The Python Language Reference
Anuooicuon 3.13.7

Guido van Rossum and the Python development team

Zenteuppiou 01, 2025

Python Software Foundation
Email: docs@python.org

Meplexoueva

1 Ewoyoyn 3
1.1 EvOMOKTKEG YAOTTOWOELS « « « v v v v v e 3
1.2 ENUEIOYPOPIOL + « o v vt e e e e e e e e e e e e e e 4

2 Lexical analysis 5
2.1 LINeStructure o e e e e e e e e e e e e e e 5

2.1.1 Logicallines e e 5
2.1.2 Physicallines 5
2.1.3 0 CommentS . . . v v vt e e e e e e e e e e e e e e e e e 5
2.1.4 Encodingdeclarations e e e e e e e e e e 6
2.1.5 Explicitline joining o o e e e e e e e e e e 6
2.1.6 Implicitline joining L e 6
217 Blanklines. oL e e e e 6
2.1.8 Indentation L. e e e 7
2.1.9 Whitespace between tokens L. e e 8
22 Othertokens i i e e e e e e 8
2.3 Identifiersand keywords oL e 8
231 Keywords 9
232 SoftKeywords 9
2.3.3 Reserved classes of identifiers oL 9
24 Literals oL e e e e e 10
24.1 Stringand Bytes literals L e e 10
242 String literal concatenation L. Lo L L 12
243 f-Srings o e e e e e e e e 12
244 Numericliterals L e e 14
245 Integerliterals L e e e e e e e e 14
2.4.6 Floating-point literals e e e e 15
247 Imaginaryliterals e 15
2.5 OPperators e e e e e e 15
2.6 Delimiters e e e e e 15

3 Data model 17
3.1 Objects, values and types o o i e e e e e e e e e e e e e e e e 17
3.2 Thestandard type hierarchy L 18

32,1 NONE. . . o e e e 18
3.22 NotImplemented e e e e e 18
323 EIIPSIS. .« o o v o e e e e e e e 18
324 numbers.NUumber e e e e e e e 18
325 Sequences e 19
326 SetLYPeS . v v v e e e e e e e e e e e e e e e e e 20
327 MapPINGS . . v v o e 21

32.8 Callable types o o e e e e 21

329 Modules 24
32,10 Customclasses 27
3201 ClassinStances« v v v v vt e e e e e e e e e e e e 29
3.2.12 1/O objects (also known as file objects) L 29
32,13 Internal types e e e e e 29
3.3 Special methodnames L e e e e e e e e e 34
33.1 Basiccustomization 35
3.3.2 Customizing attribute accesso e e e 38
3.3.3 Customizing class creationol e e e e e e e 42
3.34 Customizing instance and subclasschecks o oL 46
3.3.,5 Emulating generiC typeso i it e e e e e e e e e e e e e 46
3.3.6 Emulating callable objects e 48
3.3.77 Emulating container types oot et e e e e e e e e e e e 48
3.3.8 Emulating numeric typeso L. e e 50
3.3.9 With Statement Context Managers v v i 52
3.3.10 Customizing positional arguments in class pattern matching 53
3.3.11 Emulating buffer types e 53
3.3.12 Special method lookup 54
34 Coroutines e e e e e e e e 55
34.1 Awaitable Objects L. 55
342 Coroutine ObJectS v v v v v e e e e e e e e 56
3.4.3 Asynchronous Iterators e e e e e e e 56
3.4.4 Asynchronous Context Managers v v v v v v vttt e e e 57
Movtého ektéheog 59
4.1 Aoun eVOQ TPOYPAMUOTOS « v v v v e e e e e e e e e e e e e e e e e 59
42 OVOUOOLO KOL GUVOEDT] + v v v v v v e 59
421 ZUVOEON OVOUGTOV . & v v v v v v e v e e e e e e e e e e e e e e 59
422 ERDMUOT OVOUGTOV .« . v v v v v v e e e e e e e e e e e e e e e e e e 60
423 ZNUEOYPOPLOL TTEDIOL « « « v v v v e 61
424 KoOUOTEPNUEVN EKTUINON « v v v v v e 62
425 Evoouotouéveg CUVOPTNOELS KOL TEPLOPLOUEVT] EKTEREON .+ « v v v v v v v v v e v . 62
42.6 AMNETiOPON UE OUVOULKEG MELTOVPYIES .+« v v v v v o e e e e e e e 63
43 EEOPEOELG « v v v v o e e e e e e e e e 63
The import system 65
5.1 dmportlib e e e e e e e 65
5.2 Packages e 66
5.2.1 Regularpackages 66
5.2.2 Namespace packages e e e 66
5.3 Searching L e e e e e e e e 67
53.1 Themodulecache L e 67
5.32 Findersandloaders 67
533 Importhooks e 67
534 Themetapath L e 68
54 Loading e e e e e e e e e e 68
541 Loaders 69
542 Submodules e 70
543 Modulespecs e e e e e e e 71
544 __path__ attributesonmodules 71
545 Modulereprs . . oL .. e e e e e e e e e e e e e 71
5.4.6 Cached bytecode invalidation e 71
5.5 ThePathBasedFinder e 72
5.5.1 Pathentryfinders e 72
5.5.2 Pathentry finder protocol 73
5.6 Replacing the standard import systemo L e 74
5.7 Package Relative Imports L e e e e e 74

5.8 Special considerations for __main__ e e e e e 74
5.8 1 MAIN__._ SPEC__ v v i e 75
59 References e e e 75
Expressions 77
6.1 Arithmetic CONVersions i it e e e e e e e e e 77
6.2 AWOMS o e e e e e e 77
6.2.1 Identifiers (Names) i i e e e e e e e e e e e 77
6.2.2 Literals e e 78
6.2.3 Parenthesized forms 78
6.2.4 Displays for lists, sets and dictionaries e 79
6.2.5 Listdisplays oL e e e e e e e e e 79
6.2.6 Setdisplays e 79
6.2.7 Dictionary displays e 80
6.2.8 Generator EXPressionsot . e e e e e e e e e e e e e e e e e 80
6.2.9 Yield eXpressions i e 81
6.3 Primaries e e e e e 85
6.3.1 Attributereferences L L e 85
6.3.2 SubsCriptions e e e 85
6.3.3 SLCINGS e e e 86
6.3.4 Calls e 86
6.4 AWt @XPIeSSION .+ . v v v v v e 88
6.5 The power Operator o v v i i i e e e e e e e e e e e e e e e 88
6.6 Unary arithmetic and bitwise operations o 88
6.7 Binary arithmetic operations e e e e e 89
6.8 Shifting operations L e e e e 90
6.9 Binary bitwise Operations i i e e e e e e e e e e e e e e e e e 90
6.10 CompariSONS v i i e e e e e e e e e e e e e e e e e e 90
6.10.1 Value comparisons L e e 91
6.10.2 Membership testoperationso 93
6.10.3 Identity COMPATiSONS o vt v vttt e e e e e e e e e e e e 93
6.11 Boolean operations v vt i e e e e e e e e e e e e e e e e e 93
6.12 AsSignment eXPressions . . . v v v v v e 93
6.13 Conditional eXpressions e e e e e e e e e e e e 94
6.14 Lambdas e e e e e e 94
6.15 Expressionlists e e e 94
6.16 Evaluationorder e 95
6.17 Operator precedence v v v i i e e e e e e e e e e e e e e e e 95
Simple statements 97
7.1 EXpression StatementS v i h e 97
7.2 ASSIgNMENt StAtEMENLS . .« . . v v v v e 98
7.2.1 Augmented assignment statements e e 99
7.2.2 Annotated assignment statements Lo 100
7.3 Theassert statement ottt e e e e 101
7.4 ThepasssStatemMent i i i it e e e e e e e e e e e e e e e e 101
7.5 Thedel Statement v v v vt ittt e e e e e e e e e e e e 101
7.6 The returnstatementt e e e e e 101
777 The yieldstatement o v v i it v it e e e e e e e e e e e e e e 102
7.8 The raisestatement ittt i e e e e e e e e e e e 102
7.9 Thebreak statement it i vt e e e e e 104
7.10 The continue statement o vttt e e e e e e e e e e e 104
7.11 The import statement o i e 104
7111 Future statements v v vt b e e e e e e e e e e e e e e e e e 106
7.12 The global statement v i v v vt e e e e e e e e e e e e e e e e e e 107
7.13 The nonlocal statement vt vttt e e e e e e e e 107
7.14 The typestatement i i e e e e e e e e e e e e e e e e e e 107

8 Compound statements 109

10
AI

BI

8.1 Theifstatement o i i i e e e e e e e e e 110
8.2 Thewhilestatementt v ittt it e e e e e 110
8.3 The forstatement i e e e e e e e e e e e e e e e 110
8.4 Thetrystatement o v it e e e e e e e e e e e e e e e e e e 111
84.1 exceptclause e e e 111
842 except*clause e e e e e e e 112
843 elseclause. e 113
844 finallyclause o o i i e e e e e e 113
8.5 Thewithstatement i i v i it e e e e e e e e e e e e 114
8.6 Thematchstatement i e e e 115
8.6.1 OVeIrVIEW e e e 116
8.62 Guards. e e e 117
8.6.3 TIrrefutable Case Blocks 117
8.6.4 Patterns L e e e e e 117
8.7 Function definitionsl e e e e e e 123
8.8 Class definitions i it e e e e e e e e e e e 125
8.9 Coroutines i i e e e e e e e e e e e e 126
8.9.1 Coroutine function definition oL 126
8.9.2 Theasync forstatement v i v i vttt 127
8.9.3 Theasync withstatement. ottt 127
8.10 Type parameter LiStS o L e e e e e e 128
8.10.1 Generic functions L e e e e e e 129
8.10.2 Genericclasses e e 130
8.10.3 Generictypealiases L e e 131
Top-level components 133
9.1 Complete Python programs o e e e e e e 133
9.2 Fileinput L e e e e e e e e e 133
0.3 Interactive INPUL o ot e e e e e e e e e e e e e e e e e e 134
0.4 EXpression inpUt v vt oo e e e e e e e e e e e e e e e 134
ITpng Tpodrarypapt] YPOUROTIKYG 135
T'\wocdpt 153
TYETIKG UE TNV TEKUNPiwOoT 173
B’.1 Zvuvteheotég ot tekpunpiwon g Python . . . L oL Lo L 173
Iotopia kou Adsra 175
I7.1 Homopio TOU MOYLOWLKOU « + o v v v v v o e i e e e e e e e e e e e e e e e e 175
[7.2 ‘Opol Kot tpoimobéoelg yio v tpdofaon 1 v xpnon g Python pe ddiovg tpdmovg 176
2.1 PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2 176
V.22 ZEYM®DONIA AAEIAZ BEOPEN.COMTIAPYTHON2.0 177
2.3 ZYMOONIA AAEIAZ CNRITIAPYTHON 1.6.1 178
24 ZYMOONIA AAEIAZ CWITIAPYTHONO09.0EQ=1.2 180
I7.2.5 ZERO-CLAUSE BSD AAEIA I'TA TON KQAIKA ZTHN TEKMHPIQZH THZ PYTHON181
7.3 Adeieg ko Evyapiotieg yio EvOoouatopuévo Aoyiowkoo oo 181
73,1 Mersenne TWiSter o o 0 0 0 e e e e e e e e 181
732 Sockets e e e e e 182
[7.3.3 AcUYYPOVEG SOCKEt UTINPEGLEG « « « « v v v v i e e e e e e e e e e e e e e e 183
[7.34 Awyeipton CooKIE . . . v v v v o e e e e e e e e e 183
[7.3.5 AVIVEUON EKTEREONG « « v v v v e e e e e e e e e e e e e e e 183
[7.3.6 Zuvvoaptoeig UUencode kaw UUdecodeo oo oot 184
[7.3.7 KiMjoewg Amopokpuouévng Awadukootog XML . . . oL oL oo 185
3.8 test_epoll e 185
739 Emdoyfkqueue e e e e 186
[7.3.10 SipHash24 o o e e e e 186
7311 strtodkondtoa.o L e e e e e 187

[7.3.12
I7.3.13
[7.3.14
I".3.15
I"3.16
I".3.17
I7.3.18
I7.3.19
I7.3.20
".3.21

A’ Copyright

Evpetipro

EXPAL . v o e 190
Libfi . . e e e e e 191
ZHb e 191
cfuhash e e 192
libmpdec e 192
W3C CI4N GOVITO QOKUUNG « « v v v o e v e e e e e e e e e e e e e e e e e e e 193
mimalloc e e e e e e 194
ASYNCIO + v v v o e e e e e e e e e e e e e e e e e e 194
Global Unbounded Sequences (GUS) 195

197

199

Vi

The Python Language Reference, Anpoociguon 3.13.7

This reference manual describes the syntax and «core semantics» of the language. It is terse, but attempts to be
exact and complete. The semantics of non-essential built-in object types and of the built-in functions and modules
are described in library-index. For an informal introduction to the language, see tutorial-index. For C or C++
programmers, two additional manuals exist: extending-index describes the high-level picture of how to write a Python
extension module, and the c-api-index describes the interfaces available to C/C++ programmers in detail.

Meplexopeva 1

The Python Language Reference, Anpoociguon 3.13.7

2 Meplexopeva

KE®AAAIO 1

Elcaywyn

AuTo T0 £YYELPLOL0 avapOPAg TEPLYPAPEL TNV YAWOOoO Tpoypauuatiopwoy Python. Aev mpoopiletol wg eyyeL-
pidLo exkpaOnong.

Ztnv mpoomdbeia To £yypapo outd vo. eivar 660 To duvatdv mo akpiéc, emhéyxOnke apykd N Ayyhki
yAdhooa, Kou votepa petappdotnke oty EAviks), kot oy oL emionueg tpodiaypagés, ue eEaipeon tnv ov-
vrokTikn kKo AeSthoyikhy avdduor. Avtd Ba mpémel Vo KAVEL TO £YYPOPO O KATOVONTd 0TOV UECO OvaL-
YVOOTY, 0MG B0 ApNOEL X DPO VLo APPLONULES. ZUVETMOGC, oV ePYOcOVY artd Tov Ap1 Ko Tpoomtadovoes va
viomowmoelg Eavé v Python amd to €yypago avtd kol pdvo, udihov Bo xpetaldtav va povtéels KAmoLo
TPAyROTO. KO YL TV OKpiPeLo iomg Ba KaTéhnyeg va VAOTTOLELG pat Teleimg dtapopetiky] YAwooo. Ao thv
G Thevpd, av xpnolporoteig v Python kot avapwtiéoot oot eival ot akpieig KovOveg OyETIKA Pe Vo
OUYKEKPLUEVO TOUED TNG YADOOOG, TOTE Olyoupa Oa toug Bpels edd mépa. Av Oa 0gheg va delg Evarv mmLo emi-
onuo opLopd g YAwooag, iowg Ba uropovoeg va Tpoopépelg Aiyo amd Tov xpdvo oou — 1) v PTLAEELS UL
unyov KAwvosoinong :-).

Eivou emkivouvo va tpoaBéoovpe morhé hemTouépeLeg VAOTTOINONG O€ £VaL EYYPAPO AVAPOPAS UIAS YADOOOG
— 1 vhomoinom dvvatar vo, aAMGEEL, Kau GAAeg vhoTtoLoeLg TG idLag YAbooag witopel va Aettovpyouv dto-
@opeTLkd. Amtd v G, 1) CPython eivan pio vhomoinon tng Python pe gvpeia xpnon (wotdoo evarhaktikég
VXAOTTOLOELG GUVEXILOUV VO VITOOTNPILOVTOL), KO OL OUYKEKPLUEVES TG LOLOHOPPieg eviote aEilovv avagopd,
eLOLK eXEL OV 1) VAOTToinon emiBatlet emrpoofeTovg meploplopovc. Emouévag, Oa fpelg oUVToueg «onueLm-
OELG VAOTTOINONG» 0€ SLAPOoPa. LEPT TOV KELUEVOD.

Kda0e vihomoinon tng Python ouvodeveton amd évav aptdud evoouatouévoyv Ko tpdtumwv module. Avtég
elval katayeypoupuéveg oto library-index. Kdmolo evoopatwuévo module avogépovtor 0tov odAnlemidpouv
ue Evay onuovItkd TpdTo Ue ToV 0pLoUd TG YAWOOoOG.

1.1 EVaAAAKTIKEG YAOTIOLNOELG

IMapdro mov vdpyeL wio vhomoinor g Python mov eivar pokpdv 1 o dudonun, vdpyovV eVOAAKTIKES
VAOTTOLNOELS TTOU £XOVV LOLOUTEPO EVOLAPEPOV YLO. DLAPOPOVG AVOPDITOVC.

I'vwotég vhomouoelg Tephauavouy:

CPython
Avt givan N TpTOTUIY KO 1 TLo Kahodiatnpnuévn vhomoinon g Python, ypouuévn oty C. Néeg
Lertovpyieg TG YADooag cuvnOme eupavilovral TpwTa edM.

Jython

H vlomoinon g Python otnv Java. Avti) 1) vhomoinomn umopel vo xpnoLpomombel wg yAdooo déoung
EVEPYELADV YLO. EPOPUOYEG OTNV Java, 1) WITOPEL va (PNOLULOTOLNOEL YLal VO dNULOVPYNOEL EQAPUOYEGS LLE

3

The Python Language Reference, Anpoociguon 3.13.7

™ xPNoN Twv BLBAMoONKOV TwV KAEoewmV TNg Java. Zuyva emiong xpNOLULOTOLELTAL Lol VO d1ULOVPYNOEL
Te0T V1o TG PLploOTkeg g Java. Tleploodtepeg mAnpopopieg wropeite va BPeite 0TNV LOTOOEALDO TG
Jython.

Python ywo to .NET
Avti) 1| vhomoinon otV TpaypoTkoTTa xpnowuomotel v vhomoinon CPython, odld eivor pia dio-
yeptouevn epapuoyn tov NET ko kdver dabéoueg tig NET Bifiliodnkec. Anuovpyndnke amd tov
Brian Lloyd. T meploodtepeg minpogopleg, deite v apyikn oekido tng Python yio to .NET.

IronPython
Mua evodhoktiky Python yia to .NET. Ze avtifeon pe to Python.NET, avt) eivar pio ohokinpouévn
vhomoinon g Python mov mapdyel IL, ko kdvel petarylwtiion tov kmdika g Python amevbeiog ot
yAwooa assembly Tou .NET. AnuovpynOnke amd tov Jim Hugunin, Tov mpwtdtumo dnuovpyd tg Jython.
T tepLoodtepeg mAnpogopieg deite TV Lotooehida g IronPython.

PyPy
Mo viomoinon g Python ypauuévn €& ohokifipou oe Python. Yrootnpiler apketég mponyuéveg het-
TovpYyieg Tov dev VITdPYOUV 08 GALES VAOTTOMMOELG OTTWG VITOoTHPLEN Yia stackless Ko Tov HeTayAmTTLOT
Just in Time. 'Evog amd toug 0tdyovg tov mpdtleKT elval va evOappUVEL TOV TELPOUATIONO LE TNV 1OL0
TV YADOOO KAVOVTOG 710 EUKOAN TV TPOTOToinom Tou diepunvéa (agpov eivar ypapuuévog otnyv Python).
[epioodtepeg mAnpopopieg elval duabéolueg otnv apytkn oelido tov PyPy mpotlext.

Kd&0e piat 06 avtég Tig VAOTOLOELG SLOLOPOTOLOVVTOL e KATTOLOV TPOTTO 0td TV YADOOO OTImG KOTaypaLpe-
TOL 0€ QUTO TO EYYELPIOLO, 1] ELOAYEL OUYKEKPLUEVT TTANPOPOpPia TTEPa ATt O,TL KAAVTTTOUV Ta TPOTUITOL £YYPAPOL
g Python. IMapakodd va ovuovkeuteite 1o £yypapo THg CUYKEKPLUEVNG VAOTTOINONG YLO. VO TTPOOALOPIOETE
TL AANO YPELATETOL VO EEPETE OYETLKA UE TNV OUYKEKPLUEVT VAOTTOINO) TTOV Y P1|OLUOTTOLELTE.

1.2 Znuelwoypapia

OL eprypaég otnv AeShoyLk) availvor kot oUVTOE YPNoLoToloVV £Vay TPOTOTOUEVO YPOUUOTIKO Gup-
Boiopud oty woppt) Mrtdkovg-Naovp (BNF). Avtd ypnoyomolel tov akdiovho tpdmo optopo:

name 1= 1c_letter (lc_letter | "_")*
lc_letter ::= "a"..."z"

H mpwtn ypapuuh Mel ét éva name eivan éva 1c_letter akolovBovuevo amd wio oelpd amd undév v me-
pLocdtepa 1c_letters kou Katw mavles. 'Eva 1c_letter ue) 0elpd TOV €LvaL OTOLOGONTOTE OO TOVG
HovovUg XopoKTNPES "a' éwg 'z '. (AUTOG 0 KAvVOVAG OTNY TPAYUOTIKOTTO EPOPUOTETOL VLA TO OVOUOTAL
7oV opifovran 6Toug AeEIAOYLKOVS KOl YPOUUATIKOUG KAVOVES OUTOU TOV EYYPAQOV.)

Ké6e kavdvag Eexiva pe éva dvopa (to omoio eivar éva dvoua oplopévo atd tov Kavova) Kar : :=. Mia
K&dOeTn ypouun (1) YP1OLULOTTOLELTOL YL VO OLaWPIOEL TIG EVOAMAKTIKES: EXEL TNV WKPOTEPY TPOTEPALOTNTO
otV oeLpd tpotepandtNTog TPGEemwv avtol Tov ovufoiouo. 'Evog aotepiokog (*) onuaiver undév 1 sepLo-
O0TEPEG EMAVOMYPELG TOU TTPOTYOUUEVOU OVTLKELUEVOD® TTAPOUOLNGS, TO GUV (+) ONUALVEL (ol) TEPLOOOTEPEG
EMAVOMPELG, KO Lol (pPAoT) TTEPLPPAYUEVT 0Ttd ayKUAES ([1) onuaivel undév 1 pia mepimtwon (ue diha ho-
YLOL, 1] TTEPLPPAYUEVT] PPAOT ELVOL TTPOALPETLKT)). OL TELEOTES * KO + EVAOVOVTOL 000 TO SUVATOV TTLO OPLYTA: OL
TopeVOETELS XPNOLUOoTOLOVVTAL Yio ouadoToinon. O ouporooelpég eival TEPLPPAYUEVES OITO ELOAYWYIKAL.
OL Kevol YopakTHpeS elvar HOVo oNUAvVTIKoL Yo va ey wpioovv ta fokens. O kavdveg ovvihBwg meptéyovion
O€ Jia LoV Ypauut): oL Kavoveg ue worhég evalhakTikég umopel va popgomoinfotv evalhokTikd ue ke
YPOUUT) LETE TNV TPMTY VO SEKLVAEL (e Lo KABeTN ypouun.

Ztovg AeEthoytkovg opLopovg (4mTme 0To TaPATdve TapAdeLyua), dV0 TEPLOTOTEPOL KAVOVES Y PT1OLULOTTOLOV-
vTow: AUO YOPaKTHPES XWPLOUEVOL OTTO TPELG TEAEIEG ONUALLVEL ETTIAOYT OTTOLOV HOVOD YOPOKTNPO OTO OUYKE-
KpLuévo (khewotod) evpog ASCI yopoaxtpwv. H ppdon avdueco o yoviakég mapevhéoels (<. . . >) divel pia
ATUTTN TTEPLYPOLPT] TOU OPLOUEVOD GUUPBOAOY: TT.Y., AvTd B0 WITOPOVOE VO, YPNOLUOTOMOEL YL VO TTEPLYPAPEL
™V Wéa Tov “yapaktipa ehéyyou” (control character) ov ypeL0oTEL.

Av KOl 1) OMUELOYPAPLE. TTOV XPNOLUOTTOLELTAL ElVOL OYEDOV 1) 1OLaL, VITAPYEL UEYAA SLOPOPL OVAUESH OTY|
oNUaoia TV AEEIMOYIKMOV KL TV OUVTOKTIKOV 0pLoimv: £vag AeELoYLKOG oplotdg AelTovpyel ue Toug ue-
LOVUEVOUG XOPAKTIPES THG TINYNG ELGOB0U, EVA £VaG 0PLOUOG CUVTUENG AELTOVpYEL 0TIV POT| TV foken TOU
dwovpyeitar amd ™) AeEhoyikn avdivon. ‘Oleg ot xpnoelg Tov BNF 010 emtouevo Kepahao («AeEAOYLKT
Avaluon») eivon AeEthoyuicol oplopoi: oL xpfoels ota aKOAoUO0 KEQALaLa EiVOL CUVTOKTIKOL OPLOUOL.

2 Kegpdhaio 1. Eloaywyn

https://www.jython.org/
https://www.jython.org/
https://pythonnet.github.io/
https://ironpython.net/
https://www.pypy.org/
https://el.wikipedia.org/wiki/%CE%9C%CE%BF%CF%81%CF%86%CE%AE_%CE%9C%CF%80%CE%AC%CE%BA%CE%BF%CF%85%CF%82-%CE%9D%CE%AC%CE%BF%CF%85%CF%81

KEDAAAIO 2

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer (also
known as the fokenizer). This chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding
declaration and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError
is raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any
of the standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the
Windows form using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the
ASCII CR (return) character. All of these forms can be used equally, regardless of platform. The end of input also
serves as an implicit terminator for the final physical line.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical
line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are
ignored by the syntax.

https://peps.python.org/pep-3120/

The Python Language Reference, Anpoociguon 3.13.7

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding [=:]\s* ([-\
w.] +), this comment is processed as an encoding declaration; the first group of this expression names the encoding
of the source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first
line must also be a comment-only line. The recommended forms of an encoding expression are

[# —-*— coding: <encoding-name> —*-

which is recognized also by GNU Emacs, and

[# vim:fileencoding=<encoding-name> }

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. If the implicit or explicit encoding of a file is
UTF-8, an initial UTF-8 byte-order mark (b ' \xef\xbb\xbf ') is ignored rather than being a syntax error.

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding
is used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Impilicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without
using backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
"Juli’', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e.
one containing not even whitespace or a comment) terminates a multi-line statement.

6 Kegpalato 2. Lexical analysis

The Python Language Reference, Anpoociguon 3.13.7

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of
the line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of
spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over
multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use
a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms
may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring
on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT
token is generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that
is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(1l):
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
e = [
for i in range(len(l)):
s = 1[:1] + 1[i+1:]
p = perm(s)
for x in p:
r.append (1[i:i+1] + x)
return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)) : # error: not indented
s = 1[:1] + 1[i+1:]
p = perm(1[:i] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append (1[i:i+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1. Line structure 7

The Python Language Reference, Anpoociguon 3.13.7

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be
used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes
as defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers include the uppercase and lowercase
letters A through Z, the underscore _ and, except for the first character, the digits O through 9. Python 3.0 introduced
additional characters from outside the ASCII range (see PEP 3131). For these characters, the classification uses the
version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier ::= xid _start xid_continue¥*

id_start ::=<all characters in general categories Lu, L1, Lt, Lm, Lo, N1, the underscor
id_continue ::= <all characters in id_start, plus characters in the categories Mn, Mc, Nd,
xid_start ::= <all characters in id_start whose NFKC normalization is in "id_start xid_c
xid_continue ::= <all characters in id continue whose NFKC normalization is in "id_contint

The Unicode category codes mentioned above stand for:
o Lu - uppercase letters
o LI - lowercase letters
o Lz - titlecase letters
o Lm - modifier letters
e Lo - other letters
o NI - letter numbers
e Mn - nonspacing marks
e Mc - spacing combining marks
e Nd - decimal numbers
« Pc - connector punctuations
o Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
o Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 15.1.0 can be found at https://www.
unicode.org/Public/15.1.0/ucd/DerivedCoreProperties.txt

8 Kegpalato 2. Lexical analysis

https://peps.python.org/pep-3131/
https://peps.python.org/pep-3131/
https://www.unicode.org/Public/15.1.0/ucd/PropList.txt
https://www.unicode.org/Public/15.1.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/15.1.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Anpoociguon 3.13.7

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary

identifiers. They must be spelled exactly as written here:

False await else import
None break except in

True class finally is

and continue for lambda
as def from nonlocal
assert del global not
async elif if or

pass
raise
return
try
while
with
yield

2.3.2 Soft Keywords
Added in version 3.10.

Some identifiers are only reserved under specific contexts. These are known as soft keywords. The identifiers mat ch,
case, type and _ can syntactically act as keywords in certain contexts, but this distinction is done at the parser

level, not when tokenizing.

As soft keywords, their use in the grammar is possible while still preserving compatibility with existing code that

uses these names as identifier names.

match, case, and _ are used in the mat ch statement. t ype is used in the t ype statement.

AMoEe oty £kdoon 3.12: type is now a soft keyword.

2.3.3 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns

of leading and trailing underscore characters:

*
Not imported by from module import *.
In a case pattern within a mat ch statement, _ is a soft keyword that denotes a wildcard.
Separately, the interactive interpreter makes the result of the last evaluation available in the variable _. (It is
stored in the builtins module, alongside built-in functions like print.)
Elsewhere, _ is a regular identifier. It is often used to name «special» items, but it is not special to Python
itself.
O Ihusioon
The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.
It is also commonly used for unused variables.
*
System-defined names, informally known as «dunder» names. These names are defined by the interpreter and
its implementation (including the standard library). Current system names are discussed in the Special method
names section and elsewhere. More will likely be defined in future versions of Python. Any use of ___*
names, in any context, that does not follow explicitly documented use, is subject to breakage without warning.
*

Class-private names. Names in this category, when used within the context of a class definition, are re-written
to use a mangled form to help avoid name clashes between «private» attributes of base and derived classes.

See section Identifiers (Names).

2.3. Identifiers and keywords

The Python Language Reference, Anpoociguon 3.13.7

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral ::= [stringprefix] (shortstring | longstring)
stringprefix ri= "r" | "u" | "R" | "U"™ | "f" | "EF"

| "fr"™ | "Fr" | "fR" | "FR" | "rf" | "rF" | "Rf" | "RE"
shortstring 1= """ shortstringitem* "'" | '"' shortstringitem* '"'
longstring t:="'"'""" Jongstringitem* "'''" | '"""' Jongstringitem* '"""!
shortstringitem ::= shortstringchar | stringescapeseq
longstringitem ::= longstringchar | stringescapeseq
shortstringchar ::= <any source character except "\" or newline or the quote>
longstringchar ::= <any source character except "\">
stringescapeseqg ::= "\" <any source character>
bytesliteral ::= bytesprefix(shortbytes | longbytes)
bytesprefix r:="pb" | "B" | "br" "Br" | "bR" | "BR" | "rb" "rB" | "Rb" | "RB"
shortbytes ::= "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes 1= "'"'"'" Jongbytesitem* "'''"™ | '""Wv Jongbytesitem* '"""!'
shortbytesitem ::= shortbyteschar | bytesescapeseq
longbytesitem ::= longbyteschar | bytesescapeseq
shortbyteschar ::= <any ASCII character except "\" or newline or the quote>
longbyteschar ::= <any ASCII character except "\">
bytesescapeseq ::= "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefixor bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes (). They can
also be enclosed in matching groups of three single or double quotes (these are generally referred to as riple-quoted
strings). The backslash (\) character is used to give special meaning to otherwise ordinary characters like n, which
means “newline” when escaped (\n). It can also be used to escape characters that otherwise have a special meaning,
such as newline, backslash itself, or the quote character. See escape sequences below for examples.

Bytes literals are always prefixed with 'b"' or 'B"'; they produce an instance of the bytes type instead of the str
type. They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with
escapes.

Both string and bytes literals may optionally be prefixed with a letter 'r' or 'R'; such constructs are called raw
string literals and raw bytes literals respectively and treat backslashes as literal characters. As a result, in raw string
literals, ' \U"' and '\u"' escapes are not treated specially.

Added in version 3.3: The 'rb' prefix of raw bytes literals has been added as a synonym of 'br'.

Support for the unicode legacy literal (u'value ') was reintroduced to simplify the maintenance of dual Python
2.x and 3.x codebases. See PEP 414 for more information.

A string literal with '£' or 'F' in its prefix is a formatted string literal; see f-strings. The ' £' may be combined
with 'r', butnot with 'b' or 'u"', therefore raw formatted strings are possible, but formatted bytes literals are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
quotes in a row terminate the literal. (A «quote» is the character used to open the literal, i.e. either ' or ".)

10 Kegahaio 2. Lexical analysis

https://peps.python.org/pep-0414/

The Python Language Reference, Anpoociguon 3.13.7

Escape sequences

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to
rules similar to those used by Standard C. The recognized escape sequences are:

Escape Sequence Meaning Notes
\<newline> Backslash and newline ignored (1)
AR Backslash (\)

\\ U Single quote (')

\" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo Character with octal value ooo (2,4)
\xhh Character with hex value hh (3,4)

Escape sequences only recognized in string literals are:

Escape Sequence

Meaning

Notes

\N{ name}
\UXXXX
\UXXXXXXXX

Character named name in the Unicode database
Character with 16-bit hex value xxxx
Character with 32-bit hex value xxxxxxxx

o)
(6)
)

Notes:

(1) A backslash can be added at the end of a line to ignore the newline:

>>> 'This string will not include \
backslashes or newline characters.'
'This string will not include backslashes or newline characters.'

The same result can be achieved using triple-quoted strings, or parentheses and string literal concatenation.

(2) Asin Standard C, up to three octal digits are accepted.

AMoEe omv ékdoon 3.11:

DeprecationWarning.

Octal escapes with value larger than

00377 produce a

AMoEe oty ékdoor 3.12: Octal escapes with value larger than 00377 produce a SyntaxWarning. Ina
future Python version they will be eventually a SyntaxError.

(3) Unlike in Standard C, exactly two hex digits are required.

(4) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(5) AMaEe oty éxdoom 3.3: Support for name aliases' has been added.

(6) Exactly four hex digits are required.

(7) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in
the result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more

! https://www.unicode.org/Public/15.1.0/ucd/NameAliases. txt

2.4. Literals

11

https://www.unicode.org/Public/15.1.0/ucd/NameAliases.txt

The Python Language Reference, Anpoociguon 3.13.7

easily recognized as broken.) It is also important to note that the escape sequences only recognized in string literals
fall into the category of unrecognized escapes for bytes literals.

AMaEe oty €kdoon 3.6: Unrecognized escape sequences produce a DeprecationWarning.

AMoEe otnv €kdoom 3.12: Unrecognized escape sequences produce a SyntaxWarning. In a future Python
version they will be eventually a SyntaxError.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; " \ " is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a
single backslash (since the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the literal, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings
conveniently across long lines, or even to add comments to parts of strings, for example:

re.compile ("[A-Za-z_]" # letter or underscore
"[A-Za—-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The “+” operator must
be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings), and formatted string literals may be
concatenated with plain string literals.

2.4.3 f-strings
Added in version 3.6.

A formatted string literal or f-string is a string literal that is prefixed with '£' or 'F'. These strings may contain
replacement fields, which are expressions delimited by curly braces { }. While other string literals always have a
constant value, formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string).
After decoding, the grammar for the contents of the string is:

f_string ::= (literal_char | "{{"™ | "}}" | replacement_field)™*
replacement_field ::= "{" f_expression ["="] ["!" conversion] [":" format_spec] "}"
f_expression ::= (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or expr)* [","]

| yield expression

conversion pi= "g" | """ | "a"
format_spec ::= (literal_char | replacement_field)™*
literal_char ::= <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces ' {{"' or '} }'
are replaced with the corresponding single curly brace. A single opening curly bracket ' { ' marks a replacement field,
which starts with a Python expression. To display both the expression text and its value after evaluation, (useful in
debugging), an equal sign '=" may be added after the expression. A conversion field, introduced by an exclamation
point ' ! ' may follow. A format specifier may also be appended, introduced by a colon ' : '. A replacement field
ends with a closing curly bracket '} '.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with
a few exceptions. An empty expression is not allowed, and both Iambda and assignment expressions : = must be
surrounded by explicit parentheses. Each expression is evaluated in the context where the formatted string literal

12 Kegahaio 2. Lexical analysis

The Python Language Reference, Anpoociguon 3.13.7

appears, in order from left to right. Replacement expressions can contain newlines in both single-quoted and triple-
quoted f-strings and they can contain comments. Everything that comes after a # inside a replacement field is a
comment (even closing braces and quotes). In that case, replacement fields must be closed in a different line.

>>> f"abc{a # This is a comment }"
+ 3}
'abch'

AMaEe otnv ékdoon 3.7: Prior to Python 3.7, an await expression and comprehensions containing an async
for clause were illegal in the expressions in formatted string literals due to a problem with the implementation.

AlhaEe oty €xdoon 3.12: Prior to Python 3.12, comments were not allowed inside f-string replacement fields.

When the equal sign '=" is provided, the output will have the expression text, the '="' and the evaluated value.
Spaces after the opening brace '{', within the expression and after the '="' are all retained in the output. By
default, the '=" causes the repr () of the expression to be provided, unless there is a format specified. When a
format is specified it defaults to the st r () of the expression unless a conversion ' ! r' is declared.

Added in version 3.8: The equal sign '=".

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion ' !'s '
calls str () ontheresult, ' ! r' calls repr(),and '!a"' callsascii ().

The result is then formatted using the format () protocol. The format specifier is passed tothe _ format__ ()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own
conversion fields and format specifiers, but may not include more deeply nested replacement fields. The format
specifier mini-language is the same as that used by the str. format () method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

>>> name = "Fred"

>>> f"He said his name is {name L

"He said his name is 'Fred'."

>>> f"He said his name is {repr (name) }." # repr() is equivalent to !r
"He said his name is 'Fred'."

>>> width 10

>>> precision = 4

>>> value decimal .Decimal ("12.34567")

>>> f"result: {value:{width}.{precision}}" # nested fields

'result: 12.35"

>>> today datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, %Y}" # using date format specifier

'January 27, 2017

>>> f"{today=:%B %d, %Y}" # using date format specifier and debugging
'today=January 27, 2017'

>>> number = 1024

>>> f"{number:#0x}" # using integer format specifier
'0x400'

>>> foo = "bar"

>>> f"{ foo " # preserves whitespace
" foo = 'bar'"

>>> line = "The mill's closed"

>>> f"{line "

'line = "The mill\'s closed"'

>>> f"{line 20 }"

"line = The mill's closed "

(ouvéyea oty nopeVn oehida)

2.4. Literals 13

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
>>> f"{line 20"
'line = "The mill\'s closed" '

Reusing the outer f-string quoting type inside a replacement field is permitted:

>>> a = dict (x=2)
>>> f"abc {a["x"]} def"
'abc 2 def'

AMaEe oty ékdoor 3.12: Prior to Python 3.12, reuse of the same quoting type of the outer f-string inside a
replacement field was not possible.

Backslashes are also allowed in replacement fields and are evaluated the same way as in any other context:

>> a = ["a", "b", "c"]

>>> print (f"List a contains:\n{"\n".join(a) }")
List a contains:

a

b

€

AMoEe otnv €kdoom 3.12: Prior to Python 3.12, backslashes were not permitted inside an f-string replacement field.

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

>>> def fool():
f"Not a docstring"

>>> foo. doc__ is None
True

See also PEP 498 for the proposal that added formatted string literals, and str. format (), which uses a related
format string mechanism.

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating-point numbers, and imaginary numbers. There are no
complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary
operator “~” and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer ::= decinteger | bininteger | octinteger | hexinteger
decinteger ::= nonzerodigit (["_"]1 digit)* | "0"+ (["_"] "O")~*
bininteger = "0" ("b" | "B") (["_"] bindigit)+

octinteger = "0" ("o" | "O") (["_"] octdigit)+

hexinteger pi="0" ("x" | "XM™) (["_"] hexdigit)+

nonzerodigit ::= "1"..."9"

digit = "O".LL"9"

bindigit rx= "O" | "iv

octdigit HEE VA

hexdigit ::= digit | "a"..."f" | "A"..."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

14 Kegahaio 2. Lexical analysis

https://peps.python.org/pep-0498/

The Python Language Reference, Anpoociguon 3.13.7

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for
enhanced readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

Some examples of integer literals:

7 2147483647 00177 0p100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 Ob_1110_0101

AMoEe oty €xdoon 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.6 Floating-point literals

Floating-point literals are described by the following lexical definitions:

floatnumber ::= pointfloat | exponentfloat
pointfloat = [digitpart] fraction | digitpart "."
exponentfloat ::= (digitpart | pointfloat) exponent
digitpart = digit (["_"] digit)™*

fraction = "." digitpart

exponent ti= ("e"™ | "E"™) ["+" | "=-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077e010 is legal, and
denotes the same number as 77e10. The allowed range of floating-point literals is implementation-dependent. As
in integer literals, underscores are supported for digit grouping.

Some examples of floating-point literals:

[3.14 10. .001 1e100 3.14e-10 0e0 3.14_15_93

AMoEe ot ékdoom 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber ::= (floatnumber | digitpart) ("3" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating-point numbers and have the same restrictions on their range. To create a complex number with a nonzero
real part, add a floating-point number to it, e.g., (3+47). Some examples of imaginary literals:

3.1475 10. 3 1073 .0017 11007 3.14e-1073 3.14_15 937
J J J J J J

2.5 Operators

The following tokens are operators:

+ - ¢ e / // 5 @
<< >> & | n @2 1=
< > <= >= == =

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

2.5. Operators 15

The Python Language Reference, Anpoociguon 3.13.7

’ ! 8 @ =
> += -~ *= /= //= 3=
@= 5= | = AN= >>= << * k=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

R |

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

CRRE |

16 Kegahaio 2. Lexical analysis

KEGANAIO 3

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a «stored program computer», code is
also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you
may think of it as the object’s address in memory. The i s operator compares the identity of two objects; the 1d ()
function returns an integer representing its identity.

Aemrouépera vhioroinong CPython: For CPython, id (x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., «does it have a length?») and also defines
the possible values for objects of that type. The t ype () function returns an object’s type (which is an object itself).
Like its identity, an object’s fype is also unchangeable.'

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains
a reference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same
as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation
quality how garbage collection is implemented, as long as no objects are collected that are still reachable.

Aemrouépera vioroinong CPython: CPython currently uses a reference-counting scheme with (optional) delayed
detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not
guaranteed to collect garbage containing circular references. See the documentation of the gc module for information
on controlling the collection of cyclic garbage. Other implementations act differently and CPython may change. Do
not depend on immediate finalization of objects when they become unreachable (so you should always close files
explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception with a t ry...except statement may keep objects alive.

11t is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can
lead to some very strange behaviour if it is handled incorrectly.

17

The Python Language Reference, Anpoociguon 3.13.7

Some objects contain references to «external» resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, usually a close () method. Programs
are strongly recommended to explicitly close such objects. The t ry...finally statement and the w1 t h statement
provide convenient ways to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples,
lists and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability
of a container, only the identities of the immediately contained objects are implied. So, if an immutable container
(like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. For example, aftera = 1; b = 1,aandb
may or may not refer to the same object with the value one, depending on the implementation. This is because int
is an immutable type, so the reference to 1 can be reused. This behaviour depends on the implementation used, so
should not be relied upon, but is something to be aware of when making use of object identity tests. However, after
c = []; d = [],candd are guaranteed to refer to two different, unique, newly created empty lists. (Note that
e = f = [] assigns the same object to both e and f.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be
provided via the standard library instead.

Some of the type descriptions below contain a paragraph listing “special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

3.2.1 None

This type has a single value. There is a single object with this value. This object is accessed through the built-in name
None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions that don’t
explicitly return anything. Its truth value is false.

3.2.2 Notimplemented

This type has a single value. There is a single object with this value. This object is accessed through the built-in
name Not Implemented. Numeric methods and rich comparison methods should return this value if they do not
implement the operation for the operands provided. (The interpreter will then try the reflected operation, or some
other fallback, depending on the operator.) It should not be evaluated in a boolean context.

See implementing-the-arithmetic-operations for more details.

AMaEe oty €kdoon 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of Python.

3.2.3 Ellipsis

This type has a single value. There is a single object with this value. This object is accessed through the literal . . .
or the built-in name E111ipsis. Its truth value is true.

3.2.4 numbers.Number

These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in functions.
Numeric objects are immutable; once created their value never changes. Python numbers are of course strongly related
to mathematical numbers, but subject to the limitations of numerical representation in computers.

18 Kegahaio 3. Data model

The Python Language Reference, Anpoociguon 3.13.7

The string representations of the numeric classes, computedby ___ repr_ () and___str__ (), have the following
properties:

o They are valid numeric literals which, when passed to their class constructor, produce an object having the
value of the original numeric.

« The representation is in base 10, when possible.

» Leading zeros, possibly excepting a single zero before a decimal point, are not shown.
« Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.

« A sign is shown only when the number is negative.

Python distinguishes between integers, floating-point numbers, and complex numbers:

numbers.Integral

These represent elements from the mathematical set of integers (positive and negative).

O Iyusimon

The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers.

There are two types of integers:

Integers (int)
These represent numbers in an unlimited range, subject to available (virtual) memory only. For the purpose
of shift and mask operations, a binary representation is assumed, and negative numbers are represented in a
variant of 2’s complement which gives the illusion of an infinite string of sign bits extending to the left.

Booleans (bool)
These represent the truth values False and True. The two objects representing the values False and True
are the only Boolean objects. The Boolean type is a subtype of the integer type, and Boolean values behave
like the values O and 1, respectively, in almost all contexts, the exception being that when converted to a string,
the strings "False" or "True" are returned, respectively.

numbers .Real (float)

These represent machine-level double precision floating-point numbers. You are at the mercy of the underlying
machine architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does
not support single-precision floating-point numbers; the savings in processor and memory usage that are usually the
reason for using these are dwarfed by the overhead of using objects in Python, so there is no reason to complicate the
language with two kinds of floating-point numbers.

numbers .Complex (complex)

These represent complex numbers as a pair of machine-level double precision floating-point numbers. The same
caveats apply as for floating-point numbers. The real and imaginary parts of a complex number z can be retrieved
through the read-only attributes z . real and z . imag.

3.2.5 Sequences

These represent finite ordered sets indexed by non-negative numbers. The built-in function 1en () returns the number
of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1, ..., n-1. Item
i of sequence a is selected by a [1]. Some sequences, including built-in sequences, interpret negative subscripts by
adding the sequence length. For example, a [-2] equals a [n—2], the second to last item of sequence a with length
n.

Sequences also support slicing: a [1 : j] selects all items with index k such thati <=k < j. When used as an expression,
a slice is a sequence of the same type. The comment above about negative indexes also applies to negative slice
positions.

3.2. The standard type hierarchy 19

The Python Language Reference, Anpoociguon 3.13.7

Some sequences also support «extended slicing» with a third «step» parameter: a [1:7J:k] selects all items of a
with index x where x = 1 + n*k,n>=0andi<=x<j.

Sequences are distinguished according to their mutability:

Immutable sequences

An object of an immutable sequence type cannot change once it is created. (If the object contains references to
other objects, these other objects may be mutable and may be changed; however, the collection of objects directly
referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings
A string is a sequence of values that represent Unicode code points. All the code points in the range U+0000
- U+10FFFF can be represented in a string. Python doesn’t have a char type; instead, every code point in
the string is represented as a string object with length 1. The built-in function ord () converts a code point
from its string form to an integer in the range 0 - 10FFFF; chr () converts an integer in the range 0
— 10FFFF to the corresponding length 1 string object. str.encode () can be used to convert a str to
bytes using the given text encoding, and bytes.decode () can be used to achieve the opposite.

Tuples
The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-separated
lists of expressions. A tuple of one item (a “singleton”) can be formed by affixing a comma to an expression
(an expression by itself does not create a tuple, since parentheses must be usable for grouping of expressions).
An empty tuple can be formed by an empty pair of parentheses.

Bytes
A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range 0 <=x <
256. Bytes literals (like b ' abc ') and the built-in bytes () constructor can be used to create bytes objects.
Also, bytes objects can be decoded to strings via the decode () method.

Mutable sequences

Mutable sequences can be changed after they are created. The subscription and slicing notations can be used as the
target of assignment and de I (delete) statements.

O Iyusimon

The collections and array module provide additional examples of mutable sequence types.

There are currently two intrinsic mutable sequence types:

Lists
The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of
expressions in square brackets. (Note that there are no special cases needed to form lists of length O or 1.)

Byte Arrays
A bytearray object is a mutable array. They are created by the built-in bytearray () constructor. Aside from
being mutable (and hence unhashable), byte arrays otherwise provide the same interface and functionality as
immutable bytes objects.

3.2.6 Set types

These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any subscript.
However, they can be iterated over, and the built-in function 1en () returns the number of items in a set. Common
uses for sets are fast membership testing, removing duplicates from a sequence, and computing mathematical
operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal
rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0), only one of them can be contained
in a set.

20 Kegahaio 3. Data model

The Python Language Reference, Anpoociguon 3.13.7

There are currently two intrinsic set types:

Sets
These represent a mutable set. They are created by the built-in set () constructor and can be modified
afterwards by several methods, such as add () .

Frozen sets
These represent an immutable set. They are created by the built-in frozenset () constructor. As a frozenset
is immutable and hashable, it can be used again as an element of another set, or as a dictionary key.

3.2.7 Mappings

These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k] selects the item
indexed by k from the mapping a; this can be used in expressions and as the target of assignments or de I statements.
The built-in function 1en () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries

These represent finite sets of objects indexed by nearly arbitrary values. The only types of values not acceptable
as keys are values containing lists or dictionaries or other mutable types that are compared by value rather than by
object identity, the reason being that the efficient implementation of dictionaries requires a key’s hash value to remain
constant. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(e.g., 1 and 1. 0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were added
sequentially over the dictionary. Replacing an existing key does not change the order, however removing a key and
re-inserting it will add it to the end instead of keeping its old place.

Dictionaries are mutable; they can be created by the { } notation (see section Dictionary displays).

The extension modules dbm.ndbm and dbm.gnu provide additional examples of mapping types, as does the
collections module.

AMoEe otnv ékdoon 3.7: Dictionaries did not preserve insertion order in versions of Python before 3.6. In CPython
3.6, insertion order was preserved, but it was considered an implementation detail at that time rather than a language
guarantee.

3.2.8 Callable types

These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions

A user-defined function object is created by a function definition (see section Function definitions). It should be called
with an argument list containing the same number of items as the function’s formal parameter list.

Special read-only attributes

Attribute Meaning

A reference to the dictionary that holds the
function’s global variables — the global namespace of
the module in which the function was defined.

None or a tuple of cells that contain bindings for the
names specified in the co_ freevars attribute of the
function’s code object.

A cell object has the attribute ce11_contents. This
can be used to get the value of the cell, as well as set the
value.

function.__globals_

function.___closure

3.2. The standard type hierarchy 21

The Python Language Reference, Anpoociguon 3.13.7

Special writable attributes

Most of these attributes check the type of the assigned value:

Attribute Meaning
The function’s documentation string, or None if
function.__doc_ unavailable.
The function’s name. See also: _ name_
function._ _name___ A A e EE.
' The function’s qualified name. See also:
function.__qualname __qualname__ attributes.
Added in version 3.3.
. The name of the module the function was defined in, or
FRCEINOR o ITEEI O None if unavailable.
. A tuple containing default parameter values for those
function._ defaults parameters that have defaults, or None if no parameters
have a default value.
The code object representing the compiled function
function.__ _code_ body.
.) The namespace supporting arbitrary function attributes.
function.__dict__ Seealso: dict attributes.
.] A dictionary containing annotations of
function.__annotations__ parameters. The keys of the dictionary are the
parameter names, and 'return' for the return
annotation, if provided. See also: annotations-howto.
' A dictionary containing defaults for keyword-only
function.__ _kwdefaults_ parameters.
A tuple containing the fype parameters of a generic
function.__ type_params___

function.
Added in version 3.12.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach
metadata to functions. Regular attribute dot-notation is used to get and set such attributes.

Agmropépera vhiomoinoeng CPython: CPython’s current implementation only supports function attributes on user-
defined functions. Function attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object (accessible via the
___code___ attribute).

Instance methods

An instance method object combines a class, a class instance and any callable object (normally a user-defined

function).

Special read-only attributes:

22

Kegahaio 3. Data model

The Python Language Reference, Anpoociguon 3.13.7

Refers to the class instance object to which the method
method.__self N

Refers to the original function object
method.__ _func___

The method’s documentation (same as method.
__func__.__doc__). A string if the original
function had a docstring, else None.

The name of the method (same as method.
_ func__.__ _name_)

method.__doc___

method._ _name_

The name of the module the method was defined in, or

method.__module__ None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of that
class), if that attribute is a user-defined function object or a classmethod object.

When an instance method object is created by retrieving a user-defined function object from a class via one of its
instances, its ___self __ attribute is the instance, and the method object is said to be bound. The new method’s
___func___ attribute is the original function object.

When an instance method object is created by retrieving a classmethod object from a class or instance, its
__self _ attributeistheclassitself,andits___ func___ attribute is the function object underlying the class method.

When an instance method object is called, the underlying function (__ func__) is called, inserting the class instance
(__self__)infront of the argument list. For instance, when C is a class which contains a definition for a function
f (), and x is an instance of C, calling x. £ (1) is equivalent to calling C. f (x, 1).

When an instance method object is derived from a cLas smethod object, the «class instance» storedin ___self
will actually be the class itself, so that calling either x. £ (1) or C. £ (1) is equivalent to calling £ (C, 1) where £
is the underlying function.

It is important to note that user-defined functions which are attributes of a class instance are not converted to bound
methods; this only happens when the function is an attribute of the class.

Generator functions

A function or method which uses the yield statement (see section The yield statement) is called a generator
function. Such a function, when called, always returns an iterator object which can be used to execute the body
of the function: calling the iterator’s iterator._ next__ () method will cause the function to execute until it
provides a value using the yield statement. When the function executes a ret urn statement or falls off the end, a
StopIteration exception is raised and the iterator will have reached the end of the set of values to be returned.

Coroutine functions

A function or method which is defined using async def is called a coroutine function. Such a function, when
called, returns a coroutine object. It may contain awa it expressions, as well as async withand async for
statements. See also the Coroutine Objects section.

Asynchronous generator functions

A function or method which is defined using async def and which uses the yield statement is called a
asynchronous generator function. Such a function, when called, returns an asynchronous iterator object which can
be used in an async for statement to execute the body of the function.

Calling the asynchronous iterator’s aiterator.___anext__ method will return an awaitable which when awaited
will execute until it provides a value using the yie1d expression. When the function executes an empty return

3.2. The standard type hierarchy 23

The Python Language Reference, Anpoociguon 3.13.7

statement or falls off the end, a StopAsyncIteration exception is raised and the asynchronous iterator will
have reached the end of the set of values to be yielded.

Built-in functions

A built-in function object is a wrapper around a C function. Examples of built-in functions are 1en () and math.
sin () (math is a standard built-in module). The number and type of the arguments are determined by the C
function. Special read-only attributes:

e __ doc___ isthe function’s documentation string, or None if unavailable. See function.__doc

e name__ is the function’s name. See function. name .
e _ self__ issettoNone (but see the next item).

e _ module__ isthe name of the module the function was defined in or None if unavailable. See function.
___module__.

Built-in methods

This is really a different disguise of a built-in function, this time containing an object passed to the C function as an
implicit extra argument. An example of a built-in method is alist . append (), assuming alist is a list object. In
this case, the special read-only attribute ___self__ is set to the object denoted by alist. (The attribute has the same
semantics as it does with ot her instance methods.)

Classes

Classes are callable. These objects normally act as factories for new instances of themselves, but variations are possible
for class types that override __new___ (). The arguments of the call are passed to __new___ () and, in the typical
case,to __init__ () to initialize the new instance.

Class Instances

Instances of arbitrary classes can be made callable by defininga ___call__ () method in their class.

3.2.9 Modules

Modules are a basic organizational unit of Python code, and are created by the import system as invoked either
by the import statement, or by calling functions such as importlib.import_module () and built-in
__import__ ().A module object has a namespace implemented by a dict ionary object (this is the dictionary
referenced by the _globals__ attribute of functions defined in the module). Attribute references are translated
to lookups in this dictionary, e.g., m. x is equivalent tom.___dict__ ["x"]. A module object does not contain the
code object used to initialize the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.
_ dict__["x"] = 1.

Import-related attributes on module objects

Module objects have the following attributes that relate to the import system. When a module is created using the
machinery associated with the import system, these attributes are filled in based on the module’s spec, before the
loader executes and loads the module.

To create a module dynamically rather than using the import system, it’s recommended to use importlib.util.
module_from_spec (), which will set the various import-controlled attributes to appropriate values. It’s also
possible to use the t ypes .ModuleType constructor to create modules directly, but this technique is more error-
prone, as most attributes must be manually set on the module object after it has been created when using this approach.

24 Kegahaio 3. Data model

The Python Language Reference, Anpoociguon 3.13.7

“* Tpoooyn

With the exception of ___name__, it is strongly recommended that you rely on ___spec__ and its attributes
instead of any of the other individual attributes listed in this subsection. Note that updating an attribute on
___spec__ will not update the corresponding attribute on the module itself:

>>> import typing

>>> typing. name , typing.__spec__.name
('typing', 'typing')

>>> typing._ _spec___.name = 'spelling'

>>> typing. name , typing.__spec__.name
('"typing', 'spelling')

>>> typing._ name = 'keyboard_smashing'
>>> typing. name , typing.__spec__.name

('keyboard_smashing', 'spelling')

module.__ _name_
The name used to uniquely identify the module in the import system. For a directly executed module, this will
besetto"_main_".

This attribute must be set to the fully qualified name of the module. It is expected to match the value of
module.__ _spec__ .name.
module.__ spec_

A record of the module’s import-system-related state.
Set to the module spec that was used when importing the module. See Module specs for more details.
Added in version 3.4.

module.__ package_

The package a module belongs to.

If the module is top-level (that is, not a part of any specific package) then the attribute should be set to ' '
(the empty string). Otherwise, it should be set to the name of the module’s package (which can be equal to
module.__name___ if the module itself is a package). See PEP 366 for further details.

This attribute is used instead of ___name___ to calculate explicit relative imports for main modules. It defaults
to None for modules created dynamically using the types .ModuleType constructor; use importlib.
util.module_from_spec () instead to ensure the attribute is set to a str.

It is strongly recommended that you use module._ spec_ .parent instead of module.
__package_ . __ package__ is now only used as a fallback if __spec_ .parent is not set, and
this fallback path is deprecated.

AMoEe otnv éxdoom 3.4: This attribute now defaults to None for modules created dynamically using the
types.ModuleType constructor. Previously the attribute was optional.

AMhoEe ot £kdoom 3.6: The value of __package__ isexpected to be thesameas ___spec__.parent.

__package___ is now only used as a fallback during import resolution if __spec___.parent is not
defined.

AMEe otnv ékdoon 3.10: ImportWarning is raised if an import resolution falls back to __package___
instead of __spec__.parent.

AMoEe oty ékdoon 3.12: Raise DeprecationWarning instead of ImportWarning when falling
back to ___package___ during import resolution.

Deprecated since version 3.13, will be removed in version 3.15: __package___ will cease to be set or taken
into consideration by the import system or standard library.

module.__loader_

The loader object that the import machinery used to load the module.

3.2. The standard type hierarchy 25

https://peps.python.org/pep-0366/

The Python Language Reference, Anpoociguon 3.13.7

This attribute is mostly useful for introspection, but can be used for additional loader-specific functionality, for
example getting data associated with a loader.

__loader__ defaults to None for modules created dynamically using the types.ModuleType
constructor; use importlib.util.module_from_spec () instead to ensure the attribute is set to a
loader object.

It is strongly recommended that you use module._ spec_ .loader instead of module.
_ loader_ .

AMoEe otnv éxdoom 3.4: This attribute now defaults to None for modules created dynamically using the
types.ModuleType constructor. Previously the attribute was optional.

Deprecated since version 3.12, will be removed in version 3.16: Setting _1oader___ on a module while
failing to set __spec__ .loader is deprecated. In Python 3.16, _ loader___ will cease to be set or
taken into consideration by the import system or the standard library.

module._ _path_

A (possibly empty) sequence of strings enumerating the locations where the package’s submodules will be
found. Non-package modules should not have a __path___ attribute. See __path__ attributes on modules for
more details.

It is strongly recommended that you use module.__spec__.submodule_search_locations
instead of module._ path__ .

module.___file

module.__cached_

__file_ _and__cached___ are both optional attributes that may or may not be set. Both attributes should
be a st r when they are available.

_ file_ indicates the pathname of the file from which the module was loaded (if loaded from a file), or the
pathname of the shared library file for extension modules loaded dynamically from a shared library. It might
be missing for certain types of modules, such as C modules that are statically linked into the interpreter, and
the import system may opt to leave it unset if it has no semantic meaning (for example, a module loaded from
a database).

If _ file_ issetthenthe _ cached__ attribute might also be set, which is the path to any compiled
version of the code (for example, a byte-compiled file). The file does not need to exist to set this attribute; the
path can simply point to where the compiled file would exist (see PEP 3147).

Note that __cached__ may be setevenif _ file is not set. However, that scenario is quite atypical.
Ultimately, the loader is what makes use of the module spec provided by the finder (from which __ file
and __ cached__ are derived). So if a loader can load from a cached module but otherwise does not load
from a file, that atypical scenario may be appropriate.

It is strongly recommended that you use module._ spec_ .cached instead of module.
__cached__.

Deprecated since version 3.13, will be removed in version 3.15: Setting ___cached__ on a module while
failing to set __spec__ .cached is deprecated. In Python 3.15, _ cached__ will cease to be set or
taken into consideration by the import system or standard library.

Other writable attributes on module objects

As well as the import-related attributes listed above, module objects also have the following writable attributes:

module.__doc___

The module’s documentation string, or None if unavailable. See also: __doc__ attributes.

module.__annotations

A dictionary containing variable annotations collected during module body execution. For best practices on
working with __annotations__, please see annotations-howto.

26

Kegahaio 3. Data model

https://peps.python.org/pep-3147/

The Python Language Reference, Anpoociguon 3.13.7

Module dictionaries
Module objects also have the following special read-only attribute:

module.__dict___

The module’s namespace as a dictionary object. Uniquely among the attributes listed here, __dict___ cannot
be accessed as a global variable from within a module; it can only be accessed as an attribute on module objects.

Agmropépera viomoinong CPython: Because of the way CPython clears module dictionaries, the module
dictionary will be cleared when the module falls out of scope even if the dictionary still has live references. To
avoid this, copy the dictionary or keep the module around while using its dictionary directly.

3.2.10 Custom classes

Custom class types are typically created by class definitions (see section Class definitions). A class has a namespace
implemented by a dictionary object. Class attribute references are translated to lookups in this dictionary, e.g., C . x is
translated to C.___dict__ ["x"] (although there are a number of hooks which allow for other means of locating
attributes). When the attribute name is not found there, the attribute search continues in the base classes. This search
of the base classes uses the C3 method resolution order which behaves correctly even in the presence of “diamond”
inheritance structures where there are multiple inheritance paths leading back to a common ancestor. Additional
details on the C3 MRO used by Python can be found at python_2.3_mro.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an instance
method object whose ___self attribute is C. When it would yield a staticmethod object, it is transformed
into the object wrapped by the static method object. See section Implementing Descriptors for another way in which
attributes retrieved from a class may differ from those actually contained inits ___dict__.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.

A class object can be called (see above) to yield a class instance (see below).

3.2. The standard type hierarchy 27

The Python Language Reference, Anpoociguon 3.13.7

Special attributes

Attribute Meaning
The class’s name. See also: _ name_
type.__name__ attributes.

type.__qualname_

type._ _module_

type.__dict_

type.__bases_

type.__doc

type._ _annotations_

type._ _type_params_

type._ _static_attributes_

type._ firstlineno_

type.__mro

The class’s qualified name. See also: __qualname___
attributes.

The name of the module in which the class was defined.

A mapping proxy providing a read-only view
of the class’s namespace. See also: __ dict_
attributes.

A tuple containing the class’s bases. In most cases,
for a class defined as class X (A, B, C), X.
__bases__ will be exactly equalto (A, B, C).
The class’s documentation string, or None if undefined.
Not inherited by subclasses.

A dictionary containing variable annotations collected
during class body execution. For best practices
on working with _ annotations__ , please see
annotations-howto.

IIpocoyn

Accessing the __annotations__ attribute of
a class object directly may yield incorrect results
in the presence of metaclasses. In addition, the
attribute may not exist for some classes. Use
inspect.get_annotations () to retrieve
class annotations safely.

A tuple containing the rype parameters of a generic
class.

Added in version 3.12.

A tuple containing names of attributes of this class
which are assigned through self . X from any function
in its body.

Added in version 3.13.

The line number of the first line of the class definition,
including decorators. Setting the _ module_
attribute removes the _ firstlineno_ item
from the type’s dictionary.

Added in version 3.13.

The t uple of classes that are considered when looking
for base classes during method resolution.

Special methods

In addition to the special attributes described above, all Python classes also have the following two methods available:

type.mro ()

This method can be overridden by a metaclass to customize the method resolution order for its instances. It is

28

Kegahaio 3. Data model

The Python Language Reference, Anpoociguon 3.13.7

called at class instantiation, and its result is stored in __mro_

type.__subclasses__ ()

Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. The list is in definition order. Example:

>>> class A: pass

>>> class B(A): pass
>>> A._ subclasses_ ()
[<class 'B'>]

3.2.11 Class instances

A class instance is created by calling a class object (see above). A class instance has a namespace implemented as a
dictionary which is the first place in which attribute references are searched. When an attribute is not found there,
and the instance’s class has an attribute by that name, the search continues with the class attributes. If a class attribute
is found that is a user-defined function object, it is transformed into an instance method object whose ___self
attribute is the instance. Static method and class method objects are also transformed; see above under «Classes».
See section Implementing Descriptors for another way in which attributes of a class retrieved via its instances may
differ from the objects actually stored in the class’s ___dict__ . If no class attribute is found, and the object’s class
hasa___getattr__ () method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has a
__setattr__ ()or__delattr__ () method, this is called instead of updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names.
See section Special method names.

Special attributes

object.__class___
The class to which a class instance belongs.

object.__dict_

A dictionary or other mapping object used to store an object’s (writable) attributes. Not all instances have a
__dict__ attribute; see the section on __ slots for more details.

3.2.12 1/0 objects (also known as file objects)

A file object represents an open file. Various shortcuts are available to create file objects: the open () built-in function,
and also os.popen (), os.fdopen (), and the makefile () method of socket objects (and perhaps by other
functions or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to the
interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow the interface
defined by the 10.Text IOBase abstract class.

3.2.13 Internal types

A few types used internally by the interpreter are exposed to the user. Their definitions may change with future
versions of the interpreter, but they are mentioned here for completeness.

Code objects

Code objects represent byte-compiled executable Python code, or bytecode. The difference between a code object
and a function object is that the function object contains an explicit reference to the function’s globals (the module
in which it was defined), while a code object contains no context; also the default argument values are stored in the
function object, not in the code object (because they represent values calculated at run-time). Unlike function objects,
code objects are immutable and contain no references (directly or indirectly) to mutable objects.

3.2. The standard type hierarchy 29

The Python Language Reference, Anpoociguon 3.13.7

Special read-only attributes

codeobject.

codeobject.

codeobject.

codeobject

codeobject

codeobject

codeobject

codeobject.

codeobject

codeobject

codeobject

codeobject

codeobject

codeobject

codeobject

codeobject.

codeobject

co_name

co_qualname

co_argcount

.co_posonlyargcount

.co_kwonlyargcount

.co_nlocals

.CO_varnames

co_cellvars

.co_freevars

.co_code

.co_consts

.CO_names

.co_filename

.co_firstlineno

.co_1lnotab

co_stacksize

.co_flags

The function name

The fully qualified function name
Added in version 3.11.

The total number of positional parameters (including
positional-only parameters and parameters with default
values) that the function has

The number of positional-only parameters (including
arguments with default values) that the function has

The number of keyword-only parameters (including
arguments with default values) that the function has

The number of local variables used by the function
(including parameters)

A tuple containing the names of the local variables
in the function (starting with the parameter names)

A tuple containing the names of local variables that
are referenced from at least one nested scope inside the
function

A tuple containing the names of free (closure)
variables that a nested scope references in an outer
scope. See also function.__closure__.

Note: references to global and builtin names are not
included.

A string representing the sequence of byfecode
instructions in the function

A tuple containing the literals used by the byfecode
in the function

A tuple containing the names used by the byrecode in
the function

The name of the file from which the code was compiled

The line number of the first line of the function

A string encoding the mapping from bytecode offsets
to line numbers. For details, see the source code of the
interpreter.

AmoovpOnke omv ékdoon 3.12: This attribute of
code objects is deprecated, and may be removed in
Python 3.15.

The required stack size of the code object

An integer encoding a number of flags for the
interpreter.

30

Kegahaio 3. Data model

The Python Language Reference, Anpoociguon 3.13.7

The following flag bits are defined for co_ f1ags: bit 0x04 is set if the function uses the *argument s syntax to
accept an arbitrary number of positional arguments; bit 0x 08 is set if the function uses the * *keywords syntax to
accept arbitrary keyword arguments; bit 0x20 is set if the function is a generator. See inspect-module-co-flags for
details on the semantics of each flags that might be present.

Future feature declarations (for example, from __ future__ import division)alsousebitsin co_flags
to indicate whether a code object was compiled with a particular feature enabled. See compiler flag.

Other bits in co_ f1ags are reserved for internal use.

If a code object represents a function, the first item in co_const s is the documentation string of the function, or
None if undefined.

Methods on code objects
codeobject.co_positions ()
Returns an iterable over the source code positions of each bytecode instruction in the code object.

The iterator returns tuples containing the (start_line, end_line, start_column,
end_colunmn) . The i-th tuple corresponds to the position of the source code that compiled to the i-th code
unit. Column information is 0-indexed utf-8 byte offsets on the given source line.

This positional information can be missing. A non-exhaustive lists of cases where this may happen:
o Running the interpreter with -X no_debug_ranges.
» Loading a pyc file compiled while using -X no_debug_ranges.
« Position tuples corresponding to artificial instructions.
» Line and column numbers that can’t be represented due to implementation specific limitations.
When this occurs, some or all of the tuple elements can be None.

Added in version 3.11.

O Zhusioon

This feature requires storing column positions in code objects which may result in a small increase of disk
usage of compiled Python files or interpreter memory usage. To avoid storing the extra information and/or
deactivate printing the extra traceback information, the —X no_debug_ranges command line flag or
the PYTHONNODEBUGRANGES environment variable can be used.

codeobject.co_lines ()

Returns an iterator that yields information about successive ranges of byrecodes. Each item yielded is a
(start, end, lineno) tuple:

e start (an int) represents the offset (inclusive) of the start of the bytecode range
« end (an int) represents the offset (exclusive) of the end of the byrecode range

e lineno isan int representing the line number of the byfecode range, or None if the bytecodes in the
given range have no line number

The items yielded will have the following properties:
o The first range yielded will have a start of 0.

o The (start, end) ranges will be non-decreasing and consecutive. That is, for any pair of tuples,
the start of the second will be equal to the end of the first.

o No range will be backwards: end >= start for all triples.

o The last tuple yielded will have end equal to the size of the byrecode.

3.2. The standard type hierarchy 31

The Python Language Reference, Anpoociguon 3.13.7

Zero-width ranges, where start == end, are allowed. Zero-width ranges are used for lines that are present
in the source code, but have been eliminated by the bytecode compiler.

Added in version 3.10.

> Acite emiong

PEP 626 - Precise line numbers for debugging and other tools.
The PEP that introduced the co_lines () method.

codeobject .replace (**kwargs)

Return a copy of the code object with new values for the specified fields.
Code objects are also supported by the generic function copy . replace ().

Added in version 3.8.

Frame objects

Frame objects represent execution frames. They may occur in fraceback objects, and are also passed to registered
trace functions.

Special read-only attributes

Points to the previous stack frame (towards the caller),
frame.f back or None if this is the bottom stack frame
The code object being executed in this frame.
Accessing this attribute raises an auditing event
object.__getattr__ with arguments obj and
"f code".
The mapping used by the frame to look up local
variables. If the frame refers to an optimized scope, this
may return a write-through proxy object.
AMoEe oty éxdoom 3.13: Return a proxy for
optimized scopes.
The dictionary used by the frame to look up global
variables

frame.f_code

frame.f_locals

frame.f_globals

o The dictionary used by the frame to look up built-in
frame.f builtins (intrinsic) names
The «precise instruction» of the frame object (this is an

frame.f_lasti index into the bytecode string of the code object)

32 Kegahaio 3. Data model

https://peps.python.org/pep-0626/

The Python Language Reference, Anpoociguon 3.13.7

Special writable attributes

If not None, this is a function called for various events
during code execution (this is used by debuggers).
Normally an event is triggered for each new source line
(see f_trace_lines).

Set this attribute to False to disable triggering a
tracing event for each source line.

frame.f trace

frame.f_trace_lines

Set this attribute to True to allow per-opcode events
to be requested. Note that this may lead to undefined
interpreter behaviour if exceptions raised by the trace
function escape to the function being traced.

The current line number of the frame - writing to
this from within a trace function jumps to the given
line (only for the bottom-most frame). A debugger can
implement a Jump command (aka Set Next Statement)
by writing to this attribute.

frame.f_ trace_opcodes

frame.f_lineno

Frame object methods

Frame objects support one method:

frame.clear ()

This method clears all references to local variables held by the frame. Also, if the frame belonged to a generator,
the generator is finalized. This helps break reference cycles involving frame objects (for example when catching
an exception and storing its fraceback for later use).

RuntimeError is raised if the frame is currently executing or suspended.
Added in version 3.4.

AMoEe oty €xdoon 3.13: Attempting to clear a suspended frame raises Runt imeError (as has always
been the case for executing frames).

Traceback objects

Traceback objects represent the stack trace of an exception. A traceback object is implicitly created when an exception
occurs, and may also be explicitly created by calling t ypes . TracebackType.

AMaEe oty £kdoon 3.7: Traceback objects can now be explicitly instantiated from Python code.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at each
unwound level a traceback object is inserted in front of the current traceback. When an exception handler is entered,
the stack trace is made available to the program. (See section The try statement.) It is accessible as the third item of
the tuple returned by sys.exc_info (), and asthe __traceback___ attribute of the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error
stream; if the interpreter is interactive, it is also made available to the user as sys.last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next attributes
should be linked to form a full stack trace.

Special read-only attributes:

3.2. The standard type hierarchy 33

The Python Language Reference, Anpoociguon 3.13.7

Points to the execution frame of the current level.
Accessing this attribute raises an auditing event
object._ getattr_ with arguments obj and
"tb_frame".

Gives the line number where the exception occurred

traceback.tb_frame

traceback.tb_lineno

Indicates the «precise instruction».
traceback.tb_lasti

The line number and last instruction in the traceback may differ from the line number of its frame object if the
exception occurred in a t ry statement with no matching except clause or with a finally clause.

traceback.tb_next

The special writable attribute tlb_next is the next level in the stack trace (towards the frame where the
exception occurred), or None if there is no next level.

AMaEe ot ékdoon 3.7: This attribute is now writable

Slice objects

Slice objects are used to represent slices for _getitem () methods. They are also created by the built-in
slice () function.

Special read-only attributes: start is the lower bound; stop is the upper bound; step is the step value; each is
None if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices (self, length)

This method takes a single integer argument length and computes information about the slice that the slice
object would describe if applied to a sequence of length items. It returns a tuple of three integers; respectively
these are the start and stop indices and the step or stride length of the slice. Missing or out-of-bounds indices
are handled in a manner consistent with regular slices.

Static method objects

Static method objects provide a way of defeating the transformation of function objects to method objects described
above. A static method object is a wrapper around any other object, usually a user-defined method object. When a
static method object is retrieved from a class or a class instance, the object actually returned is the wrapped object,
which is not subject to any further transformation. Static method objects are also callable. Static method objects are
created by the built-in staticmethod () constructor.

Class method objects

A class method object, like a static method object, is a wrapper around another object that alters the way in which
that object is retrieved from classes and class instances. The behaviour of class method objects upon such retrieval
is described above, under «instance methods». Class method objects are created by the built-in classmethod ()
constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or
subscripting and slicing) by defining methods with special names. This is Python’s approach to operator overloading,
allowing classes to define their own behavior with respect to language operators. For instance, if a class defines a
methodnamed ___getitem _ (), and x is an instance of this class, then x [1] is roughly equivalent to t ype (x) .
__getitem_ (x, 1i).Except where mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined (typically AttributeError or TypeError).

34 Kegahaio 3. Data model

The Python Language Reference, Anpoociguon 3.13.7

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class
sets___iter__ () toNone, the class is not iterable, so calling iter () on its instances will raise a TypeError
(without falling back to __getitem _ ()).

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of this is the NodeList
interface in the W3C’s Document Object Model.)

3.3.1 Basic customization

object.__new__ (cls[,])

Called to create a new instance of class cls. __new__ () is a static method (special-cased so you need not
declare it as such) that takes the class of which an instance was requested as its first argument. The remaining
arguments are those passed to the object constructor expression (the call to the class). The return value of
__new___ () should be the new object instance (usually an instance of cs).

Typical implementations create a new instance of the class by invoking the superclass’s __new__ () method
using super () .__new__ (cls[, ...]) with appropriate arguments and then modifying the newly
created instance as necessary before returning it.

If _ _new__ () isinvoked during object construction and it returns an instance of cls, then the new instance’s
__init__ () method will be invoked like __init__ (self[, ...]), where self is the new instance
and the remaining arguments are the same as were passed to the object constructor.

If new__ () does not return an instance of cls, then the new instance’s __init__ () method will not be
invoked.

__new___ () is intended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init__ (self[,..]
Called after the instance has been created (by ___new__ ()), but before it is returned to the caller. The
arguments are those passed to the class constructor expression. If a base class hasan ___init__ () method,
the derived class’s ___init__ () method, if any, must explicitly call it to ensure proper initialization of the
base class part of the instance; for example: super () .__init__ ([args...]).

Because __new__ () and __init__ () work together in constructing objects (__new__ () to create it,
and ___init__ () to customize it), no non-None value may be returned by ___init__ (); doing so will
cause a TypeError to be raised at runtime.

object._ _del_ (self)

Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If
abaseclasshasa___del__ () method, the derived class’s ___del__ () method, if any, must explicitly call
it to ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) for the __del__ () method to postpone destruction of the instance
by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether
__del__ () iscalled a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that ___del__ () methods are called for objects that still exist when the interpreter exits.
weakref.finalize provides a straightforward way to register a cleanup function to be called when an
object is garbage collected.

O Ihusiomon

del x doesntdirectlycallx._del () — the former decrements the reference count for x by one,
and the latter is only called when x’s reference count reaches zero.

2The __hash__ (), iter_ (), __reversed__ (), __contains__ (), __class_getitem__ () and __fspath__ ()
methods have special handling for this. Others will still raise a TypeError, but may do so by relying on the behavior that None is not callable.

3.3. Special method names 35

The Python Language Reference, Anpoociguon 3.13.7

Agmropépera. vhioroinong CPython: It is possible for a reference cycle to prevent the reference count of
an object from going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage
collector. A common cause of reference cycles is when an exception has been caught in a local variable. The
frame’s locals then reference the exception, which references its own traceback, which references the locals of
all frames caught in the traceback.

> Acite emiong

Documentation for the gc module.

A TIpoeidomoinoy

Due to the precarious circumstances under which ___de 1 () methods are invoked, exceptions that occur
during their execution are ignored, and a warning is printed to sys . stderr instead. In particular:

e _del__ () can be invoked when arbitrary code is being executed, including from any arbitrary
thread. If ___del__ () needs to take a lock or invoke any other blocking resource, it may deadlock
as the resource may already be taken by the code that gets interrupted to execute __del ().

e del () can be executed during interpreter shutdown. As a consequence, the global variables
it needs to access (including other modules) may already have been deleted or set to None. Python
guarantees that globals whose name begins with a single underscore are deleted from their module
before other globals are deleted; if no other references to such globals exist, this may help in assuring

that imported modules are still available at the time when the __del () method is called.

object.__repr__ (self)

Called by the repr () built-in function to compute the «official» string representation of an object. If at
all possible, this should look like a valid Python expression that could be used to recreate an object with
the same value (given an appropriate environment). If this is not possible, a string of the form <. . . some
useful description...> should be returned. The return value must be a string object. If a class
defines _ _repr () butnot __str__ (),then _ repr__ () is also used when an «informal» string
representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and
unambiguous. A default implementation is provided by the object class itself.

object.__str__ (self)

Called by str (object), the default _ format__ () implementation, and the built-in function
print (), to compute the «informal» or nicely printable string representation of an object. The return value
must be a str object.

This method differs from object._ _repr () inthat there is no expectation that __str () returna
valid Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object.___repr ().

object._ bytes__ (self)

Called by bytes to compute a byte-string representation of an object. This should return a bytes object. The
object class itself does not provide this method.

object._ format__ (self, format_spec)

Called by the format () built-in function, and by extension, evaluation of formatted string literals and the
str.format () method, to produce a «formatted» string representation of an object. The format_spec
argument is a string that contains a description of the formatting options desired. The interpretation of the
format_spec argument is up to the type implementing __ format__ (), however most classes will either
delegate formatting to one of the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.

The return value must be a string object.

36

Kegahaio 3. Data model

The Python Language Reference, Anpoociguon 3.13.7

The default implementation by the object class should be given an empty format_spec string. It delegates to
__str__ ().

AMoEe ot éxdoon 3.4: The _ format__ method of object itself raises a TypeError if passed any
non-empty string.

AMoEe ot ékdoon 3.7: object._ format__ (x, '') is now equivalent to str (x) rather than
format (str(x), ''").

object.__1t__ (self, other

1t
object._ le_ (self, other
object.__eq self , other

)
()
()
(self, other)
()
()

object._ _ne_
object.__gt__ (self, other
object.__ge_ (self, other

These are the so-called «rich comparison» methods. The correspondence between operator symbols and
method names is as follows: x<y calls x.__ 1t_ (y), x<=y calls x.__le_ (y), x==y calls x.
_eq (y),x!=ycallsx._ne_ (y),x>ycallsx.__gt_ (y),andx>=ycallsx.__ge_ (y).

A rich comparison method may return the singleton Not Implemented if it does not implement the
operation for a given pair of arguments. By convention, False and True are returned for a successful
comparison. However, these methods can return any value, so if the comparison operator is used in a Boolean
context (e.g., in the condition of an i f statement), Python will call bool () on the value to determine if the
result is true or false.

By default, object implements ___eg () by using is, returning Not Implemented in the case of
a false comparison: True if x is y else NotImplemented. For __ne__ (), by default it
delegates to __eqg__ () and inverts the result unless it is Not Implemented. There are no other implied
relationships among the comparison operators or default implementations; for example, the truth of (x<y or
x==y) does not imply x<=y. To automatically generate ordering operations from a single root operation, see
functools.total_ordering().

By default, the object class provides implementations consistent with Value comparisons: equality compares
according to object identity, and order comparisons raise TypeError. Each default method may generate
these results directly, but may also return Not Implemented.

See the paragraph on ___hash__ () for some important notes on creating hashable objects which support
custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support
the operation but the right argument does); rather, 1t () and __ _gt__ () are each other’s reflection,
__le () and _ ge__ () are each other’s reflection, and _ _eq () and _ ne__ () are their own
reflection. If the operands are of different types, and the right operand’s type is a direct or indirect subclass
of the left operand’s type, the reflected method of the right operand has priority, otherwise the left operand’s
method has priority. Virtual subclassing is not considered.

When no appropriate method returns any value other than Not Implemented, the == and ! = operators will
fall back to is and is not, respectively.

object._ _hash__ (self)

Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset,and dict. The _ _hash__ () method should return an integer. The only required property is
that objects which compare equal have the same hash value; it is advised to mix together the hash values of
the components of the object that also play a part in comparison of objects by packing them into a tuple and
hashing the tuple. Example:

def _ hash__ (self):
return hash ((self.name, self.nick, self.color))

3.3. Special method names 37

The Python Language Reference, Anpoociguon 3.13.7

O Ihusioon

hash () truncates the value returned from an object’s custom ___hash__ () method to the size of a
Py_ssize_t. This is typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s
___hash___ () must interoperate on builds of different bit sizes, be sure to check the width on all supported
builds. An easy way to do this is with python -c "import sys; print (sys.hash_info.
width)".

If a class does not define an ___eqg__ () method it should not define a ___hash__ () operation either; if it
defines_ _eqg () butnot___hash__ (),its instances will not be usable as items in hashable collections. If a
class defines mutable objects and implementsan __eqg___ () method, it should not implement ___hash__ (),
since the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s
hash value changes, it will be in the wrong hash bucket).

User-defined classes have __eq () and ___hash__ () methods by default (inherited from the object
class); with them, all objects compare unequal (except with themselves) and x.___hash__ () returns an
appropriate value such that x == vy implies both that x is yand hash (x) == hash (y).

A class that overrides __eqg__ () and does not define ___hash___ () willhaveits __hash__ () implicitly
set to None. When the _ _hash__ () method of a class is None, instances of the class will raise an
appropriate TypeError when a program attempts to retrieve their hash value, and will also be correctly
identified as unhashable when checking isinstance (obj, collections.abc.Hashable).

If a class that overrides ___eqg___ () needs to retain the implementation of __hash___ () from a parent class,
the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__ .

If a class that does not override __eqg__ () wishes to suppress hash support, it should include ___hash___
= None in the class definition. A class which defines its own ___hash__ () that explicitly raises a
TypeError would be incorrectly identified as hashable by an i sinstance (obj, collections.
abc.Hashable) call.

O Zhusioony

By default, the __hash__ () values of str and bytes objects are «salted» with an unpredictable random
value. Although they remain constant within an individual Python process, they are not predictable between
repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that
exploit the worst case performance of a dict insertion, O(n*) complexity. See http://ocert.org/advisories/
ocert-2011-003.html for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this
ordering (and it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

AMoEe oty ékdoon 3.3: Hash randomization is enabled by default.
object._ bool__ (self)

Called to implement truth value testing and the built-in operation bool () ; should return False or True.
‘When this method is not defined, len__ () is called, if it is defined, and the object is considered true if
its result is nonzero. If a class defines neither __1en_ () nor __bool__ () (which is true of the object
class itself), all its instances are considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion
of x.name) for class instances.

38 Kegahaio 3. Data model

http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, Anpoociguon 3.13.7

object._ _getattr__ (self, name)

Called when the default attribute access fails with an At t ributeError (either _ _getattribute__ ()
raises an AttributeError because name is not an instance attribute or an attribute in the class tree for
self;or __get__ () of a name property raises AttributeError). This method should either return
the (computed) attribute value or raise an AttributeError exception. The object class itself does not
provide this method.

Note that if the attribute is found through the normal mechanism, ___getattr__ () isnot called. (This is an
intentional asymmetry between ___getattr__ () and ___setattr__ ().) This is done both for efficiency
reasons and because otherwise ___getattr__ () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can take total control by not inserting any values in the instance
attribute dictionary (but instead inserting them in another object). See the __getattribute__ () method
below for a way to actually get total control over attribute access.

object._ _getattribute_ (self, name)

Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr__ (), the latter will not be called unless ___getattribute__ () either calls it explicitly
or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, object .
__getattribute__ (self, name).

O Ihusioon

This method may still be bypassed when looking up special methods as the result of implicit invocation via
language syntax or built-in functions. See Special method lookup.

For certain sensitive attribute accesses, raises an auditing event object.__getattr__ with arguments
obj and name.

object.__setattr__ (self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store
the value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If _ setattr () wants to assign to an instance attribute, it should call the base class method with the
same name, for example, object.___setattr__ (self, name, value).

For certain sensitive attribute assignments, raises an auditing event object . ___setattr__ with arguments
obj, name, value.
object._ _delattr__ (self, name)

Like setattr__ () butfor attribute deletion instead of assignment. This should only be implemented if
del obj.name is meaningful for the object.

For certain sensitive attribute deletions, raises an auditing event object.__delattr__ with arguments
obj and name.
object._ dir__ (self)

Called when dir () is called on the object. An iterable must be returned. dir () converts the returned iterable
to a list and sorts it.

3.3. Special method names 39

The Python Language Reference, Anpoociguon 3.13.7

Customizing module attribute access

Special names __getattr___ and __dir__ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and
return the computed value or raise an AttributeError. If an attribute is not found on a module object through
the normal lookup, i.e. object.__getattribute__ (), then __getattr__ is searched in the module
__dict__ before raising an AttributeError. If found, it is called with the attribute name and the result
is returned.

The __dir___ function should accept no arguments, and return an iterable of strings that represents the names
accessible on module. If present, this function overrides the standard dir () search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class___ attribute of a module object to a subclass of t ypes.ModuleType. For example:

import sys
from types import ModuleType

class VerboseModule (ModuleType) :
def _ repr_ (self):

return f'Verbose {self. name__ }'

def _ setattr_ (self, attr, wvalue):

print (f'Setting {attr}..."'")
super () .__setattr__ (attr, wvalue)
sys.modules[_name_].__class__ = VerboseModule
O Ihusimon

Defining module __getattr__ andsettingmodule _class__ only affect lookups made using the attribute
access syntax — directly accessing the module globals (whether by code within the module, or via a reference to
the module’s globals dictionary) is unaffected.

AlhaEe oty €xdoomn 3.5: __class__ module attribute is now writable.

Added in version 3.7: __getattr_ _and __dir__ module attributes.

e Asite emiong

PEP 562 - Module __getattr__and __dir__
Describes the __getattr___and __dir__ functions on modules.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for
one of its parents). In the examples below, «the attribute» refers to the attribute whose name is the key of the property
in the owner class” __dict__ . The object class itself does not implement any of these protocols.

object.__get__ (self, instance, owner=None)

Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute access). The optional owner argument is the owner class, while instance is the instance that the attribute
was accessed through, or None when the attribute is accessed through the owner.

This method should return the computed attribute value or raise an Attt ributeError exception.

PEP 252 specifies that ___get__ () is callable with one or two arguments. Python’s own built-in descriptors
support this specification; however, it is likely that some third-party tools have descriptors that require both

40 Kegahaio 3. Data model

https://peps.python.org/pep-0562/
https://peps.python.org/pep-0252/

The Python Language Reference, Anpoociguon 3.13.7

arguments. Python'sown ___getattribute__ () implementation always passes in both arguments whether
they are required or not.

object.__set__ (self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.
Note, adding __set__ () or __delete__ () changes the kind of descriptor to a «data descriptor». See
Invoking Descriptors for more details.

object._ _delete_ (self, instance)

Called to delete the attribute on an instance instance of the owner class.
Instances of descriptors may also have the __objclass___ attribute present:

object._ _objclass_

The attribute __objclass__ is interpreted by the inspect module as specifying the class where this
object was defined (setting this appropriately can assist in runtime introspection of dynamic class attributes).
For callables, it may indicate that an instance of the given type (or a subclass) is expected or required as the
first positional argument (for example, CPython sets this attribute for unbound methods that are implemented
in C).

Invoking Descriptors

In general, a descriptor is an object attribute with «binding behavior», one whose attribute access has been overridden
by methods in the descriptor protocol: __get_ (), __set_ (),and __delete__ ().If any of those methods
are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,
a . x has a lookup chain starting with a.__dict__ ['x'],then type(a).__dict__['x'], and continuing
through the base classes of type (a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a . x. How the arguments are assembled depends on a:

Direct Call
The simplest and least common call is when user code directly invokes a descriptor method: x . __get__ (a).

Instance Binding
If binding to an object instance, a.x is transformed into the call: type(a).__dict_ ['x"'].
__get__ (a, type(a)).

Class Binding
If binding to a class, A . x is transformed into the call: A. __ dict_ ['x'].__get__ (None, A).
Super Binding
A dotted lookup such as super (A, a) .xsearchesa.__class__._ mro__ forabase class B following
Aandthenreturns B.__ dict_ ['x']l.__get_ (a, A).If nota descriptor, x is returned unchanged.

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined. A
descriptor can define any combination of __get_ (), __set_ () and __delete__ (). If it does not define
__get__ (), then accessing the attribute will return the descriptor object itself unless there is a value in the object’s
instance dictionary. If the descriptor defines __set__ () and/or __delete__ (), it is a data descriptor; if it
defines neither, it is a non-data descriptor. Normally, data descriptors define both __get__ () and __set__ (),
while non-data descriptors have justthe __get__ () method. Datadescriptorswith__get__ () and__set__ ()
(and/or __delete__ ()) defined always override a redefinition in an instance dictionary. In contrast, non-data
descriptors can be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as
non-data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to
acquire behaviors that differ from other instances of the same class.

3.3. Special method names 4

The Python Language Reference, Anpoociguon 3.13.7

The property () function is implemented as a data descriptor. Accordingly, instances cannot override the behavior
of a property.

__slots__

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of ___dict__ and
__weakref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using ___dict___ can be significant. Attribute lookup speed can be significantly improved as
well.

object._ _slots__

This class variable can be assigned a string, iterable, or sequence of strings with variable names used
by instances. __slots__ reserves space for the declared variables and prevents the automatic creation of
__dict__and __weakref _ for each instance.

Notes on using __slots__:

o When inheriting from a class without __slots__,the __dict___ and _ weakref _ attribute of the instances
will always be accessible.

o Withouta__ dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition.
Attempts to assign to an unlisted variable name raises Att ributeError. If dynamic assignment of new
variables is desired, thenadd '__dict__ ' to the sequence of strings in the __ slots__ declaration.

o Without a __ weakref _ variable for each instance, classes defining __ slots__ do not support weak
references to its instances. If weak reference support is needed, then add '___weakref__ ' to the
sequence of strings in the __slots__ declaration.

o _ slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class
attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class
attribute would overwrite the descriptor assignment.

o The action of a __slots___ declaration is not limited to the class where it is defined. __slots__ declared in parents
are available in child classes. However, instances of a child subclass will geta _ dict_ and __weakref _
unless the subclass also defines __slots__ (which should only contain names of any additional slots).

o If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of the
program undefined. In the future, a check may be added to prevent this.

e TypeError will be raised if nonempty _ slots_ are defined for a class derived from a
"variable—-length" built-in typesuchas int, bytes,and tuple.

» Any non-string iterable may be assigned to __slots__.

e Ifadictionary is used to assign __slots__, the dictionary keys will be used as the slot names. The values
of the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect.
getdoc () and displayed in the output of help ().

e _ class___ assignment works only if both classes have the same __slots__.

o Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have
attributes created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

o If an iterator is used for __slots__ then a descriptor is created for each of the iterator’s values. However, the
__slots__ attribute will be an empty iterator.

3.3.3 Customizing class creation

Whenever a class inherits from another class, __init_subclass__ () is called on the parent class. This way, it
is possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but
where class decorators only affect the specific class they’re applied to, __init_subclass___ solely applies to
future subclasses of the class defining the method.

42 Kegahaio 3. Data model

The Python Language Reference, Anpoociguon 3.13.7

classmethod object.__init_subeclass__ (cls)

This method is called whenever the containing class is subclassed. cls is then the new subclass. If defined as a

normal instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent class’s __init_subclass__.

For compatibility with other classes using __init_subclass
arguments and pass the others over to the base class, as in:

, one should take out the needed keyword

class Philosopher:

def _ init_subclass__(cls, /, default_name, **kwargs):
super () ._ _init_subclass__ (**kwargs)
cls.default _name = default_name

pass

class AustralianPhilosopher (Philosopher, default_name="Bruce") :

The default implementation object.__init_subclass__ doesnothing, but raises an error if it is called

with any arguments.

O Ihuciomon

The metaclass hint metaclass is consumed by the rest of the type machinery, and is never passed to
__init_subclass__ implementations. The actual metaclass (rather than the explicit hint) can be

accessed as type (cls).

Added in version 3.6.

When a class is created, type._ _new__ () scans the class variables and makes callbacks to those with a

__set_name___ () hook.

object._ set_name__ (self, owner, name)
Automatically called at the time the owning class owner is created. The object has been assigned to name in
that class:
class A:
x = C() # Automatically calls: x.__set_name__ (A, 'x')

If the class variable is assigned after the class is created,
If needed, __set_name__ () can be called directly:

set_name__ () will not be called automatically.

class A:
pass
c = C{()
A.x = C # The hook is not called
c.__set_name_ (A, 'x'") # Manually invoke the hook

L

See Creating the class object for more details.

Added in version 3.6.

Metaclasses

By default, classes are constructed using t ype () . The class body is executed in a new namespace and the class name

is bound locally to the result of type (name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition
line, or by inheriting from an existing class that included such an argument. In the following example, both MyClass

and MySubclass are instances of Meta:

3.3. Special method names

43

The Python Language Reference, Anpoociguon 3.13.7

class Meta (type) :
pass

class MyClass (metaclass=Meta) :
pass

class MySubclass (MyClass) :
pass

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:
« MRO entries are resolved;
« the appropriate metaclass is determined;
« the class namespace is prepared;
« the class body is executed;

« the class object is created.

Resolving MRO entries

object._ _mro_entries__ (self, bases)

If a base that appears in a class definition is not an instance of type, thenan__mro_entries__ () method
is searched on the base. If an __mro_entries__ () method is found, the base is substituted with the result
of acallto __mro_entries__ () when creating the class. The method is called with the original bases
tuple passed to the bases parameter, and must return a tuple of classes that will be used instead of the base.
The returned tuple may be empty: in these cases, the original base is ignored.

e Agite emiong

types.resolve_bases ()
Dynamically resolve bases that are not instances of type.

types.get_original_bases|()
Retrieve a class’s «original bases» prior to modifications by __mro_entries__ ().

PEP 560
Core support for typing module and generic types.

Determining the appropriate metaclass
The appropriate metaclass for a class definition is determined as follows:
« if no bases and no explicit metaclass are given, then type () is used;
« if an explicit metaclass is given and it is not an instance of type (), then it is used directly as the metaclass;

« if an instance of type () is given as the explicit metaclass, or bases are defined, then the most derived
metaclass is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type (cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these
candidate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail
with TypeError.

44 Kegahaio 3. Data model

https://peps.python.org/pep-0560/

The Python Language Reference, Anpoociguon 3.13.7

Preparing the class hamespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has a
__prepare___ attribute, it is called as namespace = metaclass.__prepare__ (name, Dbases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The __prepare_
method should be implemented as a classmethod. The namespace returned by __prepare__ is passed in to
__new___, but when the final class object is created the namespace is copied into a new dict.

If the metaclass has no __prepare___ attribute, then the class namespace is initialised as an empty ordered
mapping.

e Acire emiong

PEP 3115 - Metaclasses in Python 3000
Introduced the __prepare__ namespace hook

Executing the class body

The class body is executed (approximately) as exec (body, globals (), namespace). The key difference
from a normal call to exec () is that lexical scoping allows the class body (including any methods) to reference
names from the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see
names defined at the class scope. Class variables must be accessed through the first parameter of instance or class
methods, or through the implicit lexically scoped ___class___ reference described in the next section.

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass (name, bases, namespace, **kwds) (the additional keywords passed here are the same as
those passed to __prepare_).

This class object is the one that will be referenced by the zero-argument form of super (). _ _class__isan
implicit closure reference created by the compiler if any methods in a class body refer to either _ _class__ or
super. This allows the zero argument form of super () to correctly identify the class being defined based on
lexical scoping, while the class or instance that was used to make the current call is identified based on the first
argument passed to the method.

Agmropépera vhomoinong CPython: In CPython 3.6 and later, the __class__ cell is passed to the metaclass as
a__classcell_ _ entry in the class namespace. If present, this must be propagated up to the type._ new___
call in order for the class to be initialised correctly. Failing to do so will result in a Runt imeError in Python 3.8.

When using the default metaclass t ype, or any metaclass that ultimately calls type._ _new__, the following
additional customization steps are invoked after creating the class object:

1) The type._ _new__ method collects all of the attributes in the class namespace that define a
___set_name___ () method;

2) Those __set_name___ methods are called with the class being defined and the assigned name of that
particular attribute;

3) The __init_subclass__ () hook is called on the immediate parent of the new class in its method
resolution order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the
resulting object is bound in the local namespace as the defined class.

When a new class is created by type.___new__, the object provided as the namespace parameter is copied to a
new ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which
becomes the ___dict___ attribute of the class object.

3.3. Special method names 45

https://peps.python.org/pep-3115/

The Python Language Reference, Anpoociguon 3.13.7

e Asite emiong

PEP 3135 - New super
Describes the implicit __class___ closure reference

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging,
interface checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource
locking/synchronization.

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance () and issubclass ()
built-in functions.

In particular, the metaclass abc . ABCMeta implements these methods in order to allow the addition of Abstract
Base Classes (ABCs) as «virtual base classes» to any class or type (including built-in types), including other ABCs.
type.__instancecheck__ (self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to
implement isinstance (instance, class).
type.__subclasscheck__ (self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to

implement issubclass (subclass, class).

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods
in the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case
the instance is itself a class.

e Asgite emiong

PEP 3119 - Introducing Abstract Base Classes
Includes the specification for customizing isinstance () and issubclass () behavior through
__instancecheck__ () and __subclasscheck__ (), with motivation for this functionality in
the context of adding Abstract Base Classes (see the abc module) to the language.

3.3.5 Emulating generic types

When using type annotations, it is often useful to parameterize a generic type using Python’s square-brackets notation.
For example, the annotation 1ist [int] might be used to signify a 1ist in which all the elements are of type
int.

e Ascite emiong

PEP 484 - Type Hints
Introducing Python’s framework for type annotations

Generic Alias Types
Documentation for objects representing parameterized generic classes

Generics, user-defined generics and typing.Generic
Documentation on how to implement generic classes that can be parameterized at runtime and understood
by static type-checkers.

A class can generally only be parameterized if it defines the special class method __class_getitem__ ().

46 Kegahaio 3. Data model

https://peps.python.org/pep-3135/
https://peps.python.org/pep-3119/
https://peps.python.org/pep-0484/

The Python Language Reference, Anpoociguon 3.13.7

classmethod object._ class_getitem__ (cls, key)

Return an object representing the specialization of a generic class by type arguments found in key.

When defined on a class, __class_getitem__ () is automatically a class method. As such, there is no
need for it to be decorated with @classmethod when it is defined.

The purpose of __class_getitem _

The purposeof __class_getitem _ () isto allow runtime parameterization of standard-library generic classes
in order to more easily apply ype hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers,
users should either inherit from a standard library class that already implements __ class _getitem__ (), or
inherit from typing.Generic, which has its own implementation of __class_getitem__ ().

Custom implementations of __class_getitem__ () on classes defined outside of the standard library may
not be understood by third-party type-checkers such as mypy. Using __class_getitem__ () on any class for
purposes other than type hinting is discouraged.

__class_getitem__ versus __getitem _

Usually, the subscription of an object using square brackets will call the _ getitem () instance method
defined on the object’s class. However, if the object being subscribed is itself a class, the class method
__class_getitem__ () may be called instead. _ class_getitem__ () should return a GenericAlias
object if it is properly defined.

Presented with the expression ob 7 [x], the Python interpreter follows something like the following process to decide
whether _ getitem () or__ _class_getitem_ _ () should be called:

from inspect import isclass

def subscribe (obj, x):
"""Return the result of the expression 'obj[x]'"""

class_of_obj = type (obj)

If the class of obj defines __ _getitem ,
call class_of _obj.__getitem _(obj, x)

if hasattr(class_of_obj, '_ _getitem '"):
return class_of_obj._ _getitem (obj, x)
Else, if obj is a class and defines _ _class_getitem _,
call obj.__class_getitem__ (x)
elif isclass(obj) and hasattr(obj, '_ _class_getitem '"):
return obj._ class_getitem (x)

Else, raise an exception
else:
raise TypeError (
f"'{class_of_obj._name ' object is not subscriptable”

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s
metaclass, and most classes have the type class as their metaclass. t ype does not define _ getitem (),
meaning that expressions such as 1ist [int],dict [str, float] and tuple[str, bytes] all resultin
__class_getitem _ () being called:

>>> # 1ist has class "type" as its metaclass, like most classes:
>>> type(list)
<class 'type'>

(ouvéyela oty eV oehida)

3.3. Special method names 47

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

>>> type(dict) == type(list) == type (tuple) == type(str) == type (bytes)
True

>>> # "list[int]" calls "list.__class_getitem _ (int)"

>>> list[int]

list[int]

>>> # list._ class_getitem_ _ returns a GenericAlias object:

>>> type (list[int])
<class 'types.GenericAlias'>

J

However, if a class has a custom metaclass that defines __getitem _ (), subscribing the class may result in
different behaviour. An example of this can be found in the enum module:

>>> from enum import Enum

>>> class Menu (Enum) :
"""A breakfast menu'""
SPAM = 'spam'
BACON = 'bacon'

>>> # Enum classes have a custom metaclass:

>>> type (Menu)

<class 'enum.EnumMeta'>

>>> # EnumMeta defines __ _getitem ,

>>> # so __class_getitem_ _ is not called,

>>> # and the result is not a GenericAlias object:
>>> Menu ['SPAM']

<Menu.SPAM: 'spam'>

>>> type (Menul['SPAM'])

<enum 'Menu'>

e Asgite emiong

PEP 560 - Core Support for typing module and generic types
Introducing _ class_getitem (), and outlining when a subscription results in
__class_getitem__ () beingcalled instead of __getitem__ ()

3.3.6 Emulating callable objects

object.__call___ (self[, args...])

Called when the instance is «called» as a function; if this method is defined, x (argl, arg2, ...)
roughly translates to type (x) .__call_ (x, argl, ...).Theobject classitself does not provide
this method.

3.3.7 Emulating container types

The following methods can be defined to implement container objects. None of them are provided by the object
class itself. Containers usually are sequences (such as 1ists or tuples) or mappings (like dictionaries), but can
represent other containers as well. The first set of methods is used either to emulate a sequence or to emulate a
mapping; the difference is that for a sequence, the allowable keys should be the integers k for which 0 <= k <
N where N is the length of the sequence, or s1ice objects, which define a range of items. It is also recommended
that mappings provide the methods keys (), values (), items (), get (), clear (), setdefault (),
pop (), popitem(), copy (), and update () behaving similar to those for Python’s standard dictionary
objects. The collections.abc module provides a MutableMapping abstract base class to help create
those methods from a base set of __ _getitem (), setitem _ (), delitem__ (), and keys ().
Mutable sequences should provide methods append (), count (), index (),extend (), insert (),pop (),
remove (), reverse () and sort (), like Python standard 1ist objects. Finally, sequence types should

48 Kegahaio 3. Data model

https://peps.python.org/pep-0560/

The Python Language Reference, Anpoociguon 3.13.7

implement addition (meaning concatenation) and multiplication (meaning repetition) by defining the methods
_add__ (), __radd_ (), _iadd (), _mul__ (), _rmul__ ()and___imul__ () described below;
they should not define other numerical operators. It is recommended that both mappings and sequences implement the
__contains__ () method to allow efficient use of the in operator; for mappings, i n should search the mapping’s
keys; for sequences, it should search through the values. It is further recommended that both mappings and sequences
implementthe iter () method to allow efficient iteration through the container; for mappings, _iter_ ()
should iterate through the object’s keys; for sequences, it should iterate through the values.

object._ len__ (self)

Called to implement the built-in function len (). Should return the length of the object, an integer >= 0.
Also, an object that doesn’t definea ___bool__ () method and whose __len__ () method returns zero is
considered to be false in a Boolean context.

Agmropépera vhomoinong CPython: In CPython, the length is required to be at most sys .maxsize. If
the length is larger than sys.maxsize some features (such as len ()) may raise OverflowError. To
prevent raising OverflowError by truth value testing, an object must definea ___bool__ () method.

object._ length_hint__ (self)

Called to implement operator.length_hint ().Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer >= 0. The return value may also
be Not Implemented, which is treated the same as if the __length_hint__ method didn’t exist at all.
This method is purely an optimization and is never required for correctness.

Added in version 3.4.

O Ihusioony
Slicing is done exclusively with the following three methods. A call like

[a[i:Z] = ¢ }

is translated to
[a[slice(l, 2, None)] =D J

and so forth. Missing slice items are always filled in with None.

object._ _getitem__ (self, key)

Called to implement evaluation of self [key]. For sequence types, the accepted keys should be integers.
Optionally, they may support s1ice objects as well. Negative index support is also optional. If key is of an
inappropriate type, TypeError may be raised; if key is a value outside the set of indexes for the sequence
(after any special interpretation of negative values), IndexError should be raised. For mapping types, if key
is missing (not in the container), KeyError should be raised.

O Ihusioon

for loops expect that an IndexError will be raised for illegal indexes to allow proper detection of the
end of the sequence.

O Ihusioon

When subscripting a class, the special class method ___class_getitem__ () may be called instead of
__getitem__ ().See _ class_getitem__ versus __ getitem__ for more details.

object._ setitem__ (self, key, value)

Called to implement assignment to self [key]. Same note as for __getitem__ (). This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added,

3.3. Special method names 49

The Python Language Reference, Anpoociguon 3.13.7

or for sequences if elements can be replaced. The same exceptions should be raised for improper key values as
forthe _getitem__ () method.

object._ _delitem__ (self, key)

Called to implement deletion of self [key]. Same note as for __getitem__ (). This should only be
implemented for mappings if the objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for improper key values asforthe __getitem__ ()
method.

object._ missing _ (self, key)
Called by dict._ _getitem _ () to implement self [key] for dict subclasses when key is not in the
dictionary.

object._ _iter_ _ (self)

This method is called when an iferator is required for a container. This method should return a new iterator
object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the
container.

object._ reversed_ (self)

Called (if present) by the reversed () built-in to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

If the _ reversed__ () method is not provided, the reversed () built-in will fall back to using the
sequence protocol (__Ien_ () and___getitem _ ()).Objects that support the sequence protocol should
only provide __reversed__ () if they can provide an implementation that is more efficient than the one
provided by reversed ().

The membership test operators (in and not 1in) are normally implemented as an iteration through a container.
However, container objects can supply the following special method with a more efficient implementation, which also
does not require the object be iterable.

object._ contains__ (self, item)
Called to implement membership test operators. Should return true if item is in self, false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define __contains__ (), the membership test first tries iterationvia___iter (),
then the old sequence iteration protocol via___getitem__ (), see this section in the language reference.

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should
be left undefined.

object.__add__ (self, other)

object.__sub__ (self, other)

object._ _mul__ (self, other)

object._ _matmul__ (self, other)

object.__truediv__ (self, other)

object._ floordiv__ (self, other)

object._ _mod__ (self, other)

object.__divmod__ (self, other)

object._ pow__ (self, other[, modula])

object._ lshift__ (self, other)

object.__rshift__ (self, other)

object.__and__ (self, other)

object.__xor__ (self, other)

50 Kegahaio 3. Data model

The Python Language Reference, Anpoociguon 3.13.7

object.__or__ (self, other)

These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, *, |). For instance, to evaluate the expression x + vy, where x is an instance of
aclass that hasan __add () method, type (x) .__add__ (x, vy) iscalled. The _ divmod ()
method should be the equivalent to using ___floordiv.__ () and __mod___ (); it should not be related to
_ _truediv__ (). Note that __pow__ () should be defined to accept an optional third argument if the
ternary version of the built-in pow () function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return

NotImplemented.
object.__radd__ (self, other)
object.__rsub__ (self, other)
object.__rmul__ (self, other)
object.__rmatmul__ (self, other)
object.__rtruediv__ (self, other)
object._ rfloordiv__ (self, other)
object.__rmod__ (self, other)
object.__rdivmod__ (self, other)
object._ _rpow__ (self, other[, modulo])
object._ _rlshift__ (self, other)
object.__rrshift__ (self, other)
object.__rand__ (self, other)
object.__rxor__ (self, other)
object.__ror__ (self, other)

These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, *, |) with reflected (swapped) operands. These functions are only called if the left
operand does not support the corresponding operation® and the operands are of different types.* For instance,
to evaluate the expression x — vy, where y is an instance of a class that has an ___rsub__ () method,
type(y) .__rsub__ (y, x) iscalledif type (x).__sub__ (x, y) returns NotImplemented.

Note that ternary pow () will not try calling __ rpow__ () (the coercion rules would become too
complicated).

O Zhusioon

If the right operand’s type is a subclass of the left operand’s type and that subclass provides a different
implementation of the reflected method for the operation, this method will be called before the left
operand’s non-reflected method. This behavior allows subclasses to override their ancestors” operations.

object.__iadd__ (self, other)
object.__isub__ (self, other)
object.__imul__ (self, other)
object.__imatmul__ (self, other)
object.__itruediv__ (self, other)
object._ ifloordiv__ (self, other)

object.__imod__ (self, other)

object._ ipow__ (self, other[, modulo])

3 «Does not support» here means that the class has no such method, or the method returns Not Tmplemented. Do not set the method to
None if you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such
fallback.

4 For operands of the same type, it is assumed that if the non-reflected method — suchas __add__ () - fails then the overall operation is not
supported, which is why the reflected method is not called.

3.3. Special method names 51

The Python Language Reference, Anpoociguon 3.13.7

object._ _ilshift__ (self, other)
object.__irshift__ (self, other)
object.__iand__ (self, other)

object.__ixor__ (self, other)

object._ _ior__ (self, other)
These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, @=, /=, //=,
§=, **=, <<=, >>=, &=, "=, | =). These methods should attempt to do the operation in-place (modifying

self’) and return the result (which could be, but does not have to be, self). If a specific method is not defined,
or if that method returns Not Implemented, the augmented assignment falls back to the normal methods.
For instance, if x is an instance of a class withan ___iadd__ () method, x += yisequivalentto x = x.
__diadd__ (y) .If__iadd () doesnotexist,orif x.___iadd__ (y) returns Not Implemented, x.
_add__ (y)andy._ radd__ (x) are considered, as with the evaluation of x + y. In certain situations,
augmented assignment can result in unexpected errors (see fag-augmented-assignment-tuple-error), but this
behavior is in fact part of the data model.

object._ neg__ (self)
object._ pos__ (self)
object.__abs__ (self)
object.__invert_ (self)

Called to implement the unary arithmetic operations (-, +, abs () and ~).

object._ complex__ (self)
object.__int__ (self)
object._ float__ (self)

Called to implement the built-in functions complex (), int () and £1loat (). Should return a value of the
appropriate type.

object.__index__ (self)
Called to implement operator.index (), and whenever Python needs to losslessly convert the numeric

object to an integer object (such as in slicing, or in the built-inbin () ,hex () and oct () functions). Presence
of this method indicates that the numeric object is an integer type. Must return an integer.

If int (), float__ () and __ _complex__ () are not defined then corresponding built-in
functions int (), float () and complex () fallbackto ___index ().

object.__round__ (self[, ndigits])
object.__trunc__ (self)
object._ floor__ (self)
object._ ceil__ (self)
Called to implement the built-in function round () and math functions t runc (), floor () andceil ().

Unless ndigits is passed to ___round__ () all these methods should return the value of the object truncated
toan Integral (typically an int).

The built-in function int () falls back to _ trunc__ () if neither __int__ () nor __index__ () is
defined.

AMoEe ot ékdoomn 3.11: The delegation of int () to___trunc__ () is deprecated.

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a wi t h statement.
The context manager handles the entry into, and the exit from, the desired runtime context for the execution of the
block of code. Context managers are normally invoked using the with statement (described in section The with
statement), but can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking
resources, closing opened files, etc.

For more information on context managers, see typecontextmanager. The object class itself does not provide the
context manager methods.

52 Kegahaio 3. Data model

The Python Language Reference, Anpoociguon 3.13.7

object.__enter__ (self)
Enter the runtime context related to this object. The w1t h statement will bind this method’s return value to
the target(s) specified in the as clause of the statement, if any.

object.__exit__ (self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context
to be exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being
propagated), it should return a true value. Otherwise, the exception will be processed normally upon exit from
this method.

Note that __exit__ () methods should not reraise the passed-in exception; this is the caller’s responsibility.

e Acite emiong

PEP 343 - The «with» statement
The specification, background, and examples for the Python wi t h statement.

3.3.10 Customizing positional arguments in class pattern matching

When using a class name in a pattern, positional arguments in the pattern are not allowed by default, i.e. case
MyClass (x, vy) is typically invalid without special support in MyClass. To be able to use that kind of pattern,
the class needs to define a __match_args__ attribute.

object._ _match_args_

This class variable can be assigned a tuple of strings. When this class is used in a class pattern with positional
arguments, each positional argument will be converted into a keyword argument, using the corresponding value
in __match_args__ as the keyword. The absence of this attribute is equivalent to setting it to ().

For example, if MyClass.__match_args__is ("left", "center", "right") that meansthatcase
MyClass (x, y) isequivalentto case MyClass (left=x, center=y).Note thatthe number of arguments
in the pattern must be smaller than or equal to the number of elements in __match_args__; if it is larger, the pattern
match attempt will raise a TypeError.

Added in version 3.10.

e Asgite emiong

PEP 634 - Structural Pattern Matching
The specification for the Python mat ch statement.

3.3.11 Emulating buffer types

The buffer protocol provides a way for Python objects to expose efficient access to a low-level memory array. This
protocol is implemented by builtin types such as bytes and memoryview, and third-party libraries may define
additional buffer types.

While buffer types are usually implemented in C, it is also possible to implement the protocol in Python.

object._ buffer_ (self, flags)
Called when a buffer is requested from self (for example, by the memoryview constructor). The flags
argument is an integer representing the kind of buffer requested, affecting for example whether the returned
buffer is read-only or writable. inspect .BufferFlags provides a convenient way to interpret the flags.
The method must return a memoryview object.

object._ release_buffer_ (self, buffer)

Called when a buffer is no longer needed. The buffer argument is a memoryview object that was previously
returned by ___buffer__ ().The method must release any resources associated with the buffer. This method

3.3. Special method names 53

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0634/

The Python Language Reference, Anpoociguon 3.13.7

should return None. Buffer objects that do not need to perform any cleanup are not required to implement this
method.

Added in version 3.12.

e Acite emiong

PEP 688 - Making the buffer protocol accessible in Python
Introduces the Python _ buffer_ and__ release_buffer_ methods.

collections.abc.Buffer
ABC for buffer types.

3.3.12 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an
exception:

>>> class C:

pass
>>> ¢ = C()
>>> c._ _len_ = lambda: 5

>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods suchas ___hash__ () and__repr__ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the
conventional lookup process, they would fail when invoked on the type object itself:

>>> 1 ._ hash__ () == hash(1l)
True
>>> int._ _hash__ () == hash (int)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash ' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as “metaclass
confusion”, and is avoided by bypassing the instance when looking up special methods:

>>> type(l).__hash__ (1) == hash(1l)

True

>>> type(int) ._ _hash__ (int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the __getattribute__ () method even of the object’s metaclass:

>>> class Meta (type) :
def _ _getattribute__ (*args):
print ("Metaclass getattribute invoked")
return type._ getattribute_ (*args)

>>> class C(object, metaclass=Meta) :
def _ len_ (self):

(OuvEyELD OTNV ETTOUEVT) GEMDOL)

54 Kegahaio 3. Data model

https://peps.python.org/pep-0688/

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
return 10
def _ _getattribute__ (*args):
print ("Class getattribute invoked")
return object._ _getattribute__ (*args)

>>> ¢c = C()

>>> c.__len__ () # Explicit lookup via instance
Class getattribute invoked

10

>>> type(c).__len__ (c) # Explicit lookup via type
Metaclass getattribute invoked

10

>>> len(c) # Implicit lookup

10

J

Bypassingthe getattribute__ () machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be
set on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implementsan ___await__ () method. Coroutine objects returned from async def
functions are awaitable.

O Inucioon

The generator iterator objects returned from generators decorated with types.coroutine () are also
awaitable, but they do not implement __await__ ().

object._ _await__ (self)

Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future
implements this method to be compatible with the awa i t expression. The object class itself is not awaitable
and does not provide this method.

O Ihusioon

The language doesn’t place any restriction on the type or value of the objects yielded by the iterator returned
by __await__, as this is specific to the implementation of the asynchronous execution framework (e.g.
asyncio) that will be managing the awaitable object.

Added in version 3.5.

e Acite emiong

PEP 492 for additional information about awaitable objects.

3.4. Coroutines 55

https://peps.python.org/pep-0492/

The Python Language Reference, Anpoociguon 3.13.7

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling _await__ () and
iterating over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration,
and the exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by
the iterator. Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator
methods). However, unlike generators, coroutines do not directly support iteration.

AMaEe oty ékdoon 3.5.2: It is a Runt imeError to await on a coroutine more than once.

coroutine.send (value)

Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator
returned by __await__ (). If value is not None, this method delegates to the send () method of the
iterator that caused the coroutine to suspend. The result (return value, St opIteration, or other exception)
is the same as when iterating over the __await__ () return value, described above.

coroutine.throw (value)

coroutine.throw (type[, value[, traceback]])

Raises the specified exception in the coroutine. This method delegates to the t hrow () method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the
__await__ () return value, described above. If the exception is not caught in the coroutine, it propagates
back to the caller.

AMoEe otnv éxdoon 3.12: The second signature (type[, value[, traceback]]) is deprecated and may be
removed in a future version of Python.

coroutine.close ()

Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close () method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the
coroutine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4.3 Asynchronous lterators
An asynchronous iterator can call asynchronous code inits ___anext___ method.
Asynchronous iterators can be used in an async for statement.
The object class itself does not provide these methods.
object.__aiter__ (self)

Must return an asynchronous iterator object.

object.__anext__ (self)

Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration
error when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline (self):

def aiter_ (self):
return self

async def _ _anext_ (self):

(ouvéyela oty emtouevn oehida)

56 Kegahaio 3. Data model

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
val = await self.readline ()
if val == b'':
raise StopAsynclteration
return val

Added in version 3.5.

AMaEe oty ékdoon 3.7: Prior to Python 3.7,
asynchronous iterator.

aiter () could return an awaitable that would resolve to an

Starting with Python 3.7, __aiter_ () must return an asynchronous iterator object. Returning anything else will
result ina TypeError error.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter__ and
__aexit__ methods.

Asynchronous context managers can be used in an async with statement.
The object class itself does not provide these methods.

object._ _aenter__ (self)

Semantically similar to __enter__ (), the only difference being that it must return an awaitable.

object.__aexit__ (self, exc_type, exc_value, traceback)

Semantically similar to __exit__ (), the only difference being that it must return an awaitable.

An example of an asynchronous context manager class:

class AsyncContextManager:
async def _ aenter_ (self):
await log('entering context')

async def _ aexit_ (self, exc_type, exc, tb):
await log('exiting context')

Added in version 3.5.

3.4. Coroutines 57

The Python Language Reference, Anpoociguon 3.13.7

58 Kegahaio 3. Data model

KE®ANAIO 4

MovTtEAo ekTEAEONC

4.1 Aopn €vOg MPOYPAHHATOG

‘Eva tpdypopupa Python asoteheiton amd umhok kodika. 'Eva umdok eivor £va Koppudtt Kelwévou poypiupa-
tog Python mov extedeiton og wo povada. Ta wapakdto eivor wrhok: éva module, To COUA ULOG CUVAPTNONG,
0 évag oplopdg Khaong. Kabe evrol mov minktpohoyeitor duadpaotikd amotelel umhok. ‘Eva apyeio déoung
EVEPYELDV (EVaL Py ELO TOU SLVETOL MG TUTILKT) EL0080G 0TO dlepunvéa 1 KabopileTol mg OPLoUa YPOUUNG EVTO-
AV oTOV dLepunvéa) eivan €va phok Kmdika. Mia script evtoln (o evroln ov kabopiletal oto diepunvéa
ue Vv emhoyn —c) eivor éva pmhok Kddika. Mio evdtnta mov ekteleital g avmtépov emmédou script (wg
module __main__) oswd) YpOUU EVIOLDV XPNOLUOTTOLMVTAG £V OPLOUO. —m OPLOAL EIVOL ETTLONG £VaL UITAOK
Kodka. To dpiopua ouUBOLOCELPAS TTOU TEPVAEL OTLG EVOMUATOUEVEG OUVAPTNOELS eval () KoL exec () &l-
vaou £va, WIthok KmdLKa.

‘Eva umhok kmdika ekteleitol oe éva mraiowo extéleons. 'Eva mhaiolo mepléyel opLlouéveg minpopoplies dia-
YelpLong (ITov XPNOLUOTOLOVVTAL VL0, ATOTQPOALATWON) Ko KaBOopiLel Tov Ko Tweg ouveyiteTol 1 eKTéleon
UETA TNV OAOKAPMOT TNG EKTELEONG TOU WITAOK KMOLKAL.

4.2 Ovopaocia KkatL ouvdeon

4.2.1 Xuvdeon ovouatTwy
Names avogépovtat oe avitkeipeva. Ta ovopato elodyoviol HEcm LELTOVPYLMV dECUEVONG OVOULTOV.
O mopakdtw douég deopevouv ovouoTa:

o TUTLKEG TTOPAUETPOL CUVAPTIOEMV,

« oplopoi KAdoewv,

o 0PLOUOL CUVAPTHOEMY

o eK(pPaoeLg avadeong

o fargets TOV ELVOL AVOLYVOPLOTIKG OV epovilovTol og pua avabeon:

- gmKe@aiida fpdyov for,

- uetd to as og puo MAwon with, oe pNIpa except, 0€ PATPO except * 1 0TO as-pattern KaTd)
dopukt avtiotoiynong uotifwv,

- 0€ £vo OTLYOTUITO HOTIPOU KOTA T OOULKY] AVTLOTOlYNoNG LOTIPwV

59

The Python Language Reference, Anpoociguon 3.13.7

o dMlwoelg import.
o INhoEL type.
o Alotes mapouétowv TITOV.

H dMlwon import g popeng from ... import * ouvdéel OA TOL OVOLOTA TOV OPLLOVTIOL OTO EL0C-
youevo module, ektdg amd avTd Tov EeKvouv e (oL KATm avda. Avti 1) wop@r) uropet va ypnowportownOei
uovo oto enizedo Tov module.

'Evog 0t0%0¢ mov gugaviletan o pa dMrwon del Bewpeitor emiong deoueuuévog ylo. avtd Tov okomd (av
KOl 1] TTPOYUOTLKT] ONUOLOLOAOYLOL ELVOL VOL ATTOOUVOETEL TO GVOuQL).

Kda6e dnhwon avdbeong 1 etoaymyng ovufaiver péoa oe évo wmhok mov opiteton amd Evav oplopd KAAong 1
ovvaptnong 1 oto enimtedo tov module (To WThOK KOOIKA 0vOTATOU ETLTEDOV).

Av éva dvopa deopeveTal o8 Vol (IThOK, ELVAL ULCL TOTILKT) UETOPANT) cuToU TOU WITAOK, EKTOG oV dNAWOEL g
nonlocal W global. Av éva dvoua deopevetol 0to emimedo tov module, eivor pua kKoOohky petafint.
(Ov petapintég Tou wthok tov module givol TOVTOYPOVO TOTLKES KoL KAOOAKES.) AV ol LeTaBANTY ¥ pnoLLo-
moteiTon o€ £var WThok Kmdka ol dev opiletan ekel, eivan wa free variable.

Kda0e eugpdvion evog ovouotog 0To KeLUEVO TOU TPOYPAUUATOG avapépeTal 0T binding dvTo Tov 0vOUATOG
mov KaBopiletan amd ToUg TAPUKATM KAVOVEG ETIAMVOTG OVOUATOV.

4.2.2 EniAuon ovopdatwv

"‘Eva scope opileL TV opatoOTNTA £VOG OVOUOITOG HECK O €VOL WTAOK. AV Lo TOTILKY] UETABANTY OpLoTel o
éva thok, to edio g mephapfdver To PTthok avtd. Av o oplopdg cuufaiver oe £va PTAOK GUVAPTNONG, TO
71edl0 EMEKTELVETOL OE 0TTOLALONTTOTE WITAOK TTEPLEYOVTOL UETO OE ALUTO TTOV TNV OPILEL, EKTOG ALV VL TTEPLEXOUEVO
WIThok eLoGyEL DLOPOPETLKY) GUVOEDT] YLOL TO OVOULQL.

‘Otav éva dvouo. XPNOLULOTTOLELITOL 08 EVOL UWTAOK KMOLKQ, ETLAVETOL XPNOLUOTOLDVING TO TANOLEOTEPO TTEPL-
Barkov medio. To oUvoro OhwV TV TEdiWV TOU Eival 0paTd 0€ Eva UITAOK KMOLKA OVOUALETOL environment
TOU UITAOK.

‘Otav éva dvopo dev Bpioketal kabohov, yivetal raise o eEaipeon NameError. Av to Tpéyov medio eival
71edlo CUVAPTNONG KL TO OVOUOL OVOPEPETAL OE ULOL TOTILKY) UETABANTY TOU deV €xeL KON EOUEVTEL O€ K-
TTOLOL TUWUTH) OTO OTUELO TTOV YPNOLUOTTOLELTAL TO Ovoua, Yivetal raise uo eEaipeon UnboundLocalError. H
UnboundLocalError givol pa vitokAdon g NameError.

Av o Aettoupyio oUuvoeong ovoudtmv cuufel 0TovdNIToTe HECO 08 Vo WITAOK KWMLK, OLEG OL YPNOELS TOV
0OVOUOTOG HECO 0TO WTAOK OVTLUETWITLLOVTAL G AVAPOPES OTO TPEXOV UTAOK. AuTd UTopel vo. 0dNyNHoeL oe
opaluata dtav Eva dGvoua xpnoLomoLeital LEGo o€ Vol WITAOK TTPLY deaUeVTEL. AUTOG 0 KAvOVOG Eival AETTTOC.
H Python dev d100€teL SNADOELG KOl ETLTPETEL TIG AELTOVPYiEG OVVIEDT OVOUATOV VO GUUPBOLVOVY 0TTOVdTTTOTE
uéoa o€ evo ok Kwdika. O Tomikég HETAPINTES EVOG UTAOK KWOLKA (WITOPOVV VA TTPOGILOPLOTOVY GOPMm-
vovtag OLOKANPO TO KELUEVO TOV WITAOK YLOL AELTOVpYieg 0UvdeaNG ovoudtwy. Agite Ty eyypagn oto FAQ yia
to UnboundLocalError yio wopodeiypota.

Av n dhwon global gupaviotel péoa oe £vo WIThOK, OAES OL YPTOELG TWV OVOUAT®Y TOV Kafopiloviol ot
SMAWON AvaPEPOVTOL OTLG OUVOEDELS UTMOV TV OVOUATWV OTOV YMPO OVOUATWV ovmToTtoy emmédov. Ta
ovopoTa eAVOVTOL OTOV XMPO OVAOTATOU EMLITEOV OVOLNTMVTOG TPMTA 0TOV KADOAMKO YMPO OVOUUTMYV,
dMhadn Tov xdpo ovoudtwv tov module TOV TEPLEYEL TO WITAOK KDOILKA, KOL 0T GUVEYELD OTO YMPO OVOUd-
TtV TV builtins, Tov x®po ovoudtmv touv module builtins. O KaOoAKOG xHPOG ovoudtmv avalnteitol
TPDOTOC. AV T ovOpaTo dev Fpedovv ekel, yivetan avalninon Tov evowuatwuévou xmpov ovoudtwv. Edv ta
ovopata dev BPLoKOVTOL ETTLONG OTOV EVOMUATOUEVO XDPO OVOUATOV, dNUOVPYOUVTAL VEES UETAPANTES OTOV
K0BoMKo ywpo ovopdtmv. H kabolikn dMAwon mpémel va tponyeitar OMmY TOV ¥PpoEwV TmV 0OVOUAT®MV TOU
AVOPEPOVTAL.

H dMhwon global €xel to 1010 medio e o Aettovpyio ouvoeog ovouatog 0to (810 UTAoK. Av 10 TANOLE-
otepo mePLPatlov mediov yia o eheBepn peto ANt mepLéxer por dMhwon global, 1) eheBepn petafinm
OVTLUETOTULETOL WG KOOOAKT).

H 8Mhwon nonlocal mpoKaAEl TO OVTIOTOLYOL OVOULOITOL VO, AVAPEPOVTOL O€ TTPONYOUUEVIG DECUEVUEVES e~
TaPANTéG 0T0 TANOLEOTEPO TTEPLBAILOV TTEdiov oLuVaApTHONG. Mia eEaipeon SyntaxError eyelpetol Katd to

60 Kegpadlawo 4. MovteAo eKTEAEONG

The Python Language Reference, Anpoociguon 3.13.7

YPOVO UETOYMDTTLONG OV TO OUYKEKPLUEVO dEV VITapyEL 08 Kavéva septBahhov mediov cuvaptnoneg. O Tapd-
UETPOL TUTOU BEV PTTOPOVY VO HEGUEVTOVY €K VEOU e TN dNAwon nonlocal.

O ywpog ovopdtv yo. éva module dnuovpyeitor avtopata v TpdT) Popd mov to module elodryeton To
KkVpLo module Yo éva script ovoudleTon TGvTo __main__.

To uhoK opLopot KAAGEWY KoL TO. OPLOULATO OTLG CUVAPTHOELG exec () KoL eval () eivan eldiKég TepUTTo-
0€Lg 0To TAaioo TG emilvong ovoudtmv. Evag oplopdg khdong eivor o exteléoun dNhmon o umopel
VOL XPNOLUOTTOLEL KoL VO 0piLEL ovopata. AVTég oL avapopég akohouBoUV TOUG KAVOVIKOUG KAVOVES ETTIAMUONG
OVOUATWV, LE TNV EEAiPEDT OTL OL 0OEOUEVTES TOTKEG UETAPBANTEG ovalnTovVTaL 0TOV KaBOoAKO XMPO 0voud-
tov. O xhpog ovoudtwv Tov opLlopov g KhAomng yivetal to heEukd yopaktnplotkmv g kKhaonc. To medio
TV OVOUATOV TTOV 0piLovTal 0g £vo. umhok KhAonG mepLlopiletal 0To Umhok T KAGOoNG' deV EMEKTELVETAL OTO
Wthok KwdLko Twv uefddwv. Avtd mepthapfavel ouvOEoELS Ko EKPPATELS YEVVNTPLOV, AAG deV TTEPLMaUBa-
vel wedia onuethoewv, to omoia xovv mpdofacn ota mepBdilovio media g mepLpdilovoag kKhiong. Avtd
onuoiver Ot to opaKdTm Oo amoTOYEL:

class A:
a = 42
b = list(a + 1 for i in range(10))

Qo1600, TO TOPAKATW OO ETULTUYEL:

class A:
type Alias = Nested
class Nested: pass

print (A.Alias.__value_) # <type 'A.Nested'>

4.2.3 Inueloypagia nedia

O Moteg mapauétowv Thmov Kou oL SNMMOELS t ype EL0GYOVV Tedia onuetoyoapiag, T0. 0TOLN CUUTEPLPEPOVTIL
Kupiwg dnwg ta medio ovvapthoemv, alld pe Khmoleg eEapéoelg mov culntouviol mapokdtw. Annotations
TTPOG TO TTOPOV HEV YPNOLULOTTOLOVY TTEDLO ONUELDOEMV, OANG AVOUEVETOL VO TA X PN OLLoTToLjcovy otV Python
3.13, 6tov vhomownOei to PEP 649.

Ta wedio. ONUELOYPAPLOG XPNOLUOTOLOVVTAL GTO TOPAKATW GUUPPATOUEVAL:
o AloTeG TOPAPETPOV TUTTOV YLOL generic type aliases.

o AloTEG TUTOV TOPAUETPOV Yol generic functions. OL ONUELOYPAPIEG LLOG YEVIKNG CUVAPTIONG EKTEAOD-
VTaL HEST 0TO TEDLO ONUELDOEMY, OALG OL TTPOETLAOYEG KOL OL SLOKOOUNTES TNG OYL.

o Aloteg mopapétpwv TOTOU Yo generic classes. O Baoikég kKAAoeLg Kat To opiopoto AMEEWV-KAELOLDV
LLOLG YEVLKTG KAAOTG EKTENOVVTOL LEGOL OTO TTEDLO ONUELDOEWV, OMLAL OL DLOKOOUNTES TNG OYL.

o Ta dpLa, oL TEPLOPLOUOL OL TPOETAEYUEVES TULEG YLOL TTOPAUETPOVG TUTTOV (lazily evaluated).
o H) tov Yeudovipwv timov (lazily evaluated).
Ta nedio onueloypapiog dragépouv amd ta media cuVapPTNoEMVY Ue Toug eENG TPOTOUG:

o Ta media onueloypapiog £xovv TPOoPaon oToV XDPO OVOUATOV TG TepLiailovoag khdons. Av éva
medio onueloypapiag Ppioketor auéomg péoa oe Evav xmpo kKhaong N néco oe éva dAlo medio on-
UELOYPApiOG TTOV BpioKeTal auéows HECO 08 VOV YMPO KAAONG, 0 KDHLKAG 0TO TESLO ONUELOYPAPIOG
WITOPEL VOL Y PNOLUOTTOLEL OVOULALTA TTOV £XOUV OPLOTEL OTOV XDPO TNHG KAAONG OOV VO, EKTELOVVTOV OLTTEV-
Osiag oto owpa e KAMaonG. Autd épyetal og avtifeon ue TG KOVOVIKEG GUVOPTIOELS TTOV OpilovTol
péoa oe KAAOELS, OL 0TTOlEG dEV UTOPOVV VO €XOUV TPOGPROOT OE OVOULOTA TTOV €YXOUV OPLOTEL OTO YMPO
™G KhAomG.

o OueKppdoeig o€ medio ONUELOYPOPLAG dEV UTTOPOVV VAL TTEPLEXOVV TIG EKPPAoeS vield, yield from,
await M :=<python-grammar:assignment_expression. (AUTéG Ol EKPPACELS ETLTPETOVTOL
og GAha edia Tov mePLEYOVTaL LEGO 0TO TEDLO ONUELOYPAPLOG.)

4.2. Ovopacia Kat ouvdeon 61

https://peps.python.org/pep-0649/

The Python Language Reference, Anpoociguon 3.13.7

o Ta ovopata mov opilovtal oe edia ONUELOYPAPLOG dEV UTOPOVY VO HEGUEVTOVY €K VEOU e dNAMOELG
nonlocal o€ e0MTEPLKA TEDIO. AVTO TEPLAUPAVEL LOVO TTAPAUETPOUS TUTTOU, KAOMDS KoL KavEVO GALO
CUVTOKTLKO OTOLYELO TTOV WITOPEL VAL EUPAVIOTEL UECO. OE TESLAL ONUELDOEWV SEV WTOPEL VAL ELOOLYAYEL VEQ
ovouoTa.

o Eva ta medlo onueloypaplog £xouvv éva ecmTePLKO Ovoua, autd To OVOUO OV AVILKOTOTTPILETOL 0TO
qualified name TV OVTIKEWEVMV TOV 0piLovTal néoa oto medio.Avtifeta, T0 __qualname__ QUTOV
TOV AVTUKELUEVOV ELVOIL OOV TO OVTIKEILEVO VO ElYE OpLOTEL 0TO TTEPLRAMWY TTEDIO.

Added in version 3.12: Ta medio onuelmoemv ewonydnoav oty Python 3.12 wg uépog tov PEP 695.

AMoEe oty €kdoom 3.13: O mepLoyég oXoAWV THITOV XPNOLUOTOLOVVTAL ETTLONG YLOL TLG TIPOETUAEYUEVES TUUEG
TOPAUETPWOV TUTTOV, OTTWG eLodyetan atd to PEP 696.

4.2.4 KaBuoTtepnuevn EKTiuNoN

O tuég Twv YPeudwvipmy THIov Tov dnuovpyouvtol péow e dHlwong type agoloyoldvral kabvotepn-
uéva. To idL0 LoyYVEL KOl Lo TOL OPLOL, TOVG TEPLOPLOUOVG KOL TLG TTPOETLEYUEVES TLUEG TV UETAPANTOV TVTOV
IOV NULOVPYOUVTOL HECW TNG 6UVTaENS Tapcuétowy Thmov. Avtd onpaiver 6t dev agloloyolvtal Katd)
duovpyia Tov Pevdwvipov THIToL 1 TG HETAPANTHG TUITOV. Avtifeta, aElohoyovviol povo dtav auTod eivor
OTTOPOELTNTO YLOL TNV ETAVON WLaG TPOOROONG XAPOKTNPLOTLKOV.

Mopdderypor:

>>> type Alias = 1/0
>>> Alias._ value_
Traceback (most recent call last):

ZeroDivisionError: division by zero

>>> def func[T: 1/0](): pass
>>> T = func.__type_params__[0]
>>> T.__ _bound_

Traceback (most recent call last):

ZeroDivisionError: division by zero

Ed 1 eEaipeon eyeipetar pdvo dtav yiver tpdofaom oto xopokTnplotikd __value_ ToU Peudmvipou
TUITOV 1] 0TO XOPOUKTNPLOTIKO _ bound___ g uetafintig tomov.

Avti 1 ouuTEPLPOPA Elval KUPLIG YPNOLLY VLo AVApOPES 08 TUTTOVS TTOU OEV €YOUV OKOUT OPLOTEL KOTA TH
dnuovpyia Tov Peudwvipou TUIToL 1| TG HETAPANTG TOmov. Ta mapaderyna, 1 kabvotepnuévn ektipnon
emLTPETEL T dNuLoVPYio apoLBaiwy avadpoutK®my Peudmvirmy THTwy:

from typing import Literal

type SimpleExpr = int | Parenthesized
type Parenthesized = tuple[Literal[" ("], Expr, Literal[")"]]
type Expr = SimpleExpr | tuple[SimpleExpr, Literal["+", "-"], Expr]

Ou Tipég mov a&lohoyouvion kabvotepnuévo aELOAOYOUVTOL GTO Tedlo onueloyoaplag, TOV onuaivel OTL Ta
ovopota Tov gpupavifovral péoa otnv Kabvotepnuéva aStohoyoiuevn Ty avanTouvToL 6oV Vo, YP1oLUo-
ouhOnKov 0to auéomg mepBailov medio.

Added in version 3.12.

4.2.5 EVOWHATWHEVEG CUVAPTHOELG KAL TIEPLOPLOUEVN EKTEAEON

O xpfoteg dev Ba pémeL va TPoTomoLovV To __builtins_ * gival ovotnpd wo Aesttopépela vVAOTONonG.
OL pNoTeg oV BELOVV VA TAPAKAUPOUY TLUES OTOV XMPO OVOUATMY TOV EVOMUOTOUEVMDY CUVAPTHoEWV O
mpémel va KGvouv import 1o module builtins KoL va TPOTOTOLOUV TO YAPOKTNPLOTIKA TOU KATAAMNAQL.

62 Kegpadlawo 4. MovteAo eKTEAEONG

https://peps.python.org/pep-0695/
https://peps.python.org/pep-0696/

The Python Language Reference, Anpoociguon 3.13.7

O % HPOG OVOUATWV TV EVOMUATOUEVODY CUVOPTNOEWV TTOV OXETILETOL UE TNV EKTEAEON EVOG UTTAOK KMOLKOL
BpilokeTal oty TPAYUOTIKOTITA UECW OVaCNTNONG TOV ovOuaTog _ builtins_ 0tov KOOOMKO TOU X(hPOo
ovopdtwv: avtd Bo mpémel va eivor éva heEkd 1 éva module (otn devtepn mEPIMTWON YPNOLUOTOLELTAL TO
LeELk6 Tov module). Amtd tpoemhoy, Otav Pplokducote 0to module __main__,to __builtins__ eivow
0 evoopatwuévo module builtins® otav fplokduocte oe omolodnmote dAlo module, to __builtins_
etvar éva Pevdmvupo yio o AeELko tov idtov Tov module builtins.

4.2.6 AAANAemidpaon He SUVAMLKEG AELTOUPYLEQ

H emidvon ovoudtwv twv eletBepwv petofntomv ovppaivel Katd to xpovo eKtéleons, Oyl Katd 1o Ypovo
UETOYADTTLONG. AUTO ONuaiveL OTL 0 TOPAKATO KMOALKAG B0 eKTUTTMOEL TO 42:

i =10

def f():
print (i)

i = 42

£0

Ot ouvaptnoelg eval () KoL exec () gV £xovv TPOoPaon 0To TANPES TEPLPAALOV Lo TV ETIAVOT OVOud-
tov. Ta ovoporta Wtopet va emhiovToL 0Tovg TomKovs Kot KaBoAKOUS XHPoug OVOUATOV TOU KAAOUVTOG.
O ehevBepeg petafintég dev emhioviol 0to TANOLEaTEPO TEPIPAALOV TEdiIOV, dAMd 0TOV KAOOAKO YMPO
ovopdtwv.! O cuvapTioelg exec () KoL eval () €X0UV TPOGLPETIKG OPLOUOTO YL VO TOPOKAUPOUV TOUG
K0OoMKOVUG KoL TOTTLKOUG Y WPOVS OVOUATMV. Av KaBopLotel HOvo €vag YmpPog OVOUATMY, YPTCLULOTTOLELTOL
Ko Lo Toug dvo.

4.3 EEaipeoelg

O eEaupéoelg givar évag TpOTOg SLOKOITHG TNG KAVOVIKHG PONG EAEYYOU eVOG WITAOK KOLKA, TPOKEUEVOU
VO AVTLHETOILOTOUV o@dAuaTo 1 dhheg eEaupetikéc ouvOnkec. Mia eEaipeon yiverau raise oto onpeio 6o
evromiCetal o opdlua: umopel va avruetwmotel omd 10 TePLBAAAOV UITAOK KOILKA 1] amd 0ToLodTote
WIThOK KMALKA TToU dpeca 1 EUUECa eKTELETE TO UITAOK KMOOLKO OITOU GUVERT TO OpAluLOL.

O diepunvéag tng Python eyeipet pua eEaipeon dtav evromioet Eva o@AaALo KoTd TNV eKTEALEO(OTT™G 1) SLaipeon)
ue To undév). ‘Eva mtpdypaupa Python wwopel emiong va eyeiper pntd o eEaipeon pe) dhwon raise.
Ou duayelplotég eEaupéoewv Kabopilovrar pe ™ dhwon try ... except. H pntpa finally wag tétolog
dMhwong umopet va ypnotuorotnOel yia vo kabopLotel Kodikag Kabapiopov, o omoiog dev duaryelpiletor v
eEaipeon alhd exteheitar oveEGpTnTa artd To oV TponyOnKe eEaipeon 1) Oyl oToV TPONYoVUEVO KOSLKA.

H Python ypnowuomotel To POVIELO SLoelplong CEAMETOV «TEPUATIONOU»: Evag SLayelpLoTtic e5apéoemv
WITOPEL VO SLOTTLOTMOEL TL CUVERT] KOl VO OUVEYIOEL TNV EKTELEOT] OF £va eEmTePLKO emimedo, alhd dev pumopel
vo. OL0pOMOEL TNV aLTLOL TOV ORAMLOTOS KOL VOL ETTAVOLAPEL TN AeLToupyia Tov améTuye (eKTdg av emavelooyOel
TO TTPOPANUOTLKO KOUUATL KOILKO OTTO TNV ApyN)-

‘Otav wa eEaipeon dev avuipetomotel kKaBOAov, 0 dtepunveag TepUaTiCEL TNV EKTELEOT] TOV TTPOYPAUIATOG
1] emLOTPEPEL 0TOV ALAdPAOTIKO KUPLo Bpdyo Tov. Kot oTig 810 TepLutmoelg, EKTUITMVEL TO L)VOg TG 0ToLfog,
eKTOg av 1) eEaipeon eivar SystemExit.

O eEaupéoerg avayvmpitovror amd otrypdtuna kKhdoemv. H pitpa except emléyetan ovaloyo pe tnv
KAGON TOU OTLYILOTUTTOV: TIPETTEL VAL AVAPEPETOL OTNY KAAGT TOU OTLYWOTUTTOU 1] OF WOl (1) ELKOVIKT] BOOLKT)
kAdon avtg. To oTypdTUITO WITopPEl VoL TaPaNPOel 0o TOV dLoELPLOTH KoL VO UETOPEPEL TPOODETES TTAN-
POQOPIES OYETIKA [LE TNV EEAULPETLKY] CUVONKY).

O Ihusioon

Ta unvipata eEapéoewv dev amoterotv wépog tov API g Python. To mepieyduevd tovg wropei va ah-
MaEer artd T pia ékdoon g Python otnv emduevn ympic poerdortoinon ko dev Ba mpémer va Paoiletan

1 Autdg o eploplopdg TPOKVITTEL EMELDT 0 KOILKAG TTOV eKTEAEITOL 0TTd AUTEG TIG AelToupyieg dev eival Siadéoyog Tn oTLyuy mov To
module petaylotriCetat.

4.3. EEaipgoelq 63

The Python Language Reference, Anpoociguon 3.13.7

0€ QTG 0 KOdIKAG Tov B0 eKTeNeOTEL 08 TOMATAEG EKOOOELS TOU dlepunvéa.

Agite emiong v mepLypapn e dMAwong try omv evotnta The try statement Koi TG ONAWONG raise oty
evotnra The raise statement.

YTOONHELWOELG

64 Kegpadlawo 4. MovteAo eKTEAEONG

KEGAAAIO D

The import system

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions such
as importlib.import_module () and built-in _ import__ () can also be used to invoke the import
machinery.

The import statement combines two operations; it searches for the named module, then it binds the results of
that search to a name in the local scope. The search operation of the import statement is defined as a call to
the _ import__ () function, with the appropriate arguments. The return value of ___import__ () is used to
perform the name binding operation of the import statement. See the import statement for the exact details of
that name binding operation.

A direct call to __import__ () performs only the module search and, if found, the module creation operation.
While certain side-effects may occur, such as the importing of parent packages, and the updating of various caches
(including sy s .modules), only the import statement performs a name binding operation.

When an import statement is executed, the standard builtin __ import__ () function is called. Other
mechanisms for invoking the import system (such as importlib.import_module ()) may choose to bypass
__import__ () and use their own solutions to implement import semantics.

When a module is first imported, Python searches for the module and if found, it creates a module object', initializing
it. If the named module cannot be found, a ModuleNotFoundError is raised. Python implements various
strategies to search for the named module when the import machinery is invoked. These strategies can be modified
and extended by using various hooks described in the sections below.

AMaEe oty ékdoom 3.3: The import system has been updated to fully implement the second phase of PEP 302.
There is no longer any implicit import machinery - the full import system is exposed through sys.meta_path.
In addition, native namespace package support has been implemented (see PEP 420).

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example importlib.
import_module () provides a recommended, simpler API than built-in __import__ () for invoking the
import machinery. Refer to the import1ib library documentation for additional detail.

I See types.ModuleType.

65

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/

The Python Language Reference, Anpoociguon 3.13.7

5.2 Packages

Python has only one type of module object, and all modules are of this type, regardless of whether the module is
implemented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python has
a concept of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take
this analogy too literally since packages and modules need not originate from the file system. For the purposes of this
documentation, we’ll use this convenient analogy of directories and files. Like file system directories, packages are
organized hierarchically, and packages may themselves contain subpackages, as well as regular modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another way,
packages are just a special kind of module. Specifically, any module that containsa ___path___ attribute is considered
a package.

All modules have a name. Subpackage names are separated from their parent package name by a dot, akin to Python’s
standard attribute access syntax. Thus you might have a package called ema i 1, which in turn has a subpackage called
email.mime and a module within that subpackage called email .mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are traditional
packages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory
containing an __init__ .py file. When a regular package is imported, this __init__ .py file is implicitly
executed, and the objects it defines are bound to names in the package’s namespace. The __init__ .py file can
contain the same Python code that any other module can contain, and Python will add some additional attributes to
the module when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/
__init__ .py
one/
__init__ .py
two/
__init___ .py
three/
__init__ .py

Importing parent .one will implicitly execute parent/__init__ .py and parent/one/__init__ .
py. Subsequent imports of parent . two or parent .three will execute parent /two/__init__ .pyand
parent/three/__init__ .py respectively.

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the parent
package. Portions may reside in different locations on the file system. Portions may also be found in zip files, on the
network, or anywhere else that Python searches during import. Namespace packages may or may not correspond
directly to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path___ attribute. They instead use a custom iterable
type which will automatically perform a new search for package portions on the next import attempt within that
package if the path of their parent package (or sys.path for a top level package) changes.

With namespace packages, there is no parent/__init__ .py file. In fact, there may be multiple parent
directories found during import search, where each one is provided by a different portion. Thus parent/one
may not be physically located next to parent /two. In this case, Python will create a namespace package for the
top-level parent package whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

66 Kegahaio 5. The import system

https://peps.python.org/pep-0420/

The Python Language Reference, Anpoociguon 3.13.7

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of
this discussion, the difference is immaterial) being imported. This name may come from various arguments to
the import statement, or from the parameters to the importlib.import_module () or __ import__ ()
functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g.
foo.bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo.bar.baz. If any
of the intermediate imports fail, a ModuleNotFoundError is raised.

5.3.1 The module cache

The first place checked during import search is sy s . modules. This mapping serves as a cache of all modules that
have been previously imported, including the intermediate paths. So if foo.bar.baz was previously imported,
sys.modules will contain entries for foo, foo.bar, and foo.bar.baz. Each key will have as its value the
corresponding module object.

During import, the module name is looked up in sys.modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then aModuleNotFoundError
is raised. If the module name is missing, Python will continue searching for the module.

sys.modules is writable. Deleting a key may not destroy the associated module (as other modules may hold
references to it), but it will invalidate the cache entry for the named module, causing Python to search anew for the
named module upon its next import. The key can also be assigned to None, forcing the next import of the module
to result in a ModuleNotFoundError.

Beware though, as if you keep a reference to the module object, invalidate its cache entry in sy s . modules, and then
re-import the named module, the two module objects will not be the same. By contrast, importlib.reload ()
will reuse the same module object, and simply reinitialise the module contents by rerunning the module’s code.

5.3.2 Finders and loaders

If the named module is not found in sys .modules, then Python’s import protocol is invoked to find and load the
module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine whether
it can find the named module using whatever strategy it knows about. Objects that implement both of these interfaces
are referred to as importers - they return themselves when they find that they can load the requested module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules, and
the second knows how to locate frozen modules. A third default finder searches an import path for modules. The
import path is a list of locations that may name file system paths or zip files. It can also be extended to search for any
locatable resource, such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module searching.

Finders do not actually load modules. If they can find the named module, they return a module spec, an encapsulation
of the module’s import-related information, which the import machinery then uses when loading the module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create and
register new ones to extend the import machinery.

AMoEe otnv £éxdoon 3.4: In previous versions of Python, finders returned loaders directly, whereas now they return
module specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There are
two types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys .modules cache look up. This allows meta hooks to override sy s . path processing, frozen modules, or even
built-in modules. Meta hooks are registered by adding new finder objects to sys .meta_path, as described below.

5.3. Searching 67

The Python Language Reference, Anpoociguon 3.13.7

Import path hooks are called as part of sys.path (or package.___path__) processing, at the point where their
associated path item is encountered. Import path hooks are registered by adding new callables to sy s . path_hooks
as described below.

5.3.4 The meta path

When the named module is not found in sy s .modules, Python next searches sys .meta_path, which contains
a list of meta path finder objects. These finders are queried in order to see if they know how to handle the named
module. Meta path finders must implement a method called find_spec () which takes three arguments: a name,
an import path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine
whether it can handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the named
module, it returns None. If sys.meta_path processing reaches the end of its list without returning a spec, then
aModuleNotFoundError is raised. Any other exceptions raised are simply propagated up, aborting the import
process.

The find_spec () method of meta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo.bar .baz. The second argument is the path entries to use
for the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the
second argument is the value of the parent package’s __path__ attribute. If the appropriate __path___ attribute
cannot be accessed, a ModuleNotFoundError is raised. The third argument is an existing module object that
will be the target of loading later. The import system passes in a target module only during reload.

The meta path may be traversed multiple times for a single import request. For example, assuming none of the modules
involved has already been cached, importing foo.bar .baz will first perform a top level import, calling mpf .
find_spec("foo", None, None) on each meta path finder (mpf). After foo has been imported, foo.
bar will be imported by traversing the meta path a second time, callingmpf . find_spec ("foo.bar", foo.
__path__, None).Once foo.bar has been imported, the final traversal will callmpf . find_spec ("foo.
bar.baz", foo.bar._ _path_ , None).

Some meta path finders only support top level imports. These importers will always return None when anything other
than None is passed as the second argument.

Python’s default sys . meta_path has three meta path finders, one that knows how to import built-in modules, one
that knows how to import frozen modules, and one that knows how to import modules from an import path (i.e. the
path based finder).

AMoEe oty €xdoon 3.4: The find_spec () method of meta path finders replaced find_module (), which
is now deprecated. While it will continue to work without change, the import machinery will try it only if the finder
does not implement find_spec ().

AMoEe ot ékdoom 3.10: Use of £ind_module () by the import system now raises ImportWarning.

AMoEe oty ékdoon 3.12: £ind_module () has been removed. Use find_spec () instead.

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the
module. Here is an approximation of what happens during the loading portion of import:

module = None
if spec.loader is not None and hasattr (spec.loader, 'create_module'):
It 1s assumed 'exec_module' will also be defined on the loader.

module = spec.loader.create_module (spec)
if module is None:
module = ModuleType (spec.name)

The import-related module attributes get set here:
_init_module_attrs (spec, module)

if spec.loader is None:

(ouvéyela oty eV oehida)

68 Kegahaio 5. The import system

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
unsupported
raise ImportError
if spec.origin is None and spec.submodule_search_locations is not None:
namespace package

sys.modules[spec.name] = module
elif not hasattr (spec.loader, 'exec_module'):
module = spec.loader.load_module (spec.name)
else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module (module)
except BaseException:
try:
del sys.modules[spec.name]
except KeyError:
pass
raise
return sys.modules[spec.name]

Note the following details:

« If there is an existing module object with the given name in sy s . modules, import will have already returned
it.
¢ The module will exist in sys .modules before the loader executes the module code. This is crucial because

the module code may (directly or indirectly) import itself; adding it to sys.modules beforehand prevents
unbounded recursion in the worst case and multiple loading in the best.

o If loading fails, the failing module - and only the failing module - gets removed from sys.modules.
Any module already in the sys.modules cache, and any module that was successfully loaded as a side-
effect, must remain in the cache. This contrasts with reloading where even the failing module is left in sys.
modules.

o After the module is created but before execution, the import machinery sets the import-related module
attributes («_init_module_attrs» in the pseudo-code example above), as summarized in a lafer section.

« Module execution is the key moment of loading in which the module’s namespace gets populated. Execution
is entirely delegated to the loader, which gets to decide what gets populated and how.

o The module created during loading and passed to exec_module() may not be the one returned at the end of
import”.

AMaEe ot ékdoon 3.4: The import system has taken over the boilerplate responsibilities of loaders. These were
previously performed by the importlib.abc.Loader.load _module () method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the
importlib.abc.Loader.exec_module () method with a single argument, the module object to execute.
Any value returned from exec_module () is ignored.

Loaders must satisfy the following requirements:

o If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the
loader should execute the module’s code in the module’s global name space (module.__dict_).

« If the loader cannot execute the module, it should raise an ImportError, although any other exception
raised during exec_module () will be propagated.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in
sys.modules. The indirect effect of this is that an imported module may replace itself in sys.modules. This is implementation-specific
behavior that is not guaranteed to work in other Python implementations.

5.4. Loading 69

The Python Language Reference, Anpoociguon 3.13.7

In many cases, the finder and loader can be the same object; in such cases the find_spec () method would just
return a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module ()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module () does not need to set any attributes on the module object. If the method returns None, the
import machinery will create the new module itself.

Added in version 3.4: The create_module () method of loaders.

AMoEe ot €kdoon 3.4: The 1oad_module () method was replaced by exec_module () and the import
machinery assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the Load_module () method of loaders if it
exists and the loader does not also implement exec_module (). However, 1load_module () hasbeen deprecated
and loaders should implement exec_module () instead.

The 1oad_module () method must implement all the boilerplate loading functionality described above in addition
to executing the module. All the same constraints apply, with some additional clarification:

« If there is an existing module object with the given name in sys .modules, the loader must use that existing
module. (Otherwise, importlib.reload () will not work correctly.) If the named module does not exist
in sys.modules, the loader must create a new module object and add it to sys.modules.

o The module must exist in sy s .modules before the loader executes the module code, to prevent unbounded
recursion or multiple loading.

« If loading fails, the loader must remove any modules it has inserted into sy s .modules, but it must remove
only the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

AMoEe otv €ékdoon 3.5: A DeprecationWarning is raised when exec_module () is defined but
create_module () isnot.

AMoEe otv éxdoon 3.6 An ImportError is raised when exec_module() is defined but
create_module () isnot.

AMaEe oty ékdoon 3.10: Use of 1oad_module () will raise ImportWarning.

5.4.2 Submodules

When a submodule is loaded using any mechanism (e.g. importlib APIs, the import or import-from
statements, or built-in __import__ ()) a binding is placed in the parent module’s namespace to the submodule
object. For example, if package spam has a submodule foo, after importing spam. foo, spam will have an
attribute f£oo which is bound to the submodule. Let’s say you have the following directory structure:

spam/
__init__ .py
foo.py

and spam/__init__ .py has the following line in it:

[from .foo import Foo

then executing the following puts name bindings for foo and Foo in the spam module:

>>> import spam

>>> spam. foo

<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.Foo

<class 'spam.foo.Foo'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental feature of the
import system. The invariant holding is that if you have sys .modules ['spam'] and sys.modules['spam.
foo'] (as you would after the above import), the latter must appear as the foo attribute of the former.

70 Kegahaio 5. The import system

The Python Language Reference, Anpoociguon 3.13.7

5.4.3 Module specs

The import machinery uses a variety of information about each module during import, especially before loading. Most
of the information is common to all modules. The purpose of a module’s spec is to encapsulate this import-related
information on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the finder
that creates the module spec and the loader that executes it. Most importantly, it allows the import machinery to
perform the boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

The module’s spec is exposed as module._ __spec_ . Setting __spec__ appropriately applies equally to modules
initialized during interpreter startup. The one exceptionis __main__,where __spec___issef fo None in some cases.

See ModuleSpec for details on the contents of the module spec.

Added in version 3.4.

5.4.4 _ path__ attributes on modules

The _ _path__ attribute should be a (possibly empty) sequence of strings enumerating the locations where the
package’s submodules will be found. By definition, if a module hasa __path___attribute, it is a package.

Avpackage’s _path___ attribute is used during imports of its subpackages. Within the import machinery, it functions
much the same as sys.path, i.e. providing a list of locations to search for modules during import. However,
__path__ is typically much more constrained than sys.path.

The same rules used for sys .path also apply to a package’s __path_ . sys.path_hooks (described below)
are consulted when traversing a package’s __path__ .

A package’s __init__ .py file may set or alter the package’s __path___ attribute, and this was typically the way
namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace packages no
longer need to supply __init__ .py files containing only _ _path__ manipulation code; the import machinery
automatically sets __path__ correctly for the namespace package.

5.4.5 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s spec,
you can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or there
is no spec, the import system will craft a default repr using whatever information is available on the module. It will
try to use the module._ _name_ ,module._ file ,andmodule.__ loader__ as input into the repr,
with defaults for whatever information is missing.

Here are the exact rules used:

« If themodule hasa __spec___ attribute, the information in the spec is used to generate the repr. The «name»,
«loader», «origin», and «has_location» attributes are consulted.

o If the module hasa ___file___attribute, this is used as part of the module’s repr.

o If the module hasno __file__ butdoes have a __ loader__ thatis not None, then the loader’s repr is
used as part of the module’s repr.

« Otherwise, just use the module’s __name___in the repr.

AMoEe oty ékdoom 3.12: Use of module_repr (), having been deprecated since Python 3.4, was removed in
Python 3.12 and is no longer called during the resolution of a module’s repr.

5.4.6 Cached bytecode invalidation

Before Python loads cached bytecode from a . pyc file, it checks whether the cache is up-to-date with the source
. py file. By default, Python does this by storing the source’s last-modified timestamp and size in the cache file when
writing it. At runtime, the import system then validates the cache file by checking the stored metadata in the cache
file against the source’s metadata.

5.4. Loading 71

https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/

The Python Language Reference, Anpoociguon 3.13.7

Python also supports «hash-based» cache files, which store a hash of the source file’s contents rather than its metadata.
There are two variants of hash-based . py c files: checked and unchecked. For checked hash-based . pyc files, Python
validates the cache file by hashing the source file and comparing the resulting hash with the hash in the cache file. If
a checked hash-based cache file is found to be invalid, Python regenerates it and writes a new checked hash-based
cache file. For unchecked hash-based . pyc files, Python simply assumes the cache file is valid if it exists. Hash-based
. pyc files validation behavior may be overridden with the -—check-hash-based-pycs flag.

AMoEe otv ékdoon 3.7: Added hash-based .pyc files. Previously, Python only supported timestamp-based
invalidation of bytecode caches.

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based
Jfinder (PathFinder), searches an import path, which contains a list of path entries. Each path entry names a
location to search for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries,
associating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling
special file types such as Python source code (. py files), Python byte code (. pyc files) and shared libraries (e.g.
. so files). When supported by the zipimport module in the standard library, the default path entry finders also
handle loading all of these file types (other than shared libraries) from zipfiles.

Path entries need not be limited to file system locations. They can refer to URLs, database queries, or any other
location that can be specified as a string.

The path based finder provides additional hooks and protocols so that you can extend and customize the types of
searchable path entries. For example, if you wanted to support path entries as network URLs, you could write a hook
that implements HTTP semantics to find modules on the web. This hook (a callable) would return a path entry finder
supporting the protocol described below, which was then used to get a loader for the module from the web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using the
terms meta path finder and path entry finder. These two types of finders are very similar, support similar protocols,
and function in similar ways during the import process, but it’s important to keep in mind that they are subtly different.
In particular, meta path finders operate at the beginning of the import process, as keyed off the sys.meta_path
traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the
path based finder were to be removed from sys.meta_path, none of the path entry finder semantics would be
invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is specified
with a string path entry. Most path entries name locations in the file system, but they need not be limited to this.

As a meta path finder, the path based finder implements the £ind_spec () protocol previously described, however
it exposes additional hooks that can be used to customize how modules are found and loaded from the import path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and sys.
path_importer_cache. The _ path__ attributes on package objects are also used. These provide
additional ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries
in sys.path can name directories on the file system, zip files, and potentially other «locations» (see the site
module) that should be searched for modules, such as URLS, or database queries. Only strings should be present on
sys .path; all other data types are ignored.

The path based finder is a meta path finder, so the import machinery begins the import path search by calling the
path based finder’s find_spec () method as described previously. When the path argument to find_spec ()

72 Kegahaio 5. The import system

The Python Language Reference, Anpoociguon 3.13.7

is given, it will be a list of string paths to traverse - typically a package’s __path___ attribute for an import within
that package. If the path argument is None, this indicates a top level import and sys . path is used.

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate path
entry finder (PathEnt ryFinder) for the path entry. Because this can be an expensive operation (e.g. there may
be stat () call overheads for this search), the path based finder maintains a cache mapping path entries to path
entry finders. This cache is maintained in sys.path_importer_cache (despite the name, this cache actually
stores finder objects rather than being limited to importer objects). In this way, the expensive search for a particular
path entry location’s path entry finder need only be done once. User code is free to remove cache entries from sys .
path_importer_cache forcing the path based finder to perform the path entry search again.

If the path entry is not present in the cache, the path based finder iterates over every callable in sys.path_hooks.
Each of the path entry hooks in this list is called with a single argument, the path entry to be searched. This callable may
either return a path entry finder that can handle the path entry, or it may raise ImportError. An ImportError
is used by the path based finder to signal that the hook cannot find a path entry finder for that path entry. The exception
is ignored and import path iteration continues. The hook should expect either a string or bytes object; the encoding
of bytes objects is up to the hook (e.g. it may be a file system encoding, UTF-8, or something else), and if the hook
cannot decode the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec () method will store None in sys.path_importer_cache (to indicate that there is no finder
for this path entry) and return None, indicating that this meta path finder could not find the module.

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory — denoted by an empty string — is handled slightly differently from other entries
on sys.path. First, if the current working directory is found to not exist, no value is stored in sys.
path_importer_cache. Second, the value for the current working directory is looked up fresh for each module
lookup. Third, the path used for sys.path_importer_cache and returned by importlib.machinery.
PathFinder.find_spec () will be the actual current working directory and not the empty string.

5.5.2 Path entry finder protocol

In order to support imports of modules and initialized packages and also to contribute portions to namespace packages,
path entry finders must implement the £ind_spec () method.

find_spec () takes two arguments: the fully qualified name of the module being imported, and the (optional)
target module. find_spec () returns a fully populated spec for the module. This spec will always have «loader»
set (with one exception).

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets
submodule_search_locations to a list containing the portion.

AMoEe otnv ékdoon 3.4: find_spec () replaced find_loader () and find_module (), both of which
are now deprecated, but will be used if £ind_spec () is not defined.

Older path entry finders may implement one of these two deprecated methods instead of f£ind_spec (). The
methods are still respected for the sake of backward compatibility. However, if £ind_spec () is implemented on
the path entry finder, the legacy methods are ignored.

find_loader () takes one argument, the fully qualified name of the module being imported. find_loader ()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion.

For backwards compatibility with other implementations of the import protocol, many path entry finders also
support the same, traditional £ind_module () method that meta path finders support. However path entry finder
find_module () methods are never called with a path argument (they are expected to record the appropriate
path information from the initial call to the path hook).

The find_module () method on path entry finders is deprecated, as it does not allow the path entry finder to
contribute portions to namespace packages. If both find_loader () and f£ind_module () exist on a path
entry finder, the import system will always call find_loader () in preference to find_module ().

AMoEe otnv ékdoon 3.10: Calls to find_module () and £ind_loader () by the import system will raise
ImportWarning.

5.5. The Path Based Finder 73

The Python Language Reference, Anpoociguon 3.13.7

AMoEe oty €kdoon 3.12: find_module () and find_loader () have been removed.

5.6 Replacing the standard import system

The most reliable mechanism for replacing the entire import system is to delete the default contents of sys.
meta_path, replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the import
system, then replacing the builtin __import__ () function may be sufficient. This technique may also be employed
at the module level to only alter the behaviour of import statements within that module.

To selectively prevent the import of some modules from a hook early on the meta path (rather than disabling the
standard import system entirely), it is sufficient to raise ModuleNotFoundError directly from find_spec ()
instead of returning None. The latter indicates that the meta path search should continue, while raising an exception
terminates it immediately.

5.7 Package Relative Imports

Relative imports use leading dots. A single leading dot indicates a relative import, starting with the current package.
Two or more leading dots indicate a relative import to the parent(s) of the current package, one level per dot after
the first. For example, given the following package layout:

package/

__init_ .py

subpackagel/
__init__ .py
moduleX.py
moduleY.py

subpackage?2/
__init__ .py
moduleZ.py

moduleA.py

In either subpackagel/moduleX.py or subpackagel/__init__ .py, the following are valid relative
imports:

from .moduleY import spam

from .moduleY import spam as ham

from . import moduleY

from ..subpackagel import moduleY
from ..subpackage2.moduleZ import eggs
from ..moduleA import foo

Absolute imports may use either the import <> or from <> import <> syntax, but relative imports may
only use the second form; the reason for this is that:

[import XXX .YYY.ZZZ

should expose XXX .YYY.ZZZ as a usable expression, but .moduleY is not a valid expression.

5.8 Special considerations for __main__

The _ _main__ module is a special case relative to Python’s import system. As noted elsewhere, the __main___
module is directly initialized at interpreter startup, much like sys and builtins. However, unlike those two, it
doesn’t strictly qualify as a built-in module. This is because the manner in which __main___is initialized depends
on the flags and other options with which the interpreter is invoked.

74 Kegahaio 5. The import system

The Python Language Reference, Anpoociguon 3.13.7

5.8.1 __main__._spec__

Depending on how __main___ isinitialized, __main__.__spec___ gets set appropriately or to None.

When Python is started with the —m option, ___spec___is set to the module spec of the corresponding module
or package. __spec___is also populated when the __main__ module is loaded as part of executing a directory,
zipfile or other sys.path entry.

In the remaining cases __main_ . spec__ is set to None, as the code used to populate the __main__ does
not correspond directly with an importable module:

« interactive prompt

e —c option

« running from stdin

« running directly from a source or bytecode file

Note that __main__.__ spec__ is always None in the last case, even if the file could technically be imported
directly as a module instead. Use the —m switch if valid module metadata is desired in __main__.

Note also that even when __main___ corresponds with an importable module and __main__.___spec__ isset
accordingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by 1f _ name_
== "__main__ ": checks only execute when the module is used to populate the __main__ namespace, and not

during normal import.

5.9 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages is
still available to read, although some details have changed since the writing of that document.

The original specification for sys .meta_path was PEP 302, with subsequent extension in PEP 42().

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader () protocol
as an alternative to find_module ().

PEP 366 describes the addition of the ___package___ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed __name___ for semantics PEP
366 would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs in
the import system and also addition of new methods to finders and loaders.

5.9. References 75

https://www.python.org/doc/essays/packages/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0328/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0338/
https://peps.python.org/pep-0451/

The Python Language Reference, Anpoociguon 3.13.7

76 Kegahaio 5. The import system

KE®GAAAIO O

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name ::= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions
When a description of an arithmetic operator below uses the phrase «the numeric arguments are converted to a
common type», this means that the operator implementation for built-in types works as follows:

« If either argument is a complex number, the other is converted to complex;

« otherwise, if either argument is a floating-point number, the other is converted to floating point;

« otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the “%” operator). Extensions
must define their own conversion behavior.

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom ::= identifier | literal | enclosure
enclosure ::= parenth_form | list_display | dict_display | set_display
| generator_expression | yield _atom

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section
Ovouaoio ko ovvdeon for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raises a NameError exception.

77

The Python Language Reference, Anpoociguon 3.13.7

Private hame mangling

When an identifier that textually occurs in a class definition begins with two or more underscore characters and does
not end in two or more underscores, it is considered a private name of that class.

e Acire emiong

The class specifications.

More precisely, private names are transformed to a longer form before code is generated for them. If the transformed
name is longer than 255 characters, implementation-defined truncation may happen.

The transformation is independent of the syntactical context in which the identifier is used but only the following
private identifiers are mangled:

« Any name used as the name of a variable that is assigned or read or any name of an attribute being accessed.
The __name___ attribute of nested functions, classes, and type aliases is however not mangled.

o The name of imported modules, e.g., ___spamin import __spam. If the module is part of a package (i.e.,
its name contains a dot), the name is not mangled, e.g., the ___foo in import __ foo.bar is not mangled.

o The name of an imported member, e.g., __f in from spam import __f.

The transformation rule is defined as follows:

« The class name, with leading underscores removed and a single leading underscore inserted, is inserted in front
of the identifier, e.g., the identifier ___spam occurring in a class named Foo, _Foo or __Foo is transformed
to _Foo__spam.

« If the class name consists only of underscores, the transformation is the identity, e.g., the identifier ___spam
occurring in a class named _ or ___is left as is.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:
literal ::= stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating-point number, complex number)
with the given value. The value may be approximated in the case of floating-point and imaginary (complex) literals.
See section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence)
may obtain the same object or a different object with the same value.

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form ::= " (" [starred_expression] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it
yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals
apply (i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma. The exception is the empty tuple,
for which parentheses are required — allowing unparenthesized «nothing» in expressions would cause ambiguities
and allow common typos to pass uncaught.

78 Kegahawo 6. Expressions

The Python Language Reference, Anpoociguon 3.13.7

6.2.4 Displays for lists, sets and dictionaries

For constructing a list, a set or a dictionary Python provides special syntax called «displays», each of them in two
flavors:

« either the container contents are listed explicitly, or
« they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension ::= assignment_expression comp_for

comp_for = ["async"] "for" target_list "in" or_test [comp_iter]
comp_iter = comp_for | comp_if

comp_if ::= "if" or test [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or if
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time
the innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate
implicitly nested scope. This ensures that names assigned to in the target list don’t «leak» into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an
argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: [x*y for x in range (10) for y in range(x, x+10)].

To ensure the comprehension always results in a container of the appropriate type, yield and yield from
expressions are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous
iterator. A comprehension in an async def function may consist of eithera for or async for clause following
the leading expression, may contain additional for or async for clauses, and may also use awa it expressions.

If a comprehension contains async for clauses, or if it contains await expressions or other asynchronous
comprehensions anywhere except the iterable expression in the leftmost for clause, it is called an asynchronous
comprehension. An asynchronous comprehension may suspend the execution of the coroutine function in which it
appears. See also PEP 530.

Added in version 3.6: Asynchronous comprehensions were introduced.
AMoEe oty ékdoon 3.8: yield and yield from prohibited in the implicitly nested scope.

AlhaEe otnv ékdoom 3.11: Asynchronous comprehensions are now allowed inside comprehensions in asynchronous
functions. Outer comprehensions implicitly become asynchronous.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display ::= "[" [flexible expression_list | comprehension] "]"

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension.
When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into
the list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting
from the comprehension.

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating
keys and values:

set_display ::= "{" (flexible_expression_list | comprehension) "}"

6.2. Atoms 79

https://peps.python.org/pep-0530/

The Python Language Reference, Anpoociguon 3.13.7

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right
and added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting
from the comprehension.

An empty set cannot be constructed with { }; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of dict items (key/value pairs) enclosed in curly braces:

dict_display ci= "{" [dict_item 1list | dict_comprehension] "}"
dict_item_1list ::= dict_item ("," dict_item)* [","]

dict_item 1= expression ":" expression | "**" or expr
dict_comprehension ::= expression ":" expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of dict items is given, they are evaluated from left to right to define the entries of the
dictionary: each key object is used as a key into the dictionary to store the corresponding value. This means that you
can specify the same key multiple times in the dict item list, and the final dictionary’s value for that key will be the
last one given.

A double asterisk ** denotes dictionary unpacking. Its operand must be a mapping. Each mapping item is added to
the new dictionary. Later values replace values already set by earlier dict items and earlier dictionary unpackings.

Added in version 3.5: Unpacking into dictionary displays, originally proposed by PEP 448.

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon
followed by the usual «for» and «if» clauses. When the comprehension is run, the resulting key and value elements
are inserted in the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section 7he standard type hierarchy. (To summarize, the
key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected;
the last value (textually rightmost in the display) stored for a given key value prevails.

AMaEe oty €kdoon 3.8: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was
not well-defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before
the value, as proposed by PEP 572.

6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression ::= " (" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is
enclosed in parentheses instead of brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the ~ next_ () method is called for the
generator object (in the same fashion as normal generators). However, the iterable expression in the leftmost for
clause is immediately evaluated, and the iteraror is immediately created for that iterable, so that an error produced
while creating the iterator will be emitted at the point where the generator expression is defined, rather than at the
point where the first value is retrieved. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: (x*y for x in range (10) for y in range(x, x+10)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself, yield and yield from
expressions are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or await expressions it is called an asynchronous
generator expression. An asynchronous generator expression returns a new asynchronous generator object, which is
an asynchronous iterator (see Asynchronous Iterators).

80 Kegahawo 6. Expressions

https://peps.python.org/pep-0448/
https://peps.python.org/pep-0572/

The Python Language Reference, Anpoociguon 3.13.7

Added in version 3.6: Asynchronous generator expressions were introduced.

AMoEe otnv ékdoon 3.7: Prior to Python 3.7, asynchronous generator expressions could only appear in async
def coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

AMoEe oty ékdoon 3.8: yield and yield from prohibited in the implicitly nested scope.

6.2.9 Yield expressions

yield_atom 1= "(" yield expression ")"
yield_from : "yield" "from" expression
yield_expression ::= "yield" yield list | yield from

The yield expression is used when defining a generator function or an asynchronous generator function and thus can
only be used in the body of a function definition. Using a yield expression in a function’s body causes that function
to be a generator function, and using it in an async def function’s body causes that coroutine function to be an
asynchronous generator function. For example:

def gen(): # defines a generator function
yield 123

async def agen(): # defines an asynchronous generator function
yield 123

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly
defined scopes used to implement comprehensions and generator expressions.

AMoEe omv ékdoon 3.8: Yield expressions prohibited in the implicitly nested scopes used to implement
comprehensions and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section
Asynchronous generator functions.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the
execution of the generator function. The execution starts when one of the generator’s methods is called. At that time,
the execution proceeds to the first yield expression, where it is suspended again, returning the value of yield 1ist
to the generator’s caller, or None if yield 11ist isomitted. By suspended, we mean that all local state is retained,
including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state
of any exception handling. When the execution is resumed by calling one of the generator’s methods, the function
can proceed exactly as if the yield expression were just another external call. The value of the yield expression after
resuming depends on the method which resumed the execution. If ___next__ () is used (typically via either a for
or the next () builtin) then the result is None. Otherwise, if send () is used, then the result will be the value
passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one
entry point and their execution can be suspended. The only difference is that a generator function cannot control
where the execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a t ry construct. If the generator is not resumed before it is finalized (by
reaching a zero reference count or by being garbage collected), the generator-iterator’s close () method will be
called, allowing any pending finally clauses to execute.

Whenyield from <expr> isused, the supplied expression must be an iterable. The values produced by iterating
that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send ()
and any exceptions passed in with t hrow () are passed to the underlying iterator if it has the appropriate methods.
If this is not the case, then send () willraise AttributeError or TypeError, while t hrow () will just raise
the passed in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes
the value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically
when the subiterator is a generator (by returning a value from the subgenerator).

AMoEe oty ékdoomn 3.3: Added yield from <expr> to delegate control flow to a subiterator.

6.2. Atoms 81

The Python Language Reference, Anpoociguon 3.13.7

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an
assignment statement.

e Agite emiong

PEP 255 - Simple Generators
The proposal for adding generators and the yie1d statement to Python.

PEP 342 - Coroutines via Enhanced Generators
The proposal to enhance the API and syntax of generators, making them usable as simple coroutines.

PEP 380 - Syntax for Delegating to a Subgenerator
The proposal to introduce the yield from syntax, making delegation to subgenerators easy.

PEP 525 - Asynchronous Generators
The proposal that expanded on PEP 492 by adding generator capabilities to coroutine functions.

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.

generator._ _next__ ()

Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator
function is resumed witha___next__ () method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value
of the yield list isreturned to __ next__ ()”s caller. If the generator exits without yielding another
value, a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next () function.

generator.send (value)

Resumes the execution and «sends» a value into the generator function. The value argument becomes the result
of the current yield expression. The send () method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send () is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive
the value.

generator.throw (value)

generator.throw (type[, value[, traceback]])

Raises an exception at the point where the generator was paused, and returns the next value yielded by the
generator function. If the generator exits without yielding another value, a StopIteration exception is
raised. If the generator function does not catch the passed-in exception, or raises a different exception, then
that exception propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older
versions of Python. The rype argument should be an exception class, and value should be an exception instance.
If the value is not provided, the type constructor is called to get an instance. If traceback is provided, it is set
on the exception, otherwise any existing __traceback___ attribute stored in value may be cleared.

AMoEe otnv ékdoom 3.12: The second signature (type[, value[, traceback]]) is deprecated and may be
removed in a future version of Python.
generator.close ()

Raises a GeneratorExit exception at the point where the generator function was paused (equivalent to
calling throw (GeneratorExit)). The exception is raised by the yield expression where the generator

82 Kegahawo 6. Expressions

https://peps.python.org/pep-0255/
https://peps.python.org/pep-0342/
https://peps.python.org/pep-0380/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Language Reference, Anpoociguon 3.13.7

was paused. If the generator function catches the exception and returns a value, this value is returned from
close (). If the generator function is already closed, or raises GeneratorExit (by not catching the
exception), close () returns None. If the generator yields a value, a RuntimeError is raised. If the
generator raises any other exception, it is propagated to the caller. If the generator has already exited due to
an exception or normal exit, cIose () returns None and has no other effect.

AMoEe oty ékdoon 3.13: If a generator returns a value upon being closed, the value is returned by c1ose ().

Examples

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo (value=None) :
print ("Execution starts when 'next ()' is called for the first time.
=")
try:
while True:
try:
value = (yield value)
except Exception as e:
value = e
finally:
print ("Don't forget to clean up when 'close()' is called.")

>>> generator = echo (1)
>>> print (next (generator))

Execution starts when 'next()' is called for the first time.
1

>>> print (next (generator))

None

>>> print (generator.send(2))

2

>>> generator.throw (TypeError, "spam")

TypeError ('spam',)

>>> generator.close ()

Don't forget to clean up when 'close()' is called.

For examples using yield from, see pep-380 in «What’s New in Python.»

Asynchronous generator functions

The presence of a yield expression in a function or method defined using async def further defines the function
as an asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous
generator object. That object then controls the execution of the generator function. An asynchronous generator object
is typically used in an async for statement in a coroutine function analogously to how a generator object would
be used in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this
object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again,
returning the value of yield 1ist tothe awaiting coroutine. As with a generator, suspension means that all local
state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation stack,
and the state of any exception handling. When the execution is resumed by awaiting on the next object returned by
the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another
external call. The value of the yield expression after resuming depends on the method which resumed the execution.
If anext__ () isused then the result is None. Otherwise, if asend () is used, then the result will be the value
passed in to that method.

If an asynchronous generator happens to exit early by break, the caller task being cancelled, or other exceptions,
the generator’s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected

6.2. Atoms 83

The Python Language Reference, Anpoociguon 3.13.7

context—perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator
garbage collection hook is called. To prevent this, the caller must explicitly close the async generator by calling
aclose () method to finalize the generator and ultimately detach it from the event loop.

In an asynchronous generator function, yield expressions are allowed anywhere in a ¢ ry construct. However, if an
asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage
collected), then a yield expression within a try construct could result in a failure to execute pending finally
clauses. In this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call
the asynchronous generator-iterator’s aclose () method and run the resulting coroutine object, thus allowing any
pending finally clauses to execute.

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes
an asynchronous generator-iterator and presumably calls aclose () and executes the coroutine. This finalizer may
be registered by calling sys.set_asyncgen_hooks (). When first iterated over, an asynchronous generator-
iterator will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method
see the implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

The expression yield from <expr> isa syntax error when used in an asynchronous generator function.

Asynchronous generator-iterator methods

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution
of a generator function.

async agen.__anext_ ()

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last
executed yield expression. When an asynchronous generator function is resumed with an ___anext__ ()
method, the current yield expression always evaluates to None in the returned awaitable, which when run will
continue to the next yield expression. The value of the yield 1ist of the yield expression is the value of the
StopIteration exception raised by the completing coroutine. If the asynchronous generator exits without
yielding another value, the awaitable instead raises a StopAsyncIteration exception, signalling that the
asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

async agen.asend (value)

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the
send () method for a generator, this «sends» a value into the asynchronous generator function, and the
value argument becomes the result of the current yield expression. The awaitable returned by the asend ()
method will return the next value yielded by the generator as the value of the raised StopIteration, or
raises StopAsyncIteration if the asynchronous generator exits without yielding another value. When
asend () is called to start the asynchronous generator, it must be called with None as the argument, because
there is no yield expression that could receive the value.

async agen.athrow (value)

async agen.athrow (type[, value[, traceback]])

Returns an awaitable that raises an exception of type type at the point where the asynchronous generator
was paused, and returns the next value yielded by the generator function as the value of the raised
StopIteration exception. If the asynchronous generator exits without yielding another value, a
StopAsyncIteration exception is raised by the awaitable. If the generator function does not catch the
passed-in exception, or raises a different exception, then when the awaitable is run that exception propagates
to the caller of the awaitable.

AMoEe otnv ékdoom 3.12: The second signature (type[, value[, traceback]]) is deprecated and may be
removed in a future version of Python.

async agen.aclose ()

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator function
at the point where it was paused. If the asynchronous generator function then exits gracefully, is already
closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise
a StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous
generator will raise a StopAsyncIteration exception. If the asynchronous generator yields a value, a

84 Kegahawo 6. Expressions

https://github.com/python/cpython/tree/3.13/Lib/asyncio/base_events.py

The Python Language Reference, Anpoociguon 3.13.7

RuntimeError is raised by the awaitable. If the asynchronous generator raises any other exception, it is
propagated to the caller of the awaitable. If the asynchronous generator has already exited due to an exception
or normal exit, then further calls to aclose () will return an awaitable that does nothing.

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary ::= atom | attributeref | subscription | slicing | call

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref ::= primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object
is then asked to produce the attribute whose name is the identifier. The type and value produced is determined by the
object. Multiple evaluations of the same attribute reference may yield different objects.

This production can be customized by overriding the __getattribute () methodorthe getattr ()
method. The _ _getattribute__ () method is called first and either returns a value or raises
AttributeError if the attribute is not available.

If an AttributeError is raised and the object has a __getattr__ () method, that method is called as a
fallback.

6.3.2 Subscriptions

The subscription of an instance of a container class will generally select an element from the container. The
subscription of a generic class will generally return a GenericAlias object.

subscription ::= primary "[" flexible_expression_list "1"
When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through
defining one or both of __getitem () and __class_getitem__ (). When the primary is subscripted,
the evaluated result of the expression list will be passed to one of these methods. For more details on when
__class_getitem_ _ iscalledinstead of _ _getitem__ ,see _ class_getitem__ versus __getitem__.

If the expression list contains at least one comma, or if any of the expressions are starred, the expression list will
evaluate to a tuple containing the items of the expression list. Otherwise, the expression list will evaluate to the
value of the list’s sole member.

AMaEe oty ¢kdoon 3.11: Expressions in an expression list may be starred. See PEP 646.
For built-in objects, there are two types of objects that support subscription via __getitem _ ():

1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the
keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An
example of a builtin mapping class is the dict class.

2. Sequences. If the primary is a sequence, the expression list must evaluate to an int ora s1ice (as discussed
in the following section). Examples of builtin sequence classes include the st r, 1ist and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all
provide a ___getitem__ () method that interprets negative indices by adding the length of the sequence to the
index so that, for example, x [-1] selects the last item of x. The resulting value must be a nonnegative integer less
than the number of items in the sequence, and the subscription selects the item whose index is that value (counting
from zero). Since the support for negative indices and slicing occurs in the object’s ___getitem _ () method,
subclasses overriding this method will need to explicitly add that support.

A string is a special kind of sequence whose items are characters. A character is not a separate data type but a
string of exactly one character.

6.3. Primaries 85

https://peps.python.org/pep-0646/

The Python Language Reference, Anpoociguon 3.13.7

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions
or as targets in assignment or de I statements. The syntax for a slicing:

slicing ::= primary "[" slice_list "]"

slice_list t:= slice_item ("," slice_item)* [","]

slice_item ::= expression | proper_slice

proper_slice ::= [lower_bound] ":" [upper_bound] [":" [stride]]
lower_bound ::= expression

upper_bound ::= expression

stride ::= expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so
any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated
by defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this
is the case if the slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same ___getitem () method as
normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one
comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice
item is the key. The conversion of a slice item that is an expression is that expression. The conversion of a proper
slice is a slice object (see section The standard type hierarchy) whose start, stop and step attributes are the
values of the expressions given as lower bound, upper bound and stride, respectively, substituting None for missing
expressions.

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:
call ::= primary " (" [argument_1list [","] | comprehension] ")"
argument_list ::= positional_arguments ["," starred_and_keywords]

["," keywords_arguments]
| starred _and keywords ["," keywords_arguments]
| keywords_arguments

positional_arguments ::= positional_item ("," positional_item)*
positional_item ::= assignment_expression | "*" expression
starred_and_keywords ::= ("*" expression | keyword_item)

("," "*" expression | "," keyword_ item)*
keywords_arguments ::= (keyword item | "**" expression)

("," keyword_item | "," "**" expression)?*
keyword_item ::= lIdentifier "=" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the
semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects havinga ___call__ () method are callable). All argument
expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of
formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots.
Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the
same as the first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError
exception is raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None, it fills the
slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default
value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable
object such as a list or dictionary used as default value will be shared by all calls that don’t specify an argument value
for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value
is specified, a TypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the
call.

86 Kegahawo 6. Expressions

The Python Language Reference, Anpoociguon 3.13.7

Aemrouépera vhomoinong CPython: An implementation may provide built-in functions whose positional
parameters do not have names, even if they are “named” for the purpose of documentation, and which
therefore cannot be supplied by keyword. In CPython, this is the case for functions implemented in C that use
PyArg_ParseTuple () to parse their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised,
unless a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a
tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised,
unless a formal parameter using the syntax **identifier is present; in this case, that formal parameter receives
a dictionary containing the excess keyword arguments (using the keywords as keys and the argument values as
corresponding values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements
from these iterables are treated as if they were additional positional arguments. For the call £ (x1, x2, *y, x3,
x4), if y evaluates to a sequence y/, ..., yM, this is equivalent to a call with M+4 positional arguments x/, x2, yI,
ey YM, X3, x4.

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it
is processed before the keyword arguments (and any * *expression arguments — see below). So:

>>> def f(a, b):
print (a, b)

>>> f (b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f() got multiple values for keyword argument 'a'
>>> £(1, *(2,))
12

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice
this confusion does not often arise.

If the syntax * *expression appears in the function call, expression must evaluate to a mapping, the contents
of which are treated as additional keyword arguments. If a parameter matching a key has already been given a value
(by an explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When * *expression is used, each key in this mapping must be a string. Each value from the mapping is assigned
to the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a
Python identifier (e.g. "max-temp °F" is acceptable, although it will not match any formal parameter that could
be declared). If there is no match to a formal parameter the key-value pair is collected by the * * parameter, if there
is one, or if there is not, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument
slots or as keyword argument names.

AMoEe otnv €xdoon 3.5: Function calls accept any number of * and ** unpackings, positional arguments may
follow iterable unpackings (*), and keyword arguments may follow dictionary unpackings (* *). Originally proposed
by PEP 448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends
on the type of the callable object.

If it is—

a user-defined function:
The code block for the function is executed, passing it the argument list. The first thing the code block will do
is bind the formal parameters to the arguments; this is described in section Function definitions. When the code
block executes a return statement, this specifies the return value of the function call. If execution reaches
the end of the code block without executing a ret urn statement, the return value is None.

6.3. Primaries 87

https://peps.python.org/pep-0448/

The Python Language Reference, Anpoociguon 3.13.7

a built-in function or method:
The result is up to the interpreter; see built-in-funcs for the descriptions of built-in functions and methods.

a class object:
A new instance of that class is returned.

a class instance method:
The corresponding user-defined function is called, with an argument list that is one longer than the argument
list of the call: the instance becomes the first argument.

a class instance:
The class must definea call () method; the effect is then the same as if that method was called.

6.4 Await expression
Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr ::= "await" primary

Added in version 3.5.

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on
its right. The syntax is:
power ::= (await_expr | primary) ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left
(this does not constrain the evaluation order for the operands): —1* *2 results in —1.

The power operator has the same semantics as the built-in pow () function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common
type, and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case,
all arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**-2
returns 0.01.

Raising 0. 0 to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional
power results in a complex number. (In earlier versions it raised a ValueError.)

This operation can be customized using the special __pow___ () and ___rpow__ () methods.

6.6 Unary arithmetic and bitwise operations
All unary arithmetic and bitwise operations have the same priority:

u_expr ::= power | "-" u _expr | "+" u_expr | "~" u_expr

The unary — (minus) operator yields the negation of its numeric argument; the operation can be overridden with the
__neg___ () special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the
__pos___ () special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is
defined as — (x+1) . It only applies to integral numbers or to custom objects that override the ___invert__ ()
special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

88 Kegahawo 6. Expressions

The Python Language Reference, Anpoociguon 3.13.7

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators
and one for additive operators:

m_expr = u_expr | m_expr "*" u_expr | m_expr "Q@" m_expr |
m _expr "//" u_expr | m_expr "/" u_expr |
m_expr "$" u_expr

a_expr ::= m expr | a_expr "+" m expr | a_expr "-" m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a
common type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition
factor yields an empty sequence.

This operation can be customized using the special __mul__ () and __rmul__ () methods.

The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.
This operation can be customized using the special __matmul__ () and __rmatmul__ () methods.

Added in version 3.5.

The / (division) and / / (floor division) operators yield the quotient of their arguments. The numeric arguments are
first converted to a common type. Division of integers yields a float, while floor division of integers results in an
integer; the result is that of mathematical division with the “floor” function applied to the result. Division by zero
raises the ZeroDivisionError exception.

The division operation can be customized using the special __truediv__ () and __rtruediv__ () methods.
The floor division operation can be customized using the special __ floordiv.__ () and ___rfloordiv__ ()
methods.

The $ (modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception.
The arguments may be floating-point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + O.
34.) The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value
of the result is strictly smaller than the absolute value of the second operand’.

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y).
Floor division and modulo are also connected with the built-in function divmod () : divmod (x, y) == (x//y,
X%Y) 2,

In addition to performing the modulo operation on numbers, the $ operator is also overloaded by string objects to
perform old-style string formatting (also known as interpolation). The syntax for string formatting is described in the
Python Library Reference, section old-string-formatting.

The modulo operation can be customized using the special __mod__ () and __rmod___ () methods.

The floor division operator, the modulo operator, and the divmod () function are not defined for complex numbers.
Instead, convert to a floating-point number using the abs () function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be
sequences of the same type. In the former case, the numbers are converted to a common type and then added together.
In the latter case, the sequences are concatenated.

This operation can be customized using the special __add___ () and __radd___ () methods.

! While abs (x%y) < abs (y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming
a platform on which a Python float is an IEEE 754 double-precision number, in order that -1e-100 % 1e100 have the same signas 1100,
the computed resultis —-1e-100 + 1e100, which is numerically exactly equal to 1e100. The function math . fmod () returns a result whose
sign matches the sign of the first argument instead, and so returns —1e~-100 in this case. Which approach is more appropriate depends on the
application.

2 If x is very close to an exact integer multiple of y, it’s possible for x / /v to be one larger than (x-x%y) //y due to rounding. In such cases,
Python returns the latter result, in order to preserve that divmod (x,y) [0] * y + x % y be very close to x.

6.7. Binary arithmetic operations 89

The Python Language Reference, Anpoociguon 3.13.7

The — (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a
common type.

This operation can be customized using the special __sub__ () and ___rsub__ () methods.

6.8 Shifting operations
The shifting operations have lower priority than the arithmetic operations:

shift_expr ::= a_expr | shift_expr ("<<" | ">>") a _expr

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits
given by the second argument.

The left shift operation can be customized using the special __ Ishift__ () and___rishift__ () methods. The
right shift operation can be customized using the special __rshift__ () and ___rrshift__ () methods.

A right shift by 7 bits is defined as floor division by pow (2, n) . A left shift by n bits is defined as multiplication
with pow (2, n).

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr ::= shift_expr | and_expr "&" shift_expr
XOor_expr ::= and_expr | xor_expr """ and_expr
or_expr ::= xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom
object overriding __and__ () or__rand__ () special methods.

The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must
be a custom object overriding ___xor__ () or __rxor__ () special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a
custom object overriding __or__ () or __ror__ () special methods.

6.10 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional
in mathematics:

comparison ti= Oor_expr (compfoperator orﬁexpr) *
comp_operator ::= LR S e R R P L N
| "is"™ ["not"] | ["not"™] "in"

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean
values. In this case Python will call bool () on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= zisequivalenttox < y and y <= z,exceptthaty
is evaluated only once (but in both cases z is not evaluated at all when x < v is found to be false).

Formally, if a, b, c, ..., y, z are expressions and opl, op2, ..., opN are comparison operators, then a opl b op2
Cc ... y opN zisequivalenttoa opl b and b op2 ¢ and ... y opN z,except that each expression
is evaluated at most once.

Note that a opl b op2 c doesn't imply any kind of comparison between a and ¢, so that, e.g., x < y > zis
perfectly legal (though perhaps not pretty).

90 Kegahawo 6. Expressions

The Python Language Reference, Anpoociguon 3.13.7

6.10.1 Value comparisons

The operators <, >, ==, >=, <=, and ! = compare the values of two objects. The objects do not need to have the same
type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an
object is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value.
Also, there is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of
all its data attributes. Comparison operators implement a particular notion of what the value of an object is. One can
think of them as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior
from object. Types can customize their comparison behavior by implementing rich comparison methods like
1t (), described in Basic customization.

The default behavior for equality comparison (== and ! =) is based on the identity of the objects. Hence, equality
comparison of instances with the same identity results in equality, and equality comparison of instances with different
identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive
(i.e.x is yimpliesx == y).

A default order comparison (<, >, <=, and >=) is not provided; an attempt raises TypeError. A motivation for
this default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be
in contrast to what types will need that have a sensible definition of object value and value-based equality. Such types
will need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

e Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.
Fraction and decimal .Decimal can be compared within and across their types, with the restriction
that complex numbers do not support order comparison. Within the limits of the types involved, they compare
mathematically (algorithmically) correct without loss of precision.

The not-a-number values f1loat ('NaN') and decimal.Decimal ('NaN') are special. Any ordered
comparison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number
values are not equal to themselves. For example, if x = float ('NaN'),3 < x,x < 3andx == x
are all false, while x != x is true. This behavior is compliant with IEEE 754.

e None and Not Implemented are singletons. PEP 8 advises that comparisons for singletons should always
be done with is or is not, never the equality operators.

« Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They
compare lexicographically using the numeric values of their elements.

« Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of
the built-in function ord ()) of their characters.®

Strings and binary sequences cannot be directly compared.

« Sequences (instances of tuple, 1ist, or range) can be compared only within each of their types, with
the restriction that ranges do not support order comparison. Equality comparison across these types results in
inequality, and ordering comparison across these types raises TypeError.

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers
typically assume identical objects are equal to themselves. That lets them bypass equality tests for identical
objects to improve performance and to maintain their internal invariants.

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. <LATIN CAPITAL LETTER A»). While
most abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition be
represented using a sequence of more than one code point. For example, the abstract character <KLATIN CAPITAL LETTER C WITH CEDILLA»
can be represented as a single precomposed character at code position U+00C7, or as a sequence of a base character at code position U+0043
(LATIN CAPITAL LETTER C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).

The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example,
"\u00C7" == "\u0043\u0327" is False, even though both strings represent the same abstract character <LATIN CAPITAL LETTER
C WITH CEDILLA».

To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize ().

6.10. Comparisons 91

https://peps.python.org/pep-0008/

The Python Language Reference, Anpoociguon 3.13.7

Lexicographical comparison between built-in collections works as follows:

- For two collections to compare equal, they must be of the same type, have the same length, and each pair
of corresponding elements must compare equal (for example, [1,2] == (1, 2) is false because the
type is not the same).

— Collections that support order comparison are ordered the same as their first unequal elements (for
example, [1,2,x] <= [1,2,y] has the same value as x <= vy). If a corresponding element
does not exist, the shorter collection is ordered first (for example, [1,2] < [1,2, 3] istrue).

» Mappings (instances of dict) compare equal if and only if they have equal (key, wvalue) pairs. Equality
comparison of the keys and values enforces reflexivity.

Order comparisons (<, >, <=, and >=) raise TypeError.
« Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total
orderings (for example, the two sets {1, 2} and {2, 3} are not equal, nor subsets of one another, nor supersets
of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering
(for example, min (), max (), and sorted () produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

« Most other built-in types have no comparison methods implemented, so they inherit the default comparison
behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:
» Equality comparison should be reflexive. In other words, identical objects should compare equal:
x 1s yimpliesx == y
« Comparison should be symmetric. In other words, the following expressions should have the same result:
x == yandy ==
x != yandy != x
x < yandy > x
x <= yandy >= x
» Comparison should be transitive. The following (non-exhaustive) examples illustrate that:
x >y and y > zimpliesx > z
x <y and y <= zimpliesx < z

« Inverse comparison should result in the boolean negation. In other words, the following expressions should
have the same result:

x == yandnot x !=y
x < yandnot x >= y (for total ordering)
x > yand not x <= vy (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings).
See also the total_ordering () decorator.

o The hash () result should be consistent with equality. Objects that are equal should either have the same hash
value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following
these rules.

92 Kegahawo 6. Expressions

The Python Language Reference, Anpoociguon 3.13.7

6.10.2 Membership test operations

The operators in and not 1in testfor membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well
as dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set,

frozenset, dict, or collections.deque, the expression x in y isequivalentto any (x is e or x == e for e
in y).

For the string and bytes types, x in vy is True if and only if x is a substring of y. An equivalent testis y . find (x)
!= —1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return
True.

For user-defined classes which define the contains__ () method, x in vy returns True if y.

___contains__ (x) returns a true value, and False otherwise.

For user-defined classes which do not define ___contains__ () butdodefine ___iter (),x in yis True
if some value z, for which the expression x is z or x == =z is true, is produced while iterating over y. If an
exception is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines ___getitem _ (),x in yis True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i], and no lower integer index raises
the IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not 1in is defined to have the inverse truth value of in.

6.10.3 Identity comparisons

The operators i s and is not test for an object’s identity: x is vy is true if and only if x and y are the same object.
An Object’s identity is determined using the id () function. x is not vy yields the inverse truth value.*

6.11 Boolean operations

or_test ::= and_test | or_test "or" and test
and_test ::= not_test | and _test "and" not_test
not_test ::= comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following
values are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including
strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects
can customize their truth value by providinga ___bool___ () method.

The operator not yields True if its argument is false, False otherwise.

The expression x and vy first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

The expression x or vy first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is
empty, the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a
boolean value regardless of the type of its argument (for example, not 'foo' produces False rather than ''.)

6.12 Assignment expressions

assignment_expression ::= [identifier ":="] expression

An assignment expression (sometimes also called a «named expression» or «walrus») assigns an expression to
an identifier, while also returning the value of the expression.

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain
uses of the i s operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

6.11. Boolean operations 93

The Python Language Reference, Anpoociguon 3.13.7

One common use case is when handling matched regular expressions:

if matching := pattern.search(data):
do_something (matching)

Or, when processing a file stream in chunks:

while chunk := file.read(9000) :
process (chunk)

Assignment expressions must be surrounded by parentheses when used as expression statements and when used as sub-
expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions and in assert,
with, and assignment statements. In all other places where they can be used, parentheses are not required,
including in i f and while statements.

Added in version 3.8: See PEP 572 for more details about assignment expressions.

6.13 Conditional expressions

conditional_expression ::= or_test ["if" or_test "else" expression]
conditional_expression | lambda_expr

expression
Conditional expressions (sometimes called a «ternary operator») have the lowest priority of all Python operations.

The expression x 1if C else vy first evaluates the condition, C rather than x. If C is true, x is evaluated and its
value is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14 Lambdas

lambda_expr ::= "lambda" [parameter_list] ":" expression

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression
lambda parameters: expression yields a function object. The unnamed object behaves like a function
object defined with:

def <lambda> (parameters) :
return expression

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions
cannot contain statements or annotations.

6.15 Expression lists

starred_expression = ["*"] or_expr

flexible_expression ::= assignment_expression | starred _expression
flexible_expression_list ::= flexible expression ("," flexible expression)* [","]
starred_expression_list ::= starred expression ("," starred _expression)* [","]
expression_list ::= expression ("," expression)* [","]

yield_list ::= expression_list | starred expression "," [starred expression_li:

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length
of the tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking. Its operand must be an iferable. The iterable is expanded into a sequence
of items, which are included in the new tuple, list, or set, at the site of the unpacking.

Added in version 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448.

94 Kegahawo 6. Expressions

https://peps.python.org/pep-0572/
https://peps.python.org/pep-0308/
https://peps.python.org/pep-0448/

The Python Language Reference, Anpoociguon 3.13.7

Added in version 3.11: Any item in an expression list may be starred. See PEP 646.

A trailing comma is required only to create a one-item tuple, such as 1, ; it is optional in all other cases. A single
expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create
an empty tuple, use an empty pair of parentheses: ().)

6.16 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is
evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, expré
(exprl, expr2, expr3, expré)
{exprl: expr2, expr3: expréd}

exprl + expr2 * (expr3 - expré)
exprl (expr2, expr3, *expr4, **exprb)
expr3, expr4 = exprl, expr2

6.17 Operator precedence

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest
precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly
given, operators are binary. Operators in the same box group left to right (except for exponentiation and conditional
expressions, which group from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right
chaining feature as described in the Comparisons section.

Operator Description

(expressions...), Binding or parenthesized expression, list display,

[expressions...], {key: value. ..}, dictionary display, set display

{expressions...}

x [index], x[index:index], x (arguments...), Subscription, slicing, call, attribute reference

x.attribute

await x Await expression

% Exponentiation’

+x, —X, ~X Positive, negative, bitwise NOT

*Q,/,//,% Multiplication, matrix multiplication, division,
floor division, remainder®

+, — Addition and subtraction

<<, >> Shifts

& Bitwise AND

~ Bitwise XOR

| Bitwise OR

in, not in,is,is not,<,<=,>,>=, l= == Comparisons, including membership tests and
identity tests

not x Boolean NOT

and Boolean AND

or Boolean OR

if -else Conditional expression

lambda Lambda expression
1= Assignment expression

3 The power operator ** binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**-11is 0. 5.
6 The % operator is also used for string formatting; the same precedence applies.

6.16. Evaluation order 95

https://peps.python.org/pep-0646/

The Python Language Reference, Anpoociguon 3.13.7

96 Kegahawo 6. Expressions

KEDAAAIO 7

Simple statements

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line
separated by semicolons. The syntax for simple statements is:

simple_stmt ::= expression_stmt
| assert_stmt

| assignment_stmt

| augmented_assignment_stmt
| annotated_assignment_stmt
| pass_stmt

| del_stmt

| return_stmt

| yield_stmt

| raise_stmt

| break_stmt

| continue_stmt

| import_stmt

| future_stmt

| global_stmt

| nonlocal_stmt

| type_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a
function that returns no meaningful result; in Python, procedures return the value None). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt ::= starred_expression

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr () function and the
resulting string is written to standard output on a line by itself (except if the result is None, so that procedure calls
do not cause any output.)

97

The Python Language Reference, Anpoociguon 3.13.7

7.2 Assighment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt ::= (target_list "=")+ (starred_expression | yield expression)
target_list = target ("," target)* [","]
target ::= identifier

| "(" [target_1list] ™)"
| "[" [target_list] "1"
| attributeref

| subscription

| slicing

| "*" target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-
separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to
right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object
(an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide
about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types
and the exceptions raised are given with the definition of the object types (see section The standard type hierarchy).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined
as follows.

« If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to
that target.

« Else:

— If the target list contains one target prefixed with an asterisk, called a «starred» target: The object must
be an iterable with at least as many items as there are targets in the target list, minus one. The first items
of the iterable are assigned, from left to right, to the targets before the starred target. The final items of
the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable
is then assigned to the starred target (the list can be empty).

- Else: The object must be an iterable with the same number of items as there are targets in the target list,
and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.
« If the target is an identifier (name):

— If the name does not occur in a global or nonlocal statement in the current code block: the name
is bound to the object in the current local namespace.

- Otherwise: the name is bound to the object in the global namespace or the outer namespace determined
by nonlocal, respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be
called.

« If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an
object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to
assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception
(usually but not necessarily Att ributeError).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the right-hand side expression, a . x can access either an instance attribute or (if no instance attribute exists) a
class attribute. The left-hand side target a . x is always set as an instance attribute, creating it if necessary. Thus,
the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression
refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

98 Kegahawo 7. Simple statements

The Python Language Reference, Anpoociguon 3.13.7

class Cls:
x = 3 # class variable
inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with
property ().

o If the target is a subscription: The primary expression in the reference is evaluated. It should yield either
a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript
expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative,
the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s
length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of
range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new
key/value pair (if no key with the same value existed).

For user-defined objects, the _setitem__ () method is called with appropriate arguments.

« If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and
upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length.
The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The
resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence
object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be
different from the length of the assigned sequence, thus changing the length of the target sequence, if the
target sequence allows it.

Agnropépera vhomoinong CPython: In the current implementation, the syntax for targets is taken to be the same as
for expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are
“simultaneous” (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to
variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:

=1, 2 # 1 1s updated, then x[i] is updated

e Acite emiong

PEP 3132 - Extended Iterable Unpacking
The specification for the *target feature.

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt ::= augtarget augop (expression_list | yield expression)
augtarget ::= identifier | attributeref | subscription | slicing
augop ce= My | n__m | Whk_—n | "E=" ‘ "/zu ‘ "//:n | no—mn | MWk kM

| nss—n ‘ Neg=" I ne=m | nA_mN | n|:n

(See section Primaries for the syntax definitions of the last three symbols.)

7.2. Assignment statements 99

https://peps.python.org/pep-3132/

The Python Language Reference, Anpoociguon 3.13.7

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and
assigns the result to the original target. The target is only evaluated once.

An augmented assignment statement like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is
performed in-place, meaning that rather than creating a new object and assigning that to the target, the old object is
modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side.
For example, a[1] += £ (x) first looks-up a [1], then it evaluates f (x) and performs the addition, and lastly,
it writes the result back toa[1i].

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-
place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same cavear about class and instance attributes applies as for regular
assignments.

7.2.2 Annotated assignment statements

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional
assignment statement:

annotated_assignment_stmt ::= augtarget ":" expression
["=" (starred_expression | yield_expression)]

The difference from normal Assignment statements is that only a single target is allowed.

The assignment target is considered «simple» if it consists of a single name that is not enclosed in parentheses. For
simple assignment targets, if in class or module scope, the annotations are evaluated and stored in a special class
or module attribute __annotations__ that is a dictionary mapping from variable names (mangled if private)
to evaluated annotations. This attribute is writable and is automatically created at the start of class or module body
execution, if annotations are found statically.

If the assignment target is not simple (an attribute, subscript node, or parenthesized name), the annotation is evaluated
if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and
stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the
target except for the last ___setitem__ () or __setattr__ () call

e Ascite emiong

PEP 526 - Syntax for Variable Annotations
The proposal that added syntax for annotating the types of variables (including class variables and instance
variables), instead of expressing them through comments.

PEP 484 - Type hints
The proposal that added the t yping module to provide a standard syntax for type annotations that can
be used in static analysis tools and IDEs.

AMaEe oty ékdoon 3.8: Now annotated assignments allow the same expressions in the right hand side as regular
assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

100 Kegahawo 7. Simple statements

https://peps.python.org/pep-0526/
https://peps.python.org/pep-0484/

The Python Language Reference, Anpoociguon 3.13.7

7.3 The assert statement
Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt ::= "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if debug___:
if not expression: raise AssertionError

The extended form, assert expressionl, expression?2, isequivalent to

if _ debug_ :
if not expressionl: raise AssertionError (expression?2)

These equivalences assume that __debug___ and AssertionError refer to the built-in variables with those
names. In the current implementation, the built-in variable __debug__ is True under normal circumstances,
False when optimization is requested (command line option —0). The current code generator emits no code for an
assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source
code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to __debug___ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4 The pass statement

pass_stmt ::= "pass"

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is
required syntactically, but no code needs to be executed, for example:

def f (arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.5 The del statement

del_stmt ::= "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the
name occurs in a globa 1 statement in the same code block. If the name is unbound, a NameError exception will
be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a
slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the
sliced object).

AMaEe oty ékdoon 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free
variable in a nested block.

7.6 The return statement

return_stmt ::= "return" [expression_list]

7.3. The assert statement 101

The Python Language Reference, Anpoociguon 3.13.7

return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.
return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a t ry statement with a finally clause, that finally clause is executed
before really leaving the function.

In a generator function, the ret urn statement indicates that the generator is done and will cause StopIteration
to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the
StopIteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is
done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in
an asynchronous generator function.

7.7 The yield statement

yield_stmt ::= yield expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the
parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield
statements

yield <expr>
yield from <expr>

are equivalent to the yield expression statements

(yield <expr>)
(yield from <expr>)

Yield expressions and statements are only used when defining a generator function, and are only used in the body of
the generator function. Using yie1d in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8 The raise statement

raise_stmt ::= "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known
as the active exception. If there isn’t currently an active exception, a Runt imeError exception is raised indicating
that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance
of BaseException. If itis a class, the exception instance will be obtained when needed by instantiating the class
with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback__ attribute. You can create an exception and set your own traceback in one step using the
with_traceback () exception method (which returns the same exception instance, with its traceback set to
its argument), like so:

[raise Exception ("foo occurred") .with_traceback (tracebackobj)

102 Kegahawo 7. Simple statements

The Python Language Reference, Anpoociguon 3.13.7

The from clause is used for exception chaining: if given, the second expression must be another exception class
or instance. If the second expression is an exception instance, it will be attached to the raised exception as the
___cause___ attribute (which is writable). If the expression is an exception class, the class will be instantiated and
the resulting exception instance will be attached to the raised exception as the __cause___ attribute. If the raised
exception is not handled, both exceptions will be printed:

>>> try:
print (1 / 0)
except Exception as exc:
raise RuntimeError ("Something bad happened") from exc

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
print (1 / 0)

ZeroDivisionError: division by zero
The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError ("Something bad happened") from exc
RuntimeError: Something bad happened

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled.
An exception may be handled when an except or finally clause, or a with statement, is used. The previous
exception is then attached as the new exception’s ___context___ attribute:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
print (1 / 0)

ZeroDivisionError: division by zero
During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError ("Something bad happened")
RuntimeError: Something bad happened

Exception chaining can be explicitly suppressed by specifying None in the £ rom clause:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened") from None

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Additional information on exceptions can be found in section E5apéoeig, and information about handling exceptions
is in section The try statement.

7.8. The raise statement 103

The Python Language Reference, Anpoociguon 3.13.7

AMEe oty €kdoon 3.3: None is now permitted as Y in raise X from Y.
Added the ___suppress_context___ attribute to suppress automatic display of the exception context.

AMaEe oty €xdoon 3.11: If the traceback of the active exception is modified in an except clause, a subsequent
raise statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with
the traceback it had when it was caught.

7.9 The break statement

break_stmt ::= "break"

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition
within that loop.

It terminates the nearest enclosing loop, skipping the optional e1se clause if the loop has one.
If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a t ry statement with a finally clause, that finally clause is executed
before really leaving the loop.

7.10 The continue statement

continue_stmt ::= "continue"

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class
definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When cont inue passes control out of a ¢ ry statement witha £inally clause, that finally clause is executed
before really starting the next loop cycle.

7.11 The import statement

import_stmt ::= "import" module ["as" identifier] (","™ module ["as" identifier])™*

| "from" relative_module "import" identifier ["as" identifier]
("," identifier ["as" identifier])*

| "from" relative_module "import" " (" identifier ["as" identifier]
("," identifier ["as" identifier])* [","] ")"
| "from" relative_module "import"™ "*"
module ::= (identifier ".")* identifier

relative_module ::= "."* module | "."+
The basic import statement (no £rom clause) is executed in two steps:
1. find a module, loading and initializing it if necessary
2. define a name or names in the local namespace for the scope where the i mport statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for
each clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import
system, which also describes the various types of packages and modules that can be imported, as well as all the hooks
that can be used to customize the import system. Note that failures in this step may indicate either that the module
could not be located, or that an error occurred while initializing the module, which includes execution of the module’s
code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three
ways:

o If the module name is followed by as, then the name following as is bound directly to the imported module.

104 Kegahawo 7. Simple statements

The Python Language Reference, Anpoociguon 3.13.7

« If no other name is specified, and the module being imported is a top level module, the module’s name is bound
in the local namespace as a reference to the imported module

« If the module being imported is not a top level module, then the name of the top level package that contains
the module is bound in the local namespace as a reference to the top level package. The imported module must
be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:
1. find the module specified in the £rom clause, loading and initializing it if necessary;
2. for each of the identifiers specified in the import clauses:
1. check if the imported module has an attribute by that name

2. if not, attempt to import a submodule with that name and then check the imported module again for that
attribute

3. if the attribute is not found, ImportError is raised.

4. otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if
it is present, otherwise using the attribute name

Examples:

=

import foo
import foo.bar.baz # foo, foo.bar, and foo.bar.baz imported, foo.
—bound locally

import foo.bar.baz as fbb # foo, foo.bar, and foo.bar.baz imported, foo.
—bar.baz bound as fbb

from foo.bar import baz # foo, foo.bar, and foo.bar.baz imported, foo.

foo imported and bound locally

—bar.baz bound as baz
from foo import attr # foo imported and foo.attr bound as attr

If the list of identifiers is replaced by a star (' * '), all public names defined in the module are bound in the local
namespace for the scope where the i mport statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__;if defined, it must be a sequence of strings which are names defined or imported by that module. The
names givenin __all__ are all considered public and are required to exist. If __all__ is not defined, the set of
public names includes all names found in the module’s namespace which do not begin with an underscore character
('"_").__all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are
not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting
to use it in class or function definitions will raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute name of the module. When a module
or package is contained within another package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the specified module or package after from
you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading
dot means the current package where the module making the import exists. Two dots means up one package level.
Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package
then you will end up importing pkg.mod. If you execute from . .subpkg2 import mod from within pkg.
subpkgl you will import pkg. subpkg?2 .mod. The specification for relative imports is contained in the Package
Relative Imports section.

importlib.import_module () is provided to support applications that determine dynamically the modules to
be loaded.

Raises an auditing event import with arguments module, filename, sys.path, sys.meta_path, sys.
path_hooks.

7.11. The import statement 105

The Python Language Reference, Anpoociguon 3.13.7

7.11.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to
the language. It allows use of the new features on a per-module basis before the release in which the feature becomes
standard.

future_stmt ::= "from" "__ future_ " "import" feature ["as" identifier]
("," feature ["as" identifier])*
| "from" "__ future_ " "import" " (" feature ["as" identifier]

("," feature ["as" identifier])>* [","] ™))"
feature ::= identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement
are:

o the module docstring (if any),
e comments,
 blank lines, and
« other future statements.
The only feature that requires using the future statement is annotations (see PEP 563).

All historical features enabled by the future statement are still recognized by Python 3. The list
includes absolute_import, division, generators, generator_stop, unicode_literals,
print_function,nested_scopesandwith_statement. They are all redundant because they are always
enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs
are often implemented by generating different code. It may even be the case that a new feature introduces new
incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module
differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error
if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module ___future__,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

[import __future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec () and compile () that occur in a module M containing a
future statement will, by default, use the new syntax or semantics associated with the future statement. This can be
controlled by optional arguments to compile () — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session.
If an interpreter is started with the —1 option, is passed a script name to execute, and the script includes a future
statement, it will be in effect in the interactive session started after the script is executed.

e Acire emiong

PEP 236 - Back to the __ future
The original proposal for the __ future_ mechanism.

106 Kegahawo 7. Simple statements

https://peps.python.org/pep-0563/
https://peps.python.org/pep-0236/

The Python Language Reference, Anpoociguon 3.13.7

7.12 The global statement

global_stmt ::= "global" identifier ("," identifier)™*

The global statement causes the listed identifiers to be interpreted as globals. It would be impossible to assign to
a global variable without global, although free variables may refer to globals without being declared global.

The global statement applies to the entire scope of a function or class body. A SyntaxError is raised if a
variable is used or assigned to prior to its global declaration in the scope.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the
global statement. In particular, a global statement contained in a string or code object supplied to the built-in
exec () function does not affect the code block containing the function call, and code contained in such a string is
unaffected by global statements in the code containing the function call. The same applies to the eval () and
compile () functions.

7.13 The nonlocal statement

nonlocal_stmt ::= "nonlocal" identifier ("," identifier)*

When the definition of a function or class is nested (enclosed) within the definitions of other functions, its nonlocal
scopes are the local scopes of the enclosing functions. The nonlocal statement causes the listed identifiers to refer
to names previously bound in nonlocal scopes. It allows encapsulated code to rebind such nonlocal identifiers. If a
name is bound in more than one nonlocal scope, the nearest binding is used. If a name is not bound in any nonlocal
scope, or if there is no nonlocal scope, a SyntaxError is raised.

The nonlocal statement applies to the entire scope of a function or class body. A SyntaxError is raised if a
variable is used or assigned to prior to its nonlocal declaration in the scope.

e Asgite emiong
PEP 3104 - Access to Names in Outer Scopes

The specification for the nonlocal statement.

Programmer’s note: nonlocal is a directive to the parser and applies only to code parsed along with it. See the
note for the gl obal statement.

7.14 The type statement

type_stmt ::= 'type' identifier [type_params] "=" expression
The type statement declares a type alias, which is an instance of typing.TypeAliasType.

For example, the following statement creates a type alias:

[type Point = tuple[float, float]

This code is roughly equivalent to:

annotation-def VALUE_OF_Point () :
return tuple[float, float]
Point = typing.TypeAliasType ("Point", VALUE_OF_Point ())

annotation-def indicates an annotation scope, which behaves mostly like a function, but with several small
differences.

The value of the type alias is evaluated in the annotation scope. It is not evaluated when the type alias is created, but
only when the value is accessed through the type alias’s __value___ attribute (see KaOvorepnuévn extiunon). This
allows the type alias to refer to names that are not yet defined.

7.12. The global statement 107

https://peps.python.org/pep-3104/

The Python Language Reference, Anpoociguon 3.13.7

Type aliases may be made generic by adding a type parameter list after the name. See Generic type aliases for more.
type is a soft keyword.
Added in version 3.12.

e Asite emiong

PEP 695 - Type Parameter Syntax
Introduced the t ype statement and syntax for generic classes and functions.

108 Kegahawo 7. Simple statements

https://peps.python.org/pep-0695/

KEGAAAIO 8

Compound statements

Compound statements contain (groups of) other statements; they affect or control the execution of those other
statements in some way. In general, compound statements span multiple lines, although in simple incarnations a
whole compound statement may be contained in one line.

The i £, whileand for statements implement traditional control flow constructs. t ry specifies exception handlers
and/or cleanup code for a group of statements, while the with statement allows the execution of initialization and
finalization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more “clauses.” A clause consists of a header and a “suite.” The clause
headers of a particular compound statement are all at the same indentation level. Each clause header begins with a
uniquely identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can
be one or more semicolon-separated simple statements on the same line as the header, following the header’s colon,
or it can be one or more indented statements on subsequent lines. Only the latter form of a suite can contain nested
compound statements; the following is illegal, mostly because it wouldn’t be clear to which i 7 clause a following
else clause would belong:

[if testl: if test2: print (x) }

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all
or none of the print () calls are executed:

[if X <y < z: print(x); print(y); print (z) }
Summarizing:
compound_stmt ::= if_ stmt

| while_stmt

| for_stmt

| try_stmt

| with_stmt

| match_stmt

| funcdef

| classdef

| async_with_stmt

| async_for_stmt

| async_funcdef

suite t:= stmt_1list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement stmt_1list NEWLINE | compound_stmt

109

The Python Language Reference, Anpoociguon 3.13.7

stmt_list 1= simple_stmt ("; simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the “dangling e 1 se”
problem is solved in Python by requiring nested i £ statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

8.1 The if statement

The i 1 statement is used for conditional execution:

if_stmt ::= "if" assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operations for the definition of true and false); then that suite is executed (and no other part of the irf
statement is executed or evaluated). If all expressions are false, the suite of the e I se clause, if present, is executed.

8.2 The while statement
The whi le statement is used for repeated execution as long as an expression is true:

while_stmt ::= "while" assignment_expression ":" suite
["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be
the first time it is tested) the suite of the e 1se clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt ::= "for" target_list "in" starred_list ":" suite
["else" ":" suite]

The starred_list expression is evaluated once; it should yield an iterable object. An iterator is created for that
iterable. The first item provided by the iterator is then assigned to the target list using the standard rules for assignments
(see Assignment statements), and the suite is executed. This repeats for each item provided by the iterator. When the
iterator is exhausted, the suite in the e 1 se clause, if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the el se clause if there is no next item.

The for-loop makes assignments to the variables in the target list. This overwrites all previous assignments to those
variables including those made in the suite of the for-loop:

for i in range (10):
print (i)
i =25 # this will not affect the for-loop
because 1 will be overwritten with the next
index in the range

110 KegaAaio 8. Compound statements

The Python Language Reference, Anpoociguon 3.13.7

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have
been assigned to at all by the loop. Hint: the built-in type range () represents immutable arithmetic sequences of
integers. For instance, iterating range (3) successively yields 0, 1, and then 2.

AMoEe ot ékdoom 3.11: Starred elements are now allowed in the expression list.

8.4 The try statement

The t ry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt ::= tryl _stmt | tryZ_stmt | try3_stmt
tryl_stmt ::= "try" ":" suite
("except" [expression ["as" identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try2_stmt = "try" ":" suite
("except" "*" expression ["as" identifier] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try3_stmt = "try" ":" suite
"finally" ":" suite

Additional information on exceptions can be found in section EExpéoeilg, and information on using the raise
statement to generate exceptions may be found in section The raise statement.

8.4.1 except clause

The except clause(s) specify one or more exception handlers. When no exception occurs in the t ry clause, no
exception handler is executed. When an exception occurs in the t ry suite, a search for an exception handler is started.
This search inspects the except clauses in turn until one is found that matches the exception. An expression-less
except clause, if present, must be last; it matches any exception.

For an except clause with an expression, the expression must evaluate to an exception type or a tuple of exception
types. The raised exception matches an except clause whose expression evaluates to the class or a non-virtual base
class of the exception object, or to a tuple that contains such a class.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code
and on the invocation stack.'

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a
handler is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated
as if the entire t ry statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword
in that except clause, if present, and the except clause’s suite is executed. All except clauses must have an
executable block. When the end of this block is reached, execution continues normally after the entire t ry statement.
(This means that if two nested handlers exist for the same exception, and the exception occurs in the t ry clause of
the inner handler, the outer handler will not handle the exception.)

When an exception has been assigned using as target, itis cleared at the end of the except clause. This is as if

N

except E as N:
foo

was translated to

except E as N:
try:

(ouvéyela oty emtopevn oehida)

! The exception is propagated to the invocation stack unless there is a £inally clause which happens to raise another exception. That new
exception causes the old one to be lost.

8.4. The try statement 111

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
foo
finally:
del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause.
Exceptions are cleared because with the traceback attached to them, they form a reference cycle with the stack
frame, keeping all locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, the exception is stored in the sy s module, where it can be accessed
from within the body of the except clause by calling sys.exception (). When leaving an exception handler,
the exception stored in the sy s module is reset to its previous value:

>>> print (sys.exception())

None

>>> try:
raise TypeError

except:
print (repr (sys.exception()))
try:
raise ValueError
except:
print (repr (sys.exception()))

print (repr (sys.exception()))

TypeError ()

ValueError ()

TypeError ()

>>> print (sys.exception())
None

8.4.2 except* clause

The except * clause(s) are used for handling Except ionGroups. The exception type for matching is interpreted
as in the case of except, but in the case of exception groups we can have partial matches when the type matches
some of the exceptions in the group. This means that multiple except * clauses can execute, each handling part of
the exception group. Each clause executes at most once and handles an exception group of all matching exceptions.
Each exception in the group is handled by at most one except * clause, the first that matches it.

>>> try:
raise ExceptionGroup ("eg",
[ValueError (1), TypeError(2), OSError (3), OSError(4)])
except* TypeError as e:
print (f'caught {type (e) with nested {e.exceptions}')
except* OSError as e:
print (f'caught {type(e)} with nested {e.exceptions}')

caught <class 'ExceptionGroup'> with nested (TypeError(2),)
caught <class 'ExceptionGroup'> with nested (OSError (3), OSError(4))
+ Exception Group Traceback (most recent call last):
| File "<stdin>", line 2, in <module>
| ExceptionGroup: eg
PP oo I —emmemeeeeem====
| ValueError: 1

Any remaining exceptions that were not handled by any except * clause are re-raised at the end, along with all
exceptions that were raised from within the except * clauses. If this list contains more than one exception to reraise,

112 KegaAaio 8. Compound statements

The Python Language Reference, Anpoociguon 3.13.7

they are combined into an exception group.

If the raised exception is not an exception group and its type matches one of the except * clauses, it is caught and
wrapped by an exception group with an empty message string.

>>> try:
raise BlockingIOError
except* BlockingIOError as e:
print (repr (e))

ExceptionGroup('', (BlockingIOError()))

J

An except * clause must have a matching expression; it cannot be except * : . Furthermore, this expression cannot
contain exception group types, because that would have ambiguous semantics.

It is not possible to mix except and except * inthe same t ry. The break, cont inue,and return statements
cannot appear in an except * clause.

8.4.3 else clause

The optional else clause is executed if the control flow leaves the try suite, no exception was raised, and no
return, continue, or break statement was executed. Exceptions in the el se clause are not handled by the
preceding except clauses.

8.4.4 finally clause

If finally is present, it specifies a “cleanup” handler. The t ry clause is executed, including any except and
else clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved.
The finally clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If
the finally clause raises another exception, the saved exception is set as the context of the new exception. If the
finally clause executes a return, break or cont inue statement, the saved exception is discarded:

>>> def f():
try:
1/0
finally:
return 42
>>> £ ()
42

The exception information is not available to the program during execution of the finally clause.

When a return, break or cont inue statement is executed in the t ry suite of a try...finally statement,
the finally clause is also executed “on the way out.”

The return value of a function is determined by the last return statement executed. Since the finally clause
always executes, a return statement executed in the finally clause will always be the last one executed:

>>> def foo():
try:
return 'try'
finally:
return 'finally'
>>> foo ()
'finally'

AMoEe oty ékdoon 3.8: Prior to Python 3.8, a cont inue statement was illegal in the finally clause due to
a problem with the implementation.

8.4. The try statement 113

The Python Language Reference, Anpoociguon 3.13.7

8.5 The with statement

The with statement is used to wrap the execution of a block with methods defined by a context manager (see
section With Statement Context Managers). This allows common try...except...finally usage patterns to be
encapsulated for convenient reuse.

with_stmt c:="with" (" (" with_stmt_contents ","? ")" | with_stmt_contents) ":" su
with_stmt_contents ::= with_item ("," with_item)*
with_item ::= expression ["as" target]

The execution of the wi t h statement with one «item» proceeds as follows:

1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.
The context manager’s ___enter__ () is loaded for later use.
The context manager’s ___exit__ () is loaded for later use.

The context manager’s ___enter__ () method is invoked.

A

If a target was included in the wi t h statement, the return value from ___enter__ () is assigned to it.

O ZIhusioon

The with statement guarantees that if the ~ enter () method returns without an error, then
__exit__ () will always be called. Thus, if an error occurs during the assignment to the target list,
it will be treated the same as an error occurring within the suite would be. See step 7 below.

6. The suite is executed.

7. The context manager’s __exit__ () method is invoked. If an exception caused the suite to be exited, its
type, value, and traceback are passed as arguments to ___exit__ (). Otherwise, three None arguments are
supplied.

If the suite was exited due to an exception, and the return value fromthe __exit__ () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with
the statement following the wi t h statement.

If the suite was exited for any reason other than an exception, the return value from ___exit__ () isignored,
and execution proceeds at the normal location for the kind of exit that was taken.

The following code:

with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)

enter = type (manager).__enter
exit = type (manager).__exit_
value = enter (manager)

hit_except = False

try:
TARGET = value
SUITE
except:
hit_except = True
if not exit (manager, *sys.exc_info()):
raise
finally:

(ouvéyela oty eV oehida)

114 KegaAaio 8. Compound statements

The Python Language Reference, Anpoociguon 3.13.7

if not hit_except:

exit (manager,

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
None, None, None)

with A ()

With more than one item, the context managers are processed as if multiple w1 t h statements were nested:
as a, B() as b:
SUITE

is semantically equivalent to:

with A() as a:
with B()

as b:
SUITE

.
example:

You can also write multi-item context managers in multiple lines if the items are surrounded by parentheses. For
with (
A() as a,

B() as b,

SUITE

AMaEe oty ¢kdoon 3.1: Support for multiple context expressions.

AMoEe ot ékdoom 3.10: Support for using grouping parentheses to break the statement in multiple lines.
e Asite emiong
PEP 343 - The «with» statement

The specification, background, and examples for the Python wi t h statement.

8.6 The match statement
Added in version 3.10.

The match statement is used for pattern matching. Syntax:
match_stmt

::= 'match' subject_expr ":" NEWLINE INDENT case_block+ DEDENT
subject_expr = star_named_expression "," star_named_expressions?
| named_expression
case_block = 'case' patterns [guard] "
O Ihusioon

:" block

This section uses single quotes to denote soft keywords.
Pattern matching takes a pattern as input (following case) and a subject value (following match). The pattern
(which may contain subpatterns) is matched against the subject value. The outcomes are:
« A match success or failure (also termed a pattern success or failure).

« Possible binding of matched values to a name. The prerequisites for this are further discussed below.
The match and case keywords are soft keywords.

8.6. The match statement

115

https://peps.python.org/pep-0343/

The Python Language Reference, Anpoociguon 3.13.7

e Asite emiong

o PEP 634 - Structural Pattern Matching: Specification
o PEP 636 - Structural Pattern Matching: Tutorial

8.6.1 Overview
Here’s an overview of the logical flow of a match statement:

1. The subject expression subject_expr is evaluated and a resulting subject value obtained. If the subject
expression contains a comma, a tuple is constructed using the standard rules.

2. Each pattern in a case_block is attempted to match with the subject value. The specific rules for success
or failure are described below. The match attempt can also bind some or all of the standalone names within
the pattern. The precise pattern binding rules vary per pattern type and are specified below. Name bindings
made during a successful pattern match outlive the executed block and can be used after the match
statement.

O Zhusioon

During failed pattern matches, some subpatterns may succeed. Do not rely on bindings being made for a
failed match. Conversely, do not rely on variables remaining unchanged after a failed match. The exact
behavior is dependent on implementation and may vary. This is an intentional decision made to allow
different implementations to add optimizations.

3. If the pattern succeeds, the corresponding guard (if present) is evaluated. In this case all name bindings are
guaranteed to have happened.

« If the guard evaluates as true or is missing, the block inside case_block is executed.
o Otherwise, the next case_block is attempted as described above.

o If there are no further case blocks, the match statement is completed.

O Ihusioon

Users should generally never rely on a pattern being evaluated. Depending on implementation, the interpreter
may cache values or use other optimizations which skip repeated evaluations.

A sample match statement:

>>> flag = False
>>> match (100, 200):
case (100, 300): # Mismatch: 200 != 300
print ('Case 1"'")
case (100, 200) if flag: # Successful match, but guard fails
print ('Case 2")
case (100, y): # Matches and binds y to 200
print (f'Case 3, y: {y}")
case _: # Pattern not attempted
print ('Case 4, I match anything!')

Case 3, y: 200

In this case, 1f flagis a guard. Read more about that in the next section.

116 KegaAaio 8. Compound statements

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, Anpoociguon 3.13.7

8.6.2 Guards

guard ::= "if" named_expression

A guard (which is part of the case) must succeed for code inside the case block to execute. It takes the form:
11 followed by an expression.

The logical flow of a case block with a guard follows:

1. Check that the pattern in the case block succeeded. If the pattern failed, the guard is not evaluated and the
next case block is checked.

2. If the pattern succeeded, evaluate the guard.
« If the guard condition evaluates as true, the case block is selected.
« If the guard condition evaluates as false, the case block is not selected.
« If the guard raises an exception during evaluation, the exception bubbles up.

Guards are allowed to have side effects as they are expressions. Guard evaluation must proceed from the first to the
last case block, one at a time, skipping case blocks whose pattern(s) don’t all succeed. (L.e., guard evaluation must
happen in order.) Guard evaluation must stop once a case block is selected.

8.6.3 Irrefutable Case Blocks

An irrefutable case block is a match-all case block. A match statement may have at most one irrefutable case block,
and it must be last.

A case block is considered irrefutable if it has no guard and its pattern is irrefutable. A pattern is considered irrefutable
if we can prove from its syntax alone that it will always succeed. Only the following patterns are irrefutable:

o AS Patterns whose left-hand side is irrefutable

o OR Patterns containing at least one irrefutable pattern
o Capture Patterns

o Wildcard Patterns

« parenthesized irrefutable patterns

8.6.4 Patterns

O Iyusimon
This section uses grammar notations beyond standard EBNF:
« the notation SEP . RULE+ is shorthand for RULE (SEP RULE) *

« the notation ! RULE is shorthand for a negative lookahead assertion

The top-level syntax for patterns is:

patterns : 1= open_sequence_pattern | pattern

pattern : as_pattern | or_pattern

closed_pattern ::= literal_ pattern
capture_pattern

|

|

| wildcard pattern
| value_pattern

| group_pattern

| sequence_pattern
| mapping pattern
| class_pattern

8.6. The match statement 117

The Python Language Reference, Anpoociguon 3.13.7

The descriptions below will include a description «in simple terms» of what a pattern does for illustration purposes
(credits to Raymond Hettinger for a document that inspired most of the descriptions). Note that these descriptions
are purely for illustration purposes and may not reflect the underlying implementation. Furthermore, they do not
cover all valid forms.

OR Patterns

An OR pattern is two or more patterns separated by vertical bars | . Syntax:

or_pattern ::= "|".closed pattern+
Only the final subpattern may be irrefutable, and each subpattern must bind the same set of names to avoid ambiguity.

An OR pattern matches each of its subpatterns in turn to the subject value, until one succeeds. The OR pattern is
then considered successful. Otherwise, if none of the subpatterns succeed, the OR pattern fails.

In simple terms, P1 | P2 | ... will try to match P1, if it fails it will try to match P2, succeeding immediately
if any succeeds, failing otherwise.
AS Patterns

An AS pattern matches an OR pattern on the left of the as keyword against a subject. Syntax:

as_pattern ::= or pattern "as" capture_pattern

If the OR pattern fails, the AS pattern fails. Otherwise, the AS pattern binds the subject to the name on the right of
the as keyword and succeeds. capture_pattern cannotbe a _.

In simple terms P as NAME will match with P, and on success it will set NAME = <subject>.

Literal Patterns

A literal pattern corresponds to most lierals in Python. Syntax:

literal_pattern signed_number
signed_number "+" NUMBER
signed_number "-" NUMBER
strings

"None"

"True"

"False"

signed_number c:= ["-"] NUMBER

The rule st rings and the token NUMBER are defined in the standard Python grammar. Triple-quoted strings are
supported. Raw strings and byte strings are supported. f-strings are not supported.

The forms signed_number '+' NUMBERand signed_number '-' NUMBER are for expressing complex
numbers; they require a real number on the left and an imaginary number on the right. E.g. 3 + 47.

In simple terms, LITERAL will succeed only if <subject> == LITERAL. For the singletons None, True and
False, the is operator is used.

Capture Patterns

A capture pattern binds the subject value to a name. Syntax:

capture_pattern ::= !'_' NAME
A single underscore _ is not a capture pattern (this is what !'_"' expresses). It is instead treated as a
wildcard pattern.
In a given pattern, a given name can only be bound once. E.g. case x, x: ... isinvalid while case [x] |

X: ... Iisallowed.

118 KegaAaio 8. Compound statements

The Python Language Reference, Anpoociguon 3.13.7

Capture patterns always succeed. The binding follows scoping rules established by the assignment expression operator
in PEP 572; the name becomes a local variable in the closest containing function scope unless there’s an applicable
global or nonlocal statement.

In simple terms NAME will always succeed and it will set NAME = <subject>.

Wildcard Patterns

A wildcard pattern always succeeds (matches anything) and binds no name. Syntax:

wildcard _pattern ::= '_'

__is a soft keyword within any pattern, but only within patterns. It is an identifier, as usual, even within mat ch subject
expressions, guards, and case blocks.

In simple terms, __ will always succeed.

Value Patterns

A value pattern represents a named value in Python. Syntax:

value_pattern ::= attr
attr ::= name_or_attr "." NAME
name_or_attr ::= attr | NAME

The dotted name in the pattern is looked up using standard Python name resolution rules. The pattern succeeds if the
value found compares equal to the subject value (using the == equality operator).

In simple terms NAME1 . NAME2 will succeed only if <subject> == NAME1.NAME2

O Ihusioon

If the same value occurs multiple times in the same match statement, the interpreter may cache the first value
found and reuse it rather than repeat the same lookup. This cache is strictly tied to a given execution of a given
match statement.

Group Patterns

A group pattern allows users to add parentheses around patterns to emphasize the intended grouping. Otherwise, it
has no additional syntax. Syntax:

group_pattern ::= " (" pattern ")"

In simple terms (P) has the same effect as P.

Sequence Patterns

A sequence pattern contains several subpatterns to be matched against sequence elements. The syntax is similar to
the unpacking of a list or tuple.

sequence_pattern ::= "[" [maybe_sequence_pattern] "]1"
| "(" [open_sequence_pattern] ")"
open_sequence_pattern ::= maybe_ star_pattern "," [maybe_sequence_pattern]
maybe_sequence_pattern ::= ",".maybe_ star_pattern+ ","?
maybe_star_pattern ::= star_pattern | pattern
star_pattern 1= "*" (capture_pattern | wildcard_pattern)
There is no difference if parentheses or square brackets are used for sequence patterns (i.e. (...) vs [...]).

8.6. The match statement 119

https://peps.python.org/pep-0572/

The Python Language Reference, Anpoociguon 3.13.7

O Ihusimon

A single pattern enclosed in parentheses without a trailing comma (e.g. (3 | 4)) is a group pattern. While a
single pattern enclosed in square brackets (e.g. [3 | 4]) is still a sequence pattern.

At most one star subpattern may be in a sequence pattern. The star subpattern may occur in any position. If no
star subpattern is present, the sequence pattern is a fixed-length sequence pattern; otherwise it is a variable-length
sequence pattern.

The following is the logical flow for matching a sequence pattern against a subject value:

L.
2.

If the subject value is not a sequence’, the sequence pattern fails.
If the subject value is an instance of str, bytes or bytearray the sequence pattern fails.
The subsequent steps depend on whether the sequence pattern is fixed or variable-length.
If the sequence pattern is fixed-length:
1. If the length of the subject sequence is not equal to the number of subpatterns, the sequence pattern fails

2. Subpatterns in the sequence pattern are matched to their corresponding items in the subject sequence
from left to right. Matching stops as soon as a subpattern fails. If all subpatterns succeed in matching
their corresponding item, the sequence pattern succeeds.

Otherwise, if the sequence pattern is variable-length:

1. If the length of the subject sequence is less than the number of non-star subpatterns, the sequence pattern
fails.

2. The leading non-star subpatterns are matched to their corresponding items as for fixed-length sequences.

3. If the previous step succeeds, the star subpattern matches a list formed of the remaining subject items,
excluding the remaining items corresponding to non-star subpatterns following the star subpattern.

4. Remaining non-star subpatterns are matched to their corresponding subject items, as for a fixed-length
sequence.

O Ihuciomon

The length of the subject sequence is obtained via 1en () (i.e. viathe __len__ () protocol). This length
may be cached by the interpreter in a similar manner as value patterns.

In simple terms [P1, P2, P3, ..., P<N>] matches only if all the following happens:

« check <subject> is a sequence

e len(subject) == <N>

2 In pattern matching, a sequence is defined as one of the following:

a class that inherits from collections.abc.Sequence

a Python class that has been registered as collections.abc.Sequence
a builtin class that has its (CPython) Py_TPFLAGS_SEQUENCE bit set

a class that inherits from any of the above

The following standard library classes are sequences:

array.array
collections.deque
list

memoryview

range

tuple

O Znueioon

Subject values of type str, bytes, and bytearray do not match sequence patterns.

120

KegaAaio 8. Compound statements

The Python Language Reference, Anpoociguon 3.13.7

e P1 matches <subject>[0] (note that this match can also bind names)
e P2 matches <subject>[1] (note that this match can also bind names)

« ... and so on for the corresponding pattern/element.

Mapping Patterns

A mapping pattern contains one or more key-value patterns. The syntax is similar to the construction of a dictionary.
Syntax:

mapping_pattern ti= "{" [items_pattern] "}"

items_pattern = ",".key_value_pattern+ ","?

key_value_pattern = (literal_pattern | value_pattern) ":" pattern
| double_star_pattern

double_star_pattern ::= "**" capture pattern

At most one double star pattern may be in a mapping pattern. The double star pattern must be the last subpattern in
the mapping pattern.

Duplicate keys in mapping patterns are disallowed. Duplicate literal keys will raise a SyntaxError. Two keys that
otherwise have the same value will raise a ValueError at runtime.

The following is the logical flow for matching a mapping pattern against a subject value:
1. If the subject value is not a mapping’,the mapping pattern fails.

2. If every key given in the mapping pattern is present in the subject mapping, and the pattern for each key matches
the corresponding item of the subject mapping, the mapping pattern succeeds.

3. If duplicate keys are detected in the mapping pattern, the pattern is considered invalid. A SyntaxError is
raised for duplicate literal values; or a ValueError for named keys of the same value.

O Inucioon

Key-value pairs are matched using the two-argument form of the mapping subject’s get () method. Matched
key-value pairs must already be present in the mapping, and not created on-the-fly via _ missing__ () or
__getitem ().

In simple terms {KEY1: P1, KEY2: P2, ... } matches only if all the following happens:
o check <subject> is a mapping
e KEY1l in <subject>
e P1 matches <subject>[KEY1]

« ... and so on for the corresponding KEY/pattern pair.

Class Patterns

A class pattern represents a class and its positional and keyword arguments (if any). Syntax:

class_pattern ::= name_or_attr " (" [pattern_arguments ","?] ")"
pattern_arguments ::= positional_patterns ["," keyword patterns]
| keyword patterns
positional_patterns ::= ",".pattern+
keyword_patterns 1= ", ".keyword _patternt

3 In pattern matching, a mapping is defined as one of the following:
o a class that inherits from collections.abc.Mapping
« a Python class that has been registered as collections.abc.Mapping
« a builtin class that has its (CPython) Py_ TPFLAGS_MAPP ING bit set
« aclass that inherits from any of the above
The standard library classes dict and types.MappingProxyType are mappings.

8.6. The match statement 121

The Python Language Reference, Anpoociguon 3.13.7

keyword_pattern ::= NAME "=" pattern

The same keyword should not be repeated in class patterns.

The following is the logical flow for matching a class pattern against a subject value:

1. If name_or_attr is not an instance of the builtin t ype , raise TypeError.

2. If the subject value is not an instance of name_or_attr (tested via isinstance ()), the class pattern

fails.
3. If no pattern arguments are present, the pattern succeeds. Otherwise, the subsequent steps depend on whether
keyword or positional argument patterns are present.
For a number of built-in types (specified below), a single positional subpattern is accepted which will match
the entire subject; for these types keyword patterns also work as for other types.
If only keyword patterns are present, they are processed as follows, one by one:
I. The keyword is looked up as an attribute on the subject.
« If this raises an exception other than AttributeError, the exception bubbles up.
o If this raises At t ributeError, the class pattern has failed.
« Else, the subpattern associated with the keyword pattern is matched against the subject’s attribute value.
If this fails, the class pattern fails; if this succeeds, the match proceeds to the next keyword.
II. If all keyword patterns succeed, the class pattern succeeds.
If any positional patterns are present, they are converted to keyword patterns using the __match_args_
attribute on the class name_or_attr before matching:
I. The equivalent of getattr (cls, "__match_args__ ", ()) iscalled.
« If this raises an exception, the exception bubbles up.
o If the returned value is not a tuple, the conversion fails and TypeError is raised.
o If there are more positional patterns than len (cls.__match_args__), TypeError
is raised.
o Otherwise, positional pattern i is converted to a keyword pattern using
__match_args__[i] as the keyword. __match_args__[i] must be a string;
if not TypeError is raised.
« If there are duplicate keywords, TypeError is raised.
> Asite emiong
Customizing positional arguments in class pattern matching
I1. Once all positional patterns have been converted to keyword patterns,
the match proceeds as if there were only keyword patterns.
For the following built-in types the handling of positional subpatterns is different:
e bool
e bytearray
e bytes
e dict
e float
e frozenset
e int
122 KegaAaio 8. Compound statements

The Python Language Reference, Anpoociguon 3.13.7

e list
e set

e Str

e tuple

These classes accept a single positional argument, and the pattern there is matched against the whole object
rather than an attribute. For example int (0| 1) matches the value O, but not the value 0. O.

In simple terms CLS (P1, attr=P2) matches only if the following happens:
e isinstance (<subject>, CLS)
e convert P1 to a keyword pattern using CLS.__match_args__
 For each keyword argument att r=P2:
- hasattr (<subject>, "attr")
- P2 matches <subject>.attr

e ... and so on for the corresponding keyword argument/pattern pair.

e Acite emiong

o PEP 634 - Structural Pattern Matching: Specification
o PEP 636 - Structural Pattern Matching: Tutorial

8.7 Function definitions

A function definition defines a user-defined function object (see section The standard type hierarchy):

")

funcdef ::= [decorators] "def" funcname [type_params] " (" [parameter_list]
["->" expression] ":" suite

decorators ::= decorator+

decorator 1= "Q@" assignment_expression NEWLINE

parameter_list ::= defparameter ("," defparameter)* ", " "/" ["," [parameter_ 1list_

| parameter_list_no_posonly

parameter_list_no_posonly ::= defparameter ("," defparameter)* ["," [parameter_list_star

| parameter_list_starargs
parameter_list_starargs 1= "*" [star parameter] ("," defparameter)* [","
| "x" ("," defparameter)+ ["," [parameter_star_kwargs]]

| parameter_star_kwargs

parameter_star_kwargs pi= "**" parameter [","]

parameter ::= identifier [":" expression]
star_parameter ::= identifier [":" ["*"] expression]
defparameter ::= parameter ["=" expression]
funcname ::= identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace
to a function object (a wrapper around the executable code for the function). This function object contains a reference
to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function bodys; this gets executed only when the function is called.*

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated
when the function is defined, in the scope that contains the function definition. The result must be a callable, which

4 A string literal appearing as the first statement in the function body is transformed into the function’s __doc___ attribute and therefore the
function’s docstring.

8.7. Function definitions 123

[parameter_st

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, Anpoociguon 3.13.7

is invoked with the function object as the only argument. The returned value is bound to the function name instead
of the function object. Multiple decorators are applied in nested fashion. For example, the following code

@fl (arqg)
@f2
def func(): pass

is roughly equivalent to

def func(): pass
func = f1l (arg) (£2 (func))

except that the original function is not temporarily bound to the name func.

AMaEe oty ékdoon 3.9: Functions may be decorated with any valid assignment_expression. Previously,
the grammar was much more restrictive; see PEP 614 for details.

A list of type parameters may be given in square brackets between the function’s name and the opening parenthesis for
its parameter list. This indicates to static type checkers that the function is generic. At runtime, the type parameters
can be retrieved from the function’s __ type_params___ attribute. See Generic functions for more.

AMaEe oty ékdoom 3.12: Type parameter lists are new in Python 3.12.

When one or more parameters have the form parameter = expression, the function is said to have «default parameter
values.» For a parameter with a default value, the corresponding argument may be omitted from a call, in which case
the parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the
«*» must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means
that the expression is evaluated once, when the function is defined, and that the same «pre-computed» value is used
for each call. This is especially important to understand when a default parameter value is a mutable object, such as
a list or a dictionary: if the function modifies the object (e.g. by appending an item to a list), the default parameter
value is in effect modified. This is generally not what was intended. A way around this is to use None as the default,
and explicitly test for it in the body of the function, e.g.:

def whats_on_the_telly (penguin=None) :
if penguin is None:
penguin = []
penguin.append ("property of the zoo")
return penguin

Function call semantics are described in more detail in section Calls. A function call always assigns values to all
parameters mentioned in the parameter list, either from positional arguments, from keyword arguments, or from
default values. If the form «*identifier» is present, it is initialized to a tuple receiving any excess positional
parameters, defaulting to the empty tuple. If the form «**ident i fier» is present, it is initialized to a new ordered
mapping receiving any excess keyword arguments, defaulting to a new empty mapping of the same type. Parameters
after «*» or «*identifier» are keyword-only parameters and may only be passed by keyword arguments.
Parameters before «/» are positional-only parameters and may only be passed by positional arguments.

AMaEe otv ékdoon 3.8: The / function parameter syntax may be used to indicate positional-only parameters. See
PEP 570 for details.

Parameters may have an annotation of the form «: expression» following the parameter name. Any parameter
may have an annotation, even those of the form *identifieror **identifier. (Asaspecial case, parameters
of the form *identifier mayhave anannotation «: *expression».) Functions may have «return» annotation
of the form «—> expression» after the parameter list. These annotations can be any valid Python expression. The
presence of annotations does not change the semantics of a function. The annotation values are available as values
of a dictionary keyed by the parameters” names in the __annotations___ attribute of the function object. If the
annotations import from __ future__ is used, annotations are preserved as strings at runtime which enables
postponed evaluation. Otherwise, they are evaluated when the function definition is executed. In this case annotations
may be evaluated in a different order than they appear in the source code.

124 KegaAaio 8. Compound statements

https://peps.python.org/pep-0614/
https://peps.python.org/pep-0570/

The Python Language Reference, Anpoociguon 3.13.7

AMoEe otv ékdoon 3.11: Parameters of the form «*identifier» may have an annotation «:
*expression». See PEP 646.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand
for a simplified function definition; a function defined in a «de» statement can be passed around or assigned to
another name just like a function defined by a lambda expression. The «de £» form is actually more powerful since
it allows the execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A «def» statement executed inside a function definition
defines a local function that can be returned or passed around. Free variables used in the nested function can access
the local variables of the function containing the def. See section Ovouaoia kar cvvdeon for details.

e Ascite emiong

PEP 3107 - Function Annotations
The original specification for function annotations.

PEP 484 - Type Hints
Definition of a standard meaning for annotations: type hints.

PEP 526 - Syntax for Variable Annotations
Ability to type hint variable declarations, including class variables and instance variables.

PEP 563 - Postponed Evaluation of Annotations
Support for forward references within annotations by preserving annotations in a string form at runtime
instead of eager evaluation.

PEP 318 - Decorators for Functions and Methods
Function and method decorators were introduced. Class decorators were introduced in PEP 3129.

8.8 Class definitions

A class definition defines a class object (see section The standard type hierarchy):

classdef ::= [decorators] "class" classname [type_params] [inheritance] ":" suite
inheritance ::= " (" [argument_list] ")"
classname ::= identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Metaclasses
for more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes
without an inheritance list inherit, by default, from the base class object; hence,

class Foo:
pass

is equivalent to

class Foo (object) :
pass

The class’s suite is then executed in a new execution frame (see Ovouaocio kar cvvieon), using a newly created local
namespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the
class’s suite finishes execution, its execution frame is discarded but its local namespace is saved.” A class object is
then created using the inheritance list for the base classes and the saved local namespace for the attribute dictionary.
The class name is bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s ___dict__ . Note that this
is reliable only right after the class is created and only for classes that were defined using the definition syntax.

3 A string literal appearing as the first statement in the class body is transformed into the namespace’s __doc___item and therefore the class’s
docstring.

8.8. Class definitions 125

https://peps.python.org/pep-0646/
https://peps.python.org/pep-3107/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0563/
https://peps.python.org/pep-0318/
https://peps.python.org/pep-3129/

The Python Language Reference, Anpoociguon 3.13.7

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

@fl (arqg)
@f2
class Foo: pass

is roughly equivalent to

class Foo: pass
Foo = fl (arg) (f2 (Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound
to the class name.

AMoEe otnv ékdoon 3.9: Classes may be decorated with any valid assignment_expression. Previously, the
grammar was much more restrictive; see PEP 614 for details.

A list of type parameters may be given in square brackets immediately after the class’s name. This indicates to
static type checkers that the class is generic. At runtime, the type parameters can be retrieved from the class’s
_ type_params___ attribute. See Generic classes for more.

AMoEe oty €kdoon 3.12: Type parameter lists are new in Python 3.12.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances.
Instance attributes can be set in a method with self.name = value. Both class and instance attributes are
accessible through the notation «se1f . name», and an instance attribute hides a class attribute with the same name
when accessed in this way. Class attributes can be used as defaults for instance attributes, but using mutable values
there can lead to unexpected results. Descriptors can be used to create instance variables with different implementation
details.

e Acite emiong

PEP 3115 - Metaclasses in Python 3000
The proposal that changed the declaration of metaclasses to the current syntax, and the semantics for how
classes with metaclasses are constructed.

PEP 3129 - Class Decorators
The proposal that added class decorators. Function and method decorators were introduced in PEP 318.

8.9 Coroutines

Added in version 3.5.

8.9.1 Coroutine function definition
async_funcdef ::= [decorators] "async" "def" funcname " (" [parameter_ list] ")"
["->" expression] ":" suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). awa it expressions,
async forand async with can only be used in the body of a coroutine function.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or
async keywords.

Itisa SyntaxErrortouseayield from expression inside the body of a coroutine function.

An example of a coroutine function:

126 KegaAaio 8. Compound statements

https://peps.python.org/pep-0614/
https://peps.python.org/pep-3115/
https://peps.python.org/pep-3129/
https://peps.python.org/pep-0318/

The Python Language Reference, Anpoociguon 3.13.7

async def func(paraml, param?):
do_stuff ()
await some_coroutine ()

AMaEe oty ékdoon 3.7: await and async are now keywords; previously they were only treated as such inside
the body of a coroutine function.

8.9.2 The async for statement

async_for_stmt ::= "async" for_ stmt

An asynchronous iterable provides an __aiter__ method that directly returns an asynchronous iterator, which can
call asynchronous code in its __anext___ method.

The async for statement allows convenient iteration over asynchronous iterables.

The following code:

async for TARGET in ITER:
SUITE

else:
SUITE2

Is semantically equivalent to:

iter = (ITER)
iter = type(iter).__aiter_(iter)
running = True

while running:

try:
TARGET = await type(iter).__anext__ (iter)
except StopAsynclteration:
running = False
else:
SUITE
else:
SUITE2

Seealso aiter () and___anext_ _ () for details.

Itisa SyntaxError touse an async for statement outside the body of a coroutine function.

8.9.3 The async with statement

async_with_stmt ::= "async" with_stmt
An asynchronous context manager is a context manager that is able to suspend execution in its enter and exit methods.

The following code:

async with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)

aenter = type (manager).__aenter_
aexit = type (manager).__aexit___
value = await aenter (manager)

(ouvéyela oty eV oehida)

8.9. Coroutines 127

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

hit_except = False

try:
TARGET = value
SUITE
except:
hit_except = True
if not await aexit (manager, *sys.exc_info()):
raise
finally:
if not hit_except:
await aexit (manager, None, None, None)

Seealso__aenter () and ___aexit__ () for details.

Itisa SyntaxError touse an async with statement outside the body of a coroutine function.

e Acite emiong

PEP 492 - Coroutines with async and await syntax
The proposal that made coroutines a proper standalone concept in Python, and added supporting syntax.

8.10 Type parameter lists

Added in version 3.12.
AMoEe oty €xdoon 3.13: Support for default values was added (see PEP 696).

type_params ::= "[" type_param ("," type_param)* "]"
type_param 1= typevar | typevartuple | paramspec

typevar ::= identifier (":" expression)? ("=" expression)?
typevartuple ::= "*" identifier ("=" expression)?

paramspec = "M jdentifier ("=" expression)?

Functions (including coroutines), classes and type aliases may contain a type parameter list:

def max[T] (args: 1list[T]) -> T:

async def amax[T] (args: list[T]) —-> T:

class Bag|[T]:
def = iter_ (self) —-> Iterator([T]:

def add(self, arg: T) —-> None:

type ListOrSet [T] = 1list[T] | set[T]

Semantically, this indicates that the function, class, or type alias is generic over a type variable. This information
is primarily used by static type checkers, and at runtime, generic objects behave much like their non-generic
counterparts.

Type parameters are declared in square brackets ([]) immediately after the name of the function, class, or type
alias. The type parameters are accessible within the scope of the generic object, but not elsewhere. Thus, after a

128 KegaAaio 8. Compound statements

https://peps.python.org/pep-0492/
https://peps.python.org/pep-0696/

The Python Language Reference, Anpoociguon 3.13.7

declaration def func|[T] () : pass, the name T is not available in the module scope. Below, the semantics of
generic objects are described with more precision. The scope of type parameters is modeled with a special function
(technically, an annotation scope) that wraps the creation of the generic object.

Generic functions, classes, and type aliases have a __type_params___ attribute listing their type parameters.
Type parameters come in three kinds:

e typing.TypeVar, introduced by a plain name (e.g., T). Semantically, this represents a single type to a type
checker.

e typing.TypeVarTuple, introduced by a name prefixed with a single asterisk (e.g., * Ts). Semantically,
this stands for a tuple of any number of types.

e typing.ParamSpec, introduced by a name prefixed with two asterisks (e.g., **P). Semantically, this
stands for the parameters of a callable.

typing.TypeVar declarations can define bounds and constraints with a colon (:) followed by an expression. A
single expression after the colon indicates a bound (e.g. T: int). Semantically, this means that the typing.
TypeVar can only represent types that are a subtype of this bound. A parenthesized tuple of expressions after the
colon indicates a set of constraints (e.g. T: (str, bytes)). Each member of the tuple should be a type (again,
this is not enforced at runtime). Constrained type variables can only take on one of the types in the list of constraints.

For typing. TypeVars declared using the type parameter list syntax, the bound and constraints are not evaluated
when the generic object is created, but only when the value is explicitly accessed through the attributes ___bound___
and _ constraints__. To accomplish this, the bounds or constraints are evaluated in a separate annotation
scope.

typing.TypeVarTuplesand typing.ParamSpecs cannot have bounds or constraints.

All three flavors of type parameters can also have a default value, which is used when the type parameter is not
explicitly provided. This is added by appending a single equals sign (=) followed by an expression. Like the bounds
and constraints of type variables, the default value is not evaluated when the object is created, but only when the type
parameter’s ___default__ attribute is accessed. To this end, the default value is evaluated in a separate annotation
scope. If no default value is specified for a type parameter, the __default__ attribute is set to the special sentinel
object typing.NoDefault.

The following example indicates the full set of allowed type parameter declarations:

def overly generic]|
SimpleTypeVar,
TypeVarWithDefault = int,
TypeVarWithBound: int,
TypeVarWithConstraints: (str, bytes),
*SimpleTypeVarTuple = (int, float),

**SimpleParamSpec = (str, bytearray),
1 (
a: SimpleTypeVar,
b: TypeVarWithDefault,
c: TypeVarWithBound,
d: Callable[SimpleParamSpec, TypeVarWithConstraints],

*e: SimpleTypeVarTuple,

8.10.1 Generic functions

Generic functions are declared as follows:

[def func[T] (arg: T):

This syntax is equivalent to:

8.10. Type parameter lists 129

The Python Language Reference, Anpoociguon 3.13.7

annotation-def TYPE_PARAMS OF_func() :
T = typing.TypeVar ("T")
def func(arg: T):
func.__ _type_params__ = (T,)
return func

func = TYPE_PARAMS_OF_func ()

Here annotation-def indicates an annotation scope, which is not actually bound to any name at runtime. (One
other liberty is taken in the translation: the syntax does not go through attribute access on the t yping module, but
creates an instance of typing. TypeVar directly.)

The annotations of generic functions are evaluated within the annotation scope used for declaring the type parameters,
but the function’s defaults and decorators are not.

The following example illustrates the scoping rules for these cases, as well as for additional flavors of type parameters:

N

@decorator
def func[T: int, *Ts, **P] (*args: *Ts, arg: Callable[P, T] = some_default):

Except for the lazy evaluation of the TypeVar bound, this is equivalent to:

DEFAULT_OF_arg = some_default
annotation-def TYPE_PARAMS_OF_func () :

annotation-def BOUND_OF_T () :

return int
In reality, BOUND_OF_T () is evaluated only on demand.
T = typing.TypeVar ("T", bound=BOUND_OF_T ())

Ts = typing.TypeVarTuple ("Ts")
P = typing.ParamSpec ("P")

def func(*args: *Ts, arg: Callable[P, T] = DEFAULT_OF_arg):
func.__type_params__ = (T, Ts, P)

return func
func = decorator (TYPE_PARAMS_OF_func())

The capitalized names like DEFAULT_OF _arg are not actually bound at runtime.

8.10.2 Generic classes

Generic classes are declared as follows:

[class Bag[T]: ... }

This syntax is equivalent to:

annotation-def TYPE_PARAMS_OF_Bag() :
T = typing.TypeVar ("T")
class Bag(typing.Generic|[T]):
_ _type_params__ = (T,)

return Bag
Bag = TYPE_PARAMS_OF_Bag ()

130 KegaAaio 8. Compound statements

The Python Language Reference, Anpoociguon 3.13.7

Here again annotation-def (not a real keyword) indicates an annotation scope, and the name
TYPE_PARAMS_OF_Bag is not actually bound at runtime.

Generic classes implicitly inherit from typing.Generic. The base classes and keyword arguments of generic
classes are evaluated within the type scope for the type parameters, and decorators are evaluated outside that scope.
This is illustrated by this example:

@decorator
class Bag(Base[T], arg=T):

This is equivalent to:

annotation-def TYPE_PARAMS_OF_Bag() :
T = typing.TypeVar ("T")
class Bag(Base[T], typing.Generic[T], arg=T):
__type_params__ = (T,)

return Bag
Bag = decorator (TYPE_PARAMS_OF_Bag())

8.10.3 Generic type aliases

The t ype statement can also be used to create a generic type alias:

[type ListOrSet [T] = 1list[T] | set[T] }

Except for the /azy evaluation of the value, this is equivalent to:

annotation-def TYPE PARAMS_ OF ListOrSet():
T = typing.TypeVar ("T")

annotation-def VALUE_OF_ListOrSet () :
return 1list[T] | set][T]
In reality, the value is lazily evaluated
return typing.TypeAliasType ("ListOrSet", VALUE_OF_ListOrSet (), type_
—params= (T,))
ListOrSet = TYPE_PARAMS_OF_ListOrSet ()

J

Here, annotation-def (not a real keyword) indicates an annotation scope. The capitalized names like
TYPE_PARAMS_OF_ListOrSet are not actually bound at runtime.

8.10. Type parameter lists 131

The Python Language Reference, Anpoociguon 3.13.7

132 KegaAaio 8. Compound statements

KE®AAAIO 9

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

9.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion
of a complete Python program. A complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized, except for sy s (various system services),
builtins (built-in functions, exceptions and None) and __main__ . The latter is used to provide the local and
global namespace for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete program
but reads and executes one statement (possibly compound) at a time. The initial environment is identical to that of a
complete program; each statement is executed in the namespace of __main__.

A complete program can be passed to the interpreter in three forms: with the —c sfring command line option, as a
file passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the
interpreter enters interactive mode; otherwise, it executes the file as a complete program.

9.2 File input

All input read from non-interactive files has the same form:

file_input ::= (NEWLINE | statement)*
This syntax is used in the following situations:
« when parsing a complete Python program (from a file or from a string);
» when parsing a module;

« when parsing a string passed to the exec () function;

133

The Python Language Reference, Anpoociguon 3.13.7

9.3 Interactive input
Input in interactive mode is parsed using the following grammar:

interactive_input ::= [stmt_list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to
help the parser detect the end of the input.

9.4 Expression input

eval () is used for expression input. It ignores leading whitespace. The string argument to eval () must have the
following form:

eval_input ::= expression_list NEWLINE¥*

134 Kegahiaio 9. Top-level components

keoanaio 10

[MAnpng Tpodlaypagn YPAUUATIKAG

Avt elvow M Tpng ypapuotiky g Python, mov mpoépyetar amevbeiog amd) YPOUUOTIKY) TOV ¥PNOL-
uozoteitan yio T dnwovpyio tov avorvuti) CPython (BA. Grammar/python.gram). H ékdoon avt) mapaleinet
LETTTOUEPELEG TTOV OYETICOVTOL UE T dNUOVPYICL KDOSLKO KoL TNV AvAKTNGT 0TT0 0PAAMLATA.

H onuewoypapio eivar éva peiyna amd EBNF ko PEG. Zvykekpuiéva, 1o & mov akohovbeitor amd €va ovp-
Boro, éva token 1 po TapevOeTLKT 0pdda VITOdNAMVEL OETIKT) TPOETLOKOTNON (dNAOOT ATTALTELTAL VO TOLPLO-
Cel aAlG OV KOTAVAADVETAL), EVED TO | VITOONAMVEL APVNTLKT| TPOETLOKOTNON (dNhadY| amarteitan va unv
tapLder). XpnowwomotoUie Tov TeheoTn) | Yo va eKppdoovue v «ta&wvounuévn emhoyn» tov PEG (tou
vphopeton wg / otig mapadooiakég ypoupatikég PEG). Agite to PEP 617 yio meplocdtepeg Aemtouépeteg oye-
TUKG e T OVVTOEN TG YPOUUOTLKTG.

PEG grammar for Python

========================= START OF THE GRAMMAR =========================
General grammatical elements and rules:

#

* Strings with double quotes (") denote SOFT KEYWORDS

* Strings with single quotes (') denote KEYWORDS

* Upper case names (NAME) denote tokens in the Grammar/Tokens file

* Rule names starting with "invalid " are used for specialized syntax.
—errors

— These rules are NOT used in the first pass of the parser.

- Only if the first pass fails to parse, a second pass including the.
—~invalid

rules will be executed.

— If the parser fails in the second phase with a generic syntax.
—error, the

location of the generic failure of the first pass will be used.

< (this avoids
reporting incorrect locations due to the invalid rules).

— The order of the alternatives involving invalid rules matter
(like any rule in PEG).

H FHR K

(ouvéyela oty emtdpevn oehida)

135

https://github.com/python/cpython/tree/3.13/Grammar/python.gram
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://peps.python.org/pep-0617/

The Python Language Reference, Anpocigsuon 3.13.7

(ovveyiCeton amd Ty ponyovuevn oehida)
Grammar Syntax (see PEP 617 for more information) :
#
rule_name: expression
Optionally, a type can be included right after the rule name, which

specifies the return type of the C or Python function corresponding to.
—~the

rule:

rule_name [return_type]: expression

If the return type 1is omitted, then a void * is returned in C and an.
—~Any 1in

Python.

el e2

Match el, then match eZ2.

el | e2

Match el or e2.

The first alternative can also appear on the line after the rule name.
—~for

formatting purposes. In that case, a | must be used before the first
alternative, like so:

rule_name [return_type]:

| first_alt

| second_alt

(e)

Match e (allows also to use other operators in the group like '(e)*'")
[e] or e?

Optionally match e.

e*

Match zero or more occurrences of e.

e+

Match one or more occurrences of e.

s.et

Match one or more occurrences of e, separated by s. The generated.
—parse tree

does not include the separator. This is otherwise identical to (e (s-
we)).

&e

Succeed 1if e can be parsed, without consuming any input.

le

Fail if e can be parsed, without consuming any input.

~

Commit to the current alternative, even 1if it fails to parse.

&&e

FEager parse e. The parser will not backtrack and will immediately

fail with SyntaxError if e cannot be parsed.

#

STARTING RULES

file: [statements] ENDMARKER

interactive: statement_newline

eval: expressions NEWLINE* ENDMARKER

func_type: '(' [type_expressions] ')' '->' expression NEWLINE* ENDMARKER

GENERAL STATEMENTS

(ouvéyela otV entopevn oehida)

136 KegaAaio 10. MAnRpng npodiaypagpn YPAUHATLKAG

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
statements: statement+
statement: compound_stmt | simple_stmts

statement_newline:
| compound_stmt NEWLINE
| simple_stmts
| NEWLINE
| ENDMARKER

simple_stmts:
| simple_stmt !';' NEWLINE # Not needed, there for speedup
| ';'.simple_stmt+ [';'] NEWLINE

NOTE: assignment MUST precede expression, else parsing a simple.
—~assignment
will throw a SyntaxError.
simple_stmt:
| assignment
| type_alias
| star_expressions
| return_stmt
| import_stmt
| raise_stmt
| 'pass'
| del_stmt
| yield_stmt
| assert_stmt
| 'break'
| 'continue'
| global_stmt
| nonlocal_stmt

compound_stmt :

| function_def
| 1if stmt
| class_def
| with_stmt
| for_stmt
| try_stmt
| while_stmt
| match_stmt

SIMPLE STATEMENTS

NOTE: annotated_rhs may start with 'yield'; yield expr must start with
~'yield'
assignment:
| NAME ':' expression ['=' annotated_rhs]
| ("('" single_target ")'

| single_subscript_attribute_target) ':' expression ['='_
—annotated_rhs]
| (star_targets '=')+ (yield_expr | star_expressions) !'=' [TYPE_

—COMMENT]

(ouvéyela otV entopevn oehida)

137

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

| single_target augassign ~ (yield_expr | star_expressions)
annotated_rhs: yield _expr | star_expressions

augassign:
| V=

A}]

A}]

A} A\l

A} A\l

N ®
Il

A}

|
|
|
|
|
| A}
|
|
|
|
|
|

o\
Il

A}

> — &
Il

A} — 1

I gg=t
I >p=t

Txx=1

v)="

return_stmt:
| 'return' [star_expressions]

raise_stmt:
| 'raise' expression ['from' expression]

| 'raise'

global _stmt: 'global' ', '.NAME+

nonlocal_stmt: 'nonlocal' ', '.NAME+
del_ stmt:
| 'del' del_targets &(';' | NEWLINE)

yield_stmt: yield_expr
assert_stmt: 'assert' expression [',' expression]
import_stmt:

| import_name

| import_from

Import statements

import_name: 'import' dotted_as_names

note below: the ('.' | '...') is necessary because '...' is tokenized as.
—ELLIPSIS

import_from:

| "from' ('.' | '...')* dotted name 'import' import_from_ targets

| '"from' ('.' | '..."'")+ 'import' import_from targets
import_ from targets:

["('" import_from_as_names [','] ")'

| import_from_ as_names !','

| "X

import_from_as_names:
| ', '.import_from_as_name+

(ouvéyela otV entopevn oehida)

138 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

import_from_as_name:

| NAME ['as' NAME]
dotted_as_names:

[','.dotted _as_name+
dotted_as_name:

| dotted_name ['as' NAME]
dotted_name:

| dotted_name '.' NAME

| NAME

COMPOUND STATEMENTS

| NEWLINE INDENT statements DEDENT
| simple_stmts

decorators: ('@' named expression NEWLINE)+
Class definitions
class_def:

| decorators class_def raw

| class_def_raw

class_def_raw:
| 'class' NAME [type_params] ['(' [arguments] ')'] ':' block

Function definitions
function_def:
| decorators function_def_ raw

| function_def_ raw

function_def_ raw:

| 'def' NAME [type_params] '(' [params] ')' ['->' expression] ':'_L
— [func_type_comment] block

| 'async' 'def' NAME [type_params] '(' [params] ')' ['->' expression]
—':'" [func_type_comment] block

Function parameters

params:
| parameters

parameters:
| slash_no_default param no_default* param_with_default* [star_etc]
| slash_with_default param_with_default* [star_etc]
| param_no_default+ param_with_default* [star_etc]
| param_with_default+ [star_etc]

(ouvéyela otV entopevn oehida)

139

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

| star_etc

Some duplication here because we can't write (',' | &')"'),
which is because we don't support empty alternatives (yet).

slash_no_default:
| param_no_default+ '/' ',
| param_no_default+ '/' &'")'
slash_with_default:
| param_no_default* param_with_default+ '/' ',
| param_no_default* param_with_default+ '/' &')'

star_etc:
| '*'" param_no_default param_maybe_default* [kwds]
| '"*' param_no_default_star_annotation param_maybe_default* [kwds]
|
|

'*1 ', ' param_maybe_default+ [kwds]

kwds
kwds:

| '"**' param_no_default

One parameter. This *includes* a following comma and type comment.
#
There are three styles:
— No default
— With default
— Maybe with default
#
There are two alternative forms of each, to deal with type comments:
— Ends in a comma followed by an optional type comment
— No comma, optional type comment, must be followed by close paren
The latter form is for a final parameter without trailing comma.
#

param_no_default:

| param ',' TYPE_COMMENT?

| param TYPE_COMMENT? &')'
param_no_default_star_annotation:

| param_star_annotation ',' TYPE_COMMENT?

| param_star_annotation TYPE_COMMENT? &')'
param with default:

| param default ',' TYPE_COMMENT?

| param default TYPE_COMMENT? &')'
param_maybe_default:

| param default? ',' TYPE_COMMENT?

| param default? TYPE_COMMENT? &')'
param: NAME annotation?
param_star_annotation: NAME star_annotation

annotation: ':' expression
star_annotation: ':' star_expression
default: '=' expression | invalid_default

If statement

if_stmt:

(ouvéyela otV entopevn oehida)

140 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

| 'if' named_expression ':' block elif_ stmt

| "if' named_expression ':' block [else_block]
elif stmt:

| 'elif' named_expression ':' block elif stmt

| 'elif' named_expression ':' block [else_block]
else_block:

| 'else' ':' block

While statement

while_stmt:
| 'while' named_expression ':' block [else_block]

For statement

,,,,,,,,,,,,,
for_stmt:
| '"for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block.
—[else_block]
| 'async' 'for' star_targets 'in' ~ star_expressions ':' [TYPE_

—COMMENT] block [else_block]

With statement

,,,,,,,,,,,,,,
with_stmt:
| 'with' '(' ','.with_item+ ','? ')' ':' [TYPE_COMMENT] block
| 'with' ','.with_item+ ':' [TYPE_COMMENT] block
| 'async' 'with' '(' ','.with item+ ','? ")' ':' block
| 'async' 'with' ','.with_item+ ':' [TYPE_COMMENT] block
with_item:
| expression 'as' star_target &(',"' [")' | ':")
| expression
Try statement

try_stmt:
| "try' ':' block finally_ block
| 'try' ':' block except_block+ [else_block] [finally block]
| 'try' ':' block except_star_block+ [else_block] [finally block]

Except statement

except_block:

| 'except' expression ['as' NAME] ':' block

| 'except' ':' block
except_star_block:

| 'except' '*' expression ['as' NAME] ':' block
finally_block:

| 'finally' ':' block

(ouvéyela otV entopevn oehida)

141

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

Match statement

match_stmt:
| "match" subject_expr ':' NEWLINE INDENT case_block+ DEDENT

subject_expr:
| star_named_expression ',' star_named_expressions?
| named_expression

case_block:
| "case" patterns guard? ':' block

guard: 'if' named expression

patterns:
| open_sequence_pattern
| pattern

pattern:
| as_pattern
| or_pattern

as_pattern:
| or_pattern 'as' pattern_capture_target

or_pattern:
| '"|'.closed_pattern+

closed_pattern:
| literal_pattern
| capture_pattern
| wildcard_pattern
| value_pattern
| group_pattern
| sequence_pattern
| mapping_pattern
| class_pattern

Literal patterns are used for equality and identity constraints
literal_pattern:
| signed_number ! ('+' | '-")
| complex_ number
| strings
| '"None'
| '"True'
| 'False'

Literal expressions are used to restrict permitted mapping pattern keys
literal_expr:
| signed_number ! ('+' | '-'")
| complex_number
| strings
| '"None'
| "True'
| 'False'

(ouvéyela otV entopevn oehida)

142 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

complex_number:
| signed_real number '+' imaginary_number

| signed_real number '-' imaginary_number

signed_number:
| NUMBER
['-'" NUMBER

signed_real_number:
| real_ number
| '"-' real number

real_number:
| NUMBER

imaginary_number:
| NUMBER

capture_pattern:
| pattern_capture_target

pattern_capture_target:
| !l! " NAME !(l.l ‘ l(l I l:l)

wildcard_pattern:

value_pattern:
| attr ' ('." | (' | =)

attr:
| name_or_attr '.' NAME

name_or_attr:
| attr
| NAME

group_pattern:
['(' pattern '")'

sequence_pattern:
| '[' maybe_sequence_pattern? ']'
['(' open_sequence_pattern? ')'

open_sequence_pattern:
| maybe_star_pattern ',' maybe_sequence_pattern?

maybe_sequence_pattern:
| ','".maybe_star_pattern+ ','?

maybe_star_pattern:
| star_pattern
| pattern

star_pattern:

(ouvéyela otV entopevn oehida)

143

The Python Language Reference, Anpoociguon 3.13.7

| '*' pattern_capture_target
| '"*'" wildcard_pattern

mapping_pattern:

| l{l l}l

['"{' double_star_pattern ','? '}'
| '{' items_pattern ',' double_star_pattern ',
|

'{' items_pattern ','? '}’

items_pattern:
[', '".key_value_pattern+

key_value_pattern:
| (literal_expr | attr) ':' pattern

double_star_pattern:
| '"**' pattern_capture_target

class_pattern:

| name_or_attr '(

| name_or_attr ' (' positional_patterns ','? ')
| name_or_attr '(' keyword_patterns ','? ')'
| (

name_or_attr

")'

positional_patterns:
| ', '.patternt

keyword_patterns:
| ', '.keyword_pattern+

keyword_pattern:
| NAME '=' pattern

Type statement

type_alias:
| "type" NAME [type_params]

'=' expression

Type parameter declaration
type_params:
| "[' type_param seq ']’
type_param seq: ','.type paramt+ [',']
type_param:
| NAME [type_param_bound] [type_param_default]

| '*'" NAME [type_param_starred_default]
['**' NAME [type_param_default]

type_param _bound: ':' expression
type_param_default: '=' expression
type_param_starred_default: '=' star_expression

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

1o

l}'

positional_patterns ',' keyword_patterns

]
4

03

l)l

(ouvéyela otV entopevn oehida)

144 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpoociguon 3.13.7

EXPRESSIONS

expressions:
| expression (','
| expression ','
| expression

expression:
| disjunction
| disjunction
| lambdef

Vifl

yield expr:
| 'yield'
| 'yield'

'from'

star_expressions:
| star_expression
| star_expression '
| star_expression
star_expression:
| "' bitwise_or
| expression

star_named_expressions:
star_named_expression:
| "' bitwise_or

| named_expression

assignment_expression:
| NAME ':="'

named_expression:

expression)+

(G

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

(',"1

disjunction 'else' expression

expression
[star_expressions]

(',']

star_expression)+

1
14

(', ']

', '.star_named_expressiont

~ expression

| assignment_ expression

I

| expression

disjunction:
| conjunction ('or'

| conjunction

conjunction:
| inversion ('and'

| inversion

inversion:
| 'not'
| comparison

inversion

Comparison operators

comparison:

conjunction)+

inversion)+

| bitwise_or compare_op_bitwise_or_pair+

(ouvéyela otV entopevn oehida)

145

The Python Language Reference, Anpoociguon 3.13.7

| bitwise_or

compare_op_bitwise_or_pair:
| eq bitwise_or
| noteq_bitwise_or
| lte_bitwise_or
| 1t_bitwise_or
| gte_bitwise_or
| gt_bitwise_or
| notin_bitwise_or
| in_bitwise_or
| isnot_bitwise_or
| is_bitwise_or

eqg_bitwise_or: '=='
noteq_bitwise_or:

| ("i=sY)
lte_bitwise_or:
lt_bitwise_or:
gte_bitwise_or:
gt_bitwise_or:

bitwise_or

bitwise_or

'<=' bitwise_or
'<'" bitwise_or
'>='" bitwise_or
'>'" bitwise_or

notin_bitwise_or: 'mot' 'in' bitwise_or
in_bitwise_or: 'in' bitwise_or
isnot_bitwise_or: 'is' 'not' bitwise_or

is_bitwise_or: 'is' bitwise_or

Bitwise operators
bitwise_or:

| bitwise_or
| bitwise_xor

'|'" bitwise_xor

bitwise_xor:
A

| bitwise_xor
| bitwise_and

bitwise_and

bitwise_and:

| bitwise_and '&' shift_expr
| shift_expr
shift_expr:
| shift_expr '<<' sum
| shift_expr '>>' sum

| sum

Arithmetic operators

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

,,,,,,,,,,,,,,,,,,,,
sum:

[sum '+' term

| sum '-' term

| term
term:

| term '*' factor

(ouvéyela otV entopevn oehida)

146 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpoociguon 3.13.7

| term '/'
| term

| term 'S$!
|

|

term '@’
factor

factor:

| l+l
| T_1
| '~
|

power

power:

| await_primary

l//l

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
factor
factor
factor
factor

factor
factor
' factor

'**x1' factor

| await_primary

Primary elements

Primary elements are things like
~"obj[something]",

await_primary:

"obj.something.something"”,
"obj (something)'", "obj"

| 'await' primary
| primary
primary:
| primary '.' NAME
| primary genexp
| primary '(' [arguments] ')'
| primary '[' slices ']'
| atom
slices:
| slice !','!
| '",'.(slice | starred_expression)+ [',"']
slice:
| [expression] ':' [expression] [':' [expression]]
| named_expression
atom:
| NAME
| 'True'
| 'False'
| 'None'
| strings
| NUMBER
| (tuple | group | genexp)
| (list | listcomp)
| (dict | set | dictcomp | setcomp)
R
group
['(' (yield_expr | named_expression) ')'

(ouvéyela otV entopevn oehida)

147

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

Lambda functions

lambdef:
| 'lambda' [lambda_params] ':' expression

lambda_params:
| lambda_parameters

lambda_parameters etc. duplicates parameters but without annotations
or type comments, and if there's no comma after a parameter, we expect
a colon, not a close parenthesis. (For more, see parameters above.)
#
lambda_parameters:
| lambda_slash _no_default lambda param no_default* lambda_param with
—~default* [lambda_star_etc]
| lambda_slash_with_default lambda_param with_default* [lambda_star_
—etc]
| lambda_param_no_default+ lambda_param with_default* [lambda_star_etc]
| lambda_param with_default+ [lambda_star_etc]
| lambda_star_etc

lambda_slash_no_default:
| lambda_param_no_default+ '/' ',
| lambda_param_no_default+ '/' &':'

lambda_slash_with_default:
| lambda_param_no_default* lambda_param_with_default+ '/' ','
| lambda_param_no_default* lambda_param with_default+ '/' &':'

lambda_star_etc:
['*'" lambda_param_no_default lambda_param maybe_default* [lambda_kwds]
['*' ','" lambda_param_maybe_default+ [lambda_kwds]
| lambda_kwds

lambda_kwds:
['**' lambda_param_no_default

lambda_param_no_default:

| lambda_param ','

| lambda_param &':'
lambda_param with_default:

| lambda_param default ','

| lambda_param default &':'
lambda_param maybe_default:

| lambda_param default? ','

| lambda_param default? &':'
lambda_param: NAME

LITERALS

fstring middle:
| fstring_replacement_field
| FSTRING_MIDDLE

fstring replacement_field:

(ouvéyela otV entopevn oehida)

148 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

| '{' annotated_rhs '='? [fstring conversion] [fstring full_format_
—spec] '}'
fstring conversion:
["!" NAME

fstring full format_spec:

| ':'" fstring format_spec*
fstring_format_spec:

| FSTRING_MIDDLE

| fstring replacement_ field
fstring:

| FSTRING_START fstring middle* FSTRING_END

string: STRING
strings: (fstring|string)+

list:
['['" [star_named_expressions] ']'

tuple:
| "('" [star_named_expression ',' [star_named_expressions] 1 ")
set: '{' star_named_expressions '}'
Dicts
,,,,,
dict
['{'" [double_starred_kvpairs] '}'
double_starred_kvpairs: ', '.double_starred_kvpair+ [', ']

double_starred_ kvpair:
| "**' bitwise_or
| kvpair
kvpair: expression ':' expression
Comprehensions & Generators
for if clauses:

| for_if clause+

for_if_clause:

| 'async' 'for' star_targets 'in' ~ disjunction ('if' disjunction)*
| '"for' star_targets 'in' ~ disjunction ('if' disjunction)*
listcomp:

| '['" named_expression for_if clauses ']'

setcomp:
| '"{' named_expression for_if clauses '}'

genexp:
['('" (assignment_expression | expression !':=') for_if clauses ')'

(ouvéyela otV entopevn oehida)

149

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
dictcomp:
| '"{' kvpair for_if_clauses '}'

FUNCTION CALL ARGUMENTS

m============—oo--o oo
arguments:
| args [','] &")'
args:
| ','.(starred _expression | (assignment_expression | expression !':=
')y I'=")y+ [',' kwargs]
| kwargs
kwargs:
| ', '.kwarg_or_starred+ ',' ','.kwarg_or_double_starred+

| ','".kwarg_or_starred+
| ', '".kwarg_or_double_starred+

starred_expression:
| '"*' expression

kwarg_or_starred:
| NAME '=' expression
| starred_expression

kwarg_or_double_starred:
| NAME '=' expression
| "**' expression

ASSIGNMENT TARGETS

NOTE: star_targets may contain *bitwise_or, targets may not.
star_targets:

| star_target !','

| star_target (',' star_target)* [',']

star_targets_list_seq: ','.star_target+ [',']

star_targets_tuple_seq:
| star_target (',' star_target)+ [',']
| star_target ','

star_target:
| '*' (!'*' star_target)
| target_with_star_atom

target_with_star_atom:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| star_atom

(ouvéyela otV entopevn oehida)

150 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
star_atom:
| NAME
| "('" target_with_star_atom '")'
['('" [star_targets_tuple_seq] ')'
| "['" [star_targets_list_seq] '1'

single_target:
| single_subscript_attribute_target
| NAME
| "('" single_target ')'

single_subscript_attribute_target:
| t_primary '.' NAME !t_lookahead

| t_primary '[' slices ']' !t_lookahead

t_primary:

| t_primary '.' NAME &t_lookahead

| t_primary '[' slices ']' &t_lookahead

| t_primary genexp &t_lookahead

| t_primary '(' [arguments] ')' &t_lookahead
|

atom &t_lookahead
t_lookahead: '"(' | '[' | '."'

Targets for del statements

del_targets: ','.del_target+ [',']

del_target:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| del_t_atom

del_t_atom:
| NAME
['"(' del_target '")'
['('" [del_targets] '")'
['['" [del_targets] ']'

TYPING ELEMENTS

type_expressions allow */** but ignore them
type_expressions:

', '.expression+ ',' '*' expression ',' '**' expression
', '.expressiont+ ',' '*' expression
', '.expressiont+ ',' '**' expression

'*!' expression
'**!' expression

A} A\l

|
|
|
| '*'" expression ',' '"**' expression
|
|
| ','.expression+

func_type_comment:
| NEWLINE TYPE_COMMENT & (NEWLINE INDENT) # Must be followed by.
—~indented block

(ouvéyela otV entopevn oehida)

151

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

| TYPE_COMMENT

152 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

nAPAPTHMA A’

Mwoodpt

>>>
H mtpoemiheyuévn Python evioly| tov interactive shell. Zvyvd ugpaviCeTon yio Topadelypuato KOdLKo Tou
WITOPOUV VO, EKTELEGTOVV LodPaoTIKA GTOV interpreter.

Mmopel vo. avapEPETaL OE:

o H mpoemieyuévn Python evioh| tov inferactive shell kotd v eloaywyn 10U KOSdKO Yoo Eva
WITAOK KMOLKO [e €00y, OTav BPlokeTol PECO OE €va (VYOS TALPLUOUEVOV APLOTEPMDV Kol Oe-
Eudv delimiters (mapevOéoelg, aykUies, dykiotpa 1) TPTAG eloaywylkd), 1 uetd tov kaboploud
evog decorator.

o H evoouatouévn otabepd E11ipsis.

agnpnuévn Bactkr) KAaom

O agnpnuéveg Pootkéc KMAOELG CUUTANPOVOUY TO duck-typing mopéxovrag €vav TpoOmo 0pLopov
interfaces O6tav Gheg Teyxvikég Omwg M hasattr () 0o Nrov adé€ieg M avenaiodnto hovOaouéveg
(ywo wopdderywo pue magic methods). Ta. ABC (abstract base class) eL0Gyouv €lKOVIKEG VITOKAAOELS, OL
ortoieg elval KLAOoELG TTOV eV KANpovopouvTol oo e Khaon, alld eEakolovfolv va avayvwpilovio
amd 10 isinstance () kou amd to issubclass ()7 BA. v TeEKunpiwon tov module abe. H Python
drabéter modd evowpatmuéva ABC yia douég dedopuévmv (0to module collections.abc), apb-
povg (oto module numbers), poég (oto module povada io), etoaywyn finders ko loaders (oto module
importlib.abc). Mmopeite va dnuovpynoete ta dikd oag ABC pe to module abe.

annotation
Mia eTikéTa ToU OYeTIleETOL UE PLaL UETABANTY, £VOL YOPOKTNPLOTIKO KAAONG 1) L0 TTOPAUETPOG OUVAP-
TNONG 1) TULY TTOU ETLOTPEPETAL, TTOV YPNOLUOTOLEITAL KATG oVUPBaon wg fype hint.

Aev givol duvati M TpooPaon oto annotations TwV TOTKMV UETAPANTDOV KATA TO POVO EKTELETNG, AAAG
Ta annotations TV global ueTafANTOV, TV XAPUKTNPLOTIKOV KAAONG KAL TOV GUVOPTHOEMY 0rtodnkev-
ovTaL 0TO ELOLKO XOPOKTNPLOTIKO _ annotations_ twv modules, Twv KAAGEWV KOL TOV OUVAPTY-
OEWV, AVTIOTOLYOL.

BA\. variable annotation, function annotation, PEP 484 kaw PEP 526, ta omoio mweplypdpouv v Aettovp-
yikdtnto. Exiong BA. annotations-howto yia tig BéATLOTEG TPOKTIKEG dovAeVOVTAG e annotations.

opopa
Mo tpy| petafpdletal oe wio function () method) xotd v kAo TG OUVAPTNONG. YITAp)ouv d10
£idn opLopdtov:

153

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python Language Reference, Anpoociguon 3.13.7

o keyword argument: £vo. OpLOUOL TTPLV ATTO €VOL OVOLYVIPLOTLKO (TT.%. name=) O€ o, KAon ouvapT-
oNG 1 TEPVADVTAG TO WG TUUT| 08 £va heELko mtpLv amd * *. Tia TapddeLyua, To 3 KoL To 5 amotehovv
optopata AEEewv-kheldLhv otig akolovbeg KA oELS Tpog complex () :

complex (**{'real': 3, 'imag': 5})

complex (real=3, imag=>5) J

o positional argument: £€va. dpopa Tov dev givan dpopa keyword. Ta opiouata 0€omg umopovv va eu-
pavitoviow oty apyns wog AMotog optopdtmy n/xol va uetapLpatovral wg otolyeto evog iterable
mpwv amd *. o mapdderypa, to 3 Kot to 5 amotelovv opiopota 0E0mg 0TLG TOPOKATMD KA OELS:

complex (3, 5)
complex (* (3, 5))

Ta oplopato eKywPoVVIOL 0TS OVOUAOUEVESG TOTILKES UETAPANTEG OTO Cwuo wo. cuvdptnong. Bi. v
evotnta Calls Y10 TOUG KOVOVEG TTOU SLETOUV QUTNV TNV EKYMPNOT. ZUVTAKTIKA, OTTOLOdNTOTE EKPPOTT
WITOPEL VaL Y PNOLLOTTOINOEL Y10 VO AvOITOpaoTOEL £Va OpLope.” 1) AELOAOYOUUEVT) TUUT) EKYWPELTAL OF ULO.
TOTTLKT| UETAPANTY.

BA. extiong v eyypogt Tov YAwooopiov yio to parameter, v FAQ gpdtnon oto 1 diagpopd petad
opLoudrtmV Kal wapouétpwy, ko PEP 362.

aoVYYPOVOS drayelpLoTiis context
‘Eva avtikeipevo mov eréyyel to opatd meptfdilov o wa SNhwon async with opilovrag g uebo-
dovg _aenter () kav___aexit__ ().Ilov ewonydn and PEP 492.

aovyypovog generator
Mo ouvapTNoN TOV EMLOTPEPEL EVO asynchronous generator iterator. MoldeL pe ot ouvapTnon coroutine
7ov opiletal ue async def ektog amd Ot mePLEYEL EKPPATELS v ield VLo TV TAPoymYN oG OELPAG
TLLOV TTOV WTOPOVV va. ypnotporombovy oe évav async for Ppoyo.

ZVViHOmG OVOPEPETOL OE LWLO. GUVAPTNOY CLOVYYPOVOU generator, GAAG WTOPEL VO AVAPEPETOL O EVOY
acvyypovo generator iterator 0€ OPLOUEVO contexts. Ze TEPLTTMOELS OOV TO EmILWKOUEVO vomua dev
elval oapéc, e TNV XPNoN TV TANPOV OpWV OTTOPEVYETAL 1] ATAPELQ.

Mo ouvapTNON 0oUYYPOVOU generator (WTOPEL Vo TTEPLEYEL EKPPAOELS await , KOOMDG Kol dONAMOELS
async for,KdlLasync with.

00Uy povog generator iterator
An object created by an asynchronous generator function.

Avtdg elvan évog asynchronous iterator Tov 6tav Kokeltow xpNoLUoToLmVTag TV Hébodo _ anext_ ()
ETLOTPEPEL EVOL AVOUEVOLLEVO OVTLKELUEVO TTOU B0l EKTEAEDEL OTO TMOUN TNG CUVAPTIONG TOV AoVYYPOVOU
generator UEypL TNV enOuevY yield EKppoon).

Ké&be vield avaotéhher tpoowpivd v emeEepyooia, Buudtor v Kotdotoon ektéheong (ovure-
PLLOUBOVOUEVOY TWV TOTLKMV UETARANTOV KoL TV dAdoewy try oe ekkpepdtta). Otav o acty-
XOOVOG generator iterator OUVEYIOEL OTOTENEOUATIKA UE GALO OVOUEVOUEVO TTOU ETMLOTPEPETOL OTO
:pep: 492 () ko PEP 525.

aoUyypovog iterable
'Evo avTiKeipevo, ov wtopet va ypnowortotn0ei o po dMhwon async for. [pémer va emotpépel
éva asynchronous iterator amd v uébodo __aiter (). Iov etonyOm amd PEP 492.

aovyypovog iterator
‘Eva. ovtikeigevo mov vhomolel TG pebddovg aiter () xou __anext_ (). H uébodog
__anext__ () mpémeL va emoTpEpeL éva awaitable aviikeipevo. To async for emhel To OvVoLe-
voueva mTov emoTpépovrol oo ™) wébodo __anext__ () €vOg aoUyypovov iterator £mg OTOU eYEipeL
wo eEaipeon StopAsyncIteration. EwofxOn ané PEP 492.

YOPUKTIPLOTIKO
Mo Ty ToU OyeTICETOL UE £VOL AVTLKEIEVO TTOU CUVNOMG AVAPEPETOL [LE GVOUD YPTOLULOTTOLMVTAG EK-
Ppaoelg ue Kovkkides. o mopdderypa, eGv €vo avILKeEILEVO 0 €xeL £Va YOPUKTNPLOTIKO a o avapeé-
PETAL WG 0.d.

154 Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

The Python Language Reference, Anpoociguon 3.13.7

Eivai duvatd va dmooupe o€ £va aVILKEIUEVO EVOL XOPAKTNPLOTIKO TTOU TO OVOULO TOU OEV ELVOL AvaryVo-
PLoTLKO 0w opiletan amd Identifiers and keywords, yio. TopAdeLyUO XPNOLUOTOLDVTOG setattr (), ov
emTpémeTal amd To aviikeiuevo. ‘Eva tétolo yopoktnplotikd dev Oo eival tpoaBAoiio xpnoLuomolm-
VTG TIG TEMELES, Kot ovTi outov Oa pémel vo avakTtn el xpnolwomolmvtas getattr ().

awaitable
"EvOl 0VTUKEIEVO TTOU UTTOPEL VOL XPNOLUOTTOLNOEL 0TV EKppaon awa i t. Mmopeil va eivon coroutine 1 éva.
ovtikeipevo pe wo __await_ () uéBodo. Bh. emiong PEP 492.

BDFL
Axpwviuo tov Benevolent Dictator For Life, kahokdyaBog duxtdropag g Twne, dnhadn Guido van
Rossum, o dnuovpydg g Python.

dvadiko apyeio
'Eva. file object tkovd va. SLaatel ko va YpagpeL dvadikot timov aviikeliueva. apadelyuato dvadikmy
apyelwv eivar apyelor Tov avolyovv oe dvadikn Aettovpyio ("rb', '"wb' 1 'rb+'), sys.stdin.
buffer, sys.stdout .buffer, Kol oOTLypoTUTOV TV 10.BytesIO koL gzip.GzipFile.

BA. emtiong zext file yio €va avTiKELUEVO TUTTOU OPYELO LKAVO VO SLaFAOEL Ko vaL YPAPEL ST T AVIIKELUEVO.

daverkn avagopd
Zto C API g Python, po daverkr ovogpopd elval o avogopd og €vo. OVILKEIUEVO, OTTOV 0 KMALKAG
TTOV Y PT|OLUOTTOLEL TO aVTLKELUEVO dEV KaTEXEL TNV avapopd. ['ivetan évag aypnotpuomointog deiktng edv
To avtikeipevo Kataotpopei. ['a mapdderypa, o diadikaoio garbage collection pwopei vo apatpéoet
TO TENEVTOUO strong reference amd TO AVTIKELUEVO KO £TOL VAL TO KOTAOTPEYEL.

Zuviotatol 1 KMo tov Py_INCREF () 0T0 daveiki] avagood (e 0Komd vo. LETATPATEL 08 £val Loy voT)
ava@opd eMTOTOV, EKTOG OTAV TO CVILKELUEVO OEV UITOPEL VO KATAOTPOPEL TPLY 0Td TNV TELEVTAiN
xpNom TG davelkng avagopds. H cuvdpton Py_NewRef () umopel va xpnotpomondel dote vo. om-
wovpynOel Eva Loy vo1 avapood.

bytes-like avrikeipeva,
"Evo. avTiKeipevo mov vitootnpilel o bufferobjects ko pwopei va eEayer éva C-contiguous buffer. Avtd
mepthappdver Oha ta aviikelpevo bytes, bytearray, Kow array . array, Kafmg Kot ToAE Kowva
memoryview oavikeipeva. Ta dvadikov tomov (bytes-like) avitkeipevo propotv vo xpnotuootnovy
yio dLdipopeg hettovpyieg Tou dtoyepitoviot duadikd dedouéva” avtd TePAAUPAvVOUV CUNTTIEDT OITO-
OnKevon oe duadikd apyeio kol amooTol uéow socket.

Oplouéveg hettovpyieg yperdlovrol tor duadikd dedouéva va eivor uetofintd. H texunpioon ovyva
OVOPEPETOL 08 AUTE MG «dVAdLKA avTiKelpueva avayvoons-eyypogrg» (read-write bytes-like objects).
Mapoadelynato UeTAPANTOV OVILKEWEVMVY TPOCWPLVTG 000N KEVOTG TTEPLEYXOUV bytearray KoL éva
memoryview gvOg bytearray. AAMEG MeLTOVPYIEG OITTOLTOUV TNV OTTOONKEVONG TV dVOSIKMOV de-
dopéva oe auetdfinta avitkeipevo («duadikd ovtikeipeva wovo avayvwang»” (read-only bytes-like
objects) mopadeiyuoTto oVTAV TEPLEXOVY bytes Kot éva memoryview evog bytes avitkeluévou.

bytecode

O myaiog kwdika g Python petoylwttileton oe byfecode, 1| E0MTEPLKY] AVOTAPAOTAON €VOG TPO-
vpduuatog Python otov diepunvéa CPython. To byfecode amoBnkevetal emiong TPOoWPIVE WG .pyC
apyelor moTe M eKTELEON TOV D10V aPYELOV Va. givan YpNyopdTEPN TNV deVTEPT] POPA eKTENEONG (UITO-
pel vo amopevy el 1) €K VEOU UETOYADTTLON Ot TOV TTNyolo KOdika oe bytcode). Avti 1 «evaldpeon
YADOOoO» Aéyetal OTL Tpéxel o€ Wwo virtual machine mov €KTeLel TOV KMOLKO UNYOUVAG TOV OVTLOTOLYEL
og KG0Oe bytecode. AGfete vroOY O6TL Tl bytecode dev OVOUEVETAL VO AELTOVPYOVY UETAED SLOLPOPETLKMV
ELKOVIKMV pyovarv Python, ovte va gival otabepd petalt tov ekddoewv g Python.

Mo Alota oo 0dnyieg oxetikd ue ta bytecode wtopei va Bpedel otnv tekunpimwon yia to module dis.

callable
‘Eva callable eivow évo avtikeipevo mov pmopet va Kaheotel, mbavd ue éva ovvoho opopdtwv (Bh.
argument), A€ TNV TOPAKATO OVVTAEY:

[callable(argumentl, argument?2, argumentN) }

Mua function, ko Kat” enéktaon wa method givau callable. 'Eva otypdtumo po kAdong mov vhomolel
™ uébodo ___call__ () elvou emiong callable.

155

https://peps.python.org/pep-0492/
https://gvanrossum.github.io/
https://gvanrossum.github.io/

The Python Language Reference, Anpoociguon 3.13.7

callback
Mo subroutine cuvaptnon 1 omoia petafLBateTor wg OpLoua Tov Oo EKTENEOTEL KATOLXL OTLYUT OTO
UMV

KAdon
‘Eva TpdTumo yLo T SMUovpylor avILKELUEVWY Tov 0pllovial atd 1o xpnoty. Ou opLopoi KAAoEmV ov-
vNOWG TePLEYOUV 0pLopovg HeBOdWV oV AeLTOVPYOUV 08 OTLYIOTUTTO TG KAGOoNG.

petafinti kAdong
Mua petafinti) wov opiletal o pua kKAAom Ko tpoopiletol vo tpomomolnel uovo oe enimedo kAdong
(. OyL o€ €va OTLYOTUTIO (LaG KAAONG).

uetafinTi KAeloipatog
'Evog free variable mov ovagpépetal amd éva nested scope Kou 0pileTol og (o eEEWTEPLKT) TEPLOYN, avTi
vo emAvETOL QUVOULKG KaTd TNV eKTéAeoN amd T KoOoMKE 1) evompoatouéva namespaces. Mmtopei vo
dMhwOel pnTd pe T deopuevuévn AMEN-KAeWdt nonlocal dhote va emTpael 1) eyypapn, 1 va OewpnOel
OTL opiCeTan Euueca OTav 1 UETOPANTY] XPNOLULOTTOLELTAL LOVO VL0, AVAYVOON).

TNa mapdaderypa, 1 ovvapTon inner Tov mTopaKdTw Kmdika, Tdoo 1 x 660 KoL 1 print eivou free
variables, aMQ LOVO 1 x VO WO ueTaSANTI KAgLGluaTog:

-

def outer():
x =0
def inner():
nonlocal x
x += 1
print (x)
return inner

L

Adyo TV XAPAKTNPLOTIKOY codeobject . co_freevars (To 0molo, TOPd TNV OVOUAGLO TOV, TTEPL-
Aappdver udvo ta ovopato Tov petafANTav Khelolpatog Kot oL Oheg Tig avapepoueves Elevbepeg Leta-
BANTéQ), xpnoluoToLelTaL HEPLKES POPEG O TTLO YEVIKOG OpOG free variable akOun Kow OTOV YiveToL ELOLKY
avapopd og uetafAnNtég Kheloluatog.

uryedukog apdpog
Mo ETEKTO0T TOV YVIMOTOU GUOTHUOTOS TTPOYUATIKDV aptOumy 6To 0roio dhot ot aptboi kgppdtovon
wg dbpolopa evog TPAYUOTIKOY HEPOUG KoL EVOG pavtaoTikoy uépovg. OL gpavtootikol aplbuol eivor
TPAYUOTLKG TOAMOTAAOLA TNG PAVTOOTIKTG Lovada (1 TeTpaymvikn pilo Tov —1), Tov ovyvd ypdigpo-
vratr 1 oto podnuatikd M § ot unyoviky. H Python éyel evowpatmpévn vtootpiEn yio pryadikote
aptBuovg, oL 0ToioL YPAPOVTOL (e AuTdV TOV TELELTOL0 CUUBOMOUO” TO PAvTOoTIKO uépog ypdpeTon
ue 1o emibnua J, Y., 3+13. o va amokthoete mpoofaon oe ovvOeta Looduvapo to module math,
ypnopomoote to cmath. H xpnon wyadikov aptOumv eivor éva apKeTd Tponyuévo wodmuotko yo-
POKTNPLOTLKO. €4V dEV YVWPITETE TNV OVAYKT) TOVUG, ELVaL OYEDOV GLYOUPO OTL UTOPELTE VOL TO. OLYVOT|OETE
E ALOPANELXL.

context
Auto 0 6pog £xEL DLOPOPETIKEG ONUOLOLEG OLVALOYOL UE TO TTOV KO TTMG Y PTOLUOTOLELTOL. MeEPIKES KOLVEG
évvoleg:

o H mpoompivi) katdotaon 1) 1o meptBarllov mov dnuovpyeitol oo évav context manager UEGmW PLAG
dMhwong with.

o To oU¥voho TV deopevuévav KAeLOLOV-TIUNG TTOV OYETILOVTOL HE VO CUYKEKPLUEVO AVTIIKELUEVO
contextvars.Context kol poomeldfovtol péow avitkewévov ContextVar. B, emiong
context variable.

¢ 'Eva aviikeigevo contextvars.Context. BA. emiong current context.

TPWTOKOAAO Srayeipiong mepfaiiovog
OuuébodoL___enter () xou__exit__ () xohoOviow amd T dNhwon with. BL. PEP 343.

Swayeprotiic context
'Eva aVTLKELIEVO TTOV VAOTIOLEL TO context management protocol Kouw ENEYYEL TO TEPLBAALOV TOV EloaL 0POTO
uéoa og o dMiwon with. Bh. PEP 343.

156 Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0343/

The Python Language Reference, Anpoociguon 3.13.7

context petafinTi
Mo peto ANt TG omoiag 1 T eEapTATOL ATTo TO TTOLO Elval To current context. Ou Tég Tpoomeldo-
VTOL PECM TV AVTIKEWWEVOV contextvars . ContextVar. O petafAntég cuuppalouevwy xpnoLuo-
TOLOVVTAL KUPLMG YLOL VO OTTOUOVDTOUY TV KOTAOTAO0N UETAED TAVTOYPOVOY 00VYYPOVWYV EPYOOLMV.

contiguous
"Eva buffer Bewpeital contiguous akplBae edv eivou eite C-contiguous eite Fortran contriguous. To buffer
undevikv draotdoemv eivor C xow Fortran contiguous. Ze (lOVOSLAGTATOVG TTLVOKES, T OTOLYELL TTPE-
7eL vo. TorofeTovvTal ot pviun To éva distha 0to GAAo, ue OELPG aOENONG TWV SELKTHOV EEKLVAOVTAG
artd to undév. Ze mohvdidotatovg C-contiguous Tivakes, 0 tehevtalog deikTng petofdiletan TayvTePa
OTOY EMLOKETTOVTIOL TOL OTOLYELDL O oeLpd drevBuvong uviung. Qotdoo, oe Fortran contiguous mivokeg, o
TPADTOG OEIKTNG HETABAMLETAL TTLO YPTYOPOL.

coroutine
OL coroutines €ival (Lol Lo YEVIKEUUEVT Lop@n subroutines. Ot subroutines £L.0&yovToL 08 Vo GTUELO Kot
eEdyovian oe dAho onueio. Ou coroutines umopei va. eloayBovv, va eEaybolv Ko va ouvexloTovv o
oM drapopeTikd onueto. Mmopotv va vhosotoouy pe v dhwon async def. Bh. emiong PEP
492,

coroutine cuvaptnon
Mo GUVEPTNON TTOV EMLOTPEPEL £VAL coroutine AVTIKELUEVO. Mo 6uvApTnon coroutine umopel vo. opileta
omd ™ dhwon async derf, Kou WTOPEL Vo TEPLEXEL awalit, async for, kow async with MEeig
KAewdLd. Avtég eonyOnoov oo to PEP 492.

CPython
H xovoviky) vhostoinomn tg yAdooog tpoypoupotiouod Python, drtmwg diavéueton oo python.org. O 6pog
«CPython» ypnowpomoteitor dTav eivol omopaiT)To Yia TV dLAKPLoN ouThG THG VAOTOINoMG atd dhleg
omwg m Jython Y| | IronPython.

TpEYoV TAUICLO
To context (contextvars.Context OVILKEILEVO) TOV XPNOLUOTTOLELITOL CUTY] T OTLYUY 0ITO TOL AVTL-
Kelpevo ContextVar yua vo mpoomeldoet (va mapeL 1) vo 0pioel) TG TWESG Twv context variables. K&Oe
vijuo €xEL To kO Tov TPEYoV ovuppalouevo Ta Thaiola yio TV EKTELEDT] AoVYYPOVWV EPYOTL®V (BA.
asyncio) ovvdéouv Kdbe epyacio pe Evo cuNPPALOUEVO, TO 000 YIVETOL TO TPEYOV GUUPPITOUEVO
OmoTe N gpyaoio Eekiva 1 ovveyilel TNV eKTéleo.

decorator
Mo oUVEPTNOT TTOU ETOTPEPEL ULt GARY GUVAPTNON, CUVNOWG EQPAPUOTETAL MG UETOTYTUATIOUOS OU-
VAPTIOTNG YPNOWOTOUDVTAG THY @wrapper oUvtag. Zuvnoiouéva mapadeiynoto yio toug decorators
elvor classmethod () xow staticmethod ().

H oUvtoEn tov decorator eivol amhmg KOAM®ITLOTIKY, oL 0kdAovBoL §U0 0pLopol cuvopthoewv eivat
ONUAOLOAOYLKG LoodUvauoL:

def f (arg):
f = staticmethod (f)

@staticmethod
def f (arqg):

L J

H 810 évvora vitdpyer yia tig Khaoelg, adhd ypnowwomoteitar Myotepo ouyva ekel. Bh. tv texunpiwon
ywo. function definitions xou class definitions yio. teplocdTEPQ OYETIKA e Toug decorators.

descriptor
Kd&0e avrikeipevo mov opilel tig peboddovg _ get_ (), __set__ (), __delete__ ().'Otov é€va
YOPAKTNPLOTLKO KAGOoNG eivon descriptor, 1) e1dLKT) dEOUEVTIKY TOV CUUITEPLPOPE EVEPYOTTOLELTOL KOTA
TV avalnTnon XopoKTNPLoTiKdv. Kovovikd, ypnouomoimvtag a.b yuo va Mfete, va opioete 1) va dia-
YPAPETE VA XOPAKTIPLOTIKO avalnTd TO AVTIKEIUEVO UE TO OVopa b 0To AeELKO TNG KAGONG Yo @, AN
€dv to b elvon descriptor, kahettar 1 aviiotoyn nébodog descriptor. H xatavonon twv descriptors eivol
To Khewdl yro TV kKahtepn Katavonor tg Python yioti avtd amotelel v faon yio ToAE xapokTn-

157

https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python Language Reference, Anpoociguon 3.13.7

PLOTIKG OIS OVVAPTHOELS, UeBOdoVG, 1dLOTNTES, nEBOdOL KAGONG oTaTiKEG néBodOL, KoL avagopd oe
oovmep KAAOELS.

TNo meploodtepeg mnpopopies avapoptkd pe g uedddovg twv descriptors, Ph. see Implementing
Descriptors 1) to Ilpaxtikdg 081yog yio) ¥p1on tov Descriptor.

AeEiko
"Evol TpOooeTOLPLOTIKOG TTivaka, 0mmov avbaipeta khewdid avtiotoryilovtat og Twég. Ta kheldid wopei
VoL glval 0TToL0dIToTE AVTLKELEVO ue uedddovg hash () xou___eqg (). OvoudZetar wg hash oto
Perl.

Kotavonon AeEikov
"Evo oupitoyig tpomog yio va ereEepyaoteite OMa 1) HEPOG TWV OTOLYELMY O £VaL ETAVOUAITTLKO KL VO
emotpagel £va pe MeELko pe ta amotehéopata. results = {n: n ** 2 for n in range (10)}
dnuovpyei évo AeEkd mou mepiéyet to kKAewdi n ov avriotolyieton e v T n ** 2. BA. Displays
for lists, sets and dictionaries.

oyn AeEkov
Ta avukeipeva wov emotpépovral amd dict .keys (), dict .values (), Kardict.items () Ko-
rovvtar 0elg AeEkov. AuTég Tapéouy wa duvoauky dym Twv Tmv eyypap®v tou AeELkov, Tov o)-
naiver ot dtov to heEukd petafddietal, 1 6Py avitkatomtpilel avtég Tig odayés. Na va avoykdoete
v 0y AeEkov va yivel pa mhfpng Mota ypnowwomowmote to 1ist (dictview) . BL. dict-views.

docstring
Mua literal cupflohooelpd mov eppavitetor mg 1 TPdT EKEPact o wo. kKAdon, ouvaptnon 1 module.
Evo ayvoeital Kotd tnv eKTéLeon TG GOViTaS, avaryvwpileTol amd TOV UETOYAWTTLOTH KoL TOTTo0eTEITOL
07O YOPAKTNPLOTLKO __doc__ g KAMAONG, TG cuvapTnong 1 Tov module ov mepikheiel. Agdouévou
oL glvan dLabéoLo PEom eVOOOKOTNONG, TO KAVOVLKO UEPOGS YLOL TNV TEKUNPLIOTN TOU AVILKELUEVOU.

duck-typing
"Eva. 6Tul Tpoypopuotiopot sov dev eEetdlel Tov THTO eVOG AVTLKELUEVOD YLOL VO TTPOOSLOPIoEL v £XEL
T 0ot dLemagn” avtifeTa, 1 uEB0SOG N TO XOPAKTNPLOTIKO KaAeiTOoL amhmg 1 xpnowwomoteitan («If
it looks like a duck and quacks like a duck, it must be a duck.») Aivovtog éugpaon otig diemapés Kan oyt
0€ OUYKEKPLUEVOUG TUTTOVG, 0 KOAG OxedLaouévog KHdiKag Bertiddvel TV eveMEia Tou emitpémovtag
™V TOAVHOPPLKT) VITokatdotaot). O timog duck-typing amogelyel dokiég ypnoluomolmvtog type ()
1 isinstance (). (Enueiwon, wotd00, OTL 0 TUTOG TATLOG duck-typing WTopel va. CUUTANPWOEL pe
abstract base classes.) Avti avtol, cuvnOmg ypnowomolel dokuwég hasattr () fapoypauuatiopnd FEAFP.

dunder
An informal short-hand for «double underscore», used when talking about a special method. For example,
__init__ is often pronounced «dunder init».

EAFP
ITwo e0K0AO VO TNTNOELG OLVYYDPEDT TTapd AdELD. AVTd TO KOLvd 0TV Tpoypauuatiopnoy og Python tpois-
o0éTeL TNV VtapEN YKupmv KAELDLMV 1] APOKTHPLOTIKOV Kot culhaufdver eEanpéoelg edv 1) videon
arodey el eoaluév. Avtd to Kabapo KoL ypNyopo OTVA XopaKTNPILETAL ATTO THY TAPOVGLO TTOMMY
dMhwoewv try kow except. H texvikn épyetal oe avtiBeon pe to otuk ov eivar LBYL kowvd o€ moAhég
aeg yhoooeg, dmmg 1 C.

EK@ppoon
"Eva. Koppdtt oUuvtaEng mov propei va agtohoyn el oe kdmoro tur). Me dhho Aoy, o €K@paat eiva
WoL CVOOMPEVOT oTotyelmv EéKppaong dmwg kuploreEia, ovopata, TpoOaBaon YapaKTPLOTIKOVY, Tehe-
OTEG 1] KMOELG OUVAPTIOEWV TOV OAEG EMOTPEPOVY [1aL TUY). Ze avtifeon pe mohhég dhheg Yhwooeg,
dev eivar Oheg oL YAwooukég douég exppdoets. Ymapyovve emiong statements ov deV ItopovV vo. XpnotL-
poomBouv mg eKpPATELS, OTtmg To while. Ovavabéoelg Tudv eival emiong dnhboelg oyl ekppdoeLc.

module exékTO0NG
‘Eva module ypaupévo og C 1) C++, mov ypnotpomoteiton amd to C API g Python yua vo odAnhemidpd-
OOUV I TOV TTUPN VAL KOl UE TOV KMOLKA TOU YPHOTH.

f-string

Ou xvpLokektikég oupporooelpésg ypnowwomoloty pe pdheua "£' M "F' ovoudtovior ouvnOwg «f-
strings» oV eival ouvopoypapia Tov formatted string literals. B). exiong PEP 498.

158 Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0498/

The Python Language Reference, Anpoociguon 3.13.7

OVTIKEILEVO UPYEIOV
‘Eva avtikeipevo mov ekBétel évo API mpooavatolouévo oe apyeio (e uedddovg dmwg read () M
write ()) og évav VTOKEIUEVO TTOPO. AVAAOYO UE TOV TPOTO TTOUV dNULOVPYNONKE, £VO OVTLKEIUEVO
apyelov UITOPEL VO UECOLOPNOEL OTHY TPOGPOCT OE £VOL TPAYUATIKO ApyELO0 0TO dioko 1) og dAlo TUITO
ovokeung amobfKevong 1 emkotvoviag (Yo mopdderypo Tumiky eicodog/ €50dog, in-memory buffers,
sockets, pipes, KA.). Avtikeipevo apyeiov ovoudtovron emiong file-like objects 1| streams.

2TV TPOAYUOTIKOTITA VTTAPYOUV TPELS KATNYOPLES aVTLKEWWEVOVY apyelov raw dvadikd apyela, buffered
dvadikd apyelo xon apyelo keyévov. O dLemapeg Toug opilovtal oty evotnta 1o. O Kavovikdg Tpdmog
YLOL VO S1ULOVPYNOETE €VOL OVTLKELLEVO 0Py ElOU ELVAL XPNOLUOTOLDVTOG TV OCUVAPTNON open () .

OVTIKEIUEVO TTOU HOLATEL UE OPYELD
"Evo. ouvavupo pe to file object.

KWOLKOTTO11)01] CUGTIUATOS UPYELWY KO YELPLOTHS CPUAUATOV
H xwdikomoinom Kat o xelplothg opoipdtov ypnowomoteitar amd v Python yio tv amokmdiko-
moinon twv bytes amd 1o Aettovpylkod cuoTnua Kou TNy Kmdikomoinon oe Unicode yio 1o Aettovpylko
avoTNUO.

H xmd1K0moinon ovothuatog apyeimv Wropel vo eyyundel v emtuynuév] amokwdlkomoinon Ohmy
TV bytes kKatw artd 128. EAv 1) KodLKOTOiN01 CUOTHUATOS APy ELDV SEV TOPEYEL ALUTIHV TNV EYYUNOT, OL
ouvoptnoelg API umopovv va eyeipovy éva UnicodeError.

Ovovvaptioelgsys.getfilesystemencoding () kot sys.getfilesystemencodeerrors ()
Wtopouv va xpnowostotnfotv yior vo AMABETE TV KmALKOTO0iNoT TOU CUOTHUATOS CPYELMY KoL TOU
YELPLOTH OPOALATWV.

O filesystem encoding and error handler duopopemvoviol Katd v ekkivnon tg Python amd ™ ov-
vaptnon PyConfig_Read () PA. filesystem_encoding kou filesystem_errors uéln tou
PyConfig.

BA. emtiong to locale encoding.

finder
‘Eva aviikeipevo mov mpoomadei va Bpel to loader yio €va, module stov elony 0.

Ynrdpyovv dvo tumol finder: finders ueta dStadpourns yio ypNon ue sys .meta_path, Ko finders e.6édov
dtadpouns ywo. xpnon we sys .path_hooks.

BA\. Finders and loaders xou import1ib yio meploootepeg hemTouépeLec.

aképora Sraipeon
H pabnuotikn dtaipeon mov oTpoyyULoTOLEL TPOG TAL KATW 0TOV KOVTLVOTEPO akéPaLo. O TeEheoTNg okcé-
patog dwaipeong eivan / /. T mapdderyua,) ékppaon 11 // 4 aEoloyeital og 2 og oviiOeon pe v
T 2 . 75 7OV EMOTPEPETAL OTTO TNV LAUPEDN e VITOdLOOTOM). Znueiwon otL (-11) // 4 xaver -3
€7TELON QUTN ELVOL 1] OTPOYYVAOTTOINOY TPOg Ta KdTw tov —2 . 75. BL. PEP 238.

Swpeav vijna
‘Eva povtého vrudtov 0mmov molha vijuato propotv va ektehovv Python bytecode tautdypova péco
oToV 810 diepunvéa. Avtod Epyeton oe avtifeon e to global interpreter lock, 1o omoio emitpémel o€ éva
uoévo viuo va ektelel Python bytecode ka0e popd. Aeite to PEP 703.

Swpeav petafinei
Tumikd, dmwg opiletal oto language execution model, o ehevOepn uetainty| elvol omoLodnote ue-
TOANTY XPNOLUOTTOLELTOL O £va namespace Tov eV ELVOL TOTLKY| LETAPANTY) O€ eKelvo TO namespace.
Agite 10 closure variable yio mopdderyno. TIpaktikd, AMOYw TOU OVOUOTOG TOU YOPOKTNPLOTIKOV
codeobject.co_freevars, 0 0pogyPNOULOTOLELTAL ETIONG UEPLKESG POPES MG GUVMVVNO TG closure
variable.

ouvaptnon
Mo oelpd amd dNMOOELG TTOV EMLOTPEPOVY KATOLA TUU] G QUTOV TTOV TV KAAEDE. 2 QUTEG UTOPOVV
VO TTEPALOTOUV KOVEVOQL 1] TTEPLOCOTEPO. 0PlOUaT TTOV UITOPEL VoL ypnouuorton0ei yio v ektéheon. BA.
emiong TG evotteg parameter, method, xou the Function definitions.

oUVAPTIGY annotation
'Evag annotation puog TapoU€TPOy GUVAPTIONG 1] OGS TG ETLOTPOPNGC.

159

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0703/

The Python Language Reference, Anpoociguon 3.13.7

Ou ouvapTNoELG annotations Guy VA PNOLULOTTOLOVVTOL Yiot vrodelEels TOTOV: YIoL TOPAdELYUQ, VT 1
OUVAPTNON OVOUEVETAL VO TTAPEL HVO OPLOUATO 1nt Ko ETLONG AVAUEVETOL VO EXEL WO ETLOTPEPOUEVT|
T int:

def sum_two_numbers(a: int, b: int) —-> int:
return a + b

H oVvtoEn ouvdptnong annotation avolvetor oty evotnto Function definitions.

B\ variable annotation xou PEP 484, tov mepLypaeper ovty) tnv Aertovpyikotnta. Emxiong BA. annotations-
howto yio Tig KaAUTEPES TPAKTIKEG HOUAEVOVTOG (e annotations.

__future__

'Eva. future statement, from __future__ import <feature>, KaBodNYEL TOV UETAYAWTTLOTY] VO,
uetayhmtrioet to Tpéyxov module yPNOLUOTOLHOVTOG GUVTOEY 1) oNuactoloyia tov B Yiver 1) TumtLKY og
pedhovtiky) ékdoom tng Python. To module __ future_ tekunplwvel tig mboveg TWES Tov feature. Me
TV ELOAYWYY VTG TNG AELTOVPYIKTG LOVADOG KoL TNV aELOAOYNOT TwV UETABATOV TNG, UWTOPELTE VO
deite moTE o véa duvatdTNTO TPOOoTEONKE YL TPWTN POPd 0TV YADooo Ko ote O yiver (1) €yive)
1 TTPOETUAOYT):

>>> import _ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

GVALOYI] ATTOPPLUATOV

H dwadikaoio amehevfépwong g uviung otav dev ypnowpomoteitar ahho. H Python extelel ovihoyn
ATOPPLUATOV HECH KATOUETPNONG AVAPOPMV Kot EVOG KUKMKOU GUALEKTH OKOVTULOLMV TTOV EivOL O€
0¢om va aviyvevel ko va ortdel Toug KUkhoug avapopds. O ouiéktng amoppludtwy umopel va eheyy el
ypnopomolmvtag to module ge.

generator

Mo GUVAPTNOT TTOV ETLOTPEPEL EVQL generator iterator. MOLATEL e [LaL KAVOVLKT] GUVAPTNOT) EKTOG 0td TO
OTL TTEPLEYEL EKPPATELS v i e 1 d VLo TNV TOPAYWYY WOG OELPAS TULMV TTOV UITOPOVV VO XPNOLUOTTOLN 000V
o€ évav poyo for Y| Tov Wtopovv va. ovoKkTNOoUV o T popd e v ovvaptnon next () function.

ZVVHOWG AVaQEPETOL OE L0 GUVAPTNOT generator, GAAG (LITOPEL VoL AVAPEPETOL OE £VaV generator iterator
0€ UEPLKA contexts. 2e TEPLITTMOELG OTTOV TO ETMLOLWKOUEVO VOO OEV ELVAL OAPECS, 1] XPNOT) TWV TAPWV
OPWV ATOPEVYEL TNV OLOAPELCL.

generator iterator

'Evo avILKeipevo mov dnuovpyeitol amd o ouvapTnon generator.

KéOe yield avootélher mpoocwpivd tv emeSepyacia, Bupdtol Ty Katdotaon ektéleong (cuustept-
AOUPAVOUEVOV TMV TOTTLKMOV LETAPANTOV KoL TOV dNAmoEmY doKLUNG 0€ eKKpepotnTa). Otav o generator
iterator OUVEYIOEL, GUVEYITEL AT eKElL TOV OTAUATNOE (0€ AvTiBEON UE TIG CLVAPTHOELS TTOV EeKLVOUV aTTd
™V apy oe kdbe exikinon).

generator £K@poon

Mua expression Tov emoTpEpeL Evav iterator. MowdZer ue Kavovikt €k@paon ov akolovdeitan amd wo
npoToon for mov opilel po petafAnTy) fpoyou, Eva eVpog KoL ULoL TPOLPETLKY Tpodtaon 1 f. H ouv-
duaouévn EKpPaoT dNUWOVPYEL TLUES YLO. 0L CUVAPTNGT EYKAELOUOV:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4,
81
285

YEVIKT] GUVAPTIOT)

Mo ouvdptnon mov asoteheitan amd ToMMATAEG CUVAPTHOELG TTOV VAOTTOLOUV TNV idLol Aettoupyia yio
dapopeTkovg Tumovg. Tlowa vhomoinom mpémet va ypnotpomotn el Katd) dLapKeLo wa KAong Ko-
BopiCetar amd Tov adyopLOUo amooToryc.

BA. emtiong v katoympnon tov single dispatch, Tov decorator functools.singledispatch () Ko
PEP 443.

160

Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0443/

The Python Language Reference, Anpoociguon 3.13.7

YEVIKOG TUTOG

GIL

'Evog type Tov WITOPEL VO TOPAUETPOTTONOEL” ouvnOwe W container class, dnwg 1ist 1 dict. Xpnot-
LOTTOLELTAL Y10 Type hints KOL annotations.

TN meploodTepeg hemtouépetes, PA. generic alias types PEP 483, PEP 484, PEP 585, xou to module
typing.

BA\. global interpreter lock.

global interpreter lock

O unyoviopdg mov xpnotiomoLeitat amd Tov diepunvea CPython yio. va, dLoopalioel dtL povo Eva vipa
extelel Python bytecode kb @opd. Avtd amhomoiel v vhomoinon CPython dnuovpydvrog to po-
VTELO OVTLKELUEVOD (CUIITTEPLANOUBOVOLEVOY KPIOL®WY EVOOUATOUEVMY TUTTMVY OTTwg TT.Y. dict) éuueoa
aoparéc évavt tautdypovng Tpoofaons. To kheidwua oAdkAnpov tov diepunvéa dlevkorivel Tov diep-
unvéa va eival TOAATADY VNUATOV, €16 FAPO0G TOU UeYAAOU UEPOUG TOV TTAPOUAAAOUOV TOV TAPEYOUV
oL punyavég ToAaTAmV eneEepyaoTmy.

Qot600, 0pLOUEVES AELTOUPYLKEG LOVADEG EMEKTAONG, EiTE TUTILKEG eite Tpitwv, EYOUV OYEdLAOTEL £TOL
wote va oehevdepdvouy to GIL 6tav ekteMoUV EpYOOieg EVIOTIKMV VITOLOYLOUMY OTTMWG GUUTTiETN 1)
katokeppotionds. Emiong, to GIL anelevbepwvetal mdvto otav extereite 1/0.

Amd v €xdoon Python 3.13, o GIL wmopei vo amevepyomonBel ypnopwomolmvtag T pviulon
-—disable-gil katd TN dloudPP®ON TG Kataokevns. Metd v kotaokeun tg Python pe avtyv
Ue QUTHY TV ETAOYY), 0 KOOLKOG TTPETmEL va eKTeleitan pue v emhoyh —X gil=0 1 agol pvbuiotel
1 petafinty) weptBaiovtog PYTHON_GIL=0. Auth 1 duvatotita emTpémel PEATIOUEVY amddoon yio
EQAPUOYEG TOMOATTAMV VNUATWV KoL SIEVKOMIVEL T (P11 TWV ETEEEPYATTMV TTOMATAMV TUPTVOV UE
aodotko tpomo. [N mepLocdTepeg hemrouépelec, deite to PEP 703.

hash-based pyc

'Evo apyelo Kpupng wnung bytecode Tov ypnOLUOTTOLEL TOV KATOKEPLOTIONO Kot L ToV Ypdvo TPo-
TTOTTOLNONG TOV OVTLOTOLYOV OPYELOV TTPOEAEVOTG YLOL VO TTPOOALOPLOEL TV eykvpdtnTa tov. BL. Cached
bytecode invalidation.

hashable

IDLE

‘Eva ovtikeipevo eivan hashable v €xel pua Ty KATtokepUotlopoV o dev aAldlel moté kotd) dudp-
KELOLTNG CwmMg Tov (xperdeton o uéBodo _ hash__ ()), Kow uwopel va ouykplOei ue Ao ovtikeipevo
(xperaCetan e uébodo __eqg ()) . Ta hashable ovTIKEIUEVO TTOV GUYKPIVOVTOL G TTPOG TV LOOTNTO.
TOVG TTPETEL VAL £XOVV TNV OOl TLUT| KATUKEPUOTIOUOV.

H Yrtap&n hashable kéiver éva aviikeipevo va topei va ypnowomoinei og khetdi AeEukot Ko wg uéhog
€vOGg GUVOLOU, ETTELDT QUTEG OL SOUEG DESOUEVWYV Y PNOLUOTOLOVY TUUES KOTAKEPUATIOUOUV.

Ta epLocdTEPa Amd TO QUETAPANTA EVOOUATOWUEVO avTLKELEVa TG Python wtopoiv va kortakepuott-
0ToUV” TaL UETAPANTA KOVTELVEP (OTTWG OL MoTeG 1) Tt AeELK @) dev elvan” ta apetdfAnto Koviévep (OTTmg
mhelddeg ko ta frozesets) LITOPOUV VoL KOTOAKEPUATLOTOVY UOVO €AV TO. OTOLYELD TOVG ElVOL KATAKEPUOL-
twopéva. Ta aviikeipeva mov eivar oTyumoTumo KAMLoewy o opifovtal amd To ¥pNoTn UTopouv vo.
KAToKePUOTLOTOUV amtd mpoemAoyy). Oha ouyKpivovtal dvioa ekTog amd Tov e0utd TOUG) Kot 1 TUus
KATOKEPUOATLOUOU TOVG TTPOEPYETOL Atd TO id () .

"Eva. ohokAnpouévo meptBdhlov avamtuEng Ko udbnong yia thv Python. idle givoun éva fooukd mept-
Barov emeEepyaoiag Kat diepunvéon ov guvodeveton ord TV Ttk diavour| g Python.

Abavoro

AbOdvata avukeiueva givol o Aemrtopuépela vhiomoinong tg CPython tov oy 0n oty PEP 683.

Edv éva aviikeipevo givar abdvoto, o mAnbos avagopds Tov 8eV TPOTOTOLELTOL, KOL ETOUEVG OEV
exympeltal Toté evo extereiton o diepunvéac. o mapdderypa, True kow None elvor abdvota otny
CPython.

immutable

‘Eva avtikeipevo pe otabepn tuy. Ta ouetdpfinta avitkeipeva tepthaufavouyv apbuots , ouuforo-
oelpég Kau mhelddec. ‘Eva tétoto avtikeipevo dev pmopei vor odhGEeL. 'Eva véo avtikeipevo mpémel vo.

161

https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0683/

The Python Language Reference, Anpoociguon 3.13.7

dnuovpynOei edrv pémer vo omodnkeuTel o drapopetiky| tu). Maifouv onuavtikd pdro oe pépn 6o
wo otabepd amarteital, yio mopdderypno wg kheldi oe éva heEuLko.

£Loayouevo path
Mua Alota oo Tomobeoieg () kataywolioes diadpouns) Tov uropovv vo avalnmOouv path based finder
v va eloay0ovv modules. Kotd tv dradikacia eloorymyrg, avt 1 Aoto ue tomobeoieg ovvnlmg €p-
yetal amd sys.path, alhd yio ta vromoakéta pmopel emiong va £pOeL amd To YOPAKTNPLOTIKO TOV
mokétou yovéa __path_ .

£1oaywy)
H dradikacio katd v omoia 0 kmdukag g Python og éva module eivar dtofgoiun otov kmduka Python
evOg dAlov module.

EI0UYOYENS
‘Evo avtikeipevo ptopet ko va avalntel kou vo poptavel £va module” ko éva finder ko loader avi-
Keipevo.

dadpaoctikog
H Python éyet évov dLadpaotikd diepunvéa 6o onuaivel Ot WTOPELS VoL ELOGYELG ONMDOELG KAl EKPPU-
OELG 0TIV ELOAYWYT) EVIOLDY TOV SLEPUNVEQD, EKTEMDVTAG TEG AUETO KL EUPAVILOVTAG TA ATTOTEAECULOLTAL.
Amhidg ekKIVOTE TNV python ywpic opiouata (Oavdg emAEYOVTAG TO 0O TO KUPLO LEVOU TOV VITO-
Loyoth 00g). Amotelel évav amodotikd Tpomo yia va dokiudote véeg 1déeg 1) va eEetdote modules Ko
moakéto (OuunOeite help (x)). o wepLocodTepa oyeTiKd (e T dLadpaoTikt| Aettovpyia, deite tut-interac.

interpreted
H Python eivau pia interpreted yYAdooa, o€ avtiBeon pe (o HETOYAWTTIOUEVT], 0V KoL 1) SLAKPLOT Umopel
va givat kow B0 Aoym tng apovoia tov bytecode uetayhmtTioty). Autd onpaivel 0tL To apyelo Tpo-
£\EVOTG WITOPOUV VO eKTEAEOTOVV autevdelog ywpig vo dnuovpyndel pntd évo exteréoo apyelo mov
omv ovvéyela exteleitar. O interpreted yYAdooeg ouvnOmg £xovv wkpdTEPo KUKAO avATuEN S/ evto-
TLOUOV CPOAUATMV ATtd TLG UETAYAWTTLOUEVES, OV KL TOL TTPOYPAUUOATA TOUG YEVIKA EKTELOVVTAL TTLO
apyd. B, emiong interactive.

TEPUOTIOUOS AELTOUPYINS diepunvia

‘Otov Tnreltol Tepuationds Aettovpyiag, o diepunvéas g Python eloépyetar oe pa eldikn pdon dmov
amelevbepDVEL 0TOALAKA OLOVG TOVG dLOTLOEUEVOUG TTOPOVG, OTTWG AELTOVPYLKEG LOVAOESG KoL TTOMOL-
mMég Kkpioeg eomtepikég dopéc. Emiong mpayuatomolel apketéc KMOELG 0TO GUALEK TS OKOVTLOLDV.
Avuto pmopel va evepyomomoeL TV eKTELECT] KMOLKA 08 KOTAOTPOPELG TTOV 0pllovTaL oo To xpNot 1
o¢ callbacks aoOevoig avtamokpioels. O KMALKAG TOV EKTELELTOL KATH T (AT TEPUATLOUOV AELTOVP-
viog umopei va ouvavtioer dudpopeg eEatpéoels, kabmg oL TOPOL 0Tovg 0Toiovs BacileTol evogyeTal
va unv Aettovpyovv whéov (Guvn o mapadeiynoto eivar or AettoupyLkég novadeg PLpAoONKng 1 o un-
YOVIOUOG ELOOTOOEMV).

O Baotkdg MOYog TepUATIONOU AeLTovpyiog Tou diepunvéa eivar 6t to __main__ module 1 ohokAnpo-
OnKe 1 eKTELETT TOV KMALKA TTOV ETPEYE.

iterable
‘Eva avuikeipevo tkavo va emioTpéPel to. LEAT Tov eva Kabe popd. TTapadelypota iterables mepihoufd-
vouv 6HLoVG Tov TUITOVG akohovOLMY (0mtig 11 st, st r, Kau tuple) Kat uepLtkovg THIovg U akorovdiag
omwe dict, avukeuevo apyelov, KoL OVTIKELEVO OTTOLOVONTTOTE KAAGEMY TOV UITOPOVV VO OPLOTOVY e
wo uébodo ___iter () N ue plo uébodo ___getitem () OV VAOTOLEL TH ONUO.OLONOYIO Sequence.

Ta iterables umwopovv va. ypnowomotndovv oe éva for Ppoyo Kat o€ ToAG dAlha onueia 0mTov ypetdle-
Tow et akohovdio (zip (), map (), ...). Otav éva iterable aviikeipevo uetafiLpaletor wg dpLopo oty
EVOOUATOUEVY OVVAPTNOT iter (), emoTpépel Evav iterator yio aVTIKEIEVO. Autdg o iterator eivon
KAAOG Yol €VOL TEPAOUA OO £VaL GUVOLO TLUWV. ‘OTaV X PNOLUOTTOLEITOL ETOVOANTTTIKA, oVVHOWG deV &i-
VO ATTapoiTTO VoL KOAESETE TO 1ter () 1 va aoyolndeite udovol cog ue ovitkeipeva iterator. H dnhwon
£or T0 KAVEL AUTOUATOL YLOL ETAG, ONULOVPYMVTAGS L0 TTPOCMPLVY] UETUPANTI XWPLS dvoud YL v KpoTd
Tov iterator yia TV dudpkela tov fpdyov. Bh. emiong iterator, sequence, Kow generator.

iterator
'Evol OVTLKELIEVO TTOU OVTLITPOomITEVEL uuat pot) dedouévawv. Emavaloufovoueves KAOoeLg Tpog T ué-
00d0 __next__ () tou iterator (1] uetaSiPon TOU OTHV EVOOUATOUEVY CUVAPTNON next ()) emoTpé-

povv dLadoytka otoryeia oty pot). Otav oyt teproodtepa dedouéva eivan dtoOéotpa eyeipetor o eEai-

162 Mapaptnua A'. NMwooapt

The Python Language Reference, Anpoociguon 3.13.7

peon StopIteration. Ze autd To onuelo, TO OVTLKEiUEVO iterator eEavTieiton Kou TuyOV TEPALTEP®
KMoelg ot uéBodo _ next_ () amhdg amhd eyeipovv Eavd to Stoplteration. Ouiterators mpé-
TTEL VO, EXOUV WoL ueEBodo __iter_ () mov emOTPEPEL TO D10 TO aVTLKELUEVO iterator, £TOL WOTE KAOE
iterator va. eival emiong iterable ko umopel va ypnopomonbel oto mePLocdTEP NPT OOV Yivovion
amodektol koL Ghol iterators. Mo aStoonueintn eEaipeon eivar 0 KOOLKOG OV emLyeLpel TOMAITAG
mepdoparta iteration. 'Eva aviikeipevo koviévep (0w éva 1ist) mapdyer évav kabapd véo iterator
K&Oe popd mov kA0 popd Tov pueTaPLBAlEToL 0TV CUVAPTNON 1ter () 1) TOV XPNOLUOTOLELTAL OF VO
for Bpodyo. Edv emuyepnoete autd pe évav iterator amhmg Oa emotpéyete 1o idLo eEavtinuévo av-
Kelpevo iterator ov ypNoLLOTOONKE 0TO TPONYOVUEVO TEPOOLLO iteration , KAVOVTOG TO VA (POLVETOL
ooV €va AOEL0 KOVTELVEP.

Meproodtepeg mAnpopopieg wropotv va fpebovv oo typeiter.

To CPython dev eapudlel pe ouvémelo TV amaltnon vo opilel évagiterator __iter_ () .Emiong on-
uewote ot £xdoor CPython pe eletBepn vtoot)piEn vudtwv dev eyyvdton v aopdieo vnudtwv
yLo dLodLKaoteg (e iterators.

ouvaptnon key
Mo ovvapTnom KAEWSE 1] o cuvapTon TaELVOUNong eivorl uio SuvaTdTHTO KAHONG TOU EMLOTPEPEL (L0,
Ty Tou ypnotpomoteitar yio toEvounon 1 dudtokn. o mapddeyna, locale.strxfrm() ypnot-
LLOTTOLELTOL YLOL TV TTOPpay WYY VoG KAELOLOU TaEivounong mov yvmpilet Tig ovuBaoelg ToaEvounong yLo.
OUYKEKPLUEVEG TOTILKEG pUOULOELG.

‘Eva aplBudg epyodleimv oty Python &éyetar Paotkég ouvvaptoelg yio Tov €Aeyyo Tou TPOmov
ue Tov omoio Tt otouyeia Tavouovvior 1 ouadomoloUviol. Avtd mepéyovv min (), max (),
sorted(), list.sort (), heapg.merge (), heapg.nsmallest (), heapg. nlargest(),
KoL itertools.groupby ().

Yrdpyouvv dLdpopol TPOTOoL Yol v dNUovpyNoete wo. ouvaptnon khewdov. To mapdderypo. n wé-
0080¢ str.lower () WTOPEL VO YPNOLUEVOEL WG OLVAPTNGT KAELDL YLOL TV TEPITTWOT WY dLAKPLONG
meCmv-Keparainv. Evallaktikd, o ovvdptnorn khetdiov umopet va dnuovpyndel amd wa 1ambda
éxppaon 0mwg lambda r: (r[0], r[2]).Emiong operator.attrgetter (), operator.
itemgetter () Ko operator.methodcaller () &lval TPELS KOTAOKEVAOTES FOOLKMOV OUVAPTY-
oewv. BA. to TaEwvoéunon HOW TO yua mapadeiypata dnuovpyiag ko pnong Pactkdy cuvapthoemy.

oprona keyword
BA. argument.

lambda
Mo 0vOVUIY] EVOOUOTWIEVY GUVEPTION TTOV OTTOTEAEITOL 0T IO LOVADLKT) expression M ogtoio aELo-
loyeiton 6tav koaheitanw 11 ouvaptnon. H ovvtoEn yio ™ dnuovpyia wog ovvdptnong lambda eivon
lambda [parameters]: expression

LBYL
Look before you leap. Avtd 10 oTvh KOdLKOTOINONG EMEYYEL PNTA TIG TTPOVTOOETELS TPLV TPOYUATOTOL-
No€L KA 0oeLg 1] avalnToels. Autd To OTul €pYETOL OE aVTIOEDN Ue TNV TPOGEYYLoN EAFP KoL YapoKT-
piCeTon atd TV TOPOVoia TOADV dNAwoemV 1 £.

Ze éva mepPdAlov TOAATAMY vNuGTwv, N tpocéyylon LBYL wropsi vo diakivduvevoel vo elodyet
wa ovvOfKn aydva uetall «the Looking» kol «the leaping». [tapdderyua o khdikag, 1f key in
mapping: return mappinglkey] WIOPEL Vo 0TOTUXEL €AV £val GANO VIO OlpaLp€oEL TO key oo
TO mapping PETA T dokiut), oAG TPV amtd TV avalnor. Avtd to mpdfinuo pmopetl va Aubel pe
KAeldwuorta 1 xpnopuomolmwvtag Ty tpootyyion EAFP.

AeEkog avaiutig
Emionun ovouaoio ywo tov tokenizer -). token.

AMoto
‘Eva evoopoatouévo Python sequence. Tlapd to Ovopo Tov, LWOLALEL TTEPLOGOTEPO LE EVaY VoK 08 GAAEG
YA®Oooeg Topd ue o ovvdedeuévn AMota, kabhg 1 TpodoPaon ota otouyel eivar O(1).

list comprehension
'Eva. oupstayng Tpodmog yio va eneEepyooteite Oha 1| LEPOG TV OTOLYEIWY 08 pLa 0KoAovbia KoL vo
EMLOTPEYETE WO MoTa ue To ommotedéopata. result = ['{:#04x}'.format (x) for x in

163

The Python Language Reference, Anpoociguon 3.13.7

range (256) if x % 2 == 0] dMWOUPYEL wa AMoTa CUUPBOLOCELPDV TTOU TTEPLEXOUV TVYOVG deKae-
Eadikotg aptbuovg (0x..) oto evpog amd 0 éwg 255. H pdtaon i £ eivor mpoarpetikt). Edv mapaieipOsi,
oo TOL oToLYEleL 0TO range (256) vofarlovtal oe eneSepyaoiaL.

loader
‘Eva. avtikeipevo mov qoptwver éva module. TIpémer va opiler tig nuebodovg exec_module () Kau
create_module () yio ™V vhomoinon g demagng Loader. 'Evag loader ouvBwg emotpépetan
ue éva finder. Agite emiong:

o Finders and loaders
e importlib.abc.Loader
« PEP 302

TOTKY] KWOKOTOIN oM
2o Unix, givat 1 kodikomoinomn g tomiky pubuong LC_CTYPE. Mropei va pubuiotei ue locale.
setlocale(locale.LC_CTYPE, new_locale).

Zta Windows, eivou 1) code page ANSI (;t.y. "cpl1252™).

Zto Android xow to VxWorks, 1 Python ypnouwtomotei to "ut £-8" g TomK KmdKomoino.
locale.getencoding () WITopEL va xpNOLUOTOLNOEL YLO TNV AVAKTI O TG TOTILKNG KMALKOTOINoNG.
B emiong to filesystem encoding and error handler.

noykt) uédodog
"Eva dtumo ouvadvuuo ya special method.

mapping
‘Eva. avtikeipevo Kovtéwvep mov vmootnpiler ovbaipeteg avolntoelg KAewdudv Kou VAOTOLEL
T uebddovg mov kabopifovior 0to collections.abc.Mapping W collections.abc.
MutableMapping abstract base classes. Ta mapodeiypota mepthapufdvovy dict, collections.
defaultdict, collections.OrderedDict kaiLcollections.Counter.

meta path finder
'‘Evag finder mov emotpdgnke e avalnmon oto sys.meta_path. Ou finders peta-diadpoung oyeti-
Covtat, aAAG dLapépovv amtd ta finders entry diadpoun.

B\ importlib.abc.MetaPathFinder yia tig uebddovg mov vhomolovy oL meta path finders.

ueTo-kKAaon

H xhdon wag khéong. O opiopoi kKAGomg dnurovpyotv éva dvouro KAGong, éva AeEtkd Khaong Ko o
Mota Baotkdv kKhGoewv. H peto-khaon givor vetfuvn yio Ty ardKTon outdv Tov TpLdv opLtopd-
TOV Kot TV dnuovpyia tg kAdone. Ot meplocoTepPeg OVILKELUEVOOTPEPELS YMDOOES TPOYPOUUUATLOUOV
TTOPEXOUV ULaL TTPOETUAEYEVT] VXOTTOINOT. AuTtd TTou Kdével tnv Python Egymploti eivan dtu givan duvari
1 duLovpYlo TPOGUPUOOUEVWV UETOKAAOEWMY. OL TEPLOGOTEPOL YPNOTES OEV Ypetdlovtal ToTté ovtd To
gpyoheto, ahhG OTOV TOPAOTEL OVAYKT), AUTO TO EPYOLELD, OL LETA-KAAOELS WITOPOUV VAL TTOPEYOVV LOY V-
péc, kKoupeg Moels. 'Exouv ypnoyomomOet yio thv Katoypogy Tpoooong xapaKTNPLOTIKMV, TV TPOo-
0ONKN AoPALELOG VNUATWOV, TNV TOPAKOAOVONON dnuovpyiag ovTLkKelévmy, Ty vhomoinom singletons,
Ko ToAAEG GMAEG epyaTies.

[eploodtepeg mAnpopopieg uropovv va Bpebotv ato Metaclasses.

uébodog
Mo ouvépTnon mov opiteton uésa 0to omua wag kKhaong. Edv kaleital og yopaKTnpLotiko (og e-
pirttwong avtg g KAGoNg, 1 uéBodog Ba MaPer avitkeipevo mepimtmong wg TpdTo TG argument (To
omoio ouvBwg ovoudteton self). BL. function Ko nested scope.

oepd avalvons uebodwv
H Zeipd Avahvong Mefodwv eivar 1 oelpd ue tnv omoia ot faotké KAAoELS avalntoUvTo Yo Eva LEAOG
Katd v ovolntnone. BA. python_2.3_mro yio AemTouépeleg Tov alyopifuou mov X pNoLUOTTOLEITOL ATd
Tov depunvéa tg Python amwd v €kdoon 2.3.

module
"Evol OVTLKELLEVO TTOV Y PTOLUEVEL DG OPYAVOTLKY LoVAda Tov kKmdLka tng Python. Ta modules éxouv évav

164 Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0302/

The Python Language Reference, Anpoociguon 3.13.7

YWOPO OVOUATMV TToU TTEPLEXEL avbaipeto aviikeipevo Python. To modules goptmvovtor oty Python pe
™V dradikaoio importing.

Bh. emtiong package.

TEYVIKES TTPOdLaypapés module
"Eva. namespace Tou JTEPLEYEL TIG TANPOPOPIES TTOV OYETITOVTOL UE TNV ELGOYMYY] TTOV Y PTOLLOTTOLOVVTCL
Yo TV @OpT™won evog module. Mia stepisttwon tov importlib.machinery.ModuleSpec.

B\. emiong Module specs.
MRO

BM\. method resolution order.

mutable
Ta evuetaAnTo aviikeipeva uropotv vo alAEouv Tig Tuég oG va Kpatioovy ta id () . Bh. extiong
immutable.

named tuple
O 6pog «named tuple» epapudletal yio 0molovonmote THmo 1 KAAGH oV KAnpovoueitar omd Ty
TILELAD L KOL TWV OTTOLWYV T GTOLYELC WTTOPOVY VO EVPETHPLOTTOLNOO0VV Elval TPOGRATLILL PN OLUOTOLMD-
VTAG ETOVUIA YoPpaKTNPLOTIKA. O TOTOog 1) 1) KAAOT WTopel va €yl Kot GAMOL Y OPAKTNPLOTIKA.

Io\hoi evompatwpévol tomot eivor named tuples, GUUTEPLOUBAVOUEVOV TOV TLUODV TTOV ETLOTPEPOVTAL

amd time.localtime () koL os.stat (). Eva ahho mapaderyna eivar 1o sys. float_info
>>> sys.float_info[1l] # indexed access

1024

>>> sys.float_info.max_exp # named field access

1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

OpLopEVeES avayvoPLoUEVES TTLELADEG elval EVOMUATOUEVOL TUTTOL (OTTMG T TAPATAVD Tapadelyuato).
EvolLoKTIKA, (o avayvoplopévn TAetado uropet vo dnuovpynbel amd £vov oplopd Kavovikng KAG-
o1g OV KAnpovouei amd tuple ko wov opilel ykupa medio. Mo tétoto KAAom umopel va ivan ypou-
pév ne to yépL N uopel va dmuovpyndei Kinpovoumvrog 1o typing . NamedTuple, 1 pe Ty factory
ouvapton collections.namedtuple (). Oitelevtaieg TeyVikég TPOTOETOVV ETTIONG UEPLKEG ETTL-
héov uefddovg ov umopel va unv Bpefolv og XeLPOYPOPES 1) EVOMUATWUEVEG TAELADES Ue OVOLLO.

namespace
To uépog dmov amodnkevetar wo petafinty. To namespaces VAOTOLOUVTOL WG AEELKA. YTAPYOUV OL
TOTLKOL, OL KAOOALKOL KoL 0L EVOMUOTOUEVOL namespaces KoOMg KoL oL £vOeToL namespaces 0€ AVIIKEL-
ueva (oe nebddovg). o Tapdderyua oL ouvaptoelgbuiltins . open KoL os . open () dlokpivoviol
aTtd TOUG YWPOVG OVOUAT™V Tovs. O xmwpot ovoudtwv fonbolv exiong tnv avayvooludtnTa KoL T ov-
vInpnowoTTa Kabotmvtag oapég toro module viomotel o Aettovpyio. I'ia mapdderypa, ypdpovtog
random.seed () Nitertools.islice () xkaBLotd capéc OTL AUVTEG OL GCUVOPTIOELG VAOTOLOVVTOL
artd To module random kow itertools, aviioTtouya.

TOKETO Namespace
'Eva package mwov ypnoueter uOvo mg KOVTELVEP YLOL VTTOTOKETA. Ta TAKETO Y MPOV OVOUATMOV UITOPEL
VO UTY €XOUV (PUOLKT] AVOITTOPAOTOON KoL OVYKEKPLUEVA VO unv glvar oav éva regular package emeidn
dev éyovvTo __init___ .py apygio.

To TaKéTo XOPOV OVOUATOV EMLTPETOUV 08 TOAAG TTAKETA Ue dUVATOTITO EYKATAOTAONG LELOVOUEVDL
VoL €XOUV €VOL KOLVO YOVIKO TTaKETO. ALAOPETIKA, OVVIOTATOL 1) XPNON EVOG regular package.

TN tepLocdTepeg mAnpogopies, deite to PEP 420 wouw 1o Namespace packages.
BA. emtiong module.

nested scope
H duvotdmto avagopds oe wa uetafint) oe évav meptkhetdpevo optopd. Ta mapdderypo uo ov-
vapTnom mov opiletal péoa og wo GAA ouVAPTNOY WiTtopel Vo avagpépetal o LeTaAnTtég oty eEw-
TEPLKT] CUVAPTNON. ZNuelmote Ot to évOeta medio amd TPOETLOYTH AELTOUPYOUV UOVO YLoL Avapopd

165

https://peps.python.org/pep-0420/

The Python Language Reference, Anpoociguon 3.13.7

Kaw oL yo ekympnon. Ou tomikég petafAntég duaffaovral KoL ypagovTaL 0To E0MTEPLKO TEDIO EPap-
poyns. Ouoiwg, ou kaBolkéc uetafintég drofdtovv Kot ypdpouv otov Kabohkod ympo ovopdtwy. To
nonlocal emTPEREL TNV EYYPOPY 08 eEwTEPLKE mediol.

KkAdo1 vEOU oTUA
To tahd dvopa Y 10 €100 TV KAAGEMY Y PN OLUOTTOLELTAL TTAEOV Y10l OMOL TAL AVTLKELUEVOL. Z€ TAMOTEPEG
exdo6oeLg TG Python, povo oL KAAGELG VEOU OTUA WITOPOVOOY VO Y PTOLULOTTOLT|GOUV TIG VEOTEPES, EVEMKTEG
duvatotteg g Python émwg _ slots_ , descriptors, 1010TNteg _ getattribute_ (), uébodor
KAGong, Kou otatikég uébodot.

OVTIKEIUEVO
OmoLadNmote dedouéva e KaTaoToon (YOPaKTNPLOTIKA 1) TUY) Kot KaBopLopévn ovpmepLpopd (ueédo-
dov). Emtiong, M telkn ookt kAo omolacdfmote new-style class.

BertioTomotuUEVO TTEdIO 0pATOTNTOS (SCOpPE)

'Eva mtedio opatdtnTog (scope) 0ov To ovOUATO TOV TOTKOV UETOPANTOV eival YvmoTo ue Befardtnta
OTOV UETOYAWTTLOTH KOTA TH UETOYADTTLON TOV KOILKA, EMLTPETOVTOG T BEATLOTOTOINGT TG TPOoPa-
ONG VL0 AVAYVOOT KoL EYYPap o€ autd ta ovopata. OL TomKol XMPOoL OVOUAT™Y YLo. GUVOPTNOELS,
YEVVITPLEG, GUVAPTNOELS coroutine, oUUTTUEELS (comprehensions) Ko eKpPAOELS YEVVIITPLOY BEATLOTO-
TTOLOVVTAL PUE OUTOV TOV TPOTTO. ZNUELWOT: OL TEPLOCOTEPES BEATLOTOTOLNOELG TOV BLEPUNVED EPAPUO-
Covtal og Oha To medio opaTOTNTOG WOVO eKEIVES TOV BacilovTal 08 YVWoTO GUVOAO TOTILKMV KoL Ut
TOTKMV HeETaBANTMV TTEpLopitovion o felTioTomotnuéva medio opaTdTNTaC.

TOKETO
"Eva. Python module mov ptopei va wepiéyel submodules 1) avadpoukd, vtomokéta. Texvikd, éva makéto
elvar pa hettovpyukt) povado Python pe éva _ _path_ yopoktnplotko.

Bh. emtiong regular package xou namespace package.
TUPAUETPOS
Mua £yKupn oviotnta o€ Evav oplopd function (| uéBodog) mov kabopilel Eva argument (1) 0€ OPLOUEVEG
TEPLITTOOELS, Opiopata) wov umopel va dexOel 1 ouvaptnomn. Yradpyovv mévte eldn mapouétpmv:
o MéEn-kAeldi 1) Oéon: kabopilel éva dpLopa Tov witopet vo petafipaotel gite Odoews N wg dptoua
AéEnG-kAetdiov. Avtd eivol To TPOoETAEYUEVO El00G TAPAUETPOV, VLol TAPAdELYUA foo KoL bar GTa.
akorovba:

[def func (foo, bar=None): ... }

o Oéoewe udvo: Kabopilel £va dpLopa mov uopel va mapéyetor uovo amd) Béon. Ou mapduetpot
uovo B€omg WTopovV va, 0pLOTOVV CUUTEPLAAUBAVOVTOG EVOY XAPAKTHPO / 0T AMOTO TAPAUETPOV
TOV OPLOPOY GUVAPTNONG UETE OTTO AUTES, Yo Tapaderyua posonlyl xou posonly2 ota eENG:

[def func (posonlyl, posonly2, /, positional_or_keyword): ... }

o AéEnc-kAeldi udvo: kaBopilel évo OpLopa ov popel vo mopéyxetor udvo ue MEN Khewdi. Ou ma-
pauetpor povo yro AMEEN-KAedi Wtopotv va. 0pLoTolV ouUITEPILAUBAVOVTAG WL TTAPAUETPO OF-
ong 1 ok€To * 0TI MOTa TAPAUETPWY TOU OPLOUOY GUVAPTNONG TIPLY OITO QLUTEG, VLA TTOPASELY L
kw_onlyl xou kw_only2 ota axohovOa:

[def func(arg, *, kw_onlyl, kw_only2): ... }

o uetafAinti Oéong: kabopilel OTL pumopel va mapaoyedel wo avbaipetn akohovdio optoudtmy O€ong
(emumhéov Twv oplopdtav Bong ov eivor 1N arodektd amd dhheg Tapouétpovs). Mia tétola
TOPAUETPOS WTOPEL VO OPLOTEL TPOCAPTDVTOG TO OVOULL TNG TTAPAUETPOV UE *, YLO. TTOPAELY L
args oto. akohovba:

[def func (*args, **kwargs): ... }

o uetaPinth AéEn-kAeldi: kabopilel OTL umopovv vo apéyovrar cvdaipeto ToAG opiopata AEENG-
KAeLdLov (emuthéov Twv opropdtwv MENG KAEWdL00 Tov givan 0rodektd 0td dleg apauétpoug).
Mo tétole TOPAUETPOS UTOPEL VO OPLOTEL TPOCUPTMVTAS TO OVOUD TNG TOPAUETPOV UE * *, YLl
mopdderyuo kwargs OTmG TAPATAV®.

166 Mapaptnua A'. NMwooapt

The Python Language Reference, Anpoociguon 3.13.7

O opdpeTpol wropotv va Kabopicouvy TO00 Ta TPOALPETLIKA OG0 KL T OITOLTOVUEVO OPIOUOTO. , KO-
OMG Ko TPOETUAEYUEVES TUIEG VLA OPLOUEVA TTPOOLPETLKG OPLOUALTAL.

BA. emiong v argument KotaympLon gupetnpiov, Ty epdtnon FAQ oyetikd pe 1 dtogopd petaso
OPLOUATOV KOl TAPOUETPWV, TNV KAAON inspect .Parameter, v evotnta Function definitions xou
PEP 362.

path entry
Mo pepovouévn tomobeaion oto import path v omolo. ouuBovieveton o path based finder yio va. Bpet
modules yLo eLoorymyr).

path entry finder
'Evag finder mov emotpépetan amd évov KohoVuevo oto sys.path_hooks (dnhadn éva path entry
hook) mov Eépel wg vo. evromntiler modules pe path entry.

BA. importlib.abc.PathEntryFinder yio tig uefddovg mov o entry finder dtadpoung vhomotei.

path entry hook
"Eva kahotpevo ot Mota sys . path_hooks, to omoio emotpépel éva path entry finder eGv Eépel Twg
va Bploker module og o oLYKEKPUEYY path entry.

path based finder
‘Eva amd ta wpoemheyuévo meta path finders mov avolnta éva import path yio. modules.

path-like avrikeipevo
'Evo avTLKELIEVO TTOV avTLItpoommeveL éva path ovothuatog apyeiwv. ‘Eva aviikeipevo path eivou eite
éva avTIKEipeVo str 1] bytes mov aviurpoowstevel £va path 1 £va AVTLKEIUEVO TTOV VLOTIOLEL TO TTPW-
TOKOMO 0s . PathLike. Eva avtikeinevo mov vtootnpilel to tpmtdkollo os . PathLike umwopei vo
petotpostel og path cvoTNpOTOg apyeimv str 1) bytes Kahdvrog Ty ouvdptnon os . £spath () ” 1o
os.fsdecode () KaL os.fsencode () UTOPOVV VO PNOLUOTONOOUV YLOL TNV EYYUNOT| EVOG ATTOTE-
Mopatog str) bytes, avtiotoryo. Ewonydn amd tov PEP 519.

PEP
[potoorn Bektimong Python. ‘Eva PEP eival éva €yypago oxedLaouot mov mapéyel IANpopopieg otny
Kowvotnta Python 1) mepuypdeper o véa duvatdtnta yio. v Python 1 tig dradikaocieg 1 to meptiah-
Mov g. Ta PEP Oa mpémel va Topéouv (o OUVOITTLKT) TEYVLKT] TPOdLaypapr] KoL Lot AOYLKT) YLoL TaL
TIPOTELVOUEVL Y AUPOKTIPLOTLKA.

Ta PEP mpoopiCovror va givar oL KOpLot unyaviopuol yior v pdtaon onuovItkov vEmV XopaKTpL-
OTIKAV, YLOL TN OVALOYT] TANPOQOPLAV TNG KOLVOTNTAS YLoL Vo TNTNUOL KO YLoL TNV TEKUNPLDOT TV
ATOPAoEMV 0YEdLAOUOV TTOV €Youv eloayBel otnv Python. O ouyypagéag tov PEP eival vteubuvog yia
TNV 0LKOOOUNOY CUVOLVEONG EVTOG TG KOLVOTNTAG KOL TNV TEKUNPLWOT] OVTLOETMV amdPewy.

B\L. PEP 1.

(1% 11
‘Eva 6volo amtd apyelo og £vav wovo Kotdhoyo (evOeXouévmg amobONKeVUEVO OE OPYELO Zip) TTOV U~
Baihovv og éva namespace TaKETO, Omwg opiletan oto PEP 420.

opopa O¢omng
B\. argument.

provisional API
"Eva. provisional API eivar autd mov éyer eokeupéva eEanpebdei omd tig backwards eyyunoelg cuppatoTn-
TOG TG TVTTLKNG PLPAoONKNG. AV KoL OEV OVOUEVOVTAL ONUOVTLKES AAMALYEG OF TETOLEG OLETTOPES, EPOCOV
EMLONUOEVOVTOL G TPOCWPLVES, alharyég un backwards ouppatotrog (Wéxpt Kot Katdpynon tng oie-
TOPNG) WITOPEL VAL TPOKMPoUV eGv KpLOel amapaitnto amd Toug faotkovg Tpoypaunatiotés. Tétoleg
odhayég dev Ba yivouv dokoma - 0o cupfov udvo edv amokoluBouv cofapd Oepelimon eEraTTOUOTO
OV TOPOLeLPONKAY TPLV aTtd T cuumepiinyn tov APL

Axoun xou yio provisional API, ov un backwards ovufatég arhayéc Bewpovvtar «hbon €oyotng
ovaykne»- 0a eEakorovel va yivetar kdbe mpoomdOeia yio va Bpedei wa Mor backwards ovufoti
0€ TUYOV EVIOTLOUEVOL. TTPOBANUOTOL.

167

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/

The Python Language Reference, Anpoociguon 3.13.7

Avti dradikooto emrtpémel oty Turtikt PLodmKn va ovveyioel va eEgliooeTal pe TV TapPodo Tou
YPOVOU, YWPIG VO KAELDWVEL TPOPANUATIKG OAAIOTA OYESLATUOV VL0 EKTETOUEVES YPOVIKES TTEPLODOUG,.
Bi. PEP 411 yio eplocdtepeg hemTouépeLec.

provisional mokéto

BA. provisional API.

Python 3000

Wevdmvupo yio to ovvoro ekdoéoemv Python 3.x (emvonOnike spLy 0wd okt Kawpd dtav N Kukhogpopio
™G €kdoong 3 ftav KATL 0T0 PokpLvo wélov.) Autd ovoudleton emtiong wg ouvtopoypogion «Py3k».

Pythonic

Mo 1déa 1) éva Koppdtt KOdLKa Tou akohovbel LoTtd ta 7Tto Kowvd idudpata g yAwooog Python, avti
Vo VLOTTOLEL KMALKOL YPNOLUOTOLMVTOG £VVOLEG KOLVEG o€ dAheg YAwooes. Tia mapdderyua, £va Kowvo
Wimuo otnv Python eivar va kéver wo emavédinym ctave amd oha ta otouyeio evdg iterable ypnoiuo-
ToLdVTOG wat dNhwaon For. [odhég Ghheg YAMOOES OV deV €XOUV AUTOV TOV TUTTO KUTAOKEVNG, £TOL OL
avBpmrtol wov dev eival eSotkeumpévor pe v Python ypnoypomoloty uepiké popéc Evav aplbuntiko
UETPNTN:

for i in range(len(food)) :
print (food[i])

Avtifeta, wo mo kabapn uébodog Pythonic:

for piece in food:
print (piece)

AVOYVOPLOUEVO GVoud,

'Eva dvopa pue Koukkideg o deiyverl T «dradpour)» amd to kabolko evpog evog module oe o kKhdon,
ouvaptnon 1 uéBodo mov opiletal oe autnV TV EVOTNTA, dmtwg opiletal oto PEP 3155. T'la ouvoptioelg
Kot KAAOELS OVATATOV ETLTEDOV, TO OVOLYVWPLOUEVO OVOUCL ELVOL 1OLO LLE TO OVOUX TOV OVTLKEWEVOU:

>>> class C:
class D:
def meth (self) :
pass
>>> C.__ _qualname_
'cl
>>> C.D.__ _qualname
'C.D'
>>> C.D.meth.__ _qualname_
'C.D.meth'

L J

‘Otov ypnotuomoteitol yia avopopd oe modules , 10 TAHOWS avayvweLouévo évoua onuoivel ohOkANPo
To drakekoupévo path mpog to module, cuuTEPAAUPBAVOUEVWV TUXOV YOVIKDV TAKETWV TT.). email .
mime.text:

>>> import email.mime.text
>>> email.mime.text. name
'email . .mime.text'

N 00g avagopis

O aptBudg twv avapopmv o éva oviikeipevo. ‘Otav 1o TNO0g avapopdV evOg aVTLKELWEVOY TECEL
010 UNdEV, Katavéuetor. Meptkd avtikeipeva eivol immortal Ko €(ovv IAR00G avapopmy Tov dev Tpo-
TOTTOLOVVTOL TTOTE KOl ETTOUEVIDG TAL OVTLKELUEVA OEV KaTavéuovtol moté. H xoatauétpnon avagpopmy
veVIKQ dgv elval opaty) oTov kKmdLKa tng Python, odid elvar fooukd otouyeio tng vhomoinong CPyrhon.
OL TPOYPOULATIOTES WITOPOUV VL KOLEGOUV T OUVAPTNHOT Sy s . getrefcount () YL vo emoTPEPOUV
T0 TAH00G AVaPOPAG YLOL EVOL CUYKEKPLUEVO OVTLKEIUEVO.

168

Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0411/
https://peps.python.org/pep-3155/

The Python Language Reference, Anpoociguon 3.13.7

In CPython, reference counts are not considered to be stable or well-defined values; the number of references
to an object, and how that number is affected by Python code, may be different between versions.

KOVOVIKO TOKETO

'Eva mopadoookd package, dmwg €vag KATALOYOS OV TTepLéyeL évo _init .py opyelo.

BA. emtiong namespace package.

REPL

Axpoviulo tov «read-eval-print loop», GA ovopaoio yio To interactive TEPLBOAOY TOU dLepunvEa.

__slots__

Mo dNhwon péoa oe pa KAGom tov eEotkovopel uviun SNhmvovTog €K TmV TPOTEPWYV XDPO IO T
PASELYUO XOPAKTNPLOTIKG Kol eEaleipovTog AeELkd oTLyoTimtmy. Av Ko SNUOQIAAG, 1) TEXVLKT elval
KATwg dUOKOAO VoL Yivel 0WOTI Ko TPoopileTal KaA)TEPO YLo GIAVIEG TEPLTTMOELG OTTOV VITAPYEL UE-
YOLOG aPLOUOS OTLYIOTUTTOV GE (Lol EQOPUOYT KPLOWNG-UVIUNG.

axolovlia

'Evag iterable mov vtooTnpileL TNV ATOTELECUOTIKY] TPOOBOOY OTO OTOLYXELD YPTOLUOTOLMVTOG Oké-
poLoug deikteg uéow tng eLdLKN nehoddov _ getitem () xou opiler uo péhodo _ len () mou
emLOTPEPEL TO UNKOG TG akorovBiag. OpLouévol evomuatmuévol Tomol akorlovbmv eivor 1ist, str,
tuple, kou bytes. Enuelwnote 6t to dict vmootnpilel emiong _ getitem () kou __len_ (),
odd Bewpeltar avilotoiylon Kar Oyt akolovBio emeldr) ov avalnmoelg xpnolwomotovv avbaipeta
hashable x\eldLd AP OKEPOLOL.

H agpnpnuévn poowkn khaon collections.abc.Sequence opilel o oAy mo mhovoto die-
o) mov Eemepvd tor amhd _ getitem () xkow __len_ (), adding count (), index(),
__contains__ (),Ka__reversed__ ().OLT0moL T0V VAOTTOLOVV OUTNV TNV SLEVPUUEVY] DLETAQT)
WITOPOUV Va KOTaympnBouv pntd xpnowotoidviag register () . [a mepiocdtepn tekunpiwon oye-
TKG pe TG uefddovg axoroudiag yevikd, avatpéEte oto Common Sequence Operations.

set comprehension

"Evog ouumaync Tpomog yio va eneEepyaoteite OhoL 1) HEPOG TV oToLyelmv o éva iterable ko vo emi-
oTpapel €vo ouvolo Le to omoteléopata. results = {c for c¢ in 'abracadabra' if ¢
not in '"abc'} dnwovpyel to ovvolo cuuforoocepwv {'r', 'd'}. Bh. Displays for lists, sets and
dictionaries.

pnovadiko dispatch

slice

Mua popen) dispatch generic function 6mtov 1) vhomoinon emiéyetal ue fAomn Tov THTo EVOG LELOVOUEVOU
oplouortoc.

‘Eva. avuikeipevo mov ouvBog sepLéyel évo tunua wag akohovbiog sequence. Anwovpyeiton éva slice
YPYOLUOTTOLMVTAG T onueiman subscript, [] pe dvo kou KGtw teleieg uetoEl apbudv d6tav divovio
toAhol, Omwg 0to variable name[1:3:5]. H onueiwon aykiing (subscript) xpnOLUOTOLEL EGWTE-
pLkd aviikelpeva slice.

QTOPYOLOUEVY UE 1)TTLO TPOTO

"‘Eva astapyotwuévo e 1o tpdmo API dev Oa mpémel va xp1oLuomoLeitol og vEo KOdKa, alhd eivar
aoparéc g NON vtdpyovra kmdika va to ypnopornotel. To API mapopével TekunpLouévo Ko oKL
ougvo, oAG dev Ba evioyvBel TepalTEPW.

H xatdpynon pue no 1pdmo, oe aviifeon pe v Kavovik Katdpynon, dev oyxedidlel Tnv Katdpynon
Tov API xou dev Oa exmepTEL ELOOTTOLIOELG

Acgite PEP 387: Soft Deprecation.

€191k pédodog

Mo uéBodog mov Kaheitol olwmnpd amd v Python yia vo ekteléoel (o ouyKeKpLUEVT Aettovpyia oe
évav TOmo, drtmg 1 tpoodNKn. Tétoleg péBodol £xovve ovouaTo oV EEKLVOUY KoL TELELDOVOUV (e dUTAEG
K&tm movheg. O eldukég uéhodol tekumpLwvovtan oto Special method names.

standard library

The collection of packages, modules and extension modules distributed as a part of the official Python interpreter

169

https://peps.python.org/pep-0387/#soft-deprecation

The Python Language Reference, Anpoociguon 3.13.7

package. The exact membership of the collection may vary based on platform, available system libraries, or
other criteria. Documentation can be found at library-index.

See also sys.stdlib_module_names for alist of all possible standard library module names.

dMlwon
Mo TpdTaom eivor Pépog oG oovitag (§va «umhok» Kmdika). Mo tpdtaom eivou gite évag expression
elte wa arwd worég dopég ue wo AEEN-Kheldi Omtwg 1 £, while) for.

ELEYKTIS OTATIKOV TUTOV
"Eva eEmtepukd epyaieio dmmov dafdlel Tov Python kmduka Kot tov avalvel, avalntmviog Tpopiiuoto
omwg havBaopévol tomot. Bh. exiong rype hints kou to module t yping.

stdlib
An abbreviation of standard library.

strong reference
2to C API g Python, pua 1oyupn ovopopd eivat e ovapopd 0g Vo AVTIKELIEVO TTOU AVIKEL OTOV
KmdLKa tov mepLéyel v avagpopd. H toyvpn avagopd happdvetal kahoviog 1o Py INCREF () Otav
1 avopopd duovpyeitol Ko arehevbepmvetal e Py _DECREF () OTOV SLOYPAPEL 1] AVAPOPAL.

H ouvdptnon Py_NewRef () umopei va ypnotpomotn0etl yio tn dnuovpyia Loyuphg avapopdig oe éva
oavTikeipevo. Zuvnbwe, N ouvaptnon Py _DECREF () mpémel va KOAELTOL 0TV LoYVupn ovopopd oLy
ByeL amd o VPOG TG LOYVPNG AVAPOPAC, VLo VO, ATtopevyDel 1) dLoppoT] oG Avopopags.

BA. emtiong borrowed reference.

KWOKOTOIN01 KENEVOU
Mua ovpporooelpd otnv Python givon wo axorouvBia onueimv kodika Unicode (oto eVpog U+0000-
U+10FFFFE). ['o va amobnkedoete 1) va UETAPEPETE (0. OUIPBOLOTELPD, TTPETEL VAL GELPLOTTOLNOEL ™G
duadiki axkolovdia.

H ogipromoinon oG ovuforooelpds oe pua Suadik) akohovdia eivol yvmot) wg «<KwdLKomoinomn» , Ko
1N avadnuovpyia g ovpporooelpdc amd v dvadiki| akorovdia eival YvmoT oG «amoKmolKoToi-
non».

Ymdpyer pa otkihio SLopopeTLKNG GELPLOTOLNOTG KELWEVOU codecs, oL 0TToloL CUANOYLKA avapEpovTal
WG «KMOUKOTOLNOELG KEWUEVOU».

OPYEL0 KELUEVOY
'Eva file object tkavd va. SLafBalel Ko vo YpApeL avitkeipeva st r. Zuyvd, Evo apyeio KELWEVOY AToKTA
TPOYUOTLK A TTPOOPaoT 08 woL por) duadiky) por] dedopuévarv Kat xelpiletar avtduota Ty text encoding.
TMopadelypata apyeiwv KEWEVOU ELVOL OPYELN TOV avoiyovy o€ Aettovpylo keyévou ("r' M "w'), sys.
stdin, sys.stdout, Kot oTLyudTUITO TOV 0. StringIO.

BA\. emiong binary file yio éva avitkeipevo apygiov pe duvatdtnta avayvoong Kat eyypapng dvadikd
avukeiueva.

AekTIKO oVppolo (token)
Mo pkpt) povada mTnyoiov Khdika, wov sapdyetor amd tov lexical analyzer (yvwotd Kol o avalvty)
(tokenizer)). Ovopata, opLOuol, cuUPoLoELPES, TEAMEOTEG OAMAYES YPAUUNG KOL TTALPOLOLOL. OTOLYELL VOl
mopiotavtol og Aektikd ovufoia (tokens).

To module t okenize ekBétel Tov heEukd avaluti g Python. To module t oken mepiéyel Thnpogopieg
yLoL TOVG dLApopovg TUTTOVG AEKTIKMV cuufolwv (tokens).

ouuPoAOCELPE TPUTAMY ELCAYWMYIKOV
Mo oupfolocelpd oV SECUEVETAL OTTO TPELS TEPLITTAOELG ELTE EVOG ELOAYMYLKOV (») 1] (WO 0TTOTTPO-
@ovu (). Av Kat dev mapéyouv Kouia AeLTovpytKOTNTo oV deV givar diadéoun pe ovupolooelpég e
ROV ELOAYOYLKE, ELvOL YPTIOLUES YLOL SLAPOPOVG AOYOUGS. 20 ETLTPETOUV VO, CUMITTEPINAPETE LOVA KoL
TG ELOAYWYLKA YWpLg dLapuyn] 08 Pot GUUBOLOCELPG KOl LWITOPOVY VO, EKTELVOVTOL O€ TTOMES YPOLLL-
UEG YWPLS TN XPNON TOV YOPAKTHPO GUVEXELD, KOOLOTOVTOG T LOLALTEPO XPNOLU KOTA TN 0VVTOEN
eYYPAPoV ue ovpohooelpéc.

TOmoC
O timog evog Python avtukeévou kabopilel T eidovg avrikeipevo eivale Kae avikeipuevo €xel évay

170 Mapaptnua A'. NMwooapt

The Python Language Reference, Anpoociguon 3.13.7

TU70. O TUIT0G EVOG OVTLKELWEVOU EiVOL TTPOORAOLILOG WG TO YOPAKTNPLOTIKO __ class___ 1 WTOPEL va
avoktnOel pe type (obj) .

type alias

‘Eva ouvavupo yua €vov TOmmo, Tou dSNULOVPYELTOL UE TNV ovaBean THTToU O€ €va avaryvmpLoTLKO.

Ta type aliases gival xpnowua yio v amhomoinon rype alias. To wapaderypa:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) —-> list[tuplel[int, int,.
—~int]]:
pass

WITOPEL VoL YIVEL TTL0 eVavAyvmoTo dmtwg:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) —-> list[Color]:
pass

BML. typing kou PEP 484, mov meprypdper outiv tv AELToupyLtkoOTTo.

type hint

"Evag annotation wov KaOopilel Tov avapevouevo THITo Lo (ol UETAfANT, £V XopaKTNpLoTKo KAGong
1] WL TAPAUETPO CUVAPTNONG 1) TLUT) ETLOTPOPNG.

O vtodeikelg Tummy (type hints) eivar poorpetikéc Kal dev emBdilovran amd v Python, alld eivon
YPNOLWES YI0L static type checkers. Mmtopolv emiong va fondnoouvv tovg IDEs pe tn ovpthpmwon Kot thy
AVOSLAUOPPWOT KMOLKAL.

YmodeiEeig timov (type hints) yio koBohkég UeTOPINTEG, XOPAKTNPLOTIKE KAAONG KoL OUVAPTY)-
oelg , oOMG Oyl Tomukég uetafAnTég, Wmopolv Vo TPOOTEAACTOUV YPNOLULOTOLMVTAG TO typing.
get_type_hints ().

B\ typing ko PEP 484, mov mepuypdeper outhv Tnv hettovpytkdtnta.

KoboMxés véeg ypaupésg

"Eva. 1pdmog epunveiag pomv Kelnévou otov omoto dha to akdrovBa avayvwpilovtar mg MEeLg wag
ypauung: 1 ovufoon téhovg ypapung tov Unix '\n', 1 ovufaon tov Windows '\r\n', koL v mo-
Mé ovuPfaon Macintosh "\ r'. Br. PEP 278 xou PEP 3116, xa6d¢ Kot bytes.splitlines () ywo
pdodetn ypfom.

annotation petafinrig

'Evag annotation wo. petoFANe 1 evog XopaKT)pLoTiKoy KAGonG.

‘Otav annotating (o peta AN 1) £va XapaKTnPLoTko KAAONG, 1) 0vaOeo) ELVOL TTPOALPETLKT):

class C:
field: 'annotation'

Ta annotations PETAPANTOV XPNOLUOTOLOVVTAL CUVABWGS YLQL fype hints: Y10, TOPAdELYU auTh M LeTaPANTY
avouéverar vo el Tiwég int:

[count: int = 0 }

H o¥vta&n annotation petofintg meprypdpetol oty evotnta Annotated assignment statements.

BA\. function annotation, PEP 484 wouw PEP 526, mov mepuypdgovy aut) Aettovpyia. Aeite emiong
annotations-howto yia BELTLOTES TPAKTIKEG OYETIKA Ue TNV EpYaTia (e oy oMaouove.

virtual environment

"Evo. ouvepyatikd ommouovouévo mepBAAlov xpdvou eKTELEOTG TOV ETLTPETEL OTOVG YPNOTEG KOL TLG
epapuoyég g Python va gykataomoouv kou vo avafaduicovv makéta diavoung Python ywpig va
mopeufaivouv ot ovumepLpopd dAAwV epapuoymv Python o ektehovviol 0to idto cuoThua.

171

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python Language Reference, Anpoociguon 3.13.7

BA. emtiong venv.

virtual machine
"Evag vitohoylotig opiletor €€ ohokApov astd to Aoyioukd. H eucovikr| unyoavn tng Python extelei to
bytecode oV eXTEUTETOL ALTTO TOV PUeTAYAWTTLOTY bytecode.

walrus operator
A light-hearted way to refer to the assignment expression operator : = because it looks a bit like a walrus if you
turn your head.

Zen g Python
Katdhoyog oyedLA0TIKOV apy DV KoL (LAOGO@LOV TOU ELVOL YPTOLUEG YLOL TV KATAVONOT KL T (P10
™g Yhwooog. O Katdhoyog umopet vo Bpedel minktporoydviog «import this» oty dLodpaoTiky
KOVOOAQ.

172 Mapaptnua A'. NMwooapt

nAPAPTHMA B’

2 XETLKA PE TNV TEKUNPlwon

H texunpiwon g Python €xel dnuovpynOei amd ta reStructured Text sources Tov Sphinx, évav eneSepyaot
EYYPAPMV oV £xeL dnuovpynOel eldLkd Yo Ta £yypapa tg Python.

H avamtuEn tov eyypdewv kol Tov epyaleimv Toug eivat e€” ohokApou eBehovtiki] TtpoomtddeLa., dwg Kat
1 idua 1 Python. Edv 0éhete va ouvelopépete, piEte wa potid oty oelido reporting-bugs yio Anpogopieg
OYETIKEG e TO TG VO, To Kdvete. Kawvouprol eBehoviég eivan mavta evmpdodektol!

[ToAAég vy OpLOTiES TTNYALVOUY OTOVG:

o Fred L. Drake, Jr., Tov dnpuovpyd tov apytkmv epyoleimv g tekunpinong mg Python kot ouvtditn
OPKETOV TEPLEYOUEVOL

« 1o Docutils tpdtlekt yia Tqv dnuovpyio tov epapuoywv reStructuredText kow Docutils-

o Fredrik Lundh yio to 81x6 tou Alternative Python Reference mpotlext amd 1o omoio to Sphinx mjpe woht
KaAég 10éec.

B'.1 ZuvteAeoTEQ OTN TEKUNPiwon tTng Python
IMoAhol GvBpwmoL éxovv ouvelopéper otn yAwooo Python, tnv Bupiobnkn g Python, kol to €yypago tg
Python. Aeite Misc/ACKS otig mtnyég dravoung g Python yia wo Aoto tov ouvieheotav.

Movo e T ouUBoAT| KoL TIG CUVELOQOPEG THG KoLvotntag tg Python, 1 Python €yeL tétola vépoya éyypapa
- Zag evyopLotovpe!

173

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.13/Misc/ACKS

The Python Language Reference, Anpoociguon 3.13.7

174 Mapaptnua B'. ZXeTIKA JE TNV TEKUNPiwon

4
NAPAPTHMA [

lotopla kat Adela

.1 Hotopia Tou AoyLoHLKOU

H Python dnuovpyndnke otig apyés tov 1990 amd tov Guido van Rossum oto Stichting Mathematisch Centrum
(CWI, BA. https://www.cwi.nl) omnv OdMavdio wg duddoyog wa yhwooog tov ovopdaietan ABC. O Guido mo-
pauével o KUpLog ouyypapéag tng Python, tapdia ovtd mephoufdver ouvelopopés Kat amd dilo dropo.

To 1995, o Guido ouvéyioe to €pyo tov yio TV Python oto Corporation for National Research Initiatives (CNRI,
BA. https://www.cnri.reston.va.us) 6to Reston tg Virginia, 07t0v kukho@opnoe ToAES EKOOOELG TOV AOYLOULKOV.

Tov Mdéuwo tov 2000, o Guido ko 1 Baoikn} oudda avdmtuEng tng Python petokduoay oto BeOpen.com yuo.
va oynuatiocovv v oudda BeOpen PythonLabs. Tov Oktwfpro tov idtov €tovg, | ouddo tov PythonLabs
uetokouoe otnv Digital Creations, 1 omoia petatpannke oe Zope Corporation. To 2001, to Python Software
Foundation (PSF, BA. https://www.python.org/psf) dnutovpyhOnke wg évag un KepOOTKOTLKOG 0pYOVIOUOG UE
0TOY0 VO KOTEXEL TNV TTVELUOTLKY) LOLOKTNOL0 Tov oyetiletan pe thv Python. H Zope Corporation tov uéhog-
yopnydg tov PSF.

‘Oleg oL exdO0eLS TG Python eivar Avorytov Kmduka (BA. https://opensource.org yio Tov oplopd tov Avolytov
Kodika). Iotopikd ou meploodtepeg, arhd Oyl Oheg, exddoeLg TG Python fitay emiong ovufotéc ue mv ddea
GPL: 0 mopokdtm mivakag ouvopilet tig dudpopeg ekdOOELS.

‘Ekdoon Mpoepxduevn ard ‘Etoq [dloktnoia ZupPatotnta GPL; (1)
09.0émwg 1.2 &/v 1991-1995 CWI VoL
1.3éwg1.52 1.2 1995-1999 CNRI VoL
1.6 1.5.2 2000 CNRI oL
2.0 1.6 2000 BeOpen.com Oy
1.6.1 1.6 2001 CNRI va (2)
2.1 2.0+1.6.1 2001 PSF oYL
2.0.1 2.0+1.6.1 2001 PSF VoL
2.1.1 2.1+2.0.1 2001 PSF vou
2.1.2 2.1.1 2002 PSF vou
2.1.3 2.1.2 2002 PSF vou
2.2 xou whvew 2.1.1 2001-onuepa. PSF vou

175

https://www.cwi.nl
https://www.cnri.reston.va.us
https://www.python.org/psf
https://opensource.org

The Python Language Reference, Anpoociguon 3.13.7

O Ihusioon

(1) H ovppatotra ue GPL dev onuaiver 6t dravépetor 1 Python kdtw amd v ddewor GPL. ‘Oleg ot
adeieg g Python, oe avtifeon pe tv GPL, cog emttpémouy vo. SLOVELIETE ULd TPOTTOTTOLNUEVT EK-
doon ywpig vo KaveTe Tig ahhayég oag, ovolytov kmdika. Ot adeteg ue ovppatotnta GPL xabiotoiy
duvatd Tov ovvdvaoud g Python pe dilo Aoyioukd mov kukhogpopet ue pdoel tg GPL, evad ou G-
Leg OyL.

(2) ZOupwva pe tov Richard Stallman, 1.6.1 dgv eivar ouufoty) pue tnv GPL, emedn 1 ddera tng €xeL vo-
wKh prTpa emAoyns, Zoppwva ue to CNRI, wot600, 0 d1knyopog tov Stallman &ime otov dtkNyopo
™G CNRI 6t 1 1.6.1 «dev eivar ovufaty» pe v GPL.

Xéapn, otovg mohhotg eEmTeptkolg 0elovTég mov epydotnkav Katw amtd g 0dnyieg tov Guido, autég ot
EKOO0ELG EYLVALY EPLKTEC.

.2 Opol kal nipoUmnoBEoceLg yLa TNV Mpéopaocn 1} TNV XPrion tTng
Python pe aAAoug tpoémoug

To Moywopko tg Python ko 1 tekunpiworn adetodotovvion ovppmva we v adewa ypnong Python Software

Foundation 'Exdoon 2.

Eekivaovtag amxd v Python 3.8.6, mapadeiyuata, ovvtayég kol 0 GAOG KOdIKAG 0TV TEKUNPlwa Exouv
St ddela xpNomg, ovpupwva pe v Adewa PSF 'Exdoon 2 kaw tg Zero-Clause BSD doeia.

Kdémolo hoyoukd mou givar evowuatmuévo otny Python eivoar vd dragpopetikég adeteg ypnons. OL adeteg
ToPOTIOEVTOL LE KMOLKO TOV EUTTLTTTEL 08 AUTHV TNV adera. Agite Adeies ko Evyapioties yio Evewuatwuévo
Aoyiourd o oL EMITT AMoTo QuTdv TV adeLdv.

".2.1 PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF
"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using this

software ("Python") in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF.
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2024 Python Software Foundation; All._
—Rights

Reserved" are retained in Python alone or in any derivative version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

(ouvéyela oty emtduevn oehida)

176 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

—~to Python.

4. PSF is making Python available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY._
—OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY..
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR..
—THAT THE

USE OF PYTHON WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A._
—RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

trademark sense to endorse or promote products or services of Licensee,.
—O0r any

third party.

8. By copying, installing or otherwise using Python, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

2.2 ZYMoQNIA AAEIAZ BEOPEN.COM I'l|A PYTHON 2.0
SYM®QONIA AAEIAZ ANOIXTOY KQAIKA BEOPEN PYTHON EKAOZH 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an.
—~office at

160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or.
—~Organization

("Licensee") accessing and otherwise using this software in source or.
—binary

form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License.
—Agreement,

BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide.
—license

to reproduce, analyze, test, perform and/or display publicly, prepare.
—~derivative

works, distribute, and otherwise use the Software alone or in any.
—derivative

version, provided, however, that the BeOpen Python License is retained.
—~in the

(ouvéyela oty eV oehida)

M.2. Opol kai poiinmoBeoeLg yia Tnv npoopaon 1 tnv Xprion tng Python pe aAAouqg tpondd@

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY..
—WAY OF

EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY..
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE.
—~SOFTWARE FOR

ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
OF USING,

MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN.
—IF

ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material.
—breach of

its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all.
—respects

by the law of the State of California, excluding conflict of law.
—provisions.

Nothing in this License Agreement shall be deemed to create any.
—relationship of

agency, partnership, or joint venture between BeOpen and Licensee.
—This License

Agreement does not grant permission to use BeOpen trademarks or trade.
—names 1in a

trademark sense to endorse or promote products or services of Licensee, .
—0r any
third party. As an exception, the "BeOpen Python" logos available at

http://www.pythonlabs.com/logos.html may be used according to the.
—permissions

granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees.
—~to be

bound by the terms and conditions of this License Agreement.

r.2.3 ZYM®QNIA AAEIAZ CNRI I'lA PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA._
20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI._
—hereby

(ouvéyela otV oV 0ehid)

178 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 1.6.1 alone or in any derivative.
—version,

provided, however, that CNRI's License Agreement and CNRI's notice of.
—copyright,

i.e., "Copyright © 1995-2001 Corporation for National Research.
—~Initiatives; All

Rights Reserved" are retained in Python 1.6.1 alone or in any.
—derivative version

prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,

Licensee may substitute the following text (omitting the quotes) :
—"Python 1.6.1

is made available subject to the terms and conditions in CNRI's License

Agreement. This Agreement together with Python 1.6.1 may be located on.
—~the

internet using the following unique, persistent identifier (known as a.
—~handle) :

1895.22/1013. This Agreement may also be obtained from a proxy server.
—on the

internet using the following URL: http://hdl.handle.net/1895.22/1013".

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the.
—~derivative
work available to others as provided herein, then Licensee hereby..

—agrees to
include in any such work a brief summary of the changes made to Python.

‘*}1.6-1-

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. .

—CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF._

—~EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR.

—WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE._

—USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1.

—FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY.

—~DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual..
—property
law of the United States, including without limitation the federal.

(ouvéyela otV entopevn oehida)

M.2. Opol kai poiinmoBeoeLg yia Tnv npoocpaon 1 tnv Xprion tng Python pe aAAouqg tpondd§

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

—copyright

law, and, to the extent such U.S. federal law does not apply, by the.
—~law of the

Commonwealth of Virginia, excluding Virginia's conflict of law.
—provisions.

Notwithstanding the foregoing, with regard to derivative works based on.
—~Python

1.6.1 that incorporate non-separable material that was previously.
—distributed

under the GNU General Public License (GPL), the law of the Commonwealth..
—of

Virginia shall govern this License Agreement only as to issues arising.
—under or

with respect to Paragraphs 4, 5, and 7 of this License Agreement. .
—Nothing in

this License Agreement shall be deemed to create any relationship of.
—agency,

partnership, or joint venture between CNRI and Licensee. This License.
—Agreement

does not grant permission to use CNRI trademarks or trade name in a.
—trademark

sense to endorse or promote products or services of Licensee, or any..
—third

party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, .
—~installing

or otherwise using Python 1.6.1, Licensee agrees to be bound by the.
—~terms and

conditions of this License Agreement.

r.2.4 ZYMoOQNIA AAEIAZ CWII'lA PYTHON 0.9.0 EQx 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided.
—that

the above copyright notice appear in all copies and that both that.
—copyright

notice and this permission notice appear in supporting documentation, and.
—that

the name of Stichting Mathematisch Centrum or CWI not be used in.
—advertising or

publicity pertaining to distribution of the software without specific, .
—written

prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, .
—IN NO

EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, .
—~INDIRECT

OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF.

(ouvéyela otV oV 0ehid)

180 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
—USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER.
—TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

".2.5 ZERO-CLAUSE BSD AAEIA I' A TON KQAIKA ZTHN TEKMHPIQZH THZ
PYTHON

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES.
WITH

REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL,.
DIRECT,

INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE.
—OR

OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

.3 Adeleg katL Euxapiotieg yia Evowpatwpévo AOYLOULKO

Avti M evotita givor o nutelic, odd avEavouevn Moto adewmv KoL EVyapLoTImV Yo, AOYLoWKOS Tpitmv,
IOV EVOOROTOVETAL 0TV dtavour| g Python.

".3.1 Mersenne Twister

H enéxtaon _random C mov Bpioketor KAtw omd v evoTto random TePLauPAVEL VOV KMOOLKO |Ie
Baon wa AYn amd http://www.math.sci.hiroshima-u.ac. jp/~m-mat/MT/MT2002/emt19937ar.html. Axohov-
Bouv Katd MEN ta oy dha amtd To apyLKO KhdLKaL:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

(ouvéyea otV exopEVn oehid)

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 181

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT.
—~OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

M.3.2 Sockets

H evdtnta socket xpnowwomoLel Tig ouvaptoels, getaddrinfo (), KoLgetnameinfo (), To omoio £xouv
viomoBei oe draopetikd apyeia amd to WIDE 'Epyo, https://www.wide.ad. jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

182 Mapaptnua I'. lotopia kat Adsla

https://www.wide.ad.jp/

The Python Language Reference, Anpoociguon 3.13.7

M.3.3 Aouyxpoveg socket unnpeoieq

Ouevomteg test . support .asynchat koL test . support .asyncore mePLEXOUV TV TAPAKAT® E100-
moinon:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

M.3.4 Awaxeipion Cookie

H evomto http.cookies mepéyeL TV mopaKdT® £100TOINON:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

M.3.5 Avixveuon eKTéAeong

H evomto trace mepLéxel v TapokdTm eL80ToINoN

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...

err... reserved and offered to the public under the terms of the
(ouvéyela oty eV oehida)

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 183

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

M".3.6 Zuvaptioeig UUencode kat UUdecode

The uu codec contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

— Arguments more compliant with Python standard

184 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoociguon 3.13.7

M.3.7 KAnfoeig Antopakpuopgvng Atadikaciag XML

H evomto xmlrpc. client mepiéyel v mopakdtw €100moinon:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

M.3.8 test_epoll

Hevomto test.test_epoll mepLéyel TV TOPAKATO ELOOTOINON

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 185

The Python Language Reference, Anpoociguon 3.13.7

r.3.9 Eruioyn kqueue

H evomta select mepiéyel v Tapakdtm eldomoinon yio v kqueue diemopi):

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

.3.10 SipHash24

To apyelo Python/pyhash.c mepiéxer v vhomoinon tov Marek Majkowski tov olyopiBuov tov Dan
Bernstein, SipHash24. Autd mepléyel v mapakatm onueinon:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a.
—Ccopy

of this software and associated documentation files (the "Software"), to.
—~deal

in the Software without restriction, including without limitation the.
—rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little?2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

186 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoociguon 3.13.7

M.3.11 strtod kaw dtoa

To apyelo Python/dtoa. ¢, mov mapéyel g ovvapthoelg dtoa ko strtod tng C yio petatporm twv C doubles
7TPOG Ko atd strings, poépyetat amd to oumdvupo apyeto tov David M. Gay, mtpog to mopdv diabéoiuo amd
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c. To apyikd apyeto, dmwg avokt-
Onke otig 16 Maptiov, 2009, epiéyel Ta axOAOVO TVEVUATIKG SLKOLDUOTA KOL TV ELO0TOIN0N 0dEL0dOTN-

ong:

/**

The author of this software is David M. Gay.
Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
*
*
*
* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

*

*

*

*

*

*

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY . IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

**/

M.3.12 OpenSSL

The modules hashlib, posix and ss1 use the OpenSSL library for added performance if made available by the
operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived
from that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
(ouvéyela oty eV oehida)

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 187

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution (s)

(ouvéyela otV entopevn oehida)

188 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

(ouvéyela otV entopevn oehida)

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 189

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even i1if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

.3.13 expat

H enéxtaon pyexpat dMUWOUPYELTOL XPNOLUOTOLMVTAG £VO CUUWTEPINOUBOVOUEVO OVTLYPAPO TMWV TTIYMV
expat, ektog edv 1 €kdoom £xeL TNy pUOULON ——with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

(ouvéyela oty eV oehida)

190 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

r.3.14 libffi

H enéxtaon g C _ctypes mov Bpioketor KATW o6 TNV €VOTNTO ctypes dNWOUPYELTOL XPNOLUO-
moLdvTog €va ovumepthapupavouevo avtiypago twv mnydv libfli, extdg edv 1 €ékdoon €xer v pubuom
——with-system-1libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

r.3.15 zlib

H eméxtaon z1ib dnulovpyeital ¥p1oLULOTOLMVTAS VO CUUTEPLAAUBAVOUEVOL avTiypapo TV Tnydv zlib,
eqv 1 £xdoom Tov zlib tov BpiokeTol 0To CVOTNUO ELVOL TTOA) TTOALA YLOL VAL X PN OLULOTTOLNOEL YL TNV KATOOKEVT):

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
(ouvéyela oty eV oehida)

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 191

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

M.3.16 cfuhash

H vhomoinom tov mivaKo KatoKepUOTLoNoy JTov ¥PNoLUoToLeiTan artd to tracemal loc faciletol oto £pyo
cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

M.3.17 libmpdec

H enéxrtaon _decimal mov Bpioketar KGtw omd Vv evotnta decimal €lvol (QTIOYUEVY YPVOLUOTOLD-

vtag éva ovumepthapufavopevo avtiypogo g BprodNkng libmpdec, extdg av 1 €kdoon éxer pubuLom
—--with-system-1libmpdec

192 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoociguon 3.13.7

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3.18 W3C C14N ocouita doKLHuNiQ

H covita doxiurig C14N 2.0 oto mokéto test (Lib/test/xmltestdata/cl14n-20/) avaktibnke amxd
tov totdtomo tov W3C https://www.w3.0org/TR/xml-c14n2-testcases/ ko drovéuetar pe thv adewa 3 pNTpwv
BSD:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
(ouvéyela oty eV oehida)

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 193

https://www.w3.org/TR/xml-c14n2-testcases/

The Python Language Reference, Anpoociguon 3.13.7

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

{OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

.3.19 mimalloc
MIT License:

Copyright (c) 2018-2021 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a.
—COpYy

of this software and associated documentation files (the "Software"), to.
—deal

in the Software without restriction, including without limitation the.
—rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in.
—~all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALIL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING.
_FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN._
. THE

SOFTWARE .

M.3.20 asyncio

Mépn g evotntag asyncio evomuatmvoviol axd to uvloop 0.16, 1) omoia dtavéuetan ue ddewor MIT:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

194 Mapaptnua I'. lotopia kat Adsla

https://github.com/MagicStack/uvloop/tree/v0.16.0

The Python Language Reference, Anpoociguon 3.13.7

M.3.21 Global Unbounded Sequences (GUS)

The file Python/gsbr. c is adapted from FreeBSD’s «Global Unbounded Sequences» safe memory reclamation
scheme in subr_smr.c. The file is distributed under the 2-Clause BSD License:

Copyright (c) 2019,2020 Jeffrey Roberson <jeff@FreeBSD.org>

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice unmodified, this list of conditions, and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 195

https://github.com/freebsd/freebsd-src/blob/main/sys/kern/subr_smr.c

The Python Language Reference, Anpoociguon 3.13.7

196 Mapaptnua I'. lotopia kat Adsla

nAPAPTHMA £\’

Copyright

H Python ko vt 1) Tekunpiwon eivod:

Copyright © 2001-2024 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. OLa T SUKOLMOUOTA SLATNPOVVTOL.

Copyright © 1995-2000 Corporation for National Research Initiatives. Olo. To. StKaLOUATO SLATNPOVVTAL.

Copyright © 1991-1995 Stichting Mathematisch Centrum. ‘Ola Tal SLKOLOUOTA SLATPOVVTOL.

AvatpéEte 010 lotopla kar Adea Yo TPNG TANPOQOPNON OYETIKE te TNV AdeLa YpNoNG Ko Tig eE0V010d0-
THOELG.

197

The Python Language Reference, Anpoociguon 3.13.7

198 Mapaptnua A'. Copyright

Eupetriplo

MN-aAQAPLTIKA
..., 153
ellipsis literal, I8
string literal, 10
. (dot)
attribute reference, 85
in numeric literal, 15
! (exclamation)
in formatted string literal, 12
— (minus)
binary operator, 89
unary operator, 88
; (semicolon), 109
' (single quote)
string literal, 10
! patterns, 117
" (double quote)
string literal, 10
string literal, 10
(hash)
comment, 5
source encoding declaration,6
% (percent)
operator, 89

o\°
Il

augmented assignment, 99

& (ampersand)
operator, 90

&:
augmented assignment, 99

() (parentheses)
call, 86
class definition, 125
function definition, 123
generator expression, 80
in assignment target list,98
tuple display, 78

* (asterisk)
function definition, 124
import statement, 105
in assignment target list,98

in expression lists, 94
in function calls, 87
operator, 89

* %
function definition, 124
in dictionary displays, 80
in function calls, 87
operator, 88

* k=

augmented assignment, 99

augmented assignment, 99
+ (plus)
binary operator, 89
unary operator, 88
4=
augmented assignment, 99
, (comma), 78
argument list, 86
expression list, 79,94, 101, 125
identifier list, 107
import statement, 104
in dictionary displays, 80
in target list,98
parameter list, 123
slicing, 86
with statement, 114
/ (slash)
function definition, 124
operator, 89
//
operator, 89
//=

augmented assignment, 99

augmented assignment, 99
0b
integer literal, 14
0o
integer literal, 14
0x
integer literal, 14
: (colon)
annotated variable, 100

199

The Python Language Reference, Anpoociguon 3.13.7

compound
123, 125

function annotations, 124

in dictionary expressions, 80

in formatted string literal, 12

lambda expression, 94
slicing, 86

: = (colon equals), 93
< (less)

<<

<<=

<=

operator, 90
operator, 90
augmented assignment, 99
operator, 90
operator, 90

augmented assignment, 99

= (equals)

assignment statement, 98
class definition,43

for help in debugging using string

literals, 12
function definition, 124
in function calls, 86

operator, 90

function annotations, 124

> (greater)

operator, 90

statement, 110, 111, 114, 115,

CPython, 157
C-contiguous, 157
Conditional
expression, 93
DEDENT token,7, 110
EAFP, 158
Ellipsis
object, 18
False, 19
Fortran contiguous, 157
GII, 161
GeneratorExit
exception, 82, 84
IDLE, 161
INDENT token,7
ImportError
exception, 104
Java
language, 19
LBYL, 163
MRO, 165
NEWLINE token,5, 110
NameError
exception, 77
NameError (evowuatwuévn eEaipeon),
None
object, 18, 97
NotImplemented
object, 18
PEP, 167
PYTHONHASHSEED, 38
PYTHONNODEBUGRANGES, 31
PYTHONPATH, 72

60

>= PYTHON_GIL, 161
operator, 90 Python 3000, 168
>> Python Enhancement Proposals
operator, 90 PEP 1, 167
>>= PEP 8,91
augmented assignment, 99 PEP 236, 106
>>> 153 PEP 238,159
@ (ar) PEP 252,40
class definition, 126 PEP 255, 82
function definition, 123 PEP 278,171
operator, 89 PEP 302, 65,75, 164
AS pattern, OR pattern, capture PEP 308,94
pattern, wildcard pattern, 117 PEP 318,125,126
ASCIT, 4,10 PEP 328,75
AssertionError PEP 338,75
exception, 101 PEP 342,82
AttributeError PEP 343,53,115,156
exception, 85 PEP 362,154,167
BDFL, 155 PEP 366,25,75
BNF, 4,77 PEP 380, 82
Boolean PEP 411, 168
object, 19 PEP 414,10
operation, 93 PEP 420, 65, 66,71, 75, 165, 167
c, 10 PEP 443,160
language, 18, 19, 24, 90 PEP 448, 80, 87,94
200 Eupetniplo

The Python Language Reference, Anpoociguon 3.13.7

PEP 451,75
PEP 483,161
PEP 484,46, 100, 125, 153, 160, 161, 171
PEP 492,55, 82,128, 154, 155, 157
PEP 498, 14, 158
PEP 519, 167
PEP 525,82, 154
PEP 526, 100, 125, 153,171
PEP 530,79
PEP 560, 44,48
PEP 562,40
PEP 563,106, 125
PEP 570, 124
PEP 572,80,94,119
PEP 585, 161
PEP 614,124,126
PEP 617,135
PEP 626,32
PEP 634,53,116,123
PEP 636,116,123
PEP 646, 85,95,125
PEP 649,61
PEP 683,161
PEP 688,54
PEP 695,62, 108
PEP 696,62, 128
PEP 703,159, 161
PEP 3104, 107
PEP 3107,125
PEP 3115,45,126
PEP 3116,171
PEP 3119,46
PEP 3120,5
PEP 3129, 125,126
PEP 3131,8
PEP 3132,99
PEP 3135,46
PEP 3147,26
PEP 3155, 168
Pythonic, 168
REPL, 169
Standard C, 10
StopAsynclIteration
exception, 84
StopIteration
exception, 82, 102
SystemExit (evowuatwuévn eEaipeon), 63
True, 19
TypeError
exception, 88
UNIX, 133
UnboundLocalError, 60
Unicode, 20
Unicode Consortium, 10
ValueError
exception, 90
Windows, 133
Zen tnc¢ Python, 172

ZeroDivisionError

exception, 89
[1 (square brackets)

in assignment target list,98

list expression, 79

subscription, 85
\ (backslash)

escape sequence, 10
\N

escape sequence, 10
\U

escape sequence, 10
\N\

escape sequence, 10
\a

escape sequence, 10
\b

escape sequence, 10
\f

escape sequence, 10
\n

escape sequence, 10
\r

escape sequence, 10
\t

escape sequence, 10
\u

escape sequence, 10
\v

escape sequence, 10
\x

escape sequence, 10
~ (caret)

operator, 90

A

augmented assignment, 99
_ (underscore)

in numeric literal, 14,15
_, ldentifiers,9
__, identifiers,9

__abs__ () (uéBodog tng object), 52
__add__ () (uéBodog g object), 50
__aenter__ () (uébodog tng object), 57
__aexit__ () (uébBodog g object), 57
__aiter__ () (uébodog tng object), 56
__all__ (optional module attribute), 105
__and__ () (uébodog tng object), 50
__anext__ () (uéBodog tngs agen), 84
__anext__ () (uéBodog g object), 56

__annotations__ (class attribute), 28
__annotations___ (function attribute), 22
__annotations__ (module attribute), 24
__annotations__ (ididtnTa g function), 22
__annotations__ (tdidtnta s module), 26
__annotations__ (tdidtnta 116 type), 28
__await__ () (uéBodog g object), 55

_ bases__ (class attribute), 28

__bases__ (106t I8 type), 28

Eupetniplo

201

The Python Language Reference, Anpoociguon 3.13.7

__bool__ () (object method), 49
__bool__ () (uéBodog tng object), 38
__buffer__ () (uéBodog g object), 53
__bytes__ () (uéBodog tng object), 36

__cached__ (module attribute), 24
__cached___ (tddtnta s module), 26

__call__ () (object method), 88
__call__ () (uéBodog g object), 48
___cause___ (exception attribute), 103
__ceil__ () (uéBodog tnc object), 52

__class__ (instance attribute), 29
__class__ (method cell), 45
_ class__ (module attribute), 40
__class__ (tddtnta g object), 29
__class_getitem__ () (u€6odos kAdons g
object), 46
__classcell__ (class namespace entry), 45
__closure__ (function attribute), 21
__closure__ (tdtdtnta g function), 21
___code__ (function attribute), 22
___code___ (t0idtyTa Thg function), 22

__complex__ () (uéBodog tng object), 52
__contains__ () (uébodog g object), 50
__context___ (exception attribute), 103
__debug__, 101

__defaults__ (function attribute), 22
__defaults__ (tdtotnta tns function), 22

__del__ () (uébodog tng object), 35
__delattr__ () (uéodog g object), 39
__delete__ () (uéBodog tng object), 41
__delitem__ () (uéBodog tng object), 50

_dict__ (class attribute), 28
___dict__ (function attribute), 22
__dict__ (instance attribute), 29
_dict__ (module attribute), 27
__dict__ (iddtnra e function), 22
__dict__ (i6dtyra tng module), 27
__dict__ (tddtnra 156 object), 29
__dict__ (i0idtnra g type), 28

_ dir__ (module attribute), 40
__dir__ () (uéBodog tng object), 39
__divmod__ () (uéBodog tng object), 50
__doc__ (class attribute), 28
___doc___ (function attribute), 22
_doc___ (method attribute), 22
__doc__ (module attribute), 24
__doc__ (t0dtnTa N6 function), 22
__doc__ (tSiétnTa g method), 23
__doc__ (tddtnra s module), 26
__doc__ (tddtnta g type), 28

__enter__ () (uéBodog tng object), 52
__eq__ () (uéBodog g object), 37
__exit__ () (uéBodog tnc object), 53

_ file_ (module attribute), 24
__file__ (16dtnra tng module), 26

_ firstlineno__ (class attribute), 28
__firstlineno__ (ididtnta w16 type), 28
__float__ () (uéBodog tng object), 52

__floor__ () (uéBodog g object), 52
_ floordiv__ () (uébodog g object), 50
_ format__ () (uéBodog tng object), 36

_ func__ (method attribute), 22
__func__ (i6idtyra tng method), 23
_ future_ , 160

future statement, 106

__ge__ () (uéBodog tng object), 37

__get__ () (uébodog g object), 40
__getattr__ (module attribute), 40
__getattr__ () (uéBodog tng object), 38
__getattribute__ () (uéBodog tng object), 39
__getitem__ () (mapping object method), 34
__getitem__ () (uéBodog tig object), 49

__globals__ (function attribute), 21
__globals__ (tSiétnTa g function), 21

__gt__ () (uéBodog g object), 37
__hash__ () (uébodog g object), 37
__iadd__ () (uéBodog tng object), 51
__iand__ () (uéBodog tng object), 51
__ifloordiv__ () (uéBodog tng object), 51
__ilshift__ () (uéBodog tng object), 51
__imatmul__ () (uéBodog g object), 51
__imod__ () (uébodog g object), 51
__imul__ () (uéBodog tng object), 51
__index__ () (uéBodog tng object), 52
__init__ () (uéBodog tng object), 35
__init_subclass__ () (uébodoc kAdons e
object), 42
__instancecheck__ () (uéBodog g type), 46
__int__ () (uéBodog tng object), 52
__invert__ () (uéBodog tng object), 52
__dor__ () (uébodog tng object), 51
__ipow__ () (uébodog g object), 51
__irshift_ () (uéBodog tig object), 51
__isub__ () (uéBodog tng object), 51
__iter__ () (uéBodog tng object), 50
__itruediv__ () (uébodog ¢ object), 51
__ixor__ () (uébodog g object), 51

__kwdefaults__ (function attribute), 22
__kwdefaults__ (tddtnra g function), 22

__le__ () (uéBodog tng object), 37

_ len__ () (mapping object method), 38
__len__ () (uébodog tng object), 49

_ length_hint__ () (uéBodog tng object), 49

_ loader__ (module attribute), 24
__loader__ (t6dtnta tng module), 25

__1shift__ () (uéBodog tng object), 50
__1t__ () (uébodog tng object), 37
_ _main_

module, 61, 133
__matmul__ () (uéBodog t¢ object), 50
__missing__ () (uéBodog tng object), 50
__mod___ () (uébodog t1¢ object), 50

__module__ (class attribute), 28
__module__ (function attribute), 22

_ _module__ (method attribute), 22
__module__ (t0dtnra TNg function), 22

202

Eupetniplo

The Python Language Reference, Anpoociguon 3.13.7

__module___ (tddtnta ¢ method), 23 __str__ () (uébodog tn¢ object), 36
__module___ (tdtdtnra N type), 28 __sub___ () (uéBodog tng object), 50
__mro___ (tdtnTa g type), 28 __subclasscheck__ () (uébodog trg type), 46
__mro_entries__ () (uéBodog trg object), 44 __subclasses__ () (uéodog g type), 29
__mul__ () (uéBodog tng object), 50 __traceback___ (exception attribute), 102
__name___(class attribute), 28 __truediv__ () (uéBodog tng object), 50O
__name___ (function attribute), 22 __trunc__ () (uébodog tng object), 52
__name___ (method attribute), 22 __type_params___ (class attribute), 28
__name___ (module attribute), 24 __type_params___ (function attribute), 22
__name___ (10iétyTa TNg function), 22 __type_params__ (ididtnTa g function), 22
__name___ (tddtnra 56 method), 23 __type_params___ (tdiotnTa g type), 28
__name___ (t0tdtnra tng module), 25 __xor___ () (uébodog tng object), 50
__name___ (10iétnTa TN type), 28 abs

__ne__ () (uéBodog tng object), 37 built-in function, 52
__neg__ () (uéBodog tng object), 52 aclose () (uébodog tnc agen), 84
__new__ () (uéBodog tng object), 35 addition, 89

__next__ () (uéBodog tng generator), 82 and

__objclass__ (tddtnta s object), 41 bitwise, 90

__or__ () (uéBodog tng object), 50 operator, 93

__package___ (module attribute), 24 annotated

__package__ (tdidtnTa s module), 25 assignment, 100

__path__ (module attribute), 24 annotation, 153

__path__ (16idtnra tng module), 26 annotation petaPAntng, 171
__pos__ () (uébodog tng object), 52 annotations

__pow__ () (uébodog tng object), 50 function, 124

__prepare__ (metaclass method), 45 anonymous

__qualname___ (tdtotnta tns function), 22 function, 94

__qualname___ (tdtotnTa. tng type), 28 argument

__radd__ () (uéBodog tng object), 51 call semantics, 86

__rand__ () (uéBodog tng object), 51 function, 21

__rdivmod__ () (uéBodog tng object), 51 function definition, 124
__release_buffer__ () (uéBodog tng object), 53 arithmetic

__repr___ () (uéBodog tngs object), 36 conversion, 77

__reversed__ () (uébodog tng object), 50 operation,binary, 89
__rfloordiv__ () (uébodog tng object), 51 operation, unary, 88
__rlshift__ () (uéBodog tng object), 51 array

__rmatmul__ () (uéBodog tng object), 51 module, 20

__rmod___ () (uéBodog tng object), 51 as

__rmul__ () (uéBodog tng object), 51 except clause, |11

__ror__ () (uéBodog g object), 51 import statement, 104
__round___ () (uéBodog tng object), 52 keyword, 104, 111, 114, 115
__rpow__ () (uéBodog tng object), 51 match statement, 115
__rrshift__ () (uéBodog tng object), 51 with statement, 114
__rshift__ () (uébodog t1g object), 50 asend () (uébodog g agen), 84
__rsub__ () (uéBodog tng object), 51 assert

__rtruediv__ () (uébodog s object), 51 statement, 101

__rxor__ () (uéBodog tng object), 51 assertions

_self__ (method attribute), 22 debugging, 101

__self__ (tddtnra 6 method), 23 assignment

__set___ () (uébodog tng object), 41 annotated, 100

__set_name__ () (uéBodog g object), 43 attribute, 98

__setattr__ () (uéBodog tng object), 39 augmented, 99

__setitem__ () (uéBodog tng object), 49 class attribute, 27
__slots_ ,169 class instance attribute, 29
___spec__ (module attribute), 24 expression, 93

__spec___ (t6dtnra tng module), 25 slicing, 99

_ static_attributes__ (class attribute), 28 statement, 20, 98
__static_attributes__ (ididtnTa w16 type), 28 subscription, 99

Eupetniplo 203

The Python Language Reference, Anpoociguon 3.13.7

target 1list, 98
assignment expression, 93
async

keyword, 126
async def

statement, 126
async for

in comprehensions, 79

statement, 127
async with

statement, 127
asynchronous generator

asynchronous iterator, 23

function, 23
asynchronous—generator

object, 84
athrow () (uéBodog tne agen), 84
atom, 77
attribute, 18

assignment, 98

assignment, class, 27

assignment, class instance, 29

class, 27

class instance, 29

deletion, 101

generic special, 18

reference, 85

special, 18
augmented

assignment, 99
await

in comprehensions, 79

keyword, 88, 126
awaitable, 155
b 1

bytes literal, 10
b"

bytes literal, 10
backslash character,6
binary

arithmetic operation, 89

bitwise operation, 90
binary literal, 14
binding

global name, 107

name, 98, 104, 105, 123, 125
bitwise

and, 90

operation, binary, 90

operation, unary, 88

or, 90

xor, 90
blank line,6
break

statement, 104, 110, 113
built-in

method, 24
built-in function

abs, 52
bytes, 36
call, 88
chr, 20
compile, 107
complex, 52
divmod, 51
eval, 107, 134
exec, 107
float, 52
hash, 37
id, 17
int, 52
len, 1921, 49
object, 24, 88
open, 29
ord, 20
pow, 51
print, 36
range, 111
repr, 97
round, 52
slice, 34
type, 17,43
built-in method
call, 88
object, 24, 88
builtins
module, 133
byte, 20
bytearray, 20
bytecode, 29, 155
bytes, 20
built-in function, 36
bytes literal, 10
bytes-like avtikeipeva, 155
call, 86
built-in function, 88
built-in method, 88
class instance, 88
class object, 27,88
function, 21, 87, 88
instance, 48, 88
method, 88
procedure, 97
user—-defined function, 87
callable, 155
object, 21, 86
callback, 156
case
keyword, 115
match, 115
case block, 117
chaining
comparisons, 90
exception, 103
character, 20, 85
chr

204

Eupetniplo

The Python Language Reference, Anpoociguon 3.13.7

built-in function, 20
class

attribute, 27

attribute assignment, 27

body, 45

constructor, 35

definition, 101, 125

instance, 29

name, 125

object, 27, 88, 125

statement, 125
class instance

attribute, 29

attribute assignment, 29

call, 88

object, 27,29, 88
class object

call, 27,88
clause, 109
clear () (uébodog tng frame), 33
close () (u€6odog tng coroutine), 56
close () (uébodog g generator), 82
co_argcount (code object attribute), 29
co_argcount (tddtnta e codeobject), 30
co_cellvars (code object attribute), 29
co_cellvars (ididtnta ¢ codeobject), 30
co_code (code object attribute), 29
co_code (tddtntae g codeobject), 30
co_consts (code object attribute), 29
co_consts (tddtyTa e codeobject), 30
co_filename (code object attribute), 29
co_filename (tddtnTa ¢ codeobject), 30
co_firstlineno (code object attribute), 29
co_firstlineno (tdidtnta g codeobject), 30
co_flags (code object attribute), 29
co_flags (tddtnTa e codeobject), 30
co_freevars (code object attribute), 29
co_freevars (iddtnra ¢ codeobject), 30
co_kwonlyargcount (code object attribute), 29
co_kwonlyargcount (tddtnra g codeobject), 30
co_lines () (uébodog tnc codeobject), 31
co_lnotab (code object attribute), 29
co_lnotab (tdidtnTa T8 codeobject), 30
co_name (code object attribute), 29
co_name (tddtnTe g codeobject), 30
co_names (code object attribute), 29
co_names (t0dtnTa e codeobject), 30
co_nlocals (code object attribute), 29
co_nlocals (tdtotnta tns codeobject), 30
co_positions () (uébodog tng codeobject), 31
co_posonlyargcount (code object attribute), 29
co_posonlyargcount (tdotnta tng codeobject),

30

co_qualname (code object attribute), 29
co_qualname (tddtnTa g codeobject), 30
co_stacksize (code object attribute), 29
co_stacksize (1diotnra g codeobject), 30
co_varnames (code object attribute), 29

co_varnames (tddtnra ¢ codeobject), 30
code object, 29
collections
module, 20
comma, 78
trailing, 95
command line, 133
comment, 5
comparison, 90
comparisons, 37
chaining, 90
compile
built—-in function, 107
complex
built-in function, 52
number, 19

object, 19
complex literal, 14
compound

statement, 109
comprehensions, 79

dictionary, 80

list, 79

set, 79
conditional

expression, 94
constant, 10
constructor

class, 35
container, 18, 27
context, 156
context manager, 52
context petaPAnth, 157
contiguous, 157
continue

statement, 104, 110, 113
conversion

arithmetic, 77

string, 36,97
coroutine, 55, 81, 157

function, 23
coroutine ouvdptnon, 157
dangling

else, 110
data, 17

type, 18

type, immutable, 78
dbm.gnu

module, 21
dbm.ndbm

module, 21
debugging

assertions, 101
decimal literal, 14
decorator, 157
def

statement, 123
default

Eupetniplo

205

The Python Language Reference, Anpoociguon 3.13.7

parameter value, 124
definition
class, 101, 125
function, 101, 123
del
statement, 35, 101
deletion
attribute, 101
target, 101
target list, 101
delimiters, 15
descriptor, 157
destructor, 35, 98
dictionary
comprehensions, 80
display, 80
object, 21, 27, 37, 80, 85, 99
display
dictionary, 80
list,79
set, 79
division, 89
divmod
built-in function, 5l
docstring, 125,158
documentation string, 31
duck-typing, 158
dunder, 158
e
in numeric literal, 15
elif
keyword, 110
else

conditional expression, 94

dangling, 110
keyword, 104, 110, 111, 113

empty
list, 79
tuple, 20, 78

encoding declarations (source file), 6

escape sequence, 10
eval

built-in function, 107, 134

evaluation
order, 95
exc_info (in module sys), 33
except
keyword, 111
except_star
keyword, 112
exception, 102
AssertionError, 101
AttributeError, 85
GeneratorExit, 82, 84
ImportError, 104
NameError, 77
StopAsyncIteration, 84
StopIteration, 82, 102

TypeError, 88
ValueError, 90
ZeroDivisionError, 89
chaining, 103
handler, 33
raising, 102
exclusive
or, 90
exec
built-in function, 107
execution
frame, 125
stack, 33
expression, 77
Conditional, 93
assignment, 93
conditional, 94
generator, 80
lambda, 94, 125

list, 94,97

statement, 97

yield, 81
extension

module, 18
f'

formatted string literal, 10
£

formatted string literal, 10

f-string, 158

f_back (frame attribute), 32
f_back («ddtnTa e frame), 32
f_builtins (frame attribute), 32

f_builtins (ddnra ¢ frame), 32

f_code (frame attribute), 32
f_code (tddtnra tng frame), 32
f_globals (frame attribute), 32

f_globals (tdidtnTa g frame), 32

f_lasti (frame attribute), 32

f_lasti (tddtnta g frame), 32

f_lineno (frame attribute), 32

f_lineno (ididtnyra tng frame), 33

f_locals (frame attribute), 32

f_locals (tddtnta g frame), 32

f_trace (frame attribute), 32
f_trace (ididtnTa g frame), 33

f_trace_lines (frame attribute), 32

f_trace_lines (iSidtnta g frame), 33
f_trace_opcodes (frame attribute), 32
f_trace_opcodes (tddtnra e frame), 33

finalizer, 35
finally
keyword, 102, 104, 111, 113
find_spec
finder, 68
finder, 67, 159
find_spec, 68
float
built-in function, 52

206

Eupetniplo

The Python Language Reference, Anpoociguon 3.13.7

floating-point

number, 19

object, 19
floating-point literal, 14
for

in comprehensions, 79

statement, 104, 110

form
lambda, 94
format () (built-in function)

__str__ () (object method), 36
formatted string literal, 12
frame

execution, 125

object, 32
from

import statement, 105

keyword, 81, 104

yield from expression, 81
frozenset

object, 21
fstring, 12
f-string, 12
function

annotations, 124

anonymous, 94

argument, 21

call, 21, 87, 88

call, user—-defined, 87

definition, 101, 123

generator, 81, 102

name, 123

object, 21, 24, 87, 88, 123

user—-defined, 21
future

statement, 106
garbage collection, 17
generator, 160

expression, 80

function, 23, 81, 102

iterator, 23,102

object, 31, 80, 82
generator iterator, 160
generator éxuppaocn, 160
generic

special attribute, 18
global

name binding, 107

namespace, 21

statement, 101, 107
global interpreter lock, 161
grouping, 7
guard, 117
handler

exception, 33
hash

built-in function, 37
hash character,5

hash-based pyc, 161
hashable, 80, 161
hexadecimal literal, 14
hierarchy
type, 18
hooks
import, 67
meta, 67
path, 67
id
built-in function, 17
identifier, 8,77
identity
test, 93
identity of an object, 17
if
conditional expression, 94
in comprehensions, 79
keyword, 115
statement, 110
imaginary literal, 14
immutable, 161
data type, 78
object, 20, 78, 80
immutable object, 17
immutable sequence
object, 20
immutable types
subclassing, 35
import
hooks, 67
statement, 24, 104
import hooks, 67
import machinery, 65

in
keyword, 110
operator, 93
inclusive

or, 90
indentation, 7
index operation, 19
indices () (uébodog i slice), 34
inheritance, 125
input, 134
instance

call, 48, 88

class, 29

object, 27,29, 88
int

built—-in function, 52
integer, 20

object, 19

representation, 19
integer literal, 14
interactive mode, 133
internal type,29
interpolated string literal, 12
interpreted, 162

Eupetniplo

207

The Python Language Reference, Anpoociguon 3.13.7

interpreter, 133
inversion, 88
invocation, 21
io
module, 29
irrefutable case block, 117
is
operator, 93
is not
operator, 93
item
sequence, 85
string, 85
item selection, 19
iterable, 162
unpacking, 94
iterator, 162
J
in numeric literal, 15
key, 80
key/value pair, 80
keyword, 9
as, 104, 111, 114, 115
async, 126
await, 88, 126
case, 115
elif, 110
else, 104,110, 111,113
except, 111
except_star, 112
finally, 102, 104, 111,113
from, 81, 104
if, 115
in, 110
yield, 81
lambda, 163
expression, 94, 125
form, 94
language
C, 18,19, 24,90
Java, 19
last_traceback (in module sys), 33
leading whitespace, 7
len
built-in function, 1921, 49
lexical analysis,5
line continuation,6
line joining,5,6
line structure,5
list
assignment, target, 98
comprehensions, 79
deletion target, 101
display, 79
empty, 79
expression, 94, 97
object, 20, 79, 85, 86, 99
target, 98, 110

list comprehension, 163
literal, 10,78
loader, 67, 164
logical line,5
loop
statement, 104, 110
loop control
target, 104
magic
névodog, 164
makefile () (socket method), 29
mangling
name, 77
mapping, 164
object, 21, 29, 85,99
match
case, 115
statement, 115
matrix multiplication, 89
membership
test, 93
meta
hooks, 67
meta hooks, 67
meta path finder, 164
metaclass, 43
metaclass hint, 44

method
built-in, 24
call, 88

object, 22,24, 88
user—defined, 22
minus, 88
module, 164
_ _main
array, 20
builtins, 133
collections, 20
dbm.gnu, 21
dbm. ndbm, 21
extension, 18
importing, 104
io, 29
namespace, 24
object, 24, 85
sys, 112,133
module spec, 67
module eméktaong, 158
modulo, 89
mro () (uébodog tng type), 28
multiplication, 89
mutable, 165
object, 20, 98, 99
mutable object, 17
mutable sequence
object, 20
name, 8, 77
binding, 98, 104, 105, 123, 125

, 61,133

208

Eupetniplo

The Python Language Reference, Anpoociguon 3.13.7

binding, global, 107
class, 125
function, 123
mangling, 77
rebinding, 98
unbinding, 101
named expression,93
named tuple, 165
names
private, 77
namespace, 165
global, 21
module, 24
package, 66
negation, 88
nested scope, 165
nonlocal
statement, 107
not
operator, 93
not in
operator, 93
null
operation, 101
number, 14
complex, 19
floating-point, 19
numeric
object, 18,29
numeric literal, 14
object, 17
Boolean, 19
Ellipsis, 18
None, 18, 97
NotImplemented, 18
asynchronous—generator, 84
built-in function, 24, 88
built-in method, 24, 88
callable, 21, 86
class, 27, 88, 125
class instance, 27,29, 88
code, 29
complex, 19
dictionary, 21, 27, 37, 80, 85, 99
floating-point, 19
frame, 32
frozenset, 21
function, 21, 24, 87, 88, 123
generator, 31, 80, 82
immutable, 20, 78, 80
immutable sequence, 20
instance, 27, 29, 88
integer, 19
list, 20,79, 85, 86, 99
mapping, 21, 29, 85, 99
method, 22, 24, 88
module, 24, 85
mutable, 20, 98, 99

mutable sequence, 20

numeric, 18, 29

sequence, 19, 29, 85, 86, 93,99, 110

set, 21,79

set type, 20

slice, 49

string, 85, 86

traceback, 33, 102, 112

tuple, 20, 85, 86, 94

user—-defined function,?2l, 87,123

user—defined method, 22
object.__match_args__ (evowuoatwuévn ueta-

Banti), 53
object.__slots__ (evowuatwuévy uetafintn),
42

octal literal, 14
open

built-in function, 29
operation

Boolean, 93

binary arithmetic, 89

binary bitwise, 90

null, 101

power, 88

shifting, 90

unary arithmetic, 88

unary bitwise, 88
operator

— (minus), 88, 89

% (percent), 89

& (ampersand), 90

* (asterisk), 89

*% 88

+ (plus), 88, 89

/ (slash), 89

//,89

< (less), 90

<<, 90

<=, 90

1=,90

==,90

> (greater), 90

>=,90

>>, 90

@ (ar), 89

~ (caret), 90

and, 93

in, 93

is,93

is not, 93

not, 93

not in, 93

or, 93

overloading, 34

precedence, 95

ternary, 94

| (vertical bar), 90

~ (tilde), 88

Eupetniplo

209

The Python Language Reference, Anpoociguon 3.13.7

operators, 15
or
bitwise, 90
exclusive, 90
inclusive, 90
operator, 93
ord
built-in function, 20
order
evaluation, 95
output, 97
standard, 97
overloading
operator, 34
package, 66
namespace, 66
portion, 66
regular, 66
parameter
call semantics, 86
function definition, 123
value, default, 124
parenthesized form, 78
parser, 5
pass
statement, 101
path
hooks, 67
path based finder, 72, 167
path entry, 167
path entry finder, 167
path entry hook, 167
path hooks, 67
path-like avtikeipevo, 167
pattern matching, 115
physical line,5,6,10
plus, 88
popen () (in module os), 29
portion
package, 66
pow
built-in function,5l1
power
operation, 88
precedence
operator, 95
primary, 85
print
built-in function, 36
print () (built-in function)
__str__ () (object method), 36
private
names, 77
procedure
call, 97
program, 133
provisional APT, 167
provisional mnaxéto, 168

raw string literal, 10
r"

raw string literal, 10
raise

statement, 102
raising

exception, 102
range

built—-in function, 111
raw string, 10
rebinding

name, 98
reference

attribute, 85
reference counting, 17

regular
package, 66

relative
import, 105

replace () (uéBodog tng codeobject), 32

repr
built-in function, 97
repr () (built-in function)
__repr__ () (object method), 36
representation
integer, 19
reserved word,9
return
statement, 101, 113
round
built-in function, 52
send () (uébodog g coroutine), 56
send () (uéBodog tng generator), 82
sequence
item, 85

object, 19, 29, 85, 86, 93, 99, 110

set

comprehensions, 79

display, 79

object, 21,79
set comprehension, 169
set type

object, 20
shifting

operation, 90
simple

statement, 97
singleton

tuple, 20
slice, 86, 169

built—-in function, 34

object, 49
slicing, 19, 20, 86

assignment, 99
soft keyword,9
source character set,6
space, 7

210

Eupetniplo

The Python Language Reference, Anpoociguon 3.13.7

special
attribute, 18
attribute, generic, 18
névodog, 169
stack
execution, 33
trace, 33
standard
output, 97
standard input, 133
standard library, 169
start (slice object attribute), 34, 86
statement
assert, 101
assignment, 20, 98
assignment, annotated, 100
assignment, augmented, 99
async def, 126
async for, 127
async with, 127
break, 104, 110, 113
class, 125
compound, 109
continue, 104, 110, 113
def, 123
del, 35,101
expression, 97
for, 104, 110
future, 106
global, 101, 107
if, 110
import, 24, 104
loop, 104, 110
match, 115
nonlocal, 107
pass, 101
raise, 102
return, 101, 113
simple, 97
try, 33,111
type, 107
while, 104, 110
with, 52,114
yield, 102
statement grouping,7
stderr (in module sys), 29
stdin (in module sys), 29
stdio, 29
stdlib, 170
stdout (in module sys), 29
step (slice object attribute), 34, 86
stop (slice object attribute), 34, 86
string
_ format__ () (object method), 36
__str__ () (object method), 36
conversion, 36, 97
formatted literal, 12
immutable sequences, 20

interpolated literal, 12

item, 85

object, 85, 86
string literal, 10
strong reference, 170
subclassing

immutable types, 35
subscription, 1921, 85

assignment, 99
subtraction, 89
suite, 109
sys

module, 112, 133
sys.exc_info, 33
sys.exception, 33
sys.last_traceback, 33
sys.meta_path, 68
sys.modules, 67
sys.path, 72
sys.path_hooks, 72
sys.path_importer_cache, 72
sys.stderr, 29
sys.stdin, 29
sys.stdout, 29

tab, 7

target, 98
deletion, 101
list, 98,110

list assignment, 98

list,deletion, 101

loop control, 104
tb_ frame (traceback attribute), 33
tb_frame (tdiotnta e traceback), 34
tb_lasti (traceback attribute), 33
tb_lasti (tSidtyTa g traceback), 34
tb_1lineno (traceback attribute), 33
tb_lineno (tddtnra tng traceback), 34
tb_next (traceback attribute), 34
tb_next (1didtnra tng traceback), 34
ternary

operator, 94
test

identity, 93

membership, 93
throw () (uébodog ng coroutine), 56
throw () (uéBodog tng generator), 82
token, 5
trace

stack, 33
traceback

object, 33,102, 112
trailing

comma, 95
triple—-quoted string, 10
try

statement, 33,111
tuple

empty, 20, 78

Eupetniplo

211

The Python Language Reference, Anpoociguon 3.13.7

object, 20, 85, 86, 94
singleton, 20

type, 18
built-in function, 17,43
data, 18

hierarchy, 18
immutable data, 78
statement, 107
type alias, 171
type hint, 171
type of an object, 17
type parameters, 128
types, internal, 29
u'
string literal, 10
u"
string literal, 10
unary
arithmetic operation, 88
bitwise operation, 88
unbinding
name, 101
unpacking
dictionary, 80
in function calls, 87
iterable, 94
unreachable object, 17
unrecognized escape sequence, 11
user-defined
function, 21
function call, 87
method, 22
user—-defined function
object, 21, 87, 123
user-defined method
object, 22
value, 80
default parameter, 124
value of an object, 17
values
writing, 97
virtual environment, 171
virtual machine, 172
walrus operator, 93,172

while
statement, 104, 110
with
statement, 52, 114
writing
values, 97
XOr
bitwise, 90
yield

examples, 83

expression, 81

keyword, 81

statement, 102
{} (curly brackets)

dictionary expression, 80
in formatted string literal, 12
set expression, 79
| (vertical bar)
operator, 90

augmented assignment, 99
~ (tilde)
operator, 88

A

ABdvaTo, 161
aképatra Srailpeon, 159
axoAoubia, 169
avayvwplopévo obvoua, 168
avtikelpevo, 166
avtikelpevo apyeiou, 159
avtikelpevo mou poirdletl pe apyetlo, 159
anapyalwpévn pe numio tedno, 169
and
SnAwon eiltcaywyng, 59
apxeto xeipévou, 170
acUyyxpovog generator, 154
acUyxpovoc generator iterator, 154
acuyyxpovo¢ iterable, 154
acUyyxpovocg iterator, 154
acuUuyypovog SirayeiploTng context, 154
apnenuévn Pacikn kAdon, 153

B

BeATioTOmOLNUEVO nedio opatdTNTAG

(scope), 166

r

yevikny ouvdptnon, 160
yevikdg tTUmog, 161
ypappatikn, 4

A

Saveilkn avapopd, 155
8nAwon, 170

Sra8pactikdg, 162
Sraxeipifetar pra eailpeon, 63
Srayxeilpion opaApdtwv, 63
SirayxeitproTnc context, 156
Srayxeiprotne eailpéoewv, 63
Sua8ixkd apyeto, 155

Swpedv petapAintn, 159

Swpedv vnua, 159

E

e1dixn pévodog, 169
elocayoépevo path, 162
eloaywyéag, 162
eltoaywyn, 162
eXTEAEODN
neplopiopévn, 62

212

Eupetniplo

The Python Language Reference, Anpoociguon 3.13.7

nAatlovio, 59
éxppaon, 158
eAeykTNG otatikou tumnou, 170
eheUbepn
petaBAntn, 60
elalpeon, 63

K

xaboAlxég véeg ypappég, 171
xdvel raise pira efailpeon, 63
xavovikd naxéto, 169
xatavoénon Aefixou, 158
xAdon, 156
xAdon véou oTul, 166
kwdixag
umAox, 59
xwdixomoinon xeipévou, 170
kw8 lkomoilnon oOucTNuaTtog apyeilwv
XelploTAc owpaipdtwv, 159

A

Aextikd ouppodo (token), 170
Ae&ixd, 158

Ae&1xdc avalutig, 163
Ae&ldhoyikol opulopot, 4
AtoTa, 163

M

payikn pébodoc, 164
névodog, 164
magic, 164
special, 169
peta-xAdon, 164
petaBAntn
eAeubBepn, 60
petaBAntry xAdong, 156
petaBAnth xAeiloipatog, 156
peTaRAnT) neplBAAAOVTOC
PYTHONHASHSEED, 38
PYTHONNODEBUGRANGES, 31
PYTHONPATH, 72
PYTHON_GIL, 161
piya8ikdg apirbpdg, 156
pova8ikd dispatch, 169
povtédo extéAeong, 59
HOVTEéAO Teppatiopouy, 63
pmoiox, 59
kwdixag, 59

O

évopa, 59

ouvdeon, 59
6plona, 153
6plopa keyword, 163
6propa Béong, 167
oun AeZixou, 158

Xatu

M

naxéto, 166
nak€to namespace, 165
napduetpog, 166
nebio, 59, 60
nep1pBAaArArov, 60
nepLopLOpévn
exTéAeon, 62
nAatioio
exTtéAeon, 59
nAnfoc avaypopdc, 168

npwtokoAAo Jrayxyeipiong mepiBAdAAovTog,

156

2

celpd avdiuong pebdduwv, 164
onuetloypaypia, 4
oulAAloyry amnopplpdtwv, 160

oupBolocelpd TplOmAwv eloaywylkwv, 170

ouvdptnon, 159
ouvdptnon annotation, 159
ouvdptnon key, 163
ouvBeon

évopa, 59
ouvTtakTlko, 4
opdAuata, 63

T

Teppatiopdc Aeittoupylag Sirepunvéa, 162

Texvikéc npoSraypapéc module, 165
Tunpa, 167

Tonikn kxwdikomoinon, 164

Tpéyov miatoro, 157

TtUnocg, 170

X

Xapaxktnpelotiko, 154
Xwpog ovoudtwv, 59

Eupetniplo

213

	Εισαγωγή
	Εναλλακτικές Υλοποιήσεις
	Σημειογραφία

	Lexical analysis
	Line structure
	Logical lines
	Physical lines
	Comments
	Encoding declarations
	Explicit line joining
	Implicit line joining
	Blank lines
	Indentation
	Whitespace between tokens

	Other tokens
	Identifiers and keywords
	Keywords
	Soft Keywords
	Reserved classes of identifiers

	Literals
	String and Bytes literals
	Escape sequences

	String literal concatenation
	f-strings
	Numeric literals
	Integer literals
	Floating-point literals
	Imaginary literals

	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	None
	NotImplemented
	Ellipsis
	numbers.Number
	numbers.Integral
	numbers.Real (float)
	numbers.Complex (complex)

	Sequences
	Immutable sequences
	Mutable sequences

	Set types
	Mappings
	Dictionaries

	Callable types
	User-defined functions
	Special read-only attributes
	Special writable attributes

	Instance methods
	Generator functions
	Coroutine functions
	Asynchronous generator functions
	Built-in functions
	Built-in methods
	Classes
	Class Instances

	Modules
	Import-related attributes on module objects
	Other writable attributes on module objects
	Module dictionaries

	Custom classes
	Special attributes
	Special methods

	Class instances
	Special attributes

	I/O objects (also known as file objects)
	Internal types
	Code objects
	Special read-only attributes
	Methods on code objects

	Frame objects
	Special read-only attributes
	Special writable attributes
	Frame object methods

	Traceback objects
	Slice objects
	Static method objects
	Class method objects

	Special method names
	Basic customization
	Customizing attribute access
	Customizing module attribute access
	Implementing Descriptors
	Invoking Descriptors
	__slots__

	Customizing class creation
	Metaclasses
	Resolving MRO entries
	Determining the appropriate metaclass
	Preparing the class namespace
	Executing the class body
	Creating the class object
	Uses for metaclasses

	Customizing instance and subclass checks
	Emulating generic types
	The purpose of __class_getitem__
	__class_getitem__ versus __getitem__

	Emulating callable objects
	Emulating container types
	Emulating numeric types
	With Statement Context Managers
	Customizing positional arguments in class pattern matching
	Emulating buffer types
	Special method lookup

	Coroutines
	Awaitable Objects
	Coroutine Objects
	Asynchronous Iterators
	Asynchronous Context Managers

	Μοντέλο εκτέλεσης
	Δομή ενός προγράμματος
	Ονομασία και σύνδεση
	Σύνδεση ονομάτων
	Επίλυση ονομάτων
	Σημειογραφία πεδία
	Καθυστερημένη εκτίμηση
	Ενσωματωμένες συναρτήσεις και περιορισμένη εκτέλεση
	Αλληλεπίδραση με δυναμικές λειτουργίες

	Εξαιρέσεις

	The import system
	importlib
	Packages
	Regular packages
	Namespace packages

	Searching
	The module cache
	Finders and loaders
	Import hooks
	The meta path

	Loading
	Loaders
	Submodules
	Module specs
	__path__ attributes on modules
	Module reprs
	Cached bytecode invalidation

	The Path Based Finder
	Path entry finders
	Path entry finder protocol

	Replacing the standard import system
	Package Relative Imports
	Special considerations for __main__
	__main__.__spec__

	References

	Expressions
	Arithmetic conversions
	Atoms
	Identifiers (Names)
	Private name mangling

	Literals
	Parenthesized forms
	Displays for lists, sets and dictionaries
	List displays
	Set displays
	Dictionary displays
	Generator expressions
	Yield expressions
	Generator-iterator methods
	Examples
	Asynchronous generator functions
	Asynchronous generator-iterator methods

	Primaries
	Attribute references
	Subscriptions
	Slicings
	Calls

	Await expression
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Value comparisons
	Membership test operations
	Identity comparisons

	Boolean operations
	Assignment expressions
	Conditional expressions
	Lambdas
	Expression lists
	Evaluation order
	Operator precedence

	Simple statements
	Expression statements
	Assignment statements
	Augmented assignment statements
	Annotated assignment statements

	The assert statement
	The pass statement
	The del statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	Future statements

	The global statement
	The nonlocal statement
	The type statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	except clause
	except* clause
	else clause
	finally clause

	The with statement
	The match statement
	Overview
	Guards
	Irrefutable Case Blocks
	Patterns
	OR Patterns
	AS Patterns
	Literal Patterns
	Capture Patterns
	Wildcard Patterns
	Value Patterns
	Group Patterns
	Sequence Patterns
	Mapping Patterns
	Class Patterns

	Function definitions
	Class definitions
	Coroutines
	Coroutine function definition
	The async for statement
	The async with statement

	Type parameter lists
	Generic functions
	Generic classes
	Generic type aliases

	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Πλήρης προδιαγραφή γραμματικής
	Γλωσσάρι
	Σχετικά με την τεκμηρίωση
	Συντελεστές στη τεκμηρίωση της Python

	Ιστορία και Άδεια
	Η ιστορία του λογισμικού
	Όροι και προϋποθέσεις για την πρόσβαση ή την χρήση της Python με άλλους τρόπους
	PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ BEOPEN.COM ΓΙΑ PYTHON 2.0
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CNRI ΓΙΑ PYTHON 1.6.1
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CWI ΓΙΑ PYTHON 0.9.0 ΕΩΣ 1.2
	ZERO-CLAUSE BSD ΑΔΕΙΑ ΓΙΑ ΤΟΝ ΚΩΔΙΚΑ ΣΤΗΝ ΤΕΚΜΗΡΙΩΣΗ ΤΗΣ PYTHON

	Άδειες και Ευχαριστίες για Ενσωματωμένο Λογισμικό
	Mersenne Twister
	Sockets
	Ασύγχρονες socket υπηρεσίες
	Διαχείριση Cookie
	Ανίχνευση εκτέλεσης
	Συναρτήσεις UUencode και UUdecode
	Κλήσεις Απομακρυσμένης Διαδικασίας XML
	test_epoll
	Επιλογή kqueue
	SipHash24
	strtod και dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N σουίτα δοκιμής
	mimalloc
	asyncio
	Global Unbounded Sequences (GUS)

	Copyright
	Ευρετήριο

