4. Más herramientas para control de flujo¶
Además de la sentencia while
que acabamos de introducir, Python soporta las sentencias de control de flujo que podemos encontrar en otros lenguajes, con algunos cambios.
4.1. if
Statements¶
Tal vez el tipo más conocido de sentencia sea el if
. Por ejemplo:
>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... x = 0
... print('Negative changed to zero')
... elif x == 0:
... print('Zero')
... elif x == 1:
... print('Single')
... else:
... print('More')
...
More
There can be zero or more elif
parts, and the else
part is
optional. The keyword “elif
” is short for “else if”, and is useful
to avoid excessive indentation. An if
… elif
…
elif
… sequence is a substitute for the switch
or
case
statements found in other languages.
4.2. for
Statements¶
The for
statement in Python differs a bit from what you may be used
to in C or Pascal. Rather than always iterating over an arithmetic progression
of numbers (like in Pascal), or giving the user the ability to define both the
iteration step and halting condition (as C), Python’s for
statement
iterates over the items of any sequence (a list or a string), in the order that
they appear in the sequence. For example (no pun intended):
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
... print(w, len(w))
...
cat 3
window 6
defenestrate 12
Si necesitas modificar la secuencia sobre la que estás iterando mientras estás adentro del ciclo (por ejemplo para borrar algunos ítems), se recomienda que hagas primero una copia. Iterar sobre una secuencia no hace implícitamente una copia. La notación de rebanada es especialmente conveniente para esto:
>>> for w in words[:]: # Loop over a slice copy of the entire list.
... if len(w) > 6:
... words.insert(0, w)
...
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']
4.3. La función range()
¶
Si se necesita iterar sobre una secuencia de números, es apropiado utilizar la función integrada range()
, la cual genera progresiones aritméticas:
>>> for i in range(5):
... print(i)
...
0
1
2
3
4
El valor final dado nunca es parte de la secuencia; range(10)
genera 10 valores, los índices correspondientes para los ítems de una secuencia de longitud 10. Es posible hacer que el rango empiece con otro número, o especificar un incremento diferente (incluso negativo; algunas veces se lo llama “paso”):
range(5, 10)
5 through 9
range(0, 10, 3)
0, 3, 6, 9
range(-10, -100, -30)
-10, -40, -70
Para iterar sobre los índices de una secuencia, puedes combinar range()
y len()
así:
>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
... print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb
En la mayoría de los casos, sin embargo, conviene usar la función enumerate()
, mira Técnicas de iteración.
Algo extraño sucede si muestras un ` range`:
>>> print(range(10))
range(0, 10)
De muchas maneras el objeto devuelto por range()
se comporta como si fuera una lista, pero no lo es. Es un objeto que devuelve los ítems sucesivos de la secuencia deseada cuando iteras sobre él, pero realmente no construye la lista, ahorrando entonces espacio.
Decimos que tal objeto es iterable; esto es, que se lo puede usar en funciones y construcciones que esperan algo de lo cual obtener ítems sucesivos hasta que se termine. Hemos visto que la declaración for
es un iterador en ese sentido. La función list()
es otra; crea listas a partir de iterables:
>>> list(range(5))
[0, 1, 2, 3, 4]
Más tarde veremos más funciones que devuelven iterables y que toman iterables como entrada.
4.4. break
and continue
Statements, and else
Clauses on Loops¶
La sentencia break
, como en C, termina el bucle for
o while
más anidado.
Loop statements may have an else
clause; it is executed when the loop
terminates through exhaustion of the list (with for
) or when the
condition becomes false (with while
), but not when the loop is
terminated by a break
statement. This is exemplified by the
following loop, which searches for prime numbers:
>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print(n, 'equals', x, '*', n//x)
... break
... else:
... # loop fell through without finding a factor
... print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3
(Sí, este es el código correcto. Fíjate bien: el else
pertenece al ciclo for
, no al if
.)
When used with a loop, the else
clause has more in common with the
else
clause of a try
statement than it does that of
if
statements: a try
statement’s else
clause runs
when no exception occurs, and a loop’s else
clause runs when no break
occurs. For more on the try
statement and exceptions, see
Gestionando Excepciones.
La declaración continue
, también tomada de C, continua con la siguiente iteración del ciclo:
>>> for num in range(2, 10):
... if num % 2 == 0:
... print("Found an even number", num)
... continue
... print("Found a number", num)
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9
4.5. pass
Statements¶
La sentencia pass
no hace nada. Se puede usar cuando una sentencia es requerida por la sintaxis pero el programa no requiere ninguna acción. Por ejemplo:
>>> while True:
... pass # Busy-wait for keyboard interrupt (Ctrl+C)
...
Se usa normalmente para crear clases en su mínima expresión:
>>> class MyEmptyClass:
... pass
...
Another place pass
can be used is as a place-holder for a function or
conditional body when you are working on new code, allowing you to keep thinking
at a more abstract level. The pass
is silently ignored:
>>> def initlog(*args):
... pass # Remember to implement this!
...
4.6. Definiendo funciones¶
Podemos crear una función que escriba la serie de Fibonacci hasta un límite determinado:
>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while a < n:
... print(a, end=' ')
... a, b = b, a+b
... print()
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
La palabra reservada def
se usa para definir funciones. Debe seguirle el nombre de la función y la lista de parámetros formales entre paréntesis. Las sentencias que forman el cuerpo de la función empiezan en la línea siguiente, y deben estar con sangría.
La primera sentencia del cuerpo de la función puede ser opcionalmente una cadena de texto literal; esta es la cadena de texto de documentación de la función, o docstring. (Puedes encontrar más acerca de docstrings en la sección Cadenas de texto de documentación.). Existen herramientas que usan las docstrings
para producir documentación imprimible o disponible en línea, o para dejar que los usuarios busquen interactivamente a través del código; es una buena práctica incluir docstrings
en el código que escribes, y hacerlo un buen hábito.
La ejecución de una función introduce una nueva tabla de símbolos usada para las variables locales de la función. Más precisamente, todas las asignaciones de variables en la función almacenan el valor en la tabla de símbolos local; así mismo la referencia a variables primero mira la tabla de símbolos local, luego en la tabla de símbolos local de las funciones externas, luego la tabla de símbolos global, y finalmente la tabla de nombres predefinidos. Así, no se les puede asignar directamente un valor a las variables globales dentro de una función (a menos se las nombre en la sentencia global
), aunque si pueden ser referenciadas.
Los parámetros reales (argumentos) de una función se introducen en la tabla de símbolos local de la función llamada cuando esta es ejecutada; así, los argumentos son pasados por valor (dónde el valor es siempre una referencia a un objeto, no el valor del objeto). [1] Cuando una función llama a otra función, una nueva tabla de símbolos local es creada para esa llamada.
La definición de una función introduce el nombre de la función en la tabla de símbolos actual. El valor del nombre de la función tiene un tipo que es reconocido por el interprete como una función definida por el usuario. Este valor puede ser asignado a otro nombre que luego puede ser usado como una función. Esto sirve como un mecanismo general para renombrar:
>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89
Viniendo de otros lenguajes, puedes objetar que fib
no es una función, sino un procedimiento, porque no devuelve un valor. De hecho, técnicamente hablando, los procedimientos sin return
sí retornan un valor, aunque uno aburrido. Este valor se llama None
(es un nombre predefinido). El intérprete por lo general no escribe el valor None
si va a ser el único valor escrito. Si realmente se quiere, se puede verlo usando la función print()
>>> fib(0)
>>> print(fib(0))
None
Es simple escribir una función que retorne una lista con los números de la serie de Fibonacci en lugar de imprimirlos:
>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while a < n:
... result.append(a) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
Este ejemplo, como es usual, demuestra algunas características más de Python:
- The
return
statement returns with a value from a function.return
without an expression argument returnsNone
. Falling off the end of a function also returnsNone
. - La sentencia
result.append(a)
llama a un método del objeto listaresult
. Un método es una función que “pertenece” a un objeto y se nombraobj.methodname
, dóndeobj
es algún objeto (puede ser una expresión), ymethodname
es el nombre del método que está definido por el tipo del objeto. Distintos tipos definen distintos métodos. Métodos de diferentes tipos pueden tener el mismo nombre sin causar ambigüedad. (Es posible definir tipos de objetos propios, y métodos, usando clases, mira Clases). El métodoappend()
mostrado en el ejemplo está definido para objetos lista; añade un nuevo elemento al final de la lista. En este ejemplo es equivalente aresult = result + [a]
, pero más eficiente.
4.7. Más sobre definición de funciones¶
También es posible definir funciones con un número variable de argumentos. Hay tres formas que pueden ser combinadas.
4.7.1. Argumentos con valores por omisión¶
La forma más útil es especificar un valor por omisión para uno o más argumentos. Esto crea una función que puede ser llamada con menos argumentos que los que permite. Por ejemplo:
def ask_ok(prompt, retries=4, reminder='Please try again!'):
while True:
ok = input(prompt)
if ok in ('y', 'ye', 'yes'):
return True
if ok in ('n', 'no', 'nop', 'nope'):
return False
retries = retries - 1
if retries < 0:
raise ValueError('invalid user response')
print(reminder)
Esta función puede ser llamada de distintas maneras:
- pasando sólo el argumento obligatorio:
ask_ok('Do you really want to quit?')
- pasando uno de los argumentos opcionales:
ask_ok('OK to overwrite the file?', 2)
- o pasando todos los argumentos:
ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!')
Este ejemplo también introduce la palabra reservada in
, la cual prueba si una secuencia contiene o no un determinado valor.
Los valores por omisión son evaluados en el momento de la definición de la función, en el ámbito de la definición, entonces:
i = 5
def f(arg=i):
print(arg)
i = 6
f()
…imprimirá `5
.
Advertencia importante: El valor por omisión es evaluado solo una vez. Existe una diferencia cuando el valor por omisión es un objeto mutable como una lista, diccionario, o instancia de la mayoría de las clases. Por ejemplo, la siguiente función acumula los argumentos que se le pasan en subsiguientes llamadas:
def f(a, L=[]):
L.append(a)
return L
print(f(1))
print(f(2))
print(f(3))
Imprimirá
[1]
[1, 2]
[1, 2, 3]
Si no se quiere que el valor por omisión sea compartido entre subsiguientes llamadas, se pueden escribir la función así:
def f(a, L=None):
if L is None:
L = []
L.append(a)
return L
4.7.2. Palabras claves como argumentos¶
Las funciones también puede ser llamadas usando argumentos de palabras clave (o argumentos nombrados) de la forma kwarg=value
. Por ejemplo, la siguiente función:
def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
print("-- This parrot wouldn't", action, end=' ')
print("if you put", voltage, "volts through it.")
print("-- Lovely plumage, the", type)
print("-- It's", state, "!")
…acepta un argumento obligatorio (voltage
)) y tres argumentos opcionales (state
, action
, y type
). Esta función puede llamarse de cualquiera de las siguientes maneras:
parrot(1000) # 1 positional argument
parrot(voltage=1000) # 1 keyword argument
parrot(voltage=1000000, action='VOOOOOM') # 2 keyword arguments
parrot(action='VOOOOOM', voltage=1000000) # 2 keyword arguments
parrot('a million', 'bereft of life', 'jump') # 3 positional arguments
parrot('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword
…pero estas otras llamadas serían todas inválidas:
parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument after a keyword argument
parrot(110, voltage=220) # duplicate value for the same argument
parrot(actor='John Cleese') # unknown keyword argument
En una llamada a una función, los argumentos nombrados deben seguir a los argumentos posicionales. Cada uno de los argumentos nombrados pasados deben coincidir con un argumento aceptado por la función (por ejemplo, actor
no es un argumento válido para la función parrot
), y el orden de los mismos no es importante. Esto también se aplica a los argumentos obligatorios (por ejemplo, parrot(voltage=1000)
también es válido). Ningún argumento puede recibir más de un valor al mismo tiempo. Aquí hay un ejemplo que falla debido a esta restricción:
>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: function() got multiple values for keyword argument 'a'
Cuando un parámetro formal de la forma **nombre
está presente al final, recibe un diccionario (ver Mapping Types — dict) conteniendo todos los argumentos nombrados excepto aquellos correspondientes a un parámetro formal. Esto puede ser combinado con un parámetro formal de la forma *nombre
(descrito en la siguiente sección) que recibe una tupla conteniendo los argumentos posicionales además de la lista de parámetros formales. (*nombre
debe ocurrir antes de **nombre
). Por ejemplo, si definimos una función así:
def cheeseshop(kind, *arguments, **keywords):
print("-- Do you have any", kind, "?")
print("-- I'm sorry, we're all out of", kind)
for arg in arguments:
print(arg)
print("-" * 40)
keys = sorted(keywords.keys())
for kw in keys:
print(kw, ":", keywords[kw])
Puede ser llamada así:
cheeseshop("Limburger", "It's very runny, sir.",
"It's really very, VERY runny, sir.",
shopkeeper="Michael Palin",
client="John Cleese",
sketch="Cheese Shop Sketch")
…y por supuesto imprimirá:
-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
----------------------------------------
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch
Note that the list of keyword argument names is created by sorting the result
of the keywords dictionary’s keys()
method before printing its contents;
if this is not done, the order in which the arguments are printed is undefined.
4.7.3. Listas de argumentos arbitrarios¶
Finalmente, la opción menos frecuentemente usada es especificar que una función puede ser llamada con un número arbitrario de argumentos. Estos argumentos serán organizados en una tupla (mira Tuplas y secuencias). Antes del número variable de argumentos, cero o más argumentos normales pueden estar presentes.:
def write_multiple_items(file, separator, *args):
file.write(separator.join(args))
Normalmente estos argumentos de cantidad variables son los últimos en la lista de parámetros formales, porque toman todo el remanente de argumentos que se pasan a la función. Cualquier parámetro que suceda luego del *args
será “sólo nombrado”, o sea que sólo se pueden usar como argumentos nombrados y no como posicionales.:
>>> def concat(*args, sep="/"):
... return sep.join(args)
...
>>> concat("earth", "mars", "venus")
'earth/mars/venus'
>>> concat("earth", "mars", "venus", sep=".")
'earth.mars.venus'
4.7.4. Desempaquetando una lista de argumentos¶
The reverse situation occurs when the arguments are already in a list or tuple
but need to be unpacked for a function call requiring separate positional
arguments. For instance, the built-in range()
function expects separate
start and stop arguments. If they are not available separately, write the
function call with the *
-operator to unpack the arguments out of a list
or tuple:
>>> list(range(3, 6)) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> list(range(*args)) # call with arguments unpacked from a list
[3, 4, 5]
In the same fashion, dictionaries can deliver keyword arguments with the **
-operator:
>>> def parrot(voltage, state='a stiff', action='voom'):
... print("-- This parrot wouldn't", action, end=' ')
... print("if you put", voltage, "volts through it.", end=' ')
... print("E's", state, "!")
...
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !
4.7.5. Expresiones lambda¶
Pequeñas funciones anónimas pueden ser creadas con la palabra reservada lambda
. Esta función retorna la suma de sus dos argumentos: lambda a, b: a+b
Las funciones Lambda pueden ser usadas en cualquier lugar donde sea requerido un objeto de tipo función. Están sintácticamente restringidas a una sola expresión. Semánticamente, son solo azúcar sintáctica para definiciones normales de funciones. Al igual que las funciones anidadas, las funciones lambda pueden hacer referencia a variables desde el ámbito que la contiene:
>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43
El ejemplo anterior muestra el uso de una expresión lambda para retornar una función. Otro uso es para pasar pequeñas funciones como argumentos
>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort(key=lambda pair: pair[1])
>>> pairs
[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]
4.7.6. Cadenas de texto de documentación¶
Acá hay algunas convenciones sobre el contenido y formato de las cadenas de texto de documentación.
La primera línea debe ser siempre un resumen corto y conciso del propósito del objeto. Para ser breve, no se debe mencionar explícitamente el nombre o tipo del objeto, ya que estos están disponibles de otros modos (excepto si el nombre es un verbo que describe el funcionamiento de la función). Esta línea debe empezar con una letra mayúscula y terminar con un punto.
Si hay más líneas en la cadena de texto de documentación, la segunda línea debe estar en blanco, separando visualmente el resumen del resto de la descripción. Las líneas siguientes deben ser uno o más párrafos describiendo las convenciones para llamar al objeto, efectos secundarios, etc.
El analizador de Python no quita el sangrado de las cadenas de texto literales multi-líneas, entonces las herramientas que procesan documentación tienen que quitarlo si así lo desean. Esto se hace mediante la siguiente convención. La primera línea que no está en blanco siguiente a la primer línea de la cadena determina la cantidad de sangría para toda la cadena de documentación. (No podemos usar la primer línea ya que generalmente es adyacente a las comillas de apertura de la cadena y el sangrado no se nota en la cadena de texto). Los espacios en blanco «equivalentes» a este sangrado son luego quitados del comienzo de cada línea en la cadena. No deberían haber líneas con una sangría menor, pero si las hay todos los espacios en blanco del comienzo deben ser quitados. La equivalencia de espacios en blanco debe ser verificada luego de la expansión de tabuladores (a 8 espacios, normalmente).
Este es un ejemplo de un docstring
multi-línea:
>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn't do anything.
... """
... pass
...
>>> print(my_function.__doc__)
Do nothing, but document it.
No, really, it doesn't do anything.
4.7.7. Anotación de funciones¶
Function annotations are completely optional metadata information about the types used by user-defined functions (see PEP 484 for more information).
Annotations are stored in the __annotations__
attribute of the function
as a dictionary and have no effect on any other part of the function. Parameter
annotations are defined by a colon after the parameter name, followed by an
expression evaluating to the value of the annotation. Return annotations are
defined by a literal ->
, followed by an expression, between the parameter
list and the colon denoting the end of the def
statement. The
following example has a positional argument, a keyword argument, and the return
value annotated:
>>> def f(ham: str, eggs: str = 'eggs') -> str:
... print("Annotations:", f.__annotations__)
... print("Arguments:", ham, eggs)
... return ham + ' and ' + eggs
...
>>> f('spam')
Annotations: {'ham': <class 'str'>, 'return': <class 'str'>, 'eggs': <class 'str'>}
Arguments: spam eggs
'spam and eggs'
4.8. Intermezzo: Estilo de codificación¶
Ahora que estás a punto de escribir piezas de Python más largas y complejas, es un buen momento para hablar sobre estilo de codificación. La mayoría de los lenguajes pueden ser escritos (o mejor dicho, formateados) con diferentes estilos; algunos son mas fáciles de leer que otros. Hacer que tu código sea más fácil de leer por otros es siempre una buena idea, y adoptar un buen estilo de codificación ayuda tremendamente a lograrlo.
Para Python, PEP 8 se erigió como la guía de estilo a la que más proyectos adhirieron; promueve un estilo de codificación fácil de leer y visualmente agradable. Todos los desarrolladores Python deben leerlo en algún momento; aquí están extraídos los puntos más importantes:
Usar sangrías de 4 espacios, no tabuladores.
4 espacios son un buen compromiso entre una sangría pequeña (permite mayor nivel de sangrado)y una sangría grande (más fácil de leer). Los tabuladores introducen confusión y es mejor dejarlos de lado.
Recortar las líneas para que no superen los 79 caracteres.
Esto ayuda a los usuarios con pantallas pequeñas y hace posible tener varios archivos de código abiertos, uno al lado del otro, en pantallas grandes.
Usar líneas en blanco para separar funciones y clases, y bloques grandes de código dentro de funciones.
Cuando sea posible, poner comentarios en una sola línea.
Usar
docstrings
.Usar espacios alrededor de operadores y luego de las comas, pero no directamente dentro de paréntesis:
a = f(1, 2) + g(3, 4)
.Nombrar las clases y funciones consistentemente; la convención es usar
NotacionCamello
para clases yminusculas_con_guiones_bajos
para funciones y métodos. Siempre usa self como el nombre para el primer argumento en los métodos (mira Un primer vistazo a las clases para más información sobre clases y métodos).No uses codificaciones estrafalarias si esperas usar el código en entornos internacionales. El default de Python, UTF-8, o incluso ASCII plano funcionan bien en la mayoría de los casos.
De la misma manera, no uses caracteres no-ASCII en los identificadores si hay incluso una pequeñísima chance de que gente que hable otro idioma tenga que leer o mantener el código.
Notas al pie
[1] | En realidad, llamadas por referencia de objeto sería una mejor descripción, ya que si se pasa un objeto mutable, quien realiza la llamada verá cualquier cambio que se realice sobre el mismo (por ejemplo ítems insertados en una lista). |