15. Floating-Point Arithmetic: Issues and Limitations

Los números de punto flotante se representan en el hardware de computadoras como fracciones en base 2 (binarias). Por ejemplo, la fracción decimal 0.625 tiene un valor de 6/10 + 2/100 + 5/1000, y de la misma manera, la fracción binaria 0.101 tiene un valor de 1/2 + 0/4 + 1/8. Estas dos fracciones tienen valores idénticos; la única diferencia real radica en que la primera se escribe en notación fraccional en base 10, y la segunda en base 2.

Desafortunadamente, la mayoría de las fracciones decimales no pueden representarse exactamente como fracciones binarias. Como consecuencia, en general los números de punto flotante decimal que ingresás en la computadora son sólo aproximados por los números de punto flotante binario que realmente se guardan en la máquina.

El problema es más fácil de entender primero en base 10. Considerá la fracción 1/3. Podés aproximarla como una fracción de base 10

0.3

…o, mejor,

0.33

…o, mejor,

0.333

…y así. No importa cuantos dígitos desees escribir, el resultado nunca será exactamente 1/3, pero será una aproximación cada vez mejor de 1/3.

De la misma manera, no importa cuantos dígitos en base 2 quieras usar, el valor decimal 0.1 no puede representarse exactamente como una fracción en base 2. En base 2, 1/10 es la siguiente fracción que se repite infinitamente:

0.0001100110011001100110011001100110011001100110011...

Frená en cualquier número finito de bits, y tendrás una aproximación. En la mayoría de las máquinas hoy en día, los float se aproximan usando una fracción binaria con el numerador usando los primeros 53 bits con el bit más significativos y el denominador como una potencia de dos. En el caso de 1/10, la fracción binaria es 3602879701896397 / 2 ** 55 que está cerca pero no es exactamente el valor verdadero de 1/10.

La mayoría de los usuarios no son conscientes de esta aproximación por la forma en que se muestran los valores. Python solamente muestra una aproximación decimal al valor verdadero decimal de la aproximación binaria almacenada por la máquina. En la mayoría de las máquinas, si Python fuera a imprimir el verdadero valor decimal de la aproximación binaria almacenada para 0.1, debería mostrar:

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

Esos son más dígitos que lo que la mayoría de la gente encuentra útil, por lo que Python mantiene manejable la cantidad de dígitos al mostrar un valor redondeado en su lugar:

>>> 1 / 10
0.1

Sólo recordá que, a pesar de que el valor mostrado resulta ser exactamente 1/10, el valor almacenado realmente es la fracción binaria más cercana posible.

Interesantemente, hay varios números decimales que comparten la misma fracción binaria más aproximada. Por ejemplo, los números 0.1, 0.10000000000000001 y 0.1000000000000000055511151231257827021181583404541015625 son todos aproximados por 3602879701896397 / 2 ** 55. Ya que todos estos valores decimales comparten la misma aproximación, se podría mostrar cualquiera de ellos para preservar el invariante eval(repr(x)) == x.

Históricamente, el prompt de Python y la función integrada repr() eligieron el valor con los 17 dígitos, 0.10000000000000001. Desde Python 3.1, en la mayoría de los sistemas Python ahora es capaz de elegir la forma más corta de ellos y mostrar 0.1.

Note that this is in the very nature of binary floating point: this is not a bug in Python, and it is not a bug in your code either. You’ll see the same kind of thing in all languages that support your hardware’s floating-point arithmetic (although some languages may not display the difference by default, or in all output modes).

Para una salida más elegante, quizás quieras usar el formateo de cadenas de texto para generar un número limitado de dígitos significativos:

>>> format(math.pi, '.12g')  # give 12 significant digits
'3.14159265359'

>>> format(math.pi, '.2f')   # give 2 digits after the point
'3.14'

>>> repr(math.pi)
'3.141592653589793'

Es importante darse cuenta que esto es, realmente, una ilusión: estás simplemente redondeando al mostrar el valor verdadero de la máquina.

Una ilusión puede generar otra. Por ejemplo, ya que 0.1 no es exactamente 1/10, sumar tres veces 0.1 podría también no generar exactamente 0.3:

>>> 0.1 + 0.1 + 0.1 == 0.3
False

También, ya que 0.1 no puede acercarse más al valor exacto de 1/10 y 0.3 no puede acercarse más al valor exacto de 3/10, redondear primero con la función round() no puede ayudar:

>>> round(0.1, 1) + round(0.1, 1) + round(0.1, 1) == round(0.3, 1)
False

Aunque los números no pueden acercarse más a sus valores exactos previstos, la función math.isclose() puede ser útil para comparar valores inexactos:

>>> math.isclose(0.1 + 0.1 + 0.1, 0.3)
True

Alternatively, the round() function can be used to compare rough approximations:

>>> round(math.pi, ndigits=2) == round(22 / 7, ndigits=2)
True

Binary floating-point arithmetic holds many surprises like this. The problem with «0.1» is explained in precise detail below, in the «Representation Error» section. See Examples of Floating Point Problems for a pleasant summary of how binary floating point works and the kinds of problems commonly encountered in practice. Also see The Perils of Floating Point for a more complete account of other common surprises.

As that says near the end, «there are no easy answers.» Still, don’t be unduly wary of floating point! The errors in Python float operations are inherited from the floating-point hardware, and on most machines are on the order of no more than 1 part in 2**53 per operation. That’s more than adequate for most tasks, but you do need to keep in mind that it’s not decimal arithmetic and that every float operation can suffer a new rounding error.

A pesar de que existen casos patológicos, para la mayoría de usos casuales de la aritmética de punto flotante al final verás el resultado que esperás si simplemente redondeás lo que mostrás de tus resultados finales al número de dígitos decimales que esperás. str() es normalmente suficiente, y para un control más fino mirá los parámetros del método de formateo str.format() en Formato de cadena de caracteres personalizado.

Para los casos de uso que necesitan una representación decimal exacta, probá el módulo decimal, que implementa aritmética decimal útil para aplicaciones de contabilidad y de alta precisión.

El módulo fractions soporta otra forma de aritmética exacta, ya que implementa aritmética basada en números racionales (por lo que números como 1/3 pueden ser representados exactamente).

Si eres un usuario intensivo de operaciones de punto flotante, deberías echar un vistazo al paquete NumPy y a muchos otros paquetes para operaciones matemáticas y estadísticas proporcionados por el proyecto SciPy. Ver <https://scipy.org>.

Python provee herramientas que pueden ayudar en esas raras ocasiones cuando realmente querés saber el valor exacto de un punto flotante. El método float.as_integer_ratio() expresa el valor del punto flotante como una fracción:

>>> x = 3.14159
>>> x.as_integer_ratio()
(3537115888337719, 1125899906842624)

Ya que la fracción es exacta, se puede usar para recrear sin pérdidas el valor original:

>>> x == 3537115888337719 / 1125899906842624
True

El método float.hex() expresa un punto flotante en hexadecimal (base 16), nuevamente retornando el valor exacto almacenado por tu computadora:

>>> x.hex()
'0x1.921f9f01b866ep+1'

Esta representación hexadecimal precisa se puede usar para reconstruir el valor exacto del punto flotante:

>>> x == float.fromhex('0x1.921f9f01b866ep+1')
True

Ya que la representación es exacta, es útil para portar valores a través de diferentes versiones de Python de manera confiable (independencia de plataformas) e intercambiar datos con otros lenguajes que soportan el mismo formato (como Java y C99).

Otra herramienta útil es la función sum() que ayuda a mitigar la pérdida de precisión durante la suma. Utiliza precisión extendida para pasos de redondeo intermedios a medida que se agregan valores a un total en ejecución. Esto puede marcar la diferencia en la precisión general para que los errores no se acumulen hasta el punto en que afecten el total final:

>>> 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 == 1.0
False
>>> sum([0.1] * 10) == 1.0
True

The math.fsum() goes further and tracks all of the «lost digits» as values are added onto a running total so that the result has only a single rounding. This is slower than sum() but will be more accurate in uncommon cases where large magnitude inputs mostly cancel each other out leaving a final sum near zero:

>>> arr = [-0.10430216751806065, -266310978.67179024, 143401161448607.16,
...        -143401161400469.7, 266262841.31058735, -0.003244936839808227]
>>> float(sum(map(Fraction, arr)))   # Exact summation with single rounding
8.042173697819788e-13
>>> math.fsum(arr)                   # Single rounding
8.042173697819788e-13
>>> sum(arr)                         # Multiple roundings in extended precision
8.042178034628478e-13
>>> total = 0.0
>>> for x in arr:
...     total += x                   # Multiple roundings in standard precision
...
>>> total                            # Straight addition has no correct digits!
-0.0051575902860057365

15.1. Error de Representación

Esta sección explica el ejemplo «0.1» en detalle, y muestra como en la mayoría de los casos vos mismo podés realizar un análisis exacto como este. Se asume un conocimiento básico de la representación de punto flotante binario.

Error de representación se refiere al hecho de que algunas (la mayoría) de las fracciones decimales no pueden representarse exactamente como fracciones binarias (en base 2). Esta es la razón principal de por qué Python (o Perl, C, C++, Java, Fortran, y tantos otros) frecuentemente no mostrarán el número decimal exacto que esperás.

¿Por qué sucede esto? 1/10 no es exactamente representable como una fracción binaria. Desde al menos el año 2000, casi todas las máquinas utilizan la aritmética de punto flotante binaria IEEE 754, y casi todas las plataformas asignan los números de punto flotante de Python a valores binarios de 64 bits de precisión «doble» de IEEE 754. Los valores binarios de IEEE 754 de 64 bits contienen 53 bits de precisión, por lo que en la entrada, la computadora se esfuerza por convertir 0.1 en la fracción más cercana de la forma J/2**N donde J es un número entero que contiene exactamente 53 bits. Reescribiendo

1 / 10 ~= J / (2**N)

…como

J ~= 2**N / 10

…y recordando que J tiene exactamente 53 bits (es >= 2**52 pero < 2**53), el mejor valor para N es 56:

>>> 2**52 <=  2**56 // 10  < 2**53
True

O sea, 56 es el único valor para N que deja J con exactamente 53 bits. El mejor valor posible para J es entonces el cociente redondeado:

>>> q, r = divmod(2**56, 10)
>>> r
6

Ya que el resto es más que la mitad de 10, la mejor aproximación se obtiene redondeándolo:

>>> q+1
7205759403792794

Por lo tanto la mejor aproximación a 1/10 en doble precisión IEEE 754 es:

7205759403792794 / 2 ** 56

El dividir tanto el numerador como el denominador reduce la fracción a:

3602879701896397 / 2 ** 55

Notá que como lo redondeamos, esto es un poquito más grande que 1/10; si no lo hubiéramos redondeado, el cociente hubiese sido un poquito menor que 1/10. ¡Pero no hay caso en que sea exactamente 1/10!

Entonces la computadora nunca «ve» 1/10: lo que ve es la fracción exacta de arriba, la mejor aproximación al flotante doble IEEE 754 que puede obtener:

>>> 0.1 * 2 ** 55
3602879701896397.0

Si multiplicamos esa fracción por 10**55, podemos ver el valor hasta los 55 dígitos decimales:

>>> 3602879701896397 * 10 ** 55 // 2 ** 55
1000000000000000055511151231257827021181583404541015625

lo que significa que el valor exacto almacenado en la computadora es igual al valor decimal 0.1000000000000000055511151231257827021181583404541015625. En lugar de mostrar el valor decimal completo, muchos lenguajes (incluyendo versiones anteriores de Python), redondean el resultado a 17 dígitos significativos:

>>> format(0.1, '.17f')
'0.10000000000000001'

Los módulos fractions y decimal hacen fácil estos cálculos:

>>> from decimal import Decimal
>>> from fractions import Fraction

>>> Fraction.from_float(0.1)
Fraction(3602879701896397, 36028797018963968)

>>> (0.1).as_integer_ratio()
(3602879701896397, 36028797018963968)

>>> Decimal.from_float(0.1)
Decimal('0.1000000000000000055511151231257827021181583404541015625')

>>> format(Decimal.from_float(0.1), '.17')
'0.10000000000000001'