itertools
— Funciones que crean iteradores para bucles eficientes¶
Este módulo implementa un número de piezas básicas iterator inspiradas en constructs de APL, Haskell y SML. Cada pieza ha sido reconvertida a una forma apropiada para Python.
El módulo estandariza un conjunto base de herramientas rápidas y eficientes en memoria, útiles por sí mismas o en combinación con otras. Juntas, forman un «álgebra de iteradores», haciendo posible la construcción de herramientas especializadas, sucintas y eficientes, en Python puro.
Por ejemplo, SML provee una herramienta de tabulación tabulate(f)
, que produce una secuencia f(0), f(1), ...
. En Python, se puede lograr el mismo efecto al combinar map()
y count()
para formar map(f, count())
.
Estas herramientas y sus contrapartes incorporadas también funcionan bien con funciones de alta velocidad del módulo operator
. Por ejemplo, el operador de multiplicación se puede mapear a lo largo de dos vectores para formar un eficiente producto escalar: sum(map(operator.mul, vector1, vector2))
.
Iteradores infinitos:
Iterador |
Argumentos |
Resultados |
Ejemplo |
---|---|---|---|
start, [step] |
start, start+step, start+2*step, … |
|
|
p |
p0, p1, … plast, p0, p1, … |
|
|
elem [,n] |
elem, elem, elem, … indefinidamente o hasta n veces |
|
Iteradores que terminan en la secuencia de entrada más corta:
Iterador |
Argumentos |
Resultados |
Ejemplo |
---|---|---|---|
p [,func] |
p0, p0+p1, p0+p1+p2, … |
|
|
p, q, … |
p0, p1, … plast, q0, q1, … |
|
|
iterable |
p0, p1, … plast, q0, q1, … |
|
|
data, selectors |
(d[0] if s[0]), (d[1] if s[1]), … |
|
|
pred, seq |
seq[n], seq[n+1], comenzando cuando pred falla |
|
|
pred, seq |
elementos de seq donde pred(elem) es falso |
|
|
iterable[, key] |
sub-iteradores agrupados según el valor de key(v) |
||
seq, [start,] stop [, step] |
elementos de seq[start:stop:step] |
|
|
func, seq |
func(*seq[0]), func(*seq[1]), … |
|
|
pred, seq |
seq[0], seq[1], hasta que pred falle |
|
|
it, n |
it1, it2, … itn divide un iterador en n |
||
p, q, … |
(p[0], q[0]), (p[1], q[1]), … |
|
Iteradores combinatorios:
Iterador |
Argumentos |
Resultados |
---|---|---|
p, q, … [repeat=1] |
producto cartesiano, equivalente a un bucle for anidado |
|
p[, r] |
tuplas de longitud r, en todas los órdenes posibles, sin elementos repetidos |
|
p, r |
tuplas de longitud r, ordenadas, sin elementos repetidos |
|
p, r |
tuplas de longitud r, ordenadas, con elementos repetidos |
Ejemplos |
Resultados |
---|---|
|
|
|
|
|
|
|
|
Funciones de itertools¶
Todas las funciones del siguiente módulo construyen y retornan iteradores. Algunas proveen flujos infinitos, por lo que deberían ser sólo manipuladas por funciones o bucles que cortan el flujo.
-
itertools.
accumulate
(iterable[, func, *, initial=None])¶ Crea un iterador que retorna sumas acumuladas o resultados acumulados de otra función binaria (especificada a través del argumento opcional func).
Si func es definido, debería ser una función de 2 argumentos. Los elementos de entrada de iterable pueden ser de cualquier tipo que puedan ser aceptados como argumentos de func. (Por ejemplo, con la operación por defecto –adición, los elementos pueden ser cualquier tipo que sea sumable, incluyendo
Decimal
oFraction
.)Usualmente el número de elementos de salida corresponde con el número de elementos del iterador de entrada. Sin embargo, si el argumento clave initial es suministrado, la acumulación empieza con initial como valor inicial y el resultado contiene un elemento más que el iterador de entrada.
Aproximadamente equivalente a:
def accumulate(iterable, func=operator.add, *, initial=None): 'Return running totals' # accumulate([1,2,3,4,5]) --> 1 3 6 10 15 # accumulate([1,2,3,4,5], initial=100) --> 100 101 103 106 110 115 # accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120 it = iter(iterable) total = initial if initial is None: try: total = next(it) except StopIteration: return yield total for element in it: total = func(total, element) yield total
Hay un número de usos para el argumento func. Se le puede asignar
min()
para calcular un mínimo acumulado,max()
para un máximo acumulado, ooperator.mul()
para un producto acumulado. Se pueden crear tablas de amortización al acumular intereses y aplicando pagos. Relaciones de recurrencias de primer orden se puede modelar al proveer el valor inicial en el iterable y utilizando sólo el total acumulado en el argumento func:>>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8] >>> list(accumulate(data, operator.mul)) # running product [3, 12, 72, 144, 144, 1296, 0, 0, 0, 0] >>> list(accumulate(data, max)) # running maximum [3, 4, 6, 6, 6, 9, 9, 9, 9, 9] # Amortize a 5% loan of 1000 with 4 annual payments of 90 >>> cashflows = [1000, -90, -90, -90, -90] >>> list(accumulate(cashflows, lambda bal, pmt: bal*1.05 + pmt)) [1000, 960.0, 918.0, 873.9000000000001, 827.5950000000001] # Chaotic recurrence relation https://en.wikipedia.org/wiki/Logistic_map >>> logistic_map = lambda x, _: r * x * (1 - x) >>> r = 3.8 >>> x0 = 0.4 >>> inputs = repeat(x0, 36) # only the initial value is used >>> [format(x, '.2f') for x in accumulate(inputs, logistic_map)] ['0.40', '0.91', '0.30', '0.81', '0.60', '0.92', '0.29', '0.79', '0.63', '0.88', '0.39', '0.90', '0.33', '0.84', '0.52', '0.95', '0.18', '0.57', '0.93', '0.25', '0.71', '0.79', '0.63', '0.88', '0.39', '0.91', '0.32', '0.83', '0.54', '0.95', '0.20', '0.60', '0.91', '0.30', '0.80', '0.60']
Para una función similar que retorne únicamente el valor final acumulado, revisa
functools.reduce()
.Nuevo en la versión 3.2.
Distinto en la versión 3.3: Adicionó el argumento opcional func.
Distinto en la versión 3.8: Adicionó el argumento opcional initial.
-
itertools.
chain
(*iterables)¶ Crea un iterador que retorna elementos del primer iterable hasta que es consumido, para luego proceder con el siguiente iterable, hasta que todos los iterables son consumidos. Se utiliza para tratar secuencias consecutivas como unas sola secuencia. Aproximadamente equivalente a:
def chain(*iterables): # chain('ABC', 'DEF') --> A B C D E F for it in iterables: for element in it: yield element
-
classmethod
chain.
from_iterable
(iterable)¶ Constructor alternativo para
chain()
. Obtiene entradas enlazadas de un mismo argumento que se evalúa perezosamente. Aproximadamente equivalente a:def from_iterable(iterables): # chain.from_iterable(['ABC', 'DEF']) --> A B C D E F for it in iterables: for element in it: yield element
-
itertools.
combinations
(iterable, r)¶ Retorna subsecuencias de longitud r con elementos del iterable de entrada.
Las tuplas de combinación se emiten en orden lexicográfico según el orden de la entrada iterable. Entonces, si la entrada iterable está ordenada, las tuplas de combinación se producirán en una secuencia ordenada.
Los elementos son tratados como únicos basados en su posición, no en su valor. De esta manera, si los elementos de entrada son únicos, no habrá valores repetidos en cada combinación.
Aproximadamente equivalente a:
def combinations(iterable, r): # combinations('ABCD', 2) --> AB AC AD BC BD CD # combinations(range(4), 3) --> 012 013 023 123 pool = tuple(iterable) n = len(pool) if r > n: return indices = list(range(r)) yield tuple(pool[i] for i in indices) while True: for i in reversed(range(r)): if indices[i] != i + n - r: break else: return indices[i] += 1 for j in range(i+1, r): indices[j] = indices[j-1] + 1 yield tuple(pool[i] for i in indices)
El código para
combinations()
se puede expresar también como una subsecuencia depermutations()
, luego de filtrar entradas donde los elementos no están ordenados (de acuerdo a su posición en el conjunto de entrada):def combinations(iterable, r): pool = tuple(iterable) n = len(pool) for indices in permutations(range(n), r): if sorted(indices) == list(indices): yield tuple(pool[i] for i in indices)
El número de elementos retornados es
n! / r! / (n-r)!
cuando0 <= r <= n
o cero cuandor > n
.
-
itertools.
combinations_with_replacement
(iterable, r)¶ Retorna subsecuencias, de longitud r, con elementos del iterable de entrada, permitiendo que haya elementos individuales repetidos más de una vez.
Las tuplas de combinación se emiten en orden lexicográfico según el orden de la entrada iterable. Entonces, si la entrada iterable está ordenada, las tuplas de combinación se producirán en una secuencia ordenada.
Los elementos son tratados como únicos basados en su posición, no en su valor. De esta manera, si los elementos de entrada son únicos, las combinaciones generadas también serán únicas.
Aproximadamente equivalente a:
def combinations_with_replacement(iterable, r): # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC pool = tuple(iterable) n = len(pool) if not n and r: return indices = [0] * r yield tuple(pool[i] for i in indices) while True: for i in reversed(range(r)): if indices[i] != n - 1: break else: return indices[i:] = [indices[i] + 1] * (r - i) yield tuple(pool[i] for i in indices)
El código para
combinations_with_replacement()
se puede expresar también como una subsecuencia deproduct()
, luego de filtrar entradas donde los elementos no están ordenados (de acuerdo a su posición en el conjunto de entrada):def combinations_with_replacement(iterable, r): pool = tuple(iterable) n = len(pool) for indices in product(range(n), repeat=r): if sorted(indices) == list(indices): yield tuple(pool[i] for i in indices)
El número de elementos retornados es
(n+r-1)! / r! / (n-1)!
cuandon > 0
.Nuevo en la versión 3.1.
-
itertools.
compress
(data, selectors)¶ Crea un iterador que filtra elementos de data, retornando sólo aquellos que tienen un elemento correspondiente en selectors que evalúa a
True
. El iterador se detiene cuando alguno de los iterables (data o selectors) ha sido consumido. Aproximadamente equivalente a:def compress(data, selectors): # compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F return (d for d, s in zip(data, selectors) if s)
Nuevo en la versión 3.1.
-
itertools.
count
(start=0, step=1)¶ Crea un iterador que retorna valores espaciados uniformemente, comenzando con el número start. Usualmente se utiliza como argumento en
map()
para generar puntos de datos consecutivos. También se utiliza enzip()
para agregar secuencias de números. Aproximadamente equivalente a:def count(start=0, step=1): # count(10) --> 10 11 12 13 14 ... # count(2.5, 0.5) -> 2.5 3.0 3.5 ... n = start while True: yield n n += step
Cuando se hace conteo con números de punto flotante, se puede lograr una mejor precisión al sustituir código multiplicativo como:
(start + step * i for i in count())
.Distinto en la versión 3.1: Se adicionó el argumento step y se permitieron argumentos diferentes a enteros.
-
itertools.
cycle
(iterable)¶ Crea un iterador que retorna elementos del iterable y hace una copia de cada uno. Cuando el iterable es consumido, retornar los elementos de la copia almacenada. Se repite indefinidamente. Aproximadamente equivalente a:
def cycle(iterable): # cycle('ABCD') --> A B C D A B C D A B C D ... saved = [] for element in iterable: yield element saved.append(element) while saved: for element in saved: yield element
Ten en cuenta, este miembro del conjunto de herramientas puede requerir almacenamiento auxiliar importante (dependiendo de la longitud del iterable).
-
itertools.
dropwhile
(predicate, iterable)¶ Crea un iterador que descarta elementos del iterable, siempre y cuando el predicado sea verdadero; después, retorna cada elemento. Ten en cuenta, el iterador no produce ningún resultado hasta que el predicado se hace falso, pudiendo incurrir en un tiempo de arranque extenso. Aproximadamente equivalente a:
def dropwhile(predicate, iterable): # dropwhile(lambda x: x<5, [1,4,6,4,1]) --> 6 4 1 iterable = iter(iterable) for x in iterable: if not predicate(x): yield x break for x in iterable: yield x
-
itertools.
filterfalse
(predicate, iterable)¶ Crea un iterador que filtra elementos de un iterable, retornando sólo aquellos para los cuales el predicado es
False
. Si predicate esNone
, retorna los elementos que son falsos. Aproximadamente equivalente a:def filterfalse(predicate, iterable): # filterfalse(lambda x: x%2, range(10)) --> 0 2 4 6 8 if predicate is None: predicate = bool for x in iterable: if not predicate(x): yield x
-
itertools.
groupby
(iterable, key=None)¶ Crea un iterador que retorna claves consecutivas y grupos del iterable. key es una función que calcula un valor clave para cada elemento. Si no se especifica o es
None
, key es una función de identidad por defecto y retorna el elemento sin cambios. Generalmente, el iterable necesita estar ordenado con la misma función key.El funcionamiento de
groupby()
es similar al del filtrouniq
en Unix. Genera un salto o un nuevo grupo cada vez que el valor de la función clave cambia (por lo que usualmente es necesario ordenar los datos usando la misma función clave). Ese comportamiento difiere del de GROUP BY de SQL, el cual agrega elementos comunes sin importar el orden de entrada.El grupo retornado es un iterador mismo que comparte el iterable subyacente con
groupby()
. Al compartir la fuente, cuando el objetogroupby()
se avanza, el grupo previo deja de ser visible. En ese caso, si los datos se necesitan posteriormente, se deberían almacenar como lista:groups = [] uniquekeys = [] data = sorted(data, key=keyfunc) for k, g in groupby(data, keyfunc): groups.append(list(g)) # Store group iterator as a list uniquekeys.append(k)
groupby()
es aproximadamente equivalente a:class groupby: # [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B # [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D def __init__(self, iterable, key=None): if key is None: key = lambda x: x self.keyfunc = key self.it = iter(iterable) self.tgtkey = self.currkey = self.currvalue = object() def __iter__(self): return self def __next__(self): self.id = object() while self.currkey == self.tgtkey: self.currvalue = next(self.it) # Exit on StopIteration self.currkey = self.keyfunc(self.currvalue) self.tgtkey = self.currkey return (self.currkey, self._grouper(self.tgtkey, self.id)) def _grouper(self, tgtkey, id): while self.id is id and self.currkey == tgtkey: yield self.currvalue try: self.currvalue = next(self.it) except StopIteration: return self.currkey = self.keyfunc(self.currvalue)
-
itertools.
islice
(iterable, stop)¶ -
itertools.
islice
(iterable, start, stop[, step]) Crea un iterador que retorna los elementos seleccionados del iterable. Si start es diferente a cero, los elementos del iterable son ignorados hasta que se llegue a start. Después de eso, los elementos son retornados consecutivamente a menos que step posea un valor tan alto que permita que algunos elementos sean ignorados. Si stop es
None
, la iteración continúa hasta que el iterador sea consumido (si es que llega a ocurrir); de lo contrario, se detiene en la posición especificada. A diferencia de la segmentación normal,islice()
no soporta valores negativos para start, stop, o step. Puede usarse para extraer campos relacionados de estructuras de datos que internamente has sido simplificadas (por ejemplo, un reporte multilínea puede contener un nombre de campo cada tres líneas). Aproximadamente equivalente a:def islice(iterable, *args): # islice('ABCDEFG', 2) --> A B # islice('ABCDEFG', 2, 4) --> C D # islice('ABCDEFG', 2, None) --> C D E F G # islice('ABCDEFG', 0, None, 2) --> A C E G s = slice(*args) start, stop, step = s.start or 0, s.stop or sys.maxsize, s.step or 1 it = iter(range(start, stop, step)) try: nexti = next(it) except StopIteration: # Consume *iterable* up to the *start* position. for i, element in zip(range(start), iterable): pass return try: for i, element in enumerate(iterable): if i == nexti: yield element nexti = next(it) except StopIteration: # Consume to *stop*. for i, element in zip(range(i + 1, stop), iterable): pass
Si start es
None
, la iteración empieza en cero. Si step esNone
, step se establece en uno por defecto.
-
itertools.
permutations
(iterable, r=None)¶ Retorna permutaciones de elementos sucesivas de longitud r en el iterable.
Si r no es especificado o si es
None
, entonces por defecto r será igual a la longitud de iterable y todas las permutaciones de máxima longitud serán generadas.Las tuplas de permutación se emiten en orden lexicográfico según el orden de la entrada iterable. Entonces, si la entrada iterable está ordenada, las tuplas de combinación se producirán en una secuencia ordenada.
Los elementos son tratados como únicos según su posición, y no su valor. Por ende, no habrá elementos repetidos en cada permutación si los elementos de entrada son únicos.
Aproximadamente equivalente a:
def permutations(iterable, r=None): # permutations('ABCD', 2) --> AB AC AD BA BC BD CA CB CD DA DB DC # permutations(range(3)) --> 012 021 102 120 201 210 pool = tuple(iterable) n = len(pool) r = n if r is None else r if r > n: return indices = list(range(n)) cycles = list(range(n, n-r, -1)) yield tuple(pool[i] for i in indices[:r]) while n: for i in reversed(range(r)): cycles[i] -= 1 if cycles[i] == 0: indices[i:] = indices[i+1:] + indices[i:i+1] cycles[i] = n - i else: j = cycles[i] indices[i], indices[-j] = indices[-j], indices[i] yield tuple(pool[i] for i in indices[:r]) break else: return
El código para
permutations()
también se puede expresar como una subsecuencia deproduct()
, filtrado para excluir registros con elementos repetidos (aquellos en la misma posición que en el conjunto de entrada):def permutations(iterable, r=None): pool = tuple(iterable) n = len(pool) r = n if r is None else r for indices in product(range(n), repeat=r): if len(set(indices)) == r: yield tuple(pool[i] for i in indices)
El número de elementos retornados es
n! / (n-r)!
cuando0 <= r <= n
o cero cuandor > n
.
-
itertools.
product
(*iterables, repeat=1)¶ Producto cartesiano de los iterables de entrada.
Aproximadamente equivalente a tener bucles for anidados en un generador. Por ejemplo,
product(A, B)
es equivalente a((x,y) for x in A for y in B)
.Los bucles anidados hacen ciclos como un cuentapasos o taxímetro, con el elemento más hacia la derecha avanzando en cada iteración. Este patrón crea un orden lexicográfico en el que, si los iterables de entrada están ordenados, las tuplas producidas son emitidas de manera ordenada.
Para calcular el producto de un iterable consigo mismo, especifica el número de repeticiones con el argumento opcional repeat. Por ejemplo,
product(A, repeat=4)
es equivalente aproduct(A, A, A, A)
.Esta función es aproximadamente equivalente al código siguiente, exceptuando que la implementación real no acumula resultados intermedios en memoria:
def product(*args, repeat=1): # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111 pools = [tuple(pool) for pool in args] * repeat result = [[]] for pool in pools: result = [x+[y] for x in result for y in pool] for prod in result: yield tuple(prod)
Antes de que
product()
se ejecute, consume completamente los iterables de entrada, manteniendo grupos de valores en la memoria para generar los productos. En consecuencia, solo es útil con entradas finitas.
-
itertools.
repeat
(object[, times])¶ Crea un iterador que retorna object una y otra vez. Se ejecuta indefinidamente a menos que se especifique el argumento times. Se utiliza como argumento de
map()
para argumentos invariantes de la función invocada. También se usa conzip()
para crear una parte invariante de una tupla.Aproximadamente equivalente a:
def repeat(object, times=None): # repeat(10, 3) --> 10 10 10 if times is None: while True: yield object else: for i in range(times): yield object
Un uso común de repeat es el de proporcionar un flujo de valores constantes a map o zip:
>>> list(map(pow, range(10), repeat(2))) [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
-
itertools.
starmap
(function, iterable)¶ Crea un iterador que calcula la función utilizando argumentos obtenidos del iterable. Se usa en lugar de
map()
cuando los argumentos ya están agrupados en tuplas de un mismo iterable (los datos ya han sido «pre-comprimidos”). La diferencia entremap()
ystarmap()
es similar a la distinción entrefunction(a,b)
yfunction(*c)
. Aproximadamente equivalente a:def starmap(function, iterable): # starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000 for args in iterable: yield function(*args)
-
itertools.
takewhile
(predicate, iterable)¶ Crea un iterador que retorna elementos del iterador siempre y cuando el predicado sea cierto. Aproximadamente equivalente a:
def takewhile(predicate, iterable): # takewhile(lambda x: x<5, [1,4,6,4,1]) --> 1 4 for x in iterable: if predicate(x): yield x else: break
-
itertools.
tee
(iterable, n=2)¶ Retorna n iteradores independientes de un mismo iterador.
El código Python a continuación ayuda a explicar el funcionamiento de tee (aunque la implementación real es mucho más compleja y usa sólo una cola FIFO subyacente).
Aproximadamente equivalente a:
def tee(iterable, n=2): it = iter(iterable) deques = [collections.deque() for i in range(n)] def gen(mydeque): while True: if not mydeque: # when the local deque is empty try: newval = next(it) # fetch a new value and except StopIteration: return for d in deques: # load it to all the deques d.append(newval) yield mydeque.popleft() return tuple(gen(d) for d in deques)
Una vez que
tee()
ha hecho un corte, el iterable original no se debería usar en otro lugar. De lo contrario, el iterable podría avanzarse sin informar a los objetos tee.Los iteradores
tee
no son threadsafe.RuntimeError
puede ocurrir si se usan simultáneamente iteradores retornados por la misma llamada atee()
call, aún cuando el iterable original sea threadsafe.Esta herramienta de iteración puede requerir almacenamiento auxiliar significativo (dependiendo de qué tantos datos necesitan ser almacenados). En general, si un iterador utiliza todos o la mayoría de los datos antes que otro iterador comience, es más rápido utilizar
list()
en vez detee()
.
-
itertools.
zip_longest
(*iterables, fillvalue=None)¶ Crea un iterador que agrega elementos de cada uno de los iterables. Si los iterables tiene longitud impar, los valores sin encontrar serán iguales a fillvalue. La iteración continúa hasta que el iterable más largo sea consumido. Aproximadamente equivalente a:
def zip_longest(*args, fillvalue=None): # zip_longest('ABCD', 'xy', fillvalue='-') --> Ax By C- D- iterators = [iter(it) for it in args] num_active = len(iterators) if not num_active: return while True: values = [] for i, it in enumerate(iterators): try: value = next(it) except StopIteration: num_active -= 1 if not num_active: return iterators[i] = repeat(fillvalue) value = fillvalue values.append(value) yield tuple(values)
Si alguno de los iterables es potencialmente infinito, la función
zip_longest()
debería ser recubierta por otra que limite el número de llamadas (por ejemplo,islice()
otakewhile()
). Si no se especifica, fillvalue esNone
por defecto.
Fórmulas con itertools¶
Esta sección muestra fórmulas para crear un conjunto de herramientas extendido usando las herramientas de itertools como piezas básicas.
De manera considerable, todas estas fórmulas y muchos otras se pueden instalar desde el proyecto more-itertools, ubicado en el Python Package Index:
pip install more-itertools
Las herramientas adicionales ofrecen el mismo alto rendimiento que las herramientas subyacentes. El rendimiento de memoria superior se mantiene al procesar los elementos uno a uno, y no cargando el iterable entero en memoria. El volumen de código se mantiene bajo al enlazar las herramientas en estilo funcional, eliminando variables temporales. La alta velocidad se retiene al preferir piezas «vectorizadas» sobre el uso de bucles for y generators que puedan incurrir en costos extra.
def take(n, iterable):
"Return first n items of the iterable as a list"
return list(islice(iterable, n))
def prepend(value, iterator):
"Prepend a single value in front of an iterator"
# prepend(1, [2, 3, 4]) -> 1 2 3 4
return chain([value], iterator)
def tabulate(function, start=0):
"Return function(0), function(1), ..."
return map(function, count(start))
def tail(n, iterable):
"Return an iterator over the last n items"
# tail(3, 'ABCDEFG') --> E F G
return iter(collections.deque(iterable, maxlen=n))
def consume(iterator, n=None):
"Advance the iterator n-steps ahead. If n is None, consume entirely."
# Use functions that consume iterators at C speed.
if n is None:
# feed the entire iterator into a zero-length deque
collections.deque(iterator, maxlen=0)
else:
# advance to the empty slice starting at position n
next(islice(iterator, n, n), None)
def nth(iterable, n, default=None):
"Returns the nth item or a default value"
return next(islice(iterable, n, None), default)
def all_equal(iterable):
"Returns True if all the elements are equal to each other"
g = groupby(iterable)
return next(g, True) and not next(g, False)
def quantify(iterable, pred=bool):
"Count how many times the predicate is true"
return sum(map(pred, iterable))
def pad_none(iterable):
"""Returns the sequence elements and then returns None indefinitely.
Useful for emulating the behavior of the built-in map() function.
"""
return chain(iterable, repeat(None))
def ncycles(iterable, n):
"Returns the sequence elements n times"
return chain.from_iterable(repeat(tuple(iterable), n))
def dotproduct(vec1, vec2):
return sum(map(operator.mul, vec1, vec2))
def convolve(signal, kernel):
# See: https://betterexplained.com/articles/intuitive-convolution/
# convolve(data, [0.25, 0.25, 0.25, 0.25]) --> Moving average (blur)
# convolve(data, [1, -1]) --> 1st finite difference (1st derivative)
# convolve(data, [1, -2, 1]) --> 2nd finite difference (2nd derivative)
kernel = tuple(kernel)[::-1]
n = len(kernel)
window = collections.deque([0], maxlen=n) * n
for x in chain(signal, repeat(0, n-1)):
window.append(x)
yield sum(map(operator.mul, kernel, window))
def flatten(list_of_lists):
"Flatten one level of nesting"
return chain.from_iterable(list_of_lists)
def repeatfunc(func, times=None, *args):
"""Repeat calls to func with specified arguments.
Example: repeatfunc(random.random)
"""
if times is None:
return starmap(func, repeat(args))
return starmap(func, repeat(args, times))
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)
def grouper(iterable, n, fillvalue=None):
"Collect data into fixed-length chunks or blocks"
# grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx"
args = [iter(iterable)] * n
return zip_longest(*args, fillvalue=fillvalue)
def roundrobin(*iterables):
"roundrobin('ABC', 'D', 'EF') --> A D E B F C"
# Recipe credited to George Sakkis
num_active = len(iterables)
nexts = cycle(iter(it).__next__ for it in iterables)
while num_active:
try:
for next in nexts:
yield next()
except StopIteration:
# Remove the iterator we just exhausted from the cycle.
num_active -= 1
nexts = cycle(islice(nexts, num_active))
def partition(pred, iterable):
"Use a predicate to partition entries into false entries and true entries"
# partition(is_odd, range(10)) --> 0 2 4 6 8 and 1 3 5 7 9
t1, t2 = tee(iterable)
return filterfalse(pred, t1), filter(pred, t2)
def powerset(iterable):
"powerset([1,2,3]) --> () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
def unique_everseen(iterable, key=None):
"List unique elements, preserving order. Remember all elements ever seen."
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
# unique_everseen('ABBCcAD', str.lower) --> A B C D
seen = set()
seen_add = seen.add
if key is None:
for element in filterfalse(seen.__contains__, iterable):
seen_add(element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen_add(k)
yield element
def unique_justseen(iterable, key=None):
"List unique elements, preserving order. Remember only the element just seen."
# unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
# unique_justseen('ABBCcAD', str.lower) --> A B C A D
return map(next, map(operator.itemgetter(1), groupby(iterable, key)))
def iter_except(func, exception, first=None):
""" Call a function repeatedly until an exception is raised.
Converts a call-until-exception interface to an iterator interface.
Like builtins.iter(func, sentinel) but uses an exception instead
of a sentinel to end the loop.
Examples:
iter_except(functools.partial(heappop, h), IndexError) # priority queue iterator
iter_except(d.popitem, KeyError) # non-blocking dict iterator
iter_except(d.popleft, IndexError) # non-blocking deque iterator
iter_except(q.get_nowait, Queue.Empty) # loop over a producer Queue
iter_except(s.pop, KeyError) # non-blocking set iterator
"""
try:
if first is not None:
yield first() # For database APIs needing an initial cast to db.first()
while True:
yield func()
except exception:
pass
def first_true(iterable, default=False, pred=None):
"""Returns the first true value in the iterable.
If no true value is found, returns *default*
If *pred* is not None, returns the first item
for which pred(item) is true.
"""
# first_true([a,b,c], x) --> a or b or c or x
# first_true([a,b], x, f) --> a if f(a) else b if f(b) else x
return next(filter(pred, iterable), default)
def random_product(*args, repeat=1):
"Random selection from itertools.product(*args, **kwds)"
pools = [tuple(pool) for pool in args] * repeat
return tuple(map(random.choice, pools))
def random_permutation(iterable, r=None):
"Random selection from itertools.permutations(iterable, r)"
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple(random.sample(pool, r))
def random_combination(iterable, r):
"Random selection from itertools.combinations(iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.sample(range(n), r))
return tuple(pool[i] for i in indices)
def random_combination_with_replacement(iterable, r):
"Random selection from itertools.combinations_with_replacement(iterable, r)"
pool = tuple(iterable)
n = len(pool)
indices = sorted(random.choices(range(n), k=r))
return tuple(pool[i] for i in indices)
def nth_combination(iterable, r, index):
"Equivalent to list(combinations(iterable, r))[index]"
pool = tuple(iterable)
n = len(pool)
if r < 0 or r > n:
raise ValueError
c = 1
k = min(r, n-r)
for i in range(1, k+1):
c = c * (n - k + i) // i
if index < 0:
index += c
if index < 0 or index >= c:
raise IndexError
result = []
while r:
c, n, r = c*r//n, n-1, r-1
while index >= c:
index -= c
c, n = c*(n-r)//n, n-1
result.append(pool[-1-n])
return tuple(result)