and, even better, characters > 255 in your test data.
When using data coming from a web browser or some other untrusted source, a
common technique is to check for illegal characters in a string before using the
string in a generated command line or storing it in a database. If you’re doing
this, be careful to check the string once it’s in the form that will be used or
stored; it’s possible for encodings to be used to disguise characters. This is
especially true if the input data also specifies the encoding; many encodings
leave the commonly checked-for characters alone, but Python includes some
encodings such as 'base64'
that modify every single character.
For example, let’s say you have a content management system that takes a Unicode filename, and you want to disallow paths with a “/” character. You might write this code:
def read_file (filename, encoding):
if '/' in filename:
raise ValueError("'/' not allowed in filenames")
unicode_name = filename.decode(encoding)
f = open(unicode_name, 'r')
# ... return contents of file ...
However, if an attacker could specify the 'base64'
encoding, they could pass
'L2V0Yy9wYXNzd2Q='
, which is the base-64 encoded form of the string
'/etc/passwd'
, to read a system file. The above code looks for '/'
characters in the encoded form and misses the dangerous character in the
resulting decoded form.
Références¶
The PDF slides for Marc-André Lemburg’s presentation « Writing Unicode-aware Applications in Python » are available at <https://downloads.egenix.com/python/LSM2005-Developing-Unicode-aware-applications-in-Python.pdf> and discuss questions of character encodings as well as how to internationalize and localize an application.
Historique des modifications et remerciements¶
Thanks to the following people who have noted errors or offered suggestions on this article: Nicholas Bastin, Marius Gedminas, Kent Johnson, Ken Krugler, Marc-André Lemburg, Martin von Löwis, Chad Whitacre.
Version 1.0: posted August 5 2005.
Version 1.01: posted August 7 2005. Corrects factual and markup errors; adds several links.
Version 1.02: posted August 16 2005. Corrects factual errors.
Version 1.03: posted June 20 2010. Notes that Python 3.x is not covered, and that the HOWTO only covers 2.x.