pickle — Python object serialization

Código fuente: Lib/pickle.py


El modulo pickle implementa protocolos binarios para serializar y deserializar una estructura de objetos Python. «Pickling» es el proceso mediante el cual una jerarquía de objetos de Python se convierte en una secuencia de bytes, y el «unpickling» es la operación inversa, mediante la cual una secuencia de bytes de un archivo binario (binary file) ó un objeto tipo binario (bytes-like object) es convertido nuevamente en una jerarquía de objetos. Pickling (y unpickling) son alternativamente conocidos como «serialización», «ensamblaje,» [1] o «aplanamiento»; sin embargo, para evitar confusiones, los términos utilizados aquí son «pickling» y «unpickling».

Advertencia

El modulo pickle no es seguro. Solo deserialize con pickle los datos en los que confía.

Es posible construir datos maliciosos con pickle que ejecuten código arbitrario durante el proceso de `unpickling`. Nunca deserialize datos con pickle que podrían haber venido de una fuente no confiable, o que podrían haber sido manipulados.

Considere firmar los datos con hmac si necesita asegurarse de que no hayan sido alterados.

Los formatos de serialización más seguros como json pueden ser más apropiados si está procesando datos no confiables. Ver Comparación con json.

Relación con otros módulos de Python

Comparación con marshal

Python tiene un módulo de serialización más primitivo llamado marshal, pero en general pickle debería ser siempre la forma preferida de serializar objetos de Python. marshal existe principalmente para soportar archivos Python .pyc.

El modulo pickle difiere de marshal en varias formas significativas:

  • El modulo pickle realiza un seguimiento de los objetos que ya ha serializado, para que las referencias posteriores al mismo objeto no se serializen nuevamente. marshal no hace esto.

    Esto tiene implicaciones tanto para los objetos recursivos como para compartir objetos. Los objetos recursivos son objetos que contienen referencias a sí mismos. Marshal no los maneja y, de hecho, intentar agrupar objetos recursivos bloqueará su intérprete de Python. El intercambio de objetos ocurre cuando hay múltiples referencias al mismo objeto en diferentes lugares de la jerarquía de objetos que se serializan. pickle almacena dichos objetos solo una vez y garantiza que todas las demás referencias apunten a la copia maestra. Los objetos compartidos permanecen compartidos, lo cual puede ser muy importante para los objetos mutables.

  • marshal no se puede usar para serializar clases definidas por el usuario y sus instancias. pickle puede guardar y restaurar instancias de clase de forma transparente, sin embargo, la definición de clase debe ser importable y vivir en el mismo módulo que cuando se almacenó el objeto.

  • No se garantiza que el formato de serialización marshal sea portable a través de todas las versiones de Python. Debido a que su trabajo principal es dar soporte a archivos .pyc, los implementadores de Python se reservan el derecho de cambiar el formato de serialización de formas no compatibles con versiones anteriores si surge la necesidad. El formato de serialización pickle está garantizado para ser compatible con versiones anteriores de Python siempre que se elija un protocolo de pickle compatible y el serializado y deserializado de código con pickle se encargue de lidiar con las diferencias de tipos entre Python 2 y Python 3 si sus datos están cruzando ese limite único entre las versiones del lenguaje.

Comparación con json

Existen diferencias fundamentales entre los protocolos pickle y JSON (JavaScript Object Notation):

  • JSON es un formato de serialización de texto (genera texto unicode, aunque la mayoría de las veces se codifica a utf-8), mientras que pickle es un formato de serialización binario;

  • JSON es legible por humanos, mientras que pickle no lo es;

  • JSON es interoperable y ampliamente utilizado fuera del ecosistema de Python, mientras que pickle es específico de Python;

  • JSON, por defecto, solo puede representar un subconjunto de los tipos integrados de Python, y no clases personalizadas; pickle puede representar un número extremadamente grande de tipos de Python (muchos de ellos automáticamente, mediante el uso inteligente de la introspección de objetos en Python; los casos complejos se pueden abordar implementando API de objetos específicos, specific object APIs);

  • A diferencia de pickle, deserializar JSON no confiable no crea en sí mismo una vulnerabilidad de ejecución de código arbitraria.

Ver también

El modulo json: un módulo de la biblioteca estándar que permite la serialización y deserialización de JSON.

Formato de flujo de datos

El formato de datos utilizado por pickle es específico de Python. Esto tiene la ventaja de que no hay restricciones impuestas por estándares externos como JSON o XDR (que no pueden representar el uso compartido de punteros); sin embargo, significa que los programas que no son de Python pueden no ser capaces de reconstruir objetos Python serialzados con pickle.

Por defecto, el formato de datos pickle utiliza una representación binaria relativamente compacta. Si necesita características de tamaño óptimas, puede eficientemente comprimir datos serializados con pickle.

El modulo pickletools contiene herramientas para analizar flujos de datos generados por pickle. El código fuente de pickletools tiene comentarios extensos sobre los códigos de operación utilizados por los protocolos de pickle.

Actualmente hay 6 protocolos diferentes que se pueden utilizar para serializar con pickle. Cuanto mayor sea el protocolo utilizado, más reciente será la versión de Python necesaria para leer el pickle producido.

  • La versión 0 del protocolo es el protocolo original «legible para humanos» y es compatible con versiones anteriores de Python.

  • La versión 1 del protocolo es un formato binario antiguo que también es compatible con versiones anteriores de Python.

  • La versión 2 del protocolo se introdujo en Python 2.3. Proporciona un serializado con pickle mucho más eficiente de new-style classes. Consulte PEP 307 para obtener información sobre las mejoras que trae el protocolo 2.

  • Se agregó la versión 3 del protocolo en Python 3.0. Tiene soporte explícito para objetos bytes y no puede ser deserializado con pickle por Python 2.x. Este era el protocolo predeterminado en Python 3.0–3.7.

  • Se agregó la versión 4 del protocolo en Python 3.4. Agrega soporte para objetos muy grandes, pickling de mas tipos de objetos y algunas optimizaciones de formato de datos. Es el protocolo predeterminado que comienza con Python 3.8. Consulte PEP 3154 para obtener información sobre las mejoras aportadas por el protocolo 4.

  • Se agregó la versión 5 del protocolo en Python 3.8. Agrega soporte para datos fuera de banda y aceleración para datos dentro de banda. Consulte PEP 574 para obtener información sobre las mejoras aportadas por el protocolo 5.

Nota

La serialización es una noción más primitiva que la persistencia; aunque pickle lee y escribe objetos de archivo, no maneja el problema de nombrar objetos persistentes, ni el problema (aún más complicado) de acceso concurrente a objetos persistentes. El módulo pickle puede transformar un objeto complejo en una secuencia de bytes y puede transformar la secuencia de bytes en un objeto con la misma estructura interna. Quizás lo más obvio que hacer con estos flujos de bytes es escribirlos en un archivo, pero también es concebible enviarlos a través de una red o almacenarlos en una base de datos. El módulo shelve proporciona una interfaz simple para serializar y deserializar objetos con pickle en archivos de bases de datos de estilo DBM.

Interfaz del módulo

Para serializar una jerarquía de objetos, simplemente llame a la función dumps(). De manera similar, para deserializar un flujo de datos, llama a la función loads(). Sin embargo, si desea tener más control sobre la serialización y la deserialización, puede crear un objeto Pickler o Unpickler, respectivamente.

El módulo pickle proporciona las siguientes constantes:

pickle.HIGHEST_PROTOCOL

Un entero, la versión de protocolo (protocol version) más alta disponible. Este valor se puede pasar como un valor de protocolo a las funciones dump() y dumps() así como al constructor Pickler.

pickle.DEFAULT_PROTOCOL

Un entero, la versión de protocolo (protocol version) predeterminada utilizada para el serializado con pickle. Puede ser menor que HIGHEST_PROTOCOL. Actualmente, el protocolo predeterminado es 4, introducido por primera vez en Python 3.4 e incompatible con versiones anteriores.

Distinto en la versión 3.0: El protocolo predeterminado es 3.

Distinto en la versión 3.8: El protocolo predeterminado es 4.

El módulo pickle proporciona las siguientes funciones para que el proceso de pickling sea más conveniente:

pickle.dump(obj, file, protocol=None, *, fix_imports=True, buffer_callback=None)

Escribe la representación pickle del objeto obj en el archivo abierto file object. Esto es equivalente a Pickler(file, protocol).dump(obj).

Los argumentos file, protocol, fix_imports y buffer_callback tienen el mismo significado que en el constructor Pickler.

Distinto en la versión 3.8: Se agregó el argumento buffer_callback.

pickle.dumps(obj, protocol=None, *, fix_imports=True, buffer_callback=None)

Retorna la representación pickle del objeto obj como un objeto bytes, en lugar de escribirlo en un archivo.

Los argumentos protocol, fix_imports y buffer_callback tienen el mismo significado que en el constructor Pickler.

Distinto en la versión 3.8: Se agregó el argumento buffer_callback.

pickle.load(file, *, fix_imports=True, encoding='ASCII', errors='strict', buffers=None)

Lee la representación pickle de un objeto desde un archivo abierto file object y retorna la jerarquía de objetos reconstituidos especificada en el mismo. Esto es equivalente a Unpickler(file).load().

La versión de protocolo del pickle se detecta automáticamente, por lo que no se necesita ningún argumento de protocolo. Los bytes más allá de la representación empaquetada son ignorados.

Los argumentos file, fix_imports, encoding, errors, strict y buffers tienen el mismo significado que en el constructor Unpickler.

Distinto en la versión 3.8: Se agregó el argumento buffers.

pickle.loads(data, /, *, fix_imports=True, encoding='ASCII', errors='strict', buffers=None)

Retorna la jerarquía de objetos reconstruida de la representación pickle data de un objeto. data debe ser un objeto tipo binario (bytes-like object).

La versión de protocolo del pickle se detecta automáticamente, por lo que no se necesita ningún argumento de protocolo. Los bytes más allá de la representación empaquetada son ignorados.

Los argumentos fix_imports, encoding, errors, strict y buffers tienen el mismo significado que en el constructor Unpickler.

Distinto en la versión 3.8: Se agregó el argumento buffers.

El módulo pickle define tres excepciones:

exception pickle.PickleError

Common base class for the other pickling exceptions. It inherits from Exception.

exception pickle.PicklingError

Error raised when an unpicklable object is encountered by Pickler. It inherits from PickleError.

Consulte ¿Qué se puede serializar (pickled) y deserializar (unpickled) con pickle? para aprender qué tipos de objetos se pueden serializar con pickle.

exception pickle.UnpicklingError

Error raised when there is a problem unpickling an object, such as a data corruption or a security violation. It inherits from PickleError.

Tenga en cuenta que también se pueden generar otras excepciones durante la deserializacion con pickle, incluyendo (pero no necesariamente limitado a) AttributeError, EOFError, ImportError, e IndexError.

El módulo pickle exporta tres clases, Pickler, Unpickler y PickleBuffer:

class pickle.Pickler(file, protocol=None, *, fix_imports=True, buffer_callback=None)

Esto toma un archivo binario para escribir un flujo de datos de pickle.

El argumento opcional protocol , un entero, le dice al pickler que use el protocolo dado; los protocolos admitidos son 0 para HIGHEST_PROTOCOL. Si no se especifica, el valor predeterminado es DEFAULT_PROTOCOL. Si se especifica un número negativo, HIGHEST_PROTOCOL es seleccionado.

El argumento file debe tener un método write() que acepte un argumento de bytes individuales. Por lo tanto, puede ser un archivo en disco abierto para escritura binaria, una instancia io.BytesIO , o cualquier otro objeto personalizado que cumpla con esta interfaz.

Si fix_imports es verdadero y protocol es menor que 3, pickle intentará asignar los nuevos nombres de Python 3 a los nombres de módulos antiguos utilizados en Python 2, de modo que la secuencia de datos de pickle sea legible con Python 2.

If buffer_callback is None (the default), buffer views are serialized into file as part of the pickle stream.

If buffer_callback is not None, then it can be called any number of times with a buffer view. If the callback returns a false value (such as None), the given buffer is out-of-band; otherwise the buffer is serialized in-band, i.e. inside the pickle stream.

It is an error if buffer_callback is not None and protocol is None or smaller than 5.

Distinto en la versión 3.8: Se agregó el argumento buffer_callback.

dump(obj)

Escribe la representación serializada con pickle del objeto obj en el objeto archivo abierto dado en el constructor.

persistent_id(obj)

No hacer nada por defecto. Esto existe para que una subclase pueda sobreescribirlo.

Si persistent_id() retorna None, obj es serializado con pickle como siempre. Cualquier otro valor hace que Pickler emita el valor retornado como un ID persistente para obj. El significado de este ID persistente debe definirse por Unpickler.persistent_load(). Tenga en cuenta que el valor retornado por persistent_id() no puede tener una ID persistente.

Ver Persistencia de objetos externos para detalles y ejemplos de uso.

dispatch_table

A pickler object’s dispatch table is a registry of reduction functions of the kind which can be declared using copyreg.pickle(). It is a mapping whose keys are classes and whose values are reduction functions. A reduction function takes a single argument of the associated class and should conform to the same interface as a __reduce__() method.

Por defecto, un objeto de pickle no tendrá un atributo dispatch_table, y en su lugar utilizará la tabla de despacho global administrada por el módulo copyreg. Sin embargo, para personalizar el pickling para un objeto de pickle específico, se puede establecer el atributo dispatch_table en un objeto tipo dict. Alternativamente, si una subclase de Pickler tiene un atributo dispatch_table esto se usará como la tabla de despacho predeterminada para instancias de esa clase.

Ver Tablas de despacho para ejemplos de uso.

Added in version 3.3.

reducer_override(obj)

Special reducer that can be defined in Pickler subclasses. This method has priority over any reducer in the dispatch_table. It should conform to the same interface as a __reduce__() method, and can optionally return NotImplemented to fallback on dispatch_table-registered reducers to pickle obj.

Para un ejemplo detallado, ver Reducción personalizada para tipos, funciones y otros objetos.

Added in version 3.8.

fast

Obsoleto. Habilite el modo rápido si se establece en un valor verdadero. El modo rápido deshabilita el uso de memo, por lo tanto, acelera el proceso de pickling al no generar códigos de operación PUT superfluos. No debe usarse con objetos autorreferenciales; de lo contrario, la clase Pickler se repetirá infinitamente.

Use pickletools.optimize() si necesita pickles más compactos.

class pickle.Unpickler(file, *, fix_imports=True, encoding='ASCII', errors='strict', buffers=None)

Esto toma un archivo binario para leer un flujo de datos de pickle.

La versión de protocolo de pickle se detecta automáticamente, por lo que no se necesita ningún argumento de protocolo.

El argumento file debe tener tres métodos, un método read() que toma un argumento entero, un método readinto() que toma un argumento búfer y un método readline() que no requiere argumentos, como en la interfaz io.BufferedIOBase. Por lo tanto file puede ser un archivo en disco abierto para lectura binaria, un objeto io.BytesIO, o cualquier otro objeto personalizado que cumpla con esta interfaz.

Los argumentos opcionales fix_imports, encoding and errors se utilizan para controlar el soporte de compatibilidad para el flujo de pickle generado por Python 2. Si fix_imports es verdadero, pickle intentará asignar los nombres antiguos de Python 2 a los nuevos nombres utilizados en Python 3. Tanto encoding como errors le indican a pickle cómo decodificar instancias de cadenas de 8 bits seleccionadas por Python 2; estos son predeterminados a “ASCII” y “strict”, respectivamente. encoding puede ser “bytes” para leer estas instancias de cadena de 8 bits como objetos de bytes. Se requiere el uso de encoding='latin1' para realizar el unpickling de arreglos de NumPy e instancias de datetime, date y time serializados con pickle por Python 2.

If buffers is None (the default), then all data necessary for deserialization must be contained in the pickle stream. This means that the buffer_callback argument was None when a Pickler was instantiated (or when dump() or dumps() was called).

If buffers is not None, it should be an iterable of buffer-enabled objects that is consumed each time the pickle stream references an out-of-band buffer view. Such buffers have been given in order to the buffer_callback of a Pickler object.

Distinto en la versión 3.8: Se agregó el argumento buffers.

load()

Lee la representación serializada con pickle de un objeto desde el objeto de archivo abierto dado en el constructor, y retorne la jerarquía de objetos reconstituidos especificada allí. Los Bytes más allá de la representación serializada con pickle del objeto se ignoran.

persistent_load(pid)

Lanza un UnpicklingError de forma predeterminada.

Si se define, persistent_load() debería retornar el objeto especificado por el ID persistente pid. Si se encuentra un ID persistente no válido, se debe lanzar un UnpicklingError.

Ver Persistencia de objetos externos para detalles y ejemplos de uso.

find_class(module, name)

Importa module si es necesario y retorna el objeto llamado name desde el, donde los argumentos module y name son objetos de str. Tenga en cuenta que, a diferencia de lo que sugiere su nombre, find_class() también se usa para buscar funciones.

Las subclases pueden sobreescribir esto para obtener control sobre qué tipo de objetos y cómo se pueden cargar, reduciendo potencialmente los riesgos de seguridad. Consulte Restricción de globals para obtener más detalles.

Lanza un auditing event pickle.find_class con argumentos module, name.

class pickle.PickleBuffer(buffer)

Un envoltorio (wrapper) para un búfer que representa datos serializables con pickle (picklable data). buffer debe ser un objeto que proporciona un búfer (buffer-providing), como objeto tipo binario (bytes-like object) o un arreglo N-dimensional.

PickleBuffer es en sí mismo un proveedor de búfer, por lo que es posible pasarlo a otras API que esperan un objeto que provea un búfer, como memoryview.

Los objetos PickleBuffer solo se pueden serializar usando el protocolo pickle 5 o superior. Son elegibles para serialización fuera de banda (out-of-band serialization).

Added in version 3.8.

raw()

Retorna un memoryview del área de memoria subyacente a este búfer. El objeto retornado es una vista de memoria unidimensional, C-contigua con formato B (bytes sin firmar). BufferError es lanzado si el búfer no es contiguo a C ni a Fortran.

release()

Libera el búfer subyacente expuesto por el objeto PickleBuffer.

¿Qué se puede serializar (pickled) y deserializar (unpickled) con pickle?

Los siguientes tipos se pueden serializar con pickle (pickled):

  • built-in constants (None, True, False, Ellipsis, and NotImplemented);

  • enteros, números de coma flotante, números complejos;

  • cadenas de caracteres, bytes, bytearrays;

  • tuplas, listas, conjuntos y diccionarios que contienen solo objetos serializables con pickle;

  • functions (built-in and user-defined) accessible from the top level of a module (using def, not lambda);

  • clases accesibles desde el nivel superior de un módulo;

  • instances of such classes whose the result of calling __getstate__() is picklable (see section Pickling de Instancias de clases for details).

Los intentos de serializar objetos no serializables con pickle lanzaran la excepción PicklingError; cuando esto sucede, es posible que ya se haya escrito una cantidad no especificada de bytes en el archivo subyacente. Intentar serializar con pickle una estructura de datos altamente recursiva puede exceder la profundidad máxima de recursividad, en este caso se lanzará un RecursionError. Puede aumentar cuidadosamente este límite con sys.setrecursionlimit().

Tenga en cuenta que las funciones (integradas y definidas por el usuario) están completamente serializadas con pickle por qualified name, no por valor. [2] Esto significa que solo se serializa el nombre de la función, junto con el nombre del módulo y las clases que lo contienen. No se serializa ni el código de la función ni ninguno de sus atributos de función. Por lo tanto, el módulo de definición debe poder importarse en el entorno de deserialización y el módulo debe contener el objeto nombrado; de lo contrario, se generará una excepción. [3]

De manera similar, las clases se serializan por nombre completo, por lo que se aplican las mismas restricciones en el entorno de deserialización. Tenga en cuenta que ninguno de los códigos o datos de la clase se serializa, por lo que en el siguiente ejemplo, el atributo de clase attr no se restaura en el entorno de deserializado:

class Foo:
    attr = 'A class attribute'

picklestring = pickle.dumps(Foo)

Estas restricciones son la razón por la que las funciones y clases serializables con pickle deben definirse en el nivel superior de un módulo.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and still load objects that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the class’s __setstate__() method.

Pickling de Instancias de clases

En esta sección, describimos los mecanismos generales disponibles para que usted defina, personalice y controle cómo se serializan y deserializan con Pickle las instancias de clase.

In most cases, no additional code is needed to make instances picklable. By default, pickle will retrieve the class and the attributes of an instance via introspection. When a class instance is unpickled, its __init__() method is usually not invoked. The default behaviour first creates an uninitialized instance and then restores the saved attributes. The following code shows an implementation of this behaviour:

def save(obj):
    return (obj.__class__, obj.__dict__)

def restore(cls, attributes):
    obj = cls.__new__(cls)
    obj.__dict__.update(attributes)
    return obj

Las clases pueden alterar el comportamiento predeterminado proporcionando uno o varios métodos especiales:

object.__getnewargs_ex__()

En los protocolos 2 y más recientes, las clases que implementan el método __getnewargs_ex__() pueden dictar los valores pasados al método __new__() al hacer unpickling. El método debe retornar un par (args, kwargs) donde args es una tupla de argumentos posicionales y kwargs un diccionario de argumentos con nombre para construir el objeto. Estos se pasarán al método __new__() al hacer unpickling.

Debes implementar este método si el método __new__() de tu clase requiere argumentos de solo palabras clave. De lo contrario, se recomienda para la compatibilidad implementar __getnewargs__().

Distinto en la versión 3.6: __getnewargs_ex__() ahora se usa en los protocolos 2 y 3.

object.__getnewargs__()

Este método tiene un propósito similar a __getnewargs_ex__(), pero solo admite argumentos posicionales. Debe retornar una tupla de argumentos args que se pasarán al método __new__() al hacer unpickling.

__getnewargs__() no se llamará si __getnewargs_ex__() está definido.

Distinto en la versión 3.6: Antes de Python 3.6, se llamaba a, __getnewargs__() en lugar de __getnewargs_ex__() en los protocolos 2 y 3.

object.__getstate__()

Las clases pueden influir aún más en cómo se serializan con pickle sus instancias sobrescribiendo el método __getstate__(). Se llama y el objeto devuelto se conserva como el contenido de la instancia, en lugar de un estado predeterminado. Hay varios casos:

  • Para una clase que no tiene instancias __dict__ ni __slots__, el estado predeterminado es None.

  • Para una clase que tiene una instancia __dict__ y no tiene __slots__, el estado predeterminado es self.__dict__.

  • Para una clase que tiene una instancia __dict__ y __slots__, el estado predeterminado es una tupla que consta de dos diccionarios: self.__dict__ y un diccionario que asigna nombres de ranura a valores de ranura. Solo las ranuras que tienen un valor se incluyen en este último.

  • Para una clase que tiene __slots__ y ninguna instancia __dict__, el estado predeterminado es una tupla cuyo primer elemento es None y cuyo segundo elemento es un diccionario que asigna nombres de ranura a valores de ranura descritos en la viñeta anterior.

Distinto en la versión 3.11: Se agregó la implementación predeterminada del método __getstate__() en la clase object.

object.__setstate__(state)

Al hacer unpickling, si la clase define __setstate__(), este es llamado con el estado unpickled (no serializado con pickle). En ese caso, no es necesario que el objeto de estado sea un diccionario. De lo contrario, el estado pickled (pickled state) debe ser un diccionario y sus elementos se asignan al diccionario de la nueva instancia.

Nota

If __reduce__() returns a state with value None at pickling, the __setstate__() method will not be called upon unpickling.

Refer to the section Manejo de objetos con estado for more information about how to use the methods __getstate__() and __setstate__().

Nota

At unpickling time, some methods like __getattr__(), __getattribute__(), or __setattr__() may be called upon the instance. In case those methods rely on some internal invariant being true, the type should implement __new__() to establish such an invariant, as __init__() is not called when unpickling an instance.

As we shall see, pickle does not use directly the methods described above. In fact, these methods are part of the copy protocol which implements the __reduce__() special method. The copy protocol provides a unified interface for retrieving the data necessary for pickling and copying objects. [4]

Although powerful, implementing __reduce__() directly in your classes is error prone. For this reason, class designers should use the high-level interface (i.e., __getnewargs_ex__(), __getstate__() and __setstate__()) whenever possible. We will show, however, cases where using __reduce__() is the only option or leads to more efficient pickling or both.

object.__reduce__()

La interfaz se define actualmente de la siguiente manera. El método __reduce__() no toma ningún argumento y retornará una cadena o preferiblemente una tupla (el objeto retornado a menudo se denomina «valor reducido»).

Si se retorna una cadena, la cadena debe interpretarse como el nombre de una variable global. Debe ser el nombre local del objeto relativo a su módulo; el módulo pickle busca en el espacio de nombres del módulo para determinar el módulo del objeto. Este comportamiento suele ser útil para singletons.

Cuando se retorna una tupla, debe tener entre dos y seis elementos. Los elementos opcionales se pueden omitir o se puede proporcionar None como su valor. La semántica de cada elemento está en orden:

  • Un objeto invocable que se llamará para crear la versión inicial del objeto.

  • Una tupla de argumentos para el objeto invocable. Se debe proporcionar una tupla vacía si el invocable no acepta ningún argumento.

  • Opcionalmente, el estado del objeto, que se pasará al método __setstate__() del objeto como se describió anteriormente. Si el objeto no tiene dicho método, el valor debe ser un diccionario y se agregará al atributo __dict__ del objeto.

  • Optionally, an iterator (and not a sequence) yielding successive items. These items will be appended to the object either using obj.append(item) or, in batch, using obj.extend(list_of_items). This is primarily used for list subclasses, but may be used by other classes as long as they have append and extend methods with the appropriate signature. (Whether append() or extend() is used depends on which pickle protocol version is used as well as the number of items to append, so both must be supported.)

  • Opcionalmente, un iterador (no una secuencia) que produce pares clave-valor sucesivos. Estos elementos se almacenarán en el objeto usando obj[key] = value. Esto se usa principalmente para subclases de diccionario, pero otras clases pueden usarlo siempre que implementen __setitem__().

  • Opcionalmente, un invocable con una firma (obj, state). Este invocable permite al usuario controlar programáticamente el comportamiento de actualización de estado de un objeto específico, en lugar de usar el método estático de obj __setstate__(). Si no es None, este invocable tendrá prioridad sobre obj’s __setstate__().

    Added in version 3.8: Se agregó el sexto elemento opcional de tupla (obj, state).

object.__reduce_ex__(protocol)

Alternativamente, se puede definir un método __reduce_ex__(). La única diferencia es que este método debe tomar un único argumento entero, la versión del protocolo. Cuando esté definido, pickle lo preferirá en lugar del método __reduce__(). Además, __reduce__() se convierte automáticamente en sinónimo de la versión extendida. El uso principal de este método es proporcionar valores reducidos compatibles con versiones anteriores para versiones anteriores de Python.

Persistencia de objetos externos

Para el beneficio de la persistencia del objeto, el módulo pickle admite la noción de una referencia a un objeto fuera del flujo de datos serializados con pickle. Dichos objetos son referenciados por un ID persistente, que debe ser una cadena de caracteres alfanuméricos (para el protocolo 0) [5] o simplemente un objeto arbitrario (para cualquier protocolo más nuevo).

La resolución de tales ID persistentes no está definida por el módulo pickle; delegará esta resolución a los métodos definidos por el usuario en el pickler y el unpickler, persistent_id() y persistent_load() respectivamente.

Para seleccionar objetos que tienen una ID persistente externo, el pickler debe tener un método personalizado persistent_id() que toma un objeto como argumento y retorna None o el ID persistente para ese objeto. Cuando se retorna None, el pickler simplemente serializará el objeto de forma normal. Cuando se retorna una cadena de identificación persistente, el pickler serializará ese objeto, junto con un marcador para que el unpickler lo reconozca como una identificación persistente.

Para hacer el unpickling objetos externos, el unpickler debe tener un método personalizado persistent_load() que toma un objeto de identificación persistente y retorna el objeto referenciado.

Aquí hay un ejemplo completo que presenta cómo se puede usar la identificación persistente para hacer el pickling objetos externos por referencia.

# Simple example presenting how persistent ID can be used to pickle
# external objects by reference.

import pickle
import sqlite3
from collections import namedtuple

# Simple class representing a record in our database.
MemoRecord = namedtuple("MemoRecord", "key, task")

class DBPickler(pickle.Pickler):

    def persistent_id(self, obj):
        # Instead of pickling MemoRecord as a regular class instance, we emit a
        # persistent ID.
        if isinstance(obj, MemoRecord):
            # Here, our persistent ID is simply a tuple, containing a tag and a
            # key, which refers to a specific record in the database.
            return ("MemoRecord", obj.key)
        else:
            # If obj does not have a persistent ID, return None. This means obj
            # needs to be pickled as usual.
            return None


class DBUnpickler(pickle.Unpickler):

    def __init__(self, file, connection):
        super().__init__(file)
        self.connection = connection

    def persistent_load(self, pid):
        # This method is invoked whenever a persistent ID is encountered.
        # Here, pid is the tuple returned by DBPickler.
        cursor = self.connection.cursor()
        type_tag, key_id = pid
        if type_tag == "MemoRecord":
            # Fetch the referenced record from the database and return it.
            cursor.execute("SELECT * FROM memos WHERE key=?", (str(key_id),))
            key, task = cursor.fetchone()
            return MemoRecord(key, task)
        else:
            # Always raises an error if you cannot return the correct object.
            # Otherwise, the unpickler will think None is the object referenced
            # by the persistent ID.
            raise pickle.UnpicklingError("unsupported persistent object")


def main():
    import io
    import pprint

    # Initialize and populate our database.
    conn = sqlite3.connect(":memory:")
    cursor = conn.cursor()
    cursor.execute("CREATE TABLE memos(key INTEGER PRIMARY KEY, task TEXT)")
    tasks = (
        'give food to fish',
        'prepare group meeting',
        'fight with a zebra',
        )
    for task in tasks:
        cursor.execute("INSERT INTO memos VALUES(NULL, ?)", (task,))

    # Fetch the records to be pickled.
    cursor.execute("SELECT * FROM memos")
    memos = [MemoRecord(key, task) for key, task in cursor]
    # Save the records using our custom DBPickler.
    file = io.BytesIO()
    DBPickler(file).dump(memos)

    print("Pickled records:")
    pprint.pprint(memos)

    # Update a record, just for good measure.
    cursor.execute("UPDATE memos SET task='learn italian' WHERE key=1")

    # Load the records from the pickle data stream.
    file.seek(0)
    memos = DBUnpickler(file, conn).load()

    print("Unpickled records:")
    pprint.pprint(memos)


if __name__ == '__main__':
    main()

Tablas de despacho

Si se desea personalizar el pickling de algunas clases sin alterar ningún otro código que dependa del pickling, se puede crear un pickler con una tabla de despacho privada.

The global dispatch table managed by the copyreg module is available as copyreg.dispatch_table. Therefore, one may choose to use a modified copy of copyreg.dispatch_table as a private dispatch table.

Por ejemplo

f = io.BytesIO()
p = pickle.Pickler(f)
p.dispatch_table = copyreg.dispatch_table.copy()
p.dispatch_table[SomeClass] = reduce_SomeClass

crea una instancia de pickle.Pickler con una tabla de despacho privada que maneja la clase AlgunaClase especialmente. Alternativamente, el código

class MyPickler(pickle.Pickler):
    dispatch_table = copyreg.dispatch_table.copy()
    dispatch_table[SomeClass] = reduce_SomeClass
f = io.BytesIO()
p = MyPickler(f)

hace lo mismo, pero todas las instancias de MyPickler compartirán de forma predeterminada la tabla de despacho privada. Por otro lado, el código

copyreg.pickle(SomeClass, reduce_SomeClass)
f = io.BytesIO()
p = pickle.Pickler(f)

modifica la tabla de despacho global compartida por todos los usuarios del módulo copyreg.

Manejo de objetos con estado

Here’s an example that shows how to modify pickling behavior for a class. The TextReader class below opens a text file, and returns the line number and line contents each time its readline() method is called. If a TextReader instance is pickled, all attributes except the file object member are saved. When the instance is unpickled, the file is reopened, and reading resumes from the last location. The __setstate__() and __getstate__() methods are used to implement this behavior.

class TextReader:
    """Print and number lines in a text file."""

    def __init__(self, filename):
        self.filename = filename
        self.file = open(filename)
        self.lineno = 0

    def readline(self):
        self.lineno += 1
        line = self.file.readline()
        if not line:
            return None
        if line.endswith('\n'):
            line = line[:-1]
        return "%i: %s" % (self.lineno, line)

    def __getstate__(self):
        # Copy the object's state from self.__dict__ which contains
        # all our instance attributes. Always use the dict.copy()
        # method to avoid modifying the original state.
        state = self.__dict__.copy()
        # Remove the unpicklable entries.
        del state['file']
        return state

    def __setstate__(self, state):
        # Restore instance attributes (i.e., filename and lineno).
        self.__dict__.update(state)
        # Restore the previously opened file's state. To do so, we need to
        # reopen it and read from it until the line count is restored.
        file = open(self.filename)
        for _ in range(self.lineno):
            file.readline()
        # Finally, save the file.
        self.file = file

Un ejemplo de uso podría ser algo como esto:

>>> reader = TextReader("hello.txt")
>>> reader.readline()
'1: Hello world!'
>>> reader.readline()
'2: I am line number two.'
>>> new_reader = pickle.loads(pickle.dumps(reader))
>>> new_reader.readline()
'3: Goodbye!'

Reducción personalizada para tipos, funciones y otros objetos

Added in version 3.8.

A veces, dispatch_table puede no ser lo suficientemente flexible. En particular, es posible que deseemos personalizar el pickling en función de otro criterio que no sea el tipo de objeto, o es posible que deseemos personalizar el pickling de funciones y clases.

For those cases, it is possible to subclass from the Pickler class and implement a reducer_override() method. This method can return an arbitrary reduction tuple (see __reduce__()). It can alternatively return NotImplemented to fallback to the traditional behavior.

Si se definen tanto dispatch_table como reducer_override(), entonces reducer_override() tiene prioridad.

Nota

Por motivos de rendimiento, no se puede llamar a reducer_override() para los siguientes objetos: None, True, False, e instancias exactas de int, float, bytes, str, dict, set, frozenset, list y tuple.

Aquí hay un ejemplo simple donde permitimos el pickling y reconstruir una clase dada class:

import io
import pickle

class MyClass:
    my_attribute = 1

class MyPickler(pickle.Pickler):
    def reducer_override(self, obj):
        """Custom reducer for MyClass."""
        if getattr(obj, "__name__", None) == "MyClass":
            return type, (obj.__name__, obj.__bases__,
                          {'my_attribute': obj.my_attribute})
        else:
            # For any other object, fallback to usual reduction
            return NotImplemented

f = io.BytesIO()
p = MyPickler(f)
p.dump(MyClass)

del MyClass

unpickled_class = pickle.loads(f.getvalue())

assert isinstance(unpickled_class, type)
assert unpickled_class.__name__ == "MyClass"
assert unpickled_class.my_attribute == 1

Búferes fuera de banda

Added in version 3.8.

En algunos contextos, el módulo pickle se usa para transferir cantidades masivas de datos. Por lo tanto, puede ser importante minimizar el número de copias de memoria para preservar el rendimiento y el consumo de recursos. Sin embargo, el funcionamiento normal del módulo pickle, ya que transforma una estructura gráfica de objetos en un flujo secuencial de bytes, implica intrínsecamente copiar datos hacia y desde el flujo pickle.

Esta restricción puede evitarse si tanto el proveedor (la implementación de los tipos de objeto a transferir) como el consumidor (a implementación del sistema de comunicaciones) admiten las facilidades de transferencia fuera de banda proporcionadas por el protocolo pickle 5 y mayor.

API de proveedor

The large data objects to be pickled must implement a __reduce_ex__() method specialized for protocol 5 and higher, which returns a PickleBuffer instance (instead of e.g. a bytes object) for any large data.

Un objeto PickleBuffer indica que el búfer subyacente es elegible para la transferencia de datos fuera de banda. Estos objetos siguen siendo compatibles con el uso normal del módulo pickle . Sin embargo, los consumidores también pueden optar por decirle a pickle que manejarán esos búferes por sí mismos.

API de consumidor

Un sistema de comunicaciones puede permitir el manejo personalizado de los objetos PickleBuffer generados al serializar un gráfico de objetos.

En el lado del envío, necesita pasar un argumento buffer_callback a Pickler (o a las funciones dump() o dumps()), que se llamará con cada PickleBuffer generado al hacer pickling del gráfico del objeto. Los búferes acumulados por buffer_callback no verán sus datos copiados en el flujo de pickle, solo se insertará un marcador barato.

En el lado receptor, necesita pasar un argumento buffers a Unpickler (o a las funciones load() o loads()), que es un iterable de los búferes que fueron pasado a buffer_callback. Ese iterable debería producir búferes en el mismo orden en que se pasaron a buffer_callback. Esos búferes proporcionarán los datos esperados por los reconstructores de los objetos cuyo pickling produjo los objetos originales PickleBuffer.

Entre el lado de envío y el lado de recepción, el sistema de comunicaciones es libre de implementar su propio mecanismo de transferencia para memorias intermedias fuera de banda. Las posibles optimizaciones incluyen el uso de memoria compartida o compresión dependiente del tipo de datos.

Ejemplo

Aquí hay un ejemplo trivial donde implementamos una subclase bytearray capaz de participar en el pickling de un búfer fuera de banda:

class ZeroCopyByteArray(bytearray):

    def __reduce_ex__(self, protocol):
        if protocol >= 5:
            return type(self)._reconstruct, (PickleBuffer(self),), None
        else:
            # PickleBuffer is forbidden with pickle protocols <= 4.
            return type(self)._reconstruct, (bytearray(self),)

    @classmethod
    def _reconstruct(cls, obj):
        with memoryview(obj) as m:
            # Get a handle over the original buffer object
            obj = m.obj
            if type(obj) is cls:
                # Original buffer object is a ZeroCopyByteArray, return it
                # as-is.
                return obj
            else:
                return cls(obj)

El reconstructor (el método de clase _reconstruct) retorna el objeto que proporciona el búfer si tiene el tipo correcto. Esta es una manera fácil de simular el comportamiento de copia cero en este ejemplo de juguete.

En el lado del consumidor, podemos serializar con pickle esos objetos de la forma habitual, que cuando no se serializan nos dará una copia del objeto original:

b = ZeroCopyByteArray(b"abc")
data = pickle.dumps(b, protocol=5)
new_b = pickle.loads(data)
print(b == new_b)  # True
print(b is new_b)  # False: a copy was made

Pero si pasamos un buffer_callback y luego retornamos los búferes acumulados al anular la serialización, podemos recuperar el objeto original:

b = ZeroCopyByteArray(b"abc")
buffers = []
data = pickle.dumps(b, protocol=5, buffer_callback=buffers.append)
new_b = pickle.loads(data, buffers=buffers)
print(b == new_b)  # True
print(b is new_b)  # True: no copy was made

Este ejemplo está limitado por el hecho de que bytearray asigna su propia memoria: no puedes crear una instancia de bytearray que esté respaldada por la memoria de otro objeto. Sin embargo, los tipos de datos de terceros, como las matrices NumPy no tienen esta limitación y permiten el uso de pickling de copia cero (o realizar la menor cantidad de copias posible) cuando se transfieren entre procesos o sistemas distintos.

Ver también

PEP 574 – Protocolo Pickle 5 con datos fuera de banda

Restricción de globals

De forma predeterminada, el unpickling importará cualquier clase o función que encuentre en los datos de pickle. Para muchas aplicaciones, este comportamiento es inaceptable, ya que permite al unpickler importar e invocar código arbitrario. Solo considere lo que hace este flujo de datos de pickle hechos a mano cuando se carga:

>>> import pickle
>>> pickle.loads(b"cos\nsystem\n(S'echo hello world'\ntR.")
hello world
0

En este ejemplo, el unpickler importa la función os.system() y luego aplica el argumento de cadena «echo hello world». Aunque este ejemplo es inofensivo, no es difícil imaginar uno que pueda dañar su sistema.

Por esta razón, es posible que desee controlar lo que se deserializa con pickle personalizando Unpickler.find_class(). A diferencia de lo que sugiere su nombre, Unpickler.find_class() se llama siempre que se solicita un global (es decir, una clase o una función). Por lo tanto, es posible prohibir completamente los globales o restringirlos a un subconjunto seguro.

Aquí hay un ejemplo de un unpickler que permite cargar solo unas pocas clases seguras del módulo builtins:

import builtins
import io
import pickle

safe_builtins = {
    'range',
    'complex',
    'set',
    'frozenset',
    'slice',
}

class RestrictedUnpickler(pickle.Unpickler):

    def find_class(self, module, name):
        # Only allow safe classes from builtins.
        if module == "builtins" and name in safe_builtins:
            return getattr(builtins, name)
        # Forbid everything else.
        raise pickle.UnpicklingError("global '%s.%s' is forbidden" %
                                     (module, name))

def restricted_loads(s):
    """Helper function analogous to pickle.loads()."""
    return RestrictedUnpickler(io.BytesIO(s)).load()

Un ejemplo de uso de nuestro deserializador que funciona según lo previsto:

>>> restricted_loads(pickle.dumps([1, 2, range(15)]))
[1, 2, range(0, 15)]
>>> restricted_loads(b"cos\nsystem\n(S'echo hello world'\ntR.")
Traceback (most recent call last):
  ...
pickle.UnpicklingError: global 'os.system' is forbidden
>>> restricted_loads(b'cbuiltins\neval\n'
...                  b'(S\'getattr(__import__("os"), "system")'
...                  b'("echo hello world")\'\ntR.')
Traceback (most recent call last):
  ...
pickle.UnpicklingError: global 'builtins.eval' is forbidden

Como muestran nuestros ejemplos, debes tener cuidado con lo que permites que se deserialize con pickle. Por lo tanto, si la seguridad es un problema, puede considerar alternativas como la API de marshalling en xmlrpc.client o soluciones de terceros.

Performance

Las versiones recientes del protocolo pickle (desde el protocolo 2 en adelante) cuentan con codificaciones binarias eficientes para varias características comunes y tipos integrados. Además, el módulo pickle tiene un optimizador transparente escrito en C.

Ejemplos

Para obtener el código más simple, use las funciones dump() y load().

import pickle

# An arbitrary collection of objects supported by pickle.
data = {
    'a': [1, 2.0, 3+4j],
    'b': ("character string", b"byte string"),
    'c': {None, True, False}
}

with open('data.pickle', 'wb') as f:
    # Pickle the 'data' dictionary using the highest protocol available.
    pickle.dump(data, f, pickle.HIGHEST_PROTOCOL)

El siguiente ejemplo lee los datos serializados con pickle resultantes.

import pickle

with open('data.pickle', 'rb') as f:
    # The protocol version used is detected automatically, so we do not
    # have to specify it.
    data = pickle.load(f)

Ver también

Módulo copyreg

Registro de constructor de interfaz Pickle para tipos de extensión.

Módulo pickletools

Herramientas para trabajar y analizar datos serializados con pickle.

Módulo shelve

Bases de datos indexadas de objetos; usa pickle.

Module copy

Copia de objetos superficial y profunda.

Módulo marshal

Serialización de alto rendimiento de tipos integrados.

Notas al pie