Extending and Embedding Python
Anuooiguon 3.9.23

Guido van Rossum
and the Python development team

louAiou 08, 2025

Python Software Foundation
Email: docs@python.org

Meplexoueva

1 Recommended third party tools 3
2 Creating extensions without third party tools 5
2.1 Extending Pythonwith Cor C++ e 5
2.1.1 ASimple Example e e e 6

2.1.2 Intermezzo: Errors and Exceptionso e 7

2.1.3 Backtothe Example e 9

2.1.4 The Module’s Method Table and Initialization Function 9

2.1.5 Compilationand Linkage 11

2.1.6 Calling Python Functions from C 11

2.1.7 Extracting Parameters in Extension Functions 13

2.1.8 Keyword Parameters for Extension Functions 15

2.1.9 Building Arbitrary Values oL 16
2.1.10 Reference Counts o it e e e e 16
2.1.11 Writing Extensions in C++ L e 20
2.1.12 Providing a C API for an Extension Module 20

2.2 Defining Extension Types: Tutorial 23
221 TheBasics o e e e e e e 23

2.2.2 Adding data and methods to the Basicexample 27

2.2.3 Providing finer control over data attributes oL 33

2.2.4 Supporting cyclic garbage collection Lo 38

2.2.5 Subclassing other typeso e e e e e e e e 43

2.3 Defining Extension Types: Assorted Topics 46
2.3.1 Finalization and De-allocation e 48

232 ObjectPresentation 49

2.3.3 Attribute Managementol e e e e e e e e 50

2.3.4 Object COMPariSON . . . v v v v v v v e 52

2.3.5 Abstract Protocol Support 53

2.3.6 Weak Reference Supporto 54

237 More Suggestions i i i e e e e e e e e e e e e e e 55

2.4 Building Cand C++ EXtensions oot o e e 55
2.4.1 Building C and C++ Extensions with distutils 56

2.4.2 Distributing your extensionmodules oL Lo 57

2.5 Building C and C++ Extensionson Windows L 58
2.5.1 A Cookbook Approach L 58

2.5.2 Differences Between Unix and Windows 58

2.53 UsingDLLsin Practice o 0 i it e e e e e e 59

3 Embedding the CPython runtime in a larger application 61
3.1 Embedding Python in Another Application, 61
3.1.1 VeryHighLevel Embedding 62

3.1.2 Beyond Very High Level Embedding: Anoverview 62
3.1.3 PureEmbedding. e e e e 63
3.1.4 Extending Embedded Python 65
3.1.5 Embedding Pythonin C++ 66
3.1.6 Compiling and Linking under Unix-like systems 66
A’ Thooodpu 67
B’ About these documents 81
B’.1 Contributors to the Python Documentation 81
I’ Iotopio koL Adero 83
7.1 Homoplor TOU ROYLOILKOU + .« v v v v v e 83
[7.2 'Opol ko tpoimobéoelg yio tnv mtpdofaon 1 v xpnon g Python pe ddiovg tpdmovg 84
2.1 PSF LICENSE AGREEMENT FOR PYTHON 3923 84
['2.2 ZYMOQNIA AAEIAY BEOPEN.COMTIA PYTHON20 85
23 ZYM®ONIA AAEIAX CNRITTIA PYTHON 1.6.1 86
V24 ZYMOQONIA AAEIAZ CWITTAPYTHONOSOEQZ 1.2 87
2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23
DOCUMENTATION s e e e e e 87
[7.3 Adeieg kau Evyapiotieg yio Evoopatouévo Aoyiowkoo oL oo 88
73,1 Mersenne TWIStEr o i i it e e 88
[7.3.2 Sockets e 89
[7.3.3 AoUyypoveg SOCKEt UINPEOIES « + « v v v v v v e e e e e e e e e e e e e 89
734 Awyelpton Cookie e e e e e e e e 90
[7.3.5 AVIVEUON EKTEREONG « o v v v o v v e e e e e e e e e e e e e 90
[7.3.6 Zuvvoapmoeig UUencode kaw UUdecodeo oo oo 91
I7.3.7 KMjoewg Aopakpuopuévng Awadukootog XML L oL 91
I7.3.8 test_epoll e e e e e e e e e e 92
739 Emdoynkqueue o e 92
[73.10 SipHash24 e 93
I[73.01 strtod kowdtoa o . oo e e e e e e e e e 93
[7.3.12 OpenSSL o e 94
I73.03 eXpat. . . oo v e e e e e 96
V3014 Tibfi . .o oo 96
[V315 zHb . .. 97
[7.3.16 cfuhash 0 e 97
[7.3.17 libmpdec e e e 98
[7.3.18 W3C CI4N GOUITO QOKUUNG -« « v v v o v e e e e e e e e e e e e e e e e e e 98
A’ Copyright 101
Evpetipro 103

Extending and Embedding Python, Anpooicuon 3.9.23

This document describes how to write modules in C or C++ to extend the Python interpreter with new modules. Those
modules can not only define new functions but also new object types and their methods. The document also describes
how to embed the Python interpreter in another application, for use as an extension language. Finally, it shows how
to compile and link extension modules so that they can be loaded dynamically (at run time) into the interpreter, if
the underlying operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the language, see tutorial-
index. reference-index gives a more formal definition of the language. library-index documents the existing object
types, functions and modules (both built-in and written in Python) that give the language its wide application range.

For a detailed description of the whole Python/C API, see the separate c-api-index.

Meplexopeva 1

Extending and Embedding Python, Anpooicsuon 3.9.23

2 Meplexopeva

KE®AAAIO 1

Recommended third party tools

This guide only covers the basic tools for creating extensions provided as part of this version of CPython. Third party
tools like Cython, cffi, SWIG and Numba offer both simpler and more sophisticated approaches to creating C and
C++ extensions for Python.

Agite gmiong:

Python Packaging User Guide: Binary Extensions The Python Packaging User Guide not only covers several
available tools that simplify the creation of binary extensions, but also discusses the various reasons why
creating an extension module may be desirable in the first place.

http://cython.org/
https://cffi.readthedocs.io
http://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/guides/packaging-binary-extensions/

Extending and Embedding Python, Anpooicsuon 3.9.23

4 Kegpalaio 1. Recommended third party tools

KEDAAAIO 2

Creating extensions without third party tools

This section of the guide covers creating C and C++ extensions without assistance from third party tools. It is intended
primarily for creators of those tools, rather than being a recommended way to create your own C extensions.

2.1 Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension modules can
do two things that can’t be done directly in Python: they can implement new built-in object types, and they can call
C library functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C
source file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on your system setup; details are given
in later chapters.

Inueiwon: The C extension interface is specific to CPython, and extension modules do not work on other Python
implementations. In many cases, it is possible to avoid writing C extensions and preserve portability to other
implementations. For example, if your use case is calling C library functions or system calls, you should consider
using the ct ypes module or the cffi library rather than writing custom C code. These modules let you write Python
code to interface with C code and are more portable between implementations of Python than writing and compiling
a C extension module.

https://cffi.readthedocs.io/

Extending and Embedding Python, Anpooicsuon 3.9.23

2.1.1 A Simple Example

Let’s create an extension module called spam (the favorite food of Monty Python fans...) and let’s say we want
to create a Python interface to the C library function system () '. This function takes a null-terminated character
string as argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls —-1")

Begin by creating a file spammodule.c. (Historically, if a module is called spam, the C file containing its
implementation is called spammodule. c; if the module name is very long, like spammi fy, the module name
can be just spammify.c.)

The first two lines of our file can be:

#define PY_SSIZE_T CLEAN
#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice
if you like).

Ynueiwon: Since Python may define some pre-processor definitions which affect the standard headers on some
systems, you must include Python . h before any standard headers are included.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python . h. See Extracting Parameters
in Extension Functions for a description of this macro.

All user-visible symbols defined by Python . h have a prefix of Py or PY, except those defined in standard header
files. For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few
standard header files: <stdio.h>, <string.h>, <errno.h>,and <stdlib.h>.]If the latter header file does
not exist on your system, it declares the functions malloc (), free () and realloc () directly.

The next thing we add to our module file is the C function that will be called when the Python expression spam.
system (string) is evaluated (we'll see shortly how it ends up being called):

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

return PylLong_FromLong (sts);

There is a straightforward translation from the argument list in Python (for example, the single expression "1s -1")
to the arguments passed to the C function. The C function always has two arguments, conventionally named self and
args.

The self argument points to the module object for module-level functions; for a method it would point to the object
instance.

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple
corresponds to an argument in the call’s argument list. The arguments are Python objects — in order to do anything
with them in our C function we have to convert them to C values. The function PyArg_ParseTuple () in the
Python API checks the argument types and converts them to C values. It uses a template string to determine the
required types of the arguments as well as the types of the C variables into which to store the converted values. More
about this later.

! An interface for this function already exists in the standard module os — it was chosen as a simple and straightforward example.

6 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In
the latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw
in the example).

2.1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an
exception condition and return an error value (usually —1 or a NULL pointer). Exception information is stored in
three members of the interpreter’s thread state. These are NULL if there is no exception. Otherwise they are the C
equivalents of the members of the Python tuple returned by sys.exc_info (). These are the exception type,
exception instance, and a traceback object. It is important to know about them to understand how errors are passed
around.

The Python API defines a number of functions to set various types of exceptions.

The most common one is PyErr_SetString (). Its arguments are an exception object and a C string. The
exception object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the
cause of the error and is converted to a Python string object and stored as the «associated value» of the exception.

Another useful functionis PyErr_SetFromErrno (), which only takes an exception argument and constructs the
associated value by inspection of the global variable e rrno. The most general functionis PyErr_SetObject (),
which takes two object arguments, the exception and its associated value. You don’t need to Py_ INCREF () the
objects passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_Occurred (). This returns
the current exception object, or NULL if no exception has occurred. You normally don’t need to call
PyErr_Occurred () to see whether an error occurred in a function call, since you should be able to tell from
the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or —1). It should not call one of the PyErr_* () functions — one has already been called by g. f’s caller is
then supposed to also return an error indication to its caller, again without calling PyErr_* (), and so on — the
most detailed cause of the error was already reported by the function that first detected it. Once the error reaches the
Python interpreter’s main loop, this aborts the currently executing Python code and tries to find an exception handler
specified by the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another PyErr_ * ()
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause information
about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear (). The only time C code should call PyErr_Clear () isif it doesn’t want to pass the error on to
the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing
went wrong).

Every failingmalloc () call must be turned into an exception — the direct caller of malloc () (or realloc ())
must call PyErr_NoMemory () and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong ()) already do this, so this note is only relevant to those who callmalloc () directly.

Also note that, with the important exception of PyArg_ParseTuple () and friends, functions that return an
integer status usually return a positive value or zero for success and —1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (by making Py_XDECREF () or Py_DECREF () calls for objects you have
already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all
built-in Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you
should choose exceptions wisely — don’t use PyExc_TypeError to mean that a file couldn’t be opened (that
should probably be PyExc_IOError). If something’s wrong with the argument list, the PyArg_ParseTuple ()
function usually raises PyExc_TypeError. If you have an argument whose value must be in a particular range or
must satisfy other conditions, PyExc_ValueError is appropriate.

2.1. Extending Python with C or C++ 7

Extending and Embedding Python, Anpooicsuon 3.9.23

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable
at the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization function (PyInit_spam ()) with an exception object:

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

SpamError = PyErr_ NewException ("spam.error", NULL, NULL);
Py_XINCREF (SpamError) ;
if (PyModule_AddObject (m, "error", SpamError) < 0) {
Py_XDECREF (SpamError) ;
Py_CLEAR (SpamError) ;
Py_DECREF (m) ;
return NULL;

return m;

Note that the Python name for the exception object is spam.error. The PyErr_NewException () function
may create a class with the base class being Exception (unless another class is passed in instead of NULL),
described in bltin-exceptions.

Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional!
Since the exception could be removed from the module by external code, an owned reference to the class is needed to
ensure that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling
pointer, C code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

The spam.error exception can be raised in your extension module using a call to PyErr_SetString () as
shown below:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

if (sts < 0) {
PyErr_SetString(SpamError, "System command failed");
return NULL;

}

return PylLong_FromLong(sts);

8 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

2.1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s",
return NULL;

&command))

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument
list, relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has been
copied to the local variable command. This is a pointer assignment and you are not supposed to modify the string to
which it points (so in Standard C, the variable command should properly be declared as const char *command).

The next statement is a call to the Unix function system(), passing it the string we just got from
PyArg_ParseTuple():

’sts = system (command) ;

Our spam.system () function must return the value of sts as a Python object. This is done using the function
PyLong_FromLong ().

’return PyLong_FromLong (sts) ;

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returning void), the corresponding Python
function must return None. You need this idiom to do so (which is implemented by the Py_ RETURN_NONE macro):

Py_INCREF (Py_None) ;
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL
pointer, which means «error» in most contexts, as we have seen.

2.1.4 The Module’s Method Table and Initialization Function

I promised to show how spam_system() is called from Python programs. First, we need to list its name and
address in a «method table»:

static PyMethodDef SpamMethods[] = {

{"systen", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, 0, NULL} /* Sentinel */
bi

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value
of 0 means that an obsolete variant of PyArg_ParseTuple () is used.

When using only METH_ VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple () ; more information on this function is provided below.

The METH_KXEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords () to parse the arguments to such a function.

The method table must be referenced in the module definition structure:

2.1. Extending Python with C or C++ 9

Extending and Embedding Python, Anpooicsuon 3.9.23

static struct PyModuleDef spammodule = {
PyModuleDef_ HEAD_INIT,

"spam", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,

or —1 if the module keeps state in global variables. */
SpamMethods
bi

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization
function must be named PyInit_name (), where name is the name of the module, and should be the only non-
static item defined in the module file:

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spammodule) ;

Note that PyMODINIT_FUNC declares the function as PyObject * return type, declares any special linkage
declarations required by the platform, and for C++ declares the function as extern "C".

When the Python program imports module spam for the first time, PyInit_spam () is called. (See below for
comments about embedding Python.) It calls PyModule_Create (), which returns a module object, and inserts
built-in function objects into the newly created module based upon the table (an array of PyMethodDef structures)
found in the module definition. PyModule_Create () returns a pointer to the module object that it creates. It
may abort with a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily.
The init function must return the module object to its caller, so that it then gets inserted into sys .modules.

When embedding Python, the PyInit_spam () function is not called automatically unless there’s an entry in the
PyImport_Inittab table. Toadd the module to the initialization table, use Py Import_AppendInittab (),
optionally followed by an import of the module:

int
main (int argc, char *argv([])
{
wchar_t *program = Py_Decodelocale (argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1);

/* Add a built—-in module, before Py_Initialize */

if (PyImport_AppendInittab ("spam", PyInit_spam) == -1) {
fprintf (stderr, "Error: could not extend in-built modules table\n");
exit (1);

/* Pass argv[0] to the Python interpreter */
Py_SetProgramName (program) ;

/* Initialize the Python interpreter. Required.
If this step fails, it will be a fatal error. */
Py_Initialize();

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */
PyObject *pmodule = PyImport_ImportModule ("spam");
if (!pmodule) {
PyErr_Print () ;
fprintf (stderr, "Error: could not import module 'spam'\n");

(ouvéyela 0TV emOpEVY 0edL)

10 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

PyMem_RawFree (program) ;
return 0O;

Enueiwon: Removing entries from sys.modules or importing compiled modules into multiple interpreters
within a process (or following a fork () without an intervening exec ()) can create problems for some extension
modules. Extension module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as Modules/xxmodule. c. This
file may be used as a template or simply read as an example.

Enueiwon: Unlike our spam example, xxmodule uses multi-phase initialization (new in Python 3.5), where a
PyModuleDef structure is returned from PyInit_spam, and creation of the module is left to the import machinery.
For details on multi-phase initialization, see PEP 489.

2.1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python
system. If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see the
chapters about building extension modules (chapter Building C and C++ Extensions) and additional information that
pertains only to building on Windows (chapter Building C and C++ Extensions on Windows) for more information
about this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter,
you will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just
place your file (spammodule . c for example) in the Modules/ directory of an unpacked source distribution, add
a line to the file Modules/Setup. local describing your file:

spam spammodule.o

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the Modules/
subdirectory, but then you must first rebuild Make fi 1 e there by running “make Makefile”. (This is necessary each
time you change the Setup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as
well, for instance:

spam spammodule.o —-1X11

2.1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling
Python functions from C. This is especially the case for libraries that support so-called «callback» functions. If a C
interface makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python
programmer; the implementation will require calling the Python callback functions from a C callback. Other uses
are also imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python
function. (I won’t dwell on how to call the Python parser with a particular string as input — if you'’re interested, have
a look at the implementation of the —c command line option in Modules/main. ¢ from the Python source code.)

2.1. Extending Python with C or C++ 11

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, Anpooicsuon 3.9.23

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object.
You should provide a function (or some other interface) to do this. When this function is called, save a pointer to
the Python function object (be careful to Py_ INCREF () it!) in a global variable — or wherever you see fit. For
example, the following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback (PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;

PyObject *temp;

if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check (temp)) {
PyErr_SetString (PyExc_TypeError, "parameter must be callable");
return NULL;
}

Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */
Py_INCREF (Py_None) ;
result = Py_None;

}

return result;

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section
The Module’s Method Table and Initialization Function. The PyArg_ParseTuple () function and its arguments
are documented in section Extracting Parameters in Extension Functions.

The macros Py_XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are
safe in the presence of NULL pointers (but note that temp will not be NULL in this context). More info on them in
section Reference Counts.

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function
has two arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The
argument list must always be a tuple object, whose length is the number of arguments. To call the Python
function with no arguments, pass in NULL, or an empty tuple; to call it with one argument, pass a singleton
tuple. Py_BuildValue () returns a tuple when its format string consists of zero or more format codes between
parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

/* Time to call the callback */

arglist = Py_Buildvalue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);

PyObject_CallObject () returns a Python object pointer: this is the return value of the Python function.
PyObject_CallObject () is «reference-count-neutral» with respect to its arguments. In the example a
new tuple was created to serve as the argument list, which is Py_DECREF ()-ed immediately after the
PyObject_CallObject () call

The return value of PyObject_CallObject () is «new»: either it is a brand new object, or it is an existing
object whose reference count has been incremented. So, unless you want to save it in a global variable, you should
somehow Py_DECREF () the result, even (especially!) if you are not interested in its value.

12 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

Before you do this, however, it is important to check that the return value isn’t NULL. If it is, the Python function
terminated by raising an exception. If the C code that called PyObject_CallObject () is called from Python,
it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear (). For example:

if (result == NULL)
return NULL; /* Pass error back */
..use result...
Py_DECREF (result) ;

Depending on the desired interface to the Python callback function, you may also have to provide an argument list to
PyObject_CallObject ().Insome cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this
istocall Py_Buildvalue (). For example, if you want to pass an integral event code, you might use the following
code:

PyObject *arglist;

arglist = Py_BuildvValue (" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

Note the placement of Py_DECREF (arglist) immediately after the call, before the error check! Also note
that strictly speaking this code is not complete: Py_BuildValue () may run out of memory, and this should be
checked.

You may also call a function with keyword arguments by using PyObject_Call (), which supports arguments
and keyword arguments. As in the above example, we use Py_BuildvValue () to construct the dictionary.

PyObject *dict;

dict = Py_BuildvValue("{s:i}", "name", wval);
result = PyObject_Call (my_callback, NULL, dict);
Py_DECREF (dict) ;
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

2.1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple () function is declared as follows:

int PyArg ParseTuple (PyObject *arg, const char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format
argument must be a format string, whose syntax is explained in arg-parsing in the Python/C API Reference Manual.
The remaining arguments must be addresses of variables whose type is determined by the format string.

Note that while PyArg_ParseTuple () checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably
crash or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller are borrowed references; do not decrement
their reference count!

2.1. Extending Python with C or C++ 13

Extending and Embedding Python, Anpooiguon 3.9.23

Some example calls:

#define PY_SSIZE_T_CLEAN /* Make "s#" use Py_ssize_t rather than int. */
#include <Python.h>

int ok;
int i, 3;
long k, 1;

const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple(args, "lls", &k, &1, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple (args, " (ii)s#", &i, &3j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */

const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple (args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

f('spam')

f('spam', 'w')

f('spam', 'wb', 100000) */

}
{
int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, " ((ii) (ii)) (ii)",
&left, &top, &right, s&bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
f£(((0, 0), (400, 300)), (10, 10)) */
}
{
Py_complex c;
ok = PyArg_ParseTuple(args, "D:myfunction", &c);
/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction (1+27) */
}

14 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

2.1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords () function is declared as follows:

int PyArg ParseTupleAndKeywords (PyObject *arg, PyObject *kwdict,
const char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict
parameter is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist
parameter is a NULL-terminated list of strings which identify the parameters; the names are matched with the type
information from format from left to right. On success, PyArg_ParseTupleAndKeywords () returns true,
otherwise it returns false and raises an appropriate exception.

Inueiwon: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which
are not present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick @hks.com):

#define PY _SSIZE_T CLEAN /* Make "s#'" use Py_ssize_t rather than int. */
#include <Python.h>

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

const char *state = "a stiff";

const char *action = "voom";

const char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

printf ("-—- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf ("-—- Lovely plumage, the %s —- It's %s!\n", type, state);

Py_RETURN_NONE;

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg_parrot () takes
* three.
*/
{"parrot", (PyCFunction) (void(*) (void))keywdarg parrot, METH_VARARGS | METH_
—~KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} /* sentinel */
bi

static struct PyModuleDef keywdargmodule = ({
PyModuleDef_ HEAD_INIT,
"keywdarg",
NULL,
,1,
keywdarg_methods
bi

(ouvéyela otV entopEV) 0eidaL)

2.1. Extending Python with C or C++ 15

mailto:philbrick@hks.com

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

PyMODINIT_FUNC
PyInit_keywdarg (void)
{
return PyModule_Create (&keywdargmodule) ;

2.1.9 Building Arbitrary Values

This function is the counterpart to PyArg_ParseTuple (). Itis declared as follows:

PyObject *Py_BuildValue (const char *format, ...);

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple (), but the arguments
(which are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable
for returning from a C function called from Python.

One difference with PyArg_ParseTuple () : while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_Buildvalue () does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If the format string is empty, it returns
None; if it contains exactly one format unit, it returns whatever object is described by that format unit. To force it
to return a tuple of size O or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

Py_BuildvValue ("") None
Py_Buildvalue ("i", 123) 123
Py_Buildvalue ("iii", 123, 456, 789) (123, 456, 789)
Py_BuildvValue ("s", "hello") 'hello'
Py_Buildvalue ("y", "hello") b'hello'
Py_Buildvalue ("ss", "hello", "world") ('hello', 'world')
Py_BuildvValue ("s#", "hello", 4) 'hell'
Py_Buildvalue ("y#", "hello", 4) b'hell'
Py_Buildvalue(" () ") ()
Py_Buildvalue (" (i)", 123) (123,)
Py_Buildvalue (" (ii)", 123, 456) (123, 456)
Py_Buildvalue (" (i,1)", 123, 456) (123, 456)
Py_Buildvalue("[i,i]", 123, 456) [123, 456]
Py_Buildvalue ("{s:i,s:i}",

"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_Buildvalue (" ((ii) (ii)) (ii)",

1, 2, 3, 4, 5, 6) (1, 2), (3, 4)), (5, 6))

2.1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on
the heap. In C, this is done using the functions malloc () and free (). In C++, the operators new and delete
are used with essentially the same meaning and we’'ll restrict the following discussion to the C case.

Every block of memory allocated with malloc () should eventually be returned to the pool of available memory
by exactly one call to free () . It is important to call free () at the right time. If a block’s address is forgotten but
free () is not called for it, the memory it occupies cannot be reused until the program terminates. This is called
a memory leak. On the other hand, if a program calls free () for a block and then continues to use the block, it
creates a conflict with re-use of the block through another malloc () call. This is called using freed memory. It has
the same bad consequences as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block
of memory, do some calculation, and then free the block again. Now a change in the requirements for the function

16 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

may add a test to the calculation that detects an error condition and can return prematurely from the function. It’s
easy to forget to free the allocated memory block when taking this premature exit, especially when it is added later
to the code. Such leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small
fraction of all calls, and most modern machines have plenty of virtual memory, so the leak only becomes apparent
in a long-running process that uses the leaking function frequently. Therefore, it’s important to prevent leaks from
happening by having a coding convention or strategy that minimizes this kind of errors.

Since Python makes heavy use of malloc () and free (), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object contains
a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when
a reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the
object is freed.

An alternative strategy is called automatic garbage collection. (Sometimes, reference counting is also referred to as
a garbage collection strategy, hence my use of «automatic» to distinguish the two.) The big advantage of automatic
garbage collection is that the user doesn’t need to call free () explicitly. (Another claimed advantage is an
improvement in speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is
no truly portable automatic garbage collector, while reference counting can be implemented portably (as long as the
functionsmalloc () and free () are available — which the C Standard guarantees). Maybe some day a sufficiently
portable automatic garbage collector will be available for C. Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to
detect reference cycles. This allows applications to not worry about creating direct or indirect circular references;
these are the weakness of garbage collection implemented using only reference counting. Reference cycles consist
of objects which contain (possibly indirect) references to themselves, so that each object in the cycle has a reference
count which is non-zero. Typical reference counting implementations are not able to reclaim the memory belonging
to any objects in a reference cycle, or referenced from the objects in the cycle, even though there are no further
references to the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them. The gc module exposes a way to run the
detector (the collect () function), as well as configuration interfaces and the ability to disable the detector at
runtime. The cycle detector is considered an optional component; though it is included by default, it can be disabled
at build time using the ——without-cycle—gc option to the configure script on Unix platforms (including
Mac OS X). If the cycle detector is disabled in this way, the gc module will not be available.

Reference Counting in Python

There are two macros, Py_ INCREF (x) and Py_DECREF (x), which handle the incrementing and decrementing
of the reference count. Py_ DECREF () also frees the object when the count reaches zero. For flexibility, it doesn’t
call free () directly — rather, it makes a call through a function pointer in the object’s rype object. For this purpose
(and others), every object also contains a pointer to its type object.

The big question now remains: when to use Py_ INCREF (x) and Py_DECREF (x) ? Let’s first introduce some
terms. Nobody «owns» an object; however, you can own a reference to an object. An object’s reference count is now
defined as the number of owned references to it. The owner of a reference is responsible for calling Py_ DECREF ()
when the reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose
of an owned reference: pass it on, store it, or call Py_DECREF (). Forgetting to dispose of an owned reference
creates a memory leak.

It is also possible to borrow* a reference to an object. The borrower of a reference should not call Py_DECREF ().
The borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed
reference after the owner has disposed of it risks using freed memory and should be avoided completely®.

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference
on all possible paths through the code — in other words, with a borrowed reference you don’t run the risk of leaking
when a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations
where in seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has
in fact disposed of it.

2 The metaphor of «borrowing» a reference is not completely correct: the owner still has a copy of the reference.
3 Checking that the reference count is at least 1 does not work — the reference count itself could be in freed memory and may thus be reused
for another object!

2.1. Extending Python with C or C++ 17

Extending and Embedding Python, Anpooicsuon 3.9.23

A borrowed reference can be changed into an owned reference by calling Py_ INCREF () . This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification
whether ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions
whose function it is to create a new object, such as PyLong_FromLong () and Py_BuildValue (), pass
ownership to the receiver. Even if the object is not actually new, you still receive ownership of a new reference
to that object. For instance, PyLong_FromLong () maintains a cache of popular values and can return a reference
to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for
instance PyObject_GetAttrString (). The picture is less clear, here, however, since a few common
routines are exceptions: PyTuple_GetItem(), PyList_GetItem(), PyDict_GetItem(), and
PyDict_GetItemString () all return references that you borrow from the tuple, list or dictionary.

The function Py Import_AddModule () also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored in sys.modules.

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will use Py_INCREF () to become an independent owner. There are exactly two important
exceptions to this rule: PyTuple_SetItem() and PyList_SetItem (). These functions take over ownership
of the item passed to them — even if they fail! (Note that PyDict_SetItem() and friends don’t take over
ownership — they are «normal.»)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference by calling Py_ INCREF () .

The object reference returned from a C function that is called from Python must be an owned reference — ownership
is transferred from the function to its caller.

Thin Ice
There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all
have to do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is using Py_DECREF () on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_FromLong (0L));
PyObject_Print (item, stdout, 0); /* BUG! */

This function first borrows a reference to 1ist [0], then replaces 1ist [1] with the value 0, and finally prints the
borrowed reference. Looks harmless, right? But it’s not!

Let’s follow the control flow into PyList_SetItem (). The list owns references to all its items, so when item
1 is replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class defineda ___del__ () method. If this class instance has a
reference count of 1, disposing of it will callits __del__ () method.

18 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

Since it is written in Python, the _ del_ () method can execute arbitrary Python code. Could it perhaps do
something to invalidate the reference to item in bug () ? You bet! Assuming that the list passed into bug () is
accessible tothe __del () method, it could execute a statement to the effect of del 1ist [0], and assuming
this was the last reference to that object, it would free the memory associated with it, thereby invalidating it em.

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The
correct version of the function reads:

void
no_bug (PyObject *list)
{
PyObject *item = PyList_GetItem(list, 0);

Py_INCREF (item) ;

PyList_SetItem(list, 1, PyLong_FromLong (0L));
PyObject_Print (item, stdout, 0);

Py_DECREF (item) ;

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable
amount of time in a C debugger to figure out why his __del__ () methods would fail...

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in
the Python interpreter can’t get in each other’s way, because there is a global lock protecting Python’s entire object
space. However, it is possible to temporarily release this lock using the macro Py_BEGIN_ALLOW_THREADS, and
to re-acquire it using Py_END_ALLOW_THREADS. This is common around blocking I/O calls, to let other threads
use the processor while waiting for the I/O to complete. Obviously, the following function has the same problem as
the previous one:

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
..some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print (item, stdout, 0); /* BUG! */

NULL Pointers

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL
only to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often
pass the objects they receive on to other function — if each function were to test for NULL, there would be a lot of
redundant tests and the code would run more slowly.

It is better to test for NULL only at the «source:» when a pointer that may be NULL is received, for example, from
malloc () or from a function that may raise an exception.

The macros Py_INCREF () and Py_DECREF () do not check for NULL pointers — however, their variants
Py_XINCREF()andPy_XDECREF()dQ

The macros for checking for a particular object type (Pytype_Check ()) don’t check for NULL pointers — again,
there is much code that calls several of these in a row to test an object against various different expected types, and
this would generate redundant tests. There are no variants with NULL checking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples)
is never NULL — in fact it guarantees that it is always a tuple”.

It is a severe error to ever let a NULL pointer «escape» to the Python user.

4 These guarantees don’t hold when you use the «old» style calling convention — this is still found in much existing code.

2.1. Extending Python with C or C++ 19

Extending and Embedding Python, Anpooicsuon 3.9.23

2.1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python interpreter)
is compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a
problem if the main program is linked by the C++ compiler. Functions that will be called by the Python interpreter
(in particular, module initialization functions) have to be declared using extern "C". It is unnecessary to enclose
the Python header files in extern "C" {...} — they use this form already if the symbol __cplusplus is
defined (all recent C++ compilers define this symbol).

2.1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in
an extension module can be useful for other extension modules. For example, an extension module could implement
a type «collection» which works like lists without order. Just like the standard Python list type has a C API which
permits extension modules to create and manipulate lists, this new collection type should have a set of C functions
for direct manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring them static, of course), provide an
appropriate header file, and document the C API. And in fact this would work if all extension modules were always
linked statically with the Python interpreter. When modules are used as shared libraries, however, the symbols defined
in one module may not be visible to another module. The details of visibility depend on the operating system; some
systems use one global namespace for the Python interpreter and all extension modules (Windows, for example),
whereas others require an explicit list of imported symbols at module link time (AIX is one example), or offer a
choice of different strategies (most Unices). And even if symbols are globally visible, the module whose functions
one wishes to call might not have been loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in
extension modules should be declared st at ic, except for the module’s initialization function, in order to avoid name
clashes with other extension modules (as discussed in section 7he Module’s Method Table and Initialization Function).
And it means that symbols that should be accessible from other extension modules must be exported in a different
way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another
one: Capsules. A Capsule is a Python data type which stores a pointer (void *). Capsules can only be created
and accessed via their C API, but they can be passed around like any other Python object. In particular, they can
be assigned to a name in an extension module’s namespace. Other extension modules can then import this module,
retrieve the value of this name, and then retrieve the pointer from the Capsule.

There are many ways in which Capsules can be used to export the C API of an extension module. Each function
could get its own Capsule, or all C API pointers could be stored in an array whose address is published in a Capsule.
And the various tasks of storing and retrieving the pointers can be distributed in different ways between the module
providing the code and the client modules.

Whichever method you choose, it’s important to name your Capsules properly. The function PyCapsule_New ()
takes a name parameter (const char *); youre permitted to pass in a NULL name, but we strongly encourage
you to specify a name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to
tell one unnamed Capsule from another.

In particular, Capsules used to expose C APIs should be given a name following this convention:

modulename.attributename

The convenience function PyCapsule_Import () makes it easy to load a C API provided via a Capsule, but only
if the Capsule’s name matches this convention. This behavior gives C API users a high degree of certainty that the
Capsule they load contains the correct C APL

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an
array of void pointers which becomes the value of a Capsule. The header file corresponding to the module provides
a macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call
this macro before accessing the C API.

20 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

The exporting module is a modification of the spam module from section A Simple Example. The function spam.
system () does not call the C library function system () directly, but a function PySpam_System (), which
would of course do something more complicated in reality (such as adding «spam» to every command). This function
PySpam_System () is also exported to other extension modules.

The function PySpam_System () is a plain C function, declared stat ic like everything else:

static int
PySpam_System(const char *command)
{

return system(command) ;

The function spam_system () is modified in a trivial way:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple (args, "s", &command))
return NULL;

PySpam_System (command) ;

return PyLong_FromLong (sts);

sts

In the beginning of the module, right after the line

#include <Python.h>

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The #define is used to tell the header file that it is being included in the exporting module, not a client module.
Finally, the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC

PyInit_spam(void)

{
PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

/* Initialize the C API pointer array */
PySpam_API [PySpam_System_ NUM] (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New((void *)PySpam_API, "spam. C_API", NULL);

if (PyModule_AddObject(m, " _C_API", c_api_object) < 0) {
Py_XDECREF (c_api_object);
Py_DECREF (m) ;
return NULL;

(ouvéyela otV enOpEV) 0EMD)

2.1. Extending Python with C or C++ 21

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

return m;

Note that PySpam_APT isdeclared st at i c;otherwise the pointer array would disappear when PyInit_spam ()
terminates!

The bulk of the work is in the header file spammodule . h, which looks like this:

#ifndef Py SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef cplusplus
extern "C" {

#endif

/* Header file for spammodule */

/* C API functions */

#define PySpam System NUM 0

#define PySpam_System RETURN int

#define PySpam_System PROTO (const char *command)

/* Total number of C API pointers */
#define PySpam API_pointers 1

#ifdef SPAM_MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_RETURN PySpam_System PySpam_System_ PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_ API;

#define PySpam_System \
(* (PySpam_System_ RETURN (*)PySpam_System PROTO) PySpam API[PySpam_System NUM])

/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception if there's an error.
*/

static int

import_spam(void)

{

PySpam_API = (void **)PyCapsule_Import ("spam._ C_API", 0);
return (PySpam API != NULL) 2 0 : -1;

I3

#endif

#ifdef __cplusplus
}
#endif

#endif /* !defined (Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the function PySpam_System () is to call the function
(or rather macro) import_spam () in its initialization function:

PyMODINIT_FUNC
PyInit_client (void)

(ouvéyela 0TV nOpEVY 0EDL)

22 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

PyObject *m;

m = PyModule_Create (&clientmodule);
if (m == NULL)
return NULL;
if (import_spam() < 0)
return NULL;
/* additional initialization can happen here */
return m;

The main disadvantage of this approach is that the file spammodule.h is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that Capsules offer additional functionality, which is especially useful for memory
allocation and deallocation of the pointer stored in a Capsule. The details are described in the Python/C API
Reference Manual in the section capsules and in the implementation of Capsules (files Include/pycapsule.h
and Objects/pycapsule. c in the Python source code distribution).

2.2 Defining Extension Types: Tutorial

Python allows the writer of a C extension module to define new types that can be manipulated from Python code,
much like the built-in str and 11ist types. The code for all extension types follows a pattern, but there are some
details that you need to understand before you can get started. This document is a gentle introduction to the topic.

2.2.1 The Basics

The CPython runtime sees all Python objects as variables of type PyObject*, which serves as a «base type» for
all Python objects. The PyObject structure itself only contains the object’s reference count and a pointer to the
object’s «type object». This is where the action is; the type object determines which (C) functions get called by the
interpreter when, for instance, an attribute gets looked up on an object, a method called, or it is multiplied by another
object. These C functions are called «type methods».

So, if you want to define a new extension type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new
type named Custom inside a C extension module custom:

Inueiwon: What we're showing here is the traditional way of defining static extension types. It should be adequate
for most uses. The C API also allows defining heap-allocated extension types using the PyType_FromSpec ()
function, which isn’t covered in this tutorial.

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

typedef struct {

PyObject_HEAD

/* Type-specific fields go here. */
} CustomObject;

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),

(ouvéyela 0TV eV 0ehida)

2.2. Defining Extension Types: Tutorial 23

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,
.m_name = "custom",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom(void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the previous chapter. This file
defines three things:

1. Whata Custom object contains: this is the Cust omOb ject struct, which is allocated once for each Cust om
instance.

2. How the Custom type behaves: this is the CustomType struct, which defines a set of flags and function
pointers that the interpreter inspects when specific operations are requested.

3. How to initialize the custom module: this is the PyInit_custom function and the associated
custommodule struct.

The first bit is:

typedef struct {
PyObject_HEAD
} CustomObiject;

This is what a Custom object will contain. PyObject_HEAD is mandatory at the start of each object struct and
defines a field called ob_base of type PyObject, containing a pointer to a type object and a reference count
(these can be accessed using the macros Py_TYPE and Py_REFCNT respectively). The reason for the macro is to
abstract away the layout and to enable additional fields in debug builds.

Inueiwon: There is no semicolon above after the PyObject_HEAD macro. Be wary of adding one by accident:
some compilers will complain.

Of course, objects generally store additional data besides the standard PyObject_HEAD boilerplate; for example,

24 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

here is the definition for standard Python floats:

typedef struct {
PyObject_HEAD
double ob_fval;
} PyFloatObiject;

The second bit is the definition of the type object.

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

Inueiwon: We recommend using C99-style designated initializers as above, to avoid listing all the Py TypeObject
fields that you don’t care about and also to avoid caring about the fields” declaration order.

The actual definition of PyTypeObject in object.h has many more fields than the definition above. The
remaining fields will be filled with zeros by the C compiler, and it’s common practice to not specify them explicitly
unless you need them.

We're going to pick it apart, one field at a time:

’PyVarObject_HEAD_INIT(NULL, 0)

This line is mandatory boilerplate to initialize the ob_base field mentioned above.

’.tp_name = "custom.Custom",

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

>>> "" + custom.Custom ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is cust om and the type is Custom, so we set the type name to custom.Custom. Using
the real dotted import path is important to make your type compatible with the pydoc and pickle modules.

.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = O,

This is so that Python knows how much memory to allocate when creating new Custom instances. tp_itemsize
is only used for variable-sized objects and should otherwise be zero.

Inueiwon: If you want your type to be subclassable from Python, and your type has the same tp_basicsize as
its base type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your
type first in its __bases__, or else it will not be able to call your type’s __new___ () method without getting an
error. You can avoid this problem by ensuring that your type has a larger value for tp_basicsize than its base
type does. Most of the time, this will be true anyway, because either your base type will be object, or else you will
be adding data members to your base type, and therefore increasing its size.

2.2. Defining Extension Types: Tutorial 25

Extending and Embedding Python, Anpooicsuon 3.9.23

We set the class flags to Py_ TPFLAGS_DEFAULT.

.tp_flags = Py_TPFLAGS_DEFAULT,

All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If
you need further members, you will need to OR the corresponding flags.

We provide a doc string for the type in tp_doc.

.tp_doc = PyDoc_STR("Custom objects"),

To enable object creation, we have to provide a tp_new handler. This is the equivalent of the Python method
__new__ (), but has to be specified explicitly. In this case, we can just use the default implementation provided by
the API function PyType_GenericNew ().

’.tpfnew = PyType_GenericNew,

Everything else in the file should be familiar, except for some code in PyInit_custom():

if (PyType_Ready (&CustomType) < 0)
return;

This initializes the Custom type, filling in a number of members to the appropriate default values, including
ob_type that we initially set to NULL.

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

This adds the type to the module dictionary. This allows us to create Cust om instances by calling the Cust om class:

>>> import custom
>>> mycustom = custom.Custom()

That’s it! All that remains is to build it; put the above code in a file called custom. c and:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=[Extension ("custom", ["custom.c"])])

in a file called setup . py; then typing

$ python setup.py build

at a shell should produce a file custom. so in a subdirectory; move to that directory and fire up Python — you
should be able to import custom and play around with Custom objects.

That wasn’t so hard, was it?

Of course, the current Custom type is pretty uninteresting. It has no data and doesn’t do anything. It can’t even be
subclassed.

Enueioon: While this documentation showcases the standard di st ut i 1s module for building C extensions, it is
recommended in real-world use cases to use the newer and better-maintained set upt ools library. Documentation
on how to do this is out of scope for this document and can be found in the Python Packaging User’s Guide.

26 Kegahaio 2. Creating extensions without third party tools

https://packaging.python.org/tutorials/distributing-packages/

Extending and Embedding Python, Anpooicuon 3.9.23

2.2.2 Adding data and methods to the Basic example

Let’s extend the basic example to add some data and methods. Let’s also make the type usable as a base class. We’'ll
create a new module, custom?2 that adds these capabilities:

#define PY _SSIZE_ T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;

3
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "[00i", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) A
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

(ouvéyela 0TV eV 0ehidL)

2.2. Defining Extension Types: Tutorial 27

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

}

return 0;

static PyMemberDef Custom_members|[] = {
{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
}
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
3

return PyUnicode_FromFormat ("%$S %S", self->first, self->last);

static PyMethodDef Custom_methods|[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */
bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "custom2.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_ TPFLAGS_BASETYPE,
.tp_new = Custom_new,

.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,

.tp_methods = Custom_methods,
bi

static PyModuleDef custommodule = {
PyModuleDef HEAD_INIT,

.m_name = "custom2",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

(ouvéyela 0TV emOpEVY 0edL)

28 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

PyMODINIT_FUNC
PyInit_custom2 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

This version of the module has a number of changes.

We've added an extra include:

#include <structmember.h>

This include provides declarations that we use to handle attributes, as described a bit later.

The Custom type now has three data attributes in its C struct, first, last, and number. The first and last variables are
Python strings containing first and last names. The number attribute is a C integer.

The object structure is updated accordingly:

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObiject;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a
minimum, we need a deallocation method:

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

which is assigned to the tp_dealloc member:

.tp_dealloc = (destructor) Custom_dealloc,

This method first clears the reference counts of the two Python attributes. Py_ XDECREF () correctly handles the
case where its argument is NULL (which might happen here if t p_new failed midway). It then calls the tp_free
member of the object’s type (computed by Py_TYPE (self)) to free the object’s memory. Note that the object’s
type might not be CustomType, because the object may be an instance of a subclass.

Xnueiwon: The explicit cast to destructor above is needed because we defined Custom_dealloc to take

2.2. Defining Extension Types: Tutorial 29

Extending and Embedding Python, Anpooicsuon 3.9.23

a CustomObject * argument, but the tp_dealloc function pointer expects to receive a PyObject *
argument. Otherwise, the compiler will emit a warning. This is object-oriented polymorphism, in C!

We want to make sure that the first and last names are initialized to empty strings, so we provide a tp_new
implementation:

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) |

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}
self->number = 0;

}
return (PyObject *) self;

and install it in the t p_new member:

.tp_new = Custom_new,

The t p_new handler is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python
asthe _ _new__ () method. It is not required to define a t p_new member, and indeed many extension types will
simply reuse PyType_GenericNew () as done in the first version of the Custom type above. In this case, we
use the tp_new handler to initialize the first and last attributes to non-NULL default values.

tp_new is passed the type being instantiated (not necessarily CustomType, if a subclass is instantiated) and any
arguments passed when the type was called, and is expected to return the instance created. t p_new handlers always
accept positional and keyword arguments, but they often ignore the arguments, leaving the argument handling to
initializer (a.k.a. tp_init inCor __init___ in Python) methods.

Ynueioon: tp_new shouldn’t call tp_init explicitly, as the interpreter will do it itself.

The tp_new implementation calls the tp_alloc slot to allocate memory:

self = (CustomObject *) type->tp_alloc(type, 0);

Since memory allocation may fail, we must check the tp_alloc result against NULL before proceeding.

Inueimon: We didn't fill the tp_alloc slot ourselves. Rather PyType_Ready () fills it for us by inheriting it
from our base class, which is object by default. Most types use the default allocation strategy.

Inueioon: If you are creating a co-operative t p_new (one that calls a base type’s tp_newor __new__ ()), you
must not try to determine what method to call using method resolution order at runtime. Always statically determine
what type you are going to call, and call its tp_new directly, or via type->tp_base—>tp_new. If you do not
do this, Python subclasses of your type that also inherit from other Python-defined classes may not work correctly.
(Specifically, you may not be able to create instances of such subclasses without getting a TypeError.)

30 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

We also define an initialization function which accepts arguments to provide initial values for our instance:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|00i", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

}

return 0O;

by filling the tp_init slot.

.tp_init = (initproc) Custom_init,

The tp_init slot is exposed in Python as the __init__ () method. It is used to initialize an object after it’s
created. Initializers always accept positional and keyword arguments, and they should return either O on success or
—1 on error.

Unlike the tp_new handler, there is no guarantee that tp_init is called at all (for example, the pickle module
by default doesn’tcall___init__ () onunpickled instances). It can also be called multiple times. Anyone can call the
__init__ () method on our objects. For this reason, we have to be extra careful when assigning the new attribute
values. We might be tempted, for example to assign the £irst member like this:

if (first) |
Py_XDECREF (self->first);
Py_INCREF (first);
self->first first;

But this would be risky. Our type doesn’t restrict the type of the £irst member, so it could be any kind of object.
It could have a destructor that causes code to be executed that tries to access the £1irst member; or that destructor
could release the Global interpreter Lock and let arbitrary code run in other threads that accesses and modifies our
object.

To be paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing
their reference counts. When don’t we have to do this?

» when we absolutely know that the reference count is greater than 1;

« when we know that deallocation of the object’ will neither release the GIL nor cause any calls back into our
type’s code;

« when decrementing a reference count in a tp_dealloc handler on a type which doesn’t support cyclic
garbage collection”.

! This is true when we know that the object is a basic type, like a string or a float.
2 We relied on this in the t p_dealloc handler in this example, because our type doesn’t support garbage collection.

2.2. Defining Extension Types: Tutorial 31

Extending and Embedding Python, Anpooicsuon 3.9.23

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is
to define member definitions:

static PyMemberDef Custom_members|[] = {
{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */
bi

and put the definitions in the tp_members slot:

.tp_members = Custom_members,

Each member definition has a member name, type, offset, access flags and documentation string. See the Generic
Attribute Management section below for details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned
to the Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned.
Further, the attributes can be deleted, setting the C pointers to NULL. Even though we can make sure the members
are initialized to non-NULL values, the members can be set to NULL if the attributes are deleted.

We define a single method, Custom.name (), that outputs the objects name as the concatenation of the first and
last names.

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
3
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
3

return PyUnicode_FromFormat ("$S %S", self->first, self->last);

The method is implemented as a C function that takes a Cust om (or Cust om subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as well,
but in this case we don’t take any and don’t need to accept a positional argument tuple or keyword argument dictionary.
This method is equivalent to the Python method:

def name (self):
return " " % (self.first, self.last)

Note that we have to check for the possibility that our first and 1ast members are NULL. This is because they
can be deleted, in which case they are set to NULL. It would be better to prevent deletion of these attributes and to
restrict the attribute values to be strings. We'll see how to do that in the next section.

Now that we’ve defined the method, we need to create an array of method definitions:

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */
bi

32 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

(note that we used the METH_NOARGS flag to indicate that the method is expecting no arguments other than self)

and assign it to the tp_methods slot:

’.tp_methods = Custom_methods,

Finally, we’ll make our type usable as a base class for subclassing. We've written our methods carefully so far so that
they don’t make any assumptions about the type of the object being created or used, so all we need to do is to add
the Py_ TPFLAGS_BASETYPE to our class flag definition:

’.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,

We rename PyInit_custom() to PyInit_custom?2 (), update the module name in the PyModuleDef
struct, and update the full class name in the PyTypeObject struct.

Finally, we update our setup . py file to build the new module:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=]|
Extension("custom", ["custom.c"]),
Extension("custom2", ["custom2.c"]),

1)

2.2.3 Providing finer control over data attributes

In this section, we’ll provide finer control over how the first and last attributes are set in the Cust om example.
In the previous version of our module, the instance variables first and last could be set to non-string values or
even deleted. We want to make sure that these attributes always contain strings.

#define PY SSIZE_T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {

Py_DECREF (self) ;
return NULL;
}
self->last = PyUnicode_FromString("");

(ouvéyela 0TV emOpEVY 0edL)

2.2. Defining Extension Types: Tutorial 33

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

if (self->last == NULL) {
Py_DECREF (self);
return NULL;

}

self->number = 0;

3
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0O;

static PyMemberDef Custom_members([] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, void *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
;
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");

return -1;

(ouvéyela 0TV emOpEVY 0edL)

34 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

tmp = self->first;
Py_INCREF (value);
self->first = value;
Py_DECREF (tmp) ;
return 0;

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->last);

return self->last;

static int
Custom_setlast (CustomObject *self, PyObject *value, wvoid *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
;
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;
3
tmp = self->last;
Py_INCREF (value);
self->last = value;
Py_DECREF (tmp) ;
return O;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("%$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */
bi

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O0)
.tp_name = "custom3.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,

(ouvéyela 0TV emOpEVY 0edL)

2.2. Defining Extension Types: Tutorial 35

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,

.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,

.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,
bi

static PyModuleDef custommodule = {
PyModuleDef HEAD_INIT,
.m_name = "custom3",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom3 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

To provide greater control, over the first and last attributes, we’ll use custom getter and setter functions. Here
are the functions for getting and setting the first attribute:

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, void *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
I3
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;

(ouvéyela 0TV emtopEV) 0ehidaL)

36 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

Py_INCREF (value) ;
self->first = value;
Py_DECREF (tmp) ;
return 0;

The getter function is passed a Custom object and a «closure», which is a void pointer. In this case, the closure
is ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This
could, for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set
based on data in the closure.)

The setter function is passed the Custom object, the new value, and the closure. The new value may be NULL, in
which case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if its new value
is not a string.

We create an array of PyGet SetDef structures:

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */

bi

and register it in the tp_getset slot:

.tp_getset = Custom_getsetters,

The last item in a PyGet SetDe £ structure is the «closure» mentioned above. In this case, we aren’t using a closure,
S0 we just pass NULL.

‘We also remove the member definitions for these attributes:

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

We also need to update the tp_init handler to only allow strings’ to be passed:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

(ouvéyela 0TV enopEVY 0edL)

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts,
however, we accept instances of string subclasses. Even though deallocating normal strings won’t call back into our objects, we can’t guarantee
that deallocating an instance of a string subclass won’t call back into our objects.

2.2. Defining Extension Types: Tutorial 37

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return O;

With these changes, we can assure that the first and last members are never NULL so we can remove checks
for NULL values in almost all cases. This means that most of the Py_XDECREF () calls can be converted to
Py_DECREF () calls. The only place we can’t change these calls is in the tp_dealloc implementation, where
there is the possibility that the initialization of these members failed in tp_new.

We also rename the module initialization function and module name in the initialization function, as we did before,
and we add an extra definition to the setup . py file.

2.2.4 Supporting cyclic garbage collection

Python has a cyclic garbage collector (GC) that can identify unneeded objects even when their reference counts are
not zero. This can happen when objects are involved in cycles. For example, consider:

>>> 1 = []
>>> 1.append (1)
>>> del 1

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’t drop to zero. Fortunately, Python’s cyclic garbage collector will eventually figure out that the list is
garbage and free it.

In the second version of the Custom example, we allowed any kind of object to be stored in the first or last
attributes®. Besides, in the second and third versions, we allowed subclassing Custom, and subclasses may add
arbitrary attributes. For any of those two reasons, Custom objects can participate in cycles:

>>> import custom3
>>> class Derived (custom3.Custom) : pass

>>> n = Derived()
>>> n.some_attribute = n

To allow a Custom instance participating in a reference cycle to be properly detected and collected by the cyclic
GC, our Custom type needs to fill two additional slots and to enable a flag that enables these slots:

#define PY _SSIZE_T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static int
Custom_traverse (CustomObject *self, visitproc visit, void *arg)

(ouvéyela 0TV eV 0ed)

4 Also, even with our attributes restricted to strings instances, the user could pass arbitrary st r subclasses and therefore still create reference
cycles.

38 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

Py _VISIT(self->first);
Py _VISIT (self->last);
return 0;

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0O;

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self) ->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) H{
Py_DECREF (self);
return NULL;
}
self->number = 0;

3
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |

(ouvéyela 0TV emOpEVY 0edL)

2.2. Defining Extension Types: Tutorial 39

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0O;

static PyMemberDef Custom_members|[] = {

{"number", T_INT, offsetof (CustomObject, number)
"custom number"},

{NULL} /* Sentinel */

bi

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value,

{
if (value == NULL) {

return -1;

}

if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,

return -1;
3
Py_INCREF (value) ;
Py_CLEAR (self->first);
self->first = value;
return O;

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->last);

return self->last;

static int
Custom_setlast (CustomObject *self, PyObject *value,

{
if (value == NULL) {

return -1;

}

if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,

return -1;
}
Py_INCREF (value);
Py_CLEAR (self->last);
self->last = value;

PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");

"The first attribute value must be a string");

PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");

"The last attribute value must be a string");

0,

void *closure)

void *closure)

(ouvéyela 0TV emOpEVY 0edL)

40 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

return 0;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,

"last name", NULL},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
PyVarObject_ HEAD_INIT (NULL, O)
.tp_name = "custom4.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = Custom_new,

.tp_init = (initproc) Custom_init,

.tp_dealloc = (destructor) Custom_dealloc,
.tp_traverse = (traverseproc) Custom_traverse,
.tp_clear = (inquiry) Custom_clear,
.tp_members = Custom_members,

.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,
bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "customd",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom4 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;
if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {

(ouvéyela 0TV emOpEVY 0edL)

2.2. Defining Extension Types: Tutorial 41

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

Py_DECREF (&CustomType) ;
Py DECREF (m) ;
return NULL;

return m;

First, the traversal method lets the cyclic GC know about subobjects that could participate in cycles:

static int
Custom_traverse (CustomObject *self, visitproc visit, void *arg)
{
int vret;
if (self->first) {
vret = visit(self->first, arg);
if (vret != 0)
return vret;
}
if (self->last) {
vret = visit (self->last, arg);
if (vret != 0)
return vret;
}

return 0O;

For each subobject that can participate in cycles, we need to call the visit () function, which is passed to the
traversal method. The visit () function takes as arguments the subobject and the extra argument arg passed to the
traversal method. It returns an integer value that must be returned if it is non-zero.

Python provides a Py_VISIT () macro that automates calling visit functions. With Py_VISIT (), we can
minimize the amount of boilerplate in Custom_traverse:

static int
Custom_traverse (CustomObject *self, visitproc visit, wvoid *arqg)
{

Py _VISIT(self->first);

Py_VISIT (self->last);

return 0O;

Ynueiwon: The tp_traverse implementation must name its arguments exactly visit and arg in order to use
Py_VISIT().

Second, we need to provide a method for clearing any subobjects that can participate in cycles:

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0O;

Notice the use of the Py_ CLEAR () macro. It is the recommended and safe way to clear data attributes of arbitrary
types while decrementing their reference counts. If you were to call Py_ XDECREF () instead on the attribute before
setting it to NULL, there is a possibility that the attribute’s destructor would call back into code that reads the attribute
again (especially if there is a reference cycle).

42 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

Enueiwon: You could emulate Py_CLEAR () by writing:

PyObject *tmp;

tmp = self->first;
self->first = NULL;
Py_XDECREF (tmp) ;

Nevertheless, it is much easier and less error-prone to always use Py_CLEAR () when deleting an attribute. Don’t
try to micro-optimize at the expense of robustness!

The deallocator Custom_dealloc may call arbitrary code when clearing attributes. It means the circular GC can
be triggered inside the function. Since the GC assumes reference count is not zero, we need to untrack the object from
the GC by calling PyObject_GC_UnTrack () before clearing members. Here is our reimplemented deallocator
using PyObJject_GC_UnTrack () and Custom_clear:

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self)->tp_free ((PyObject *) self);

Finally, we add the Py_ TPFLAGS_HAVE_GC flag to the class flags:

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,

That’s pretty much it. If we had written custom tp_alloc or tp_free handlers, we'd need to modify them for
cyclic garbage collection. Most extensions will use the versions automatically provided.

2.2.5 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the
built in types, since an extension can easily use the PyTypeObject it needs. It can be difficult to share these
PyTypeObject structures between extension modules.

In this example we will create a SubList type that inherits from the built-in 1ist type. The new type will be
completely compatible with regular lists, but will have an additional increment () method that increases an
internal counter:

>>> import sublist

>>> s = sublist.SubList (range (3))
>>> s.extend(s)

>>> print (len(s))

6

>>> print (s.increment ())

>>> print (s.increment ())

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

typedef struct {
PyListObject list;
int state;

} SubListObject;

(ouvéyela otV emtdpevn oehida)

2.2. Defining Extension Types: Tutorial 43

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

static PyObject *
SubList_increment (SubListObject *self, PyObject *unused)
{

self->state++;

return Pylong_FromLong (self->state);

3

static PyMethodDef SubList_methods[] = {
{"increment", (PyCFunction) SubList_increment, METH_NOARGS,
PyDoc_STR("increment state counter")},
{NULL},

bi

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return O;

static PyTypeObject SubListType = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "sublist.SubList",
.tp_doc = PyDoc_STR("SubList objects"),
.tp_basicsize = sizeof (SubListObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_init = (initproc) SubList_init,
.tp_methods = SubList_methods,
bi

static PyModuleDef sublistmodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "sublist",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject *m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule);
if (m == NULL)
return NULL;

Py_INCREF (&SubListType) ;

if (PyModule_AddObject (m, "SubList", (PyObject *) &SubListType) < 0)
Py_DECREF (&SubListType) ;
Py_DECREF (m) ;
return NULL;

return m;

44 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

As you can see, the source code closely resembles the Cust om examples in previous sections. We will break down
the main differences between them.

typedef struct {
PyListObject list;
int state;

} SubListObject;

The primary difference for derived type objects is that the base type’s object structure must be the first value. The
base type will already include the PyObject_HEAD () at the beginning of its structure.

When a Python objectis a SubLi st instance, its PyObject * pointer can be safely cast to both PyListObject
* and SubListObject *:

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return 0;

We see above how to call through to the __init__ method of the base type.

This pattern is important when writing a type with custom tp_new and tp_dealloc members. The tp_new
handler should not actually create the memory for the object with its tp_alloc, but let the base class handle it by
calling its own tp_new.

The PyTypeObject struct supports a tp_base specifying the type’s concrete base class. Due to cross-platform
compiler issues, you can't fill that field directly with a reference to PyList_Type; it should be done later in the
module initialization function:

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject* m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&SubListType) ;

if (PyModule_AddObject (m, "SubList", (PyObject *) &SubListType) < 0) {
Py_DECREF (&SubListType) ;
Py_DECREF (m) ;
return NULL;

return m;

Before calling PyType_Ready (), the type structure must have the t p_base slot filled in. When we are deriving
an existing type, it is not necessary to fill out the tp_alloc slot with PyType_GenericNew () - the allocation
function from the base type will be inherited.

After that, calling PyType_Ready () and adding the type object to the module is the same as with the basic
Custom examples.

2.2. Defining Extension Types: Tutorial 45

Extending and Embedding Python, Anpooicsuon 3.9.23

2.3 Defining Extension Types: Assorted Topics

This section aims to give a quick fly-by on the various type methods you can implement and what they do.

Here is the definition of PyTypeObject, with some fields only used in debug builds omitted:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

Py_ssize_t tp_vectorcall offset;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;

(ouvéyela 0TV emtOpEV) 0ehidaL)

46 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_ IS GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;

} PyTypeObject;

Now that’s a lot of methods. Don’t worry too much though - if you have a type you want to define, the chances are
very good that you will only implement a handful of these.

As you probably expect by now, we’re going to go over this and give more information about the various handlers.
We won't go in the order they are defined in the structure, because there is a lot of historical baggage that impacts
the ordering of the fields. It’s often easiest to find an example that includes the fields you need and then change the
values to suit your new type.

’const char *tp_name; /* For printing */

The name of the type — as mentioned in the previous chapter, this will appear in various places, almost entirely for
diagnostic purposes. Try to choose something that will be helpful in such a situation!

’Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has
some built-in support for variable length structures (think: strings, tuples) which is where the tp_itemsize field
comes in. This will be dealt with later.

const char *tp_doc;

Here you can put a string (or its address) that you want returned when the Python script references obj.__ doc_
to retrieve the doc string.

Now we come to the basic type methods — the ones most extension types will implement.

2.3. Defining Extension Types: Assorted Topics 47

Extending and Embedding Python, Anpooicsuon 3.9.23

2.3.1 Finalization and De-allocation

destructor tp_dealloc;

This function is called when the reference count of the instance of your type is reduced to zero and the Python
interpreter wants to reclaim it. If your type has memory to free or other clean-up to perform, you can put it here. The
object itself needs to be freed here as well. Here is an example of this function:

static void
newdatatype_dealloc (newdatatypeobject *obj)
{
free (obj->obj_UnderlyingDatatypePtr);
Py_TYPE (obj)->tp_free ((PyObject *)obj);

If your type supports garbage collection, the destructor should call PyObject_GC_UnTrack () before clearing
any member fields:

static void
newdatatype_dealloc (newdatatypeobject *obj)
{

PyObject_GC_UnTrack (obj) ;

Py_CLEAR (obj->other_obj);

Py_TYPE (obj) —>tp_free ((PyObject *)obj);

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important
since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to
an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has
already been set. Any actions which a deallocator performs which may cause additional Python code to be executed
may detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way
to protect against this is to save a pending exception before performing the unsafe action, and restoring it when done.
This can be done using the PyErr_Fetch () and PyErr_Restore () functions:

static void

my_dealloc (PyObject *obj)

{
MyObject *self = (MyObject *) obj;
PyObject *cbresult;

if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;

/* This saves the current exception state */
PyErr_Fetch (&err_type, &err_value, &err_traceback);

cbresult = PyObject_CallNoArgs (self->my_callback);
if (cbresult == NULL)

PyErr_WriteUnraisable (self->my_callback);
else

Py_DECREF (cbresult) ;

/* This restores the saved exception state */
PyErr_Restore (err_type, err_value, err_traceback);

Py_DECREF (self->my_callback);
3
Py_TYPE (obj)—>tp_free ((PyObject*)self);

48 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

Enueiwon: There are limitations to what you can safely do in a deallocator function. First, if your type supports
garbage collection (using t p_traverse and/or tp_clear), some of the object’s members can have been cleared
or finalized by the time tp_dealloc is called. Second, in tp_dealloc, your object is in an unstable state: its
reference count is equal to zero. Any call to a non-trivial object or API (as in the example above) might end up calling
tp_dealloc again, causing a double free and a crash.

Starting with Python 3.4, it is recommended not to put any complex finalization code in tp_dealloc, and instead
use the new tp_finalize type method.

Agite gmiong:

PEP 442 explains the new finalization scheme.

2.3.2 Object Presentation

In Python, there are two ways to generate a textual representation of an object: the repr () function, and the str ()
function. (The print () function just calls st r ().) These handlers are both optional.

reprfunc tp_repr;
reprfunc tp_str;

The tp_repr handler should return a string object containing a representation of the instance for which it is called.
Here is a simple example:

static PyObject *
newdatatype_repr (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Repr-ified newdatatype{{size:%d}}",
obj—->obj_UnderlyingDatatypePtr—->size);

If no tp_repr handler is specified, the interpreter will supply a representation that uses the type’s tp_name and
a uniquely-identifying value for the object.

The tp_str handler is to str () what the tp_repr handler described above is to repr () ; that is, it is called
when Python code calls st r () on an instance of your object. Its implementation is very similar to the tp_repr
function, but the resulting string is intended for human consumption. If tp_str is not specified, the tp_repr
handler is used instead.

Here is a simple example:

static PyObject *
newdatatype_str (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Stringified _newdatatype{{size:%d}}",
obj—->obj_UnderlyingDatatypePtr->size);

2.3. Defining Extension Types: Assorted Topics 49

https://www.python.org/dev/peps/pep-0442

Extending and Embedding Python, Anpooicsuon 3.9.23

2.3.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how the
attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to
set attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed
to the handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions
for one pair. The difference is that one pair takes the name of the attribute as a char*, while the other accepts a
PyObject *. Each type can use whichever pair makes more sense for the implementation’s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;

S L. K/

getattrofunc tp_getattro; /* PyObject * version */

setattrofunc tp_setattro;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic
implementations which can be used to provide the PyOb ject * version of the attribute management functions. The
actual need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there
are many examples which have not been updated to use some of the new generic mechanism that is available.

Generic Attribute Management

Most extension types only use simple attributes. So, what makes the attributes simple? There are only a couple of
conditions that must be met:

1. The name of the attributes must be known when PyType_Ready () is called.

2. No special processing is needed to record that an attribute was looked up or set, nor do actions need to be taken
based on the value.

Note that this list does not place any restrictions on the values of the attributes, when the values are computed, or
how relevant data is stored.

When PyType_Ready () is called, it uses three tables referenced by the type object to create descriptors which
are placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object.
Each of the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited
from their base type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the
base type to handle attributes.

The tables are declared as three fields of the type object:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an
instance of this structure:

typedef struct PyMethodDef {

const char *ml_name; /* method name */

PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */

const char *ml_doc; /* docstring */

} PyMethodDef;

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from
a base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The m1_name
field of the sentinel must be NULL.

The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive
C types are supported, and access may be read-only or read-write. The structures in the table are defined as:

50 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

typedef struct PyMemberDef ({
const char *name;

int type;
int offset;
int flags;

const char *doc;
} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the type which will be able to extract a value
from the instance structure. The t ype field should contain one of the type codes defined in the st ructmember.h
header; the value will be used to determine how to convert Python values to and from C values. The f1ags field is
used to store flags which control how the attribute can be accessed.

The following flag constants are defined in st ructmember . h; they may be combined using bitwise-OR.

Constant Meaning

READONLY Never writable.

READ_RESTRICTED Not readable in restricted mode.
WRITE_RESTRICTED | Not writable in restricted mode.
RESTRICTED Not readable or writable in restricted mode.

An interesting advantage of using the t p_members table to build descriptors that are used at runtime is that any
attribute defined this way can have an associated doc string simply by providing the text in the table. An application
can use the introspection API to retrieve the descriptor from the class object, and get the doc string usingits ___doc___
attribute.

As with the tp_methods table, a sentinel entry with a name value of NULL is required.

Type-specific Attribute Management

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only
difference between the char* and PyObject * flavors of the interface. This example effectively does the same
thing as the generic example above, but does not use the generic support added in Python 2.2. It explains how the
handler functions are called, so that if you do need to extend their functionality, you’ll understand what needs to be
done.

The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations
where the __getattr__ () method of a class would be called.

Here is an example:

static PyObject *
newdatatype_getattr (newdatatypeobject *obj, char *name)
{

if (strcmp(name, "data") == 0)

{
return Pylong_FromLong (obj->data);

PyErr_Format (PyExc_AttributeError,
"'%$.50s' object has no attribute '%.400s'",
tp->tp_name, name);

return NULL;

The tp_setattr handleris called whenthe __setattr__ () or__delattr__ () method of a class instance
would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that
simply raises an exception; if this were really all you wanted, the t p_setattr handler should be set to NULL.

2.3. Defining Extension Types: Assorted Topics 51

Extending and Embedding Python, Anpooicsuon 3.9.23

static int

newdatatype_setattr (newdatatypeobject *obj, char *name, PyObject *v)

{
PyErr_Format (PyExc_RuntimeError, "Read-only attribute: %s", name);
return -1;

2.3.4 Object Comparison

richcmpfunc tp_richcompare;

The tp_richcompare handler is called when comparisons are needed. It is analogous to the
rich comparison methods, like __1t__ (), and also called by PyObject_RichCompare () and
PyObject_RichCompareBool ().

This function is called with two Python objects and the operator as arguments, where the operator is one of Py_EQ,
Py_NE,Py_LE,Py_GE,Py_LTorPy_GT. It should compare the two objects with respect to the specified operator
and return Py_True or Py_False if the comparison is successful, Py_NotImplemented to indicate that
comparison is not implemented and the other object’s comparison method should be tried, or NULL if an exception
was set.

Here is a sample implementation, for a datatype that is considered equal if the size of an internal pointer is equal:

static PyObject *
newdatatype_richcmp (PyObject *objl, PyObject *obj2, int op)
{

PyObject *result;

int ¢, sizel, size2;

/* code to make sure that both arguments are of type
newdatatype omitted */

sizel = objl->obj_UnderlyingDatatypePtr->size;
size2 = obj2->0bj_UnderlyingDatatypePtr->size;

switch (op) {

case : c = sizel < size2; break;
case c = sizel <= size2; break;
case : ¢ = sizel == size2; break;
case c = sizel != size2; break;
case c = sizel > size2; break;
case c = sizel >= size2; break;

}

result = ¢ ? Py_True : Py_False;
Py_INCREF (result);

return result;

52 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

2.3.5 Abstract Protocol Support

Python supports a variety of abstract “protocols;” the specific interfaces provided to use these interfaces are
documented in abstract.

A number of these abstract interfaces were defined early in the development of the Python implementation. In
particular, the number, mapping, and sequence protocols have been part of Python since the beginning. Other
protocols have been added over time. For protocols which depend on several handler routines from the type
implementation, the older protocols have been defined as optional blocks of handlers referenced by the type object.
For newer protocols there are additional slots in the main type object, with a flag bit being set to indicate that the
slots are present and should be checked by the interpreter. (The flag bit does not indicate that the slot values are
non-NULL. The flag may be set to indicate the presence of a slot, but a slot may still be unfilled.)

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address of a
structure that implements the C type PyNumberMethods, PySequenceMethods, or PyMappingMethods,
respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each
of these in the Objects directory of the Python source distribution.

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a
simple example:

static Py_hash_t
newdatatype_hash (newdatatypeobject *obj)

{
Py_hash_t result;

result = obj->some_size + 32767 * obj->some_number;
if (result == -1)
result = -2;

return result;

Py_hash_t is a signed integer type with a platform-varying width. Returning —1 from tp_hash indicates an
error, which is why you should be careful to avoid returning it when hash computation is successful, as seen above.

ternaryfunc tp_call;

This function is called when an instance of your data type is «called», for example, if ob7j1 is an instance of your
data type and the Python script contains obj1 ('hello"'), the tp_call handler is invoked.

This function takes three arguments:

1. self is the instance of the data type which is the subject of the call. If the call is obj1 ('hello'), then self
is obj 1.
2. args is a tuple containing the arguments to the call. You can use PyArg_ParseTuple () to extract the

arguments.

3. kwds is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword
arguments, use PyArg_ParseTupleAndKeywords () to extract the arguments. If you do not want to
support keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword
arguments are not supported.

Here is a toy tp_call implementation:

static PyObject *
newdatatype_call (newdatatypeobject *self, PyObject *args, PyObject *kwds)
{

(ouvéyela 0TV emOpEVY 0edL)

2.3. Defining Extension Types: Assorted Topics 53

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

PyObject *result;
const char *argl;
const char *arg2;
const char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &argl, &arg2, &arg3)) A
return NULL;
}

result = PyUnicode_FromFormat (
"Returning —-- value: [%d] argl: [%s] arg2: [%s] arg3: [%s]\n",
obj->obj_UnderlyingDatatypePtr->size,
argl, arg2, arg3);

return result;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for
which they are being called, and return a new reference. In the case of an error, they should set an exception and
return NULL. tp_iter corresponds to the Python __iter__ () method, while tp_iternext corresponds to
the Python ___next__ () method.

Any iterable object must implement the tp_iter handler, which must return an iferator object. Here the same
guidelines apply as for Python classes:

« For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should
be created and returned by each callto tp_iter.

o Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can
implement tp_iter by returning a new reference to themselves — and should also therefore implement the
tp_iternext handler.

Any iterator object should implement both tp_iter and tp_iternext. An iterator’s t p_iter handler should
return a new reference to the iterator. Its tp_ iternext handler should return a new reference to the next object in
the iteration, if there is one. If the iteration has reached the end, t p_ i ternext may return NULL without setting an
exception, or it may set StopIteration in addition to returning NULL; avoiding the exception can yield slightly
better performance. If an actual error occurs, tp_iternext should always set an exception and return NULL.

2.3.6 Weak Reference Support

One of the goals of Python’s weak reference implementation is to allow any type to participate in the weak reference
mechanism without incurring the overhead on performance-critical objects (such as numbers).

Agite emiong:

Documentation for the weakre f module.

For an object to be weakly referencable, the extension type must do two things:

1. Include a PyObject * field in the C object structure dedicated to the weak reference mechanism. The object’s
constructor should leave it NULL (which is automatic when using the default tp_alloc).

2. Set the tp_weaklistoffset type member to the offset of the aforementioned field in the C object
structure, so that the interpreter knows how to access and modify that field.

Concretely, here is how a trivial object structure would be augmented with the required field:

typedef struct {
PyObject_HEAD

(ouvéyela otV TOUEVY OEMD)

54 Kegahaio 2. Creating extensions without third party tools

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

PyObject *weakreflist; /* List of weak references */
} TrivialObiject;

And the corresponding member in the statically-declared type object:

static PyTypeObject TrivialType = {
PyVarObject_ HEAD_INIT (NULL, O)
/* ... other members omitted for brevity ... */
.tp_weaklistoffset = offsetof(TrivialObject, weakreflist),
bi

The only further addition is that tp_dealloc needs to clear any weak references (by -calling
PyObject_ClearWeakRefs ()) if the field is non-NULL:

static void
Trivial_dealloc(TrivialObject *self)
{

/* Clear weakrefs first before calling any destructors */

if (self->weakreflist != NULL)
PyObject_ClearWeakRefs ((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */

Py_TYPE (self) >tp_free ((PyObject *) self);

2.3.7 More Suggestions

In order to learn how to implement any specific method for your new data type, get the CPython source code.
Go to the Objects directory, then search the C source files for tp_ plus the function you want (for example,
tp_richcompare). You will find examples of the function you want to implement.

When you need to verify that an object is a concrete instance of the type you are implementing, use the
PyObject_TypeCheck () function. A sample of its use might be something like the following:

if (!PyObject_TypeCheck (some_object, &MyType)) |
PyErr_SetString(PyExc_TypeError, "arg #1 not a mything");
return NULL;

Agite gmiong:
Download CPython source releases. https://www.python.org/downloads/source/

The CPython project on GitHub, where the CPython source code is developed. https://github.com/python/
cpython

2.4 Building C and C++ Extensions

A C extension for CPython is a shared library (e.g. a . so file on Linux, .pyd on Windows), which exports an
initialization function.

To be importable, the shared library must be available on PYTHONPATH, and must be named after the module name,
with an appropriate extension. When using distutils, the correct filename is generated automatically.

The initialization function has the signature:
PyObject* PyInit_modulename (void)

It returns either a fully-initialized module, or a PyModuleDef instance. See initializing-modules for details.

2.4. Building C and C++ Extensions 55

https://www.python.org/downloads/source/
https://github.com/python/cpython
https://github.com/python/cpython

Extending and Embedding Python, Anpooicsuon 3.9.23

For modules with ASCII-only names, the function must be named PyInit_<modulename>, with
<modulename> replaced by the name of the module. When using multi-phase-initialization, non-ASCII
module names are allowed. In this case, the initialization function name is PyInitU_<modulename>, with
<modulename> encoded using Python’s punycode encoding with hyphens replaced by underscores. In Python:

def initfunc_name (name) :

try:
suffix = b' ' + name.encode('ascii')
except UnicodeEncodeError:
suffix = b'U_' + name.encode ('punycode') .replace(b'-', b'_ ")

return b'PyInit' + suffix

It is possible to export multiple modules from a single shared library by defining multiple initialization functions.
However, importing them requires using symbolic links or a custom importer, because by default only the function
corresponding to the filename is found. See the «Multiple modules in one library» section in PEP 489 for details.

2.4.1 Building C and C++ Extensions with distutils
Extension modules can be built using distutils, which is included in Python. Since distutils also supports creation of
binary packages, users don’t necessarily need a compiler and distutils to install the extension.

A distutils package contains a driver script, setup . py. This is a plain Python file, which, in the most simple case,
could look like this:

from distutils.core import setup, Extension

modulel = Extension('demo',
sources = ['demo.c'])

setup (name = 'PackageName',
version = '1.0",
description = 'This is a demo package',
ext_modules = [modulel])

With this setup.py, and a file demo . ¢, running

python setup.py build

will compile demo . ¢, and produce an extension module named demo in the build directory. Depending on the
system, the module file will end up in a subdirectory build/1lib. system, and may have a name like demo . so
or demo.pyd.

In the setup.py, all execution is performed by calling the setup function. This takes a variable number of
keyword arguments, of which the example above uses only a subset. Specifically, the example specifies meta-
information to build packages, and it specifies the contents of the package. Normally, a package will contain additional
modules, like Python source modules, documentation, subpackages, etc. Please refer to the distutils documentation
in distutils-index to learn more about the features of distutils; this section explains building extension modules only.

It is common to pre-compute arguments to setup (), to better structure the driver script. In the example above,
the ext_modules argument to setup () is a list of extension modules, each of which is an instance of the
Extension. In the example, the instance defines an extension named demo which is build by compiling a single
source file, demo. c.

In many cases, building an extension is more complex, since additional preprocessor defines and libraries may be
needed. This is demonstrated in the example below.

from distutils.core import setup, Extension

modulel = Extension('demo',
define_macros = [('MAJOR_VERSION', '"1"),
("MINOR_VERSION', '0')1,

(ouvéyela 0TV emOpEVY 0edL)

56 Kegahaio 2. Creating extensions without third party tools

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

include_dirs = ['/usr/local/include'],
libraries = ['tcl83'],
library_dirs = ['/usr/local/lib'],
sources = ['demo.c'])
setup (name = 'PackageName',
version = '1.0'",
description = 'This is a demo package',
author = 'Martin v. Loewis',
author_email = 'martin@v.loewis.de',
url = 'https://docs.python.org/extending/building’,
long_description = """
This is really just a demo package.
'V',
ext_modules = [modulel])

In this example, setup () is called with additional meta-information, which is recommended when distribution
packages have to be built. For the extension itself, it specifies preprocessor defines, include directories, library
directories, and libraries. Depending on the compiler, distutils passes this information in different ways to the
compiler. For example, on Unix, this may result in the compilation commands

gcc -DNDEBUG —-g -03 -Wall -Wstrict-prototypes —-fPIC -DMAJOR_VERSION=1 -DMINOR_
—~VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/
—temp.linux-1686-2.2/demo.o

gcc —shared build/temp.linux-1686-2.2/demo.o -L/usr/local/lib -1tcl83 -o build/lib.
—1linux-1686-2.2/demo.so

These lines are for demonstration purposes only; distutils users should trust that distutils gets the invocations right.

2.4.2 Distributing your extension modules

When an extension has been successfully built, there are three ways to use it.

End-users will typically want to install the module, they do so by running

’python setup.py install

Module maintainers should produce source packages; to do so, they run

’python setup.py sdist

In some cases, additional files need to be included in a source distribution; this is done through a MANIFEST. in
file; see manifest for details.

If the source distribution has been built successfully, maintainers can also create binary distributions. Depending on
the platform, one of the following commands can be used to do so.

python setup.py bdist_wininst
python setup.py bdist_rpm
python setup.py bdist_dumb

2.4. Building C and C++ Extensions 57

Extending and Embedding Python, Anpooicsuon 3.9.23

2.5 Building C and C++ Extensions on Windows

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++,
and follows with more detailed background information on how it works. The explanatory material is useful for both
the Windows programmer learning to build Python extensions and the Unix programmer interested in producing
software which can be successfully built on both Unix and Windows.

Module authors are encouraged to use the distutils approach for building extension modules, instead of the one
described in this section. You will still need the C compiler that was used to build Python; typically Microsoft Visual
C++.

Ynpueimon: This chapter mentions a number of filenames that include an encoded Python version number. These
filenames are represented with the version number shown as XY; in practice, ' X' will be the major version number
and 'Y ' will be the minor version number of the Python release you’re working with. For example, if you are using
Python 2.2.1, XY will actually be 22.

2.5.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on Unix: use the distutils
package to control the build process, or do things manually. The distutils approach works well for most extensions;
documentation on using distutils to build and package extension modules is available in distutils-index. If you
find you really need to do things manually, it may be instructive to study the project file for the winsound standard
library module.

2.5.2 Differences Between Unix and Windows

Unix and Windows use completely different paradigms for run-time loading of code. Before you try to build a module
that can be dynamically loaded, be aware of how your system works.

In Unix, a shared object (. so) file contains code to be used by the program, and also the names of functions and
data that it expects to find in the program. When the file is joined to the program, all references to those functions
and data in the file’s code are changed to point to the actual locations in the program where the functions and data
are placed in memory. This is basically a link operation.

In Windows, a dynamic-link library (. d11) file has no dangling references. Instead, an access to functions or data
goes through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’s
memory; instead, the code already uses the DLL’s lookup table, and the lookup table is modified at runtime to point
to the functions and data.

In Unix, there is only one type of library file (. a) which contains code from several object files (. o). During the link
step to create a shared object file (. so), the linker may find that it doesn’t know where an identifier is defined. The
linker will look for it in the object files in the libraries; if it finds it, it will include all the code from that object file.

In Windows, there are two types of library, a static library and an import library (both called . 1ib). A static library
is like a Unix . a file; it contains code to be included as necessary. An import library is basically used only to reassure
the linker that a certain identifier is legal, and will be present in the program when the DLL is loaded. So the linker
uses the information from the import library to build the lookup table for using identifiers that are not included in the
DLL. When an application or a DLL is linked, an import library may be generated, which will need to be used for
all future DLLs that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On
Unix, you would not pass A . a to the linker for B. so and C. so; that would cause it to be included twice, so that B
and C would each have their own copy. In Windows, building A.d11 will also build A.1ib. Youdo pass A.11ib
to the linker for B and C. A . 1ib does not contain code; it just contains information which will be used at runtime
to access A’s code.

58 Kegahaio 2. Creating extensions without third party tools

https://github.com/python/cpython/tree/3.9/PCbuild/winsound.vcxproj

Extending and Embedding Python, Anpooicuon 3.9.23

In Windows, using an import library is sort of like using import spam; it gives you access to spam’s names, but
does not create a separate copy. On Unix, linking with a library is more like from spam import *;itdoes
create a separate copy.

2.5.3 Using DLLs in Practice

Windows Python is built in Microsoft Visual C++; using other compilers may or may not work. The rest of this
section is MSVC++ specific.

When creating DLLs in Windows, you must pass pythonXY . 1ib to the linker. To build two DLLs, spam and ni
(which uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

The first command created three files: spam.obj, spam.dl1l and spam.lib. Spam.dl1l does not contain
any Python functions (such as PyArg_ParseTuple ()), but it does know how to find the Python code thanks to
pythonXY.lib.

The second command created ni.d11 (and .obj and . 1ib), which knows how to find the necessary functions
from spam, and also from the Python executable.

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able
to see your identifiers, you have to say _declspec (dllexport), asin void _declspec (dllexport)
initspam(void) or PyObject _declspec(dllexport) *NiGetSpamData (void).

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your
executable. To get rid of them, use the Project Settings dialog, Link tab, to specify ignore default libraries. Add the
correct msvcrtxx.lib to the list of libraries.

2.5. Building C and C++ Extensions on Windows 59

Extending and Embedding Python, Anpooicsuon 3.9.23

60

Kegahaio 2. Creating extensions without third party tools

KEGANAIO 3

Embedding the CPython runtime in a larger application

Sometimes, rather than creating an extension that runs inside the Python interpreter as the main application, it is
desirable to instead embed the CPython runtime inside a larger application. This section covers some of the details
involved in doing that successfully.

3.1 Embedding Python in Another Application

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by attaching
a library of C functions to it. It is also possible to do it the other way around: enrich your C/C++ application by
embedding Python in it. Embedding provides your application with the ability to implement some of the functionality
of your application in Python rather than C or C++. This can be used for many purposes; one example would be to
allow users to tailor the application to their needs by writing some scripts in Python. You can also use it yourself if
some of the functionality can be written in Python more easily.

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the main
program of the application is still the Python interpreter, while if you embed Python, the main program may have
nothing to do with Python — instead, some parts of the application occasionally call the Python interpreter to run
some Python code.

So if you are embedding Python, you are providing your own main program. One of the things this main program
has to do is initialize the Python interpreter. At the very least, you have to call the function Py_Initialize ().
There are optional calls to pass command line arguments to Python. Then later you can call the interpreter from any
part of the application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun_SimpleString (), or youcan pass a stdio file pointer and a file name (for identification in error messages
only) to PyRun_SimpleFile (). You can also call the lower-level operations described in the previous chapters
to construct and use Python objects.

Agite emiong:

c-api-index The details of Python’s C interface are given in this manual. A great deal of necessary information can
be found here.

61

Extending and Embedding Python, Anpooicsuon 3.9.23

3.1.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to
execute a Python script without needing to interact with the application directly. This can for example be used to
perform some operation on a file.

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

int
main (int argc, char *argv[])
{
wchar_t *program = Py_DecodelLocale (argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1) ;

}
Py_SetProgramName (program); /* optional but recommended */
Py_Initialize();
PyRun_SimpleString ("from time import time,ctime\n"
"print ('Today is', ctime (time()))\n");

if (Py_FinalizeEx () < 0) {

exit (120);
}
PyMem_RawFree (program) ;
return 0;

The Py_SetProgramName () function should be called before Py_Initialize () to inform the interpreter
about paths to Python run-time libraries. Next, the Python interpreter is initialized with Py_Initialize (),
followed by the execution of a hard-coded Python script that prints the date and time. Afterwards, the
Py_FinalizeEx () call shuts the interpreter down, followed by the end of the program. In a real program, you
may want to get the Python script from another source, perhaps a text-editor routine, a file, or a database. Getting
the Python code from a file can better be done by using the PyRun_SimpleFile () function, which saves you
the trouble of allocating memory space and loading the file contents.

3.1.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but
exchanging data values is quite cumbersome to say the least. If you want that, you should use lower level calls. At the
cost of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same activity, despite the different intent.
Most topics discussed in the previous chapters are still valid. To show this, consider what the extension code from
Python to C really does:

1. Convert data values from Python to C,
2. Perform a function call to a C routine using the converted values, and
3. Convert the data values from the call from C to Python.
When embedding Python, the interface code does:
1. Convert data values from C to Python,
2. Perform a function call to a Python interface routine using the converted values, and
3. Convert the data values from the call from Python to C.

As you can see, the data conversion steps are simply swapped to accommodate the different direction of the cross-
language transfer. The only difference is the routine that you call between both data conversions. When extending,
you call a C routine, when embedding, you call a Python routine.

62 Kegahaio 3. Embedding the CPython runtime in a larger application

Extending and Embedding Python, Anpooicuon 3.9.23

This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of references
and dealing with errors is assumed to be understood. Since these aspects do not differ from extending the interpreter,
you can refer to earlier chapters for the required information.

3.1.3 Pure Embedding

The first program aims to execute a function in a Python script. Like in the section about the very high level interface,
the Python interpreter does not directly interact with the application (but that will change in the next section).

The code to run a function defined in a Python script is:

#define PY SSIZE_T CLEAN
#include <Python.h>

int

main (int argc, char *argv([])

{
PyObject *pName, *pModule, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) |
fprintf (stderr, "Usage: call pythonfile funcname [args]\n");
return 1;

Py_Initialize();
pName = PyUnicode_DecodeFSDefault (argv[1l]);
/* Error checking of pName left out */

pModule = PyImport_Import (pName) ;
Py_DECREF (pName) ;

if (pModule != NULL) {
pFunc = PyObject_GetAttrString (pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) |
pArgs = PyTuple_New(argc - 3);
for (i = 0; 1 < argc - 3; ++1i) A
pValue = PylLong_FromLong (atoi (argv[i + 31));
if (!pvalue) {
Py_DECREF (pArgs) ;
Py_DECREF (pModule) ;
fprintf (stderr, "Cannot convert argument\n");
return 1;
}
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);
}
pValue = PyObject_CallObject (pFunc, pArgs);
Py_DECREF (pArgs) ;
if (pvValue != NULL) {
printf ("Result of call: %1d\n", PyLong_AsLong (pValue));
Py_DECREF (pValue) ;
}
else {
Py_DECREF (pFunc) ;
Py_DECREF (pModule) ;
PyErr_Print ();
fprintf (stderr,"Call failed\n");

(ouvEyELa TNV ETTOUEVT) GENDQ)

3.1. Embedding Python in Another Application 63

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

return 1;

}
else {
if (PyErr_Occurred())
PyErr_Print ();
fprintf (stderr, "Cannot find function \"%s\"\n", argv[2]);
t
Py_XDECREF (pFunc) ;
Py_DECREF (pModule) ;
}
else {
PyErr_Print ();
fprintf (stderr, "Failed to load \"%s\"\n", argv[1l]);
return 1;
i
if (Py_FinalizeEx () < 0) {
return 120;
;

return O;

This code loads a Python script using argv [1], and calls the function named in argv [2]. Its integer arguments
are the other values of the argv array. If you compile and link this program (let’s call the finished executable call),
and use it to execute a Python script, such as:

def multiply(a,b):
print ("Will compute", a, "times", b)

c =20
for i in range (0, a):
c=c¢c +Db

return c

then the result should be:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

Although the program is quite large for its functionality, most of the code is for data conversion between Python and
C, and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();

pName = PyUnicode_DecodeFSDefault (argv([1]);
/* Error checking of pName left out */
pModule = PyImport_Import (pName) ;

After initializing the interpreter, the script is loaded using PyImport_Import (). This routine needs a Python
string as its argument, which is constructed using the PyUnicode_FromString () data conversion routine.

pFunc = PyObject_GetAttrString (pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) {

t
Py_XDECREF (pFunc) ;

Once the script is loaded, the name we’re looking for is retrieved using PyObject_GetAttrString (). If the
name exists, and the object returned is callable, you can safely assume that it is a function. The program then proceeds
by constructing a tuple of arguments as normal. The call to the Python function is then made with:

64 Kegpalato 3. Embedding the CPython runtime in a larger application

Extending and Embedding Python, Anpooicuon 3.9.23

pValue = PyObject_CallObject (pFunc, pArgs);

Upon return of the function, pvalue is either NULL or it contains a reference to the return value of the function.
Be sure to release the reference after examining the value.

3.1.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python
API allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with routines
provided by the application. While it sounds complex, it is not so bad. Simply forget for a while that the application
starts the Python interpreter. Instead, consider the application to be a set of subroutines, and write some glue code
that gives Python access to those routines, just like you would write a normal Python extension. For example:

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject*
emb_numargs (PyObject *self, PyObject *args)
{
if (!PyArg _ParseTuple (args, ":numargs"))
return NULL;
return PyLong_FromLong (numargs) ;

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,
"Return the number of arguments received by the process."},
{NULL, NULL, 0O, NULL}

bi

static PyModuleDef EmbModule = {
PyModuleDef_ HEAD_INIT, "emb", NULL, -1, EmbMethods,
NULL, NULL, NULL, NULL

bi

static PyObject*
PyInit_emb (void)
{
return PyModule_Create (&EmbModule) ;

Insert the above code just above the main () function. Also, insert the following two statements before the call to
Py_Initialize():

numargs = argc;
PyImport_AppendInittab ("emb", &PyInit_emb);

These two lines initialize the numargs variable, and make the emb.numargs () function accessible to the
embedded Python interpreter. With these extensions, the Python script can do things like

import emb
print ("Number of arguments", emb.numargs())

In a real application, the methods will expose an API of the application to Python.

3.1. Embedding Python in Another Application 65

Extending and Embedding Python, Anpooicsuon 3.9.23

3.1.5 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of the
C++ system used; in general you will need to write the main program in C++, and use the C++ compiler to compile
and link your program. There is no need to recompile Python itself using C++.

3.1.6 Compiling and Linking under Unix-like systems

It is not necessarily trivial to find the right flags to pass to your compiler (and linker) in order to embed the Python
interpreter into your application, particularly because Python needs to load library modules implemented as C
dynamic extensions (. so files) linked against it.

To find out the required compiler and linker flags, you can execute the pythonX. Y-config script which is
generated as part of the installation process (a python3—-config script may also be available). This script has
several options, of which the following will be directly useful to you:

e pythonX.Y-config —--cflags will give you the recommended flags when compiling:

$ /opt/bin/python3.4-config —--cflags
-I/opt/include/python3.4m -I/opt/include/python3.4m -DNDEBUG -g —-fwrapv -03 -
—Wall -Wstrict-prototypes

pythonX.Y-config --1dflags will give you the recommended flags when linking:

$ /opt/bin/python3.4-config —--1dflags
-L/opt/lib/python3.4/config-3.4m -lpthread -1dl -lutil -1lm -lpython3.4m -
—Xlinker -export-dynamic

Inueiwon: To avoid confusion between several Python installations (and especially between the system Python and
your own compiled Python), it is recommended that you use the absolute path to pythonX. Y-config, as in the
above example.

If this procedure doesn’t work for you (it is not guaranteed to work for all Unix-like platforms; however, we welcome
bug reports) you will have to read your system’s documentation about dynamic linking and/or examine Python’s
Makefile (use sysconfig.get_makefile_filename () to find its location) and compilation options. In
this case, the sysconfig module is a useful tool to programmatically extract the configuration values that you will
want to combine together. For example:

>>> import sysconfig

>>> sysconfig.get_config var ('LIBS")
'-lpthread -1dl1 -lutil’

>>> gysconfig.get_config_var ('LINKFORSHARED'")
'-Xlinker -export-dynamic'

66 Kegpalato 3. Embedding the CPython runtime in a larger application

nAPAPTHMA A’

Mwoodpt

>>> To mpoemheypévo Python prompt tov dtadpaotikov shell. Zuyvd epgpaviCetal yio tapadeiyuato Kndiko
OV UITOPOVV VO, EKTEAEGTOVV SLALdPAOTIKA OTOV interpreter.

. Mmnopei va avagépetan o€:

o To mpoemiheyuévo Python prompt tov duadpaotikov shell Katd TV eLooymyr Tou KOdKa yLo éva
WThok Kdduka pe ooy, dtav Ppioketar péoa o va Lehyog TaLpLoouévav aplotepdv Kot deEuhv
delimiters (;wopevOéoels, aykiies, AyKLOTPO 1) TPLTAG ELOAYMYLKA), 1| uetd tov Kabopoud evog
decorator.

o H evowpatmuévn otabepd E11ipsis.

2to3 'Eva epyodeio mov mpoomadei vo petotpéypel tov kmduko Python 2.x og k®dika Python 3.x dtoyelpiCovtag
TLG TTEPLOOOTEPES ALTVUBATOTNTES TTOV WITOPOVV VO EVTOTLOTOUV OVOAIOVTOG TNV TTNYT) Ko dLaoyilovtag
T0 dEVTPO avdluaong.

2t03 eivan drabéowo oty otdvtap PPAodNKn wg 1ib2to3, mapéyetor éva onueio elsddov wg
Tools/scripts/2to3. BA. 2to3-reference.

agnpnuévny Baokn kAaon Ou agnpnuéveg Baotkég kKhAoelg ouumAnpdvouy to duck-typing mopéyovtog évav
TPOTO opLopo interfaces 6tav Ghheg teyvikég 6mwg 1 hasattr () Ba Nrav adégieg 1 avemaicdnto
havBaopéveg (Yo mopdderypo e magic methods). Ta ABC (abstract base class) e106youv elKoVIKEG VITO-
KMAOELS, OL 0TT0leg elvan KAAoELG TToU eV KANpovopouvToL amd o KAGGT, oAld eEakolouBotv va ava-
yvopitovior amd 10 isinstance () ko amwd to issubclass ()” A v Tekunpiwon tov module
abce. H Python dua6éter modhd evoopatwuévo ABC yio douég dedouévav (0to module collections.
abce), apBuovg (oto module numbers), poég (oto module povdda i o), eloaywyn finders ko loaders (oto
module importlib.abc). Mmopeite va dnwovpynoete to dikd oag ABC pe to module abce.

annotation Mo eTikéta oV OYETICETAL UE WO LETAPANT, £Vl YOPAKTNPLOTIKO KAGONG 1 (WOl TAPGUETPOG
OUVAPTNONG 1) TUY TTOV ETLOTPEPETAL, TOV YPNOLUOTTOLELTAL KOTA oVUBOOT WG fype hint.

Aev givor duvati M Tpdofaoy oto annotations TwV TOTLKOV UETAPANTOV KATA TO YPOVO EKTELETNG, AAAG
To annotations twv global LETOUPANTOV, TWV XOPAKTNPLOTIKMV KAAOTG KOl TOV GUVAPTHOEMV AroOnKey-
oVTaL 0TO EOLKO XOPAKTNPLOTIKO __annotations_ twv modules, Twv KAACEWV KAl TMV GUVOPTN-
CGEMV, OVTIOTOLY .

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

opopo. Mo i) petoaBipdletan oe pio function (| method) xoxd v KAMon g ouvdptnong. Yrdpyovv do
£idn opLopdtov:

67

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, Anpooicsuon 3.9.23

o keyword argument: £vo. OpLOUOL TTPLV ATTO €VOL OVOLYVIPLOTLKO (TT.%. name=) O€ o, KAon ouvapT-
oNG 1 TEPVADVTAG TO WG TUUT| 08 £va heELko mtpLv amd * *. Tia TapddeLyua, To 3 KoL To 5 amotehovv
optopata AEEewv-kheldLhv otig akolovbeg KA oELS Tpog complex () :

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

o positional argument: €vo. dpLopo. Tov dev givar optopo keyword. Ta opilopato O€ong pumopovv va eu-
paviCovrol otV apyNs Wag Motag oplopdtmv n/Kot va netapLatovral mg otouyeio evog iterable
mpwv oo *. T wapdderyna, To 3 koL 1o 5 amotehoVv opiopata 0Eong 0TLg TopaKaTm KANOELS:

complex (3, 5)
complex (* (3, 5))

Ta opiouato eKymPOVVTOL 0TS OVOLLOOUEVES TOTILKES UETAPANTEG 0TO GmUA Wa ovvapTnong. Bi. Ty
evotnta calls yio Toug KaVOVES TOU SLETOUV QLUTNV THV EKYMPNOT]. ZUVTOKTIKY, OTTOL0ONTOTE EKPPUOT|
WITOPEL VAL (PN OLUOTONOEL YLOL VO AVATTAPOOTNOEL EVaL OpLona” 1) AELOAOYOUEVT] TLUN EKYWPELTOL OE L.
TOTTLKT) UETOPANTY.

B\. emtiong v eyypagn Tov YAwooapiov yio. to parameter, thv FAQ gpdtnomn oto 1 duagopd peta&n
oplopdTmv kor Topouétpwv, kol PEP 362.

0oUyYpOvog dtyelproTi)s context An object which controls the environment seen in an async with statement
by defining __aenter__ () and __aexit__ () methods. Introduced by PEP 492.

aovyypovog generator Mio. ouVAPTNOY TTOV EMLOTPEQEL Evay asynchronous generator iterator. MowdCeL pe wio.
ouvapTnon coroutine tov opiletal pue async def ektdg amd OTL mEPLEYEL EKPPATELS yield yio TV
TOPAYOYY WLAG OELPAG TLUDV TTOV (WITOPOUV VAL ¥pnoLpomomBouv oe évav async for Bpdyo.

ZuvhBwg avagépeTal 08 WO OUVAPTNOY aoVYYPOVOU generator, GAAG WTOPEL VO AVAPEPETOL O VOV
aclyypovo generator iterator 0€ OpLOUEVA. contexts. Ze TEPLITTMOELG OTOV TO EMILWKOUEVO VONUOL dEV
elval oapéc, (e TNV XPNOoN TV TANPOV 0wV OTTOPEVYETAL 1] ATAPELD.

Mo GUVAPTNON AOVYXPOVOU generator WITOPEL VAL TEPLEYEL EKPPACELS awalt , KaOdg KoL dNADOELS
async for,xaLasync with.

aovyypovog generator iterator 'Evo aviikeigevo mou dnuovpyhnke amd wo ouvvaptnon asynchronous
generator.

This is an asynchronous iterator which when called using the __anext__ () method returns an awaitable
object which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local
variables and pending try-statements). When the asynchronous generator iterator effectively resumes with
another awaitable returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

aovyypovog iterable An object, that can be used inan async for statement. Must return an asynchronous iterator
fromits __aiter__ () method. Introduced by PEP 492.

aoUyypovog iterator An object that implementsthe __aiter_ () and __anext__ () methods. __anext___
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

XOPoKTPLOTIKO A value associated with an object which is referenced by name using dotted expressions. For
example, if an object o has an attribute a it would be referenced as o.a.

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an
__await__ () method. See also PEP 492.

BDFL Axpwviuo tov Benevolent Dictator For Life, xolokdyaBog diktdtopag tg Cwrg, dnhadn Guido van
Rossum, o dnuovpydg g Python.

dvadiko apyelo A file object able to read and write bytes-like objects. Examples of binary files are files opened in
binary mode ('rb', 'wb"' or 'rb+'), sys.stdin.buffer, sys.stdout .buffer, and instances of
io.BytesIOand gzip.GzipFile.

68 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/
https://gvanrossum.github.io/

Extending and Embedding Python, Anpooicuon 3.9.23

BA. emiong rext file yio €va avTiKELEVO TUTTOU OPYELO LKAVO VO SLaFAOEL Ko VL YPAPEL ST T AVIIKELUEVO.

bytes-like avtikeipeve 'Eva oviikeipevo mov vmootnpiler to bufferobjects kou propei va eEdyer éva C-
contiguous buffer. Avtd mepihopfdver Oha ta avikeipeva bytes, bytearray, koL array.array,
Kabmg Kat Tord Kowvd memoryview avukeipeva. Ta dvadikovy tomov (bytes-like) aviikeipevo umo-
POV va xpnotpomotnfovv yio dLdpopeg Aettovpyieg wov drayelpiCovrar dvadikd dedouéva” avtd me-
pLhaufavouv ovumieon amodNKevon oe duadikd apyeio KoL amooTol) uéow socket.

Oplouéveg hettovpyieg yperdtovrol tor duadikd dedouéva va eivor uetofintd. H texunpioon ovyva
OVOPEPETOL 08 AUTA MG «dVAdLKA avTiKelpeva avayvoonc-eyypogrc» (read-write bytes-like objects).
Mapoadelynato PeTAPANTOV OVILKEWEVMVY TPOCWPLVTG 0ToONKEVOTG TTEPLEXOUV bytearray KoL éva
memoryview evog bytearray. AMeg hetTovpyleg ammantovv Ty amofnKevong tmv dvadikmv de-
dopéva oe auetdfinta avitkeipeva («duadikd ovTikeipeva wovo avayvwang»” (read-only bytes-like
objects) mopadeiyuoTo OVTAV TEPLEXOVY bytes Kot éva memoryview evog bytes avitkeluévou.

bytecode O mnyaiog kmdika tng Python petayhwtrtiteton oe bytecode, 1) e0mTEPLKT) AVATOPAOTAOY EVOG TTPO-
vpduuatog Python otov diepunvéa CPython. To byfecode amoBnkevetal enionNg TPOCWPLVE OG . Py C
apyela MoTe 1 eKTELEOT TOV (BLOV apyelov Vo Elvol YpNYopOTeEPY TV deUTEPT Popd eKTENEONG (UITTO-
pel vo amopevy el 1) €K VEOU UETOYADTTLON aItd TOV TTNyoio KOdika oe bytcode). Avti 1 «evdidpeon
YADOoO» Aéyetal OTL TpE el 08 WoL virtual machine mov €KTENEL TOV KMOLKO UNYAVAG TOV OVTLOTOLYEL
oe kGBe bytecode. AGfete vty OtL To. bytecode dev aVOUEVETOL VO AELTOUPYOUV HETAED SLOPOPETLKMV
ELKOVIKOV pnyavdv Python, ovte va givar otabepd ueto&o tmv ekdooewv tng Python.

Mo Alota ammd 0dnyieg oxetikd ue ta bytecode wtopei va Bpebei oty tekunpiwon yio to module dis.

callback Mua subroutine cuvaptnon 1 omoio ueTofLpdletar wg OpLona wov Oa ekTeLeTTEL KATOL0 OTLYUY OTO
ueAMov.

kAdon ‘Eva mpdtumo yio) dnuovpyio avitkeluévoy mov opiloviol ad To xpnoty. Ou oplopol Khaoewv
ouvNBmg TEPLEXOVV 0pLoPOUG neBOdWV OV AeLTovpyoUV g oTLyUoOTUITA THG KAGONG.

petafinti kAdons Mo petafint mov opileton og wio KMo Kot poopiletor va tpomomomOel pdvo oe
emimedo Khaong (dnh. OxL o€ £va oTLYWLOTUTTO oG KAGONG).

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int (3.15) converts the floating point number to the integer 3,
but in 3+4 .5, each argument is of a different type (one int, one float), and both must be converted to the
same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the programmer, e.g., f1oat (3) +4.5
rather than just 3+4.5.

uryadikog apiuds Mio eTéKTO01 TOU YVOOTOU GUOTHUATOG TTPAYUATIKMOVY aptOudv 6To 0Toio Orot oL apid-
pot ekppdtoviar wg aBpoloua evdg TPAYIATIKOU HEPOUG KOl EVOG avTaoTikoy uépovs. Ot pavtaoTi-
Kol apbuoi eivor Tpoynatikd ToMoTAAoL0L TG PAVIOOTIKNG Lovada (1) TeTpaywviky pila tov —1),
IOV OVY VA YpapovTal i ot podnuotikd 1 § ot unovikr. H Python éyel evowuatmpévn vmootpiEn
Yo (yodtkotg aplfpovg, oL 0oiot YPApovToL Pe duTdv TOV TEAEUTALO GUUBOAOUO” TO POVTAOTLKO Ué-
POg ypapeTal e To exidnua Jj, m.y., 3+173. [Na vo amoxtioete mpdoPaon og ovvOeTa LoOdVVOU TO
module math, ypnowomouote To cmath. H xpfion wyodikmv aplBumv givat évo apKeTd Tponyuévo
LOONUOTLKO XOPOKTNPLOTIKO. €AV OEV YVWOPILETE TNV OVAYKT TOVG, Elval 0yedOV alyoupo dti wmopeite
VOL TOL O'YVON|OETE UE ALOPALELQL.

Swayeprotiic context An object which controls the environment seen in a with statement by defining
__enter_ () and __exit () methods. See PEP 343.

context petafAnt) Mo petafAnTy) ov uropel va £yl ToMEG dLOPOoPETIKEG TIWEG AvALOYO. e TO context.
Avuto givan xowd oto Thread-Local Storage omov kd0e ektéheon tov vINUATOG WITOpPEel Vo EXEL dLapo-
peTKT) T yrow wo petainti). IMapdha avtd, pe tig context uetafAntég, Wropet va vrdpyovv Tolhd
mepLpdAhovta o £va ViU EKTELEDTG KOL 1] KUPLOL P10 VLo TLG context LeTaSANTég eivan M Tapakohov-
Onon tov petafintov oe tavtdypoveg diepyaoiec. Bh. contextvars.

contiguous 'Eva buffer Oewpeiton contiguous axpipng edv eivon eite C-contiguous eite Fortran contriguous. To
buffer undevikdv draotdoewv eivar C kon Fortran contiguous. Z& (lovodLAoTATOVS TTIVOKES, TA OTOLYED
TPETEL VaL TOTTOHETOUVTOL GTN WviuT) TO v SiTthal 0TO GAAO, LE GELPG ADEN GG TV BELKTHOV EEKLVDVTAG
artd to undév. Ze mohvdidotatovg C-contiguous Tivakes, 0 TehevTalog deikTng HeTofdiletan TayvTEPQ

69

https://www.python.org/dev/peps/pep-0343

Extending and Embedding Python, Anpooicsuon 3.9.23

OTaV EMLOKETTOVTOL TO OTOLXELD O OELPA dleuBuvong uvhung. Qotdoo, oe Fortran contiguous mtivakeg, o
TPADTOG OELKTNG LETABGMETAL TTLO YPTYOPOL.

coroutine O\ coroutines €ivol (oL Lo YEVIKEUUEVT popn) subroutines. Ot subroutines elodryovtal o€ €va onueio
Ko eEdyovral oe dAho onueio. Ot coroutines witopei va eloayBotv, vo eEayBov KoL va ouveyLoTolv oe

oM drapopeTikd onueio. Mmopov va vhomotoovy pe v dMiwon async def. Bh. emiong PEP
492.

coroutine cuvaptnon Mo oVVEPTNOTN TOV ETUOTPEQPEL £VAL. coroutine OVTIKEIEVO. Mol GuvapTtnoy coroutine
Witopel vo opiletol amd) dMAwon async def, KoL Umopel va mepLéyeL await, async for, kot
async with AEeig khedid. Autég ewonydnoav amd to PEP 492.

CPython H xavoviki) vhomoinon g yAdooog poypaupatiopwot Python, 6mwg diavéuetor oto python.org. O
0pog «CPython» ypnowwomoteital OTav eivol amapaiTnTo Yo TV SLAKPLoN VTG TG VAOTOINoNG o
deg Omwg M Jython M v IronPython.

decorator Mo ovvdptnomn mov emotpépel wa dAkn ovvdptnot, ovvifwg epapudleTal MG LETAOYUNTL-
ouOg GUVAPTNONG XPNOWOTOUDVTAG TNV @wrapper oUVTOEN. ZvvnOiouévo mapadeiyuata yio Tovg
decorators eivow classmethod () ko staticmethod ().

H oUvtaEn tov decorator givar amhdg KoAhwioTiky), ou akoiovbolr V0 oplopol cuvaptioewy eival
ONUaoLOAOYLKE LoodUvauoL:

def f (arg):
f = staticmethod (f)

@staticmethod
def f (arqg):

H {81 évvola vtdipyet yio g kAdoelg, ol ypnolpomoleitol Ayotepo ovyvd exel. BL. v tekunpimon
vio. function definitions kou class definitions yia epLoodTepa oyeTikd ue Toug decorators.

descriptor Any object which defines the methods __get__ (),__set_ (),or__delete__ (). Whenaclass
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

[0 TepLocdTEPEG TANPOPOPLEG AVaPOPLKA U TIG ueBOdoVG TmV descriptors, BA. see descriptors 1) to ITpa-
KTkOg 00MY0G Yo T xpron tov Descriptor.

AeElk0 An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eqg__ () methods. Called a hash in Perl.

kotavonon AeEwkov 'Evo ovumayhg TpOmog yio vo, erteSepyooteite OAa 1| n€pog TV OTOLEIWY Ot £val ETT0-
VOATTTLKO KoL VoL EmLoTpo@el évo, ue he&ukd ue to amotehéopata. results = {n: n ** 2 for
n in range (10) } dnwovpyel éva heEukd mov mepiéyel To KAewdi n o avtiotouyiletal ue Thv Tum
n ** 2.B\A. comprehensions.

oyn AeEikov Ta aviikeipeva mov emotpépovion arnd dict.keys (), dict.values (), ko dict.
items () koAoUvTor 0elg AeElkol. Autég mopEyouv wo SUVOULKY] 0PN TOV TV EYYPOPOY TOU Ae-
Eukov, ov onuaiver 6Tl dtov To AeEko petafdiietar, 1 dyn aviikotomTpiler ovtég Tig odhayéc. T
VoL voryKGoeTe TNV 0 heEuikol va yiver o mhfpng Alota ypnowuomomote to 1ist (dictview) . BA.
dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation of
the object.

duck-typing 'Evo 0TuA TpoypouatiopoV o dev eEETALEL TOV TUITO EVOG OVTLKELUEVOU YLOL VO TTPOCOLOPIOEL

793

av €yeL T owoTh dLemaEn” avtiBeTa, 1 1EB0DOG 1] TO YOPAKTNPLOTLKO KOAELTAL OITAMG 1) XPNOLUOTTOLELTOL

70 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Extending and Embedding Python, Anpooicuon 3.9.23

(«If it looks like a duck and quacks like a duck, it must be a duck.») Aivovtog éupaon otig demapég Ko
OYL 08 OLYKEKPLUEVOUG THTTOUG, O KUK OYESLOOUEVOG KOLKOG BeTLDVEL TNV evEMELQ TOV emLTPémovTaG
™V ohvpoppLkn vrokotdotaot. O timog duck-typing amogpelyel dokLég ypnopuomolmvTas type ()
N isinstance (). (Enueiwon, wotd00, 6TL 0 TUTOG TATLOG duck-typing umopel va. cuUTANPWOEL e
abstract base classes.) Avti avtot, cuvnOwg ypnowomotel dokiuég hasattr () 1 mpoypopuationd EAFP.

EAFP Ilwo g0xolo va Tnthoelg ouyympeon mopd adeto. Autd to Kowvd otul mpoypapuatiopoy og Python
potimo0ETeL TV VIapEN EyKupwV KAEWSUOV 1) YOPOKTNPLOTIKMOV Kot oVAapupdver eEalpéoelg edv 1
vtdeon amodeyDei ecpalpuévy). Auto to kabopd Kot Yp1Yopo GTUl YopoKTNPILETAL 0T TV TOPOVoLa
oMMV INhwoewv try kKo except. H teyvikn épyetar oe avtifeon e to otuk mov eivar LBYL Kowvo
o€ MoMEG dAleg Yhwooeg, omtwg 1) C.

éxkgppaon Eva kouudtt ouvtang mov umopet vo a&oloyn0el oe kdmowa tur). Me dhha Moy, po Ekgppaon
glvol o ovoompevon ototyelwv Ekppaong dwg kKuplodeEia, ovopata, TPOGROOT YAPAKTNPLOTIKOV,
TELEOTEG 1] KAOELG CUVOPTNOEMY TTOU OAEG ETLOTPEPOUV O TLLY. Z€ aviifeon ue molég dhheg YAmo-
ogg, Oev elval OAeg oL YAWOOLKEG dOUES EKQPPATELS. YTTAPYOUVE ETLONG statements TOV eV UTOPOVV VO
ypNopoTomBovv wg eKPPAceLs, OTTmg To while. O avaféoelg TMMV ival emiong dNAMOELG 0L eK-
ppaoeLs.

module exéktaons 'Evo module ypapuévo oe C 1) C++, o ypnotpomoteitar amd to C API tng Python yia va.
OMANAETLOPATOVY e TOV TTUPT VA KOL [LE TOV KMOLKO TOU P OTH.

f-string Ou kvpLoheKTikég oupforooelpég ypnotpomotovy e tpdlepa '£' N "F' ovoudlovior cuvnwg «f-
strings» wov eivon cuvtopoypapica tov formatted string literals. BL. extiong PEP 498.

OVTIKEIUEVO apyeiov An object exposing a file-oriented API (with methods such as read () or write ())toan
underlying resource. Depending on the way it was created, a file object can mediate access to a real on-disk file
or to another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.

2TV TPOYUOTLKOTITA VITAPYOUV TPELS KATNYOPLES VTLKELWEVWV apyelov raw dvadikd apyela, buffered
dvadikd apyelo xon apyela keyévov. O dLemapég Tovg opilovtal oty evotnta 1 o. O Kavovikdg 1pdmog
YLOL VO ONULOVPYNOETE VOl OVTLKELUEVO 0P ELOV ELVAL XPNOLUOTOLDVTOG TV CUVAPTNON open () .

OVTIKEUEVO TTOV poLalerl pe apyeio 'Evo ouvavuuo ue To file object.
finder 'Eva avtikeipevo mov mpoomadei va Bpet to loader yio éva module swov e1oMyOm.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path
entry finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

oképare dwaipeon H podnuotikn) Slaipeon wov 0tpoyyuhostoLel Tpog Ta KAtw 6Tov Kovivotepo aképato. O
teleoTthg axépanag diaipeong eivan / /. T mapdderypa, M ékgppaon 11 // 4 aEwoloyeital og 2 ot
avtifeon pe ™V Tur 2 . 75 OV ETLOTPEPETOL OTTO THV SLALPEDT] e VITOSLAOTOMY). Znueimon ot (-11)
// 4 Kbvel -3 emeldn) ot eival 1 6Tpoyyulomoinoy moog Ta kdtw Ttov -2 . 75. BL. PEP 238.

ouvaptnon Mo oelpd ad SNMDOELS TTOU EMLOTPEPOVY KAITTOLOL TLUT) OF GUTOV TTOU TV KAAEOE. Z€ OUTEG UITO-
POUV VAL TTEPAGTOVV KOVEVL 1] TTEPLOGOTEPO. OVIGUATA TTOV WTOPEL VAL PNOLLOTOINOEL YO TNV EKTELEDT).
B\. emtiong g evotnteg parameter, method, ko the function.

ouvvaptnon annotation 'Evog annotation juog Tapauétpov GuvapTnong 1 Wag TUG ETLOTPOQNG.

OL oVvOPTNOELG annotations GUY VA YPNOLOTTOLOVVTOL YO vodelEels Thmov: yia ToPdderyua, auty M
OUVAPTNON OVOUEVETAL VO TTAPEL HVO OPIOUATO 1Nt Ko ETLONG AVAUEVETOL VO £XEL WO ETLOTPEPOUEVT|
T int:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

H oVvtoEn ouvdptnong annotation avolvetar oty evotnto function.

See variable annotation and PEP 484, which describe this functionality.

7

https://www.python.org/dev/peps/pep-0498
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Extending and Embedding Python, Anpooicsuon 3.9.23

_ future__ 'Evofuture statement, from ___future__ import <feature>,KaHodNYel TOV UETAYAMTTLOT
va uetayhmttioet to Tpéyov module ypnopomoldvrag ovvtaEn 1 onuactohoyic wov Oa yiver 1 TUTTLKY
oge pehhovtiky ékdoon g Python. To module _ future_ texunpudvel Tig mbaveég TWéG Tov feature.
Me v eloaymyn authg Tg AELTOUPYLKTG LoVAdaAS Ko TV aELOAGYNOT TV UETABANTOV TNG, WITOPE(TE
vaL OeLTE TTOTE (AL VEQ dUVATOTNTA TTPOOTEONKE YL TPDTY PoPA TNV YADOooo Ko toTe Oa yiver (1) €yive)

1 TTPOETULAOYY):
>>> import __ future_
>>> _ future__ .division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

ovihoyn amoppindrev H diadikacia anehevBépmang g uvihung dtav dev xpnowwomoteiton dhho. H Python
eKTELEL GUALOYT] ATTOPPLUATOV HECH KOTAUETPNONG OVAPOPDV Kot eVOg KUKMKOU OUAAEKTY) OKOUTTL-
LV oV eiva og BE0T Vo aviyveEVEL KOl VO OTTAEL TOVG KUKAOUG avapopdc. O GuMEKTNG AmoppLudttmy
wropet vo eheyy el xpnoluomotwvtag to module ge.

generator Mua ouvapTNON TTOV EMLOTPEPEL €V generator iterator. MOLATEL LE ULaL KOVOVLKY] GUVAPTNON EKTOG
aTto TO OTL TEPLEYEL EKPPACELS yield yia THV TOPAymYY) WOG OELPAG TULMV TOU UITOPOVV VAL YP1OLUO-
ooy og Evav Bpoyxo for 1 IOV PTOPOVV VO avoKTNOOUV pia T opPAa e TV CUVAPTNON next ()
function.

ZVVHDWG AVaPEPETOL OE L0 GUVAPTNOT) generator, GAAG (WITOPEL VoL VAPEPETOL OE £VALV generator iterator
0€ UEPLKA contexts. Ze TEPLTTMOELG OTTOV TO ETMLOLWKOUEVO VOO OEV ELvaL GAPES, 1] XPNOT) TWV TAPWV
OPWV ATOPEVYEL TNV OLOAPELCL.

generator iterator 'Evo avtikeigevo mov dnuovpyeitor oo wua GuvapTnon generator.

Each yield temporarily suspends processing, remembering the location execution state (including local
variables and pending try-statements). When the generator iterator resumes, it picks up where it left off (in
contrast to functions which start fresh on every invocation).

generator £k@paot) Muo £K@paon Tou emoTpépet Evay iterator. Moldlel ue Kavoviki £Kgppaon Tov akolov-
Ositon awd e TPoTooT for mov opilel wia uetafAnty fpodyov, £vo epog KoL (oL TTPOULPETLKY TPOTAON
if. H ouvdvaouévn £Keppaon dNUoVpYEeL TLWES YL Lo OUVAPTNOT EYKAELOUOV:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

YeEVIKT] ouvaption Mo ovvaptnon mov amoteleltanl amd ToAATAEG CUVOPTHOELS TOU VAOTOLOVV TNV idia
Aettoupyia yra dLapopeTikovg Tumovg. [owa viomoinon mpémel va ypnotpomomOel katd T didprela
o KAMong kabopitetor amd Tov akyopliuo ommootols.

B\ emtiong v Kotaympnon tov single dispatch, tov decorator functools.singledispatch () ko
PEP 443.

vevikog tomog 'Evog type tov uopel va apauetporom0et” ouvnOwg uia container class, 6twg 1ist fdict.
Xpnowwosoteiton yio type hints Kow annotations.

T wepLoodtepeg Aemtouépetes, PA. generic alias types PEP 483, PEP 484, PEP 585, xou to module
typing.
GIL B\ global interpreter lock.

global interpreter lock O pnyavioudg ov ypnowpomoteitan amd tov diepunvéo CPython yuo va. dLoopatice
ot wovo éva viua extelei Python byrecode kéOe @opd. Avtd amhomotel tnv vhosoinon CPython om-
ULOUPYDVTOG TO LOVTEAD OVTLKEWEVOU (OVUTEPILAUPBAVOUEVMY KPIOLU®V EVOOUATOUEVOY TOTOV OTTMG
w.y. dict) épueco aopalég Evavl tautdypovng Tpoofaons. To kKheidwuo okdxinpov tov diepunvéa
SLEVKOAUVEL TOV dLepunvEa Vol elval TOMATADOV VIIUATOV, E1G BAPOG TOU UeYAAOV HEPOVGS TOV TTAPAAAT-
MOUoU TOV TAPEXOVV OL UNYOVES TTOMOTAMV ETTEEEPYATTDV.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally-intensive tasks such as compression or hashing. Also, the GIL is always released when
doing I/0.

72 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

Extending and Embedding Python, Anpooicuon 3.9.23

Iponyoupeveg mpoomdbereg va dnuovpyn el évag drepunvéag «eAevBepwv-vynudtwv» (AUTdg TOU KAEL-
dveL Ta Kowvoypnota dedopéva pe ol Lo AemTouepy evancOnoio) dev NTo EmTUYELG ETELON 1) OITO-
8001 VITOYMPNOE 0TV KOLVT| TTEPimT™aon evog eneEepyaoth. [liotevetal dtu 1) vépBoon outov Tou Tpo-
BAuatog amddoong Ba KAvouv oA TTLo TEPLTAOKT KoL ETOUEVIS TTILO OATAVIPT) OTNV GUVTIHPNOT).

hash-based pyc 'Eva apyeio kpugpng uvnung byfecode mov ypnoLUOTOLEL TOV KATOKEPUATIONO KoL 0L TOV
YPOVO TPOTOTTOLNONG TOV ALVTIOTOLYOU OPYELOV TTPOELEVONG YLOL VO TTPOOALOPLOEL TNV EYKUPHTITOL TOV.
BA\. pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (it needs an __eq___ () method). Hashable
objects which compare equal must have the same hash value.

H OmapEn hashable kbvel évo, aviikeipevo va umopel va ypnowpomotn0el wg khetdi AeEukot kow wg uéhog
€VOG CUVOLOU, ETTELDN AUTES OL DOUES DESOUEVV Y PNOLUOTOLOVY TUUEG KOTAKEPUATIOUOV.

Ta wepLocdTEPa amd Ta OUETAPATA EVOOUATOUEVO OVTLKELIEVA TN Python wrtopoitv vo kotakepuott-
oToVV” TO HETAfANTA KovTéLvep (0mmg oL Mioteg 1 To heEika) dev eivar” ta apeTafAnta Koviévep (Ommg
mheladeg kou ta frozesets) PITOPOUV v KOTOKEPUATLOTOVY WOVO EAV TO. OTOLYELD TOVG ELVOL KOTAKEPUOL-
Tiopéva. Ta avtikeigevo mov eival otiypdTuTa KAGoEmY Tov opilovtal amtd To XpNoTH WIopouv vo
KaTokKepUaTlotovv amd mpoemAoyr). Ola ouykpivovtal dvioa ektog amd Tov outd TOUg) Kot 1 T
KATOKEPUATLOUOU TOVG TPOEPYETOL Atd TO 1d () .

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python.

immutable 'Eva avtikeipevo ue otabepn tun. Ta apetdfinto avitkeipeva mepthaupdvovy apbuots , ovu-
Bolooelpéc Kau mherddeg. 'Eva tétolo aviikeipevo dev umopel va alldEet. ‘Eva véo avrikeipevo mpémel
va dnuovpyn el edv mpémer va amoOnkevtel wa dragopetikt| tun. IHailovv onuoaveikd pdro oe uépn
OOV Lo 0TOOEPE aTTaLTETOL, YL TOPAdELYIO WG KAEWDL 08 Evol AeELKo.

gwoayouevo path Mua Aiota 0mtd tomoOeoieg (1) kataywoioes Stadpour)s) mov wtopov va avalntnovv path
based finder ywo. vo. elooy0ovv modules. Katd v diadikaocio elooymyns, avty 1 Moto pe tomodeoieg
ouvnOmg €pyetTaL omd sys . path, ol yio to vtomokéta pmopel eniong va £pbel amd 1o yopaKTnpL-
OTLKO TOV TAKETOV YOvEQ __path__.

aoayoyn H dwodikaoio kotd Ty omoia o kdhdikag g Python ot éva module givar Stabéoun otov Kmdika,
Python evog dAhov module.

swoaywyéas Evo aviikeipevo uropel ko vo ovatntel kow vo poptdvel évo module” kau éva finder kou loader
OVTLKELUEVO.

duadpaotikog H Python éyel évav SLadpaotikd Siepunvéa 6mtov onuaiver OtL umopelg va elodyelg SNAmoeLg
KoL EKQPACELS OTNV ELOOYMYT] EVTOLDV TOU dlepunvéa, EKTEMDVTOG TG AUECO KoL ELPOVICOVTAG T
avtikeigevo. AThdg ekKLviote TV python ywpic opiouata (bavig emhéyoviog To amd To KUpLo
UEVOU TOV VITOLOYLOTH 00G). ATtotelel Evav armodoTikd Tpdmo YL va doKudote véeg 1déeg 1) va eEetdiote
LertovpyLkéc novadeg ko akéto (Buunbdeite help (x)).

interpreted H Python eival o interpreted yAdooa, o avtifeon pe o PeTayAmTTLOMEVT, oV Ko 1) dLdKpLom
WItopet va. giva Ko ol Moym g mapouoia Tou bytecode petayhmTTioTy). Autd onuoivel 0Tt ta apyeio
TPOENEVONG UTOPOUV VoL EKTENeOTOUV amtevdeiog xwpic va dnuovpyndel pntd éva exteléono apyeio
oV otV ouvvéyelo, ekteleitar. Ou interpreted YAdooeg ouviiBwg €xouvv wkpOTEPO KUKAO avamTuENG/
EVTOTILOUOU CQAMLATMV 0Tt TIG UETAYAMTILOUEVES, OV KOL TO TTPOYPAULOTE TOVG YEVLKA eKTENOVVTOL
7o apyd. Bh. emtiong inferactive.

TEPUATIOUOS AerToupyiag diepunvéa Otov Inteiton tepuationds hettovpyiog, o diepunvéag tng Python ei-
OEPYETOL O€ ULaL ELOLKT) PAoT OOV ortehevBepdveL oTadLokd Ohovg Tovg dratbépevovg Tdpove, dmtmg
LertovpyLkéc novadeg Ko TohMamhég Kpiolueg eomtepikéc douéc. Emiong mparyuatomotel apketé K-
OELG 0TO GUAAEK TN GKOVmALH V. AUTO WTOPEL VO, EVEPYOTTOLNCEL TNV EKTEAEDT KMOLKA O KATOOTPOWELG
7tov opilovron amod to PN ot 1) oe callbacks aoBevoic avramokpioelg. O KOILKOG TOV EKTEAEITAL KOTA
™ Ao TEPUATIONOV AeLTovpyiag umopet vo ouvavtioel duigpopeg eEapéoelg, kKadmg oL TOPOL 0Toug
omolovg Baoiletor evdéyetal vo unv kettovpyotv mhéov (ovviOn mapadeiyuata eivor oL AelToupykég
novadeg BBALOONKNG 1) 0 UNYAVIOUOS ELOOTOLTEMY).

73

Extending and Embedding Python, Anpooicsuon 3.9.23

O Baotkdg MOYOG TEPUATLONOU AELTOVPYiaG TOU diepunvéa eivar 6tLto __main__ module 1 ohokAnpo-
OnKe 1 eKTELEON TOV KMOOLKO TTOV ETPEYE.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types
(such as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any
classes you define with an __iter__ () method or with a _ getitem__ () method that implements
Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter () or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator's __next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further
calls to its _ next__ () method just raise StopIteration again. Iterators are required to have an
__iter__ () method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple
iteration passes. A container object (such as a 11 st) produces a fresh new iterator each time you pass it to the
iter () function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

[MepLoodtepeg mANpoopieg wmopotv va Bpedolv oto typeiter.

ovvapnon key Mia ouvdptnon khewdi 1 wo ovvaptnon ta&wvounong eivar po duvotdTnTo KA oNg mov
emMOTPEPEL IO TYU] TTOV YPNOLUOTTOLELITOL YLor ToEwvounon M dudtan. T mapdderyua, locale.
strxfrm () YPNOLWOTOLELTOL YO TNV TOPOYwYY EVOG KAEWDLOU TaELvounong wov yvwpilet g ovufa-
0€LG TOELVOUNOTG YL OUYKEKPLUEVEG TOTILKEG puOUiOELG.
‘Eva. oplOudg epyodleimv omnv Python &éyetor Paolkég ouvaptnoels yio Tov €AEYX0 TOU TPOTOU
ue Tov omoio Tt otouyeia tatvouovviar 1 opadomolovvtol. Avtd mEpéyovv min (), max (),
sorted(), list.sort (), heapg.merge (), heapg.nsmallest (), heapg. nlargest(),
KalL itertools.groupby ().

There are several ways to create a key function. For example. the st r. lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a 1ambda expression such
as lambda r: (r[0], r[2]).Also,the operator module provides three key function constructors:
attrgetter (), itemgetter (), and methodcaller (). See the Sorting HOW TO for examples of
how to create and use key functions.

opwopa keyword BA. argument.

lambda Mo avdvuun evoouotouévy cuvaptnon mov amoteleital amd Wo. LOVOSLKY) expression 1) 0molio
aEroroyeitan Otov kodeitar m ouvaptnon. H ovvtagn yio) dnuovpyia wag ovvdptnong lambda eivon
lambda [parameters]: expression

LBYL Look before you leap. Autd to oTuh Kmdikomoinong eréyyel pntd TG mpoimoEaelg mpLv mTpayuoto-
oL oeL KAMOELS 1) avolnTioels. Autd To OTul €pyETaL 0€ avtifeon e v Tpooéyyion EAFP Ko Xopo-
KTnpitetan amd v mopovoia Todlwv dnhwoewy 1 f.

Ze éva mepLailov molhamhmv vnudtov, | tpoogyyion LBYL pmopel va diakivouveloeL vo. eLoAyEL
wo ouvOfKn aydva uetal «the Looking» kol «the leaping». o tapdderyua o khdikag, 1f key in
mapping: return mappinglkey] WTOPEL VO OITOTUXEL €AV £va GANO VIO OpaLp€OEL TO key o
TO mapping PETA T dokut, OAG TPV aTd TV avolnot. Avtd to Tpdfinuo pmopet va Aubel ue
KAELDOUOTA 1) XpMoLpoToLdvTas TV tpooéyyion EAFP.

Aot A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements is O(1).

list comprehension 'Eva ovumayfg tpdmog yia vo. emeEepyaoteite OAa 1 H€POG TV OTOLYEIWY OF Ol OKO-

MovBia Kal vo emotpépete po Mota pe ta amotehéoparta. result = ['{:4#04x}'.format (x)
for x in range(256) if x % 2 == 0] dnuovpyei wo AMoto CUUBOLOCELPMY TOV TEPLEYOVV

74 Mapaptnua A'. NMwooapt

Extending and Embedding Python, Anpooicuon 3.9.23

Tuyovg dexaeEadikoig aptduovg (0x..) oto evpog amd 0 éwg 255. H wpdtoon i f eivar mpoarpetiky). Eqv
mopalewpBei, Oha To 0TOLKELQL 0TO range (256) vropfdihovtal ot emeEepyaocia.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

noykt uédodog ‘Eva drumo ovvdvopo yia. special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

meta path finder 'Evog finder mov emotpdenke pe avolnmmorn oto sys.meta_path. Ou finders ueta-
dradpoung oxetitovrat, ald drapépovy oo ta finders entry Stadpous.

B\ importlib.abc.MetaPathFinder yia tig uebddoug mov vhomolovy oL meta path finders.

nero-khaon H xhdon wog khaong. O oplopol kKhdong dnuovpyotv évo dvopo kKAGong, éva AeEikd kKhdong
Ko o Alota ootk khaoewv. H peta-khdon eivar veetbuvn yio v adKTnon autmy ToV TpLov
0pLOUATOV KoL TNV dnpovpyia g KAGong. OL eploooTePES AVILKELUEVOOTPEPELS YADOOES TPOYPO-
UOTLOUOV TTOPEXOUV WO, TPOETULAEYUEVY VIOTTOiNOoY. Autd mov KGvel Tnv Python Egywploti) eivan 6t
elval duvati n duovpyia Tpooapuoouévmy uetakhdosmv. O TepLocdTepoL xpNoTeg dev ypeLdtovol
7T0Té€ AUTO TO epyaelo, ald dTav TopaoTEL AVAYKY), AUTO TO EPYAAELD, OL UETO-KAAOELS UWITOPOUV VO
TapEXOLVV LOYVPES, Kopég AMioels. ‘Exovv ypnoupomomOel yio tnv katoypagpt) tpdofaong xapaKTnpL-
OTIKAOV, TNV TPOTONKN 00PALELOS VHUATMY, TNV TOPAKOALOVON 0N SNULOVPYIOG OVTLKELUEVOV, TV VAO-
moinon singletons, Kou TOMEG GAAES epyOOieC.

[MepLoodtepeg mANpopopieg umopovv vo fpedovv oto metaclasses.

uédodog Mia cuvdptnom mov opifeton péoa oto odua wag kKhdong. EGv kaheitar wg yapaxtnplotkd peg
TEPLTTMONG OVTNG TNG KAAONG, 1 nEB0d0G Oa AAEL OVTIKELUEVO TEPILTTWONG WG TPWTO TNG argument
(to omoio ovviBwg ovopdLetor sel £). BA. function xow nested scope.

ogpa avahvong nedodwv Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python
interpreter since the 2.3 release.

module 'Eva avtikeipevo mov ypnotuever wg opyovmtike povada tov kmdika tg Python. Ta modules €yovv
évav ympo ovoudtmv mou mepLEyeL avbaipeta avtikeipeva Python. Ta modules goptdvovior otny
Python pe tv dradikaocio importing.

Bh. emtiong package.

TeyviIkEg Tpodiaypaes module ‘Evo namespace ov mepléyel TG TANPOQopieg Tov oYeTiCoviaL pe v eL-
oayWYN OV YPNOLUOTOLOUVTOL VIO THY OpTtwon €vog module. Mo mepisttwon tov importlib.
machinery.ModuleSpec.

MRO Bh. method resolution order.

mutable To supetdfinta avrkeipeva wropotv va aldEouv Tig Tiég ald va kpatnoouv to id (). BA.
emiong immutable.

named tuple O 6pog «named tuple» epapudletar Yo, 0moLovdNToTE TUTTO 1 KAAOT oV KAnpovoueitat amd
TNV TAELADO. KOL TV OTTOLMY TO. OTOLXEL WITOPOVY VA EVPETNPLOTOLNOOVV Eival TPOGBATLUOL Y PNOLLO-
TOLDOVTOG EXMVUUO XAPOKTNPLOTIKA. O TOT0og 1 1) KAGON umopel va €xeL Kow AR YOPOKTIPLOTLKA.

Tol\oi evomuortouévol timol eivor named tuples, CUUTEPIAAUPBAVOUEVDV TWV TLUMDV TTOV ETMLOTPEPOVTOL
anmd time.localtime () kouos.stat (). Eva d\o mopdderyuo eivor 1o sys. float_info:

>>> sys.float_info[l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

75

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Extending and Embedding Python, Anpooicsuon 3.9.23

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be
written by hand or it can be created with the factory function collections.namedtuple (). The latter
technique also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace To pépog dmov arodnkevetan o petofAn. To namespaces VAOTOLOUVTAL WG AeELKA. YTdpyovv
0L TOTTLKOL, 0L KatBoMKOL KO 0L evowuaTwuévol namespaces Kabmg Kot oL EVOETOL namespaces 0€ AVTIKEL-
ueva (oe pebddovg). o Tapaderypa oL ouvapToelgbuiltins . open Kol 0s . open () dlokpivoviol
aTto TOUG YWPOVG OVOUdT™V Tovs. O xmwpot ovoudtwv fondolv exiong tnv avayvooludTnTa Kot T ov-
vTpnoLpoT T KobLotdviog oapés toto module vhormotel wa Aettovpyia. o mopdderyua, ypdgoviag
random.seed () | itertools.islice () KaBLoTd cOPEG OTL QUTEG OL CUVAPTIOELS VAOTTOLOVVTOL
artd Ta module random kow itertools, aviioTtolya.

mokéro namespace A PEP 420 package which serves only as a container for subpackages. Namespace packages
may have no physical representation, and specifically are not like a regular package because they have no
__init__ .pyfile.

B emiong module.

nested scope H duvatdtnta avagpopds oe (o petafAnty o évav meptkhelopevo optopod. I'a apdderypa wo
oVVApPTNOT OV OpITeTaL HECO OE e GAA GUVAPTNOY UITOPEL VO avapEPETaL 08 UETABANTEG OTNV EEW-
TEPLKT] CUVAPTNON. ZNUeELmoTe OTL to évOeTa medio amd mTPOoETLOYH AELTOUPYOUV UOVO Yo Avapopd
Ko Oy yro ekyopnon. Ot tormukég petafAntég dtafaloviol Kol Ypapoviol 0To ECWTEPLKO Tedl0 Epap-
noyns. Opoiwg, ou kaBolkéc uetafintég drofdtouv Kot ypdpouv otov KaBolkod ympo ovopdtwy. To
nonlocal emutpémel TNV eYYPaP 08 eEwTEPLKA TTEdIAL.

KkAGon véov otuh Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

ovukeipevo Omoladnmote dedouéva e KoTaoToon (YopaKTNPLOTKA 1) TLUY) Kot KafopLopévn oupsepLpopd.
(uéBodor). Emiong, N telkn footkn) kKhAom ommolaodfote new-style class.

moaxkéto A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module with an __path___ attribute.

BA. emtiong regular package xow namespace package.

TUPAUETPOS Mia EyKupn ovioTita ot évav oploud function (| pé6odog) mov kabopilel éva argument () og
OPLOUEVEG TTEPLITTOOELS, OPLOUATO) TTOV Utopel vo. dey el 1 ouvaptnon. Yrdpyouvv mévie €idn mapous-
TPWV:

o AéEn-kAeldi 1) Oon: kKabopilel éva OpLopa Tov Witopet vo petafipaotel eite Oéoews | wg dpLou

AéEnG-kAetdtov. Avtd eival To TPOETUAEYUEVO EIOOG TAPAUETPOV, VIOl TAPAdELYUA foo KoL bar oTa.
axohovba:

def func (foo, bar=None):

o Oéoewe udvo: kabopilel éva dpLopa mov uropel va mapéyeton pdvo amd m Béon. Ou Tapduetpol
1Ovo B£0MG WITOPOVV VA 0PLOTOUV CUUITTEPLMAUSAVOVTOG EVOLV Y UPAKTNPO / 0T AMOTA TAPAUETPWV
TOU OPLOLOY CVVAPTNONG UETA 0Ttd aUTEC, Yo Tapdderyua posonlyl kon posonly2 oto eENg:

def func(posonlyl, posonly2, /, positional_or_keyword) :

o AéEng-kAeldi udvo: kabopilel éva dplopa Tov Wrtopel vo mapéyetor wovo ue MEN khewdi. Ou ma-
pauetpot povo yro MEEN-KAedl Wtopotv va 0pLoTolV oVUITEPILAUBAVOVTAS UL TAPAUETPO OF-
ong 1 ok€To * 0TI MOTA TAPAUETPWY TOU OPLOUOY GUVAPTNONG TIPLY OITO QUTEG, VLA TTOPASELY L
kw_onlyl xou kw_only2 ota. axdhova:

def func(arg, *, kw_onlyl, kw_only2):

o uetafAnti Oéong: ko0opilel OTL umopel va mapaoyedei wa avbaipetn akohouvbio optopdtwv OEong
(emumhéov TV oplopdtov Béong ov eivar 1N amodektd omd dhheg Tapouétpovs). Mia tétola

76 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0420

Extending and Embedding Python, Anpooicuon 3.9.23

TOPAUETPOS WTOPEL VO OPLOTEL TPOCAPTDVTAG TO OVOUQL TNG TTAPAUETPOV UE *, YLO. TTOPAELY UL
args oto. akoOhovbo:

def func(*args, **kwargs):

o uetafinth AéEn-kAeldi: kabopilel OTL umopovv vo mapéyovtar cvbaipeto ToAG opiopata AEENG-
KAewdLov (emuthéov Twv opropdtwv MENG KAEWdL0U Tov givan 0rmodektd 0td dleg mapauétpovg).
Mo tétole TOPAUETPOS UTOPEL VO OPLOTEL TPOCUPTMVTAS TO OVOUDL TNG TOPAUETPOV UE * *, YLl
TOPAdeLYno. kwargs Omme ToPATAV®.

O opdpeTpol wropotv va Kabopicouvy TO00 Ta TPOALPETLKA OGO KL T OITOLTOVUEVO OPIOUOTO. , KO-
0MG Ko TPOETUAEYUEVES TUIEG VLA OPLOUEVA TTPOOLPETLKG OPLOUALTAL.

BA. exiong v argument Kotaymplon gupetnpiov, Ty epdtnon FAQ oyetkd pe 1 dtogpopd petaso
OPLOUATOV KO TAPOUETPWY, TV KMAON inspect . Parameter, tnv evotnta function koaw PEP 362.

path entry Muo pepovouévn tomobeoio oto import path Ty omoio cupufovieveton o path based finder yio. vo.
Bper modules yio eLoorywy.

path entry finder 'Evog finder mov emotpépetar amd évav Kahouevo 0to sys.path_hooks (dnhadn éva
path entry hook) mov Eépel mwg va evtomiCel modules pe path entry.

Bl importlib.abc.PathEntryFinder yua tig uefoddovg mov o entry finder duadpoung vhomorei.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder 'Eva amé ta mpoemheyuéva meta path finders mov ovalntd évo. import path ywo. modules.

path-like avrikeipevo 'Evo avtikeipevo mov aviurpoonmevel évo path cuvothuatog apyeiov. ‘Eva avikei-
uevo path eivar eite éva avtikeipevo str 1 bytes mov avimpoonmevel éva path 1 éva aviikeipuevo
7tov vhorotel 1o TPwTdKoro os.PathLike. Eva aviikeinevo mov vootnpilel 10 TpwTOKOMAO oS .
PathLike umopel vo uetatpamel o path ovotiuatog apyeimv str 1 bytes Kahdviog v cuvap-
™on os. fspath () ”ta os.fsdecode () KoL os. f£sencode () wropovv va ypnotomondovv yio
™V eyyinon evog amotehéouatog str 1 bytes, avriotovya. Ewonyn amd tov PEP 519.

PEP IIp6toomn Beltimong Python. 'Eva PEP givou éva €yypago oyedloonol mov mapéyel IANpoqopieg otny
Kowvotnta Python 1) mepuypdgper wa véa duvatdtnta yio v Python 1 tig dradikacieg 1 to mepiBh-
Lov . To PEP Bo mpémel va mop€youy (o GUVOTTTLKT) TEYVLKT TPOodLOrypapr] Kot (o AOYLKY YLt T
TPOTELVOUEVOL Y OLPOKTNPLOTLKAL.

Ta PEP mtpoopiCovror va givar oL KUpLot unyaviouol yior v pdtaot CuovILK®V VEmV XopoKTPL-
OTIKAV, L0 T1] OVAMLOYT] TANPOQOPLAV TNG KOLVOTITAG Yo Vo TNTNUOL KO YLoL TNV TEKUNPLDOT TWV
ATOPATEMV OYEDLOOUOV TTOV €YoV eloay el otnv Python. O ouyypagéag tov PEP gival vteubuvog yio
TV 0LKodOUN 0N CUVaLvETNS eVTOg THG KOLVOTNTOG KOL TNV TEKUNPLDON AVTIOET™V aOPewV.

BL. PEP 1.

tuiquoe. ‘Eva ouvolo amd apyeio oe évav udvo kotdhoyo (evdeyouévmg amodnkevuévo oe apyeio zip) mov
ouupdriovy og éva namespace Takéto, dmmg opiteton oto PEP 420.

opwopa 0¢ong BA. argument.

provisional API 'Eva provisional API givow owtd mou éxer eokepuévo eEarpedei amd tig backwards eyyunoelg
oupfotdTNTag TG TUTTLKNG PBAMOOKNG. AV Ko dev avauévovtor ONuovTkég odayég o Tétoleg die-
TTOPES, EPOOOV ETLONUALVOVTAL WG TPOOWPLVES, alharyég un backwards cupufatotnrog (Léypt Ko Kotdp-
YNON NG DLETAPNS) WITOPEL VO TPOKMPOVV €V KPLOEL ammopaitTo amd Toug Baotkovg TPoyPoLULATL-
otéc. Tétoleg ohhayég dev Ba yivouv dokoma — O ouufouv uovo edv amokaivgphotv cofapd Bepehimon
ehatTdpaTo IOV Topaleipdnkay pv axd) cuumepiinyn tov APL

Axoun xow yia provisional API, ov un backwards ovufatég arhayéc Bewpovvrar «hdom €oyotng
avaykne»- 0a eEakorovdel va yivetar kdbe mpoondBeia yio va Bpebei wa Mon backwards ovufoti
0€ TUYOV EVIOTLOUEVO. TTPOBANUOTOL.

Avth 1 dradikaoio emitpémer oty Tk BLPAoONKN va ouveyioel vo eEehooeToL tEe THY TAPOSO TOU
YPOVOU, YWPIG VO KAELDWVEL TPOPANUATIKG OpAALOTA OYESLATUOV VL0 EKTETOUEVES YPOVIKES TEPLODOUG,.

77

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420

Extending and Embedding Python, Anpooicsuon 3.9.23

B\ PEP 411 yia teploodtepeg AeTTOUEPELEC.
provisional wokéro BA\. provisional API.

Python 3000 Weudmvupo yia to ovvolo ekdocewv Python 3.x (emvonOnke mpLy amtd mold Kopd dtav 1) Ku-
Khogopia tng €kdoong 3 NTay KATL 0TO UOKPLVO UEAAOV.) AUTO OVOUALETOL ETTLONG G CUVTOUOYPLPLAL
«Py3k».

Pythonic Mua 16¢a 1} éva Koupdtt Kddiko wov akolovdel motd ta o Kowvd iddpata thg Yhwooag Python,
oVvTi VoL VLOTTOLEL KADOLKOL Y PN OLUOTOLDVTOG EVVOLES KOLVEG 08 (AAES YAwooES. TLa TapddeLyua, Evo Kowvo
wimuo otnv Python eivar va kéver wo emavédinym ctave amd oha ta otouyeio £vog iterable ypnoiuo-
mowwvtag o dMiwon for. TTodég dhheg YADOOES TOV HEV £YOUV QVTOV TOV TUTO KOTAOKEVNG, £TOL OL
avBpmwrtol wov dev eival eSotkewmwpévor pe v Python ypnoypomoloty pepikég popéc Evav aplbuntikod
ueTpnT:

for i in range(len(food)):
print (food[i])

Avtifeta, o o Kabopr nébodog Pythonic:

for piece in food:
print (piece)

avayvoplopevo ovoua ‘Eva dvoua pe Koukkideg mou deiyvel T «dradpourp» amtd 1o kKa0ohkd glpog evdg
module oe pwa KAAom, ouvaptnon 1 uéBodo mov opiletar o avthv TV evdtnTa, Otwg opileTar 0To
PEP 3155. T ouvoptioeLg Ko KAAGELG OVATATOV ETLITESOV, TO OVOYVWPLOUEVO Ovoua ival idLo pe To
OVOULOL TOV AVTLKELUEVOU:

>>> class C:
class D:
def meth (self):
pass

>>> C.__ _gqualname_

ICY

>>> C.D.__qgualname_
'C.D'

>>> C.D.meth. gualname
'C.D.meth'’

‘Otav ypnolpomoleiton yio ovapopa oe modules , To TAOWS avayvwELGUEVO dvoua GNUOLVEL OLOKANPO
To drakekoupuévo path pog to module, GuuTEPIAAUPBAVOUEVWV TUXOV YOVIKMV TOKETWV TT.). email.
mime.text:

>>> import email.mime.text
>>> email.mime.text. name
'email.mime.text'

M 00g avapopac The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sy s module defines a get refcount () function that programmers can call to return
the reference count for a particular object.

Kovoviko mok€ro ‘Eva mopadoolakd package, dnwg £vag Katdhoyog mou mepiéyel évo __init__ .py op-
Yelo.
BA\. exiong namespace package.

__slots__ Muia dMhwon péoa og o KhAo1 Tov EE0LKOVOUEL LviuT SNADVOVTOG €K TV TPOTEPWYV XMDPO YLO.
ToPAdeLyua YopakTNPLoTikG Kot eEaleipovrog AeEtkd otywotimmy. Av Kot dNUOQIMG, 1 TEXVIKT

glval KAmmg dVOKOLO va YiveL 0mOTH KoL TPoopIleTal KAAUTEPX YLOL OTTAVLEG TTEPLITTMOELG OTTOV VITAPYEL
ueydhog apLiudg OTLYUOTUTTWVY OF 0L EQAPUOYT] KPLoLUNG-UVAUNG.

78 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Extending and Embedding Python, Anpooicuon 3.9.23

okolovlio. An iterable which supports efficient element access using integer indices via the __getitem__ ()
special method and defines a ___len__ () method that returns the length of the sequence. Some built-in
sequence types are 1ist, str, tuple, and bytes. Note that dict also supports __getitem__ () and
__len__ (),butis considered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes

beyond just __getitem__ () and __len__ (), adding count (), index (), contains__ (),
and _ reversed__ (). Types that implement this expanded interface can be registered explicitly using
register ().

set comprehension 'Evog cupmayng tpomog yio va eneEepyooteite OMa M uépog Twv otoryeimv oe éva iterable
KO VO ETILOTPAPEL £Vl GUVOLO UE TOL autoTeEAéouoTa. results = {c for c in 'abracadabra'
if ¢ not in 'abc'} dnuwovpyei To ouvolo cuuforoospwy {'r', 'd'}. BL. comprehensions.

novaduko dispatch Mo pop@ny dispatch generic function 6tov 1 VAOTOINOY eAEYETOL e BAOT TOV TUTTO £VOG
UEUOVOUEVOV OPLOLLOTOG.

slice 'Eva avtikeigevo mov ovviBmg mepiéyel Eva tufiua wog akolovdiog sequence. Anpovpyeitan éva slice
YPNOLUOTTOLMVTAG T onueimaon subscript, [] pe dvo kot KGtw teleieg ueto€l aplbudv d6tav divovia
toAhoi, Omwg 0to variable_name[1:3:5]. H onueiwon aykiing (subscript) xpnOLUOTOLEL EGWTE-
pLKd aviikelpeva slice.

181k uéBodog Mua uébodog ov kaheitar olwnpd atd v Python yia vo ekteAéoet uo ouyKeKpLuev het-
Tovpyia ot évay timo, 6TTwg 1 TPooO K. Tétoleg uébodol xovve ovopata oV EEKLVOUV KoL TELELHVOUY
ue dumhég kdtm mavhes. O eldLkég néBodoL TEKUNPLDVOVTOL 0TO specialnames.

dAwon Mo mpdtoon eivol pépog wag covitag (éva «umhok» Kdduka). Mia tpdtaon eivar eite évog
expression gite uo ad ToAEg douég ue wa MEEN-KAewdi dnwg 1 £, while n) for.

Kwdukoroinon kewnévov Mia ovpuforooelpd otnv Python givar pa akohoubio onueiwv kddika Unicode (oto
eVpog U+0000-U+10FFFF). ['ia vo auroOnkevoeTe 1) v PETAPEPETE o OUUPBOLOCELPA, TTPETEL VOL OEL-
promonOei wg dvadiki) akolovdia.

H ogipromoinon wag ouuorooelpds oe pa dSuadLkt) akorovdia elvol yvmot wg «KwdLKomoinon» , Ko
N avadnuovpyia g ovuforooelpdg amd v dvadikr] akolovbia elval yvmoTi wg «aUmokmOLKoTol-

non.

Yrdpyet po wotkihion SLopopETIKNG OELPLOTOINONG KELEVOL codecs, oL 0TToioL CUAAOYIKA avapépovTaL
WG «KMOLKOTOLNOELG KEWUEVOU».

opyeio kewévov 'Bva file object tkavo va. SLoPATEL KoL v, YPApEL ovTLKeiueva st r. Zuyvd, éva apyeto Keyué-
VOU OTTOKTA TPAYUATIKA TPOoRaon o o por] dvadiki) por) dedouévmv Ko yelpileTol auTOUoTe THY
text encoding. TIopadelylorta apyeimv KEWEVOL eival apyeio Tov avoiyouv og hettovpyio kepévou (' r'
N 'w'), sys.stdin, sys.stdout, Kol 0TLYWOTUITO TOV 10.StringIO.

Bh. emiong binary file yio évor OVILKEILEVO OPYELOV [LE dUVATOTITA AVAYVWONG KaL eYYPAPNG dvadikd
avukeiueva.

oupforocelpd TPUTA®Y eloaymYIKOV Muio oUUBOAOCELPE TTOU SeOUEVETOL OTTO TPELG TIEPLTTWOELG EiTE EVOG
eLooywytkov (») N wag amootpdpov (). Av Kou dev Tapéyouv Kouio AeLTovpytkoOTnTo Tov dev eivol
duabéaun pe ouufohooELPEG PE LOVA ELOOYMYLKE, elval xpfoLues Yo dtagpdpoug Adyous. Zag emTpé-
TTOUV VO CUIITTEPLLAPETE LOVA KO DLTTAG ELOAYDYLKA Y WPLG dLopuYY O (o OVIBOLOCELPA Kol UTTOPOVY
VoL EKTELVOVTOL OF TTOMEG YPOUUES Y WPLG T1) X P01 TOU XULPOKTHPO CUVEYELX, KAOLOTOVTAGS TO LOLaiTEPQL
yPHoWO KaTd T GUVTOEN eyYpApoV te oupforooelpés.

tomog The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its ___class___ attribute or can be retrieved with type (ob7) .

type alias 'Eva cuvovuuo yio évay timo, mov dnuovpyeital (e tv avabeor) Timov 0g Vo ovoyvoPLOTLKO.

Ta type aliases gival ypnowua yio v amhomoinon rype alias. Tio wapaderypao:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplel[int, int, int]]:
pass

79

Extending and Embedding Python, Anpooicsuon 3.9.23

WITOPEL VoL YivEL TTL0 evavayvwoTto dmwg:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:
pass

B\ typing kouw PEP 484, mov meprypdepel authv Tnv hettovpytkdtnta.

type hint 'Evag annotation mov KaHopilel TOV avoueVOUEVO TUTTO VLol (o UETOPANTY], EVOL YUPAKTNPLOTIKO
KAGONG) Wt TTAPAUETPO OVVAPTNOTG 1) TLUT) ETLOTPOPTG.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid
IDEs with code completion and refactoring.

YrodeiEeig tomov (type hints) yia kabBolkég petaPinTés, xapoaKTHPLOTIKE KAAONG KoL ouvapTh-
oelg , OMG Oyl ToTké ueTafANTég, UmopovV VA TPOOTEAACTOUV YPNOLUOTOLMVTAG TO typing.
get_type_hints ().

B\ typing ko PEP 484, mov meprypdepel outhv Tnv hettovpytkdtnto.

kobohxés véeg ypaupés Eva tpdmog epunveilag podv Keluévou otov omoio Oha ta akdlovba avayvwpilo-
vtar g MEelg wag ypopung: 1 ovufaon téhovg ypouug tov Unix '\n', 1 ovupaon twv Windows
"\r\n', ko v moid ovppaon Macintosh '\r'. BL. PEP 278 xauw PEP 3116, kabng ko bytes.
splitlines () yw mpooOetn xpnon.

annotation pevapiyeig ‘Evag annotation o, petaAng 1 evog xopaktnpLlotko KAGoNG.

‘Otov annotating puo HeTaBANTY 1 va xopakTnpLotikod kKAdong, 1 avabeon eivol TpoatpeTikn:

class C:
field: 'annotation'

Ta annotations HETAPANTOV X PNOLULOTOLOVVTAL CUVIOWGS YLaL fype hints: Y10 ToPAdeLyuo outh N LeTaFAnTy
avapéveral va MfeL Tiég int:

count: int = 0

H o¥vta&n annotation petafinTig mepryppetal oty evOTITa. annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality.

virtual environment 'Evo cuvepyotikd ommopovopuévo meptBdllov xpovou eKTELEDTG TOU EMLTPETEL OTOVG
YPNOTES KOl TG €puproYég T Python va eykatootioouv Kat va avafaduicovv mokéto diovoung
Python ywpig va mapeufaivouy oty ovumepipopd ddhwv epapuoymv Python ov ekteloVvtat 0Tto (610
ovoTNUO.

B emiong venv.

virtual machine 'Evog vmoloyiotig opiletal €€ ohokAfipou astd to hoyiowkd. H eucovikr| unyovn tg Python
extelel To bytecode mov ekméuTETAL ATTO TOV PUETAYAWTTLOTY bytecode.

Zen tc Python Koatdhoyog oyedlaotikdv apydv KoL (LLOCOQLOV TTOV ELval YPHOLUES YO TNV KATOVONOT
Kaw ™) yphHon g YAwooac. O Katdhoyog umopel va Bpedel TNKTporoymvTag «import this» oty
SLAdPAOTLKY) KOVOOLQ.

80 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

nAPAPTHMA B’

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

H avamtuEn tov eyypdewv kol Tov epyaleimv Toug eivat e€” ohokApou eBehovtiki] TtpoomtddeLa., dwg Kat
1 idua 1 Python. Edv 0éhete va ouvelopépete, piEte wa potid oty oelido reporting-bugs yio Anpogopieg
OYETIKEG e TO TG VO, To Kdvete. Kawvouprol eBehoviég eivan mavta evmpdodektol!

[ToAAég vy OpLOTiES TTNYALVOUY OTOVG:
« Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
« the Docutils project for creating reStructuredText and the Docutils suite;

o Fredrik Lundh yia to 61k6 Ttou Alternative Python Reference mpdtlext amd 1o omoio to Sphinx mpe ol
KoAég LOgec.

B'.1 Contributors to the Python Documentation

IMoAhol GvBpwmoL éxovv ouvelopéper otn yAwooo Python, tnv Bupiobnkn g Python, kol to €yypago tg
Python. Aeite Misc/ACKS otig mtnyég dravoung g Python yia wo Aoto tov ouvieheotav.

Movo e T ouUBoAT| KoL TIG CUVELOQOPEG THG KoLvotntag tg Python, 1 Python €yeL tétola vépoya éyypapa
- Zag evyopLotovpe!

81

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docutils.sourceforge.net/
https://github.com/python/cpython/tree/3.9/Misc/ACKS

Extending and Embedding Python, Anpooicsuon 3.9.23

82

Mapaptnua B’. About these documents

4
NAPAPTHMA [

lotopla kat Adela

.1 Hotopia Tou AoyLoHLKOU

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
/Iwww.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

‘Ekdoon Mpoepxduevn ard | ‘Etoq Idloktnoia | GPL compatible?
0.9.0éwg 1.2 | 8/v 1991-1995 CWI vau
13¢éwg1.52 | 1.2 1995-1999 CNRI VoL
1.6 1.5.2 2000 CNRI oyl
2.0 1.6 2000 BeOpen.com | OyL
1.6.1 1.6 2001 CNRI oyl
2.1 2.0+1.6.1 2001 PSF oYL
2.0.1 2.0+1.6.1 2001 PSF va
2.1.1 2.142.0.1 2001 PSF VoL
2.1.2 2.1.1 2002 PSF VoL
2.1.3 2.1.2 2002 PSF VoL
2.2 kou whvo | 2.1.1 2001-ofuepo. | PSF VoL

Enueiwon: GPL-compatible doesn’t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

83

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Extending and Embedding Python, Anpooicsuon 3.9.23

Xapm, otovg morhoVg eEmTepLkolg e0ehovteg Tov epydotnKav Katm amd Tig 0dnyieg Tov Guido, avtég ot
eKOO0ELS EYLVALY EPLKTEC.

.2 Opol kaL nipoumoBbEoeLg yLa TNV npéopacn n} TNV XPrion tTng
Python pe aAAoug tpomnoug

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Kdémolo Aoyioukd mou givan evowuatmuévo otny Python eivoar vd dragpopetikég adeteg ypnons. OL adeteg
ToPOTOEVTAL (LE KMOLKO TOV EUTTLTTTEL 08 AUTHV TNV Gdeia. Agite Adeies ko Evyapioties yio Evewuatwuévo
Aoyioukd yuow puoL EAMTTN MOTa AUTOV TV 0dELmV.

M.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.9.23

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.9.23 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF._
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.9.23 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All_
—Rights

Reserved" are retained in Python 3.9.23 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.9.23 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.9.23.

4. PSF is making Python 3.9.23 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY..
—OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY..
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.9.23 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

84 Mapaptnua I'. lotopia kat Adsla

Extending and Embedding Python, Anpooicuon 3.9.23

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.9.23

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A._
—~RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.9.23, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

trademark sense to endorse or promote products or services of Licensee, .
—O0r any

third party.

8. By copying, installing or otherwise using Python 3.9.23, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

r2.2 XYMo®QNIA AAEIAZ BEOPEN.COM I'lA PYTHON 2.0

ZYM®ONIA AAEIAZ ANOIXTOY KQAIKA BEOPEN PYTHON EKAOZH 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a

(ouvéyela otV TOUEVN OEMD)

M.2. Opol kal poiinmoBeoeLg yia Tnv npoocpaon 1 tnv Xprion tng Python pe aAAoug tponod§

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

r.2.3 ZYM®QNIA AAEIAZ CNRI I'lA PYTHON 1.6.1

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013."

In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in

(ouvEyEeLa TNV ETTOUEVT) GENDQ)

86

Mapaptnua I'. lotopia kat Adsla

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

r.2.4 XYMOQNIA AAEIAZ CWIT'IA PYTHON 0.9.0 EQx 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

M.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23
DOCUMENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

M.2. Opol kai poiinmoBeoeLqg yia tTnv npoopaon 1 tnv Xprion tng Python pe aAAouqg tponodd

Extending and Embedding Python, Anpooicsuon 3.9.23

.3 Adeleq katL Euxaplotieg yia Evoopatwpévo AOYLOULKO

Avti M evotita givor o nutelic, odd avEavouevn Moto adewmv KoL EVapLoTImV Yo, AOYLOWKO Tpitmv,
IOV EVOOUOTOVETOL 0TV dtavour| g Python.

M.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/
MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

88 Mapaptnua I'. lotopia kat Adsla

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Extending and Embedding Python, Anpooicuon 3.9.23

M.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate

source files from the WIDE Project, http://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " 'AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3.3 Aouyxpoveg socket unnpeoieq

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

r.3. Adeleq kat Euxaplotieg yia Evowpatwpgvo AOyLOHLKO

89

http://www.wide.ad.jp/

Extending and Embedding Python, Anpooicsuon 3.9.23

M.3.4 Awaxeipion Cookie

H evomto http.cookies mepléyel TV mopaKdT® E100TOINON:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

M.3.5 Avixveuon eKTéAeong

H evomto t race mepiéyel v TapokdTm eL00TOiN0:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

90 Mapaptnua I'. lotopia kat Adsla

Extending and Embedding Python, Anpooicuon 3.9.23

M.3.6 Zuvaptnioelg UUencode kat UUdecode

H evomto uu mepLéyet v mopakdtm domoinon:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

M.3.7 KAjoelg Anopakpuopevng Awadikaciag XML

H evomto xmlrpc. client mepiéyel v mopakdtw e1d0moinon:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

r.3. Adeleq kat Euxaplotieg yia Evowpatwpgvo AOyLOHLKO 91

Extending and Embedding Python, Anpooicsuon 3.9.23

".3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

M.3.9 EmAoyn kqueue

H evomta select mepiéyel tv mapokdtm ewdomoinon yio v kqueue diemagpi):

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

92 Mapaptnua I'. lotopia kat Adsla

Extending and Embedding Python, Anpooicuon 3.9.23

r".3.10 SipHash24

To apyelo Python/pyhash.c mepiéyxer v vhomoinon tov Marek Majkowski tov olyopiBuov tov Dan
Bernstein, SipHash24. Autd mepléyel v mapakdatm onueinon:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

M.3.11 strtod kau dtoa

The file Python/dtoa. ¢, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from http://www.netlib.org/fp/.
The original file, as retrieved on March 16, 2009, contains the following copyright and licensing notice:

/******************‘k*****************‘k***************************

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

*

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
*

WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

r.3. Adeleq kat Euxaplotieg yia Evowpatwpgvo AOyLOHLKO 93

http://www.netlib.org/fp/

Extending and Embedding Python, Anpooicsuon 3.9.23

r.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corelopenssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

EE R R e . N S N S S SN SRS S S T SIS S SN S N S N S S S e R N S N S N S T S T R

(ouvéyela otV eV oehida)

94 Mapaptnua I'. lotopia kat Adsla

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

% ok X ok X % X %

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

L T T T I S S S S N S S S S S S N S N S N N S S T S e . N S N S S S S S S S S S S S

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eaylcryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(ouvéyela 0TV emOpEVY 0edL)

r.3. Adeleq kat Euxaplotieg yia Evowpatwpgvo AOyLOHLKO 95

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

* QUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
".3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured ——with-
system—expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

r.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured ——with-
system—-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘'Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

(ouvéyela 0TV TOUEVY 0EMD)

96 Mapaptnua I'. lotopia kat Adsla

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

r.3.15 zlib

H eméxtaon z1ib dnuovpyeital Yp1oLUoTOLmVTAS VO CUUTEPIAAUBAVOUEVOL avTiypapo Tmv Tnydv zlib,
eqv 1 £xdoom Tov zlib tov BpiokeTol 0To GVOTNUO ELVOL TTOA) TTOME YLOL VAL X PN OLULOTTOLNOEL YL TNV KATOOKEVT):

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

M.3.16 cfuhash

H vhomoinon tov mivaKa KoTaKepUATIONOU OV xpnotiomoteital amd 10 tracemalloc Baociletol oto €pyo
cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its

(ouvéyela 0TV TOUEVY 0EMD)

r.3. Adeleq kat Euxaplotieg yia Evowpatwpgvo AOyLOHLKO 97

Extending and Embedding Python, Anpooicsuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

M.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured ——
with-system-libmpdec

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3.18 W3C C14N ocouita SoKLHuNiQ

H oovita doxiurig C14N 2.0 oto mwokéto test (Lib/test/xmltestdata/cl14n-20/) avaktiOnke amd
tov totdtomo tov W3C https://www.w3.org/TR/xml-c14n2-testcases/ Kau dravépetar pue v ddewa 3 phtpov
BSD:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

(ouvéyela 0TV nOUEVY 0EMDL)

98 Mapaptnua I'. lotopia kat Adsla

https://www.w3.org/TR/xml-c14n2-testcases/

Extending and Embedding Python, Anpooicuon 3.9.23

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

r.3. Adeleq kat Euxaplotieg yia Evowpatwpgvo AOyLOHLKO

99

Extending and Embedding Python, Anpooicsuon 3.9.23

100 Mapaptnua I'. lotopia kat Adsla

nAPAPTHMA £\’

Copyright

H Python ko vt 1) Tekunpiwon eivod:

Copyright © 2001-2023 Python Software Foundation. ‘Ol To. StkodUoTo SLOTPOUVTAL.

Copyright © 2000 BeOpen.com. OLa T SUKOLMOUOTA SLATNPOVVTOL.

Copyright © 1995-2000 Corporation for National Research Initiatives. Olo. To. StKaLOUATO SLATNPOVVTAL.

Copyright © 1991-1995 Stichting Mathematisch Centrum. ‘Ola Tal SLKOLOUOTA SLATPOVVTOL.

AvatpéEte 010 lotopla kar Adea Yo TPNG TANPOQOPNON OYETIKE te TNV AdeLa YpNoNG Ko Tig eE0V010d0-
THOELS.

101

Extending and Embedding Python, Anpooicsuon 3.9.23

102 Mapaptnua A'. Copyright

Eupetriplo

MN-aAQAPLTIKA
..., 67
2to3, 67
>>> 67
BDFL, 68
CPython, 70
C-contiguous, 69
EAFP, 71
Fortran contiguous, 69
GIL,72
IDLE, 73
LBYL, 74
MRO, 75
PEP, 77
PYTHONPATH, 55
Philbrick, Geoff, 15
PyArg_ParseTuple (), I3
PyArg_ParseTupleAndKeywords (), 15
PyErr_Fetch (), 48
PyErr_Restore (), 48
PyInit_modulename (ovvdptnon C), 55
PyObject_CallObject (), 12
Python 3000, 78
Python Enhancement Proposals
PEP 1,77
PEP 238,71
PEP 278,80
PEP 302,71,75
PEP 343,69
PEP 362,68,77
PEP 411,78
PEP 420,71,76,77
PEP 442,49
PEP 443,72
PEP 451,71
PEP 483,72
PEP 484,67,71,72,80
PEP 489,11, 56
PEP 492,68, 70
PEP 498,71
PEP 519,77
PEP 525,68
PEP 526,67, 80

PEP 585,72

PEP 3116,80

PEP 3155,78
Pythonic, 78
READONLY, 51
READ_RESTRICTED, 51
RESTRICTED, 51
WRITE_RESTRICTED, 51
Zen tnc Python, 80
_ future_ ,72
__slots_ ,78
annotation, 67
annotation petafAntnig, 80
awaitable, 68
bytecode, 69
bytes-like avtikeipeva, 69
callback, 69
coercion, 69
context petalAntn, 69
contiguous, 69
coroutine, 70
coroutine ouvdptnon, 70
deallocation, object,48
decorator, 70
descriptor, 70
docstring, 70
duck-typing, 70
f-string, 71
finalization, of objects,48
finder, 71
generator, 72
generator expression,72
generator iterator, 72
generator éxyppaon, 72
global interpreter lock,72
hash-based pyc, 73
hashable, 73
immutable, 73
interpreted, 73
iterable, 74
iterator, 74
lambda, 74
list comprehension, 74
loader, 75

103

Extending and Embedding Python, Anpooicsuon 3.9.23

magic

method, 75
mapping, 75
meta path finder,75
method

magic, 75

special, 79
module, 75
module enéxtaong, 71
mutable, 75
named tuple, 75
namespace, 76
nested scope, 76
object

deallocation, 48

finalization,48
path based finder,77
path entry,77
path entry finder, 77
path entry hook, 77
path-like avtikeilpevo, 77
provisional API,77
provisional mnaxéTo, 78
repr

evowpatwpévn ouvdptnon, 49
set comprehension, 79
slice, 79
special

method, 79
string

object representation,49
type alias, 79
type hint, 80
virtual environment, 80
virtual machine, 80

A

aképalra Srailpeon, 71

axoAioubia, 79

avayvwplopévo ovoua, 78
avtikeipevo, 76

avtikeipevo apyelou, 71

avtikeipevo mou poirdZetl pe apyxetlo,71
apxelo xeipévou, 79

aoUyyxpovog generator, 68

aoUyxpovog generator iterator, 68
acuyyxpovog iterable, 68

acuyyxpovog iterator, 68

acuyypovog Sirayeilplotic context, 68
apnenpévn Bacikn xAdon, 67

r

yevikny ouvdptnon, 72
yevikdée tTunog, 72

A

8nAwon, 79
Sra8pactixde, 73

Siraxeilplotic context, 69
SuaBixkd apyeto, 68

E

€181k pébodog, 79

eltoaybépevo path,73

elLoaywyéag, 73

eloaywyn, 73

éxyppaon, 71

evowpatTwpévn ouvdptnon
repr, 49

K

xaboAlxég véeg ypappég, 80
kxavovikxd mnaxéto, 78
xatavonon Ae&ikou, 70
xAdon, 69

kAdon véou oTuA, 76
xwdikonoinon xeipévou, 79

Al

AeZ1xd, 70
AoTa, 74

M

payixkn pébodog, 75
névodog, 75
peta—-xAdon, 75
petaBAnth xAdong, 69
petaBAnty meplBAAAOVTOC
PYTHONPATH, 55
piya8ikde apirbudc, 69
pova8ikd dispatch, 79

O

bplona, 67

6plopa keyword, 74
6plopa Béong, 77
oyn Ae&ixkou, 70

M

naxéto, 76

nax éTo namespace, 76
napduetpog, 76
nAnbog avawpopdg, 78

2

celpd avdiuoncg pebddwv, 75

oulAAloyny amopplpdtwv, 72

ouppBolocelpd TPLOAWYV €l0aywyLlKwv, 79
ouvdptnon, 71

ouvdptnon annotation, 71

ouvdptnon key, 74

T

Teppatiopdc Aeittoupylag Srepunvéa, 73
Texvikéc npoSiraypapéc module, 75

104

Eupetniplo

Extending and Embedding Python, Anpooicuon 3.9.23

Tpnpae, 77
TUnocg, 79

X

XOpakTnelLoTiko, 68

Eupetniplo 105

	Recommended third party tools
	Creating extensions without third party tools
	Extending Python with C or C++
	A Simple Example
	Intermezzo: Errors and Exceptions
	Back to the Example
	The Module’s Method Table and Initialization Function
	Compilation and Linkage
	Calling Python Functions from C
	Extracting Parameters in Extension Functions
	Keyword Parameters for Extension Functions
	Building Arbitrary Values
	Reference Counts
	Writing Extensions in C++
	Providing a C API for an Extension Module

	Defining Extension Types: Tutorial
	The Basics
	Adding data and methods to the Basic example
	Providing finer control over data attributes
	Supporting cyclic garbage collection
	Subclassing other types

	Defining Extension Types: Assorted Topics
	Finalization and De-allocation
	Object Presentation
	Attribute Management
	Object Comparison
	Abstract Protocol Support
	Weak Reference Support
	More Suggestions

	Building C and C++ Extensions
	Building C and C++ Extensions with distutils
	Distributing your extension modules

	Building C and C++ Extensions on Windows
	A Cookbook Approach
	Differences Between Unix and Windows
	Using DLLs in Practice

	Embedding the CPython runtime in a larger application
	Embedding Python in Another Application
	Very High Level Embedding
	Beyond Very High Level Embedding: An overview
	Pure Embedding
	Extending Embedded Python
	Embedding Python in C++
	Compiling and Linking under Unix-like systems

	Γλωσσάρι
	About these documents
	Contributors to the Python Documentation

	Ιστορία και Άδεια
	Η ιστορία του λογισμικού
	Όροι και προϋποθέσεις για την πρόσβαση ή την χρήση της Python με άλλους τρόπους
	PSF LICENSE AGREEMENT FOR PYTHON 3.9.23
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ BEOPEN.COM ΓΙΑ PYTHON 2.0
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CNRI ΓΙΑ PYTHON 1.6.1
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CWI ΓΙΑ PYTHON 0.9.0 ΕΩΣ 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.23 DOCUMENTATION

	Άδειες και Ευχαριστίες για Ενσωματωμένο Λογισμικό
	Mersenne Twister
	Sockets
	Ασύγχρονες socket υπηρεσίες
	Διαχείριση Cookie
	Ανίχνευση εκτέλεσης
	Συναρτήσεις UUencode και UUdecode
	Κλήσεις Απομακρυσμένης Διαδικασίας XML
	test_epoll
	Επιλογή kqueue
	SipHash24
	strtod και dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N σουίτα δοκιμής

	Copyright
	Ευρετήριο

