typing
— Soporte para type hints¶
Added in version 3.5.
Source code: Lib/typing.py
Nota
The Python runtime does not enforce function and variable type annotations. They can be used by third party tools such as type checkers, IDEs, linters, etc.
This module provides runtime support for type hints.
Consider the function below:
def surface_area_of_cube(edge_length: float) -> str:
return f"The surface area of the cube is {6 * edge_length ** 2}."
The function surface_area_of_cube
takes an argument expected to
be an instance of float
, as indicated by the type hint
edge_length: float
. The function is expected to return an instance
of str
, as indicated by the -> str
hint.
While type hints can be simple classes like float
or str
,
they can also be more complex. The typing
module provides a vocabulary of
more advanced type hints.
New features are frequently added to the typing
module.
The typing_extensions package
provides backports of these new features to older versions of Python.
Ver también
- «Typing cheat sheet»
A quick overview of type hints (hosted at the mypy docs)
- «Type System Reference» section of the mypy docs
The Python typing system is standardised via PEPs, so this reference should broadly apply to most Python type checkers. (Some parts may still be specific to mypy.)
- «Static Typing with Python»
Type-checker-agnostic documentation written by the community detailing type system features, useful typing related tools and typing best practices.
Specification for the Python Type System¶
The canonical, up-to-date specification of the Python type system can be found at «Specification for the Python type system».
Alias de tipo¶
A type alias is defined using the type
statement, which creates
an instance of TypeAliasType
. In this example,
Vector
and list[float]
will be treated equivalently by static type
checkers:
type Vector = list[float]
def scale(scalar: float, vector: Vector) -> Vector:
return [scalar * num for num in vector]
# passes type checking; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])
Los alias de tipo son útiles para simplificar firmas de tipo complejas. Por ejemplo:
from collections.abc import Sequence
type ConnectionOptions = dict[str, str]
type Address = tuple[str, int]
type Server = tuple[Address, ConnectionOptions]
def broadcast_message(message: str, servers: Sequence[Server]) -> None:
...
# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
message: str,
servers: Sequence[tuple[tuple[str, int], dict[str, str]]]
) -> None:
...
The type
statement is new in Python 3.12. For backwards
compatibility, type aliases can also be created through simple assignment:
Vector = list[float]
Or marked with TypeAlias
to make it explicit that this is a type alias,
not a normal variable assignment:
from typing import TypeAlias
Vector: TypeAlias = list[float]
NewType¶
Utilícese la clase auxiliar NewType
para crear tipos distintos:
from typing import NewType
UserId = NewType('UserId', int)
some_id = UserId(524313)
El validador estático de tipos tratará el nuevo tipo como si fuera una subclase del tipo original. Esto es útil para capturar errores lógicos:
def get_user_name(user_id: UserId) -> str:
...
# passes type checking
user_a = get_user_name(UserId(42351))
# fails type checking; an int is not a UserId
user_b = get_user_name(-1)
Se pueden realizar todas las operaciones de int
en una variable de tipo UserId
, pero el resultado siempre será de tipo int
. Esto permite pasar un UserId
allí donde se espere un int
, pero evitará la creación accidental de un UserId
de manera incorrecta:
# 'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)
Tenga en cuenta que estas validaciones solo las aplica el verificador de tipo estático. En tiempo de ejecución, la declaración Derived = NewType('Derived', Base)
hará que Derived
sea una clase que retorna inmediatamente cualquier parámetro que le pase. Eso significa que la expresión Derived(some_value)
no crea una nueva clase ni introduce mucha sobrecarga más allá de la de una llamada de función regular.
Más concretamente, la expresión some_value is Derived(some_value)
será siempre verdadera en tiempo de ejecución.
No es válido crear un subtipo de Derived
:
from typing import NewType
UserId = NewType('UserId', int)
# Fails at runtime and does not pass type checking
class AdminUserId(UserId): pass
Sin embargo, es posible crear un NewType
basado en un NewType
“derivado”:
from typing import NewType
UserId = NewType('UserId', int)
ProUserId = NewType('ProUserId', UserId)
y la comprobación de tipo para ProUserId
funcionará como se espera.
Véase PEP 484 para más detalle.
Nota
Recall that the use of a type alias declares two types to be equivalent to
one another. Doing type Alias = Original
will make the static type checker
treat Alias
as being exactly equivalent to Original
in all cases.
This is useful when you want to simplify complex type signatures.
En cambio, NewType
declara un tipo que es subtipo de otro. Haciendo Derived = NewType('Derived', Original)
hará que el Validador estático de tipos trate Derived
como una subclase de Original
, lo que implica que un valor de tipo Original
no puede ser usado allí donde se espere un valor de tipo Derived
. Esto es útil para prevenir errores lógicos con un coste de ejecución mínimo.
Added in version 3.5.2.
Distinto en la versión 3.10: NewType
is now a class rather than a function. As a result, there is
some additional runtime cost when calling NewType
over a regular
function.
Distinto en la versión 3.11: The performance of calling NewType
has been restored to its level in
Python 3.9.
Annotating callable objects¶
Functions – or other callable objects – can be annotated using
collections.abc.Callable
or deprecated typing.Callable
.
Callable[[int], str]
signifies a function that takes a single parameter
of type int
and returns a str
.
For example:
from collections.abc import Callable, Awaitable
def feeder(get_next_item: Callable[[], str]) -> None:
... # Body
def async_query(on_success: Callable[[int], None],
on_error: Callable[[int, Exception], None]) -> None:
... # Body
async def on_update(value: str) -> None:
... # Body
callback: Callable[[str], Awaitable[None]] = on_update
The subscription syntax must always be used with exactly two values: the
argument list and the return type. The argument list must be a list of types,
a ParamSpec
, Concatenate
, or an ellipsis. The return type must
be a single type.
If a literal ellipsis ...
is given as the argument list, it indicates that
a callable with any arbitrary parameter list would be acceptable:
def concat(x: str, y: str) -> str:
return x + y
x: Callable[..., str]
x = str # OK
x = concat # Also OK
Callable
cannot express complex signatures such as functions that take a
variadic number of arguments, overloaded functions, or
functions that have keyword-only parameters. However, these signatures can be
expressed by defining a Protocol
class with a
__call__()
method:
from collections.abc import Iterable
from typing import Protocol
class Combiner(Protocol):
def __call__(self, *vals: bytes, maxlen: int | None = None) -> list[bytes]: ...
def batch_proc(data: Iterable[bytes], cb_results: Combiner) -> bytes:
for item in data:
...
def good_cb(*vals: bytes, maxlen: int | None = None) -> list[bytes]:
...
def bad_cb(*vals: bytes, maxitems: int | None) -> list[bytes]:
...
batch_proc([], good_cb) # OK
batch_proc([], bad_cb) # Error! Argument 2 has incompatible type because of
# different name and kind in the callback
Los invocables que toman otros invocables como argumentos pueden indicar que sus tipos de parámetros dependen unos de otros utilizando ParamSpec
. Además, si ese invocable agrega o elimina argumentos de otros invocables, se puede utilizar el operador Concatenate
. Toman la forma Callable[ParamSpecVariable, ReturnType]
y Callable[Concatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable], ReturnType]
respectivamente.
Distinto en la versión 3.10: Callable
ahora es compatible con ParamSpec
y Concatenate
. Consulte PEP 612 para obtener más información.
Ver también
La documentación de ParamSpec
y Concatenate
proporciona ejemplos de uso en Callable
.
Genéricos¶
Since type information about objects kept in containers cannot be statically inferred in a generic way, many container classes in the standard library support subscription to denote the expected types of container elements.
from collections.abc import Mapping, Sequence
class Employee: ...
# Sequence[Employee] indicates that all elements in the sequence
# must be instances of "Employee".
# Mapping[str, str] indicates that all keys and all values in the mapping
# must be strings.
def notify_by_email(employees: Sequence[Employee],
overrides: Mapping[str, str]) -> None: ...
Generic functions and classes can be parameterized by using type parameter syntax:
from collections.abc import Sequence
def first[T](l: Sequence[T]) -> T: # Function is generic over the TypeVar "T"
return l[0]
Or by using the TypeVar
factory directly:
from collections.abc import Sequence
from typing import TypeVar
U = TypeVar('U') # Declare type variable "U"
def second(l: Sequence[U]) -> U: # Function is generic over the TypeVar "U"
return l[1]
Distinto en la versión 3.12: Syntactic support for generics is new in Python 3.12.
Annotating tuples¶
For most containers in Python, the typing system assumes that all elements in the container will be of the same type. For example:
from collections.abc import Mapping
# Type checker will infer that all elements in ``x`` are meant to be ints
x: list[int] = []
# Type checker error: ``list`` only accepts a single type argument:
y: list[int, str] = [1, 'foo']
# Type checker will infer that all keys in ``z`` are meant to be strings,
# and that all values in ``z`` are meant to be either strings or ints
z: Mapping[str, str | int] = {}
list
only accepts one type argument, so a type checker would emit an
error on the y
assignment above. Similarly,
Mapping
only accepts two type arguments: the first
indicates the type of the keys, and the second indicates the type of the
values.
Unlike most other Python containers, however, it is common in idiomatic Python
code for tuples to have elements which are not all of the same type. For this
reason, tuples are special-cased in Python’s typing system. tuple
accepts any number of type arguments:
# OK: ``x`` is assigned to a tuple of length 1 where the sole element is an int
x: tuple[int] = (5,)
# OK: ``y`` is assigned to a tuple of length 2;
# element 1 is an int, element 2 is a str
y: tuple[int, str] = (5, "foo")
# Error: the type annotation indicates a tuple of length 1,
# but ``z`` has been assigned to a tuple of length 3
z: tuple[int] = (1, 2, 3)
To denote a tuple which could be of any length, and in which all elements are
of the same type T
, use tuple[T, ...]
. To denote an empty tuple, use
tuple[()]
. Using plain tuple
as an annotation is equivalent to using
tuple[Any, ...]
:
x: tuple[int, ...] = (1, 2)
# These reassignments are OK: ``tuple[int, ...]`` indicates x can be of any length
x = (1, 2, 3)
x = ()
# This reassignment is an error: all elements in ``x`` must be ints
x = ("foo", "bar")
# ``y`` can only ever be assigned to an empty tuple
y: tuple[()] = ()
z: tuple = ("foo", "bar")
# These reassignments are OK: plain ``tuple`` is equivalent to ``tuple[Any, ...]``
z = (1, 2, 3)
z = ()
The type of class objects¶
A variable annotated with C
may accept a value of type C
. In
contrast, a variable annotated with type[C]
(or deprecated
typing.Type[C]
) may accept values that are classes
themselves – specifically, it will accept the class object of C
. For
example:
a = 3 # Has type ``int``
b = int # Has type ``type[int]``
c = type(a) # Also has type ``type[int]``
Note that type[C]
is covariant:
class User: ...
class ProUser(User): ...
class TeamUser(User): ...
def make_new_user(user_class: type[User]) -> User:
# ...
return user_class()
make_new_user(User) # OK
make_new_user(ProUser) # Also OK: ``type[ProUser]`` is a subtype of ``type[User]``
make_new_user(TeamUser) # Still fine
make_new_user(User()) # Error: expected ``type[User]`` but got ``User``
make_new_user(int) # Error: ``type[int]`` is not a subtype of ``type[User]``
The only legal parameters for type
are classes, Any
,
type variables, and unions of any of these types.
For example:
def new_non_team_user(user_class: type[BasicUser | ProUser]): ...
new_non_team_user(BasicUser) # OK
new_non_team_user(ProUser) # OK
new_non_team_user(TeamUser) # Error: ``type[TeamUser]`` is not a subtype
# of ``type[BasicUser | ProUser]``
new_non_team_user(User) # Also an error
type[Any]
is equivalent to type
, which is the root of Python’s
metaclass hierarchy.
Annotating generators and coroutines¶
A generator can be annotated using the generic type
Generator[YieldType, SendType, ReturnType]
.
For example:
def echo_round() -> Generator[int, float, str]:
sent = yield 0
while sent >= 0:
sent = yield round(sent)
return 'Done'
Note that unlike many other generic classes in the standard library,
the SendType
of Generator
behaves
contravariantly, not covariantly or invariantly.
The SendType
and ReturnType
parameters default to None
:
def infinite_stream(start: int) -> Generator[int]:
while True:
yield start
start += 1
It is also possible to set these types explicitly:
def infinite_stream(start: int) -> Generator[int, None, None]:
while True:
yield start
start += 1
Simple generators that only ever yield values can also be annotated
as having a return type of either
Iterable[YieldType]
or Iterator[YieldType]
:
def infinite_stream(start: int) -> Iterator[int]:
while True:
yield start
start += 1
Async generators are handled in a similar fashion, but don’t
expect a ReturnType
type argument
(AsyncGenerator[YieldType, SendType]
).
The SendType
argument defaults to None
, so the following definitions
are equivalent:
async def infinite_stream(start: int) -> AsyncGenerator[int]:
while True:
yield start
start = await increment(start)
async def infinite_stream(start: int) -> AsyncGenerator[int, None]:
while True:
yield start
start = await increment(start)
As in the synchronous case,
AsyncIterable[YieldType]
and AsyncIterator[YieldType]
are
available as well:
async def infinite_stream(start: int) -> AsyncIterator[int]:
while True:
yield start
start = await increment(start)
Coroutines can be annotated using
Coroutine[YieldType, SendType, ReturnType]
.
Generic arguments correspond to those of Generator
,
for example:
from collections.abc import Coroutine
c: Coroutine[list[str], str, int] # Some coroutine defined elsewhere
x = c.send('hi') # Inferred type of 'x' is list[str]
async def bar() -> None:
y = await c # Inferred type of 'y' is int
Tipos genéricos definidos por el usuario¶
Una clase definida por el usuario puede ser definida como una clase genérica.
from logging import Logger
class LoggedVar[T]:
def __init__(self, value: T, name: str, logger: Logger) -> None:
self.name = name
self.logger = logger
self.value = value
def set(self, new: T) -> None:
self.log('Set ' + repr(self.value))
self.value = new
def get(self) -> T:
self.log('Get ' + repr(self.value))
return self.value
def log(self, message: str) -> None:
self.logger.info('%s: %s', self.name, message)
This syntax indicates that the class LoggedVar
is parameterised around a
single type variable T
. This also makes T
valid as
a type within the class body.
Generic classes implicitly inherit from Generic
. For compatibility
with Python 3.11 and lower, it is also possible to inherit explicitly from
Generic
to indicate a generic class:
from typing import TypeVar, Generic
T = TypeVar('T')
class LoggedVar(Generic[T]):
...
Generic classes have __class_getitem__()
methods, meaning they
can be parameterised at runtime (e.g. LoggedVar[int]
below):
from collections.abc import Iterable
def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
for var in vars:
var.set(0)
Un tipo genérico puede tener un numero cualquiera de variables de tipo. Se permiten todas las variaciones de TypeVar
para ser usadas como parámetros de un tipo genérico:
from typing import TypeVar, Generic, Sequence
class WeirdTrio[T, B: Sequence[bytes], S: (int, str)]:
...
OldT = TypeVar('OldT', contravariant=True)
OldB = TypeVar('OldB', bound=Sequence[bytes], covariant=True)
OldS = TypeVar('OldS', int, str)
class OldWeirdTrio(Generic[OldT, OldB, OldS]):
...
Cada argumento de variable de tipo en una clase Generic
debe ser distinto. Así, no será válido:
from typing import TypeVar, Generic
...
class Pair[M, M]: # SyntaxError
...
T = TypeVar('T')
class Pair(Generic[T, T]): # INVALID
...
Generic classes can also inherit from other classes:
from collections.abc import Sized
class LinkedList[T](Sized):
...
When inheriting from generic classes, some type parameters could be fixed:
from collections.abc import Mapping
class MyDict[T](Mapping[str, T]):
...
En este caso MyDict
tiene un solo parámetro, T
.
Using a generic class without specifying type parameters assumes
Any
for each position. In the following example, MyIterable
is
not generic but implicitly inherits from Iterable[Any]
:
from collections.abc import Iterable
class MyIterable(Iterable): # Same as Iterable[Any]
...
User-defined generic type aliases are also supported. Examples:
from collections.abc import Iterable
type Response[S] = Iterable[S] | int
# Return type here is same as Iterable[str] | int
def response(query: str) -> Response[str]:
...
type Vec[T] = Iterable[tuple[T, T]]
def inproduct[T: (int, float, complex)](v: Vec[T]) -> T: # Same as Iterable[tuple[T, T]]
return sum(x*y for x, y in v)
For backward compatibility, generic type aliases can also be created through a simple assignment:
from collections.abc import Iterable
from typing import TypeVar
S = TypeVar("S")
Response = Iterable[S] | int
Distinto en la versión 3.7: Generic
ya no posee una metaclase personalizable.
Distinto en la versión 3.12: Syntactic support for generics and type aliases is new in version 3.12.
Previously, generic classes had to explicitly inherit from Generic
or contain a type variable in one of their bases.
User-defined generics for parameter expressions are also supported via parameter
specification variables in the form [**P]
. The behavior is consistent
with type variables” described above as parameter specification variables are
treated by the typing module as a specialized type variable. The one exception
to this is that a list of types can be used to substitute a ParamSpec
:
>>> class Z[T, **P]: ... # T is a TypeVar; P is a ParamSpec
...
>>> Z[int, [dict, float]]
__main__.Z[int, [dict, float]]
Classes generic over a ParamSpec
can also be created using explicit
inheritance from Generic
. In this case, **
is not used:
from typing import ParamSpec, Generic
P = ParamSpec('P')
class Z(Generic[P]):
...
Another difference between TypeVar
and ParamSpec
is that a
generic with only one parameter specification variable will accept
parameter lists in the forms X[[Type1, Type2, ...]]
and also
X[Type1, Type2, ...]
for aesthetic reasons. Internally, the latter is converted
to the former, so the following are equivalent:
>>> class X[**P]: ...
...
>>> X[int, str]
__main__.X[[int, str]]
>>> X[[int, str]]
__main__.X[[int, str]]
Note that generics with ParamSpec
may not have correct
__parameters__
after substitution in some cases because they
are intended primarily for static type checking.
Distinto en la versión 3.10: Generic
ahora se puede parametrizar sobre expresiones de parámetros. Consulte ParamSpec
y PEP 612 para obtener más detalles.
A user-defined generic class can have ABCs as base classes without a metaclass conflict. Generic metaclasses are not supported. The outcome of parameterizing generics is cached, and most types in the typing module are hashable and comparable for equality.
El tipo Any
¶
Un caso especial de tipo es Any
. Un Validador estático de tipos tratará cualquier tipo como compatible con Any
, y Any
como compatible con todos los tipos.
Esto significa que es posible realizar cualquier operación o llamada a un método en un valor de tipo Any
y asignarlo a cualquier variable:
from typing import Any
a: Any = None
a = [] # OK
a = 2 # OK
s: str = ''
s = a # OK
def foo(item: Any) -> int:
# Passes type checking; 'item' could be any type,
# and that type might have a 'bar' method
item.bar()
...
Nótese que no se realiza comprobación de tipo cuando se asigna un valor de tipo Any
a un tipo más preciso. Por ejemplo, el Validador estático de tipos no reportó ningún error cuando se asignó a
a s
, aún cuando se declaró s
como de tipo str
y recibió un valor int
en tiempo de ejecución!
Además, todas las funciones sin un tipo de retorno o tipos en los parámetros serán asignadas implícitamente a Any
por defecto:
def legacy_parser(text):
...
return data
# A static type checker will treat the above
# as having the same signature as:
def legacy_parser(text: Any) -> Any:
...
return data
Este comportamiento permite que Any
sea usado como una vía de escape cuando es necesario mezclar código tipado estática y dinámicamente.
Compárese el comportamiento de Any
con el de object
. De manera similar a Any
, todo tipo es un subtipo de object
. Sin embargo, en oposición a Any
, lo contrario no es cierto: object
no es un subtipo de ningún otro tipo.
Esto implica que cuando el tipo de un valor es object
, un validador de tipos rechazará prácticamente todas las operaciones con él, y al asignarlo a una variable (o usarlo como valor de retorno) de un tipo más preciso será un error de tipo. Por ejemplo:
def hash_a(item: object) -> int:
# Fails type checking; an object does not have a 'magic' method.
item.magic()
...
def hash_b(item: Any) -> int:
# Passes type checking
item.magic()
...
# Passes type checking, since ints and strs are subclasses of object
hash_a(42)
hash_a("foo")
# Passes type checking, since Any is compatible with all types
hash_b(42)
hash_b("foo")
Úsese object
para indicar que un valor puede ser de cualquier tipo de manera segura. Úsese Any
para indicar que un valor es de tipado dinámico.
Subtipado nominal vs estructural¶
Inicialmente, el PEP 484 definió el uso de subtipado nominal para el sistema de tipado estático de Python. Esto implica que una clase A
será permitida allí donde se espere una clase B
si y solo si A
es una subclase de B
.
Este requisito también se aplicaba anteriormente a clases base abstractas (ABC), tales como Iterable
. El problema con esta estrategia es que una clase debía de ser marcada explícitamente para proporcionar tal funcionalidad, lo que resulta poco pythónico (idiomático) y poco ajustado a lo que uno normalmente haría en un código Python tipado dinámicamente. Por ejemplo, esto sí se ajusta al PEP 484:
from collections.abc import Sized, Iterable, Iterator
class Bucket(Sized, Iterable[int]):
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
El PEP 544 permite resolver este problema al permitir escribir el código anterior sin una clase base explícita en la definición de la clase, permitiendo que el Validador estático de tipo considere implícitamente que Bucket
es un subtipo tanto de Sized
como de Iterable[int]
. Esto se conoce como tipado estructural (o duck-typing estático):
from collections.abc import Iterator, Iterable
class Bucket: # Note: no base classes
...
def __len__(self) -> int: ...
def __iter__(self) -> Iterator[int]: ...
def collect(items: Iterable[int]) -> int: ...
result = collect(Bucket()) # Passes type check
Asimismo, creando subclases de la clase especial Protocol
, el usuario puede definir nuevos protocolos personalizados y beneficiarse del tipado estructural (véanse los ejemplos de abajo).
Contenido del módulo¶
The typing
module defines the following classes, functions and decorators.
Primitivos especiales de tipado¶
Tipos especiales¶
These can be used as types in annotations. They do not support subscription
using []
.
- typing.Any¶
Tipo especial que indica un tipo sin restricciones.
Distinto en la versión 3.11:
Any
can now be used as a base class. This can be useful for avoiding type checker errors with classes that can duck type anywhere or are highly dynamic.
- typing.AnyStr¶
-
Definition:
AnyStr = TypeVar('AnyStr', str, bytes)
AnyStr
is meant to be used for functions that may acceptstr
orbytes
arguments but cannot allow the two to mix.Por ejemplo:
def concat(a: AnyStr, b: AnyStr) -> AnyStr: return a + b concat("foo", "bar") # OK, output has type 'str' concat(b"foo", b"bar") # OK, output has type 'bytes' concat("foo", b"bar") # Error, cannot mix str and bytes
Note that, despite its name,
AnyStr
has nothing to do with theAny
type, nor does it mean «any string». In particular,AnyStr
andstr | bytes
are different from each other and have different use cases:# Invalid use of AnyStr: # The type variable is used only once in the function signature, # so cannot be "solved" by the type checker def greet_bad(cond: bool) -> AnyStr: return "hi there!" if cond else b"greetings!" # The better way of annotating this function: def greet_proper(cond: bool) -> str | bytes: return "hi there!" if cond else b"greetings!"
Deprecated since version 3.13, will be removed in version 3.18: Deprecated in favor of the new type parameter syntax. Use
class A[T: (str, bytes)]: ...
instead of importingAnyStr
. See PEP 695 for more details.In Python 3.16,
AnyStr
will be removed fromtyping.__all__
, and deprecation warnings will be emitted at runtime when it is accessed or imported fromtyping
.AnyStr
will be removed fromtyping
in Python 3.18.
- typing.LiteralString¶
Special type that includes only literal strings.
Any string literal is compatible with
LiteralString
, as is anotherLiteralString
. However, an object typed as juststr
is not. A string created by composingLiteralString
-typed objects is also acceptable as aLiteralString
.Example:
def run_query(sql: LiteralString) -> None: ... def caller(arbitrary_string: str, literal_string: LiteralString) -> None: run_query("SELECT * FROM students") # OK run_query(literal_string) # OK run_query("SELECT * FROM " + literal_string) # OK run_query(arbitrary_string) # type checker error run_query( # type checker error f"SELECT * FROM students WHERE name = {arbitrary_string}" )
LiteralString
is useful for sensitive APIs where arbitrary user-generated strings could generate problems. For example, the two cases above that generate type checker errors could be vulnerable to an SQL injection attack.Véase PEP 675 para más detalle.
Added in version 3.11.
- typing.Never¶
- typing.NoReturn¶
Never
andNoReturn
represent the bottom type, a type that has no members.They can be used to indicate that a function never returns, such as
sys.exit()
:from typing import Never # or NoReturn def stop() -> Never: raise RuntimeError('no way')
Or to define a function that should never be called, as there are no valid arguments, such as
assert_never()
:from typing import Never # or NoReturn def never_call_me(arg: Never) -> None: pass def int_or_str(arg: int | str) -> None: never_call_me(arg) # type checker error match arg: case int(): print("It's an int") case str(): print("It's a str") case _: never_call_me(arg) # OK, arg is of type Never (or NoReturn)
Never
andNoReturn
have the same meaning in the type system and static type checkers treat both equivalently.Added in version 3.6.2: Added
NoReturn
.Added in version 3.11: Added
Never
.
- typing.Self¶
Special type to represent the current enclosed class.
Por ejemplo:
from typing import Self, reveal_type class Foo: def return_self(self) -> Self: ... return self class SubclassOfFoo(Foo): pass reveal_type(Foo().return_self()) # Revealed type is "Foo" reveal_type(SubclassOfFoo().return_self()) # Revealed type is "SubclassOfFoo"
Esta anotación es semánticamente equivalente a lo siguiente, aunque de una manera más sucinta:
from typing import TypeVar Self = TypeVar("Self", bound="Foo") class Foo: def return_self(self: Self) -> Self: ... return self
In general, if something returns
self
, as in the above examples, you should useSelf
as the return annotation. IfFoo.return_self
was annotated as returning"Foo"
, then the type checker would infer the object returned fromSubclassOfFoo.return_self
as being of typeFoo
rather thanSubclassOfFoo
.Otros casos de uso comunes incluyen:
classmethod
usados como constructores alternativos y retornan instancias del parámetrocls
.Anotar un método
__enter__()
que retorna self.
You should not use
Self
as the return annotation if the method is not guaranteed to return an instance of a subclass when the class is subclassed:class Eggs: # Self would be an incorrect return annotation here, # as the object returned is always an instance of Eggs, # even in subclasses def returns_eggs(self) -> "Eggs": return Eggs()
Véase PEP 673 para más detalle.
Added in version 3.11.
- typing.TypeAlias¶
Special annotation for explicitly declaring a type alias.
Por ejemplo:
from typing import TypeAlias Factors: TypeAlias = list[int]
TypeAlias
is particularly useful on older Python versions for annotating aliases that make use of forward references, as it can be hard for type checkers to distinguish these from normal variable assignments:from typing import Generic, TypeAlias, TypeVar T = TypeVar("T") # "Box" does not exist yet, # so we have to use quotes for the forward reference on Python <3.12. # Using ``TypeAlias`` tells the type checker that this is a type alias declaration, # not a variable assignment to a string. BoxOfStrings: TypeAlias = "Box[str]" class Box(Generic[T]): @classmethod def make_box_of_strings(cls) -> BoxOfStrings: ...
See PEP 613 for more details.
Added in version 3.10.
Obsoleto desde la versión 3.12:
TypeAlias
is deprecated in favor of thetype
statement, which creates instances ofTypeAliasType
and which natively supports forward references. Note that whileTypeAlias
andTypeAliasType
serve similar purposes and have similar names, they are distinct and the latter is not the type of the former. Removal ofTypeAlias
is not currently planned, but users are encouraged to migrate totype
statements.
Formas especiales¶
These can be used as types in annotations. They all support subscription using
[]
, but each has a unique syntax.
- typing.Union¶
Tipo de unión;
Union[X, Y]
es equivalente aX | Y
y significa X o Y.Para definir una unión, use p. ej.
Union[int, str]
o la abreviaturaint | str
. Se recomienda el uso de la abreviatura. Detalles:Los argumentos deben ser tipos y haber al menos uno.
Las uniones de uniones se simplifican (se aplanan), p. ej.:
Union[Union[int, str], float] == Union[int, str, float]
Las uniones con un solo argumento se eliminan, p. ej.:
Union[int] == int # The constructor actually returns int
Argumentos repetidos se omiten, p. ej.:
Union[int, str, int] == Union[int, str] == int | str
Cuando se comparan uniones, el orden de los argumentos se ignoran, p. ej.:
Union[int, str] == Union[str, int]
No es posible crear una subclase o instanciar un
Union
.No es posible escribir
Union[X][Y]
.
Distinto en la versión 3.7: No elimina subclases explícitas de una unión en tiempo de ejecución.
Distinto en la versión 3.10: Las uniones ahora se pueden escribir como
X | Y
. Consulte union type expressions.
- typing.Optional¶
Optional[X]
es equivalente aX | None
(oUnion[X, None]
).Nótese que no es lo mismo que un argumento opcional, que es aquel que tiene un valor por defecto. Un argumento opcional con un valor por defecto no necesita el indicador
Optional
en su anotación de tipo simplemente por que sea opcional. Por ejemplo:def foo(arg: int = 0) -> None: ...
Por otro lado, si se permite un valor
None
, es apropiado el uso deOptional
, independientemente de que sea opcional o no. Por ejemplo:def foo(arg: Optional[int] = None) -> None: ...
Distinto en la versión 3.10: Optional ahora se puede escribir como
X | None
. Consulte union type expressions.
- typing.Concatenate¶
Special form for annotating higher-order functions.
Concatenate
can be used in conjunction with Callable andParamSpec
to annotate a higher-order callable which adds, removes, or transforms parameters of another callable. Usage is in the formConcatenate[Arg1Type, Arg2Type, ..., ParamSpecVariable]
.Concatenate
is currently only valid when used as the first argument to a Callable. The last parameter toConcatenate
must be aParamSpec
or ellipsis (...
).Por ejemplo, para anotar un decorador
with_lock
que proporciona unthreading.Lock
a la función decorada,Concatenate
puede usarse para indicar quewith_lock
espera un invocable que toma unLock
como primer argumento y retorna un invocable con un tipo de firma diferente. En este caso, elParamSpec
indica que los tipos de parámetros de los invocables retornados dependen de los tipos de parámetros de los invocables que se pasan enfrom collections.abc import Callable from threading import Lock from typing import Concatenate # Use this lock to ensure that only one thread is executing a function # at any time. my_lock = Lock() def with_lock[**P, R](f: Callable[Concatenate[Lock, P], R]) -> Callable[P, R]: '''A type-safe decorator which provides a lock.''' def inner(*args: P.args, **kwargs: P.kwargs) -> R: # Provide the lock as the first argument. return f(my_lock, *args, **kwargs) return inner @with_lock def sum_threadsafe(lock: Lock, numbers: list[float]) -> float: '''Add a list of numbers together in a thread-safe manner.''' with lock: return sum(numbers) # We don't need to pass in the lock ourselves thanks to the decorator. sum_threadsafe([1.1, 2.2, 3.3])
Added in version 3.10.
Ver también
PEP 612 – Parameter Specification Variables (the PEP which introduced
ParamSpec
andConcatenate
)
- typing.Literal¶
Special typing form to define «literal types».
Literal
can be used to indicate to type checkers that the annotated object has a value equivalent to one of the provided literals.Por ejemplo:
def validate_simple(data: Any) -> Literal[True]: # always returns True ... type Mode = Literal['r', 'rb', 'w', 'wb'] def open_helper(file: str, mode: Mode) -> str: ... open_helper('/some/path', 'r') # Passes type check open_helper('/other/path', 'typo') # Error in type checker
Literal[...]
no puede ser derivado. En tiempo de ejecución, se permite un valor arbitrario como argumento de tipo deLiteral[...]
, pero los validadores de tipos pueden imponer sus restricciones. Véase PEP 585 para más detalles sobre tipos literales.Added in version 3.8.
- typing.ClassVar¶
Construcción especial para tipado para marcar variables de clase.
Tal y como introduce PEP 526, una anotación de variable rodeada por ClassVar indica que la intención de un atributo dado es ser usado como variable de clase y que no debería ser modificado en las instancias de esa misma clase. Uso:
class Starship: stats: ClassVar[dict[str, int]] = {} # class variable damage: int = 10 # instance variable
ClassVar
solo acepta tipos y no admite más niveles de subíndices.ClassVar
no es un clase en sí misma, y no debe ser usado conisinstance()
oissubclass()
.ClassVar
no modifica el comportamiento de Python en tiempo de ejecución pero puede ser utilizado por validadores de terceros. Por ejemplo, un validador de tipos puede marcar el siguiente código como erróneo:enterprise_d = Starship(3000) enterprise_d.stats = {} # Error, setting class variable on instance Starship.stats = {} # This is OK
Added in version 3.5.3.
- typing.Final¶
Special typing construct to indicate final names to type checkers.
Final names cannot be reassigned in any scope. Final names declared in class scopes cannot be overridden in subclasses.
Por ejemplo:
MAX_SIZE: Final = 9000 MAX_SIZE += 1 # Error reported by type checker class Connection: TIMEOUT: Final[int] = 10 class FastConnector(Connection): TIMEOUT = 1 # Error reported by type checker
No hay comprobación en tiempo de ejecución para estas propiedades. Véase PEP 591 para más detalles.
Added in version 3.8.
- typing.Required¶
Special typing construct to mark a
TypedDict
key as required.This is mainly useful for
total=False
TypedDicts. SeeTypedDict
and PEP 655 for more details.Added in version 3.11.
- typing.NotRequired¶
Special typing construct to mark a
TypedDict
key as potentially missing.Véase
TypedDict
y PEP 655 para más detalle.Added in version 3.11.
- typing.ReadOnly¶
A special typing construct to mark an item of a
TypedDict
as read-only.Por ejemplo:
class Movie(TypedDict): title: ReadOnly[str] year: int def mutate_movie(m: Movie) -> None: m["year"] = 1999 # allowed m["title"] = "The Matrix" # typechecker error
There is no runtime checking for this property.
See
TypedDict
and PEP 705 for more details.Added in version 3.13.
- typing.Annotated¶
Special typing form to add context-specific metadata to an annotation.
Add metadata
x
to a given typeT
by using the annotationAnnotated[T, x]
. Metadata added usingAnnotated
can be used by static analysis tools or at runtime. At runtime, the metadata is stored in a__metadata__
attribute.If a library or tool encounters an annotation
Annotated[T, x]
and has no special logic for the metadata, it should ignore the metadata and simply treat the annotation asT
. As such,Annotated
can be useful for code that wants to use annotations for purposes outside Python’s static typing system.Using
Annotated[T, x]
as an annotation still allows for static typechecking ofT
, as type checkers will simply ignore the metadatax
. In this way,Annotated
differs from the@no_type_check
decorator, which can also be used for adding annotations outside the scope of the typing system, but completely disables typechecking for a function or class.The responsibility of how to interpret the metadata lies with the tool or library encountering an
Annotated
annotation. A tool or library encountering anAnnotated
type can scan through the metadata elements to determine if they are of interest (e.g., usingisinstance()
).- Annotated[<type>, <metadata>]
Here is an example of how you might use
Annotated
to add metadata to type annotations if you were doing range analysis:@dataclass class ValueRange: lo: int hi: int T1 = Annotated[int, ValueRange(-10, 5)] T2 = Annotated[T1, ValueRange(-20, 3)]
Details of the syntax:
El primer argumento en
Annotated
debe ser un tipo válidoMultiple metadata elements can be supplied (
Annotated
supports variadic arguments):@dataclass class ctype: kind: str Annotated[int, ValueRange(3, 10), ctype("char")]
It is up to the tool consuming the annotations to decide whether the client is allowed to add multiple metadata elements to one annotation and how to merge those annotations.
Annotated
must be subscripted with at least two arguments (Annotated[int]
is not valid)The order of the metadata elements is preserved and matters for equality checks:
assert Annotated[int, ValueRange(3, 10), ctype("char")] != Annotated[ int, ctype("char"), ValueRange(3, 10) ]
Nested
Annotated
types are flattened. The order of the metadata elements starts with the innermost annotation:assert Annotated[Annotated[int, ValueRange(3, 10)], ctype("char")] == Annotated[ int, ValueRange(3, 10), ctype("char") ]
Duplicated metadata elements are not removed:
assert Annotated[int, ValueRange(3, 10)] != Annotated[ int, ValueRange(3, 10), ValueRange(3, 10) ]
Annotated
can be used with nested and generic aliases:@dataclass class MaxLen: value: int type Vec[T] = Annotated[list[tuple[T, T]], MaxLen(10)] # When used in a type annotation, a type checker will treat "V" the same as # ``Annotated[list[tuple[int, int]], MaxLen(10)]``: type V = Vec[int]
Annotated
cannot be used with an unpackedTypeVarTuple
:type Variadic[*Ts] = Annotated[*Ts, Ann1] # NOT valid
This would be equivalent to:
Annotated[T1, T2, T3, ..., Ann1]
where
T1
,T2
, etc. areTypeVars
. This would be invalid: only one type should be passed to Annotated.By default,
get_type_hints()
strips the metadata from annotations. Passinclude_extras=True
to have the metadata preserved:>>> from typing import Annotated, get_type_hints >>> def func(x: Annotated[int, "metadata"]) -> None: pass ... >>> get_type_hints(func) {'x': <class 'int'>, 'return': <class 'NoneType'>} >>> get_type_hints(func, include_extras=True) {'x': typing.Annotated[int, 'metadata'], 'return': <class 'NoneType'>}
At runtime, the metadata associated with an
Annotated
type can be retrieved via the__metadata__
attribute:>>> from typing import Annotated >>> X = Annotated[int, "very", "important", "metadata"] >>> X typing.Annotated[int, 'very', 'important', 'metadata'] >>> X.__metadata__ ('very', 'important', 'metadata')
At runtime, if you want to retrieve the original type wrapped by
Annotated
, use the__origin__
attribute:>>> from typing import Annotated, get_origin >>> Password = Annotated[str, "secret"] >>> Password.__origin__ <class 'str'>
Note that using
get_origin()
will returnAnnotated
itself:>>> get_origin(Password) typing.Annotated
Ver también
- PEP 593 - Flexible function and variable annotations
The PEP introducing
Annotated
to the standard library.
Added in version 3.9.
- typing.TypeIs¶
Special typing construct for marking user-defined type predicate functions.
TypeIs
can be used to annotate the return type of a user-defined type predicate function.TypeIs
only accepts a single type argument. At runtime, functions marked this way should return a boolean and take at least one positional argument.TypeIs
aims to benefit type narrowing – a technique used by static type checkers to determine a more precise type of an expression within a program’s code flow. Usually type narrowing is done by analyzing conditional code flow and applying the narrowing to a block of code. The conditional expression here is sometimes referred to as a «type predicate»:def is_str(val: str | float): # "isinstance" type predicate if isinstance(val, str): # Type of ``val`` is narrowed to ``str`` ... else: # Else, type of ``val`` is narrowed to ``float``. ...
Sometimes it would be convenient to use a user-defined boolean function as a type predicate. Such a function should use
TypeIs[...]
orTypeGuard
as its return type to alert static type checkers to this intention.TypeIs
usually has more intuitive behavior thanTypeGuard
, but it cannot be used when the input and output types are incompatible (e.g.,list[object]
tolist[int]
) or when the function does not returnTrue
for all instances of the narrowed type.Using
-> TypeIs[NarrowedType]
tells the static type checker that for a given function:El valor de retorno es un booleano.
If the return value is
True
, the type of its argument is the intersection of the argument’s original type andNarrowedType
.If the return value is
False
, the type of its argument is narrowed to excludeNarrowedType
.
Por ejemplo:
from typing import assert_type, final, TypeIs class Parent: pass class Child(Parent): pass @final class Unrelated: pass def is_parent(val: object) -> TypeIs[Parent]: return isinstance(val, Parent) def run(arg: Child | Unrelated): if is_parent(arg): # Type of ``arg`` is narrowed to the intersection # of ``Parent`` and ``Child``, which is equivalent to # ``Child``. assert_type(arg, Child) else: # Type of ``arg`` is narrowed to exclude ``Parent``, # so only ``Unrelated`` is left. assert_type(arg, Unrelated)
The type inside
TypeIs
must be consistent with the type of the function’s argument; if it is not, static type checkers will raise an error. An incorrectly writtenTypeIs
function can lead to unsound behavior in the type system; it is the user’s responsibility to write such functions in a type-safe manner.If a
TypeIs
function is a class or instance method, then the type inTypeIs
maps to the type of the second parameter (aftercls
orself
).In short, the form
def foo(arg: TypeA) -> TypeIs[TypeB]: ...
, means that iffoo(arg)
returnsTrue
, thenarg
is an instance ofTypeB
, and if it returnsFalse
, it is not an instance ofTypeB
.TypeIs
also works with type variables. For more information, see PEP 742 (Narrowing types withTypeIs
).Added in version 3.13.
- typing.TypeGuard¶
Special typing construct for marking user-defined type predicate functions.
Type predicate functions are user-defined functions that return whether their argument is an instance of a particular type.
TypeGuard
works similarly toTypeIs
, but has subtly different effects on type checking behavior (see below).El uso de
-> TypeGuard
le dice al verificador de tipo estático que para una función determinada:El valor de retorno es un booleano.
Si el valor de retorno es
True
, el tipo de su argumento es el tipo dentro deTypeGuard
.
TypeGuard
también funciona con variables de tipo. Véase PEP 647 para más detalles.Por ejemplo:
def is_str_list(val: list[object]) -> TypeGuard[list[str]]: '''Determines whether all objects in the list are strings''' return all(isinstance(x, str) for x in val) def func1(val: list[object]): if is_str_list(val): # Type of ``val`` is narrowed to ``list[str]``. print(" ".join(val)) else: # Type of ``val`` remains as ``list[object]``. print("Not a list of strings!")
TypeIs
andTypeGuard
differ in the following ways:TypeIs
requires the narrowed type to be a subtype of the input type, whileTypeGuard
does not. The main reason is to allow for things like narrowinglist[object]
tolist[str]
even though the latter is not a subtype of the former, sincelist
is invariant.When a
TypeGuard
function returnsTrue
, type checkers narrow the type of the variable to exactly theTypeGuard
type. When aTypeIs
function returnsTrue
, type checkers can infer a more precise type combining the previously known type of the variable with theTypeIs
type. (Technically, this is known as an intersection type.)When a
TypeGuard
function returnsFalse
, type checkers cannot narrow the type of the variable at all. When aTypeIs
function returnsFalse
, type checkers can narrow the type of the variable to exclude theTypeIs
type.
Added in version 3.10.
- typing.Unpack¶
Typing operator to conceptually mark an object as having been unpacked.
For example, using the unpack operator
*
on a type variable tuple is equivalent to usingUnpack
to mark the type variable tuple as having been unpacked:Ts = TypeVarTuple('Ts') tup: tuple[*Ts] # Effectively does: tup: tuple[Unpack[Ts]]
In fact,
Unpack
can be used interchangeably with*
in the context oftyping.TypeVarTuple
andbuiltins.tuple
types. You might seeUnpack
being used explicitly in older versions of Python, where*
couldn’t be used in certain places:# In older versions of Python, TypeVarTuple and Unpack # are located in the `typing_extensions` backports package. from typing_extensions import TypeVarTuple, Unpack Ts = TypeVarTuple('Ts') tup: tuple[*Ts] # Syntax error on Python <= 3.10! tup: tuple[Unpack[Ts]] # Semantically equivalent, and backwards-compatible
Unpack
can also be used along withtyping.TypedDict
for typing**kwargs
in a function signature:from typing import TypedDict, Unpack class Movie(TypedDict): name: str year: int # This function expects two keyword arguments - `name` of type `str` # and `year` of type `int`. def foo(**kwargs: Unpack[Movie]): ...
See PEP 692 for more details on using
Unpack
for**kwargs
typing.Added in version 3.11.
Building generic types and type aliases¶
The following classes should not be used directly as annotations. Their intended purpose is to be building blocks for creating generic types and type aliases.
These objects can be created through special syntax
(type parameter lists and the type
statement).
For compatibility with Python 3.11 and earlier, they can also be created
without the dedicated syntax, as documented below.
- class typing.Generic¶
Clase base abstracta para tipos genéricos.
A generic type is typically declared by adding a list of type parameters after the class name:
class Mapping[KT, VT]: def __getitem__(self, key: KT) -> VT: ... # Etc.
Such a class implicitly inherits from
Generic
. The runtime semantics of this syntax are discussed in the Language Reference.Entonces, esta clase se puede usar como sigue:
def lookup_name[X, Y](mapping: Mapping[X, Y], key: X, default: Y) -> Y: try: return mapping[key] except KeyError: return default
Here the brackets after the function name indicate a generic function.
For backwards compatibility, generic classes can also be declared by explicitly inheriting from
Generic
. In this case, the type parameters must be declared separately:KT = TypeVar('KT') VT = TypeVar('VT') class Mapping(Generic[KT, VT]): def __getitem__(self, key: KT) -> VT: ... # Etc.
- class typing.TypeVar(name, *constraints, bound=None, covariant=False, contravariant=False, infer_variance=False, default=typing.NoDefault)¶
Variable de tipo.
The preferred way to construct a type variable is via the dedicated syntax for generic functions, generic classes, and generic type aliases:
class Sequence[T]: # T is a TypeVar ...
This syntax can also be used to create bounded and constrained type variables:
class StrSequence[S: str]: # S is a TypeVar with a `str` upper bound; ... # we can say that S is "bounded by `str`" class StrOrBytesSequence[A: (str, bytes)]: # A is a TypeVar constrained to str or bytes ...
However, if desired, reusable type variables can also be constructed manually, like so:
T = TypeVar('T') # Can be anything S = TypeVar('S', bound=str) # Can be any subtype of str A = TypeVar('A', str, bytes) # Must be exactly str or bytes
Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function and type alias definitions. See
Generic
for more information on generic types. Generic functions work as follows:def repeat[T](x: T, n: int) -> Sequence[T]: """Return a list containing n references to x.""" return [x]*n def print_capitalized[S: str](x: S) -> S: """Print x capitalized, and return x.""" print(x.capitalize()) return x def concatenate[A: (str, bytes)](x: A, y: A) -> A: """Add two strings or bytes objects together.""" return x + y
Note that type variables can be bounded, constrained, or neither, but cannot be both bounded and constrained.
The variance of type variables is inferred by type checkers when they are created through the type parameter syntax or when
infer_variance=True
is passed. Manually created type variables may be explicitly marked covariant or contravariant by passingcovariant=True
orcontravariant=True
. By default, manually created type variables are invariant. See PEP 484 and PEP 695 for more details.Bounded type variables and constrained type variables have different semantics in several important ways. Using a bounded type variable means that the
TypeVar
will be solved using the most specific type possible:x = print_capitalized('a string') reveal_type(x) # revealed type is str class StringSubclass(str): pass y = print_capitalized(StringSubclass('another string')) reveal_type(y) # revealed type is StringSubclass z = print_capitalized(45) # error: int is not a subtype of str
The upper bound of a type variable can be a concrete type, abstract type (ABC or Protocol), or even a union of types:
# Can be anything with an __abs__ method def print_abs[T: SupportsAbs](arg: T) -> None: print("Absolute value:", abs(arg)) U = TypeVar('U', bound=str|bytes) # Can be any subtype of the union str|bytes V = TypeVar('V', bound=SupportsAbs) # Can be anything with an __abs__ method
Sin embargo, usar una variable de tipo constrained significa que la
TypeVar
sólo podrá ser determinada como exactamente una de las restricciones dadas:a = concatenate('one', 'two') reveal_type(a) # revealed type is str b = concatenate(StringSubclass('one'), StringSubclass('two')) reveal_type(b) # revealed type is str, despite StringSubclass being passed in c = concatenate('one', b'two') # error: type variable 'A' can be either str or bytes in a function call, but not both
At runtime,
isinstance(x, T)
will raiseTypeError
.- __name__¶
The name of the type variable.
- __covariant__¶
Whether the type var has been explicitly marked as covariant.
- __contravariant__¶
Whether the type var has been explicitly marked as contravariant.
- __infer_variance__¶
Whether the type variable’s variance should be inferred by type checkers.
Added in version 3.12.
- __bound__¶
The upper bound of the type variable, if any.
Distinto en la versión 3.12: For type variables created through type parameter syntax, the bound is evaluated only when the attribute is accessed, not when the type variable is created (see Evaluación perezosa).
- __constraints__¶
A tuple containing the constraints of the type variable, if any.
Distinto en la versión 3.12: For type variables created through type parameter syntax, the constraints are evaluated only when the attribute is accessed, not when the type variable is created (see Evaluación perezosa).
- __default__¶
The default value of the type variable, or
typing.NoDefault
if it has no default.Added in version 3.13.
- has_default()¶
Return whether or not the type variable has a default value. This is equivalent to checking whether
__default__
is not thetyping.NoDefault
singleton, except that it does not force evaluation of the lazily evaluated default value.Added in version 3.13.
Distinto en la versión 3.12: Type variables can now be declared using the type parameter syntax introduced by PEP 695. The
infer_variance
parameter was added.Distinto en la versión 3.13: Support for default values was added.
- class typing.TypeVarTuple(name, *, default=typing.NoDefault)¶
Type variable tuple. A specialized form of type variable that enables variadic generics.
Type variable tuples can be declared in type parameter lists using a single asterisk (
*
) before the name:def move_first_element_to_last[T, *Ts](tup: tuple[T, *Ts]) -> tuple[*Ts, T]: return (*tup[1:], tup[0])
Or by explicitly invoking the
TypeVarTuple
constructor:T = TypeVar("T") Ts = TypeVarTuple("Ts") def move_first_element_to_last(tup: tuple[T, *Ts]) -> tuple[*Ts, T]: return (*tup[1:], tup[0])
Una variable de tipo normal permite parametrizar con un solo tipo. Una tupla de variables de tipo, en contraste, permite la parametrización con un número arbitrario de tipos, al actuar como un número arbitrario de variables de tipo envueltas en una tupla. Por ejemplo:
# T is bound to int, Ts is bound to () # Return value is (1,), which has type tuple[int] move_first_element_to_last(tup=(1,)) # T is bound to int, Ts is bound to (str,) # Return value is ('spam', 1), which has type tuple[str, int] move_first_element_to_last(tup=(1, 'spam')) # T is bound to int, Ts is bound to (str, float) # Return value is ('spam', 3.0, 1), which has type tuple[str, float, int] move_first_element_to_last(tup=(1, 'spam', 3.0)) # This fails to type check (and fails at runtime) # because tuple[()] is not compatible with tuple[T, *Ts] # (at least one element is required) move_first_element_to_last(tup=())
Nótese el uso del operador de desempaquetado
*
entuple[T, *Ts]
. Conceptualmente, puede pensarse enTs
como una tupla de variables de tipo(T1, T2, ...)
.tuple[T, *Ts]
se convertiría entuple[T, *(T1, T2, ...)]
, lo que es equivalente atuple[T, T1, T2, ...]
. (Nótese que en versiones más antiguas de Python, ésto puede verse escrito usando en cambioUnpack
, en la formaUnpack[Ts]
.)Type variable tuples must always be unpacked. This helps distinguish type variable tuples from normal type variables:
x: Ts # Not valid x: tuple[Ts] # Not valid x: tuple[*Ts] # The correct way to do it
Las tuplas de variables de tipo pueden ser utilizadas en los mismos contextos que las variables de tipo normales. Por ejemplo en definiciones de clases, argumentos y tipos de retorno:
class Array[*Shape]: def __getitem__(self, key: tuple[*Shape]) -> float: ... def __abs__(self) -> "Array[*Shape]": ... def get_shape(self) -> tuple[*Shape]: ...
Type variable tuples can be happily combined with normal type variables:
class Array[DType, *Shape]: # This is fine pass class Array2[*Shape, DType]: # This would also be fine pass class Height: ... class Width: ... float_array_1d: Array[float, Height] = Array() # Totally fine int_array_2d: Array[int, Height, Width] = Array() # Yup, fine too
Sin embargo, nótese que en una determinada lista de argumentos de tipo o de parámetros de tipo puede haber como máximo una tupla de variables de tipo:
x: tuple[*Ts, *Ts] # Not valid class Array[*Shape, *Shape]: # Not valid pass
Finalmente, una tupla de variables de tipo desempaquetada puede ser utilizada como la anotación de tipo de
*args
:def call_soon[*Ts]( callback: Callable[[*Ts], None], *args: *Ts ) -> None: ... callback(*args)
En contraste con las anotaciones no-desempaquetadas de
*args
, por ej.*args: int
, que especificaría que todos los argumentos sonint
-*args: *Ts
permite referenciar los tipos de los argumentos individuales en*args
. Aquí, ésto permite asegurarse de que los tipos de los*args
que son pasados acall_soon
calcen con los tipos de los argumentos (posicionales) decallback
.Véase PEP 646 para obtener más detalles sobre las tuplas de variables de tipo.
- __name__¶
The name of the type variable tuple.
- __default__¶
The default value of the type variable tuple, or
typing.NoDefault
if it has no default.Added in version 3.13.
- has_default()¶
Return whether or not the type variable tuple has a default value. This is equivalent to checking whether
__default__
is not thetyping.NoDefault
singleton, except that it does not force evaluation of the lazily evaluated default value.Added in version 3.13.
Added in version 3.11.
Distinto en la versión 3.12: Type variable tuples can now be declared using the type parameter syntax introduced by PEP 695.
Distinto en la versión 3.13: Support for default values was added.
- class typing.ParamSpec(name, *, bound=None, covariant=False, contravariant=False, default=typing.NoDefault)¶
Parameter specification variable. A specialized version of type variables.
In type parameter lists, parameter specifications can be declared with two asterisks (
**
):type IntFunc[**P] = Callable[P, int]
For compatibility with Python 3.11 and earlier,
ParamSpec
objects can also be created as follows:P = ParamSpec('P')
Las variables de especificación de parámetros existen principalmente para el beneficio de los verificadores de tipo estático. Se utilizan para reenviar los tipos de parámetros de un invocable a otro invocable, un patrón que se encuentra comúnmente en funciones y decoradores de orden superior. Solo son válidos cuando se utilizan en
Concatenate
, o como primer argumento deCallable
, o como parámetros para genéricos definidos por el usuario. ConsulteGeneric
para obtener más información sobre tipos genéricos.Por ejemplo, para agregar un registro básico a una función, se puede crear un decorador
add_logging
para registrar llamadas a funciones. La variable de especificación de parámetros le dice al verificador de tipo que el invocable pasado al decorador y el nuevo invocable retornado por él tienen parámetros de tipo interdependientes:from collections.abc import Callable import logging def add_logging[T, **P](f: Callable[P, T]) -> Callable[P, T]: '''A type-safe decorator to add logging to a function.''' def inner(*args: P.args, **kwargs: P.kwargs) -> T: logging.info(f'{f.__name__} was called') return f(*args, **kwargs) return inner @add_logging def add_two(x: float, y: float) -> float: '''Add two numbers together.''' return x + y
Without
ParamSpec
, the simplest way to annotate this previously was to use aTypeVar
with upper boundCallable[..., Any]
. However this causes two problems:El verificador de tipo no puede verificar la función
inner
porque*args
y**kwargs
deben escribirseAny
.Es posible que se requiera
cast()
en el cuerpo del decoradoradd_logging
al retornar la funcióninner
, o se debe indicar al verificador de tipo estático que ignore elreturn inner
.
- args¶
- kwargs¶
Dado que
ParamSpec
captura tanto parámetros posicionales como de palabras clave,P.args
yP.kwargs
se pueden utilizar para dividir unParamSpec
en sus componentes.P.args
representa la tupla de parámetros posicionales en una llamada determinada y solo debe usarse para anotar*args
.P.kwargs
representa la asignación de parámetros de palabras clave a sus valores en una llamada determinada y solo debe usarse para anotar**kwargs
. Ambos atributos requieren que el parámetro anotado esté dentro del alcance. En tiempo de ejecución,P.args
yP.kwargs
son instancias respectivamente deParamSpecArgs
yParamSpecKwargs
.
- __name__¶
The name of the parameter specification.
- __default__¶
The default value of the parameter specification, or
typing.NoDefault
if it has no default.Added in version 3.13.
- has_default()¶
Return whether or not the parameter specification has a default value. This is equivalent to checking whether
__default__
is not thetyping.NoDefault
singleton, except that it does not force evaluation of the lazily evaluated default value.Added in version 3.13.
Las variables de especificación de parámetros creadas con
covariant=True
ocontravariant=True
se pueden utilizar para declarar tipos genéricos covariantes o contravariantes. También se acepta el argumentobound
, similar aTypeVar
. Sin embargo, la semántica real de estas palabras clave aún no se ha decidido.Added in version 3.10.
Distinto en la versión 3.12: Parameter specifications can now be declared using the type parameter syntax introduced by PEP 695.
Distinto en la versión 3.13: Support for default values was added.
Nota
Solo las variables de especificación de parámetros definidas en el ámbito global pueden ser serializadas.
Ver también
PEP 612 – Parameter Specification Variables (the PEP which introduced
ParamSpec
andConcatenate
)
- typing.ParamSpecArgs¶
- typing.ParamSpecKwargs¶
Argumentos y atributos de argumentos de palabras clave de un
ParamSpec
. El atributoP.args
de unParamSpec
es una instancia deParamSpecArgs
yP.kwargs
es una instancia deParamSpecKwargs
. Están pensados para la introspección en tiempo de ejecución y no tienen un significado especial para los verificadores de tipo estático.Calling
get_origin()
on either of these objects will return the originalParamSpec
:>>> from typing import ParamSpec, get_origin >>> P = ParamSpec("P") >>> get_origin(P.args) is P True >>> get_origin(P.kwargs) is P True
Added in version 3.10.
- class typing.TypeAliasType(name, value, *, type_params=())¶
The type of type aliases created through the
type
statement.Example:
>>> type Alias = int >>> type(Alias) <class 'typing.TypeAliasType'>
Added in version 3.12.
- __name__¶
The name of the type alias:
>>> type Alias = int >>> Alias.__name__ 'Alias'
- __module__¶
The module in which the type alias was defined:
>>> type Alias = int >>> Alias.__module__ '__main__'
- __type_params__¶
The type parameters of the type alias, or an empty tuple if the alias is not generic:
>>> type ListOrSet[T] = list[T] | set[T] >>> ListOrSet.__type_params__ (T,) >>> type NotGeneric = int >>> NotGeneric.__type_params__ ()
- __value__¶
The type alias’s value. This is lazily evaluated, so names used in the definition of the alias are not resolved until the
__value__
attribute is accessed:>>> type Mutually = Recursive >>> type Recursive = Mutually >>> Mutually Mutually >>> Recursive Recursive >>> Mutually.__value__ Recursive >>> Recursive.__value__ Mutually
Otras directivas especiales¶
These functions and classes should not be used directly as annotations. Their intended purpose is to be building blocks for creating and declaring types.
- class typing.NamedTuple¶
Versión para anotación de tipos de
collections.namedtuple()
.Uso:
class Employee(NamedTuple): name: str id: int
Esto es equivalente a:
Employee = collections.namedtuple('Employee', ['name', 'id'])
Para proporcionar a un campo un valor por defecto se puede asignar en el cuerpo de la clase:
class Employee(NamedTuple): name: str id: int = 3 employee = Employee('Guido') assert employee.id == 3
Los campos con un valor por defecto deben ir después de los campos sin valor por defecto.
La clase resultante tiene un atributo extra
__annotations__
que proporciona un diccionario que mapea el nombre de los campos con sus respectivos tipos. (Los nombres de los campos están en el atributo_fields
y sus valores por defecto en el atributo_field_defaults
, ambos parte de la APInamedtuple()
.)Las subclases de
NamedTuple
también pueden tener docstrings y métodos:class Employee(NamedTuple): """Represents an employee.""" name: str id: int = 3 def __repr__(self) -> str: return f'<Employee {self.name}, id={self.id}>'
Las subclases de
NamedTuple
pueden ser genéricas:class Group[T](NamedTuple): key: T group: list[T]
Uso retrocompatible:
# For creating a generic NamedTuple on Python 3.11 T = TypeVar("T") class Group(NamedTuple, Generic[T]): key: T group: list[T] # A functional syntax is also supported Employee = NamedTuple('Employee', [('name', str), ('id', int)])
Distinto en la versión 3.6: Soporte añadido para la sintaxis de anotación de variables propuesto en PEP 526.
Distinto en la versión 3.6.1: Soporte añadido para valores por defecto, métodos y docstrings.
Distinto en la versión 3.8: Los atributos
_field_types
y__annotations__
son simples diccionarios en vez de instancias deOrderedDict
.Distinto en la versión 3.9: Se remueve el atributo
_field_types
en favor del atributo más estándar__annotations__
que tiene la misma información.Distinto en la versión 3.11: Se agrega soporte para namedtuples genéricas.
Deprecated since version 3.13, will be removed in version 3.15: The undocumented keyword argument syntax for creating NamedTuple classes (
NT = NamedTuple("NT", x=int)
) is deprecated, and will be disallowed in 3.15. Use the class-based syntax or the functional syntax instead.Deprecated since version 3.13, will be removed in version 3.15: When using the functional syntax to create a NamedTuple class, failing to pass a value to the “fields” parameter (
NT = NamedTuple("NT")
) is deprecated. PassingNone
to the “fields” parameter (NT = NamedTuple("NT", None)
) is also deprecated. Both will be disallowed in Python 3.15. To create a NamedTuple class with 0 fields, useclass NT(NamedTuple): pass
orNT = NamedTuple("NT", [])
.
- class typing.NewType(name, tp)¶
Helper class to create low-overhead distinct types.
A
NewType
is considered a distinct type by a typechecker. At runtime, however, calling aNewType
returns its argument unchanged.Uso:
UserId = NewType('UserId', int) # Declare the NewType "UserId" first_user = UserId(1) # "UserId" returns the argument unchanged at runtime
- __module__¶
The module in which the new type is defined.
- __name__¶
The name of the new type.
- __supertype__¶
The type that the new type is based on.
Added in version 3.5.2.
Distinto en la versión 3.10:
NewType
es ahora una clase en lugar de una función.
- class typing.Protocol(Generic)¶
Base class for protocol classes.
Protocol classes are defined like this:
class Proto(Protocol): def meth(self) -> int: ...
Tales clases son usadas principalmente con validadores estáticos de tipos que detectan subtipado estructural (duck-typing estático), por ejemplo:
class C: def meth(self) -> int: return 0 def func(x: Proto) -> int: return x.meth() func(C()) # Passes static type check
Véase PEP 544 para más detalles. Las clases protocolo decoradas con
runtime_checkable()
(descrito más adelante) se comportan como protocolos simplistas en tiempo de ejecución que solo comprueban la presencia de atributos dados, ignorando su firma de tipo.Las clases protocolo pueden ser genéricas, por ejemplo:
class GenProto[T](Protocol): def meth(self) -> T: ...
In code that needs to be compatible with Python 3.11 or older, generic Protocols can be written as follows:
T = TypeVar("T") class GenProto(Protocol[T]): def meth(self) -> T: ...
Added in version 3.8.
- @typing.runtime_checkable¶
Marca una clase protocolo como aplicable en tiempo de ejecución (lo convierte en un runtime protocol).
Tal protocolo se puede usar con
isinstance()
yissubclass()
. Esto lanzará una excepciónTypeError
cuando se aplique a una clase que no es un protocolo. Esto permite una comprobación estructural simple, muy semejante a «one trick ponies» encollections.abc
conIterable
. Por ejemplo:@runtime_checkable class Closable(Protocol): def close(self): ... assert isinstance(open('/some/file'), Closable) @runtime_checkable class Named(Protocol): name: str import threading assert isinstance(threading.Thread(name='Bob'), Named)
Nota
runtime_checkable()
will check only the presence of the required methods or attributes, not their type signatures or types. For example,ssl.SSLObject
is a class, therefore it passes anissubclass()
check against Callable. However, thessl.SSLObject.__init__
method exists only to raise aTypeError
with a more informative message, therefore making it impossible to call (instantiate)ssl.SSLObject
.Nota
An
isinstance()
check against a runtime-checkable protocol can be surprisingly slow compared to anisinstance()
check against a non-protocol class. Consider using alternative idioms such ashasattr()
calls for structural checks in performance-sensitive code.Added in version 3.8.
Distinto en la versión 3.12: The internal implementation of
isinstance()
checks against runtime-checkable protocols now usesinspect.getattr_static()
to look up attributes (previously,hasattr()
was used). As a result, some objects which used to be considered instances of a runtime-checkable protocol may no longer be considered instances of that protocol on Python 3.12+, and vice versa. Most users are unlikely to be affected by this change.Distinto en la versión 3.12: The members of a runtime-checkable protocol are now considered «frozen» at runtime as soon as the class has been created. Monkey-patching attributes onto a runtime-checkable protocol will still work, but will have no impact on
isinstance()
checks comparing objects to the protocol. See «What’s new in Python 3.12» for more details.
- class typing.TypedDict(dict)¶
Es una construcción especial para añadir indicadores de tipo a un diccionario. En tiempo de ejecución es un
dict
simple.TypedDict
crea un tipo de diccionario que espera que todas sus instancias tenga un cierto conjunto de claves, donde cada clave está asociada con un valor de un tipo determinado. Esta exigencia no se comprueba en tiempo de ejecución y solo es aplicada por validadores de tipo. Uso:class Point2D(TypedDict): x: int y: int label: str a: Point2D = {'x': 1, 'y': 2, 'label': 'good'} # OK b: Point2D = {'z': 3, 'label': 'bad'} # Fails type check assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')
An alternative way to create a
TypedDict
is by using function-call syntax. The second argument must be a literaldict
:Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})
This functional syntax allows defining keys which are not valid identifiers, for example because they are keywords or contain hyphens:
# raises SyntaxError class Point2D(TypedDict): in: int # 'in' is a keyword x-y: int # name with hyphens # OK, functional syntax Point2D = TypedDict('Point2D', {'in': int, 'x-y': int})
De forma predeterminada, todas las llaves deben estar presentes en un
TypedDict
. Es posible marcar llaves individuales como no requeridas utilizandoNotRequired
:class Point2D(TypedDict): x: int y: int label: NotRequired[str] # Alternative syntax Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': NotRequired[str]})
Esto significa que en un
TypedDict
que sea una instancia dePoint2D
, será posible omitir la llavelabel
.Además, es posible marcar todas las llaves como no-requeridas por defecto, al especificar un valor de
False
en el argumento total:class Point2D(TypedDict, total=False): x: int y: int # Alternative syntax Point2D = TypedDict('Point2D', {'x': int, 'y': int}, total=False)
Esto significa que un
TypedDict
Point2D
puede tener cualquiera de las llaves omitidas. Solo se espera que un verificador de tipo admita unFalse
literal oTrue
como valor del argumentototal
.True
es el predeterminado y hace que todos los elementos definidos en el cuerpo de la clase sean obligatorios.Las llaves individuales de un
TypedDict
total=False
pueden ser marcadas como requeridas utilizandoRequired
:class Point2D(TypedDict, total=False): x: Required[int] y: Required[int] label: str # Alternative syntax Point2D = TypedDict('Point2D', { 'x': Required[int], 'y': Required[int], 'label': str }, total=False)
Es posible que un tipo
TypedDict
herede de uno o más tiposTypedDict
usando la sintaxis de clase. Uso:class Point3D(Point2D): z: int
Point3D
tiene tres elementos:x
,y
yz
. Lo que es equivalente a la siguiente definición:class Point3D(TypedDict): x: int y: int z: int
Un
TypedDict
no puede heredar de una clase que no sea una subclase deTypedDict
, exceptuandoGeneric
. Por ejemplo:class X(TypedDict): x: int class Y(TypedDict): y: int class Z(object): pass # A non-TypedDict class class XY(X, Y): pass # OK class XZ(X, Z): pass # raises TypeError
Un
TypedDict
puede ser genérico:class Group[T](TypedDict): key: T group: list[T]
To create a generic
TypedDict
that is compatible with Python 3.11 or lower, inherit fromGeneric
explicitly:T = TypeVar("T") class Group(TypedDict, Generic[T]): key: T group: list[T]
A
TypedDict
can be introspected via annotations dicts (see Prácticas recomendadas para las anotaciones for more information on annotations best practices),__total__
,__required_keys__
, and__optional_keys__
.- __total__¶
Point2D.__total__
gives the value of thetotal
argument. Example:>>> from typing import TypedDict >>> class Point2D(TypedDict): pass >>> Point2D.__total__ True >>> class Point2D(TypedDict, total=False): pass >>> Point2D.__total__ False >>> class Point3D(Point2D): pass >>> Point3D.__total__ True
This attribute reflects only the value of the
total
argument to the currentTypedDict
class, not whether the class is semantically total. For example, aTypedDict
with__total__
set toTrue
may have keys marked withNotRequired
, or it may inherit from anotherTypedDict
withtotal=False
. Therefore, it is generally better to use__required_keys__
and__optional_keys__
for introspection.
- __required_keys__¶
Added in version 3.9.
- __optional_keys__¶
Point2D.__required_keys__
yPoint2D.__optional_keys__
retornan objetos de la clasefrozenset
, que contienen las llaves requeridas y no requeridas, respectivamente.Las llaves marcadas con
Required
siempre aparecerán en__required_keys__
y las llaves marcadas conNotRequired
siempre aparecerán en__optional_keys__
.For backwards compatibility with Python 3.10 and below, it is also possible to use inheritance to declare both required and non-required keys in the same
TypedDict
. This is done by declaring aTypedDict
with one value for thetotal
argument and then inheriting from it in anotherTypedDict
with a different value fortotal
:>>> class Point2D(TypedDict, total=False): ... x: int ... y: int ... >>> class Point3D(Point2D): ... z: int ... >>> Point3D.__required_keys__ == frozenset({'z'}) True >>> Point3D.__optional_keys__ == frozenset({'x', 'y'}) True
Added in version 3.9.
Nota
If
from __future__ import annotations
is used or if annotations are given as strings, annotations are not evaluated when theTypedDict
is defined. Therefore, the runtime introspection that__required_keys__
and__optional_keys__
rely on may not work properly, and the values of the attributes may be incorrect.
Support for
ReadOnly
is reflected in the following attributes:- __readonly_keys__¶
A
frozenset
containing the names of all read-only keys. Keys are read-only if they carry theReadOnly
qualifier.Added in version 3.13.
- __mutable_keys__¶
A
frozenset
containing the names of all mutable keys. Keys are mutable if they do not carry theReadOnly
qualifier.Added in version 3.13.
Véase PEP 589 para más ejemplos y reglas detalladas del uso de
TypedDict
.Added in version 3.8.
Distinto en la versión 3.11: Se agrega soporte para marcar llaves individuales como
Required
oNotRequired
. Véase PEP 655.Distinto en la versión 3.11: Se agrega soporte para
TypedDict
genéricos.Distinto en la versión 3.13: Removed support for the keyword-argument method of creating
TypedDict
s.Distinto en la versión 3.13: Support for the
ReadOnly
qualifier was added.Deprecated since version 3.13, will be removed in version 3.15: When using the functional syntax to create a TypedDict class, failing to pass a value to the “fields” parameter (
TD = TypedDict("TD")
) is deprecated. PassingNone
to the “fields” parameter (TD = TypedDict("TD", None)
) is also deprecated. Both will be disallowed in Python 3.15. To create a TypedDict class with 0 fields, useclass TD(TypedDict): pass
orTD = TypedDict("TD", {})
.
Protocolos¶
The following protocols are provided by the typing module. All are decorated
with @runtime_checkable
.
- class typing.SupportsAbs¶
Una ABC con un método abstracto
__abs__
que es covariante en su tipo retornado.
- class typing.SupportsBytes¶
Una ABC con un método abstracto
__bytes__
.
- class typing.SupportsComplex¶
Una ABC con un método abstracto
__complex__
.
- class typing.SupportsFloat¶
Una ABC con un método abstracto
__float__
.
- class typing.SupportsIndex¶
Una ABC con un método abstracto
__index__
.Added in version 3.8.
- class typing.SupportsInt¶
Una ABC con un método abstracto
__int__
.
- class typing.SupportsRound¶
Una ABC con un método abstracto
__round__
que es covariantes en su tipo retornado.
ABCs for working with IO¶
Funciones y decoradores¶
- typing.cast(typ, val)¶
Convertir un valor a un tipo.
Esto retorna el valor sin modificar. Para el validador de tipos esto indica que el valor de retorno tiene el tipo señalado pero, de manera intencionada, no se comprobará en tiempo de ejecución (para maximizar la velocidad).
- typing.assert_type(val, typ, /)¶
Solicitar a un validador de tipos que confirme que val tiene typ por tipo inferido.
At runtime this does nothing: it returns the first argument unchanged with no checks or side effects, no matter the actual type of the argument.
When a static type checker encounters a call to
assert_type()
, it emits an error if the value is not of the specified type:def greet(name: str) -> None: assert_type(name, str) # OK, inferred type of `name` is `str` assert_type(name, int) # type checker error
Esta función es útil para asegurarse de que la comprensión que el validador de tipos tiene sobre un script está alineada con las intenciones de le desarrolladores:
def complex_function(arg: object): # Do some complex type-narrowing logic, # after which we hope the inferred type will be `int` ... # Test whether the type checker correctly understands our function assert_type(arg, int)
Added in version 3.11.
- typing.assert_never(arg, /)¶
Solicitar a un validador estático de tipos confirmar que una línea de código no es alcanzable.
Por ejemplo:
def int_or_str(arg: int | str) -> None: match arg: case int(): print("It's an int") case str(): print("It's a str") case _ as unreachable: assert_never(unreachable)
Here, the annotations allow the type checker to infer that the last case can never execute, because
arg
is either anint
or astr
, and both options are covered by earlier cases.If a type checker finds that a call to
assert_never()
is reachable, it will emit an error. For example, if the type annotation forarg
was insteadint | str | float
, the type checker would emit an error pointing out thatunreachable
is of typefloat
. For a call toassert_never
to pass type checking, the inferred type of the argument passed in must be the bottom type,Never
, and nothing else.En tiempo de ejecución, ésto lanza una excepción cuando es llamado.
Ver también
Unreachable Code and Exhaustiveness Checking has more information about exhaustiveness checking with static typing.
Added in version 3.11.
- typing.reveal_type(obj, /)¶
Ask a static type checker to reveal the inferred type of an expression.
When a static type checker encounters a call to this function, it emits a diagnostic with the inferred type of the argument. For example:
x: int = 1 reveal_type(x) # Revealed type is "builtins.int"
Ésto puede ser de utilidad cuando se desea debuguear cómo tu validador de tipos maneja una pieza particular de código.
At runtime, this function prints the runtime type of its argument to
sys.stderr
and returns the argument unchanged (allowing the call to be used within an expression):x = reveal_type(1) # prints "Runtime type is int" print(x) # prints "1"
Note that the runtime type may be different from (more or less specific than) the type statically inferred by a type checker.
Most type checkers support
reveal_type()
anywhere, even if the name is not imported fromtyping
. Importing the name fromtyping
, however, allows your code to run without runtime errors and communicates intent more clearly.Added in version 3.11.
- @typing.dataclass_transform(*, eq_default=True, order_default=False, kw_only_default=False, frozen_default=False, field_specifiers=(), **kwargs)¶
Decorator to mark an object as providing
dataclass
-like behavior.dataclass_transform
may be used to decorate a class, metaclass, or a function that is itself a decorator. The presence of@dataclass_transform()
tells a static type checker that the decorated object performs runtime «magic» that transforms a class in a similar way to@dataclasses.dataclass
.Example usage with a decorator function:
@dataclass_transform() def create_model[T](cls: type[T]) -> type[T]: ... return cls @create_model class CustomerModel: id: int name: str
En una clase base:
@dataclass_transform() class ModelBase: ... class CustomerModel(ModelBase): id: int name: str
En una metaclase:
@dataclass_transform() class ModelMeta(type): ... class ModelBase(metaclass=ModelMeta): ... class CustomerModel(ModelBase): id: int name: str
Las clases
CustomerModel
definidas arribe serán tratadas por los validadores de tipo de forma similar a las clases que sean creadas con@dataclasses.dataclass
. Por ejemplo, los validadores de tipo asumirán que estas clases tienen métodos__init__
que aceptanid
yname
.La clase, metaclase o función decorada puede aceptar los siguientes argumentos booleanos, de los cuales los validadores de tipos asumirán que tienen el mismo efecto que tendrían en el decorador
@dataclasses.dataclass
:init
,eq
,order
,unsafe_hash
,frozen
,match_args
,kw_only
, yslots
. Debe ser posible evaluar estáticamente el valor de estos argumentos (True
oFalse
).Es posible utilizar los argumentos del decorador
dataclass_transform
para personalizar los comportamientos por defecto de la clase, metaclase o función decorada:- Parámetros:
eq_default (bool) – Indicates whether the
eq
parameter is assumed to beTrue
orFalse
if it is omitted by the caller. Defaults toTrue
.order_default (bool) – Indicates whether the
order
parameter is assumed to beTrue
orFalse
if it is omitted by the caller. Defaults toFalse
.kw_only_default (bool) – Indicates whether the
kw_only
parameter is assumed to beTrue
orFalse
if it is omitted by the caller. Defaults toFalse
.frozen_default (bool) –
Indicates whether the
frozen
parameter is assumed to beTrue
orFalse
if it is omitted by the caller. Defaults toFalse
.Added in version 3.12.
field_specifiers (tuple[Callable[..., Any], ...]) – Specifies a static list of supported classes or functions that describe fields, similar to
dataclasses.field()
. Defaults to()
.**kwargs (Any) – Es posible pasar arbitrariamente otros argumentos nombrados para permitir posibles extensiones futuras.
Type checkers recognize the following optional parameters on field specifiers:
¶ Parameter name
Description
init
Indicates whether the field should be included in the synthesized
__init__
method. If unspecified,init
defaults toTrue
.default
Provides the default value for the field.
default_factory
Provides a runtime callback that returns the default value for the field. If neither
default
nordefault_factory
are specified, the field is assumed to have no default value and must be provided a value when the class is instantiated.factory
An alias for the
default_factory
parameter on field specifiers.kw_only
Indicates whether the field should be marked as keyword-only. If
True
, the field will be keyword-only. IfFalse
, it will not be keyword-only. If unspecified, the value of thekw_only
parameter on the object decorated withdataclass_transform
will be used, or if that is unspecified, the value ofkw_only_default
ondataclass_transform
will be used.alias
Provides an alternative name for the field. This alternative name is used in the synthesized
__init__
method.En tiempo de ejecución, este decorador registra sus argumentos en el atributo
__dataclass_transform__
del objeto decorado. No tiene otro efecto en tiempo de ejecución.Véase PEP 681 para más detalle.
Added in version 3.11.
- @typing.overload¶
Decorator for creating overloaded functions and methods.
The
@overload
decorator allows describing functions and methods that support multiple different combinations of argument types. A series of@overload
-decorated definitions must be followed by exactly one non-@overload
-decorated definition (for the same function/method).@overload
-decorated definitions are for the benefit of the type checker only, since they will be overwritten by the non-@overload
-decorated definition. The non-@overload
-decorated definition, meanwhile, will be used at runtime but should be ignored by a type checker. At runtime, calling an@overload
-decorated function directly will raiseNotImplementedError
.An example of overload that gives a more precise type than can be expressed using a union or a type variable:
@overload def process(response: None) -> None: ... @overload def process(response: int) -> tuple[int, str]: ... @overload def process(response: bytes) -> str: ... def process(response): ... # actual implementation goes here
Véase PEP 484 para más detalle y comparación con otras semánticas de tipado.
Distinto en la versión 3.11: Ahora es posible introspectar en tiempo de ejecución las funciones sobrecargadas utilizando
get_overloads()
.
- typing.get_overloads(func)¶
Return a sequence of
@overload
-decorated definitions for func.func is the function object for the implementation of the overloaded function. For example, given the definition of
process
in the documentation for@overload
,get_overloads(process)
will return a sequence of three function objects for the three defined overloads. If called on a function with no overloads,get_overloads()
returns an empty sequence.get_overloads()
puede ser utilizada para introspectar en tiempo de ejecución una función sobrecargada.Added in version 3.11.
- typing.clear_overloads()¶
Clear all registered overloads in the internal registry.
This can be used to reclaim the memory used by the registry.
Added in version 3.11.
- @typing.final¶
Decorator to indicate final methods and final classes.
Decorating a method with
@final
indicates to a type checker that the method cannot be overridden in a subclass. Decorating a class with@final
indicates that it cannot be subclassed.Por ejemplo:
class Base: @final def done(self) -> None: ... class Sub(Base): def done(self) -> None: # Error reported by type checker ... @final class Leaf: ... class Other(Leaf): # Error reported by type checker ...
No hay comprobación en tiempo de ejecución para estas propiedades. Véase PEP 591 para más detalles.
Added in version 3.8.
Distinto en la versión 3.11: The decorator will now attempt to set a
__final__
attribute toTrue
on the decorated object. Thus, a check likeif getattr(obj, "__final__", False)
can be used at runtime to determine whether an objectobj
has been marked as final. If the decorated object does not support setting attributes, the decorator returns the object unchanged without raising an exception.
- @typing.no_type_check¶
Un decorador para indicar que las anotaciones no deben ser comprobadas como indicadores de tipo.
This works as a class or function decorator. With a class, it applies recursively to all methods and classes defined in that class (but not to methods defined in its superclasses or subclasses). Type checkers will ignore all annotations in a function or class with this decorator.
@no_type_check
mutates the decorated object in place.
- @typing.no_type_check_decorator¶
Un decorador que asigna a otro decorador el efecto de
no_type_check()
(no comprobar tipo).Esto hace que el decorador decorado añada el efecto de
no_type_check()
a la función decorada.Deprecated since version 3.13, will be removed in version 3.15: No type checker ever added support for
@no_type_check_decorator
. It is therefore deprecated, and will be removed in Python 3.15.
- @typing.override¶
Decorator to indicate that a method in a subclass is intended to override a method or attribute in a superclass.
Type checkers should emit an error if a method decorated with
@override
does not, in fact, override anything. This helps prevent bugs that may occur when a base class is changed without an equivalent change to a child class.For example:
class Base: def log_status(self) -> None: ... class Sub(Base): @override def log_status(self) -> None: # Okay: overrides Base.log_status ... @override def done(self) -> None: # Error reported by type checker ...
There is no runtime checking of this property.
The decorator will attempt to set an
__override__
attribute toTrue
on the decorated object. Thus, a check likeif getattr(obj, "__override__", False)
can be used at runtime to determine whether an objectobj
has been marked as an override. If the decorated object does not support setting attributes, the decorator returns the object unchanged without raising an exception.See PEP 698 for more details.
Added in version 3.12.
- @typing.type_check_only¶
Decorator to mark a class or function as unavailable at runtime.
Este decorador no está disponible en tiempo de ejecución. Existe principalmente para marcar clases que se definen en archivos stub para cuando una implementación retorna una instancia de una clase privada:
@type_check_only class Response: # private or not available at runtime code: int def get_header(self, name: str) -> str: ... def fetch_response() -> Response: ...
Nótese que no se recomienda retornar instancias de clases privadas. Normalmente es preferible convertirlas en clases públicas.
Ayudas de introspección¶
- typing.get_type_hints(obj, globalns=None, localns=None, include_extras=False)¶
Retorna un diccionario que contiene indicaciones de tipo para una función, método, módulo o objeto clase.
This is often the same as
obj.__annotations__
, but this function makes the following changes to the annotations dictionary:Forward references encoded as string literals or
ForwardRef
objects are handled by evaluating them in globalns, localns, and (where applicable) obj’s type parameter namespace. If globalns or localns is not given, appropriate namespace dictionaries are inferred from obj.None
is replaced withtypes.NoneType
.If
@no_type_check
has been applied to obj, an empty dictionary is returned.If obj is a class
C
, the function returns a dictionary that merges annotations fromC
’s base classes with those onC
directly. This is done by traversingC.__mro__
and iteratively combining__annotations__
dictionaries. Annotations on classes appearing earlier in the method resolution order always take precedence over annotations on classes appearing later in the method resolution order.The function recursively replaces all occurrences of
Annotated[T, ...]
withT
, unless include_extras is set toTrue
(seeAnnotated
for more information).
See also
inspect.get_annotations()
, a lower-level function that returns annotations more directly.Nota
If any forward references in the annotations of obj are not resolvable or are not valid Python code, this function will raise an exception such as
NameError
. For example, this can happen with imported type aliases that include forward references, or with names imported underif TYPE_CHECKING
.Distinto en la versión 3.9: Added
include_extras
parameter as part of PEP 593. See the documentation onAnnotated
for more information.Distinto en la versión 3.11: Anteriormente, se agregaba
Optional[t]
en las anotaciones de funciones o métodos si se establecía un valor por defecto igual aNone
. Ahora la anotación es retornada sin cambios.
- typing.get_origin(tp)¶
Get the unsubscripted version of a type: for a typing object of the form
X[Y, Z, ...]
returnX
.If
X
is a typing-module alias for a builtin orcollections
class, it will be normalized to the original class. IfX
is an instance ofParamSpecArgs
orParamSpecKwargs
, return the underlyingParamSpec
. ReturnNone
for unsupported objects.Examples:
assert get_origin(str) is None assert get_origin(Dict[str, int]) is dict assert get_origin(Union[int, str]) is Union assert get_origin(Annotated[str, "metadata"]) is Annotated P = ParamSpec('P') assert get_origin(P.args) is P assert get_origin(P.kwargs) is P
Added in version 3.8.
- typing.get_args(tp)¶
Get type arguments with all substitutions performed: for a typing object of the form
X[Y, Z, ...]
return(Y, Z, ...)
.If
X
is a union orLiteral
contained in another generic type, the order of(Y, Z, ...)
may be different from the order of the original arguments[Y, Z, ...]
due to type caching. Return()
for unsupported objects.Examples:
assert get_args(int) == () assert get_args(Dict[int, str]) == (int, str) assert get_args(Union[int, str]) == (int, str)
Added in version 3.8.
- typing.get_protocol_members(tp)¶
Return the set of members defined in a
Protocol
.>>> from typing import Protocol, get_protocol_members >>> class P(Protocol): ... def a(self) -> str: ... ... b: int >>> get_protocol_members(P) == frozenset({'a', 'b'}) True
Raise
TypeError
for arguments that are not Protocols.Added in version 3.13.
- typing.is_protocol(tp)¶
Determine if a type is a
Protocol
.Por ejemplo:
class P(Protocol): def a(self) -> str: ... b: int is_protocol(P) # => True is_protocol(int) # => False
Added in version 3.13.
- typing.is_typeddict(tp)¶
Compruebe si un tipo es
TypedDict
.For example:
class Film(TypedDict): title: str year: int assert is_typeddict(Film) assert not is_typeddict(list | str) # TypedDict is a factory for creating typed dicts, # not a typed dict itself assert not is_typeddict(TypedDict)
Added in version 3.10.
- class typing.ForwardRef¶
Class used for internal typing representation of string forward references.
For example,
List["SomeClass"]
is implicitly transformed intoList[ForwardRef("SomeClass")]
.ForwardRef
should not be instantiated by a user, but may be used by introspection tools.Nota
Los tipos genéricos de PEP 585, como
list["SomeClass"]
, no se transformarán implícitamente enlist[ForwardRef("SomeClass")]
y, por lo tanto, no se resolverán automáticamente enlist[SomeClass]
.Added in version 3.7.4.
- typing.NoDefault¶
A sentinel object used to indicate that a type parameter has no default value. For example:
>>> T = TypeVar("T") >>> T.__default__ is typing.NoDefault True >>> S = TypeVar("S", default=None) >>> S.__default__ is None True
Added in version 3.13.
Constantes¶
- typing.TYPE_CHECKING¶
A special constant that is assumed to be
True
by 3rd party static type checkers. It isFalse
at runtime.Uso:
if TYPE_CHECKING: import expensive_mod def fun(arg: 'expensive_mod.SomeType') -> None: local_var: expensive_mod.AnotherType = other_fun()
Nótese que la primera anotación de tipo debe estar rodeada por comillas, convirtiéndola en una «referencia directa», para ocultar al intérprete la referencia
expensive_mod
en tiempo de ejecución. Las anotaciones de tipo para variables locales no se evalúan, así que la segunda anotación no necesita comillas.Nota
Si se utiliza
from __future__ import annotations
, las anotaciones no son evaluadas al momento de la definición de funciones. En cambio, serán almacenadas como cadenas de texto en__annotations__
. Ésto vuelve innecesario el uso de comillas alrededor de la anotación (véase PEP 563).Added in version 3.5.2.
Deprecated aliases¶
This module defines several deprecated aliases to pre-existing
standard library classes. These were originally included in the typing
module in order to support parameterizing these generic classes using []
.
However, the aliases became redundant in Python 3.9 when the
corresponding pre-existing classes were enhanced to support []
(see
PEP 585).
The redundant types are deprecated as of Python 3.9. However, while the aliases may be removed at some point, removal of these aliases is not currently planned. As such, no deprecation warnings are currently issued by the interpreter for these aliases.
If at some point it is decided to remove these deprecated aliases, a deprecation warning will be issued by the interpreter for at least two releases prior to removal. The aliases are guaranteed to remain in the typing module without deprecation warnings until at least Python 3.14.
Type checkers are encouraged to flag uses of the deprecated types if the program they are checking targets a minimum Python version of 3.9 or newer.
Aliases to built-in types¶
- class typing.Dict(dict, MutableMapping[KT, VT])¶
Deprecated alias to
dict
.Note that to annotate arguments, it is preferred to use an abstract collection type such as
Mapping
rather than to usedict
ortyping.Dict
.Obsoleto desde la versión 3.9:
builtins.dict
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.List(list, MutableSequence[T])¶
Deprecated alias to
list
.Note that to annotate arguments, it is preferred to use an abstract collection type such as
Sequence
orIterable
rather than to uselist
ortyping.List
.Obsoleto desde la versión 3.9:
builtins.list
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.Set(set, MutableSet[T])¶
Deprecated alias to
builtins.set
.Note that to annotate arguments, it is preferred to use an abstract collection type such as
collections.abc.Set
rather than to useset
ortyping.Set
.Obsoleto desde la versión 3.9:
builtins.set
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.FrozenSet(frozenset, AbstractSet[T_co])¶
Deprecated alias to
builtins.frozenset
.Obsoleto desde la versión 3.9:
builtins.frozenset
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- typing.Tuple¶
Deprecated alias for
tuple
.tuple
andTuple
are special-cased in the type system; see Annotating tuples for more details.Obsoleto desde la versión 3.9:
builtins.tuple
ahora soporta el uso de subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.Type(Generic[CT_co])¶
Deprecated alias to
type
.See The type of class objects for details on using
type
ortyping.Type
in type annotations.Added in version 3.5.2.
Obsoleto desde la versión 3.9:
builtins.type
ahora soporta el uso de subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
Aliases to types in collections
¶
- class typing.DefaultDict(collections.defaultdict, MutableMapping[KT, VT])¶
Deprecated alias to
collections.defaultdict
.Added in version 3.5.2.
Obsoleto desde la versión 3.9:
collections.defaultdict
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.OrderedDict(collections.OrderedDict, MutableMapping[KT, VT])¶
Deprecated alias to
collections.OrderedDict
.Added in version 3.7.2.
Obsoleto desde la versión 3.9:
collections.OrderedDict
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.ChainMap(collections.ChainMap, MutableMapping[KT, VT])¶
Deprecated alias to
collections.ChainMap
.Added in version 3.6.1.
Obsoleto desde la versión 3.9:
collections.ChainMap
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.Counter(collections.Counter, Dict[T, int])¶
Deprecated alias to
collections.Counter
.Added in version 3.6.1.
Obsoleto desde la versión 3.9:
collections.Counter
ahora soporta subíndices ([]
)`. Véase PEP 585 y Tipo Alias Genérico.
- class typing.Deque(deque, MutableSequence[T])¶
Deprecated alias to
collections.deque
.Added in version 3.6.1.
Obsoleto desde la versión 3.9:
collections.deque
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
Aliases to other concrete types¶
- class typing.Pattern¶
- class typing.Match¶
Deprecated aliases corresponding to the return types from
re.compile()
andre.match()
.These types (and the corresponding functions) are generic over
AnyStr
.Pattern
can be specialised asPattern[str]
orPattern[bytes]
;Match
can be specialised asMatch[str]
orMatch[bytes]
.Obsoleto desde la versión 3.9: Las clases
Pattern
yMatch
dere
ahora soportan[]
. Véase PEP 585 y Tipo Alias Genérico.
- class typing.Text¶
Deprecated alias for
str
.Text
is provided to supply a forward compatible path for Python 2 code: in Python 2,Text
is an alias forunicode
.Úsese
Text
para indicar que un valor debe contener una cadena de texto Unicode de manera que sea compatible con Python 2 y Python 3:def add_unicode_checkmark(text: Text) -> Text: return text + u' \u2713'
Added in version 3.5.2.
Obsoleto desde la versión 3.11: Python 2 is no longer supported, and most type checkers also no longer support type checking Python 2 code. Removal of the alias is not currently planned, but users are encouraged to use
str
instead ofText
.
Aliases to container ABCs in collections.abc
¶
- class typing.AbstractSet(Collection[T_co])¶
Deprecated alias to
collections.abc.Set
.Obsoleto desde la versión 3.9:
collections.abc.Set
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.ByteString(Sequence[int])¶
Este tipo representa a los tipos
bytes
,bytearray
, ymemoryview
de secuencias de bytes.Deprecated since version 3.9, will be removed in version 3.14: Prefer
collections.abc.Buffer
, or a union likebytes | bytearray | memoryview
.
- class typing.Collection(Sized, Iterable[T_co], Container[T_co])¶
Deprecated alias to
collections.abc.Collection
.Added in version 3.6.
Obsoleto desde la versión 3.9:
collections.abc.Collection
ahora soporta la sintaxis de subíndice ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.Container(Generic[T_co])¶
Deprecated alias to
collections.abc.Container
.Obsoleto desde la versión 3.9:
collections.abc.Container
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.ItemsView(MappingView, AbstractSet[tuple[KT_co, VT_co]])¶
Deprecated alias to
collections.abc.ItemsView
.Obsoleto desde la versión 3.9:
collections.abc.ItemsView
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.KeysView(MappingView, AbstractSet[KT_co])¶
Deprecated alias to
collections.abc.KeysView
.Obsoleto desde la versión 3.9:
collections.abc.KeysView
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.Mapping(Collection[KT], Generic[KT, VT_co])¶
Deprecated alias to
collections.abc.Mapping
.Obsoleto desde la versión 3.9:
collections.abc.Mapping
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.MappingView(Sized)¶
Deprecated alias to
collections.abc.MappingView
.Obsoleto desde la versión 3.9:
collections.abc.MappingView
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.MutableMapping(Mapping[KT, VT])¶
Deprecated alias to
collections.abc.MutableMapping
.Obsoleto desde la versión 3.9:
collections.abc.MutableMapping
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.MutableSequence(Sequence[T])¶
Deprecated alias to
collections.abc.MutableSequence
.Obsoleto desde la versión 3.9:
collections.abc.MutableSequence
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.MutableSet(AbstractSet[T])¶
Deprecated alias to
collections.abc.MutableSet
.Obsoleto desde la versión 3.9:
collections.abc.MutableSet
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.Sequence(Reversible[T_co], Collection[T_co])¶
Deprecated alias to
collections.abc.Sequence
.Obsoleto desde la versión 3.9:
collections.abc.Sequence
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.ValuesView(MappingView, Collection[_VT_co])¶
Deprecated alias to
collections.abc.ValuesView
.Obsoleto desde la versión 3.9:
collections.abc.ValuesView
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
Aliases to asynchronous ABCs in collections.abc
¶
- class typing.Coroutine(Awaitable[ReturnType], Generic[YieldType, SendType, ReturnType])¶
Deprecated alias to
collections.abc.Coroutine
.See Annotating generators and coroutines for details on using
collections.abc.Coroutine
andtyping.Coroutine
in type annotations.Added in version 3.5.3.
Obsoleto desde la versión 3.9:
collections.abc.Coroutine
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.AsyncGenerator(AsyncIterator[YieldType], Generic[YieldType, SendType])¶
Deprecated alias to
collections.abc.AsyncGenerator
.See Annotating generators and coroutines for details on using
collections.abc.AsyncGenerator
andtyping.AsyncGenerator
in type annotations.Added in version 3.6.1.
Obsoleto desde la versión 3.9:
collections.abc.AsycGenerator
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.Distinto en la versión 3.13: The
SendType
parameter now has a default.
- class typing.AsyncIterable(Generic[T_co])¶
Deprecated alias to
collections.abc.AsyncIterable
.Added in version 3.5.2.
Obsoleto desde la versión 3.9:
collections.abc.AsyncIterable
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.AsyncIterator(AsyncIterable[T_co])¶
Deprecated alias to
collections.abc.AsyncIterator
.Added in version 3.5.2.
Obsoleto desde la versión 3.9:
collections.abc.AsyncIterator
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.Awaitable(Generic[T_co])¶
Deprecated alias to
collections.abc.Awaitable
.Added in version 3.5.2.
Obsoleto desde la versión 3.9:
collections.abc.Awaitable
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
Aliases to other ABCs in collections.abc
¶
- class typing.Iterable(Generic[T_co])¶
Deprecated alias to
collections.abc.Iterable
.Obsoleto desde la versión 3.9:
collections.abc.Iterable
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.Iterator(Iterable[T_co])¶
Deprecated alias to
collections.abc.Iterator
.Obsoleto desde la versión 3.9:
collections.abc.Iterator
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- typing.Callable¶
Deprecated alias to
collections.abc.Callable
.See Annotating callable objects for details on how to use
collections.abc.Callable
andtyping.Callable
in type annotations.Obsoleto desde la versión 3.9:
collections.abc.Callable
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.Distinto en la versión 3.10:
Callable
ahora es compatible conParamSpec
yConcatenate
. Consulte PEP 612 para obtener más información.
- class typing.Generator(Iterator[YieldType], Generic[YieldType, SendType, ReturnType])¶
Deprecated alias to
collections.abc.Generator
.See Annotating generators and coroutines for details on using
collections.abc.Generator
andtyping.Generator
in type annotations.Obsoleto desde la versión 3.9:
collections.abc.Generator
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.Distinto en la versión 3.13: Default values for the send and return types were added.
- class typing.Hashable¶
Deprecated alias to
collections.abc.Hashable
.Obsoleto desde la versión 3.12: Use
collections.abc.Hashable
directly instead.
- class typing.Reversible(Iterable[T_co])¶
Deprecated alias to
collections.abc.Reversible
.Obsoleto desde la versión 3.9:
collections.abc.Reversible
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.
- class typing.Sized¶
Deprecated alias to
collections.abc.Sized
.Obsoleto desde la versión 3.12: Use
collections.abc.Sized
directly instead.
Aliases to contextlib
ABCs¶
- class typing.ContextManager(Generic[T_co, ExitT_co])¶
Deprecated alias to
contextlib.AbstractContextManager
.The first type parameter,
T_co
, represents the type returned by the__enter__()
method. The optional second type parameter,ExitT_co
, which defaults tobool | None
, represents the type returned by the__exit__()
method.Added in version 3.5.4.
Obsoleto desde la versión 3.9:
contextlib.AbstractContextManager
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.Distinto en la versión 3.13: Added the optional second type parameter,
ExitT_co
.
- class typing.AsyncContextManager(Generic[T_co, AExitT_co])¶
Deprecated alias to
contextlib.AbstractAsyncContextManager
.The first type parameter,
T_co
, represents the type returned by the__aenter__()
method. The optional second type parameter,AExitT_co
, which defaults tobool | None
, represents the type returned by the__aexit__()
method.Added in version 3.6.2.
Obsoleto desde la versión 3.9:
contextlib.AbstractAsyncContextManager
ahora soporta subíndices ([]
). Véase PEP 585 y Tipo Alias Genérico.Distinto en la versión 3.13: Added the optional second type parameter,
AExitT_co
.
Línea de tiempo de obsolescencia de características principales¶
Algunas características de typing
están obsoletas y podrán ser removidas en versiones futuras de Python. Lo que sigue es una tabla que resume las principales obsolescencias para su conveniencia. Ésto está sujeto a cambio y no todas las obsolescencias están representadas.
Característica |
En desuso desde |
Eliminación proyectada |
PEP/issue |
---|---|---|---|
Versiones |
3.9 |
Undecided (see Deprecated aliases for more information) |
|
3.9 |
3.14 |
||
3.11 |
No decidido |
||
3.12 |
No decidido |
||
3.12 |
No decidido |
||
3.13 |
3.15 |
||
3.13 |
3.18 |