The Python Language Reference
Anuooiguon 3.9.23

Guido van Rossum
and the Python development team

louAiou 08, 2025

Python Software Foundation
Email: docs@python.org

Meplexoueva

1 Ewoyoyn 3
1.1 EvOMOKTKEG YAOTTOWOELS « « « v v v v v e 3
1.2 ENUEIOYPOPIOL + « o v vt e e e e e e e e e e e e e e 4

2 Lexical analysis 5
2.1 LINeStructure o e e e e e e e e e e e e e e 5

2.1.1 Logicallines e e 5
2.1.2 Physicallines 5
2.1.3 0 CommentS . . . v v vt e e e e e e e e e e e e e e e e e 6
2.1.4 Encodingdeclarations e e e e e e e e e e 6
2.1.5 Explicitline joining o o e e e e e e e e e e 6
2.1.6 Implicitline joining L e 6
217 Blanklines. oL e e e e 7
2.1.8 Indentation L. e e e 7
2.1.9 Whitespace between tokens L. e e 8
22 Othertokens i i e e e e e e 8
2.3 Identifiersand keywords oL e 8
231 Keywords 9
2.3.2 Reserved classes of identifiers oL 9
24 Literals oL e e e e e 9
2.4.1 Stringand Bytes literals L e e e e 10
2.4.2 String literal concatenation oL e e e e e e e e 12
243 Formatted string literals e 12
244 Numericliterals L e e 14
245 Integerliterals L e 14
2.4.6 Floating pointliterals L e e e e 15
247 Imaginary literals e e e e e e e e 15
2.5 OPErators . . . v v v i i e 15
2.6 Delimiters i e e e e e e e e e e e e 15

3 Data model 17
3.1 Objects, valuesand types L e e e e 17
3.2 Thestandard type hierarchy L. o L 18
3.3 Special method names L L e e e 26

3.3.1 Basic customizationo e e e e e e e e e e e e 26
3.3.2 Customizing attribute aCCesS v v v v i e e e e e e e e e e e e e e e e 29
3.3.3 Customizing class creation oo e 34
3.3.4 Customizing instance and subclasscheckso o000 36
3.3.5 Emulating generiC typeso i i e e e e e e e e e e e 37
3.3.6 Emulating callable objects e e 39
3.3.7 Emulating container types« v v v i e e e e e e e e e e e e e e e e e e 39

34

3.3.8 Emulating numeric types . . . v v v v vt e e e e e e e e e e e e e e e e e e

3.3.9 With Statement Context Managers v v v i it
3.3.10 Special method lookup e
COrOULINES . . . v v v et e
34.1 Awaitable Objects e e e e
342 Coroutine ObJects v v v vt i e e e e e e e
343 Asynchronous Iterators L e e e e e e e
3.4.4 Asynchronous Context Managers v v v v v vttt e

Movtého ektéheog

4.1 Aoun eVOQ TPOYPAMUOTOS « v v v v e e e e e e e e e e e e e e e e e
4.2 OVOUAOLO KOL GUVOEDGT] + v v v v v e e v i e e e e e e e e e e e e e e e e e
421 ZUVOEON OVOUGTOV . & v v v v e v et e e e e e e e e e e e e e e e
422 EmMUON OVOUGTMV « « v v vt e
423 EvoOuatmUEVEG CUVOPTNOELG KOL TTEPLOPLOUEVT] EKTENEON .« « « o o o o v v v vt o .
424 AMNeTidOpoon He OUVOLKEG MELTOVPYIEG + « v v v v v v e e e e e e e e e e e
43 EEOIPEOELG « v v v v v e o e e e e e e e e e e e
The import system
5.1 dmportlib . . . o e e e e
5.2 Packages e e e e e e
5.2.1 Regularpackages e
5.2.2 Namespace packages o i e e e e e e e
53 Searching L e e
53.1 Themodulecache
532 Findersandloaders
5.33 Importhooks e e e
5.34 Themetapath e e e
54 Loading oL e e
541 Loaders e
542 Submodules
543 ModuleSpec e e e e e e e e e
544 Import-related module attributes oL oo
545 module.__path . ..o e
54.6 Modulereprs e e e e e e e e e e e e
5.4.7 Cached bytecode invalidation e
5.5 ThePathBased Finder
5.5.1 Pathentryfinders e
5.5.2 Pathentry finder protocol
5.6 Replacing the standard import system L. o e
5.7 Package Relative Imports o e e e e e e e e e
5.8 Special considerations for __main__ oL oL e e e e e e
5.8 1 mMaIN__._ SPEC__ . . i i e e e e e e e e e e e e e e e e e e
59 Openissues e e e e
5.10 References e e
Expressions
6.1 Arithmetic COnVersionsttt it et e e e e e e e e e e e e e e
6.2 AWOMS o e e e e e e e e e e e
6.2.1 Identifiers (NaAmMES) v v i e e e e e e e e e
6.2.2 Literals
6.2.3 Parenthesized forms L
6.2.4 Displays for lists, sets and dictionaries oo
6.2.5 Listdisplays e e
6.2.6 Setdisplays e e e e
6.2.7 Dictionary displays e e e e e e e e e e
6.2.8 Generator Xpressions oo it e e e e e e e e e e e e e
6.2.9 Yield expressionso e e e
6.3 Primaries L. e e e

47
47
47
47
48
49
49
49

51
52
52
52
53
53
53
54
54
54
55
56
57
57
57
58
59
59
59
60
61
61
62
62
62
63
63

6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11
6.12
6.13
6.14
6.15
6.16
6.17

6.3.1 Attribute references L. Lo
6.3.2 Subscriptions e e e e e e e e e e e e
6.3.3 SHCINGS e e e e e e e
634 Calls e e e
AWAIE BXPIESSION . . o v v v v e i e e e e e e e e e e e e e e e e e e
The pOWer Operator o vt v e e e e e e e e
Unary arithmetic and bitwise operations v v v v i i vt e
Binary arithmetic operations L. e e e e e e e e e
Shifting operations e e e
Binary bitwise Operations oL o e e e e e e e e e e e
CompariSONS v v vt v e e e e e e e e e e e e e e e e
6.10.1 Value compariSons v v v v v i i e e e e e e e e e e e e e e e e e e
6.10.2 Membership test Operations o v i it e e e e e e e e e e e
6.10.3 Identity compariSOnSo e e e e e
Boolean operations L e e e e e e e e e
ASSIZNMENt EXPIESSIONS . .« & v v v v v v e e e e e e e e e e e e e e e e e
Conditional eXPressions . . . v v v v v v i e
Lambdas e
Expression lists o oL e e e
Evaluationorder L e e e e

Simple statements

7.1
7.2

7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

7.12
7.13

EXpression statements i e i e e e e e e e e e e e e e e e e e e
Assignment StAteMENts e e e e e e e e e e e e e e
7.2.1 Augmented assignment Statementso e u e e e
7.2.2 Annotated assignment Statements e e e e e e e e e e
The assertstatement L e e e
The passstatement ot it i e e e e e e e e e e
The del statement o vt e e e e e e e e e e e e e e e
The return StatemMeNnt v v v v e e e e e e e e e e e e e e e e e e
The yieldstatement v i v it et e e e e e e e e e e e e e
The raise Statement v v v vt i e i e e e e e e e e e e e e e
The break statement v i i i e e e e e e e e e e e
The continuestatement 0 e e e e e e e e e e
The import statement e e e e e e e e e e e e
7.11.1 Future statements v it e e e e e e e e e e e e e e e e
The global Statement v i v it et e e e e e e e e e e e e e e
The nonlocal Statement v v v v v vt i e et e e e e e e e e e e e e

Compound statements

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

The 1fstatement o o e e e e e e e e e e e e
The whilestatement 0 v i i et e e e e e e e e e e e e e e e e e
The forstatement e e e e e e e e e e e e
The trystatement e e e e e e e e e e e e e e
The with statement 0 i it et e e e e e e e e e e e e e e
Function definitions e e e e e e e
Class definitions i o i e e e e e e e e e e e e e e e e
COrOULINES . . . v v o vt e
8.8.1 Coroutine function definition
8.8.2 Theasync forstatement ittt e
8.8.3 Theasync withstatement v v v v ittt et e e e

Top-level components

9.1
9.2
9.3
9.4

Complete Python programs L e e
File input o o e e e e e e
Interactive input L e e e e
Expression inputl e e e

85
&5
86
88
88
89
89
&9
90
90
91
92
92
92
94
95
95

97
98
98
98
99
101
102
104
105
105
105
106

107
107
107
108
108

10 ITAYpNS TPOdLOrYpapY] YPOUNCTIKTG 109
A’ Thooodpu 119
B’ About these documents 133
B’.1 Contributors to the Python Documentation 133
I Iotopio kot Adero 135
I7.1 Homopio TOU MOYLOULKOU + o v v v v v v e 135
[7.2 'Opol Kot tpoimobéoels yio TNy mtpdofaon 1 v xpnon g Python pe ddiovg tpdmovg 136
2.1 PSF LICENSE AGREEMENT FOR PYTHON39.23 136
2.2 ZYM®QONIA AAEIAY BEOPEN.COMTIAPYTHON20 137
723 ZYMOQONIA AAEIAZ CNRITTAPYTHON 1.6.1 138
V24 ZYMOQONIA AAEIAZ CWITTIAPYTHONOSOEQZ 1.2 139
I"2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23
DOCUMENTATION e s e e e s e e 139
7.3 Adeieg xou Evyaplotieg yio EvOOUoTtoUEVO AOYOWKO .« . . o o o o ot e e e 140
3.1 Mersenne TWISter o o i i it e e e e e 140
732 Sockets e e 141
[7.3.3 AoUyypoveg socket UINPEOIES « « « « v v v v v v e e e e e 141
["3.4 Awyeipion Cookie e e e e e 142
[7.3.5 AvVIYVEUON EKTEAEONG -« « v v v v e 142
[7.3.6 Zuvvapmoeig UUencode kaw UUdecode o oo vt i i oo e 143
[7.3.7 KMjoewg Amopokpuopuévng Awadikootog XML o oo 143
[7.3.8 test_epoll e e e e 144
[739 Emdoynkqueueo e e 144
[7.3.10 SipHash24 e 145
7311 strtod kandtoa.o oo e e e e e e 145
I73.12 OpenSSL . . . o o 146
7313 eXpat. . . o v e e e e e e e e e e e e 148
[73.14 Tibfi . . . o 148
7315 zIib . . e e e 149
[73.16 cfuhash e 149
[73.17 libmpdec o e 150
[7.3.18 W3C CI4N GOUITO QOKUUNG - « « v v v v e e e e e e e e e e e e e e e e e e 150
A’ Copyright 153
Euvpetipro 155

The Python Language Reference, Anpocigsuon 3.9.23

This reference manual describes the syntax and «core semantics» of the language. It is terse, but attempts to be
exact and complete. The semantics of non-essential built-in object types and of the built-in functions and modules
are described in library-index. For an informal introduction to the language, see tutorial-index. For C or C++
programmers, two additional manuals exist: extending-index describes the high-level picture of how to write a Python
extension module, and the c-api-index describes the interfaces available to C/C++ programmers in detail.

Meplexopeva 1

The Python Language Reference, Anpocigsuon 3.9.23

2 Meplexopeva

KE®AAAIO 1

Elcaywyn

AuTo T0 £YYELPLOL0 avapOPAg TEPLYPAPEL TNV YAWOOoO Tpoypauuatiopwoy Python. Aev mpoopiletol wg eyyeL-
pidLo exkpaOnong.

Ztnv mpoomdbeia To £yypapo outd vo. eivar 660 To duvatdv mo akpiéc, emhéyxOnke apykd N Ayyhki
yAdhooa, Kou votepa petappdotnke oty EAviks), kot oy oL emionueg tpodiaypagés, ue eEaipeon tnv ov-
vrokTikn kKo AeSthoyikhy avdduor. Avtd Ba mpémel Vo KAVEL TO £YYPOPO O KATOVONTd 0TOV UECO OvaL-
YVOOTY, 0MG B0 ApNOEL X DPO VLo APPLONULES. ZUVETMOGC, oV ePYOcOVY artd Tov Ap1 Ko Tpoomtadovoes va
viomowmoelg Eavé v Python amd to €yypago avtd kol pdvo, udihov Bo xpetaldtav va povtéels KAmoLo
TPAyROTO. KO YL TV OKpiPeLo iomg Ba KaTéhnyeg va VAOTTOLELG pat Teleimg dtapopetiky] YAwooo. Ao thv
G Thevpd, av xpnolporoteig v Python kot avapwtiéoot oot eival ot akpieig KovOveg OyETIKA Pe Vo
OUYKEKPLUEVO TOUED TNG YADOOOG, TOTE Olyoupa Oa toug Bpels edd mépa. Av Oa 0gheg va delg Evarv mmLo emi-
onuo opLopd g YAwooag, iowg Ba uropovoeg va Tpoopépelg Aiyo amd Tov xpdvo oou — 1) v PTLAEELS UL
unyov KAwvosoinong :-).

Eivou emkivouvo va tpoaBéoovpe morhé hemTouépeLeg VAOTTOINONG O€ £VaL EYYPAPO AVAPOPAS UIAS YADOOOG
— 1 vhomoinom dvvatar vo, aAMGEEL, Kau GAAeg vhoTtoLoeLg TG idLag YAbooag witopel va Aettovpyouv dto-
@opeTLkd. Amtd v G, 1) CPython eivan pio vhomoinon tng Python pe gvpeia xpnon (wotdoo evarhaktikég
VXAOTTOLOELG GUVEXILOUV VO VITOOTNPILOVTOL), KO OL OUYKEKPLUEVES TG LOLOHOPPieg eviote aEilovv avagopd,
eLOLK eXEL OV 1) VAOTToinon emiBatlet emrpoofeTovg meploplopovc. Emouévag, Oa fpelg oUVToueg «onueLm-
OELG VAOTTOINONG» 0€ SLAPOoPa. LEPT TOV KELUEVOD.

Kda0e vihomoinon tng Python ouvodeveton amd évav aptdud evoouatouévoyv Ko tpdtumwv module. Avtég
elval katayeypoupuéveg oto library-index. Kdmolo evoopatwuévo module avogépovtor 0tov odAnlemidpouv
ue Evay onuovItkd TpdTo Ue ToV 0pLoUd TG YAWOOoOG.

1.1 EVaAAaKTIKEG YAOTIOLNOELG

IMapdho ov viapyeL pia vhiortoinon g Python mov eivor pokpdy 1 o dudonun, vdpyouy eVOAAOKTIKEG
VAOTTOLNOELS TTOU £XOVV LOLAUTEPO EVOLAPEPOV YLO. DLAPOPOVG AVOPDITOUG.

I'vwotég vhomounoelg Tepthauavouy:

CPython Avuth eivor 1 TpmTdTUTY KoL 1) TTLo Kahodtatnpnuévn vhomoinon g Python, ypouuévn otnv C. Néeg
Lertovpyieg TG YADooag cuvnOme eupavilovral TpwTa edM.

Jython Python implemented in Java. This implementation can be used as a scripting language for Java applications,
or can be used to create applications using the Java class libraries. It is also often used to create tests for Java
libraries. More information can be found at the Jython website.

http://www.jython.org/

The Python Language Reference, Anpocigsuon 3.9.23

Python ywo To NET Avti 1 vhomoinon omv mpayuotikotita ypnowuomotel v vhomoinon CPython, aild
elvar pia duarelpLtopevn epappoyh tov NET kou kaver duabéoeg tig NET Bipiobnkes. Anwovpyn-
Onke amd tov Brian Lloyd. Twa meploodtepeg minpogopiec, deite tv apy ikt oekida g Python yio to
.NET.

IronPython An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that
generates IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the
original creator of Jython. For more information, see the IronPython website.

PyPy An implementation of Python written completely in Python. It supports several advanced features not found
in other implementations like stackless support and a Just in Time compiler. One of the goals of the project is
to encourage experimentation with the language itself by making it easier to modify the interpreter (since it is
written in Python). Additional information is available on the PyPy project’s home page.

Kda0e pio 0wd autég Tig vVAOTOOELS SLapOPOTOLOVVTOL e KATOLOV TPOTTO At TNV YADOOGO OTTMG KOTOYPAUpE-
T 08 AUTO TO EYYELPLOLO, 1) ELOAYEL CUYKEKPLUEVY TTANPOPOPLA TTEPO 0TTO O, TL KOAVITTOUV TAL TTPOTVITOL EYYPOPOL
g Python. [apaxold vo cupPovheuteite To £Yypapo TG GUYKEKPLUEVNG VAOTTOLNONG YLOL VO TPOOALOPILOETE
TL OMAO YpeLdleTon Vo EEPETE OYETIKA IUE TNV CUYKEKPLUEVY] VAOTTOIN O] TTOV YPT1|OLULOTTOLELTE.

1.2 Xnueloypagia

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style
of definition:

name = lc_letter (lc_letter | "_")x*

lc_letter = "at..."z"

H mpdn ypapun Aéel 6Tt éva name eivan éva 1c_letter akolovBovuevo amd puio oelpd ortd undév 1 me-
pLoodtepa 1c_letters kow Kdtw mavkes. 'Eva 1c_letter ue) oelpd Tov €lvol 0TOLOGONTOTE OTTO TOVG
uovoug yopoktipeg 'a' g 'z'. (AUTOg 0 KOvOVAg OTNV TPAYLATIKOTITO EQOPUOTETAL YL TAL OVOUOTA
IOV 0pILovTOL 0TOVG AEEILOYIKOVG KO YPOUUATIKOUG KOVOVES QUTOV TOV EYYPAPOV.)

Kd&0e xovovog Eexivd pe éva dvopa (to omoio eivar éva dvoua oplopévo amd tov kavdva) ko : :=. Mia
K&OeTn ypouun (1) XP1NOLULOTTOLELITOL VLo VO OLAWPIoEL TIG EVOAMAKTIKES: EXEL TNV WKPOTEPY TPOTEPALOTITO
otV oeLpd mtpotepadtnTog TPaEemv avtol Tov ovufoiouo. 'Evog aotepiokog (*) onuaiver undév 1 mepio-
00TEPEG ETAVAMYPELG TOV TTPONYOUUEVOD OVTLKELUEVOD: TTOPOUOLMG, TO OUV (+) ONUOLVEL pial 1] TEPLOCOTEPEG
EOVOMPELS, KO UioL (PPAOT) TTEPLPPAYUEVT aTO ayKUAES ([1) onuaiver undév 1 pio epismrwon (ue diho ho-
YL, 1) TEPLPPAYUEVT] PPAON elvor TTPOaLPETLKY). OL TELETTEG * KO + EVAVOVTAL OGO TO SUVOTOV TTLO GPLYTA: OL
opevOEoELS XpNoLuoTToLovvTaL Yia ouadomoinon. O oupolooelpég eival TEPLPPAYUEVES QIO ELOAYWYLKAL.
OL Kevol YopaKTHpeS elval HOVo oNUAVTLIKOL Yo var e wpioovv ta fokens. O kavdveg ouvviBmg mepLéyovion
0€ (o LovY) YPOouuT|: oL KovOveg (e TOAEG EVOMLOKTIKEG ptopel vo Lop@omot0ovv evallakTikd pe Kibe
YPOUUT LETA TNV TPOTH VoL SEKLVAEL e oL KABeTn ypouun.

Ztoug AeEhoyLKoUg 0pLopovs (OTTmg 0To TaPATavm TapddeLyua), S0 TEPLOCOTEPOL KAVOVES Y PN OLULOTTOLOV-
vTaL: AUO YOpaKTHPES XWPLOUEVOL OTTO TPELG TEAEIEG ONUALVEL ETIAOYY OTTOLOV HOVOD YOPOKTNPO OTO CUYKE-
KpLuévo (khewotd) evpog ASCI yopoxtpwv. H ppdon avdueco o yoviakég mapevhéoels (<. . . >) dlvel puia
ATUTTY TTEPLYPOPT] TOU OPLOUEVOD OUUPBOAOV: TT.Y., avTd Oa WITopovoe var ¥pNoLuoTotOEeL yia var TEPLYPaPEL
™V 1O€a Tov “yapakthpa ehéyyov” (control character) av xpeLooTei.

Av KoL 1 onueloYpapia Tov ypnoluortoLteital givar oxeddv 1 1da, vapyel ueydin diagopd avdueco ot
ONUOCLa TV AEEIMOYIKMV KOl TV OUVTOKTIKOV 0pLopdv: £vag AeEhoyikdg oploidg Aettovpyel ue Toug pe-
LOVMUEVOUG XOPAKTIPES THG TINYG ELGOSOU, EVA £VAG 0PLOUOG CUVTOENG AELTOVPYEL 0TIV pOT| TV foken TOU
dnuovpyeitor amd ™ AeEhoyikn avalvon. ‘Oleg oL xpnoeilg tov BNF 010 emtduevo Ke@ahoto («AeEthoyikn
Avdlvon») eivar LeEhoyikol oplopois oL xpNioelg ota akorlovBo Kepahato eivol CUVTOKTIKOL 0OPLOUOL.

2 Kegpdhaio 1. Eloaywyn

https://pythonnet.github.io/
https://pythonnet.github.io/
http://ironpython.net/
http://pypy.org/

KEDAAAIO 2

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer.
This chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding
declaration and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError
is raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any
of the standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the
Windows form using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the
ASCII CR (return) character. All of these forms can be used equally, regardless of platform. The end of input also
serves as an implicit terminator for the final physical line.

‘When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

https://www.python.org/dev/peps/pep-3120

The Python Language Reference, Anpocigsuon 3.9.23

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical
line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are
ignored by the syntax.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding [=:]\s* ([\
w.] +), this comment is processed as an encoding declaration; the first group of this expression names the encoding
of the source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first
line must also be a comment-only line. The recommended forms of an encoding expression are

’# —*— coding: <encoding-name> —*-—

which is recognized also by GNU Emacs, and

’# vim:fileencoding=<encoding—name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. In addition, if the first bytes of the file are the
UTF-8 byte-order mark (b'\xef\xbb\xbf'), the declared file encoding is UTF-8 (this is supported, among
others, by Microsoft’s notepad).

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding
is used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Impilicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without
using backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

6 Kegpalato 2. Lexical analysis

The Python Language Reference, Anpocigsuon 3.9.23

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e.
one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of
the line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of
spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over
multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use
a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms
may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring
on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT
token is generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that
is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r = []
for i in range(len(l)):
s = 1[:1] + 1[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)
return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1] + 1[4i+1:]
p = perm(1l[:1] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

2.1. Line structure 7

The Python Language Reference, Anpocigsuon 3.9.23

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be
used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes
as defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the
uppercase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits O through
9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier = xid _start xid_continue*

id_start n= <all characters in general categories Lu, L1, Lt, Lm, Lo,
id_continue n= <all characters in id_start, plus characters in the categories Mn,
xid_start = <all characters in id_start whose NFKC normalization is in "id_start

xid_continue

The Unicode category codes mentioned above stand for:
o Lu - uppercase letters
» LI - lowercase letters
o Lz - titlecase letters
o Lm - modifier letters
o Lo - other letters
o NI - letter numbers
e Mn - nonspacing marks
e Mc - spacing combining marks
e Nd - decimal numbers

o Pc - connector punctuations

8 Kegpalato 2. Lexical analysis

<all characters in id_continue whose NFKC normalization is in

https://www.python.org/dev/peps/pep-3131
https://www.python.org/dev/peps/pep-3131

The Python Language Reference, Anpocigsuon 3.9.23

o Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
o Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 4.1 can be found at https://www.
unicode.org/Public/13.0.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns
of leading and trailing underscore characters:

_* Notimported by from module import *.The special identifier _ is used in the interactive interpreter to
store the result of the last evaluation; it is stored in the built ins module. When not in interactive mode, _
has no special meaning and is not defined. See section The import statement.

Xnueimon: The name _ is often used in conjunction with internationalization; refer to the documentation for
the gettext module for more information on this convention.

*___ System-defined names, informally known as «dunder» names. These names are defined by the interpreter
and its implementation (including the standard library). Current system names are discussed in the Special
method names section and elsewhere. More will likely be defined in future versions of Python. Any use of
___*___names, in any context, that does not follow explicitly documented use, is subject to breakage without
warning.

* (Class-private names. Names in this category, when used within the context of a class definition, are re-written
to use a mangled form to help avoid name clashes between «private» attributes of base and derived classes.
See section Identifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4. Literals 9

https://www.unicode.org/Public/13.0.0/ucd/PropList.txt
https://www.unicode.org/Public/13.0.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/13.0.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Anpocigsuon 3.9.23

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral n= [stringprefix] (shortstring | longstring)
stringprefix = "r" | "y" | "R" | "U" | "f" | "E"

| "fr" | "Fr" | "fR" | "FR" | "rf" | "rgF" | "Rf" | "RE"
shortstring = "'" shortstringitem* "'"™ | '"' shortstringitem* '"'
longstring = "r''" Jongstringitem* "'''" | '"""' Jongstringitem* '"""!'
shortstringitem := shortstringchar | stringescapeseq
longstringitem = longstringchar | stringescapeseq
shortstringchar := <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
stringescapeseq = "\" <any source character>
bytesliteral = bytesprefix(shortbytes | longbytes)
bytesprefix = "b" | "B" | "br" | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb"
shortbytes = "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes = "'''" Jongbytesitem* "'''"™ | '"""' Jongbytesitem* '"""'
shortbytesitem := shortbyteschar | bytesescapeseq
longbytesitem = longbyteschar | bytesescapeseqg
shortbyteschar = <any ASCII character except "\" or newline or the quote>
longbyteschar = <any ASCII character except "\">
bytesescapeseqg = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefixor bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can
also be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted
strings). The backslash (\) character is used to give special meaning to otherwise ordinary characters like n, which
means “newline” when escaped (\n). It can also be used to escape characters that otherwise have a special meaning,
such as newline, backslash itself, or the quote character. See escape sequences below for examples.

Bytes literals are always prefixed with 'b' or 'B"'; they produce an instance of the bytes type instead of the str
type. They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with
escapes.

Both string and bytes literals may optionally be prefixed with a letter ' r' or 'R"'; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, ' \U' and ' \u' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur' syntax
is not supported.

Néo omnv €xdoom 3.3: The 'rb' prefix of raw bytes literals has been added as a synonym of 'br'.

Néo omv éxdoom 3.3: Support for the unicode legacy literal (u'value') was reintroduced to simplify the
maintenance of dual Python 2.x and 3.x codebases. See PEP 414 for more information.

A string literal with ' £' or 'F' in its prefix is a formatted string literal; see Formatted string literals. The ' £' may
be combined with 'r ', but not with 'b"' or 'u', therefore raw formatted strings are possible, but formatted bytes
literals are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
quotes in a row terminate the literal. (A «quote» is the character used to open the literal, i.e. either ' or ".)

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to
rules similar to those used by Standard C. The recognized escape sequences are:

10 Kegahaio 2. Lexical analysis

n RB n

https://www.python.org/dev/peps/pep-0414

The Python Language Reference, Anpocigsuon 3.9.23

Escape Sequence | Meaning Notes
\newline Backslash and newline ignored

AR Backslash (\)

\! Single quote (')

\" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo Character with octal value ooo | (1,3)
\xhh Character with hex value hh 2,3)

Escape sequences only recognized in string literals are:

Escape Sequence | Meaning Notes
\N{name} Character named name in the Unicode database | (4)
\UXXXX Character with 16-bit hex value xxxx (@)
\UXXXXXKXXX Character with 32-bit hex value xxxxxxxx 6)

Notes:
(1) Asin Standard C, up to three octal digits are accepted.
(2) Unlike in Standard C, exactly two hex digits are required.

(3) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(4) AMaEe oty éxdoom 3.3: Support for name aliases' has been added.
(5) Exactly four hex digits are required.
(6) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in
the result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more
easily recognized as broken.) It is also important to note that the escape sequences only recognized in string literals
fall into the category of unrecognized escapes for bytes literals.

AMoEe oty £kdoon 3.6: Unrecognized escape sequences produce a DeprecationWarning. Ina
future Python version they will be a SyntaxWarning and eventually a SyntaxError.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; r" \ " is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a
single backslash (since the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the literal, not as a line continuation.

! https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

2.4. Literals 11

https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

The Python Language Reference, Anpocigsuon 3.9.23

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings
conveniently across long lines, or even to add comments to parts of strings, for example:

re.compile (" [A-Za—-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The “+” operator must
be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings), and formatted string literals may be
concatenated with plain string literals.

2.4.3 Formatted string literals

Néo omv éxdoon 3.6.

A formatted string literal or f-string is a string literal that is prefixed with ' £' or 'F'. These strings may contain
replacement fields, which are expressions delimited by curly braces { }. While other string literals always have a
constant value, formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string).
After decoding, the grammar for the contents of the string is:

f_string = (literal_char | "{{" | "}}" | replacement_field)™*
replacement_field := "{" f_expression ["="] ["!" conversion] [":" format_spec]
f_expression = (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or expr)* [","]

| yield expression
conversion n= "s" | "r" | "a"
format_spec = (literal_char | NULL | replacement_field)™*
literal_char = <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces '{{"' or '} }'
are replaced with the corresponding single curly brace. A single opening curly bracket ' { ' marks a replacement field,
which starts with a Python expression. To display both the expression text and its value after evaluation, (useful in
debugging), an equal sign '=" may be added after the expression. A conversion field, introduced by an exclamation
point ' ! ' may follow. A format specifier may also be appended, introduced by a colon ' : '. A replacement field
ends with a closing curly bracket '} '.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with
a few exceptions. An empty expression is not allowed, and both Iambda and assignment expressions : = must be
surrounded by explicit parentheses. Replacement expressions can contain line breaks (e.g. in triple-quoted strings),
but they cannot contain comments. Each expression is evaluated in the context where the formatted string literal
appears, in order from left to right.

AMoEe otnv ékdoom 3.7: Prior to Python 3.7, an await expression and comprehensions containing an async
for clause were illegal in the expressions in formatted string literals due to a problem with the implementation.

When the equal sign '=" is provided, the output will have the expression text, the '=" and the evaluated value.
Spaces after the opening brace '{ ', within the expression and after the '=" are all retained in the output. By
default, the '=" causes the repr () of the expression to be provided, unless there is a format specified. When a
format is specified it defaults to the st r () of the expression unless a conversion ' ! r' is declared.

Néo oty éxdoon 3.8: The equal sign "=".

12 Kegahaio 2. Lexical analysis

"}"

The Python Language Reference, Anpocigsuon 3.9.23

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion ' ! s
calls str () ontheresult, ' ! r' calls repr(),and '!a"' callsascii ().

The result is then formatted using the format () protocol. The format specifier is passed tothe format__ ()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own
conversion fields and format specifiers, but may not include more deeply-nested replacement fields. The format
specifier mini-language is the same as that used by the str. format () method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

>>> name = "Fred"

>>> f"He said his name is {name L

"He said his name is 'Fred'."

>>> f"He said his name is {repr (name) }." # repr() is equivalent to !r
"He said his name is 'Fred'."

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f'"result: {value:{width}. {precision}}" # nested fields
'result: 12.35"

>>> today = datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, $Y}" # using date format specifier

'January 27, 2017'
>>> f"{today=:%B %d, %Y }" # using date format specifier and debugging
'today=January 27, 2017'

>>> number = 1024

>>> f"{number: :#0x}" # using integer format specifier
'0x400"'

>>> foo = "bar"

>>> "/ foo " # preserves whitespace
" foo = 'bar'"

>>> line = "The mill's closed"

>>> f"/line "

'line = "The mill\'s closed"'

>>> f"/line 20"

"line = The mill's closed "

>>> f"{line 20"

'line = "The mill\'s closed" '

A consequence of sharing the same syntax as regular string literals is that characters in the replacement fields must
not conflict with the quoting used in the outer formatted string literal:

f'abe fal"
f'"abc {al'

"]} def" # error: outer string literal ended prematurely

X
x']} def" # workaround: use different quoting

Backslashes are not allowed in format expressions and will raise an error:

f"newline: ord('\n") /" # raises SyntaxError

To include a value in which a backslash escape is required, create a temporary variable.

>>> newline = ord('\n')
>>> f'"newline: {newline/}"
'newline: 10'

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

2.4. Literals 13

The Python Language Reference, Anpocigsuon 3.9.23

>>> def fool():
f"Not a docstring"

>>> foo. doc is None
True

See also PEP 498 for the proposal that added formatted string literals, and str. format (), which uses a related
format string mechanism.

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no
complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary
operator “~” and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer u= decinteger | bininteger | octinteger | hexinteger
decinteger = nonzerodigit (["_"]1 digit)* | "O0"+ (["_"] "Qm")~*
bininteger = "o" ("b" | "B") (["_"] bindigit)+

octinteger = "o" ("o"™ | "OM") (["_"] octdigit)+

hexinteger = "o ("x"™ | "X"™) (["_"] hexdigit)+

nonzerodigit = mrLLLmon

digit = "o"..."o"

bindigit u= "om | min

octdigit = "om...mm

hexdigit = digit | "a"..."f" | "A"_..."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for
enhanced readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

Some examples of integer literals:

7 2147483647 00177 0b100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 Ob_1110_0101

AMoEe oty £xdoon 3.6: Underscores are now allowed for grouping purposes in literals.

14 Kegahaio 2. Lexical analysis

https://www.python.org/dev/peps/pep-0498

The Python Language Reference, Anpocigsuon 3.9.23

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber = pointfloat | exponentfloat
pointfloat u= [digitpart] fraction | digitpart "."
exponentfloat = (digitpart | pointfloat) exponent
digitpart = digit (["_"] digit)™*

fraction = "." digitpart

exponent RES ("e" | "E") ["+" | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077e010 is legal, and
denotes the same number as 77e1 0. The allowed range of floating point literals is implementation-dependent. As in
integer literals, underscores are supported for digit grouping.

Some examples of floating point literals:

3.14 10. .001 1lel00 3.14e-10 0e0 3.14_15_93

AMoEe oty £xdoon 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber = (floatnumber | digitpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair
of floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero
real part, add a floating point number to it, e.g., (3+4 7). Some examples of imaginary literals:

’3.14j 10.3 103 .00173 1e10073 3.14e-1073 3.14_15_933

2.5 Operators

The following tokens are operators:

+ - * ok / // % @
<< >> & [~ - .=

< > <= >= == 1=

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { }

14 7 = —->

+= -= *= /= //= &= @=

&= | = A= >>= << * k=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

2.5. Operators 15

The Python Language Reference, Anpocigsuon 3.9.23

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

E " # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

’ $?

16 Kegahaio 2. Lexical analysis

KEGANAIO 3

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a «stored program computer», code is
also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may
think of it as the object’s address in memory. The “is” operator compares the identity of two objects; the 1d ()
function returns an integer representing its identity.

CPython implementation detail: For CPython, id (x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., «does it have a length?») and also defines
the possible values for objects of that type. The t ype () function returns an object’s type (which is an object itself).
Like its identity, an object’s fype is also unchangeable.'

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains
areference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same
as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation
quality how garbage collection is implemented, as long as no objects are collected that are still reachable.

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed
detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not
guaranteed to collect garbage containing circular references. See the documentation of the gc module for information
on controlling the collection of cyclic garbage. Other implementations act differently and CPython may change. Do
not depend on immediate finalization of objects when they become unreachable (so you should always close files
explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception with a “t ry...except” statement may keep objects alive.

11t is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can
lead to some very strange behaviour if it is handled incorrectly.

17

The Python Language Reference, Anpocigsuon 3.9.23

Some objects contain references to «external» resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, usually a close () method. Programs are
strongly recommended to explicitly close such objects. The “c ry...finally” statement and the “with” statement
provide convenient ways to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples,
lists and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability
of a container, only the identities of the immediately contained objects are implied. So, if an immutable container
(like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with

the same type and value, while for mutable objects this is not allowed. E.g., aftera = 1; b = 1, a and b may
or may not refer to the same object with the value one, depending on the implementation, but afterc = []; d =
[1, c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note thatc = d = []

assigns the same object to both c and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be
provided via the standard library instead.

Some of the type descriptions below contain a paragraph listing “special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

None This type has a single value. There is a single object with this value. This object is accessed through the built-in
name None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions
that don’t explicitly return anything. Its truth value is false.

NotImplemented This type has a single value. There is a single object with this value. This object is accessed
through the built-in name Not Implemented. Numeric methods and rich comparison methods should return
this value if they do not implement the operation for the operands provided. (The interpreter will then try the
reflected operation, or some other fallback, depending on the operator.) It should not be evaluated in a boolean
context.

See implementing-the-arithmetic-operations for more details.

AMoEe otv ékdoor 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it
currently evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future
version of Python.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
literal . . . or the built-in name E11ipsis. Its truth value is true.

numbers .Number These are created by numeric literals and returned as results by arithmetic operators and
arithmetic built-in functions. Numeric objects are immutable; once created their value never changes. Python
numbers are of course strongly related to mathematical numbers, but subject to the limitations of numerical
representation in computers.

The string representations of the numeric classes, computed by __ repr_ () and __str__ (), have the
following properties:

o They are valid numeric literals which, when passed to their class constructor, produce an object having
the value of the original numeric.

« The representation is in base 10, when possible.

« Leading zeros, possibly excepting a single zero before a decimal point, are not shown.

18 Kegahaio 3. Data model

The Python Language Reference, Anpocigsuon 3.9.23

o Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.
« A sign is shown only when the number is negative.
Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral These represent elements from the mathematical set of integers (positive and
negative).

There are two types of integers:

Integers (int) These represent numbers in an unlimited range, subject to available (virtual) memory
only. For the purpose of shift and mask operations, a binary representation is assumed, and negative
numbers are represented in a variant of 2’s complement which gives the illusion of an infinite string
of sign bits extending to the left.

Booleans (bool) These represent the truth values False and True. The two objects representing the
values False and True are the only Boolean objects. The Boolean type is a subtype of the integer
type, and Boolean values behave like the values O and 1, respectively, in almost all contexts, the
exception being that when converted to a string, the strings "False" or "True" are returned,
respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and
mask operations involving negative integers.

numbers .Real (float) These represent machine-level double precision floating point numbers. You are
at the mercy of the underlying machine architecture (and C or Java implementation) for the accepted
range and handling of overflow. Python does not support single-precision floating point numbers; the
savings in processor and memory usage that are usually the reason for using these are dwarfed by the
overhead of using objects in Python, so there is no reason to complicate the language with two kinds of
floating point numbers.

numbers .Complex (complex) These represent complex numbers as a pair of machine-level double
precision floating point numbers. The same caveats apply as for floating point numbers. The real and
imaginary parts of a complex number z can be retrieved through the read-only attributes z . real and
z.1imag.

Sequences These represent finite ordered sets indexed by non-negative numbers. The built-in function len ()
returns the number of items of a sequence. When the length of a sequence is n, the index set contains the
numbers 0, 1, ..., n-1. Item i of sequence a is selected by a [1].

Sequences also support slicing: a [1:] selects all items with index k such that i <= k < j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it starts
at 0.

Some sequences also support «extended slicing» with a third «step» parameter: a [1: j:k] selects all items
of a with index x where x = 1 + n*k,n>=0andi<=x <.

Sequences are distinguished according to their mutability:

Immutable sequences An object of an immutable sequence type cannot change once it is created. (If the
object contains references to other objects, these other objects may be mutable and may be changed;
however, the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings A string is a sequence of values that represent Unicode code points. All the code points in
the range U+0000 - U+10FFFF can be represented in a string. Python doesn’t have a char
type; instead, every code point in the string is represented as a string object with length 1. The
built-in function ord () converts a code point from its string form to an integer in the range 0
- 10FFFF; chr () converts an integer in the range 0 — 10FFFF to the corresponding length
1 string object. str.encode () can be used to convert a str to bytes using the given text
encoding, and bytes.decode () can be used to achieve the opposite.

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by
comma-separated lists of expressions. A tuple of one item (a “singleton”) can be formed by affixing

3.2. The standard type hierarchy 19

The Python Language Reference, Anpocigsuon 3.9.23

a comma to an expression (an expression by itself does not create a tuple, since parentheses must be
usable for grouping of expressions). An empty tuple can be formed by an empty pair of parentheses.

Bytes A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range
0 <= x < 256. Bytes literals (like b'abc ') and the built-in bytes () constructor can be used to
create bytes objects. Also, bytes objects can be decoded to strings via the decode () method.

Mutable sequences Mutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignment and de 1 (delete) statements.

There are currently two intrinsic mutable sequence types:

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated
list of expressions in square brackets. (Note that there are no special cases needed to form lists of
length O or 1.)

Byte Arrays A bytearray object is a mutable array. They are created by the built-in bytearray ()
constructor. Aside from being mutable (and hence unhashable), byte arrays otherwise provide the
same interface and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type, as does the
collections module.

Set types These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by
any subscript. However, they can be iterated over, and the built-in function len () returns the number of
items in a set. Common uses for sets are fast membership testing, removing duplicates from a sequence, and
computing mathematical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the
normal rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0), only one of them can
be contained in a set.

There are currently two intrinsic set types:

Sets These represent a mutable set. They are created by the built-in set () constructor and can be modified
afterwards by several methods, such as add () .

Frozen sets These represent an immutable set. They are created by the built-in frozenset () constructor.
As a frozenset is immutable and hashable, it can be used again as an element of another set, or as a
dictionary key.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k] selects
the item indexed by k from the mapping a; this can be used in expressions and as the target of assignments or
de 1 statements. The built-in function 1len () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of
values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity, the reason being that the efficient implementation of
dictionaries requires a key’s hash value to remain constant. Numeric types used for keys obey the normal
rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0) then they can be used
interchangeably to index the same dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were
added sequentially over the dictionary. Replacing an existing key does not change the order, however
removing a key and re-inserting it will add it to the end instead of keeping its old place.

Dictionaries are mutable; they can be created by the { . . . } notation (see section Dictionary displays).

The extension modules dbm . ndbm and dbm. gnu provide additional examples of mapping types, as
does the collections module.

AMoEe otnv ékdoon 3.7: Dictionaries did not preserve insertion order in versions of Python before 3.6.
In CPython 3.6, insertion order was preserved, but it was considered an implementation detail at that
time rather than a language guarantee.

Callable types These are the types to which the function call operation (see section Culls) can be applied:

20 Kegahaio 3. Data model

The Python Language Reference, Anpocigsuon 3.9.23

User-defined functions A user-defined function object is created by a function definition (see section
Function definitions). It should be called with an argument list containing the same number of items
as the function’s formal parameter list.

Special attributes:

Attribute Meaning

_ _doc___ The function’s documentation string, or None if unavailable; | Writable
not inherited by subclasses.

__name___ The function’s name. Writable

__qualname_ The function’s qualified name. Writable
Néo otnv ékdoom 3.3.

_ _module_ The name of the module the function was defined in, or Writable
None if unavailable.

__defaults__ A tuple containing default argument values for those Writable

arguments that have defaults, or None if no arguments have
a default value.

__code___ The code object representing the compiled function body. Writable
__globals___ A reference to the dictionary that holds the function’s global | Read-only
variables — the global namespace of the module in which
the function was defined.

_ dict__ The namespace supporting arbitrary function attributes. Writable
__closure___ None or a tuple of cells that contain bindings for the Read-only
function’s free variables. See below for information on the
cell_contents attribute.

__annotations__ | A dict containing annotations of parameters. The keys of the | Writable
dict are the parameter names, and ' return' for the return
annotation, if provided.

__kwdefaults_ A dict containing defaults for keyword-only parameters. Writable

Most of the attributes labelled «Writable» check the type of the assigned value.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to
attach metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note that
the current implementation only supports function attributes on user-defined functions. Function attributes
on built-in functions may be supported in the future.

A cell object has the attribute ce11_contents. This can be used to get the value of the cell, as well
as set the value.

Additional information about a function’s definition can be retrieved from its code object; see the
description of internal types below. The ce 11 type can be accessed in the t ypes module.

Instance methods An instance method object combines a class, a class instance and any callable object
(normally a user-defined function).

Special read-only attributes: __self__is the class instance object, ___func___is the function object;
__doc___is the method’s documentation (same as ___func__._ doc__);_ name___is the method
name (same as ___func__._ name__); _ module__ is the name of the module the method was
defined in, or None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying
function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance
of that class), if that attribute is a user-defined function object or a class method object.

When an instance method object is created by retrieving a user-defined function object from a class via
one of its instances, its __self___ attribute is the instance, and the method object is said to be bound.
The new method’s ___func___ attribute is the original function object.

3.2. The standard type hierarchy 21

The Python Language Reference, Anpocigsuon 3.9.23

When an instance method object is created by retrieving a class method object from a class or instance,
its___self attribute is the class itself, and its ___func___ attribute is the function object underlying
the class method.

When an instance method object is called, the underlying function (__func__) is called, inserting the
class instance (__self__) infront of the argument list. For instance, when C is a class which contains a
definition for a function £ (), and x is an instance of C, calling x . £ (1) is equivalent to calling C. £ (x,
1).

When an instance method object is derived from a class method object, the «class instance» stored in
__self_ _ will actually be the class itself, so that calling either x. £ (1) or C. £ (1) is equivalent to
calling £ (C, 1) where £ is the underlying function.

Note that the transformation from function object to instance method object happens each time the
attribute is retrieved from the instance. In some cases, a fruitful optimization is to assign the attribute
to a local variable and call that local variable. Also notice that this transformation only happens
for user-defined functions; other callable objects (and all non-callable objects) are retrieved without
transformation. It is also important to note that user-defined functions which are attributes of a class
instance are not converted to bound methods; this only happens when the function is an attribute of the
class.

Generator functions A function or method which uses the y i e 1 d statement (see section T/e yield statement)
is called a generator function. Such a function, when called, always returns an iterator object which can be
used to execute the body of the function: calling the iterator’s iterator._ next__ () method will
cause the function to execute until it provides a value using the yield statement. When the function
executes a return statement or falls off the end, a StopIteration exception is raised and the
iterator will have reached the end of the set of values to be returned.

Coroutine functions A function or method which is defined using async def is called a coroutine function.
Such a function, when called, returns a coroutine object. It may contain awa it expressions, as well as
async withand async for statements. See also the Coroutine Objects section.

Asynchronous generator functions A function or method which is defined using async def and which
uses the yield statement is called a asynchronous generator function. Such a function, when called,
returns an asynchronous iterator object which can be used in an async for statement to execute the
body of the function.

Calling the asynchronous iterator’s aiterator.___anext__ method will return an awaitable which
when awaited will execute until it provides a value using the yield expression. When the function
executes an empty return statement or falls off the end, a StopAsyncIteration exception is
raised and the asynchronous iterator will have reached the end of the set of values to be yielded.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in functions
are len () and math.sin () (math is a standard built-in module). The number and type of the
arguments are determined by the C function. Special read-only attributes: __doc___ is the function’s
documentation string, or None if unavailable; __name___is the function’s name; ___self__ is set to
None (but see the next item); __module_ is the name of the module the function was defined in or
None if unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an object passed
to the C function as an implicit extra argument. An example of a built-in methodis alist .append (),
assuming alist is a list object. In this case, the special read-only attribute __self _ is set to the object
denoted by alist.

Classes Classes are callable. These objects normally act as factories for new instances of themselves, but
variations are possible for class types that override ___new___ (). The arguments of the call are passed
to___new__ () and, in the typical case,to ___init__ () to initialize the new instance.

Class Instances Instances of arbitrary classes can be made callable by defininga ___call__ () method in
their class.

Modules Modules are a basic organizational unit of Python code, and are created by the import system as invoked
either by the import statement, or by calling functions such as importlib.import_module () and
built-in ___import__ (). A module object has a namespace implemented by a dictionary object (this is the

22 Kegpalaio 3. Data model

The Python Language Reference, Anpocigsuon 3.9.23

dictionary referenced by the __globals__ attribute of functions defined in the module). Attribute references
are translated to lookups in this dictionary, e.g., m. x is equivalent tom.__dict__ ["x"]. A module object
does not contain the code object used to initialize the module (since it isn’'t needed once the initialization is

done).
Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.
_ dict__ ["x"] = 1.

Predefined (writable) attributes: __name___is the module’s name; ___doc___is the module’s documentation
string, or None if unavailable; __annotations__ (optional)is a dictionary containing variable annotations
collected during module body execution; ___file__is the pathname of the file from which the module was
loaded, if it was loaded from a file. The __fiJle__ attribute may be missing for certain types of modules,
such as C modules that are statically linked into the interpreter; for extension modules loaded dynamically from
a shared library, it is the pathname of the shared library file.

Special read-only attribute: __dict__ is the module’s namespace as a dictionary object.

CPython implementation detail: Because of the way CPython clears module dictionaries, the module
dictionary will be cleared when the module falls out of scope even if the dictionary still has live references. To
avoid this, copy the dictionary or keep the module around while using its dictionary directly.

Custom classes Custom class types are typically created by class definitions (see section Class definitions). A class
has a namespace implemented by a dictionary object. Class attribute references are translated to lookups in
this dictionary, e.g., C.x is translated to C. __dict__ ["x"] (although there are a number of hooks which
allow for other means of locating attributes). When the attribute name is not found there, the attribute search
continues in the base classes. This search of the base classes uses the C3 method resolution order which behaves
correctly even in the presence of “diamond” inheritance structures where there are multiple inheritance paths
leading back to a common ancestor. Additional details on the C3 MRO used by Python can be found in the
documentation accompanying the 2.3 release at https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into

an instance method object whose __self__ attribute is C. When it would yield a static method object,

it is transformed into the object wrapped by the static method object. See section Implementing Descriptors

for another way in which attributes retrieved from a class may differ from those actually contained in its
dict__ .

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).

Special attributes: __name___is the class name; __module__ is the module name in which the class was
defined; __ dict__ is the dictionary containing the class’s namespace; _ _bases__ is a tuple containing
the base classes, in the order of their occurrence in the base class list; doc___is the class’s documentation
string, or None if undefined; __annotations__ (optional) is a dictionary containing variable annotations
collected during class body execution.

Class instances A class instance is created by calling a class object (see above). A class instance has a namespace
implemented as a dictionary which is the first place in which attribute references are searched. When an
attribute is not found there, and the instance’s class has an attribute by that name, the search continues with
the class attributes. If a class attribute is found that is a user-defined function object, it is transformed into an
instance method object whose ___self attribute is the instance. Static method and class method objects
are also transformed; see above under «Classes». See section Implementing Descriptors for another way in
which attributes of a class retrieved via its instances may differ from the objects actually stored in the class’s
__dict__. If no class attribute is found, and the object’s class has a __getattr__ () method, that is
called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has
a__setattr__ ()or__delattr__ () method, this is called instead of updating the instance dictionary
directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special
names. See section Special method names.

Special attributes: ___dict__ is the attribute dictionary; __class__ is the instance’s class.

3.2. The standard type hierarchy 23

https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Anpocigsuon 3.9.23

I/0 objects (also known as file objects) A file object represents an open file. Various shortcuts are available

to create file objects: the open () built-in function, and also os.popen (), os.fdopen (), and the
makefile () method of socket objects (and perhaps by other functions or methods provided by extension
modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to
the interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow
the interface defined by the io.Text IOBase abstract class.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may change

with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represent byte-compiled executable Python code, or bytecode. The difference
between a code object and a function object is that the function object contains an explicit reference
to the function’s globals (the module in which it was defined), while a code object contains no context;
also the default argument values are stored in the function object, not in the code object (because they
represent values calculated at run-time). Unlike function objects, code objects are immutable and contain
no references (directly or indirectly) to mutable objects.

Special read-only attributes: co_name gives the function name; co_argcount is the total number
of positional arguments (including positional-only arguments and arguments with default values);
co_posonlyargcount is the number of positional-only arguments (including arguments with default
values); co_kwonlyargcount is the number of keyword-only arguments (including arguments
with default values); co_nlocals is the number of local variables used by the function (including
arguments); co_varnames is a tuple containing the names of the local variables (starting with the
argument names); co_cellvars is a tuple containing the names of local variables that are referenced
by nested functions; co_freevars is a tuple containing the names of free variables; co_code is a
string representing the sequence of bytecode instructions; co_consts is a tuple containing the literals
used by the bytecode; co_names is a tuple containing the names used by the bytecode; co_filename
is the filename from which the code was compiled; co_firstlineno is the first line number of the
function; co_1notab is a string encoding the mapping from bytecode offsets to line numbers (for details
see the source code of the interpreter); co_stacksize is the required stack size; co_flags is an
integer encoding a number of flags for the interpreter.

The following flag bits are defined for co_flags: bit 0x04 is set if the function uses the *arguments
syntax to accept an arbitrary number of positional arguments; bit 0x08 is set if the function uses
the **keywords syntax to accept arbitrary keyword arguments; bit 0x20 is set if the function is a
generator.

Future feature declarations (from __future_ import division)alsousebitsin co_flags
to indicate whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if
the function was compiled with future division enabled; bits 0x10 and 0x1000 were used in earlier
versions of Python.

Other bits in co__flags are reserved for internal use.

If a code object represents a function, the first item in co_consts is the documentation string of the
function, or None if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see below),
and are also passed to registered trace functions.

Special read-only attributes: £ _back is to the previous stack frame (towards the caller), or None if
this is the bottom stack frame; £__code is the code object being executed in this frame; £_locals is
the dictionary used to look up local variables; £_globals is used for global variables; f_builtins
is used for built-in (intrinsic) names; £_lasti gives the precise instruction (this is an index into the
bytecode string of the code object).

Accessing £_code raises an auditing event object._ _getattr__ with arguments obj and
"f code".

Special writable attributes: £_trace, if not None, is a function called for various events during code
execution (this is used by the debugger). Normally an event is triggered for each new source line - this
can be disabled by setting £_trace_linestoFalse.

24

Kegahaio 3. Data model

The Python Language Reference, Anpocigsuon 3.9.23

Implementations may allow per-opcode events to be requested by setting £ _trace_opcodes to
True. Note that this may lead to undefined interpreter behaviour if exceptions raised by the trace function
escape to the function being traced.

f_lineno is the current line number of the frame — writing to this from within a trace function jumps
to the given line (only for the bottom-most frame). A debugger can implement a Jump command (aka
Set Next Statement) by writing to f_lineno.

Frame objects support one method:

frame.clear ()
This method clears all references to local variables held by the frame. Also, if the frame belonged
to a generator, the generator is finalized. This helps break reference cycles involving frame objects
(for example when catching an exception and storing its traceback for later use).

RuntimeError is raised if the frame is currently executing.
Néo otnv ¢kdoon 3.4.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is
implicitly created when an exception occurs, and may also be explicitly created by calling types.
TracebackType.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack,
at each unwound level a traceback object is inserted in front of the current traceback. When an exception
handler is entered, the stack trace is made available to the program. (See section The try statement.) It is
accessible as the third item of the tuple returned by sys.exc_info (),andasthe __traceback___
attribute of the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the
standard error stream; if the interpreter is interactive, it is also made available to the user as sys.
last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next
attributes should be linked to form a full stack trace.

Special read-only attributes: tb_ f rame points to the execution frame of the current level; tbb_lineno
gives the line number where the exception occurred; tb_lasti indicates the precise instruction. The
line number and last instruction in the traceback may differ from the line number of its frame object if
the exception occurred in a t ry statement with no matching except clause or with a finally clause.

Accessing tb_frame raises an auditing event object.__getattr__ with arguments ob7j and
"tb_frame".

Special writable attribute: tlb_next is the next level in the stack trace (towards the frame where the
exception occurred), or None if there is no next level.

AMaEe oty ékdoor 3.7: Traceback objects can now be explicitly instantiated from Python code, and
the tb_next attribute of existing instances can be updated.

Slice objects Slice objects are used to represent slices for __getitem__ () methods. They are also created
by the built-in s1ice () function.

Special read-only attributes: start is the lower bound; stop is the upper bound; step is the step
value; each is None if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices (self, length)
This method takes a single integer argument length and computes information about the slice that
the slice object would describe if applied to a sequence of length items. It returns a tuple of three
integers; respectively these are the start and sfop indices and the step or stride length of the slice.
Missing or out-of-bounds indices are handled in a manner consistent with regular slices.

Static method objects Static method objects provide a way of defeating the transformation of function objects
to method objects described above. A static method object is a wrapper around any other object, usually a
user-defined method object. When a static method object is retrieved from a class or a class instance, the

3.2. The standard type hierarchy 25

The Python Language Reference, Anpocigsuon 3.9.23

object actually returned is the wrapped object, which is not subject to any further transformation. Static
method objects are not themselves callable, although the objects they wrap usually are. Static method
objects are created by the built-in staticmethod () constructor.

Class method objects A class method object, like a static method object, is a wrapper around another object
that alters the way in which that object is retrieved from classes and class instances. The behaviour of class
method objects upon such retrieval is described above, under «User-defined methods». Class method
objects are created by the built-in classmethod () constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or
subscripting and slicing) by defining methods with special names. This is Python’s approach to operator overloading,
allowing classes to define their own behavior with respect to language operators. For instance, if a class defines a
methodnamed ___getitem _ (), and x is an instance of this class, then x [1] is roughly equivalent to t ype (x) .
__getitem__ (x, 1i).Exceptwhere mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined (typically AttributeError or TypeError).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class
sets___iter__ () to None, the class is not iterable, so calling iter () on its instances will raise a TypeError
(without falling back to __getitem ()).

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of this is the NodeList
interface in the W3C’s Document Object Model.)

3.3.1 Basic customization

object.__new__ (cls[,])
Called to create a new instance of class cls. __new__ () is a static method (special-cased so you need not
declare it as such) that takes the class of which an instance was requested as its first argument. The remaining
arguments are those passed to the object constructor expression (the call to the class). The return value of
__new___ () should be the new object instance (usually an instance of cIs).

Typical implementations create a new instance of the class by invoking the superclasss __new__ () method
using super () .__new__(cls[, ...]) with appropriate arguments and then modifying the newly-
created instance as necessary before returning it.

If _ _new__ () isinvoked during object construction and it returns an instance of cls, then the new instance’s
__init__ () method will be invoked like __init__ (self[, ...]),where self is the new instance
and the remaining arguments are the same as were passed to the object constructor.

If new () does not return an instance of cls, then the new instance’s _ init () method will not be
invoked.

__new___ () is intended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init___ (self[,])
Called after the instance has been created (by ___new__ ()), but before it is returned to the caller. The
arguments are those passed to the class constructor expression. If a base classhasan ___init__ () method,
the derived class’s ___init__ () method, if any, must explicitly call it to ensure proper initialization of the
base class part of the instance; for example: super () .__init__ ([args...]).

Because __new__ () and __init__ () work together in constructing objects (__new__ () to create it,
and ___init__ () to customize it), no non-None value may be returned by ___init__ (); doing so will
cause a TypeError to be raised at runtime.

2The __hash__ (), _iter (), __reversed _(),and __contains__ () methods have special handling for this; others will
still raise a TypeError, but may do so by relying on the behavior that None is not callable.

26 Kegahaio 3. Data model

The Python Language Reference, Anpocigsuon 3.9.23

object._ _del_ (self)
Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If
abaseclasshasa___del__ () method, the derived class’s ___del__ () method, if any, must explicitly call
it to ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) for the __del__ () method to postpone destruction of the instance
by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether
__del__ () is called a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that ___del__ () methods are called for objects that still exist when the interpreter exits.

Inueiwon: del x doesn’t directly call x.___del__ () — the former decrements the reference count for
x by one, and the latter is only called when x’s reference count reaches zero.

CPython implementation detail: It is possible for a reference cycle to prevent the reference count of an object
from going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector. A
common cause of reference cycles is when an exception has been caught in a local variable. The frame’s locals
then reference the exception, which references its own traceback, which references the locals of all frames
caught in the traceback.

Agite emiong:

Documentation for the gc module.

Ipozdomoinon: Due to the precarious circumstances under which ___del__ () methods are invoked,
exceptions that occur during their execution are ignored, and a warning is printed to sy s . stderr instead.
In particular:

e _del_ () can be invoked when arbitrary code is being executed, including from any arbitrary

thread. If __del__ () needs to take a lock or invoke any other blocking resource, it may deadlock
as the resource may already be taken by the code that gets interrupted to execute ___del ().

e __del__ () can be executed during interpreter shutdown. As a consequence, the global variables
it needs to access (including other modules) may already have been deleted or set to None. Python
guarantees that globals whose name begins with a single underscore are deleted from their module
before other globals are deleted; if no other references to such globals exist, this may help in assuring
that imported modules are still available at the time when the __del__ () method is called.

object._ repr_ _ (self)
Called by the repr () built-in function to compute the «official» string representation of an object. If at
all possible, this should look like a valid Python expression that could be used to recreate an object with
the same value (given an appropriate environment). If this is not possible, a string of the form <. . . some
useful description...> should be returned. The return value must be a string object. If a class
defines _ _repr () butnot __str__ (),then _ repr__ () is also used when an «informal» string
representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and
unambiguous.

object._ _str__ (self)
Called by str (object) and the built-in functions format () and print () to compute the «informal»
or nicely printable string representation of an object. The return value must be a string object.

This method differs from object.___repr () inthat there is no expectation that ___str__ () returna
valid Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object. repr ().

object._ bytes__ (self)
Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

3.3. Special method names 27

The Python Language Reference, Anpocigsuon 3.9.23

object._ format__ (self, format_spec)

Called by the format () built-in function, and by extension, evaluation of formatted string literals and the
str.format () method, to produce a «formatted» string representation of an object. The format_spec
argument is a string that contains a description of the formatting options desired. The interpretation of the
format_spec argument is up to the type implementing __ format__ (), however most classes will either
delegate formatting to one of the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.
The return value must be a string object.

AMEe ot £kdoom 3.4: The __format__ method of object itself raises a TypeError if passed any
non-empty string.

AMoEe ot €xdoon 3.7: object._ format__ (x, '') is now equivalent to str (x) rather than
format (str(x), ''").

object.__1lt__ (self, other)

object.__le__ (self, other)

object.__eq (self, other)

object._ _ne__ (self, other)

object.__gt__ (self, other)

object.__ge__ (self, other)

These are the so-called «rich comparison» methods. The correspondence between operator symbols and
method names is as follows: x<y calls x.__ 1t (y), x<=y calls x.__le_ (y), x==y calls x.
eq(y),x!=ycalsx.__ne_ (y),x>ycallsx.__gt_ (y),andx>=ycallsx.__ge_ (y).

A rich comparison method may return the singleton Not Implemented if it does not implement the
operation for a given pair of arguments. By convention, False and True are returned for a successful
comparison. However, these methods can return any value, so if the comparison operator is used in a Boolean
context (e.g., in the condition of an if statement), Python will call bool () on the value to determine if the
result is true or false.

By default, object implements __eqg () by using is, returning Not Implemented in the case of
a false comparison: True if x is y else NotImplemented. For __ne__ (), by default it
delegates to __eqg__ () and inverts the result unless it is Not Implemented. There are no other implied
relationships among the comparison operators or default implementations; for example, the truth of (x<y or
x==y) does not imply x<=y. To automatically generate ordering operations from a single root operation, see
functools.total_ordering().

See the paragraph on ___hash__ () for some important notes on creating hashable objects which support
custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support
the operation but the right argument does); rather, 1t () and __gt__ () are each other’s reflection,
__le_ () and _ ge__ () are each other’s reflection, and _ eq () and _ _ne__ () are their own
reflection. If the operands are of different types, and right operand’s type is a direct or indirect subclass of
the left operand’s type, the reflected method of the right operand has priority, otherwise the left operand’s
method has priority. Virtual subclassing is not considered.

object._ _hash__ (self)

Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset,anddict. The _ _hash__ () method should return an integer. The only required property is
that objects which compare equal have the same hash value; it is advised to mix together the hash values of
the components of the object that also play a part in comparison of objects by packing them into a tuple and
hashing the tuple. Example:

def _ hash_ (self):
return hash((self.name, self.nick, self.color))

Ynueiwon: hash () truncates the value returned from an object’s custom ___hash___ () method to the
size of a Py_ssize_t. This is typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s

28

Kegahaio 3. Data model

The Python Language Reference, Anpocigsuon 3.9.23

___hash__ () must interoperate on builds of different bit sizes, be sure to check the width on all supported
builds. An easy way to do this is with python -c "import sys; print(sys.hash_info.
width)".

If a class does not define an __eqg__ () method it should not define a ___hash___ () operation either; if it
defines_ _eq () butnot___hash__ (),itsinstances will not be usable as items in hashable collections. If a
class defines mutable objects and implementsan __eqg___ () method, it should not implement ___hash__ (),
since the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s
hash value changes, it will be in the wrong hash bucket).

User-defined classeshave __eq__ () and__hash___ () methods by default; with them, all objects compare
unequal (except with themselves)and x . __hash__ () returns an appropriate value such that x == y implies
both that x is yand hash (x) == hash(y).

A class that overrides __eqg () and does not define ___hash__ () willhaveits ___hash__ () implicitly
set to None. When the _ _hash__ () method of a class is None, instances of the class will raise an
appropriate TypeError when a program attempts to retrieve their hash value, and will also be correctly
identified as unhashable when checking isinstance (obj, collections.abc.Hashable).

If a class that overrides ___eqg___ () needs to retain the implementation of ___hash___ () from a parent class,
the interpreter must be told this explicitly by setting __hash_ = <ParentClass>.__hash_ .

If a class that does not override __eqg__ () wishes to suppress hash support, it should include __hash___
= None in the class definition. A class which defines its own ___hash__ () that explicitly raises a
TypeError would be incorrectly identified as hashable by an isinstance (obj, collections.
abc.Hashable) call.

Ynueiwon: By default, the __hash__ () values of str and bytes objects are «salted» with an unpredictable
random value. Although they remain constant within an individual Python process, they are not predictable
between repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully-chosen inputs that
exploit the worst case performance of a dict insertion, O(n?) complexity. See http://www.ocert.org/advisories/
ocert-2011-003.html for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering
(and it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

AMEe oty £xdoon 3.3: Hash randomization is enabled by default.

object._ bool__ (self)
Called to implement truth value testing and the built-in operation bool () ; should return False or True.
When this method is not defined, __Ien__ () is called, if it is defined, and the object is considered true if its
result is nonzero. If a class defines neither _ _1en () nor __bool__ (), all its instances are considered
true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion
of x .name) for class instances.

object._ _getattr__ (self, name)
Called when the default attribute access fails with an Att ributeError (either getattribute_ ()
raises an AttributeError because name is not an instance attribute or an attribute in the class tree for
self;or ___get__ () of a name property raises AttributeError). This method should either return
the (computed) attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, ___getattr__ () is not called. (This is an
intentional asymmetry between ___getattr_ () and ___setattr__ ().) This is done both for efficiency

3.3. Special method names 29

http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, Anpocigsuon 3.9.23

reasons and because otherwise ___getattr__ () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance
attribute dictionary (but instead inserting them in another object). See the __getattribute__ () method
below for a way to actually get total control over attribute access.

object._ getattribute_ (self, name)
Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr__ (), the latter will not be called unless ___getattribute__ () either calls it explicitly
or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, object .
__getattribute__ (self, name).

Ynueimon: This method may still be bypassed when looking up special methods as the result of implicit
invocation via language syntax or built-in functions. See Special method lookup.

For certain sensitive attribute accesses, raises an auditing event object.__getattr__ with arguments
obj and name.

object.__setattr_ _ (self, name, value)
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store
the value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If _ _setattr__ () wants to assign to an instance attribute, it should call the base class method with the
same name, for example, object.__setattr__ (self, name, value).

For certain sensitive attribute assignments, raises an auditing event object .___setattr__ with arguments
obj, name, value.

object._ _delattr__ (self, name)
Like _setattr__ () but for attribute deletion instead of assignment. This should only be implemented if
del obj.name is meaningful for the object.

For certain sensitive attribute deletions, raises an auditing event object.__delattr__ with arguments
obj and name.

object._ dir__ (self)
Called when dir () is called on the object. A sequence must be returned. dir () converts the returned
sequence to a list and sorts it.

Customizing module attribute access

Special names __getattr___ and _ _dir__ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and
return the computed value or raise an AttributeError. If an attribute is not found on a module object through
the normal lookup, i.e. object._ getattribute_ _ (), then _ getattr__ is searched in the module
__dict__ before raising an AttributeError. If found, it is called with the attribute name and the result
is returned.

The _ dir__ function should accept no arguments, and return a sequence of strings that represents the names
accessible on module. If present, this function overrides the standard dir () search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class___ attribute of a module object to a subclass of types.ModuleType. For example:

import sys
from types import ModuleType

class VerboseModule (ModuleType) :
def _ repr_ (self):
return f'Verbose {self._ name_}'

(ouvéyela 0TV emOpEVY 0edL)

30 Kegahaio 3. Data model

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

def _ setattr_ (self, attr, wvalue):
print (f'Setting {attr}...")
super () .__setattr__ (attr, wvalue)

sys.modules|[name . class = VerboseModule

Ynueioon: Defining module __getattr__ and setting module __class__ only affect lookups made using the
attribute access syntax — directly accessing the module globals (whether by code within the module, or via a reference
to the module’s globals dictionary) is unaffected.

AMhoEe oty €xdoomn 3.5: __class__ module attribute is now writable.
Néo otny éxdoon 3.7: __getattr__and __dir__ module attributes.
Agite griong:

PEP 562 - Module __getattr__and __dir__ Describesthe __getattr__and__dir__ functions on modules.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for
one of its parents). In the examples below, «the attribute» refers to the attribute whose name is the key of the property
in the owner class” __dict_ .

object.__get_ (self, instance, owner=None)
Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute access). The optional owner argument is the owner class, while instance is the instance that the attribute
was accessed through, or None when the attribute is accessed through the owner.

This method should return the computed attribute value or raise an Att ributeError exception.

PEP 252 specifies that __get___ () is callable with one or two arguments. Python’s own built-in descriptors
support this specification; however, it is likely that some third-party tools have descriptors that require both
arguments. Python'sown___getattribute__ () implementation always passes in both arguments whether
they are required or not.

object.__set_ (self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.

Note, adding __set__ () or __delete__ () changes the kind of descriptor to a «data descriptor». See
Invoking Descriptors for more details.

object.__delete__ (self, instance)
Called to delete the attribute on an instance instance of the owner class.

object.__ set_name__ (self, owner, name)
Called at the time the owning class owner is created. The descriptor has been assigned to name.

Ynueiwon: ___set_name__ () is only called implicitly as part of the type constructor, so it will need to
be called explicitly with the appropriate parameters when a descriptor is added to a class after initial creation:

class A:
pass
descr = custom_descriptor ()
A.attr = descr
descr._ _set_name__ (A, 'attr')

3.3. Special method names 31

https://www.python.org/dev/peps/pep-0562
https://www.python.org/dev/peps/pep-0252

The Python Language Reference, Anpocigsuon 3.9.23

See Creating the class object for more details.

Néo otnv ¢kdoom 3.6.

The attribute __objclass__ isinterpreted by the inspect module as specifying the class where this object was
defined (setting this appropriately can assist in runtime introspection of dynamic class attributes). For callables, it
may indicate that an instance of the given type (or a subclass) is expected or required as the first positional argument
(for example, CPython sets this attribute for unbound methods that are implemented in C).

Invoking Descriptors

In general, a descriptor is an object attribute with «binding behavior», one whose attribute access has been overridden
by methods in the descriptor protocol: __get_ (), __set__ (),and_delete__ ().If any of those methods
are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,
a . x has a lookup chain starting witha.___dict_ ['x'],thentype(a).__dict__ ['x'], and continuing
through the base classes of type (a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a . x. How the arguments are assembled depends on a:

Direct Call The simplest and least common call is when user code directly invokes a descriptor method: x.

__get__(a).

Instance Binding If binding to an object instance, a.x is transformed into the call: type (a) .
_dict__ ['x'].__get_ _(a, type(a)).

Class Binding If binding to a class, A . x is transformed into the call: A.__dict__ ['x'].__get__ (None,
A).

Super Binding If a is an instance of super, then the binding super (B, obj) .m() searches ob7j.
__class__.__mro__ for the base class A immediately following B and then invokes the descriptor with
thecal: A._ dict_ ['m'].__get_ (obj, obj._ _class_).

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined. A
descriptor can define any combination of __get__ (), __set__ () and __delete__ (). If it does not define
___get__ (), thenaccessing the attribute will return the descriptor object itself unless there is a value in the object’s
instance dictionary. If the descriptor defines __set__ () and/or __delete__ (), it is a data descriptor; if it
defines neither, it is a non-data descriptor. Normally, data descriptors define both ___get_ () and __set__ (),
while non-data descriptors have justthe __get__ () method. Datadescriptorswith__get_ () and__set__ ()
(and/or __delete__ ()) defined always override a redefinition in an instance dictionary. In contrast, non-data
descriptors can be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as
non-data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to
acquire behaviors that differ from other instances of the same class.

The property () function is implemented as a data descriptor. Accordingly, instances cannot override the behavior
of a property.

32 Kegahaio 3. Data model

The Python Language Reference, Anpocigsuon 3.9.23

__slots__

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of __dict__ and
__weakref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using ___dict__ can be significant. Attribute lookup speed can be significantly improved as
well.

object.__slots___
This class variable can be assigned a string, iterable, or sequence of strings with variable names used
by instances. __slots__ reserves space for the declared variables and prevents the automatic creation of
__dict__ and _ weakref__ for each instance.

Notes on using __slots__

o When inheriting from a class without __slots__,the _ _dict__ and __weakref _ attribute of the instances
will always be accessible.

o Withouta__dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition.
Attempts to assign to an unlisted variable name raises AttributeError. If dynamic assignment of new
variables is desired, then add ' ___dict__ ' to the sequence of strings in the __slots__ declaration.

o Without a _ weakref _ variable for each instance, classes defining _ slots__ do not support weak
references to its instances. If weak reference support is needed, then add '___weakref_ ' to the
sequence of strings in the __slots__ declaration.

o __slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class
attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class
attribute would overwrite the descriptor assignment.

o Theaction of a __slots__ declaration is not limited to the class where it is defined. __slots__ declared in parents
are available in child classes. However, child subclasses will geta __dict__ and __weakref__ unless they
also define __slots__ (which should only contain names of any additional slots).

o If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of the
program undefined. In the future, a check may be added to prevent this.

o Nonempty __slots__ does not work for classes derived from «variable-length» built-in types such as int,
bytes and tuple.

» Any non-string iferable may be assigned to __slots__.

o Ifadictionary is used to assign __slots__, the dictionary keys will be used as the slot names. The values
of the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect.
getdoc () and displayed in the output of help ().

e __class___ assignment works only if both classes have the same __slots__.

o Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have
attributes created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

o If an iterator is used for __slots__ then a descriptor is created for each of the iterator’s values. However, the
__slots__ attribute will be an empty iterator.

3.3. Special method names 33

The Python Language Reference, Anpocigsuon 3.9.23

3.3.3 Customizing class creation

Whenever a class inherits from another class, init_subclass__ () is called on the parent class. This way, it
is possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but
where class decorators only affect the specific class they’re applied to, __init_subclass__ solely applies to
future subclasses of the class defining the method.

classmethod object.__init_subeclass__ (cls)
This method is called whenever the containing class is subclassed. cls is then the new subclass. If defined as a
normal instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent’s class __init_subclass__ .
For compatibility with other classes using __init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

class Philosopher:
def _ init_subclass__ (cls, /, default_name, **kwargs):
super () .__init_subclass__ (**kwargs)
cls.default_name = default_name

class AustralianPhilosopher (Philosopher, default_name="Bruce"):
pass

The default implementation object.___init_subclass__ doesnothing, but raises an error if it is called
with any arguments.

Ynueiwon: The metaclass hint metaclass is consumed by the rest of the type machinery, and is never
passedto __init_subclass__ implementations. The actual metaclass (rather than the explicit hint) can
be accessed as type (cls).

Néo otnv €kdoon 3.6.

Metaclasses

By default, classes are constructed using t ype () . The class body is executed in a new namespace and the class name
is bound locally to the result of t ype (name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition
line, or by inheriting from an existing class that included such an argument. In the following example, both MyClass
and MySubclass are instances of Meta:

class Meta (type):
pass

class MyClass (metaclass=Meta) :
pass

class MySubclass (MyClass) :
pass

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:
¢« MRO entries are resolved;
« the appropriate metaclass is determined;
« the class namespace is prepared;

« the class body is executed;

34 Kegahaio 3. Data model

The Python Language Reference, Anpocigsuon 3.9.23

« the class object is created.

Resolving MRO entries

If a base that appears in class definition is not an instance of t ype, thenan___mro_entries__ method is searched
on it. If found, it is called with the original bases tuple. This method must return a tuple of classes that will be used
instead of this base. The tuple may be empty, in such case the original base is ignored.

Agite emiong:

PEP 560 - Core support for typing module and generic types

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:
« if no bases and no explicit metaclass are given, then type () is used;
« if an explicit metaclass is given and it is not an instance of type (), then it is used directly as the metaclass;

« if an instance of type () is given as the explicit metaclass, or bases are defined, then the most derived
metaclass is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type (cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these
candidate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail
with TypeError.

Preparing the class hamespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has a
__prepare__ attribute, it is called as namespace = metaclass.__prepare__ (name, bases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The __prepare_
method should be implemented as a classmethod. The namespace returned by __prepare__ is passed in to
__new___, but when the final class object is created the namespace is copied into a new dict.

If the metaclass has no __prepare___ attribute, then the class namespace is initialised as an empty ordered
mapping.
Agite emiong:

PEP 3115 - Metaclasses in Python 3000 Introduced the _ prepare__ namespace hook

Executing the class body

The class body is executed (approximately) as exec (body, globals (), namespace). The key difference
from a normal call to exec () is that lexical scoping allows the class body (including any methods) to reference
names from the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see
names defined at the class scope. Class variables must be accessed through the first parameter of instance or class
methods, or through the implicit lexically scoped __class__ reference described in the next section.

3.3. Special method names 35

https://www.python.org/dev/peps/pep-0560
https://www.python.org/dev/peps/pep-3115

The Python Language Reference, Anpocigsuon 3.9.23

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass (name, bases, namespace, **kwds) (the additional keywords passed here are the same as
those passed to __prepare_).

This class object is the one that will be referenced by the zero-argument form of super (). _ class__isan
implicit closure reference created by the compiler if any methods in a class body refer to either __class__ or
super. This allows the zero argument form of super () to correctly identify the class being defined based on
lexical scoping, while the class or instance that was used to make the current call is identified based on the first
argument passed to the method.

CPython implementation detail: In CPython 3.6 and later, the __class__ cell is passed to the metaclass as a
__classcell__ entry in the class namespace. If present, this must be propagated up to the type.__new___
call in order for the class to be initialised correctly. Failing to do so will result in a Runt imeError in Python 3.8.

When using the default metaclass t ype, or any metaclass that ultimately calls type._ new__, the following
additional customisation steps are invoked after creating the class object:

o first, type.___new__ collects all of the descriptors in the class namespace thatdefinea __set_name ()
method;

» second, all of these ___set_name___ methods are called with the class being defined and the assigned name
of that particular descriptor;

o finally,the init_subclass__ () hookis called on the immediate parent of the new class in its method
resolution order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the
resulting object is bound in the local namespace as the defined class.

When a new class is created by type.__new__, the object provided as the namespace parameter is copied to a
new ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which
becomes the ___dict___ attribute of the class object.

Agite emiong:

PEP 3135 - New super Describes the implicit __class___ closure reference

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging,
interface checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource
locking/synchronization.

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance () and issubclass ()
built-in functions.

In particular, the metaclass abc . ABCMeta implements these methods in order to allow the addition of Abstract
Base Classes (ABCs) as «virtual base classes» to any class or type (including built-in types), including other ABCs.

class.__instancecheck__ (self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to
implement isinstance (instance, class).

class.__subclasscheck__ (self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to
implement issubclass (subclass, class).

36 Kegahaio 3. Data model

https://www.python.org/dev/peps/pep-3135

The Python Language Reference, Anpocigsuon 3.9.23

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods
in the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case
the instance is itself a class.

Agite emiong:

PEP 3119 - Introducing Abstract Base Classes Includes the specification for customizing isinstance () and
issubclass () behavior through _ instancecheck__ () and __subclasscheck__ (), with
motivation for this functionality in the context of adding Abstract Base Classes (see the abc module) to the
language.

3.3.5 Emulating generic types

When using type annotations, it is often useful to parameterize a generic type using Python’s square-brackets notation.
For example, the annotation 1ist [int] might be used to signify a 1i st in which all the elements are of type
int.

Agite gmiong:
PEP 484 - Type Hints Introducing Python’s framework for type annotations
Generic Alias Types Documentation for objects representing parameterized generic classes

Generics, user-defined generics and typing.Generic Documentation on how to implement generic classes
that can be parameterized at runtime and understood by static type-checkers.

A class can generally only be parameterized if it defines the special class method __class_getitem__ ().

classmethod object._ class_getitem__ (cls, key)
Return an object representing the specialization of a generic class by type arguments found in key.

When defined on a class, __class_getitem__ () is automatically a class method. As such, there is no
need for it to be decorated with @classmethod when it is defined.

The purpose of __class_getitem__

The purposeof ___class_getitem _ () isto allow runtime parameterization of standard-library generic classes
in order to more easily apply rype hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers,
users should either inherit from a standard library class that already implements __class _getitem__ (), or
inherit from typing.Generic, which has its own implementation of ___class_getitem__ ().

Custom implementations of ___class_getitem__ () on classes defined outside of the standard library may
not be understood by third-party type-checkers such as mypy. Using __class_getitem__ () on any class for
purposes other than type hinting is discouraged.

__class_getitem__ versus __getitem__

Usually, the subscription of an object using square brackets will call the _ getitem () instance method
defined on the object’s class. However, if the object being subscribed is itself a class, the class method
__class_getitem () may be called instead. _ class_getitem__ () should return a GenericAlias
object if it is properly defined.

Presented with the expression ob 7 [x], the Python interpreter follows something like the following process to decide
whether _ getitem () or__ _class_getitem_ _ () should be called:

from inspect import isclass

def subscribe (obj, x):
"""Return the result of the expression “obj[x] """

(ouvéyela otV emtdpevn oehida)

3.3. Special method names 37

https://www.python.org/dev/peps/pep-3119
https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

class_of_obj = type (obj)

If the class of obj defines __getitem _,
call class_of_obj.__getitem _ (obj, x)

if hasattr(class_of_obj, ' getitem '):
return class_of_obj.__getitem__ (obj, x)
Else, 1if obj is a class and defines __class_getitem _,
call obj.__class_getitem _ (x)
elif isclass(obj) and hasattr(obj, ' class getitem "):
return obj._ _class_getitem__ (x)

Else, raise an exception
else:
raise TypeError (
f"'{class_of_obj.__name_ }' object is not subscriptable"

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s
metaclass, and most classes have the type class as their metaclass. type does not define __getitem (),
meaning that expressions suchas 1ist [int],dict [str, float] and tuple[str, bytes] all resultin
__class_getitem__ () being called:

>>> # list has class "type" as its metaclass, like most classes:
>>> type (list)
<class 'type'>

>>> type(dict) == type(list) == type(tuple) == type(str) == type(bytes)
True

>>> # "list[int]" calls "list.__class_getitem _ (int)"

>>> list[int]

list[int]

>>> # list.__class_getitem _ returns a GenericAlias object:

>>> type (list[int])
<class 'types.GenericAlias'>

However, if a class has a custom metaclass that defines __getitem (), subscribing the class may result in
different behaviour. An example of this can be found in the enum module:

>>> from enum import Enum

>>> class Menu (Enum) :
""rA breakfast menu"""
SPAM = 'spam'
BACON = 'bacon'

>>> # Enum classes have a custom metaclass:

>>> type (Menu)

<class 'enum.EnumMeta'>

>>> # EnumMeta defines __getitem__,

>>> # so __class_getitem__ 1is not called,

>>> # and the result is not a GenericAlias object:
>>> Menu['SPAM']

<Menu.SPAM: 'spam'>

>>> type (Menu['SPAM'])

<enum 'Menu'>

Agite emiong:

PEP 560 - Core Support for typing module and generic types Introducing __class_getitem _ (),
and outlining when a subscription results in __ _class_getitem__ () being called instead of
__getitem__ ()

38 Kegahaio 3. Data model

https://www.python.org/dev/peps/pep-0560

The Python Language Reference, Anpocigsuon 3.9.23

3.3.6 Emulating callable objects

object.__ecall (self[, args...])
Called when the instance is «called» as a function; if this method is defined, x (argl, arg2, ...) roughly
translates to type (x) .__call__ (x, argl, ...).

3.3.7 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as
lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set
of methods is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence,
the allowable keys should be the integers k for which 0 <= k < N where N is the length of the sequence,
or slice objects, which define a range of items. It is also recommended that mappings provide the methods
keys (), values (), items (), get (), clear (), setdefault (), pop (), popitem(), copy (), and
update () behaving similar to those for Python’s standard dictionary objects. The collections.abc
module provides a MutableMapping abstract base class to help create those methods from a base set of
__getitem (), setitem (), delitem__ (), and keys (). Mutable sequences should provide
methods append (), count (), index (), extend (), insert (), pop (), remove (), reverse () and
sort (), like Python standard 1ist objects. Finally, sequence types should implement addition (meaning
concatenation) and multiplication (meaning repetition) by defining the methods __add__ (), radd__ (),
__iadd__ (), _mul__ (), rmul__ () and ___imul__ () described below; they should not define other
numerical operators. It is recommended that both mappings and sequences implement the ___contains__ ()
method to allow efficient use of the in operator; for mappings, in should search the mapping’s keys; for sequences,
it should search through the values. It is further recommended that both mappings and sequences implement the
___iter__ () method to allow efficient iteration through the container; for mappings, _ iter__ () should iterate
through the object’s keys; for sequences, it should iterate through the values.

object._ len__ (self)
Called to implement the built-in function 1en (). Should return the length of the object, an integer >= 0.
Also, an object that doesn’t define a ___bool__ () method and whose ___1en__ () method returns zero is
considered to be false in a Boolean context.

CPython implementation detail: In CPython, the length is required to be at most sys.maxsize. If the
length is larger than sys.maxsize some features (such as len ()) may raise OverflowError. To
prevent raising OverflowError by truth value testing, an object must definea __ bool__ () method.

object._ length_hint__ (self)
Called to implement operator.length_hint ().Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer >= 0. The return value may also
be Not Implemented, which is treated the same as if the ___length_hint__ method didn’t exist at all.
This method is purely an optimization and is never required for correctness.

Néo otnv ékdoon 3.4.

Enueiwon: Slicing is done exclusively with the following three methods. A call like

’a[l:Z] = Db

is translated to

’a[slice(l, 2, None)] = Db

and so forth. Missing slice items are always filled in with None.

object.__getitem__ (self, key)
Called to implement evaluation of self [key]. For sequence types, the accepted keys should be integers and
slice objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a sequence
type)isuptothe getitem () method. If key is of an inappropriate type, TypeError may be raised;

3.3. Special method names 39

The Python Language Reference, Anpocigsuon 3.9.23

if of a value outside the set of indexes for the sequence (after any special interpretation of negative values),
IndexError should be raised. For mapping types, if key is missing (not in the container), KeyError should
be raised.

Inueiwon: forloopsexpect thatan IndexError will be raised for illegal indexes to allow proper detection
of the end of the sequence.

Ynueiwon: When subscripting a class, the special class method class_getitem__ () may be called
instead of __getitem__ (). See _ class_getitem__ versus __ getitem__ for more details.

object.__ setitem__ (self, key, value)
Called to implement assignment to self [key]. Same note as for __getitem _ (). This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added,
or for sequences if elements can be replaced. The same exceptions should be raised for improper key values as
forthe __getitem__ () method.

object.__delitem__ (self, key)
Called to implement deletion of self [key]. Same note as for __getitem__ (). This should only be
implemented for mappings if the objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for improper key values asforthe _getitem ()
method.

object._ _missing _ (self, key)
Called by dict. getitem () to implement self [key] for dict subclasses when key is not in the
dictionary.

object._ _iter_ _ (self)
This method is called when an iterator is required for a container. This method should return a new iterator
object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the
container.

Iterator objects also need to implement this method; they are required to return themselves. For more
information on iterator objects, see typeiter.

object._ reversed_ (self)
Called (if present) by the reversed () built-in to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

If the _ reversed__ () method is not provided, the reversed () built-in will fall back to using the
sequence protocol (__Ilen__ () and __getitem_ _ ()). Objects that support the sequence protocol should
only provide __reversed__ () if they can provide an implementation that is more efficient than the one
provided by reversed ().

The membership test operators (in and not in) are normally implemented as an iteration through a container.
However, container objects can supply the following special method with a more efficient implementation, which also
does not require the object be iterable.

object._ contains__ (self, item)
Called to implement membership test operators. Should return true if item is in self, false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define __contains__ (), the membership test first tries iterationvia___iter (),
then the old sequence iteration protocol via___getitem _ (), see this section in the language reference.

40 Kegahaio 3. Data model

The Python Language Reference, Anpocigsuon 3.9.23

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should
be left undefined.

object.__add__ (self, other)

object.__sub__ (self, other)

object._ _mul__ (self, other)

object._ _matmul__ (self, other)

object.__truediv__ (self, other)

object._ floordiv__ (self, other)

object.__mod__ (self, other)

object.__divmod__ (self, other)

object.__ pow__ (self, other[, modulo])

object._ _lshift__ (self, other)

object.__rshift__ (self, other)

object.__and__ (self, other)

object.__ xor__ (self, other)

object.__oxr__ (self, other)
These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, *, |). For instance, to evaluate the expression x + vy, where x is an instance of a class
thathasan __add () method, x.__add__ (y) iscalled. The _ divmod () method should be the
equivalent to using __ floordiv.__ () and __mod__ (); it should not be related to ___truediv__ ().
Note that __pow___ () should be defined to accept an optional third argument if the ternary version of the
built-in pow () function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return
NotImplemented.

object.__radd__ (self, other)

object.__rsub__ (self, other)

object._ _rmul__ (self, other)

object.__rmatmul__ (self, other)

object.__rtruediv__ (self, other)

object._ _rfloordiv__ (self, other)

object.__rmod__ (self, other)

object.__rdivmod__ (self, other)

object._ _rpow__ (self, other[, modula])

object._ _rlshift__ (self, other)

object._ _rrshift__ (self, other)

object.__rand__ (self, other)

object.__rxor__ (self, other)

object.__ror__ (self, other)
These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, *, |) with reflected (swapped) operands. These functions are only called if the left
operand does not support the corresponding operation® and the operands are of different types.* For instance,
to evaluate the expression x — vy, where y is an instance of a class that has an ___rsub__ () method,
v.__rsub__ (x) iscalledif x.___sub__ (y) returns Notlmplemented.

Note that ternary pow () will not try calling __ rpow__ () (the coercion rules would become too
complicated).

Ynueimon: If the right operand’s type is a subclass of the left operand’s type and that subclass provides a
different implementation of the reflected method for the operation, this method will be called before the left

3 «Does not support» here means that the class has no such method, or the method returns Not Implemented. Do not set the method to
None if you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such
fallback.

4 For operands of the same type, it is assumed that if the non-reflected method — suchas ___add () - fails then the overall operation is not
supported, which is why the reflected method is not called.

3.3. Special method names 4

The Python Language Reference, Anpocigsuon 3.9.23

operand’s non-reflected method. This behavior allows subclasses to override their ancestors” operations.

object.__iadd__ (self, other)
object.__isub__ (self, other)
object.__imul__ (self, other)
object._ _imatmul__ (self, other)
object.__itruediv__ (self, other)
object._ _ifloordiv__ (self, other)
object.__imod__ (self, other)
object.__ipow__ (self, other[, modulo])
object._ _ilshift__ (self, other)
object._ _irshift__ (self, other)
object._ _iand__ (self, other)

object.__ixor__ (self, other)

object.__ior__ (self, other)
These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, @=, /=, //=,
§=, **=, <<=, >>=, &=, "=, | =). These methods should attempt to do the operation in-place (modifying

self’) and return the result (which could be, but does not have to be, self). If a specific method is not defined,
the augmented assignment falls back to the normal methods. For instance, if x is an instance of a class with an
__iadd__ () method, x += yisequivalenttox = x.__iadd__ (y) .Otherwise, x.__add__ (y)
and y.___radd__ (x) are considered, as with the evaluation of x + vy. In certain situations, augmented
assignment can result in unexpected errors (see fag-augmented-assignment-tuple-error), but this behavior is in
fact part of the data model.

Ynueiwon: Due to a bug in the dispatching mechanism for **=, a class that defines ___ipow__ () but
returns Not Implemented would fail to fall back to x.__pow__ (y) and y.___rpow__ (x). This bug
is fixed in Python 3.10.

object._ neg__ (self)
object._ pos__ (self)
object._ _abs__ (self)
object.__invert_ (self)
Called to implement the unary arithmetic operations (-, +, abs () and ~).

object._ complex__ (self)

object.__int__ (self)

object._ float__ (self)
Called to implement the built-in functions complex (), int () and float (). Should return a value of the
appropriate type.

object._ _index__ (self)
Called to implement operator.index (), and whenever Python needs to losslessly convert the numeric
object to an integer object (such as in slicing, or in the built-inbin () ,hex () and oct () functions). Presence
of this method indicates that the numeric object is an integer type. Must return an integer.

If _ int_ (), float__ () and __complex__ () are not defined then corresponding built-in
functions int (), float () and complex () fallbackto ___index__ ().

object.__round__ (self[, ndigits])

object.__trunc__ (self)

object._ floor__ (self)

object._ ceil__ (self)
Called to implement the built-in function round () and math functions t runc (), floor () andceil ().
Unless ndigits is passed to __round__ () all these methods should return the value of the object truncated
toan Integral (typically an int).

The built-in function int () falls back to _ trunc__ () if neither __int_ () nor __index_ () is
defined.

42 Kegahaio 3. Data model

The Python Language Reference, Anpocigsuon 3.9.23

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a wi t h statement.
The context manager handles the entry into, and the exit from, the desired runtime context for the execution of the
block of code. Context managers are normally invoked using the with statement (described in section 7he with
statement), but can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking
resources, closing opened files, etc.

For more information on context managers, see typecontextmanager.

object.__enter__ (self)
Enter the runtime context related to this object. The with statement will bind this method’s return value to
the target(s) specified in the as clause of the statement, if any.

object.__exit__ (self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context
to be exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being
propagated), it should return a true value. Otherwise, the exception will be processed normally upon exit from
this method.

Note that __exit__ () methods should not reraise the passed-in exception; this is the caller’s responsibility.
Agite gmiong:

PEP 343 - The «with» statement The specification, background, and examples for the Python wi t h statement.

3.3.10 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an
exception:

>>> class C:

pass
>>> ¢ = C()
>>> ¢c.__len_ = lambda: 5

>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methodssuchas___hash_ () and__repr__ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the
conventional lookup process, they would fail when invoked on the type object itself:

>>> 1 ._ _hash__ () == hash (1)
True
>>> int._hash () == hash (int)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash ' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as “metaclass
confusion”, and is avoided by bypassing the instance when looking up special methods:

>>> type(l).__hash__ (1) == hash(1)
True

(ouvéyela 0TV TOUEVY OEMDL)

3.3. Special method names 43

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

>>> type(int).__hash__ (int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the __getattribute () method even of the object’s metaclass:

>>> class Meta (type):
def _ _getattribute__ (*args):
print ("Metaclass getattribute invoked")
return type._ _getattribute__ (*args)

>>> class C(object, metaclass=Meta):
def @ len_ (self):
return 10
def _ getattribute__ (*args):
print ("Class getattribute invoked")

return object.__getattribute__ (*args)
>>> ¢ = C()
>>> c.__len_ () # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__ (c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len(c) # Implicit lookup
10

Bypassingthe _getattribute__ () machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be
set on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implementsan ___await__ () method. Coroutine objects returned from async def
functions are awaitable.

Enueiwon: The generator iterator objects returned from generators decorated with types.coroutine () or
asyncio.coroutine () are also awaitable, but they do not implement __await__ ().

object.__await__ (self)
Must return an iferator. Should be used to implement awaitable objects. For instance, asyncio.Future
implements this method to be compatible with the awa i t expression.

Néo omv éxdoon 3.5.
Agite emiong:

PEP 492 for additional information about awaitable objects.

44 Kegahaio 3. Data model

https://www.python.org/dev/peps/pep-0492

The Python Language Reference, Anpocigsuon 3.9.23

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling _await__ () and
iterating over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration,
and the exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by
the iterator. Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator
methods). However, unlike generators, coroutines do not directly support iteration.

AMaEe oty €kdoon 3.5.2: It is a Runt imeError to await on a coroutine more than once.

coroutine.send (value)
Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator
returned by ___await__ (). If value is not None, this method delegates to the send () method of the
iterator that caused the coroutine to suspend. The result (return value, St opIteration, or other exception)
is the same as when iterating over the __await__ () return value, described above.

coroutine.throw (value)

coroutine.throw (type[, value[, traceback]])
Raises the specified exception in the coroutine. This method delegates to the t hrow () method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the
__await__ () return value, described above. If the exception is not caught in the coroutine, it propagates
back to the caller.

coroutine.close ()
Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close () method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the
coroutine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4.3 Asynchronous lterators

An asynchronous iterator can call asynchronous code in its __anext___ method.
Asynchronous iterators can be used in an async for statement.

object.__aiter__ (self)
Must return an asynchronous iterator object.

object.__anext__ (self)
Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration
error when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

def _ aiter_ (self):
return self

async def _ anext__ (self):
val = await self.readline ()
if val == b'':
raise StopAsynclIteration
return val

3.4. Coroutines 45

The Python Language Reference, Anpocigsuon 3.9.23

Néo omv éxdoon 3.5.

AMhaEe oty £€xdoon 3.7: Prior to Python 3.7, aiter () could return an awaitable that would resolve to an
asynchronous iterator.

Starting with Python 3.7, __aiter__ () must return an asynchronous iterator object. Returning anything else will
result in a TypeError error.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter__ and
__aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object.__aenter__ (self)
Semantically similar to __enter__ (), the only difference being that it must return an awaitable.

object.__aexit__ (self, exc_type, exc_value, traceback)
Semantically similar to __exit__ (), the only difference being that it must return an awaitable.

An example of an asynchronous context manager class:

class AsyncContextManager:
async def _ _aenter_ (self):
await log('entering context'")

async def _ aexit__ (self, exc_type, exc, tb):
await log('exiting context')

Néo oty éxdoonm 3.5.

46 Kegahaio 3. Data model

KE®ANAIO 4

MovTtEAo ekTEAEONC

4.1 Aopn €vOg MPOYPAHHATOG

"Eva tpdypapo Python astoteheiton amd pmhok kmdika. ‘Eva umdok eivor Eva Koppdtt Kelwévou mpoyplupo-
tog Python mov extedeiton og wo povada. Ta wapakdto eivor phok: éva module, To COUA ULOG CUVAPTNONG,
o0 évag oplopdg kKhaong. Kabe eviol mov minktpohoyeitor duadpaotkd amotelel umhok. ‘Eva apyeio déoung
EVEPYELDV (EVaL Py ELO TOU SLVETOL MG TUTILKT) EL00O0G 0TO dlepunvéa 1) KabopileTol mg OPLoUa YPOUUNG EVTO-
AV oToV dLepunvéa) eivan £va pthok Kmdika. Mia script evtoln (o evroln ov kabopiletal oto diepunvea
ue TV emhoyn —c) eivor éva umhok Kodika. Mio evdtnta mov ekteleitan g avmtépov emmédou script (wg
module __main__) omwd) YPOUU] EVIOLDV PN OLUOTTOLMVTAGS £Vl OPLOUO. —m OPLOUAL ELVOL ETTLONG £VaL UITAOK
Kodka. To dpiopua ouuBoLoCELPAG TTOU TEPVAEL OTLG EVOMUATOUEVEG OUVAPTNOELS eval () KoL exec () &l-
vou €va WthoK KmOLKa.

'Eva uthok Kmduka ekteleital oe éva mdaloo exktédeons. 'Bva mhaiowo mepiéyel oplopéveg minpogpopieg dia-
YelpLong (ITov XPNOLUOTOLOVVTAL VL0, ATTOOQPOALATWOT) Ko KaOOopiLel mov Ko Tweg cuveyiCeTol 1 eKTéleon
UETA TNV OAOKAPWOT TNG EKTELEONG TOU WITAOK KMOLKAL.

4.2 Ovopaocia Kkat cuvdeon

4.2.1 Xuyvdeon OVOUATWYV

Names avagépovtal oe avitkeipeva. Ta ovopato elodyoviol HEGm LELTOVPYLMV dETUEVONG OVOUATOV.

The following constructs bind names: formal parameters to functions, import statements, class and function
definitions (these bind the class or function name in the defining block), and targets that are identifiers if occurring
in an assignment, for loop header, or after as in a with statement or except clause. The import statement of
the form from ... import * binds all names defined in the imported module, except those beginning with an
underscore. This form may only be used at the module level.

"Evag 0tdyog mov gupaviteta og o dMiwon del Bempeiton emiong deOUEVUEVOG VL0 AUTO TOV OKOTTO (v
KO 1] TPOYUATUKT ONUAOLOAOYIO ElVOL VoL ATOoUVOETEL TO GVou).

Kda0e dnhwon avdbeong 1 etoaymyng cvufaiver puéoa og €vo wmhok mov opiteton amd Evav oplopd KAAong 1
ovvaptnong 1 oto enimtedo tov module (To WIThoK KOLKA AVAOTATOU ETLTEDOV).

Av éva dvopa deopevetal og €vo (LIThOK, ELVaL ULCL TOTILKT) UETAPANTY) cuTOU TOU WITAOK, EKTOG oV dMAwBEL g
nonlocal W global. Av éva Ovoua deopevetol 0to emimedo touv module, eivor pa koOohky) petafint.

47

The Python Language Reference, Anpocigsuon 3.9.23

(Ou petafintég tov wthok tov module givor Tavtdypova TOMKEG Ko KaBoMKES.) AV (o weta ANt xpnoLuo-
motelTon o€ £var WThok Kmdka ol dev opileton ekel, eivan wwa free variable.

Kda0e epgpdvion evog ovouatog 0To Keluevo Tou Tpoypauuatog avagpépetal ot binding avto Tov ovouaTog
7tov kaBopileTor amd Toug TapaKdTw Kavoveg ETAUONG OVOUAT®YV.

4.2.2 EniAuon ovopatwyv

"Eva scope opiler v opatdtnta evog ovOUATog HECH O €VO MITAOK. AV (0L TOTILKT] UETOPANTY OPLOTEL O€
éva Wthok, to medio g mephapfdvel To Thok autd. Av o oplopudg cupfaiver oe £va PTAOK GUVAPTNONG, TO
71edL0 EMEKTELVETOL OE OTTOLALONTTOTE UWITAOK TTEPLEYOVTOL UETCL OE AUTO TTOV TNV OPILEL, EKTOG ALV VAL TTEPLEXOUEVO
WITAOK EL0AIYEL DLAPOPETLKT] CUVOEDN YLOL TO OVOUCL.

‘Otov éva Ovopo XPNOLUOTTOLELTOL 08 €VOL LWTAOK KWMLK, ETAVETOL Y PNOLUOTOLDVTOG TO TANOLECTEPO TTEPL-
Badhov medio. To oUVoro OM®V TV TEdIMVY TOV €lvoL 0pOTE 08 Vo LWITAOK KMOLKO ovoudLeTol environment
TOU UITAOK.

‘Otav éva dvopa dev Bpioketar kaBohov, yiveton raise puo eEaipeon NameError. Av to Tpéy oV medio eival
7EdL0 CUVAPTNONG KoL TO OVOUOL OLVAPEPETAL OF (L0 TOTTLKY] UETAPANTY TTOU deV €YEL aKOua dEOUEVTEL OE KA~
JTOLOL TUUT) OTO ONUELO TTOV YPNOLUOTTOLELTAL TO Ovoua, YiveTal raise uio eEaipeon UnboundLocalError. H
UnboundLocalError eivol o vtokhdon thg NameError.

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated
as references to the current block. This can lead to errors when a name is used within a block before it is bound. This
rule is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block.
The local variables of a code block can be determined by scanning the entire text of the block for name binding
operations.

If the global statement occurs within a block, all uses of the names specified in the statement refer to the bindings
of those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace
of the module builtins. The global namespace is searched first. If the names are not found there, the builtins
namespace is searched. The global statement must precede all uses of the listed names.

H dhwon global €xel 1o 1610 medio ue wa Aettovpyio oUvoeong ovouatog 0to (8o UTAoK. Av 10 TANOLE-
01ePo TePLPAllov mediov yia o ehevBepn petofAnT) mepLéxel pon dMhwon global,) ehetBepn petafinm
OVTIUETOTULETOL WG KAOOMKT).

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function
scope.

O ywpog ovopdtmv yio €va module dnuovpyeital avtopato v Tpwtn eopd mov To module elodyeton To
KUpto module yia €va script ovoudZetan wévta __main__ .

Class definition blocks and arguments to exec () and eval () are special in the context of name resolution. A class
definition is an executable statement that may use and define names. These references follow the normal rules for name
resolution with an exception that unbound local variables are looked up in the global namespace. The namespace of
the class definition becomes the attribute dictionary of the class. The scope of names defined in a class block is limited
to the class block; it does not extend to the code blocks of methods - this includes comprehensions and generator
expressions since they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + i for i in range (10))

48 Kegpadlawo 4. MovteAo eKTEAEONG

The Python Language Reference, Anpocigsuon 3.9.23

4.2.3 EVOWHATWHEVEG OUVAPTHOELG KAl TIEPLOPLOUEVN EKTEAEDN

CPython implementation detail: Ov ypnoteg dev Oa mpémeL vo Tpomomolovy to __builtins_ - eivol av-
otpd o ecrouépeta vhomoinong. O ypnoteg wov 0EMoUV var TOPAKAUPOUY THES GTOV Y DPO OVOUATMOV TWV
EVOOUATOUEVDV OVVAPTHOEMV Ba TPEmeL Vo Kavouv import to module builtins KoL Vo TPOTOTOLOVV TO.
YOPOKTNPLOTIKA TOV KATOMNAL.

O % HPOG OVOUATWV TV EVOMUATOUEVODY CUVOPTNOEWV TTOV OXETILETOL UE TNV EKTEAEON EVOG UTAOK KMALKOL
BpilokeTal 0TV TPAYUOTIKOTITA UECW OVaCNTNONG TOU ovOuaTog _ builtins_ 0Tov KOOOMKO TOU XDPO
ovopdtwv: autd Bo mpémel va eivor £va heSikd M éva module (otn devTepn TEPITTWON YPNOLUOTOLELTAL TO
LeE1k6 Tov module). Amtd poemihoy, Otav Pplokduaote 0to module __main__,to __builtins__ eivon
t0 evompotwuévo module builtins' étav fprokopaocte oe omolodfmote dAho module, to _ builtins_
elva £va Pevddvupo yro. to AeELko tou idtov Tov module builtins.

4.2.4 ANANAeTidpaon He SUVAMLKEG AELTOUPYIEQ

H emidvon ovoudtwv twv eletBepwv petofntov ovppaivel Katd to xpovo eKtéleons, Oyl Katd 1o Ypovo
UETOYADTTLONG. AUTO OMUOLVEL OTL O TTAPAKAT® KOOLKOG O EKTVTTMOEL TO 42:

i =10

def f():
print (i)

i = 42

£()

Ou ouvaptnoelg eval () KoL exec () Ogv £xovv TPOoPaon 0To TANPES TEPLPAALOV YL TNV ETTIAVOT OvVoud-
tov. Ta ovopota (Wtopet va emliovToL 0Tovg TomKoUs Kot KaOoAKOUS XHPOoUg OVOUATOV TOU KAAOUVTOG.
O ehevBepeg petafintég dev emhioviol 0to TANoLEaTEPO TEPIPAALOV Tediov, aAhd 0TOV KABOAKO YMPO
ovopdtwv.! O cuvapTioelg exec () KoL eval () €X0UV TPOGLPETIKG OPLOUOTO YL VO TOPOKAUPOUV TOUG
K0BoMKOVUG KoL TOTTLKOUG Y WPOVS OVOUATMV. Av KaBopLotel HOVo €vag Y mpPog OVOUATMV, YPTCLULOTTOLELTOL
Ko Lo Toug dvo.

4.3 EEalpgoelq

O eEaupéoelg givar évag TpOTOg dLOKOITHG TNG KAVOVIKHG PONG EAEYYOU EVOG WIThOK KOLKA, TPOKELEVOU
VO OVTLUETWITLOTOVV opdlpata M dhheg eEaupetikég ouvOfikes. Mua eEaipeon yiverar raise 6To onueio 6ToU
EVTOTTILETAL TO OPAMLOL” WTOPEL VO avTiueTwmotel oItd To TEPLBAMOV UTAOK KMILKO 1 0Td 0TT0L0dNTOTE
WIThok KMOLKa Tov dpeca 1 EUUEca eKTELETE TO UTTAOK KMOLKO OTTOU GUVERT TO OAluaL.

O diepunvéag tng Python eyeipet pua eEaipeon dtav evtomioet Eva 6QAALO KOTE TNV EKTEALEOT(OTMG 1) dLaipeo)
ue to undév). ‘Eva mtpdypaupa Python pmopel emiong va eyeiper pntd o eEaipeon pe m dhwon raise.
O droerplotég eEapéoemv kabopitovror ue t dMhwon try ... except. H pitpa finally oG T€T0L0G
dMrwong umopel va ypnowpomonBei yio va Kaboplotel kKmdikag kKabaplopov, o omoiog dev drayeipiletar tnv
eEaipeon alhd exteheitar aveEGpTnTa artd To ov tponyOnke eEaipeon 1) Oyl oToV TPoNyovUEVO KOLKA.

H Python ypnowpomotel To poviého SLoyeiplong CEOIATOV «TEPUATIONOU»: Evag dLayelpLoTtig e5apéoemv
WTOPEL VO SLOTTLOTMOEL TL CUVERT] KOl VOL GUVEYIOEL TNV EKTELEDT] OF £va EEmTEPLKO emimedo, alhd dev pumopel
VoL SLoPOMOEL TNV AULTLO TOV CPAMIATOS KOL VO, ETTOVOAGBEL TN AELTOUPYia TTOV autéTuyE (eKTOG arv emmavelooyOel
TO TPOPANUATIKS Kopudtt KOSk ad v apyh).

‘Otav wa eEaipeon dev avupetwmotel koBOAov, o dlepunveag TepUaTiCeL TV EKTELEDT] TOU TTPOYPAUIATOG
1 emLOTPEPEL OTOV DLAdPAOTLKO KUPLO Bpdyo Tov. Kat oTig 800 mepLintmoelg, EKTUTMVEL TO L)VOg TG 0Toiog,
eKTOG v 1) eEaipeom eivar SystemExit.

O eEaipéoelg avayvmpifovrar amd onywdtura khdoswv. H pfitpa except emhéyeton avdhoyo ue v
KAGLON TOU OTLYMLOTUTTOV: TIPETEL VOL AVAPEPETOL 0TV KAAGT TOU OTLYWOTUTTOU 1] OF WL (1) ELKOVIKT] BOOLKT)

1 Autdc 0 mepLoplopdg TPoKVITTEL EMELST 0 KOOLKOG OV eKTEAelTOL 0mtd aUTEG TIG AetTovpyieg dev eival Siadéoyog T oTLyuy mov o
module petayhmtriCeTor.

4.3. EEaipgoelq 49

The Python Language Reference, Anpocigsuon 3.9.23

kAdon avtc. To oTypdTUITO WITOPEL VO TaPANPOEL 0Tt TOV LOELPLOTH KOl VO UETOPEPEL TTPOOOETES TTAN-
POQOPIES OYETIKA [UE TNV EEAULPETLKY] CUVONKY.

Inueioon: To unvipoto eEapéoemv dev amotehotv uépog tov API tng Python. To mepieyduevo tovg uopsi
va odlGEer amd T pia ékdoom g Python otnv entduevn ympig wpoetdomoinon ko dev o pémet va fooileton
0€ QUTA 0 KOdIKAG 7oV O eKTENeOTEL 08 TOMOTTAEG EKDOTELG TOV dLepunvéa.

Agite emiong v mepLypagn e dMwong try ommv evotnta The try statement Kot TG ONAWONG raise oty
evotnra The raise statement.

YTOONHELWOELG

50 Kegpadlawo 4. MovteAo eKTEAEONG

KEGAAAIO D

The import system

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions such
as importlib.import_module () and built-in _ import__ () can also be used to invoke the import
machinery.

The import statement combines two operations; it searches for the named module, then it binds the results of
that search to a name in the local scope. The search operation of the import statement is defined as a call to
the _ import__ () function, with the appropriate arguments. The return value of ___import__ () is used to
perform the name binding operation of the import statement. See the import statement for the exact details of
that name binding operation.

A direct call to __import__ () performs only the module search and, if found, the module creation operation.
While certain side-effects may occur, such as the importing of parent packages, and the updating of various caches
(including sy s .modules), only the import statement performs a name binding operation.

When an import statement is executed, the standard builtin __ import__ () function is called. Other
mechanisms for invoking the import system (such as importlib.import_module ()) may choose to bypass
__import__ () and use their own solutions to implement import semantics.

When a module is first imported, Python searches for the module and if found, it creates a module object', initializing
it. If the named module cannot be found, a ModuleNotFoundError is raised. Python implements various
strategies to search for the named module when the import machinery is invoked. These strategies can be modified
and extended by using various hooks described in the sections below.

AMaEe oty ékdoom 3.3: The import system has been updated to fully implement the second phase of PEP 302.
There is no longer any implicit import machinery - the full import system is exposed through sys.meta_path.
In addition, native namespace package support has been implemented (see PEP 420).

' See types.ModuleType.

51

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Anpocigsuon 3.9.23

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example importlib.
import_module () provides a recommended, simpler API than built-in __import__ () for invoking the
import machinery. Refer to the import1ib library documentation for additional detail.

5.2 Packages

Python has only one type of module object, and all modules are of this type, regardless of whether the module is
implemented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python has
a concept of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take
this analogy too literally since packages and modules need not originate from the file system. For the purposes of this
documentation, we’ll use this convenient analogy of directories and files. Like file system directories, packages are
organized hierarchically, and packages may themselves contain subpackages, as well as regular modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another way,
packages are just a special kind of module. Specifically, any module that containsa ___path___ attribute is considered
a package.

All modules have a name. Subpackage names are separated from their parent package name by a dot, akin to Python’s
standard attribute access syntax. Thus you might have a package called ema i 1, which in turn has a subpackage called
email.mime and a module within that subpackage called email .mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are traditional
packages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory
containing an __init__ .py file. When a regular package is imported, this __init__ .py file is implicitly
executed, and the objects it defines are bound to names in the package’s namespace. The __init__ .py file can
contain the same Python code that any other module can contain, and Python will add some additional attributes to
the module when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/

__init__ .py
one/

__init__ .py
two/

__init__ .py
three/

__init__ .py

Importing parent .one will implicitly execute parent/__init__ .py and parent/one/__init_ .
py. Subsequent imports of parent . two or parent .three will execute parent /two/__init__ .pyand
parent/three/__init__ .py respectively.

52 Kegahaio 5. The import system

The Python Language Reference, Anpocigsuon 3.9.23

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the parent
package. Portions may reside in different locations on the file system. Portions may also be found in zip files, on the
network, or anywhere else that Python searches during import. Namespace packages may or may not correspond
directly to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path___ attribute. They instead use a custom iterable
type which will automatically perform a new search for package portions on the next import attempt within that
package if the path of their parent package (or sys.path for a top level package) changes.

With namespace packages, there is no parent/__init__ .py file. In fact, there may be multiple parent
directories found during import search, where each one is provided by a different portion. Thus parent/one
may not be physically located next to parent /two. In this case, Python will create a namespace package for the
top-level parent package whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of
this discussion, the difference is immaterial) being imported. This name may come from various arguments to
the import statement, or from the parameters to the importlib.import_module () or __import__ ()
functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g.
foo.bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo .bar .baz. If any
of the intermediate imports fail, a ModuleNotFoundError is raised.

5.3.1 The module cache

The first place checked during import search is sys . modules. This mapping serves as a cache of all modules that
have been previously imported, including the intermediate paths. So if foo.bar.baz was previously imported,
sys.modules will contain entries for foo, foo.bar, and foo.bar.baz. Each key will have as its value the
corresponding module object.

During import, the module name is looked up in sys .modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then aModuleNotFoundError
is raised. If the module name is missing, Python will continue searching for the module.

sys.modules is writable. Deleting a key may not destroy the associated module (as other modules may hold
references to it), but it will invalidate the cache entry for the named module, causing Python to search anew for the
named module upon its next import. The key can also be assigned to None, forcing the next import of the module
to result in a ModuleNotFoundError.

Beware though, as if you keep a reference to the module object, invalidate its cache entry in sys . modules, and then
re-import the named module, the two module objects will not be the same. By contrast, importlib.reload ()
will reuse the same module object, and simply reinitialise the module contents by rerunning the module’s code.

5.3. Searching 53

https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Anpocigsuon 3.9.23

5.3.2 Finders and loaders

If the named module is not found in sy s .modules, then Python’s import protocol is invoked to find and load the
module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine whether
it can find the named module using whatever strategy it knows about. Objects that implement both of these interfaces
are referred to as importers - they return themselves when they find that they can load the requested module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules, and
the second knows how to locate frozen modules. A third default finder searches an import path for modules. The
import path is a list of locations that may name file system paths or zip files. It can also be extended to search for any
locatable resource, such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module searching.

Finders do not actually load modules. If they can find the named module, they return a module spec, an encapsulation
of the module’s import-related information, which the import machinery then uses when loading the module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create and
register new ones to extend the import machinery.

AMoEe otnv ékdoon 3.4: In previous versions of Python, finders returned loaders directly, whereas now they return
module specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There are
two types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys.modules cache look up. This allows meta hooks to override sy s . path processing, frozen modules, or even
built-in modules. Meta hooks are registered by adding new finder objects to sys .meta_path, as described below.

Import path hooks are called as part of sys.path (or package.___path__) processing, at the point where their
associated path item is encountered. Import path hooks are registered by adding new callables to sy s . path_hooks
as described below.

5.3.4 The meta path

When the named module is not found in sy s .modules, Python next searches sy s .meta_path, which contains
a list of meta path finder objects. These finders are queried in order to see if they know how to handle the named
module. Meta path finders must implement a method called find_spec () which takes three arguments: a name,
an import path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine
whether it can handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the named
module, it returns None. If sys.meta_path processing reaches the end of its list without returning a spec, then
aModuleNotFoundError is raised. Any other exceptions raised are simply propagated up, aborting the import
process.

The find_spec () method of meta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo .bar .baz. The second argument is the path entries to use
for the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the
second argument is the value of the parent package’s __path___ attribute. If the appropriate ___path___ attribute
cannot be accessed, a ModuleNotFoundError is raised. The third argument is an existing module object that
will be the target of loading later. The import system passes in a target module only during reload.

The meta path may be traversed multiple times for a single import request. For example, assuming none of the modules
involved has already been cached, importing foo.bar .baz will first perform a top level import, calling mpf .
find_spec ("foo", None, None) on each meta path finder (mpf). After foo has been imported, foo.
bar will be imported by traversing the meta path a second time, callingmpf . find_spec ("foo.bar", foo.

54 Kegahaio 5. The import system

The Python Language Reference, Anpocigsuon 3.9.23

__path__, None).Once foo.bar has been imported, the final traversal will call mpf . find_spec ("foo.
bar.baz", foo.bar._ _path__, None).

Some meta path finders only support top level imports. These importers will always return None when anything other
than None is passed as the second argument.

Python’s default sys . meta_path has three meta path finders, one that knows how to import built-in modules, one
that knows how to import frozen modules, and one that knows how to import modules from an import path (i.e. the
path based finder).

AMoEe oty £€xdoon 3.4: The find_spec () method of meta path finders replaced find_module (), which
is now deprecated. While it will continue to work without change, the import machinery will try it only if the finder
does not implement find_spec ().

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the
module. Here is an approximation of what happens during the loading portion of import:

module = None

if spec.loader is not None and hasattr (spec.loader, 'create_module'):
It is assumed 'exec_module' will also be defined on the loader.
module = spec.loader.create_module (spec)

if module is None:
module = ModuleType (spec.name)

The import-related module attributes get set here:

_init_module_attrs (spec, module)

if spec.loader is None:
unsupported
raise ImportError

if spec.origin is None and spec.submodule_search_locations is not None:
namespace package

sys.modules[spec.name] = module
elif not hasattr(spec.loader, 'exec_module'):
module = spec.loader.load_module (spec.name)
Set __loader___ and __package__ 1if missing.
else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module (module)
except BaseException:
try:
del sys.modules([spec.name]
except KeyError:
pass
raise
return sys.modules[spec.name]

Note the following details:

« If there is an existing module object with the given name in sy s . modules, import will have already returned
it.
o The module will exist in sy s .modules before the loader executes the module code. This is crucial because

the module code may (directly or indirectly) import itself; adding it to sy s .modules beforehand prevents
unbounded recursion in the worst case and multiple loading in the best.

o If loading fails, the failing module - and only the failing module - gets removed from sys.modules.
Any module already in the sys.modules cache, and any module that was successfully loaded as a side-
effect, must remain in the cache. This contrasts with reloading where even the failing module is left in sys.
modules.

5.4. Loading 55

The Python Language Reference, Anpocigsuon 3.9.23

o After the module is created but before execution, the import machinery sets the import-related module
attributes («_init_module_attrs» in the pseudo-code example above), as summarized in a later section.

» Module execution is the key moment of loading in which the module’s namespace gets populated. Execution
is entirely delegated to the loader, which gets to decide what gets populated and how.

o The module created during loading and passed to exec_module() may not be the one returned at the end of
import”.

AMaEe ot ékdoon 3.4: The import system has taken over the boilerplate responsibilities of loaders. These were
previously performed by the importlib.abc.Loader.load_module () method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the
importlib.abc.Loader.exec_module () method with a single argument, the module object to execute.
Any value returned from exec_module () is ignored.

Loaders must satisfy the following requirements:

« If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the
loader should execute the module’s code in the module’s global name space (module.__dict_).

« If the loader cannot execute the module, it should raise an ImportError, although any other exception
raised during exec_module () will be propagated.

In many cases, the finder and loader can be the same object; in such cases the find_spec () method would just
return a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module ()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module () does not need to set any attributes on the module object. If the method returns None, the
import machinery will create the new module itself.

Néo otmv éxdoon 3.4: The create_module () method of loaders.

AMoEe ot €kdoon 3.4: The 1oad_module () method was replaced by exec_module () and the import
machinery assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the Load_module () method of loaders if it
exists and the loader does not also implement exec_module (). However, load_module () hasbeen deprecated
and loaders should implement exec_module () instead.

The 1oad_module () method must implement all the boilerplate loading functionality described above in addition
to executing the module. All the same constraints apply, with some additional clarification:

« If there is an existing module object with the given name in sy s .modules, the loader must use that existing
module. (Otherwise, importlib.reload () will not work correctly.) If the named module does not exist
in sys.modules, the loader must create a new module object and add it to sys.modules.

o The module must exist in sy s .modules before the loader executes the module code, to prevent unbounded
recursion or multiple loading.

o If loading fails, the loader must remove any modules it has inserted into sy s .modules, but it must remove
only the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

AMoEe otv €ékdoon 3.5: A DeprecationWarning is raised when exec_module () is defined but
create_module () isnot.

AMoEe otv éxdoon 3.6 An ImportError is raised when exec_module() is defined but
create_module () isnot.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in
sys.modules. The indirect effect of this is that an imported module may replace itself in sys.modules. This is implementation-specific
behavior that is not guaranteed to work in other Python implementations.

56 Kegahaio 5. The import system

The Python Language Reference, Anpocigsuon 3.9.23

5.4.2 Submodules

When a submodule is loaded using any mechanism (e.g. importlib APIs, the import or import-from
statements, or built-in __import__ ()) a binding is placed in the parent module’s namespace to the submodule
object. For example, if package spam has a submodule foo, after importing spam. foo, spam will have an
attribute £oo which is bound to the submodule. Let’s say you have the following directory structure:

spam/
__init_ .py
foo.py

and spam/__init__ .py has the following line in it:

from .foo import Foo

then executing the following puts name bindings for foo and Foo in the spam module:

>>> import spam

>>> spam. foo

<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> gpam.Foo

<class 'spam.foo.Foo'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental feature of the
import system. The invariant holding is that if you have sys .modules ['spam'] and sys.modules['spamn.
foo'] (as you would after the above import), the latter must appear as the foo attribute of the former.

5.4.3 Module spec

The import machinery uses a variety of information about each module during import, especially before loading. Most
of the information is common to all modules. The purpose of a module’s spec is to encapsulate this import-related
information on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the finder
that creates the module spec and the loader that executes it. Most importantly, it allows the import machinery to
perform the boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

The module’s spec is exposed as the ___spec___ attribute on a module object. See ModuleSpec for details on the
contents of the module spec.

Néo omv éxdoon 3.4.

5.4.4 Import-related module attributes

The import machinery fills in these attributes on each module object during loading, based on the module’s spec,
before the loader executes the module.

__hame___
The __name___ attribute must be set to the fully-qualified name of the module. This name is used to uniquely
identify the module in the import system.

__loader___
The __loader___ attribute must be set to the loader object that the import machinery used when loading
the module. This is mostly for introspection, but can be used for additional loader-specific functionality, for
example getting data associated with a loader.

_ package_
The module’s __package___ attribute must be set. Its value must be a string, but it can be the same value
asits __name__. When the module is a package, its __package___ value should be set to its __name__.
When the module is not a package, __package___ should be set to the empty string for top-level modules,
or for submodules, to the parent package’s name. See PEP 366 for further details.

5.4. Loading 57

https://www.python.org/dev/peps/pep-0366

The Python Language Reference, Anpocigsuon 3.9.23

This attribute is used instead of __name___to calculate explicit relative imports for main modules, as defined
in PEP 366. It is expected to have the same value as __spec___.parent.

AMoEe otnv £xdoon 3.6: The value of __package__isexpected to be thesameas __spec__.parent.

__spec__
The ___spec___ attribute must be set to the module spec that was used when importing the module. Setting
___spec___ appropriately applies equally to modules initialized during interpreter startup. The one exception
iS__main__,where ___spec__is set to None in some cases.

When ___package___isnotdefined, __spec__.parent is used as a fallback.
Néo otnv ékdoon 3.4.
AMoEe oty £xdoon 3.6: __spec__.parent is used as a fallback when __package___is not defined.

path__
If the module is a package (either regular or namespace), the module object’s __path___ attribute must be
set. The value must be iterable, but may be empty if __path__ has no further significance. If __path__ is
not empty, it must produce strings when iterated over. More details on the semantics of __path___ are given
below.

Non-package modules should not have a __path___ attribute.
_ file

__cached___
__file__ is optional. If set, this attribute’s value must be a string. The import system may opt to leave
__file_ unsetif it has no semantic meaning (e.g. a module loaded from a database).

If __file is set, it may also be appropriate to set the __cached___ attribute which is the path to any
compiled version of the code (e.g. byte-compiled file). The file does not need to exist to set this attribute; the
path can simply point to where the compiled file would exist (see PEP 3147).

It is also appropriate toset___cached__when__ _file_ isnotset. However, that scenario is quite atypical.
Ultimately, the loader is what makes use of __file_ and/or __cached__. Soif aloader can load from
a cached module but otherwise does not load from a file, that atypical scenario may be appropriate.

5.4.5 module.__path__

By definition, if a module has a __path___ attribute, it is a package.

Apackage’s__path__ attribute is used during imports of its subpackages. Within the import machinery, it functions
much the same as sys.path, i.e. providing a list of locations to search for modules during import. However,
__path__ is typically much more constrained than sys.path.

__path__ must be an iterable of strings, but it may be empty. The same rules used for sys.path also apply
to a package’s __path__, and sys.path_hooks (described below) are consulted when traversing a package’s
__path__.

A package’s __init__ .py file may set or alter the package’s _ path__ attribute, and this was typically the way
namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace packages no
longer need to supply __init__ .py files containing only __path__ manipulation code; the import machinery
automatically sets __path___ correctly for the namespace package.

58 Kegahaio 5. The import system

https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-3147
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Anpocigsuon 3.9.23

5.4.6 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s spec,
you can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or there
is no spec, the import system will craft a default repr using whatever information is available on the module. It will
try to use the module.__name__,module._ _file_ ,and module.__loader___ asinput into the repr,
with defaults for whatever information is missing.

Here are the exact rules used:

o If themodule hasa ___spec___attribute, the information in the spec is used to generate the repr. The «<name»,
«loader», «origin», and «has_location» attributes are consulted.

o If the module hasa ___file_ attribute, this is used as part of the module’s repr.

o If the module hasno _ _file_ butdoes havea _ loader__ thatis not None, then the loader’s repr is
used as part of the module’s repr.

 Otherwise, just use the module’s __name___in the repr.

AMoEe oty ékdoom 3.4: Use of loader.module_repr () has been deprecated and the module spec is now
used by the import machinery to generate a module repr.

For backward compatibility with Python 3.3, the module repr will be generated by calling the loader’s
module_repr () method, if defined, before trying either approach described above. However, the method is
deprecated.

5.4.7 Cached bytecode invalidation

Before Python loads cached bytecode from a . pyc file, it checks whether the cache is up-to-date with the source
. py file. By default, Python does this by storing the source’s last-modified timestamp and size in the cache file when
writing it. At runtime, the import system then validates the cache file by checking the stored metadata in the cache
file against the source’s metadata.

Python also supports «hash-based» cache files, which store a hash of the source file’s contents rather than its metadata.
There are two variants of hash-based . pyc files: checked and unchecked. For checked hash-based . pyc files, Python
validates the cache file by hashing the source file and comparing the resulting hash with the hash in the cache file. If
a checked hash-based cache file is found to be invalid, Python regenerates it and writes a new checked hash-based
cache file. For unchecked hash-based . pyc files, Python simply assumes the cache file is valid if it exists. Hash-based
. pyc files validation behavior may be overridden with the ——check-hash-based-pycs flag.

AMoEe omv €xdoon 3.7: Added hash-based .pyc files. Previously, Python only supported timestamp-based
invalidation of bytecode caches.

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based
finder (PathFinder), searches an import path, which contains a list of path entries. Each path entry names a
location to search for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries,
associating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling
special file types such as Python source code (. py files), Python byte code (. pyc files) and shared libraries (e.g.
. so files). When supported by the zipimport module in the standard library, the default path entry finders also
handle loading all of these file types (other than shared libraries) from zipfiles.

Path entries need not be limited to file system locations. They can refer to URLs, database queries, or any other
location that can be specified as a string.

5.5. The Path Based Finder 59

The Python Language Reference, Anpocigsuon 3.9.23

The path based finder provides additional hooks and protocols so that you can extend and customize the types of
searchable path entries. For example, if you wanted to support path entries as network URLS, you could write a hook
that implements HTTP semantics to find modules on the web. This hook (a callable) would return a path entry finder
supporting the protocol described below, which was then used to get a loader for the module from the web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using the
terms meta path finder and path entry finder. These two types of finders are very similar, support similar protocols,
and function in similar ways during the import process, but it’s important to keep in mind that they are subtly different.
In particular, meta path finders operate at the beginning of the import process, as keyed off the sys.meta_path
traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the
path based finder were to be removed from sys.meta_path, none of the path entry finder semantics would be
invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is specified
with a string path entry. Most path entries name locations in the file system, but they need not be limited to this.

As a meta path finder, the path based finder implements the £ ind_spec () protocol previously described, however
it exposes additional hooks that can be used to customize how modules are found and loaded from the import path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and sys.
path_importer_cache. The _ path__ attributes on package objects are also used. These provide
additional ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries
in sys.path can name directories on the file system, zip files, and potentially other «locations» (see the site
module) that should be searched for modules, such as URLSs, or database queries. Only strings and bytes should be
present on sys . path;all other data types are ignored. The encoding of bytes entries is determined by the individual
path entry finders.

The path based finder is a meta path finder, so the import machinery begins the import path search by calling the
path based finder’s find_spec () method as described previously. When the path argument to find_spec ()
is given, it will be a list of string paths to traverse - typically a package’s __ _path___ attribute for an import within
that package. If the path argument is None, this indicates a top level import and sys . path is used.

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate
path entry finder (PathEntryFinder) for the path entry. Because this can be an expensive operation (e.g. there
may be stat() call overheads for this search), the path based finder maintains a cache mapping path entries to path
entry finders. This cache is maintained in sys.path_importer_cache (despite the name, this cache actually
stores finder objects rather than being limited to importer objects). In this way, the expensive search for a particular
path entry location’s path entry finder need only be done once. User code is free to remove cache entries from sys .
path_importer_cache forcing the path based finder to perform the path entry search again’.

If the path entry is not present in the cache, the path based finder iterates over every callable in sys.path_hooks.
Each of the path entry hooks in this list is called with a single argument, the path entry to be searched. This callable may
either return a path entry finder that can handle the path entry, or it may raise ImportError. An ImportError
is used by the path based finder to signal that the hook cannot find a path entry finder for that path entry. The exception
is ignored and import path iteration continues. The hook should expect either a string or bytes object; the encoding
of bytes objects is up to the hook (e.g. it may be a file system encoding, UTF-8, or something else), and if the hook
cannot decode the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec () method will store None in sys.path_importer_cache (to indicate that there is no finder
for this path entry) and return None, indicating that this meta path finder could not find the module.

3 In legacy code, it is possible to find instances of imp.NullImporter inthe sys.path_importer_cache. It is recommended that
code be changed to use None instead. See portingpythoncode for more details.

60 Kegahaio 5. The import system

The Python Language Reference, Anpocigsuon 3.9.23

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory — denoted by an empty string — is handled slightly differently from other entries
on sys.path. First, if the current working directory is found to not exist, no value is stored in sys.
path_importer_cache. Second, the value for the current working directory is looked up fresh for each module
lookup. Third, the path used for sys.path_importer_cache and returned by importlib.machinery.
PathFinder.find_spec () will be the actual current working directory and not the empty string.

5.5.2 Path entry finder protocol

In order to support imports of modules and initialized packages and also to contribute portions to namespace packages,
path entry finders must implement the find_spec () method.

find_spec () takes two arguments: the fully qualified name of the module being imported, and the (optional)
target module. £ind_spec () returns a fully populated spec for the module. This spec will always have «loader»
set (with one exception).

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets
«submodule_search_locations» to a list containing the portion.

AMoEe otnv ékdoon 3.4: find_spec () replaced find_loader () and find_module (), both of which
are now deprecated, but will be used if £ind_spec () is not defined.

Older path entry finders may implement one of these two deprecated methods instead of find_spec (). The
methods are still respected for the sake of backward compatibility. However, if find_spec () is implemented on
the path entry finder, the legacy methods are ignored.

find_loader () takes one argument, the fully qualified name of the module being imported. find_loader ()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion.

For backwards compatibility with other implementations of the import protocol, many path entry finders also
support the same, traditional find_module () method that meta path finders support. However path entry finder
find_module () methods are never called with a path argument (they are expected to record the appropriate
path information from the initial call to the path hook).

The find_module () method on path entry finders is deprecated, as it does not allow the path entry finder to
contribute portions to namespace packages. If both find_loader () and find_module () exist on a path
entry finder, the import system will always call find_loader () in preference to find_module ().

5.6 Replacing the standard import system

The most reliable mechanism for replacing the entire import system is to delete the default contents of sys.
meta_path, replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the import
system, then replacing the builtin ___import__ () function may be sufficient. This technique may also be employed
at the module level to only alter the behaviour of import statements within that module.

To selectively prevent the import of some modules from a hook early on the meta path (rather than disabling the
standard import system entirely), it is sufficient to raise ModuleNotFoundError directly from £ind_spec ()
instead of returning None. The latter indicates that the meta path search should continue, while raising an exception
terminates it immediately.

5.6. Replacing the standard import system 61

The Python Language Reference, Anpocigsuon 3.9.23

5.7 Package Relative Imports

Relative imports use leading dots. A single leading dot indicates a relative import, starting with the current package.
Two or more leading dots indicate a relative import to the parent(s) of the current package, one level per dot after
the first. For example, given the following package layout:

package/

__init_ .py

subpackagel/
__init__ .py
moduleX.py
moduleY.py

subpackage?2/
__init__ .py
moduleZ.py

moduleA.py

In either subpackagel/moduleX.py or subpackagel/__init__ .py, the following are valid relative
imports:

from .moduleY import spam

from .moduleY import spam as ham

from . import moduleY

from ..subpackagel import moduleY
from ..subpackage2.moduleZ import eggs
from . .moduleA import foo

Absolute imports may use either the import <>or from <> import <> syntax, but relative imports may
only use the second form; the reason for this is that:

’import XXX .YYY.ZZZ

should expose XXX .YYY.ZZZ as a usable expression, but .moduleY is not a valid expression.

5.8 Special considerations for __main__

The __main__ module is a special case relative to Python’s import system. As noted elsewhere, the __main___
module is directly initialized at interpreter startup, much like sys and builtins. However, unlike those two, it
doesn't strictly qualify as a built-in module. This is because the manner in which __main__ is initialized depends
on the flags and other options with which the interpreter is invoked.

5.8.1 __main__._spec__

Depending on how ___main__ isinitialized, __main__.__ spec___ gets set appropriately or to None.

When Python is started with the —m option, ___spec___ is set to the module spec of the corresponding module
or package. __spec___is also populated when the __main__ module is loaded as part of executing a directory,
zipfile or other sys . path entry.

In the remaining cases __main__.___spec___ is set to None, as the code used to populate the __main___ does
not correspond directly with an importable module:

« interactive prompt
e —c option
« running from stdin

« running directly from a source or bytecode file

62 Kegahaio 5. The import system

The Python Language Reference, Anpocigsuon 3.9.23

Note that __main__.__ spec__ is always None in the last case, even if the file could technically be imported
directly as a module instead. Use the —m switch if valid module metadata is desired in __main__.

Note also that even when __main__ corresponds with an importable module and __main__._ spec__ isset
accordingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by if _ name_
== "__main__": checks only execute when the module is used to populate the __main__ namespace, and not

during normal import.

5.9 Open issues

XXX It would be really nice to have a diagram.

XXX * (import_machinery.rst) how about a section devoted just to the attributes of modules and packages, perhaps
expanding upon or supplanting the related entries in the data model reference page?

XXX runpy, pkgutil, et al in the library manual should all get «See Also» links at the top pointing to the new import
system section.

XXX Add more explanation regarding the different ways in which __main___is initialized?

XXX Add more info on __main___ quirks/pitfalls (i.e. copy from PEP 395).

5.10 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages is
still available to read, although some details have changed since the writing of that document.

The original specification for sys .meta_path was PEP 302, with subsequent extension in PEP 42().

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader () protocol
as an alternative to £ind_module ().

PEP 366 describes the addition of the __package___ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed __name___ for semantics PEP
366 would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs in
the import system and also addition of new methods to finders and loaders.

5.9. Open issues 63

https://www.python.org/dev/peps/pep-0395
https://www.python.org/doc/essays/packages/
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0328
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0338
https://www.python.org/dev/peps/pep-0451

The Python Language Reference, Anpocigsuon 3.9.23

64 Kegahaio 5. The import system

KE®GAAAIO O

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name .= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase «the numeric arguments are converted to a
common type», this means that the operator implementation for built-in types works as follows:

« If either argument is a complex number, the other is converted to complex;
« otherwise, if either argument is a floating point number, the other is converted to floating point;
« otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the “%” operator). Extensions
must define their own conversion behavior.

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom = identifier | literal | enclosure
enclosure = parenth_form | 1list_display | dict_display | set_display
| generator_expression | yield _atom

65

The Python Language Reference, Anpocigsuon 3.9.23

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section
Ovouaoio kow cvvdeon for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more
underscore characters and does not end in two or more underscores, it is considered a private name of that class.
Private names are transformed to a longer form before code is generated for them. The transformation inserts the
class name, with leading underscores removed and a single underscore inserted, in front of the name. For example,
the identifier ___spam occurring in a class named Ham will be transformed to _Ham___spam. This transformation is
independent of the syntactical context in which the identifier is used. If the transformed name is extremely long (longer
than 255 characters), implementation defined truncation may happen. If the class name consists only of underscores,
no transformation is done.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:

literal := stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number)
with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals.
See section Liferals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence)
may obtain the same object or a different object with the same value.

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form := "(" [starred_expression] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it
yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals
apply (i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The exception is the
empty tuple, for which parentheses are required — allowing unparenthesized «nothing» in expressions would cause
ambiguities and allow common typos to pass uncaught.

66 Kegahawo 6. Expressions

The Python Language Reference, Anpocigsuon 3.9.23

6.2.4 Displays for lists, sets and dictionaries
For constructing a list, a set or a dictionary Python provides special syntax called «displays», each of them in two
flavors:

« either the container contents are listed explicitly, or

« they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension = assignment_expression comp_for
comp_for ["async"] "for" target_list "in
comp_iter comp_for | comp_if

comp_if RES "if" or_test [comp_iter]

or_test [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or 1 £
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time
the innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate
implicitly nested scope. This ensures that names assigned to in the target list don’t «leak» into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an
argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: [x*y for x in range(10) for y in range(x, x+10)].

To ensure the comprehension always results in a container of the appropriate type, yield and yield from
expressions are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous
iterator. A comprehension in an async def function may consist of either a for or async for clause following
the leading expression, may contain additional for or async for clauses, and may also use awa it expressions.
If a comprehension contains either async for clauses or await expressions it is called an asynchronous
comprehension. An asynchronous comprehension may suspend the execution of the coroutine function in which it
appears. See also PEP 530.

Néo oty €xdoon 3.6: Asynchronous comprehensions were introduced.

AMoEe oty ékdoon 3.8: yield and yield from prohibited in the implicitly nested scope.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display = "[" [starred_list | comprehension] "]"

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension.
When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into
the list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting
from the comprehension.

6.2. Atoms 67

https://www.python.org/dev/peps/pep-0530

The Python Language Reference, Anpocigsuon 3.9.23

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating
keys and values:

set_display := "{" (starred_list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right
and added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting
from the comprehension.

An empty set cannot be constructed with { }; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display = "{" [key_datum_list | dict_comprehension] "}"
key_datum_list n= key_datum ("," key_datum)* [","]
key_datum = expression ":" expression | "**" or_expr

dict_comprehension expression ":" expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of key/datum pairs is given, they are evaluated from left to right to define the entries
of the dictionary: each key object is used as a key into the dictionary to store the corresponding datum. This means
that you can specify the same key multiple times in the key/datum list, and the final dictionary’s value for that key
will be the last one given.

A double asterisk * * denotes dictionary unpacking. Its operand must be a mapping. Each mapping item is added to the
new dictionary. Later values replace values already set by earlier key/datum pairs and earlier dictionary unpackings.

Néo otnv éxdoom 3.5: Unpacking into dictionary displays, originally proposed by PEP 448.

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon
followed by the usual «for» and «if» clauses. When the comprehension is run, the resulting key and value elements
are inserted in the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section 7he standard type hierarchy. (To summarize, the
key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected;
the last datum (textually rightmost in the display) stored for a given key value prevails.

AMaEe oty €kdoom 3.8: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was
not well-defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before
the value, as proposed by PEP 572.

6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression = "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is
enclosed in parentheses instead of brackets or curly braces.

68 Kegahawo 6. Expressions

https://www.python.org/dev/peps/pep-0448
https://www.python.org/dev/peps/pep-0572

The Python Language Reference, Anpocigsuon 3.9.23

Variables used in the generator expression are evaluated lazily when the __next__ () method is called for the
generator object (in the same fashion as normal generators). However, the iterable expression in the leftmost for
clause is immediately evaluated, so that an error produced by it will be emitted at the point where the generator
expression is defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter
condition in the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values
obtained from the leftmost iterable. For example: (x*y for x in range (10) for y in range (x,
x+10)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself, yield and yield from
expressions are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or await expressions it is called an asynchronous
generator expression. An asynchronous generator expression returns a new asynchronous generator object, which is
an asynchronous iterator (see Asynchronous Iterators).

Néo oty éxdoom 3.6: Asynchronous generator expressions were introduced.

AMoEe otnv ékdoom 3.7: Prior to Python 3.7, asynchronous generator expressions could only appear in async
def coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

AMoEe oty €kdoon 3.8: yield and yield from prohibited in the implicitly nested scope.

6.2.9 Yield expressions

yield_atom "(" yield expression ")"
yield_expression = "yield" [expression_list | "from" expression]

The yield expression is used when defining a generator function or an asynchronous generator function and thus can
only be used in the body of a function definition. Using a yield expression in a function’s body causes that function
to be a generator function, and using it in an async def function’s body causes that coroutine function to be an
asynchronous generator function. For example:

def gen(): # defines a generator function
yield 123

async def agen(): # defines an asynchronous generator function
yield 123

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly
defined scopes used to implement comprehensions and generator expressions.

AMoEe omv ékdoon 3.8: Yield expressions prohibited in the implicitly nested scopes used to implement
comprehensions and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section
Asynchronous generator functions.

When a generator function is called, it returns an iterator known as a generator. That generator then controls
the execution of the generator function. The execution starts when one of the generator’s methods is called. At
that time, the execution proceeds to the first yield expression, where it is suspended again, returning the value of
expression_list to the generator’s caller. By suspended, we mean that all local state is retained, including the
current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any exception
handling. When the execution is resumed by calling one of the generator’s methods, the function can proceed exactly
as if the yield expression were just another external call. The value of the yield expression after resuming depends
on the method which resumed the execution. If __next__ () is used (typically via either a for or the next ()
builtin) then the result is None. Otherwise, if send () is used, then the result will be the value passed in to that
method.

6.2. Atoms 69

The Python Language Reference, Anpocigsuon 3.9.23

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one
entry point and their execution can be suspended. The only difference is that a generator function cannot control
where the execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a t ry construct. If the generator is not resumed before it is finalized (by
reaching a zero reference count or by being garbage collected), the generator-iterator’'s close () method will be
called, allowing any pending finally clauses to execute.

Whenyield from <expr> isused, the supplied expression must be an iterable. The values produced by iterating
that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send ()
and any exceptions passed in with t hrow () are passed to the underlying iterator if it has the appropriate methods.
If this is not the case, then send () will raise AttributeError or TypeError, while t hrow () will just raise
the passed in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes
the value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically
when the subiterator is a generator (by returning a value from the subgenerator).

AMoEe ot €kdoon 3.3: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an
assignment statement.

Agite emiong:
PEP 255 - Simple Generators The proposal for adding generators and the yie1d statement to Python.

PEP 342 - Coroutines via Enhanced Generators The proposal to enhance the API and syntax of generators,
making them usable as simple coroutines.

PEP 380 - Syntax for Delegating to a Subgenerator The proposal to introduce the yield from syntax,
making delegation to subgenerators easy.

PEP 525 - Asynchronous Generators The proposal that expanded on PEP 492 by adding generator capabilities
to coroutine functions.

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.

generator.__next__ ()
Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator
function is resumed witha___next__ () method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value
of the expression_list is returned to ___next__ ()”s caller. If the generator exits without yielding
another value, a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next () function.

generator.send (value)
Resumes the execution and «sends» a value into the generator function. The value argument becomes the result
of the current yield expression. The send () method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send () is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive
the value.

generator.throw (value)

generator.throw (type[, value[, traceback]])
Raises an exception at the point where the generator was paused, and returns the next value yielded by the
generator function. If the generator exits without yielding another value, a StopIteration exception is

70 Kegahawo 6. Expressions

https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0342
https://www.python.org/dev/peps/pep-0380
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492

The Python Language Reference, Anpocigsuon 3.9.23

raised. If the generator function does not catch the passed-in exception, or raises a different exception, then
that exception propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatability, however, the second signature is supported, following a convention from older
versions of Python. The fype argument should be an exception class, and value should be an exception instance.
If the value is not provided, the type constructor is called to get an instance. If traceback is provided, it is set
on the exception, otherwise any existing __traceback___ attribute stored in value may be cleared.

generator.close ()
Raises a GeneratorExit at the point where the generator function was paused. If the generator function
then exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close
returns to its caller. If the generator yields a value, a Runt imeError is raised. If the generator raises any
other exception, it is propagated to the caller. c1ose () does nothing if the generator has already exited due
to an exception or normal exit.

Examples

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo (value=None) :
print ("Execution starts when 'next()' is called for the first time.")
try:
while True:
try:
value = (yield value)
except Exception as e:
value = e
finally:
print ("Don't forget to clean up when 'close()' is called.")

>>> generator = echo (1)

>>> print (next (generator))

Execution starts when 'next()' is called for the first time.
1

>>> print (next (generator))

None

>>> print (generator.send(2))

2

>>> generator.throw (TypeError, "spam")

TypeError ('spam',)

>>> generator.close()

Don't forget to clean up when 'close()' is called.

For examples using yield from, see pep-380 in «What’s New in Python.»

Asynchronous generator functions

The presence of a yield expression in a function or method defined using async def further defines the function
as an asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous
generator object. That object then controls the execution of the generator function. An asynchronous generator object
is typically used in an async for statement in a coroutine function analogously to how a generator object would
be used in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this
object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again,
returning the value of expression_11ist tothe awaiting coroutine. As with a generator, suspension means that all
local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation

6.2. Atoms 71

The Python Language Reference, Anpocigsuon 3.9.23

stack, and the state of any exception handling. When the execution is resumed by awaiting on the next object returned
by the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another
external call. The value of the yield expression after resuming depends on the method which resumed the execution.
If _ anext__ () isused then the result is None. Otherwise, if asend () is used, then the result will be the value
passed in to that method.

In an asynchronous generator function, yield expressions are allowed anywhere in a ¢ ry construct. However, if an
asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage
collected), then a yield expression within a try construct could result in a failure to execute pending finally
clauses. In this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call
the asynchronous generator-iterator’s aclose () method and run the resulting coroutine object, thus allowing any
pending finally clauses to execute.

To take care of finalization, an event loop should define a finalizer function which takes an asynchronous generator-
iterator and presumably calls ac1ose () and executes the coroutine. This finalizer may be registered by calling sy s .
set_asyncgen_hooks (). When first iterated over, an asynchronous generator-iterator will store the registered
finalizer to be called upon finalization. For a reference example of a finalizer method see the implementation of
asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

The expression yield from <expr> isa syntax error when used in an asynchronous generator function.

Asynchronous generator-iterator methods

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution
of a generator function.

coroutine agen.__ _anext_ ()

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last
executed yield expression. When an asynchronous generator function is resumed with an ___anext__ ()
method, the current yield expression always evaluates to None in the returned awaitable, which when run will
continue to the next yield expression. The value of the expression_1list of the yield expression is the
value of the StopIteration exception raised by the completing coroutine. If the asynchronous generator
exits without yielding another value, the awaitable instead raises a StopAsyncIteration exception,
signalling that the asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

coroutine agen.asend (value)

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the
send () method for a generator, this «sends» a value into the asynchronous generator function, and the
value argument becomes the result of the current yield expression. The awaitable returned by the asend ()
method will return the next value yielded by the generator as the value of the raised StopIteration, or
raises StopAsyncIteration if the asynchronous generator exits without yielding another value. When
asend () is called to start the asynchronous generator, it must be called with None as the argument, because
there is no yield expression that could receive the value.

coroutine agen.athrow (value)

coroutine agen.athrow (type[, value[, rraceback]])
Returns an awaitable that raises an exception of type type at the point where the asynchronous generator
was paused, and returns the next value yielded by the generator function as the value of the raised
StopIteration exception. If the asynchronous generator exits without yielding another value, a
StopAsyncIteration exception is raised by the awaitable. If the generator function does not catch the
passed-in exception, or raises a different exception, then when the awaitable is run that exception propagates
to the caller of the awaitable.

coroutine agen.aclose ()
Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator function
at the point where it was paused. If the asynchronous generator function then exits gracefully, is already
closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise
a StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous
generator will raise a StopAsyncIteration exception. If the asynchronous generator yields a value, a

72 Kegahawo 6. Expressions

https://github.com/python/cpython/tree/3.9/Lib/asyncio/base_events.py

The Python Language Reference, Anpocigsuon 3.9.23

RuntimeError is raised by the awaitable. If the asynchronous generator raises any other exception, it is
propagated to the caller of the awaitable. If the asynchronous generator has already exited due to an exception
or normal exit, then further calls to aclose () will return an awaitable that does nothing.

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary = atom | attributeref | subscription | slicing | call

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref = primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This
object is then asked to produce the attribute whose name is the identifier. This production can be customized by
overriding the ___getattr__ () method. If this attribute is not available, the exception AttributeError is
raised. Otherwise, the type and value of the object produced is determined by the object. Multiple evaluations of the

same attribute reference may yield different objects.

6.3.2 Subscriptions

The subscription of an instance of a container class will generally select an element from the container. The
subscription of a generic class will generally return a GenericAlias object.

subscription = primary "[" expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through
defining one or both of _ _getitem () and _ class_getitem__ (). When the primary is subscripted,
the evaluated result of the expression list will be passed to one of these methods. For more details on when
__class_getitem__ iscalled instead of __getitem__,see _ class getitem__ versus __ getitem__.

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression
list. Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via __getitem _ ():

1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the
keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An
example of a builtin mapping class is the dict class.

2. Sequences. If the primary is a sequence, the expression list must evaluate to an int ora s1ice (as discussed
in the following section). Examples of builtin sequence classes include the st r, 1ist and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all
provide a ___getitem__ () method that interprets negative indices by adding the length of the sequence to the
index so that, for example, x [-1] selects the last item of x. The resulting value must be a nonnegative integer less
than the number of items in the sequence, and the subscription selects the item whose index is that value (counting
from zero). Since the support for negative indices and slicing occurs in the object’s ___getitem _ () method,
subclasses overriding this method will need to explicitly add that support.

6.3. Primaries 73

The Python Language Reference, Anpocigsuon 3.9.23

A string is a special kind of sequence whose items are characters. A character is not a separate data type but a
string of exactly one character.

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions
or as targets in assignment or de 1 statements. The syntax for a slicing:

slicing = primary "[" slice_list "]"
slice_list n= slice_item ("," slice_item)* [","]
slice_item
proper_slice
lower_bound
upper_bound expression
stride = expression

expression | proper_slice
[lower_bound] ":" [upper_bound] [":" [stride]]
expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so
any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated
by defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this
is the case if the slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same ___getitem _ () method as
normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one
comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice
item is the key. The conversion of a slice item that is an expression is that expression. The conversion of a proper
slice is a slice object (see section The standard type hierarchy) whose start, stop and step attributes are the
values of the expressions given as lower bound, upper bound and stride, respectively, substituting None for missing
expressions.

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call = primary " (" [argument_list [","] | comprehension]
argument_list = positional_arguments ["," starred_and_keywords]
["," keywords_arguments]
| starred_and_keywords ["," keywords_arguments]
| keywords_arguments

positional_arguments = positional_item ("," positional_item)*
positional_item u= assignment_expression | "*" expression
starred_and_keywords = ("*" expression | keyword_item)

("," "*" expression | "," keyword_item)*
keywords_arguments L= (keyword_item | "**" expression)

("," keyword_ item | "," "**" expression)*
keyword_item u= identifier "=" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the
semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects havinga ___call__ () method are callable). All argument
expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of
formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots.

74 Kegahawo 6. Expressions

The Python Language Reference, Anpocigsuon 3.9.23

Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the
same as the first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError
exception is raised. Otherwise, the value of the argument is placed in the slot, filling it (even if the expression is
None, it fills the slot). When all arguments have been processed, the slots that are still unfilled are filled with the
corresponding default value from the function definition. (Default values are calculated, once, when the function is
defined; thus, a mutable object such as a list or dictionary used as default value will be shared by all calls that don’t
specify an argument value for the corresponding slot; this should usually be avoided.) If there are any unfilled slots
for which no default value is specified, a TypeError exception is raised. Otherwise, the list of filled slots is used
as the argument list for the call.

CPython implementation detail: An implementation may provide built-in functions whose positional parameters do
not have names, even if they are “named” for the purpose of documentation, and which therefore cannot be supplied
by keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple () to parse
their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised,
unless a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a
tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised,
unless a formal parameter using the syntax **identifier is present; in this case, that formal parameter receives
a dictionary containing the excess keyword arguments (using the keywords as keys and the argument values as
corresponding values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements
from these iterables are treated as if they were additional positional arguments. For the call £ (x1, x2, *y, x3,
x4), if y evaluates to a sequence y/, ..., yM, this is equivalent to a call with M+4 positional arguments x/, x2, yI,
ey YM, X3, x4.

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it
is processed before the keyword arguments (and any * *expression arguments — see below). So:

>>> def f(a, b):
print (a, b)

>>> f(b=1, *(2,))
21
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f£() got multiple values for keyword argument 'a'
>>> £(1, *(2,))
12

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice
this confusion does not arise.

If the syntax * *expression appears in the function call, expression must evaluate to a mapping, the contents
of which are treated as additional keyword arguments. If a keyword is already present (as an explicit keyword
argument, or from another unpacking), a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument
slots or as keyword argument names.

AMoEe otnv ékdoon 3.5: Function calls accept any number of * and ** unpackings, positional arguments may
follow iterable unpackings (*), and keyword arguments may follow dictionary unpackings (* *). Originally proposed
by PEP 448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends
on the type of the callable object.

If it is—

a user-defined function: The code block for the function is executed, passing it the argument list. The first thing
the code block will do is bind the formal parameters to the arguments; this is described in section Function

6.3. Primaries 75

https://www.python.org/dev/peps/pep-0448

The Python Language Reference, Anpocigsuon 3.9.23

definitions. When the code block executes a return statement, this specifies the return value of the function
call.

a built-in function or method: The result is up to the interpreter; see built-in-funcs for the descriptions of built-in
functions and methods.

a class object: A new instance of that class is returned.

a class instance method: The corresponding user-defined function is called, with an argument list that is one longer
than the argument list of the call: the instance becomes the first argument.

a class instance: The class mustdefinea call () method; the effect is then the same as if that method was
called.

6.4 Await expression

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr = "await" primary

Néo omv éxdoon 3.5.

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on
its right. The syntax is:

power = (await_expr | primary) ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left
(this does not constrain the evaluation order for the operands): —1* *2 results in —1.

The power operator has the same semantics as the built-in pow () function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common
type, and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case,
all arguments are converted to float and a float result is delivered. For example, 10* *2 returns 100, but 10**~-2
returns 0.01.

Raising 0. 0 to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional
power results in a complex number. (In earlier versions it raised a ValueError.)

This operation can be customized using the special ___pow___ () method.

6.6 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr = power | "-" u_expr | "+" u_expr | "~" u_expr

The unary — (minus) operator yields the negation of its numeric argument; the operation can be overridden with the
__neg__ () special method.

76 Kegahawo 6. Expressions

The Python Language Reference, Anpocigsuon 3.9.23

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the
__pos___ () special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is
defined as — (x+1) . It only applies to integral numbers or to custom objects that override the ___invert__ ()
special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators
and one for additive operators:

m_expr I= u_expr | m_expr "*" u_expr | m_expr "Q@" m_expr |
m _expr "//" u_expr | m_expr "/" u_expr |
m_expr "%" u_expr

a_expr = m_expr | a_expr "+" m_expr | a_expr "-" m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a
common type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition
factor yields an empty sequence.

This operation can be customized using the special __mul__ () and ___rmul__ () methods.
The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.
Néo omv éxdoom 3.5.

The / (division) and / / (floor division) operators yield the quotient of their arguments. The numeric arguments are
first converted to a common type. Division of integers yields a float, while floor division of integers results in an
integer; the result is that of mathematical division with the “floor” function applied to the result. Division by zero
raises the ZeroDivisionError exception.

This operation can be customized using the special __truediv.__ () and __floordiv__ () methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception.
The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + 0.
34.) The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value
of the result is strictly smaller than the absolute value of the second operand’.

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y).
Floor division and modulo are also connected with the built-in function divmod () : divmod (x, y) == (x//y,
x%y) 2.

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to
perform old-style string formatting (also known as interpolation). The syntax for string formatting is described in the
Python Library Reference, section old-string-formatting.

The modulo operation can be customized using the special __mod___ () method.

! While abs (x%y) < abs (y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming
a platform on which a Python float is an IEEE 754 double-precision number, in order that ~-1e-100 % 1e100 have the same signas 1e100,
the computed resultis ~1e-100 + 1e100, which is numerically exactly equal to 1e100. The functionmath . fmod () returns a result whose
sign matches the sign of the first argument instead, and so returns —1e~-100 in this case. Which approach is more appropriate depends on the
application.

2 If x is very close to an exact integer multiple of y, it’s possible for x/ /y to be one larger than (x-x%y) //y due to rounding. In such cases,

o

Python returns the latter result, in order to preserve that divmod (x,y) [0] * y + x % y be very close to x.

6.7. Binary arithmetic operations 77

The Python Language Reference, Anpocigsuon 3.9.23

The floor division operator, the modulo operator, and the divmod () function are not defined for complex numbers.
Instead, convert to a floating point number using the albs () function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be
sequences of the same type. In the former case, the numbers are converted to a common type and then added together.
In the latter case, the sequences are concatenated.

This operation can be customized using the special __add___ () and __radd___ () methods.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a
common type.

This operation can be customized using the special ___sub___ () method.

6.8 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr = a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits
given by the second argument.

This operation can be customized using the special __ I1shift__ () and ___rshift__ () methods.

A right shift by n bits is defined as floor division by pow (2, n) . A left shift by » bits is defined as multiplication
with pow (2, n).

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr = shift_expr | and_expr "&" shift_expr
XOr_expr = and_expr | xor_expr """ and_expr
or_expr = xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom
object overriding __and__ () or__rand__ () special methods.

The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must
be a custom object overriding __xor__ () or __rxor__ () special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a
custom object overriding __or__ () or __ror__ () special methods.

6.10 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional
in mathematics:

comparison = or_expr (comp_operator or_expr)¥*
comp operator - nen ‘ nsn I n__mn | ns—n ‘ ne=mn I nmyp—_n
| "iS" ["not"] ‘ ["not"] "in"

78 Kegahawo 6. Expressions

The Python Language Reference, Anpocigsuon 3.9.23

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean
values. In this case Python will call bool () on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= zisequivalenttox < y and y <= z,exceptthaty
is evaluated only once (but in both cases z is not evaluated at all when x < vy is found to be false).

Formally, if a, b, c, ..., y, z are expressions and opl, op2, ..., opN are comparison operators, then a opl b op2
C ... y opN zisequivalenttoa opl b and b op2 ¢ and ... y opN z,exceptthat each expression
is evaluated at most once.

Note thata opl b op2 c doesn’t imply any kind of comparison between a and c, so that,e.g., x < y > zis
perfectly legal (though perhaps not pretty).

6.10.1 Value comparisons

The operators <, >, ==, >=, <=, and ! = compare the values of two objects. The objects do not need to have the same
type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an
object is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value.
Also, there is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of
all its data attributes. Comparison operators implement a particular notion of what the value of an object is. One can
think of them as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior
from object. Types can customize their comparison behavior by implementing rich comparison methods like
1t (), described in Basic customization.

The default behavior for equality comparison (== and ! =) is based on the identity of the objects. Hence, equality
comparison of instances with the same identity results in equality, and equality comparison of instances with different
identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive
(i.e.x is yimpliesx == y).

A default order comparison (<, >, <=, and >=) is not provided; an attempt raises TypeError. A motivation for
this default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be
in contrast to what types will need that have a sensible definition of object value and value-based equality. Such types
will need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

o Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.
Fraction and decimal.Decimal can be compared within and across their types, with the restriction
that complex numbers do not support order comparison. Within the limits of the types involved, they compare
mathematically (algorithmically) correct without loss of precision.

The not-a-number values £1oat ('NaN') and decimal.Decimal ('NaN') are special. Any ordered
comparison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number
values are not equal to themselves. For example, if x = float ('NaN'),3 < x,x < 3andx == x
are all false, while x != x is true. This behavior is compliant with IEEE 754.

e None and Not Implemented are singletons. PEP 8 advises that comparisons for singletons should always
be done with is or is not, never the equality operators.

« Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They
compare lexicographically using the numeric values of their elements.

« Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of
the built-in function ord ()) of their characters.®

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. <LATIN CAPITAL LETTER A»). While
most abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition be
represented using a sequence of more than one code point. For example, the abstract character <LATIN CAPITAL LETTER C WITH CEDILLA»
can be represented as a single precomposed character at code position U+00C7, or as a sequence of a base character at code position U+0043

6.10. Comparisons 79

https://www.python.org/dev/peps/pep-0008

The Python Language Reference, Anpocigsuon 3.9.23

Strings and binary sequences cannot be directly compared.

» Sequences (instances of tuple, 1ist, or range) can be compared only within each of their types, with
the restriction that ranges do not support order comparison. Equality comparison across these types results in
inequality, and ordering comparison across these types raises TypeError.

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers
typically assume identical objects are equal to themselves. That lets them bypass equality tests for identical
objects to improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

- For two collections to compare equal, they must be of the same type, have the same length, and each pair
of corresponding elements must compare equal (for example, [1,2] == (1,2) is false because the
type is not the same).

- Collections that support order comparison are ordered the same as their first unequal elements (for
example, [1,2,x] <= [1,2,y] has the same value as x <= vy). If a corresponding element
does not exist, the shorter collection is ordered first (for example, [1,2] < [1,2, 3] istrue).

o Mappings (instances of dict) compare equal if and only if they have equal (key, value) pairs. Equality
comparison of the keys and values enforces reflexivity.

Order comparisons (<, >, <=, and >=) raise TypeError.
« Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total
orderings (for example, the twosets {1, 2} and { 2, 3} are not equal, nor subsets of one another, nor supersets
of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering
(for example, min (), max (), and sorted () produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

« Most other built-in types have no comparison methods implemented, so they inherit the default comparison
behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:
« Equality comparison should be reflexive. In other words, identical objects should compare equal:
x is yimplies x == y
o Comparison should be symmetric. In other words, the following expressions should have the same result:
x == yandy == x
x != yandy != x
x < yandy > x
x <= yandy >= x
o Comparison should be transitive. The following (non-exhaustive) examples illustrate that:
x >y and y > zimpliesx > z
x < y and y <= zimpliesx < z

« Inverse comparison should result in the boolean negation. In other words, the following expressions should
have the same result:

x == yandnot x !=y

x < yandnot x >= vy (for total ordering)

(LATIN CAPITAL LETTER C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).

The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example,
"\u00C7" == "\u0043\u0327"is False, even though both strings represent the same abstract character <LATIN CAPITAL LETTER
C WITH CEDILLA».

To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize ().

80 Kegahawo 6. Expressions

The Python Language Reference, Anpocigsuon 3.9.23

x > yand not x <= y (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings).
See also the total_ordering () decorator.

e The hash () result should be consistent with equality. Objects that are equal should either have the same hash
value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following
these rules.

6.10.2 Membership test operations

The operators in and not 1in test for membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well
as dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set,

frozenset, dict, or collections.deque, the expression x in y isequivalentto any (x is e or x == e for e
in vy).

For the string and bytes types, x in yis True if and only if x is a substring of y. An equivalent testis y . find (x)
!= —1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return
True.

For user-defined classes which define the _ contains__ () method, x in y returns True if y.
___contains__ (x) returns a true value, and False otherwise.

For user-defined classes which do not define ___contains__ () butdodefine __iter_ _ (),x in yis True
if some value z, for which the expression x is z or x == z is true, is produced while iterating over y. If an
exception is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines ___getitem _ (),x in yis True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i], and no lower integer index raises
the IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not 1in is defined to have the inverse truth value of in.

6.10.3 Identity comparisons

The operators i s and is not test for an object’s identity: x is vy is true if and only if x and y are the same object.
An Object’s identity is determined using the id () function. x is not y yields the inverse truth value.*

6.11 Boolean operations

or_test = and _test | or_test "or" and test
and_test = not_test | and _test "and" not_test
not_test = comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following
values are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including
strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects
can customize their truth value by providinga ___bool__ () method.

The operator not yields True if its argument is false, False otherwise.

The expression x and vy first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain
uses of the i s operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

6.11. Boolean operations 81

The Python Language Reference, Anpocigsuon 3.9.23

The expression x or vy first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is
empty, the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a
boolean value regardless of the type of its argument (for example, not 'foo' produces False rather than ''.)

6.12 Assignment expressions

assignment_expression = [identifier ":="] expression

An assignment expression (sometimes also called a «named expression» or «walrus») assigns an expression to
an identifier, while also returning the value of the expression.

One common use case is when handling matched regular expressions:

if matching := pattern.search(data):
do_something (matching)

Or, when processing a file stream in chunks:

while chunk := file.read(9000):
process (chunk)

Néo omv éxdoomn 3.8: See PEP 572 for more details about assignment expressions.

6.13 Conditional expressions

or_test ["if" or_test "else" expression]
conditional_expression | lambda_expr

conditional_expression
expression

Conditional expressions (sometimes called a «ternary operator») have the lowest priority of all Python operations.

The expression x 1f C else vy first evaluates the condition, C rather than x. If C is true, x is evaluated and its
value is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14 Lambdas

lambda_expr = "lambda" [parameter_list] ":" expression

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression
lambda parameters: expression yields a function object. The unnamed object behaves like a function
object defined with:

def <lambda> (parameters) :
return expression

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions
cannot contain statements or annotations.

82 Kegahawo 6. Expressions

https://www.python.org/dev/peps/pep-0572
https://www.python.org/dev/peps/pep-0308

The Python Language Reference, Anpocigsuon 3.9.23

6.15 Expression lists

expression_list = expression ("," expression)* [","]
starred_list = starred_item ("," starred item)* [","]
starred_expression = expression | (starred_item ",")* [starred_item]
starred_item = assignment_expression | "*" or_expr

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length
of the tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking. Its operand must be an iferable. The iterable is expanded into a sequence
of items, which are included in the new tuple, list, or set, at the site of the unpacking.

Néo oty €xdoom 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448.

The trailing comma is required only to create a single tuple (a.k.a. a singleton); it is optional in all other cases. A
single expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To
create an empty tuple, use an empty pair of parentheses: ().)

6.16 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is
evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, expr4
(exprl, expr2, expr3, expré)
{exprl: expr2, expr3: expréd}

exprl + expr2 * (expr3 - exprd)
exprl (expr2, expr3, *expr4, **exprb)
expr3, exprd4 = exprl, expr2

6.17 Operator precedence

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest
precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for exponentiation, which groups from
right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right
chaining feature as described in the Comparisons section.

6.15. Expression lists 83

https://www.python.org/dev/peps/pep-0448

The Python Language Reference, Anpocigsuon 3.9.23

Operator Description

(expressions...), Binding or parenthesized expression, list display,
[expressions...], {key: value. ..}, | dictionary display, set display
{expressions...}

x[index], x[index:index], x (arguments...), | Subscription, slicing, call, attribute reference

x.attribute

await x

Await expression

* %

Exponentiation”

+X, —x, ~X

Positive, negative, bitwise NOT

*Q,/,//,% Multiplication, matrix multiplication, division,
floor division, remainder®

+, - Addition and subtraction

<<, >> Shifts

& Bitwise AND

~ Bitwise XOR

| Bitwise OR

in, not in,is, 1s not, <, <=,>, >=, =,

Comparisons, including membership tests and
identity tests

not x Boolean NOT

and Boolean AND

or Boolean OR

if -else Conditional expression
Lambda expression

lambda

Assignment expression

5 The power operator * * binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**-1is 0. 5.
6 The % operator is also used for string formatting; the same precedence applies.

84

Kegahawo 6. Expressions

KEDAAAIO 7

Simple statements

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line
separated by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt
| assert_stmt

| assignment_stmt

| augmented_assignment_stmt
| annotated_assignment_stmt
| pass_stmt

| del_stmt

| return_stmt

| yield stmt

| raise_stmt

| break_stmt

| continue_stmt

| import_stmt

| future_stmt

| global_stmt

| nonlocal_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a
function that returns no meaningful result; in Python, procedures return the value None). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt = starred_expression

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr () function and the
resulting string is written to standard output on a line by itself (except if the result is None, so that procedure calls
do not cause any output.)

85

The Python Language Reference, Anpocigsuon 3.9.23

7.2 Assighment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt = (target_1list "=")+ (starred_expression | yield_expression)
target_list n= target ("," target)* [","]
target = identifier

| "(" [target_list] "™)"
"[" [target_list] "1"
attributeref

|
|
| subscription
| slicing

| "*" target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-
separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to
right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object
(an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide
about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types
and the exceptions raised are given with the definition of the object types (see section The standard type hierarchy).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined
as follows.

« If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to
that target.

o Else:

— If the target list contains one target prefixed with an asterisk, called a «starred» target: The object must
be an iterable with at least as many items as there are targets in the target list, minus one. The first items
of the iterable are assigned, from left to right, to the targets before the starred target. The final items of
the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable
is then assigned to the starred target (the list can be empty).

- Else: The object must be an iterable with the same number of items as there are targets in the target list,
and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.
« If the target is an identifier (name):

- If the name does not occur in a global or nonlocal statement in the current code block: the name
is bound to the object in the current local namespace.

— Otherwise: the name is bound to the object in the global namespace or the outer namespace determined
by nonlocal, respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be
called.

« If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an
object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to
assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception
(usually but not necessarily Att ributeError).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the right-hand side expression, a . x can access either an instance attribute or (if no instance attribute exists) a

86 Kegahawo 7. Simple statements

The Python Language Reference, Anpocigsuon 3.9.23

class attribute. The left-hand side target a . x is always set as an instance attribute, creating it if necessary. Thus,
the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression
refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

class Cls:

x = 3 # class variable
inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with
property ().

« If the target is a subscription: The primary expression in the reference is evaluated. It should yield either
a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript
expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative,
the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s
length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of
range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/datum pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new
key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem__ () method is called with appropriate arguments.

« If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and
upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length.
The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The
resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence
object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be
different from the length of the assigned sequence, thus changing the length of the target sequence, if the
target sequence allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same as for
expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are
“simultaneous” (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to
variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:

=1, 2 # 1 is updated, then x[i] is updated

Agite griong:

PEP 3132 - Extended Iterable Unpacking The specification for the *target feature.

7.2. Assignment statements 87

https://www.python.org/dev/peps/pep-3132

The Python Language Reference, Anpocigsuon 3.9.23

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt = augtarget augop (expression_list | yield expression)

augtarget = identifier | attributeref | subscription | slicing

augop = ny—mn | n__m ‘ Wx_—n | n@:" | n/:u | "//:n | no—mn | LIS |
| LB) | nog=m | ne="m ‘ nA_mN | "|="

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and
assigns the result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is
performed in-place, meaning that rather than creating a new object and assigning that to the target, the old object is
modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side.
For example, a[1] += £ (x) first looks-up a [1], then it evaluates f (x) and performs the addition, and lastly,
it writes the result back toa[1i].

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-
place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular
assignments.

7.2.2 Annotated assignment statements

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional
assignment statement:

annotated_assignment_stmt = augtarget ":" expression

["=" (starred_expression | yield expression)]

The difference from normal Assignment statements is that only single target is allowed.

For simple names as assignment targets, if in class or module scope, the annotations are evaluated and stored in a
special class or module attribute __annotations__ thatis a dictionary mapping from variable names (mangled if
private) to evaluated annotations. This attribute is writable and is automatically created at the start of class or module
body execution, if annotations are found statically.

For expressions as assignment targets, the annotations are evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and
stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the
target except for the last __setitem () or __setattr__ () call

Agite gmiong:

PEP 526 - Syntax for Variable Annotations The proposal that added syntax for annotating the types of variables
(including class variables and instance variables), instead of expressing them through comments.

88 Kegahawo 7. Simple statements

https://www.python.org/dev/peps/pep-0526

The Python Language Reference, Anpocigsuon 3.9.23

PEP 484 - Type hints The proposal that added the typing module to provide a standard syntax for type
annotations that can be used in static analysis tools and IDEs.

AMaEe oty ékdoor 3.8: Now annotated assignments allow same expressions in the right hand side as the regular
assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt = "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if debug__:
if not expression: raise AssertionError

The extended form, assert expressionl, expression2,isequivalent to

if _ debug_ :
if not expressionl: raise AssertionError (expression?2)

These equivalences assume that __debug___ and AssertionError refer to the built-in variables with those
names. In the current implementation, the built-in variable ___debug__ is True under normal circumstances,
False when optimization is requested (command line option —0O). The current code generator emits no code for
an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source
code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to ___debug___ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4 The pass statement

pass_stmt = "pass"

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is
required syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.5 The del statement

del_stmt = "del" target_1list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

7.3. The assert statement 89

https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Anpocigsuon 3.9.23

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the
name occurs in a globa 1 statement in the same code block. If the name is unbound, a NameError exception will
be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a
slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the
sliced object).

AMaEe oty ékdoon 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free
variable in a nested block.

7.6 The return statement

return_stmt = "return" [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.
return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a t ry statement with a finally clause, that finally clause is executed
before really leaving the function.

In a generator function, the ret urn statement indicates that the generator is done and will cause StopIteration
to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the
StopIlteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is
done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in
an asynchronous generator function.

7.7 The yield statement

yield_stmt = yield expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the
parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield
statements

yield <expr>
yield from <expr>

are equivalent to the yield expression statements

(yield <expr>)
(yield from <expr>)

Yield expressions and statements are only used when defining a generator function, and are only used in the body of
the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

For full details of yie1d semantics, refer to the Yield expressions section.

920 Kegahawo 7. Simple statements

The Python Language Reference, Anpocigsuon 3.9.23

7.8 The raise statement

raise_stmt = "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known
as the active exception. If there isn’t currently an active exception, a Runt imeError exception is raised indicating
that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance
of BaseException. If itis a class, the exception instance will be obtained when needed by instantiating the class
with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback___ attribute, which is writable. You can create an exception and set your own traceback in one step
using the with_traceback () exception method (which returns the same exception instance, with its traceback
set to its argument), like so:

raise Exception("foo occurred") .with_traceback (tracebackobj)

The from clause is used for exception chaining: if given, the second expression must be another exception class
or instance. If the second expression is an exception instance, it will be attached to the raised exception as the
___cause___ attribute (which is writable). If the expression is an exception class, the class will be instantiated and
the resulting exception instance will be attached to the raised exception as the ___cause___ attribute. If the raised
exception is not handled, both exceptions will be printed:

>>> try:
print (1 / 0)
except Exception as exc:
raise RuntimeError ("Something bad happened") from exc

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled.
An exception may be handled when an except or finally clause, or a with statement, is used. The previous
exception is then attached as the new exception’s ___context___ attribute:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

7.8. The raise statement 91

The Python Language Reference, Anpocigsuon 3.9.23

Exception chaining can be explicitly suppressed by specifying None in the £ rom clause:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened") from None

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Additional information on exceptions can be found in section EEapéoerg, and information about handling exceptions
is in section The try statement.

AMoEe ot ékdoomn 3.3: None is now permitted as Y in raise X from Y.

Néo otmv ékdoon 3.3: The __suppress_context__ attribute to suppress automatic display of the exception
context.

7.9 The break statement

break_stmt = "break"

break may only occur syntactically nested ina for or while loop, but not nested in a function or class definition
within that loop.

It terminates the nearest enclosing loop, skipping the optional e1se clause if the loop has one.
If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a t ry statement with a finally clause, that finally clause is executed
before really leaving the loop.

7.10 The continue statement

continue_stmt = "continue"

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class
definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When cont inue passes control out of a t ry statement witha £inally clause, that finally clause is executed
before really starting the next loop cycle.

7.11 The import statement

import_stmt = "import" module ["as" identifier] ("," module ["as" identifier])?*
| "from" relative_module "import" identifier ["as" identifier]
("," identifier ["as" identifier])*
| "from" relative_module "import" " (" identifier ["as" identifie:
("," identifier ["as" identifier])* [","] ™)"
| "from" relative_module "import" "*"

module = (identifier ".")* identifier

92 Kegahawo 7. Simple statements

The Python Language Reference, Anpocigsuon 3.9.23

relative_module = "."* module | "."+

The basic import statement (no £rom clause) is executed in two steps:
1. find a module, loading and initializing it if necessary
2. define a name or names in the local namespace for the scope where the i mport statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for
each clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules are described in greater detail in the section on the import
system, which also describes the various types of packages and modules that can be imported, as well as all the hooks
that can be used to customize the import system. Note that failures in this step may indicate either that the module
could not be located, or that an error occurred while initializing the module, which includes execution of the module’s
code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three
ways:

o If the module name is followed by as, then the name following as is bound directly to the imported module.

« If no other name is specified, and the module being imported is a top level module, the module’s name is bound
in the local namespace as a reference to the imported module

« If the module being imported is not a top level module, then the name of the top level package that contains
the module is bound in the local namespace as a reference to the top level package. The imported module must
be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:
1. find the module specified in the £ rom clause, loading and initializing it if necessary;
2. for each of the identifiers specified in the import clauses:
1. check if the imported module has an attribute by that name

2. if not, attempt to import a submodule with that name and then check the imported module again for that
attribute

3. if the attribute is not found, ImportError is raised.

4. otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if
it is present, otherwise using the attribute name

Examples:

import foo # foo imported and bound locally

import foo.bar.baz # foo, foo.bar, and foo.bar.baz imported, foo bound.
—~locally

import foo.bar.baz as fbb # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
—bound as fbb

from foo.bar import baz # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
—~bound as baz

from foo import attr # foo imported and foo.attr bound as attr

If the list of identifiers is replaced by a star (' * '), all public names defined in the module are bound in the local
namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__;if defined, it must be a sequence of strings which are names defined or imported by that module. The
names givenin __all__ are all considered public and are required to exist. If __all__ is not defined, the set of
public names includes all names found in the module’s namespace which do not begin with an underscore character
('"_")._all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are
not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting
to use it in class or function definitions will raise a SyntaxError.

7.11. The import statement 93

The Python Language Reference, Anpocigsuon 3.9.23

When specifying what module to import you do not have to specify the absolute name of the module. When a module
or package is contained within another package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the specified module or package after from
you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading
dot means the current package where the module making the import exists. Two dots means up one package level.
Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package
then you will end up importing pkg.mod. If you execute from . .subpkg2 import mod from within pkg.
subpkgl you will import pkg . subpkg?2 .mod. The specification for relative imports is contained in the Package
Relative Imports section.

importlib.import_module () is provided to support applications that determine dynamically the modules to
be loaded.

Raises an auditing event import with arguments module, filename, sys.path, sys.meta_path, sys.
path_hooks.

7.11.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to
the language. It allows use of the new features on a per-module basis before the release in which the feature becomes
standard.

future_stmt "from" "__ future_ " "import" feature ["as" identifier]

("," feature ["as" identifier])*

| "from" "__ future_ " "import" " (" feature ["as" identifier]
("," feature ["as" identifier])* [","] ™))"

feature = identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement
are:

o the module docstring (if any),
e comments,
« blank lines, and
« other future statements.
The only feature that requires using the future statement is annotations (see PEP 563).

All historical features enabled by the future statement are still recognized by Python 3. The list
includes absolute_import, division, generators, generator_stop, unicode_literals,
print_function,nested_scopesandwith_statement. They are all redundant because they are always
enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs
are often implemented by generating different code. It may even be the case that a new feature introduces new
incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module
differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error
if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module ___future__,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

94 Kegahawo 7. Simple statements

https://www.python.org/dev/peps/pep-0563

The Python Language Reference, Anpocigsuon 3.9.23

import _ future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec () and compile () that occur in a module M containing a
future statement will, by default, use the new syntax or semantics associated with the future statement. This can be
controlled by optional arguments to compile () — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session.
If an interpreter is started with the —1 option, is passed a script name to execute, and the script includes a future
statement, it will be in effect in the interactive session started after the script is executed.

Agite griong:

PEP 236 - Back to the _ future__ The original proposal for the __future__ mechanism.

7.12 The global statement

global_stmt = "global" identifier ("," identifier)™*

The global statement is a declaration which holds for the entire current code block. It means that the listed
identifiers are to be interpreted as globals. It would be impossible to assign to a global variable without global,
although free variables may refer to globals without being declared global.

Names listed in a g1obal statement must not be used in the same code block textually preceding that global
statement.

Names listed in a global statement must not be defined as formal parameters or in a for loop control target,
c1ass definition, function definition, i mport statement, or variable annotation.

CPython implementation detail: The current implementation does not enforce some of these restrictions, but
programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning
of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the
global statement. In particular, a global statement contained in a string or code object supplied to the built-in
exec () function does not affect the code block containing the function call, and code contained in such a string is
unaffected by global statements in the code containing the function call. The same applies to the eval () and
compile () functions.

7.13 The nonlocal statement

nonlocal_stmt = "nonlocal" identifier ("," identifier)*

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest enclosing
scope excluding globals. This is important because the default behavior for binding is to search the local namespace
first. The statement allows encapsulated code to rebind variables outside of the local scope besides the global (module)
scope.

Names listed in a nonlocal statement, unlike those listed in a global statement, must refer to pre-existing
bindings in an enclosing scope (the scope in which a new binding should be created cannot be determined
unambiguously).

Names listed in a nonlocal statement must not collide with pre-existing bindings in the local scope.

Agite griong:

7.12. The global statement 95

https://www.python.org/dev/peps/pep-0236

The Python Language Reference, Anpocigsuon 3.9.23

PEP 3104 - Access to Names in Outer Scopes The specification for the nonlocal statement.

96 Kegahawo 7. Simple statements

https://www.python.org/dev/peps/pep-3104

KEGAAAIO 8

Compound statements

Compound statements contain (groups of) other statements; they affect or control the execution of those other
statements in some way. In general, compound statements span multiple lines, although in simple incarnations a
whole compound statement may be contained in one line.

The i £, whileand for statements implement traditional control flow constructs. t ry specifies exception handlers
and/or cleanup code for a group of statements, while the with statement allows the execution of initialization and
finalization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more “clauses.” A clause consists of a header and a “suite.” The clause
headers of a particular compound statement are all at the same indentation level. Each clause header begins with a
uniquely identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can
be one or more semicolon-separated simple statements on the same line as the header, following the header’s colon,
or it can be one or more indented statements on subsequent lines. Only the latter form of a suite can contain nested
compound statements; the following is illegal, mostly because it wouldn’t be clear to which i 7 clause a following
else clause would belong:

’if testl: if test2: print (x)

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all
or none of the print () calls are executed:

’if x <y < z: print(x); print(y); print(z)

Summarizing:

compound_stmt = i1f stmt
while_stmt
for_stmt
try_stmt
with_stmt
funcdef
classdef
async_with_stmt
async_for_stmt
| async_funcdef
suite = stmt_1list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement = stmt_1list NEWLINE | compound_stmt

97

The Python Language Reference, Anpocigsuon 3.9.23

stmt_list = simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the “dangling e 1 se”
problem is solved in Python by requiring nested i f statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

8.1 The if statement

The i r statement is used for conditional execution:

if stmt = "if" assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else™ ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operations for the definition of true and false); then that suite is executed (and no other part of the if
statement is executed or evaluated). If all expressions are false, the suite of the eI se clause, if present, is executed.

8.2 The while statement

The whi Ie statement is used for repeated execution as long as an expression is true:

while_stmt = "while" assignment_expression ":" suite
["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be
the first time it is tested) the suite of the e 1se clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt = "for" target_list "in" expression_list ":" suite
["else" ":" suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of the
expression_list. The suite is then executed once for each item provided by the iterator, in the order returned
by the iterator. Each item in turn is assigned to the target list using the standard rules for assignments (see Assignment
statements), and then the suite is executed. When the items are exhausted (which is immediately when the sequence
is empty or an iterator raises a StopIteration exception), the suite in the el se clause, if present, is executed,
and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the el se clause if there is no next item.

98 KegaAaio 8. Compound statements

The Python Language Reference, Anpocigsuon 3.9.23

The for-loop makes assignments to the variables in the target list. This overwrites all previous assignments to those
variables including those made in the suite of the for-loop:

for i in range(10):
print (i)
i=25 # this will not affect the for—-loop
because 1 will be overwritten with the next
index in the range

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have been
assigned to at all by the loop. Hint: the built-in function range () returns an iterator of integers suitable to emulate
the effect of Pascal’s for i := a to b doje.g, list (range (3)) returnsthelist [0, 1, 2].

Enueiwon: There is a subtlety when the sequence is being modified by the loop (this can only occur for mutable
sequences, e.g. lists). An internal counter is used to keep track of which item is used next, and this is incremented on
each iteration. When this counter has reached the length of the sequence the loop terminates. This means that if the
suite deletes the current (or a previous) item from the sequence, the next item will be skipped (since it gets the index
of the current item which has already been treated). Likewise, if the suite inserts an item in the sequence before the
current item, the current item will be treated again the next time through the loop. This can lead to nasty bugs that
can be avoided by making a temporary copy using a slice of the whole sequence, e.g.,

for x in a[:]:
if x < 0: a.remove (X)

8.4 The try statement

The t ry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt = tryl _stmt | tryZ_stmt
tryl_stmt = "try" ":" suite
("except" [expression ["as" identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try2_stmt = "try" ":" suite
"finally" ":" suite

The except clause(s) specify one or more exception handlers. When no exception occurs in the t ry clause, no
exception handler is executed. When an exception occurs in the t ry suite, a search for an exception handler is started.
This search inspects the except clauses in turn until one is found that matches the exception. An expression-less except
clause, if present, must be last; it matches any exception. For an except clause with an expression, that expression is
evaluated, and the clause matches the exception if the resulting object is «compatible» with the exception. An object
is compatible with an exception if the object is the class or a non-virtual base class of the exception object, or a tuple
containing an item that is the class or a non-virtual base class of the exception object.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code and
on the invocation stack.'

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a
handler is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is
treated as if the entire t ry statement raised the exception).

‘When a matching except clause is found, the exception is assigned to the target specified after the as keyword in that
except clause, if present, and the except clause’s suite is executed. All except clauses must have an executable block.
When the end of this block is reached, execution continues normally after the entire try statement. (This means that

! The exception is propagated to the invocation stack unless there is a £inal1y clause which happens to raise another exception. That new
exception causes the old one to be lost.

8.4. The try statement 929

The Python Language Reference, Anpocigsuon 3.9.23

if two nested handlers exist for the same exception, and the exception occurs in the try clause of the inner handler,
the outer handler will not handle the exception.)

When an exception has been assigned using as target, it is cleared at the end of the except clause. This is as if

except E as N:
foo

was translated to

except E as N:
try:
foo
finally:
del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause.
Exceptions are cleared because with the traceback attached to them, they form a reference cycle with the stack
frame, keeping all locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, details about the exception are stored in the sys module and can be
accessed via sys.exc_info (). sys.exc_info () returns a 3-tuple consisting of the exception class, the
exception instance and a traceback object (see section The standard type hierarchy) identifying the point in the
program where the exception occurred. sys.exc_info () values are restored to their previous values (before
the call) when returning from a function that handled an exception.

The optional else clause is executed if the control flow leaves the try suite, no exception was raised, and no
return, continue, or break statement was executed. Exceptions in the e1se clause are not handled by the
preceding except clauses.

If finally is present, it specifies a “cleanup” handler. The t ry clause is executed, including any except and
else clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved.
The finally clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If
the finally clause raises another exception, the saved exception is set as the context of the new exception. If the
finally clause executes a return, break or cont inue statement, the saved exception is discarded:

>>> def f():
try:
1/0
finally:
return 42
>>> f()
42

The exception information is not available to the program during execution of the finally clause.

When a return, break or cont inue statement is executed in the ¢ ry suite of a t ry...finally statement,
the finally clause is also executed “on the way out.”

The return value of a function is determined by the last return statement executed. Since the finally clause
always executes, a return statement executed in the £inally clause will always be the last one executed:

>>> def fool():
try:
return 'try'
finally:
return 'finally'
>>> foo ()
'finally'

Additional information on exceptions can be found in section EEatpéoeig, and information on using the raise
statement to generate exceptions may be found in section The raise statement.

100 KegaAaio 8. Compound statements

The Python Language Reference, Anpocigsuon 3.9.23

AMoEe oty ékdoon 3.8: Prior to Python 3.8, a cont i nue statement was illegal in the finally clause due to
a problem with the implementation.

8.5 The with statement

The with statement is used to wrap the execution of a block with methods defined by a context manager (see
section With Statement Context Managers). This allows common try...except...finally usage patterns to be
encapsulated for convenient reuse.

with_stmt = "with" with_item ("," with_item)* ":" suite
with_item expression ["as" target]

The execution of the wi t h statement with one «item» proceeds as follows:
1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.
2. The context manager’s ___enter__ () is loaded for later use.
3. The context manager’s __exit__ () is loaded for later use.
4. The context manager’s ___enter___ () method is invoked.
5

. If a target was included in the wi t h statement, the return value from ___enter_ () is assigned to it.

Ynueiwon: The with statement guarantees that if the __enter_ () method returns without an error,
then _ exit__ () will always be called. Thus, if an error occurs during the assignment to the target list, it
will be treated the same as an error occurring within the suite would be. See step 6 below.

6. The suite is executed.

7. The context manager's __exit__ () method is invoked. If an exception caused the suite to be exited, its
type, value, and traceback are passed as arguments to __exit__ (). Otherwise, three None arguments are
supplied.

If the suite was exited due to an exception, and the return value fromthe __exit__ () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with
the statement following the wi t h statement.

If the suite was exited for any reason other than an exception, the return value from __exit__ () isignored,
and execution proceeds at the normal location for the kind of exit that was taken.

The following code:

with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)

enter type (manager) .__enter_
exit = type (manager) .__exit_
value = enter (manager)

hit_except = False

try:
TARGET = value
SUITE

except:
hit_except = True

(ouvéyela otV entdpevn oehida)

8.5. The with statement 101

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

if not exit (manager, *sys.exc_info()):
raise
finally:
if not hit_except:
exit (manager, None, None, None)

With more than one item, the context managers are processed as if multiple wi t h statements were nested:

with A() as a, B() as b:
SUITE

is semantically equivalent to:

with A() as a:
with B() as b:
SUITE

AMoEe oty €kdoon 3.1: Support for multiple context expressions.
Agite gmiong:

PEP 343 - The «with» statement The specification, background, and examples for the Python wi t h statement.

8.6 Function definitions

A function definition defines a user-defined function object (see section The standard type hierarchy):

funcdef

".:" suite

["->" expression]
decorators = decorator+

"@" assignment_expression NEWLINE

decorator

parameter_list = defparameter ("," defparameter)* "," "/" [",

| parameter_list_no_posonly

parameter_list_no_posonly
| parameter_list_starargs

[decorators] "def" funcname " (" [parameter_list] ")"

[paramete

defparameter ("," defparameter)* ["," [parameter_ 1ist_:

parameter_list_starargs = "x" [parameter] ("," defparameter)* ["," ["**" paramete
| "**" parameter [","]

parameter n= identifier [":" expression]

defparameter = parameter ["=" expression]

funcname = identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace
to a function object (a wrapper around the executable code for the function). This function object contains a reference
to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called.”

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated
when the function is defined, in the scope that contains the function definition. The result must be a callable, which
is invoked with the function object as the only argument. The returned value is bound to the function name instead
of the function object. Multiple decorators are applied in nested fashion. For example, the following code

@f1 (arg)
Qf2
def func(): pass

2 A string literal appearing as the first statement in the function body is transformed into the function’s __doc___ attribute and therefore the
function’s docstring.

102 KegaAaio 8. Compound statements

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, Anpocigsuon 3.9.23

is roughly equivalent to

def func(): pass
func = f1(arg) (£2 (func))

except that the original function is not temporarily bound to the name func.

AMaEe oty ékdoon 3.9: Functions may be decorated with any valid assignment_expression. Previously,
the grammar was much more restrictive; see PEP 614 for details.

‘When one or more parameters have the form parameter = expression, the function is said to have «default parameter
values.» For a parameter with a default value, the corresponding argument may be omitted from a call, in which case
the parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the
«*» must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means
that the expression is evaluated once, when the function is defined, and that the same «pre-computed» value is used
for each call. This is especially important to understand when a default parameter is a mutable object, such as a list
or a dictionary: if the function modifies the object (e.g. by appending an item to a list), the default value is in effect
modified. This is generally not what was intended. A way around this is to use None as the default, and explicitly
test for it in the body of the function, e.g.:

def whats_on_the_telly (penguin=None) :
if penguin is None:
penguin = []
penguin.append ("property of the zoo")
return penguin

Function call semantics are described in more detail in section Calls. A function call always assigns values to all
parameters mentioned in the parameter list, either from positional arguments, from keyword arguments, or from
default values. If the form «*identifier» is present, it is initialized to a tuple receiving any excess positional
parameters, defaulting to the empty tuple. If the form «**ident i fier» is present, it is initialized to a new ordered
mapping receiving any excess keyword arguments, defaulting to a new empty mapping of the same type. Parameters
after «*» or «*identifier» are keyword-only parameters and may only be passed by keyword arguments.
Parameters before «/» are positional-only parameters and may only be passed by positional arguments.

AMoEe otnv €xdoon 3.8: The / function parameter syntax may be used to indicate positional-only parameters. See
PEP 570 for details.

Parameters may have an annotation of the form «: expression» following the parameter name. Any parameter
may have an annotation, even those of the form *identifier or **identifier. Functions may have «return»
annotation of the form «—> expression» after the parameter list. These annotations can be any valid Python
expression. The presence of annotations does not change the semantics of a function. The annotation values are
available as values of a dictionary keyed by the parameters” names in the __annotations___ attribute of the
function object. If the annotations import from _ future__ is used, annotations are preserved as strings at
runtime which enables postponed evaluation. Otherwise, they are evaluated when the function definition is executed.
In this case annotations may be evaluated in a different order than they appear in the source code.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand
for a simplified function definition; a function defined in a «de r» statement can be passed around or assigned to
another name just like a function defined by a lambda expression. The «de £» form is actually more powerful since
it allows the execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A «def» statement executed inside a function definition
defines a local function that can be returned or passed around. Free variables used in the nested function can access
the local variables of the function containing the def. See section Ovouacia ko civdeon for details.

Agite gmiong:
PEP 3107 - Function Annotations The original specification for function annotations.

PEP 484 - Type Hints Definition of a standard meaning for annotations: type hints.

8.6. Function definitions 103

https://www.python.org/dev/peps/pep-0614
https://www.python.org/dev/peps/pep-0570
https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Anpocigsuon 3.9.23

PEP 526 - Syntax for Variable Annotations Ability to type hint variable declarations, including class variables
and instance variables

PEP 563 - Postponed Evaluation of Annotations Support for forward references within annotations by
preserving annotations in a string form at runtime instead of eager evaluation.

8.7 Class definitions

A class definition defines a class object (see section The standard type hierarchy):

classdef = [decorators] "class" classname [inheritance] ":" suite
inheritance = "(" [argument_1list] ")"
classname n= identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Metaclasses
for more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes
without an inheritance list inherit, by default, from the base class object; hence,

class Foo:
pass

is equivalent to

class Foo (object) :
pass

The class’s suite is then executed in a new execution frame (see Ovouaacio kaw cvdeon), using a newly created local
namespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the
class’s suite finishes execution, its execution frame is discarded but its local namespace is saved.> A class object is
then created using the inheritance list for the base classes and the saved local namespace for the attribute dictionary.
The class name is bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s __dict__. Note that this
is reliable only right after the class is created and only for classes that were defined using the definition syntax.

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

Qfl (arg)
Qf2
class Foo: pass

is roughly equivalent to

class Foo: pass
Foo = f1(arg) (f2 (Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound
to the class name.

AMoEe otnv ékdoon 3.9: Classes may be decorated with any valid assignment_expression. Previously, the
grammar was much more restrictive; see PEP 614 for details.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances.
Instance attributes can be set in a method with self.name = wvalue. Both class and instance attributes are
accessible through the notation «se1f . name», and an instance attribute hides a class attribute with the same name
when accessed in this way. Class attributes can be used as defaults for instance attributes, but using mutable values

3 A string literal appearing as the first statement in the class body is transformed into the namespace’s __doc___item and therefore the class’s
docstring.

104 KegaAaio 8. Compound statements

https://www.python.org/dev/peps/pep-0526
https://www.python.org/dev/peps/pep-0563
https://www.python.org/dev/peps/pep-0614

The Python Language Reference, Anpocigsuon 3.9.23

there can lead to unexpected results. Descriptors can be used to create instance variables with different implementation
details.

Agite emiong:

PEP 3115 - Metaclasses in Python 3000 The proposal that changed the declaration of metaclasses to the current
syntax, and the semantics for how classes with metaclasses are constructed.

PEP 3129 - Class Decorators The proposal that added class decorators. Function and method decorators were
introduced in PEP 318.

8.8 Coroutines

Néo oty éxdoom 3.5.

8.8.1 Coroutine function definition

async_funcdef = [decorators] "async" "def" funcname " (" [parameter_ list]
["->" expression] ":" suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). Inside the body of a
coroutine function, await and async identifiers become reserved keywords; await expressions, async for
and async with can only be used in coroutine function bodies.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or
async keywords.

Itisa SyntaxErrortouseayield from expression inside the body of a coroutine function.

An example of a coroutine function:

async def func(paraml, param2):
do_stuff ()
await some_coroutine ()

8.8.2 The async for statement

async_for_stmt = "async" for_ stmt

An asynchronous iterable provides an __aiter__ method that directly returns an asynchronous iterator, which can
call asynchronous code inits __anext___ method.

The async for statement allows convenient iteration over asynchronous iterables.

The following code:

async for TARGET in ITER:
SUITE

else:
SUITEZ2

Is semantically equivalent to:

8.8. Coroutines 105

https://www.python.org/dev/peps/pep-3115
https://www.python.org/dev/peps/pep-3129
https://www.python.org/dev/peps/pep-0318

The Python Language Reference, Anpocigsuon 3.9.23

iter = (ITER)
iter = type(iter).__aiter__ (iter)
running = True

while running:

try:
TARGET = await type(iter).__anext__ (iter)
except StopAsyncIteration:
running = False
else:
SUITE
else:
SUITEZ2

Seealso_ _aiter () and___anext_ () for details.

Itisa SyntaxError touse an async for statement outside the body of a coroutine function.

8.8.3 The async with statement

async_with stmt = "async" with_stmt

An asynchronous context manager is a context manager that is able to suspend execution in its enter and exit methods.

The following code:

async with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)
aenter = type (manager).__ _aenter_
aexit = type (manager).__aexit_

value = await aenter (manager)
hit_except = False

try:
TARGET = value
SUITE
except:
hit_except = True
if not await aexit (manager, *sys.exc_info()):
raise
finally:
if not hit_except:
await aexit (manager, None, None, None)

Seealso__aenter () and__aexit__ () for details.
Itisa SyntaxError touse an async with statement outside the body of a coroutine function.
Agite emiong:

PEP 492 - Coroutines with async and await syntax The proposal that made coroutines a proper standalone
concept in Python, and added supporting syntax.

106 KegaAaio 8. Compound statements

https://www.python.org/dev/peps/pep-0492

KE®AAAIO 9

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

9.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion
of a complete Python program. A complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized, except for sys (various system services),
builtins (built-in functions, exceptions and None) and __main__. The latter is used to provide the local and
global namespace for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete program
but reads and executes one statement (possibly compound) at a time. The initial environment is identical to that of a
complete program; each statement is executed in the namespace of __main__.

A complete program can be passed to the interpreter in three forms: with the —c sfring command line option, as a
file passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the
interpreter enters interactive mode; otherwise, it executes the file as a complete program.

9.2 File input

All input read from non-interactive files has the same form:

file_input = (NEWLINE | statement)*

This syntax is used in the following situations:
« when parsing a complete Python program (from a file or from a string);
o when parsing a module;

» when parsing a string passed to the exec () function;

107

The Python Language Reference, Anpocigsuon 3.9.23

9.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input = [stmt_1list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to
help the parser detect the end of the input.

9.4 Expression input

eval () is used for expression input. It ignores leading whitespace. The string argument to eval () must have the
following form:

eval_input = expression_list NEWLINE*

108 Kegahiaio 9. Top-level components

keoanaio 10

[MAnpng Tpodlaypagn YPAUUATIKAG

Avt elvow M Tpng ypapuotiky g Python, mov mpoépyetar amevbeiog amd) YPOUUOTIKY) TOV ¥PNOL-
uozoteitan yio T dnwovpyio tov avorvuti) CPython (BA. Grammar/python.gram). H ékdoon avt) mapaleinet
LETTTOUEPELEG TTOV OYETICOVTOL UE T dNUOVPYICL KDOSLKO KoL TNV AvAKTNGT 0TT0 0PAAMLATA.

The notation is a mixture of EBNF and PEG. In particular, & followed by a symbol, token or parenthesized group
indicates a positive lookahead (i.e., is required to match but not consumed), while ! indicates a negative lookahead
(i.e., is required _not_ to match). We use the | separator to mean PEG’s «ordered choice» (written as / in traditional
PEG grammars).

PEG grammar for Python

file: [statements] ENDMARKER

interactive: statement_newline

eval: expressions NEWLINE* ENDMARKER

func_type: ' (' [type_expressions] ')' '->' expression NEWLINE* ENDMARKER
fstring: star_expressions

type_expressions allow */** but ignore them
type_expressions:

', '.expressiont+ ',' '*' expression ',' '"**' expression
', '.expressiont ',' '*' expression
', '.expression+ ',' '**' expression

|
|
\
| '"*' expression ',' '"**' expression
| '"*' expression
| "**' expression
| ','.expression+
statements: statement+
statement: compound_stmt | simple_stmt
statement_newline:
| compound_stmt NEWLINE
| simple_stmt
| NEWLINE
| ENDMARKER
simple_stmt:
| small_stmt !';' NEWLINE # Not needed, there for speedup
['";'".small_stmt+ [';'] NEWLINE
NOTE: assignment MUST precede expression, else parsing a simple assignment

(ouvéyela 0TV emOpEVY 0edL)

109

https://github.com/python/cpython/tree/3.9/Grammar/python.gram
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing_expression_grammar

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

will throw a SyntaxError.
small_stmt:

| assignment
| star_expressions
| return_stmt
| import_stmt
| raise_stmt
| 'pass'
| del_stmt
| yield_stmt
| assert_stmt
| 'break'
| 'continue'
| global_stmt

| nonlocal_stmt
compound_stmt:
function_def
if_stmt
class_def
with_stmt
for_stmt
try_stmt
while_stmt

NOTE: annotated_rhs may start with 'yield'; yield expr must start with 'yield'
assignment:
| NAME ':' expression ['=' annotated_rhs]
[("('" single_target ')'
| single_subscript_attribute_target) ':' expression ['=' annotated_rhs]
| (star_targets '=')+ (yield_expr | star_expressions) !'=' [TYPE_COMMENT]
| single_target augassign ~ (yield_expr | star_expressions)

augassign:
‘ Ty=1

v 1

N @ %
Il

v '

o
Il

> — &
Il

v 1

tog="

>>=1
Tk

\
\
|
\
\
\
‘ A\l
\
\
\
\
| v//="

global_stmt: 'global' ', ' .NAME+
nonlocal_stmt: 'nonlocal' ', ' .NAME+

yield_stmt: yield_expr

assert_stmt: 'assert' expression [',' expression]
del_stmt:
| 'del' del_targets &(';' | NEWLINE)
import_stmt: import_name | import_from
import_name: 'import' dotted_as_names
note below: the ('.' | '...') is necessary because '...' is tokenized as ELLIPSIS

import_from:

(ouvéyela 0TV emOpEVY 0edL)

110 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiCeton amd Ty ponyovuevn oehida)

| '"from' ('.' | '...')* dotted_name 'import' import_from_targets
["from' ('.' | '..."')+ 'import' import_from_ targets
import_from_targets:
| '("'" import_from_as_names [','] ")’
| import_from_as_names !','
I Tk
import_from_as_names:
[', '".import_from_as_name+
import_from_as_name:
| NAME ['as' NAME]
dotted_as_names:
| ','".dotted_as_name+
dotted_as_name:
| dotted_name ['as' NAME]
dotted_name:

| dotted_name '.' NAME

| NAME
if_stmt:

| "if' named_expression ':' block elif_ stmt

| '"if' named_expression ':' block [else_block]
elif_stmt:

| 'elif' named_expression ':' block elif_ stmt

| 'elif' named_expression ':' block [else_block]
else_block: 'else' ':' block

while_stmt:

| 'while' named_expression ':' block [else_block]
for_stmt:
| '"for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_
—block]
| ASYNC 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block.

— [else_block]

with_stmt:

| 'with' ' (' ','.with_item+ ','? ")' ':' block

| 'with' ','.with_item+ ':' [TYPE_COMMENT] block

| ASYNC 'with' '(' ','.with_item+ ','? ")' ':' block

| ASYNC 'with' ','.with_item+ ':' [TYPE_COMMENT] block
with_item:

| expression 'as' star_target &(',' [")'" | ':")

| expression
try_stmt:

| 'try' ':' block finally block

| 'try' ':' block except_block+ [else_block] [finally_block]
except_block:

| 'except' expression ['as' NAME] ':' block

| 'except' ':' block
finally_block: 'finally' ':' block

return_stmt:
| 'return' [star_expressions]

raise_stmt:
| 'raise' expression ['from' expression]
| 'raise'

function_def:
| decorators function_def_raw

(ovvEYELD OTNV ETTOUEVY OENLOL)

111

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiCeton amd Ty ponyovuevn oehida)

| function_def raw

function_def raw:

| 'def' NAME ' (' [params] ')' ['->' expression] ':' [func_type_comment] block
| ASYNC 'def' NAME ' (' [params] ')' ['->' expression] ':' [func_type_comment].
—Dblock
func_type_comment:
| NEWLINE TYPE_COMMENT & (NEWLINE INDENT) # Must be followed by indented block

| TYPE_COMMENT

params:
| parameters

parameters:
| slash_no_default param no_default* param with_default* [star_etc]
| slash_with_default param_with_default* [star_etc]
| param _no_default+ param with_default* [star_etc]
| param_with_default+ [star_etc]
|

star_etc
Some duplication here because we can't write (','" | &')"),
which is because we don't support empty alternatives (yet).
#
slash_no_default:
| param_no_default+ '/' ',

| param_no_default+ '/' &")'
slash with default:

| param_no_default* param_with_default+ '/' ',

| param_no_default* param_with_default+ '/' &')"

star_etc:
| '"*' param_no_default param_maybe_default* [kwds]
["*' ', ' param_maybe_default+ [kwds]
| kwds
kwds: '"**' param_no_default
One parameter. This *includes* a following comma and type comment.
#

There are three styles:
— No default
— With default
— Maybe with default
#
There are two alternative forms of each, to deal with type comments:
— Ends in a comma followed by an optional type comment
— No comma, optional type comment, must be followed by close paren
The latter form is for a final parameter without trailing comma.
#
param_no_default:
| param ',' TYPE_COMMENT?
| param TYPE_COMMENT? &')'
param_with_default:
| param default ',' TYPE_COMMENT?
| param default TYPE_COMMENT? &')'
param_maybe_default:
| param default? ',' TYPE_COMMENT?
| param default? TYPE_COMMENT? &')'
param: NAME annotation?

annotation: ':' expression

(ovvEYELD OTNV ETTOUEVY OENLOL)

112 KegaAaio 10. MAnRpng npodiaypagpn YPAUHATLKAG

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiCeton amd Ty ponyovuevn oehida)

default: '=' expression
decorators: ('Q@' named_expression NEWLINE)+

class_def:
| decorators class_def_ raw
| class_def_raw
class_def_raw:
| 'elass' NAME [' (' [arguments] ')'] ':' block

block:
| NEWLINE INDENT statements DEDENT
| simple_stmt

star_expressions:
| star_expression (',' star_expression)+ [',']
| star_expression ','
| star_expression
star_expression:
| '"*'" bitwise_or
| expression

star_named_expressions: ','.star_ named_expressiont [',']
star_named_expression:

| "' bitwise_or

| named_expression
named_expression:

| NAME ':=' ~ expression

| expression !':="

annotated_rhs: yield_expr | star_expressions

expressions:
| expression (',' expression)+ [',']
| expression ',
| expression

expression:
| disjunction 'if' disjunction 'else' expression
| disjunction
| lambdef

lambdef:
| '"lambda' [lambda_params] ':' expression

lambda_params:
| lambda_parameters

lambda_parameters etc. duplicates parameters but without annotations
or type comments, and if there's no comma after a parameter, we expect
a colon, not a close parenthesis. (For more, see parameters above.)
#
lambda_parameters:
| lambda_slash _no_default lambda_param_no_default* lambda_param with_default*.
— [lambda_star_etc]
| lambda_slash_with_default lambda_param with_default* [lambda_star_etc]
| lambda_param no_default+ lambda_param with_default* [lambda_star_etc]
| lambda_param_with_default+ [lambda_star_etc]
| lambda_star_etc

lambda_slash_no_default:
| lambda_param_no_default+ '/' ',!'

(ovvEYELD OTNV ETTOUEVY OENLOL)

113

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

| lambda_param_no_default+ '/' &':'
lambda_slash_with_default:

| lambda_param_no_default* lambda_param_with_default+ '/'

| lambda_param_no_default* lambda_param_with_default+ '/'

lambda_star_etc:
| '*'" lambda_param_no_default lambda_param_maybe_default*
['*' ', ' lambda_param maybe_default+ [lambda_kwds]
| lambda_kwds

lambda_kwds: '**' lambda_param no_default

lambda_param_no_default:

| lambda_param ','

| lambda_param &':'
lambda_param_with_default:

| lambda_param default ','

| lambda_param default &':'
lambda_param_maybe_default:

| lambda_param default? ','

| lambda_param default? &':'
lambda_param: NAME

disjunction:
| conjunction ('or' conjunction)+
| conjunction
conjunction:
| inversion ('and' inversion)+
| inversion
inversion:
| '"mot' inversion
| comparison
comparison:
| bitwise_or compare_op_bitwise_or_pair+
| bitwise_or
compare_op_bitwise_or_pair:
| eq bitwise_or
| noteg bitwise_or
| lte_bitwise_or
| 1lt_bitwise_or
| gte_bitwise_or
| gt_bitwise_or
| notin_bitwise_or
| in_bitwise_ or
| isnot_bitwise_or
| is_bitwise_or

eg _bitwise_or: '==' bitwise_or
noteqg_bitwise_or:

| ('!='") bitwise_or
lte bitwise or: '<=' bitwise_or
lt_bitwise_or: '<' bitwise_or
gte_bitwise_or: '>=' bitwise_or
gt_bitwise_or: '>' bitwise_or
notin_bitwise_or: 'mot' 'in' bitwise_or
in_bitwise_or: 'in' bitwise_or
isnot_bitwise or: 'is' 'not' bitwise_or
is_bitwise_or: 'is' bitwise_or

bitwise_or:
| bitwise_or '|' bitwise_xor
| bitwise_xor

o
I4

&'

[lambda_kwds]

(ouvéyela 0TV emOpEVY 0edL)

114 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpociguon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

bitwise_xor:
| bitwise_xor
| bitwise_and
bitwise_and:
| bitwise_and
| shift_expr
shift_expr:
| shift_expr
| shift_expr

TAT

L

Tt
s>t

sum
sum
| sum

sum:
'+' term
' term

| sum
| sum '-
| term

Tx0
|/l
v//l
term 'S$'
V@l
| factor
factor:
| '+' factor
| '-' factor
| '"~' factor

factor

factor
factor

factor

term factor

| power
| await_primary '**'
| await_primary
await_primary:
| AWAIT primary
| primary
primary:
| primary
primary
primary
primary
atom

'.'" NAME
genexp
'('" [arguments]

l[l l]v

slices

slices:
| slice !',"
| ', ".slice+ [', "]
| [expression] ':'
| expression

| NAME

| '"True'
| 'False'

| '"None'
| '__peg parser_ '
| strings

| NUMBER
[(tuple |

| (list |

| (dict

\

group |
listcomp)
set

genexp)

dictcomp

strings: STRING+

list:

[expression]

bitwise_and

shift_expr

factor

l)l

[":" [expression]]

setcomp)

(ouvéyela 0TV emOpEVY 0edL)

115

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

['"['" [star_named_expressions] ']'

listcomp:
['"['" named_expression ~ for_if clauses ']'
tuple:
["('" [star_named_expression ',' [star_named_expressions] 1T ")
group:
| "('" (yield_expr | named_expression) ')'
genexp:
['"(' named_expression ~ for_if clauses ')'
set: '{' star_named_expressions '}'
setcomp:
| '"{' named_expression ~ for_if_ clauses '}'
dict:
| '"{'" [double_starred_kvpairs] '}'
dictcomp:
| '"{'" kvpair for_if clauses '}'
double_starred_kvpairs: ','.double_starred_kvpair+ [',']

double_starred_kvpair:
| "**' bitwise_or
| kvpair
kvpair: expression ':' expression
for_if_ clauses:
| for_if clause+
for_1if clause:
| ASYNC 'for' star_targets 'in' ~ disjunction ('if' disjunction)*
| "for' star_targets 'in' ~ disjunction ('if' disjunction)*

yield_expr:
| 'yield' 'from' expression
| 'yield' [star_expressions]

arguments:
| args [','] &")'
args:
| ', '.(starred_expression | named_expression !'="'")+ [',' kwargs]
| kwargs
kwargs:
| ','".kwarg_or_starred+ ',' ','.kwarg_or_double_starred+

| '",'.kwarg_or_starred+

| ', '".kwarg_or_double_starred+
starred_expression:

| '*' expression
kwarg_or_starred:

| NAME '=' expression

| starred_expression
kwarg_or_double_starred:

| NAME '=' expression

| "**' expression

NOTE: star_targets may contain *bitwise_or, targets may not.
star_targets:

| star_target !','

| star_target (',' star_target)* [',']
star_targets_list_seq: ','.star_target+ [',"']
star_targets_tuple_seq:

| star_target (',' star_target)+ [',']

| star_target ','
star_target:

['x' (!'*' star_target)

| target_with_star_atom
target_with_star_atom:

(ouvéyela 0TV emOpEVY 0edL)

116 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| star_atom

star_atom:

(' target_with_star_atom ')'
'('" [star_targets_tuple_seq] '")'
[" [star_targets_list_seqgq] ']'

single_target:

| single_subscript_attribute_target

| NAME

| '"(' single_target ')'
single_subscript_attribute_target:

| t_primary '.' NAME !t_lookahead

| t_primary '[' slices ']' !t_lookahead

del_targets: ','.del_target+ [',']
del_target:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| del_t_atom
del_t_atom:
| NAME
| '('" del_target '")'
‘ Al
|

(" [del_targets] ')
'[" [del_targets] ']’

t_primary:
| t_primary '.' NAME &t_lookahead
| t_primary '[' slices ']' &t_lookahead
| t_primary genexp &t_lookahead

| t_primary '(' [arguments] ')' &t_lookahead

| atom &t_lookahead
t_lookahead: "(' | '['" | '."'

117

The Python Language Reference, Anpocigsuon 3.9.23

118 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

nAPAPTHMA A’

Mwoodpt

>>> To mpoemheypévo Python prompt tov dtadpaotikov shell. Zuyvd epgpaviCetal yio tapadeiyuato Kndiko
OV UITOPOVV VO, EKTEAEGTOVV SLALdPAOTIKA OTOV interpreter.

. Mmnopei va avagépetan o€:

o To mpoemiheyuévo Python prompt tov duadpaotikov shell Katd TV eLooymyr Tou KOdKa yLo éva
WThok Kdduka pe ooy, dtav Ppioketar péoa o va Lehyog TaLpLoouévav aplotepdv Kot deEuhv
delimiters (;wopevOéoels, aykiies, AyKLOTPO 1) TPLTAG ELOAYMYLKA), 1| uetd tov Kabopoud evog
decorator.

o H evowpatmuévn otabepd E11ipsis.

2to3 'Eva epyodeio mov mpoomadei vo petotpéypel tov kmduko Python 2.x og k®dika Python 3.x dtoyelpiCovtag
TLG TTEPLOOOTEPES ALTVUBATOTNTES TTOV WITOPOVV VO EVTOTLOTOUV OVOAIOVTOG TNV TTNYT) Ko dLaoyilovtag
T0 dEVTPO avdluaong.

2t03 eivan drabéowo oty otdvtap PPAodNKn wg 1ib2to3, mapéyetor éva onueio elsddov wg
Tools/scripts/2to3. BA. 2to3-reference.

agnpnuévny Baokn kAaon Ou agnpnuéveg Baotkég kKhAoelg ouumAnpdvouy to duck-typing mopéyovtog évav
TPOTO opLopo interfaces 6tav Ghheg teyvikég 6mwg 1 hasattr () Ba Nrav adégieg 1 avemaicdnto
havBaopéveg (Yo tapaderypa pe magic methods). Ta. ABC (abstract base class) eLoGyouv elKoOVIKEG VITO-
KMAOELS, OL 0TT0leg elvan KAAoELG TToU eV KANpovopouvToL amd o KAGGT, oAld eEakolovBolv va ava-
yvopitovior amd 10 isinstance () ko amwd to issubclass ()” A v Tekunpiwon tov module
abce. H Python dua6éter modhd evoopatwuévo ABC yio douég dedouévav (0to module collections.
abce), apBuovg (oto module numbers), poég (oto module povdda i o), eloaywyn finders ko loaders (oto
module importlib.abc). Mmopeite va dnwovpynoete to dikd oag ABC pe to module abce.

annotation Mo eTikéta oV OYETICETAL UE WO LETAPANT, £Vl YOPAKTNPLOTIKO KAGONG 1 (WOl TAPGUETPOG
OUVAPTNONG 1) TUY TTOV ETLOTPEPETAL, TOV YPNOLUOTTOLELTAL KOTA oVUBOOT WG fype hint.

Aev givor duvati M Tpdofaoy oto annotations TwV TOTLKOV UETAPANTOV KATA TO YPOVO EKTELETNG, AAAG
To annotations twv global LETOUPANTOV, TWV XOPAKTNPLOTIKMV KAAOTG KOl TOV GUVAPTHOEMV AroOnKey-
oVTaL 0TO EOLKO XOPAKTNPLOTIKO __annotations_ twv modules, Twv KAACEWV KAl TMV GUVOPTN-
CGEMV, OVTIOTOLY .

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

opopo. Mo i) petoaBipdletan oe pio function (| method) xoxd v KAMon g ouvdptnong. Yrdpyovv do
£idn opLopdtov:

119

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python Language Reference, Anpocigsuon 3.9.23

o keyword argument: £vo. OpLOUOL TTPLV ATTO €VOL OVOLYVIPLOTLKO (TT.%. name=) O€ o, KAon ouvapT-
oNG 1 TEPVADVTAG TO WG TUUT| 08 £va heELko mtpLv amd * *. Tia TapddeLyua, To 3 KoL To 5 amotehovv
optopata AEEewv-kheldLhv otig akolovbeg KA oELS Tpog complex () :

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

o positional argument: €vo. dpLopo. Tov dev givar optopo keyword. Ta opilopato O€ong pumopovv va eu-
paviCovrol otV apyNs Wag Motag oplopdtmv n/Kot va netapLatovral mg otouyeio evog iterable
mpwv oo *. T wapdderyna, To 3 koL 1o 5 amotehoVv opiopata 0Eong 0TLg TopaKaTm KANOELS:

complex (3, 5)
complex (* (3, 5))

Ta opiouato eKymPOVVTOL 0TS OVOLLOOUEVES TOTILKES UETAPANTEG 0TO GmUA Wa ovvapTnong. Bi. Ty
evotnta Calls yio. TOUG KOVOVEG TTOU SLETOUV QUTHY TNV EKYMPNOT). ZUVTAKTIKA, OTTOLODTTOTE EKPPUCT|
WITOPEL VAL (PN OLUOTONOEL YLOL VO AVATTAPOOTNOEL EVaL OpLona” 1) AELOAOYOUEVT] TLUN EKYWPELTOL OE L.
TOTTLKT) UETOPANTA.

B\. emtiong v eyypagn Tov YAwooapiov yio. to parameter, v FAQ gpdtnomn oto 1 duagopd peta&n
oplopdTmv kor Topouétpwv, kol PEP 362.

0oUYYpOvog dtayelproTi)s context An object which controls the environment seen in an async with statement
by defining __aenter_ () and __aexit__ () methods. Introduced by PEP 492.

aovyypovog generator Mio. ouVAPTNOY TTOV EMLOTPEQEL Evay asynchronous generator iterator. MowdCeL pe wio.
ouvApTNON coroutine tov opiletal we async def eKtdg omd OTL TEPLEYEL EKPPATELS vield YL TV
TOPAYOYY WLAG OELPAG LDV TTOV WTOPOUV VA ¥pNoLpuoromBouv o¢ évav async for Bpodyo.

ZuvhBwg avagépetal 08 ULo. OUVAPTNOY aoVYYPOVOU generator, GAAG WTOPEL VO AVAPEPETOL O VOV
aclyypovo generator iterator 0€ OpLOUEVA. contexts. Ze TEPLITTMOELG OTOV TO EMILWKOUEVO VONUOL dEV
elval oapéc, (e TNV XP1NOoN TWV TANPOV OPpWVY OTTOPEVYETAL 1] ATAPELQ.

Mo GUVAPTNON AOVYXPOVOU generator WITOPEL VAL TEPLEYEL EKPPACELS await , KaOmg KoL dNADOELS
async for,KdlLasync with.

am’;‘yxpovog generator iterator 'Eva avtikeipevo mov dnuovpyndnke amd o ouvaptnon asynchronous
generator.

This is an asynchronous iterator which when called using the __anext___ () method returns an awaitable
object which will execute the body of the asynchronous generator function until the next yie1d expression.

Each yield temporarily suspends processing, remembering the location execution state (including local
variables and pending try-statements). When the asynchronous generator iterator effectively resumes with
another awaitable returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

aovyypovog iterable An object, that can be used in an async for statement. Must return an asynchronous
iterator from its __aiter__ () method. Introduced by PEP 492.

aovyypovog iterator An object that implementsthe _aiter () and___anext__ () methods. __anext___
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
___anext__ () method until it raises a St opAsyncIteration exception. Introduced by PEP 492.

XOPoKTPLOTIKO A value associated with an object which is referenced by name using dotted expressions. For
example, if an object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an
__await__ () method. See also PEP 492.

BDFL Axpwviuo tov Benevolent Dictator For Life, xolokdyaBog diktdtopag tg Cwrg, dnhadn Guido van
Rossum, o dnuovpydg g Python.

dvadiko apyelo A file object able to read and write bytes-like objects. Examples of binary files are files opened in
binary mode ('rb', 'wb"' or 'rb+'), sys.stdin.buffer, sys.stdout .buffer, and instances of
io.BytesIOand gzip.GzipFile.

120 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/
https://gvanrossum.github.io/

The Python Language Reference, Anpocigsuon 3.9.23

BA. emiong rext file yio €va avTiKELEVO TUTTOU OPYELO LKAVO VO SLaFAOEL Ko VL YPAPEL ST T AVIIKELUEVO.

bytes-like avtikeipeve 'Eva oviikeipevo mov vmootnpiler to bufferobjects kou propei va eEdyer éva C-
contiguous buffer. Avtd mepihopfdver Oha ta avikeipeva bytes, bytearray, koL array.array,
Kabmg Kat Tord Kowvd memoryview avukeipeva. Ta dvadikovy tomov (bytes-like) aviikeipevo umo-
POV va xpnotpomotnfovv yio dLdpopeg Aettovpyieg wov drayelpiCovrar dvadikd dedouéva” avtd me-
pLhaufavouv ovumieon amodNKevon oe duadikd apyeio KoL amooTol) uéow socket.

Oplouéveg hettovpyieg yperdtovrol tor duadikd dedouéva va eivor uetofintd. H texunpioon ovyva
OVOPEPETOL 08 AUTA MG «dVAdLKA avTiKelpeva avayvoonc-eyypogrc» (read-write bytes-like objects).
Mapoadelynato PeTAPANTOV OVILKEWEVMVY TPOCWPLVTG 0ToONKEVOTG TTEPLEXOUV bytearray KoL éva
memoryview evog bytearray. AMeg hetTovpyleg ammantovv Ty amofnKevong tmv dvadikmv de-
dopéva oe auetdfinta avitkeipeva («duadikd ovTikeipeva wovo avayvwang»” (read-only bytes-like
objects) mopadeiyuoTo OVTAV TEPLEXOVY bytes Kot éva memoryview evog bytes avitkeluévou.

bytecode O mnyaiog kmdika tng Python petayhwtrtiteton oe bytecode, 1) e0mTEPLKT) AVATOPAOTAOY EVOG TTPO-
vpduuatog Python otov diepunvéa CPython. To byfecode amoBnkevetal enionNg TPOCWPLVE OG . Py C
apyela MoTe 1 eKTELEOT TOV (BLOV apyelov Vo Elvol YpNYopOTeEPY TV deUTEPT Popd eKTENEONG (UITTO-
pel vo amopevy el 1) €K VEOU UETOYADTTLON aItd TOV TTNyoio KOdika oe bytcode). Avti 1 «evdidpeon
YADOoO» Aéyetal OTL TpE el 08 WoL virtual machine mov €KTENEL TOV KMOLKO UNYAVAG TOV OVTLOTOLYEL
oe kGBe bytecode. AGfete vty OtL To. bytecode dev aVOUEVETOL VO AELTOUPYOUV HETAED SLOPOPETLKMV
ELKOVIKOV pnyavdv Python, ovte va givar otabepd ueto&o tmv ekdooewv tng Python.

Mo Alota ammd 0dnyieg oxetikd ue ta bytecode wtopei va Bpebei oty tekunpiwon yio to module dis.

callback Mua subroutine cuvaptnon 1 omoio ueTofLpdletar wg OpLona wov Oa ekTeLeTTEL KATOL0 OTLYUY OTO
ueAMov.

kAdon ‘Eva mpdtumo yio) dnuovpyio avitkeluévoy mov opiloviol ad To xpnoty. Ou oplopol Khaoewv
ouvNBmg TEPLEXOVV 0pLoPOUG neBOdWV OV AeLTovpyoUV g oTLyUoOTUITA THG KAGONG.

petafinti kAdons Mo petafint mov opileton og wio KMo Kot poopiletor va tpomomomOel pdvo oe
emimedo Khaong (dnh. OxL o€ £va oTLYWLOTUTTO oG KAGONG).

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int (3.15) converts the floating point number to the integer 3,
but in 3+4 .5, each argument is of a different type (one int, one float), and both must be converted to the
same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the programmer, e.g., f1oat (3) +4.5
rather than just 3+4.5.

uryadikog apiuds Mio eTéKTO01 TOU YVOOTOU GUOTHUATOG TTPAYUATIKMOVY aptOudv 6To 0Toio Orot oL apid-
pot ekppdtoviar wg aBpoloua evdg TPAYIATIKOU HEPOUG KOl EVOG avTaoTikoy uépovs. Ot pavtaoTi-
Kol apbuoi eivor Tpoynatikd ToMoTAAoL0L TG PAVIOOTIKNG Lovada (1) TeTpaywviky pila tov —1),
IOV OVY VA YpapovTal i ot podnuotikd 1 § ot unovikr. H Python éyel evowuatmpévn vmootpiEn
Yo (yodtkotg aplfpovg, oL 0oiot YPApovToL Pe duTdv TOV TEAEUTALO GUUBOAOUO” TO POVTAOTLKO Ué-
POg ypapeTal e To exidnua Jj, m.y., 3+173. [Na vo amoxtioete mpdoPaon og ovvOeTa LoOdVVOU TO
module math, ypnowomouote To cmath. H xpfion wyodikmv aplBumv givat évo apKeTd Tponyuévo
LOONUOTLKO XOPOKTNPLOTIKO. €AV OEV YVWOPILETE TNV OVAYKT TOVG, Elval 0yedOV alyoupo dti wmopeite
VOL TOL O'YVON|OETE UE ALOPALELQL.

Swayeprotiic context An object which controls the environment seen in a with statement by defining
__enter ()and ___exit__ () methods. See PEP 343.

context petafAnt) Mo petafAnTy) ov uropel va £yl ToMEG dLOPOoPETIKEG TIWEG AvALOYO. e TO context.
Avuto givan xowd oto Thread-Local Storage omov kd0e ektéheon tov vINUATOG WITOpPEel Vo EXEL dLapo-
peTKT) T yrow wo petainti). IMapdha avtd, pe tig context uetafAntég, Wropet va vrdpyovv Tolhd
mepLpdAhovta o £va ViU EKTELEDTG KOL 1] KUPLOL P10 VLo TLG context LeTaSANTég eivan M Tapakohov-
Onon tov petafintov oe tavtdypoveg diepyaoiec. Bh. contextvars.

contiguous 'Eva buffer Oewpeiton contiguous axpipng edv eivon eite C-contiguous eite Fortran contriguous. To
buffer undevikdv draotdoewv eivar C kon Fortran contiguous. Z& (lovodLAoTATOVS TTIVOKES, TA OTOLYED
TPETEL VaL TOTTOHETOUVTOL GTN WviuT) TO v SiTthal 0TO GAAO, LE GELPG ADEN GG TV BELKTHOV EEKLVDVTAG
artd to undév. Ze mohvdidotatovg C-contiguous Tivakes, 0 TehevTalog deikTng HeTofdiletan TayvTEPQ

121

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, Anpocigsuon 3.9.23

OTaV EMLOKETTOVTOL TO OTOLXELD O OELPA dleuBuvong uvhung. Qotdoo, oe Fortran contiguous mtivakeg, o
TPADTOG OELKTNG LETABGMETAL TTLO YPTYOPOL.

coroutine O\ coroutines €ivol (oL Lo YEVIKEUUEVT popn) subroutines. Ot subroutines elodryovtal o€ €va onueio
Ko eEdyovral oe dAho onueio. Ot coroutines witopei va eloayBotv, vo eEayBov KoL va ouveyLoTolv oe
oM dLapopeTikd onueto. Mmopotv va vhostooouy pe v dhwon async def. Bh. emiong PEP
492.

coroutine cuvaptnon Mo oVVEPTNOTN TOV ETUOTPEQPEL £VAL. coroutine OVTIKEIEVO. Mol GuvapTtnoy coroutine
WITopel vo. opiletal amd) dNAwon async def, KoL WTOPEL VoL TEPLEYEL awalit, async for, Ko
async with AEeig khedd. Avtég eronydnoav amd to PEP 492.

CPython H xavoviki) vhomoinon g yAdooog poypaupatiopwot Python, 6mwg diavéuetor oto python.org. O
0pog «CPython» ypnowwomoteital OTav eivol amapaiTnTo Yo TV SLAKPLoN VTG TG VAOTOINoNG o
deg Omwg M Jython M v IronPython.

decorator Mo ovvdptnomn mov emotpépel wa dAkn ovvdptnot, ovvifwg epapudleTal MG LETAOYUNTL-
ouOg GUVAPTNONG XPNOWOTOUDVTAG TNV @wrapper oUVTOEN. ZvvnOiouévo mapadeiyuata yio Tovg
decorators eivow classmethod () ko staticmethod ().

H oUvtaEn tov decorator givar amhdg KoAhwioTiky), ou akoiovbolr V0 oplopol cuvaptioewy eival
ONUaoLOAOYLKE LoodUvauoL:

def f (arg):
f = staticmethod (f)

@staticmethod
def f (arqg):

H {81 évvola vtdipyet yio g kAdoelg, ol ypnolpomoleitol Ayotepo ovyvd exel. BL. v tekunpimon
Yo function definitions xou class definitions yio. tepLocdTEPQ OYETIKA e TOVg decorators.

descriptor Any object which defines the methods ___get_ (), set_ (),or__delete__ (). Whenaclass
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

[0 epLocoTepeg ANPOQOpPieg avapoplkd e T ueboddovg twv descriptors, PA. see Implementing
Descriptors) to Tlpaxtikodg 081y0g yio.) ¥p1on tov Descriptor.

AeElk0 An associative array, where arbitrary keys are mapped to values. The keys can be any object with
_ _hash__ () and__eq () methods. Called a hash in Perl.

kotavonon AeEwkov 'Evo ovumayhg TpOmog yio vo, erteSepyooteite OAa 1| n€pog TV OTOLEIWY Ot £val ETT0-
VOATTTLKO KoL VoL EmLoTpo@el évo, ue he&ukd ue to amotehéopata. results = {n: n ** 2 for
n in range (10) } dnwovpyel éva heEukd mov mepiéyel To KAewdi n o avtiotouyiletal ue Thv Tum
n ** 2.BA\. Displays for lists, sets and dictionaries.

oyn AeEikov Ta aviikeipeva mov emotpépovion arnd dict.keys (), dict.values (), ko dict.
items () koAoUvTor 0elg AeElkol. Autég mopEyouv wo SUVOULKY] 0PN TOV TV EYYPOPOY TOU Ae-
Eukov, ov onuaiver 6Tl dtov To AeEko petafdiietar, 1 dyn aviikotomTpiler ovtég Tig odhayéc. T
VoL voryKGoeTe TNV 0 heEuikol va yiver o mhfpng Alota ypnowuomomote to 1ist (dictview) . BA.
dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation of
the object.

duck-typing 'Evo 0TuA TpoypouatiopoV o dev eEETALEL TOV TUITO EVOG OVTLKELUEVOU YLOL VO TTPOCOLOPIOEL

793

av €yeL T owoTh dLemaEn” avtiBeTa, 1 1EB0DOG 1] TO YOPAKTNPLOTLKO KOAELTAL OITAMG 1) XPNOLUOTTOLELTOL

122 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python Language Reference, Anpocigsuon 3.9.23

(«If it looks like a duck and quacks like a duck, it must be a duck.») Aivovtog éupaon otig demapég Ko
OYL 08 OLYKEKPLUEVOUG THTTOUG, O KUK OYESLOOUEVOG KOLKOG BeTLDVEL TNV evEMELQ TOV emLTPémovTaG
™V ohvpoppLkn vrokotdotaot. O timog duck-typing amogpelyel dokLég ypnopuomolmvTas type ()
N isinstance (). (Enueiwon, wotd00, 6TL 0 TUTOG TATLOG duck-typing umopel va. cuUTANPWOEL e
abstract base classes.) Avti avtot, cuvnOwg ypnowomotel dokiuég hasattr () 1 mpoypopuationd EAFP.

EAFP Ilwo g0xolo va Tnthoelg ouyympeon mopd adeto. Autd to Kowvd otul mpoypapuatiopoy og Python
potimo0ETeL TV VIapEN EyKupwV KAEWSUOV 1) YOPOKTNPLOTIKMOV Kot oVAapupdver eEalpéoelg edv 1
vtdeon amodeyDei ecpalpuévy). Auto to kabopd Kot Yp1Yopo GTUl YopoKTNPILETAL 0T TV TOPOVoLa
TOAMDV dnlwoewv try Kou except. H texvikn épyetan og avtifeon pe 1o otuk ov eivanr LBYL Kowvo
o€ MoMEG dAleg Yhwooeg, omtwg 1) C.

éxkgppaon Eva kouudtt ouvtang mov umopet vo a&oloyn0el oe kdmowa tur). Me dhha Moy, po Ekgppaon
glvol o ovoompevon ototyelwv Ekppaong dwg kKuplodeEia, ovopata, TPOGROOT YAPAKTNPLOTIKOV,
TELEOTEG 1] KAOELG CUVOPTNOEMY TTOU OAEG ETLOTPEPOUV O TLLY. Z€ aviifeon ue molég dhheg YAmo-
ogg, Oev elval OAeg oL YAWOOLKEG dOUES EKQPPATELS. YTTAPYOUVE ETLONG statements TOV eV UTOPOVV VO
¥PNoLoTom00UV g EKPPATELS, OTTmG TO while. Ol avabEoelg TMVY eival emiong dNAMOELG 0L eK-
ppaoeLs.

module exéktaons 'Evo module ypapuévo oe C 1) C++, o ypnotpomoteitar amd to C API tng Python yia va.
OMANAETLOPATOVY e TOV TTUPT VA KOL [LE TOV KMOLKO TOU P OTH.

f-string Ou kvpLoheKTikég oupforooelpég ypnotpomotovy e tpdlepa '£' N "F' ovoudlovior cuvnwg «f-
strings» oV €ivol ouvTopoypopia Tov formarted string literals. B\ exiong PEP 498.

OVTIKEIUEVO apyeiov An object exposing a file-oriented API (with methods such as read () or write ())toan
underlying resource. Depending on the way it was created, a file object can mediate access to a real on-disk file
or to another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.

2TV TPOYUOTLKOTITA VITAPYOUV TPELS KATNYOPLES VTLKELWEVWV apyelov raw dvadikd apyela, buffered
dvadikd apyelo xon apyela keyévov. O dLemapég Tovg opilovtal oty evotnta 1 o. O Kavovikdg 1pdmog
YLOL VO ONULOVPYNOETE VOl OVTLKELUEVO 0P ELOV ELVAL XPNOLUOTOLDVTOG TV CUVAPTNON open () .

OVTIKEUEVO TTOV poLalerl pe apyeio 'Evo ouvavuuo ue To file object.
finder 'Eva avtikeipevo mov mpoomadei va Bpet to loader yio éva module swov e1oMyOm.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path
entry finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

oképare dwaipeon H podnuotikn) Slaipeon wov 0tpoyyuhostoLel Tpog Ta KAtw 6Tov Kovivotepo aképato. O
teleoTthg axépanag diaipeong eivan / /. T mapdderypa, M ékgppaon 11 // 4 aEwoloyeital og 2 ot
avtifeon pe ™V Tur 2 . 75 OV ETLOTPEPETOL OTTO THV SLALPEDT] e VITOSLAOTOMY). Znueimon ot (-11)
// 4 Kbvel -3 emeldn) ot eival 1 6Tpoyyulomoinoy moog Ta kdtw Ttov -2 . 75. BL. PEP 238.

ouvaptnon Mo oelpd ad SNMDOELS TTOU EMLOTPEPOVY KAITTOLOL TLUT) OF GUTOV TTOU TV KAAEOE. Z€ OUTEG UITO-
POUV VAL TTEPAGTOVV KOVEVL 1] TTEPLOGOTEPO. OVIGUATA TTOV WTOPEL VAL PNOLLOTOINOEL YO TNV EKTELEDT).
B emtiong g evomteg parameter, method, ko the Function definitions.

ouvvaptnon annotation 'Evog annotation juog Tapauétpov GuvapTnong 1 Wag TUG ETLOTPOQNG.

OL oVvOPTNOELG annotations GUY VA YPNOLOTTOLOVVTOL YO vodelEels Thmov: yia ToPdderyua, auty M
OUVAPTNON OVOUEVETAL VO TTAPEL HVO OPIOUATO 1Nt Ko ETLONG AVAUEVETOL VO £XEL WO ETLOTPEPOUEVT|
T int:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

H oVvtoEn ouvdptnong annotation avolveton oty evotnto Function definitions.

See variable annotation and PEP 484, which describe this functionality.

123

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Anpocigsuon 3.9.23

_ future__ 'Eva future statement, from __future__ import <feature>,ka00d1Yyel TOV UETAYAMTTLOT
va uetayhmttioet to Tpéyov module ypnopomoldvrag ovvtaEn 1 onuactohoyic wov Oa yiver 1 TUTTLKY
oge pehhovtiky ékdoon g Python. To module _ future_ texunpudvel Tig mbaveég TWéG Tov feature.
Me v eloaymyn authg Tg AELTOUPYLKTG LoVAdaAS Ko TV aELOAGYNOT TV UETABANTOV TNG, WITOPE(TE
vaL OeLTE TTOTE (AL VEQ dUVATOTNTA TTPOOTEONKE YL TPDTY PoPA TNV YADOooo Ko toTe Oa yiver (1) €yive)

1 TTPOETULAOYY):
>>> import __ future_
>>> _ future__ .division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

ovihoyn amoppindrev H diadikacia anehevBépmang g uvihung dtav dev xpnowwomoteiton dhho. H Python
eKTELEL GUALOYT] ATTOPPLUATOV HECH KOTAUETPNONG OVAPOPDV Kot eVOg KUKMKOU OUAAEKTY) OKOUTTL-
LV oV eiva og BE0T Vo aviyveEVEL KOl VO OTTAEL TOVG KUKAOUG avapopdc. O GuMEKTNG AmoppLudttmy
wropet vo eheyy el xpnoluomotwvtag to module ge.

generator Mua ouvapTNON TTOV EMLOTPEPEL €V generator iterator. MOLATEL LE ULaL KOVOVLKY] GUVAPTNON EKTOG
aTto TO OTL TEPLEYEL EKPPACELS v ield VLo TNV TOPUYOYT) UOG OELPAG TLULMV TTOU UITOPOVV VAL XP1OLUO-
momOovv og Evav Bpoyo for 1) IOV PTOPOVV VO avoKTNOOUV pia T opPAa e TV CUVAPTNON next ()
function.

ZVVHDWG AVaPEPETOL OE L0 GUVAPTNOT) generator, GAAG (WITOPEL VoL VAPEPETOL OE £VALV generator iterator
0€ UEPLKA contexts. Ze TEPLTTMOELG OTTOV TO ETMLOLWKOUEVO VOO OEV ELvaL GAPES, 1] XPNOT) TWV TAPWV
OPWV ATOPEVYEL TNV OLOAPELCL.

generator iterator 'Evo avtikeigevo mov dnuovpyeitor oo wua GuvapTnon generator.

Each yield temporarily suspends processing, remembering the location execution state (including local
variables and pending try-statements). When the generator iterator resumes, it picks up where it left off (in
contrast to functions which start fresh on every invocation).

generator £k@paot) Muo £K@paon Tou emoTpépet Evay iterator. Moldlel ue Kavoviki £Kgppaon Tov akolov-
Ositon awd e TPoTooT for mov opilel wia uetafAnty fpodyov, £vo epog KoL (oL TTPOULPETLKY TPOTAON
if. H ouvdvaouévn £Keppaon dNUoVpYEeL TLWES YL Lo OUVAPTNOT EYKAELOUOV:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

YeEVIKT] ouvaption Mo ovvaptnon mov amoteleltanl amd ToAATAEG CUVOPTHOELS TOU VAOTOLOVV TNV idia
Aettoupyia yra dLapopeTikovg Tumovg. [owa viomoinon mpémel va ypnotpomomOel katd T didprela
o KAMong kabopitetor amd Tov akyopliuo ommootols.

B\ emtiong v Kotaympnon tov single dispatch, tov decorator functools.singledispatch () ko
PEP 443.

vevikog tomog 'Evog type tov uopel va mapauetportom0et” ouvnOwg wa container class, 6nwg 1ist fdict.
Xpnowwosoteiton yio type hints Kow annotations.

T wepLoodtepeg Aemtouépetes, PA. generic alias types PEP 483, PEP 484, PEP 585, xou to module
typing.
GIL B\ global interpreter lock.

global interpreter lock O pnyavioudg ov ypnowpomoteitan amd tov diepunvéo CPython yuo va. dLoopatice
ot wovo éva viua extelei Python byrecode kéOe @opd. Avtd amhomotel tnv vhosoinon CPython om-
ULOUPYDVTOG TO LOVTEAD OVTLKEWEVOU (OVUTEPILAUPBAVOUEVMY KPIOLU®V EVOOUATOUEVOY TOTOV OTTMG
w.y. dict) épueco aopalég Evavl tautdypovng Tpoofaons. To kKheidwuo okdxinpov tov diepunvéa
SLEVKOAUVEL TOV dLepunvEa Vol elval TOMATADOV VIIUATOV, E1G BAPOG TOU UeYAAOV HEPOVGS TOV TTAPAAAT-
MOUoU TOV TAPEXOVV OL UNYOVES TTOMOTAMV ETTEEEPYATTDV.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/0.

124 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

The Python Language Reference, Anpocigsuon 3.9.23

Iponyoupeveg mpoomdbereg va dnuovpyn el évag drepunvéag «eAevBepwv-vynudtwv» (AUTdg TOU KAEL-
dveL Ta Kowvoypnota dedopéva pe ol Lo AemTouepy evancOnoio) dev NTo EmTUYELG ETELON 1) OITO-
8001 VITOYMPNOE 0TV KOLVT| TTEPimT™aon evog eneEepyaoth. [liotevetal dtu 1) vépBoon outov Tou Tpo-
BAuatog amddoong Ba KAvouv oA TTLo TEPLTAOKT KoL ETOUEVIS TTILO OATAVIPT) OTNV GUVTIHPNOT).

hash-based pyc 'Eva apyeio kpugpng uvnung byfecode mov ypnoLUOTOLEL TOV KATOKEPUATIONO KoL 0L TOV
YPOVO TPOTOTTOLNONG TOV ALVTIOTOLYOU OPYELOV TTPOELEVONG YLOL VO TTPOOALOPLOEL TNV EYKUPHTITOL TOV.
BMA. Cached bytecode invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (it needs an __eqg__ () method). Hashable
objects which compare equal must have the same hash value.

H OmapEn hashable kbvel évo, aviikeipevo va umopel va ypnowpomotn0el wg khetdi AeEukot kow wg uéhog
€VOGg CUVOLOU, ETTELDN AUTES OL OUES DESOUEVV Y PNOLUOTOLOVY TUUEG KOTAKEPUATIOUOUV.

Ta wepLocdTEPa amd Ta OUETAPATA EVOOUATOUEVO OVTLKELIEVA TN Python wrtopoitv vo kotakepuott-
oToVV” TO HETAfANTA KovTéLvep (0mmg oL Mioteg 1 To heEika) dev eivar” ta apeTafAnta Koviévep (Ommg
mheladeg kou ta frozesets) PLITOPOUV v KOTOKEPUATLOTOVY LOVO EAV TO. OTOLYELD TOVG ELVOL KOTAKEPUOL-
Tiopéva. Ta avtikeigevo mov eival otiypdTuTa KAGoEmY Tov opilovtal amtd To XpNoTH WIopouv vo
KaTokKepUaTlotovv amd mpoemAoyr). Ola ouykpivovtal dvioa ektog amd Tov outd TOUg) Kot 1 T
KATOKEPUATLOUOU TOVG TPOEPYETOL Atd TO 1d () .

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python.

immutable 'Eva avtikeipevo ue otabepn tun. Ta apetdfinto avitkeipeva mepthaupdvovy apbuots , ovu-
Bolooelpéc Kau mherddeg. 'Eva tétolo aviikeipevo dev umopel va alldEet. ‘Eva véo avrikeipevo mpémel
va dnuovpyn el edv mpémer va amoOnkevtel wa dragopetikt| tun. IHailovv onuoaveikd pdro oe uépn
OOV Lo 0TOOEPE aTTaLTETOL, YL TOPAdELYIO WG KAEWDL 08 Evol AeELKo.

gwoayouevo path Mua Aiota 0mtd tomoOeoieg (1) kataywoioes Stadpour)s) mov wtopov va avalntnovv path
based finder ywo. vo. elooy0ovv modules. Katd v diadikaocio elooymyns, avty 1 Moto pe tomodeoieg
ouvnOmg €pyetTaL omd sys . path, ol yio to vtomokéta pmopel eniong va £pbel amd 1o yopaKTnpL-
OTLKO TOV TAKETOV YOvEQ __path__.

aoayoyn H dwodikaoio kotd Ty omoia o kdhdikag g Python ot éva module givar Stabéoun otov Kmdika,
Python evog dAhov module.

swoaywyéas Evo aviikeipevo uropel ko vo ovatntel kow vo poptdvel évo module” kau éva finder kou loader
OVTLKELUEVO.

duadpaotikog H Python éyel évav SLadpaotikd Siepunvéa 6mtov onuaiver OtL umopelg va elodyelg SNAmoeLg
KoL EKQPACELS OTNV ELOOYMYT] EVTOLDV TOU dlepunvéa, EKTEMDVTOG TG AUECO KoL ELPOVICOVTAG T
avtikeigevo. AThdg ekKLviote TV python ywpic opiouata (bavig emhéyoviog To amd To KUpLo
UEVOU TOV VITOLOYLOTH 00G). ATtotelel Evav armodoTikd Tpdmo YL va doKudote véeg 1déeg 1) va eEetdiote
LertovpyLkéc novadeg ko akéto (Buunbdeite help (x)).

interpreted H Python eival o interpreted yAdooa, o avtifeon pe o PeTayAmTTLOMEVT, oV Ko 1) dLdKpLom
WItopet va. giva Ko ol Moym g mapouoia Tou bytecode petayhmTTioTy). Autd onuoivel 0Tt ta apyeio
TPOENEVONG UTOPOUV VoL EKTENeOTOUV amtevdeiog xwpic va dnuovpyndel pntd éva exteléono apyeio
oV otV ouvvéyelo, ekteleitar. Ou interpreted YAdooeg ouviiBwg €xouvv wkpOTEPO KUKAO avamTuENG/
EVTOTILOUOU CQAMLATMV 0Tt TIG UETAYAMTILOUEVES, OV KOL TO TTPOYPAULOTE TOVG YEVLKA eKTENOVVTOL
7o apyd. Bh. emtiong inferactive.

TEPUATIOUOS AerToupyiag diepunvéa Otov Inteiton tepuationds hettovpyiog, o diepunvéag tng Python ei-
OEPYETOL O€ ULaL ELOLKT) PAoT OOV ortehevBepdveL oTadLokd Ohovg Tovg dratbépevovg Tdpove, dmtmg
LertovpyLkéc novadeg Ko TohMamhég Kpiolueg eomtepikéc douéc. Emiong mparyuatomotel apketé K-
OELG 0TO GUAAEK TN GKOVmALH V. AUTO WTOPEL VO, EVEPYOTTOLNCEL TNV EKTEAEDT KMOLKA O KATOOTPOWELG
7tov opilovron amod to PN ot 1) oe callbacks aoBevoic avramokpioelg. O KOILKOG TOV EKTEAEITAL KOTA
™ Ao TEPUATIONOV AeLTovpyiag umopet vo ouvavtioel duigpopeg eEapéoelg, kKadmg oL TOPOL 0Toug
omolovg Baoiletor evdéyetal vo unv kettovpyotv mhéov (ovviOn mapadeiyuata eivor oL AelToupykég
novadeg BBALOONKNG 1) 0 UNYAVIOUOS ELOOTOLTEMY).

125

The Python Language Reference, Anpocigsuon 3.9.23

O Baotkdg MOYOG TEPUATLONOU AELTOVPYiaG TOU diepunvéa eivar 6tLto __main__ module 1 ohokAnpo-
OnKe 1 eKTELEON TOV KMOOLKO TTOV ETPEYE.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types
(such as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any
classes you define with an __iter__ () method or with a __getitem__ () method that implements
Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary tocall iter () or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator's __next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further
calls to its _ next__ () method just raise StopIteration again. Iterators are required to have an
___iter__ () method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple
iteration passes. A container object (such as a 11 st) produces a fresh new iterator each time you pass it to the
iter () function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

[MepLoodtepeg mAnpoopieg wmopotv va fpedolv oto typeiter.

ovvapnon key Mia ouvdptnon khewdi 1 wo ovvaptnon ta&wvounong eivar po duvotdTnTo KA oNg mov
emMOTPEPEL IO TYU] TTOV YPNOLUOTTOLELITOL YLor ToEwvounon M dudtan. T mapdderyua, locale.
strxfrm () YPNOLWOTOLELTOL YO TNV TOPOYwYY EVOG KAEWDLOU TaELvounong wov yvwpilet g ovufa-
0€LG TOELVOUNOTG YL OUYKEKPLUEVEG TOTILKEG puOUiOELG.
‘Eva. oplOudg epyodleimv omnv Python &éyetor Paolkég ouvaptnoels yio Tov €AEYX0 TOU TPOTOU
ue Tov omoio Tt otouyeia tatvouovviar 1 opadomolovvtol. Avtd mEpéyovv min (), max (),
sorted(), list.sort (), heapg.merge (), heapg.nsmallest (), heapg. nlargest(),
KalL itertools.groupby ().

There are several ways to create a key function. For example. the st r. lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a Iambda expression such
as lambda r: (r[0], r[2]).Also,the operator module provides three key function constructors:
attrgetter (), itemgetter (), and methodcaller (). See the Sorting HOW TO for examples of
how to create and use key functions.

opwopa keyword BA. argument.

lambda Mo avdvuun evoouotouévy cuvaptnon mov amoteleital amd Wo. LOVOSLKY) expression 1) 0molio
aEroroyeitan Otov kodeitar m ouvaptnon. H ovvtagn yio) dnuovpyia wag ovvdptnong lambda eivon
lambda [parameters]: expression

LBYL Look before you leap. Autd to oTuh Kmdikomoinong eréyyel pntd TG mpoimoEaelg mpLv mTpayuoto-
oL oeL KAMOELS 1) avolnTioels. Autd To OTul €pyETaL 0€ avtifeon e v Tpooéyyion EAFP Ko Xopo-
KTnpiletan amd TV Topovoia ToAmV dNAmwoewy 1 .

Ze éva mepLailov molhamhmv vnudtov, | tpoogyyion LBYL pmopel va diakivouveloeL vo. eLoAyEL
wo ouvOfKn aydva uetal «the Looking» kol «the leaping». o tapdderyua o khdikag, 1f key in
mapping: return mappinglkey] WTOPEL VO OITOTUXEL €AV £va GANO VIO OpaLp€OEL TO key o
TO mapping PETA T dokut, OAG TPV aTd TV avolnot. Avtd to Tpdfinuo pmopet va Aubel ue
KAELDOUOTA 1) XpMoLpoToLdvTas TV tpooéyyion EAFP.

Aot A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements is O(1).

list comprehension 'Eva ovumayfg tpdmog yia vo. emeEepyaoteite OAa 1 H€POG TV OTOLYEIWY OF Ol OKO-

MovBia Kal vo emotpépete po Mota pe ta amotehéoparta. result = ['{:4#04x}'.format (x)
for x in range(256) if x % 2 == 0] dnuovpyei wo AMoto CUUBOLOCELPMY TOV TEPLEYOVV

126 Mapaptnua A'. NMwooapt

The Python Language Reference, Anpocigsuon 3.9.23

Tuyovg dexoeEadikotg apduoig (0x..) oto gvpog artd 0 twg 255. H mpdtaon 1 £ eivou tpoanpetiky). Eqv
mopalewpBei, Oha To oTOLKELCL 0TO range (256) vopfdihovtal o emeEepyaocia.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

noykt uédodog ‘Eva drumo ovvdvopo yia. special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

meta path finder 'Evog finder mov emotpdenke pe avolnmmorn oto sys.meta_path. Ou finders ueta-
dradpoung oxetitovrat, ald drapépovy oo ta finders entry Stadpous.

B\ importlib.abc.MetaPathFinder yia tig uebddoug mov vhomolovy oL meta path finders.

nero-khaon H xhdon wog khaong. O oplopol kKhdong dnuovpyotv évo dvopo kKAGong, éva AeEikd kKhdong
Ko o Alota ootk khaoewv. H peta-khdon eivar veetbuvn yio v adKTnon autmy ToV TpLov
0pLOUATOV KoL TNV dnpovpyia g KAGong. OL eploooTePES AVILKELUEVOOTPEPELS YADOOES TPOYPO-
UOTLOUOV TTOPEXOUV WO, TPOETULAEYUEVY VIOTTOiNOoY. Autd mov KGvel Tnv Python Egywploti) eivan 6t
elval duvati n duovpyia Tpooapuoouévmy uetakhdosmv. O TepLocdTepoL xpNoTeg dev ypeLdtovol
7T0Té€ AUTO TO epyaelo, ald dTav TopaoTEL AVAYKY), AUTO TO EPYAAELD, OL UETO-KAAOELS UWITOPOUV VO
TapEXOLVV LOYVPES, Kopég AMioels. ‘Exovv ypnoupomomOel yio tnv katoypagpt) tpdofaong xapaKTnpL-
OTIKAOV, TNV TPOTONKN 00PALELOS VHUATMY, TNV TOPAKOALOVON 0N SNULOVPYIOG OVTLKELUEVOV, TV VAO-
moinon singletons, Kou TOMEG GAAES epyOOieC.

[MepLoodtepeg mANpoopieg umopovv va Bpedolv oto Metaclasses.

uédodog Mia cuvdptnom mov opifeton péoa oto odua wag kKhdong. EGv kaheitar wg yapaxtnplotkd peg
TEPLTTMONG OVTNG TNG KAAONG, 1 nEB0d0G Oa AAEL OVTIKELUEVO TEPILTTWONG WG TPWTO TNG argument
(to omoio ovviBwg ovopdLetor sel £). BA. function xow nested scope.

ogpa avahvong nedodwv Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python
interpreter since the 2.3 release.

module 'Eva avtikeipevo mov ypnotuever wg opyovmtike povada tov kmdika tg Python. Ta modules €yovv
évav ympo ovoudtmv mou mepLEyeL avbaipeta avtikeipeva Python. Ta modules goptdvovior otny
Python pe tv dradikaocio importing.

Bh. emtiong package.

TeyviIkEg Tpodiaypaes module ‘Evo namespace ov mepléyel TG TANPOQopieg Tov oYeTiCoviaL pe v eL-
oayWYN OV YPNOLUOTOLOUVTOL VIO THY OpTtwon €vog module. Mo mepisttwon tov importlib.
machinery.ModuleSpec.

MRO Bh. method resolution order.

mutable To supetdfinta avrkeipeva wropotv va aldEouv Tig Tiég ald va kpatnoouv to id (). BA.
emiong immutable.

named tuple O 6pog «named tuple» epapudletar Yo, 0moLovdNToTE TUTTO 1 KAAOT oV KAnpovoueitat amd
TNV TAELADO. KOL TV OTTOLMY TO. OTOLXEL WITOPOVY VA EVPETNPLOTOLNOOVV Eival TPOGBATLUOL Y PNOLLO-
TOLDOVTOG EXMVUUO XAPOKTNPLOTIKA. O TOT0og 1 1) KAGON umopel va €xeL Kow AR YOPOKTIPLOTLKA.

Tol\oi evomuortouévol timol eivor named tuples, CUUTEPIAAUPBAVOUEVDV TWV TLUMDV TTOV ETMLOTPEPOVTOL
anmd time.localtime () kouos.stat (). Eva d\o mopdderyuo eivor 1o sys. float_info:

>>> sys.float_info[l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

127

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Anpocigsuon 3.9.23

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be
written by hand or it can be created with the factory function collections.namedtuple (). The latter
technique also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace To pépog dmov arodnkevetan o petofAn. To namespaces VAOTOLOUVTAL WG AeELKA. YTdpyovv
0L TOTTLKOL, 0L KatBoMKOL KO 0L evowuaTwuévol namespaces Kabmg Kot oL EVOETOL namespaces 0€ AVTIKEL-
ueva (oe pebddovg). o Tapaderypa oL ouvapToelgbuiltins . open Kol 0s . open () dlokpivoviol
aTto TOUG YWPOVG OVOUdT™V Tovs. O xmwpot ovoudtwv fondolv exiong tnv avayvooludTnTa Kot T ov-
vTpnoLpoT T KobLotdviog oapés toto module vhormotel wa Aettovpyia. o mopdderyua, ypdgoviag
random.seed () | itertools.islice () KaBLoTd cOPEG OTL QUTEG OL CUVAPTIOELS VAOTTOLOVVTOL
artd Ta module random kow itertools, aviioTtolya.

mokéro namespace A PEP 420 package which serves only as a container for subpackages. Namespace packages
may have no physical representation, and specifically are not like a regular package because they have no
__init__ .pyfile.

B emiong module.

nested scope H duvatdtnta avagpopds oe (o petafAnty o évav meptkhelopevo optopod. I'a apdderypa wo
oVVApPTNOT OV OpITeTaL HECO OE e GAA GUVAPTNOY UITOPEL VO avapEPETaL 08 UETABANTEG OTNV EEW-
TEPLKT] CUVAPTNON. ZNUeELmoTe OTL to évOeTa medio amd mTPOoETLOYH AELTOUPYOUV UOVO Yo Avapopd
Ko Oy yro ekyopnon. Ot tormukég petafAntég dtafaloviol Kol Ypapoviol 0To ECWTEPLKO Tedl0 Epap-
noyns. Opoiwg, ou kaBolkéc uetafintég drofdtouv Kot ypdpouv otov KaBolkod ympo ovopdtwy. To
nonlocal emuTpémeL TNV YYPAPY 08 eEWTEPLKA TTEdIaL.

KkAGon véov otuh Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
_ _getattribute__ (), class methods, and static methods.

ovukeipevo Omoladnmote dedouéva e KoTaoToon (YopaKTNPLOTKA 1) TLUY) Kot KafopLopévn oupsepLpopd.
(uéBodor). Emiong, N telkn footkn) kKhAom ommolaodfote new-style class.

moaxkéto A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with an __path___ attribute.

BA. emtiong regular package xow namespace package.

TUPAUETPOS Mia EyKupn ovioTita ot évav oploud function (| pé6odog) mov kabopilel éva argument () og
OPLOUEVEG TTEPLITTOOELS, OPLOUATO) TTOV Utopel vo. dey el 1 ouvaptnon. Yrdpyouvv mévie €idn mapous-
TPWV:

o AéEn-kAeldi 1) Oon: kKabopilel éva OpLopa Tov Witopet vo petafipaotel eite Oéoews | wg dpLou

AéEnG-kAetdtov. Avtd eival To TPOETUAEYUEVO EIOOG TAPAUETPOV, VIOl TAPAdELYUA foo KoL bar oTa.
axohovba:

def func (foo, bar=None):

o Oéoewe udvo: kabopilel éva dpLopa mov uropel va mapéyeton pdvo amd m Béon. Ou Tapduetpol
1Ovo B£0MG WITOPOVV VA 0PLOTOUV CUUITTEPLMAUSAVOVTOG EVOLV Y UPAKTNPO / 0T AMOTA TAPAUETPWV
TOU OPLOLOY CVVAPTNONG UETA 0Ttd aUTEC, Yo Tapdderyua posonlyl kon posonly2 oto eENg:

def func(posonlyl, posonly2, /, positional_or_keyword) :

o AéEng-kAeldi udvo: kabopilel éva dplopa Tov Wrtopel vo mapéyetor wovo ue MEN khewdi. Ou ma-
pauetpot povo yro MEEN-KAedl Wtopotv va 0pLoTolV oVUITEPILAUBAVOVTAS UL TAPAUETPO OF-
ong 1 ok€To * 0TI MOTA TAPAUETPWY TOU OPLOUOY GUVAPTNONG TIPLY OITO QUTEG, VLA TTOPASELY L
kw_onlyl xou kw_only2 ota. axdhova:

def func(arg, *, kw_onlyl, kw_only2):

o uetafAnti Oéong: ko0opilel OTL umopel va mapaoyedei wa avbaipetn akohouvbio optopdtwv OEong
(emumhéov TV oplopdtov Béong ov eivar 1N amodektd omd dhheg Tapouétpovs). Mia tétola

128 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Anpocigsuon 3.9.23

TOPAUETPOS WTOPEL VO OPLOTEL TPOCAPTDVTAG TO OVOUQL TNG TTAPAUETPOV UE *, YLO. TTOPAELY UL
args oto. akoOhovbo:

def func(*args, **kwargs):

o uetafinth AéEn-kAeldi: kabopilel OTL umopovv vo mapéyovtar cvbaipeto ToAG opiopata AEENG-
KAewdLov (emuthéov Twv opropdtwv MENG KAEWdL0U Tov givan 0rmodektd 0td dleg mapauétpovg).
Mo tétole TOPAUETPOS UTOPEL VO OPLOTEL TPOCUPTMVTAS TO OVOUDL TNG TOPAUETPOV UE * *, YLl
TOPAdeLYno. kwargs Omme ToPATAV®.

O opdpeTpol wropotv va Kabopicouvy TO00 Ta TPOALPETLKA OGO KL T OITOLTOVUEVO OPIOUOTO. , KO-
0MG Ko TPOETUAEYUEVES TUIEG VLA OPLOUEVA TTPOOLPETLKG OPLOUALTAL.

BA. exiong v argument Kotaymplon gupetnpiov, Ty epdtnon FAQ oyetkd pe 1 dtogpopd petaso
OPLOUATOV KOl TAPOUETPWV, TNV KAAON inspect .Parameter, v evotnta Function definitions xou
PEP 362.

path entry Mo pepovouévn tomobeoio ato import path Ty omoio cuufovieveton o path based finder yio. vo.
Bper modules yio eLoorywy.

path entry finder 'Evog finder mov emiotpépetar amd évav Kahovuevo 0to sys.path_hooks (dnhadn éva
path entry hook) mov Eépel mwg va evromiler modules ue path entry.

B\ importlib.abc.PathEntryFinder yio tig uefddovg mov o entry finder dtadpoung vhomotei.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder 'Eva amd ta mpoemheyuéva meta path finders mov ovalntd éva import path yio. modules.

path-like avrikeipevo 'Evo avtikeipevo mov aviumrpoonmevel évo path cuothuatog apyeiov. Eva aviikei-
uevo path eivaur eite éva avtikeipevo str 1 bytes mov avimpoonmevel éva path 1 éva aviikeipuevo
7tov vhomotel 1o TPwTdKoMo os . PathLike. Eva aviikeipevo mov vootnpilel 10 TpwTOKOAAO Os .
PathLike umopel vo uetatpanel o path ovothuatog apyeimv str 1 bytes Kahdvrog v cuvap-
mon os. fspath () ”ta os.fsdecode () KoL os. fsencode () wropovv va xpnotiomotndov yo
™V eyyimon evog amotehéonatog st r N bytes, avtiotorya. Ewonydn and tov PEP 519.

PEP IIpotoom Beltimong Python. 'Eva PEP givou éva €yypago oyedloonol mov mapéyel IAnpogopieg otny
Kowvotnta Python 1) mepuypaper o véa duvatdtnta yio. v Python 1 tig dradikacieg 1 to meptiah-
Mov g. Ta PEP Oa mpémel va Topéouv (o OUVOITTLKT) TEYVLKT] TPOdLaypapt] KoL ot AOYLKT) YLoL TaL
TPOTELVOUEVOL Y OPOKTNPLOTLKAL.

Ta PEP mpoopiCovror va givar oL KUpLot unyaviopuol yior v spdtaon ouovItKov vEmV XopaKTpL-
OTIKAV, L0 TN OVALOYT] TANPOQOPLAV TNG KOLVOTNTAS Yo Vo THTNUOL KO YLOL TNV TEKUNPLDOT TWV
ATOPAoEMV 0YEDdLATUOV TTOV €Youv eloayBel otnv Python. O ouyypagéag tov PEP eival vteubuvog yia
TNV 0LKOOOUNOY OUVOLVEONG EVTOG TG KOLVOTNTAG KOL TNV TEKUNPLWOT] OVTIOETMV amdPewy.

B\ PEP 1.

tuiuoe ‘Eva oivolo amd apyeio oe évav udvo kotahoyo (evdeyouévmg amobnkevuévo oe apyeio zip) mov
ouupdriovv o éva namespace makéto, Omwg opiteton oto PEP 420.

opwopa 0¢ong BL. argument.

provisional API 'Eva provisional API gival avtd mov éyer sokepuévo eEapebdet amd tig backwards eyyvioeig
ouppotdTnTog ™G TUTTLKNG PLBAMOOTKNG. AV Ko dev avauévovtor onuovtikég odhayég o tétoleg OLe-
TOPES, EPOCOV ETLONUALVOVTAL WG TPOCWPLVES, alharyég un backwards cupfatotnrag (éypt Ko Kotdp-
YNON TG DLETAPNS) WITOPEL VO TPOKMPOUV eV KpLOel amopaitTto amd Toug Faotkovg TPOoyPaLULOTL-
otéc. Tétoleg ahhayég dev Oa yivouv dokoma - 0o oupfovv povo edv amokalvphouv copapd Bepuelimdn
EMOTTMOUATO TTOV TOPCAEIPONKAY TTPLY artd T ovptepilnyn tou APL.

Axoun xow yia provisional API, ov un backwards ovufatég arhayéc Oewpovvrar «hdomn €oyotng
avaykne»- Ba eEakolovBel va yiveton kdbe mpoondeia yio va Bpebei wa AMon backwards ovufoti
0€ TUYOV EVIOTIOUEVO. TTPOPAUOTA.

129

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Anpocigsuon 3.9.23

Avt 1 dradikaoio emrtpémel oty Tumky BLlodNKm va cuveyioer va eEeliooetal pe v Tépodo tov
YPOVOU, YWPIG VO KAELDWVEL TPOPANUATIKG OAAIOTA OYESLATUOV VL0 EKTETOUEVES YPOVIKES TTEPLODOUG,.
Bi. PEP 411 yio eplocdtepeg hemTouépeLec.

provisional maxéro BA. provisional API.

Python 3000 Weudmhvupo yia to ovvolo ekddoewv Python 3.x (esmivonOnke spLy atd ol Koupd dtav 1 Ku-
Khogopia g €kdoong 3 NTav KATL 0T0 HoKPLVO PEMLOV.) Autd ovoudleTol emiong wg GVVTOUOYPApio
«Py3k».

Pythonic Mua 16¢a] éva Koupdtt Kddiko tov axkorovdel motd ta o Kowvd Widpata tg Yhwooag Python,
QVTL VL VLOTTOLEL KMOLKOL Y PHOLUOTOLMVTOG EVVOLEG KOLVEG 0€ GAheS Yhwooeg. [ia mopdderypa, £vo Kowvo
wWimpo otnv Python eivar va kéver pa eavdinym cave amd dha ta otougeio evog iterable ypnowuo-
soldvTog wa dNhmwon ror. [Modhég Ghheg YMDOOES TOU deV £XOUV AUTOV TOV THTTO KOTAOKEVNG, £TOL OL
avBpwmol ov dev eivan eEotkelmuévol ue v Python ypnopwomolotv ueptkég @opég évav aptduntikd
UETPNTN:

for i in range(len(food)):
print (food[i])

Avtifeta, o o kabopr pébodog Pythonic:

for piece in food:
print (piece)

avoyvopLopevo ovoua ‘Eva dvoua pe koukkideg mou deiyvel T «dradpoutp» amd 1o kKabohkd gipog evdg
module oe pwa KAGoY, ouvaptnon 1 uébBodo mov opiletar o avthv TV evdtnTa, Otwg opileTar 0To
PEP 3155. T ouvoptioeLg Ko KAAGELG OVATATOV ETLITESOV, TO OVOYVWPLOUEVO Ovoua eival idLo pe To
OVOUO. TOV AVTLKELUEVOU:

>>> class C:
class D:
def meth (self):
pass

>>> C._ qualname_

] C]

>>> C.D.__gualname

'C.D!

>>> C.D.meth. qgualname
'C.D.meth'

‘Otav xpnotuomoteitor yia avapopd oe modules , 10 TAHOWS avayvwoeLouévo évoua onuoivel ohokANPo
To drakekoupévo path pog to module, cuvumephauBavouévav ToyxOV YOVIK®OV TOKETWY .. email.
mime.text:

>>> import email.mime.text
>>> email.mime.text. name
'email.mime.text'

aMB0c avapopds The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sy s module defines a get refcount () function that programmers can call to return
the reference count for a particular object.

Kovoviko mokéro 'Eva mopadooiakd package, dnwg évag Katdhoyog mou mepiéyel évo __init_ .py op-
YELO.
B\ emiong namespace package.

__slots__ Mo dMhwon péoa og o KhAom Tov eE0LKOVOUEL Lviun SNADVOVTOG €K TV TPOTEPWYV XMDPO YLO.
TTOPABELYUO. YAPOUKTNPLOTIKG Ko eEoheipovtag AeElkd oTiypotimwy. Av Kol SHUO@IMIG, 1) TEXVIKT

elval Kammg SVOKOLO VAL YivEL OMOT Kol TPOOoPIleTol KAADTEPO VL0 OTTAVLES TEPLTTWOELG OTTOV VITAPYEL
peydhog aplBudg OTLYULOTUTTMY OF LLOL EQAPUOYY] KPLoLUNG-UVIUNG.

130 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

The Python Language Reference, Anpocigsuon 3.9.23

oakolovlio. An iterable which supports efficient element access using integer indices via the ___getitem _ ()
special method and defines a ___7en___ () method that returns the length of the sequence. Some built-in
sequence types are 1ist, str, tuple, and bytes. Note that dict also supports ___getitem _ () and
__len__ (),butisconsidered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes

beyond just _ getitem () and __len__ (), adding count (), index (), _ _contains__ (),
and __ reversed _ (). Types that implement this expanded interface can be registered explicitly using
register ().

set comprehension 'Evog cupmayng tpomog yio va eneEepyooteite OMa M uépog Twv otoryeimv oe éva iterable
KO VO ETILOTPAPEL £Vl GUVOLO UE TOL autoTeEAéouoTa. results = {c for c in 'abracadabra'
if ¢ not in 'abc'} dnwovpyei To oUvoro cvpporocelpwv {'r', 'd'}. B\ Displays for lists,
sets and dictionaries.

novadiko dispatch Muo wopqn dispatch generic function 6ov 1 vAOTTOINOT EMALYETOL UE BAON TOV TUTO £VOG
UELOVOUEVOU OPLOUOTOG.

slice "Eva avtikeigevo mov ovvifmg mepiéyel Eva tunua wog akohovdiog sequence. Anuovpyeitan éva slice
YPYOLUOTTOLMVTAG T onueimaon subscript, [] pe dvo kou Katw teleieg uetaEl aplbudv dtav divovia
mtoAhol, Omwg 0to variable name[1:3:5]. H onueiwon aykiing (subscript) xpnoLUOTOLEL EGWTE-
pLKa avtikeipeva slice.

181k uédodog Mia uébodog ov Kakeitar olwtnpd atd v Python yia vor eKTeAE0EL Lo OUYKEKPLUEVT] hEL-
Tovpyia og évav Timo, 6TTwg 1 TPood K. TéToleg uébodol xovve ovopaTa IOV EEKLVOUV KOL TELELDVOUY
ue dumhég kdtm mavies. O eldikég néBodol TekunpLmvovtol oto Special method names.

drmwon Mo mpdtoon eivol pépog wag covitag (éva «umhok» Kdduka). Mia pdtaon eivar eite évog
expression gite o, artd wodhég douég e o MEN-Khewdi émtwg i £, whilef for.

Kwdukomoinon kewnévov Mia ovufiohooelpd otnv Python givau pa akohovBio onueiwv khdika Unicode (oto
eVpog U+0000-U+10FFFF). ['la vo auroOnkevoete 1) va HeTapEPeTe o ouuPBolocelpd, TpémeL va oeL-
promonBei wg dvadiki) akolovdia.

H oepromoinom pog ovpBorooelpdc oe pua Suadikt| akorovdio eivol Yvwot mg «KmdLKomToinan» , Kat
1 avodnuovpyia g oupporooelpdc amd ™V dvadiki akohovdia eival YvmoT Mg «amoKmdLKoIToi-

nom».

Yrdpyel o wolkihicn SLapopeTikg OELPLOTTOiN NG KELWEVOU codecs, oL 0TToloL CUALOYLKG AVapEéPOVTaL
WG «KMOLKOTOLNOELG KELULEVOU».

apyeio kewévov 'Bva file object tkavo va. SLoBATEL KoL VO, YPAEL avTlKeiueva st r. Zuyvd, éva apyeto Keyué-
VOU OTTOKTA TPAYUATIKA TTPOoPaon o€ (o por] duadikr) por) dedouévmv Kot yeLpileTol QUTOUOT THY
text encoding. Tlopadelyporta apyeinv Kewévou eival apyeio wov avolyouv og hettovpyio kepévou ("'
N 'w'), sys.stdin, sys.stdout, kot oTLywodTUTO TOV 10. StringIO.

BM. emiong binary file yia éva ovTiKeipevo opyeiov pe duvatdtnta avayvmong Kot eyypopng dvaducd
avukelueva.

oupforooelpd TPUTA®Y eloaymyIKav Mio ouuBolooelpd Tov SeopueteEToL 0TTO TPELS TEPLTTWOELG EiTE EVOG
eLooywyLkov (») N wag amootpdpov (). Av Kou dev Tapéyouv Kouio AeLTovpyLtkotnTa Tov dev eival
duaBéaun pe ouufohooELPEG He LOVA ELOOYWYLKE, elvaL YpfoLues Yo dtagpdpoug Adyous. Zag emLTpé-
TTOUV VO CUUTTEPIAAPETE LOVA KO SLTAG ELOAYWYLKA XWPLG dLapuyy) o€ et GUIPBOROOELPAE KoL (ITOPOvV
VO EKTELVOVTOL O€ TTOAMEG YPOUUES X WPLG T XPNON TOU YOPAKTHPA CUVEXELX, KOOLOTOVTAG TaL LdLaiTEPQL
YPNOLUA KAt T OUVTOEN eYYPAPWY Ue GuUPBOLOOELPES.

tomog The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class___ attribute or can be retrieved with t ype (ob7j).

type alias 'Eva cuvdvupo yo évay t0mo, tov dnuovpyeitor e v ovabeon THmov og vo, avoyvwpLoTiko.

Ta type aliases eival xpnowua yio v amhomoinon rype alias. Two tapaderypo:

131

The Python Language Reference, Anpocigsuon 3.9.23

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplel[int, int, int]]:
pass

WITOPEL VoL YIVEL TTL0 EVAVAYVOTO dTTWG:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

B\ typing kouw PEP 484, mov mepuypdepel authv tnv hettovpytkdtnta.

type hint 'Evag annotation mwov KoHopilel TOV avoUeEVOUEVO TUTTO VLol (O UETOPANTY], EVOL YUPOKTNPLOTIKO
KAGONG 1)l TTAPAUETPO CVVAPTNOTG 1) TLUT) ETLOTPOPTG.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid
IDEs with code completion and refactoring.

YrodeiEeig tomov (type hints) yia kabBolkés uetaPintés, xapoaKTHPLOTKE KAAONG KoL ouvapth-
oelg , OMG Oyl ToTké UeTafANTéG, UWTOPOVV VO TPOOTEAACTOUV YPNOLUOTOLMVTAS TO typing.
get_type_hints ().

BML. typing kow PEP 484, mov meprypdpel autiv tv AELToupyLtkoTnTo.

kobohxés véeg ypaupés Eva tpdmog epunvelag podv Kelnévou otov omoio Oha ta akdhovba avayvwpilo-
vtar wg MEelg wag ypopung: 1 ovufaon téhovg ypouuig tov Unix '\n', 1 ovupaon twv Windows
"\r\n', ko v moid ovppaon Macintosh '\r'. BL. PEP 278 xaw PEP 3116, xabng xou bytes.
splitlines () ywa mpooOetn yxpnon.

annotation pevapiyeig ‘Evag annotation o, petaAntg 1 evog YopakTnpLlotko KAGoNG.

‘Otov annotating puo eTaBANTY 1 va xopakTnpLotikod kKAdong, 1 avadeon eivol Tpoatpetikn:

class C:
field: 'annotation'

Ta annotations HETAPANTOV XPNOLULOTOLOVVTAL CUVIOWGS YLaL fype hints: Y10 TopAdeLyuo outh N LetaFAnt
avapéveral va MfeL Tiég int:

count: int = 0

H o¥vta&n annotation petofintg meptypdipetol otny evotnta Annotated assignment statements.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment 'Evo cuvepyotikd omtopovopuévo meptBallov xpovou eKTELEDTG TOU EMLTPETEL OTOVG
YPNOTES KOl TG ePupUoYES TG Python va eykatootioouv Kat va avafaduicovv mokéto diavoung
Python ywpig va mapepfaivouy oty ovumepipopd ddhwv epapuoymv Python ov ektelovvtat 0Tto (610
ovoTNUO.

B. emiong venv.

virtual machine 'Evog vimohoyiotig opitetal €€ ohokAfipou astd to hoyiowkd. H eucovikr| unyovy tg Python
extelel To bytecode mov ekméuTETAL ATTO TOV UETAYAWTTLOTY bytecode.

Zen g Python Koatdhoyog oyedlaotikdv apydv KoL (LLOCOQLOV TTOV ELvaL YPTOLUES YO TNV KATOVONOT
Kaw ™) ¥phHon g YAwooac. O Katdhoyog umopel va Bpedel TNKTporoymvTag «import this» oty
SLadPAOTLKY) KOVOOLQ.

132 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

nAPAPTHMA B’

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

H avamtuEn tov eyypdewv kol Tov epyaleimv Toug eivat e€” ohokApou eBehovtiki] TtpoomtddeLa., dwg Kat
1 idua 1 Python. Edv 0éhete va ouvelopépete, piEte wa potid oty oelido reporting-bugs yio Anpogopieg
OYETIKEG e TO TG VO, To Kdvete. Kawvouprol eBehoviég eivan mavta evmpdodektol!

[ToAAég vy OpLOTiES TTNYALVOUY OTOVG:
« Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
« the Docutils project for creating reStructuredText and the Docutils suite;

o Fredrik Lundh yia to 61k6 Ttou Alternative Python Reference mpdtlext amd 1o omoio to Sphinx mpe ol
KoAég LOgec.

B'.1 Contributors to the Python Documentation

IMoAhol GvBpwmoL éxovv ouvelopéper otn yAwooo Python, tnv Bupiobnkn g Python, kol to €yypago tg
Python. Aeite Misc/ACKS otig mtnyég dravoung g Python yia wo Aoto tov ouvieheotav.

Movo e T ouUBoAT| KoL TIG CUVELOQOPEG THG KoLvotntag tg Python, 1 Python €yeL tétola vépoya éyypapa
- Zag evyopLotovpe!

133

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
https://github.com/python/cpython/tree/3.9/Misc/ACKS

The Python Language Reference, Anpocigsuon 3.9.23

134 Mapaptnua B’. About these documents

4
NAPAPTHMA [

lotopla kat Adela

.1 Hotopia Tou AoyLoHLKOU

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
/Iwww.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

‘Ekdoon Mpoepxduevn ard | ‘Etoq Idloktnoia | GPL compatible?
0.9.0éwg 1.2 | 8/v 1991-1995 CWI vau
13¢éwg1.52 | 1.2 1995-1999 CNRI VoL
1.6 1.5.2 2000 CNRI oyl
2.0 1.6 2000 BeOpen.com | OyL
1.6.1 1.6 2001 CNRI oyl
2.1 2.0+1.6.1 2001 PSF oYL
2.0.1 2.0+1.6.1 2001 PSF va
2.1.1 2.142.0.1 2001 PSF VoL
2.1.2 2.1.1 2002 PSF VoL
2.1.3 2.1.2 2002 PSF VoL
2.2 kou whvo | 2.1.1 2001-ofuepo. | PSF VoL

Enueiwon: GPL-compatible doesn’t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

135

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, Anpocigsuon 3.9.23

Xapm, otovg morhoVg eEmTepLkolg e0ehovteg Tov epydotnKav Katm amd Tig 0dnyieg Tov Guido, avtég ot
eKOO0ELS EYLVALY EPLKTEC.

.2 Opol kaL nipoumoBbEoeLg yLa TNV npéopacn n} TNV XPrion tTng
Python pe aAAoug tpomnoug

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Kdémolo Aoyioukd mou givan evowuatmuévo otny Python eivoar vd dragpopetikég adeteg ypnons. OL adeteg
ToPOTOEVTAL (LE KMOLKO TOV EUTTLTTTEL 08 AUTHV TNV Gdeia. Agite Adeies ko Evyapioties yio Evewuatwuévo
Aoyioukd yuow puoL EAMTTN MOTa AUTOV TV 0dELmV.

M.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.9.23

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.9.23 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF._
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.9.23 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All_
—Rights

Reserved" are retained in Python 3.9.23 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.9.23 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.9.23.

4. PSF is making Python 3.9.23 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY..
—OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY..
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.9.23 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

136 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpocigsuon 3.9.23

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.9.23

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A._
—~RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.9.23, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

trademark sense to endorse or promote products or services of Licensee, .
—O0r any

third party.

8. By copying, installing or otherwise using Python 3.9.23, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

r2.2 XYMo®QNIA AAEIAZ BEOPEN.COM I'lA PYTHON 2.0

ZYM®ONIA AAEIAZ ANOIXTOY KQAIKA BEOPEN PYTHON EKAOZH 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a

(ouvéyela otV TOUEVN OEMD)

M.2. Opol kai poiinmoBeoeLg yia Tnv npoopaon 1 tnv Xprion tng Python pe aAAouqg tponddd

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

r.2.3 ZYM®QNIA AAEIAZ CNRI I'lA PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in

(ouvEyEeLa TNV ETTOUEVT) GENDQ)

138 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

r.2.4 XYMOQNIA AAEIAZ CWIT'IA PYTHON 0.9.0 EQx 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

M.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23
DOCUMENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

M.2. Opol kal poiinmoBeoeLg yia tTnv npoocpaon 1 tnv Xprion tng Python pe aAAouqg tpondd8

The Python Language Reference, Anpocigsuon 3.9.23

.3 Adeleq katL Euxaplotieg yia Evoopatwpévo AOYLOULKO

Avti M evotita givor o nutelic, odd avEavouevn Moto adewmv KoL EVapLoTImV Yo, AOYLOWKO Tpitmv,
IOV EVOOUOTOVETOL 0TV dtavour| g Python.

M.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/
MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

140 Mapaptnua I'. lotopia kat Adsla

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference, Anpocigsuon 3.9.23

M.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " 'AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3.3 Aouyxpoveg socket unnpeoieq

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 141

http://www.wide.ad.jp/

The Python Language Reference, Anpocigsuon 3.9.23

M.3.4 Awaxeipion Cookie

H evomto http.cookies mepléyel TV mopaKdT® E100TOINON:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

M.3.5 Avixveuon eKTéAeong

H evomto t race mepiéyel v TapokdTm eL00TOiN0:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

142 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpocigsuon 3.9.23

M.3.6 Zuvaptnioelg UUencode kat UUdecode

H evomto uu mepLéyet v mopakdtm domoinon:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

M.3.7 KAjoelg Anopakpuopevng Awadikaciag XML

H evomto xmlrpc. client mepiéyel v mopakdtw e1d0moinon:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 143

The Python Language Reference, Anpocigsuon 3.9.23

".3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

M.3.9 EmAoyn kqueue

H evomta select mepiéyel tv mapokdtm ewdomoinon yio v kqueue diemagpi):

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

144 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpocigsuon 3.9.23

r".3.10 SipHash24

To apyelo Python/pyhash.c mepiéyxer v vhomoinon tov Marek Majkowski tov olyopiBuov tov Dan
Bernstein, SipHash24. Autd mepléyel v mapakdatm onueinon:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

M.3.11 strtod kau dtoa

The file Python/dtoa. ¢, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/******************‘k*****************‘k***************************

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*

WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 145

http://www.netlib.org/fp/

The Python Language Reference, Anpocigsuon 3.9.23

r.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corelopenssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

EE R R e . N S N S S SN SRS S S T SIS S SN S N S N S S S e R N S N S N S T S T R

(ouvéyela otV eV oehida)

146 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

% ok X ok X % X %

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

L T T T I S S S S N S S S S S S N S N S N N S S T S e . N S N S S S S S S S S S S S

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eaylcryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(ouvéyela 0TV emOpEVY 0edL)

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 147

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

* QUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*

* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured ——with-
system—expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

r.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured ——with-
system—-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘'Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

(ouvéyela 0TV TOUEVY 0EMD)

148 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

r.3.15 zlib

H eméxtaon z1ib dnuovpyeital Yp1oLUoTOLmVTAS VO CUUTEPIAAUBAVOUEVOL avTiypapo Tmv Tnydv zlib,
eqv 1 £xdoom Tov zlib tov BpiokeTol 0To GVOTNUO ELVOL TTOA) TTOME YLOL VAL X PN OLULOTTOLNOEL YL TNV KATOOKEVT):

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

M.3.16 cfuhash

H vhomoinon tov mivaKa KoTaKepUATIONOU OV xpnotiomoteital amd 10 tracemalloc Baociletol oto €pyo
cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its

(ouvéyela 0TV TOUEVY 0EMD)

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 149

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

M.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured ——
with-system-libmpdec

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3.18 W3C C14N ocouita SoKLHuNiQ

H oovita doxiurig C14N 2.0 oto mwokéto test (Lib/test/xmltestdata/cl14n-20/) avaktiOnke amd
tov totdtomo tov W3C https://www.w3.org/TR/xml-c14n2-testcases/ Kau dravépetar pue v ddewa 3 phtpov
BSD:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

(ouvéyela 0TV nOUEVY 0EMDL)

150 Mapaptnua I'. lotopia kat Adsla

https://www.w3.org/TR/xml-c14n2-testcases/

The Python Language Reference, Anpocigsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 151

The Python Language Reference, Anpocigsuon 3.9.23

152 Mapaptnua I'. lotopia kat Adsla

nAPAPTHMA £\’

Copyright

H Python ko vt 1) Tekunpiwon eivod:

Copyright © 2001-2023 Python Software Foundation. ‘Ol To. StkodUoTo SLOTPOUVTAL.

Copyright © 2000 BeOpen.com. OLa T SUKOLMOUOTA SLATNPOVVTOL.

Copyright © 1995-2000 Corporation for National Research Initiatives. Olo. To. StKaLOUATO SLATNPOVVTAL.

Copyright © 1991-1995 Stichting Mathematisch Centrum. ‘Ola Tal SLKOLOUOTA SLATPOVVTOL.

AvatpéEte 010 lotopla kar Adea Yo TPNG TANPOQOPNON OYETIKE te TNV AdeLa YpNoNG Ko Tig eE0V010d0-
THOELS.

153

The Python Language Reference, Anpocigsuon 3.9.23

154 Mapaptnua A'. Copyright

Eupetriplo

MN-aAQAPLTIKA
..., 119
ellipsis literal, I8
string literal, 10
. (dot)
attribute reference,73
in numeric literal, 14
! (exclamation)
in formatted string literal, 12
— (minus)
binary operator,78
unary operator, 76
; (semicolon), 97
' (single quote)
string literal,9
" (double quote)
string literal,9
mwww
string literal, 10
(hash)
comment, 6
source encoding declaration,6
% (percent)
TeleoTng, 77

o\
I

augmented assignment, 88

& (ampersand)
TeleoTNg, 78

&:
augmented assignment, 88

() (parentheses)
call, 74
class definition, 104
function definition, 102
generator expression, 68
in assignment target list, 86
tuple display, 66

* (asterisk)
function definition, 103
import statement, 93
in assignment target list, 86
in expression lists, 83

in function calls,75
TeleotTng, 77

* x
function definition, 103
in dictionary displays, 68
in function calls,75
TeleoTng, 76

* k=

augmented assignment, 88
* =

augmented assignment, 88
+ (plus)
binary operator, 78
unary operator, 76
+=
augmented assignment, 88
, (comma), 66
argument list,74
expression list, 67,68, 83,89, 104
identifier 1list,95
import statement, 92
in dictionary displays, 68
in target list, 86
parameter list, 102
slicing, 74
with statement, 101
/ (slash)
function definition, 103
TeAeotTng, 77
//
TeleotTng, 77
//=

augmented assignment, 88

augmented assignment, 88
0b

integer literal, 14
0o

integer literal, 14
0x

integer literal, 14
2to3, 119
: (colon)

annotated variable, 88

The Python Language Reference, Anpocigsuon 3.9.23

compound statement, 98,99, 101, 102, 104
function annotations, 103

in dictionary expressions, 68

in formatted string literal, 12
lambda expression, 82

slicing, 74
< (less)
TeleoTng, 78

<<
TeleoTNG, 78
<<=
augmented assignment, 88

TeleoTNg, 78
TeleoTng, 78

augmented assignment, 88
= (equals)

assignment statement, 86

class definition, 34

for help in debugging using string

literals, 12
function definition, 103
in function calls, 74

TeleoTng, 78

function annotations, 103
> (greater)
TeleoTNg, 78
>=
TeleoTng, 78
>>
TeleoTNg, 78
>>=
augmented assignment, 88
>>> 119
@ (ar)
class definition, 104
function definition, 102
TeleotTng, 77
ASCII, 4,9
AssertionError
ealpeon, 89
AttributeError
eéalpeon, 73
BDFL, 120
BNF, 4, 65
Boolean
operation, 81
avtiketipevo, 19
c, 10
language, 18, 19, 22, 78
CPython, 122
C-contiguous, 121
Conditional
expression, 81

DEDENT token, 7,98
EAFP, 123
Ellipsis
avtikelpevo, 18
False, 19
Fortran contiguous, 121
GIL, 124
GeneratorExit
ealpeon, 71,72
IDLE, 125
INDENT token,7
ImportError
eailpeon, 92
Java
language, 19
LBYL, 126
MRO, 127
NEWLINE token,5, 98
NameError
ealpeon, 66
NameError (built-in exception), 48
None
avtikelilpevo, 18, 85
NotImplemented
avtikelpevo, 18
PEP, 129
PYTHONHASHSEED, 29
PYTHONPATH, 60
Python 3000, 130
Python Enhancement Proposals
PEP 1,129
PEP 8,79
PEP 236,95
PEP 238,123
PEP 252,31
PEP 255,70
PEP 278,132
PEP 302,51,63,123,127
PEP 308,82
PEP 318,105
PEP 328,63
PEP 338,63
PEP 342,70
PEP 343,43,102, 121
PEP 362,120, 129
PEP 366, 57,58,63
PEP 380,70
PEP 395,63
PEP 411,130
PEP 414, 10
PEP 420,51, 53,58, 63,123, 128, 129
PEP 443,124
PEP 448,068,775, 83
PEP 451,063,123
PEP 483, 124
PEP 484, 37,89,103, 119, 123, 124, 132
PEP 492,44,70, 106, 120, 122
PEP 498, 14,123

156

Eupetniplo

The Python Language Reference, Anpocigsuon 3.9.23

PEP 519, 129 escape sequence, 10

PEP 525,70, 120 \f

PEP 526, 88, 104, 119, 132 escape sequence, 10

PEP 530, 67 \n

PEP 560, 35, 38 escape sequence, 10

PEP 562,31 \r

PEP 563,94, 104 escape sequence, 10

PEP 570, 103 \t

PEP 572, 68, 82 escape sequence, 10

PEP 585,124 \u

PEP 614,103,104 escape sequence, 10

PEP 3104, 96 \v

PEP 3107, 103 escape sequence, 10

PEP 3115, 35, 105 \x

PEP 3116,132 escape sequence, 10

PEP 3119,37 ~ (caret)

PEP 3120,5 TeleoTng, 78

PEP 3129, 105 =

PEP 3131,8 augmented assignment, 88

PEP 3132, 87 _ (underscore)

PEP 3135, 36 in numeric literal, 14

PEP 3147,58 _, ldentifiers,9

PEP 3155, 130 __, ldentifiers,9
Pythonic, 130 __abs__ () (uébodog tng object), 42
Standard C, 10 __add__ () (uébodog trg object), 41
StopAsyncIteration __aenter__ () (uéBodog g object), 46

ealpeon, 72 __aexit__ () (uéBodog g object), 46
StopIteration __aiter__ () (uébodog ¢ object), 45

eaipeon, 70,90 __all__ (optional module attribute), 93
SystemExit (built-in exception), 49 __and__ () (uéBodog T object), 41
True, 19 __anext__ () (uéBodog g agen), 72
TypeError __anext__ () (uébodog tng object), 45

etalpeon, 77 __annotations__ (class attribute), 23
UNIX, 107 __annotations___ (function attribute), 21
UnboundLocalError, 48 __annotations__ (module attribute), 23
Unicode, 19 __await__ () (uéOodog trg object), 44
Unicode Consortium, 10 _ bases__ (class attribute), 23
ValueError __bool__ () (object method), 39

ealpeon, 78 __bool__ () (uéBodog trs object), 29
Windows, 107 __bytes__ () (uébodog tng object), 27
Zen tnc¢ Python, 132 __cached_ , 58
ZeroDivisionError __call__ () (object method), 76

ealpeon, 77 __call__ () (uéBodog tngs object), 39
[1 (square brackets) ___cause___ (exception attribute), 91

in assignment target list, 86 __ceil__ () (uéBodog tng object), 42

list expression, 67 _ class__ (instance attribute), 23

subscription, 73 __class___ (method cell), 36
\ (backslash) __class__ (module attribute), 30

escape sequence, 10 __class_getitem__ () (uéBodog xAdons g
\N object), 37

escape sequence, 10 __classcell__ (class namespace entry), 36
\U __closure__ (function attribute), 21

escape sequence, 10 ___code___ (function attribute), 21
A\ __complex__ () (uéBodog tng object), 42

escape sequence, 10 __contains__ () (uéBodog s object), 40
\a __context___ (exception attribute), 91

escape sequence, 10 __debug__, 89
\b __defaults__ (function attribute), 21

Eupetniplo 157

The Python Language Reference, Anpocigsuon 3.9.23

__del__ () (uébodog tng object), 27
__delattr__ () (uéBodog g object), 30
__delete__ () (uéBodog tng object), 31
__delitem__ () (uéBodog tng object), 40

__dict__ (class attribute), 23
__dict__ (function attribute), 21
__dict__ (instance attribute), 23
__dict__ (module attribute), 23

_ dir__ (module attribute), 30
__dir__ () (uéBodog tng object), 30
__divmod__ () (uébodog t1g object), 41
__doc__ (class attribute), 23
___doc___ (function attribute), 21
__doc___ (method attribute), 21
__doc__ (module attribute), 23

__enter__ () (uéBodog tng object), 43
__eq__ () (uéBodog tng object), 28
__exit__ () (uéBodog g object), 43

_ file_ ,58

_ file_ (module attribute), 23

_ float__ () (uéBodog tng object), 42
__floor__ () (uéBodog g object), 42

_ floordiv__ () (uébodog trg object), 41
_ format__ () (uéBodog tng object), 27

_ func___ (method attribute), 21
_ future_ ,124
future statement, 94

__ge__ () (uébodog tng object), 28
__get__ () (uébodog tng object), 31
__getattr__ (module attribute), 30
__getattr__ () (uébodog tng object), 29
__getattribute__ () (uéBodog g object), 30
__getitem__ () (mapping object method), 26
__getitem_ () (uéodog g object), 39
__globals__ (function attribute), 21
__gt__ () (uébodog tng object), 28
__hash__ () (uéBodog g object), 28
__iadd__ () (uéBodog tngs object), 42
__iand__ () (uéBodog tn¢ object), 42
__ifloordiv__ () (uébodog tng object), 42
__ilshift__ () (uéBodog trgc object), 42
__imatmul__ () (uéBodog tng object), 42
__imod__ () (uéBodog tng object), 42
__imul__ () (uéBodog tngs object), 42
__index__ () (uéBodog tng object), 42
__init_ () (uéBodog tg object), 26
__init_subclass__ ()

object), 34

__instancecheck__ () (ué€0odog tng class), 36

__int__ () (uéBodog tng object), 42
__invert__ () (uéBodog tng object), 42
__ior__ () (uéBodog tig object), 42
__ipow__ () (uéBodog tnc object), 42
__drshift__ () (uéBodog tng object), 42
__isub__ () (uéBodog tng object), 42
__iter__ () (uéBodog tng object), 40
__itruediv__ () (uébodog tng object), 42
__ixor__ () (uéBodog tng object), 42

(u€6odos KkAaons g

__kwdefaults___ (function attribute), 21
__le__ () (uéBodog tng object), 28
__len__ () (mapping object method), 29
__len__ () (uéBodog tng object), 39
__length_hint__ () (uéBodog tng object), 39
_ loader_ ,57
__1shift__ () (uéBodog g object), 41
__1t__ () (uéBodog tng object), 28
_ _main_

povdada, 48, 107
__matmul__ () (uéBodog t1g object), 41
__missing__ () (uéBodog tngs object), 40
__mod___ () (uébodog tng object), 41
_ _module__ (class attribute), 23
__module__ (function attribute), 21
__module__ (method attribute), 21
__mul__ () (uébodog t1¢ object), 41
_ _name__ ,57
_ name___ (class attribute), 23
__name___ (function attribute), 21
__name___ (method attribute), 21
__name___ (module attribute), 23

__ne__ () (uéBodog tng object), 28
__neg___ () (uéBodog tig object), 42
__new___ () (uéBodog g object), 26
__next__ () (uéBodog g generator), 70
__or__ () (uéBodog tng object), 41
__package_ ,57

__path_ ,58

__pos___ () (uébodog tng object), 42
__pow___ () (uéBodog g object), 41
__prepare__ (metaclass method), 35
__radd__ () (uéBodog tng object), 41
__rand__ () (uébodog g object), 41
__rdivmod__ () (uébodog tig object), 41
__repr__ () (uéBodog g object), 27
__reversed__ () (uéBodog tng object), 40
__rfloordiv__ () (uéBodog tng object), 41
__rlshift__ () (uéBodog g object), 41
__rmatmul__ () (uébodog tng object), 41
__rmod__ () (uéBodog g object), 41
__rmul__ () (uéBodog tng object), 41
__ror__ () (uébodog t1¢ object), 41
__round___ () (uéBodog ¢ object), 42
__rpow__ () (uébodog g object), 41
__rrshift_ () (uéBodog tig object), 41
__rshift__ () (uéBodog tng object), 41
__rsub__ () (uéBodog tng object), 41
__rtruediv__ () (uébodog ¢ object), 41
__rxor__ () (uébodog tng object), 41
__self__ (method attribute), 21

__set__ () (uéBodog g object), 31
__set_name__ () (uéBodog g object), 31
__setattr__ () (uéBodog tngs object), 30
__setitem__ () (uéBodog tng object), 40
_ slots_ ,130

__spec__,58

__str__ () (uéBodog tng object), 27

158

Eupetniplo

The Python Language Reference, Anpocigsuon 3.9.23

__sub__ () (uébodog tn¢ object), 41
__subclasscheck__ () (uébodog tng class), 36
__traceback__ (exception attribute), 91
__truediv__ () (uébodog tng object), 41
__trunc__ () (uéBodog tng object), 42
__xor___ () (uébodog ¢ object), 41

abs

evowpatwpévn ouvdptnorn, 42

aclose () (uébodog tng agen), 72
addition, 78

and
bitwise, 78
TeleoTNAG, 81
annotated

assignment, 88
annotation, 119
annotation petaBAntnig, 132
annotations

function, 103
anonymous

function, 82
argument

call semantics, 74

function, 20

function definition, 103
arithmetic

conversion, 65

operation, binary, 77

operation, unary, 76
array

povada, 20
as

except clause, 99

import statement, 93

with statement, 101

AEEN xAel81, 92,99, 101
asend () (uéBodog tn¢ agen), 72
assert

8nAwon, 89
assertions

debugging, 89
assignment

annotated, 88

attribute, 86

augmented, 88

class attribute, 23

class instance attribute, 23

slicing, 87

statement, 20, 86

subscription, 87

target list, 86
async

AéEn xAe181, 105
async def

8nAwon, 105
async for

in comprehensions, 67

dnAwon, 105

async with
&nAwon, 106
asynchronous generator

asynchronous iterator, 22

function, 22
asynchronous—generator
avtikelilpevo, 72
athrow () (uéodog trg agen), 72
atom, 65
attribute, 18
assignment, 86
assignment, class, 23

assignment, class instance, 23

class, 23
class instance, 23
deletion, 90
generic special, 18
reference, 73
special, 18
augmented
assignment, 88
await
in comprehensions, 67
AEEN xAerdi, 76, 105
awaitable, 120
b'
bytes literal, 10
b"
bytes literal, 10
backslash character, 6
binary
arithmetic operation, 77
bitwise operation, 78
binary literal, 14
binding
global name, 95
name, 47, 86, 92, 93, 102, 104
bitwise
and, 78
operation, binary, 78
operation, unary, 76
or, 78
xor, 78
blank line,7
block, 47
code, 47
break
8nAwon, 92, 98, 100
built-in
method, 22
built-in function
call, 76
avtikelpevo, 22, 76
built-in method
call, 76
avtikelpevo, 22,76
builtins
povada, 107

Eupetniplo

159

The Python Language Reference, Anpocigsuon 3.9.23

byte, 20
bytearray, 20
bytecode, 24, 121
bytes, 20
evowpatwpévn ouvaptnon, 27
bytes literal,9
bytes-1like avtikxeipeva, 121
call, 74
built-in function, 76
built-in method, 76
class instance, 76
class object, 23,76
function, 20, 75, 76
instance, 39, 76
method, 76
procedure, 85
user—-defined function, 75
callable
avtikeipevo, 20, 74
callback, 121
chaining
comparisons, 79
exception, 91
character, 19, 73
chr
evowpatwpévn ouvdptnon, 19
class
attribute, 23
attribute assignment, 23
body, 35
constructor, 26
definition, 90, 104
instance, 23
name, 104
avtikeipevo, 23,76, 104
8nAwon, 104
class instance
attribute, 23
attribute assignment, 23
call, 76
avtikeipevo, 23,76
class object
call, 23,76
clause, 97
clear () (ué6odog tng frame), 25
close () (u€Bodog tng coroutine), 45
close () (uéBodog tng generator), 71
co_argcount (code object attribute), 24
co_cellvars (code object attribute), 24
co_code (code object attribute), 24
co_consts (code object attribute), 24
co_filename (code object attribute), 24
co_firstlineno (code object attribute), 24
co_flags (code object attribute), 24
co_freevars (code object attribute), 24
co_kwonlyargcount (code object attribute), 24
co_lnotab (code object attribute), 24
co_name (code object attribute), 24

co_names (code object attribute), 24
co_nlocals (code object attribute), 24
co_posonlyargcount (code object attribute), 24
co_stacksize (code object attribute), 24
co_varnames (code object attribute), 24
code
block, 47
code object, 24
coercion, 121
comma, 66
trailing, 83
command line, 107
comment, 6
comparison, 78
comparisons, 28
chaining, 79
compile
evowpatwpévn ouvdptnon, 95
complex
number, 19
avtikeilpevo, 19
evowpatwpévn ouvdaptnon, 42
complex literal, 14
compound
statement, 97
comprehensions, 67
dictionary, 68
list, 67
set, 68
conditional
expression, 82
constant, 9
constructor
class, 26
container, 18, 23
context manager,43
context petafAintn, 121
contiguous, 121
continue
&nAwon, 92, 98, 100
conversion
arithmetic, 65
string, 27, 85
coroutine, 44, 69, 122
function, 22
coroutine ouvdptnon, 122
dangling
else, 98
data, 17
type, 18
type, immutable, 66
datum, 68
dbm.gnu
povada, 20
dbm.ndbm
povada, 20
debugging
assertions, 89

160

Eupetniplo

The Python Language Reference, Anpocigsuon 3.9.23

decimal literal, 14
decorator, 122
def
dnAwon, 102
default
parameter value, 103
definition
class, 90, 104
function, 90, 102
del
8nAwon, 27, 89
deletion
attribute, 90
target, 89
target list, 89
delimiters, 15
descriptor, 122
destructor, 27, 86
dictionary
comprehensions, 68
display, 68
avtikeilpevo, 20, 23, 28, 68, 73, 87
display
dictionary, 68
list, 67
set, 68
division, 77
divmod
evowpatwpévn ouvdptnon, 41
docstring, 104, 122
documentation string, 24
duck-typing, 122
e
in numeric literal, 14
elif
AEEn xAeldi, 98
else
conditional expression, 82
dangling, 98
AEEN xAerbi, 92,98100
empty
list, 67
tuple, 19, 66
encoding declarations (source file), 6
environment, 48
error handling, 49
errors, 49
escape sequence, 10
eval
evowpatwpévn ouvdptnon, 95, 108
evaluation
order, 83
exc_info (in module sys), 25
except
AEEN xAerlbi, 99
exception, 49,91
chaining, 91
handler, 25

raising, 91
exception handler, 49
exclusive

or, 78
exec

evowpatwpévn ouvaptnon, 95
execution

frame, 47, 104

restricted, 49

stack, 25
execution model, 47
expression, 65

Conditional, 81

conditional, 82

generator, 68

lambda, 82, 103

list, 83,85

statement, 85

yield, 69
extension

module, 18
f'

formatted string literal, 10
f"

formatted string literal, 10
f-string, 123
f_back (frame attribute), 24
f_builtins (frame attribute), 24
f_code (frame attribute), 24
f_globals (frame attribute), 24
f_lasti (frame attribute), 24
f_1lineno (frame attribute), 24
f_locals (frame attribute), 24
f_trace (frame attribute), 24
f_trace_lines (frame attribute), 24
f_trace_opcodes (frame attribute), 24
finalizer, 27
finally

AEEN xAerb1i, 90, 92,99, 100
find_spec

finder, 54
finder, 54,123

find_spec, 54
float

evowpatwpévn ouvdptnon, 42
floating point

number, 19

avtikeilpevo, 19
floating point literal, 14
for

in comprehensions, 67

8nAwon, 92, 98
form

lambda, 82
format () (built-in function)

__str__ () (object method), 277
formatted string literal, 12
frame

Eupetniplo

161

The Python Language Reference, Anpocigsuon 3.9.23

execution, 47, 104
avtikeipevo, 24
free
variable, 47
from
import statement, 47,93
yield from expression, 70
AEEN xAer b, 69,92
frozenset
avtikeipevo, 20
fstring, 12
f-string, 12
function
annotations, 103
anonymous, 82
argument, 20
call, 20, 75,76
call,user—defined, 75
definition, 90, 102
generator, 69, 90
name, 102
user—defined, 21
avtikeipevo, 21, 22,75,76, 102
future
statement, 94
garbage collection, 17
generator, 124
expression, 68
function, 22, 69, 90
iterator, 22,90
avtikeipevo, 24, 68,70
generator expression, 124
generator iterator, 124
generator éxwypaon, 124
generic
special attribute, 18
global
name binding, 95
namespace, 21
8nAwon, 89, 95
global interpreter lock, 124
grammar, 4
grouping, 7
handle an exception,49
handler
exception, 25
hash
evowpatwpévn ouvaptnon, 28
hash character,6
hash-based pyc, 125
hashable, 68, 125
hexadecimal literal, 14

id
evowpatwpévn ouvdptnon, 17
identifier, 8, 66
identity
test, 81
identity of an object, 17
if
conditional expression, 82
in comprehensions, 67
&nAwon, 98
imaginary literal, 14
immutable, 125
data type, 66
object, 66, 68
avtikeilpevo, 19
immutable object, 17
immutable sequence
avtikeipevo, 19
immutable types
subclassing, 26
import
hooks, 54
&nAwon, 22, 92
import hooks, 54
import machinery, 51
in
AEEN kAe1bt, 98
TeleoTNG, 81
inclusive
or, 78
indentation, 7
index operation, 19
indices () (uébodog tig slice), 25
inheritance, 104
input, 108
instance
call, 39,76
class, 23
avtikelpevo, 23,76
int
evowpatwpévn ouvdptnon, 42
integer, 19
representation, 19
avtikeilpevo, 19
integer literal, 14
interactive mode, 107
internal type,?24

interpolated string literal, 12

interpreted, 125
interpreter, 107
inversion, 77
invocation, 20

hierarchy io
type, 18 povdada, 24
hooks is
import, 54 TeAeoTng, 81
meta, 54 is not
path, 54 TeleoTNg, 81
162 Eupetniplo

The Python Language Reference, Anpociguon 3.9.23

item
sequence, 73
string, 73
item selection, 19
iterable, 126
unpacking, 83
iterator, 126
J
in numeric literal, 15
key, 68
key/datum pair, 68
keyword, 9
lambda, 126
expression, 82, 103
form, 82
language
c, 18,19,22,78
Java, 19
last_traceback (in module sys), 25
leading whitespace, 7
len
evowpatwpévn ouvaptnon, 19, 20, 39
lexical analysis,5
lexical definitions,4
line continuation,6
line joining,5,6
line structure,5
list
assignment, target, 86
comprehensions, 67
deletion target, 89
display, 67
empty, 67
expression, 83, 85
target, 86, 98
avtikeipevo, 20, 67,73, 74, 87
list comprehension, 126
literal,9, 66
loader, 54,127
logical line,5
loop
over mutable sequence, 99
statement, 92, 98
loop control
target, 92
magic
method, 127
makefile () (socket method), 24
mangling
name, 66
mapping, 127
avtiketipevo, 20, 23,73, 87
matrix multiplication, 77
membership
test, 81
meta
hooks, 54
meta hooks, 54

meta path finder, 127
metaclass, 34
metaclass hint, 35
method
built-in, 22
call, 76
magic, 127
special, 131
user—-defined, 21
avtikelpevo, 21,22,76
minus, 76
module, 127
extension, 18
importing, 92
namespace, 23
avtikelpevo, 22,73
module spec, 54
module eméktaong, 123
modulo, 77
multiplication, 77
mutable, 127
avtikelilpevo, 20, 86, 87
mutable object, 17
mutable sequence
loop over, 99
avtikelilpevo, 20
name, 8, 47, 66
binding, 47, 86, 92, 93, 102, 104
binding, global, 95
class, 104
function, 102
mangling, 66
rebinding, 86
unbinding, 89
named tuple, 127
names
private, 66
namespace, 47, 128
global, 21
module, 23
package, 53
negation, 76
nested scope, 128
nonlocal
&nAwon, 95
not
TeleoTNG, 81
not in
TeleoTng, 81
notation, 4
null
operation, 89
number, 14
complex, 19
floating point, 19
numeric
avtikelpevo, 18,23
numeric literal, 14

Eupetniplo

163

The Python Language Reference, Anpocigsuon 3.9.23

object, 17
code, 24
immutable, 66, 68

object.__slots__ (evowuatwuévy uetafintn),

33
octal literal, 14
open
evowpatwpévn ouvdptnon, 24
operation
Boolean, 81
binary arithmetic, 77
binary bitwise, 78
null, 89
power, 76
shifting, 78
unary arithmetic, 76
unary bitwise, 76
operator
— (minus), 76, 78
+ (plus), 76, 78
overloading, 26
precedence, 83
ternary, 82
operators, 15
or
bitwise, 78
exclusive, 78
inclusive, 78
TeleoTNG, 81
ord
evowpatwpévn ouvdptnon, 19
order
evaluation, 83
output, 85
standard, 85
overloading
operator, 26
package, 52
namespace, 53
portion, 53
regular, 52
parameter
call semantics, 74
function definition, 102
value, default, 103
parenthesized form, 66

parser,5

pass
SnAwon, 89

path
hooks, 54

path based finder, 59, 129
path entry, 129

path entry finder, 129
path entry hook, 129

path hooks, 54

path-like avtikeipevo, 129
physical line,5,6,10

plus, 76
popen () (in module o0s), 24
portion

package, 53
pow

evowpatwpévn ocuvdptnon, 41
power

operation, 76
precedence

operator, 83
primary, 73
print

evowpatwpévn ouvdptnon, 27
print () (built-in function)

__str__ () (object method), 27
private

names, 66
procedure

call, 85
program, 107
provisional APT, 129
provisional maxéTo, 130
T |l

raw string literal, 10
r n

raw string literal, 10
raise

&nAwon, 91
raise an exception,49
raising

exception, 91
range

evowpatwpévn ouvdaptnon, 99
raw string, 10
rebinding

name, 86
reference

attribute, 73
reference counting, 17

regular
package, 52
relative
import, 93
repr

evowpatwpévn ouvdptnon, 85
repr () (built-in function)
__repr__ () (object method), 27
representation
integer, 19
reserved word,9
restricted
execution, 49
return
8nAwon, 90, 100
round
evowpatwpévn ouvdptnon, 42
scope, 47, 48
send () (uéBodog tng coroutine), 45

164

Eupetniplo

The Python Language Reference, Anpocigsuon 3.9.23

send () (uébodog g generator), 70
sequence
item, 73
avtikeipevo, 19,23,73,74, 81, 87, 98
set
comprehensions, 68
display, 68
avtikeipevo, 20, 68
set comprehension, 131
set type
avtikeipevo, 20
shifting
operation, 78
simple
statement, 85
singleton
tuple, 19
slice, 74,131
avtikeipevo, 39
evowpatwpévn ouvdptnon, 25
slicing, 19,20, 74
assignment, 87
source character set,6
space, 7
special
attribute, 18
attribute, generic, 18
method, 131
stack
execution, 25
trace, 25
standard
output, 85
standard input, 107
start (slice object attribute), 25, 74
statement
assignment, 20, 86
assignment, annotated, 88
assignment, augmented, 88
compound, 97
expression, 85
future, 94
loop, 92,98
simple, 85
statement grouping,7
stderr (in module sys), 24
stdin (in module sys), 24
stdio, 24
stdout (in module sys), 24
step (slice object attribute), 25, 74
stop (slice object attribute), 25, 74

string
_ format__ () (object method), 27
__str__ () (object method), 27

conversion, 27, 85
formatted literal, 12
immutable sequences, 19
interpolated literal, 12

item, 73

avtikelpevo, 73,74
string literal,9
subclassing

immutable types, 26
subscription, 19, 20, 73

assignment, 87
subtraction, 78

suite, 97
syntax, 4
Sys

povdada, 100, 107
sys.exc_info, 25
sys.last_traceback, 25
sys.meta_path, 54
sys.modules, 53
sys.path, 60
sys.path_hooks, 60
sys.path_importer_cache, 60
sys.stderr, 24
sys.stdin, 24
sys.stdout, 24
tab, 7
target, 86

deletion, 89

list, 86,98

list assignment, 86

list,deletion, 89

loop control, 92
tb_ frame (traceback attribute), 25
tb_lasti (traceback attribute), 25
tb_1lineno (traceback attribute), 25
tb_next (traceback attribute), 25
termination model, 49
ternary

operator, 82
test

identity, 81

membership, 81
throw () (uébodog tng coroutine), 45
throw () (uéBodog g generator), 70
token, 5
trace

stack, 25
traceback

avtikeilpevo, 25,91, 100
trailing

comma, 83
triple—quoted string, 10
try

&nAwon, 25, 99
tuple

empty, 19, 66

singleton, 19

avtikelpevo, 19,73, 74, 83
type, 18

data, 18

hierarchy, 18

Eupetniplo

165

The Python Language Reference, Anpocigsuon 3.9.23

immutable data, 66
evowpatwpévn ouvdptnon, 17, 34
type alias, 131
type hint, 132
type of an object, 17
types, internal, 24
u'
string literal,9

string literal,9
unary

arithmetic operation, 76

bitwise operation, 76
unbinding

name, 89
unpacking

dictionary, 68

in function calls,75

iterable, 83
unreachable object, 17
unrecognized escape sequence, Il
user—-defined

function, 21

function call, 75

method, 21
user-defined function

avtiketilpevo, 21,75, 102
user—-defined method

avtikxeipevo, 21
value

default parameter, 103
value of an object, 17
values

writing, 85
variable

free, 47
virtual environment, 132
virtual machine, 132

while
&nAwon, 92, 98
with
8rAwon, 43, 101
writing
values, 85
XOor
bitwise, 78
yield

examples, 71
expression, 69
8nAwon, 90
AEEN xAeldi, 69
{} (curly brackets)
dictionary expression, 68
in formatted string literal, 12
set expression, 68
| (vertical bar)
TeleoTNg, 78

augmented assignment, 88
~ (tilde)
TeleotTng, 77

A

aképatra Sraipeon, 123
axoAoubBia, 131
avayvwpilopévo bvoua, 130
avtikeilpevo, 128

Boolean, 19

Ellipsis, I8

None, 18, 85

NotImplemented, 18

asynchronous—generator, 72

built-in function, 22,76

built-in method, 22,76

callable, 20, 74

class, 23, 76, 104

class instance, 23,76

complex, 19

dictionary, 20, 23, 28, 68, 73, 87

floating point, 19

frame, 24

frozenset, 20

function, 21, 22, 75,76, 102

generator, 24, 68, 70

immutable, 19

immutable sequence, 19

instance, 23,76

integer, 19

list, 20,67,73,74, 87

mapping, 20, 23, 73, 87

method, 21, 22, 76

module, 22,73

mutable, 20, 86, 87

mutable sequence, 20

numeric, 18, 23

sequence, 19, 23,73, 74, 81, 87, 98

set, 20, 68

set type, 20

slice, 39

string, 73,74

traceback, 25,91, 100

tuple, 19, 73, 74, 83

user—-defined function, 21,75, 102

user—-defined method, 21
avtikelpevo apyetlou, 123
avtikeilpevo nou poidletv pe apyeio, 123
apyxeto xeipévou, 131
acUyyxpovog generator, 120
acUyxpovog generator iterator, 120
acuyyxpovog iterable, 120
acUyyxpovocg iterator, 120
acuyyxpovocg BrayeilproTrg context, 120
apnenuévn Pacixn kidon, 119

r

yevikn ouvdptnon, 124

166

Eupetniplo

The Python Language Reference, Anpociguon 3.9.23

yevikdc TUnog, 124

A

&nAwon, 131
assert, 89
async def, 105
async for, 105
async with, 106
break, 92, 98, 100
class, 104
continue, 92, 98, 100
def, 102
del, 27,89
for, 92, 98
global, 89,95
if, 98
import, 22, 92
nonlocal, 95
pass, 89
raise, 91
return, 90, 100
try, 25,99
while, 92, 98
with, 43,101
yield, 90
Srabpactikog, 125
Siraxeiplotrc context, 121
Suabixd apyeto, 120

E

€181k pébodog, 131
eltoaydépevo path, 125
elLoaywyéag, 125
eltoaywyn, 125
éxppaon, 123
evowpatwpévn ouvdptnon

abs, 42

bytes, 27

chr, 19

compile, 95

complex, 42

divmod, 41

eval, 95, 108

exec, 95

float, 42

hash, 28

id, 17

int, 42

len, 19, 20, 39

open, 24

ord, 19

pow, 41

print, 27

range, 99

repr, 85

round, 42

slice, 25

type, 17, 34

elalpeon
AssertionError, 89
AttributeError, 73
GeneratorExit, 71,72
ImportError, 92
NameError, 66
StopAsyncIteration, 72
StopIteration, 70, 90
TypeError, 77
ValueError, 78
ZeroDivisionError, 77

K

xaboAlkég véeg ypappéc, 132
kxavovikd naxéto, 130
xatavonon Ae&ikou, 122
xAdon, 121

xAdon véou oTul, 128
xwdixomoinon xeilpévou, 131

Al

AEEN xAerldi
as, 92,99, 101
async, 105
await, 76, 105
elif, 98
else, 92,98100
except, 99
finally, 90, 92, 99, 100
from, 69, 92
in, 98
yield, 69
Ae€ixd, 122
AoTa, 126

M

payikn pébodog, 127
nédodog, 127
peta-xAdon, 127
peTaBAnty kAdong, 121
peTaRAnT) neplBAAAOVTOC

PYTHONHASHSEED, 29
piyabikde apibudc, 121
povada

_ main_ ,48,107

array, 20

builtins, 107

dbm. gnu, 20

dbm . ndbm, 20

io, 24

sys, 100, 107
pova8ikd dispatch, 131

O

6plopa, 119

6plopa keyword, 126
6plopa Béong, 129
oyn Aefikouy, 122

Eupetniplo

167

The Python Language Reference, Anpocigsuon 3.9.23

M

nakéto, 128

nak€to namespace, 128
napduetpog, 128
nAffoc avaypopdcg, 130

>

oelpd avdiuong pebséddwv, 127

ouAAloyry amoppilpdtwy, 124

oupBolocelpd TplLOnAwv eloaywylkwv, 131
ouvdptnon, 123

ouvdptnon annotation, 123

ouvdptnon key, 126

T

TeAEOTNAC

% (percent), 77

& (ampersand), 78

* (asterisk), 77

*% 76

/ (slash), 77

/7,77

< (less), 78

<<, 78

<=,78

1=,78

==,78

> (greater), 78

>= 78

>>, 78

@ (at), 77

~ (caret), 78

and, 81

in, 81

is, 81

is not, 81

not, 81

not in, 81

or, 81

| (vertical bar), 78

~ (tilde), 77
Teppatiopdc Aeltoupylag Siepunvéa, 125
Teyvikéc npodiaypaypéc module, 127
Tpnupa, 129
TUnog, 131

X

xapaktnpiotikod, 120

168 Eupetniplo

	Εισαγωγή
	Εναλλακτικές Υλοποιήσεις
	Σημειογραφία

	Lexical analysis
	Line structure
	Logical lines
	Physical lines
	Comments
	Encoding declarations
	Explicit line joining
	Implicit line joining
	Blank lines
	Indentation
	Whitespace between tokens

	Other tokens
	Identifiers and keywords
	Keywords
	Reserved classes of identifiers

	Literals
	String and Bytes literals
	String literal concatenation
	Formatted string literals
	Numeric literals
	Integer literals
	Floating point literals
	Imaginary literals

	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	Special method names
	Basic customization
	Customizing attribute access
	Customizing class creation
	Customizing instance and subclass checks
	Emulating generic types
	Emulating callable objects
	Emulating container types
	Emulating numeric types
	With Statement Context Managers
	Special method lookup

	Coroutines
	Awaitable Objects
	Coroutine Objects
	Asynchronous Iterators
	Asynchronous Context Managers

	Μοντέλο εκτέλεσης
	Δομή ενός προγράμματος
	Ονομασία και σύνδεση
	Σύνδεση ονομάτων
	Επίλυση ονομάτων
	Ενσωματωμένες συναρτήσεις και περιορισμένη εκτέλεση
	Αλληλεπίδραση με δυναμικές λειτουργίες

	Εξαιρέσεις

	The import system
	importlib
	Packages
	Regular packages
	Namespace packages

	Searching
	The module cache
	Finders and loaders
	Import hooks
	The meta path

	Loading
	Loaders
	Submodules
	Module spec
	Import-related module attributes
	module.__path__
	Module reprs
	Cached bytecode invalidation

	The Path Based Finder
	Path entry finders
	Path entry finder protocol

	Replacing the standard import system
	Package Relative Imports
	Special considerations for __main__
	__main__.__spec__

	Open issues
	References

	Expressions
	Arithmetic conversions
	Atoms
	Identifiers (Names)
	Literals
	Parenthesized forms
	Displays for lists, sets and dictionaries
	List displays
	Set displays
	Dictionary displays
	Generator expressions
	Yield expressions

	Primaries
	Attribute references
	Subscriptions
	Slicings
	Calls

	Await expression
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Value comparisons
	Membership test operations
	Identity comparisons

	Boolean operations
	Assignment expressions
	Conditional expressions
	Lambdas
	Expression lists
	Evaluation order
	Operator precedence

	Simple statements
	Expression statements
	Assignment statements
	Augmented assignment statements
	Annotated assignment statements

	The assert statement
	The pass statement
	The del statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	Future statements

	The global statement
	The nonlocal statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	The with statement
	Function definitions
	Class definitions
	Coroutines
	Coroutine function definition
	The async for statement
	The async with statement

	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Πλήρης προδιαγραφή γραμματικής
	Γλωσσάρι
	About these documents
	Contributors to the Python Documentation

	Ιστορία και Άδεια
	Η ιστορία του λογισμικού
	Όροι και προϋποθέσεις για την πρόσβαση ή την χρήση της Python με άλλους τρόπους
	PSF LICENSE AGREEMENT FOR PYTHON 3.9.23
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ BEOPEN.COM ΓΙΑ PYTHON 2.0
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CNRI ΓΙΑ PYTHON 1.6.1
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CWI ΓΙΑ PYTHON 0.9.0 ΕΩΣ 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23 DOCUMENTATION

	Άδειες και Ευχαριστίες για Ενσωματωμένο Λογισμικό
	Mersenne Twister
	Sockets
	Ασύγχρονες socket υπηρεσίες
	Διαχείριση Cookie
	Ανίχνευση εκτέλεσης
	Συναρτήσεις UUencode και UUdecode
	Κλήσεις Απομακρυσμένης Διαδικασίας XML
	test_epoll
	Επιλογή kqueue
	SipHash24
	strtod και dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N σουίτα δοκιμής

	Copyright
	Ευρετήριο

