Extending and Embedding Python
Anuoocicsuon 3.9.23

Guido van Rossum
and the Python development team

louAiou 08, 2025

Python Software Foundation
Email: docs@python.org






Meplexoueva

1 Recommended third party tools 3
2 Creating extensions without third party tools 5
2.1  Extending Pythonwith Cor C++ . . . . . . . . . .. e 5
2.1.1  ASimple Example . . . . . . . . e e e e e 6

2.1.2  Intermezzo: Errors and Exceptions . . . . . . . . . . ... L e 7

2.1.3 Backtothe Example . . . .. . ... ... e 9

2.1.4  The Module’s Method Table and Initialization Function . . . . . ... ... ... ...... 9

2.1.5 Compilationand Linkage . . . . . . . . . . ... e 11

2.1.6  Calling Python Functions from C . . . . . . . . . .. .. . ... . .. 12

2.1.7  Extracting Parameters in Extension Functions . . . . . .. ... ... ... ....... .. 14

2.1.8  Keyword Parameters for Extension Functions . . . . . . .. ... ... ... ......... 15

2.1.9 Building Arbitrary Values . . . . . . . . ... 16
2.1.10 Reference Counts . . . . . . . . . . o it e e e e e 17
2.1.11 Writing Extensions in C++ . . . . . . . . . oL e e 21
2.1.12  Providinga C API for an Extension Module . . . .. ... ... ... ... ......... 21

2.2 Defining Extension Types: Tutorial . . . . . . . . . . ... . .. 24
221 TheBasics . . . . . . o e e e e e e e e e e 24

2.2.2  Adding data and methods to the Basicexample . . . . . . . . ... ... ... ... ... 28

2.2.3  Providing finer control over data attributes . . . . . . ... ... Lo 35

2.2.4  Supporting cyclic garbage collection . . . . . . . . . ... e e 40

2.2.5 Subclassing other types . . . . . . . .. e e e e e e e e e e 46

2.3 Defining Extension Types: Assorted Topics . . . . . . . . . .. .. . ... .. 49
2.3.1 Finalization and De-allocation . . . . . . . . . . .. . .. L e 51

2.3.2  ObjectPresentation . . . . . . . . . ..o e e e e e e 52

2.3.3  Attribute Management . . . ... oL ..o e e e e e e e e e e e e 53

2.3.4  Object COMPATiSON . . . v v v v v e v e e e e e e e e e e e e e e e e e e e e 55

2.3.5  Abstract Protocol Support . . . . . .. oL e 56

2.3.6  Weak Reference Support . . . . . . . . ..o e 58

237 More Suggestions . . . . ... u i e e e e e e e e e e e e e e e e e 58

2.4 Building Cand C++ EXtensions . . . . . . . . . . 0o it e e e e 59
2.4.1  Building C and C++ Extensions with distutils . . . . . . .. ... ... ... ... .. .. 59

2.4.2  Distributing your extensionmodules . . . . ... L. oL Lo 61

2.5 Building C and C++ Extensionson Windows . . . . . . . . . .. ... ... L ... 61
2.5.1 A Cookbook Approach . . . . . . . . . 61

2.5.2 Differences Between Unix and Windows . . . . . . . ... ... Lo 62




253 UsingDLLsinPractice . . . . . . . . . e 62

3 Embedding the CPython runtime in a larger application 65
3.1 Embedding Python in Another Application . . . . . . . . . .. ... ... 65
3.1.1  VeryHighLevel Embedding . . . . ... . ... .. ... ... .. . 66

3.1.2  Beyond Very High Level Embedding: Anoverview . . . . . ... ... ... ......... 66

3.1.3  PureEmbedding. . . . . . . . .. e e e e 67

3.14  Extending Embedded Python . . . . . . .. ... ... oo 69

3.1.5 Embedding Pythonin C++ . . . . . . . . .. 70

3.1.6  Compiling and Linking under Unix-like systems . . . . . . ... .. ... ... .. ..... 70

A’ Thooodpu 73
B’ About these documents 89
B’.1 Contributors to the Python Documentation . . . . . . . .. .. ... ... ... ... . ..., . &9

I’ Iotopio kot Adero 91
I[7.1 HoTopio TOU MOYLOULKOU + o v v v v v v v e e e e e e e e e e e e e e e e e e e e e 91
[7.2  'Opol kot tpoimobéoels yio tnv mtpdofaon 1 v xpnon s Python pe ddhovg tpdmovg . . . . . . 92
I7.2.1 PSFLICENSE AGREEMENT FORPYTHON 3923 . . .. ... ... ... ........ 92

22 ZYM®ONIA AAEIAZ BEOPEN.COMTIITIA PYTHON2.0 . . .. ... ... ... ..... 93

723 ZYMOQONIA AAEIAZ CNRITTAPYTHON 1.6.1 . . .. ... ... ... ... ...... 94

V24 ZYMOQONIA AAEIAZ CWITTIAPYTHONOOSOEQZ1.2 . . . . .. ... ... ... ... 95

[7.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23 DOCUMENTATION 96

[7.3  Adeieg kau Evyopiotieg yio Evoopatouévo Aoylowko . . . . o oL Lo 96
3.1 Mersenne TWIStEr . . . . . . . . . o i i e e e e e 96

[7.3.2 Sockets . . . . . . e 97

[7.3.3  AoUyypoveg SOCKEt UINPEOIES « « « o v v v v v o e e e e e e e e e e e 98

[7.3.4  Awyelpton Cookie . . . . . . e e e e e e 98

[7.3.5  AVVEUON EKTEREONG  « « v v v o v e e e e e e e e e e e e e e e e e e e 99

[73.6 Zuvvopmoelg UUencode kaw UUdecode . . . . . . . .. oo oo oo oo 99

I7.3.7 KMjoeg Aopokpuopuévng Awadikaotog XML . . . . . ..o 100

I7.3.8 test_epoll . . . . . . e e e e e e e 100

[7.3.9 Emdoyfkqueue . . . . . . . . . e e e e e e e 101

[7.3.10 SipHash24 . . . . . . . e 101

[V3.01 strtod ko dtoa . . . . o o . oo e e e e e e e e 102

[7.3.12 OpenSSL . . . o o o e 102

I73.13 eXpat. . o o v e e e e e e e e e e e e e 105

[V3.14 Libfl . . . L o 105

[V3.15 zlib . . . L 106

[7.3.16 cfuhash . . . . . . . . e 106

[7.3.17 libmpdec . . . . . . e e 107

[7.3.18 W3C CI4N GOUITO QOKUUNG « + « « v v v e v e e e e e e e e e e e e e e e e e e e e 107

A’ Copyright 109
Evpetipro 111




Extending and Embedding Python, Anpooiguon 3.9.23

This document describes how to write modules in C or C++ to extend the Python interpreter with new modules. Those
modules can not only define new functions but also new object types and their methods. The document also describes how
to embed the Python interpreter in another application, for use as an extension language. Finally, it shows how to compile
and link extension modules so that they can be loaded dynamically (at run time) into the interpreter, if the underlying
operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the language, see tutorial-
index. reference-index gives a more formal definition of the language. library-index documents the existing object types,
functions and modules (both built-in and written in Python) that give the language its wide application range.

For a detailed description of the whole Python/C API, see the separate c-api-index.

Mepiexopeva 1



Extending and Embedding Python, Anpooicsuon 3.9.23

2 Meplexopeva



KEDAAAIO 1

Recommended third party tools

This guide only covers the basic tools for creating extensions provided as part of this version of CPython. Third party
tools like Cython, cffi, SWIG and Numba offer both simpler and more sophisticated approaches to creating C and C++
extensions for Python.

Agite gmiong:

Python Packaging User Guide: Binary Extensions The Python Packaging User Guide not only covers several
available tools that simplify the creation of binary extensions, but also discusses the various reasons why creating
an extension module may be desirable in the first place.



http://cython.org/
https://cffi.readthedocs.io
http://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/guides/packaging-binary-extensions/

Extending and Embedding Python, Anpooicsuon 3.9.23

4 KegdaAaio 1. Recommended third party tools



KEDAAAIO 2

Creating extensions without third party tools

This section of the guide covers creating C and C++ extensions without assistance from third party tools. It is intended
primarily for creators of those tools, rather than being a recommended way to create your own C extensions.

2.1 Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension modules can do
two things that can’t be done directly in Python: they can implement new built-in object types, and they can call C library
functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C
source file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on your system setup; details are given in
later chapters.

Inueimon: The C extension interface is specific to CPython, and extension modules do not work on other Python
implementations. In many cases, it is possible to avoid writing C extensions and preserve portability to other
implementations. For example, if your use case is calling C library functions or system calls, you should consider using
the ct ypes module or the cffi library rather than writing custom C code. These modules let you write Python code to
interface with C code and are more portable between implementations of Python than writing and compiling a C extension
module.



https://cffi.readthedocs.io/

Extending and Embedding Python, Anpooicsuon 3.9.23

2.1.1 A Simple Example

Let’s create an extension module called spam (the favorite food of Monty Python fans...) and let’s say we want to create a
Python interface to the C library function system () !. This function takes a null-terminated character string as argument
and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls —-1")

Begin by creating a file spammodule.c. (Historically, if a module is called spam, the C file containing its
implementation is called spammodule. c; if the module name is very long, like spammi fy, the module name can
be just spammify.c.)

The first two lines of our file can be:

#define PY_SSIZE_T CLEAN
#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice if
you like).

Enueiwon: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must include Python . h before any standard headers are included.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python . h. See Extracting Parameters in
Extension Functions for a description of this macro.

All user-visible symbols defined by Pyt hon . h have a prefix of Py or PY, except those defined in standard header files.
For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few standard
header files: <stdio.h>, <string.h>, <errno.h>, and <stdlib.h>. If the latter header file does not exist on
your system, it declares the functions malloc (), free () and realloc () directly.

The next thing we add to our module file is the C function that will be called when the Python expression spam.
system (string) is evaluated (we’ll see shortly how it ends up being called):

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

return PylLong_FromLong (sts);

There is a straightforward translation from the argument list in Python (for example, the single expression "1s -1")to
the arguments passed to the C function. The C function always has two arguments, conventionally named self and args.

The self argument points to the module object for module-level functions; for a method it would point to the object
instance.

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple corresponds
to an argument in the call’s argument list. The arguments are Python objects — in order to do anything with them in our
C function we have to convert them to C values. The function PyArg_ParseTuple () in the Python API checks the

! An interface for this function already exists in the standard module os — it was chosen as a simple and straightforward example.

6 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

argument types and converts them to C values. It uses a template string to determine the required types of the arguments
as well as the types of the C variables into which to store the converted values. More about this later.

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw in the
example).

2.1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an
exception condition and return an error value (usually —1 or a NULL pointer). Exception information is stored in three
members of the interpreter’s thread state. These are NULL if there is no exception. Otherwise they are the C equivalents
of the members of the Python tuple returned by sys.exc_info (). These are the exception type, exception instance,
and a traceback object. It is important to know about them to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one is PyErr_SetString (). Its arguments are an exception object and a C string. The exception
object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the cause of the error
and is converted to a Python string object and stored as the «associated value» of the exception.

Another useful function is PyErr_SetFromErrno (), which only takes an exception argument and constructs the
associated value by inspection of the global variable errno. The most general function is PyErr_SetObject (),
which takes two object arguments, the exception and its associated value. You don’t need to Py_INCREF () the objects
passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_Occurred (). This returns the current
exception object, or NULL if no exception has occurred. You normally don’t need to call PyErr_Occurred () to see
whether an error occurred in a function call, since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or —1). It should not call one of the PyErr_* () functions — one has already been called by g. f’s caller is
then supposed to also return an error indication to its caller, again without calling PyErr_* (), and so on — the most
detailed cause of the error was already reported by the function that first detected it. Once the error reaches the Python
interpreter’s main loop, this aborts the currently executing Python code and tries to find an exception handler specified by
the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another PyErr_* ()
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause information
about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear (). The only time C code should call PyErr_Clear () is if it doesn’t want to pass the error on to
the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing went
wrong).

Every failing malloc () call must be turned into an exception — the direct caller of malloc () (or realloc())
must call PyErr_NoMemory () and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong () ) already do this, so this note is only relevant to those who callmalloc () directly.

Also note that, with the important exception of PyArg_ParseTuple () and friends, functions that return an integer
status usually return a positive value or zero for success and —1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (by making Py_ XDECREF () or Py_DECREF () calls for objects you have already
created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you should choose

2.1. Extending Python with C or C++ 7



Extending and Embedding Python, Anpooicsuon 3.9.23

exceptions wisely — don’t use PyExc_TypeError to mean that a file couldn’t be opened (that should probably be
PyExc_IOError). If something’s wrong with the argument list, the PyArg_ParseTuple () function usually raises
PyExc_TypeError. If you have an argument whose value must be in a particular range or must satisfy other conditions,
PyExc_ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable at
the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization function (PyInit_spam () ) with an exception object:

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

SpamError = PyErr_ NewException ("spam.error", NULL, NULL);
Py_XINCREF (SpamError) ;
if (PyModule_AddObject (m, "error", SpamError) < 0) {
Py_XDECREF (SpamError) ;
Py_CLEAR (SpamError) ;
Py_DECREF (m) ;
return NULL;

return m;

Note that the Python name for the exception object is spam.error. The PyErr_ NewException () function may
create a class with the base class being Exception (unless another class is passed in instead of NULL), described in
bltin-exceptions.

Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional! Since
the exception could be removed from the module by external code, an owned reference to the class is needed to ensure
that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling pointer, C
code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

The spam.error exception can be raised in your extension module using a call to PyErr_SetString () asshown
below:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command) ;
if (sts < 0) {
PyErr_SetString(SpamError, "System command failed");

(ouvéyela 0TV ETOUEVT] GEMDQL)

8 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

return NULL;
}

return PyLong_FromLong (sts);

2.1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has been copied
to the local variable command. This is a pointer assignment and you are not supposed to modify the string to which it
points (so in Standard C, the variable command should properly be declared as const char *command).

The next statement is a call to the Unix function system(), passing it the string we just got from
PyArg_ParseTuple():

’sts = system(command) ;

Our spam.system () function must return the value of sts as a Python object. This is done using the function
PyLong_FromLong ().

’return PyLong_FromLong (sts);

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returning void), the corresponding Python function
must return None. You need this idiom to do so (which is implemented by the Py_ RETURN_NONE macro):

Py_INCREF (Py_None);
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL pointer,
which means «error» in most contexts, as we have seen.

2.1.4 The Module’s Method Table and Initialization Function

I promised to show how spam_system () is called from Python programs. First, we need to list its name and address
in a «method table»:

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, O, NULL} /* Sentinel */
bi

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value of 0
means that an obsolete variant of PyArg_ParseTuple () is used.

2.1. Extending Python with C or C++ 9



Extending and Embedding Python, Anpooicsuon 3.9.23

When using only METH_VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple () ; more information on this function is provided below.

The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords () to parse the arguments to such a function.

The method table must be referenced in the module definition structure:

static struct PyModuleDef spammodule = {
PyModuleDef_ HEAD_INIT,
"spamn", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,
or -1 if the module keeps state in global variables. */
SpamMethods
bi

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization function
must be named PyInit_name (), where name is the name of the module, and should be the only non-static item
defined in the module file:

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spammodule) ;

Note that PyMODINIT_FUNC declares the function as PyObject * return type, declares any special linkage
declarations required by the platform, and for C++ declares the function as extern "C".

When the Python program imports module spam for the first time, PyInit_spam() is called. (See below for
comments about embedding Python.) It calls PyModule_Create (), which returns a module object, and inserts built-
in function objects into the newly created module based upon the table (an array of PyMethodDef structures) found in
the module definition. PyModule_Create () returns a pointer to the module object that it creates. It may abort with
a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily. The init function must
return the module object to its caller, so that it then gets inserted into sys .modules.

When embedding Python, the PyInit_spam () function is not called automatically unless there’s an entry in the
PyImport_Inittab table. To add the module to the initialization table, use PyImport_AppendInittab (),
optionally followed by an import of the module:

int
main (int argc, char *argv([])
{
wchar_t *program = Py_DecodelLocale(argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1);

/* Add a built-in module, before Py_Initialize */

if (PyImport_AppendInittab ("spam", PyInit_spam) == -1) {
fprintf (stderr, "Error: could not extend in-built modules table\n");
exit (1);

/* Pass argv/[0] to the Python interpreter */

(ouveéyela otV emtduevVn oerida)

10 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Py_SetProgramName (program) ;

/* Initialize the Python interpreter. Required.
If this step fails, it will be a fatal error. */
Py_Initialize();

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */
PyObject *pmodule = PyImport_ImportModule ("spam");
if (!pmodule) {
PyErr_Print ();
fprintf (stderr, "Error: could not import module 'spam'\n");

PyMem_RawFree (program) ;
return 0;

Inueiwon: Removing entries from sys.modules or importing compiled modules into multiple interpreters within
a process (or following a fork () without an intervening exec () ) can create problems for some extension modules.
Extension module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as Modules/xxmodule. c. This file
may be used as a template or simply read as an example.

Ynueiwon: Unlike our spam example, xxmodule uses multi-phase initialization (new in Python 3.5), where a
PyModuleDef structure is returned from PyInit_spam, and creation of the module is left to the import machinery.
For details on multi-phase initialization, see PEP 489.

2.1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python system.
If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see the chapters
about building extension modules (chapter Building C and C++ Extensions) and additional information that pertains only
to building on Windows (chapter Building C and C++ Extensions on Windows) for more information about this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter, you
will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just place
your file (spammodule. c for example) in the Modules/ directory of an unpacked source distribution, add a line to
the file Modules/Setup. local describing your file:

spam spammodule.o

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the Modules/
subdirectory, but then you must first rebuild Makefile there by running “make Makefile”. (This is necessary each
time you change the Setup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well,
for instance:

2.1. Extending Python with C or C++ 11



https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, Anpooicsuon 3.9.23

spam spammodule.o —-1X11

2.1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called «callback» functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python programmer;
the implementation will require calling the Python callback functions from a C callback. Other uses are also imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python function.
(I won’t dwell on how to call the Python parser with a particular string as input — if you’re interested, have a look at the
implementation of the —c command line option in Modules/main. c from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object. You
should provide a function (or some other interface) to do this. When this function is called, save a pointer to the Python
function object (be careful to Py_INCREF () it!) in a global variable — or wherever you see fit. For example, the
following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback (PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;

PyObject *temp;

if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check (temp)) {
PyErr_SetString (PyExc_TypeError, "parameter must be callable");
return NULL;
}

Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */
Py_INCREF (Py_None) ;
result = Py_None;

}

return result;

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section
The Module’s Method Table and Initialization Function. The PyArg_ParseTuple () function and its arguments are
documented in section Extracting Parameters in Extension Functions.

The macros Py_XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are safe
in the presence of NULL pointers (but note that temp will not be NULL in this context). More info on them in section
Reference Counts.

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function has two
arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument list must
always be a tuple object, whose length is the number of arguments. To call the Python function with no arguments, pass
in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildValue () returns a tuple
when its format string consists of zero or more format codes between parentheses. For example:

12 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

/* Time to call the callback */

arglist = Py_BuildvValue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);

PyObject_CallObject () returns a Python object pointer: this is the return value of the Python function.
PyObject_CallObject () is «reference-count-neutral» with respect to its arguments. In the example a
new tuple was created to serve as the argument list, which is Py_DECREF ()-ed immediately after the
PyObject_CallObject () call

The return value of PyObject_CallObject () is «new»: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py_DECREF () the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’t NULL. If it is, the Python function terminated
by raising an exception. If the C code that called PyObject_CallObject () is called from Python, it should now
return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling Python code can
handle the exception. If this is not possible or desirable, the exception should be cleared by calling PyErr_Clear ().
For example:

if (result == NULL)
return NULL; /* Pass error back */
..use result...
Py_DECREF (result) ;

Depending on the desired interface to the Python callback function, you may also have to provide an argument list to
PyObject_CallObject (). In some cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this is
tocall Py_Buildvalue (). For example, if you want to pass an integral event code, you might use the following code:

PyObject *arglist;

arglist = Py_BuildValue (" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

Note the placement of Py_ DECREF (arglist) immediately after the call, before the error check! Also note that
strictly speaking this code is not complete: Py_BuildValue () may run out of memory, and this should be checked.

You may also call a function with keyword arguments by using PyObject_Call (), which supports arguments and
keyword arguments. As in the above example, we use Py_BuildvValue () to construct the dictionary.

PyObject *dict;

dict = Py_BuildvValue("{s:i}", "name", wval);
result = PyObject_Call (my_callback, NULL, dict);

(ouvéyela otV emtduevn oehida)

2.1. Extending Python with C or C++ 13




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Py_DECREF (dict) ;
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

2.1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple () function is declared as follows:

int PyArg ParseTuple (PyObject *arg, const char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format
argument must be a format string, whose syntax is explained in arg-parsing in the Python/C API Reference Manual. The
remaining arguments must be addresses of variables whose type is determined by the format string.

Note that while PyArg_ParseTuple () checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably crash
or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller are borrowed references; do not decrement their
reference count!

Some example calls:

#define PY_SSIZE_T _CLEAN /* Make "s#" use Py_ssize_t rather than int. */
#include <Python.h>

int ok;

int i, 3;

long k, 1;

const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple(args, "1lls", ¢k, &1, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple (args, " (ii)s#", &i, &3j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */

const char *file;

const char *mode = "r";

int bufsize = 0;

ok = PyArg_ParseTuple (args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */

(ouvéyela otV emoueV oerida)

14 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

/* Possible Python calls:
f('spam')
f('spam', 'w')
f('spam', 'wb', 100000) */

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, " ((ii) (ii)) (ii)",
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
£(((0, 0), (400, 300)), (10, 10)) */

Py_complex c;

ok = PyArg_ParseTuple(args, "D:myfunction", &c);

/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction (1+27) */

2.1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords () function is declared as follows:

int PyArg ParseTupleAndKeywords (PyObject *arg, PyObject *kwdict,
const char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict parameter
is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is a NULL-
terminated list of strings which identify the parameters; the names are matched with the type information from format
from left to right. On success, PyArg_ParseTupleAndKeywords () returns true, otherwise it returns false and
raises an appropriate exception.

Ynueimon: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are
not present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):

#define PY _SSIZE_T CLEAN /* Make "s#'" use Py_ssize_t rather than int. */
#include <Python.h>

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

const char *state = "a stiff";

const char *action = "voom";

const char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

(ouvéyela otV emtduevn oehida)

2.1. Extending Python with C or C++ 15



mailto:philbrick@hks.com

Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

if (!PyArg_ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

printf ("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf ("-—- Lovely plumage, the %s —- It's %s!\n", type, state);

Py_RETURN_NONE;

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg parrot () takes
* three.
*/
{"parrot", (PyCFunction) (void(*) (void))keywdarg_ parrot, METH_VARARGS | METH_
—~KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0O, NULL} /* sentinel */
bi

static struct PyModuleDef keywdargmodule = {
PyModuleDef_HEAD_INIT,
"keywdarg",
NULL,
-1,
keywdarg_methods
bi

PyMODINIT_FUNC
PyInit_keywdarg (void)
{
return PyModule_Create (&keywdargmodule) ;

2.1.9 Building Arbitrary Values

This function is the counterpart to PyArg_ParseTuple (). It is declared as follows:

PyObject *Py_BuildValue (const char *format, ...);

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple (), but the arguments (which
are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable for returning
from a C function called from Python.

One difference with PyArg_ParseTuple (): while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_BuildValue () does not always build a tuple. It builds
a tuple only if its format string contains two or more format units. If the format string is empty, it returns None; if it
contains exactly one format unit, it returns whatever object is described by that format unit. To force it to return a tuple
of size 0 or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

16 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

Py_Buildvalue ("") None
Py_Buildvalue ("i", 123) 123
Py_Buildvalue ("iii", 123, 456, 789) (123, 456, 789)
Py_BuildvValue ("s", "hello") 'hello'
Py_Buildvalue ("y", "hello") b'hello'
Py_Buildvalue("ss", "hello", "world") ('"hello', 'world')
Py_BuildvValue ("s#", "hello", 4) 'hell'
Py_Buildvalue ("y#", "hello", 4) b'hell'
Py_Buildvalue(" () ") ()
Py_Buildvalue (" (i)", 123) (123,)
Py_Buildvalue (" (ii)", 123, 456) (123, 456)
Py_Buildvalue (" (i,1)", 123, 456) (123, 456)
Py_Buildvalue("[i,i]", 123, 456) [123, 456]
Py_Buildvalue ("{s:i,s:i}",

"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_Buildvalue (" ((ii) (ii)) (ii)",

1, 2, 3, 4, 5, 6) (1, 2), (3, 4)), (5, 6))

2.1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on the
heap. In C, this is done using the functionsmalloc () and free (). In C++, the operators new and delete are used
with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated with malloc () should eventually be returned to the pool of available memory by
exactly one callto free () . Itisimportant to call free () at the right time. If a block’s address is forgotten but free ()
is not called for it, the memory it occupies cannot be reused until the program terminates. This is called a memory leak.
On the other hand, if a program calls free () for a block and then continues to use the block, it creates a conflict with
re-use of the block through another malloc () call. This is called using freed memory. It has the same bad consequences
as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block of
memory, do some calculation, and then free the block again. Now a change in the requirements for the function may add
a test to the calculation that detects an error condition and can return prematurely from the function. It’s easy to forget
to free the allocated memory block when taking this premature exit, especially when it is added later to the code. Such
leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small fraction of all calls,
and most modern machines have plenty of virtual memory, so the leak only becomes apparent in a long-running process
that uses the leaking function frequently. Therefore, it’s important to prevent leaks from happening by having a coding
convention or strategy that minimizes this kind of errors.

Since Python makes heavy use of malloc () and free (), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object contains a
counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when a
reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the object
is freed.

An alternative strategy is called automatic garbage collection. (Sometimes, reference counting is also referred to as a
garbage collection strategy, hence my use of «automatic» to distinguish the two.) The big advantage of automatic garbage
collection is that the user doesn’t need to call free () explicitly. (Another claimed advantage is an improvement in
speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is no truly portable
automatic garbage collector, while reference counting can be implemented portably (as long as the functions malloc ()
and free () are available — which the C Standard guarantees). Maybe some day a sufficiently portable automatic
garbage collector will be available for C. Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to detect
reference cycles. This allows applications to not worry about creating direct or indirect circular references; these are the

2.1. Extending Python with C or C++ 17




Extending and Embedding Python, Anpooicsuon 3.9.23

weakness of garbage collection implemented using only reference counting. Reference cycles consist of objects which
contain (possibly indirect) references to themselves, so that each object in the cycle has a reference count which is non-
zero. Typical reference counting implementations are not able to reclaim the memory belonging to any objects in a
reference cycle, or referenced from the objects in the cycle, even though there are no further references to the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them. The gc module exposes a way to run the
detector (the collect () function), as well as configuration interfaces and the ability to disable the detector at runtime.
The cycle detector is considered an optional component; though it is included by default, it can be disabled at build time
using the ——without—-cycle-gc option to the configure script on Unix platforms (including Mac OS X). If the
cycle detector is disabled in this way, the gc module will not be available.

Reference Counting in Python

There are two macros, Py_INCREF (x) and Py_DECREF (x), which handle the incrementing and decrementing of
the reference count. Py_DECREF () also frees the object when the count reaches zero. For flexibility, it doesn’t call
free () directly — rather, it makes a call through a function pointer in the object’s type object. For this purpose (and
others), every object also contains a pointer to its type object.

The big question now remains: when to use Py_ INCREF (x) and Py_DECREF (x) ? Let’s first introduce some terms.
Nobody «owns» an object; however, you can own a reference to an object. An object’s reference count is now defined
as the number of owned references to it. The owner of a reference is responsible for calling Py_DECREF () when the
reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose of an owned
reference: pass it on, store it, or call Py_DECREF () . Forgetting to dispose of an owned reference creates a memory
leak.

It is also possible to borrow” a reference to an object. The borrower of a reference should not call Py_DECREF (). The
borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed reference
after the owner has disposed of it risks using freed memory and should be avoided completely”.

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference on
all possible paths through the code — in other words, with a borrowed reference you don’t run the risk of leaking when
a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations where in
seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in fact disposed
of it.

A borrowed reference can be changed into an owned reference by calling Py_INCREF (). This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification whether
ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions whose
function it is to create a new object, such as PyLong_FromLong () and Py_BuildValue (), pass ownership to the
receiver. Even if the object is not actually new, you still receive ownership of a new reference to that object. For instance,
PyLong_FromLong () maintains a cache of popular values and can return a reference to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for instance
PyObject_GetAttrString (). The picture s less clear, here, however, since a few common routines are exceptions:
PyTuple_GetItem(),PyList_GetItem(),PyDict_GetItem(),and PyDict_GetItemString() all
return references that you borrow from the tuple, list or dictionary.

2 The metaphor of «borrowing» a reference is not completely correct: the owner still has a copy of the reference.
3 Checking that the reference count is at least 1 does not work — the reference count itself could be in freed memory and may thus be reused for
another object!

18 Kegahaiwo 2. Creating extensions without third party tools



Extending and Embedding Python, Anpooiguon 3.9.23

The function PyImport_AddModule () also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored in sys .modules.

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will use Py_INCREF () to become an independent owner. There are exactly two important
exceptions to this rule: PyTuple_SetItem() and PyList_SetItem (). These functions take over ownership of
the item passed to them — even if they fail! (Note that PyDict_SetItem () and friends don’t take over ownership
— they are «normal.»)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference by calling Py_ INCREF ().

The object reference returned from a C function that is called from Python must be an owned reference — ownership is
transferred from the function to its caller.

Thin Ice
There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have to
do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is using Py_DECREF () on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_FromLong (0L));
PyObject_Print (item, stdout, 0); /* BUG! */

This function first borrows a reference to 1ist [0], then replaces 1ist [1] with the value 0, and finally prints the
borrowed reference. Looks harmless, right? But it’s not!

Let’s follow the control flow into PyList_SetItem (). The list owns references to all its items, so when item 1 is
replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a user-defined
class, and let’s further suppose that the class defineda ___del__ () method. If this class instance has a reference count
of 1, disposing of it will call its __del_ () method.

Since it is written in Python, the __del__ () method can execute arbitrary Python code. Could it perhaps do something
to invalidate the reference to item in bug () ? You bet! Assuming that the list passed into bug () is accessible to the
__del__ () method, it could execute a statement to the effect of del 1ist [0], and assuming this was the last
reference to that object, it would free the memory associated with it, thereby invalidating i tem.

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The correct
version of the function reads:

void
no_bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

Py_INCREF (item) ;
PyList_SetItem(list, 1, PyLong_FromLong (0L));
PyObject_Print (item, stdout, 0);

(ouvéyeLa 0TV ETOUEVT] GEMDQL)

2.1. Extending Python with C or C++ 19




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Py DECREF (item) ;

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable amount
of time in a C debugger to figure out why his __del () methods would fail...

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in the
Python interpreter can’t get in each other’s way, because there is a global lock protecting Python’s entire object space.
However, it is possible to temporarily release this lock using the macro Py_BEGIN_ALLOW_THREADS, and to re-
acquire it using Py_END_ALLOW_THREADS. This is common around blocking I/O calls, to let other threads use the
processor while waiting for the I/O to complete. Obviously, the following function has the same problem as the previous
one:

void

bug (PyObject *1list)

{
PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
...some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print (item, stdout, 0); /* BUG! */

NULL Pointers

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL only
to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often pass the
objects they receive on to other function — if each function were to test for NULL, there would be a lot of redundant tests
and the code would run more slowly.

It is better to test for NULL only at the «source:» when a pointer that may be NULL is received, for example, from
malloc () or from a function that may raise an exception.

The macros Py_INCREF () and Py_DECREF () do not check for NULL pointers — however, their variants
Py_XINCREF () and Py_XDECREF () do.

The macros for checking for a particular object type (Pytype_Check () ) don't check for NULL pointers — again,
there is much code that calls several of these in a row to test an object against various different expected types, and this
would generate redundant tests. There are no variants with NULL checking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples) is
never NULL — in fact it guarantees that it is always a tuple”.

It is a severe error to ever let a NULL pointer «escape» to the Python user.

4 These guarantees don’t hold when you use the «old» style calling convention — this is still found in much existing code.

20 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

2.1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python interpreter) is
compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a problem
if the main program is linked by the C++ compiler. Functions that will be called by the Python interpreter (in particular,
module initialization functions) have to be declared using extern "C". It is unnecessary to enclose the Python header
files in extern "C" {...} — they use this form already if the symbol __ cplusplus is defined (all recent C++
compilers define this symbol).

2.1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in an
extension module can be useful for other extension modules. For example, an extension module could implement a type
«collection» which works like lists without order. Just like the standard Python list type has a C API which permits
extension modules to create and manipulate lists, this new collection type should have a set of C functions for direct
manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring them stat ic, of course), provide an appropriate
header file, and document the C API. And in fact this would work if all extension modules were always linked statically
with the Python interpreter. When modules are used as shared libraries, however, the symbols defined in one module
may not be visible to another module. The details of visibility depend on the operating system; some systems use one
global namespace for the Python interpreter and all extension modules (Windows, for example), whereas others require
an explicit list of imported symbols at module link time (AIX is one example), or offer a choice of different strategies
(most Unices). And even if symbols are globally visible, the module whose functions one wishes to call might not have
been loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in extension
modules should be declared st at ic, except for the module’s initialization function, in order to avoid name clashes with
other extension modules (as discussed in section The Module’s Method Table and Initialization Function). And it means
that symbols that should be accessible from other extension modules must be exported in a different way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another one:
Capsules. A Capsule is a Python data type which stores a pointer (void *). Capsules can only be created and accessed
via their C API, but they can be passed around like any other Python object. In particular, they can be assigned to a name
in an extension module’s namespace. Other extension modules can then import this module, retrieve the value of this
name, and then retrieve the pointer from the Capsule.

There are many ways in which Capsules can be used to export the C API of an extension module. Each function could
get its own Capsule, or all C API pointers could be stored in an array whose address is published in a Capsule. And the
various tasks of storing and retrieving the pointers can be distributed in different ways between the module providing the
code and the client modules.

Whichever method you choose, it’s important to name your Capsules properly. The function PyCapsule_New () takes
a name parameter (const char *); youre permitted to pass in a NULL name, but we strongly encourage you to
specify a name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to tell one
unnamed Capsule from another.

In particular, Capsules used to expose C APIs should be given a name following this convention:

modulename.attributename

The convenience function PyCapsule_Import () makes it easy to load a C API provided via a Capsule, but only if
the Capsule’s name matches this convention. This behavior gives C API users a high degree of certainty that the Capsule
they load contains the correct C APL

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an

2.1. Extending Python with C or C++ 21



Extending and Embedding Python, Anpooicsuon 3.9.23

array of void pointers which becomes the value of a Capsule. The header file corresponding to the module provides a
macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call this
macro before accessing the C APIL.

The exporting module is a modification of the spam module from section A Simple Example. The function spam.
system () does not call the C library function system () directly, but a function PySpam_System (), which
would of course do something more complicated in reality (such as adding «spam» to every command). This function
PySpam_System () is also exported to other extension modules.

The function PySpam_System () is a plain C function, declared stat ic like everything else:

static int
PySpam_System(const char *command)
{

return system(command) ;

The function spam_system () is modified in a trivial way:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = PySpam_System (command) ;

return PyLong_FromLong(sts);

In the beginning of the module, right after the line

#include <Python.h>

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The #define is used to tell the header file that it is being included in the exporting module, not a client module. Finally,
the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC

PyInit_spam(void)

{
PyObject *m;
static wvoid *PySpam API[PySpam API_pointers];
PyObject *c_api_object;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

/* Initialize the C API pointer array */
PySpam_API [PySpam_System NUM] = (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */

(ouvéyela otV emtduevn oehida)

22 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

c_api_object = PyCapsule_New((void *)PySpam_ API, "spam. C_API", NULL);

if (PyModule_AddObject(m, " _C API", c_api_object) < 0) {
Py_XDECREF (c_api_object);
Py_DECREF (m) ;
return NULL;

return m;

Note that PySpam_APT is declared stat ic; otherwise the pointer array would disappear when PyInit_spam ()
terminates!

The bulk of the work is in the header file spammodule . h, which looks like this:

#ifndef Py SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef cplusplus
extern "C" {

#endif

/* Header file for spammodule */

/* C API functions */

#define PySpam System NUM 0

#define PySpam_System RETURN int

#define PySpam System_PROTO (const char *command)

/* Total number of C API pointers */
#define PySpam API_pointers 1

#ifdef SPAM _MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_ PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_ API;

#define PySpam_System \
(* (PySpam_System_ RETURN (*)PySpam_System PROTO) PySpam API[PySpam_System NUM])

/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception if there's an error.
*/

static int

import_spam(void)

{

PySpam_API = (void **)PyCapsule_Import ("spam._ C_API", 0);
return (PySpam API != NULL) ? 0 : -1;

I3

#endif

(ouvéyela otV emtduevn oehida)

2.1. Extending Python with C or C++ 23




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

#ifdef ___cplusplus
}
#endif

#endif /* !defined(Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the function PySpam_System () is to call the function (or
rather macro) import_spam () in its initialization function:

PyMODINIT_FUNC
PyInit_client (void)
{

PyObject *m;

m = PyModule_Create (&clientmodule) ;
if (m == NULL)
return NULL;
if (import_spam() < 0)
return NULL;
/* additional initialization can happen here */
return m;

The main disadvantage of this approach is that the file spammodule.h is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that Capsules offer additional functionality, which is especially useful for memory allocation
and deallocation of the pointer stored in a Capsule. The details are described in the Python/C API Reference Manual
in the section capsules and in the implementation of Capsules (files Include/pycapsule.h and Objects/
pycapsule. c in the Python source code distribution).

2.2 Defining Extension Types: Tutorial

Python allows the writer of a C extension module to define new types that can be manipulated from Python code, much
like the built-in st r and 1ist types. The code for all extension types follows a pattern, but there are some details that
you need to understand before you can get started. This document is a gentle introduction to the topic.

2.2.1 The Basics

The CPython runtime sees all Python objects as variables of type PyObject *, which serves as a «base type» for all
Python objects. The PyObject structure itself only contains the object’s reference count and a pointer to the object’s
«type object». This is where the action is; the type object determines which (C) functions get called by the interpreter
when, for instance, an attribute gets looked up on an object, a method called, or it is multiplied by another object. These
C functions are called «type methods».

So, if you want to define a new extension type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new type
named Custom inside a C extension module custom:

Enueimon: What we're showing here is the traditional way of defining static extension types. It should be adequate for
most uses. The C API also allows defining heap-allocated extension types using the PyType_FromSpec () function,

24 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

which isn’t covered in this tutorial.

#define PY_SSIZE_T CLEAN
#include <Python.h>

typedef struct {

PyObject_HEAD
/* Type—-specific fields go here. */

} CustomObject;

static PyTypeObject CustomType = {
)

bi

PyVarObject_ HEAD_INIT (NULL, O

.tp_name = "custom.Custom",

.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,

.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

static PyModuleDef custommodule = {

bi

PyModuleDef_ HEAD_INIT,

.m_name = "custom",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

PyMODINIT_FUNC
PyInit_custom(wvoid)

{

PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the previous chapter. This file defines
three things:

1.

What a Custom object contains: this is the Cust omObject struct, which is allocated once for each Custom
instance.

. How the Cust om type behaves: this is the Cust omType struct, which defines a set of flags and function pointers

that the interpreter inspects when specific operations are requested.

. How to initialize the custom module: this is the PyInit_custom function and the associated

2.2,

Defining Extension Types: Tutorial 25




Extending and Embedding Python, Anpooicsuon 3.9.23

custommodule struct.

The first bit is:

typedef struct {
PyObject_HEAD
} CustomObiject;

This is what a Custom object will contain. PyObject_HEAD is mandatory at the start of each object struct and defines
a field called ob_base of type PyObject, containing a pointer to a type object and a reference count (these can be
accessed using the macros Py_TYPE and Py_REFCNT respectively). The reason for the macro is to abstract away the
layout and to enable additional fields in debug builds.

Inueiwon: There is no semicolon above after the PyObject_HEAD macro. Be wary of adding one by accident: some
compilers will complain.

Of course, objects generally store additional data besides the standard PyObject_HEAD boilerplate; for example, here
is the definition for standard Python floats:

typedef struct {
PyObject_HEAD
double ob_fval;
} PyFloatObiject;

The second bit is the definition of the type object.

static PyTypeObject CustomType = {
PyVarObject_ HEAD_INIT (NULL, O)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

Inueioon: We recommend using C99-style designated initializers as above, to avoid listing all the PyTypeObject
fields that you don’t care about and also to avoid caring about the fields” declaration order.

The actual definition of PyTypeObject in object . h has many more fields than the definition above. The remaining
fields will be filled with zeros by the C compiler, and it’s common practice to not specify them explicitly unless you need
them.

We're going to pick it apart, one field at a time:

’PyVarObjectiHEADilNIT(NULL, 0)

This line is mandatory boilerplate to initialize the ob_base field mentioned above.

’.tpiname = "custom.Custom",

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

26 Kegahaiwo 2. Creating extensions without third party tools



Extending and Embedding Python, Anpooiguon 3.9.23

>>> "" + custom.Custom()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is custom and the type is Custom, so we set the type name to custom.Custom. Using the
real dotted import path is important to make your type compatible with the pydoc and pickle modules.

.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,

This is so that Python knows how much memory to allocate when creating new Custom instances. tp_itemsize is
only used for variable-sized objects and should otherwise be zero.

Ynueioon: If you want your type to be subclassable from Python, and your type has the same tp_basicsize as its
base type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your type
firstinits __ _bases__, or else it will not be able to call your type’s __new___ () method without getting an error. You
can avoid this problem by ensuring that your type has a larger value for tp_basicsize than its base type does. Most
of the time, this will be true anyway, because either your base type will be object, or else you will be adding data
members to your base type, and therefore increasing its size.

We set the class flags to Py_TPFLAGS_DEFAULT.

.tp_flags = Py_TPFLAGS_DEFAULT,

All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If you
need further members, you will need to OR the corresponding flags.

We provide a doc string for the type in tp_doc.

.tp_doc = PyDoc_STR("Custom objects"),

To enable object creation, we have to provide a tp_new handler. This is the equivalent of the Python method
__new__ (), but has to be specified explicitly. In this case, we can just use the default implementation provided by
the API function PyType_GenericNew ().

.tp_new = PyType_GenericNew,

Everything else in the file should be familiar, except for some code in PyInit_custom():

if (PyType_Ready (&CustomType) < 0)
return;

This initializes the Custom type, filling in a number of members to the appropriate default values, including ob_type
that we initially set to NULL.

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

This adds the type to the module dictionary. This allows us to create Custom instances by calling the Cust om class:

2.2. Defining Extension Types: Tutorial 27




Extending and Embedding Python, Anpooicsuon 3.9.23

>>> import custom
>>> mycustom = custom.Custom()

That’s it! All that remains is to build it; put the above code in a file called custom. c and:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=[Extension("custom", ["custom.c"])])

in a file called setup . py; then typing

$ python setup.py build

at a shell should produce a file custom. so in a subdirectory; move to that directory and fire up Python — you should
be able to import custom and play around with Custom objects.

That wasn’t so hard, was it?

Of course, the current Custom type is pretty uninteresting. It has no data and doesn’t do anything. It can’t even be
subclassed.

Inueimon: While this documentation showcases the standard distutils module for building C extensions, it is
recommended in real-world use cases to use the newer and better-maintained setuptools library. Documentation on
how to do this is out of scope for this document and can be found in the Python Packaging User’s Guide.

2.2.2 Adding data and methods to the Basic example

Let’s extend the basic example to add some data and methods. Let’s also make the type usable as a base class. We'll create
a new module, custom? that adds these capabilities:

#define PY_SSIZE_T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObiject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

(ouvéyela otV emOUEVT OENIDOL)

28 Kegahaiwo 2. Creating extensions without third party tools



https://packaging.python.org/tutorials/distributing-packages/

Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;

3
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "[00i", kwlist,
sfirst, &last,
&self->number))

return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

}

if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

}

return 0;

static PyMemberDef Custom_members|[] = {
{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", T_INT, offsetof (CustomObject, number), 0,
"custom number"},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))

{
if (self->first == NULL) {

(ouvéyela otV emtduevn oehida)

2.2. Defining Extension Types: Tutorial 29



Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

PyErr_SetString (PyExc_AttributeError,

return NULL;

}
if

(self->last

NULL) {

PyErr_SetString (PyExc_AttributeError,

return NULL;
}

"First™);

"last");

return PyUnicode_FromFormat ("%S %S", self->first, self->last);
}
static PyMethodDef Custom_methods[] = {

{"name", (PyCFunction) Custom_name, METH_NOARGS,

"Return the name, combining the first and last name"

by

{NULL} /* Sentinel */
bi

static PyTypeObject CustomType =

PyVarObject_ HEAD_INIT (NULL, O
.tp_name =
.tp_doc =

.tp_basicsize =
.tp_itemsize = 0,
.tp_flags =
.tp_new = Custom_new,
.tp_init = (initproc)
.tp_dealloc = (destructor)
.tp_members = Custom_members,
.tp_methods = Custom_methods,

"custom2.Custom",

bi

static PyModuleDef custommodule =
PyModuleDef_ HEAD_INIT,

.m_name = "custom2",
.m_doc = "Example module that
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom2 (void)
{

PyObject *m;

Py_TPFLAGS_DEFAULT

PyDoc_STR("Custom objects"),
sizeof (CustomObject),

| Py _TPFLAGS_BASETYPE,

Custom_init,
Custom_dealloc,

{

creates an extension type.",

if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;

if (m == NULL)

return NULL;

Py_INCREF (&CustomType) ;
if (PyModule_AddObiject (m,
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

"Custom",

(PyObject *) &CustomType) <

(ouvéyela otV emtduevn oehida)

30

Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

return m;

This version of the module has a number of changes.

We've added an extra include:

#include <structmember.h>

This include provides declarations that we use to handle attributes, as described a bit later.

The Custom type now has three data attributes in its C struct, first, last, and number. The first and last variables are
Python strings containing first and last names. The number attribute is a C integer.

The object structure is updated accordingly:

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a minimum,
we need a deallocation method:

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

which is assigned to the tp_dealloc member:

.tp_dealloc = (destructor) Custom_dealloc,

This method first clears the reference counts of the two Python attributes. Py_ XDECREF () correctly handles the case
where its argument is NULL (which might happen here if tp_new failed midway). It then calls the tp_free member
of the object’s type (computed by Py_TYPE (self) ) to free the object’s memory. Note that the object’s type might not
be CustomType, because the object may be an instance of a subclass.

Inueiwon: The explicit cast to destructor above is needed because we defined Custom_dealloc to take a
CustomObject * argument, but the tp_dealloc function pointer expects to receive a PyObject * argument.
Otherwise, the compiler will emit a warning. This is object-oriented polymorphism, in C!

We want to make sure that the first and last names are initialized to empty strings, so we provide a tp_new
implementation:

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

(ouvéyela otV emduevn oehida)

2.2. Defining Extension Types: Tutorial 31




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;
}
return (PyObject *) self;

and install it in the t p_new member:

.tp_new = Custom_new,

The tp_new handler is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python
as the _ _new__ () method. It is not required to define a tp_new member, and indeed many extension types will
simply reuse PyType_GenericNew () as done in the first version of the Cust om type above. In this case, we use the
tp_new handler to initialize the first and 1ast attributes to non-NULL default values.

tp_new is passed the type being instantiated (not necessarily CustomType, if a subclass is instantiated) and any
arguments passed when the type was called, and is expected to return the instance created. tp_new handlers always
accept positional and keyword arguments, but they often ignore the arguments, leaving the argument handling to initializer
(aka. tp_initinCor__init__ in Python) methods.

Enueiwon: tp_new shouldn’t call tp_init explicitly, as the interpreter will do it itself.

The tp_new implementation calls the tp_alloc slot to allocate memory:

self = (CustomObject *) type->tp_alloc(type, 0);

Since memory allocation may fail, we must check the tp_alloc result against NULL before proceeding.

Inueiwon: We didn't fill the tp_alloc slot ourselves. Rather PyType_Ready () fills it for us by inheriting it from
our base class, which is object by default. Most types use the default allocation strategy.

Inueiwon: If you are creating a co-operative t p_new (one that calls a base type’s tp_newor __new___ () ), you must
not try to determine what method to call using method resolution order at runtime. Always statically determine what type
you are going to call, and call its tp_new directly, or via t ype->tp_base—->tp_new. If you do not do this, Python
subclasses of your type that also inherit from other Python-defined classes may not work correctly. (Specifically, you may
not be able to create instances of such subclasses without getting a TypeError.)

We also define an initialization function which accepts arguments to provide initial values for our instance:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)

(ouvéyela otV emoueV oerida)

32 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "[00i", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

}

return 0;

by filling the tp_init slot.

.tp_init = (initproc) Custom_init,

The tp_init slotis exposed in Pythonasthe _init__ () method. It is used to initialize an object after it’s created.
Initializers always accept positional and keyword arguments, and they should return either O on success or —1 on error.

Unlike the tp_new handler, there is no guarantee that tp_init is called at all (for example, the pickle module
by default doesn’t call __init__ () on unpickled instances). It can also be called multiple times. Anyone can call the
__init__ () method on our objects. For this reason, we have to be extra careful when assigning the new attribute
values. We might be tempted, for example to assign the £irst member like this:

if (first) |
Py_XDECREF (self->first);
Py_INCREF (first);
self->first = first;

But this would be risky. Our type doesn’t restrict the type of the £irst member, so it could be any kind of object. It
could have a destructor that causes code to be executed that tries to access the £irst member; or that destructor could
release the Global interpreter Lock and let arbitrary code run in other threads that accesses and modifies our object.

To be paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing
their reference counts. When don’t we have to do this?

« when we absolutely know that the reference count is greater than 1;

« when we know that deallocation of the object' will neither release the GIL nor cause any calls back into our type’s
code;

« when decrementing a reference count in a tp_dealloc handler on a type which doesn’t support cyclic garbage
collection’.

! This is true when we know that the object is a basic type, like a string or a float.
2 We relied on this in the t p_dealloc handler in this example, because our type doesn’t support garbage collection.

2.2. Defining Extension Types: Tutorial 33




Extending and Embedding Python, Anpooicsuon 3.9.23

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is to
define member definitions:

static PyMemberDef Custom_members|[] = {
{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

and put the definitions in the tp_members slot:

.tp_members = Custom_members,

Each member definition has a member name, type, offset, access flags and documentation string. See the Generic Attribute
Management section below for details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned to the
Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned. Further, the
attributes can be deleted, setting the C pointers to NULL. Even though we can make sure the members are initialized to
non-NULL values, the members can be set to NULL if the attributes are deleted.

We define a single method, Custom. name (), that outputs the objects name as the concatenation of the first and last
names.

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
}
if (self->last == NULL) H{
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
}

return PyUnicode_FromFormat ("%S %S", self->first, self->last);

The method is implemented as a C function that takes a Custom (or Custom subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as well, but
in this case we don’t take any and don’t need to accept a positional argument tuple or keyword argument dictionary. This
method is equivalent to the Python method:

def name (self):
return " " % (self.first, self.last)

Note that we have to check for the possibility that our first and 1ast members are NULL. This is because they can
be deleted, in which case they are set to NULL. It would be better to prevent deletion of these attributes and to restrict
the attribute values to be strings. We'll see how to do that in the next section.

Now that we’ve defined the method, we need to create an array of method definitions:

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,

(ouvéyela otV emtduevn oehida)

34 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

(note that we used the METH_NOARGS flag to indicate that the method is expecting no arguments other than self)

and assign it to the tp_methods slot:

’.tpfmethods = Custom_methods,

Finally, we’ll make our type usable as a base class for subclassing. We've written our methods carefully so far so that
they don’t make any assumptions about the type of the object being created or used, so all we need to do is to add the
Py_TPFLAGS_BASETYPE to our class flag definition:

’.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,

We rename PyInit_custom() to PyInit_custom2 (), update the module name in the PyModuleDef struct,
and update the full class name in the PyTypeObject struct.

Finally, we update our setup. py file to build the new module:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=]|
Extension("custom", ["custom.c"]),
Extension("custom2", ["custom2.c"]),

1)

2.2.3 Providing finer control over data attributes

In this section, we’ll provide finer control over how the first and last attributes are set in the Custom example. In
the previous version of our module, the instance variables first and last could be set to non-string values or even
deleted. We want to make sure that these attributes always contain strings.

#define PY SSIZE T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObiject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free((PyObject *) self);

static PyObject *

(ouvéyela otV emtduevn oehida)

2.2. Defining Extension Types: Tutorial 35



Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;

}
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
&first, &last,
&self->number))

return -1;

if (first) A
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

3

return 0O;

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), 0,
"custom number"},
{NULL} /* Sentinel */

bi

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)

{
Py_INCREF (self->first);

(ouvéyela otV emtduevn oehida)

36 Kegahaiwo 2. Creating extensions without third party tools



Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, wvoid *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;
Py_INCREF (value);
self->first = value;
Py_DECREF (tmp) ;
return 0O;

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->1last);

return self->last;

static int
Custom_setlast (CustomObject *self, PyObject *value, void *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;
}
tmp = self->last;
Py_INCREF (value) ;
self->last = value;
Py_DECREF (tmp) ;
return 0O;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,

"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},

{NULL} /* Sentinel */

(ouvéyela otV emtduevn oehida)

2.2. Defining Extension Types: Tutorial 37



Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
PyVarObject_ HEAD_INIT (NULL, O)
.tp_name = "custom3.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members Custom_members,
.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "custom3",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom3 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0)
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

38 Kegahaiwo 2. Creating extensions without third party tools



Extending and Embedding Python, Anpooiguon 3.9.23

To provide greater control, over the first and last attributes, we’ll use custom getter and setter functions. Here are
the functions for getting and setting the £ irst attribute:

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, wvoid *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;
Py_INCREF (value);
self->first = value;
Py_DECREF (tmp) ;
return 0O;

The getter function is passed a Custom object and a «closure», which is a void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This could,
for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set based on data
in the closure.)

The setter function is passed the Cust om object, the new value, and the closure. The new value may be NULL, in which
case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if its new value is not a
string.

We create an array of PyGet SetDef structures:

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */

bi

and register it in the tp_getset slot:

.tp_getset = Custom_getsetters,

The last item in a PyGet SetDef structure is the «closure» mentioned above. In this case, we aren’t using a closure, so
we just pass NULL.

We also remove the member definitions for these attributes:

2.2. Defining Extension Types: Tutorial 39




Extending and Embedding Python, Anpooicsuon 3.9.23

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

We also need to update the tp_init handler to only allow strings® to be passed:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0O;

With these changes, we can assure that the first and 1ast members are never NULL so we can remove checks for
NULL values in almost all cases. This means that most of the Py_ XDECREF () calls can be converted to Py_ DECREF ()
calls. The only place we can’t change these calls is in the tp_dealloc implementation, where there is the possibility
that the initialization of these members failed in tp_new.

We also rename the module initialization function and module name in the initialization function, as we did before, and
we add an extra definition to the setup. py file.

2.2.4 Supporting cyclic garbage collection

Python has a cyclic garbage collector (GC) that can identify unneeded objects even when their reference counts are not
zero. This can happen when objects are involved in cycles. For example, consider:

>>> 1 = []
>>> 1.append(1l)
>>> del 1

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’t drop to zero. Fortunately, Python’s cyclic garbage collector will eventually figure out that the list is garbage

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts, however,
we accept instances of string subclasses. Even though deallocating normal strings won’t call back into our objects, we can’t guarantee that deallocating
an instance of a string subclass won't call back into our objects.

40 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

and free it.

In the second version of the Custom example, we allowed any kind of object to be stored in the first or last
attributes*. Besides, in the second and third versions, we allowed subclassing Cust om, and subclasses may add arbitrary
attributes. For any of those two reasons, Custom objects can participate in cycles:

>>> import custom3
>>> class Derived (custom3.Custom) : pass

>>> n = Derived()
>>> n.some_attribute = n

To allow a Custom instance participating in a reference cycle to be properly detected and collected by the cyclic GC,
our Custom type needs to fill two additional slots and to enable a flag that enables these slots:

#define PY _SSIZE_ T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static int
Custom_traverse (CustomObject *self, visitproc visit, void *arg)
{

Py _VISIT(self->first);

Py _VISIT (self->last);

return 0;

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0O;

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self)->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {

(ouvéyela otV eOUEVT OENDOL)

4 Also, even with our attributes restricted to strings instances, the user could pass arbitrary st r subclasses and therefore still create reference cycles.

2.2. Defining Extension Types: Tutorial 41




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

self->first =
if

PyUnicode_FromString("");
(self->first == NULL) {
Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;

}
self->number = 0;
3
return (PyObject *) self;

static int
Custom_init (CustomObject *self,
{

PyObject *args,

PyObject *kwds)

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;
if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;
if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;
}
if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;
}
return 0;
i
static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */
bi
static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)

{
Py_INCREF (self->first);
return self->first;

static int

Custom_setfirst (CustomObject *self, PyObject *value,

void *closure)

(ouvéyela otV emtduevn oehida)

42

Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
Py_INCREF (value);
Py_CLEAR (self->first);
self->first = value;
return O;

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->1last);

return self->last;

static int
Custom_setlast (CustomObject *self, PyObject *value, wvoid *closure)
{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;
}
Py_INCREF (value);
Py_CLEAR (self->last);
self->last = value;
return 0O;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */

bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))

{

return PyUnicode_FromFormat ("$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {

(ouvéyela otV emtduevn oehida)

2.2. Defining Extension Types: Tutorial 43



Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
by
{NULL} /* Sentinel */

i

static PyTypeObject CustomType = {
PyVarObject_ HEAD_INIT (NULL, O)
.tp_name = "custom4.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = Custom_new,

.tp_init = (initproc) Custom_init,

.tp_dealloc = (destructor) Custom_dealloc,
.tp_traverse = (traverseproc) Custom_traverse,
.tp_clear = (inquiry) Custom_clear,
.tp_members = Custom_members,

.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

bi
static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom4d",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom4 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

First, the traversal method lets the cyclic GC know about subobjects that could participate in cycles:

static int
Custom_traverse (CustomObject *self, visitproc visit, woid *arqg)

{

(ouvéyeLa 0TV ETOUEVT] GEMDQL)

44 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

int vret;
if (self->first) {
vret = visit(self->first, arg);
if (vret != 0)
return vret;
3
if (self->last) {
vret = visit (self->last, arg);
if (vret != 0)
return vret;
}

return 0O;

For each subobject that can participate in cycles, we need to call the visit () function, which is passed to the traversal
method. The visit () function takes as arguments the subobject and the extra argument arg passed to the traversal
method. It returns an integer value that must be returned if it is non-zero.

Python provides a Py_VISIT () macro that automates calling visit functions. With Py_VISIT (), we can minimize
the amount of boilerplate in Custom_traverse:

static int
Custom_traverse (CustomObject *self, visitproc visit, woid *arqg)
{

Py_VISIT (self->first);

Py _VISIT (self->last);

return 0O;

Inueimon: The tp_traverse implementation must name its arguments exactly visit and arg in order to use
Py_VISIT().

Second, we need to provide a method for clearing any subobjects that can participate in cycles:

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR (self->first);
Py_CLEAR (self->last);
return 0O;

Notice the use of the Py_ CLEAR () macro. It is the recommended and safe way to clear data attributes of arbitrary types
while decrementing their reference counts. If you were to call Py_ XDECREF () instead on the attribute before setting
it to NULL, there is a possibility that the attribute’s destructor would call back into code that reads the attribute again
(especially if there is a reference cycle).

Ynueioon: You could emulate Py_CLEAR () by writing:

PyObject *tmp;

tmp = self->first;
self->first = NULL;
Py_XDECREF (tmp) ;

2.2. Defining Extension Types: Tutorial 45




Extending and Embedding Python, Anpooicsuon 3.9.23

Nevertheless, it is much easier and less error-prone to always use Py_CLEAR () when deleting an attribute. Don’t try to
micro-optimize at the expense of robustness!

The deallocator Custom_dealloc may call arbitrary code when clearing attributes. It means the circular GC can be
triggered inside the function. Since the GC assumes reference count is not zero, we need to untrack the object from the
GC by calling PyObject_GC_UnTrack () before clearing members. Here is our reimplemented deallocator using
PyObject_GC_UnTrack () and Custom_clear:

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self) ->tp_free ((PyObject *) self);

Finally, we add the Py_TPFLAGS_HAVE_GC flag to the class flags:

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,

That’s pretty much it. If we had written custom tp_alloc or tp_free handlers, we'd need to modify them for cyclic
garbage collection. Most extensions will use the versions automatically provided.

2.2.5 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the built in
types, since an extension can easily use the PyTypeObject it needs. It can be difficult to share these PyTypeObject
structures between extension modules.

In this example we will create a SubLi st type that inherits from the built-in 11 st type. The new type will be completely
compatible with regular lists, but will have an additional increment () method that increases an internal counter:

>>> import sublist

>>> s = sublist.SubList (range(3))
>>> s.extend(s)

>>> print (len(s))

6

>>> print (s.increment ())

>>> print (s.increment ())

#define PY SSIZE_T CLEAN
#include <Python.h>

typedef struct {
PyListObject list;
int state;

} SubListObject;

static PyObject *
SubList_increment (SubListObject *self, PyObject *unused)
{

self->statet++;
return PyLong_FromLong(self->state);

(ouveéyela otV emtduevn oehida)

46 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

static PyMethodDef SubList_methods]|]
{"increment", (PyCFunction)

{

SubList_increment,

METH_NOARGS,

PyDoc_STR("increment state counter")},

{NULL},
bi

static int
SubList_init (SubListObject *self,
{
if
return -1;
self->state
return 0O;

0;

static PyTypeObject SubListType = {
PyVarObject_ HEAD_INIT (NULL, O)
.tp_name "sublist.SubList",
.tp_doc
.tp_basicsize
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT |
.tp_init (initproc) SubList_init,
.tp_methods SubList_methods,

bi

static PyModuleDef sublistmodule
PyModuleDef_ HEAD_INIT,

=1

.m_name = "sublist",
.m_doc =
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject *m;
SubListType.tp_base

&PyList_Type;

if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule)

if (m == NULL)

return NULL;

Py_INCREF (&SubListType) ;

if (PyModule_AddObject (m, "SubList"
Py_DECREF (&SubListType) ;
Py_DECREF (m) ;
return NULL;

3

return m;

PyObject *args,

(PyList_Type.tp_init ((PyObject *)

, (PyObject *)

PyObject *kwds)

self, args, kwds) < 0)

PyDoc_STR("SubList objects"),
sizeof (SubListObject),

Py_TPFLAGS_BASETYPE,

"Example module that creates an extension type.",

’

&SubListType) < 0) |

2.2. Defining Extension Types: Tutorial

47




Extending and Embedding Python, Anpooicsuon 3.9.23

As you can see, the source code closely resembles the Cust om examples in previous sections. We will break down the
main differences between them.

typedef struct {
PyListObject list;
int state;

} SubListObject;

The primary difference for derived type objects is that the base type’s object structure must be the first value. The base
type will already include the PyObject_HEAD () at the beginning of its structure.

When a Python object is a SubList instance, its PyObject * pointer can be safely cast to both PyListObject
* and SubListObject *:

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return 0;

We see above how to call through to the __init__ method of the base type.

This pattern is important when writing a type with custom t p_new and t p_dealloc members. The tp_new handler
should not actually create the memory for the object with its tp_alloc, but let the base class handle it by calling its
own tp_new.

The PyTypeObject struct supports a tp_base specifying the type’s concrete base class. Due to cross-platform
compiler issues, you can't fill that field directly with a reference to PyList_Type; it should be done later in the module
initialization function:

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject* m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&SubListType) ;

if (PyModule_AddObject (m, "SubList", (PyObject *) &SubListType) < 0) {
Py_DECREF (&SubListType) ;
Py_DECREF (m) ;
return NULL;

return m;

Before calling PyType_Ready (), the type structure must have the tp_base slot filled in. When we are deriving an
existing type, it is not necessary to fill out the tp_alloc slot with PyType_GenericNew () - the allocation function
from the base type will be inherited.

48 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

After that, calling PyType_Ready () and adding the type object to the module is the same as with the basic Custom
examples.

2.3 Defining Extension Types: Assorted Topics

This section aims to give a quick fly-by on the various type methods you can implement and what they do.

Here is the definition of PyTypeObject, with some fields only used in debug builds omitted:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_lbasicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

Py_ssize_t tp_vectorcall offset;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;

PySequenceMethods *tp_as_sequence;

PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */
hashfunc tp_hash;

ternaryfunc tp_call;

reprfunc tp_str;

getattrofunc tp_getattro;

setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */

(ouvéyela otV emtduev oehida)

2.3. Defining Extension Types: Assorted Topics 49




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_ IS GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObject;

Now that’s a lot of methods. Don’t worry too much though - if you have a type you want to define, the chances are very
good that you will only implement a handful of these.

As you probably expect by now, we're going to go over this and give more information about the various handlers. We
won't go in the order they are defined in the structure, because there is a lot of historical baggage that impacts the ordering
of the fields. It’s often easiest to find an example that includes the fields you need and then change the values to suit your
new type.

’const char *tp_name; /* For printing */

The name of the type — as mentioned in the previous chapter, this will appear in various places, almost entirely for
diagnostic purposes. Try to choose something that will be helpful in such a situation!

’Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has some
built-in support for variable length structures (think: strings, tuples) which is where the tp_itemsize field comes in.
This will be dealt with later.

const char *tp_doc;

Here you can put a string (or its address) that you want returned when the Python script references obj.__ _doc__ to
retrieve the doc string.

50 Kegahaiwo 2. Creating extensions without third party tools



Extending and Embedding Python, Anpooiguon 3.9.23

Now we come to the basic type methods — the ones most extension types will implement.

2.3.1 Finalization and De-allocation

destructor tp_dealloc;

This function is called when the reference count of the instance of your type is reduced to zero and the Python interpreter
wants to reclaim it. If your type has memory to free or other clean-up to perform, you can put it here. The object itself
needs to be freed here as well. Here is an example of this function:

static void
newdatatype_dealloc (newdatatypeobject *obj)
{
free (obj—>obj_UnderlyingDatatypePtr);
Py_TYPE (obj)-—>tp_free ((PyObject *)obj);

If your type supports garbage collection, the destructor should call PyObject_GC_UnTrack () before clearing any
member fields:

static void
newdatatype_dealloc (newdatatypeobject *obj)
{

PyObject_GC_UnTrack (obij);

Py_CLEAR (obj->other_obj);

Py_TYPE (obj) —>tp_free ((PyObject *)obj);

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important
since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to
an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has
already been set. Any actions which a deallocator performs which may cause additional Python code to be executed may
detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way to protect
against this is to save a pending exception before performing the unsafe action, and restoring it when done. This can be
done using the PyErr_Fetch () and PyErr_Restore () functions:

static void

my_dealloc (PyObject *obj)

{
MyObject *self = (MyObject *) obj;
PyObject *cbresult;

if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;

/* This saves the current exception state */
PyErr_Fetch (&err_type, &err_value, &err_traceback);

cbresult = PyObject_CallNoArgs (self->my_callback);
if (cbresult == NULL)

PyErr_WriteUnraisable (self->my_callback);
else

Py_DECREF (cbresult) ;

(ouvéyela otV emOUEVT OENIDOL)

2.3. Defining Extension Types: Assorted Topics 51




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

/* This restores the saved exception state */
PyErr_Restore (err_type, err_value, err_traceback);

Py_DECREF (self->my_callback);

}
Py_TYPE (obj) —>tp_free ((PyObject*)self);

Enueiwon: There are limitations to what you can safely do in a deallocator function. First, if your type supports garbage
collection (using tp_traverse and/or tp_clear), some of the object’s members can have been cleared or finalized
by the time tp_dealloc is called. Second, in tp_dealloc, your object is in an unstable state: its reference count
is equal to zero. Any call to a non-trivial object or API (as in the example above) might end up calling tp_dealloc
again, causing a double free and a crash.

Starting with Python 3.4, it is recommended not to put any complex finalization code in tp_dealloc, and instead use
the new tp_finalize type method.

Agite gmiong:

PEP 442 explains the new finalization scheme.

2.3.2 Object Presentation

In Python, there are two ways to generate a textual representation of an object: the repr () function, and the str ()
function. (The print () function just calls str ().) These handlers are both optional.

reprfunc tp_repr;
reprfunc tp_str;

The tp_repr handler should return a string object containing a representation of the instance for which it is called.
Here is a simple example:

static PyObject *
newdatatype_repr (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Repr-ified newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);

If no tp_repr handler is specified, the interpreter will supply a representation that uses the type’s tp_name and a
uniquely-identifying value for the object.

The tp_str handleris to str () what the tp_repr handler described above is to repr () ; that is, it is called when
Python code calls str () on an instance of your object. Its implementation is very similar to the tp_repr function,
but the resulting string is intended for human consumption. If tp_str is not specified, the tp_repr handler is used
instead.

Here is a simple example:

static PyObject *
newdatatype_str (newdatatypeobject * obj)
{

return PyUnicode_FromFormat ("Stringified newdatatype{{size:%d}}",

(ouvéyela oty emduevn oehida)

52 Kegahaiwo 2. Creating extensions without third party tools



https://www.python.org/dev/peps/pep-0442

Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

obj->obj_UnderlyingDatatypePtr->size);

2.3.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how the
attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to set
attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed to the
handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions for
one pair. The difference is that one pair takes the name of the attribute as a char *, while the other acceptsaPyObject *.
Each type can use whichever pair makes more sense for the implementation’s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;

VA V4

getattrofunc tp_getattro; /* PyObject * version */

setattrofunc tp_setattro;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic
implementations which can be used to provide the PyObject * version of the attribute management functions. The
actual need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there are
many examples which have not been updated to use some of the new generic mechanism that is available.

Generic Attribute Management

Most extension types only use simple attributes. So, what makes the attributes simple? There are only a couple of conditions
that must be met:

1. The name of the attributes must be known when Py Type_Ready () is called.

2. No special processing is needed to record that an attribute was looked up or set, nor do actions need to be taken
based on the value.

Note that this list does not place any restrictions on the values of the attributes, when the values are computed, or how
relevant data is stored.

When PyType_Ready () is called, it uses three tables referenced by the type object to create descriptors which are
placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object. Each
of the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited from their
base type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the base type to
handle attributes.

The tables are declared as three fields of the type object:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an
instance of this structure:

2.3. Defining Extension Types: Assorted Topics 53




Extending and Embedding Python, Anpooicsuon 3.9.23

typedef struct PyMethodDef ({

const char *ml_name; /* method name */

PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */

const char *ml_doc; /* docstring */

} PyMethodDef;

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from a
base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The m1_name field
of the sentinel must be NULL.

The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive C
types are supported, and access may be read-only or read-write. The structures in the table are defined as:

typedef struct PyMemberDef {
const char *name;

int type;
int offset;
int flags;

const char *doc;
} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the type which will be able to extract a value
from the instance structure. The t ype field should contain one of the type codes defined in the st ructmember.h
header; the value will be used to determine how to convert Python values to and from C values. The f1ags field is used
to store flags which control how the attribute can be accessed.

The following flag constants are defined in st ructmember . h; they may be combined using bitwise-OR.

Constant Meaning

READONLY Never writable.

READ_RESTRICTED Not readable in restricted mode.
WRITE_RESTRICTED | Not writable in restricted mode.
RESTRICTED Not readable or writable in restricted mode.

An interesting advantage of using the t p_members table to build descriptors that are used at runtime is that any attribute
defined this way can have an associated doc string simply by providing the text in the table. An application can use the
introspection API to retrieve the descriptor from the class object, and get the doc string using its ___doc___ attribute.

As with the tp_methods table, a sentinel entry with a name value of NULL is required.

Type-specific Attribute Management

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only difference
between the char* and PyOb ject * flavors of the interface. This example effectively does the same thing as the generic
example above, but does not use the generic support added in Python 2.2. It explains how the handler functions are called,
so that if you do need to extend their functionality, you'll understand what needs to be done.

The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations
where the __getattr__ () method of a class would be called.

Here is an example:

static PyObject *
newdatatype_getattr (newdatatypeobject *obj, char *name)

(ouvéyela otV emtduevn oehida)

54 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

if (strcmp(name, "data") == 0)
{
return PyLong_FromLong (obj->data) ;

PyErr_Format (PyExc_AttributeError,
"'$.50s' object has no attribute '%.400s'",
tp—>tp_name, name);

return NULL;

The tp_setattr handler is called when the __ setattr__ () or _ delattr__ () method of a class instance
would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that simply
raises an exception; if this were really all you wanted, the t p_setattr handler should be set to NULL.

static int

newdatatype_setattr (newdatatypeobject *obj, char *name, PyObject *v)

{
PyErr_Format (PyExc_RuntimeError, "Read-only attribute: %s", name);
return -1;

2.3.4 Object Comparison

richcmpfunc tp_richcompare;

The tp_richcompare handler is called when comparisons are needed. It is analogous to the rich comparison methods,
like__1t__ (), and also called by PyObject_RichCompare () and PyObject_RichCompareBool ().

This function is called with two Python objects and the operator as arguments, where the operator is one of Py_EQ,
Py_NE,Py_LE,Py_GE,Py_LTorPy_GT. It should compare the two objects with respect to the specified operator and
return Py_True or Py_False if the comparison is successful, Py_Not Implemented to indicate that comparison
is not implemented and the other object’s comparison method should be tried, or NULL if an exception was set.

Here is a sample implementation, for a datatype that is considered equal if the size of an internal pointer is equal:

static PyObject *
newdatatype_richcmp (PyObject *objl, PyObject *obj2, int op)
{

PyObject *result;

int c, sizel, size2;

/* code to make sure that both arguments are of type
newdatatype omitted */

sizel = objl->obj_UnderlyingDatatypePtr->size;
size2 = obj2->o0bj_UnderlyingDatatypePtr->size;

switch (op)

case : ¢ = sizel < size2; break;

case : ¢ = sizel <= size2; break;

case c = sizel == size2; break;
c

case size2; break;

= sizel

(ouvéyela otV emOUEVT OENIDOL)

2.3. Defining Extension Types: Assorted Topics 55




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

case : ¢ = sizel > size2; break;
case : ¢ = sizel >= size2; break;
}

result = ¢ ? Py_True : Py_False;

Py_INCREF (result);
return result;

2.3.5 Abstract Protocol Support

Python supports a variety of abstract “protocols;” the specific interfaces provided to use these interfaces are documented
in abstract.

A number of these abstract interfaces were defined early in the development of the Python implementation. In particular,
the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols have been
added over time. For protocols which depend on several handler routines from the type implementation, the older protocols
have been defined as optional blocks of handlers referenced by the type object. For newer protocols there are additional
slots in the main type object, with a flag bit being set to indicate that the slots are present and should be checked by the
interpreter. (The flag bit does not indicate that the slot values are non-NULL. The flag may be set to indicate the presence
of a slot, but a slot may still be unfilled.)

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address of
a structure that implements the C type PyNumberMethods, PySequenceMethods, or PyMappingMethods,
respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each of
these in the Object s directory of the Python source distribution.

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a simple
example:

static Py_hash_t
newdatatype_hash (newdatatypeobject *obj)

{
Py_hash_t result;

result = obj->some_size + 32767 * obj->some_number;
if (result == -1)
result = -2;

return result;

Py_hash_t is a signed integer type with a platform-varying width. Returning —1 from tp_hash indicates an error,
which is why you should be careful to avoid returning it when hash computation is successful, as seen above.

ternaryfunc tp_call;

This function is called when an instance of your data type is «called», for example, if ob3j1 is an instance of your data
type and the Python script contains obj1 ('hello"'), the tp_call handler is invoked.

This function takes three arguments:

56 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

1. self is the instance of the data type which is the subject of the call. If the call is obj1 ("hello'), then self is
objl.

2. args is a tuple containing the arguments to the call. You can use PyArg ParseTuple () to extract the

arguments.

3. kwds is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword
arguments, use PyArg_ParseTupleAndKeywords () to extract the arguments. If you do not want to support
keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword arguments are
not supported.

Here is a toy tp_call implementation:

static PyObject *
newdatatype_call (newdatatypeobject *self, PyObject *args, PyObject *kwds)
{

PyObject *result;

const char *argl;

const char *arg2;

const char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &argl, &arg2, &arg3)) |
return NULL;

3

result = PyUnicode_FromFormat (
"Returning —- value: [%d] argl: [%s] arg2: [%s] arg3: [%s]\n",
obj->obj_UnderlyingDatatypePtr->size,
argl, arg2, arg3);

return result;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for
which they are being called, and return a new reference. In the case of an error, they should set an exception and return
NULL. tp_iter corresponds to the Python __iter_ () method, while tp_iternext corresponds to the Python
__next__ () method.

Any iterable object must implement the t p_ i t er handler, which must return an iterator object. Here the same guidelines
apply as for Python classes:

« For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should be
created and returned by each callto tp_iter.

o Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can
implement tp_iter by returning a new reference to themselves — and should also therefore implement the
tp_iternext handler.

Any iterator object should implement both tp_iter and tp_iternext. An iterator’s tp_iter handler should
return a new reference to the iterator. Its tp_iternext handler should return a new reference to the next object in
the iteration, if there is one. If the iteration has reached the end, tp_iternext may return NULL without setting an
exception, or it may set StopIteration in addition to returning NULL; avoiding the exception can yield slightly better
performance. If an actual error occurs, tp_iternext should always set an exception and return NULL.

2.3. Defining Extension Types: Assorted Topics 57




Extending and Embedding Python, Anpooicsuon 3.9.23

2.3.6 Weak Reference Support

One of the goals of Python’s weak reference implementation is to allow any type to participate in the weak reference
mechanism without incurring the overhead on performance-critical objects (such as numbers).

Agite emiong:

Documentation for the weakre f module.

For an object to be weakly referencable, the extension type must do two things:

1. Include a PyObject * field in the C object structure dedicated to the weak reference mechanism. The object’s
constructor should leave it NULL (which is automatic when using the default tp_alloc).

2. Setthe tp_weaklistoffset type member to the offset of the aforementioned field in the C object structure,
so that the interpreter knows how to access and modify that field.

Concretely, here is how a trivial object structure would be augmented with the required field:

typedef struct {

PyObject_HEAD

PyObject *weakreflist; /* List of weak references */
} TrivialObject;

And the corresponding member in the statically-declared type object:

static PyTypeObject TrivialType = {
PyVarObject_ HEAD_INIT (NULL, O)
/* ... other members omitted for brevity ... */
.tp_weaklistoffset = offsetof (TrivialObject, weakreflist),
bi

The only further addition is that tp_dealloc needs to clear any weak references (by calling
PyObject_ClearWeakRefs ()) if the field is non-NULL:

static void
Trivial dealloc(TrivialObject *self)

{

/* Clear weakrefs first before calling any destructors */

if (self->weakreflist != NULL)
PyObject_ClearWeakRefs ((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */

Py_TYPE (self)->tp_free ((PyObject *) self);

2.3.7 More Suggestions

In order to learn how to implement any specific method for your new data type, get the CPython source code.
Go to the Objects directory, then search the C source files for tp_ plus the function you want (for example,
tp_richcompare). You will find examples of the function you want to implement.

When you need to verify that an object is a concrete instance of the type you are implementing, use the
PyObject_TypeCheck () function. A sample of its use might be something like the following:

if (!PyObject_TypeCheck (some_object, &MyType)) A
PyErr_SetString (PyExc_TypeError, "arg #1 not a mything");
return NULL;

58 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

Agite griong:
Download CPython source releases. https://www.python.org/downloads/source/

The CPython project on GitHub, where the CPython source code is developed. https://github.com/python/
cpython

2.4 Building C and C++ Extensions

A C extension for CPython is a shared library (e.g. a . so file on Linux, . pyd on Windows), which exports an inifialization
Sfunction.

To be importable, the shared library must be available on PYTHONPATH, and must be named after the module name,
with an appropriate extension. When using distutils, the correct filename is generated automatically.

The initialization function has the signature:
PyObject* PyInit_modulename (void)
It returns either a fully-initialized module, or a PyModuleDef instance. See initializing-modules for details.

For modules with ASCII-only names, the function must be named PyInit_<modulename>, with <modulename>
replaced by the name of the module. When using multi-phase-initialization, non-ASCII module names are allowed. In this
case, the initialization function name is PyInitU_<modulename>, with <modulename> encoded using Python’s
punycode encoding with hyphens replaced by underscores. In Python:

def initfunc_name (name) :

try:
suffix = b'_ ' + name.encode('ascii')
except UnicodeEncodeError:
suffix = b'U_' + name.encode ('punycode') .replace(b'-', b'_ ")

return b'PyInit' + suffix

It is possible to export multiple modules from a single shared library by defining multiple initialization functions. However,
importing them requires using symbolic links or a custom importer, because by default only the function corresponding
to the filename is found. See the «Multiple modules in one library» section in PEP 489 for details.

2.4.1 Building C and C++ Extensions with distutils
Extension modules can be built using distutils, which is included in Python. Since distutils also supports creation of binary
packages, users don’t necessarily need a compiler and distutils to install the extension.

A distutils package contains a driver script, setup . py. This is a plain Python file, which, in the most simple case, could
look like this:

from distutils.core import setup, Extension

modulel = Extension('demo',
sources = ['demo.c'])

setup (name = 'PackageName',
version = '1.0'",
description = 'This is a demo package',
ext_modules = [modulel])

With this setup.py, and a file demo . ¢, running

2.4. Building C and C++ Extensions 59



https://www.python.org/downloads/source/
https://github.com/python/cpython
https://github.com/python/cpython
https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, Anpooicsuon 3.9.23

python setup.py build

will compile demo . ¢, and produce an extension module named demo in the bui 1d directory. Depending on the system,
the module file will end up in a subdirectory build/1lib.system, and may have a name like demo . so or demo.

pyd.

In the setup. py, all execution is performed by calling the setup function. This takes a variable number of keyword
arguments, of which the example above uses only a subset. Specifically, the example specifies meta-information to build
packages, and it specifies the contents of the package. Normally, a package will contain additional modules, like Python
source modules, documentation, subpackages, etc. Please refer to the distutils documentation in distutils-index to learn
more about the features of distutils; this section explains building extension modules only.

It is common to pre-compute arguments to setup (), to better structure the driver script. In the example above, the
ext_modules argument to setup () is a list of extension modules, each of which is an instance of the Extension.
In the example, the instance defines an extension named demo which is build by compiling a single source file, demo . c.

In many cases, building an extension is more complex, since additional preprocessor defines and libraries may be needed.
This is demonstrated in the example below.

from distutils.core import setup, Extension

modulel = Extension('demo',
define_macros = [ ('MAJOR_VERSION', '1'"),
("MINOR_VERSION', '0')1,

include_dirs = ['/usr/local/include'],
libraries = ['tcl83'],
library_dirs = ['/usr/local/lib'],
sources = ['demo.c'])
setup (name = 'PackageName',

version = '1.0",

description = 'This is a demo package',

author = '"Martin v. Loewis',

author_email = 'martin@v.loewis.de',

url = 'https://docs.python.org/extending/building’,

long_description = """
This is really just a demo package.

ext_modules = [modulel])

In this example, setup () is called with additional meta-information, which is recommended when distribution packages
have to be built. For the extension itself, it specifies preprocessor defines, include directories, library directories, and
libraries. Depending on the compiler, distutils passes this information in different ways to the compiler. For example, on
Unix, this may result in the compilation commands

gcc -DNDEBUG —-g -03 -Wall -Wstrict-prototypes —-fPIC -DMAJOR_VERSION=1 -DMINOR_
—~VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/
—temp.linux-1686-2.2/demo.o

gcc —shared build/temp.linux-i686-2.2/demo.o —-L/usr/local/lib -1tcl83 -o build/lib.
—1linux-1686-2.2/demo.so

These lines are for demonstration purposes only; distutils users should trust that distutils gets the invocations right.

60 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

2.4.2 Distributing your extension modules

When an extension has been successfully built, there are three ways to use it.

End-users will typically want to install the module, they do so by running

’python setup.py install

Module maintainers should produce source packages; to do so, they run

’python setup.py sdist

In some cases, additional files need to be included in a source distribution; this is done through a MANIFEST. in file;
see manifest for details.

If the source distribution has been built successfully, maintainers can also create binary distributions. Depending on the
platform, one of the following commands can be used to do so.

python setup.py bdist_wininst
python setup.py bdist_rpm
python setup.py bdist_dumb

2.5 Building C and C++ Extensions on Windows

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++, and
follows with more detailed background information on how it works. The explanatory material is useful for both the
Windows programmer learning to build Python extensions and the Unix programmer interested in producing software
which can be successfully built on both Unix and Windows.

Module authors are encouraged to use the distutils approach for building extension modules, instead of the one described
in this section. You will still need the C compiler that was used to build Python; typically Microsoft Visual C++.

Xnueioon: This chapter mentions a number of filenames that include an encoded Python version number. These
filenames are represented with the version number shown as XY; in practice, 'X' will be the major version number
and 'Y' will be the minor version number of the Python release you’re working with. For example, if you are using
Python 2.2.1, XY will actually be 22.

2.5.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on Unix: use the distutils
package to control the build process, or do things manually. The distutils approach works well for most extensions;
documentation on using distutils to build and package extension modules is available in distutils-index. If you find
you really need to do things manually, it may be instructive to study the project file for the winsound standard library
module.

2.5. Building C and C++ Extensions on Windows 61


https://github.com/python/cpython/tree/3.9/PCbuild/winsound.vcxproj

Extending and Embedding Python, Anpooicsuon 3.9.23

2.5.2 Differences Between Unix and Windows

Unix and Windows use completely different paradigms for run-time loading of code. Before you try to build a module
that can be dynamically loaded, be aware of how your system works.

In Unix, a shared object (. so) file contains code to be used by the program, and also the names of functions and data
that it expects to find in the program. When the file is joined to the program, all references to those functions and data
in the file’s code are changed to point to the actual locations in the program where the functions and data are placed in
memory. This is basically a link operation.

In Windows, a dynamic-link library (. d11) file has no dangling references. Instead, an access to functions or data goes
through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’s memory; instead,
the code already uses the DLL’s lookup table, and the lookup table is modified at runtime to point to the functions and
data.

In Unix, there is only one type of library file (. a) which contains code from several object files (. o). During the link
step to create a shared object file (. so), the linker may find that it doesn’t know where an identifier is defined. The linker
will look for it in the object files in the libraries; if it finds it, it will include all the code from that object file.

In Windows, there are two types of library, a static library and an import library (both called . 1ib). A static library is
like a Unix . a file; it contains code to be included as necessary. An import library is basically used only to reassure the
linker that a certain identifier is legal, and will be present in the program when the DLL is loaded. So the linker uses the
information from the import library to build the lookup table for using identifiers that are not included in the DLL. When
an application or a DLL is linked, an import library may be generated, which will need to be used for all future DLLs
that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On Unix,
you would not pass A.. a to the linker for B. so and C. so; that would cause it to be included twice, so that B and C would
each have their own copy. In Windows, building A.d11 will also build A. 1ib. You do pass A. 11ib to the linker for B
and C. A. 1ib does not contain code; it just contains information which will be used at runtime to access A’s code.

In Windows, using an import library is sort of like using import spam; it gives you access to spam’s names, but does
not create a separate copy. On Unix, linking with a library is more like from spam import *;it does create a
separate copy.

2.5.3 Using DLLs in Practice
Windows Python is built in Microsoft Visual C++; using other compilers may or may not work. The rest of this section
is MSVC++ specific.

When creating DLLs in Windows, you must pass pythonXY . 1ib to the linker. To build two DLLs, spam and ni (which
uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

The first command created three files: spam.obj, spam.dll and spam.lib. Spam.dl1l does not contain any
Python functions (such as PyArg_ParseTuple ()), but it does know how to find the Python code thanks to
pythonXY.lib.

The second command created ni.d11 (and .obj and .1ib), which knows how to find the necessary functions from
spam, and also from the Python executable.

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able
to see your identifiers, you have to say _declspec (dllexport), as in void _declspec (dllexport)
initspam(void) or PyObject _declspec(dllexport) *NiGetSpamData (void).

62 Kegahaiwo 2. Creating extensions without third party tools




Extending and Embedding Python, Anpooiguon 3.9.23

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your
executable. To get rid of them, use the Project Settings dialog, Link tab, to specify ignore default libraries. Add the
correct msvcrtxx.lib to the list of libraries.

2.5. Building C and C++ Extensions on Windows 63



Extending and Embedding Python, Anpooicsuon 3.9.23

64

Kegahaiwo 2. Creating extensions without third party tools



KEGANAIO 3

Embedding the CPython runtime in a larger application

Sometimes, rather than creating an extension that runs inside the Python interpreter as the main application, it is desirable
to instead embed the CPython runtime inside a larger application. This section covers some of the details involved in doing
that successfully.

3.1 Embedding Python in Another Application

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by attaching a
library of C functions to it. It is also possible to do it the other way around: enrich your C/C++ application by embedding
Python in it. Embedding provides your application with the ability to implement some of the functionality of your
application in Python rather than C or C++. This can be used for many purposes; one example would be to allow users
to tailor the application to their needs by writing some scripts in Python. You can also use it yourself if some of the
functionality can be written in Python more easily.

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the main
program of the application is still the Python interpreter, while if you embed Python, the main program may have nothing
to do with Python — instead, some parts of the application occasionally call the Python interpreter to run some Python
code.

So if you are embedding Python, you are providing your own main program. One of the things this main program has to
do is initialize the Python interpreter. At the very least, you have to call the function Py_Initialize (). There are
optional calls to pass command line arguments to Python. Then later you can call the interpreter from any part of the
application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun_SimpleString (), or you can pass a stdio file pointer and a file name (for identification in error messages
only) to PyRun_SimpleFile (). You can also call the lower-level operations described in the previous chapters to
construct and use Python objects.

Agite emiong:

c-api-index The details of Python’s C interface are given in this manual. A great deal of necessary information can be
found here.

65



Extending and Embedding Python, Anpooicsuon 3.9.23

3.1.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to execute
a Python script without needing to interact with the application directly. This can for example be used to perform some
operation on a file.

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

int
main (int argc, char *argv[])
{
wchar_t *program = Py_DecodelLocale (argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1) ;

}
Py_SetProgramName (program); /* optional but recommended */
Py_Initialize();
PyRun_SimpleString ("from time import time,ctime\n"
"print ('Today is', ctime (time()))\n");

if (Py_FinalizeEx () < 0) {

exit (120);
}
PyMem_RawFree (program) ;
return 0;

The Py_SetProgramName () function should be called before Py_Initialize () toinform the interpreter about
paths to Python run-time libraries. Next, the Python interpreter is initialized with Py_Initialize (), followed by the
execution of a hard-coded Python script that prints the date and time. Afterwards, the Py_FinalizeEx () call shuts
the interpreter down, followed by the end of the program. In a real program, you may want to get the Python script from
another source, perhaps a text-editor routine, a file, or a database. Getting the Python code from a file can better be done
by using the PyRun_SimpleFile () function, which saves you the trouble of allocating memory space and loading
the file contents.

3.1.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but
exchanging data values is quite cumbersome to say the least. If you want that, you should use lower level calls. At the cost
of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same activity, despite the different intent.
Most topics discussed in the previous chapters are still valid. To show this, consider what the extension code from Python
to C really does:

1. Convert data values from Python to C,
2. Perform a function call to a C routine using the converted values, and
3. Convert the data values from the call from C to Python.
When embedding Python, the interface code does:
1. Convert data values from C to Python,
2. Perform a function call to a Python interface routine using the converted values, and

3. Convert the data values from the call from Python to C.

66 Kegahawo 3. Embedding the CPython runtime in a larger application




Extending and Embedding Python, Anpooiguon 3.9.23

As you can see, the data conversion steps are simply swapped to accommodate the different direction of the cross-language
transfer. The only difference is the routine that you call between both data conversions. When extending, you call a C
routine, when embedding, you call a Python routine.

This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of references and
dealing with errors is assumed to be understood. Since these aspects do not differ from extending the interpreter, you can
refer to earlier chapters for the required information.

3.1.3 Pure Embedding

The first program aims to execute a function in a Python script. Like in the section about the very high level interface,
the Python interpreter does not directly interact with the application (but that will change in the next section).

The code to run a function defined in a Python script is:

#define PY _SSIZE_T CLEAN
#include <Python.h>

int

main (int argc, char *argv([])

{
PyObject *pName, *pModule, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) {
fprintf (stderr, "Usage: call pythonfile funcname [args]\n");
return 1;

Py_Initialize();
pName = PyUnicode_DecodeFSDefault (argv([1l]);
/* Error checking of pName left out */

pModule = PyImport_Import (pName) ;
Py_DECREF (pName) ;

if (pModule != NULL) {
pFunc = PyObject_GetAttrString (pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) |
pArgs = PyTuple_New(argc - 3);
for (i = 0; 1 < argc - 3; ++1i) A
pValue = PylLong_FromLong (atoi (argv[i + 31));
if (!pvalue) {
Py_DECREF (pArgs) ;
Py_DECREF (pModule) ;
fprintf (stderr, "Cannot convert argument\n");
return 1;
}
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);
}
pValue = PyObject_CallObject (pFunc, pArgs);
Py_DECREF (pArgs) ;
if (pValue != NULL) {

(ouvéyela otV emtduevn oehida)

3.1. Embedding Python in Another Application 67




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

printf ("Result of call: %1d\n", PyLong_AsLong (pValue));
Py_DECREF (pValue) ;
}
else {
Py_DECREF (pFunc) ;
Py_DECREF (pModule) ;
PyErr_Print ();
fprintf (stderr,"Call failed\n");
return 1;

}
else {
if (PyErr_Occurred())
PyErr_Print ();
fprintf (stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py_XDECREF (pFunc) ;
Py_DECREF (pModule) ;
;
else {
PyErr_Print ();
fprintf (stderr, "Failed to load \"%s\"\n", argv[1]);
return 1;
I3
if (Py_FinalizeEx () < 0) {
return 120;
3

return 0;

This code loads a Python script using argv [1], and calls the function named in argv [2]. Its integer arguments are
the other values of the argv array. If you compile and link this program (let’s call the finished executable call), and
use it to execute a Python script, such as:

def multiply(a,b):
print ("Will compute", a, "times", b)

c =20
for i in range (0, a):
c=c¢c+b

return c

then the result should be:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

Although the program is quite large for its functionality, most of the code is for data conversion between Python and C,
and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();

pName = PyUnicode_DecodeFSDefault (argv([1]);
/* Error checking of pName left out */
pModule = PyImport_Import (pName) ;

After initializing the interpreter, the script is loaded using Py Import_Import (). This routine needs a Python string
as its argument, which is constructed using the PyUnicode_FromString () data conversion routine.

68 Kegahawo 3. Embedding the CPython runtime in a larger application




Extending and Embedding Python, Anpooiguon 3.9.23

pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) {

}
Py_XDECREF (pFunc) ;

Once the script is loaded, the name we're looking for is retrieved using PyObject_GetAttrString (). If the name
exists, and the object returned is callable, you can safely assume that it is a function. The program then proceeds by
constructing a tuple of arguments as normal. The call to the Python function is then made with:

pValue = PyObject_CallObject (pFunc, pArgs);

Upon return of the function, pvalue is either NULL or it contains a reference to the return value of the function. Be
sure to release the reference after examining the value.

3.1.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python API
allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with routines provided
by the application. While it sounds complex, it is not so bad. Simply forget for a while that the application starts the Python
interpreter. Instead, consider the application to be a set of subroutines, and write some glue code that gives Python access
to those routines, just like you would write a normal Python extension. For example:

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject*
emb_numargs (PyObject *self, PyObject *args)
{
if (!PyArg_ParseTuple (args, ":numargs"))
return NULL;
return PylLong_FromLong (numargs) ;

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,
"Return the number of arguments received by the process."},
{NULL, NULL, 0O, NULL}

bi

static PyModuleDef EmbModule = {
PyModuleDef_ HEAD_INIT, "emb", NULL, -1, EmbMethods,
NULL, NULL, NULL, NULL

bi

static PyObject*
PyInit_emb (void)
{
return PyModule_Create (&EmbModule) ;

Insert the above code just above the main () function. Also, insert the following two statements before the call to
Py_Initialize():

3.1. Embedding Python in Another Application 69




Extending and Embedding Python, Anpooicsuon 3.9.23

numargs = argc;
PyImport_AppendInittab ("emb", &PyInit_emb);

These two lines initialize the numargs variable, and make the emb . numargs () function accessible to the embedded
Python interpreter. With these extensions, the Python script can do things like

import emb
print ("Number of arguments", emb.numargs())

In a real application, the methods will expose an API of the application to Python.

3.1.5 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of the C++
system used; in general you will need to write the main program in C++, and use the C++ compiler to compile and link
your program. There is no need to recompile Python itself using C++.

3.1.6 Compiling and Linking under Unix-like systems

It is not necessarily trivial to find the right flags to pass to your compiler (and linker) in order to embed the Python
interpreter into your application, particularly because Python needs to load library modules implemented as C dynamic
extensions ( . so files) linked against it.

To find out the required compiler and linker flags, you can execute the pythonX. Y-config script which is generated
as part of the installation process (a python3—-config script may also be available). This script has several options,
of which the following will be directly useful to you:

e pythonX.Y-config —--cflags will give you the recommended flags when compiling:

$ /opt/bin/python3.4-config —--cflags
-I/opt/include/python3.4m -I/opt/include/python3.4m -DNDEBUG -g —fwrapv -03 -Wall.
——-Wstrict-prototypes

pythonX.Y-config —-1dflags will give you the recommended flags when linking:

$ /opt/bin/python3.4-config —--1dflags
-L/opt/lib/python3.4/config-3.4m -lpthread -1dl -lutil -1lm -lpython3.4m -Xlinker -
—export—-dynamic

Ynueioon: To avoid confusion between several Python installations (and especially between the system Python and
your own compiled Python), it is recommended that you use the absolute path to pythonX.Y-config, as in the
above example.

If this procedure doesn’t work for you (it is not guaranteed to work for all Unix-like platforms; however, we welcome bug
reports) you will have to read your system’s documentation about dynamic linking and/or examine Python’s Makefile
(use sysconfig.get_makefile_filename () to find its location) and compilation options. In this case, the
sysconfig module is a useful tool to programmatically extract the configuration values that you will want to combine
together. For example:

>>> import sysconfig
>>> sysconfig.get_config_var ('LIBS")
'-lpthread -1dl -—lutil'

(ouvéyela otV emoOUEVT 0eNdO)

70 Kegahawo 3. Embedding the CPython runtime in a larger application




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

>>> gysconfig.get_config_var ('LINKFORSHARED")
'-Xlinker -export-dynamic'

3.1. Embedding Python in Another Application 71




Extending and Embedding Python, Anpooicsuon 3.9.23

72

Kegahawo 3. Embedding the CPython runtime in a larger application



nAPAPTHMA A’

Mwoodpl

>>> To mpoemheyuévo Python prompt tov dtadpootiko shell. Zuyvd epgpaviletal yio mapadeiyioto KmdLKa Tou
uITopoVV va, EKTEAETTOUV dLAdPAOTIKA OTOV interpreter.

. Mmnopei va avagépetan o€:

o To mpoemiheyuévo Python prompt tou dtadpaotikov shell katd v eLooymyn Tou KOdIKa Yo £va Whok
KddiKa pe gooyn, otav Bpioketol péoa oe éva Levyog Taplaouévmv aplotepmv Ko deEudv delimiters
(mapevOéoelg, ayKULeg, AYKLOTPO 1) TPLITAN ELOAYMYLKA), ) LETA TOV KoBopLond evog decorator.

o H evowpatmuévn otabepd E11ipsis.

2to3 'Eva epyaleio mov mpoomadel vo uetatpépel tov Kodika Python 2.x oe kwduka Python 3.x duayelpilovrog
TLG TTEPLOTOTEPES ALTVUPATOTITES TOU UTOPOVYV VO EVTOTLOTOVV OVOADOVTOG TNV TNy Ko diaoyilovtag to
dévTpo avdivong.

2t03 eival drabéoipo oty atdvtap BirodNKn wg 1ib2t o3, mapéyetar éva onueio e.0ddov mwg Tools/
scripts/2to3. Bh. 2to3-reference.

agnpnuévy fackn) kAaon Ou agnpnuéveg Paotkéc KAAOELSG cuumthnpwvouy To duck-typing mapéyoviag évav
tpoOTo opLopov interfaces dtov dhheg texvikég 6mwg N hasattr () Bo Nrav adéEieg 1 avemaiodnta Aav-
Oaopéveg (Yo topdderypna pe magic methods). Tao ABC (abstract base class) eLodyovv elKOVIKEG VTOKAAOELS,
oL omoieg eivar KAGoeLg Tov dev Khnpovouovvran ard o kKAGon, odhd eEakolovbotv va avayvopiloval
amd to isinstance () kow amd 10 issubclass () ” BA. v teKunpimwon tov module abe. H Python dia-
0éteL moAG evowpatwpuéva ABC yia dopég dedopévmv (oto module collections. abe), apOuovg (oto
module numbers), poég (o010 module povada io), eloarywyn finders kou loaders (0to module importlib.
abc). Mmopeite va dnuovpynoete ta dukd oag ABC pe to module abe.

annotation Mo etikéto Tov oyeTIeTan Ue po UETARANTH, £va YopaKTNPELOTIKO KAGONG 1| WOl TTOPAUETPOG GU-
VAPTNONG 1] TLUN TTOV ETLOTPEPETAL, TTOV XPT|OLUOTTOLELTOL KOTd avufacn wg type hint.

Aegv givar duvati) 1) TPoOoPaon oTo annotations TWV TOTLKMOV UETABANTOV KT TO (pdvo eKTéheons, alld
Ta annotations tov global petafANTmv, TOV YoPAKTNPLOTLKOV KAAONG KoL TOV CUVOPTHOE®MY 0rtodnKkevo-
VTOL 0TO ELOLKO YOpOoKTNPLOTIKO __annotations__ twv modules, Twv KAACEMV KOL TV OUVAPTNOEWY,
avtioToya.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

73


https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, Anpooicsuon 3.9.23

opwopo. Mot puetafiatetal oe pio function () method) xotd Ty kAo g ouvaptnong. Yrdpyouv dvo eidn

0PLOUATOV:

o keyword argument: ¢évo. dpLopa. TPLY amd Evo avayvopLoTiko (.. name=) o€ Ui KAMon ovvaptongm
TEPVAVTAG TO WG TY) 0€ éva AeEkd mpy amd * *. T'o mopdderyna, To 3 KoL to 5 0ToTeAoUV opiopata,
MEewv-KheldLmv otig akdrovbeg KM oeLS Tpog complex () :

complex (real=3, imag=b5)
complex (**{'real': 3, 'imag': 5})

o positional argument: £vo. 6pLopa. Tov dev givan OpLopa keyword. To opiopato O£0Mg LTopPovV VoL EUpOL-
viCovtar otnv apyng wag hMotog optopdtmv /Kot va petofipalovrar wg otouyelo evog iterable mpiv
o6 *. ['o wopdderyua, To 3 kow 1o 5 amotehoVv oplopata OE0NG OTLS TOPAKATO KA OELS:

complex (3, 5)
complex (* (3, 5))

Ta opiopota EKYWPOUVTOL OTIG OVOUOUEVES TOTILKEG UETOBANTEG 0TO OO pLe ouvapTnong. BA. v evo-
Tita calls yia Tovug Kavoveg o SLETOUV auThHv TNV EKYMPNOT. ZUVTAKTIKA, 0TTOL0ONTOTE £KQPOON UITOPEL
va ypnouortoBel yia va avarapaotioel £va oproua’” 1 oELohoyoUHEVT) TIUT EKYMPEITOL OE LLC. TOTILKY)
ueTapAnT.

BA. emtiong v eyypapn Tov YAwooopiov yio to parameter, Ty FAQ epwtnon oto 1 dtagpopd uetaEl opt-
ouatwv ko apapétpwv, kow PEP 362.

aoUyypovos duayeiproTi)g context An object which controls the environment seen in an async with statement by

defining __aenter_ () and __aexit__ () methods. Introduced by PEP 492.

0oUyypovog generator Mio. ouvAEPTNON TOU eMLOTPEQEL Eva asynchronous generator iterator. MoldZelL pe puo. ov-

vapTNom coroutine Tov opileToL ue async def eKTOG atd OTL TEPLEYEL EKPPAOELS yield Yo TNV Tapoywyn
HLOLG OELPAG TUUDV TTOV UIT0PoVY va. xpnoworoboiv oe évav async for Bpdyo.

ZuviHBmg avopépeTal oe o CUVAPTNOY 0oUYXPOVoU generator, 0AAG umopel va avapépetal oe Evav acdy-
XOOVO generator iterator Gg OPLOUEVA contexts. Ze TEPLITTMOELG OTTOV TO ETMLOLWKOUEVO VOTUL OEV ELVOL OOPES,
UE TNV XPNOT TOV TPV OPMV OITOQEVYETOL 1] ALTAPELAL.

Mo ovvapTnom achyypovou generator WITOPEel va. TEPLEYEL EKPPAOELS await , Kabmg kol dNAdoeLg async
for, KoL async with.

aovyypovog generator iterator 'Evo avtikeipevo mouv dnuovpyndnke amd wa ouvaptnon asynchronous generator.

This is an asynchronous iterator which when called using the __anext___ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable

returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

aovyypovog iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
fromits __aiter__ () method. Introduced by PEP 492.

aovyypovog iterator An object that implements the __aiter_ () and __anext__ () methods. __anext_

must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

xopoxTNPLotikod A value associated with an object which is referenced by name using dotted expressions. For example,

if an object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object withan __await__ ()

method. See also PEP 492.

74

Mapaptnua A'. NMwooapt


https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492

Extending and Embedding Python, Anpooiguon 3.9.23

BDFL Axpwviuo tov Benevolent Dictator For Life, xohokdyo0og diktdtopag g Lomg, dnhadn Guido van Rossum,
0 dnuovpyodg g Python.

dvadiko apyeio A file object able to read and write bytes-like objects. Examples of binary files are files opened in
binarymode ('rb"', 'wb' or 'rb+'),sys.stdin.buffer, sys.stdout.buffer,andinstancesof io.
BytesIOand gzip.GzipFile.

BA. emtiong rext file yio éva ovTIKELUEVO TUTTOU apeio Lkovo vo. dtofdoet Kan va ypdper st r avitkeipeva.

bytes-like avrikeipeve ‘Eva avrikeipevo mov vitootnpilel to bufferobjects ko umopei va eEdyer éva C-contiguous
buffer. Autd mepihaufdver Oha ta avitkeipevo bytes, bytearray, Katarray . array, Kadmg Ko tohhd
Kowd memoryview ovuikeipeva. Ta dvadikot timov (bytes-like) avtikeipevo pmopovv vo. (P1OLUOTOL-
NOovv yia dudipopeg Aertovpyieg mov drayelpilovran duadikd dedouéva” autd TeEPLAAUBEvVOUV oUITiEo
amodNKevon og duadLko apyeio Kal arootoh) uéow socket.

Oplouéveg hettoupyieg yperalovran To. duadikd dedopéva va eivor uetafintd. H texunpioon ouyva ovo-
(PEPETOL O€ AUTA MG «dVAILKE avitKeluevo avayvmong-eyypapne» (read-write bytes-like objects). [Tapadely-
LOTO LETABANTOV AVTIIKEWEVOV TTPOOMPLVIG AtoONKevong TepLEXovy bytearray Kot évo memoryview
evOg bytearray. AMEeG AELTOUPYiEg ATOLTOVY TNV WTOONKEVONG TV dVAdIKDV dedouéva o€ aUETARAMTA
ovTkeipeva («dvodukd avtikeipeva wovo avaryvoong»” (read-only bytes-like objects) opadeiypota ovtdv
mePLEouV bytes kot évo memoryview evog bytes avIlKeWEVou.

bytecode O mnyaiog kddika tg Python petaryhottileton oe bytecode, 1| e0WTEPLKY) AVATUPAOTAON EVOG TPOYPALL-
patog Python otov diepunvéa CPython. To byfecode amobnketetal eioNg TPOOMPLVAE OOG . PY C APYELN DOTE
1] EKTELEDT) TOV {010V apyElov va eival yp1yopoTept TV deUTepn Qopd eKTéleong (Uopel va omopevyBel
€K VEOU UETAYADTTLON 0ITd TOV TINYaio KmdLKa o€ bytcode). Avth 1) «evOLauean YAwooo» AEyetow Ot TPEYEL
og wa virtual machine TOV €KTENEL TOV KMALKA UNYOvNG TOV avtiotolyel oe Kabe bytecode. Adfete voyn
Ot to. bytecode dev ovouévetal va Aettoupyolv HeTa &l SLOpOPETIKMV ELKOVIKMV wyovav Python, ovte va
givar 0tabepd netaEn Twv ekdodcewv g Python.

Mua Alota oo 0dnyieg oxetikd pe ta bytecode wropei va Bpedel otnv tekunpiwon yia to module dis.

callback Mua subroutine ouvéptnon 1 omoia petafipdletor wg Oplona mTov O eKTELETTEL KATOLXL OTLYUR OTO
HEAOV.

kAdon ‘Evo mpdtumo yio ) dnuovpyio aviikeluévov ov opifovrat amwd to xpnot. Ot oplopol KAAoEWY ouvi)-
Bwg mepLEovv opLopovg ueBOdWV TOV AELTOVPYOUV OE OTLYULOTUTTO THG KAGONC.

uetafinti kAdons Mo petofinti) wov opifetor oe pua kKAGom Kat tpoopiletan va tpomormtonOet udvo oe eninedo
KAGonG (dn). Oyl o€ €va OTLYIOTUTO (oG KAAONG).

coercion The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int (3.15) converts the floating point number to the integer 3, but in 3+4 .5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Without coercion, all arguments of even compatible types would have
to be normalized to the same value by the programmer, e.g., f1oat (3) +4. 5 rather than just 3+4.5.

mryodikog appudg Mio eTEKTA0N TOU YVWOTOUY OUOTNUOTOSG TPAYUATIKMOVY apludy 0To omoio 6Aot ot apldupol
ekppatovral mg GOpoLoua evog TPayIOTIKOU HEPOVGS KO EVOG POVTAOTIKOD uéPovg. O pavtaoTikol apLd-
1ot elvan TPOYUATIKA TTOAAOITTAGOLOL TG PAVTOOTIKNG WOVAda (1] TETPOYWVIKT pilo Tov —1), OV GUYVA
vpGgovtol i ota padnuatikd 1 3 otn unyoavikr. H Python €xel evoopatmuévi vrootiptEn yio pyadikoig
apLOUovg, oL 0ToioL YPAPOVTOL UE AUTOV TOV TEAEUTALO CUUBOMOUS” TO POVTAOTIKO UEPOG YPAPETAL UE TO
emibnua J, 7wy., 3+173. To va amoktoete Ttpoofaon o ovvOeTa 1ooduvaa To module math, ypnoipormor-
Note 1o cmath. H ypnon uryadikav aplOumv givat Eva apKeTa Tponyueévo LadONUATiko YopaKTNPLOTLKO.
eqv dev YVopLLeTe TNV avayK TOVg, gival oedOV GlyoUpo OTL WITOPELTE VO TAL OLYVONOETE UE AOPAAELAL.

duayeprotiic context An object which controls the environment seen in a with statement by defining __enter__ ()
and __exit__ () methods. See PEP 343.

75


https://gvanrossum.github.io/
https://www.python.org/dev/peps/pep-0343

Extending and Embedding Python, Anpooicsuon 3.9.23

context petafint) Mo petafinti mov uropel va éxel Tolég dLapopeTikeg TG avaroya ue To context. Auto
eivau kowvd oto Thread-Local Storage 65tov kG0€ EKTELEGT TOU VILOTOG UTTOPEL VOL £)EL DLOPOPETLKT TUUT) YLOL
o petaanty). Hapdia avtd, ue Tig context UETAUPANTES, WTOPEL VO VITAPYOVY TTOAMG TTePLBaAlovTa oe éval
viua EKTELEOTG KO 1) KUPLOL P1oT YL TLG context uetafSAnTég eivan 1) TapakorloBNomn Twv UETOPAMTOV o8
Tovtoypoveg diepyaoiec. Bh. contextvars.

contiguous 'Eva buffer Oewpeitol contiguous axpif3ng edv eivau eite C-contiguous eite Fortran contriguous. To buffer
undevikmv daotdoswv eival C ko Fortran contiguous. Ze povodidoToToug TLVAKES, TOL OTOLYELOL TTPETEL VO
tomofeTovvTaL 0T Uviun To €va dimha oto dAlo, ue oelpd avEnong twv detktdv Egkivdviag amd o undév.
Ze molvdidototovg C-contiguous TVaKeS, 0 TeEAeVTALOg delkTNG petafdhletar ToyvTepa OTOV EMLOKENTO-
VTOL TO. OTOLYELO. O oeLpd dlevBuvong uviung. Qotodco, oe Fortran contiguous mivokes, 0 TpmMTOG OEIKTNG
UETAPAANETOL TTLO YPTYOPOL.

coroutine O\ coroutines €ivai pLoL L0 YEVIKEVUEV poppn) subroutines. O subroutines eLodryovtal o€ £va onueio Kol
eEdryovtal og Gho onueio. Ot coroutines wropei va elooyBovv, va, eEayBotv KoL vo ouveyLoTolv og oA
drapopetikd onueto. Mmopovv va vhomotioovy pe v dMhworn async def. Bh. exiong PEP 492.

coroutine cuvaptnon Mo GuvAPTNON TTOV EMLOTPEQPEL VO coroutine avTiKeinevo. Mo guvapTtnon coroutine wio-
pet vo opiletal amd ) dMiwon async def, KoL wwopel va mepiéyel await, async for, KoL async
with AEEeig Khewdud. Avtég elonyOnoav amd to PEP 492,

CPython H xovovikn vhomoinomn tg yAwooag tpoypauuotiopnod Python, dtwg diavépetol oto python.org. O dpog
«CPython» ¥ p1GLUOTOLELTOL OTOV ELVOL OTTOPOLTITO YLOL TNV OLAKPLOT OUTHG TNG VAOTTOINONG atd GAMES OTT™G
n Jython | m IronPython.

decorator Mo oUVAPTNOT TTOU EMOTPEPEL L. GAAY CUVAPTNOY, CVVNOWG EPOPUOTETOL MG UETATYNUOTIONOG
ouvdpTnong xpnolomolhvrag tThv @wrapper oUvtogn. ZuvnOouéva tapadeiypato yio Tovg decorators
eival classmethod () Kouw staticmethod ().

H o¥vtaEn tov decorator givar amhdg KOAAMITLOTIKY, Ot akOAOUO0L dVO 0PLOUOL CUVOPTHOEMVY ElVaL ONULOL-
oLoAoYLKG LoodUvauoL:

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arqg):

H idua évvola vtdpyet yio tig kAAoeLs, alhd xpnowportoteiton Mydtepo ouyva ekel. Bh. v tekunpimon yio
function definitions xou class definitions yio epLocdTEP OYETLKG Ue TOVG decorators.

descriptor Any object which defines the methods __get__ (), set_ (),or _ _delete__ (). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.

TN epLocdtepeg TAnpopopieg avapoplka e tig uedddovg twv descriptors, fA. see descriptors 1) to [TpokTi-
KOG 0N YOG Yo T prion Tov Descriptor.

Aeiko An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__ ()
and __eqg__ () methods. Called a hash in Perl.

Kotavonon AeEikov ‘Evo ovumayig Tpdmog yio va. eneEepyaoteite Oha 1] HEPOG TWV OTOLYELWY 08 £VaL ETOVOA-
TTTLKO KO VoL ETLOTPAPEL Eva pe heEikd ue ta amoteléoparta. results = {n: n ** 2 for n in
range (10) } dnwovpyel éva AeElkd mov mepiéyel to KheWdi n mov ovilotoryiCeTol pe v i n ** 2.
BA. comprehensions.

76 Mapdptnua A’. NMwooapt


https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Extending and Embedding Python, Anpooiguon 3.9.23

oyn AeEikov Ta oviikeipeva ov emotpépovior amd dict . keys (), dict.values (), kot dict.items ()
KahoOvan Mperg AeELKoV. AUTEG TapEyouV (oL SUVOULKT] Sy TOV TOV EYYPAP®OVY TOU AeELKOV, TTOu oNuaivel
ot dtov To AeELko petafdidetarl, 1 Oym avikotomTpiler avtég Tig odhayéc. o va avoykaoete Ty oym
LeEukov va yiver o thinpng AMota ypnowomomote to 1ist (dictview) . Bh. dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the _ doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing 'Eva otul mpoypappatiopot mov dev eEetdlel Tov TU0 evOG AVILKELUEVOU YId VO TTPOOOLOPIOEL
ov éyeL T oot diemagt)” avtifeta, N 1EB0dOG 1) TO XAPUKTINPLOTIKO KAAEITOL ATADG 1 XPNOLOTTOLEL-
tau («If it looks like a duck and quacks like a duck, it must be a duck.») Alvovtag €ugoon oTig dLETAPES KoL
OYL 0 OVYKEKPLUEVOUG TOTTOVG, 0 KOAG OYedlaouévog Kodikag Bertidvel tv eveMEla Tou emLTpémovtag
™V Tohuuop@Lky vrokatdotao. O timog duck-typing amogetyer dokiuég XPNOLUOTOLDOVTOG type () N
isinstance (). (Enuelwon, wotdoo, dtL 0 TOTog Thmag duck-typing umopel vo cuutAnpwOel we abstract
base classes.) Avti avtov, cuvnBwg ypnowomotel dokiuég hasattr () N wpoypapuotiond EAFP.

EAFP Ilwo gdkoho va Tntijoelg ovyympeon mopd adeta. Avtd 1o Kowvd otuk mpoypauuotiopot og Python stpo-
rto0étel TNV VapEN £YKUpwV KAEWSUOV 1] YOPUKTNPLOTIKOV Kol oulhaufavel eEalpéoelg eGv 1 vitdfeon
amodey el eapaiuévn. Autd to Kabopd Kot ypiyopo oTuk yapakTnpileTol amd TV Tapovsio ToA®Y on-
Mdoewv try kow except. H teyvikr épyetol og ovtifeon pe to otuk mov eivor LBYL xowvd og modhég dhheg
vAwooeg, 6mwg 1 C.

éxgppaon 'Eva koppdtt ovvtaEng o umopel va a€lohoyn et oe kdsworo tuuy). Me diha Moyia, pia ékgppaon eivan
ULOL CUOOWPEVOT OTOLYELWV EKPPaoNg Omwg KuplodeEia, ovopata, Tpdopaon XopaKTNPLOTIK®Y, TEAEOTEG
1] KAMOELG GUVOPTNOEMV TTOV OLEG ETMLOTPEPOVY WOl TUUT). Z€ avtifeon ue wolég dhheg YADOoES, dev gival
Oheg oL YAmOOoLKEG douég ekppAoels. Ydpyovve emiong statements mov dev (Wropovv va xpnouosotnfotv
g eKPpAaoeLs, 0twg to while. Ou avabéoelg TUMV elval eTiong dNAWOELG 0L EKPPAOELS.

module exéktaong ‘Evo module ypauuévo oe C 1) C++, mou ypnowortoteiton 0td to C API g Python yia va
OAANAETLOPATOVY UE TOV TUPTVA KOL [LE TOV KWMLK TOV Y p1OTH.

/

f-string Ou xvplohexTikég oVUPBOLOOELPES YpNOLOTOLOVY te TPdBepa "£' 7 "F' ovoudZovtar ovvibwg «f-
strings» mov eival ouvtopoypapia tov formatted string literals. BA. eniong PEP 498.

OVTIKEINEVO apyeiov An object exposing a file-oriented API (with methods such as read () or write ()) to an
underlying resource. Depending on the way it was created, a file object can mediate access to a real on-disk file
or to another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.

ZTNV TPAYUATIKOTNTO VTTAPYOVV TPELG KATIYOPLES AVTLKELUEVWV apyElOV raw Svadikd cpyela, buffered dva-
Oukd apyela xou apyela kewuévov. OL dlemapég Tovg opitovral oty evotnta io. O KovoviKOg TPOTOG Yia
VO SNULOVPYHOETE EVOL AVTLKELUEVO OPYELOV ELVAL YPTOLUOTOUDVTAG TV OVVAPTNOT open () .

OVTIKEIPEVO TTOV PoLaCeL ue apyeio 'Eva ovvdvuuo ue o file object.
finder 'Evo avtikeipevo mov mpoomabel va BpeL To loader yio éva module wou elonyOm.

Since Python 3.3, there are two types of finder: meta path finders for use with sys .meta_path, and path entry
finders for use with sys .path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

oképora Swaipeon H pabnpotikn Siaipeon mov oTpoyyvhomolel Tpog To KATw oTov Kovivdtepo aképato. O te-
Leotg aképonag daipeong eivar / /. Twa mapdderyna,  ékppaon 11 // 4 aEoloyeitol oe 2 og avtibeon
UE TV T 2 . 75 TOU EMLOTPEPETOL OITO TNV dLALPEDT] (e VITOOLALOTOAT. Znueimon otL (-11) // 4 kdvel
-3 gmeldn aut) elval 1 oTpoyyvhomoinon mpog ta kdtw tov -2 . 75. Bh. PEP 238.

ovvapTon Muo oelpd amd SNAMOELG TOV EMLOTPEPOUV KATTOLY, TL] OF AUTOV TTOU TNV KAAESE. Ze aUTEG UTOPOUV
VO TTEPOUOTOVY KAVEVQL 1) TTEPLOCOTEPOL 0PLGUA T TTOV WITOPEL VAL xpNoLpototn el yio Ty ektéleon). BA. emtiong
TG eVOTNTEG parameter, method, Ko the function.

77


https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238

Extending and Embedding Python, Anpooicsuon 3.9.23

ouvaptnon annotation 'Evog annotation oG TapauéTpov GuvapTiong 1 Wog TG ETLOTPOQTGS.

Ou ouvaptioeLg annotations ouy VA YPNOWOTTOLOVVTAL Y0 UTOOEEELS TUTOV: VIO TAPADELYUA, OUTH 1 OU-
vapTNON ovouévetal va Ttépel dYo oplouaTo 1nt Kol ETONG AVAUEVETOL VO €XEL UL ETLOTPEPOUEVT] TLUY
int:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

H oVvto&n ouvdptnong annotation avolvetar oty evdtnto. function.
See variable annotation and PEP 484, which describe this functionality.

__future__ 'Eva future statement, from _ future_ import <feature>, k000dnyel TOV UETAYAMTILOT
vo petayhwTtioel To tpéyov module ypnoluomoldvag ouvTasn 1 onuactoloyio Ttou Ba yiver 1) TuTKY o€
uehhovtiki) €kdoon tng Python. To module __future_  tekunpumvel Tig mbavég Tiuég tov feature. Me tnv
ELOAYOYT QUTNG TNG AELTOVPYLIKNG LOVASUG KOL TNV 0ELOAOYNON TV LETARANTMV TG, WTopPEiTe Vo delte ToTe
QoL vEaL duvaTOTNTO TPOOTEONKE YL TPDTN POPA OTHV YADOoO Ko toTe O yivel (1] £yuve) N TpoemAoy:

>>> import _ future_
>>> _ future__ .division
7Feature((2, 2, O, 'alpha', 2)/ (31 OI OI 'alpha'/ O)l 8192)

ouAloyn amoppudtov H dtodikacio amelevfépmong g uviung Otav dev ypnopomoteitor diho. H Python ekte-
Ael VALY QTTOPPLUATOV UECH KOTOUETPNONG OVOPOPHDV KAl EVOG KUKAMKOU GUAAEKTY OKOUTILOLMY TTOV
elval og B¢om va aviyvevel Kot va omdiel Tovg KUKAovg avapopds. O culhékTng amoppludtmy umopet va
eheyy el ypnopomolwvtag to module ge.

generator Mo oUVAPTNOT TTOV EMLOTPEPEL Eval generator iterator. MOLATEL LE L0l KAVOVLKT] OUVAPTNON EKTOG 0ITO
TO OTL TEPLEYEL EKPPATELG yield Yia THV Tapaymyr Wag 0eLpds TUMV TTOU WTOPOUV VoL ¥ PN oLuomot ot
o€ évav podyo for Y| Tou Wtopovv va ovoKkTNOoUv o T popd e v ovvaptnon next () function.

ZVvHOG avopépeTal O o OUVAPTNOT generator, OAAG UTopel v avopépeTtal o€ Evav generator iterator €
UEPLKA contexts. Ze TEPUTTMOELG OTTOV TO ETMLOLWKOUEVO VOT|UOL OEV ELVOL OAPES, 1] XPNOT TOV TANPWV OpwV
OTTOPEVYEL TNV AOAPELOL.

generator iterator 'Eva avtikeigevo mov dnuovpyeiton omd wua ouvapTnon generator.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator £k@paon Mua £k@paon Tov emLoTpEQeL Evay iterator. Moldlel pe Kavovikr) £kppaon Tov okohovdeitan
and o tpdtaon for mov opilel wo UeTaBANTH Ppoyov, £va g0pog Kol o TPOLPETIKY Ttpodtaon 1 £. H
oUVOUAOUEVT EKPPAOT ONULOVPYEL TLUES YLOL (IO OUVAPTNOT) EYKAELOUOV:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

YEVIKT] 6UvapTNeT] Mo ouvapTNON TOU 0TToTEAEITOL 0Ttd TOMATAEG GUVAPTNOELG TTOV VAOTTOLOUY TV {8LaL AeL-
Tovpyia yro draopetikotg Thmove. oo vAomoinom mpémel va xpnoLuomotOel Katd T SLEpKeLo wLoL KAT-
omg kabopiletar amd Tov akyopLlOuo arooTorys.

BA. emiong v Koo mpnon tov single dispatch, tov decorator functools.singledispatch () ko PEP
443.

YEVIKOG Tumog 'Evog rype mov wopel va mapoapetporomel” ouvnOwg wo container class, émwg 1ist 1 dict.
XPNOLLOTTOLELTOL YL fype hints Kow annotations.

TN teploodtepes Aemtopépeles, PA. generic alias types PEP 483, PEP 484, PEP 585, ko to module t yping.

78 Mapdptnua A’. NMwooapt


https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

Extending and Embedding Python, Anpooiguon 3.9.23

GIL BA. global interpreter lock.

global interpreter lock O pnyovioudg mov xpnotuomoteitor amd tov diepunvéo CPython Yo vo. SLao@olioeL Ot
novo évo vijua extelel Python bytecode kéBe qopd. Avtd amhomorel tnv viomoinon CPython dnuovpywm-
VTOAG TO LOVTENO OVTLKELUEVOU (CUUTEPLACUPBAVOUEVWV KPIOWWV EVOOUATOUEVWV TOTOV 0w TT.). dict)
EUUETO OOPAAEG EVOVTL TAUTOYPOVNG TTPOofaonc. To kKheidwuo olokANPov Tov diepunvéa dLeVKOLIVEL TOV
dLepuUN Ve VoL ELVaL TTOMATADY VNUETWOV, E1G BAPOG TOU HEYEAOU HEPOVG TOV TAPOAANALOUOV TTOV TTOPEYOVY
oL Ny avég TOMATA®V eneEepyaoTdy.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when doing 1/O.

[ponyoutpeveg mpoomdbeleg va dnuovpynOei évag diepunvéag «eletBepwv-vudTmwv» (avTodg ToU KAELDM-
VEL TOL KOOy pnoto dedopéva ue ol o Aemtopept] evanctnoia) dev frav emituyeis emeldn 1 amddoon
VoY MPNOE TNV KOLVT| TTEpimtmon evdg eneEepyaot). Iliotevetal 6tL 1 vépfaon autol Tov TPOPANUATOG
art6doong Ba Kédvouv ToAD TTLo TTEPITAOKY KoL ETOUEVMGS TTLO dATTAVIPT) 0TV GUVINPNO).

hash-based pyc 'Eva apyeio kpuprig uvnung bytecode mov ypnoLuomoLel Tov KoToKepUATIond KoL 0yL Tov ¥pdvo
TPOTOTTOLNONG TOU AVTLOTOLXOU OPYELOV TIPOEALEVONG YLOL VO TTPOOOLOPLOEL TNV EYKUPOTNTO TOU. BA. pyc-
invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needsa __hash__ ()
method), and can be compared to other objects (itneedsan ___eqg__ () method). Hashable objects which compare
equal must have the same hash value.

H VmopEn hashable kel éva avikeipevo va pwopel vo ypnowuomom el mg khedi AeEukol kor wg uéhog
€VOG CUVOLOU, ETTELDN AUTES OL OUES DESOUEVV Y PNOLUOTOLOVY TUUEG KOTAKEPUATIOUOV.

Ta mepLoodtepo omd ta aueTdffinto evoopatwuévo avitkeipevo g Python umopoiv vo Katokepuott-
oTovV” TaL HETOPANTA KovTévep (Omtwg oL Mioteg 1) Tt AeEukd) dev eivar” ta auetdfinta Kovtéwvep (6mwg
mheladeg Kan to frozesets) UTOPovV v KATAKEPUOTIOTOUV UOVO EGV TA OTOLYELC TOVG ELVOL KOTAKEPUALTL-
ouéva. Ta avVILKEIUEVO TTOV Eival OTLYILOTUITO. KAAGEMY TTOV OpilovTaLl 0td TO YXP1OTH UWIT0POVY Vo KATO-
KEPUOTLOTOUV 0ItO TTPOoETIAOYY. ‘'Oha GUYKPIVOVTOL GVIOA EKTOG OO TOV EAUTO TOUGS) KL 1) TUY KOTAKEP-
LOTLOUOV TOVG TTPOEPYETOL atd To 1d () .

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment which
ships with the standard distribution of Python.

immutable 'Eva avtikeipevo ue otabepn tur). Ta opetdfinta ovikeipevo mepthaufdavouv aptbuots , ovupo-
hooepég kol mhelddec. ‘Eva tétoto avtikeipevo dev umopei vo alldEel. ‘Eva véo aviikeipevo mpémel va
dnuwovpynOei edv mpémer va amodnkevtel o drapopetikn tun. Maiovv onuavtikd polo oe uépn 6mov
o otafepd asmarteitat, yio mopdderyno wg KAewdi oe évo AeEko.

gwoayouevo path Mo Aiota oo tomobeoieg () kataywoioes Stadpouris) mov umopotv va avalntnbolv path
based finder yio. va. elooy0ovv modules. Kotd v duadikaoio eloaywyng, avty N AMota ue torodeoieg ovvi-
Bwg épyetat amd sys . path, dAhd YLO TO VTOTAKETO, WTOPEL ETTLONG VO €POEL ATTd TO YOPAKTNPLOTLKO TOV
TOKETOV YOVEQ __path__ .

aoayoyn Hdwodikaotio katd tnv omoio o kddukag tng Python ot £éva module eivon Stabéoun otov kdhdika Python
evog dlhov module.

awoayoyéas Eva aviikeipevo umopel kKow voa avalntel kol vo @optdver ¢va module” kau éva finder xon loader
OVTLKELUEVO.

duadpaotikog H Python éyel évav dLadpaotikd Siepunvéa 6mtov onuaivel dtL uopelg va elodyelg SNMMOELG KoL
EKPPAOELS OTNV ELOOYWYT] EVIOLDV TOV SLEPUNVEX, EKTEADVTOG TEG GUETT KOL EUPOVILOVTAG TO AVTIKEL-
peva. Amhng eKKLVNOTE TV python ywpig opiopato (lavidg emhéyoviag To amd 10 KUPLO UEVOU TOv
VITOAOYLOTY) 00G). ATtoTelel £vav amodoTiKo TPdmo yia va dokLuaoTte véeg 1S 1) va eEeTdoTe AelToVpPYIKEG
povades Kau makéta (Buunbeite help (x) ).

79



Extending and Embedding Python, Anpooicsuon 3.9.23

interpreted H Python eival o interpreted yAmooa, og avtiBeon pe o LETOyAmTTIOUEVT], AV KoL 1) SLAKPLON WTOPEL
va givat kot 0odn Moyw g mapovaio tov bytecode petaylwttioti). Avtd onuaiver OTL ta apyeio Tpoéhevong
WITOPOUV VO EKTELETTOVV 0rtevdeiag Y wpig vo dnuovpynOel pnTa éva eKTEAEOLILO ALPYELO TTOU OTNY OUVEYELD
exteheitar. Ou interpreted yAddooeg ovviBmg €xouv wkpdTepo KUKAO avamTuEng/ eviomopot opoiidtmy
ATTO TG UETAYAWTTLOUEVEG, OV KL TOL TTPOYPAUUOTAE TOUG YEVIKA eKTENOUVTAL TTLO apya. BA. emtiong interactive.

TEPUOTIOUOS AErToupyiang diepunvéa ‘Otav Tnteitol Tepuationds hettovpyiag, o diepunvéag g Python elotpye-
T 08 (oL €LY Ao mou amerevfepmvel oTadLoKd OAOVG TOVS dLaTLOEIEVOUG TTOPOUG, OTTMG AELTOUPYL-
Kég novddeg Kau molhamhéc kpiolueg eocmtepikés doués. Emiong mpayuatomolel apketég KAMOELS 0TO G-
Aértne okovmdimv. Avtd WITOPEL VO EVEPYOTTOLOEL TNV EKTELEDT] KMOLKO 08 KATAOTPOPELG TTov 0pilovTol
amd to ypnot N oe callbacks aoBevoig aviamokpioels. O KOOKOG TOV eKTELELTOL KATA TN (PAOT] TEPUOL-
TLIOPOY heLTovpylog WTopet vo ouvavtioel dudpopeg eSaipéoels, Kabmg oL TOpoL 0Tovg omoiovs Pacitetol
evdgyeTon va unv hettovpyotv héov (ouvnon mapadeiypato eivar ov Aettovpyikéc povadeg PLiodnikme 1
0 UNYOVIOUOG ELOOTOLNOEMV).

O Baotkdg MOYos TepUaTIoNoV hettovpylog tov diepunvéa eivar 6t to __main_ module 1) ohokAnpmOnKe
1 EKTEAEDT) TOV KMOALKA TTOV ETPEYE.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter__ () methodorwitha___getitem__ () method that implements Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (), ...).
When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter () or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
genemtor.

iterator An object representing a stream of data. Repeated calls to the iterator's __next__ () method (or passing
it to the built-in function next () ) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
toits__next__ () method justraise StopIteration again. Iterators are required tohavean __iter_ ()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a 1ist) produces a fresh new iterator each time you pass it to the iter () function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

[eproodtepeg mAnpopopieg umopouv vo. fpeboviv oto typeiter.

ouvaptnon key Mo ouvdptnon kiedi ) wo ouvaptnon taEvounong eivar wo. Suvotdtta KAong mov emt-
OTPEPEL O, T TTOV ypnotpomoteiton yio ToEvounomn 1 Suitokn. o mapdderyua, locale.strxfrm ()
YPYOLLOTTOLELTALL YLOL TV TTOPOywyn EVOG KAELBLOU TAELVOUNONG TToV YVmpilet Tig ouufaoels Tagwvounong
YLOL OUYKEKPLUEVEG TOTILKEG puOuioeLs.

‘Eva. aplbudg epyoreiov otnv Python déyetar Paoikég ouvoptnoelg Yo Tov €AEYY0 TOU TPOTOU UE
TOV 07T0l0 T oTOLKELD TaELVopoUVTaL 1) opadoroloUvTaL. Autd mepléyovy min (), max (), sorted (),
list.sort (), heapg.merge (), heapg.nsmallest (), heapg. nlargest (),Ko itertools.
groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such
as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors:
attrgetter (), itemgetter (), and methodcaller (). See the Sorting HOW TO for examples of how
to create and use key functions.

opwopo keyword B\. argument.

80 Mapdptnua A’. NMwooapt



Extending and Embedding Python, Anpooiguon 3.9.23

lambda Muo ovayvoun evOUAT®UEVY GUVAPTNOT) TTOU OITOTEAELTOL ATt 0L LOVOLKT| expression 1) 0Ttoia. AELOAO-
veitar Otav kodeitol 1 ouvdptnon. H ouvtoEn yua t dnuovpyia wog ouvaptnong lambda eivon 1ambda
[parameters]: expression

LBYL Look before you leap. Autd 1o otuk KwdLkomoinong eLéyyel pnTd TG TPoUTOOE0ELS TPLV TPOYUCTOTOLYOEL
KANoeLg M ovalnthoels. Autd 1o oTuk €pyetol o€ avtifeor 1e Ty TPooéyylon EAFP Ko YopoKTnpiteTo
aTTo TNV TAPOVOLA TTOAMMY dnhwoewv 1 f.

Ze EvoL TePLBAMOY TTOAMATAMY VNUATWV, 1) TPooeyyLlon LBYL umopel vo dLakivouvevoet va eL0GYEL (oL Guv-
oMkm aydva petakv «the Looking» ko «the leaping». T'wa apdderypa o kdikac, 1 £ key in mapping:
return mappingl[key] umopel va amotiyel edv éva GO VIO apaLpéoel To key amd To mapping UETO
™ doky), ahhG TPy astd TV avalitnon. Avtd to Tpofinua wropel va Abel pue KAeldouata 1 xpnotuo-
oLdvTog TV pooéyyon EAFP.

Moto A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension 'Evo cupmayfg 1pdmog yia va eneEepyaoteite OAa 1) UEPOG TV OTOLYELWV O UL, akohouBia
Ko voL emLoTpéPpete wua Mot pe ta atotehéopato. result = ['{:#04x}'.format (x) for x in
range (256) if x % 2 == 0] dnwovpysi wa Aloto ovuforocelpmv mov mepéyouvv Luyotg dekaeEa-
duxovg apBuovg (0x..) oto evpog amd 0 €mg 255. H mpdtoom 1 £ eivar mpooupetik). Eqv moapalewpOel, dha
Ta oToryelo 0To range (256) vmofailovion og eneSepyaoiaL.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

naykn uédodog ‘Eva drumo ovvdvupo yia special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified in the Mapping
or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

meta path finder 'Evog finder mov emiotpdepnie pe oavolntnon oto sys .meta_path. O finders ueta-diadpoung
oyetiCovral, ol dapépovv amd ta finders entry dtadpour.

Bih. importlib.abc.MetaPathFinder yia tg uebddovg mov vhomolovv oL meta path finders.

ueta-khdon H khdon wag khéong. Ou opropol kKhaomg dnuovpyotv éva dvopa. kKAdong, éva AeElkd khdong Kat
o Alota footkmv kKhaoewv. H peto-khdon givar veifuvn yia v amtdKTon dutdv TV TPLOV 0pLoUdTmy
Ko TNV dnuovpyia g kKAAong. OL eplocoTEPES AVILKELUEVOOTPEPEIG YADOOES TPOYPAUUATIONOV TOPE-
YOUV LLOL TTPOETUAEYUEVT] VAOTTOIN 0. AT TTov Kvel Ty Python Egywproth eivor dti givan duvarh m dnuovp-
yio Tpooapuoouévov petakhaoewv. OL TepLocOTEPOL YPNOTES OEV YPELALOVTOL TTOTE OUTO TO EPYOLELD, AAAL
OTAV TAPOAOTEL AVAYKT), QUTO TO EPYALELD, OL UETO-KAAOELG LTTOPOVY VO TTOPEYOVY LOYVPES, KOUPEG MIOELG.
"Ex0ouv %p1noLomomOel yio v Kotoypagr| TpooBoong XopoKTNPLoTIKOV, TV TPoaOfKk acpalelog vnud-
TV, TNV TOPAKOA0VON0N SNULOVPYIAS AVILKEWUEVWV, TNV VAOTTOINOT| singletons, Kol mtolég dhheg epyaoiec.

[epioodtepeg mAnpopopieg wropotv va fpebolv oto metaclasses.

uébodog Mia ouvdptnon sov opiletar péoa 0to ooua wag kKhaone. Eqv kaleitol wg yopakmpLotikd wog mepi-
TTOONG AVTNG TNG KAAONG, 1) 1EB0d0G B MABEL AVTIKEIIEVO TEPLTTWONG WG TPWDTO TG argument (TO OTOLO
ovviiBwg ovoudtetan self). Bh. function xou nested scope.

oepd avaivongs nedodwv Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module 'Eva oviikeipevo o ypnouedel mg opyovmtikh povada tov kmdika tng Python. Ta modules éxouv évav
YDOPO OVOUATOV TTOU TTePLEEL avbaipeta aviikelipeva Python. Ta modules poptwvovtol otnv Python ue thv
dwadikooia importing.

B\ emiong package.

81


https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Extending and Embedding Python, Anpooicsuon 3.9.23

TEYVIKES TTPodLarypopés module 'Evo namespace wov TEPLEXEL TG TAPOQOPLES TTOV TYETICOVTAL LE TNV ELOAYWYT
IOV YPNOLUOTOLOVVTOL Yie TNV POPT®oN €vog module. Mo epimtwon tov importlib.machinery.
ModuleSpec.

MRO Bh. method resolution order.

mutable To evpetdfinto avrkeipevo uropovy vo aAMGEouY TG Tuég alhd va kpatnoouv ta id () . BL. emiong
immutable.

named tuple O 6pog «named tuple» epappdCeTol yio 0oLovontoTe THmTo 1| KAGON ov KAnpovoueital amd v
TLELAD L KOL TWV OTTOLWV TC GTOLYELD WTOPOUV VAL EUPETNPLOTOLNOOUV glval TPOaPAoLUa YP1OLUOTOLDVTOG
ETOVLLLA YOPAKTNPLOTIKA. O TOIog 1) 1 KAAOT UTOPEL vaL el Kol GALA X OpOKTHPLOTIKA.

oMol evowpatmuévor Tomol eivon named tuples, CUUTEPLIAAUBAVOUEVWV TV TLUDV TTOV ETLOTPEPOVTOL OITTO
time.localtime () kawos.stat (). Eva dhho moapdderypa eivan to sys. float_info:

>>> sys.float_info[l] # Iindexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple (). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace To uépog dmou amobnrevetar wa petafinty. Ta namespaces vhomolovvror wg heEikd. Ymdapyovv ot
TOTTLKOL, OL KABOALKOL KOl OL EVOMUATOUEVOL namespaces KoOMG kKoL oL £vOEToL namespaces 0€ AVIIKELLEVOL
(0e ueBddovg). o mapddeLyna oL ovvapToelgbuiltins . open KoL os . open () dLOKPIVOVTAL 0TTO TOVG
Y POVG ovoudtwv Tovg. OLxmwpot ovopdtwv Fondov emtiong TV ovoyvmoLdTYTO KOt TH CUVTNPNoWOTI T
Kablotmvtag oapéc wolo module viomolel o Aettovpyia. Lo apdderypa, ypdgpovtag random. seed ()
Nitertools.islice () kaOLOTA COPES OTL AUTEG OL CUVOPTNOELG VAOTTOLOUVTOL artd To. module random
KoL itertools, avtioTtouya.

mokéto namespace A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they haveno __init_ .
py file.

B emiong module.

nested scope H duvvatdomta avagpopdg oe wa petafint oe évav mepikheiduevo opopd. Tia mapdderypo puo
OUVAPTNON TTOV OPITETAL UECA OE (oL (AT GUVAPTNOT WTOPEL VOL AvOaQEPETOL OE UETAPBANTEG 0TIV eEEWTEPLKT|
oUVAPTNOY. ZNUEL®OTE OTL TO EvOeTo TEdia amd TPoemAOY AELTOUPYOVV UOVO YLoL OVOLpPOPE Kal 0L Yol
exympnon. Ot tomikég uetafantég dtofdloviol Kat Ypapovtol 6To ecmTeptkd medlo epapuoyng. Ouolwg,
ot KaOohKeg petafAntég dafalovy Kot ypdgouv 6Tov KaBolkd ympo ovoudtwv. To nonlocal emitpémel
™V eyypapn) oe eEmteptkd media.

kAdon véov otvh Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like _ slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

ovukeipevo Omoladnmote dedouévo te KaTdoTaon (XapaKTNPELoTKd 1 Tiun) Ko Kaboplouévn ouumeptpopd
(uébodor). Emiong, N telkn ootk kKhAom ommolacdfote new-style class.

oxkéro A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module with an __path___ attribute.

BA. emtiong regular package xou namespace package.

82 Mapdptnua A’. NMwooapt


https://www.python.org/dev/peps/pep-0420

Extending and Embedding Python, Anpooiguon 3.9.23

TUPAUETPOS Mia £ykupn ovtdtnTo o8 évav oplopnd function () uéBodog) mov kabopilel éva argument (| og opL-
OUEVEG TTEPUTTADOELS, OPLOUATA) TTOU Witopel vo. dexOei 1 ouvaptnon. Yrapyovv mévie €id1 mopauétpmy:

o AéEn-KAeldi 1) Oéon: koBopilel Eva dpLOoUO TOV WIToPEL Vo ueToPLBootel eite Oéoews M wg dotaua AEEng-
kAeldiov. Autd gival To TPOETAEYUEVO ELDOG TTAPAUETPOV, VL0 TAPAdELYUa foo Ko bar ota oakdhovBa:

def func (foo, bar=None) :

o Oéoewg udvo: xaBopilel £va OpLopO. TOV UTOPEL va Tapéyetat uovo amd ) 0€on. Ol TapdueTpol ovo
0€0mGg WTtopovV Vo 0pLoTOVY GUUTEPLLAUBAVOVTAG EVaV YOPUKTNPA / 0T MOTO TAPAUETPWY TOV OpL-
opov oVVAPTNONG UETE 0TTO AUTEG, Yo Tapdderyua posonlyl kou posonly2 oto eENg:

def func(posonlyl, posonly2, /, positional or_keyword) :

o AéEng-kAetdi uévo: xabopilel évo OpLopa ov propel va mapéyetar pdvo e AEEN khedi. OL TapaueTpoL
HOVO YL AEEN-KAELSE WITopovV VoL 0pLoTOUV GUUITEPIAAUBAVOVTOG UL Tapduetpo BEong 1) okéto * ot
MoTa TAPOUETPWY TOU OPLOUOY CUVAPTNONG TTPLV ATtd OUTES, Yo Tapaderyua kw_onlyl Kau kw_only2
ota okOhovba:

def func(arg, *, kw_onlyl, kw_only2):

o uetafAnti Oéong: xobopilel OTL umopel va mapooyedel wa avbaipetn axorovbia oploudtov O¢ong
(emumhéov TV opLopdtwv BEong mov eivar 1O 0TodeKTA amtd dAleg TopaAuETPOUS). Mia Té€ToLa o~
PAUETPOG WTOPEL VO OPLOTEL TTPOCAPTDOVTOG TO GVOLLOL TNG TAPOUETPOU UE *, VIOl TAPAIELYUD args OTa.
axohovba:

def func(*args, **kwargs):

o uetafinth AéEn-kreldi: kabopiler 6T umopov va mapéyovrar avbaipeto ToAG oplopata AEENG-
KAeLdL0V (emmummhéov TV oplopdtmv MENG KAeLdLoU tov eival amodektd amd dhheg tapauétpovg). Mio
TETOLO TTOPAUETPOG WITOPEL VO OPLOTEL TTPOCUPTMVTAG TO OVOUC TNG TOPAUETPOU [UE * *, YO TOPA-
deryua kwargs 0mmwg mTopoTaV®.

O apAueTpoL PTopovv vo Kahopioovy TG00 Ta TPOULPETIKA OG0 KAl TO AITOLTOUUEVO, OPLOUATO , KOOMDG
KO TTPOETUAEYUEVES TLIES YLOL OPLOUEVOL TIPOULPETLKA OPIOLLOITAL.

B. emiong v argument Kataydplon evpetnpiov, v epdtnon FAQ oyetikd pe 1 duagpopd netoEi oplopd-
TOV KL TAPAUETPWY, TV KAAON inspect .Parameter, v evotnta function ko PEP 362.

path entry Mo pepovopévn tomobeoia ato import path v omoio. cupfovievetal o path based finder yio. va. pet
modules yLo. EL0AYWYT.

path entry finder 'Evog finder mov emotpégetal amd évav KahoOuevo 0to sys . path_hooks (dnhadf) éva parh
entry hook) mov E¢pel mwg va evtomiCelr modules e path entry.

B\ importlib.abc.PathEntryFinder yio tig uefddovg mov o entry finder dtadpoung vhoTOLEL.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder 'Eva amd ta mpoemheyuéva meta path finders mov ovalntd évo import path yio. modules.

path-like avrikeipevo 'Evo avtikeipevo mov avuipoowmevel évo path cvotuatog apyeiwv. ‘Eva aviikeipevo
path givau gite éva aviikeipevo str 1 bytes mov aviutpoowsevel £va path 1 éva aviikeipevo mov vhomotel
TO TPWTOKOMO 0s . PathLike. Eva avitkeipevo mov vrootnpilel To tpwtdkolo os . PathLike umopei
va petatparmel og path ovothuatog apyelwv str M bytes Kahmvtag TV ouvapmon os . £spath () ” ta
os.fsdecode () Kot os. fsencode () Wropovv va ¥pNotuoTotfoy yio TV eyyunon evog amotelé-
opatog str M bytes, avtiotoya. Ewonydn amd tov PEP 519.

83


https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519

Extending and Embedding Python, Anpooicsuon 3.9.23

PEP IIpotoom Bedtiwong Python. ‘Eva PEP givou éva €yypago oyedlooiol mov mopéyel TApopopies 0Ty Kot-
votnto Python 1) mepuypdepel o véo duvatdtta yia v Python 1) tig duadikaocieg 1) 1o mepifallov .
Ta PEP 0a mtpémel va mop€youy (o GUVOITTLKY] TEYXVLKT] TTPOSLOypagpT] KOL (L AOYLKT) YLOL TCL TTPOTELVOUEVAL
YOPOKTNPLOTLKA.

Ta PEP mpoopilovrol va eival oL KUPLOL Y ovIoUoL YLoL TNV TTPOTO0T ONUAVILKMV VEDV YOPOKTPLOTLKMYV,
YLOL T GUAAOYY] TTANPOPOPLIV TNG KOLVOTNTOG Yo Vo THTNUOL KoL Y10 TV TEKUNPLmON TOV 0Topaoemy
oyedLaouov o £xovv ewoay el otnv Python. O ouyypagéag tov PEP gival veBuvog yio thv otkodoumon
ouvaiveong evtog TG KOLVOTNTOG KoL TNV TEKUNPLmon avtifeTtwy amdPpewy.

Bi. PEP 1.

tuuoe. ‘Eva ovvoho amd apyeioa og Evay povo katdhoyo (evoeyousvng amodnKevuévo og apyelo zip) Tou GuuPa-
Lovv og éva namespace TOKETO, OTWg opitetar oto PEP 420.

opwopa 0éomg BA. argument.

provisional API 'Eva provisional API eival avtd mov €xel eokepuévo eEarpebei amd tig backwards eyyunoeig ovp-
Batomtog g Tumikng PLPAOOTKNG. Av KoL dEV aAVaIEVOVTOL ONUOVTIKEG AAMAYEG O TETOLEG OLETTOPEC,
£POCOV EMONUOIVOVTAL WG TPOoWPLVES, alharyég un backwards cuufatdmrog (UéxpL KoL KOTapynon g
dLemap|g) Uopel va TpoktPpouv edv KpLel amopaitto amd Toug Pactkos TPoypaunaTtiotés. Tétoleg
odhayég dev Ba yivouv dokoma — Bo ouuBouv wovo edv amokalupOovv cofapd Oeueliddn eraTTOROTA
OV TOPOLELPONKAY TPLV aTtd T cuuTtepiinyn tov APL

Axoun kou yo provisional API, ou un backwards ovppatéc alaryég Bewpoivtar «hion oyatng avaykne»- Oa
eEaxohovBei vo yivetaw ke poomdOero yio va Bpebei pua Abom backwards cupBati| og TuYOV EVIOTLOUEVOL
TPoPfAUATO.

Avth 1 Stadikaoia emitpémer oty TuTtLK ) PBALOONKT va ouveyioel va eSeliooetan ue v Tdpodo Tov ypo-
VO, XWPLG VO KAELOMVEL TPOPAUATIKG OQAMIOTA OYEDLOOUOD YLOL EKTETAUEVES XPOVIKEG EPLOdOVS. BA.
PEP 411 yia teploo0tepeg AeTTOUEPELEG.

provisional wokéro BA\. provisional API.

Python 3000 Wevdmvupo yia to ouvolo ekddoemv Python 3.x (emvonOnke mptv otd ol Kapd 6tov 1) Kukho-
popia TG £K800mMG 3 NTOV KATL 0TO HaKPLVO uéhov.) Avtd ovoudletal emiong wg cuvtopoypapio «Py3k».

Pythonic Mua 1déa 1) évo Koppdtt KhdLKa Tou akohovbel ot ta 7o Kowvd wuwpato ™G Yhmooag Python, avti
VO VAOTTOLEL KDOLKOL Y PTOLULOTTOLMVTAG EVVOLES KOLVEG 08 AMAe YADOoeS. Tla mapdderypa, Evo Koo wWimuo
otnv Python givan va xdvet wor eavanym mdvo amd Oha ta otoueio evag iterable ypNOLLOTOLMVTOG ULOL
Mhwon £or. [Todrég dhheg YADOOEG TTOU dEV EYOUV OUTOV TOV TUTTO KATAOKEUNG, £T0L 0L AvOpwItoL Tov dev
eivar eEotkelmpévol pe v Python ypnotpomototv peptkéc popég Evav aptbuntkod uetpn:

for i in range(len(food)):
print (food[i])

Avtifeta, wo mo kabapn uébodog Pythonic:

for piece in food:
print (piece)

avayvoplopévo ovoua ‘Eva dvopa pe kovkkideg mov deiyvel T «diadpout)» amd 1o kabohkd evpog evog module
og o kAdon, ocuvapton 1 uébodo mov opiletar o auThHv TV evotnTa, Omtmg opiletan oto PEP 3155.
TN ovvaptnoelg kKoL KAAOELS OVADTATOU EMUTEOOV, TO AVOLYVWPLOUEVO OVOLLOL elval idLo pe to dvoua Tou
OVTLKELUEVOU:

>>> class C:
class D:
def meth (self):

(ouvéyela 0NV eOUEVT) OEMDQ)

84 Mapdptnua A’. NMwooapt


https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

pass
>>> C._ qualname_
lCl
>>> C.D.__qgqualname_
'Cc.D'
>>> C.D.meth. qgualname
'C.D.meth'’

‘Otowv ypnowwooteitar yia avapopd oe modules , To TAHowWS avayvweLlouévo évoua oNUaiveL oMOKANPO To
drakekopuévo path pog to module, CUNITEPLOUBOVOUEVOV TUYOV YOVIKMV TAKETWV T.). email .mime.
text:

>>> import email.mime.text
>>> email.mime.text. name
'email .mime.text'

i 00g avaopas The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sys module defines a getrefcount () function that programmers can call to return the
reference count for a particular object.

Kovoviko mok€to 'Eva mapadooiako package, Omtmg £vag Katdhoyog mov mepléyeL éva __init__ . py apyeio.
B\. exiong namespace package.

_ slots__ Muia dMAwon péoa og pua KhAom ov eEotkovouel uviun SNAMVOVTAG €K TV TPOTEPWYV Y MPO VLo TaPd-
deLyua yopakTnpLotikd Ko eEaheiqpovtag heELkd oTryiotimmy. AV Kat dSUo@IAfG, 1) TEXVLKY eivol KATmG
dVOKOLO VO YIVEL CWOTI KOL TPOOPILETOL KOAITEPO YLO. OTLAVLEG TTEPUTTMOELG OTTOV VITAPYEL HEYAAOG apLO-
UOG OTLYILOTVTTMV O€ [LaL EPOPUOYY KPLoLUNG-UviHUNG.

akolovBia. An irerable which supports efficient element access using integer indices via the __getitem__ () special
method and definesa ___1en__ () method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple,and bytes. Note that dict alsosupports ___getitem__ () and __len__ (),butis
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes
beyond just _ _getitem__ () and __len__ (), adding count (), index (), contains__ (),
and _ reversed__ (). Types that implement this expanded interface can be registered explicitly using
register().

set comprehension 'Evog cupmayhg tpomog yia va eneEepyaoteite Oha 1) HéPog Tmv otolyeimv oe €va iterable Ko
VO ETLOTPAPEL V0L OVVOAO LE Ta atoTeréopota. results = {c for ¢ in 'abracadabra' if c
not in 'abc'} dnwovpyei to ovvoho ovpporooelpdv {'r', 'd'}. BL. comprehensions.

novaduko dispatch Muo woper| dispatch generic function émov 1 vhomoinon emiéyeton pe BAomn tov THIO €VOG
UELOVOUEVOU OPLOUOLTOG.

slice 'Eva avtikeipevo mov ouvnbmg meptéyet Eva tunua wog akorovbiag sequence. Anuovpyeitan éva slice xpn-
OLUOTTOLDVTAG T oNueiman subscript, [] we dvw Kou Kdtw teheieg neta&l aplbudv otav divovtol wolhoi,
Omwg 010 variable name [1:3:5]. H onueiwon aykding (subscript) xpnoLuomoLel ecmteptkd avitkel-
ueva slice.

181k uéBodog Mia uébodog ov Kaheitar orwmnpd 0d Ty Python yia va ekteléoel puo ouyKekpLuévi Aertoup-
via og évav TOm0, dmwg M TPooOfKn. Tétoleg nuéBodol éxovve ovopota Tov EeKvouv KoL TEAELDOVOUV UE
dumhéc Kbtw movheg. Ou edikég néBodol TekunpLdvovTan 0To specialnames.

drowon Mo mtpdtoon eivar pépog ag oovitag (éva «umhok» kddika). Mo pdtaon eivon gite évag expression
eite o aswd oG dopég pe po AEEN-KAedi Omtwg 1 £, while 1) for.

85



Extending and Embedding Python, Anpooicsuon 3.9.23

Kwdukomoinon kewpévov Mia ovuforooelpd otnv Python eivol wa akolouvbio onueiwv kddika Unicode (oTo0 gv-
poc U+0000-U+10FFFF). ['la var artoONKEVOETE 1] VO UETAPEPETE UL CUUPBOLOCELPAL, TIPETTEL VOL OELPLOTTOL-
NBel wg dvadikn akorovbia.

H oepromoinon wog ouuBorooelpds o (o duadiky akohovbic eival YvooT wg «KOALKOTOINoT» , KoL 1)
avadnuovpyia g ouuBorocelpds amd Ty dSuadikr| akohovOio eival YVmOT MG «OTOKMALKOTOIN o).

Yrdpyetr por Totkihion SLapopeTikig OeLpLoToinong Kelwévou codecs, oL 0TT0ioL GUANOYLKG OVOPEPOVTOL WG
«KWOLKOTTOLNOELG KELUEVOU».

apyeio kewévov 'Eva file object ixovd vo SlaBaler kau va ypdeper aviikeipeva str. Zuyvd, évo apyeio kewé-
VOU ATOKTA TPAYUATIKG TTPOOP0oN O€ (a pon duadlkt) por) dedoUEVMV KaL YeLPLLETOL QUTOUATO TNV fext
encoding. TTopadelyuorto apyeimv KeLEvov eivan apyela Tov avoiyouv oe hettovpyia Kewévou ("' 1 "w'),
sys.stdin, sys.stdout, Kot otrypdtume tov io. StringIO.

BA. emtiong binary file yio évo avitkeipevo apyelov pe duvatdTnta avayvoong Kot eyypopns dvadtkd avii-
Kelusva.

oupforocelpd TPUTA®Y ELoaymYIKOV Mo GUUBOAOCELPE TTOU SECUEVETOL AT TPELG TEPUTTWOELG ELTE EVOG ELOQL-
yoyrko¥ (») 1 pag arootpdpov (). Av kou dev TapEYouv Kouia AeLttovpytkoTnTa tov dev eivar dtabéoiun
1e OVUPBOLOCELPEG UE LLOVAL ELOAYWYLKE, ElvaL XPHOLUES YLOL BLapOPOoVg AOYOUGS. Zag EMLTPETOUV VO GUUTTE-
PGPeTE LOVA Kat SAd eLoaymyLkd xwpig dtopuyn o€ uLat CUUBOAOOELPG KOl UTOPOVY VO, EKTELVOVTOL
og TOMEG YPOAUUES XWPLG TN YPTON TOV XOPAKTNPO CUVEYELDL, KADLOTMVTAGS TA LOLALTEPO. YPNOLLO KATA TN
oUVTOEN eYYPAPWV pe CUUPBOLOCELPES.

tomog The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits ___class___ attribute or can be retrieved with type (ob7j).

type alias 'Evo ouvadvupo yuo évay thmo, mov dnuiovpyeitar ue ty ovafeorn TOmov o€ £va avayvopLoTko.

Ta type aliases eival ypnowpa yio tnv asthomoinom type alias. Tia wapdderypor:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplel[int, int, int]]:
pass

WITOPEL VL YIVEL TTLo EVAVAYVHOTO OTTWG:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

Bi. typing kou PEP 484, movu mepLypdepel outiv TNV AeLtovpytkdtnTa.

type hint 'Evag annotation wov KaOopileL TOV avopuevopevo TOo yio. (ot LETOPANTY), EVO X apaKTNPLOTIKO KAGOoNG
1] WL TTOLPAUETPO CUVAPTNONG 1) TLUT ETLOTPOPNG.

Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid
IDEs with code completion and refactoring.

YnodeiEeig timou (type hints) yio KaBoMkég UETOPANTEG, YOPOKTNPLOTIKA KAGONG KoL OUVOPTH-
oelg , OMG Oyl TOTKEG UETAPANTEG, WITOPOUV VA JTPOOTELAOTOVV YPNOLUOTOLMVTAG TO typing.
get_type_hints ().

B\ typing kouw PEP 484, mov mepuypdepel outiv TNV hettovpytkdtnta.

Kofohkég véeg ypauués Eva tpdmog epunveiog pomv KeWWEvou 0tov ooio dia ta akdhovbo avayvmpifovral
wg MEelg wag ypoupng: 1 ovupoon téhovg ypouung tov Unix '\n', 1 oVppaon twv Windows '\r\n"',
Kou v wahd ovupaon Macintosh '\ r '. BL. PEP 278 xaw PEP 3116, kaOdg kowbytes.splitlines ()
yio TPodabetTn ypnon.

86 Mapdptnua A’. NMwooapt


https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116

Extending and Embedding Python, Anpooiguon 3.9.23

annotation pevapiyeig ‘Evag annotation wo. petaBAng 1 evog xopaktnpLlotiko KAGoNG.

‘Otov annotating puo eTaBANTY 1 va xopakTnpLotikod kKAdong, 1 avadeon eivol TpoatpeTikn:

class C:
field: 'annotation'

Ta annotations PETOPANTOV YPNOWOTOLOVVTOL GUVNOWG YLaL fype hints: YLo. TAPAIELYUA OUTH 1) LETOPANTY
avapéveral va MfeL Tiég int:

count: int = 0

H o¥vta&n annotation petafinTig mepryplpetal oty evOTITa. annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment 'Evo ouvepyoatikd amopovmuévo eptBallov xpovoy eKTELEONG OV ETULTPETEL OTOVG YPT1)-
0TEG Kau TIG eapuoyés tg Python va eyxotaotioovy kot vo avopaduicovy tokéta diovoung Python ympig
va tapeuaivouy oty ovutepLpopd dAlmv epapuroymv Python mov ektelovivtal 0To idlo ovoTnua.

Bi. emtiong venv.

virtual machine 'Evog vroloyiotic opileton €€ ohokipov amd to hoyiowkd. H eucovikh unyavi tng Python
ektelel To bytecode OV eKTTEUTETAL ALTTO TOV UETAYAWTTLOTY bytecode.

Zen 1 Python Kotdhoyog oyedlootikmy apymv KoL (LAOGOMLMY TOV ELVOL YPTOLUES YLOL TV KATOVONOT] KoL TN
xPNoN ™G YAdooag. O kotdhoyog witopei va fpedel mnktpoloydvrag «import this» otnv dladpaotik
KOvGeoOLa.

87


https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, Anpooicsuon 3.9.23

88

Mapaptnua A'. NMwooapt



nAPAPTHMA B’

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.

H avamtuEn tov eyypleov Kol Tov gpyoleiwv toug eivar eE” ohokhnpov edehovtiky mpoomddera, dmwg Ko 1)
idua 1 Python. EGv Béhete va. ouvelopépete, piEte wo. potid ot oghida reporting-bugs yio, TANPOQOPLES OYETIKEG
e To Twg vo. 1o Kavete. Kawvouplol e0ehoviég eival mdvta evmpdodektol!

[ToAAég vy OpLOTiES TTNYALVOUY OTOVG:
« Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
« the Docutils project for creating reStructuredText and the Docutils suite;

o Fredrik Lundh yua to 816 tov Alternative Python Reference mpdtlekt amd to omoio to Sphinx mpe ol
KoAég LOgec.

B'.1 Contributors to the Python Documentation

IoAhol avBpwrtoL éxouv ouvela@épel ot Yhwooo Python, thv BiioOnin tng Python, ko ta €yypagpa tng Python.
Agite Misc/ACKS otig minyég dravoung g Python yia pa Moto twv ouvieheotdv.

Moévo ue tn ouufol) Kot Tig OUVELGPOPES TG Kotvotntag tg Python, 1) Python €yel tétola vitépoya éyypapo -
Zag evyoaploTovpe!

89


http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
https://github.com/python/cpython/tree/3.9/Misc/ACKS

Extending and Embedding Python, Anpooicsuon 3.9.23

90

Mapdaptnua B'. About these documents



4
NAPAPTHMA [

loTopla kat Adela

.1 Hotopia Tou AoyLoHLKOU

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most, but
not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

‘Ekdoon Mpoepxduevn ard | ‘Etoq Idloktnoia | GPL compatible?
0.9.0éwg 1.2 | &/v 1991-1995 CWI v
13¢émg1.52 | 1.2 1995-1999 CNRI VoL
1.6 1.5.2 2000 CNRI oxL
2.0 1.6 2000 BeOpen.com | oyt
1.6.1 1.6 2001 CNRI oyl
2.1 2.0+1.6.1 2001 PSF oYL
2.0.1 2.0+1.6.1 2001 PSF v
2.1.1 2.142.0.1 2001 PSF VoL
2.1.2 2.1.1 2002 PSF VoL
2.1.3 2.1.2 2002 PSF VoL
2.2 kou whve | 2.1.1 2001-ofuepo. | PSF VoL

91


https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Extending and Embedding Python, Anpooicsuon 3.9.23

Inueiwon: GPL-compatible doesn’t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

X&p1, 0toug ToAovg eEmTepLkovg e0eLOVTEG TTOV EpYAOTKAY KUTW 07TO TG 081 Yieg Tov Guido, avtég oL ekddoelg
EyLVay EQLKTEG.

.2 OpolL Kat npoUmnoBeocelg ywa tnv npoéocpacn | tTnv Xpnon tneg
Python pe aAAoug Tpomoug

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Kdamoro Aoyioukd mov eival evomupotouévo otnv Python givan vitd duagpopetikég ddeteg ypnone. O adeleg mapal-
TOEVTAL PE KDOOLKO TOV EUTTLITTEL 0€ QUTNV TNV AdeLaL. Agite Adeies kau Evyaototies yra Evoouatwuévo Aoyiouxd
yLoL uLoL EAMLTTN ALOTaL ATV TV OdELMDV.

".2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.9.23

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),._
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—~Python

3.9.23 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.9.23 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All._
—~Rights
Reserved" are retained in Python 3.9.23 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.9.23 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.9.23.

4. PSF is making Python 3.9.23 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

92 Mapdaptnua . lotopia kat Adsla



Extending and Embedding Python, Anpooiguon 3.9.23

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION..
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.9.23 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.9.23

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.L
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.9.23, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.9.23, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

r22 YMoQNIA AAEIAZ BEOPEN.COM I'lA PYTHON 2.0

ZYM®ONIA AAEIAZ ANOIXTOY KQAIKA BEOPEN PYTHON EKAOZH 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,

(ouvéyela otV emtduevn oehida)

M.2. Opol kai poiimoBgoelqg yia tTnv npoopaon i tnv xprion tng Python pe aAAoug tponoug 93




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by and interpreted in all respects

by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

r.2.3 ZYM®QNIA AAEIAZ CNRI I'lA PYTHON 1.6.1

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR

(ouvéyela otV emtduevn oehida)

94

Mapdaptnua . lotopia kat Adsla




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

r2.4 XYMoOQNIA AAEIAZ CWII'IA PYTHON 0.9.0 EQx 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

M.2. Opol kai poiimoBgoelg yia tnv npoopaon i tnv xprion tng Python pe aAAoug tponoug 95




Extending and Embedding Python, Anpooicsuon 3.9.23

M.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23
DOCUMENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

.3 Adeleg katL Euxaplotieq yia Evowpatwpévo AOYLOULKO

Avt) 1 evoémto eivan o nutedfic, aAhd avEavopevn Mota adeldv Kot EuyaplotidV YioL AOYLOWKOS TPiTwYV, ToU
EVOWUOTMOVETOL 0TNV dtavou g Python.

M.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

(ouvéyela otV emtduevn oehida)

96 Mapdaptnua . lotopia kat Adsla



http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

M.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " 'AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 97



http://www.wide.ad.jp/

Extending and Embedding Python, Anpooicsuon 3.9.23

M.3.3 Aouyxpoveg socket unnpeoieq

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

M.3.4 Awaxeipion Cookie

H evémto http.cookies mepéyel TV TOpAKAT® E1O0TOINON:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

98 Mapdaptnua . lotopia kat Adsla




Extending and Embedding Python, Anpooiguon 3.9.23

M.3.5 Avixveuon eKTéAeong

H evomto t race mepLéyel v TapokdTm eLd0TOiNo:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

M.3.6 Zuvaptnoelg UUencode kat UUdecode

H evomto uu mepiéyet v mapakdtm edomoinon:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(ouvéyela otV eOUEVT OENIDOL)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 99




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

version is still 5 times faster, though.
— Arguments more compliant with Python standard

M.3.7 KAjoelg Anopakpuopevng Aladikaciag XML

H evomto xmlrpc. client mepiéyel v mopakdtw e100moinon:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

M.3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(ouvéyela otV emtouevVn oehida)

100 Mapdaptnua . lotopia kat Adsla




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

M.3.9 EruAoyn kqueue

H evomta select mepiéyel v mapokdtm ewdomoinon yio v kqueue diemopi):

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

".3.10 SipHash24

To apyelo Python/pyhash. c mepiéyel v vhomoinon tov Marek Majkowski tou alyopiBuov tov Dan Bernstein,
SipHash24. Autd mepléyeL tnv mopaKatom oNueinon:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(ouvéyela otV emtduevn oehida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 101




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

M.3.11 strtod kaw dtoa

The file Python/dtoa. c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings, is
derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/. The original
file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/*********************************~k******************************

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
*

is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % o

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*

* % o

***************************************************************/

M.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/*
* Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

(ouvéyela otV emtduevn oehida)

102 Mapdaptnua . lotopia kat Adsla



http://www.netlib.org/fp/

Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

LR T S TR S N S S NS S N S N S S S S S S N S N S S S S S A T T S S N N T S SRS N S T S .

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

(ouvéyela otV emtduevn oehida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO

103




Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

L S S S N e R S S S R S N S N S N IS S S S SR S I S S N . A T N S S N S N S S I S N ST N

104 Mapdaptnua . lotopia kat Adsla




Extending and Embedding Python, Anpooiguon 3.9.23

.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured ——with-
system—expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

r.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured —~with-
system—1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 105




Extending and Embedding Python, Anpooicsuon 3.9.23

r.3.15 zlib

H eméktaon z1ib dnuovpyeiton xpnoLoToLmVTOS £VO CUUTEPIAAUBAVOUEVOL OVTLYPAPO TOV TTNYWV Zlib, edv 1)
€kd0o0m Tov zlib ov Bpioketal 0To CVOTNUA ElVOL TTOAD TTOAMA YLoL VAL, XPNOLULOTTOLNOEL YLoL TV KOTAOKEVY:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

M.3.16 cfuhash

H vhomoinom tov mivoka KoTaKepUATIONoU OV XPNOUOTToLEITOL 0td To tracemalloc facileTon 010 £€pYyo
cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

(ouvéyela otV emtduevn oehida)

106 Mapdaptnua . lotopia kat Adsla




Extending and Embedding Python, Anpooiguon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

M.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured ——with-
system—-1libmpdec

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3.18 W3C C14N ocouita SoKLUNiQ

H covita doxiufig C14N 2.0 oto mokéto test (Lib/test/xmltestdata/cl14n-20/) avaktOnke amd tov
tototoro tov W3C https://www.w3.org/TR/xml-c14n2-testcases/ Ko dtavépeton e v adewa 3 pntpwv BSD:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

(ouvéyela otV emtduevn oehida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 107



https://www.w3.org/TR/xml-c14n2-testcases/

Extending and Embedding Python, Anpooicsuon 3.9.23

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

* Redistributions of works must retain the original copyright notice,

this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the original copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

108 Mapdaptnua . lotopia kat Adsla




NAPAPTHMA £\’

Copyright

H Python ko vt 1) Tekunpiwon eivod:

Copyright © 2001-2023 Python Software Foundation. ‘Ol To. StkodUoTo SLOTPOUVTAL.

Copyright © 2000 BeOpen.com. OLa T SUKOLMOUOTA SLATNPOVVTOL.

Copyright © 1995-2000 Corporation for National Research Initiatives. Olo. To. StKaLOUATO SLATNPOVVTAL.

Copyright © 1991-1995 Stichting Mathematisch Centrum. ‘Ola Tal SLKOLOUOTA SLATPOVVTOL.

AvatpéEte oto lotopla kar Adewa Yo, TA PN G TANPOQOPN oY OYeTLKd pe TV ddera yprong Ko TG eEouoLodoThHoELC.

109



Extending and Embedding Python, Anpooicsuon 3.9.23

110 Mapaptnua A'. Copyright



Eupetriplo

MN-aAQAPLTIKA
..., 73
2to03,73
>>> 73
BDFL, 75
CPython, 76
C-contiguous, 76
EAFP, 77
Fortran contiguous, 76
GIL,79
IDLE, 79
LBYL, 81
MRO, 82
PEP, 84
PYTHONPATH, 59
Philbrick, Geoff, 15
PyArg_ParseTuple (), 14
PyArg_ParseTupleAndKeywords (), 15
PyErr_Fetch (), 51
PyErr_Restore (), 51
PyInit_modulename (ovvdotnon C), 59
PyObject_CallObject (), 12
Python 3000, 84
Python Enhancement Proposals
PEP 1, 84
PEP 238,77
PEP 278, 86
PEP 302,77, 81
PEP 343,75
PEP 362,74,83
PEP 411,84
PEP 420,77, 82,84
PEP 442,52
PEP 443,78
PEP 451,77
PEP 483,78
PEP 484,73,78, 86, 87
PEP 489,11,59
PEP 492,74,76

PEP 498,77

PEP 519,83

PEP 525,74

PEP 526,73, 87

PEP 585,78

PEP 3116, 86

PEP 3155, 84
Pythonic, 84
READONLY, 54
READ_RESTRICTED, 54
RESTRICTED, 54
WRITE_RESTRICTED, 54
Zen tn¢ Python, 87
_ future_ ,78
_ _slots_ ,85
annotation, 73
annotation petaPAntng, 87
awaitable, 74
bytecode, 75
bytes-like avtikelpeva, 75
callback, 75
coercion, 75
context petaBAntr, 76
contiguous, 76
coroutine, 76
coroutine ouvdptnon, 76
deallocation, object,5l
decorator, 76
descriptor, 76
docstring, 77
duck-typing, 77
f-string, 77
finalization, of objects,5l
finder, 77
generator, 78
generator expression, 78
generator iterator,78
generator éxwppaon, 78
global interpreter lock,79
hash-based pyc, 79

111



Extending and Embedding Python, Anpooicsuon 3.9.23

hashable, 79
immutable, 79
interpreted, 80
iterable, 80
iterator, 80
lambda, 81
list comprehension, 81
loader, 81
magic
method, 81
mapping, 81
meta path finder, 81
method
magic, 81
special, 85
module, 81
module eméxtaong, 77
mutable, 82
named tuple, 82
namespace, 82
nested scope, 82
object
deallocation, 5l
finalization, 51
path based finder, 83
path entry, 83
path entry finder, 83
path entry hook, 83
path-like avtikeipevo, 83
provisional API, 84
provisional mnaxéto, 84
repr
evowpatwpévn ouvaptnon, 52
set comprehension, 85
slice, 85
special
method, 85
string
object representation,52
type alias, 86
type hint, 86
virtual environment, 87
virtual machine, 87

A

aképara Srailpeon, 77
akoAoubia, 85
avayvwplopévo ovoua, 84
avtikeipevo, 82
avtikeilpevo apyelou, 77

avtikelpevo nou polrdletr pe apyeto, 77

apyelo xeipévou, 86
acuyyxpovoc generator, 74

acUyypovog generator iterator, 74

aocuyyxpovocg iterable, 74
acuyyxpovocg iterator, 74

acuyyxpovocg drayelpilotng context, 74

apnenupévn PRacikn kAidon, 73

r

yevikn ouvdptnorn, 78
yevikdg tunog, 78

A

&nAwon, 85
Srabpactixdeg, 79
SirayeilploTc context, 75
Suabixd apyelo, 75

E

€181k pévodog, 85

eltoaybépevo path,79

eloaywyéag, 79

eltoaywyn, 79

éxyppaon, 77

evowpatTwpévn ouvdptnon
repr, 52

K

xaboAlkéc véeg ypappéc, 86
xavovikxd mnaxéto, 85
xatavonon Aeixou, 76
xAdon, 75

xAdon véou oTUA, 82
xwdixomoinon xeilpévou, 86

Al

AeE€1x b, 76
Alota, 81

M

payikn pédodog, 81

nébobocg, 81

peta-xAdon, 81

petaBAnty xAdong, 75

peTaBAnT) meplPAAAOVTOQ
PYTHONPATH, 59

piya8ixkde apibudg, 75

povadikd dispatch, 85

O

bplopa, 74

bplropa keyword, 80
6plopa Béong, 84
oyn Aeixou, 77

M

naxkéto, 82

112

Eupetnplo



Extending and Embedding Python, Anpooiguon 3.9.23

naxéTo namespace, 82
napduetpog, 83
nAnboc avawpopdc, 85

2

oelpd avdiuoncg pebdduwv, 81

oculAAloyny amnopplpdtwv, 78

oupBoAocelpd TPLOAWV €l10aywy LKWV, 86
ouvdaptnon, 77

ouvdptnon annotation, 78

ouvdptnon key, 80

T

Teppatiopdc Aeittoupylag Sirepunvéa, 80
Texvikéc mpoSiraypapéc module, 82
Tunpa, 84

Tunocg, 86

X

XapaktnpioTiko, 74

Eupetnplo

113



	Recommended third party tools
	Creating extensions without third party tools
	Extending Python with C or C++
	A Simple Example
	Intermezzo: Errors and Exceptions
	Back to the Example
	The Module’s Method Table and Initialization Function
	Compilation and Linkage
	Calling Python Functions from C
	Extracting Parameters in Extension Functions
	Keyword Parameters for Extension Functions
	Building Arbitrary Values
	Reference Counts
	Writing Extensions in C++
	Providing a C API for an Extension Module

	Defining Extension Types: Tutorial
	The Basics
	Adding data and methods to the Basic example
	Providing finer control over data attributes
	Supporting cyclic garbage collection
	Subclassing other types

	Defining Extension Types: Assorted Topics
	Finalization and De-allocation
	Object Presentation
	Attribute Management
	Object Comparison
	Abstract Protocol Support
	Weak Reference Support
	More Suggestions

	Building C and C++ Extensions
	Building C and C++ Extensions with distutils
	Distributing your extension modules

	Building C and C++ Extensions on Windows
	A Cookbook Approach
	Differences Between Unix and Windows
	Using DLLs in Practice


	Embedding the CPython runtime in a larger application
	Embedding Python in Another Application
	Very High Level Embedding
	Beyond Very High Level Embedding: An overview
	Pure Embedding
	Extending Embedded Python
	Embedding Python in C++
	Compiling and Linking under Unix-like systems


	Γλωσσάρι
	About these documents
	Contributors to the Python Documentation

	Ιστορία και Άδεια
	Η ιστορία του λογισμικού
	Όροι και προϋποθέσεις για την πρόσβαση ή την χρήση της Python με άλλους τρόπους
	PSF LICENSE AGREEMENT FOR PYTHON 3.9.23
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ BEOPEN.COM ΓΙΑ PYTHON 2.0
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CNRI ΓΙΑ PYTHON 1.6.1
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CWI ΓΙΑ PYTHON 0.9.0 ΕΩΣ 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23 DOCUMENTATION

	Άδειες και Ευχαριστίες για Ενσωματωμένο Λογισμικό
	Mersenne Twister
	Sockets
	Ασύγχρονες socket υπηρεσίες
	Διαχείριση Cookie
	Ανίχνευση εκτέλεσης
	Συναρτήσεις UUencode και UUdecode
	Κλήσεις Απομακρυσμένης Διαδικασίας XML
	test_epoll
	Επιλογή kqueue
	SipHash24
	strtod και dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N σουίτα δοκιμής


	Copyright
	Ευρετήριο

