The Python Language Reference
Version 3.7.17

Guido van Rossum
and the Python development team

junio 28, 2023

Python Software Foundation
Email: docs@python.org

indice general

Introduction
1.1 Alternate Implementations
1.2 Notation it

Lexical analysis

2.1 Linestructure
2.2 Othertokens
2.3 Identifiers and keywords
24 Literals e e e
2.5 Operatorso i e e e e e e e e e e e e
26 Delimiters.
Data model

3.1 Objects, valuesand types oo v v i
3.2 The standard type hierarchy
3.3 Special methodnames
3.4 Coroutineso i i e e e

Execution model

4.1 Structureof aprogram
4.2 Namingand binding
4.3 Exceptions

The import system

51 importlib
5.2 Packages e
5.3 Searching
54 Loading
5.5 ThePathBasedFinder
5.6 Replacing the standard import system

5.7 Package Relative Imports
5.8 Special considerations for __main__

5.9 Openissueso i e e e e e e
5.10 References L.
Expressions

6.1 Arithmetic conversions

B~ W

...................... 63

10

0.2 AMOMS . . . o e e 66
6.3 Primaries e e e e e e e e e e e e e e 73
6.4 AWAIt EXPIrESSION . . . v v v vt e 76
6.5 The power operator e e e 77
6.6 Unary arithmetic and bitwise operationsot e 77
6.7 Binary arithmetic Operations e e e e 77
6.8 Shifting operations i e e e e e e e e e e e e 78
6.9 Binary bitwise Operations i e e e e e e e e e e e e e e e e e e e 79
6.10 CompariSONS o i e e e e e e e e e e e e e e e e e e e 79
6.11 Boolean operationso e e 82
6.12 Conditional XPressions v v v v e e e e e e e e e e e e e e e e e 83
6.13 Lambdas e e e 83
6.14 Expression listS oL e e e e e e e e e e e 83
6.15 Evaluationorder L e e e e e e 84
6.16 Operator precedence L . it e e e e e e e e e e e e e e e e e e 84
Simple statements 85
7.1 Expression Statementso e e e e e e e e e e e e e e 85
7.2 AsSignment StatemMeNntso e e e e e e e e e e e e 86
73 Theassert StatemMent. v v v i v e e i e e e e e e e e e e e e e e e e e 89
7.4 Thepassstatement 0 i i e e e e e e e e e e e e e e e 89
7.5 Thedel Statement v v vt ittt e e e e e e e e e e e e e e e 90
7.6 ThereturnstatemMent. i vt i it e e e e e e e e e e e e e 90
777 The yieldstatement oo v i v v i it e e e e e e e e e e e e e e e 90
7.8 The raisestatement e e e e e e e e e e e e e e e 91
7.9 Thebreak StatemMent v v v v i v e e e e e e e e e e e e e e e e e e e 92
7.10 The continue Statement v v v v v vt e e e e e e e e e e e e e e e e e e e 93
7.11 The import statement v v e i e 93
7.12 The global statement. v v v v v v it e et e e e e e e e e e e e e e e 95
7.13 The nonlocal Statement v v v v v v i et e e e e e e e e e e e e e e e e e e 96
Compound statements 97
8.1 The ifstatement i e 98
8.2 Thewhilestatement i v i ittt et e e e e e e e e e e 98
8.3 The for StalemMent v v i v e 98
84 Thetrystatement i it e 99
8.5 Thewithstatement i i v it et e e e e e e e e e e e 101
8.6 Functiondefinitions e e e e e e e 102
8.7 ClassdefinitionS o e e e e e e e e e e e e e e e e e e e 104
8.8 Coroutines v i i e e e e e e e e e e e e e e e e 105
Top-level components 107
9.1 Complete Python programs o o o e e e e e e e e 107
0.2 Fileinput L e e e e e 108
0.3 Interactive iNPUL o v v o e 108
0.4 EXpPression inpUL v v vt e 108
Full Grammar specification 109
Glosario 113
Acerca de estos documentos 127
B.1 Contribuidores de la documentacion de Python oL 0oL 127
History and License 129

C.1 Historyof thesoftware e 129
C.2 Terms and conditions for accessing or otherwise using Python 130
C.3 Licenses and Acknowledgements for Incorporated Software

D Copyright 147

Indice 149

The Python Language Reference, Version 3.7.17

Este manual de referencia describe la sintaxis y la «<semdntica base» del lenguaje. Es conciso, pero intenta ser exacto y
completo. La semdntica de los tipos de objetos integrados no esenciales y de las funciones y modulos integrados estin
descritos en library-index. Para obtener una introduccién informal al lenguaje, consulte tutorial-index. Para programa-
dores C o C++, existen dos manuales adicionales: extending-index describe detalladamente cémo escribir un médulo de
extension de Python, y c-api-index describe en detalle las interfaces disponibles para los programadores C/C++.

indice general 1

The Python Language Reference, Version 3.7.17

2 indice general

caPiTuLO 1

Introduction

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but will
leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python from this
document alone, you might have to guess things and in fact you would probably end up implementing quite a different
language. On the other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal definition of the
language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, CPython is the one
Python implementation in widespread use (although alternate implementations continue to gain support), and its parti-
cular quirks are sometimes worth being mentioned, especially where the implementation imposes additional limitations.
Therefore, you'll find short «implementation notes» sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented in library-
index. A few built-in modules are mentioned when they interact in a significant way with the language definition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate implementations
which are of particular interest to different audiences.

Known implementations include:

CPython This is the original and most-maintained implementation of Python, written in C. New language features ge-
nerally appear here first.

Jython Python implemented in Java. This implementation can be used as a scripting language for Java applications, or
can be used to create applications using the Java class libraries. It is also often used to create tests for Java libraries.
More information can be found at the Jython website.

http://www.jython.org/

The Python Language Reference, Version 3.7.17

Python for .NET This implementation actually uses the CPython implementation, but is a managed .NET application
and makes .NET libraries available. It was created by Brian Lloyd. For more information, see the Python for .NET
home page.

IronPython An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that generates
IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the original creator of
Jython. For more information, see the IronPython website.

PyPy An implementation of Python written completely in Python. It supports several advanced features not found in
other implementations like stackless support and a Just in Time compiler. One of the goals of the project is to
encourage experimentation with the language itself by making it easier to modify the interpreter (since it is written
in Python). Additional information is available on the PyPy project’s home page.

Each of these implementations varies in some way from the language as documented in this manual, or introduces specific
information beyond what’s covered in the standard Python documentation. Please refer to the implementation-specific
documentation to determine what else you need to know about the specific implementation you're using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style of
definition:

name lc_letter (lc_letter | "_")*
lc_letter = "at..."z"

The first line says that a name is an 1c_letter followed by a sequence of zero or more 1c_letters and underscores.
An lc_letter inturn is any of the single characters 'a ' through 'z '. (This rule is actually adhered to for the names
defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and : :=. A vertical bar (|) is used to separate
alternatives; it is the least binding operator in this notation. A star (*) means zero or more repetitions of the preceding
item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets ([1) means zero
or one occurrences (in other words, the enclosed phrase is optional). The * and + operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively with
each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by three
dots mean a choice of any single character in the given (inclusive) range of ASCII characters. A phrase between angular
brackets (<. . . >) gives an informal description of the symbol defined; e.g., this could be used to describe the notion of
“control character” if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and syntactic
definitions: a lexical definition operates on the individual characters of the input source, while a syntax definition operates
on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter («Lexical Analysis») are
lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Capitulo 1. Introduction

https://pythonnet.github.io/
https://pythonnet.github.io/
http://ironpython.net/
http://pypy.org/

CAPITULO 2

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer. This
chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding declaration
and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError is raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries except
where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line is constructed
from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any of the
standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form
using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform. The end of input also serves as an implicit
terminator for the final physical line.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

https://www.python.org/dev/peps/pep-3120

The Python Language Reference, Version 3.7.17

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored by
the syntax.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding [=:]\s* ([-\w.
]1+), this comment is processed as an encoding declaration; the first group of this expression names the encoding of the
source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first line must also
be a comment-only line. The recommended forms of an encoding expression are

’# —*- coding: <encoding-name> —*-

which is recognized also by GNU Emacs, and

’# vim:fileencoding=<encoding—name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. In addition, if the first bytes of the file are the UTF-
8 byte-order mark (b'\xef\xbb\xbf"), the declared file encoding is UTF-8 (this is supported, among others, by
Microsoft’s notepad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical analysis,
including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does not
continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines using
a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

6 Capitulo 2. Lexical analysis

The Python Language Reference, Version 3.7.17

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank conti-
nuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued lines
can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE token is
generated). During interactive input of statements, handling of a blank line may differ depending on the implementation
of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e. one containing not
even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of spaces
preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over multiple
physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use a
mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms may
explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may reset
the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The numbers
pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical line, the line’s
indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is pushed on the stack,
and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring on the stack; all numbers
on the stack that are larger are popped off, and for each number popped off a DEDENT token is generated. At the end
of the file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r = []
for i in range(len(l)):
s = 1[:1i] + 1[i+1:]
p = perm(s)
for x in p:
r.append (1[i:1+1] + x)
return r

The following example shows various indentation errors:

2.1. Line structure 7

The Python Language Reference, Version 3.7.17

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1] + 1[i+1:]
P perm(l[:i] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append (1[i:1+1] + x)

return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the

indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be used
interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could otherwise

be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals, ope-
rators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but serve to
delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token, when read

from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes as

defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the upper-
case and lowercase letters A through z, the underscore _ and, except for the first character, the digits O through 9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier = xid _start xid_continue*

id_start n= <all characters in general categories Lu, L1, Lt, Lm, Lo, N1, the unde:
id_continue = <all characters in id_start, plus characters in the categories Mn, Mc,
xid_start = <all characters in id_start whose NFKC normalization is in "id_start xi

xid_continue

The Unicode category codes mentioned above stand for:
* Lu - uppercase letters
* LI - lowercase letters

e [t - titlecase letters

<all characters in id_continue whose NFKC normalization is in "id_cont]

Capitulo 2. Lexical analysis

https://www.python.org/dev/peps/pep-3131
https://www.python.org/dev/peps/pep-3131

The Python Language Reference, Version 3.7.17

* Lm - modifier letters
* Lo - other letters
e NI - letter numbers
¢ Mn - nonspacing marks
* Mc - spacing combining marks
* Nd - decimal numbers
* Pc - connector punctuations
e Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
e Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 4.1 can be found at https://www.unicode.
org/Public/13.0.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary iden-
tifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns of
leading and trailing underscore characters:

_* Notimported by from module import *.The specialidentifier _ is used in the interactive interpreter to store
the result of the last evaluation; it is stored in the builtins module. When not in interactive mode, _ has no
special meaning and is not defined. See section The import statement.

Nota: The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

*___ System-defined names, informally known as «dunder» names. These names are defined by the interpreter and its
implementation (including the standard library). Current system names are discussed in the Special method names
section and elsewhere. More will likely be defined in future versions of Python. Any use of __*___ names, in any
context, that does not follow explicitly documented use, is subject to breakage without warning.

* (Class-private names. Names in this category, when used within the context of a class definition, are re-written to use
a mangled form to help avoid name clashes between «private» attributes of base and derived classes. See section
Identifiers (Names).

2.3. Identifiers and keywords 9

http://www.unicode.org/Public/11.0.0/ucd/PropList.txt
https://www.unicode.org/Public/13.0.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/13.0.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Version 3.7.17

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral = [stringprefix] (shortstring | longstring)
stringprefix = "r" | "u"™ | "R" | "U" | "£" | "E"

I "fr" I "Fr" | n fR" I "FR" | "rf" | "rF" I "Rf" | "RF"
shortstring u= "'" shortstringitem* "'"™ | '"' shortstringitem* '"'
longstring = "r''" Jongstringitem* "'''"™ | '"""' Jongstringitem* '"""!'
shortstringitem := shortstringchar | stringescapeseq
longstringitem = longstringchar | stringescapeseq
shortstringchar = <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
stringescapeseq = "\" <any source character>
bytesliteral = bytesprefix(shortbytes | longbytes)
bytesprefix = "b" | "B" | "br"™ | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb"
shortbytes = "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes = "rr'v Jongbytesitem* "'''"™ | '""W' Jongbytesitem* '"""!'
shortbytesitem = shortbyteschar | bytesescapeseq
longbytesitem = longbyteschar | bytesescapeseq
shortbyteschar := <any ASCII character except "\" or newline or the quote>
longbyteschar = <any ASCII character except "\">
bytesescapeseq = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix or bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can also
be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted strings).
The backslash (\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash
itself, or the quote character.

Bytes literals are always prefixed with 'b ' or 'B"'; they produce an instance of the bytes type instead of the st r type.
They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with escapes.

Both string and bytes literals may optionally be prefixed with a letter 'r' or 'R'; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, ' \U' and '\u' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur ' syntax is not
supported.

Nuevo en la version 3.3: The ' rb' prefix of raw bytes literals has been added as a synonym of 'br"'.

Nuevo en la version 3.3: Support for the unicode legacy literal (u ' value ') was reintroduced to simplify the maintenance
of dual Python 2.x and 3.x codebases. See PEP 414 for more information.

A string literal with ' £' or 'F' in its prefix is a formatted string literal; see Formatted string literals. The ' £' may be
combined with 'r ', but not with "b' or 'u', therefore raw formatted strings are possible, but formatted bytes literals

10 Capitulo 2. Lexical analysis

n RB n

https://www.python.org/dev/peps/pep-0414

The Python Language Reference, Version 3.7.17

are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped quotes
in a row terminate the literal. (A «quote» is the character used to open the literal, i.e. either ' or ".)

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to rules
similar to those used by Standard C. The recognized escape sequences are:

Escape Sequence | Meaning Notes
\newline Backslash and newline ignored

AR Backslash (\)

\' Single quote (")

\" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo Character with octal value ooo | (1,3)
\xhh Character with hex value hh 2,3)

Escape sequences only recognized in string literals are:

Escape Sequence | Meaning Notes
\N{name} Character named name in the Unicode database | (4)
\UXXXX Character with 16-bit hex value xxxx 5
\UXXXXXXKXX Character with 32-bit hex value xxxooooxx (6)

Notes:
(1) Asin Standard C, up to three octal digits are accepted.
(2) Unlike in Standard C, exactly two hex digits are required.

(3) Inabytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these escapes
denote a Unicode character with the given value.

(4) Distinto en la versién 3.3: Support for name aliases' has been added.
(5) Exactly four hex digits are required.
(6) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the
result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences only recognized in string literals fall into the
category of unrecognized escapes for bytes literals.

Distinto en la version 3.6: Unrecognized escape sequences produce a DeprecationWarning. In some future
version of Python they will be a SyntaxError.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example, r" \ " "
is a valid string literal consisting of two characters: a backslash and a double quote; r" \ " is not a valid string literal (even
a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a single backslash

! http://www.unicode.org/Public/11.0.0/ucd/NameAliases. txt

2.4. Literals 11

http://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

The Python Language Reference, Version 3.7.17

(since the backslash would escape the following quote character). Note also that a single backslash followed by a newline
is interpreted as those two characters as part of the literal, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings conve-
niently across long lines, or even to add comments to parts of strings, for example:

re.compile (" [A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]1*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The “+” operator must be used
to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles for each
component (even mixing raw strings and triple quoted strings), and formatted string literals may be concatenated with
plain string literals.

2.4.3 Formatted string literals

Nuevo en la version 3.6.

A formatted string literal or f-string is a string literal that is prefixed with ' £ ' or 'F '. These strings may contain replace-
ment fields, which are expressions delimited by curly braces { }. While other string literals always have a constant value,
formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string). After
decoding, the grammar for the contents of the string is:

f_string = (literal_char | "{{" | "}}" | replacement_field)™*
replacement_field = "{" f expression ["!" conversion] [":" format_spec] "}"
f_expression = (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or expr)* [","]

| yield expression
conversion = "s" | "x" | "a"
format_spec = (literal_char | NULL | replacement_field)*
literal_char = <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces '{{' or '} } ' are
replaced with the corresponding single curly brace. A single opening curly bracket ' { ' marks a replacement field, which
starts with a Python expression. After the expression, there may be a conversion field, introduced by an exclamation point
' I ', A format specifier may also be appended, introduced by a colon ' : '. A replacement field ends with a closing curly
bracket '} "'.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with a few
exceptions. An empty expression is not allowed, and a 1ambda expression must be surrounded by explicit parentheses.
Replacement expressions can contain line breaks (e.g. in triple-quoted strings), but they cannot contain comments. Each
expression is evaluated in the context where the formatted string literal appears, in order from left to right.

Distinto en la version 3.7: Prior to Python 3.7, an awa it expression and comprehensions containing an async for
clause were illegal in the expressions in formatted string literals due to a problem with the implementation.

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion ' ! s ' calls

12 Capitulo 2. Lexical analysis

The Python Language Reference, Version 3.7.17

str () ontheresult, ' ! r' calls repr (),and '!'a' callsascii ().

The result is then formatted using the format () protocol. The format specifier is passed to the _ format__ ()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own conver-
sion fields and format specifiers, but may not include more deeply-nested replacement fields. The format specifier mini-
language is the same as that used by the string .format() method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

>>> name = "Fred"

>>> f"He said his name is {name .

"He said his name is 'Fred'."

>>> f"He said his name is {repr(name) }." # repr() is equivalent to !r
"He said his name is 'Fred'."

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f'"result: {value:{width}. {precision}}" # nested fields
'result: 12.35"

>>> today = datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, %Y}" # using date format specifier
'January 27, 2017'

>>> number = 1024

>>> f" {number:#0x}" # using integer format specifier
'0x400'

A consequence of sharing the same syntax as regular string literals is that characters in the replacement fields must not
conflict with the quoting used in the outer formatted string literal:

f"abc {a["x"]} def" # error: outer string literal ended prematurely
b

f'"abe {al'x'] def" # workaround: use different quoting

Backslashes are not allowed in format expressions and will raise an error:

f'"newline: {ord('\n') }" # raises SyntaxError

To include a value in which a backslash escape is required, create a temporary variable.

>>> newline = ord('\n'")
>>> f'"newline: {newline /"
'newline: 10'

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

>>> def fool():
f"Not a docstring"

>>> foo. doc_ is None
True

See also PEP 498 for the proposal that added formatted string literals, and st r . format (), which uses a related format
string mechanism.

2.4. Literals 13

https://www.python.org/dev/peps/pep-0498

The Python Language Reference, Version 3.7.17

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no complex
literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary operator
“~” and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer u= decinteger | bininteger | octinteger | hexinteger
decinteger = nonzerodigit (["_"] digit)* | "O0"+ (["_"] "O™)*
bininteger = "o" ("b" | "B") (["_"] bindigit)+

octinteger = "o" ("o"™ | "OM") (["_"] octdigit)+

hexinteger = "o ("x"™ | "X"™) (["_"] hexdigit)+

nonzerodigit = mr.L.L"on

digit = "om..."on"

bindigit = "om | omin

octdigit u= "or..."7"

hexdigit = digit | "a"..."f" | "A"..."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for enhanced
readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

Some examples of integer literals:

7 2147483647 00177 0b100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 Ob_1110_0101

Distinto en la versioén 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber u= pointfloat | exponentfloat
pointfloat = [digitpart] fraction | digitpart "."
exponentfloat = (digitpart | pointfloat) exponent
digitpart = digit (["_"] digit)~*

fraction = "." digitpart

exponent = ("e" | "E") ["+"™ | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077010 is legal, and
denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent. As in

14 Capitulo 2. Lexical analysis

The Python Language Reference, Version 3.7.17

integer literals, underscores are supported for digit grouping.

Some examples of floating point literals:

3.14 10. .001 lel00 3.14e-10 0e0 3.14_15_93

Distinto en la version 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber = (floatnumber | digitpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.g., (3+4 7). Some examples of imaginary literals:

3.1475 10.7 107 .00173 1e1007 3.14e-1073 3.14_15_933
J J J J J J J

2.5 Operators

The following tokens are operators:

+ - * ok / // % @
<< >> & | A ~

< > <= >= == 1=

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { }

’ i = —->

+= -= *= /= //= %= @=

&= |= ~= >>= << * k=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning as
an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters, but also
perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to the
lexical analyzer:

v n # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments is
an unconditional error:

2.5. Operators 15

The Python Language Reference, Version 3.7.17

16 Capitulo 2. Lexical analysis

CAPITULO 3

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations bet-
ween objects. (In a sense, and in conformance to Von Neumann’s model of a «stored program computer», code is also
represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may
think of it as the object’s address in memory. The “i s operator compares the identity of two objects; the 1d () function
returns an integer representing its identity.

CPython implementation detail: For CPython, 1d (x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., «does it have a length?») and also defines the
possible values for objects of that type. The t ype () function returns an object’s type (which is an object itself). Like its
identity, an object’s fype is also unchangeable.!

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains a
reference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same as
having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance, numbers,
strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An im-
plementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation quality
how garbage collection is implemented, as long as no objects are collected that are still reachable.

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed detection
of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to
collect garbage containing circular references. See the documentation of the gc module for information on controlling the
collection of cyclic garbage. Other implementations act differently and CPython may change. Do not depend on immediate
finalization of objects when they become unreachable (so you should always close files explicitly).

! 1t is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can lead to
some very strange behaviour if it is handled incorrectly.

17

The Python Language Reference, Version 3.7.17

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally be
collectable. Also note that catching an exception with a “t ry...except” statement may keep objects alive.

Some objects contain references to «external» resources such as open files or windows. It is understood that these resources
are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen, such objects also
provide an explicit way to release the external resource, usually a close () method. Programs are strongly recommended
to explicitly close such objects. The “t ry... finally” statement and the “with” statement provide convenient ways to
do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists and
dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a container, we
imply the values, not the identities of the contained objects; however, when we talk about the mutability of a container,
only the identities of the immediately contained objects are implied. So, if an immutable container (like a tuple) contains
a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for
immutable types, operations that compute new values may actually return a reference to any existing object with the same
type and value, while for mutable objects this is not allowed. E.g., aftera = 1; b = 1, a and b may or may not refer
to the same object with the value one, depending on the implementation, but after ¢ = []; d = [], c and d are
guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object
to both ¢ and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages, depending
on the implementation) can define additional types. Future versions of Python may add types to the type hierarchy (e.g.,
rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be provided via the standard
library instead.

Some of the type descriptions below contain a paragraph listing “special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

None This type has a single value. There is a single object with this value. This object is accessed through the built-in
name None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions that
don’t explicitly return anything. Its truth value is false.

NotImplemented This type has a single value. There is a single object with this value. This object is accessed through
the built-in name Not Implemented. Numeric methods and rich comparison methods should return this value if
they do not implement the operation for the operands provided. (The interpreter will then try the reflected operation,
or some other fallback, depending on the operator.) Its truth value is true.

See implementing-the-arithmetic-operations for more details.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the literal
. or the built-in name E11ipsis. Its truth value is true.

numbers .Number These are created by numeric literals and returned as results by arithmetic operators and arithmetic
built-in functions. Numeric objects are immutable; once created their value never changes. Python numbers are
of course strongly related to mathematical numbers, but subject to the limitations of numerical representation in
computers.

Python distinguishes between integers, floating point numbers, and complex numbers:
numbers .Integral These represent elements from the mathematical set of integers (positive and negative).
There are two types of integers:

Integers (int)

18 Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

These represent numbers in an unlimited range, subject to available (virtual) memory only. For the
purpose of shift and mask operations, a binary representation is assumed, and negative numbers are
represented in a variant of 2’s complement which gives the illusion of an infinite string of sign bits
extending to the left.

Booleans (bool) These represent the truth values False and True. The two objects representing the values
False and True are the only Boolean objects. The Boolean type is a subtype of the integer type, and
Boolean values behave like the values 0 and 1, respectively, in almost all contexts, the exception being
that when converted to a string, the strings "False" or "True" are returned, respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers.

numbers .Real (float) These represent machine-level double precision floating point numbers. You are at
the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range
and handling of overflow. Python does not support single-precision floating point numbers; the savings in
processor and memory usage that are usually the reason for using these are dwarfed by the overhead of using
objects in Python, so there is no reason to complicate the language with two kinds of floating point numbers.

numbers .Complex (complex) These represent complex numbers as a pair of machine-level double precision
floating point numbers. The same caveats apply as for floating point numbers. The real and imaginary parts
of a complex number z can be retrieved through the read-only attributes z . real and z . imag.

Sequences These represent finite ordered sets indexed by non-negative numbers. The built-in function 1en () returns
the number of items of a sequence. When the length of a sequence is 7, the index set contains the numbers O, 1,
..., n-1. Item i of sequence a is selected by a [i].

Sequences also support slicing: a [1: 7] selects all items with index k such that i <= k < j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it starts at
0.

Some sequences also support «extended slicing» with a third «step» parameter: a [1i: J: k] selects all items of a
with index x where x = 1 + n*k,n>=0andi<=x <.

Sequences are distinguished according to their mutability:

Immutable sequences An object of an immutable sequence type cannot change once it is created. (If the object
contains references to other objects, these other objects may be mutable and may be changed; however, the
collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings A string is a sequence of values that represent Unicode code points. All the code points in the range
U+0000 — U+10FFFF can be represented in a string. Python doesn’t have a char type; instead,
every code point in the string is represented as a string object with length 1. The built-in function ord ()
converts a code point from its string form to an integer in the range 0 - 10FFFF; chr () converts
an integer in the range 0 — 10FFFF to the corresponding length 1 string object. str.encode ()
can be used to convert a st r to bytes using the given text encoding, and bytes.decode () can be
used to achieve the opposite.

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-
separated lists of expressions. A tuple of one item (a “singleton”) can be formed by affixing a comma
to an expression (an expression by itself does not create a tuple, since parentheses must be usable for
grouping of expressions). An empty tuple can be formed by an empty pair of parentheses.

Bytes A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range
0 <= x < 256. Bytes literals (like b ' abc ") and the built-in bytes () constructor can be used to create
bytes objects. Also, bytes objects can be decoded to strings via the decode () method.

Mutable sequences Mutable sequences can be changed after they are created. The subscription and slicing nota-
tions can be used as the target of assignment and de 1 (delete) statements.

3.2. The standard type hierarchy 19

The Python Language Reference, Version 3.7.17

There are currently two intrinsic mutable sequence types:

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of
expressions in square brackets. (Note that there are no special cases needed to form lists of length O or

1)

Byte Arrays A bytearray object is a mutable array. They are created by the built-in bytearray () cons-
tructor. Aside from being mutable (and hence unhashable), byte arrays otherwise provide the same in-
terface and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type, as does the
collections module.

Set types These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any
subscript. However, they can be iterated over, and the built-in function 1en () returns the number of items in
a set. Common uses for sets are fast membership testing, removing duplicates from a sequence, and computing
mathematical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal
rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1 . 0), only one of them can be contained
in a set.

There are currently two intrinsic set types:

Sets These represent a mutable set. They are created by the built-in set () constructor and can be modified
afterwards by several methods, such as add () .

Frozen sets These represent an immutable set. They are created by the built-in frozenset () constructor. As
a frozenset is immutable and hashable, it can be used again as an element of another set, or as a dictionary
key.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k] selects the
item indexed by k from the mapping a; this can be used in expressions and as the target of assignments or del
statements. The built-in function 1en () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of values not
acceptable as keys are values containing lists or dictionaries or other mutable types that are compared by value
rather than by object identity, the reason being that the efficient implementation of dictionaries requires a key’s
hash value to remain constant. Numeric types used for keys obey the normal rules for numeric comparison:
if two numbers compare equal (e.g., 1 and 1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were added
sequentially over the dictionary. Replacing an existing key does not change the order, however removing a
key and re-inserting it will add it to the end instead of keeping its old place.

Dictionaries are mutable; they can be created by the { . . . } notation (see section Dictionary displays).

The extension modules dbm . ndbm and dbm. gnu provide additional examples of mapping types, as does
the collections module.

Distinto en la versioén 3.7: Dictionaries did not preserve insertion order in versions of Python before 3.6. In
CPython 3.6, insertion order was preserved, but it was considered an implementation detail at that time rather
than a language guarantee.

Callable types These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions A user-defined function object is created by a function definition (see section Function
definitions). It should be called with an argument list containing the same number of items as the function’s
formal parameter list.

20 Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

Special attributes:

Attribute Meaning

__doc___ The function’s documentation string, or None if unavailable; not | Writable
inherited by subclasses.

__name___ The function’s name. Writable

__qualname___ The function’s qualified name. Writable
Nuevo en la version 3.3.

__module_ The name of the module the function was defined in, or None if | Writable
unavailable.

__defaults__ A tuple containing default argument values for those arguments Writable
that have defaults, or None if no arguments have a default value.

__code___ The code object representing the compiled function body. Writable

__globals___ A reference to the dictionary that holds the function’s global Read-only

variables — the global namespace of the module in which the
function was defined.

__dict__ The namespace supporting arbitrary function attributes. Writable
__closure___ None or a tuple of cells that contain bindings for the function’s Read-only
free variables. See below for information on the
cell_contents attribute.
__annotations___ | A dict containing annotations of parameters. The keys of the dict | Writable
are the parameter names, and ' return"' for the return
annotation, if provided.

__kwdefaults__ A dict containing defaults for keyword-only parameters. Writable

Most of the attributes labelled «Writable» check the type of the assigned value.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to
attach metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note that
the current implementation only supports function attributes on user-defined functions. Function attributes on
built-in functions may be supported in the future.

A cell object has the attribute ce11_contents. This can be used to get the value of the cell, as well as set
the value.

Additional information about a function’s definition can be retrieved from its code object; see the description
of internal types below.

Instance methods An instance method object combines a class, a class instance and any callable object (normally
a user-defined function).

Special read-only attributes: __self__ is the class instance object, func__ is the function object;
_doc___is the method’s documentation (same as ___func___.__doc__);___name___is the method na-
me (same as ___func___._ name__);___module__is the name of the module the method was defined
in, or None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function
object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of
that class), if that attribute is a user-defined function object or a class method object.

When an instance method object is created by retrieving a user-defined function object from a class via one
of its instances, its __self___ attribute is the instance, and the method object is said to be bound. The new
method’s ___func___ attribute is the original function object.

When a user-defined method object is created by retrieving another method object from a class or instance,
the behaviour is the same as for a function object, except that the ___func___ attribute of the new instance

3.2. The standard type hierarchy 21

The Python Language Reference, Version 3.7.17

is not the original method object but its ___func___ attribute.

When an instance method object is created by retrieving a class method object from a class or instance, its
__self _ attributeis the classitself, and its___func___ attribute is the function object underlying the class
method.

When an instance method object is called, the underlying function (__func__) is called, inserting the class
instance (__self__)in front of the argument list. For instance, when C is a class which contains a definition
for a function f (), and x is an instance of C, calling x. £ (1) is equivalent to calling C.f (x, 1).

When an instance method object is derived from a class method object, the «class instance» stored in
__self__ willactually be the class itself, so that calling either x . £ (1) or C. £ (1) is equivalent to calling
£ (C, 1) where £ is the underlying function.

Note that the transformation from function object to instance method object happens each time the attribute
is retrieved from the instance. In some cases, a fruitful optimization is to assign the attribute to a local variable
and call that local variable. Also notice that this transformation only happens for user-defined functions; other
callable objects (and all non-callable objects) are retrieved without transformation. It is also important to note
that user-defined functions which are attributes of a class instance are not converted to bound methods; this
only happens when the function is an attribute of the class.

Generator functions A function or method which uses the yield statement (see section The yield statement)

is called a generator function. Such a function, when called, always returns an iterator object which can be
used to execute the body of the function: calling the iterator’s iterator.__next__ () method will cause
the function to execute until it provides a value using the yield statement. When the function executes a
return statement or falls off the end, a StopIteration exception is raised and the iterator will have
reached the end of the set of values to be returned.

Coroutine functions A function or method which is defined using async def is called a coroutine function.

Such a function, when called, returns a coroutine object. It may contain awa i t expressions, as well as async
withand async for statements. See also the Coroutine Objects section.

Asynchronous generator functions A function or method which is defined using async def and which uses

the yield statement is called a asynchronous generator function. Such a function, when called, returns an
asynchronous iterator object which can be used in an async for statement to execute the body of the
function.

Calling the asynchronous iterator’s aiterator.__anext__ () method will return an awaitable which
when awaited will execute until it provides a value using the yie1d expression. When the function executes
an empty return statement or falls off the end, a StopAsyncIteration exception is raised and the
asynchronous iterator will have reached the end of the set of values to be yielded.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in functions are

len () and math.sin () (math is a standard built-in module). The number and type of the arguments
are determined by the C function. Special read-only attributes: __doc___ is the function’s documentation
string, or None if unavailable; __name___is the function’s name; __self__ is set to None (but see the
next item); _ _module_ is the name of the module the function was defined in or None if unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an object passed

to the C function as an implicit extra argument. An example of a built-in method is alist .append (),
assuming alist is a list object. In this case, the special read-only attribute ___self__ is set to the object
denoted by alist.

Classes Classes are callable. These objects normally act as factories for new instances of themselves, but variations

are possible for class types that override __new__ (). The arguments of the call are passedto ___new__ ()
and, in the typical case,to ___init__ () to initialize the new instance.

Class Instances Instances of arbitrary classes can be made callable by defininga ___call__ () method in their

class.

22

Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

Modules Modules are a basic organizational unit of Python code, and are created by the import system as invoked eit-
her by the import statement, or by calling functions such as importlib.import_module () and built-in
__import__ (). A module object has a namespace implemented by a dictionary object (this is the dictionary
referenced by the __globals__ attribute of functions defined in the module). Attribute references are translated
to lookups in this dictionary, e.g., m. x is equivalent tom.__dict__ ["x"]. A module object does not contain
the code object used to initialize the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.
__dict__["x"] = 1.

Predefined (writable) attributes: __name___isthe module’s name;___doc___is the module’s documentation string,
or None if unavailable; __annotations___ (optional) is a dictionary containing variable annotations collected
during module body execution; __ file__ is the pathname of the file from which the module was loaded, if it
was loaded from a file. The __ file_ attribute may be missing for certain types of modules, such as C modules
that are statically linked into the interpreter; for extension modules loaded dynamically from a shared library, it is
the pathname of the shared library file.

Special read-only attribute: __dict___ is the module’s namespace as a dictionary object.

CPython implementation detail: Because of the way CPython clears module dictionaries, the module dictionary
will be cleared when the module falls out of scope even if the dictionary still has live references. To avoid this, copy
the dictionary or keep the module around while using its dictionary directly.

Custom classes Custom class types are typically created by class definitions (see section Class definitions). A class has a
namespace implemented by a dictionary object. Class attribute references are translated to lookups in this dictionary,
e.g.,C.xistranslatedtoC.__dict__ ["x"] (although there are a number of hooks which allow for other means
of locating attributes). When the attribute name is not found there, the attribute search continues in the base classes.
This search of the base classes uses the C3 method resolution order which behaves correctly even in the presence
of “diamond” inheritance structures where there are multiple inheritance paths leading back to a common ancestor.
Additional details on the C3 MRO used by Python can be found in the documentation accompanying the 2.3 release
at https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an instance
method object whose ___self _ attribute is C. When it would yield a static method object, it is transformed into
the object wrapped by the static method object. See section Implementing Descriptors for another way in which
attributes retrieved from a class may differ from those actually contained inits __dict__.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).

Special attributes: __name___is the class name; __module___is the module name in which the class was defined;
__dict__ isthe dictionary containing the class’s namespace; ___bases___is a tuple containing the base classes,
in the order of their occurrence in the base class list; ___doc___is the class’s documentation string, or None if
undefined; __annotations__ (optional) is a dictionary containing variable annotations collected during class
body execution.

Class instances A class instance is created by calling a class object (see above). A class instance has a namespace im-
plemented as a dictionary which is the first place in which attribute references are searched. When an attribute is
not found there, and the instance’s class has an attribute by that name, the search continues with the class attributes.
If a class attribute is found that is a user-defined function object, it is transformed into an instance method object
whose ___self__ attribute is the instance. Static method and class method objects are also transformed; see above
under «Classes». See section /mplementing Descriptors for another way in which attributes of a class retrieved via
its instances may differ from the objects actually stored in the class’s __dict__ . If no class attribute is found,
and the object’s class hasa ___getattr___ () method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has
a__setattr__ () or __delattr__ () method, this is called instead of updating the instance dictionary
directly.

3.2. The standard type hierarchy 23

https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Version 3.7.17

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names.
See section Special method names.

Special attributes: __dict___is the attribute dictionary; __class___is the instance’s class.

I/O objects (also known as file objects) A file object represents an open file. Various shortcuts are available to create file

objects: the open () built-in function, and also os . popen (), os. fdopen (), and the makefile () method
of socket objects (and perhaps by other functions or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to the
interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow the
interface defined by the io. Text IOBase abstract class.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may change with

future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represent byte-compiled executable Python code, or byfecode. The difference between
a code object and a function object is that the function object contains an explicit reference to the function’s
globals (the module in which it was defined), while a code object contains no context; also the default argument
values are stored in the function object, not in the code object (because they represent values calculated at run-
time). Unlike function objects, code objects are immutable and contain no references (directly or indirectly)
to mutable objects.

Special read-only attributes: co_name gives the function name; co_argcount is the number of positional
arguments (including arguments with default values); co_nlocals is the number of local variables used
by the function (including arguments); co_varnames is a tuple containing the names of the local variables
(starting with the argument names); co_cellvars is a tuple containing the names of local variables that are
referenced by nested functions; co_freevars is a tuple containing the names of free variables; co_code
is a string representing the sequence of bytecode instructions; co_consts is a tuple containing the literals
used by the bytecode; co_names is a tuple containing the names used by the bytecode; co_filename is
the filename from which the code was compiled; co_firstlineno is the first line number of the function;
co_lnotabisastring encoding the mapping from bytecode offsets to line numbers (for details see the source
code of the interpreter); co_stacksize is the required stack size; co_flags is an integer encoding a
number of flags for the interpreter.

The following flag bits are defined for co_flags: bit 0x04 is set if the function uses the *arguments
syntax to accept an arbitrary number of positional arguments; bit 0x08 is set if the function uses the
**keywords syntax to accept arbitrary keyword arguments; bit 0x20 is set if the function is a genera-
tor.

Future feature declarations (from __ future_ import division) also use bitsin co_flags to
indicate whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if the
function was compiled with future division enabled; bits 0x10 and 0x1 000 were used in earlier versions of
Python.

Other bits in co__f1ags are reserved for internal use.

If a code object represents a function, the first item in co_consts is the documentation string of the fun-
ction, or None if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see below), and
are also passed to registered trace functions.

Special read-only attributes: £_back is to the previous stack frame (towards the caller), or None if this is the
bottom stack frame; £_code is the code object being executed in this frame; £_1ocals is the dictionary
used to look up local variables; f_globals is used for global variables; f_builtins is used for built-in
(intrinsic) names; £_last i gives the precise instruction (this is an index into the bytecode string of the code
object).

24

Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

Special writable attributes: £_t race, if not None, is a function called for various events during code execu-
tion (this is used by the debugger). Normally an event is triggered for each new source line - this can be disabled
by setting f_trace_linestoFalse.

Implementations may allow per-opcode events to be requested by setting £_trace_opcodes to True.
Note that this may lead to undefined interpreter behaviour if exceptions raised by the trace function escape
to the function being traced.

f_lineno is the current line number of the frame — writing to this from within a trace function jumps to
the given line (only for the bottom-most frame). A debugger can implement a Jump command (aka Set Next
Statement) by writing to f_lineno.

Frame objects support one method:

frame.clear ()
This method clears all references to local variables held by the frame. Also, if the frame belonged to
a generator, the generator is finalized. This helps break reference cycles involving frame objects (for
example when catching an exception and storing its traceback for later use).

RuntimeError is raised if the frame is currently executing.
Nuevo en la versién 3.4.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is implicitly
created when an exception occurs, and may also be explicitly created by calling t ypes . TracebackType.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at
each unwound level a traceback object is inserted in front of the current traceback. When an exception handler
is entered, the stack trace is made available to the program. (See section The try statement.) It is accessible as
the third item of the tuple returned by sys.exc_info (), and as the __traceback___ attribute of the
caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard
error stream; if the interpreter is interactive, it is also made available to the useras sys . last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next
attributes should be linked to form a full stack trace.

Special read-only attributes: tb_frame points to the execution frame of the current level; tb_lineno
gives the line number where the exception occurred; tlb_lasti indicates the precise instruction. The line
number and last instruction in the traceback may differ from the line number of its frame object if the exception
occurred in a t ry statement with no matching except clause or with a finally clause.

Special writable attribute: tb_next is the next level in the stack trace (towards the frame where the exception
occurred), or None if there is no next level.

Distinto en la version 3.7: Traceback objects can now be explicitly instantiated from Python code, and the
tb_next attribute of existing instances can be updated.

Slice objects Slice objects are used to represent slices for __getitem__ () methods. They are also created by
the built-in s1ice () function.

Special read-only attributes: start is the lower bound; stop is the upper bound; step is the step value;
each is None if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices (self, length)
This method takes a single integer argument length and computes information about the slice that the
slice object would describe if applied to a sequence of length items. It returns a tuple of three integers;
respectively these are the start and sfop indices and the step or stride length of the slice. Missing or
out-of-bounds indices are handled in a manner consistent with regular slices.

3.2. The standard type hierarchy 25

The Python Language Reference, Version 3.7.17

Static method objects Static method objects provide a way of defeating the transformation of function objects to
method objects described above. A static method object is a wrapper around any other object, usually a user-
defined method object. When a static method object is retrieved from a class or a class instance, the object
actually returned is the wrapped object, which is not subject to any further transformation. Static method
objects are not themselves callable, although the objects they wrap usually are. Static method objects are
created by the built-in staticmethod () constructor.

Class method objects A class method object, like a static method object, is a wrapper around another object
that alters the way in which that object is retrieved from classes and class instances. The behaviour of class
method objects upon such retrieval is described above, under «User-defined methods». Class method objects
are created by the built-in classmethod () constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subs-
cripting and slicing) by defining methods with special names. This is Python’s approach to operator overloading, allo-
wing classes to define their own behavior with respect to language operators. For instance, if a class defines a met-
hod named __getitem _ (), and x is an instance of this class, then x [1] is roughly equivalent to type (x) .
__getitem_ (x, 1). Except where mentioned, attempts to execute an operation raise an exception when no ap-
propriate method is defined (typically AttributeError or TypeError).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class sets
__iter__ () to None, the class is not iterable, so calling iter () on its instances will raise a TypeError (without
falling back to __getitem _ ()).2

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented to the
degree that it makes sense for the object being modelled. For example, some sequences may work well with retrieval of
individual elements, but extracting a slice may not make sense. (One example of this is the NodeL1i st interface in the
W3C’s Document Object Model.)

3.3.1 Basic customization

object.__new___ (cls[,])
Called to create a new instance of class cls. ___new___ () is a static method (special-cased so you need not declare
it as such) that takes the class of which an instance was requested as its first argument. The remaining arguments are
those passed to the object constructor expression (the call to the class). The return value of ___new__ () should
be the new object instance (usually an instance of cis).

Typical implementations create a new instance of the class by invoking the superclass’s __new__ () method
using super () .__new__ (cls[, ...]) withappropriate arguments and then modifying the newly-created
instance as necessary before returning it.

If new () returns an instance of cls, then the new instance’s __init__ () method will be invoked like
__init_ (self[, ...]),whereselfisthenew instance and the remaining arguments are the same as were
passedto___new__ ().

If new () does not return an instance of cls, then the new instance’s init__ () method will not be
invoked.

__new___ () isintended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize instance
creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

2The_ _hash__ (), _iter (), _reversed__ (),and__contains__ () methods have special handling for this; others will still raise
a TypeError, but may do so by relying on the behavior that None is not callable.

26 Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

object.__init__ (self[,..])

Called after the instance has been created (by ___new___ ()), but before it is returned to the caller. The arguments
are those passed to the class constructor expression. If a base class has an ___init__ () method, the derived
class’s ___init__ () method, if any, must explicitly call it to ensure proper initialization of the base class part of
the instance; for example: super () .__init__ ([args...]).

Because _ _new_ () and __init__ () work together in constructing objects (__new__ () to create it, and
__init__ () to customize it), no non-None value may be returned by __init__ (); doing so will cause a
TypeError to be raised at runtime.

object.__del_ (self)

Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If a
base class hasa __del () method, the derived class’s ___del () method, if any, must explicitly call it to
ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) for the _ del () method to postpone destruction of the instan-
ce by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether
__del__ () is called a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that ___del__ () methods are called for objects that still exist when the interpreter exits.

Nota: del x doesn’t directly call x.__del__ () — the former decrements the reference count for x by one,
and the latter is only called when x’s reference count reaches zero.

CPython implementation detail: It is possible for a reference cycle to prevent the reference count of an object
from going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector. A
common cause of reference cycles is when an exception has been caught in a local variable. The frame’s locals then
reference the exception, which references its own traceback, which references the locals of all frames caught in the
traceback.

Ver también:

Documentation for the gc module.

Advertencia: Due to the precarious circumstances under which ___de1__ () methods are invoked, exceptions
that occur during their execution are ignored, and a warning is printed to sy s . stderr instead. In particular:

e __del__ () canbe invoked when arbitrary code is being executed, including from any arbitrary thread.

If __del__ () needs to take a lock or invoke any other blocking resource, it may deadlock as the
resource may already be taken by the code that gets interrupted to execute ___del ().

e del_ () can be executed during interpreter shutdown. As a consequence, the global variables it
needs to access (including other modules) may already have been deleted or set to None. Python gua-
rantees that globals whose name begins with a single underscore are deleted from their module before
other globals are deleted; if no other references to such globals exist, this may help in assuring that im-

ported modules are still available at the time when the __del () method is called.

object.__repr_ _ (self)

Called by the repr () built-in function to compute the «official» string representation of an object. If at all possi-
ble, this should look like a valid Python expression that could be used to recreate an object with the same value (given
an appropriate environment). If this is not possible, a string of the form <. . . some useful description.
. .> should be returned. The return value must be a string object. If a class defines __repr () but not
__str__(),then__repr__ () isalso used when an «informal» string representation of instances of that class
is required.

3.3.

Special method names 27

The Python Language Reference, Version 3.7.17

This is typically used for debugging, so it is important that the representation is information-rich and unambiguous.

object.__str__ (self)

Called by str (object) and the built-in functions format () and print () to compute the «informal» or
nicely printable string representation of an object. The return value must be a string object.

This method differs from object._ repr () inthat there is no expectation that ___str__ () return a valid
Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object._ _repr ().

object.__bytes__ (self)

Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

object.__format___ (self, format_spec)

Called by the format () built-in function, and by extension, evaluation of formatted string literals and the str.
format () method, to produce a «formatted» string representation of an object. The format_spec argument is a
string that contains a description of the formatting options desired. The interpretation of the format_spec argument
is up to the type implementing __ format___ (), however most classes will either delegate formatting to one of
the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.
The return value must be a string object.

Distinto en la version 3.4: The __format__ method of object itself raises a TypeError if passed any non-empty
string.

Distinto en la versiéon 3.7: object._ format__ (x, '') is now equivalent to str (x) rather than
format (str(self), '').

object.__1t__ (self, other)

object.__le__ (self, other)

object.__eq__ (self, other)

object.__ne__ (self, other)

object.__gt__ (self, other)

object.__ge___ (self, other)

These are the so-called «rich comparison» methods. The correspondence between operator symbols and method
names is as follows: x<y callsx.__1t_ (y),x<=ycallsx.__le_ (y),x==ycallsx.__eq (y),x!=y
calls x._ ne_ (y),x>ycallsx._ gt_ (y),and x>=ycallsx._ _ge_ (y).

A rich comparison method may return the singleton Not Implemented if it does not implement the operation for
a given pair of arguments. By convention, False and True are returned for a successful comparison. However,
these methods can return any value, so if the comparison operator is used in a Boolean context (e.g., in the condition
of an 1if statement), Python will call bool () on the value to determine if the result is true or false.

By default, _ne () delegatesto___eqg__ () and inverts the result unless it is Not Implemented. There are
no other implied relationships among the comparison operators, for example, the truth of (x<y or x==y) does
not imply x<=y. To automatically generate ordering operations from a single root operation, see functools.
total_ordering().

See the paragraphon ___hash__ () for some important notes on creating hashable objects which support custom
comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support the
operation but the right argument does); rather, 1t () and___gt__ () areeach other’sreflection, _1e__ ()
and ___ge__ () are each other’s reflection, and __eq_ () and __ne___ () are their own reflection. If the ope-

rands are of different types, and right operand’s type is a direct or indirect subclass of the left operand’s type,
the reflected method of the right operand has priority, otherwise the left operand’s method has priority. Virtual
subclassing is not considered.

28

Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

object.__hash__ (self)
Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset, and dict. _ _hash__ () should return an integer. The only required property is that objects
which compare equal have the same hash value; it is advised to mix together the hash values of the components
of the object that also play a part in comparison of objects by packing them into a tuple and hashing the tuple.
Example:

def _ hash__ (self):
return hash((self.name, self.nick, self.color))

Nota: hash () truncates the value returned from an object’s custom ___hash__ () method to the size of a
Py_ssize_t. Thisis typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s___hash__ ()
must interoperate on builds of different bit sizes, be sure to check the width on all supported builds. An easy way
to do this is with python -c "import sys; print(sys.hash_info.width)".

If aclass does not definean ___eqg () method it should not definea __hash__ () operation either; if it defines
__eq__ () butnot __hash__ (), its instances will not be usable as items in hashable collections. If a class
defines mutable objects and implements an __eqg__ () method, it should not implement ___hash__ (), since
the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s hash value
changes, it will be in the wrong hash bucket).

User-defined classes have __eqg () and ___hash__ () methods by default; with them, all objects compare
unequal (except with themselves) and x.__hash__ () returns an appropriate value such that x == y implies
boththat x is yand hash (x) == hash (y).

A class that overrides __eqg__ () and does not define ___hash___ () will have its __hash___ () implicitly set
to None. When the ___hash__ () method of a class is None, instances of the class will raise an appropriate
TypeError when a program attempts to retrieve their hash value, and will also be correctly identified as unhas-
hable when checking i sinstance (obj, collections.abc.Hashable).

If a class that overrides __eqg () needs to retain the implementation of ___hash__ () from a parent class, the
interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__.

If a class that does not override __eq () wishes to suppress hash support, it should include __hash__ =
None in the class definition. A class which defines its own ___hash__ () that explicitly raises a TypeError
would be incorrectly identified as hashable by an isinstance (obj, collections.abc.Hashable)
call.

Nota: By default, the __hash () values of str, bytes and datetime objects are «salted» with an unpredictable
random value. Although they remain constant within an individual Python process, they are not predictable between
repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully-chosen inputs that ex-
ploit the worst case performance of a dict insertion, O(n"2) complexity. See http://www.ocert.org/advisories/
ocert-2011-003.html for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering (and
it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

Distinto en la version 3.3: Hash randomization is enabled by default.

object.__bool__ (self)
Called to implement truth value testing and the built-in operation bool () ; should return False or True. When

3.3. Special method names 29

http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, Version 3.7.17

this method is not defined, __1en__ () is called, if it is defined, and the object is considered true if its result is
nonzero. If a class defines neither _Ien_ () nor ___bool (), all its instances are considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion of
x .name) for class instances.

object.__getattr__ (self, name)

Called when the default attribute access fails with an AttributeError (either __getattribute_ _ () rai-
ses an AttributeError because name is not an instance attribute or an attribute in the class tree for sel f; or
__get__ () of a name property raises AttributeError). This method should either return the (computed)
attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, ___getattr__ () isnotcalled. (This is an inten-
tional asymmetry between __getattr_ () and ___setattr__ ().) This is done both for efficiency reasons
and because otherwise ___getattr__ () would have no way to access other attributes of the instance. Note that
at least for instance variables, you can fake total control by not inserting any values in the instance attribute dictio-
nary (but instead inserting them in another object). See the __getattribute__ () method below for a way to
actually get total control over attribute access.

object.__getattribute__ (self, name)

Called unconditionally to implement attribute accesses for instances of the class. If the class also defi-
nes __getattr__ (), the latter will not be called unless __ _getattribute__ () either calls it expli-
citly or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, object.
__getattribute_ (self, name).

Nota: This method may still be bypassed when looking up special methods as the result of implicit invocation via
language syntax or built-in functions. See Special method lookup.

object.__setattr__ (self, name, value)

Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store the
value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If _ _setattr__ () wants to assign to an instance attribute, it should call the base class method with the same
name, for example, object.__setattr__ (self, name, value).

object.__delattr__ (self, name)

Like setattr__ () butfor attribute deletion instead of assignment. This should only be implemented if de 1
obj.name is meaningful for the object.

object.__dir__ (self)

Called when dir () is called on the object. A sequence must be returned. dir () converts the returned sequence
to a list and sorts it.

30

Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

Customizing module attribute access

Special names __getattr___ and __dir__ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and re-
turn the computed value or raise an AttributeError. If an attribute is not found on a module object through the
normal lookup, i.e. object.__getattribute__ (),then __getattr__ issearched in the module __dict_
before raising an AttributeError. If found, it is called with the attribute name and the result is returned.

The __dir__ function should accept no arguments, and return a sequence of strings that represents the names accessible
on module. If present, this function overrides the standard dir () search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class___ attribute of a module object to a subclass of types.ModuleType. For example:

import sys
from types import ModuleType

class VerboseModule (ModuleType) :
def _ _repr_ (self):
return f'Verbose {self._ name__ }'
def _ setattr__ (self, attr, value):
print (f'Setting {attr/}...")
super () .__setattr__ (attr, value)

sys.modules|[_name__]._ class__ = VerboseModule

Nota: Defining module ___getattr__ and setting module __class__ only affect lookups made using the attribute
access syntax — directly accessing the module globals (whether by code within the module, or via a reference to the
module’s globals dictionary) is unaffected.

Distinto en la version 3.5: __class___ module attribute is now writable.
Nuevo en la version 3.7: __getattr__and __ dir__ module attributes.
Ver también:

PEP 562 - Module __getattr__ and __dir__ Describes the __getattr___and __dir__ functions on modules.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one
of its parents). In the examples below, «the attribute» refers to the attribute whose name is the key of the property in the
owner class” __dict__ .

object.__get___ (self, instance, owner)
Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance attribute
access). owner 1is always the owner class, while instance is the instance that the attribute was accessed through, or
None when the attribute is accessed through the owner. This method should return the (computed) attribute value
or raise an AttributeError exception.

object.__set__ (self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.

object.__delete__ (self, instance)
Called to delete the attribute on an instance instance of the owner class.

3.3. Special method names 31

https://www.python.org/dev/peps/pep-0562

The Python Language Reference, Version 3.7.17

object.__set_name__ (self, owner, name)
Called at the time the owning class owner is created. The descriptor has been assigned to name.

Nota: ___set_name__ () is only called implicitly as part of the t ype constructor, so it will need to be called
explicitly with the appropriate parameters when a descriptor is added to a class after initial creation:

class A:

pass
descr = custom_descriptor ()
A.attr = descr
descr.__set_name__ (A, 'attr')

See Creating the class object for more details.

Nuevo en la version 3.6.

The attribute __objclass__ is interpreted by the inspect module as specifying the class where this object was
defined (setting this appropriately can assist in runtime introspection of dynamic class attributes). For callables, it may
indicate that an instance of the given type (or a subclass) is expected or required as the first positional argument (for
example, CPython sets this attribute for unbound methods that are implemented in C).

Invoking Descriptors

In general, a descriptor is an object attribute with «binding behavior», one whose attribute access has been overridden
by methods in the descriptor protocol: ___get__ (), set__(),and__delete__ ().If any of those methods are
defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance, a . x
has a lookup chain starting with a.__dict__ ['x'], then type (a) .__dict__['x"'], and continuing through
the base classes of type (a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the default
behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which descriptor
methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a . x. How the arguments are assembled depends on a:

Direct Call The simplest and least common call is when user code directly invokes a descriptor method: x .
__get_ (a).

Instance Binding If binding to an object instance, a . x is transformed into the call: type (a) .__dict__ ['x'].
__get__(a, type(a)).

Class Binding If binding to a class, A . x is transformed into the call: A.__dict__ ['x'].__get__ (None, A).

Super Binding If a is an instance of super, then the binding super (B, obj) .m() searchesobj.__class__.
__mro___ for the base class A immediately preceding B and then invokes the descriptor with the call: A.
_dict__ ['m'].__get_ (obj, obj.__class__).

For instance bindings, the precedence of descriptor invocation depends on the which descriptor methods are defined.
A descriptor can define any combination of __get__ (), set_ () and __ _delete (). If it does not define
__get__ (), then accessing the attribute will return the descriptor object itself unless there is a value in the object’s
instance dictionary. If the descriptor defines __set_ () and/or __delete (), itis a data descriptor; if it defines
neither, it is a non-data descriptor. Normally, data descriptors defineboth ___get_ () and__set__ (), while non-data
descriptors have just the _ get__ () method. Data descriptors with ___set__ () and __get__ () defined always
override a redefinition in an instance dictionary. In contrast, non-data descriptors can be overridden by instances.

32 Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

Python methods (including staticmethod () and classmethod ()) are implemented as non-data descriptors. Ac-
cordingly, instances can redefine and override methods. This allows individual instances to acquire behaviors that differ
from other instances of the same class.

The property () function is implemented as a data descriptor. Accordingly, instances cannot override the behavior of
a property.

__slots__

__slots__allow us to explicitly declare data members (like properties) and deny the creation of __dict __and __weakref__
(unless explicitly declared in __slots__ or available in a parent.)

The space saved over using __dict__ can be significant. Attribute lookup speed can be significantly improved as well.

object.__slots__
This class variable can be assigned a string, iterable, or sequence of strings with variable names used by instances.
__slots__reserves space for the declared variables and prevents the automatic creation of __dict__and __weakref__
for each instance.

Notes on using __slots

* When inheriting from a class without __slots__, the __dict _and __weakref __ attribute of the instances will always
be accessible.

e Without a __dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition. At-
tempts to assign to an unlisted variable name raises Att ributeError. If dynamic assignment of new variables
is desired, then add '__dict__ ' to the sequence of strings in the __slots__ declaration.

» Without a __weakref__ variable for each instance, classes defining __slots__ do not support weak references to
its instances. If weak reference support is needed, then add '__weakref__ ' to the sequence of strings in the
__slots__ declaration.

e _ slots__ are implemented at the class level by creating descriptors (Implementing Descriptors) for each variable
name. As a result, class attributes cannot be used to set default values for instance variables defined by __slots__;
otherwise, the class attribute would overwrite the descriptor assignment.

¢ The action of a __slots__ declaration is not limited to the class where it is defined. __slots__ declared in parents are
available in child classes. However, child subclasses will get a __dict__ and __weakref__ unless they also define
__slots__ (which should only contain names of any additional slots).

* If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is inaccessible
(except by retrieving its descriptor directly from the base class). This renders the meaning of the program undefined.
In the future, a check may be added to prevent this.

e Nonempty __slots__ does not work for classes derived from «variable-length» built-in types such as int, bytes
and tuple.

* Any non-string iterable may be assigned to __slots__. Mappings may also be used; however, in the future, special
meaning may be assigned to the values corresponding to each key.

e __ class__ assignment works only if both classes have the same __slots__.

* Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have attributes
created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

« If aniterator is used for __slots__then a descriptor is created for each of the iterator’s values. However, the __slots__
attribute will be an empty iterator.

3.3. Special method names 33

The Python Language Reference, Version 3.7.17

3.3.3 Customizing class creation

Whenever a class inherits from another class, __init_subclass__ is called on that class. This way, it is possible to write
classes which change the behavior of subclasses. This is closely related to class decorators, but where class decorators
only affect the specific class they’re applied to, __init_subclass__ solely applies to future subclasses of the class
defining the method.

classmethod object.__init_subclass__ (cls)
This method is called whenever the containing class is subclassed. cls is then the new subclass. If defined as a normal
instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent’s class ___init_subclass__.
For compatibility with other classes using __init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

class Philosopher:

def __init_subclass__(cls, default_name, **kwargs):
super () .__init_subclass__ (**kwargs)
cls.default_name = default_name

class AustralianPhilosopher (Philosopher, default_name="Bruce"):
pass

The default implementation object.__init_subclass___ does nothing, but raises an error if it is called
with any arguments.

Nota: The metaclass hint metaclass is consumed by the rest of the type machinery, and is never passed to
__init_subclass__ implementations. The actual metaclass (rather than the explicit hint) can be accessed as
type (cls).

Nuevo en la version 3.6.

Metaclasses

By default, classes are constructed using type () . The class body is executed in a new namespace and the class name is
bound locally to the result of type (name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition line,
or by inheriting from an existing class that included such an argument. In the following example, both MyClass and
MySubclass are instances of Meta:

class Meta (type) :
pass

class MyClass (metaclass=Meta) :
pass

class MySubclass (MyClass) :
pass

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:

¢ MRO entries are resolved;

34 Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

* the appropriate metaclass is determined;
* the class namespace is prepared;
* the class body is executed;

* the class object is created.

Resolving MRO entries

If a base that appears in class definition is not an instance of t ype, thenan ___mro_entries__ method is searched on
it. If found, it is called with the original bases tuple. This method must return a tuple of classes that will be used instead
of this base. The tuple may be empty, in such case the original base is ignored.

Ver también:

PEP 560 - Core support for typing module and generic types

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:
« if no bases and no explicit metaclass are given, then type () is used;
« if an explicit metaclass is given and it is not an instance of type (), then it is used directly as the metaclass;

* if an instance of type () is given as the explicit metaclass, or bases are defined, then the most derived metaclass
is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type (cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these candidate
metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail with TypeError.

Preparing the class hamespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass
has a _ prepare__ attribute, it is called as namespace = metaclass._ _prepare__ (name, bases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The __prepare_
method should be implemented as a classmethod (). The namespace returned by __prepare__ is passed in to
__new___, but when the final class object is created the namespace is copied into a new dict.

If the metaclass has no __prepare___ attribute, then the class namespace is initialised as an empty ordered mapping.
Ver también:

PEP 3115 - Metaclasses in Python 3000 Introduced the __prepare__ namespace hook

Executing the class body

The class body is executed (approximately) as exec (body, globals (), namespace). The key difference from
anormal call to exec () is that lexical scoping allows the class body (including any methods) to reference names from
the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see names
defined at the class scope. Class variables must be accessed through the first parameter of instance or class methods, or
through the implicit lexically scoped ___class__ reference described in the next section.

3.3. Special method names 35

https://www.python.org/dev/peps/pep-0560
https://www.python.org/dev/peps/pep-3115

The Python Language Reference, Version 3.7.17

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass (name, bases, namespace, **kwds) (the additional keywords passed here are the same as tho-
se passed to __prepare_).

This class object is the one that will be referenced by the zero-argument form of super ().__class__ is an implicit
closure reference created by the compiler if any methods in a class body refer to either __class___ or super. This
allows the zero argument form of super () to correctly identify the class being defined based on lexical scoping, while
the class or instance that was used to make the current call is identified based on the first argument passed to the method.

CPython implementation detail: In CPython 3.6 and later, the __class___ cell is passed to the metaclass as a
__classcell__ entry in the class namespace. If present, this must be propagated up to the type.__new__ callin
order for the class to be initialised correctly. Failing to do so will result in a DeprecationWarning in Python 3.6,
and a RuntimeError in Python 3.8.

When using the default metaclass t ype, or any metaclass that ultimately calls t ype . ___new___, the following additional
customisation steps are invoked after creating the class object:

e first, type.__new___ collects all of the descriptors in the class namespace that define a __set_name__ ()
method;

* second, all of these __set_name___ methods are called with the class being defined and the assigned name of
that particular descriptor;

e finally, the _ init_subclass__ () hook is called on the immediate parent of the new class in its method
resolution order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the resulting
object is bound in the local namespace as the defined class.

When a new class is created by type .___new__, the object provided as the namespace parameter is copied to a new
ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which becomes the
__dict___ attribute of the class object.

Ver también:

PEP 3135 - New super Describes the implicit __class___ closure reference

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging, inter-
face checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource loc-
king/synchronization.

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance () and issubclass () built-in
functions.

In particular, the metaclass abc . ABCMeta implements these methods in order to allow the addition of Abstract Base
Classes (ABCs) as «virtual base classes» to any class or type (including built-in types), including other ABCs.

class.__instancecheck__ (self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to implement
isinstance (instance, class).

36 Capitulo 3. Data model

https://www.python.org/dev/peps/pep-3135

The Python Language Reference, Version 3.7.17

class.__subclasscheck___ (self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to implement
issubclass (subclass, class).

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods in
the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case the
instance is itself a class.

Ver también:

PEP 3119 - Introducing Abstract Base Classes Includes the specification for customizing isinstance () and
issubclass () behavior through _ instancecheck__ () and __subclasscheck__ (), with moti-
vation for this functionality in the context of adding Abstract Base Classes (see the abc module) to the language.

3.3.5 Emulating generic types

One can implement the generic class syntax as specified by PEP 484 (for example List [int]) by defining a special
method:

classmethod object.__class_getitem__ (cls, key)
Return an object representing the specialization of a generic class by type arguments found in key.

This method is looked up on the class object itself, and when defined in the class body, this method is implicitly a class
method. Note, this mechanism is primarily reserved for use with static type hints, other usage is discouraged.

Ver también:

PEP 560 - Core support for typing module and generic types

3.3.6 Emulating callable objects

object.__call__ (self[, args...])
Called when the instance is «called» as a function; if this method is defined, x (argl, arg2, ...) isashort-
hand for x.__call__ (argl, arg2, ...).

3.3.7 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as lists or
tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of methods is used either
to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys should be the
integers k for which 0 <= k < Nwhere N is the length of the sequence, or slice objects, which define a range of items.
It is also recommended that mappings provide the methods keys (), values (), items (), get (), clear (),
setdefault (), pop (), popitem(), copy (), and update () behaving similar to those for Python’s standard
dictionary objects. The collections.abc module provides a Mut ableMapping abstract base class to help create
those methods from a base setof __getitem (), __setitem__ (),__delitem _ (),and keys (). Mutable
sequences should provide methods append (), count (), index (),extend (), insert (),pop (), remove (),
reverse () and sort (), like Python standard list objects. Finally, sequence types should implement addition (mea-
ning concatenation) and multiplication (meaning repetition) by defining the methods __add__ (), __radd__ (),
_diadd__ (), _mul__(),__rmul__ () and __imul__ () described below; they should not define other nu-
merical operators. It is recommended that both mappings and sequences implement the contains__ () method to
allow efficient use of the in operator; for mappings, in should search the mapping’s keys; for sequences, it should search
through the values. It is further recommended that both mappings and sequences implement the ___iter__ () method
to allow efficient iteration through the container; for mappings, _iter () should iterate through the object’s keys;
for sequences, it should iterate through the values.

3.3. Special method names 37

https://www.python.org/dev/peps/pep-3119
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0560

The Python Language Reference, Version 3.7.17

object.__len__ (self)
Called to implement the built-in function 1en () . Should return the length of the object, an integer >= 0. Also, an
object that doesn’t definea ___bool__ () method and whose ___Ien__ () method returns zero is considered to
be false in a Boolean context.

CPython implementation detail: In CPython, the length is required to be at most sy s .maxsize. If the length
is larger than sys.maxsize some features (such as 1en ()) may raise OverflowError. To prevent raising
OverflowError by truth value testing, an object must definea ___bool__ () method.

object.__length_hint__ (self)
Called to implement operator.length_hint (). Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer >= 0. The return value may also be
Not Implemented, which is treated the same as if the _ length_hint__ method didn’t exist at all. This
method is purely an optimization and is never required for correctness.

Nuevo en la version 3.4.

Nota: Slicing is done exclusively with the following three methods. A call like

’a[1:2] = b

is translated to

’a[slice(l, 2, None)] =D

and so forth. Missing slice items are always filled in with None.

object.__getitem__ (self, key)
Called to implement evaluation of self [key]. For sequence types, the accepted keys should be integers and slice
objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a sequence type) is
uptothe getitem () method. If key is of an inappropriate type, TypeError may be raised; if of a value
outside the set of indexes for the sequence (after any special interpretation of negative values), IndexError
should be raised. For mapping types, if key is missing (not in the container), KeyError should be raised.

Nota: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection of the
end of the sequence.

object.__setitem__ (self, key, value)
Called to implement assignment to self [key]. Same note as for __getitem__ (). This should only be im-
plemented for mappings if the objects support changes to the values for keys, or if new keys can be added, or for
sequences if elements can be replaced. The same exceptions should be raised for improper key values as for the
__getitem__ () method.

object.__delitem__ (self, key)
Called to implement deletion of self [key]. Same note as for __getitem _ (). This should only be imple-
mented for mappings if the objects support removal of keys, or for sequences if elements can be removed from the
sequence. The same exceptions should be raised for improper key values as for the __getitem _ () method.

object.__missing__ (self, key)
Called by dict._ getitem__ () toimplement self [key] for dict subclasses when key is not in the dictio-
nary.

object.__iter___ (self)
This method is called when an iterator is required for a container. This method should return a new iterator object
that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the container.

38 Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

Iterator objects also need to implement this method; they are required to return themselves. For more information
on iterator objects, see typeiter.

object.__reversed__ (self)
Called (if present) by the reversed () built-in to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

Ifthe reversed__ () method is not provided, the reversed () built-in will fall back to using the sequence
protocol (__len__ () and __getitem__ ()). Objects that support the sequence protocol should only provi-
de _ reversed__ () if they can provide an implementation that is more efficient than the one provided by
reversed().

The membership test operators (i nand not 1in)are normally implemented as an iteration through a container. However,
container objects can supply the following special method with a more efficient implementation, which also does not require
the object be iterable.

object.__contains__ (self, item)
Called to implement membership test operators. Should return true if ifem is in self, false otherwise. For mapping
objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define __contains__ (), the membership test first tries iterationvia___iter (), then
the old sequence iteration protocol via___getitem _ (), see this section in the language reference.

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should be
left undefined.

object.__add__ (self, other)

object.__sub__ (self, other)

object.__mul__ (self, other)

object.__matmul___ (self, other)

object.__truediv__ (self, other)

object.__ _floordiv___ (self, other)

object.__mod___ (self, other)

object .__divmod___ (self, other)

object.__pow___ (self, other[, modulo])

object.__lshift__ (self, other)

object.__rshift__ (self, other)

object.__and__ (self, other)

object.__xor__ (self, other)

object.__oxr___ (self, other)
These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (), pow (),
**x <<, >>, &, ", |). For instance, to evaluate the expression x + vy, where x is an instance of a class that has an
__add__ () method,x.__add__ (y) iscalled. The ___divmod__ () method should be the equivalent to using
_ floordiv___ () and __mod__ (); it should not be related to __truediv__ (). Note that __ _pow ()
should be defined to accept an optional third argument if the ternary version of the built-in pow () function is to

be supported.
If one of those methods does not support the operation with the supplied arguments, it should return
NotImplemented.

object.__radd__ (self, other)

object. rsub (self, other)

object.__rmul__ (self, other)

object. rmatmul (self, other)

3.3. Special method names 39

The Python Language Reference, Version 3.7.17

object.__rtruediv___ (self, other)

object.__rfloordiv___ (self, other)

object.__rmod___ (self, other)

object.__rdivmod__ (self, other)

object.__rpow__ (self, other[, modulo])

object.__rlshift__ (self, other)

object.__rrshift__ (self, other)

object.__rand__ (self, other)

object.__rxor__ (self, other)

object.__ror__ (self, other)
These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (), pow (),
** <<, >>, &, ©, |) with reflected (swapped) operands. These functions are only called if the left operand does
not support the corresponding operation® and the operands are of different types.* For instance, to evaluate the
expression x — y, where y is an instance of a class that has an ___rsub__ () method, y.__rsub__ (x) is
called if x.___sub__ (y) returns NotImplemented.

Note that ternary pow () will not try calling __ rpow__ () (the coercion rules would become too complicated).

Nota: If the right operand’s type is a subclass of the left operand’s type and that subclass provides the reflected
method for the operation, this method will be called before the left operand’s non-reflected method. This behavior
allows subclasses to override their ancestors” operations.

object.__iadd___ (self, other)
object.__isub__ (self, other)
object.__imul__ (self, other)
object.__imatmul___ (self, other)
object.__itruediv___ (self, other)
object.__ifloordiv___ (self, other)
object.__imod___ (self, other)
object.__ipow__ (self, other[, modulo])
object.__ilshift__ (self, other)
object.__irshift__ (self, other)
object.__iand__ (self, other)

object.__ixor__ (self, other)

object.__dior__ (self, other)
These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, @=, /=, / /=, %=, **=,
<<=,>>=, &=, "=, | =). These methods should attempt to do the operation in-place (modifying self) and return the

result (which could be, but does not have to be, self). If a specific method is not defined, the augmented assignment
falls back to the normal methods. For instance, if x is an instance of aclass withan___ iadd () method, x += y
isequivalenttox = x.__iadd__ (y) .Otherwise, x.__add__(y) andy.__radd__ (x) are considered,
as with the evaluation of x + y. In certain situations, augmented assignment can result in unexpected errors (see
fag-augmented-assignment-tuple-error), but this behavior is in fact part of the data model.

object.__neg__ (self)
object.__pos__ (self)
object.__abs__ (self)
object.__invert__ (self)
Called to implement the unary arithmetic operations (-, +, abs () and ~).

object.__complex__ (self)
object.__int__ (self)

3 «Does not support» here means that the class has no such method, or the method returns Not Implemented. Do not set the method to None
if you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such fallback.

4 For operands of the same type, it is assumed that if the non-reflected method (suchas __add__ ()) fails the operation is not supported, which is
why the reflected method is not called.

40 Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

object.__float__ (self)
Called to implement the built-in functions complex (), int () and float (). Should return a value of the
appropriate type.

object.__index__ (self)
Called to implement operator.index (), and whenever Python needs to losslessly convert the numeric object
to an integer object (such as in slicing, or in the built-in bin (), hex () and oct () functions). Presence of this
method indicates that the numeric object is an integer type. Must return an integer.

Nota: In order to have a coherent integer type class, when ___index__ () isdefined __int__ () should also
be defined, and both should return the same value.

object.__round__ (self[, na’igits])

object.__trunc__ (self)

object._ floor__ (self)

object.__ceil__ (self)
Called to implement the built-in function round () and math functions trunc (), floor () and ceil ().
Unless ndigits is passed to __round___ () all these methods should return the value of the object truncated to an
Integral (typically an int).

If int () is not defined then the built-in function int () fallsbackto trunc ().

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a wi t h statement. The
context manager handles the entry into, and the exit from, the desired runtime context for the execution of the block of
code. Context managers are normally invoked using the with statement (described in section The with statement), but
can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking re-
sources, closing opened files, etc.

For more information on context managers, see typecontextmanager.

object.__enter__ (self)
Enter the runtime context related to this object. The with statement will bind this method’s return value to the
target(s) specified in the as clause of the statement, if any.

object.__exit__ (self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context to be
exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being propagated),
it should return a true value. Otherwise, the exception will be processed normally upon exit from this method.

Note that __exit__ () methods should not reraise the passed-in exception; this is the caller’s responsibility.
Ver también:

PEP 343 - The «with» statement The specification, background, and examples for the Python wi ¢t h statement.

3.3. Special method names 4

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, Version 3.7.17

3.3.10 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an object’s
type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an exception:

>>> class C:

pass
>>> ¢ = C()
>>> ¢c.__len_ = lambda: 5

>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods such as ___hash__ () and __repr__ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the conventional
lookup process, they would fail when invoked on the type object itself:

>>> 1 ._ hash__ () == hash(1l)
True
>>> int.__hash_ () == hash(int)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash__' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as “metaclass confu-
sion”, and is avoided by bypassing the instance when looking up special methods:

>>> type(l).__hash__ (1) == hash(1)

True

>>> type(int).__hash__ (int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the __getattribute__ () method even of the object’s metaclass:

>>> class Meta (type):
def _ getattribute__ (*args):
print ("Metaclass getattribute invoked")
return type.__getattribute__ (*args)

>>> class C(object, metaclass=Meta):
def _ len_ (self):
return 10
def __ _getattribute__ (*args):
print ("Class getattribute invoked")

return object.__getattribute__ (*args)
>>> ¢ = C()
>>> c.__len_ () # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__ (c) # Explicit lookup via type

Metaclass getattribute invoked

10

>>> len(c) # Implicit lookup
10

42 Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

Bypassing the __getattribute__ () machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be set
on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implements an __await__ () method. Coroutine objects returned from async def
functions are awaitable.

Nota: The generator iterator objects returned from generators decorated with types.coroutine () or asyncio.
coroutine () are also awaitable, but they do not implement __await__ ().

object.__await__ (self)
Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future im-
plements this method to be compatible with the awa i t expression.

Nuevo en la version 3.5.
Ver también:

PEP 492 for additional information about awaitable objects.

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling__await__ () and iterating
over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration, and the
exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by the iterator.
Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator met-
hods). However, unlike generators, coroutines do not directly support iteration.

Distinto en la version 3.5.2: It is a Runt imeError to await on a coroutine more than once.

coroutine.send (value)
Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator returned
by___await__ ().If valueis not None, this method delegates to the send () method of the iterator that caused
the coroutine to suspend. The result (return value, StopIteration, or other exception) is the same as when
iterating over the __await__ () return value, described above.

coroutine.throw (type[, value[, traceback]])
Raises the specified exception in the coroutine. This method delegates to the throw () method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the
__await__ () return value, described above. If the exception is not caught in the coroutine, it propagates back
to the caller.

coroutine.close ()
Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close () method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the co-
routine is marked as having finished executing, even if it was never started.

3.4. Coroutines 43

https://www.python.org/dev/peps/pep-0492

The Python Language Reference, Version 3.7.17

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4.3 Asynchronous lterators

An asynchronous iterator can call asynchronous code inits __anext___ method.
Asynchronous iterators can be used in an async for statement.

object.__aiter__ (self)
Must return an asynchronous iterator object.

object.__anext__ (self)
Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration error
when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

def _ aiter_ (self):
return self

async def _ anext_ (self):
val = await self.readline ()
if val == b'"':

raise StopAsynclteration
return val

Nuevo en la version 3.5.

Distinto en la version 3.7: Prior to Python 3.7, __aiter___ could return an awaitable that would resolve to an asynchro-
nous iterator.

Starting with Python 3.7, __aiter__ must return an asynchronous iterator object. Returning anything else will result
ina TypeError error.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter___ and
__aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object.__aenter__ (self)
This method is semantically similar to the __enter___ (), with only difference that it must return an awaitable.

object.__aexit__ (self, exc_type, exc_value, traceback)
This method is semantically similar to the __exit__ (), with only difference that it must return an awaitable.

An example of an asynchronous context manager class:

class AsyncContextManager:
async def __ _aenter_ (self):
await log('entering context')

async def _ aexit__ (self, exc_type, exc, tb):
await log('exiting context')

44 Capitulo 3. Data model

The Python Language Reference, Version 3.7.17

Nuevo en la version 3.5.

3.4. Coroutines 45

The Python Language Reference, Version 3.7.17

46 Capitulo 3. Data model

capiTuLo 4

Execution model

4.1 Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is executed as a unit.
The following are blocks: a module, a function body, and a class definition. Each command typed interactively is a block.
A script file (a file given as standard input to the interpreter or specified as a command line argument to the interpreter)
is a code block. A script command (a command specified on the interpreter command line with the —c option) is a code
block. The string argument passed to the built-in functions eval () and exec () is a code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for debugging)
and determines where and how execution continues after the code block’s execution has completed.

4.2 Naming and binding

4.2.1 Binding of names

Names refer to objects. Names are introduced by name binding operations.

The following constructs bind names: formal parameters to functions, import statements, class and function definitions
(these bind the class or function name in the defining block), and targets that are identifiers if occurring in an assignment,
for loop header, or after as ina with statement or except clause. The import statement of the form from ...
import * binds all names defined in the imported module, except those beginning with an underscore. This form may
only be used at the module level.

A target occurring in a de 1 statement is also considered bound for this purpose (though the actual semantics are to unbind
the name).

Each assignment or import statement occurs within a block defined by a class or function definition or at the module level
(the top-level code block).

If a name is bound in a block, it is a local variable of that block, unless declared as nonlocal or global. If a name
is bound at the module level, it is a global variable. (The variables of the module code block are local and global.) If a
variable is used in a code block but not defined there, it is a free variable.

47

The Python Language Reference, Version 3.7.17

Each occurrence of a name in the program text refers to the binding of that name established by the following name
resolution rules.

4.2.2 Resolution of names

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that
block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one,
unless a contained block introduces a different binding for the name.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes visible
to a code block is called the block’s environment.

When a name is not found at all, a NameError exception is raised. If the current scope is a function scope, and
the name refers to a local variable that has not yet been bound to a value at the point where the name is used, an
UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as
references to the current block. This can lead to errors when a name is used within a block before it is bound. This rule is
subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The local
variables of a code block can be determined by scanning the entire text of the block for name binding operations.

If the global statement occurs within a block, all uses of the name specified in the statement refer to the binding of
that name in the top-level namespace. Names are resolved in the top-level namespace by searching the global namespace,
i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace of the module
builtins. The global namespace is searched first. If the name is not found there, the builtins namespace is searched.
The global statement must precede all uses of the name.

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing scope
for a free variable contains a global statement, the free variable is treated as a global.

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function scope.

The namespace for a module is automatically created the first time a module is imported. The main module for a script
is always called __main__.

Class definition blocks and arguments to exec () and eval () are special in the context of name resolution. A class
definition is an executable statement that may use and define names. These references follow the normal rules for name
resolution with an exception that unbound local variables are looked up in the global namespace. The namespace of the
class definition becomes the attribute dictionary of the class. The scope of names defined in a class block is limited to the
class block; it does not extend to the code blocks of methods — this includes comprehensions and generator expressions
since they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + i for i in range(10))

48 Capitulo 4. Execution model

The Python Language Reference, Version 3.7.17

4.2.3 Builtins and restricted execution

CPython implementation detail: Users should not touch __builtins__;itis strictly an implementation detail. Users
wanting to override values in the builtins namespace should import the builtins module and modify its attributes
appropriately.

The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins__ inits global namespace; this should be a dictionary or a module (in the latter case the module’s dictio-
nary is used). By default, when in the __main__ module, __builtins___is the built-in module builtins; when
in any other module, __builtins___is an alias for the dictionary of the builtins module itself.

4.2.4 Interaction with dynamic features

Name resolution of free variables occurs at runtime, not at compile time. This means that the following code will print
42:

i =10

def f():
print (1)

i =42

£0)

The eval () and exec () functions do not have access to the full environment for resolving names. Names may be
resolved in the local and global namespaces of the caller. Free variables are not resolved in the nearest enclosing names-
pace, but in the global namespace.' The exec () and eval () functions have optional arguments to override the global
and local namespace. If only one namespace is specified, it is used for both.

4.3 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or other
exceptional conditions. An exception is raised at the point where the error is detected; it may be handled by the surrounding
code block or by any code block that directly or indirectly invoked the code block where the error occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python program
can also explicitly raise an exception with the raise statement. Exception handlers are specified with the try ...
except statement. The finally clause of such a statement can be used to specify cleanup code which does not
handle the exception, but is executed whether an exception occurred or not in the preceding code.

Python uses the «termination» model of error handling: an exception handler can find out what happened and continue
execution at an outer level, but it cannot repair the cause of the error and retry the failing operation (except by re-entering
the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its interactive
main loop. In either case, it prints a stack traceback, except when the exception is SystemExit.

Exceptions are identified by class instances. The except clause is selected depending on the class of the instance: it
must reference the class of the instance or a base class thereof. The instance can be received by the handler and can carry
additional information about the exceptional condition.

Nota: Exception messages are not part of the Python API. Their contents may change from one version of Python to the
next without warning and should not be relied on by code which will run under multiple versions of the interpreter.

! This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

4.3. Exceptions 49

The Python Language Reference, Version 3.7.17

See also the description of the try statement in section The try statement and raise statement in section The raise
statement.

50 Capitulo 4. Execution model

CAPITULO D

The import system

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions such as
importlib.import_module () and built-in __import__ () can also be used to invoke the import machinery.

The import statement combines two operations; it searches for the named module, then it binds the results of that search
to a name in the local scope. The search operation of the import statement is defined as a call to the __import__ ()
function, with the appropriate arguments. The return value of ___import__ () is used to perform the name binding
operation of the import statement. See the import statement for the exact details of that name binding operation.

Adirectcallto ___import__ () performs only the module search and, if found, the module creation operation. While
certain side-effects may occur, such as the importing of parent packages, and the updating of various caches (including
sys.modules), only the import statement performs a name binding operation.

When an import statement is executed, the standard builtin __import__ () function is called. Other mechanisms
for invoking the import system (such as importlib.import_module ()) may choose to bypass ___import__ ()
and use their own solutions to implement import semantics.

When a module is first imported, Python searches for the module and if found, it creates a module object', initializing it.
If the named module cannot be found, a ModuleNotFoundError is raised. Python implements various strategies to
search for the named module when the import machinery is invoked. These strategies can be modified and extended by
using various hooks described in the sections below.

Distinto en la version 3.3: The import system has been updated to fully implement the second phase of PEP 302. There
is no longer any implicit import machinery - the full import system is exposed through sys.meta_path. In addition,
native namespace package support has been implemented (see PEP 420).

! See types.ModuleType.

51

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Version 3.7.17

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example importlib.
import_module () provides a recommended, simpler API than built-in __import__ () for invoking the import
machinery. Refer to the import1ib library documentation for additional detail.

5.2 Packages

Python has only one type of module object, and all modules are of this type, regardless of whether the module is imple-
mented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python has a concept
of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take this
analogy too literally since packages and modules need not originate from the file system. For the purposes of this docu-
mentation, we’ll use this convenient analogy of directories and files. Like file system directories, packages are organized
hierarchically, and packages may themselves contain subpackages, as well as regular modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another way,
packages are just a special kind of module. Specifically, any module that contains a ___path___attribute is considered a
package.

All modules have a name. Subpackage names are separated from their parent package name by dots, akin to Python’s
standard attribute access syntax. Thus you might have a module called sy s and a package called email, which in turn
has a subpackage called email.mime and a module within that subpackage called email .mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are traditional pac-
kages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory containing
an __init__ .py file. When a regular package is imported, this __init__ .py file is implicitly executed, and the
objects it defines are bound to names in the package’s namespace. The __init__ .py file can contain the same Python
code that any other module can contain, and Python will add some additional attributes to the module when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/

__init__ .py
one/

__init__ .py
two/

__init_ .py
three/

__init__ .py

Importingparent . one will implicitly execute parent /__init__ .pyandparent/one/__init__ .py.Sub-
sequent imports of parent .two or parent .three will execute parent /two/__init__ .py and parent/
three/__init__ .py respectively.

52 Capitulo 5. The import system

The Python Language Reference, Version 3.7.17

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the parent
package. Portions may reside in different locations on the file system. Portions may also be found in zip files, on the
network, or anywhere else that Python searches during import. Namespace packages may or may not correspond directly
to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path___ attribute. They instead use a custom iterable type
which will automatically perform a new search for package portions on the next import attempt within that package if the
path of their parent package (or sys . path for a top level package) changes.

With namespace packages, thereisno parent/__init__ .py file. In fact, there may be multiple parent directories
found during import search, where each one is provided by a different portion. Thus parent /one may not be physically
located next to parent /two. In this case, Python will create a namespace package for the top-level parent package
whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of this
discussion, the difference is immaterial) being imported. This name may come from various arguments to the import
statement, or from the parameters to the importlib.import_module () or __import__ () functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g. foo.
bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo.bar.baz. If any of the
intermediate imports fail, a ModuleNotFoundError is raised.

5.3.1 The module cache

The first place checked during import search is sys.modules. This mapping serves as a cache of all modules that
have been previously imported, including the intermediate paths. So if foo.bar .baz was previously imported, sys .
modules will contain entries for foo, foo.bar, and foo.bar.baz. Each key will have as its value the correspon-
ding module object.

During import, the module name is looked up in sys.modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then a ModuleNotFoundError is
raised. If the module name is missing, Python will continue searching for the module.

sys.modules is writable. Deleting a key may not destroy the associated module (as other modules may hold refe-
rences to it), but it will invalidate the cache entry for the named module, causing Python to search anew for the named
module upon its next import. The key can also be assigned to None, forcing the next import of the module to result in a
ModuleNotFoundError.

Beware though, as if you keep a reference to the module object, invalidate its cache entry in sys.modules, and then
re-import the named module, the two module objects will not be the same. By contrast, importlib.reload () will
reuse the same module object, and simply reinitialise the module contents by rerunning the module’s code.

5.3. Searching 53

https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Version 3.7.17

5.3.2 Finders and loaders

If the named module is not found in sys.modules, then Python’s import protocol is invoked to find and load the
module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine whether it
can find the named module using whatever strategy it knows about. Objects that implement both of these interfaces are
referred to as importers - they return themselves when they find that they can load the requested module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules, and the
second knows how to locate frozen modules. A third default finder searches an import path for modules. The import path is
a list of locations that may name file system paths or zip files. It can also be extended to search for any locatable resource,
such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module searching.

Finders do not actually load modules. If they can find the named module, they return a module spec, an encapsulation of
the module’s import-related information, which the import machinery then uses when loading the module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create and
register new ones to extend the import machinery.

Distinto en la versién 3.4: In previous versions of Python, finders returned loaders directly, whereas now they return
module specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There are two
types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys.modules cache look up. This allows meta hooks to override sys.path processing, frozen modules, or even
built-in modules. Meta hooks are registered by adding new finder objects to sys .meta_path, as described below.

Import path hooks are called as part of sys.path (or package.__path__) processing, at the point where their
associated path item is encountered. Import path hooks are registered by adding new callables to sys.path_hooks
as described below.

5.3.4 The meta path

When the named module is not found in sys.modules, Python next searches sys.meta_path, which contains a
list of meta path finder objects. These finders are queried in order to see if they know how to handle the named module.
Meta path finders must implement a method called find_spec () which takes three arguments: a name, an import
path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine whether it can
handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the named
module, it returns None. If sys.meta_path processing reaches the end of its list without returning a spec, then a
ModuleNotFoundError israised. Any other exceptions raised are simply propagated up, aborting the import process.

The f£ind_spec () method of meta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo.bar.baz. The second argument is the path entries to use for
the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the second
argument is the value of the parent package’s __path___ attribute. If the appropriate __path___ attribute cannot be
accessed, a ModuleNotFoundError is raised. The third argument is an existing module object that will be the target
of loading later. The import system passes in a target module only during reload.

54 Capitulo 5. The import system

The Python Language Reference, Version 3.7.17

The meta path may be traversed multiple times for a single import request. For example, assuming none of the modu-
les involved has already been cached, importing foo.bar.baz will first perform a top level import, calling mpf .
find_spec ("foo", None, None) on each meta path finder (mpf). After foo has been imported, foo.
bar will be imported by traversing the meta path a second time, calling mpf.find_spec ("foo.bar", foo.
__path__, None). Once foo.bar has been imported, the final traversal will call mpf.find_spec ("foo.
bar.baz", foo.bar._ path_ , None).

Some meta path finders only support top level imports. These importers will always return None when anything other
than None is passed as the second argument.

Python’s default sys . meta_path has three meta path finders, one that knows how to import built-in modules, one that
knows how to import frozen modules, and one that knows how to import modules from an import path (i.e. the path based
finder).

Distinto en la version 3.4: The £ind_spec () method of meta path finders replaced find_module (), which is now
deprecated. While it will continue to work without change, the import machinery will try it only if the finder does not
implement find_spec ().

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the module.
Here is an approximation of what happens during the loading portion of import:

module = None

if spec.loader is not None and hasattr (spec.loader, 'create_module'):
It is assumed 'exec_module' will also be defined on the loader.
module = spec.loader.create_module (spec)

if module is None:
module = ModuleType (spec.name)

The import-related module attributes get set here:

_init_module_attrs (spec, module)

if spec.loader is None:
if spec.submodule_search_locations is not None:
namespace package
sys.modules[spec.name] = module
else:
unsupported
raise ImportError
elif not hasattr (spec.loader, 'exec_module'):

module = spec.loader.load_module (spec.name)

Set __loader__ and __package__ 1if missing.
else:

sys.modules[spec.name] = module

try:

spec.loader.exec_module (module)
except BaseException:
try:
del sys.modules([spec.name]
except KeyError:
pass
raise
return sys.modules[spec.name]

Note the following details:

* If there is an existing module object with the given name in sy s .modules, import will have already returned it.

5.4. Loading 55

The Python Language Reference, Version 3.7.17

¢ The module will exist in sys .modules before the loader executes the module code. This is crucial because the
module code may (directly or indirectly) import itself; adding it to sy s . modules beforehand prevents unbounded
recursion in the worst case and multiple loading in the best.

* If loading fails, the failing module — and only the failing module — gets removed from sy s . modules. Any module
already in the sys .modules cache, and any module that was successfully loaded as a side-effect, must remain
in the cache. This contrasts with reloading where even the failing module is left in sys .modules.

» After the module is created but before execution, the import machinery sets the import-related module attributes
(«_init_module_attrs» in the pseudo-code example above), as summarized in a later section.

¢ Module execution is the key moment of loading in which the module’s namespace gets populated. Execution is
entirely delegated to the loader, which gets to decide what gets populated and how.

* The module created during loading and passed to exec_module() may not be the one returned at the end of import.

Distinto en la version 3.4: The import system has taken over the boilerplate responsibilities of loaders. These were pre-
viously performed by the importlib.abc.Loader.load_module () method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the importlib.
abc.Loader.exec_module () method with a single argument, the module object to execute. Any value returned
from exec_module () is ignored.

Loaders must satisfy the following requirements:

¢ If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the loader
should execute the module’s code in the module’s global name space (module.__dict_).

* If the loader cannot execute the module, it should raise an ImportError, although any other exception raised
during exec_module () will be propagated.

In many cases, the finder and loader can be the same object; in such cases the find_spec () method would just return
a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module ()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module () does not need to set any attributes on the module object. If the method returns None, the import
machinery will create the new module itself.

Nuevo en la version 3.4: The create_module () method of loaders.

Distinto en la version 3.4: The 1oad_module () method was replaced by exec_module () and the import machinery
assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the 1oad_module () method of loaders if it
exists and the loader does not also implement exec_module (). However, load_module () has been deprecated
and loaders should implement exec_module () instead.

The 1oad_module () method must implement all the boilerplate loading functionality described above in addition to
executing the module. All the same constraints apply, with some additional clarification:

* If there is an existing module object with the given name in sys.modules, the loader must use that existing
module. (Otherwise, importlib.reload () will not work correctly.) If the named module does not exist in
sys.modules, the loader must create a new module object and add it to sys.modules.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in sys .
modules. The indirect effect of this is that an imported module may replace itself in sys .modules. This is implementation-specific behavior that
is not guaranteed to work in other Python implementations.

56 Capitulo 5. The import system

The Python Language Reference, Version 3.7.17

e The module must exist in sys.modules before the loader executes the module code, to prevent unbounded
recursion or multiple loading.

* If loading fails, the loader must remove any modules it has inserted into sys . modules, but it must remove only
the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

Distinto en la version 3.5: A DeprecationWarning is raised when exec_module () is defined but
create_module () isnot.

Distinto en la version 3.6: An ImportError is raised when exec_module () is defined but create_module ()
is not.

5.4.2 Submodules

‘When a submodule is loaded using any mechanism (e.g. import1ib APIs, the import or import—fromstatements,
or built-in __import__ ())abindingis placed in the parent module’s namespace to the submodule object. For example,
if package spam has a submodule foo, after importing spam. foo, spam will have an attribute foo which is bound
to the submodule. Let’s say you have the following directory structure:

spam/
__init__ .py
foo.py
bar.py

and spam/__init__ .py has the following lines in it:

from .foo import Foo
from .bar import Bar

then executing the following puts a name binding to foo and bar in the spam module:

>>> import spam

>>> spam. foo

<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.bar

<module 'spam.bar' from '/tmp/imports/spam/bar.py'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental feature of the import
system. The invariant holding is that if you have sys.modules['spam'] and sys.modules|['spam.foo'] (as
you would after the above import), the latter must appear as the foo attribute of the former.

5.4.3 Module spec

The import machinery uses a variety of information about each module during import, especially before loading. Most of
the information is common to all modules. The purpose of a module’s spec is to encapsulate this import-related information
on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the finder that
creates the module spec and the loader that executes it. Most importantly, it allows the import machinery to perform the
boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

The module’s spec is exposed as the ___spec___ attribute on a module object. See ModuleSpec for details on the
contents of the module spec.

Nuevo en la version 3.4.

5.4. Loading 57

The Python Language Reference, Version 3.7.17

5.4.4 Import-related module attributes

The import machinery fills in these attributes on each module object during loading, based on the module’s spec, before
the loader executes the module.

__name___
The __name___ attribute must be set to the fully-qualified name of the module. This name is used to uniquely
identify the module in the import system.

__loader__
The ___loader___ attribute must be set to the loader object that the import machinery used when loading the
module. This is mostly for introspection, but can be used for additional loader-specific functionality, for example
getting data associated with a loader.

__package___
The module’s __package___ attribute must be set. Its value must be a string, but it can be the same value as its
__name___. When the module is a package, its __package___ value should be set toits __name___. When the
module is not a package, __package___should be set to the empty string for top-level modules, or for submodules,
to the parent package’s name. See PEP 366 for further details.

This attribute is used instead of __name___ to calculate explicit relative imports for main modules, as defined in
PEP 366. It is expected to have the same value as __spec___.parent.

Distinto en la version 3.6: The value of __package___is expected to be the same as __spec___.parent.

—_Sspec__
The ___spec___ attribute must be set to the module spec that was used when importing the module. Setting
___spec___ appropriately applies equally to modules initialized during interpreter startup. The one exception is
__main__,where ___spec__ isset to None in some cases.

When ___package__is not defined, _ spec__.parent is used as a fallback.

Nuevo en la version 3.4.
Distinto en la version 3.6: ___spec__.parent is used as a fallback when __package___is not defined.

path__
If the module is a package (either regular or namespace), the module object’s __path___ attribute must be set.
The value must be iterable, but may be empty if __path__ has no further significance. If __path___ is not
empty, it must produce strings when iterated over. More details on the semantics of __path___ are given below.

Non-package modules should not have a __path___ attribute.
__file

cached
__file__ is optional. If set, this attribute’s value must be a string. The import system may opt to leave
__file_ unsetif it has no semantic meaning (e.g. a module loaded from a database).

If __file_ isset,it may also be appropriate to setthe __cached___ attribute which is the path to any compiled
version of the code (e.g. byte-compiled file). The file does not need to exist to set this attribute; the path can simply
point to where the compiled file would exist (see PEP 3147).

It is also appropriate to set __cached___when __file__ is not set. However, that scenario is quite atypical.
Ultimately, the loader is what makes use of __file_ and/or __cached__. So if a loader can load from a
cached module but otherwise does not load from a file, that atypical scenario may be appropriate.

58 Capitulo 5. The import system

https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-3147

The Python Language Reference, Version 3.7.17

5.4.5 module.___path__

By definition, if a module has a __path___ attribute, it is a package.

A package’s __path__ attribute is used during imports of its subpackages. Within the import machinery, it functions
much the same as sy s . path, i.e. providing a list of locations to search for modules during import. However, __path___
is typically much more constrained than sys .path.

__path__ must be an iterable of strings, but it may be empty. The same rules used for sys . path also apply to a pac-
kage’s __path__,and sys.path_hooks (described below) are consulted when traversing a package’s __path__.

A package’s __init__ .py file may set or alter the package’s _ path__ attribute, and this was typically the way
namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace packages no longer
needtosupply __init__ .py files containingonly __path__ manipulation code; the import machinery automatically
sets __path___ correctly for the namespace package.

5.4.6 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s spec, you
can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or there is no
spec, the import system will craft a default repr using whatever information is available on the module. It will try to use
the module.__name_ ,module._ _file_ ,and module.__loader__ as input into the repr, with defaults
for whatever information is missing.

Here are the exact rules used:

e If the module has a __spec___ attribute, the information in the spec is used to generate the repr. The «name»,
«loader», «origin», and «has_location» attributes are consulted.

e If the module hasa ___file_ attribute, this is used as part of the module’s repr.

 If the module hasno __file__ butdoes have a __loader___thatis not None, then the loader’s repr is used
as part of the module’s repr.

e Otherwise, just use the module’s __name___in the repr.

Distinto en la version 3.4: Use of loader.module_repr () has been deprecated and the module spec is now used
by the import machinery to generate a module repr.

For backward compatibility with Python 3.3, the module repr will be generated by calling the loader’s module_repr ()
method, if defined, before trying either approach described above. However, the method is deprecated.

5.4.7 Cached bytecode invalidation

Before Python loads cached bytecode from . pyc file, it checks whether the cache is up-to-date with the source . py file.
By default, Python does this by storing the source’s last-modified timestamp and size in the cache file when writing it.
At runtime, the import system then validates the cache file by checking the stored metadata in the cache file against the
source’s metadata.

Python also supports «hash-based» cache files, which store a hash of the source file’s contents rather than its metadata.
There are two variants of hash-based . pyc files: checked and unchecked. For checked hash-based . pyc files, Python
validates the cache file by hashing the source file and comparing the resulting hash with the hash in the cache file. If a
checked hash-based cache file is found to be invalid, Python regenerates it and writes a new checked hash-based cache
file. For unchecked hash-based . pyc files, Python simply assumes the cache file is valid if it exists. Hash-based .pyc
files validation behavior may be overridden with the ——check-hash-based-pycs flag.

5.4. Loading 59

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Version 3.7.17

Distinto en la versién 3.7: Added hash-based . pyc files. Previously, Python only supported timestamp-based invalidation
of bytecode caches.

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based finder
(PathFinder), searches an import path, which contains a list of path entries. Each path entry names a location to search
for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries, asso-
ciating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling special
file types such as Python source code (. py files), Python byte code (.pyc files) and shared libraries (e.g. . so files).
When supported by the zipimport module in the standard library, the default path entry finders also handle loading
all of these file types (other than shared libraries) from zipfiles.

Path entries need not be limited to file system locations. They can refer to URLSs, database queries, or any other location
that can be specified as a string.

The path based finder provides additional hooks and protocols so that you can extend and customize the types of searchable
path entries. For example, if you wanted to support path entries as network URLSs, you could write a hook that implements
HTTP semantics to find modules on the web. This hook (a callable) would return a path entry finder supporting the protocol
described below, which was then used to get a loader for the module from the web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using the terms
meta path finder and path entry finder. These two types of finders are very similar, support similar protocols, and function
in similar ways during the import process, but it’s important to keep in mind that they are subtly different. In particular,
meta path finders operate at the beginning of the import process, as keyed off the sys .meta_path traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the path
based finder were to be removed from sys.meta_path, none of the path entry finder semantics would be invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is specified
with a string path entry. Most path entries name locations in the file system, but they need not be limited to this.

As a meta path finder, the path based finder implements the £ind_spec () protocol previously described, however it
exposes additional hooks that can be used to customize how modules are found and loaded from the import path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and sys.
path_importer_cache. The __path__ attributes on package objects are also used. These provide additional
ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries in sy s .
path can name directories on the file system, zip files, and potentially other «locations» (see the site module) that
should be searched for modules, such as URLs, or database queries. Only strings and bytes should be present on sys.
path; all other data types are ignored. The encoding of bytes entries is determined by the individual path entry finders.

The path based finder is a meta path finder, so the import machinery begins the import path search by calling the path
based finder’s find_spec () method as described previously. When the path argument to find_spec () is given,
it will be a list of string paths to traverse - typically a package’s __path___ attribute for an import within that package.
If the path argument is None, this indicates a top level import and sy s .path is used.

60 Capitulo 5. The import system

The Python Language Reference, Version 3.7.17

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate path
entry finder (PathEntryFinder) for the path entry. Because this can be an expensive operation (e.g. there may be
stat() call overheads for this search), the path based finder maintains a cache mapping path entries to path entry finders.
This cache is maintained in sys . path_importer_cache (despite the name, this cache actually stores finder objects
rather than being limited to importer objects). In this way, the expensive search for a particular path entry location’s path
entry finder need only be done once. User code is free to remove cache entries from sys.path_importer_cache
forcing the path based finder to perform the path entry search again’.

If the path entry is not present in the cache, the path based finder iterates over every callable in sys.path_hooks.
Each of the path entry hooks in this list is called with a single argument, the path entry to be searched. This callable may
either return a path entry finder that can handle the path entry, or it may raise ImportError. An ImportError is
used by the path based finder to signal that the hook cannot find a path entry finder for that path entry. The exception is
ignored and import path iteration continues. The hook should expect either a string or bytes object; the encoding of bytes
objects is up to the hook (e.g. it may be a file system encoding, UTF-8, or something else), and if the hook cannot decode
the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec () method will store None in sys.path_importer_cache (to indicate that there is no finder for
this path entry) and return None, indicating that this meta path finder could not find the module.

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory — denoted by an empty string — is handled slightly differently from other entries on sys.
path. First, if the current working directory is found to not exist, no value is stored in sys . path_importer_cache.
Second, the value for the current working directory is looked up fresh for each module lookup. Third, the path used for
sys.path_importer_cacheandreturned by importlib.machinery.PathFinder.find_spec () will
be the actual current working directory and not the empty string.

5.5.2 Path entry finder protocol

In order to support imports of modules and initialized packages and also to contribute portions to namespace packages,
path entry finders must implement the £ind_spec () method.

find_spec () takes two arguments: the fully qualified name of the module being imported, and the (optional) target
module. find_spec () returns a fully populated spec for the module. This spec will always have «loader» set (with one
exception).

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets «loader» on
the spec to None and «submodule_search_locations» to a list containing the portion.

Distinto en la version 3.4: find_spec () replaced find_loader () and find_module (), both of which are now
deprecated, but will be used if £ind_spec () is not defined.

Older path entry finders may implement one of these two deprecated methods instead of find_spec (). The methods
are still respected for the sake of backward compatibility. However, if £ind_spec () is implemented on the path entry
finder, the legacy methods are ignored.

find_loader () takes one argument, the fully qualified name of the module being imported. find_loader ()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion. When the first item (i.e.
the loader) is None, this means that while the path entry finder does not have a loader for the named module, it knows
that the path entry contributes to a namespace portion for the named module. This will almost always be the case where
Python is asked to import a namespace package that has no physical presence on the file system. When a path entry finder
returns None for the loader, the second item of the 2-tuple return value must be a sequence, although it can be empty.

3 In legacy code, it is possible to find instances of imp.NullImporter inthe sys.path_importer_cache. It is recommended that code
be changed to use None instead. See portingpythoncode for more details.

5.5. The Path Based Finder 61

The Python Language Reference, Version 3.7.17

If find_loader () returns a non-None loader value, the portion is ignored and the loader is returned from the path
based finder, terminating the search through the path entries.

For backwards compatibility with other implementations of the import protocol, many path entry finders also sup-
port the same, traditional find module () method that meta path finders support. However path entry finder
find_module () methods are never called with a path argument (they are expected to record the appropriate path
information from the initial call to the path hook).

The find_module () method on path entry finders is deprecated, as it does not allow the path entry finder to contribute
portions to namespace packages. If both find_loader () and find_module () exist on a path entry finder, the
import system will always call find_loader () in preference to find_module ().

5.6 Replacing the standard import system

The most reliable mechanism for replacing the entire import system is to delete the default contents of sys.meta_path,
replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the import
system, then replacing the builtin __import__ () function may be sufficient. This technique may also be employed at
the module level to only alter the behaviour of import statements within that module.

To selectively prevent the import of some modules from a hook early on the meta path (rather than disabling the standard
import system entirely), it is sufficient to raise ModuleNotFoundError directly from find_spec () instead of
returning None. The latter indicates that the meta path search should continue, while raising an exception terminates it
immediately.

5.7 Package Relative Imports

Relative imports use leading dots. A single leading dot indicates a relative import, starting with the current package. Two
or more leading dots indicate a relative import to the parent(s) of the current package, one level per dot after the first. For
example, given the following package layout:

package/

__init__ .py

subpackagel/
__init__ .py
moduleX.py
moduleY.py

subpackage2/
__init__ .py
moduleZ.py

moduleA.py

Ineither subpackagel/moduleX.pyor subpackagel/__init__ .py,the following are valid relative imports:

from .moduleY import spam

from .moduleY import spam as ham

from . import moduleY

from ..subpackagel import moduleY
from ..subpackage2.moduleZ import eggs
from ..moduleA import foo

Absolute imports may use either the import <> or from <> import <> syntax, but relative imports may only
use the second form; the reason for this is that:

62 Capitulo 5. The import system

The Python Language Reference, Version 3.7.17

’ import XXX.YYY.ZZZ

should expose XXX .YYY.ZZZ as a usable expression, but .moduleY is not a valid expression.

5.8 Special considerations for __main__

The __main___ module is a special case relative to Python’s import system. As noted elsewhere, the __main___ module
is directly initialized at interpreter startup, much like sy s and builtins. However, unlike those two, it doesn’t strictly
qualify as a built-in module. This is because the manner in which __main___is initialized depends on the flags and other
options with which the interpreter is invoked.

5.8.1 _ _main__. spec__

Depending on how ___main__ isinitialized, _main__ . spec___ gets set appropriately or to None.

When Python is started with the —m option, ___spec___is set to the module spec of the corresponding module or package.
___spec___is also populated when the __main__ module is loaded as part of executing a directory, zipfile or other
sys.path entry.

In the remaining cases __main__.___spec__ issetto None, as the code used to populate the __main__ does not
correspond directly with an importable module:

* interactive prompt

e —c option

* running from stdin

* running directly from a source or bytecode file

Note that __main__.__spec___isalways None in the last case, even if the file could technically be imported directly
as a module instead. Use the —m switch if valid module metadata is desired in __main_ .

Note also that even when __main___ corresponds with an importable module and __main__.__ spec__ is set ac-
cordingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by 1f _ _name_ ==
"__main__": checks only execute when the module is used to populate the __main__ namespace, and not during
normal import.

5.9 Open issues

XXX It would be really nice to have a diagram.

XXX * (import_machinery.rst) how about a section devoted just to the attributes of modules and packages, perhaps
expanding upon or supplanting the related entries in the data model reference page?

XXX runpy, pkgutil, et al in the library manual should all get «See Also» links at the top pointing to the new import
system section.

XXX Add more explanation regarding the different ways in which __main__is initialized?

XXX Add more info on __main___ quirks/pitfalls (i.e. copy from PEP 395).

5.8. Special considerations for __main__ 63

https://www.python.org/dev/peps/pep-0395

The Python Language Reference, Version 3.7.17

5.10 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages is still
available to read, although some details have changed since the writing of that document.

The original specification for sys.meta_path was PEP 302, with subsequent extension in PEP 420).

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader () protocol as
an alternative to find_module ().

PEP 366 describes the addition of the ___package___ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed __name___ for semantics PEP 366
would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs in the
import system and also addition of new methods to finders and loaders.

64 Capitulo 5. The import system

https://www.python.org/doc/essays/packages/
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0328
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0338
https://www.python.org/dev/peps/pep-0451

CAPITULO O

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name .= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase «the numeric arguments are converted to a common
type», this means that the operator implementation for built-in types works as follows:

« If either argument is a complex number, the other is converted to complex;
* otherwise, if either argument is a floating point number, the other is converted to floating point;
* otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the “%” operator). Extensions must
define their own conversion behavior.

65

The Python Language Reference, Version 3.7.17

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in pa-
rentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom identifier | literal | enclosure
enclosure = parenth_form | list_display | dict_display | set_display
| generator_expression | yield_atom

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section ldentifiers and keywords for lexical definition and section Naming
and binding for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt to
evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more underscore
characters and does not end in two or more underscores, it is considered a private name of that class. Private names are
transformed to a longer form before code is generated for them. The transformation inserts the class name, with leading
underscores removed and a single underscore inserted, in front of the name. For example, the identifier ___spam occurring
in a class named Ham will be transformed to _Ham___spam. This transformation is independent of the syntactical context
in which the identifier is used. If the transformed name is extremely long (longer than 255 characters), implementation
defined truncation may happen. If the class name consists only of underscores, no transformation is done.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:

literal = stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number)
with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals. See
section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence) may
obtain the same object or a different object with the same value.

66 Capitulo 6. Expressions

The Python Language Reference, Version 3.7.17

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form := "(" [starred expression] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it yields
a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals apply
(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The exception is the empty
tuple, for which parentheses are required — allowing unparenthesized «nothing» in expressions would cause ambiguities
and allow common typos to pass uncaught.

6.2.4 Displays for lists, sets and dictionaries

For constructing a list, a set or a dictionary Python provides special syntax called «displays», each of them in two flavors:
« either the container contents are listed explicitly, or
* they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension = expression comp_for

comp_for = ["async"] "for" target_Ilist "in" or_test [comp_iter]
comp_iter = comp_for | comp_1if

comp_1if = "if" expression_nocond [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or if
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time the
innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate
implicitly nested scope. This ensures that names assigned to in the target list don’t «leak» into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an
argument to the implictly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: [x*y for x in range(10) for y in range(x, x+10)].

To ensure the comprehension always results in a container of the appropriate type, yieldand yield from expressions
are prohibited in the implicitly nested scope (in Python 3.7, such expressions emit DeprecationWarning when
compiled, in Python 3.8+ they will emit SyntaxError).

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous
iterator. A comprehension in an async def function may consist of either a for or async for clause following
the leading expression, may contain additional for or async for clauses, and may also use awa it expressions. If a
comprehension contains either async for clauses or await expressions it is called an asynchronous comprehension.
An asynchronous comprehension may suspend the execution of the coroutine function in which it appears. See also PEP
530.

Nuevo en la version 3.6: Asynchronous comprehensions were introduced.

6.2. Atoms 67

https://www.python.org/dev/peps/pep-0530
https://www.python.org/dev/peps/pep-0530

The Python Language Reference, Version 3.7.17

Obsoleto desde la versién 3.7: yield and yield from deprecated in the implicitly nested scope.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display = "[" [starred_list | comprehension] "]1"

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension.
When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into the
list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting from the
comprehension.

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating keys
and values:

set_display = "{" (starred_list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and
added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting from the
comprehension.

An empty set cannot be constructed with { }; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display = "{" [key_datum list | dict_comprehension] "}"
key_datum_list = key_datum ("," key_datum)* [","]
key_datum = expression ":" expression | "**" or_expr

dict_comprehension expression expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of key/datum pairs is given, they are evaluated from left to right to define the entries of
the dictionary: each key object is used as a key into the dictionary to store the corresponding datum. This means that you
can specify the same key multiple times in the key/datum list, and the final dictionary’s value for that key will be the last
one given.

A double asterisk ** denotes dictionary unpacking. Its operand must be a mapping. Each mapping item is added to the
new dictionary. Later values replace values already set by earlier key/datum pairs and earlier dictionary unpackings.

Nuevo en la version 3.5: Unpacking into dictionary displays, originally proposed by PEP 448.

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon followed
by the usual «for» and «if» clauses. When the comprehension is run, the resulting key and value elements are inserted in
the new dictionary in the order they are produced.

68 Capitulo 6. Expressions

https://www.python.org/dev/peps/pep-0448

The Python Language Reference, Version 3.7.17

Restrictions on the types of the key values are listed earlier in section The standard type hierarchy. (To summarize, the
key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected; the
last datum (textually rightmost in the display) stored for a given key value prevails.

6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression = "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is enclosed
in parentheses instead of brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the __next___ () method is called for the generator
object (in the same fashion as normal generators). However, the iterable expression in the leftmost for clause is imme-
diately evaluated, so that an error produced by it will be emitted at the point where the generator expression is defined,
rather than at the point where the first value is retrieved. Subsequent for clauses and any filter condition in the leftmost
for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost
iterable. For example: (x*y for x in range(10) for y in range (x, x+10)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself, yieldand yield fromexpressions
are prohibited in the implicitly defined generator (in Python 3.7, such expressions emit DeprecationWarning when
compiled, in Python 3.8+ they will emit SyntaxError).

If a generator expression contains either async for clauses or awa i t expressions it is called an asynchronous generator
expression. An asynchronous generator expression returns a new asynchronous generator object, which is an asynchronous
iterator (see Asynchronous Iterators).

Nuevo en la version 3.6: Asynchronous generator expressions were introduced.

Distinto en la versién 3.7: Prior to Python 3.7, asynchronous generator expressions could only appear in async def
coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

Obsoleto desde la versién 3.7: yield and yield from deprecated in the implicitly nested scope.

6.2.9 Yield expressions

yield_atom "(" yield expression ")"
yield_expression = yie expression_lis rom" expression
1 ld 1 " 1 ld" [; l i t | "f " ’]

The yield expression is used when defining a generator function or an asynchronous generator function and thus can only
be used in the body of a function definition. Using a yield expression in a function’s body causes that function to be a
generator, and using itinan async def function’s body causes that coroutine function to be an asynchronous generator.
For example:

def gen(): # defines a generator function
yield 123

async def agen(): # defines an asynchronous generator function
yield 123

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly

6.2. Atoms 69

The Python Language Reference, Version 3.7.17

defined scopes used to implement comprehensions and generator expressions (in Python 3.7, such expressions emit
DeprecationWarning when compiled, in Python 3.8+ they will emit SyntaxError)..

Obsoleto desde la versién 3.7: Yield expressions deprecated in the implicitly nested scopes used to implement comprehen-
sions and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section
Asynchronous generator functions.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution
of the generator function. The execution starts when one of the generator’s methods is called. At that time, the execution
proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to the
generator’s caller. By suspended, we mean that all local state is retained, including the current bindings of local variables,
the instruction pointer, the internal evaluation stack, and the state of any exception handling. When the execution is
resumed by calling one of the generator’s methods, the function can proceed exactly as if the yield expression were
just another external call. The value of the yield expression after resuming depends on the method which resumed the
execution. If __next___ () isused (typically via either a for or the next () builtin) then the result is None. Otherwise,
if send () is used, then the result will be the value passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry
point and their execution can be suspended. The only difference is that a generator function cannot control where the
execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a ¢ ry construct. If the generator is not resumed before it is finalized (by
reaching a zero reference count or by being garbage collected), the generator-iterator’s cZose () method will be called,
allowing any pending £inally clauses to execute.

When yield from <expr> is used, it treats the supplied expression as a subiterator. All values produced by that
subiterator are passed directly to the caller of the current generator’s methods. Any values passed in with send () and
any exceptions passed in with throw () are passed to the underlying iterator if it has the appropriate methods. If this is
not the case, then send () will raise AttributeError or TypeError, while throw () will just raise the passed
in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes the
value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically when the
subiterator is a generator (by returning a value from the subgenerator).

Distinto en la version 3.3: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an assignment
statement.

Ver también:
PEP 255 - Simple Generators The proposal for adding generators and the yie 1d statement to Python.

PEP 342 - Coroutines via Enhanced Generators The proposal to enhance the API and syntax of generators, making
them usable as simple coroutines.

PEP 380 - Syntax for Delegating to a Subgenerator The proposal to introduce the yield_from syntax, making
delegation to subgenerators easy.

PEP 525 - Asynchronous Generators The proposal that expanded on PEP 492 by adding generator capabilities to
coroutine functions.

70 Capitulo 6. Expressions

https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0342
https://www.python.org/dev/peps/pep-0380
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492

The Python Language Reference, Version 3.7.17

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.

generator.__next__ ()
Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator
function is resumed with a __next__ () method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value of the
expression_listisreturnedto__ next__ ()”scaller. If the generator exits without yielding another value,
a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next () function.

generator.send (value)
Resumes the execution and «sends» a value into the generator function. The value argument becomes the result
of the current yield expression. The send () method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send () is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive the
value.

generator.throw (type[, value[, tmceback]])
Raises an exception of type type at the point where the generator was paused, and returns the next value yielded
by the generator function. If the generator exits without yielding another value, a StopIteration exception is
raised. If the generator function does not catch the passed-in exception, or raises a different exception, then that
exception propagates to the caller.

generator.close ()
Raises a GeneratorExit at the point where the generator function was paused. If the generator function then
exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close returns to its
caller. If the generator yields a value, a Runt imeError is raised. If the generator raises any other exception, it is
propagated to the caller. c1ose () does nothing if the generator has already exited due to an exception or normal
exit.

Examples

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo (value=None) :
print ("Execution starts when 'next ()' is called for the first time.")
try:
while True:
try:
value = (yield value)
except Exception as e:
value = e
finally:
print ("Don't forget to clean up when 'close()' is called.")

>>> generator = echo (1)

>>> print (next (generator))

Execution starts when 'next()' 1s called for the first time.
1

>>> print (next (generator))

(continué en Ja préxima pagina)

6.2. Atoms 71

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

None

>>> print (generator.send(2))

2

>>> generator.throw (TypeError, "spam")

TypeError ('spam',)

>>> generator.close()

Don't forget to clean up when 'close()' is called.

For examples using yield from,see pep-380 in «What's New in Python.»

Asynchronous generator functions

The presence of a yield expression in a function or method defined using async def further defines the function as an
asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous ge-
nerator object. That object then controls the execution of the generator function. An asynchronous generator object is
typically used in an async for statement in a coroutine function analogously to how a generator object would be used
ina for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this object
is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again, returning the
value of expression_1list to the awaiting coroutine. As with a generator, suspension means that all local state is
retained, including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state
of any exception handling. When the execution is resumed by awaiting on the next object returned by the asynchronous
generator’s methods, the function can proceed exactly as if the yield expression were just another external call. The value
of the yield expression after resuming depends on the method which resumed the execution. If __anext__ () is used
then the result is None. Otherwise, if asend () is used, then the result will be the value passed in to that method.

In an asynchronous generator function, yield expressions are allowed anywhere in a t ry construct. However, if an asyn-
chronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage collected),
then a yield expression within a t ry construct could result in a failure to execute pending 7inal 1y clauses. In this ca-
se, it is the responsibility of the event loop or scheduler running the asynchronous generator to call the asynchronous
generator-iterator’s aclose () method and run the resulting coroutine object, thus allowing any pending finally
clauses to execute.

To take care of finalization, an event loop should define a finalizer function which takes an asynchronous generator-
iterator and presumably calls aclose () and executes the coroutine. This finalizer may be registered by calling sys.
set_asyncgen_hooks (). When first iterated over, an asynchronous generator-iterator will store the registered fina-
lizer to be called upon finalization. For a reference example of a finalizer method see the implementation of asyncio.
Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

The expression yield from <expr> isa syntax error when used in an asynchronous generator function.

Asynchronous generator-iterator methods

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution of
a generator function.

coroutine agen.__anext__ ()
Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last execu-
ted yield expression. When an asynchronous generator function is resumed with an ___anext__ () method, the
current yield expression always evaluates to None in the returned awaitable, which when run will continue to
the next yield expression. The value of the expression_Iist of the yield expression is the value of the
StopIteration exception raised by the completing coroutine. If the asynchronous generator exits without

72 Capitulo 6. Expressions

https://github.com/python/cpython/tree/3.7/Lib/asyncio/base_events.py

The Python Language Reference, Version 3.7.17

yielding another value, the awaitable instead raises a StopAsyncIteration exception, signalling that the
asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

coroutine agen.asend (value)

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the send ()
method for a generator, this «sends» a value into the asynchronous generator function, and the value argument beco-
mes the result of the current yield expression. The awaitable returned by the asend () method will return the next
value yielded by the generator as the value of the raised StopIteration, orraises StopAsyncIteration
if the asynchronous generator exits without yielding another value. When asend () is called to start the asyn-
chronous generator, it must be called with None as the argument, because there is no yield expression that could
receive the value.

coroutine agen.athrow (value)

coroutine agen.athrow (type[, value[, traceback]])
Returns an awaitable that raises an exception of type type at the point where the asynchronous generator was
paused, and returns the next value yielded by the generator function as the value of the raised StopIteration
exception. If the asynchronous generator exits without yielding another value, a StopAsyncIteration excep-
tion is raised by the awaitable. If the generator function does not catch the passed-in exception, or raises a different
exception, then when the awaitable is run that exception propagates to the caller of the awaitable.

coroutine agen.aclose ()

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator function
at the point where it was paused. If the asynchronous generator function then exits gracefully, is already clo-
sed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise a
StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous generator
will raise a St opAsyncIteration exception. If the asynchronous generator yields a value, a Runt imeError
is raised by the awaitable. If the asynchronous generator raises any other exception, it is propagated to the caller
of the awaitable. If the asynchronous generator has already exited due to an exception or normal exit, then further
calls to aclose () will return an awaitable that does nothing.

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary = atom | attributeref | subscription | slicing | call

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref = primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object
is then asked to produce the attribute whose name is the identifier. This production can be customized by overriding the
__getattr__ () method. If this attribute is not available, the exception At t ributeError is raised. Otherwise, the
type and value of the object produced is determined by the object. Multiple evaluations of the same attribute reference

may yield different objects.

6.3. Primaries 73

The Python Language Reference, Version 3.7.17

6.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:

subscription = primary "[" expression_list "]"

The primary must evaluate to an object that supports subscription (lists or dictionaries for example). User-defined objects
can support subscription by defininga ___getitem__ () method.

For built-in objects, there are two types of objects that support subscription:

If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys of the mapping,
and the subscription selects the value in the mapping that corresponds to that key. (The expression list is a tuple except if
it has exactly one item.)

If the primary is a sequence, the expression list must evaluate to an integer or a slice (as discussed in the following section).

The formal syntax makes no special provision for negative indices in sequences; however, built-in sequences all provide
a__getitem_ _ () method that interprets negative indices by adding the length of the sequence to the index (so that
x [—1] selects the last item of x). The resulting value must be a nonnegative integer less than the number of items in
the sequence, and the subscription selects the item whose index is that value (counting from zero). Since the support for
negative indices and slicing occurs in the object’s___getitem _ () method, subclasses overriding this method will need
to explicitly add that support.

A string’s items are characters. A character is not a separate data type but a string of exactly one character.

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions or
as targets in assignment or de I statements. The syntax for a slicing:

slicing = primary "[" slice_list "]"
slice_list n= slice_item ("," slice_item)* [","]
slice_item
proper_slice
lower_bound
upper_bound expression
stride u= expression

expression | proper_slice
[lower_bound] ":" [upper_bound] [":" [stride]]
expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any
subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining
that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if the
slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same __getitem__ () method as normal
subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the
key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The
conversion of a slice item that is an expression is that expression. The conversion of a proper slice is a slice object (see
section The standard type hierarchy) whose start, stop and step attributes are the values of the expressions given
as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

74 Capitulo 6. Expressions

The Python Language Reference, Version 3.7.17

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call = primary " (" [argument_list [","] | comprehension] ")"

argument_list positional_arguments ["," starred_and_keywords]
["," keywords_arguments]
starred_and_keywords ["," keywords_arguments]

keywords_arguments

|

|
positional_arguments = ["*"] expression ("," ["*"] expression)*
starred_and_keywords = ("*" expression | keyword_ item)

("," "*" expression | "," keyword_item)*
keywords_arguments = (keyword_item | "**" expression)

("," keyword_ item | "," "**" expression)*
keyword_item = identifier "=" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects havinga __call () method are callable). All argument
expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of formal
parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled slots
is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next, for
each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as the first
formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError exception is raised.
Otherwise, the value of the argument is placed in the slot, filling it (even if the expression is None, it fills the slot). When
all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value from the
function definition. (Default values are calculated, once, when the function is defined; thus, a mutable object such as a list
or dictionary used as default value will be shared by all calls that don’t specify an argument value for the corresponding
slot; this should usually be avoided.) If there are any unfilled slots for which no default value is specified, a TypeError
exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

CPython implementation detail: An implementation may provide built-in functions whose positional parameters do
not have names, even if they are “named” for the purpose of documentation, and which therefore cannot be supplied by
keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple () to parse their
arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless
a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a tuple
containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a
formal parameter using the syntax **identifier is present; in this case, that formal parameter receives a dictionary
containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values),
or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements from
these iterables are treated as if they were additional positional arguments. For the call £ (x1, x2, *y, x3, x4),
if y evaluates to a sequence y/, ..., yM, this is equivalent to a call with M+4 positional arguments x/, x2, y1, ..., yM, x3,
x4.

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it is
processed before the keyword arguments (and any * *expression arguments — see below). So:

6.3. Primaries 75

The Python Language Reference, Version 3.7.17

>>> def f(a, b):
print (a, b)

>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f£() got multiple values for keyword argument 'a'
>>> £(1, *(2,))
12

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice this
confusion does not arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the contents of
which are treated as additional keyword arguments. If a keyword is already present (as an explicit keyword argument, or
from another unpacking), a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots
or as keyword argument names.

Distinto en la versioén 3.5: Function calls accept any number of * and ** unpackings, positional arguments may follow
iterable unpackings (*), and keyword arguments may follow dictionary unpackings (* *). Originally proposed by PEP
448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends on
the type of the callable object.

If it is—

a user-defined function: The code block for the function is executed, passing it the argument list. The first thing the
code block will do is bind the formal parameters to the arguments; this is described in section Furnction definitions.
When the code block executes a ret urn statement, this specifies the return value of the function call.

a built-in function or method: The result is up to the interpreter; see built-in-funcs for the descriptions of built-in
functions and methods.

a class object: A new instance of that class is returned.

a class instance method: The corresponding user-defined function is called, with an argument list that is one longer than
the argument list of the call: the instance becomes the first argument.

a class instance: The class mustdefinea_ call_ () method; the effect is then the same as if that method was called.

6.4 Await expression

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr = "await" primary

Nuevo en la version 3.5.

76 Capitulo 6. Expressions

https://www.python.org/dev/peps/pep-0448
https://www.python.org/dev/peps/pep-0448

The Python Language Reference, Version 3.7.17

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its
right. The syntax is:

power = (await_expr | primary) ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this
does not constrain the evaluation order for the operands): —1**2 results in - 1.

The power operator has the same semantics as the built-in pow () function, when called with two arguments: it yields its
left argument raised to the power of its right argument. The numeric arguments are first converted to a common type, and
the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case, all
arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**—2 returns
0.01.

Raising 0. O to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional power
results in a complex number. (In earlier versions it raised a ValueError.)

6.6 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

n "

u_expr = power | "-" u_expr | "+" u_expr | "

u_expr

The unary — (minus) operator yields the negation of its numeric argument.
The unary + (plus) operator yields its numeric argument unchanged.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is defined as
- (x+1). It only applies to integral numbers.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators and
one for additive operators:

m_expr = u_expr | m_expr "*" u_expr | m_expr "@" m expr |
m expr "//" u_expr | m_expr "/" u_expr |
m_expr "%" u_expr

a_expr I= m_expr | a_expr "+" m_expr | a_expr "-" m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or one
argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a common
type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition factor yields

6.7. Binary arithmetic operations 77

The Python Language Reference, Version 3.7.17

an empty sequence.
The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.
Nuevo en la version 3.5.

The / (division) and / / (floor division) operators yield the quotient of their arguments. The numeric arguments are first
converted to a common type. Division of integers yields a float, while floor division of integers results in an integer;
the result is that of mathematical division with the “floor” function applied to the result. Division by zero raises the
ZeroDivisionError exception.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric argu-
ments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception. The
arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + 0.34.) The
modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of the result
is strictly smaller than the absolute value of the second operand'.

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y).
Floor division and modulo are also connected with the built-in function divmod () : divmod (x, y) == (x//y,
x%y) 2.

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to perform
old-style string formatting (also known as interpolation). The syntax for string formatting is described in the Python
Library Reference, section old-string-formatting.

The floor division operator, the modulo operator, and the divmod () function are not defined for complex numbers.
Instead, convert to a floating point number using the abs () function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be se-
quences of the same type. In the former case, the numbers are converted to a common type and then added together. In
the latter case, the sequences are concatenated.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a common
type.

6.8 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr = a_expr | shift_expr ("<<" | ">>") a_expr
These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits given
by the second argument.

A right shift by » bits is defined as floor division by pow (2, n) . A left shift by n bits is defined as multiplication with
pow (2,n).

! While abs (x%y) < abs (y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming a
platform on which a Python float is an IEEE 754 double-precision number, in order that —~1e-100 % 1e100 have the same sign as 1100, the
computed result is —1e-100 + 1e100, which is numerically exactly equal to 1e100. The function math. fmod () returns a result whose sign
matches the sign of the first argument instead, and so returns —1e-100 in this case. Which approach is more appropriate depends on the application.

2 If x is very close to an exact integer multiple of y, it’s possible for x//y to be one larger than (x-x%y) //y due to rounding. In such cases,
Python returns the latter result, in order to preserve that divmod (x,y) [0] * y + x % y be very close to x.

78 Capitulo 6. Expressions

The Python Language Reference, Version 3.7.17

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr
XOY_expr

shift_expr | and _expr "&" shift_expr
and_expr | xor_expr """ and_expr

or_expr xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers.
The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers.

6.10 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic, shif-
ting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional in
mathematics:

comparison n= or_expr (comp_operator or_expr)*
comp operator - nen ‘ nsn | n__m | ns—mn ‘ ne—m | nyp_n
I "iS" ["not"] ‘ ["not"] "in"

Comparisons yield boolean values: True or False.

Comparisons can be chained arbitrarily, e.g., x < y <= zisequivalentto x < y and y <= z, except that y is
evaluated only once (but in both cases z is not evaluated at all when x < vy is found to be false).

Formally, if a, b, c, ..., y, z are expressions and opl, op2, ..., opN are comparison operators, then a opl b op2
c ... y opN zisequivalenttoa opl b and b op2 ¢ and ... y opN z,exceptthat each expression is
evaluated at most once.

Note that a opl b op2 c doesn’t imply any kind of comparison between a and c, so that, e.g., x < y > zis
perfectly legal (though perhaps not pretty).

6.10.1 Value comparisons

The operators <, >, ==, >=, <=, and ! = compare the values of two objects. The objects do not need to have the same
type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an object
is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value. Also, there
is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of all its data
attributes. Comparison operators implement a particular notion of what the value of an object is. One can think of them
as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior from object.
Types can customize their comparison behavior by implementing rich comparison methods like __1t___ (), described
in Basic customization.

The default behavior for equality comparison (== and ! =) is based on the identity of the objects. Hence, equality compa-
rison of instances with the same identity results in equality, and equality comparison of instances with different identities

6.10. Comparisons 79

The Python Language Reference, Version 3.7.17

results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive (i.e. x is y
implies x == y).

A default order comparison (<, >, <=, and >=) is not provided; an attempt raises TypeError. A motivation for this
default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be in
contrast to what types will need that have a sensible definition of object value and value-based equality. Such types will
need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

¢ Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.Fractionand
decimal .Decimal can be compared within and across their types, with the restriction that complex numbers
do not support order comparison. Within the limits of the types involved, they compare mathematically (algorith-
mically) correct without loss of precision.

The not-a-number values f1oat ('NaN') and decimal .Decimal ('NaN') are special. Any ordered com-
parison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number values
are not equal to themselves. For example, if x = float ('NaN'),3 < x,x < 3and x == x are all false,
while x != x is true. This behavior is compliant with IEEE 754.

* Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They
compare lexicographically using the numeric values of their elements.

« Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of the
built-in function ord ()) of their characters.’

Strings and binary sequences cannot be directly compared.

¢ Sequences (instances of tuple, 1ist, or range) can be compared only within each of their types, with the
restriction that ranges do not support order comparison. Equality comparison across these types results in inequality,
and ordering comparison across these types raises TypeError.

Sequences compare lexicographically using comparison of corresponding elements, whereby reflexivity of the ele-
ments is enforced.

In enforcing reflexivity of elements, the comparison of collections assumes that for a collection element x, x ==
x is always true. Based on that assumption, element identity is compared first, and element comparison is perfor-
med only for distinct elements. This approach yields the same result as a strict element comparison would, if the
compared elements are reflexive. For non-reflexive elements, the result is different than for strict element compari-
son, and may be surprising: The non-reflexive not-a-number values for example result in the following comparison
behavior when used in a list:

>>> nan = float ('NaN")

>>> nan is nan

True

>>> nan == nan

False <-- the defined non-reflexive behavior of NaN

>>> [nan] == [nan]

True <-— list enforces reflexivity and tests identity first

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. <LATIN CAPITAL LETTER A»). While most
abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition be represented using
a sequence of more than one code point. For example, the abstract character <LATIN CAPITAL LETTER C WITH CEDILLA» can be represented as
a single precomposed character at code position U+00C7, or as a sequence of a base character at code position U+0043 (LATIN CAPITAL LETTER
C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).

The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example, "\
u00C7"™ == "\u0043\u0327" is False, even though both strings represent the same abstract character <LATIN CAPITAL LETTER C WITH
CEDILLA».

To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize ().

80 Capitulo 6. Expressions

The Python Language Reference, Version 3.7.17

Lexicographical comparison between built-in collections works as follows:

— For two collections to compare equal, they must be of the same type, have the same length, and each pair of
corresponding elements must compare equal (for example, [1,2] == (1, 2) is false because the type is
not the same).

— Collections that support order comparison are ordered the same as their first unequal elements (for example,
[1,2,x] <= [1,2,y] hasthe same value as x <= y). If a corresponding element does not exist, the
shorter collection is ordered first (for example, [1,2] < [1,2, 3] istrue).

* Mappings (instances of dict) compare equal if and only if they have equal (key, value) pairs. Equality comparison
of the keys and values enforces reflexivity.

Order comparisons (<, >, <=, and >=) raise TypeError.
* Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total
orderings (for example, the two sets {1, 2} and {2, 3} are not equal, nor subsets of one another, nor supersets
of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering (for
example, min (), max (), and sorted () produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

¢ Most other built-in types have no comparison methods implemented, so they inherit the default comparison beha-
vior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:
» Equality comparison should be reflexive. In other words, identical objects should compare equal:
x 1s yimpliesx == y
* Comparison should be symmetric. In other words, the following expressions should have the same result:
x == yandy == x
x != yandy != x
x < yandy > x
x <= yandy >= x
» Comparison should be transitive. The following (non-exhaustive) examples illustrate that:
x >y and y > zimpliesx > z
x <y and y <= zimpliesx < z

* Inverse comparison should result in the boolean negation. In other words, the following expressions should have the
same result:

x == yandnot x !=y
x < yandnot x >= y (for total ordering)
x > yand not x <= vy (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings). See
also the total_ordering () decorator.

e The hash () result should be consistent with equality. Objects that are equal should either have the same hash
value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following these
rules.

6.10. Comparisons 81

The Python Language Reference, Version 3.7.17

6.10.2 Membership test operations

The operators in and not in test for membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well as
dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set, frozenset,
dict, or collections.deque, the expression x in vy isequivalentto any (x is e or x == e for e in vy).

For the string and bytes types, x in vy is True if and only if x is a substring of y. An equivalent test is y . find (x)
!= —1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return True.

For user-defined classes which define the _ contains__ () method, x in y returns True if vy.
___contains__ (x) returns a true value, and False otherwise.

For user-defined classes which do not define _ contains_ () butdodefine iter (),x in yis True if
some value z, for which the expressionx is z or x == zistrue, is produced while iterating over y. If an exception
is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem__ (), x in y is True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i], and no lower integer index raises the
IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not 1n is defined to have the inverse truth value of in.

6.10.3 Identity comparisons

The operators is and is not test for an object’s identity: x is vy is true if and only if x and y are the same object.
An Object’s identity is determined using the id () function. x is not vy yields the inverse truth value.*

6.11 Boolean operations

or_test = and_test | or_test "or" and test
and_test = not_test | and_test "and" not_test
not_test = comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values
are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings,
tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects can customize
their truth value by providinga ___ bool__ () method.

The operator not yields True if its argument is false, False otherwise.

The expression x and y first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

The expression x or y first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting value
is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty,
the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a boolean value
regardless of the type of its argument (for example, not 'foo' produces False rather than ' '.)

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain uses
of the i s operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

82 Capitulo 6. Expressions

The Python Language Reference, Version 3.7.17

6.12 Conditional expressions

conditional_expression = or_test ["if" or_test "else" expression]
expression = conditional_expression | lambda_expr
expression_nocond = or_test | lambda_expr_nocond

Conditional expressions (sometimes called a «ternary operator») have the lowest priority of all Python operations.

The expression x 1f C else vy first evaluates the condition, C rather than x. If C is true, x is evaluated and its value
is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.13 Lambdas

lambda_expr "lambda" [parameter_list] ":" expression
lambda_expr_nocond := "lambda" [parameter_list] ":" expression_nocond

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression 1ambda
parameters: expression yields a function object. The unnamed object behaves like a function object defined
with:

def <lambda> (parameters) :
return expression

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions
cannot contain statements or annotations.

6.14 Expression lists

expression_list L= expression ("," expression)* [","]

14
starred_list starred_item ("," starred_item)* [","]
starred_expression expression | (starred_item ",")* [starred_item]
starred_item n= expression | "*" or_expr

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length of the
tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking. Its operand must be an iterable. The iterable is expanded into a sequence of
items, which are included in the new tuple, list, or set, at the site of the unpacking.

Nuevo en la versién 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448.

The trailing comma is required only to create a single tuple (a.k.a. a singleton); it is optional in all other cases. A single
expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create an
empty tuple, use an empty pair of parentheses: () .)

6.14. Expression lists 83

https://www.python.org/dev/peps/pep-0308
https://www.python.org/dev/peps/pep-0448

The Python Language Reference, Version 3.7.17

6.15 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated
before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, expr4
(exprl, expr2, expr3, expr4)
{exprl: expr2, expr3: expréd}

exprl + expr2 * (expr3 - exprd)
exprl (expr2, expr3, *exprd4, **expr))
expr3, exprd4 = exprl, expr2

6.16 Operator precedence

The following table summarizes the operator precedence in Python, from lowest precedence (least binding) to highest
precedence (most binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for exponentiation, which groups from right to
left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right chaining
feature as described in the Comparisons section.

Operator Description

lambda Lambda expression

if—else Conditional expression

or Boolean OR

and Boolean AND

not x Boolean NOT

in,not in, is, is not, <, <=,>,>=, = == Comparisons, including membership tests and
identity tests

| Bitwise OR

~ Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, — Addition and subtraction

*Q,/,//,% Multiplication, matrix multiplication, division,
floor division, remainder’

+x, —X, ~X Positive, negative, bitwise NOT

* Exponentiation®

await x Await expression

x [index], x[index:index], x (arguments...), x. | Subscription, slicing, call, attribute reference

attribute

(expressions...), Binding or parenthesized expression, list display,

[expressions...], {key: value...}, | dictionary display, set display

{expressions...}

5 The % operator is also used for string formatting; the same precedence applies.
6 The power operator ** binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**~1is 0. 5.

84 Capitulo 6. Expressions

CAPITULO /

Simple statements

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated
by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt

assert_stmt
assignment_stmt
augmented_assignment_stmt
annotated_assignment_stmt
pass_stmt

del_stmt

return_stmt

yield stmt

raise_stmt

break_stmt

continue_stmt

import_stmt

future_stmt

global_stmt

nonlocal_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a fun-
ction that returns no meaningful result; in Python, procedures return the value None). Other uses of expression statements
are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt =

starred_expression

85

The Python Language Reference, Version 3.7.17

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr () function and the
resulting string is written to standard output on a line by itself (except if the result is None, so that procedure calls do not
cause any output.)

7.2 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt = (target_1list "=")+ (starred_expression | yield_expression)
target_list n= target ("," target)* [","]
target = identifier

| "(" [target_list] ")"
| "[" [target_list] "]1"
| attributeref

| subscription

| slicing

| "*" target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated
list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an
attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about
its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the
exceptions raised are given with the definition of the object types (see section The standard type hierarchy).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as
follows.

* If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that
target.

¢ Else: The object must be an iterable with the same number of items as there are targets in the target list, and the
items are assigned, from left to right, to the corresponding targets.

— If the target list contains one target prefixed with an asterisk, called a «starred» target: The object must be
an iterable with at least as many items as there are targets in the target list, minus one. The first items of the
iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable
are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned
to the starred target (the list can be empty).

— Else: The object must be an iterable with the same number of items as there are targets in the target list, and
the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.
* If the target is an identifier (name):

— If the name does not occur in a global or nonlocal statement in the current code block: the name is
bound to the object in the current local namespace.

— Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by
nonlocal, respectively.

86 Capitulo 7. Simple statements

The Python Language Reference, Version 3.7.17

The name is rebound if it was already bound. This may cause the reference count for the object previously bound
to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

« If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object
with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the
assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not
necessarily AttributeError).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the RHS expression, a . x can access either an instance attribute or (if no instance attribute exists) a class attribute.
The LHS target a . x is always set as an instance attribute, creating it if necessary. Thus, the two occurrences of
a . x do not necessarily refer to the same attribute: if the RHS expression refers to a class attribute, the LHS creates
a new instance attribute as the target of the assignment:

class Cls:
x =3 # class variable
inst = Cls{()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with property ().

* If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable
sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the
sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length,
and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range,
IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/datum pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value
pair (if no key with the same value existed).

For user-defined objects, the __setitem _ () method is called with appropriate arguments.

« If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper
bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds
should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds
are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace
the slice with the items of the assigned sequence. The length of the slice may be different from the length of the
assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same as for
expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are “si-
multaneous” (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables
occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:

=1, 2 # 1 is updated, then x[1i] is updated

Ver también:

PEP 3132 - Extended Iterable Unpacking The specification for the *target feature.

7.2. Assighment statements 87

https://www.python.org/dev/peps/pep-3132

The Python Language Reference, Version 3.7.17

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt = augtarget augop (expression_list | yield expression)

augtarget = identifier | attributeref | subscription | slicing

augop = ny—mn | n__m ‘ Wx_—n | n@:" | n/:u | "//:n | no—mn | Wk k—N
| nss=n | Neg=m | ne="m ‘ nA_mN | "|="

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking) and
the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns the
result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 can be rewrittenas x = x + 1 to achieve a similar, but not exactly
equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed
in-place, meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For
example, a[1] += £ (x) first looks-up a [1], then it evaluates f (x) and performs the addition, and lastly, it writes
the result back toa [1].

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible
in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same cavear about class and instance attributes applies as for regular as-
signments.

7.2.2 Annotated assignment statements

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional
assignment statement:

annotated_assignment_stmt = augtarget ":" expression ["=" expression]

The difference from normal Assignment statements is that only single target and only single right hand side value is allowed.

For simple names as assignment targets, if in class or module scope, the annotations are evaluated and stored in a special
class or module attribute __annotations___ thatis a dictionary mapping from variable names (mangled if private) to
evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution,
if annotations are found statically.

For expressions as assignment targets, the annotations are evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and
stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target
except for the last __setitem__ () or __setattr__ () call

Ver también:

PEP 526 - Syntax for Variable Annotations The proposal that added syntax for annotating the types of variables (in-

88 Capitulo 7. Simple statements

https://www.python.org/dev/peps/pep-0526

The Python Language Reference, Version 3.7.17

cluding class variables and instance variables), instead of expressing them through comments.

PEP 484 - Type hints The proposal that added the t yping module to provide a standard syntax for type annotations
that can be used in static analysis tools and IDEs.

7.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt = "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if _ _debug__:
if not expression: raise AssertionError

The extended form, assert expressionl, expression?2, isequivalent to

if _ _debug__:
if not expressionl: raise AssertionError (expression?2)

These equivalences assume that __debug___and AssertionError refer to the built-in variables with those names.
In the current implementation, the built-in variable ___debug___ is True under normal circumstances, False when
optimization is requested (command line option —0). The current code generator emits no code for an assert statement
when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression
that failed in the error message; it will be displayed as part of the stack trace.

Assignments to ___debug___ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4 The pass statement

pass_stmt = "pass"

pass is anull operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required
syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.4. The pass statement 89

https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Version 3.7.17

7.5 The del statement

del_stmt = "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details, here
are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name
occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is
in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

Distinto en la versién 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable
in a nested block.

7.6 The return statement

return_stmt = "return" [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.
return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a ¢ ry statement witha £inally clause, that finally clause is executed before
really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration
to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the
StopIteration.value attribute.

In an asynchronous generator function, an empty ret urn statement indicates that the asynchronous generator is done and
will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in an asynchronous
generator function.

7.7 The yield statement

yield_stmt = yield _expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the parent-
heses that would otherwise be required in the equivalent yield expression statement. For example, the yield statements

yield <expr>
yield from <expr>

are equivalent to the yield expression statements

920 Capitulo 7. Simple statements

The Python Language Reference, Version 3.7.17

(yield <expr>)
(yield from <expr>)

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the
generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function
instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8 The raise statement

raise_stmt = "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the last exception that was active in the current scope. If no exception is
active in the current scope, a Runt imeError exception is raised indicating that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance of
BaseException. If it is a class, the exception instance will be obtained when needed by instantiating the class with
no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback___ attribute, which is writable. You can create an exception and set your own traceback in one step
using the with_traceback () exception method (which returns the same exception instance, with its traceback set
to its argument), like so:

raise Exception("foo occurred") .with_traceback (tracebackobij)

The from clause is used for exception chaining: if given, the second expression must be another exception class or
instance, which will then be attached to the raised exception as the ___cause___ attribute (which is writable). If the
raised exception is not handled, both exceptions will be printed:

>>> try:
print (1 / 0)
except Exception as exc:
raise RuntimeError ("Something bad happened") from exc

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

A similar mechanism works implicitly if an exception is raised inside an exception handler or a finally clause: the
previous exception is then attached as the new exception’s ___context___ attribute:

>>> try:
print (1 / 0)
except:

(continué en Ja préxima pagina)

7.8. The raise statement 91

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

raise RuntimeError ("Something bad happened")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Exception chaining can be explicitly suppressed by specifying None in the £rom clause:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened") £from None

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Additional information on exceptions can be found in section Exceptions, and information about handling exceptions is in
section The try statement.

Distinto en la versioén 3.3: None is now permitted as Y in raise X from Y.

Nuevo en la versiéon 3.3: The __suppress_context___ attribute to suppress automatic display of the exception
context.

7.9 The break statement

break_stmt = "break™"

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition
within that loop.

It terminates the nearest enclosing loop, skipping the optional e 1 se clause if the loop has one.
If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a ¢ ry statement with a £inally clause, that finally clause is executed before
really leaving the loop.

92 Capitulo 7. Simple statements

The Python Language Reference, Version 3.7.17

7.10 The continue statement

continue_stmt = "continue"

continue may only occur syntactically nested in a for or whi le loop, but not nested in a function or class definition
or finally clause within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a t ry statement with a finally clause, that finally clause is executed
before really starting the next loop cycle.

7.11 The import statement

import_stmt

"import" module ["as" identifier] ("," module ["as" identifier])*
| "from" relative _module "import" identifier ["as" identifier]
("," identifier ["as" identifier])*

| "from" relative_module "import" " (" identifier ["as" identifier]
("," identifier ["as" identifier])* [","] ™))"

| "from" module "import" "*"

(identifier ".")* identifier

"."* module | "."+

module =
relative_module

The basic import statement (no £ rom clause) is executed in two steps:
1. find a module, loading and initializing it if necessary
2. define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each
clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules are described in greater detail in the section on the import system,
which also describes the various types of packages and modules that can be imported, as well as all the hooks that can
be used to customize the import system. Note that failures in this step may indicate either that the module could not be
located, or that an error occurred while initializing the module, which includes execution of the module’s code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three ways:
e If the module name is followed by as, then the name following as is bound directly to the imported module.

« If no other name is specified, and the module being imported is a top level module, the module’s name is bound in
the local namespace as a reference to the imported module

* If the module being imported is not a top level module, then the name of the top level package that contains the
module is bound in the local namespace as a reference to the top level package. The imported module must be
accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:
1. find the module specified in the £ rom clause, loading and initializing it if necessary;
2. for each of the identifiers specified in the import clauses:
1. check if the imported module has an attribute by that name

2. if not, attempt to import a submodule with that name and then check the imported module again for that
attribute

7.11. The import statement 93

The Python Language Reference, Version 3.7.17

3. if the attribute is not found, ImportError is raised.

4. otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if it is
present, otherwise using the attribute name

Examples:

import foo # foo imported and bound locally

import foo.bar.baz # foo.bar.baz imported, foo bound locally
import foo.bar.baz as fbb # foo.bar.baz imported and bound as fbb
from foo.bar import baz # foo.bar.baz imported and bound as baz
from foo import attr # foo imported and foo.attr bound as attr

If the list of identifiers is replaced by a star (' * '), all public names defined in the module are bound in the local namespace
for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__;if defined, it must be a sequence of strings which are names defined or imported by that module. The names
givenin __all__ are all considered public and are required to exist. If __all__ isnot defined, the set of public names
includes all names found in the module’s namespace which do not begin with an underscore character (' _'). __all___
should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such
as library modules which were imported and used within the module).

The wild card form of import — from module import * —isonly allowed at the module level. Attempting to use
it in class or function definitions will raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute name of the module. When a module
or package is contained within another package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the specified module or package after rom you
can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means
the current package where the module making the import exists. Two dots means up one package level. Three dots is
up two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end up
importing pkg .mod. If youexecute from . .subpkg2 import mod from within pkg. subpkgl you will import
pkg. subpkg?2.mod. The specification for relative imports is contained in the Package Relative Imports section.

importlib.import_module () is provided to support applications that determine dynamically the modules to be
loaded.

7.11.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to
the language. It allows use of the new features on a per-module basis before the release in which the feature becomes
standard.

future_stmt = "from" "__ future_ " "import" feature ["as" identifier]
("," feature ["as" identifier])™*
| "from" "__ _future__ " "import" " (" feature ["as" identifier]
("," feature ["as" identifier])* [","] ™))"

feature n= identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:

¢ the module docstring (if any),

94 Capitulo 7. Simple statements

The Python Language Reference, Version 3.7.17

e comments,
e blank lines, and
* other future statements.
The only feature in Python 3.7 that requires using the future statement is annotations.

All historical features enabled by the future statement are still recognized by Python 3. The list inclu-
des absolute_import, division, generators, generator_stop, unicode_literals,
print_function, nested_scopes and with_statement. They are all redundant because they are
always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are
often implemented by generating different code. It may even be the case that a new feature introduces new incompatible
syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions
cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a
future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

import __ future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec () and compile () that occur in a module M containing a future
statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled
by optional arguments to compile () — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an
interpreter is started with the —1 option, is passed a script name to execute, and the script includes a future statement, it
will be in effect in the interactive session started after the script is executed.

Ver también:

PEP 236 - Back to the __future__ The original proposal for the __future__ mechanism.

7.12 The global statement

global_stmt = "global" identifier ("," identifier)™*

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers
are to be interpreted as globals. It would be impossible to assign to a global variable without global, although free
variables may refer to globals without being declared global.

Names listed in a g1 oba 1 statement must not be used in the same code block textually preceding that global statement.

Names listed in a g1obal statement must not be defined as formal parameters or in a for loop control target, class
definition, function definition, i mport statement, or variable annotation.

CPython implementation detail: The current implementation does not enforce some of these restrictions, but programs
should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

7.12. The global statement 95

https://www.python.org/dev/peps/pep-0236

The Python Language Reference, Version 3.7.17

Programmer’s note: g1 obal is a directive to the parser. It applies only to code parsed at the same time as the global
statement. In particular, a g1l obal statement contained in a string or code object supplied to the built-in exec () function
does not affect the code block containing the function call, and code contained in such a string is unaffected by global
statements in the code containing the function call. The same applies to the eval () and compile () functions.

7.13 The nonlocal statement

nonlocal_stmt = "nonlocal" identifier ("," identifier)™*

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest enclosing scope
excluding globals. This is important because the default behavior for binding is to search the local namespace first. The
statement allows encapsulated code to rebind variables outside of the local scope besides the global (module) scope.

Names listed in a nonlocal statement, unlike those listed in a g1 obal statement, must refer to pre-existing bindings
in an enclosing scope (the scope in which a new binding should be created cannot be determined unambiguously).

Names listed in a nonlocal statement must not collide with pre-existing bindings in the local scope.
Ver también:

PEP 3104 - Access to Names in Outer Scopes The specification for the nonlocal statement.

96 Capitulo 7. Simple statements

https://www.python.org/dev/peps/pep-3104

CAPITULO 8

Compound statements

Compound statements contain (groups of) other statements; they affect or control the execution of those other statements
in some way. In general, compound statements span multiple lines, although in simple incarnations a whole compound
statement may be contained in one line.

The if, while and for statements implement traditional control flow constructs. try specifies exception handlers
and/or cleanup code for a group of statements, while the wi t h statement allows the execution of initialization and fina-
lization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more “clauses.” A clause consists of a header and a “suite.” The clause headers
of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one or
more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can be one
or more indented statements on subsequent lines. Only the latter form of a suite can contain nested compound statements;
the following is illegal, mostly because it wouldn’t be clear to which i f clause a following e 1 se clause would belong:

’if testl: if test2: print (x)

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or
none of the print () calls are executed:

’if x <y < z: print(x); print(y); print(z)

Summarizing:

compound_stmt = if _stmt

while_stmt
for_stmt
try_stmt
with_stmt
funcdef
classdef
async_with_stmt
async_for_stmt

97

The Python Language Reference, Version 3.7.17

| async_funcdef

suite = stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement RES stmt_1list NEWLINE | compound_stmt
stmt_1list = simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the “dangling e 1 se”
problem is solved in Python by requiring nested 1 statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

8.1 The if statement

The i f statement is used for conditional execution:

if_stmt = "if" expression ":" suite
("elif" expression ":" suite)*
["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operations for the definition of true and false); then that suite is executed (and no other part of the i 7 statement
is executed or evaluated). If all expressions are false, the suite of the e 1 se clause, if present, is executed.

8.2 The while statement

The while statement is used for repeated execution as long as an expression is true:

while_stmt = "while" expression suite

["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be the
first time it is tested) the suite of the e1se clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt = "for" target_list "in" expression_list ":" suite
["else" ":" suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of the
expression_list. The suite is then executed once for each item provided by the iterator, in the order returned
by the iterator. Each item in turn is assigned to the target list using the standard rules for assignments (see Assignment

98 Capitulo 8. Compound statements

The Python Language Reference, Version 3.7.17

statements), and then the suite is executed. When the items are exhausted (which is immediately when the sequence is
empty or an iterator raises a StopIteration exception), the suite in the e1se clause, if present, is executed, and the
loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the el se clause if there is no next item.

The for-loop makes assignments to the variables(s) in the target list. This overwrites all previous assignments to those
variables including those made in the suite of the for-loop:

for i in range(10):
print (1)
i=25 # this will not affect the for-loop
because 1 will be overwritten with the next
index in the range

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have been
assigned to at all by the loop. Hint: the built-in function range () returns an iterator of integers suitable to emulate the
effect of Pascal’s for i := a to b doje.g, list (range (3)) returns thelist [0, 1, 2].

Nota: There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable sequences,
e.g. lists). An internal counter is used to keep track of which item is used next, and this is incremented on each iteration.
When this counter has reached the length of the sequence the loop terminates. This means that if the suite deletes the
current (or a previous) item from the sequence, the next item will be skipped (since it gets the index of the current item
which has already been treated). Likewise, if the suite inserts an item in the sequence before the current item, the current
item will be treated again the next time through the loop. This can lead to nasty bugs that can be avoided by making a
temporary copy using a slice of the whole sequence, e.g.,

for x in af:]:
if x < 0: a.remove (x)

8.4 The try statement

The t ry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt = tryl _stmt | tryZ_stmt
tryl_stmt = "try" ":" suite
("except" [expression ["as" identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try2_stmt = "try" ":" suite
"finally" ":" suite

The except clause(s) specify one or more exception handlers. When no exception occurs in the t ry clause, no exception
handler is executed. When an exception occurs in the t ry suite, a search for an exception handler is started. This search
inspects the except clauses in turn until one is found that matches the exception. An expression-less except clause, if
present, must be last; it matches any exception. For an except clause with an expression, that expression is evaluated, and
the clause matches the exception if the resulting object is «compatible» with the exception. An object is compatible with
an exception if it is the class or a base class of the exception object or a tuple containing an item compatible with the
exception.

8.4. The try statement 99

The Python Language Reference, Version 3.7.17

If no except clause matches the exception, the search for an exception handler continues in the surrounding code and on
the invocation stack.'

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a handler
is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated as if the
entire t ry statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword in that
except clause, if present, and the except clause’s suite is executed. All except clauses must have an executable block. When
the end of this block is reached, execution continues normally after the entire try statement. (This means that if two nested
handlers exist for the same exception, and the exception occurs in the try clause of the inner handler, the outer handler
will not handle the exception.)

When an exception has been assigned using as target, it is cleared at the end of the except clause. This is as if

except E as N:
foo

was translated to

except E as N:
try:
foo
finally:
del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause. Exceptions
are cleared because with the traceback attached to them, they form a reference cycle with the stack frame, keeping all
locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, details about the exception are stored in the sy s module and can be accessed
via sys.exc_info ().sys.exc_info () returns a 3-tuple consisting of the exception class, the exception instance
and a traceback object (see section The standard type hierarchy) identifying the point in the program where the exception
occurred. sys.exc_info () values are restored to their previous values (before the call) when returning from a function
that handled an exception.

The optional e1se clause is executed if the control flow leaves the t ry suite, no exception was raised, and no return,
continue,or break statement was executed. Exceptions in the e 1 se clause are not handled by the preceding except
clauses.

If finally is present, it specifies a “cleanup” handler. The t ry clause is executed, including any except and else
clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved. The finally
clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If the finally clause
raises another exception, the saved exception is set as the context of the new exception. If the finally clause executes
a return or break statement, the saved exception is discarded:

>>> def f():
try:
1/0
finally:
return 42
>>> f()
42

The exception information is not available to the program during execution of the finally clause.

! The exception is propagated to the invocation stack unless there is a £1na 11y clause which happens to raise another exception. That new exception
causes the old one to be lost.

100 Capitulo 8. Compound statements

The Python Language Reference, Version 3.7.17

When a return, break or cont inue statement is executed in the t ry suite of a try...finally statement, the
finally clause is also executed “on the way out.” A cont inue statement is illegal in the finally clause. (The
reason is a problem with the current implementation — this restriction may be lifted in the future).

The return value of a function is determined by the last ret urn statement executed. Since the £inal 1y clause always
executes, a return statement executed in the £inally clause will always be the last one executed:

>>> def fool():
try:
return 'try'
finally:
return 'finally'
>>> foo ()
'finally'

Additional information on exceptions can be found in section Exceptions, and information on using the ra i se statement
to generate exceptions may be found in section The raise statement.

8.5 The with statement

The with statement is used to wrap the execution of a block with methods defined by a context manager (see section
With Statement Context Managers). This allows common t ry...except... finally usage patterns to be encapsulated
for convenient reuse.

with_stmt "with" with_item ("," with_item)* ":" suite
with_item = expression ["as" target]

The execution of the with statement with one «item» proceeds as follows:
1. The context expression (the expression given in the with_1item) is evaluated to obtain a context manager.
2. The context manager’s __exit__ () isloaded for later use.
3. The context manager’s __enter__ () method is invoked.
4

. If a target was included in the wi ¢ h statement, the return value from __enter__ () is assigned to it.

Nota: The with statement guarantees that if the _ enter () method returns without an error, then
__exit__ () will always be called. Thus, if an error occurs during the assignment to the target list, it will be
treated the same as an error occurring within the suite would be. See step 6 below.

5. The suite is executed.

6. The context manager’s ___exit__ () method is invoked. If an exception caused the suite to be exited, its type,
value, and traceback are passed as argumentsto ___exit__ (). Otherwise, three None arguments are supplied.

If the suite was exited due to an exception, and the return value from the __exit__ () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the
statement following the wi t h statement.

If the suite was exited for any reason other than an exception, the return value from __exit__ () isignored, and
execution proceeds at the normal location for the kind of exit that was taken.

With more than one item, the context managers are processed as if multiple wi t h statements were nested:

8.5. The with statement 101

The Python Language Reference, Version 3.7.17

with A() as a, B() as b:
suite

is equivalent to

with A() as a:
with B() as b:
suite

Distinto en la version 3.1: Support for multiple context expressions.
Ver también:

PEP 343 - The «with» statement The specification, background, and examples for the Python wi t h statement.

8.6 Function definitions

A function definition defines a user-defined function object (see section The standard type hierarchy):

funcdef = [decorators] "def" funcname " (" [parameter_list] ")"
["->" expression] ":" suite
decorators u= decorator+
decorator BES "Q@" dotted_name [" (" [argument_Ilist [","]] ")"] NEWLINE
dotted_name = identifier ("." identifier)™*
parameter_list = defparameter ("," defparameter)* ["," [parameter_list_stara.

| parameter_list_starargs

parameter_list_starargs = "*" [parameter] ("," defparameter)* ["," ["**" parameter [",
| "**" parameter [","]

parameter u= identifier [":" expression]

defparameter = parameter ["=" expression]

funcname RES identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace to
a function object (a wrapper around the executable code for the function). This function object contains a reference to the
current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called.”

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated when
the function is defined, in the scope that contains the function definition. The result must be a callable, which is invoked
with the function object as the only argument. The returned value is bound to the function name instead of the function
object. Multiple decorators are applied in nested fashion. For example, the following code

Qfl (arqg)
Qf2
def func(): pass

is roughly equivalent to

def func(): pass
func = fl(arg) (£2 (func))

2 A string literal appearing as the first statement in the function body is transformed into the function’s __doc__ attribute and therefore the
function’s docstring.

102 Capitulo 8. Compound statements

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, Version 3.7.17

except that the original function is not temporarily bound to the name func.

When one or more parameters have the form parameter = expression, the function is said to have «default parameter
values.» For a parameter with a default value, the corresponding argument may be omitted from a call, in which case the
parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the «*» must
also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means that
the expression is evaluated once, when the function is defined, and that the same «pre-computed» value is used for each
call. This is especially important to understand when a default parameter is a mutable object, such as a list or a dictionary:
if the function modifies the object (e.g. by appending an item to a list), the default value is in effect modified. This is
generally not what was intended. A way around this is to use None as the default, and explicitly test for it in the body of
the function, e.g.:

def whats_on_the_telly (penguin=None) :
if penguin is None:
penguin = []
penguin.append("property of the zoo")
return penguin

Function call semantics are described in more detail in section Calls. A function call always assigns values to all parameters
mentioned in the parameter list, either from position arguments, from keyword arguments, or from default values. If the
form «*identifier» is present, it is initialized to a tuple receiving any excess positional parameters, defaulting to the
empty tuple. If the form «**identifier» is present, it is initialized to a new ordered mapping receiving any excess
keyword arguments, defaulting to a new empty mapping of the same type. Parameters after «*» or «*identifier»
are keyword-only parameters and may only be passed used keyword arguments.

Parameters may have an annotation of the form «: expression» following the parameter name. Any parameter may
have an annotation, even those of the form *identifier or **identifier. Functions may have «return» anno-
tation of the form «-> expression» after the parameter list. These annotations can be any valid Python expression.
The presence of annotations does not change the semantics of a function. The annotation values are available as values
of a dictionary keyed by the parameters” names in the __annotations___ attribute of the function object. If the
annotations import from __ future__ isused, annotations are preserved as strings at runtime which enables post-
poned evaluation. Otherwise, they are evaluated when the function definition is executed. In this case annotations may be
evaluated in a different order than they appear in the source code.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand for
a simplified function definition; a function defined in a «def» statement can be passed around or assigned to another
name just like a function defined by a lambda expression. The «de £» form is actually more powerful since it allows the
execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A «de £» statement executed inside a function definition defines
a local function that can be returned or passed around. Free variables used in the nested function can access the local
variables of the function containing the def. See section Naming and binding for details.

Ver también:
PEP 3107 - Function Annotations The original specification for function annotations.
PEP 484 - Type Hints Definition of a standard meaning for annotations: type hints.

PEP 526 - Syntax for Variable Annotations Ability to type hint variable declarations, including class variables and
instance variables

PEP 563 - Postponed Evaluation of Annotations Support for forward references within annotations by preserving an-
notations in a string form at runtime instead of eager evaluation.

8.6. Function definitions 103

https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526
https://www.python.org/dev/peps/pep-0563

The Python Language Reference, Version 3.7.17

8.7 Class definitions

A class definition defines a class object (see section The standard type hierarchy):

classdef = [decorators] "class" classname [inheritance] ":" suite
inheritance = "(" [argument_1list] ")"
classname = identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Metaclasses for
more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes without
an inheritance list inherit, by default, from the base class object; hence,

class Foo:
pass

is equivalent to

class Foo (object) :
pass

The class’s suite is then executed in a new execution frame (see Naming and binding), using a newly created local na-
mespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the class’s
suite finishes execution, its execution frame is discarded but its local namespace is saved.® A class object is then created
using the inheritance list for the base classes and the saved local namespace for the attribute dictionary. The class name
is bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s __dict__. Note that this is
reliable only right after the class is created and only for classes that were defined using the definition syntax.

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

Qfl (arg)
Qf2
class Foo: pass

is roughly equivalent to

class Foo: pass
Foo = f1(arg) (f2 (Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound to the
class name.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances. Instance
attributes can be set in a method with self.name = value. Both class and instance attributes are accessible through
the notation «self .name», and an instance attribute hides a class attribute with the same name when accessed in this
way. Class attributes can be used as defaults for instance attributes, but using mutable values there can lead to unexpected
results. Descriptors can be used to create instance variables with different implementation details.

Ver también:

PEP 3115 - Metaclasses in Python 3000 The proposal that changed the declaration of metaclasses to the current syn-
tax, and the semantics for how classes with metaclasses are constructed.

3 A string literal appearing as the first statement in the class body is transformed into the namespace’s __doc___ item and therefore the class’s
docstring.

104 Capitulo 8. Compound statements

https://www.python.org/dev/peps/pep-3115

The Python Language Reference, Version 3.7.17

PEP 3129 - Class Decorators The proposal that added class decorators. Function and method decorators were intro-
duced in PEP 318.

8.8 Coroutines

Nuevo en la version 3.5.

8.8.1 Coroutine function definition

async_funcdef = [decorators] "async" "def" funcname " (" [parameter_list] ")"

["->" expression] suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). Inside the body of a
coroutine function, await and async identifiers become reserved keywords; awa it expressions, async for and
async with can only be used in coroutine function bodies.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or async
keywords.

Itisa SyntaxErrortouseayield from expression inside the body of a coroutine function.

An example of a coroutine function:

async def func (paraml, param?2):
do_stuff ()
await some_coroutine ()

8.8.2 The async for statement

async_for_stmt = "async" for_stmt

An asynchronous iterable is able to call asynchronous code in its ifer implementation, and asynchronous iterator can call
asynchronous code in its next method.

The async for statement allows convenient iteration over asynchronous iterators.

The following code:

async for TARGET in ITER:
BLOCK

else:
BLOCK2

Is semantically equivalent to:

iter (ITER)

iter = type(iter).__aiter__ (iter)
running = True

while running:

try:

(continué en Ja préxima pagina)

8.8. Coroutines 105

https://www.python.org/dev/peps/pep-3129
https://www.python.org/dev/peps/pep-0318

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

TARGET = await type(iter).__anext__ (iter)
except StopAsynclIteration:
running = False
else:
BLOCK
else:
BLOCK2

Seealso__aiter () and___anext_ () for details.

Itisa SyntaxError touse an async for statement outside the body of a coroutine function.

8.8.3 The async with statement

async_with_stmt = "async" with_stmt

An asynchronous context manager is a context manager that is able to suspend execution in its enfer and exit methods.

The following code:

async with EXPR as VAR:
BLOCK

Is semantically equivalent to:

mgr = (EXPR)
aexit = type(mgr).__aexit___
aenter = type(mgr).__aenter__ (mgr)

VAR = await aenter
try:
BLOCK
except:
if not await aexit (mgr, *sys.exc_info()):
raise
else:
await aexit (mgr, None, None, None)

Seealso__aenter () and ___aexit__ () for details.

Itisa SyntaxError touse an async with statement outside the body of a coroutine function.

Ver también:

PEP 492 - Coroutines with async and await syntax The proposal that made coroutines a proper standalone concept

in Python, and added supporting syntax.

106

Capitulo 8. Compound statements

https://www.python.org/dev/peps/pep-0492

CAPITULO 9

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

9.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion of
a complete Python program. A complete Python program is executed in a minimally initialized environment: all built-in
and standard modules are available, but none have been initialized, except for sy s (various system services), builtins
(built-in functions, exceptions and None) and __main__ . The latter is used to provide the local and global namespace
for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete program but
reads and executes one statement (possibly compound) at a time. The initial environment is identical to that of a complete
program; each statement is executed in the namespace of __main__.

A complete program can be passed to the interpreter in three forms: with the —c string command line option, as a file
passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the interpreter
enters interactive mode; otherwise, it executes the file as a complete program.

107

The Python Language Reference, Version 3.7.17

9.2 File input

All input read from non-interactive files has the same form:

file_input = (NEWLINE | statement)*

This syntax is used in the following situations:
¢ when parsing a complete Python program (from a file or from a string);
¢ when parsing a module;

* when parsing a string passed to the exec () function;

9.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input = [stmt_1list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to help
the parser detect the end of the input.

9.4 Expression input

eval () is used for expression input. It ignores leading whitespace. The string argument to eval () must have the
following form:

eval_input = expression_list NEWLINE*

108 Capitulo 9. Top-level components

carituLo 10

Full Grammar specification

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

Grammar for Python

NOTE WELL: You should also follow all the steps listed at
https://devguide.python.org/grammar/

H=

Start symbols for the grammar:

single_input is a single interactive statement;

file_input 1is a module or sequence of commands read from an input file;
eval_input is the input for the eval() functions.

NB: compound_stmt in single_input is followed by extra NEWLINE!

single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE

file_input: (NEWLINE | stmt)* ENDMARKER

eval_input: testlist NEWLINE* ENDMARKER

decorator: '@' dotted_name ['(' [arglist] ')'] NEWLINE
decorators: decorator+
decorated: decorators (classdef | funcdef | async_funcdef)
async_funcdef: 'async' funcdef
funcdef: 'def' NAME parameters ['->' test] ':' suite
parameters: ' (' [typedargslist] ')’
typedargslist: (tfpdef ['=' test] (',' tfpdef ['=' test])* [',' [
'*7 [tfpdef] (','" tfpdef ['=' test])* [',' ['"**' tfpdef [',']]]
| 'xx" tfpdef [',"']1]]
["*" [tfpdef] (',' tfpdef ['=' test])* [',"' ['**' tfpdef [',']11]1]
["**" tfpdef [','])
tfpdef: NAME [':' test]
varargslist: (vfpdef ['="' test] (',' vfpdef ['=' test])* ['," [
'x1 [vEpdef] (','" vipdef ['=' test])* [',' ['"**' vipdef [',']]]
| 'xx" vEpdef [',"]]]
'xv [vEipdef] (',' vfpdef ['=' test])* [',' ['"**" vifpdef [',']]]

(continué en [a préxima pagina)

109

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

| Tk okt prdef [l’l]
)
vifpdef: NAME

stmt: simple_stmt | compound_stmt
simple_stmt: small_stmt (';' small_stmt)* [';'] NEWLINE
small_stmt: (expr_stmt | del_stmt | pass_stmt | flow_stmt |

import_stmt | global_stmt | nonlocal_stmt | assert_stmt)
expr_stmt: testlist_star_expr (annassign | augassign (yield_expr|testlist) |
('=' (yield_expr|testlist_star_expr))*)
annassign: ':' test ['=' test]
testlist_star_expr: (test|star_expr) (',' (test|star_expr))* [',"']
augassign: (|+:v ‘ V1 ‘ Tkt ‘ v@:| | v/:| I =1 ‘ rg=" ‘ v|:v ‘ TA_ ‘
T<<= | te>=T | ARt | /=T

For normal and annotated assignments, additional restrictions enforced by the.
—lIinterpreter

del_stmt: 'del' exprlist

pass_stmt: 'pass'

flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt | yield_stmt
break_stmt: 'break'
continue_stmt: 'continue'
return_stmt: 'return' [testlist]
yield_stmt: yield_expr
raise_stmt: 'raise' [test ['from' test]]
import_stmt: import_name | import_from
import_name: 'import' dotted_as_names
note below: the ('.' | '...') 1is necessary because '...' is tokenized as ELLIPSIS
import_from: ('from' (('.' | '...")* dotted_name | ('.' ['"...")+)
"import"' ('*' | '"(' import_as_names ')' | import_as_names))

import_as_name: NAME ['as' NAME]
dotted_as_name: dotted_name ['as' NAME]

import_as_names: import_as_name (',' import_as_name)* [', ']
dotted_as_names: dotted_as_name (',' dotted_as_name)*
dotted_name: NAME ('.' NAME)*

global_stmt: 'global' NAME (',' NAME) *
nonlocal_stmt: 'nonlocal' NAME (',' NAME)*
assert_stmt: 'assert' test [',' test]

compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | with_stmt | funcdef |_
—classdef | decorated | async_stmt

async_stmt: 'async' (funcdef | with_stmt | for_stmt)
if_stmt: 'if' test ':' suite ('elif' test ':' suite)* ['else' ':' suite]
while_stmt: 'while' test ':' suite ['else' ':' suite]
for_stmt: '"for' exprlist 'in' testlist ':' suite ['else' ':' suite]
try_stmt: ('try' ':' suite
((except_clause ':' suite)+
[Telse' ":' suite]
["finally' ':' suite] |
'finally' ':' suite))
with_stmt: 'with' with_item (',' with_item)* ':' suite
with_item: test ['as' expr]

NB compile.c makes sure that the default except clause is last
except_clause: 'except' [test ['as' NAME]]
suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT

test: or_test ['if' or_test 'else' test] | lambdef
test_nocond: or_test | lambdef_nocond

(continué en Ja préxima pagina)

110 Capitulo 10. Full Grammar specification

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

lambdef: 'lambda' [varargslist] ':' test

lambdef_nocond: 'lambda' [varargslist] ':' test_nocond

or_test: and_test ('or' and_test)*

and_test: not_test ('and' not_test)*

not_test: 'not' not_test | comparison

comparison: expr (comp_op expr)*

<> isn't actually a valid comparison operator in Python. It's here for the
sake of a future import described in PEP 401 (which really works :-)

comp_op: '<'['>'|'=s="[">="|'<="|"'<>"["I="|"'in'"|'"not' 'in'|'is'|'is' 'not'
star_expr: '*' expr

expr: xor_expr ('|' xor_expr)*

xor_expr: and_expr ('”' and_expr)*

and_expr: shift_expr ('s&«' shift_expr)*

shift_expr: arith_expr (('<<'|'>>') arith_expr) *

arith_expr: term (('+'['-") term)*

term: factor (('*"|'@"["/'['$'["//") factor)*

factor: ('+'['="|'"~") factor | power

power: atom_expr ['**' factor]

atom_expr: ['await'] atom trailer*
atom: (' (' [yield_ expr|testlist_comp] ')' |
"[' [testlist_comp] ']' |
'{'" [dictorsetmaker] '}' |
NAME | NUMBER | STRING+ | '...' | '"None' | 'True' | 'False')
testlist_comp: (test|star_expr) (comp_for | (',' (test|star_expr))* [','])
trailer: ' (' [arglist] '")' | '[' subscriptlist ']' | '.' NAME
subscriptlist: subscript (',' subscript)* [', ']
subscript: test | [test] ':' [test] [sliceop]
sliceop: ':' [test]
exprlist: (expr|star_expr) (',' (expr|star_expr))* [',"]
testlist: test (',' test)* [',']
dictorsetmaker: (((test ':' test | '"**' expr)
(comp_for | ('," (test ':' test | '"**" expr))* [','])) |
((test | star_expr)
(comp_for | ('," (test | star_expr))* [','])))
classdef: 'class' NAME [' (' [arglist] ')'] ':' suite
arglist: argument (',' argument) * [, "l
The reason that keywords are test nodes instead of NAME is that using NAME
results in an ambiguity. ast.c makes sure it's a NAME.
"test '=' test" is really "keyword '=' test", but we have no such token.
These need to be in a single rule to avoid grammar that is ambiguous
to our LL(1) parser. Even though 'test' includes '*expr' in star_expr,
we explicitly match '*' here, too, to give it proper precedence.
Illegal combinations and orderings are blocked in ast.c:
multiple (test comp_for) arguments are blocked; keyword unpackings
that precede iterable unpackings are blocked; etc.
argument: (test [comp_for]
test '=' test |
'R test |
'*1 test)

comp_iter: comp_for | comp_if

sync_comp_for: 'for' exprlist 'in' or_test [comp_iter]
comp_for: ['async'] sync_comp_for
comp_if: 'if' test_nocond [comp_iter]

(continué en la préxima pagina)

111

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

not used in grammar, but may appear in "node" passed from Parser to Compiler
g ¥ I DS
encoding_decl: NAME

yield_expr: 'yield' [yield_arg]
yield_arg: 'from' test | testlist

112 Capitulo 10. Full Grammar specification

APENDICE A

Glosario

>>> El prompt en el shell interactivo de Python por omisién. Frecuentemente vistos en ejemplos de cédigo que pueden
ser ejecutados interactivamente en el intérprete.

The default Python prompt of the interactive shell when entering the code for an indented code block, when within
a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes), or after
specifying a decorator.

2to3 Una herramienta que intenta convertir c6digo de Python 2.x a Python 3.x arreglando la mayoria de las incompati-
bilidades que pueden ser detectadas analizando el c6digo y recorriendo el drbol de andlisis sintdctico.

2to3 esta disponible en la biblioteca estindar como 11ib2t o3; un punto de entrada independiente es provisto como
Tools/scripts/2to3. Vea 2to3-reference.

clase base abstracta Las clases base abstractas (ABC, por sus siglas en inglés Abstract Base Class) complementan al
duck-typing brindando un forma de definir interfaces con técnicas como hasattr () que serian confusas o su-
tilmente erréneas (por ejemplo con magic methods). Las ABC introduce subclases virtuales, las cuales son clases
que no heredan desde una clase pero atn asi son reconocidas por isinstance () y issubclass (); veala
documentacién del médulo abc. Python viene con muchas ABC incorporadas para las estructuras de datos(en el
moédulo collections.abc), nimeros (en el médulo numbers), flujos de datos (en el médulo 10), busca-
dores y cargadores de importaciones (en el médulo importlib.abc). Puede crear sus propios ABCs con el
médulo abce.

anotacion Una etiqueta asociada a una variable, atributo de clase, parametro de funcién o valor de retorno, usado por
convencién como un fype hint.

Las anotaciones de variables no pueden ser accedidas en tiempo de ejecucion, pero las anotaciones de variables
globales, atributos de clase, y funciones son almacenadas en el atributo especial __annotations__ de mddulos,
clases y funciones, respectivamente.

Vea variable annotation, function annotation, PEP 484 y PEP 526, los cuales describen esta funcionalidad.
argumento Un valor pasado a una function (o method) cuando se llama a la funcién. Hay dos clases de argumentos:

* argumento nombrado: es un argumento precedido por un identificador (por ejemplo, nombre=) en una llama-
da a una funcién o pasado como valor en un diccionario precedido por * *. Por ejemplo 3 y 5 son argumentos
nombrados en las llamadas a complex () :

113

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python Language Reference, Version 3.7.17

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

* argumento posicional son aquellos que no son nombrados. Los argumentos posicionales deben aparecer al
principio de una lista de argumentos o ser pasados como elementos de un iferable precedido por *. Por
ejemplo, 3 y 5 son argumentos posicionales en las siguientes llamadas:

complex (3, 5)
complex (* (3, 5))

Los argumentos son asignados a las variables locales en el cuerpo de la funcién. Vea en la seccion Calls las reglas
que rigen estas asignaciones. Sintdcticamente, cualquier expresion puede ser usada para representar un argumento;
el valor evaluado es asignado a la variable local.

Vea también el parameter en el glosario, la pregunta frecuente la diferencia entre argumentos y pardmetros, y PEP
362.

administrador asincrénico de contexto Un objeto que controla el entorno visible en un sentencia async with al
definir los métodos __aenter_ () __aexit__ (). Introducido por PEP 492.

generador asincronico Una funcién que retorna un asynchronous generator iterator. Es similar a una funcién corrutina
definida con async def excepto que contiene expresiones yield para producir series de variables usadas en
un ciclo async for.

Usualmente se refiere a una funcién generadora asincrénica, pero puede referirse a un iterador generador asincronico
en ciertos contextos. En aquellos casos en los que el significado no estd claro, usar los términos completos evita la
ambigiiedad.

Una funcién generadora asincrénica puede contener expresiones await asi como sentencias async for, y
async with.

iterador generador asincronico Un objeto creado por una funcién asynchronous generator.

Este es un asynchronous iterator el cual cuando es llamado usa el método __anext__ () retornando un objeto
aguardable el cual ejecutara el cuerpo de la funcién generadora asincrénica hasta la siguiente expresion yie 1d.

Cada yield suspende temporalmente el procesamiento, recordando el estado local de ejecucién (incluyendo a las
variables locales y las sentencias fry pendientes). Cuando el iterador del generador asincrénico vuelve efectivamente
con otro aguardable retornado por el método ___anext__ (), retoma donde lo dejé. Vea PEP 492 y PEP 525.

iterable asincronico Un objeto, que puede ser usado en una sentencia async for. Debe retornar un asynchronous
iterator de sumétodo __aiter__ (). Introducido por PEP 492.

iterador asincronico Un objeto que implementa los métodos meth:__aiter__y ___anext__ (). __anext___ debe
retornar un objeto awaitable. async for resuelve los esperables retornados por un método de iterador asincrénico
___anext___ () hasta que lanza una excepcioén StopAsyncIteration. Introducido por PEP 492.

atributo Un valor asociado a un objeto que es referencias por el nombre usado expresiones de punto. Por ejemplo, si un
objeto o tiene un atributo a seria referenciado como o.a.

aguardable Es un objeto que puede ser usado en una expresion await. Puede ser una coroutine o un objeto con un
método ___await__ (). Veatambién pep:492.

BDFL Sigla de Benevolent Dictator For Life, Benevolente dictador vitalicio, es decir Guido van Rossum, el creador de
Python.

archivo binario Un file object capaz de leer y escribir objetos tipo binarios. Ejemplos de archivos binarios son los abiertos
en modo binario ('rb', 'wb' 0 'rb+"'), sys.stdin.buffer, sys.stdout.buffer, e instancias de
io.BytesIOydegzip.GzipFile.

Vea también zext file para un objeto archivo capaz de leer y escribir objetos st r.

114 Apéndice A. Glosario

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

The Python Language Reference, Version 3.7.17

objetos tipo binarios Un objeto que soporta bufferobjects y puede exportar un buffer C-contiguous. Esto incluye todas

los objetos bytes, bytearray, y array.array, asi como muchos objetos comunes memoryview. Los
objetos tipo binarios pueden ser usados para varias operaciones que usan datos binarios; éstas incluyen compresion,
salvar a archivos binarios, y enviarlos a través de un socket.

Algunas operaciones necesitan que los datos binarios sean mutables. La documentacién frecuentemente se refiere
a éstos como «objetos tipo binario de lectura y escritura». Ejemplos de objetos de buffer mutables incluyen a
bytearray ymemoryview de la bytearray. Otras operaciones que requieren datos binarios almacenados
en objetos inmutables («objetos tipo binario de sdlo lectura»); ejemplos de éstos incluyen bytes ymemoryview
del objeto bytes.

bytecode El cédigo fuente Python es compilado en bytecode, la representacion interna de un programa python en el

clase

intérprete CPython. El bytecode también es guardado en caché en los archivos .pyc de tal forma que ejecutar el
mismo archivo es mds facil la segunda vez (1a recompilacion desde el codigo fuente a bytecode puede ser evitada).
Este «lenguaje intermedio» deberd corren en una virtual machine que ejecute el cédigo de maquina correspondiente
a cada bytecode. Note que los bytecodes no tienen como requisito trabajar en las diversas maquina virtuales de
Python, ni de ser estable entre versiones Python.

Una lista de las instrucciones en bytecode estd disponible en la documentacién de el médulo dis.

Una plantilla para crear objetos definidos por el usuario. Las definiciones de clase normalmente contienen defini-
ciones de métodos que operan una instancia de la clase.

variable de clase Una variable definida en una clase y prevista para ser modificada sélo a nivel de clase (es decir, no en

una instancia de la clase).

coercion La conversion implicita de una instancia de un tipo en otra durante una operacion que involucra dos argumentos

del mismo tipo. Por ejemplo, int (3.15) convierte el niimero de punto flotante al entero 3, peroen 3 + 4.5,
cada argumento es de un tipo diferente (uno entero, otro flotante), y ambos deben ser convertidos al mismo tipo
antes de que puedan ser sumados o emitiria un TypeError. Sin coercidn, todos los argumentos, incluso de tipos
compatibles, deberian ser normalizados al mismo tipo por el programador, por ejemplo £ 1loat (3) +4 .5 en lugar
de 3+4.5.

numero complejo Una extension del sistema familiar de ndimero reales en el cual los niimeros son expresados como la

suma de una parte real y una parte imaginaria. Los nimeros imaginarios son multiplos de la unidad imaginaria (la
raiz cuadrada de - 1), usualmente escrita como i en matemadticas o j en ingenieria. Python tiene soporte incorpo-
rado para nimeros complejos, los cuales son escritos con la notacién mencionada al final.; la parte imaginaria es
escrita con un sufijo j, por ejemplo, 3+1j. Para tener acceso a los equivalentes complejos del médulo math mo-
dule, use :mod:‘cmath. El uso de nimeros complejos es matemadtica bastante avanzada. Si no le parecen necesarios,
puede ignorarlos sin inconvenientes.

administrador de contextos Un objeto que controla el entorno en la sentencia with definiendo __enter () y

__exit__ () methods. Vea PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-Local

Storage in which each execution thread may have a different value for a variable. However, with context variables,
there may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguo Un buffer es considerado contiguo con precision si es C-contiguo o Fortran contiguo. Los buffers cero dimen-

sionales con C y Fortran contiguos. En los arreglos unidimensionales, los items deben ser dispuestos en memoria
uno siguiente al otro, ordenados por indices que comienzan en cero. En arreglos unidimensionales C-contiguos, el
dltimo indice varia mas velozmente en el orden de las direcciones de memoria. Sin embargo, en arreglos Fortran
contiguos, el primer indice veria mas rapidamente.

corrutina Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at

another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492,

115

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492

The Python Language Reference, Version 3.7.17

funcién corrutina Un funcién que retorna un objeto coroutine . Una funcion corrutina puede ser definida con la sentencia

async def,y puede contener las palabras claves await, async for,y async with. Las mismas son
introducidas en PEP 492.

CPython La implementacion candnica del lenguaje de programacién Python, como se distribuye en python.org. El tér-
mino «CPython» es usado cuando es necesario distinguir esta implementacién de otras como Jython o IronPython.

decorador Una funcién que retorna otra funcién, usualmente aplicada como una funcién de transformacion empleando
la sintaxis @envoltorio. Ejemplos comunes de decoradores son classmethod () y func:staticmethod.

La sintaxis del decorador es meramente azicar sintdctico, las definiciones de las siguientes dos funciones son se-
manticamente equivalentes:

def f£(...):
f = staticmethod (f)

@staticmethod
def f(...):

El mismo concepto existe para clases, pero son menos usadas. Vea la documentacion de function definitions y class
definitions para mayor detalle sobre decoradores.

descriptor Cualquier objeto que define los métodos __get__ (), ___set__(),o0__delete__ ().Cuando un atri-
buto de clase es un descriptor, su conducta enlazada especial es disparada durante la bisqueda del atributo. Nor-
malmente, usando a.b para consultar, establecer o borrar un atributo busca el objeto llamado b en el diccionario de
clase de a, pero si b es un descriptor, el respectivo método descriptor es llamado. Entender descriptores es clave
para lograr una comprensién profunda de Python porque son la base de muchas de las capacidades incluyendo
funciones, métodos, propiedades, métodos de clase, métodos estéticos, y referencia a super clases.

Para més informacién sobre métodos descriptores, vea Implementing Descriptors.

diccionario Un arreglo asociativo, con claves arbitrarias que son asociadas a valores. Las claves pueden ser cualquier
objeto con los métodos ___hash___ () y__eqg__ () .Son llamadas hash en Perl.

vista de diccionario Los objetos retornados por los métodos dict .keys (),dict.values (),ydict.items ()
son llamados vistas de diccionarios. Proveen una vista dindmica de las entradas de un diccionario, lo que significa
que cuando el diccionario cambia, la vista refleja éstos cambios. Para forzar a la vista de diccionario a convertirse
en una lista completa, use 1ist (dictview). Vea dict-views.

docstring Una cadena de caracteres literal que aparece como la primera expresién en una clase, funcién o médulo.
Aunque es ignorada cuando se ejecuta, es reconocida por el compilador y puesta en el atributo __doc___de la
clase, funcién o médulo comprendida. Como estd disponible mediante introspeccién, es el lugar canénico para
ubicar la documentacion del objeto.

tipado de pato Un estilo de programacion que no revisa el tipo del objeto para determinar si tiene la interfaz correcta; en
vez de ello, el método o atributo es simplemente llamado o usado («Si se ve como un pato y grazna como un pato,
debe ser un pato»). Enfatizando las interfaces en vez de hacerlo con los tipos especificos, un c6digo bien disefiado
pues tener mayor flexibilidad permitiendo la sustitucion polimérfica. El tipado de pato duck-typing evita usar pruebas
llamando a type () o isinstance (). (Nota: si embargo, el tipado de pato puede ser complementado con
abstract base classes. En su lugar, generalmente emplea hasattr () tests o EAFP.

EAFP Del inglés «Easier to ask for forgiveness than permission», es mas facil pedir perdén que pedir permiso. Este
estilo de codificacién comin en Python asume la existencia de claves o atributos validos y atrapa las excepciones si
esta suposicion resulta falsa. Este estilo rdpido y limpio estd caracterizado por muchas sentencias t ry y except.
Esta técnica contrasta con estilo LBYL usual en otros lenguajes como C.

expresion Una construccion sintictica que puede ser evaluada, hasta dar un valor. En otras palabras, una expresion es una
acumulacion de elementos de expresion tales como literales, nombres, accesos a atributos, operadores o llamadas

116 Apéndice A. Glosario

https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python Language Reference, Version 3.7.17

a funciones, todos ellos retornando valor. A diferencia de otros lenguajes, no toda la sintaxis del lenguaje son
expresiones. También hay statements que no pueden ser usadas como expresiones, como la wh i 1 e. Las asignaciones
también son sentencias, no expresiones.

médulo de extension Un médulo escrito en C o C++, usando la API para C de Python para interactuar con el niicleo y
el codigo del usuario.

f-string Son llamadas «f-strings» las cadenas literales que usan el prefijo ' £' o 'F ', que es una abreviatura para cadenas
literales formateadas. Vea también PEP 498.

objeto archivo Un objeto que expone una API orientada a archivos (con métodos como read () owrite ()) al objeto
subyacente. Dependiendo de la forma en la que fue creado, un objeto archivo, puede mediar el acceso a un archivo
real en el disco u otro tipo de dispositivo de almacenamiento o de comunicacién (por ejemplo, entrada/salida
estandar, buffer de memoria, sockets, pipes, etc.). Los objetos archivo son también denominados objetos tipo archivo
o flujos.

Existen tres categorias de objetos archivo: crudos raw archivos binarios, con buffer archivos binarios 'y archivos de
texto. Sus interfaces son definidas en el médulo i o. La forma canédnica de crear objetos archivo es usando la funcién
open ().

objetos tipo archivo Un sindnimo de file object.
buscador Un objeto que trata de encontrar el loader para el médulo que estd siendo importado.

Desde la version 3.3 de Python, existen dos tipos de buscadores: meta buscadores de ruta para usar con sys.
meta_path, y buscadores de entradas de rutas para usar con sys .path_hooks.

Vea PEP 302, PEP 420 y PEP 451 para mayores detalles.

division entera Una division matematica que se redondea hacia el entero menor mas cercano. El operador de la division
entera es / /. Por ejemplo, la expresiéon 11 // 4 evalia 2 a diferencia del 2. 75 retornado por la verdadera
divisién de nimeros flotantes. Note que (-11) // 4 es -3 porque es —2 .75 redondeado para abajo. Ver PEP
238.

funcién Una serie de sentencias que retornan un valor al que las llama. También se le puede pasar cero o mds argumentos
los cuales pueden ser usados en la ejecucion de la misma. Vea también parameter, method, y la seccidén Function
definitions.

anotacion de funcion Una annotation del parametro de una funcién o un valor de retorno.

Las anotaciones de funciones son usadas frecuentemente para type hint's , por ejemplo, se espera que una funcién
tome dos argumentos de clase :class:‘int y también se espera que devuelva dos valores int:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

La sintaxis de las anotaciones de funciones son explicadas en la seccién Function definitions.
Vea variable annotation y PEP 484, que describen esta funcionalidad.

__future__ Un pseudo-mddulo que los programadores pueden usar para habilitar nuevas capacidades del lenguaje que
no son compatibles con el intérprete actual.

Al importar el médulo ___future__ y evaluar sus variables, puede verse cuando las nuevas capacidades fueron
agregadas por primera vez al lenguaje y cuando se quedaron establecidas por defecto:

>>> import __ future_
>>> _ future__ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

117

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Version 3.7.17

recoleccion de basura El proceso de liberar la memoria de lo que ya no estd en uso. Python realiza recoleccion de basura
(garbage collection) llevando la cuenta de las referencias, y el recogedor de basura ciclico es capaz de detectar y
romper las referencias ciclicas. El recogedor de basura puede ser controlado mediante el médulo gc .

generador Una funcién que retorna un generator iterator. Luce como una funcién normal excepto que contiene la ex-
presién yield para producir series de valores utilizables en un bucle for o que pueden ser obtenidas una por una
con la funcién next ().

Usualmente se refiere a una funcién generadora, pero puede referirse a un iterador generador en ciertos contextos.
En aquellos casos en los que el significado no estd claro, usar los términos completos evita la ambigiiedad.

iterador generador Un objeto creado por una funcién generator.

Cada yield suspende temporalmente el procesamiento, recordando el estado de ejecucién local (incluyendo las
variables locales y las sentencias try pendientes). Cuando el «iterador generado» vuelve, retoma donde ha dejado,
a diferencia de lo que ocurre con las funciones que comienzan nuevamente con cada invocacion.

expresion generadora Una expresion que retorna un iterador. Luce como una expresién normal seguida por la cldusula
for definiendo asi una variable de bucle, un rango y una cldusula opcional i f. La expresién combinada genera
valores para la funcién contenedora:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

funcion genérica Una funcién compuesta de muchas funciones que implementan la misma operacién para diferentes
tipos. Qué implementacion deberd ser usada durante la llamada a la misma es determinado por el algoritmo de
despacho.

Vea también la entrada de glosario single dispatch, el decorador functools.singledispatch (), y PEP
443.

GIL Vea global interpreter lock.

bloqueo global del intérprete Mecanismo empleado por el intérprete CPython para asegurar que solo un hilo ejecute
el bytecode Python por vez. Esto simplifica la implementacion de CPython haciendo que el modelo de objetos
(incluyendo algunos criticos como dict) estdn implicitamente a salvo de acceso concurrente. Bloqueando el in-
térprete completo se simplifica hacerlo multi-hilos, a costa de mucho del paralelismo ofrecido por las miquinas
con muiltiples procesadores.

Sin embargo, algunos médulos de extension, tanto estdndar como de terceros, estan disefiados para liberar el GIL
cuando se realizan tareas computacionalmente intensivas como la compresion o el hashing. Ademds, el GIL siempre
es liberado cuando se hace entrada/salida.

Esfuerzos previos hechos para crear un intérprete «sin hilos» (uno que bloquee los datos compartidos con una
granularidad mucho mas fina) no han sido exitosos debido a que el rendimiento sufrié para el caso mas comun
de un solo procesador. Se cree que superar este problema de rendimiento haria la implementacién mucho mas
compleja y por tanto, mds costosa de mantener.

hash-based pyc Un archivo cache de bytecode que usa el hash en vez de usar el tiempo de la dltima modificacién del
archivo fuente correspondiente para determinar su validez. Vea Cached bytecode invalidation.

hashable Un objeto es hashable si tiene un valor de hash que nunca cambiard durante su tiempo de vida (necesita un
método __hash__ ()),y puede ser comparado con otro objeto (necesita el método __eg ()). Los objetos
hashables que se comparan iguales deben tener el mismo niimero hash.

La hashabilidad hace a un objeto empleable como clave de un diccionario y miembro de un set, porque éstas
estructuras de datos usan los valores de hash internamente.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not;
immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable. Objects which

118 Apéndice A. Glosario

https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0443

The Python Language Reference, Version 3.7.17

are instances of user-defined classes are hashable by default. They all compare unequal (except with themselves),
and their hash value is derived from their 1d ().

IDLE El entorno integrado de desarrollo de Python, o «Integrated Development Environment for Python». IDLE es un
editor basico y un entorno de intérprete que se incluye con la distribucién estandar de Python.

inmutable Un objeto con un valor fijo. Los objetos inmutables son niimeros, cadenas y tuplas. Estos objetos no pueden
ser alterados. Un nuevo objeto debe ser creado si un valor diferente ha de ser guardado. Juegan un rol importante
en lugares donde es necesario un valor de hash constante, por ejemplo como claves de un diccionario.

ruta de importacién Una lista de las ubicaciones (o entradas de ruta) que son revisadas por path based finder al impor-
tar modulos. Durante la importacion, ésta lista de localizaciones usualmente viene de sys.path, pero para los
subpaquetes también puede incluir al atributo ___path___ del paquete padre.

importar El proceso mediante el cual el c6digo Python dentro de un médulo se hace alcanzable desde otro c6digo Python
en otro médulo.

importador Un objeto que buscan y lee un médulo; un objeto que es tanto finder como loader.

interactivo Python tiene un intérprete interactivo, lo que significa que puede ingresar sentencias y expresiones en el
prompt del intérprete, ejecutarlos de inmediato y ver sus resultados. S6lo ejecute python sin argumentos (podria
seleccionarlo desde el menu principal de su computadora). Es una forma muy potente de probar nuevas ideas o
inspeccionar médulos y paquetes (recuerde help (x)).

interpretado Python es un lenguaje interpretado, a diferencia de uno compilado, a pesar de que la distincién puede ser
difusa debido al compilador a bytecode. Esto significa que los archivos fuente pueden ser corridos directamente, sin
crear explicitamente un ejecutable que es corrido luego. Los lenguajes interpretados tipicamente tienen ciclos de
desarrollo y depuracién més cortos que los compilados, sin embargo sus programas suelen correr mas lentamente.
Vea también interactive.

apagado del intérprete Cuando se le solicita apagarse, el intérprete Python ingresa a un fase especial en la cual gra-
dualmente libera todos los recursos reservados, como médulos y varias estructuras internas criticas. También hace
varias llamadas al recolector de basura. Esto puede disparar la ejecucion de cddigo de destructores definidos por el
usuario o «weakref callbacks». El c4digo ejecutado durante la fase de apagado puede encontrar varias excepciones
debido a que los recursos que necesita pueden no funcionar més (ejemplos comunes son los mddulos de bibliotecas
o los artefactos de advertencias «warnings machinery»)

La principal razén para el apagado del intérpreter es que el médulo __main___ o el script que estaba corriendo
termine su ejecucion.

iterable Un objeto capaz de retornar sus miembros uno por vez. Ejemplos de iterables son todos los tipos de secuencias
(como list, str,y tuple)y algunos de tipos no secuenciales, como dict, objeto archivo, y objetos de cual-
quier clase que defina con los métodos ___iter () oconunmétodo __ getitem__ () que implementen la
semantica de Sequence.

Los iterables pueden ser usados en el bucle oy en muchos otros sitios donde una secuencia es necesaria (zip (),
map (), ...). Cuando un objeto iterable es pasado como argumento a la funcién incorporada iter (), retorna un
iterador para el objeto. Este iterador pasa asi el conjunto de valores. Cuando se usan iterables, normalmente no es
necesario llamar a la funcién iter () o tratar con los objetos iteradores usted mismo. La sentencia for lo hace
automadticamente por usted, creando un variable temporal sin nombre para mantener el iterador mientras dura el
bucle. Vea también iterator, sequence, y generator.

iterador Un objeto que representa un flujo de datos. Llamadas repetidas al método __next__ () del iterador (o al
pasar la funcién incorporada next ()) retorna items sucesivos del flujo. Cuando no hay mas datos disponibles, una
excepcién StopIteration es disparada. En este momento, el objeto iterador estd exhausto y cualquier llamada
posterior al método __next___ () s6lo dispara otra vez StopIteration. Los iteradores necesitan tener un
método:meth:__iter__ que retorna el objeto iterador mismo asi cada iterador es también un iterable y puede ser
usado en casi todos los lugares donde los iterables son aceptados. Una excepcién importante es el codigo que intenta
multiples pases de iteracién. Un objeto contenedor (como la 1ist) produce un nuevo iterador cada vez que las

119

The Python Language Reference, Version 3.7.17

pasa a una funcién iter () o la usa en un blucle for. Intentar ésto con un iterador simplemente retornaria el
mismo objeto iterador exhausto usado en previas iteraciones, haciéndolo aparecer como un contenedor vacio.

Puede encontrar més informacién en typeiter.

funcién clave Una funcién clave o una funcién de colacién es un invocable que retorna un valor usado para el ordena-
miento o clasificacién. Por ejemplo, locale.strxfrm() es usada para producir claves de ordenamiento que
se adaptan a las convenciones especificas de ordenamiento de un locale.

Cierta cantidad de herramientas de Python aceptan funciones clave para controlar como los elementos son orde-
nados o agrupados. Incluyendo a min (), max (), sorted(), list.sort (), heapg.merge (), heapq.
nsmallest (), heapg.nlargest (),yitertools.groupby ().

Hay varias formas de crear una funcién clave. Por ejemplo, el método st r. lower () puede servir como funcién
clave para ordenamientos que no distingan mayusculas de mindsculas. Como alternativa, una funcién clave puede
ser realizada con una expresion 1 ambda como lambda r: (r[0], r[2]).También,elmddulo operator
provee tres constructores de funciones clave: attrgetter (), itemgetter (), ymethodcaller (). Vea
en Sorting HOW TO ejemplos de como crear y usar funciones clave.

argumento nombrado Vea argument.

lambda Una funcién anénima de una linea consistente en un sola expression que es evaluada cuando la funcién es llamada.
La sintaxis para crear una funcién lambda es lambda [parameters]: expression

LBYL Del inglés «Look before you leap», «mira antes de saltar». Es un estilo de codificacion que prueba explicitamente
las condiciones previas antes de hacer llamadas o buisquedas. Este estilo contrasta con la manera EAFP y estd
caracterizado por la presencia de muchas sentencias 1 f.

En entornos multi-hilos, el método LBYL tiene el riesgo de introducir condiciones de carrera entre los hilos que
estdn «mirando» y los que estdn «saltando». Por ejemplo, el codigo, if key in mapping: return mapping[key]‘ puede
fallar si otro hilo remueve key de mapping después del test, pero antes de retornar el valor. Este problema puede
ser resuelto usando bloqueos o empleando el método EAFP.

lista Es una sequence Python incorporada. A pesar de su nombre es mds similar a un arreglo en otros lenguajes que a una
lista enlazada porque el acceso a los elementos es O(1).

comprension de listas Una forma compacta de procesar todos o parte de los elementos en una secuencia y retornar
una lista como resultado. result = ['{:#04x}'.format (x) for x in range(256) if x % 2
== 0] genera una lista de cadenas conteniendo nimeros hexadecimales (0x..) entre O y 255. La cldusula i 7 es

opcional. Si es omitida, todos los elementos en range (256) son procesados.

cargador Un objeto que carga un médulo. Debe definir el método llamado 1oad_module (). Un cargador es nor-
malmente retornados por un finder. Vea PEP 302 para detalles y importlib.abc.Loader para una abstract
base class.

método magico Una manera informal de llamar a un special method.

mapeado Un objeto contenedor que permite recupero de claves arbitrarias y que implementa los métodos especi-
ficados en la Mapping o MutableMapping abstract base classes. Por ejemplo, dict, collections.
defaultdict, collections.OrderedDict ycollections.Counter.

meta buscadores de ruta Un finder retornado por una bisqueda de sys.meta_path. Los meta buscadores de ruta
estdn relacionados a buscadores de entradas de rutas, pero son algo diferente.

Veaen importlib.abc.MetaPathFinder los métodos que los meta buscadores de ruta implementan.

metaclase La clase de una clase. Las definiciones de clases crean nombres de clase, un diccionario de clase, y una lista
de clases base. Las metaclases son responsables de tomar estos tres argumentos y crear la clase. La mayoria de los
objetos de un lenguaje de programacion orientado a objetos provienen de una implementacion por defecto. Lo que
hace a Python especial que es posible crear metaclases a medida. La mayoria de los usuario nunca necesitardn esta
herramienta, pero cuando la necesidad surge, las metaclases pueden brindar soluciones poderosas y elegantes. Han

120 Apéndice A. Glosario

https://www.python.org/dev/peps/pep-0302

The Python Language Reference, Version 3.7.17

sido usadas para loggear acceso de atributos, agregar seguridad a hilos, rastrear la creacién de objetos, implementar
singletons, y muchas otras tareas.

Mas informacién hallara en Metaclasses.

método Una funcién que es definida dentro del cuerpo de una clase. Si es llamada como un atributo de una instancia de
otra clase, el método tomara el objeto instanciado como su primer argument (el cual es usualmente denominado
self). Vea function y nested scope.

orden de resolucion de métodos Orden de resolucién de métodos es el orden en el cual una clase base es buscada por
un miembro durante la bisqueda. Mire en The Python 2.3 Method Resolution Order los detalles del algoritmo
usado por el intérprete Python desde la version 2.3.

médulo Un objeto que sirve como unidad de organizacién del cddigo Python. Los mddulos tienen espacios de nombres
conteniendo objetos Python arbitrarios. Los médulos son cargados en Python por el proceso de importing.

Vea también package.

especificador de médulo Un espacio de nombres que contiene la informacion relacionada a la importacion usada al leer
un médulo. Una instancia de importlib.machinery.ModuleSpec.

MRO Vea method resolution order.
mutable Los objetos mutables pueden cambiar su valor pero mantener su id () . Vea también immutable.

tupla nombrada The term «named tuple» applies to any type or class that inherits from tuple and whose indexable
elements are also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

>>> sys.float_info[1l] # Iindexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple (). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

espacio de nombres El lugar donde la variable es almacenada. Los espacios de nombres son implementados como dic-
cionarios. Hay espacio de nombre local, global, e incorporado asi como espacios de nombres anidados en objetos
(en métodos). Los espacios de nombres soportan modularidad previniendo conflictos de nombramiento. Por ejem-
plo, las funciones builtins.openy os.open () se distinguen por su espacio de nombres. Los espacios de
nombres también ayuda a la legibilidad y mantenibilidad dejando claro qué médulo implementa una funcién. Por
ejemplo, escribiendo random. seed () o itertools.islice () queda claro que éstas funciones estin im-
plementadas en los médulos randomy itertools, respectivamente.

paquete de espacios de nombres Un PEP 420 package que sirve sdlo para contener subpaquetes. Los paquetes de es-
pacios de nombres pueden no tener representacion fisica, y especificamente se diferencian de los regular package
porque no tienen un archivo __init__ .py.

Vea también module.

alcances anidados La habilidad de referirse a una variable dentro de una definicion encerrada. Por ejemplo, una funcién
definida dentro de otra funcién puede referir a variables en la funcién externa. Note que los alcances anidados por
defecto sélo funcionan para referencia y no para asignacion. Las variables locales leen y escriben s6lo en el alcance
mas interno. De manera semejante, las variables globales pueden leer y escribir en el espacio de nombres global.
Con nonlocal se puede escribir en alcances exteriores.

121

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Version 3.7.17

clase de nuevo estilo Vieja denominacion usada para el estilo de clases ahora empleado en todos los objetos de clase. En
versiones mas tempranas de Python, s6lo las nuevas clases podian usar capacidades nuevas y versitiles de Python
como ___slots__,descriptores, propiedades, getattribute__ (), métodos de clase y métodos estiticos.

objeto Cualquier dato con estado (atributo o valor) y comportamiento definido (métodos). También es la mas bésica
clase base para cualquier new-style class.

paquete Un module Python que puede contener submddulos o recursivamente, subpaquetes. Técnicamente, un paquete
es un médulo Python con un atributo __path__.

Vea también regular package y namespace package.

parametro Una entidad nombrada en una definicién de una function (0o método) que especifica un argument (o en algunos
casos, varios argumentos) que la funcién puede aceptar. Existen cinco tipos de argumentos:

e posicional o nombrado: especifica un argumento que puede ser pasado tanto como posicional 0 como nomi-
brado. Este es el tipo por defecto de pardmetro, como foo y bar en el siguiente ejemplo:

def func (foo, bar=None) :

* solo posicional: especifica un argumento que puede ser pasado s6lo por posicidn. Python no tiene una sintaxis
especifica para los pardmetros que son sélo por posicién. Sin embargo, algunas funciones tienen parimetros
s6lo por posicion (por ejemplo abs ()).

* solo nombrado: especifica un argumento que sélo puede ser pasado por nombre. Los pardmetros s6lo por
nombre pueden ser definidos incluyendo un pardmetro posicional de una sola variable o un mero *° antes
de ellos en la lista de pardmetros en la definicion de la funcién, como kw_onlyl y kw_only2 en el ejemplo
siguiente:

’def func (arg, *, kw_onlyl, kw_only2):

* variable posicional: especifica una secuencia arbitraria de argumentos posicionales que pueden ser brindados
(ademads de cualquier argumento posicional aceptado por otros pardmetros). Este pardmetro puede ser definido
anteponiendo al nombre del pardmetro *, como a args en el siguiente ejemplo:

def func(*args, **kwargs):

e variable nombrado: especifica que arbitrariamente muchos argumentos nombrados pueden ser brindados
(ademads de cualquier argumento nombrado ya aceptado por cualquier otro pardmetro). Este pardmetro pue-
de ser definido anteponiendo al nombre del pardmetro con * *, como kwargs en el ejemplo mas arriba.

Los pardmetros puede especificar tanto argumentos opcionales como requeridos, asi como valores por defecto para
algunos argumentos opcionales.

Vea también el glosario de argument, la pregunta respondida en la diferencia entre argumentos y pardmetros, la
clase inspect.Parameter, la seccidén Function definitions , y PEP 362.

entrada de ruta Una ubicacion tnica en el import path que el path based finder consulta para encontrar los médulos a
importar.

buscador de entradas de ruta Un finder retornado por un invocable en sys.path_hooks (esto es, un path entry
hook) que sabe cémo localizar médulos dada una path entry.

Vea en importlib.abc.PathEntryFinder los métodos que los buscadores de entradas de paths imple-
mentan.

gancho a entrada de ruta Un invocable en la lista sys.path_hook que retorna un path entry finder si éste sabe
cémo encontrar médulos en un path entry especifico.

buscador basado en ruta Uno de los meta buscadores de ruta por defecto que busca un import path para los médulos.

122 Apéndice A. Glosario

https://www.python.org/dev/peps/pep-0362

The Python Language Reference, Version 3.7.17

objeto tipo ruta Un objeto que representa una ruta del sistema de archivos. Un objeto tipo ruta puede ser tanto una st r
como un bytes representando una ruta, o un objeto que implementa el protocolo os . Pat hLike. Un objeto que
soporta el protocolo os.PathLike puede ser convertido a ruta del sistema de archivo de clase str o bytes
usando la funcién os.fspath(); os.fsdecode () os.fsencode () pueden emplearse para garantizar
que retorne respectivamente str o bytes. Introducido por PEP 519.

PEP Propuesta de mejora de Python, del inglés «Python Enhancement Proposal». Un PEP es un documento de dise-
fio que brinda informacién a la comunidad Python, o describe una nueva capacidad para Python, sus procesos o
entorno. Los PEPs deberian dar una especificacion técnica concisa y una fundamentacioén para las capacidades
propuestas.

Los PEPs tienen como propdsito ser los mecanismos primarios para proponer nuevas y mayores capacidad, para
recoger la opinién de la comunidad sobre un tema, y para documentar las decisiones de disefio que se han hecho
en Python. El autor del PEP es el responsable de lograr consenso con la comunidad y documentar las opiniones
disidentes.

Vea PEP 1.

porcién Un conjunto de archivos en un tnico directorio (posiblemente guardo en un archivo comprimido zip) que con-
tribuye a un espacio de nombres de paquete, como estd definido en PEP 420.

argumento posicional Vea argument.

API provisoria Una API provisoria es aquella que deliberadamente fue excluida de las garantias de compatibilidad hacia
atrds de la biblioteca estdndar. Aunque no se esperan cambios fundamentales en dichas interfaces, como estdn
marcadas como provisionales, los cambios incompatibles hacia atrds (incluso remover la misma interfaz) podrian
ocurrir si los desarrolladores principales lo estiman. Estos cambios no se hacen gratuitamente — solo ocurrirdn si
fallas fundamentales y serias son descubiertas que no fueron vistas antes de la inclusién de la API.

Incluso para APIs provisorias, los cambios incompatibles hacia atrds son vistos como una «solucién de dltimo
recurso» - se intentard todo para encontrar una solucién compatible hacia atrés para los problemas identificados.

Este proceso permite que la biblioteca estdndar continte evolucionando con el tiempo, sin bloquearse por errores
de disefio problemadticos por periodos extensos de tiempo. Vea :pep241° para mas detalles.

paquete provisorio Vea provisional API.

Python 3000 Apodo para la fecha de lanzamiento de Python 3.x (acufiada en un tiempo cuando llegar a la versién 3 era
algo distante en el futuro.) También se lo abrevié como «Py3k».

Pythoénico Una idea o pieza de c4digo que sigue ajustadamente la convenciones idiomdticas comunes del lenguaje Python,
en vez de implementar c6digo usando conceptos comunes a otros lenguajes. Por ejemplo, una convencién comun
en Python es hacer bucles sobre todos los elementos de un iterable con la sentencia or. Muchos otros lenguajes
no tienen este tipo de construccion, asi que los que no estdn familiarizados con Python podrian usar contadores
numéricos:

for i in range(len(food)):
print (food[i])

En contraste, un método Pythdnico més limpio:

for piece in food:
print (piece)

nombre calificado Un nombre con puntos mostrando la ruta desde el alcance global del médulo a la clase, funcién o
método definido en dicho mddulo, como se define en PEP 3155. Para las funciones o clases de mas alto nivel, el
nombre calificado es el igual al nombre del objeto:

>>> class C:
class D:

(continué en Ja préxima pagina)

123

https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-3155

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

def meth (self):
pass
>>> C._ _qualname_
lcl
>>> C.D.__gualname_
'Cc.D'
>>> C.D.meth._qualname_
'C.D.meth'

Cuando es usado para referirse a los médulos, nombre completamente calificado significa la ruta con puntos completo
al moédulo, incluyendo cualquier paquete padre, por ejemplo, email. mime.text":

>>> import email .mime.text
>>> emaill.mime.text. name
'email.mime.text'

contador de referencias El nimero de referencias a un objeto. Cuando el contador de referencias de un objeto cae hasta
cero, éste es desalojable. En conteo de referencias no suele ser visible en el cédigo de Python, pero es un elemento
clave para la implementacion de CPython. El médulo sys define la getrefcount () que los programadores
pueden emplear para retornar el conteo de referencias de un objeto en particular.

paquete regular Un package tradicional, como aquellos con un directorio conteniendo el archivo __init__ .py.
Vea también namespace package.

__slots__ Es una declaracién dentro de una clase que ahorra memoria pre declarando espacio para las atributos de la
instancia y eliminando diccionarios de la instancia. Aunque es popular, esta técnica es algo dificultosa de lograr
correctamente y es mejor reservarla para los casos raros en los que existen grandes cantidades de instancias en
aplicaciones con uso critico de memoria.

secuencia Un iterable que logra un acceso eficiente a los elementos usando indices enteros a través del método es-
pecial __getitem__ () y que define un método ___I1en__ () que devuelve la longitud de la secuencia. Al-
gunas de las secuencias incorporadas son 1ist, str, tuple, y bytes. Observe que dict también soporta
__getitem_ () y__len__ (), pero es considerada un mapeo mis que una secuencia porque las bisquedas
son por claves arbitraria immutable y no por enteros.

La clase base abstracta collections.abc.Sequence define una interfaz mucho mas rica que va mas
alld de s6lo ___getitem () y __len__ (), agregando count (), index (), contains__(),y
__reversed__ (). Los tipos que implementan esta interfaz expandida pueden ser registrados explicitamen-
te usando register ().

despacho inico Una forma de despacho de una generic function donde la implementacion es elegida a partir del tipo de
un s6lo argumento.

rebanada Un objeto que contiene una porcién de una sequence. Una rebanada es creada usando la notacién de suscrip-
to, [] con dos puntos entre los nimeros cuando se ponen varios, como en nombre_variable[1:3:5].La
notacién con corchete (suscrito) usa internamente objetos slice.

método especial Un método que es llamado implicitamente por Python cuando ejecuta ciertas operaciones en un tipo,
como la adicién. Estos métodos tienen nombres que comienzan y terminan con doble barra baja. Los métodos
especiales estdn documentados en Special method names.

sentencia Una sentencia es parte de un conjunto (un «bloque» de c6digo). Una sentencia tanto es una expression como
alguna de las varias sintaxis usando una palabra clave, como i f, while o for.

codificacion de texto Un cédec que codifica las cadenas Unicode a bytes.

124 Apéndice A. Glosario

The Python Language Reference, Version 3.7.17

archivo de texto Un file object capaz de leer y escribir objetos st r. Frecuentemente, un archivo de texto también accede
aun flujo de datos binario y maneja automaticamente el fext encoding. Ejemplos de archivos de texto que son abiertos
enmodotexto ('"r' o 'w'), sys.stdin, sys.stdout,y las instancias de 1i0.StringIO.

Vea también binary file por objeto de archivos capaces de leer y escribir objeto tipo binario.

cadena con triple comilla Una cadena que estd enmarcada por tres instancias de comillas (») o apostrofes (“). Aunque
no brindan ninguna funcionalidad que no esta disponible usando cadenas con comillas simple, son ttiles por varias
razones. Permiten incluir comillas simples o dobles sin escapar dentro de las cadenas y pueden abarcar multiples
lineas sin el uso de caracteres de continuacion, haciéndolas particularmente ttiles para escribir docstrings.

tipo El tipo de un objeto Python determina qué tipo de objeto es; cada objeto tiene un tipo. El tipo de un objeto puede
ser accedido por su atributo ___class___ o puede ser conseguido usando type (obj).

alias de tipos Un sin6nimo para un tipo, creado al asignar un tipo a un identificador.

Los alias de tipos son utiles para simplificar los indicadores de tipo. Por ejemplo:

from typing import List, Tuple

def remove_gray_shades (
colors: List[Tuple[int, int, int]]) -> List[Tuplel[int, int, int]]:
pass

podria ser mds legible asi:

from typing import List, Tuple
Color = Tuple[int, int, int]

def remove_gray_shades (colors: List[Color]) -> List[Color]:
pass

Vea typing y PEP 484, que describen esta funcionalidad.

indicador de tipo Una annotation que especifica el tipo esperado para una variable, un atributo de clase, un pardmetro
para una funcién o un valor de retorno.

Los indicadores de tipo son opcionales y no son obligados por Python pero son utiles para las herramientas de
andlisis de tipos estdtico, y ayuda a las IDE en el completado del cédigo y la refactorizacion.

Los indicadores de tipo de las variables globales, atributos de clase, y funciones, no de variables locales, pueden ser
accedidos usando typing.get_type_hints ().

Vea typing y PEP 484, que describen esta funcionalidad.

saltos de lineas universales Una manera de interpretar flujos de texto en la cual son reconocidos como finales de linea
todas siguientes formas: la convencién de Unix para fin de linea '\n', la convencién de Windows '\r\n',y
la vieja convencién de Macintosh '\r'. Vea PEP 278 y PEP 3116, ademds de:func:byfes.splitlines para usos
adicionales.

anotacion de variable Una annotation de una variable o un atributo de clase.

Cuando se anota una variable o un atributo de clase, la asignacién es opcional:

class C:
field: '"annotation'

Las anotaciones de variables son frecuentemente usadas para fype hints: por ejemplo, se espera que esta variable
tenga valores de clase int:

125

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

The Python Language Reference, Version 3.7.17

count: int 0

La sintaxis de la anotacién de variables estd explicada en la seccién Annotated assignment statements.
Vea function annotation, PEP 484 y PEP 526, los cuales describen esta funcionalidad.

entorno virtual Un entorno cooperativamente aislado de ejecucién que permite a los usuarios de Python y a las apli-
caciones instalar y actualizar paquetes de distribucién de Python sin interferir con el comportamiento de otras
aplicaciones de Python en el mismo sistema.

Vea también venv.

maquina virtual Una computadora definida enteramente por software. La maquina virtual de Python ejecuta el bytecode
generado por el compilador de bytecode.

Zen de Python Un listado de los principios de disefio y la filosofia de Python que son utiles para entender y usar el
lenguaje. El listado puede encontrarse ingresando «import this» en la consola interactiva.

126 Apéndice A. Glosario

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

APENDICE B

Acerca de estos documentos

Estos documentos son generados por reStructuredText desarrollado por Sphinx, un procesador de documentos especifi-
camente escrito para la documentacién de Python.

El desarrollo de la documentacion y su cadena de herramientas es un esfuerzo enteramente voluntario, al igual que Python.
Si tu quieres contribuir, por favor revisa la pagina reporting-bugs para mas informacién de cémo hacerlo. Los nuevos
voluntarios son siempre bienvenidos!

Agradecemos a:

* Fred L. Drake, Jr., el creador original de la documentacién del conjunto de herramientas de Python y escritor de
gran parte del contenido;

* el proyecto Docutils para creacion de reStructuredText y el juego de Utilidades de Documentacion;

¢ Fredrik Lundh por su proyecto Referencia Alternativa de Python para la cual Sphinx tuvo muchas ideas.

B.1 Contribuidores de la documentacion de Python

Muchas personas han contribuido para el lenguaje de Python, la libreria estdndar de Python, y la documentacién de
Python. Revisa Misc/ACKS la distribuciéon de Python para una lista parcial de contribuidores.

Es solamente con la aportacién y contribuciones de la comunidad de Python que Python tiene tan fantstica documentacién
— Muchas gracias!

127

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
http://effbot.org/zone/pyref.htm
https://github.com/python/cpython/tree/3.7/Misc/ACKS

The Python Language Reference, Version 3.7.17

128 Apéndice B. Acerca de estos documentos

APeNDICE C

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most, but
not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from | Year Owner GPL compatible?
0.9.0thru 1.2 | n/a 1991-1995 | CWI yes
1.3thrul52 | 1.2 1995-1999 | CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.142.0.1 2001 PSF yes
2.12 2.1.1 2002 PSF yes
2.13 2.1.2 2002 PSF yes
2.2 and above | 2.1.1 2001-now | PSF yes

129

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, Version 3.7.17

Nota: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the GPL,
let you distribute a modified version without making your changes open source. The GPL-compatible licenses make it
possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.7.17

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSEF"),.
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

3.7.17 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.7.17 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All._
—Rights
Reserved" are retained in Python 3.7.17 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.7.17 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—~hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.7.17.

4. PSF is making Python 3.7.17 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION.
—0OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.7.17 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.7.17

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.7.17, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

130 Apéndice C. History and License

The Python Language Reference, Version 3.7.17

6. This License Agreement will automatically terminate upon a material breach.
—of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.7.17, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at

(continué en Ja préxima pagina)

C.2. Terms and conditions for accessing or otherwise using Python 131

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed

(continué en Ja préxima pagina)

132 Apéndice C. History and License

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

(continué en [a préxima pagina)

C.3. Licenses and Acknowledgements for Incorporated Software 133

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

(continué en Ja préxima pagina)

134 Apéndice C. History and License

http://www.wide.ad.jp/

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

(continué en Ia préxima pagina)

C.3. Licenses and Acknowledgements for Incorporated Software 135

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3.6 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse

(continué en Ia préxima pagina)

136 Apéndice C. History and License

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

not be used in advertising or publicity pertaining to distribution

of the software without specific, written prior permission.

LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE

FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

— Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 137

The Python Language Reference, Version 3.7.17

C.3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

138 Apéndice C. History and License

The Python Language Reference, Version 3.7.17

C.3.10 SipHash24

The file Python/pyhash. ¢ contains Marek Majkowski” implementation of Dan Bernstein’s SipHash24 algorithm. It
contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod and dtoa

The file Python/dtoa . ¢, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings, is
derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The original
file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/**

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*

WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C.3. Licenses and Acknowledgements for Incorporated Software 139

http://www.netlib.org/fp/

The Python Language Reference, Version 3.7.17

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and Mac OS X installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

L T R S I S N S R T S N IS S N S N S S NS S SN S S S S S S SR P S S N .

(continué en Ja préxima pagina)

140 Apéndice C. History and License

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

0% ok X ok >k ok ok 3k X %

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

L I R S e S S IS N S S N IS N S S S e S N S S S S N S S S e N N

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eaylcryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

(continué en Ja préxima pagina)

C.3. Licenses and Acknowledgements for Incorporated Software 141

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

LR I S S R N R A

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
—-—-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

142 Apéndice C. History and License

The Python Language Reference, Version 3.7.17

C.3.14 libffi

The _ctypes extension is built using an included copy of the libfli sources unless the build is configured

——with-system-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old

to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenses and Acknowledgements for Incorporated Software

143

The Python Language Reference, Version 3.7.17

C.3.16 cfuhash

The implementation of the hash table used by the t racemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
——with-system-libmpdec

Copyright (c) 2008-2016 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(continué en Ja préxima pagina)

144 Apéndice C. History and License

The Python Language Reference, Version 3.7.17

(proviene de la pagina anterior)

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 145

The Python Language Reference, Version 3.7.17

146 Apéndice C. History and License

APENDICE D

Copyright

Python and this documentation is:

Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

147

The Python Language Reference, Version 3.7.17

148 Apéndice D. Copyright

indice

No alfabético

., 113

ellipsis literal, I8
e

string literal, 10
. (dot)

attribute reference,73

in numeric literal, 14
! (exclamation)

in formatted string literal, 12
— (minus)

binary operator,78

unary operator, 77
' (single quote)

string literal, 10
" (double quote)

string literal, 10
mmwn

string literal, 10
(hash)

comment, 6

source encoding declaration,6
% (percent)

operador, 78

o\
Il

augmented assignment, 88
& (ampersand)
operador, 79
&:
augmented assignment, 88
() (parentheses)
call, 74
class definition, 104
function definition, 102
generator expression, 69
in assignment target list, 86
tuple display, 67
* (asterisk)
function definition, 103

import statement, 94

in assignment target list, 86
in expression lists,83

in function calls,75
operador, 77

function definition, 103
in dictionary displays, 68
in function calls,76
operador, 77

* k=

augmented assignment, 88

augmented assignment, 88

+ (plus)
binary operator, 78
unary operator, 77

+=
augmented assignment, 88

, (comma), 67
argument list, 74
expression list, 68, 83,89, 104
identifier 1list, 95,96
import statement, 93
in dictionary displays, 68
in target 1list, 86
parameter list, 102

slicing, 74

with statement, 101
/ (slash)

operador, 78
//

operador, 78
//=

augmented assignment, 88
/=

augmented assignment, 88
0b

integer literal, 14
0o

149

The Python Language Reference, Version 3.7.17

integer literal, 14
0x
integer literal, 14
2to3, 113
: (colon)
annotated wvariable, 88
compound statement, 98,99, 101, 102, 104
function annotations, 103
in dictionary expressions, 68
in formatted string literal, 12
lambda expression, 83
slicing, 74
; (semicolon), 97
< (less)
operador, 79
<<
operador, 78
<<=
augmented assignment, 88

operador, 79
augmented assignment, 88

operador, 79

= (equals)
assignment statement, 86
class definition, 34
function definition, 103
in function calls, 74

operador, 79

function annotations, 103
> (greater)
operador, 79
>=
operador, 79
>>
operador, 78
>>=
augmented assignment, 88
>>> 113
@ (at)
class definition, 104
function definition, 102
operador, 78
[1 (square brackets)
in assignment target list, 86
list expression, 68
subscription, 74
\ (backslash)
escape sequence, 11

A

escape sequence, 11
\a

escape
\b

escape
\f

escape
\n

escape
\N

escape
\r

escape
\t

escape
\u

escape
\U

escape
\v

escape
\x

escape
~ (caret)

operador, 79

sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11

sequence, 11

augmented assignment, 88
_ (underscore)

in numeric literal, 14
_, ldentifiers,9
__, ldentifiers,9

__abs__ () (método de object), 40
__add__ () (método de object), 39
__aenter__ () (método de object), 44
__aexit__ () (método de object), 44
__aiter__ () (método de object), 44
__all__ (optional module attribute), 94
__and__ () (método de object), 39
__anext__ () (método de agen), 72
__anext__ () (método de object), 44

__annotations__ (class attribute), 23
__annotations__ (function attribute), 21
__annotations__ (module attribute), 23

__await__ () (método de object), 43
_ _bases__ (class attribute), 23
__bool__ () (método de object), 29
__bool__ () (object method), 38
__bytes__ () (método de object), 28
__cached_ ,58

__call__ () (método de object), 37
__call__ () (object method), 76
__cause___(exception attribute), 91
__ceil__ () (método de object), 41

__class__ (instance attribute), 24

150

indice

The Python Language Reference, Version 3.7.17

__class__ (method cell), 36

__class__ (module attribute), 31

__class_getitem__ () (método de clase de object),
37

_ _classcell__ (class namespace entry), 36

__closure__ (function attribute), 21

___code___ (function attribute), 21

__complex__ () (método de object), 40
__contains__ () (método de object), 39
__context__ (exception attribute), 91

_ _debug__, 89

__defaults___ (function attribute), 21
__del__ () (método de object), 27
__delattr__ () (método de object), 30
__delete__ () (método de object), 31
__delitem__ () (método de object), 38

_dict__ (class attribute), 23
__dict__ (function attribute), 21
__dict__ (instance attribute), 24
__dict__ (module attribute), 23

_ dir__ (module attribute), 31

_ dir__ () (método de object), 30
__divmod___ () (método de object), 39
doc___ (class attribute), 23
__doc__ (function attribute), 21
_doc___ (method attribute), 21
__doc__ (module attribute), 23
__enter__ () (método de object), 41

__eq__ () (método de object), 28
__exit__ () (método de object), 41

_ file_ ,58

_ file_ (module attribute), 23
__float__ () (método de object), 40
__floor__ () (método de object), 41
__floordiv__ () (método de object), 39
__format__ () (método de object), 28

__ func__ (method attribute), 21
_ future_ , 117

__imod__ () (método de object), 40
__imul__ () (método de object), 40
__index__ () (método de object), 41
__init__ () (método de object), 26
__init_subclass__ () (método de clase de object),
34

__instancecheck__ () (método de class), 36
__int__ () (método de object), 40
__invert__ () (método de object), 40
__dor__ () (método de object), 40
__ipow__ () (método de object), 40
__irshift__ () (método de object), 40
__isub__ () (método de object), 40
__iter__ () (método de object), 38
__itruediv__ () (método de object), 40
__ixor__ () (método de object), 40
__kwdefaults___ (function attribute), 21
__le__ () (método de object), 28
__len__ () (mapping object method), 29
__len__ () (método de object), 37
_ _length_hint__ () (método de object), 38
_ _loader_ ,58
__1shift__ () (método de object), 39
__1t__ () (método de object), 28
__main_

médulo, 48, 107
_ matmul__ () (método de object), 39
__missing__ () (método de object), 38
__mod___() (método de object), 39

_ _module__ (class attribute), 23
__module__ (function attribute), 21
__module__ (method attribute), 21
__mul__ () (método de object), 39
__name__ ,58

_ name___(class attribute), 23
__name___(function attribute), 21
__name___ (method attribute), 21
__name___ (module attribute), 23

future statement, 94 __ne___ () (método de object), 28
__ge__ () (método de object), 28 __neg___() (método de object), 40
__get__ () (método de object), 31 __new___ () (método de object), 26
__getattr__ (module attribute), 31 __next__ () (método de generator), 71
__getattr__ () (método de object), 30 __or__ () (método de object), 39
__getattribute__ () (método de object), 30 __package__, 58
__getitem__ () (mapping object method), 26 __path__,58
__getitem__ () (método de object), 38 __pos___ () (método de object), 40
__globals__ (function attribute), 21 __pow___ () (método de object), 39
__gt__ () (método de object), 28 __prepare__ (metaclass method), 35
__hash__ () (método de object), 28 __radd__ () (método de object), 39
__iadd__ () (método de object), 40 __rand___ () (método de object), 39
__iand__ () (método de object), 40 __rdivmod__ () (método de object), 39
__ifloordiv__ () (método de object), 40 __repr__ () (método de object), 27
__ilshift__ () (método de object), 40 __reversed__ () (método de object), 39
__imatmul__ () (mérodo de object), 40 __rfloordiv__ () (método de object), 39
indice 151

The Python Language Reference, Version 3.7.17

__rlshift__ () (método de object), 39
__rmatmul__ () (método de object), 39
__rmod___ () (método de object), 39
__rmul__ () (método de object), 39
__ror__ () (método de object), 39
__round__ () (método de object), 41
__rpow___() (método de object), 39
__rrshift__ () (método de object), 39
__rshift__ () (método de object), 39
__rsub__ () (método de object), 39
__rtruediv__ () (método de object), 39
__rxor__ () (método de object), 39
__self__ (method attribute), 21
__set__ () (método de object), 31
__set_name__ () (método de object), 31
__setattr__ () (método de object), 30
__setitem__ () (método de object), 38
__slots_ ,124

_ _spec_ ,58

__str__ () (método de object), 28
__sub__ () (método de object), 39
__subclasscheck__ () (método de class), 36
__traceback___ (exception attribute), 91
__truediv__ () (método de object), 39
__trunc__ () (método de object), 41
__xor___() (meétodo de object), 39

{} (curly brackets)
dictionary expression, 68
in formatted string literal, 12
set expression, 68
| (vertical bar)
operador, 79

| =
augmented assignment, 88
~ (tilde)

operador, 77

A

abs
funcidén incorporada, 40
aclose () (método de agen), 73
addition, 78
administrador asincrénico de contexto,
114
administrador de contextos, 115
aguardable, 114
alcances anidados, 121
alias de tipos, 125
and
bitwise, 79
operador, 82
annotated
assignment, 88
annotations

function, 103
anonymous
function, 83
anotacidn, 113
anotacidén de funcién, 117
anotacidén de variable, 125
apagado del intérprete, 119
API provisoria, 123
archivo binario, 114
archivo de texto, 125
argument
call semantics, 74
function, 20
function definition, 103
argumento, 113
argumento nombrado, 120
argumento posicional, 123
arithmetic
conversion, 65
operation,binary, 77
operation, unary, 77
array
médulo, 20
as
except clause, 100
import statement, 93
palabra clave, 93,99, 101
with statement, 101
ASCII, 4,10
asend () (método de agen), 73
assert
sentencia, 89
AssertionError
excepcidn, 89
assertions
debugging, 89
assignment
annotated, 88
attribute, 86, 87
augmented, 88
class attribute, 23
class instance attribute, 23
slicing, 87
statement, 19, 86
subscription, 87
target list, 86
async
palabra clave, 105
async def
sentencia, 105
async for
in comprehensions, 67
sentencia, 105
async with

152

indice

The Python Language Reference, Version 3.7.17

sentencia, 106
asynchronous generator

asynchronous iterator, 22

function, 22
asynchronous—generator

objeto, 72
athrow () (método de agen), 73
atom, 66

atributo, 114
attribute, 18
assignment, 86, 87
assignment, class, 23
assignment, class instance, 23
class, 23
class instance, 23
deletion, 90
generic special, 18
reference, 73
special, 18
AttributeError
excepcidn, 73
augmented
assignment, 88
await
in comprehensions, 67
palabra clave, 76, 105

B
b'
bytes literal, 10
b"
bytes literal, 10
backslash character,6
BDFL, 114
binary
arithmetic operation, 77
bitwise operation, 79
binary literal, 14
binding
global name, 95
name, 47, 86, 93, 102, 104
bitwise
and, 79
operation, binary, 79
operation, unary, 77
or, 79
xor, 79
blank line,7
block, 47
code, 47
bloqueo global del intérprete, 118
BNF, 4, 65
Boolean
objeto, 19

operation, 82
break

sentencia, 92, 98100
built-in

method, 22
built-in function

call, 76

objeto, 22,76
built-in method

call, 76

objeto, 22,76
builtins

médulo, 107
buscador, 117
buscador basado en ruta, 122

buscador de entradas de ruta, 122

byte, 19
bytearray, 20
bytecode, 24, 115
bytes, 19

funcidén incorporada, 28
bytes literal, 10

C

c, 11
language, 18, 19, 22,79

cadena con triple comilla, 125

call, 74
built-in function, 76
built-in method, 76
class instance, 76
class object, 23,76
function, 20, 76
instance, 37,76
method, 76
procedure, 86
user—defined function, 76
callable
objeto, 20, 74
cargador, 120
C-contiguous, 115
chaining
comparisons, 79
exception, 91
character, 19, 74
chr
funcidén incorporada, 19
clase, 115
clase base abstracta, 113
clase de nuevo estilo, 122
class
attribute, 23
attribute assignment, 23
body, 35

indice

The Python Language Reference, Version 3.7.17

constructor, 27
definition, 90, 104
instance, 23
name, 104
objeto, 23,76, 104
sentencia, 104
class instance
attribute, 23
attribute assignment, 23
call, 76
objeto, 23,76
class object
call, 23,76
clause, 97
clear () (método de frame), 25
close () (método de coroutine), 43
close () (método de generator), 71
co_argcount (code object attribute), 24
co_cellvars (code object attribute), 24
co_code (code object attribute), 24
co_consts (code object attribute), 24
co_filename (code object attribute), 24

co_firstlineno (code object attribute), 24

co_flags (code object attribute), 24
co_freevars (code object attribute), 24
co_1lnotab (code object attribute), 24
co_name (code object attribute), 24
co_names (code object attribute), 24
co_nlocals (code object attribute), 24
co_stacksize (code object attribute), 24
co_varnames (code object attribute), 24
code

block, 47
code object,?24
codificacidén de texto, 124
coerciédn, 115
comma, 67

trailing, 83
command line, 107
comment, 6
comparison, 79
comparisons, 28

chaining, 79
compile

funcidén incorporada, 95
complex

funcidén incorporada, 41

number, 19

objeto, 19
complex literal, 14
compound

statement, 97
comprehensions

list, 68

comprensién de listas, 120
conditional

expression, 83
Conditional

expression, 82
constant, 10
constructor

class, 27

contador de referencias, 124

container, 18, 23
context manager, 41
context variable, 115
contiguo, 115
continue
sentencia, 93, 98100
conversion
arithmetic, 65
string, 28, 86
coroutine, 43,70
function, 22
corrutina, 115
CPython, 116

D
dangling
else, 98
data, 17
type, 18
type, immutable, 66
datum, 68
dbm.gnu
médulo, 20
dbm.ndbm
médulo, 20
debugging
assertions, 89
decimal literal, 14
decorador, 116
DEDENT token, 7,98
def
sentencia, 102
default
parameter value, 103
definition
class, 90, 104
function, 90, 102
del
sentencia, 27, 90
deletion
attribute, 90
target, 90
target list, 90
delimiters, 15
descriptor, 116

154

indice

The Python Language Reference, Version 3.7.17

despacho unico, 124
destructor, 27, 87
diccionario, 116
dictionary

display, 68

objeto, 20, 23, 29, 68, 74, 87
display

dictionary, 68

list, 68

set, 68
division, 78
divisidén entera, 117
divmod

funcidén incorporada, 39, 40
docstring, 104,116
documentation string, 24

E

e
in numeric literal, 14
EAFP, 116

elif

palabra clave, 98
Ellipsis

objeto, 18
else

conditional expression, 83
dangling, 98
palabra clave, 92,98100

empty
list, 68
tuple, 19, 67

encoding declarations (source file), 6

entorno virtual, 126
entrada de ruta, 122
environment, 48
error handling, 49
errors, 49
escape sequence, 11
espacio de nombres, 121
especificador de mdédulo, 121
eval
funcidén incorporada, 95, 108
evaluation
order, 84
exc_info (in module sys), 25
excepcidén
AssertionError, 89
AttributeError, 73
GeneratorExit, 71,73
ImportError, 93
NameError, 66
StopAsyncIteration, 72
StopIteration, 71,90

TypeError, 77
ValueError, 78
ZeroDivisionError, 78
except
palabra clave, 99
exception, 49,91
chaining, 91
handler, 25
raising, 91
exception handler, 49
exclusive
or, 79
exec
funcidén incorporada, 95
execution
frame, 47, 104
restricted, 49
stack, 25
execution model, 47
expresidn, 116
expresidén generadora, 118
expression, 65
conditional, 83
Conditional, 82
generator, 69
lambda, 83, 103
list, 83,85
statement, 85
yield, 69
extension
module, 18

f'

formatted string literal, 10

fll

formatted string literal, 10

f-string, 117

f_back (frame attribute), 24
f_builtins (frame attribute), 24
f__code (frame attribute), 24
f_globals (frame attribute), 24
f_lasti (frame attribute), 24
f_1lineno (frame attribute), 24
f_locals (frame attribute), 24
f_trace (frame attribute), 24
f_trace_lines (frame attribute), 24

f_trace_opcodes (frame attribute), 24

False, 19
finalizer, 27
finally

palabra clave, 90,92, 93,99, 100

find_spec
finder, 54

indice

155

The Python Language Reference, Version 3.7.17

finder, 54
find_spec, 54
float
funcidén incorporada, 4l
floating point
number, 19
objeto, 19
floating point literal, 14
for
in comprehensions, 67
sentencia, 92, 93, 98

form
lambda, 83
format () (built-in function)

__str__ () (object method), 28
formatted string literal, 12
Fortran contiguous, 115
frame

execution, 47, 104

objeto, 24
free

variable, 47
from

import statement, 47,93

palabra clave, 69,93

yield from expression, 70
frozenset

objeto, 20
f-string, 12
funcidn, 117
funcidén clave, 120
funcién corrutina, 116
funcidén genérica, 118
funcidén incorporada

abs, 40

bytes, 28

chr, 19

compile, 95

complex, 41

divmod, 39, 40

eval, 95, 108

exec, 95

float, 41

hash, 29

id, 17

int, 41

len, 19, 20, 38

open, 24

ord, 19

pow, 39, 40

print, 28

range, 99

repr, 86

round, 41

slice, 25
type, 17, 34
function
annotations, 103
anonymous, 83
argument, 20
call, 20, 76
call,user—-defined, 76
definition, 90, 102
generator, 69, 90
name, 102
objeto, 20, 22,76, 102
user—-defined, 20
future
statement, 94

G

gancho a entrada de ruta, 122
garbage collection, 17
generador, 118
generador asincrénico, 114
generator, 118
expression, 69
function, 22, 69, 90
iterator, 22,90
objeto, 24,69, 70
generator expression, 118
GeneratorExit
excepcidn, 71,73
generic
special attribute, 18
GIL, 118
global
name binding, 95
namespace, 21
sentencia, 90, 95
grammar, 4
grouping, 7

H

handle an exception, 49
handler

exception, 25
hash

funcidén incorporada, 29
hash character,6
hash-based pyc, 118
hashable, 68, 118
hexadecimal literal, 14
hierarchy

type, 18
hooks

import, 54

meta, 54

156

indice

The Python Language Reference, Version 3.7.17

path, 54 representation, 19
integer literal, 14
| interactive mode, 107

id interactivo, 119
funcién incorporada, 17 internal type, 24
identifier, 8, 66 interpolated string literal, 12
identity interpretado, 119
test, 82 interpreter, 107
identity of an object, 17 inversion, 77
IDLE, 119 invocation, 20
if io
conditional expression, 83 médulo, 24
in comprehensions, 67 is
sentencia, 98 operador, 82
imaginary literal, 14 is not
immutable operador, 82
data type, 66 item
object, 66, 68 sequence, 74
objeto, 19 string, 74
immutable object, 17 item selection, 19
immutable sequence iterable, 119
objeto, 19 unpacking, 83
immutable types iterable asincrénico, 114
subclassing, 26 iterador, 119
import iterador asincrénico, 114
hooks, 54 iterador generador, 118
sentencia, 23, 93 iterador generador asincrénico, 114
import hooks, 54
import machinery, 51 J
importador, 119 j
importar, 119 in numeric literal, 15
ImportError Java
excepcidn, 93 language, 19
in
operador, 82 K
palabra clave, 98 key, 68
inclusive key/datum pair, 68
or, 79 keyword, 9
INDENT token,7
indentation, 7 L
index operation, 19 lambda, 120
indicador de tipo, 125 expression, 83, 103
indices () (método de slice), 25 form, 83
inheritance, 104 language
inmutable, 119 c, 18,19,22,79
input, 108 Java, 19
instance last_traceback (in module sys), 25
call, 37,76 LBYL, 120
class, 23 leading whitespace,7
objeto, 23,76 len
int funcién incorporada, 19, 20, 38
funcidén incorporada, 4l lexical analysis,5
integer, 19 lexical definitions,4
objeto, I8 line continuation,6

indice 157

The Python Language Reference, Version 3.7.17

line joining, 5,6

line structure,5

list
assignment, target, 86
comprehensions, 68
deletion target, 90
display, 68
empty, 68
expression, 83, 85
objeto, 20, 68, 73, 74, 87
target, 86, 98

lista, 120

literal, 10, 66

loader, 54

logical 1line,5

loop
over mutable sequence, 99
statement, 92, 93, 98

loop control
target, 92

M

magic

method, 120
makefile () (socket method), 24
mangling

name, 66
mapeado, 120
mapping

objeto, 20, 23, 74, 87
madquina virtual, 126
matrix multiplication, 78
membership

test, 82
meta

hooks, 54
meta buscadores de ruta, 120
meta hooks, 54
metaclase, 120
metaclass, 34
metaclass hint, 35
method

built-in, 22

call, 76

magic, 120

objeto, 21,22,76

special, 124

user—-defined, 21
método, 121
método especial, 124
método magico, 120
minus, 77
module

extension, 18

importing, 93

namespace, 23

objeto, 23,73
module spec, 54

modulo, 78
médulo, 121
__main__ ,48,107
array, 20
builtins, 107
dbm. gnu, 20
dbm.ndbm, 20
io, 24
sys, 100, 107

médulo de extensidn, 117
MRO, 121
multiplication, 77
mutable, 121

objeto, 19, 86, 87
mutable object, 17
mutable sequence

loop over, 99

objeto, 19

N

name, 8, 47, 66
binding, 47, 86, 93, 102, 104
binding, global, 95
class, 104
function, 102
mangling, 66
rebinding, 86
unbinding, 90

NameError
excepcidn, 66

NameError (built-in exception), 48

names
private, 66

namespace, 47
global, 21
module, 23
package, 53

negation, 77

NEWLINE token,5, 98

nombre calificado, 123

None
objeto, 18, 86

nonlocal
sentencia, 96
not
operador, 82
not in

operador, 82
notation, 4
NotImplemented

158

The Python Language Reference, Version 3.7.17

objeto, 18
null

operation, 89
number, 14

complex, 19

floating point, 19
numeric

objeto, 18,23
numeric literal, 14
numero complejo, 115

O

object, 17

code, 24

immutable, 66, 68
object.__slots__ (variable incorporada), 33
objeto, 122

asynchronous-generator, 72

Boolean, 19

built-in function, 22,76
built-in method, 22,76
callable, 20, 74

class, 23, 76, 104

class instance, 23,76
complex, 19

dictionary, 20, 23, 29, 68, 74, 87

Ellipsis, 18
floating point, 19
frame, 24

frozenset, 20
function, 20, 22, 76, 102
generator, 24, 69, 70
immutable, 19
immutable sequence, 19
instance, 23,76
integer, 18

list, 20, 68, 73,74, 87
mapping, 20, 23, 74, 87
method, 21, 22, 76
module, 23,73
mutable, 19, 86, 87
mutable sequence, 19
None, 18, 86
NotImplemented, 18
numeric, 18, 23
sequence, 19, 23,74, 82, 87, 98
set, 20, 68

set type, 20

slice, 38

string, 74

traceback, 25, 91, 100
tuple, 19, 74, 83

user—defined function, 20, 76, 102

user—-defined method, 21

objeto archivo, 117
objeto tipo ruta, 123
objetos tipo archivo, 117
objetos tipo binarios, 115
octal literal, 14
open

funcidén incorporada, 24
operador

% (percent), 78

& (ampersand), 79

* (asterisk), 77

*x 77

/ (slash), 78

//,78

< (less), 79

<<, 78

<=,79

1=,79

> (greater), 79
>=,79
>>, 78
@ (ar), 78
~ (caret), 79
| (vertical bar), 79
~ (tilde), 77
and, 82
in, 82
is, 82
is not, 82
not, 82
not 1in, 82
or, 82
operation
binary arithmetic, 77
binary bitwise, 79
Boolean, 82
null, 89
power, 77
shifting, 78
unary arithmetic, 77
unary bitwise, 77
operator
— (minus), 77,78
+ (plus), 77,78
overloading, 26
precedence, 84
ternary, 83
operators, 15
or
bitwise, 79
exclusive, 79
inclusive, 79
operador, 82

indice

159

The Python Language Reference, Version 3.7.17

ord
funcidén incorporada, 19
orden de resolucidén de métodos, 121
order
evaluation, 84
output, 86
standard, 86
overloading
operator, 26

P

package, 52
namespace, 53
portion, 53
regular, 52

palabra clave
as, 93,99, 101
async, 105
await, 76, 105
elif, 98
else, 92,98100
except, 99
finally, 90,92, 93,99, 100
from, 69, 93
in, 98
yield, 69

paquete, 122

paquete de espacios de nombres, 121

paquete provisorio, 123

paquete regular, 124

parameter
call semantics,75
function definition, 102
value, default, 103

parametro, 122

parenthesized form, 67

parser,5

pass
sentencia, 89

path
hooks, 54

path based finder, 60

path hooks, 54

PEP, 123

physical line,5,6,11

plus, 77

popen () (in module os), 24

porcidn, 123

portion
package, 53

pow
funcidén incorporada, 39, 40

power
operation, 77

precedence
operator, 84
primary, 73
print
funcidén incorporada, 28
print () (built-in function)
__str__ () (object method), 28
private
names, 66
procedure
call, 86
program, 107
Python 3000, 123
Python Enhancement Proposals
PEP 1,123
PEP 236,95
PEP 238,117
PEP 255,70
PEP 278,125
PEP 302,51,64, 117,120
PEP 308,83
PEP 318,105
PEP 328,64
PEP 338,64
PEP 342,70
PEP 343,41,102, 115
PEP 362,114,122
PEP 366,58, 64
PEP 380,70
PEP 395,63
PEP 414,10
PEP 420,51,53,59,64, 117,121, 123
PEP 443,118
PEP 448,68, 76, 83
PEP 451,64, 117
PEP 484,37,89,103,113,117, 125, 126
PEP 492,43,70, 106, 114116
PEP 498,13,117
PEP 519,123
PEP 525,70, 114
PEP 526, 88,103, 113, 126
PEP 530,67
PEP 560, 35, 37
PEP 562,31
PEP 563,103
PEP 3104, 96
PEP 3107, 103
PEP 3115, 35,104
PEP 3116,125
PEP 3119,37
PEP 3120,5
PEP 3129, 105
PEP 3131,8
PEP 3132,87

160

indice

The Python Language Reference, Version 3.7.17

PEP 3135, 36

PEP 3147,58

PEP 3155,123
PYTHONHASHSEED, 29
Pythdénico, 123
PYTHONPATH, 60

R

r
raw string literal, 10
r"
raw string literal, 10
raise

sentencia, 91
raise an exception,49
raising

exception, 91
range

funcidén incorporada, 99
raw string, 10
rebanada, 124
rebinding

name, 86
recoleccidén de basura, 118
reference

attribute, 73
reference counting, 17

regular
package, 52
relative
import, 94
repr

funcidén incorporada, 86
repr () (built-in function)

_ _repr__ () (object method), 27
representation

integer, 19
reserved word,9
restricted

execution, 49
return

sentencia, 90, 100
round

funcidén incorporada, 4l
ruta de importacién, 119

S

saltos de lineas universales, 125
scope, 47,48
secuencia, 124
send () (método de coroutine), 43
send () (método de generator), 71
sentencia, 124

assert, 89

async def, 105

async for, 105

async with, 106

break, 92, 98100

class, 104

continue, 93, 98100

def, 102

del, 27,90

for, 92,93, 98

global, 90, 95

if, 98

import, 23, 93

nonlocal, 96

pass, 89

raise, 91

return, 90, 100

try, 25,99

while, 92, 93, 98

with, 41,101

yield, 90
sequence

item, 74

objeto, 19, 23,74, 82, 87,98
set

display, 68

objeto, 20, 68
set type

objeto, 20
shifting

operation, 78
simple

statement, 85
singleton

tuple, 19
slice, 74

funcidén incorporada, 25

objeto, 38
slicing, 19,74

assignment, 87
source character set,6
space, 7
special

attribute, 18

attribute, generic, 18

method, 124
stack

execution, 25

trace, 25
standard

output, 86
Standard C, 11
standard input, 107
start (slice object attribute), 25, 74
statement

indice

161

The Python Language Reference, Version 3.7.17

assignment, 19, 86
assignment, annotated, 88
assignment, augmented, 88
compound, 97
expression, 85
future, 94
loop, 92, 93, 98
simple, 85
statement grouping,7
stderr (in module sys), 24
stdin (in module sys), 24
stdio, 24
stdout (in module sys), 24
step (slice object attribute), 25, 74
stop (slice object attribute), 25, 74
StopAsyncIteration
excepcidn, 72
StopIteration
excepciédn, 71,90
string
_ format__ () (object method), 28
__str__ () (object method), 28
conversion, 28, 86
formatted literal, 12
immutable sequences, 19
interpolated literal, 12
item, 74
objeto, 74
string literal, 10
subclassing
immutable types, 26
subscription, 19, 20, 74
assignment, 87
subtraction, 78

suite, 97
syntax, 4
sys

mdédulo, 100, 107
sys.exc_info, 25
sys.last_traceback, 25
sys.meta_path, 54
sys.modules, 53
sys.path, 60
sys.path_hooks, 60
sys.path_importer_cache, 60
sys.stderr, 24
sys.stdin, 24
sys.stdout, 24
SystemExit (built-in exception), 49

T

tab, 7
target, 86
deletion, 90

list, 86,98
list assignment, 86
list,deletion, 90
loop control, 92
tb_ frame (traceback attribute), 25
tb_lasti (traceback attribute), 25
tb_1lineno (traceback attribute), 25
tb_next (traceback attribute), 25
termination model, 49
ternary
operator, 83
test
identity, 82
membership, 82
throw () (método de coroutine), 43
throw () (método de generator), 71
tipado de pato, 116
tipo, 125
token, 5
trace
stack, 25
traceback
objeto, 25,91, 100
trailing
comma, 83
triple-quoted string, 10
True, 19
try
sentencia, 25,99
tupla nombrada, 121
tuple
empty, 19, 67
objeto, 19, 74, 83
singleton, 19
type, 18
data, 18
funcidén incorporada, 17, 34
hierarchy, 18
immutable data, 66
type of an object, 17
TypeError
excepcidn, 77
types, internal, 24

u

u'

string literal, 10

string literal, 10
unary

arithmetic operation, 77

bitwise operation, 77
unbinding

name, 90

162

The Python Language Reference, Version 3.7.17

UnboundLocalError, 48 Z
Unicode, 19 Zen de Python, 126
Unicode Consortium, 10

ZeroDivisionError

UNTX, 107 excepcioén, 78

unpacking
dictionary, 68
in function calls,75
iterable, 83
unreachable object, 17
unrecognized escape sequence, Il
user—-defined
function, 20
functioncall, 76
method, 21
user-defined function
objeto, 20, 76, 102
user—-defined method
objeto, 21

Vv

value
default parameter, 103
value of an object, 17
ValueError
excepcidn, 78
values
writing, 86
variable
free, 47
variable de clase, 115
variables de entorno
PYTHONHASHSEED, 29
vista de diccionario, 116

W

while
sentencia, 92, 93, 98
Windows, 107
with
sentencia, 41, 101
writing
values, 86

X

Xor
bitwise, 79

Y

yield
examples, 71
expression, 69
palabra clave, 69
sentencia, 90

indice 163

	Introduction
	Alternate Implementations
	Notation

	Lexical analysis
	Line structure
	Other tokens
	Identifiers and keywords
	Literals
	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	Special method names
	Coroutines

	Execution model
	Structure of a program
	Naming and binding
	Exceptions

	The import system
	importlib
	Packages
	Searching
	Loading
	The Path Based Finder
	Replacing the standard import system
	Package Relative Imports
	Special considerations for __main__
	Open issues
	References

	Expressions
	Arithmetic conversions
	Atoms
	Primaries
	Await expression
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Boolean operations
	Conditional expressions
	Lambdas
	Expression lists
	Evaluation order
	Operator precedence

	Simple statements
	Expression statements
	Assignment statements
	The assert statement
	The pass statement
	The del statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	The global statement
	The nonlocal statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	The with statement
	Function definitions
	Class definitions
	Coroutines

	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Full Grammar specification
	Glosario
	Acerca de estos documentos
	Contribuidores de la documentación de Python

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Índice

