
What's New in Python
Δημοσίευση 3.14.0rc2

A. M. Kuchling

Σεπτεμβρίου 01, 2025

Python Software Foundation
Email: docs@python.org

Περιεχόμενα

1 Summary – release highlights 4

2 Incompatible changes 4

3 New features 5
3.1 PEP 779: Free-threaded Python is officially supported . 5
3.2 PEP 734: Multiple interpreters in the stdlib . 5
3.3 PEP 750: Template strings . 6
3.4 PEP 768: Safe external debugger interface for CPython . 7
3.5 PEP 784: Adding Zstandard to the standard library . 8
3.6 Remote attaching to a running Python process with PDB . 9
3.7 PEP 758 – Allow except and except* expressions without parentheses 9
3.8 PEP 649 and 749: deferred evaluation of annotations . 9
3.9 Improved error messages . 11
3.10 PEP 741: Python configuration C API . 13
3.11 Asyncio introspection capabilities . 13
3.12 A new type of interpreter . 15
3.13 Free-threaded mode . 16
3.14 Syntax highlighting in PyREPL . 17
3.15 Binary releases for the experimental just-in-time compiler . 17
3.16 Concurrent safe warnings control . 17
3.17 Incremental garbage collection . 17

4 Platform support 18

5 Other language changes 18
5.1 PEP 765: Disallow return/break/continue that exit a finally block 19

6 New modules 19

7 Improved modules 19
7.1 argparse . 19
7.2 ast . 19
7.3 asyncio . 20
7.4 calendar . 20
7.5 concurrent.futures . 20
7.6 configparser . 21
7.7 contextvars . 21

1

7.8 ctypes . 21
7.9 curses . 21
7.10 datetime . 21
7.11 decimal . 21
7.12 difflib . 22
7.13 dis . 22
7.14 errno . 22
7.15 faulthandler . 22
7.16 fnmatch . 22
7.17 fractions . 22
7.18 functools . 22
7.19 getopt . 22
7.20 getpass . 23
7.21 graphlib . 23
7.22 heapq . 23
7.23 hmac . 23
7.24 http . 23
7.25 imaplib . 23
7.26 inspect . 23
7.27 io . 24
7.28 json . 24
7.29 linecache . 24
7.30 logging.handlers . 24
7.31 math . 24
7.32 mimetypes . 24
7.33 multiprocessing . 25
7.34 operator . 26
7.35 os . 26
7.36 os.path . 26
7.37 pathlib . 26
7.38 pdb . 27
7.39 pickle . 27
7.40 platform . 27
7.41 pydoc . 27
7.42 socket . 27
7.43 ssl . 28
7.44 struct . 28
7.45 symtable . 28
7.46 sys . 28
7.47 sys.monitoring . 28
7.48 sysconfig . 28
7.49 tarfile . 29
7.50 threading . 29
7.51 tkinter . 29
7.52 turtle . 29
7.53 types . 29
7.54 typing . 29
7.55 unicodedata . 30
7.56 unittest . 30
7.57 urllib . 30
7.58 uuid . 31
7.59 webbrowser . 31
7.60 zipfile . 31

8 Optimizations 31
8.1 asyncio . 31
8.2 base64 . 31
8.3 bdb . 32

2

8.4 difflib . 32
8.5 gc . 32
8.6 io . 32
8.7 pathlib . 32
8.8 pdb . 32
8.9 uuid . 32
8.10 zlib . 33

9 Removed 33
9.1 argparse . 33
9.2 ast . 33
9.3 asyncio . 33
9.4 collections.abc . 35
9.5 email . 35
9.6 importlib.abc . 35
9.7 itertools . 35
9.8 pathlib . 35
9.9 pkgutil . 36
9.10 pty . 36
9.11 sqlite3 . 36
9.12 typing . 36
9.13 urllib . 36

10 Deprecated 36
10.1 Pending removal in Python 3.15 . 38
10.2 Pending removal in Python 3.16 . 39
10.3 Pending removal in Python 3.17 . 40
10.4 Pending removal in Python 3.19 . 40
10.5 Pending removal in future versions . 41

11 CPython bytecode changes 43

12 Porting to Python 3.14 43
12.1 Changes in the Python API . 43

13 Build changes 43
13.1 PEP 761: Discontinuation of PGP signatures . 43

14 C API changes 44
14.1 New features . 44
14.2 Limited C API changes . 46
14.3 Porting to Python 3.14 . 46
14.4 Deprecated . 47
14.5 Removed . 51

Ευρετήριο 52

Editor
Hugo van Kemenade

This article explains the new features in Python 3.14, compared to 3.13.

For full details, see the changelog.

Δείτε επίσης

PEP 745 – Python 3.14 release schedule

3

https://peps.python.org/pep-0745/

Σημείωση

Prerelease users should be aware that this document is currently in draft form. It will be updated substantially as
Python 3.14 moves towards release, so it’s worth checking back even after reading earlier versions.

1 Summary – release highlights

Python 3.14 will be the latest stable release of the Python programming language, with a mix of changes to the
language, the implementation and the standard library.

The biggest changes to the implementation include template strings (PEP 750), deferred evaluation of annotations
(PEP 649), and a new type of interpreter that uses tail calls.

The library changes include the addition of a new annotationlib module for introspecting and wrapping
annotations (PEP 749), a new compression.zstd module for Zstandard support (PEP 784), plus syntax
highlighting in the REPL, as well as the usual deprecations and removals, and improvements in user-friendliness
and correctness.

• PEP 779: Free-threaded Python is officially supported

• PEP 649 and 749: deferred evaluation of annotations

• PEP 734: Multiple interpreters in the stdlib

• PEP 741: Python configuration C API

• PEP 750: Template strings

• PEP 758: Allow except and except* expressions without parentheses

• PEP 761: Discontinuation of PGP signatures

• PEP 765: Disallow return/break/continue that exit a finally block

• Free-threaded mode improvements

• PEP 768: Safe external debugger interface for CPython

• PEP 784: Adding Zstandard to the standard library

• A new type of interpreter

• Syntax highlighting in PyREPL, and color output in unittest, argparse, json and calendar CLIs

• Binary releases for the experimental just-in-time compiler

2 Incompatible changes

On platforms other than macOS and Windows, the default start method for multiprocessing and
ProcessPoolExecutor switches from fork to forkserver.

See (1) and (2) for details.

If you encounter NameErrors or pickling errors coming out of multiprocessing or concurrent.
futures, see the forkserver restrictions.

The interpreter avoids some reference count modifications internally when it’s safe to do so. This can lead to different
values returned from sys.getrefcount() and Py_REFCNT() compared to previous versions of Python. See
below for details.

4

https://peps.python.org/pep-0750/
https://peps.python.org/pep-0649/
https://peps.python.org/pep-0749/
https://peps.python.org/pep-0784/

3 New features

3.1 PEP 779: Free-threaded Python is officially supported

The free-threaded build of Python is now supported and no longer experimental. This is the start of phase II where
free-threaded Python is officially supported but still optional.

We are confident that the project is on the right path, and we appreciate the continued dedication from everyone
working to make free-threading ready for broader adoption across the Python community.

With these recommendations and the acceptance of this PEP, we as the Python developer community should broadly
advertise that free-threading is a supported Python build option now and into the future, and that it will not be removed
without a proper deprecation schedule.

Any decision to transition to phase III, with free-threading as the default or sole build of Python is still undecided,
and dependent on many factors both within CPython itself and the community. This decision is for the future.

Δείτε επίσης

PEP 779 and its acceptance.

3.2 PEP 734: Multiple interpreters in the stdlib

The CPython runtime supports running multiple copies of Python in the same process simultaneously and has done
so for over 20 years. Each of these separate copies is called an «interpreter». However, the feature had been available
only through the C-API.

That limitation is removed in the 3.14 release, with the new concurrent.interpreters module.

There are at least two notable reasons why using multiple interpreters is worth considering:

• they support a new (to Python), human-friendly concurrency model

• true multi-core parallelism

For some use cases, concurrency in software enables efficiency and can simplify software, at a high level. At the same
time, implementing and maintaining all but the simplest concurrency is often a struggle for the human brain. That
especially applies to plain threads (for example, threading), where all memory is shared between all threads.

With multiple isolated interpreters, you can take advantage of a class of concurrency models, like CSP or the actor
model, that have found success in other programming languages, like Smalltalk, Erlang, Haskell, and Go. Think of
multiple interpreters like threads but with opt-in sharing.

Regarding multi-core parallelism: as of the 3.12 release, interpreters are now sufficiently isolated from one another to
be used in parallel. (See PEP 684.) This unlocks a variety of CPU-intensive use cases for Python that were limited
by the GIL.

Using multiple interpreters is similar in many ways to multiprocessing, in that they both provide isolated
logical «processes» that can run in parallel, with no sharing by default. However, when using multiple interpreters, an
application will use fewer system resources and will operate more efficiently (since it stays within the same process).
Think of multiple interpreters as having the isolation of processes with the efficiency of threads.

While the feature has been around for decades, multiple interpreters have not been used widely, due to low awareness
and the lack of a stdlib module. Consequently, they currently have several notable limitations, which will improve
significantly now that the feature is finally going mainstream.

Current limitations:

• starting each interpreter has not been optimized yet

• each interpreter uses more memory than necessary (we will be working next on extensive internal sharing
between interpreters)

• there aren’t many options yet for truly sharing objects or other data between interpreters (other than
memoryview)

5

https://peps.python.org/pep-0779/
https://discuss.python.org/t/pep-779-criteria-for-supported-status-for-free-threaded-python/84319/123
https://peps.python.org/pep-0684/

• many extension modules on PyPI are not compatible with multiple interpreters yet (stdlib extension modules
are compatible)

• the approach to writing applications that use multiple isolated interpreters is mostly unfamiliar to Python users,
for now

The impact of these limitations will depend on future CPython improvements, how interpreters are used, and what
the community solves through PyPI packages. Depending on the use case, the limitations may not have much impact,
so try it out!

Furthermore, future CPython releases will reduce or eliminate overhead and provide utilities that are less appropriate
on PyPI. In the meantime, most of the limitations can also be addressed through extension modules, meaning PyPI
packages can fill any gap for 3.14, and even back to 3.12 where interpreters were finally properly isolated and stopped
sharing the GIL. Likewise, we expect to slowly see libraries on PyPI for high-level abstractions on top of interpreters.

Regarding extensionmodules, work is in progress to update some PyPI projects, as well as tools like Cython, pybind11,
nanobind, and PyO3. The steps for isolating an extension module are found at isolating-extensions-howto. Isolating
a module has a lot of overlap with what is required to support free-threading, so the ongoing work in the community
in that area will help accelerate support for multiple interpreters.

Also added in 3.14: concurrent.futures.InterpreterPoolExecutor.

Δείτε επίσης

PEP 734.

3.3 PEP 750: Template strings

Template string literals (t-strings) are a generalization of f-strings, using a t in place of the f prefix. Instead of
evaluating to str, t-strings evaluate to a new string.templatelib.Template type:

from string.templatelib import Template

name = "World"
template: Template = t"Hello {name}"

The template can then be combined with functions that operate on the template’s structure to produce a str or a
string-like result. For example, sanitizing input:

evil = "<script>alert('evil')</script>"
template = t"<p>{evil}</p>"
assert html(template) == "<p><script>alert('evil')</script></p>
↪→"

As another example, generating HTML attributes from data:

attributes = {"src": "shrubbery.jpg", "alt": "looks nice"}
template = t""
assert html(template) == ''

Compared to using an f-string, the html function has access to template attributes containing the original
information: static strings, interpolations, and values from the original scope. Unlike existing templating approaches,
t-strings build from the well-known f-string syntax and rules. Template systems thus benefit from Python tooling as
they are much closer to the Python language, syntax, scoping, and more.

Writing template handlers is straightforward:

from string.templatelib import Template, Interpolation

def lower_upper(template: Template) -> str:
(συνέχεια στην επόμενη σελίδα)

6

https://peps.python.org/pep-0734/

(συνεχίζεται από την προηγούμενη σελίδα)

"""Render static parts lowercased and interpolations uppercased."""
parts: list[str] = []
for item in template:

if isinstance(item, Interpolation):
parts.append(str(item.value).upper())

else:
parts.append(item.lower())

return "".join(parts)

name = "world"
assert lower_upper(t"HELLO {name}") == "hello WORLD"

With this in place, developers can write template systems to sanitize SQL, make safe shell operations, improve
logging, tackle modern ideas in web development (HTML, CSS, and so on), and implement lightweight, custom
business DSLs.

(Contributed by Jim Baker, Guido van Rossum, Paul Everitt, Koudai Aono, Lysandros Nikolaou, Dave Peck, Adam
Turner, Jelle Zijlstra, Bénédikt Tran, and Pablo Galindo Salgado in gh-132661.)

Δείτε επίσης

PEP 750.

3.4 PEP 768: Safe external debugger interface for CPython

PEP 768 introduces a zero-overhead debugging interface that allows debuggers and profilers to safely attach to
running Python processes. This is a significant enhancement to Python’s debugging capabilities allowing debuggers
to forego unsafe alternatives. See below for how this feature is leveraged to implement the new pdbmodule’s remote
attaching capabilities.

The new interface provides safe execution points for attaching debugger code without modifying the interpreter’s
normal execution path or adding runtime overhead. This enables tools to inspect and interact with Python applications
in real-time without stopping or restarting them — a crucial capability for high-availability systems and production
environments.

For convenience, CPython implements this interface through the sys module with a sys.remote_exec()
function:

sys.remote_exec(pid, script_path)

This function allows sending Python code to be executed in a target process at the next safe execution point.
However, tool authors can also implement the protocol directly as described in the PEP, which details the underlying
mechanisms used to safely attach to running processes.

Here’s a simple example that inspects object types in a running Python process:

import os
import sys
import tempfile

Create a temporary script
with tempfile.NamedTemporaryFile(mode='w', suffix='.py',␣
↪→delete=False) as f:

script_path = f.name
f.write(f"import my_debugger; my_debugger.connect({os.getpid()}

↪→)")
try:

Execute in process with PID 1234
(συνέχεια στην επόμενη σελίδα)

7

https://github.com/python/cpython/issues/132661
https://peps.python.org/pep-0750/
https://peps.python.org/pep-0768/

(συνεχίζεται από την προηγούμενη σελίδα)

print("Behold! An offering:")
sys.remote_exec(1234, script_path)

finally:
os.unlink(script_path)

The debugging interface has been carefully designed with security in mind and includes several mechanisms to control
access:

• A PYTHON_DISABLE_REMOTE_DEBUG environment variable.

• A -X disable-remote-debug command-line option.

• A --without-remote-debug configure flag to completely disable the feature at build time.

A key implementation detail is that the interface piggybacks on the interpreter’s existing evaluation loop and safe
points, ensuring zero overhead during normal execution while providing a reliable way for external processes to
coordinate debugging operations.

(Contributed by Pablo Galindo Salgado, Matt Wozniski, and Ivona Stojanovic in gh-131591.)

Δείτε επίσης

PEP 768.

3.5 PEP 784: Adding Zstandard to the standard library

The new compression package contains modules compression.lzma, compression.bz2,
compression.gzip and compression.zlib which re-export the lzma, bz2, gzip and zlib
modules respectively. The new import names under compression are the canonical names for importing
these compression modules going forward. However, the existing modules names have not been deprecated. Any
deprecation or removal of the existing compression modules will occur no sooner than five years after the release of
3.14.

The new compression.zstd module provides compression and decompression APIs for the Zstandard format
via bindings to Meta’s zstd library. Zstandard is a widely adopted, highly efficient, and fast compression format. In
addition to the APIs introduced in compression.zstd, support for reading and writing Zstandard compressed
archives has been added to the tarfile, zipfile, and shutil modules.

Here’s an example of using the new module to compress some data:

from compression import zstd
import math

data = str(math.pi).encode() * 20

compressed = zstd.compress(data)

ratio = len(compressed) / len(data)
print(f"Achieved compression ratio of {ratio}")

As can be seen, the API is similar to the APIs of the lzma and bz2 modules.

(Contributed by Emma Harper Smith, Adam Turner, Gregory P. Smith, Tomas Roun, Victor Stinner, and Rogdham
in gh-132983.)

Δείτε επίσης

PEP 784.

8

https://github.com/python/cpython/issues/131591
https://peps.python.org/pep-0768/
https://facebook.github.io/zstd/
https://github.com/python/cpython/issues/132983
https://peps.python.org/pep-0784/

3.6 Remote attaching to a running Python process with PDB

The pdb module now supports remote attaching to a running Python process using a new -p PID command-line
option:

python -m pdb -p 1234

This will connect to the Python process with the given PID and allow you to debug it interactively. Notice that due
to how the Python interpreter works attaching to a remote process that is blocked in a system call or waiting for I/O
will only work once the next bytecode instruction is executed or when the process receives a signal.

This feature uses PEP 768 and the sys.remote_exec() function to attach to the remote process and send the
PDB commands to it.

(Contributed by Matt Wozniski and Pablo Galindo in gh-131591.)

Δείτε επίσης

PEP 768.

3.7 PEP 758 – Allow except and except* expressions without parentheses

The except and except* expressions now allow parentheses to be omitted when there are multiple exception
types and the as clause is not used. For example the following expressions are now valid:

try:
connect_to_server()

except TimeoutError, ConnectionRefusedError:
print("Network issue encountered.")

The same applies to except* (for exception groups):

try:
connect_to_server()

except* TimeoutError, ConnectionRefusedError:
print("Network issue encountered.")

Check PEP 758 for more details.

(Contributed by Pablo Galindo and Brett Cannon in gh-131831.)

Δείτε επίσης

PEP 758.

3.8 PEP 649 and 749: deferred evaluation of annotations

The annotations on functions, classes, and modules are no longer evaluated eagerly. Instead, annotations are stored in
special-purpose annotate functions and evaluated only when necessary (except if from __future__ import
annotations is used). This is specified in PEP 649 and PEP 749.

This change is designed to make annotations in Python more performant and more usable in most circumstances. The
runtime cost for defining annotations is minimized, but it remains possible to introspect annotations at runtime. It is
no longer necessary to enclose annotations in strings if they contain forward references.

The new annotationlib module provides tools for inspecting deferred annotations. Annotations may be
evaluated in the VALUE format (which evaluates annotations to runtime values, similar to the behavior in earlier
Python versions), the FORWARDREF format (which replaces undefined names with special markers), and the
STRING format (which returns annotations as strings).

9

https://peps.python.org/pep-0768/
https://github.com/python/cpython/issues/131591
https://peps.python.org/pep-0768/
https://peps.python.org/pep-0758/
https://github.com/python/cpython/issues/131831
https://peps.python.org/pep-0758/
https://peps.python.org/pep-0649/
https://peps.python.org/pep-0749/

This example shows how these formats behave:

>>> from annotationlib import get_annotations, Format
>>> def func(arg: Undefined):
... pass
>>> get_annotations(func, format=Format.VALUE)
Traceback (most recent call last):

...
NameError: name 'Undefined' is not defined
>>> get_annotations(func, format=Format.FORWARDREF)
{'arg': ForwardRef('Undefined', owner=<function func at 0x...>)}
>>> get_annotations(func, format=Format.STRING)
{'arg': 'Undefined'}

Implications for annotated code

If you define annotations in your code (for example, for use with a static type checker), then this change probably
does not affect you: you can keep writing annotations the same way you did with previous versions of Python.

You will likely be able to remove quoted strings in annotations, which are frequently used for forward references.
Similarly, if you usefrom __future__ import annotations to avoid having to write strings in annotations,
you may well be able to remove that import once you support only Python 3.14 and newer. However, if you rely on
third-party libraries that read annotations, those libraries may need changes to support unquoted annotations before
they work as expected.

Implications for readers of __annotations__

If your code reads the __annotations__ attribute on objects, you may want to make changes in order to support
code that relies on deferred evaluation of annotations. For example, you may want to use annotationlib.
get_annotations() with the FORWARDREF format, as the dataclasses module now does.

The external typing_extensions package provides partial backports of some of the functionality of the
annotationlib module, such as the Format enum and the get_annotations() function. These can be
used to write cross-version code that takes advantage of the new behavior in Python 3.14.

Related changes

The changes in Python 3.14 are designed to rework how __annotations__ works at runtime while minimizing
breakage to code that contains annotations in source code and to code that reads __annotations__. However,
if you rely on undocumented details of the annotation behavior or on private functions in the standard library, there
are many ways in which your code may not work in Python 3.14. To safeguard your code against future changes, use
only the documented functionality of the annotationlib module.

In particular, do not read annotations directly from the namespace dictionary attribute of type objects.
Use annotationlib.get_annotate_from_class_namespace() during class construction and
annotationlib.get_annotations() afterwards.

In previous releases, it was sometimes possible to access class annotations from an instance of an annotated class.
This behavior was undocumented and accidental, and will no longer work in Python 3.14.

from __future__ import annotations

In Python 3.7, PEP 563 introduced the from __future__ import annotations directive, which turns
all annotations into strings. This directive is now considered deprecated and it is expected to be removed in a future
version of Python. However, this removal will not happen until after Python 3.13, the last version of Python without
deferred evaluation of annotations, reaches its end of life in 2029. In Python 3.14, the behavior of code using from
__future__ import annotations is unchanged.

(Contributed by Jelle Zijlstra in gh-119180; PEP 649 was written by Larry Hastings.)

10

https://pypi.org/project/typing_extensions/
https://peps.python.org/pep-0563/
https://github.com/python/cpython/issues/119180
https://peps.python.org/pep-0649/

Δείτε επίσης

PEP 649 and PEP 749.

3.9 Improved error messages

• The interpreter now provides helpful suggestions when it detects typos in Python keywords. When a word that
closely resembles a Python keyword is encountered, the interpreter will suggest the correct keyword in the error
message. This feature helps programmers quickly identify and fix common typing mistakes. For example:

>>> whille True:
... pass
Traceback (most recent call last):

File "<stdin>", line 1
whille True:
^^^^^^

SyntaxError: invalid syntax. Did you mean 'while'?

>>> asynch def fetch_data():
... pass
Traceback (most recent call last):

File "<stdin>", line 1
asynch def fetch_data():
^^^^^^

SyntaxError: invalid syntax. Did you mean 'async'?

>>> async def foo():
... awaid fetch_data()
Traceback (most recent call last):

File "<stdin>", line 2
awaid fetch_data()
^^^^^

SyntaxError: invalid syntax. Did you mean 'await'?

>>> raisee ValueError("Error")
Traceback (most recent call last):

File "<stdin>", line 1
raisee ValueError("Error")
^^^^^^

SyntaxError: invalid syntax. Did you mean 'raise'?

While the feature focuses on the most common cases, some variations of misspellings may still result in regular
syntax errors. (Contributed by Pablo Galindo in gh-132449.)

• When an unpacking assignment fails due to an incorrect number of variables, the error message prints the
received number of values in more cases than before. (Contributed by Tushar Sadhwani in gh-122239.)

>>> x, y, z = 1, 2, 3, 4
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
x, y, z = 1, 2, 3, 4
^^^^^^^

ValueError: too many values to unpack (expected 3, got 4)

• elif statements that follow an else block now have a specific error message. (Contributed by Steele
Farnsworth in gh-129902.)

11

https://peps.python.org/pep-0649/
https://peps.python.org/pep-0749/
https://github.com/python/cpython/issues/132449
https://github.com/python/cpython/issues/122239
https://github.com/python/cpython/issues/129902

>>> if who == "me":
... print("It's me!")
... else:
... print("It's not me!")
... elif who is None:
... print("Who is it?")
File "<stdin>", line 5

elif who is None:
^^^^

SyntaxError: 'elif' block follows an 'else' block

• If a statement (pass, del, return, yield, raise, break, continue, assert, import, from) is
passed to the if_expr after else, or one of pass, break, or continue is passed before if, then the error
message highlights where the expression is required. (Contributed by Sergey Miryanov in gh-129515.)

>>> x = 1 if True else pass
Traceback (most recent call last):

File "<string>", line 1
x = 1 if True else pass

^^^^
SyntaxError: expected expression after 'else', but statement is given

>>> x = continue if True else break
Traceback (most recent call last):

File "<string>", line 1
x = continue if True else break

^^^^^^^^
SyntaxError: expected expression before 'if', but statement is given

• When incorrectly closed strings are detected, the error message suggests that the string may be intended to be
part of the string. (Contributed by Pablo Galindo in gh-88535.)

>>> "The interesting object "The important object" is very important"
Traceback (most recent call last):
SyntaxError: invalid syntax. Is this intended to be part of the string?

• When strings have incompatible prefixes, the error now shows which prefixes are incompatible. (Contributed
by Nikita Sobolev in gh-133197.)

>>> ub'abc'
File "<python-input-0>", line 1

ub'abc'
^^

SyntaxError: 'u' and 'b' prefixes are incompatible

• Improved error messages when using as with incompatible targets in:

– Imports: import ... as ...

– From imports: from ... import ... as ...

– Except handlers: except ... as ...

– Pattern-match cases: case ... as ...

(Contributed by Nikita Sobolev in gh-123539, gh-123562, and gh-123440.)

>>> import ast as arr[0]
File "<python-input-1>", line 1
import ast as arr[0]

(συνέχεια στην επόμενη σελίδα)

12

https://github.com/python/cpython/issues/129515
https://github.com/python/cpython/issues/88535
https://github.com/python/cpython/issues/133197
https://github.com/python/cpython/issues/123539
https://github.com/python/cpython/issues/123562
https://github.com/python/cpython/issues/123440

(συνεχίζεται από την προηγούμενη σελίδα)

^^^^^^
SyntaxError: cannot use subscript as import target

• Improved error message when trying to add an instance of an unhashable type to a dict or set. (Contributed
by CF Bolz-Tereick and Victor Stinner in gh-132828.)

>>> s = set()
>>> s.add({'pages': 12, 'grade': 'A'})
Traceback (most recent call last):

File "<python-input-1>", line 1, in <module>
s.add({'pages': 12, 'grade': 'A'})
~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

TypeError: cannot use 'dict' as a set element (unhashable type: 'dict')
>>> d = {}
>>> l = [1, 2, 3]
>>> d[l] = 12
Traceback (most recent call last):

File "<python-input-4>", line 1, in <module>
d[l] = 12
~^^^

TypeError: cannot use 'list' as a dict key (unhashable type: 'list')

3.10 PEP 741: Python configuration C API

Add a PyInitConfig C API to configure the Python initialization without relying on C structures and the ability to
make ABI-compatible changes in the future.

Complete the PEP 587 PyConfig C API by adding PyInitConfig_AddModule() which can be used to add a
built-in extension module; a feature previously referred to as the “inittab”.

Add PyConfig_Get() and PyConfig_Set() functions to get and set the current runtime configuration.

PEP 587 “Python Initialization Configuration” unified all the ways to configure the Python initialization. This PEP
unifies also the configuration of the Python preinitialization and the Python initialization in a single API. Moreover,
this PEP only provides a single choice to embed Python, instead of having two “Python” and “Isolated” choices (PEP
587), to simplify the API further.

The lower level PEP 587 PyConfigAPI remains available for use cases with an intentionally higher level of coupling to
CPython implementation details (such as emulating the full functionality of CPython’s CLI, including its configuration
mechanisms).

(Contributed by Victor Stinner in gh-107954.)

Δείτε επίσης

PEP 741.

3.11 Asyncio introspection capabilities

Added a new command-line interface to inspect running Python processes using asynchronous tasks, available via:

python -m asyncio ps PID

This tool inspects the given process ID (PID) and displays information about currently running asyncio tasks. It
outputs a task table: a flat listing of all tasks, their names, their coroutine stacks, and which tasks are awaiting them.

python -m asyncio pstree PID

13

https://github.com/python/cpython/issues/132828
https://peps.python.org/pep-0587/
https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0741/


This tool fetches the same information, but renders a visual async call tree, showing coroutine relationships in a
hierarchical format. This command is particularly useful for debugging long-running or stuck asynchronous programs.
It can help developers quickly identify where a program is blocked, what tasks are pending, and how coroutines are
chained together.

For example given this code:

import asyncio

async def play(track):
await asyncio.sleep(5)
print(f"� Finished: {track}")

async def album(name, tracks):
async with asyncio.TaskGroup() as tg:

for track in tracks:
tg.create_task(play(track), name=track)

async def main():
async with asyncio.TaskGroup() as tg:

tg.create_task(
album("Sundowning", ["TNDNBTG", "Levitate"]), name="Sundowning")

tg.create_task(
album("TMBTE", ["DYWTYLM", "Aqua Regia"]), name="TMBTE")

if __name__ == "__main__":
asyncio.run(main())

Executing the new tool on the running process will yield a table like this:

python -m asyncio ps 12345

tid task id task name coroutine stack ␣
↪→ awaiter chain ␣
↪→ awaiter name awaiter id
---------------------------------------------------------------------------
↪→-------------------------------------------------------------------------
↪→--------------------------------
1935500 0x7fc930c18050 Task-1 TaskGroup._aexit ->␣
↪→TaskGroup.__aexit__ -> main ␣
↪→ 0x0
1935500 0x7fc930c18230 Sundowning TaskGroup._aexit ->␣
↪→TaskGroup.__aexit__ -> album TaskGroup._aexit -> TaskGroup.__aexit__ ->
↪→ main Task-1 0x7fc930c18050
1935500 0x7fc93173fa50 TMBTE TaskGroup._aexit ->␣
↪→TaskGroup.__aexit__ -> album TaskGroup._aexit -> TaskGroup.__aexit__ ->
↪→ main Task-1 0x7fc930c18050
1935500 0x7fc93173fdf0 TNDNBTG sleep -> play ␣
↪→ TaskGroup._aexit -> TaskGroup.__aexit__ ->␣
↪→album Sundowning 0x7fc930c18230
1935500 0x7fc930d32510 Levitate sleep -> play ␣
↪→ TaskGroup._aexit -> TaskGroup.__aexit__ ->␣
↪→album Sundowning 0x7fc930c18230
1935500 0x7fc930d32890 DYWTYLM sleep -> play ␣
↪→ TaskGroup._aexit -> TaskGroup.__aexit__ ->␣
↪→album TMBTE 0x7fc93173fa50
1935500 0x7fc93161ec30 Aqua Regia sleep -> play ␣
↪→ TaskGroup._aexit -> TaskGroup.__aexit__ ->␣
↪→album TMBTE 0x7fc93173fa50

14



or a tree like this:

python -m asyncio pstree 12345

└── (T) Task-1
└── main example.py:13

└── TaskGroup.__aexit__ Lib/asyncio/taskgroups.py:72
└── TaskGroup._aexit Lib/asyncio/taskgroups.py:121

├── (T) Sundowning
│ └── album example.py:8
│ └── TaskGroup.__aexit__ Lib/asyncio/taskgroups.

↪→py:72
│ └── TaskGroup._aexit Lib/asyncio/taskgroups.

↪→py:121
│ ├── (T) TNDNBTG
│ │ └── play example.py:4
│ │ └── sleep Lib/asyncio/tasks.py:702
│ └── (T) Levitate
│ └── play example.py:4
│ └── sleep Lib/asyncio/tasks.py:702
└── (T) TMBTE

└── album example.py:8
└── TaskGroup.__aexit__ Lib/asyncio/taskgroups.

↪→py:72
└── TaskGroup._aexit Lib/asyncio/taskgroups.

↪→py:121
├── (T) DYWTYLM
│ └── play example.py:4
│ └── sleep Lib/asyncio/tasks.py:702
└── (T) Aqua Regia

└── play example.py:4
└── sleep Lib/asyncio/tasks.py:702

If a cycle is detected in the async await graph (which could indicate a programming issue), the tool raises an error
and lists the cycle paths that prevent tree construction:

python -m asyncio pstree 12345

ERROR: await-graph contains cycles - cannot print a tree!

cycle: Task-2 → Task-3 → Task-2

(Contributed by Pablo Galindo, Łukasz Langa, Yury Selivanov, and Marta Gomez Macias in gh-91048.)

3.12 A new type of interpreter

A new type of interpreter has been added to CPython. It uses tail calls between small C functions that implement
individual Python opcodes, rather than one large C case statement. For certain newer compilers, this interpreter
provides significantly better performance. Preliminary numbers on our machines suggest anywhere up to 30% faster
Python code, and a geometric mean of 3-5% faster on pyperformance depending on platform and architecture.
The baseline is Python 3.14 built with Clang 19 without this new interpreter.

This interpreter currently only works with Clang 19 and newer on x86-64 and AArch64 architectures. However, we
expect that a future release of GCC will support this as well.

This feature is opt-in for now. We highly recommend enabling profile-guided optimization with the new interpreter
as it is the only configuration we have tested and can validate its improved performance. For further information on
how to build Python, see --with-tail-call-interp.

15

https://github.com/python/cpython/issues/91048


Σημείωση

This is not to be confused with tail call optimization of Python functions, which is currently not implemented in
CPython.

This new interpreter type is an internal implementation detail of the CPython interpreter. It doesn’t change the
visible behavior of Python programs at all. It can improve their performance, but doesn’t change anything else.

Προσοχή

This section previously reported a 9-15% geometric mean speedup. This number has since been cautiously revised
down to 3-5%. While we expect performance results to be better than what we report, our estimates are more
conservative due to a compiler bug found in Clang/LLVM 19, which causes the normal interpreter to be slower.
We were unaware of this bug, resulting in inaccurate results. We sincerely apologize for communicating results
that were only accurate for LLVM v19.1.x and v20.1.0. In the meantime, the bug has been fixed in LLVM v20.1.1
and for the upcoming v21.1, but it will remain unfixed for LLVM v19.1.x and v20.1.0. Thus any benchmarks
with those versions of LLVM may produce inaccurate numbers. (Thanks to Nelson Elhage for bringing this to
light.)

(Contributed by Ken Jin in gh-128563, with ideas on how to implement this in CPython by Mark Shannon, Garrett
Gu, Haoran Xu, and Josh Haberman.)

3.13 Free-threaded mode

Free-threaded mode (PEP 703), initially added in 3.13, has been significantly improved. The implementation
described in PEP 703 was finished, including C API changes, and temporary workarounds in the interpreter were
replaced with more permanent solutions. The specializing adaptive interpreter (PEP 659) is now enabled in free-
threaded mode, which along with many other optimizations greatly improves its performance. The performance
penalty on single-threaded code in free-threaded mode is now roughly 5-10%, depending on platform and C compiler
used.

This work was done by many contributors: Sam Gross, Matt Page, Neil Schemenauer, Thomas Wouters, Donghee
Na, Kirill Podoprigora, Ken Jin, Itamar Oren, Brett Simmers, Dino Viehland, Nathan Goldbaum, Ralf Gommers,
Lysandros Nikolaou, Kumar Aditya, Edgar Margffoy, and many others.

Some of these contributors are employed by Meta, which has continued to provide significant engineering resources
to support this project.

From 3.14, when compiling extension modules for the free-threaded build of CPython onWindows, the preprocessor
variable Py_GIL_DISABLED now needs to be specified by the build backend, as it will no longer be determined
automatically by the C compiler. For a running interpreter, the setting that was used at compile time can be found
using sysconfig.get_config_var().

A new flag has been added,context_aware_warnings. This flag defaults to true for the free-threaded build and
false for the GIL-enabled build. If the flag is true then the warnings.catch_warnings context manager uses
a context variable for warning filters. This makes the context manager behave predictably when used with multiple
threads or asynchronous tasks.

A new flag has been added, thread_inherit_context. This flag defaults to true for the free-threaded build
and false for the GIL-enabled build. If the flag is true then threads created with threading.Thread start with
a copy of the Context() of the caller of start(). Most significantly, this makes the warning filtering context
established by catch_warnings be «inherited» by threads (or asyncio tasks) started within that context. It also
affects other modules that use context variables, such as the decimal context manager.

16

https://en.wikipedia.org/wiki/Tail_call
https://github.com/llvm/llvm-project/issues/106846
https://github.com/python/cpython/issues/128563
https://peps.python.org/pep-0703/
https://peps.python.org/pep-0659/


3.14 Syntax highlighting in PyREPL

The default interactive shell now highlights Python syntax as you type. The feature is enabled by default unless the
PYTHON_BASIC_REPL environment is set or any color-disabling environment variables are used. See using-on-
controlling-color for details.

The default color theme for syntax highlighting strives for good contrast and uses exclusively the 4-bit VGA
standard ANSI color codes for maximum compatibility. The theme can be customized using an experimental API
_colorize.set_theme(). This can be called interactively, as well as in the PYTHONSTARTUP script.

(Contributed by Łukasz Langa in gh-131507.)

3.15 Binary releases for the experimental just-in-time compiler

The official macOS andWindows release binaries now include an experimental just-in-time (JIT) compiler. Although
it is not recommended for production use, it can be tested by setting PYTHON_JIT=1 as an environment
variable. Downstream source builds and redistributors can use the --enable-experimental-jit=yes-off
configuration option for similar behavior.

The JIT is at an early stage and still in active development. As such, the typical performance impact of enabling
it can range from 10% slower to 20% faster, depending on workload. To aid in testing and evaluation, a set of
introspection functions has been provided in the sys._jit namespace. sys._jit.is_available() can be
used to determine if the current executable supports JIT compilation, while sys._jit.is_enabled() can be
used to tell if JIT compilation has been enabled for the current process.

Currently, the most significant missing functionality is that native debuggers and profilers like gdb and perf are
unable to unwind through JIT frames (Python debuggers and profilers, like pdb or profile, continue to work
without modification). Free-threaded builds do not support JIT compilation.

Please report any bugs or major performance regressions that you encounter!

Δείτε επίσης

PEP 744

3.16 Concurrent safe warnings control

Thewarnings.catch_warnings context manager will now optionally use a context variable for warning filters.
This is enabled by setting the context_aware_warnings flag, either with the -X command-line option or
an environment variable. This gives predictable warnings control when using catch_warnings combined with
multiple threads or asynchronous tasks. The flag defaults to true for the free-threaded build and false for the GIL-
enabled build.

(Contributed by Neil Schemenauer and Kumar Aditya in gh-130010.)

3.17 Incremental garbage collection

The cycle garbage collector is now incremental. This means that maximum pause times are reduced by an order of
magnitude or more for larger heaps.

There are now only two generations: young and old. When gc.collect() is not called directly, the GC is invoked
a little less frequently. When invoked, it collects the young generation and an increment of the old generation, instead
of collecting one or more generations.

The behavior of gc.collect() changes slightly:

• gc.collect(1): Performs an increment of garbage collection, rather than collecting generation 1.

• Other calls to gc.collect() are unchanged.

(Contributed by Mark Shannon in gh-108362.)

17

https://github.com/python/cpython/issues/131507
https://peps.python.org/pep-0744/
https://github.com/python/cpython/issues/130010
https://github.com/python/cpython/issues/108362


4 Platform support

• PEP 776: Emscripten is now an officially supported platform at tier 3. As a part of this effort, more than 25
bugs in Emscripten libc were fixed. Emscripten now includes support for ctypes, termios, and fcntl,
as well as experimental support for PyREPL.

(Contributed by R. Hood Chatham in gh-127146, gh-127683, and gh-136931.)

5 Other language changes

• The default interactive shell now supports import autocompletion. This means that typing import foo and
pressing <tab> will suggest modules starting with foo. Similarly, typing from foo import b will
suggest submodules of foo starting with b. Note that autocompletion of module attributes is not currently
supported. (Contributed by Tomas Roun in gh-69605.)

• The map() built-in now has an optional keyword-only strict flag like zip() to check that all the iterables are
of equal length. (Contributed by Wannes Boeykens in gh-119793.)

• Incorrect usage of await and asynchronous comprehensions is now detected even if the code is optimized
away by the -O command-line option. For example, python -O -c 'assert await 1' now produces
a SyntaxError. (Contributed by Jelle Zijlstra in gh-121637.)

• Writes to __debug__ are now detected even if the code is optimized away by the -O command-line option.
For example, python -O -c 'assert (__debug__ := 1)' now produces a SyntaxError.
(Contributed by Irit Katriel in gh-122245.)

• Add class methods float.from_number() and complex.from_number() to convert a number to
float or complex type correspondingly. They raise an error if the argument is a string. (Contributed by
Serhiy Storchaka in gh-84978.)

• Implement mixed-mode arithmetic rules combining real and complex numbers as specified by C standards
since C99. (Contributed by Sergey B Kirpichev in gh-69639.)

• All Windows code pages are now supported as «cpXXX» codecs on Windows. (Contributed by Serhiy
Storchaka in gh-123803.)

• super objects are now pickleable and copyable. (Contributed by Serhiy Storchaka in gh-125767.)

• The memoryview type now supports subscription, making it a generic type. (Contributed by Brian Schubert
in gh-126012.)

• Support underscore and comma as thousands separators in the fractional part for floating-point presentation
types of the new-style string formatting (with format() or f-strings). (Contributed by Sergey B Kirpichev
in gh-87790.)

• The bytes.fromhex() and bytearray.fromhex() methods now accept ASCII bytes and bytes-
like objects. (Contributed by Daniel Pope in gh-129349.)

• Support \z as a synonym for \Z in regular expressions. It is interpreted unambiguously in many other
regular expression engines, unlike \Z, which has subtly different behavior. (Contributed by Serhiy Storchaka
in gh-133306.)

• \B in regular expression now matches the empty input string. Now it is always the opposite of \b.
(Contributed by Serhiy Storchaka in gh-124130.)

• iOS and macOS apps can now be configured to redirect stdout and stderr content to the system log.
(Contributed by Russell Keith-Magee in gh-127592.)

• The iOS testbed is now able to stream test output while the test is running. The testbed can also be used to run
the test suite of projects other than CPython itself. (Contributed by Russell Keith-Magee in gh-127592.)

• Three-argument pow() now tries calling __rpow__() if necessary. Previously it was only called in two-
argument pow() and the binary power operator. (Contributed by Serhiy Storchaka in gh-130104.)

18

https://peps.python.org/pep-0776/
https://peps.python.org/pep-0011/#tier-3
https://emscripten.org/docs/porting/emscripten-runtime-environment.html
https://github.com/python/cpython/issues/127146
https://github.com/python/cpython/issues/127683
https://github.com/python/cpython/issues/136931
https://github.com/python/cpython/issues/69605
https://github.com/python/cpython/issues/119793
https://github.com/python/cpython/issues/121637
https://github.com/python/cpython/issues/122245
https://github.com/python/cpython/issues/84978
https://github.com/python/cpython/issues/69639
https://github.com/python/cpython/issues/123803
https://github.com/python/cpython/issues/125767
https://github.com/python/cpython/issues/126012
https://github.com/python/cpython/issues/87790
https://github.com/python/cpython/issues/129349
https://github.com/python/cpython/issues/133306
https://github.com/python/cpython/issues/124130
https://github.com/python/cpython/issues/127592
https://github.com/python/cpython/issues/127592
https://github.com/python/cpython/issues/130104


• Add a built-in implementation for HMAC (RFC 2104) using formally verified code from the HACL* project.
This implementation is used as a fallback when the OpenSSL implementation of HMAC is not available.
(Contributed by Bénédikt Tran in gh-99108.)

• The import time flag can now track modules that are already loaded (“cached”), via the new -X
importtime=2. When such a module is imported, the self and cumulative times are replaced by
the string cached. Values above 2 for -X importtime are now reserved for future use. (Contributed by
Noah Kim and Adam Turner in gh-118655.)

• When subclassing from a pure C type, the C slots for the new type are no longer replaced with a wrapped
version on class creation if they are not explicitly overridden in the subclass. (Contributed by Tomasz Pytel in
gh-132329.)

• The command-line option -c now automatically dedents its code argument before execution. The auto-
dedentation behavior mirrors textwrap.dedent(). (Contributed by Jon Crall and Steven Sun in gh-
103998.)

• Improve error message when an object supporting the synchronous context manager protocol is entered using
async with instead ofwith. And vice versa with the asynchronous context manager protocol. (Contributed
by Bénédikt Tran in gh-128398.)

• -J is no longer a reserved flag for Jython, and now has no special meaning. (Contributed by Adam Turner in
gh-133336.)

• The int() built-in no longer delegates to __trunc__(). Classes that want to support conversion to int()
must implement either __int__() or __index__(). (Contributed by Mark Dickinson in gh-119743.)

• Using NotImplemented in a boolean context will now raise a TypeError. This has raised a
DeprecationWarning since Python 3.9. (Contributed by Jelle Zijlstra in gh-118767.)

5.1 PEP 765: Disallow return/break/continue that exit a finally block

The compiler emits a SyntaxWarning when a return, break or continue statement appears where it exits
a finally block. This change is specified in PEP 765.

6 New modules

• annotationlib: For introspecting annotations. SeePEP749 formore details. (Contributed by Jelle Zijlstra
in gh-119180.)

7 Improved modules

7.1 argparse

• The default value of the program name for argparse.ArgumentParser now reflects the way the Python
interpreter was instructed to find the __main__ module code. (Contributed by Serhiy Storchaka and Alyssa
Coghlan in gh-66436.)

• Introduced the optional suggest_on_error parameter to argparse.ArgumentParser, enabling
suggestions for argument choices and subparser names if mistyped by the user. (Contributed by Savannah
Ostrowski in gh-124456.)

• Enable color for help text, which can be disabled with the optional color parameter to argparse.
ArgumentParser. This can also be controlled by environment variables. (Contributed by Hugo van
Kemenade in gh-130645.)

7.2 ast

• Add ast.compare() for comparing two ASTs. (Contributed by Batuhan Taskaya and Jeremy Hylton in
gh-60191.)

• Add support for copy.replace() for AST nodes. (Contributed by Bénédikt Tran in gh-121141.)

19

https://datatracker.ietf.org/doc/html/rfc2104.html
https://github.com/hacl-star/hacl-star/
https://github.com/python/cpython/issues/99108
https://github.com/python/cpython/issues/118655
https://github.com/python/cpython/issues/132329
https://github.com/python/cpython/issues/103998
https://github.com/python/cpython/issues/103998
https://github.com/python/cpython/issues/128398
https://www.jython.org/
https://github.com/python/cpython/issues/133336
https://github.com/python/cpython/issues/119743
https://github.com/python/cpython/issues/118767
https://peps.python.org/pep-0765/
https://peps.python.org/pep-0749/
https://github.com/python/cpython/issues/119180
https://github.com/python/cpython/issues/66436
https://github.com/python/cpython/issues/124456
https://github.com/python/cpython/issues/130645
https://github.com/python/cpython/issues/60191
https://github.com/python/cpython/issues/121141


• Docstrings are now removed from an optimized AST in optimization level 2. (Contributed by Irit Katriel in
gh-123958.)

• The repr() output for AST nodes now includes more information. (Contributed by Tomas Roun in gh-
116022.)

• ast.parse(), when called with an AST as input, now always verifies that the root node type is appropriate.
(Contributed by Irit Katriel in gh-130139.)

• Add new --feature-version, --optimize, --show-empty options to the command-line
interface. (Contributed by Semyon Moroz in gh-133367.)

7.3 asyncio

• The function and methods named create_task() now take an arbitrary list of keyword arguments.
All keyword arguments are passed to the Task constructor or the custom task factory. (See
set_task_factory() for details.) The name and context keyword arguments are no longer special;
the name should now be set using the name keyword argument of the factory, and context may be None.

This affects the following function and methods: asyncio.create_task(), asyncio.loop.
create_task(), asyncio.TaskGroup.create_task(). (Contributed by Thomas Grainger in
gh-128307.)

• There are two new utility functions for introspecting and printing a program’s call graph:
capture_call_graph() and print_call_graph(). (Contributed by Yury Selivanov, Pablo
Galindo Salgado, and Łukasz Langa in gh-91048.)

7.4 calendar

• By default, today’s date is highlighted in color in calendar’s command-line text output. This can be
controlled by environment variables. (Contributed by Hugo van Kemenade in gh-128317.)

7.5 concurrent.futures

• Add InterpreterPoolExecutor, which exposes «subinterpreters» (multiple Python interpreters in the
same process) to Python code. This is separate from the proposed API in PEP 734. (Contributed by Eric Snow
in gh-124548.)

• The default ProcessPoolExecutor start method changed from fork to forkserver on platforms other than
macOS and Windows where it was already spawn.

If the threading incompatible fork method is required, you must explicitly request it by supplying a
multiprocessing context mp_context to ProcessPoolExecutor.

See forkserver restrictions for information and differences with the fork method and how this change may
affect existing code with mutable global shared variables and/or shared objects that can not be automatically
pickled.

(Contributed by Gregory P. Smith in gh-84559.)

• Add concurrent.futures.ProcessPoolExecutor.terminate_workers() and
concurrent.futures.ProcessPoolExecutor.kill_workers() as ways to terminate
or kill all living worker processes in the given pool. (Contributed by Charles Machalow in gh-130849.)

• Add the optional buffersize parameter to concurrent.futures.Executor.map() to limit the
number of submitted tasks whose results have not yet been yielded. If the buffer is full, iteration over the
iterables pauses until a result is yielded from the buffer. (Contributed by Enzo Bonnal and Josh Rosenberg in
gh-74028.)

20

https://github.com/python/cpython/issues/123958
https://github.com/python/cpython/issues/116022
https://github.com/python/cpython/issues/116022
https://github.com/python/cpython/issues/130139
https://github.com/python/cpython/issues/133367
https://github.com/python/cpython/issues/128307
https://github.com/python/cpython/issues/91048
https://github.com/python/cpython/issues/128317
https://peps.python.org/pep-0734/
https://github.com/python/cpython/issues/124548
https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/130849
https://github.com/python/cpython/issues/74028


7.6 configparser

• Security fix: will no longer write config files it cannot read. Attempting to configparser.
ConfigParser.write() keys containing delimiters or beginning with the section header pattern will
raise a configparser.InvalidWriteError. (Contributed by Jacob Lincoln in gh-129270.)

7.7 contextvars

• Support context manager protocol by contextvars.Token. (Contributed by Andrew Svetlov in gh-
129889.)

7.8 ctypes

• The layout of bit fields in Structure and Union now matches platform defaults (GCC/Clang or MSVC)
more closely. In particular, fields no longer overlap. (Contributed by Matthias Görgens in gh-97702.)

• The Structure._layout_ class attribute can now be set to help match a non-default ABI. (Contributed
by Petr Viktorin in gh-97702.)

• The class of Structure/Union field descriptors is now available as CField, and has new attributes to aid
debugging and introspection. (Contributed by Petr Viktorin in gh-128715.)

• On Windows, the COMError exception is now public. (Contributed by Jun Komoda in gh-126686.)

• OnWindows, theCopyComPointer() function is now public. (Contributed by JunKomoda in gh-127275.)

• ctypes.memoryview_at() now exists to create a memoryview object that refers to the supplied
pointer and length. This works like ctypes.string_at() except it avoids a buffer copy, and is
typically useful when implementing pure Python callback functions that are passed dynamically-sized buffers.
(Contributed by Rian Hunter in gh-112018.)

• Complex types, c_float_complex, c_double_complex and c_longdouble_complex, are now
available if both the compiler and the libffi library support complex C types. (Contributed by Sergey B
Kirpichev in gh-61103.)

• Add ctypes.util.dllist() for listing the shared libraries loaded by the current process. (Contributed
by Brian Ward in gh-119349.)

• Move ctypes.POINTER() types cache from a global internal cache (_pointer_type_cache) to the
ctypes._CData.__pointer_type__ attribute of the corresponding ctypes types. This will stop the
cache from growing without limits in some situations. (Contributed by Sergey Miryanov in gh-100926.)

• The ctypes.py_object type now supports subscription, making it a generic type. (Contributed by Brian
Schubert in gh-132168.)

• ctypes now supports free-threading builds. (Contributed by Kumar Aditya and Peter Bierma in gh-127945.)

7.9 curses

• Add the assume_default_colors() function, a refinement of the use_default_colors()
function which allows to change the color pair 0. (Contributed by Serhiy Storchaka in gh-133139.)

7.10 datetime

• Add datetime.time.strptime() and datetime.date.strptime(). (Contributed by Wannes
Boeykens in gh-41431.)

7.11 decimal

• Add alternative Decimal constructor Decimal.from_number(). (Contributed by Serhiy Storchaka in
gh-121798.)

• Expose decimal.IEEEContext() to support creation of contexts corresponding to the IEEE 754 (2008)
decimal interchange formats. (Contributed by Sergey B Kirpichev in gh-53032.)

21

https://github.com/python/cpython/issues/129270
https://github.com/python/cpython/issues/129889
https://github.com/python/cpython/issues/129889
https://github.com/python/cpython/issues/97702
https://github.com/python/cpython/issues/97702
https://github.com/python/cpython/issues/128715
https://github.com/python/cpython/issues/126686
https://github.com/python/cpython/issues/127275
https://github.com/python/cpython/issues/112018
https://github.com/python/cpython/issues/61103
https://github.com/python/cpython/issues/119349
https://github.com/python/cpython/issues/100926
https://github.com/python/cpython/issues/132168
https://github.com/python/cpython/issues/127945
https://github.com/python/cpython/issues/133139
https://github.com/python/cpython/issues/41431
https://github.com/python/cpython/issues/121798
https://github.com/python/cpython/issues/53032


7.12 difflib

• Comparison pages with highlighted changes generated by the difflib.HtmlDiff class now support dark
mode. (Contributed by Jiahao Li in gh-129939.)

7.13 dis

• Add support for rendering full source location information of instructions, rather than only the line
number. This feature is added to the following interfaces via the show_positions keyword argument:

– dis.Bytecode

– dis.dis()

– dis.distb()

– dis.disassemble()

This feature is also exposed via dis --show-positions. (Contributed by Bénédikt Tran in gh-123165.)

• Add the dis --specialized command-line option to show specialized bytecode. (Contributed by
Bénédikt Tran in gh-127413.)

7.14 errno

• Add errno.EHWPOISON error code. (Contributed by James Roy in gh-126585.)

7.15 faulthandler

• Add support for printing the C stack trace on systems that support it via faulthandler.
dump_c_stack() or via the c_stack argument in faulthandler.enable(). (Contributed by Peter
Bierma in gh-127604.)

7.16 fnmatch

• Added fnmatch.filterfalse() for excluding names matching a pattern. (Contributed by Bénédikt
Tran in gh-74598.)

7.17 fractions

• Add support for converting any objects that have the as_integer_ratio() method to a Fraction.
(Contributed by Serhiy Storchaka in gh-82017.)

• Add alternative Fraction constructor Fraction.from_number(). (Contributed by Serhiy Storchaka
in gh-121797.)

7.18 functools

• Add support to functools.partial() and functools.partialmethod() for functools.
Placeholder sentinels to reserve a place for positional arguments. (Contributed by Dominykas Grigonis in
gh-119127.)

• Allow the initial parameter of functools.reduce() to be passed as a keyword argument. (Contributed
by Sayandip Dutta in gh-125916.)

7.19 getopt

• Add support for options with optional arguments. (Contributed by Serhiy Storchaka in gh-126374.)

• Add support for returning intermixed options and non-option arguments in order. (Contributed by Serhiy
Storchaka in gh-126390.)

22

https://github.com/python/cpython/issues/129939
https://github.com/python/cpython/issues/123165
https://github.com/python/cpython/issues/127413
https://github.com/python/cpython/issues/126585
https://github.com/python/cpython/issues/127604
https://github.com/python/cpython/issues/74598
https://github.com/python/cpython/issues/82017
https://github.com/python/cpython/issues/121797
https://github.com/python/cpython/issues/119127
https://github.com/python/cpython/issues/125916
https://github.com/python/cpython/issues/126374
https://github.com/python/cpython/issues/126390


7.20 getpass

• Support keyboard feedback by getpass.getpass() via the keyword-only optional argument
echo_char. Placeholder characters are rendered whenever a character is entered, and removed when a
character is deleted. (Contributed by Semyon Moroz in gh-77065.)

7.21 graphlib

• Allow graphlib.TopologicalSorter.prepare() to be called more than once as long as sorting
has not started. (Contributed by Daniel Pope in gh-130914.)

7.22 heapq

• Add functions for working with max-heaps:

– heapq.heapify_max(),

– heapq.heappush_max(),

– heapq.heappop_max(),

– heapq.heapreplace_max()

– heapq.heappushpop_max()

7.23 hmac

• Add a built-in implementation for HMAC (RFC 2104) using formally verified code from the HACL* project.
(Contributed by Bénédikt Tran in gh-99108.)

7.24 http

• Directory lists and error pages generated by the http.servermodule allow the browser to apply its default
dark mode. (Contributed by Yorik Hansen in gh-123430.)

• The http.servermodule now supports serving over HTTPS using the http.server.HTTPSServer
class. This functionality is exposed by the command-line interface (python -m http.server) through
the following options:

– --tls-cert <path>: Path to the TLS certificate file.

– --tls-key <path>: Optional path to the private key file.

– --tls-password-file <path>: Optional path to the password file for the private key.

(Contributed by Semyon Moroz in gh-85162.)

7.25 imaplib

• Add IMAP4.idle(), implementing the IMAP4 IDLE command as defined in RFC 2177. (Contributed by
Forest in gh-55454.)

7.26 inspect

• inspect.signature() takes a new argument annotation_format to control the annotationlib.
Format used for representing annotations. (Contributed by Jelle Zijlstra in gh-101552.)

• inspect.Signature.format() takes a new argument unquote_annotations. If true, string annotations
are displayed without surrounding quotes. (Contributed by Jelle Zijlstra in gh-101552.)

• Add function inspect.ispackage() to determine whether an object is a package or not. (Contributed
by Zhikang Yan in gh-125634.)

23

https://github.com/python/cpython/issues/77065
https://github.com/python/cpython/issues/130914
https://datatracker.ietf.org/doc/html/rfc2104.html
https://github.com/hacl-star/hacl-star/
https://github.com/python/cpython/issues/99108
https://github.com/python/cpython/issues/123430
https://github.com/python/cpython/issues/85162
https://datatracker.ietf.org/doc/html/rfc2177.html
https://github.com/python/cpython/issues/55454
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/125634


7.27 io

• Reading text from a non-blocking stream with read may now raise a BlockingIOError if the operation
cannot immediately return bytes. (Contributed by Giovanni Siragusa in gh-109523.)

• Add protocols io.Reader and io.Writer as simpler alternatives to the pseudo-protocols typing.IO,
typing.TextIO, and typing.BinaryIO. (Contributed by Sebastian Rittau in gh-127648.)

7.28 json

• Add notes for JSON serialization errors that allow to identify the source of the error. (Contributed by Serhiy
Storchaka in gh-122163.)

• Enable the json module to work as a script using the -m switch: python -m json. See the JSON
command-line interface documentation. (Contributed by Trey Hunner in gh-122873.)

• By default, the output of the JSON command-line interface is highlighted in color. This can be controlled by
environment variables. (Contributed by Tomas Roun in gh-131952.)

7.29 linecache

• linecache.getline() can retrieve source code for frozen modules. (Contributed by Tian Gao in gh-
131638.)

7.30 logging.handlers

• logging.handlers.QueueListener now implements the context manager protocol, allowing it to be
used in a with statement. (Contributed by Charles Machalow in gh-132106.)

• QueueListener.start now raises a RuntimeError if the listener is already started. (Contributed by
Charles Machalow in gh-132106.)

7.31 math

• Addedmore detailed error messages for domain errors in the module. (Contributed by Charlie Zhao and Sergey
B Kirpichev in gh-101410.)

7.32 mimetypes

• Document the command-line for mimetypes. It now exits with 1 on failure instead of 0 and 2 on incorrect
command-line parameters instead of 1. Also, errors are printed to stderr instead of stdout and their text is
made tighter. (Contributed by Oleg Iarygin and Hugo van Kemenade in gh-93096.)

• Add MS and RFC 8081MIME types for fonts:

– Embedded OpenType: application/vnd.ms-fontobject

– OpenType Layout (OTF) font/otf

– TrueType: font/ttf

– WOFF 1.0 font/woff

– WOFF 2.0 font/woff2

(Contributed by Sahil Prajapati and Hugo van Kemenade in gh-84852.)

• Add RFC 9559MIME types for Matroska audiovisual data container structures, containing:

– audio with no video: audio/matroska (.mka)

– video: video/matroska (.mkv)

– stereoscopic video: video/matroska-3d (.mk3d)

(Contributed by Hugo van Kemenade in gh-89416.)

24

https://github.com/python/cpython/issues/109523
https://github.com/python/cpython/issues/127648
https://github.com/python/cpython/issues/122163
https://github.com/python/cpython/issues/122873
https://github.com/python/cpython/issues/131952
https://github.com/python/cpython/issues/131638
https://github.com/python/cpython/issues/131638
https://github.com/python/cpython/issues/132106
https://github.com/python/cpython/issues/132106
https://github.com/python/cpython/issues/101410
https://github.com/python/cpython/issues/93096
https://datatracker.ietf.org/doc/html/rfc8081.html
https://github.com/python/cpython/issues/84852
https://datatracker.ietf.org/doc/html/rfc9559.html
https://github.com/python/cpython/issues/89416


• Add MIME types for images with RFCs:

– RFC 1494: CCITT Group 3 (.g3)

– RFC 3362: Real-time Facsimile, T.38 (.t38)

– RFC 3745: JPEG 2000 (.jp2), extension (.jpx) and compound (.jpm)

– RFC 3950: Tag Image File Format Fax eXtended, TIFF-FX (.tfx)

– RFC 4047: Flexible Image Transport System (.fits)

– RFC 7903: Enhanced Metafile (.emf) and Windows Metafile (.wmf)

(Contributed by Hugo van Kemenade in gh-85957.)

• More MIME type changes:

– RFC 2361: Change type for .avi to video/vnd.avi and for .wav to audio/vnd.wave

– RFC 4337: Add MPEG-4 audio/mp4 (.m4a)

– RFC 5334: Add Ogg media (.oga, .ogg and .ogx)

– RFC 6713: Add gzip application/gzip (.gz)

– RFC 9639: Add FLAC audio/flac (.flac)

– Add 7z application/x-7z-compressed (.7z)

– Add Android Package application/vnd.android.package-archive (.apk) when not
strict

– Add deb application/x-debian-package (.deb)

– Add glTF binary model/gltf-binary (.glb)

– Add glTF JSON/ASCII model/gltf+json (.gltf)

– Add M4V video/x-m4v (.m4v)

– Add PHP application/x-httpd-php (.php)

– Add RAR application/vnd.rar (.rar)

– Add RPM application/x-rpm (.rpm)

– Add STL model/stl (.stl)

– Add Windows Media Video video/x-ms-wmv (.wmv)

– De facto: Add WebM audio/webm (.weba)

– ECMA-376: Add .docx, .pptx and .xlsx types

– OASIS: Add OpenDocument .odg, .odp, .ods and .odt types

– W3C: Add EPUB application/epub+zip (.epub)

(Contributed by Hugo van Kemenade in gh-129965.)

• Add RFC 9512 application/yaml MIME type for YAML files (.yaml and .yml). (Contributed by
Sasha «Nelie» Chernykh and Hugo van Kemenade in gh-132056.)

7.33 multiprocessing

• The default start method changed from fork to forkserver on platforms other than macOS and Windows where
it was already spawn.

If the threading incompatible fork method is required, you must explicitly request it via a context from
multiprocessing.get_context() (preferred) or change the default via multiprocessing.
set_start_method().

25

https://datatracker.ietf.org/doc/html/rfc1494.html
https://datatracker.ietf.org/doc/html/rfc3362.html
https://datatracker.ietf.org/doc/html/rfc3745.html
https://datatracker.ietf.org/doc/html/rfc3950.html
https://datatracker.ietf.org/doc/html/rfc4047.html
https://datatracker.ietf.org/doc/html/rfc7903.html
https://github.com/python/cpython/issues/85957
https://datatracker.ietf.org/doc/html/rfc2361.html
https://datatracker.ietf.org/doc/html/rfc4337.html
https://datatracker.ietf.org/doc/html/rfc5334.html
https://datatracker.ietf.org/doc/html/rfc6713.html
https://datatracker.ietf.org/doc/html/rfc9639.html
https://ecma-international.org/publications-and-standards/standards/ecma-376/
https://docs.oasis-open.org/office/v1.2/cs01/OpenDocument-v1.2-cs01-part1.html#Appendix_C
https://www.w3.org/TR/epub-33/#app-media-type
https://github.com/python/cpython/issues/129965
https://datatracker.ietf.org/doc/html/rfc9512.html
https://github.com/python/cpython/issues/132056


See forkserver restrictions for information and differences with the fork method and how this change may
affect existing code with mutable global shared variables and/or shared objects that can not be automatically
pickled.

(Contributed by Gregory P. Smith in gh-84559.)

• multiprocessing’s "forkserver" start method now authenticates its control socket to avoid solely
relying on filesystem permissions to restrict what other processes could cause the forkserver to spawn workers
and run code. (Contributed by Gregory P. Smith for gh-97514.)

• The multiprocessing proxy objects for list and dict types gain previously overlooked missing methods:

– clear() and copy() for proxies of list

– fromkeys(), reversed(d), d | {}, {} | d, d |= {'b': 2} for proxies of dict

(Contributed by Roy Hyunjin Han for gh-103134.)

• Add support for shared set objects via SyncManager.set(). The set() in multiprocessing.
Manager() method is now available. (Contributed by Mingyu Park in gh-129949.)

• Add multiprocessing.Process.interrupt() which terminates the child process by sending
SIGINT. This enables finally clauses to print a stack trace for the terminated process. (Contributed by
Artem Pulkin in gh-131913.)

7.34 operator

• Two new functions operator.is_none() and operator.is_not_none() have been added,
such that operator.is_none(obj) is equivalent to obj is None and operator.
is_not_none(obj) is equivalent to obj is not None. (Contributed by Raymond Hettinger and
Nico Mexis in gh-115808.)

7.35 os

• Add the os.reload_environ() function to update os.environ and os.environb with changes
to the environment made by os.putenv(), by os.unsetenv(), or made outside Python in the same
process. (Contributed by Victor Stinner in gh-120057.)

• Add the SCHED_DEADLINE and SCHED_NORMAL constants to the osmodule. (Contributed by James Roy
in gh-127688.)

• Add the os.readinto() function to read into a buffer object from a file descriptor. (Contributed by Cody
Maloney in gh-129205.)

7.36 os.path

• The strict parameter to os.path.realpath() accepts a new value, os.path.ALLOW_MISSING. If
used, errors other than FileNotFoundError will be re-raised; the resulting path can be missing but it will
be free of symlinks. (Contributed by Petr Viktorin for CVE 2025-4517.)

7.37 pathlib

• Add methods to pathlib.Path to recursively copy or move files and directories:

– copy() copies a file or directory tree to a destination.

– copy_into() copies into a destination directory.

– move() moves a file or directory tree to a destination.

– move_into() moves into a destination directory.

(Contributed by Barney Gale in gh-73991.)

26

https://github.com/python/cpython/issues/84559
https://github.com/python/cpython/issues/97514
https://github.com/python/cpython/issues/103134
https://github.com/python/cpython/issues/129949
https://github.com/python/cpython/issues/131913
https://github.com/python/cpython/issues/115808
https://github.com/python/cpython/issues/120057
https://github.com/python/cpython/issues/127688
https://github.com/python/cpython/issues/129205
https://www.cve.org/CVERecord?id=CVE-2025-4517
https://github.com/python/cpython/issues/73991


• Add pathlib.Path.info attribute, which stores an object implementing the pathlib.types.
PathInfo protocol (also new). The object supports querying the file type and internally caching stat()
results. Path objects generated by iterdir() are initialized with file type information gleaned from scanning
the parent directory. (Contributed by Barney Gale in gh-125413.)

7.38 pdb

• Hardcoded breakpoints (breakpoint() and pdb.set_trace()) now reuse the most recent Pdb
instance that calls set_trace(), instead of creating a new one each time. As a result, all the instance
specific data like display and commands are preserved across hardcoded breakpoints. (Contributed by
Tian Gao in gh-121450.)

• Add a new argument mode to pdb.Pdb. Disable the restart command when pdb is in inline mode.
(Contributed by Tian Gao in gh-123757.)

• A confirmation prompt will be shown when the user tries to quit pdb in inline mode. y, Y, <Enter> or
EOF will confirm the quit and call sys.exit(), instead of raising bdb.BdbQuit. (Contributed by Tian
Gao in gh-124704.)

• Inline breakpoints like breakpoint() or pdb.set_trace() will always stop the program at calling
frame, ignoring the skip pattern (if any). (Contributed by Tian Gao in gh-130493.)

• <tab> at the beginning of the line in pdb multi-line input will fill in a 4-space indentation now, instead of
inserting a \t character. (Contributed by Tian Gao in gh-130471.)

• Auto-indent is introduced in pdb multi-line input. It will either keep the indentation of the last line or insert
a 4-space indentation when it detects a new code block. (Contributed by Tian Gao in gh-133350.)

• $_asynctask is added to access the current asyncio task if applicable. (Contributed by Tian Gao in gh-
124367.)

• pdb.set_trace_async() is added to support debugging asyncio coroutines. await statements are
supported with this function. (Contributed by Tian Gao in gh-132576.)

• Source code displayed inpdbwill be syntax-highlighted. This feature can be controlled using the samemethods
as PyREPL, in addition to the newly added colorize argument of pdb.Pdb. (Contributed by Tian Gao
and Łukasz Langa in gh-133355.)

7.39 pickle

• Set the default protocol version on the pickle module to 5. For more details, see pickle protocols.

• Add notes for pickle serialization errors that allow to identify the source of the error. (Contributed by Serhiy
Storchaka in gh-122213.)

7.40 platform

• Add platform.invalidate_caches() to invalidate the cached results. (Contributed by Bénédikt
Tran in gh-122549.)

7.41 pydoc

• Annotations in help output are now usually displayed in a format closer to that in the original source.
(Contributed by Jelle Zijlstra in gh-101552.)

7.42 socket

• Improve and fix support for Bluetooth sockets.

– Fix support of Bluetooth sockets on NetBSD and DragonFly BSD. (Contributed by Serhiy Storchaka in
gh-132429.)

– Fix support for BTPROTO_HCI on FreeBSD. (Contributed by Victor Stinner in gh-111178.)

27

https://github.com/python/cpython/issues/125413
https://github.com/python/cpython/issues/121450
https://github.com/python/cpython/issues/123757
https://github.com/python/cpython/issues/124704
https://github.com/python/cpython/issues/130493
https://github.com/python/cpython/issues/130471
https://github.com/python/cpython/issues/133350
https://github.com/python/cpython/issues/124367
https://github.com/python/cpython/issues/124367
https://github.com/python/cpython/issues/132576
https://github.com/python/cpython/issues/133355
https://github.com/python/cpython/issues/122213
https://github.com/python/cpython/issues/122549
https://github.com/python/cpython/issues/101552
https://github.com/python/cpython/issues/132429
https://github.com/python/cpython/issues/111178


– Add support for BTPROTO_SCO on FreeBSD. (Contributed by Serhiy Storchaka in gh-85302.)

– Add support for cid and bdaddr_type in the address for BTPROTO_L2CAP on FreeBSD. (Contributed
by Serhiy Storchaka in gh-132429.)

– Add support for channel in the address for BTPROTO_HCI on Linux. (Contributed by Serhiy Storchaka
in gh-70145.)

– Accept an integer as the address for BTPROTO_HCI on Linux. (Contributed by Serhiy Storchaka in
gh-132099.)

– Return cid in getsockname() for BTPROTO_L2CAP. (Contributed by Serhiy Storchaka in gh-
132429.)

– Add many new constants. (Contributed by Serhiy Storchaka in gh-132734.)

7.43 ssl

• Indicate through ssl.HAS_PHA whether the ssl module supports TLSv1.3 post-handshake client
authentication (PHA). (Contributed by Will Childs-Klein in gh-128036.)

7.44 struct

• Support the float complex and double complex C types in the struct module (formatting
characters 'F' and 'D' respectively). (Contributed by Sergey B Kirpichev in gh-121249.)

7.45 symtable

• Expose the following symtable.Symbol methods:

– is_comp_cell()

– is_comp_iter()

– is_free_class()

(Contributed by Bénédikt Tran in gh-120029.)

7.46 sys

• The previously undocumented special function sys.getobjects(), which only exists in specialized builds
of Python, may now return objects from other interpreters than the one it’s called in.

• Add sys._is_immortal() for determining if an object is immortal. (Contributed by Peter Bierma in
gh-128509.)

• On FreeBSD, sys.platform doesn’t contain the major version anymore. It is always 'freebsd', instead
of 'freebsd13' or 'freebsd14'.

• Raise DeprecationWarning for sys._clear_type_cache(). This function was deprecated in
Python 3.13 but it didn’t raise a runtime warning.

7.47 sys.monitoring

• Two new events are added: BRANCH_LEFT and BRANCH_RIGHT. The BRANCH event is deprecated.

7.48 sysconfig

• Add ABIFLAGS key to sysconfig.get_config_vars() on Windows. (Contributed by Xuehai Pan
in gh-131799.)

28

https://github.com/python/cpython/issues/85302
https://github.com/python/cpython/issues/132429
https://github.com/python/cpython/issues/70145
https://github.com/python/cpython/issues/132099
https://github.com/python/cpython/issues/132429
https://github.com/python/cpython/issues/132429
https://github.com/python/cpython/issues/132734
https://github.com/python/cpython/issues/128036
https://github.com/python/cpython/issues/121249
https://github.com/python/cpython/issues/120029
https://github.com/python/cpython/issues/128509
https://github.com/python/cpython/issues/131799


7.49 tarfile

• data_filter() now normalizes symbolic link targets in order to avoid path traversal attacks. (Contributed
by Petr Viktorin in gh-127987 and CVE 2025-4138.)

• extractall() now skips fixing up directory attributes when a directory was removed or replaced by
another kind of file. (Contributed by Petr Viktorin in gh-127987 and CVE 2024-12718.)

• extract() and extractall() now (re-)apply the extraction filter when substituting a link (hard or
symbolic) with a copy of another archive member, and when fixing up directory attributes. The former raises
a new exception, LinkFallbackError. (Contributed by Petr Viktorin for CVE 2025-4330 and CVE
2024-12718.)

• extract() and extractall() no longer extract rejected members when errorlevel() is zero.
(Contributed by Matt Prodani and Petr Viktorin in gh-112887 and CVE 2025-4435.)

7.50 threading

• threading.Thread.start() now sets the operating system thread name to threading.Thread.
name. (Contributed by Victor Stinner in gh-59705.)

7.51 tkinter

• Make tkinter widget methods after() and after_idle() accept arguments passed by keyword.
(Contributed by Zhikang Yan in gh-126899.)

• Add ability to specify name for tkinter.OptionMenu and tkinter.ttk.OptionMenu.
(Contributed by Zhikang Yan in gh-130482.)

7.52 turtle

• Add context managers for turtle.fill(), turtle.poly() and turtle.no_animation().
(Contributed by Marie Roald and Yngve Mardal Moe in gh-126350.)

7.53 types

• types.UnionType is now an alias for typing.Union. See below for more details. (Contributed by Jelle
Zijlstra in gh-105499.)

7.54 typing

• types.UnionType and typing.Union are now aliases for each other, meaning that both old-style
unions (created with Union[int, str]) and new-style unions (int | str) now create instances of
the same runtime type. This unifies the behavior between the two syntaxes, but leads to some differences in
behavior that may affect users who introspect types at runtime:

– Both syntaxes for creating a union now produce the same string representation in repr(). For example,
repr(Union[int, str]) is now "int | str" instead of "typing.Union[int, str]".

– Unions created using the old syntax are no longer cached. Previously, running Union[int, str]
multiple times would return the same object (Union[int, str] is Union[int, str] would
beTrue), but now it will return two different objects. Users should use== to compare unions for equality,
not is. New-style unions have never been cached this way. This change could increase memory usage for
some programs that use a large number of unions created by subscripting typing.Union. However,
several factors offset this cost: unions used in annotations are no longer evaluated by default in Python
3.14 because of PEP 649; an instance of types.UnionType is itself much smaller than the object
returned by Union[] was on prior Python versions; and removing the cache also saves some space. It
is therefore unlikely that this change will cause a significant increase in memory usage for most users.

– Previously, old-style unions were implemented using the private class typing.
_UnionGenericAlias. This class is no longer needed for the implementation, but it has
been retained for backward compatibility, with removal scheduled for Python 3.17. Users should use

29

https://github.com/python/cpython/issues/127987
https://www.cve.org/CVERecord?id=CVE-2025-4138
https://github.com/python/cpython/issues/127987
https://www.cve.org/CVERecord?id=CVE-2024-12718
https://www.cve.org/CVERecord?id=CVE-2025-4330
https://www.cve.org/CVERecord?id=CVE-2024-12718
https://www.cve.org/CVERecord?id=CVE-2024-12718
https://github.com/python/cpython/issues/112887
https://www.cve.org/CVERecord?id=CVE-2025-4435
https://github.com/python/cpython/issues/59705
https://github.com/python/cpython/issues/126899
https://github.com/python/cpython/issues/130482
https://github.com/python/cpython/issues/126350
https://github.com/python/cpython/issues/105499
https://peps.python.org/pep-0649/


documented introspection helpers like typing.get_origin() and typing.get_args()
instead of relying on private implementation details.

– It is now possible to use typing.Union itself in isinstance() checks. For example,
isinstance(int | str, typing.Union) will return True; previously this raised
TypeError.

– The __args__ attribute of typing.Union objects is no longer writable.

– It is no longer possible to set any attributes on typing.Union objects. This only ever worked for
dunder attributes on previous versions, was never documented to work, and was subtly broken in many
cases.

(Contributed by Jelle Zijlstra in gh-105499.)

• typing.TypeAliasType now supports star unpacking.

7.55 unicodedata

• The Unicode database has been updated to Unicode 16.0.0.

7.56 unittest

• unittest output is now colored by default. This can be controlled by environment variables. (Contributed
by Hugo van Kemenade in gh-127221.)

• unittest discovery supports namespace package as start directory again. It was removed in Python 3.11.
(Contributed by Jacob Walls in gh-80958.)

• A number of new methods were added in the TestCase class that provide more specialized tests.

– assertHasAttr() and assertNotHasAttr() check whether the object has a particular
attribute.

– assertIsSubclass() and assertNotIsSubclass() check whether the object is a subclass
of a particular class, or of one of a tuple of classes.

– assertStartsWith(), assertNotStartsWith(), assertEndsWith() and
assertNotEndsWith() check whether the Unicode or byte string starts or ends with particular
strings.

(Contributed by Serhiy Storchaka in gh-71339.)

7.57 urllib

• Upgrade HTTP digest authentication algorithm for urllib.request by supporting SHA-256 digest
authentication as specified in RFC 7616. (Contributed by Calvin Bui in gh-128193.)

• Improve ergonomics and standards compliance when parsing and emitting file: URLs.

In urllib.request.url2pathname():

– Accept a complete URL when the new require_scheme argument is set to true.

– Discard URL authority if it matches the local hostname.

– Discard URL authority if it resolves to a local IP address when the new resolve_host argument is set to
true.

– Discard URL query and fragment components.

– Raise URLError if a URL authority isn’t local, except on Windows where we return a UNC path as
before.

In urllib.request.pathname2url():

– Return a complete URL when the new add_scheme argument is set to true.

30

https://github.com/python/cpython/issues/105499
https://github.com/python/cpython/issues/127221
https://github.com/python/cpython/issues/80958
https://github.com/python/cpython/issues/71339
https://datatracker.ietf.org/doc/html/rfc7616.html
https://github.com/python/cpython/issues/128193


– Include an empty URL authority when a path begins with a slash. For example, the path /etc/hosts
is converted to the URL ///etc/hosts.

On Windows, drive letters are no longer converted to uppercase, and : characters not following a drive letter
no longer cause an OSError exception to be raised.

(Contributed by Barney Gale in gh-125866.)

7.58 uuid

• Add support for UUID versions 6, 7, and 8 via uuid.uuid6(), uuid.uuid7(), and uuid.uuid8()
respectively, as specified in RFC 9562. (Contributed by Bénédikt Tran in gh-89083.)

• uuid.NIL and uuid.MAX are now available to represent the Nil andMax UUID formats as defined byRFC
9562. (Contributed by Nick Pope in gh-128427.)

• Allow to generate multiple UUIDs at once via python -m uuid --count. (Contributed by Simon
Legner in gh-131236.)

7.59 webbrowser

• Names in the BROWSER environment variable can now refer to already registered browsers for the
webbrowser module, instead of always generating a new browser command.

This makes it possible to set BROWSER to the value of one of the supported browsers on macOS.

7.60 zipfile

• Added ZipInfo._for_archive to resolve suitable defaults for a ZipInfo object as used by
ZipFile.writestr. (Contributed by Bénédikt Tran in gh-123424.)

• zipfile.ZipFile.writestr() now respects SOURCE_DATE_EPOCH that distributions can set
centrally and have build tools consume this in order to produce reproducible output. (Contributed by Jiahao
Li in gh-91279.)

8 Optimizations

• The import time for several standard library modules has been improved, including annotationlib, ast,
asyncio, base64, cmd, csv, gettext, importlib.util, locale, mimetypes, optparse,
pickle, pprint, pstats, shlex, socket, string, subprocess, threading, tomllib,
types, and zipfile.

(Contributed by Adam Turner, Bénédikt Tran, Chris Markiewicz, Eli Schwartz, Hugo van Kemenade, Jelle
Zijlstra, and others in gh-118761.)

8.1 asyncio

• Standard benchmark results have improved by 10-20%, following the implementation of a new per-thread
double linked list for native tasks, also reducing memory usage. This enables external introspection
tools such as python -m asyncio pstree to introspect the call graph of asyncio tasks running in all threads.
(Contributed by Kumar Aditya in gh-107803.)

• The module now has first class support for free-threading builds. This enables parallel execution of multiple
event loops across different threads, scaling linearly with the number of threads. (Contributed by Kumar Aditya
in gh-128002.)

8.2 base64

• b16decode() is now up to six times faster. (Contributed by Bénédikt Tran, Chris Markiewicz, and Adam
Turner in gh-118761.)

31

https://github.com/python/cpython/issues/125866
https://datatracker.ietf.org/doc/html/rfc9562.html
https://github.com/python/cpython/issues/89083
https://datatracker.ietf.org/doc/html/rfc9562.html
https://datatracker.ietf.org/doc/html/rfc9562.html
https://github.com/python/cpython/issues/128427
https://github.com/python/cpython/issues/131236
https://github.com/python/cpython/issues/123424
https://github.com/python/cpython/issues/91279
https://github.com/python/cpython/issues/118761
https://github.com/python/cpython/issues/107803
https://github.com/python/cpython/issues/128002
https://github.com/python/cpython/issues/118761


8.3 bdb

• The basic debugger now has a sys.monitoring-based backend, which can be selected via the passing
'monitoring' to the Bdb class’s new backend parameter. (Contributed by Tian Gao in gh-124533.)

8.4 difflib

• The IS_LINE_JUNK() function is now up to twice as fast. (Contributed by Adam Turner and Semyon
Moroz in gh-130167.)

8.5 gc

• The new incremental garbage collectormeans that maximum pause times are reduced by an order of magnitude
or more for larger heaps.

Because of this optimization, the meaning of the results of get_threshold() and set_threshold()
have changed, along with get_count() and get_stats().

– For backwards compatibility, get_threshold() continues to return a three-item tuple. The first
value is the threshold for young collections, as before; the second value determines the rate at which the
old collection is scanned (the default is 10, and higher values mean that the old collection is scanned more
slowly). The third value is now meaningless and is always zero.

– set_threshold() now ignores any items after the second.

– get_count() and get_stats() continue to return the same format of results. The only difference
is that instead of the results referring to the young, aging and old generations, the results refer to the young
generation and the aging and collecting spaces of the old generation.

In summary, code that attempted to manipulate the behavior of the cycle GCmay not work exactly as intended,
but it is very unlikely to be harmful. All other code will work just fine.

(Contributed by Mark Shannon in gh-108362.)

8.6 io

• Opening and reading files now executes fewer system calls. Reading a small operating system cached file in
full is up to 15% faster. (Contributed by Cody Maloney and Victor Stinner in gh-120754 and gh-90102.)

8.7 pathlib

• Path.read_bytes now uses unbuffered mode to open files, which is between 9% and 17% faster to read
in full. (Contributed by Cody Maloney in gh-120754.)

8.8 pdb

• pdb now supports two backends, based on either sys.settrace() or sys.monitoring. Using the pdb
CLI or breakpoint() will always use the sys.monitoring backend. Explicitly instantiating pdb.
Pdb and its derived classes will use the sys.settrace() backend by default, which is configurable.
(Contributed by Tian Gao in gh-124533.)

8.9 uuid

• uuid3() and uuid5() are now both roughly 40% faster for 16-byte names and 20% faster for 1024-byte
names. Performance for longer names remains unchanged. (Contributed by Bénédikt Tran in gh-128150.)

• uuid4() is now c. 30% faster. (Contributed by Bénédikt Tran in gh-128150.)

32

https://github.com/python/cpython/issues/124533
https://github.com/python/cpython/issues/130167
https://github.com/python/cpython/issues/108362
https://github.com/python/cpython/issues/120754
https://github.com/python/cpython/issues/90102
https://github.com/python/cpython/issues/120754
https://github.com/python/cpython/issues/124533
https://github.com/python/cpython/issues/128150
https://github.com/python/cpython/issues/128150


8.10 zlib

• OnWindows, zlib-ng is now used as the implementation of the zlibmodule in the default binaries. There are
no known incompatibilities between zlib-ng and the previously-used zlib implementation. This should
result in better performance at all compression levels.

It is worth noting that zlib.Z_BEST_SPEED (1) may result in significantly less compression than the
previous implementation, whilst also significantly reducing the time taken to compress.

(Contributed by Steve Dower in gh-91349.)

9 Removed

9.1 argparse

• Remove the type, choices, and metavar parameters of BooleanOptionalAction. These have been
deprecated since Python 3.12. (Contributed by Nikita Sobolev in gh-118805.)

• Calling add_argument_group() on an argument group now raises a ValueError. Similarly,
add_argument_group() or add_mutually_exclusive_group() on a mutually exclusive group
now both raise ValueErrors. This “nesting” was never supported, often failed to work correctly, and
was unintentionally exposed through inheritance. This functionality has been deprecated since Python 3.11.
(Contributed by Savannah Ostrowski in gh-127186.)

9.2 ast

• Remove the following classes, which have been deprecated aliases of Constant since Python 3.8 and have
emitted deprecation warnings since Python 3.12:

– Bytes

– Ellipsis

– NameConstant

– Num

– Str

As a consequence of these removals, user-defined visit_Num, visit_Str, visit_Bytes,
visit_NameConstant and visit_Ellipsismethods on custom NodeVisitor subclasses will no
longer be called when the NodeVisitor subclass is visiting an AST. Define a visit_Constantmethod
instead.

(Contributed by Alex Waygood in gh-119562.)

• Remove the following deprecated properties on ast.Constant, which were present for compatibility with
the now-removed AST classes:

– Constant.n

– Constant.s

Use Constant.value instead. (Contributed by Alex Waygood in gh-119562.)

9.3 asyncio

• Remove the following classes, methods, and functions, which have been deprecated since Python 3.12:

– AbstractChildWatcher

– FastChildWatcher

– MultiLoopChildWatcher

– PidfdChildWatcher

– SafeChildWatcher

33

https://github.com/zlib-ng/zlib-ng
https://github.com/python/cpython/issues/91349
https://github.com/python/cpython/issues/118805
https://github.com/python/cpython/issues/127186
https://github.com/python/cpython/issues/119562
https://github.com/python/cpython/issues/119562


– ThreadedChildWatcher

– AbstractEventLoopPolicy.get_child_watcher()

– AbstractEventLoopPolicy.set_child_watcher()

– get_child_watcher()

– set_child_watcher()

(Contributed by Kumar Aditya in gh-120804.)

• asyncio.get_event_loop() now raises a RuntimeError if there is no current event loop, and no
longer implicitly creates an event loop.

(Contributed by Kumar Aditya in gh-126353.)

There’s a few patterns that use asyncio.get_event_loop(), most of them can be replaced with
asyncio.run().

If you’re running an async function, simply use asyncio.run().

Before:

async def main():
...

loop = asyncio.get_event_loop()
try:

loop.run_until_complete(main())
finally:

loop.close()

After:

async def main():
...

asyncio.run(main())

If you need to start something, for example, a server listening on a socket and then run forever, use asyncio.
run() and an asyncio.Event.

Before:

def start_server(loop): ...

loop = asyncio.get_event_loop()
try:

start_server(loop)
loop.run_forever()

finally:
loop.close()

After:

def start_server(loop): ...

async def main():
start_server(asyncio.get_running_loop())
await asyncio.Event().wait()

asyncio.run(main())

34

https://github.com/python/cpython/issues/120804
https://github.com/python/cpython/issues/126353


If you need to run something in an event loop, then run some blocking code around it, useasyncio.Runner.

Before:

async def operation_one(): ...
def blocking_code(): ...
async def operation_two(): ...

loop = asyncio.get_event_loop()
try:

loop.run_until_complete(operation_one())
blocking_code()
loop.run_until_complete(operation_two())

finally:
loop.close()

After:

async def operation_one(): ...
def blocking_code(): ...
async def operation_two(): ...

with asyncio.Runner() as runner:
runner.run(operation_one())
blocking_code()
runner.run(operation_two())

9.4 collections.abc

• Remove ByteString, which has been deprecated since Python 3.12. (Contributed by Nikita Sobolev in
gh-118803.)

9.5 email

• Remove email.utils.localtime()”s isdst parameter, which was deprecated in and has been ignored
since Python 3.12. (Contributed by Hugo van Kemenade in gh-118798.)

9.6 importlib.abc

• Remove deprecated importlib.abc classes:

– ResourceReader (use TraversableResources)

– Traversable (use Traversable)

– TraversableResources (use TraversableResources)

(Contributed by Jason R. Coombs and Hugo van Kemenade in gh-93963.)

9.7 itertools

• Remove support for copy, deepcopy, and pickle operations from itertools iterators. These have emitted a
DeprecationWarning since Python 3.12. (Contributed by Raymond Hettinger in gh-101588.)

9.8 pathlib

• Remove support for passing additional keyword arguments to Path. In previous versions, any such arguments
are ignored. (Contributed by Barney Gale in gh-74033.)

• Remove support for passing additional positional arguments to PurePath.relative_to() and
is_relative_to(). In previous versions, any such arguments are joined onto other. (Contributed by
Barney Gale in gh-78707.)

35

https://github.com/python/cpython/issues/118803
https://github.com/python/cpython/issues/118798
https://github.com/python/cpython/issues/93963
https://github.com/python/cpython/issues/101588
https://github.com/python/cpython/issues/74033
https://github.com/python/cpython/issues/78707


9.9 pkgutil

• Remove the get_loader() and find_loader() functions, which have been deprecated since Python
3.12. (Contributed by Bénédikt Tran in gh-97850.)

9.10 pty

• Remove the master_open() and slave_open() functions, which have been deprecated since Python
3.12. Use pty.openpty() instead. (Contributed by Nikita Sobolev in gh-118824.)

9.11 sqlite3

• Remove version and version_info from the sqlite3 module; use sqlite_version and
sqlite_version_info for the actual version number of the runtime SQLite library. (Contributed by
Hugo van Kemenade in gh-118924.)

• Using a sequence of parameters with named placeholders now raises a ProgrammingError, having been
deprecated since Python 3.12. (Contributed by Erlend E. Aasland in gh-118928 and gh-101693.)

9.12 typing

• Remove ByteString, which has been deprecated since Python 3.12. (Contributed by Nikita Sobolev in
gh-118803.)

9.13 urllib

• Remove the Quoter class from urllib.parse, which has been deprecated since Python 3.11.
(Contributed by Nikita Sobolev in gh-118827.)

• Remove the URLopener and FancyURLopener classes from urllib.request, which have been
deprecated since Python 3.3.

myopener.open() can be replaced with urlopen(). myopener.retrieve() can be replaced with
urlretrieve(). Customisations to the opener classes can be replaced by passing customized handlers to
build_opener(). (Contributed by Barney Gale in gh-84850.)

10 Deprecated

• argparse:

– Passing the undocumented keyword argument prefix_chars to add_argument_group() is now
deprecated. (Contributed by Savannah Ostrowski in gh-125563.)

– Deprecated the argparse.FileType type converter. Anything with resource management should
be done downstream after the arguments are parsed. (Contributed by Serhiy Storchaka in gh-58032.)

• asyncio:

– asyncio.iscoroutinefunction() is deprecated and will be removed in Python 3.16; use
inspect.iscoroutinefunction() instead. (Contributed by Jiahao Li and Kumar Aditya in
gh-122875.)

– asyncio policy system is deprecated and will be removed in Python 3.16. In particular, the following
classes and functions are deprecated:

∗ asyncio.AbstractEventLoopPolicy

∗ asyncio.DefaultEventLoopPolicy

∗ asyncio.WindowsSelectorEventLoopPolicy

∗ asyncio.WindowsProactorEventLoopPolicy

∗ asyncio.get_event_loop_policy()

36

https://github.com/python/cpython/issues/97850
https://github.com/python/cpython/issues/118824
https://github.com/python/cpython/issues/118924
https://github.com/python/cpython/issues/118928
https://github.com/python/cpython/issues/101693
https://github.com/python/cpython/issues/118803
https://github.com/python/cpython/issues/118827
https://github.com/python/cpython/issues/84850
https://github.com/python/cpython/issues/125563
https://github.com/python/cpython/issues/58032
https://github.com/python/cpython/issues/122875


∗ asyncio.set_event_loop_policy()

Users should use asyncio.run() or asyncio.Runner with loop_factory to use the desired event
loop implementation.

For example, to use asyncio.SelectorEventLoop on Windows:

import asyncio

async def main():
...

asyncio.run(main(), loop_factory=asyncio.SelectorEventLoop)

(Contributed by Kumar Aditya in gh-127949.)

• builtins: Passing a complex number as the real or imag argument in the complex() constructor is now
deprecated; it should only be passed as a single positional argument. (Contributed by Serhiy Storchaka in
gh-109218.)

• codecs: codecs.open() is now deprecated. Use open() instead. (Contributed by Inada Naoki in gh-
133036.)

• ctypes:

– On non-Windows platforms, setting Structure._pack_ to use aMSVC-compatible default memory
layout is deprecated in favor of setting Structure._layout_ to 'ms'. (Contributed by Petr
Viktorin in gh-131747.)

– Calling ctypes.POINTER() on a string is deprecated. Use ctypes-incomplete-types for self-
referential structures. Also, the internal ctypes._pointer_type_cache is deprecated. See
ctypes.POINTER() for updated implementation details. (Contributed by Sergey Myrianov in gh-
100926.)

• functools: Calling the Python implementation of functools.reduce() with function or sequence as
keyword arguments is now deprecated. (Contributed by Kirill Podoprigora in gh-121676.)

• logging: Support for custom logging handlers with the strm argument is deprecated and scheduled for
removal in Python 3.16. Define handlers with the stream argument instead. (Contributed by Mariusz Felisiak
in gh-115032.)

• mimetypes: Valid extensions start with a “.” or are empty for mimetypes.MimeTypes.add_type().
Undotted extensions are deprecated and will raise a ValueError in Python 3.16. (Contributed by Hugo van
Kemenade in gh-75223.)

• nturl2path: This module is now deprecated. Call urllib.request.url2pathname() and
pathname2url() instead. (Contributed by Barney Gale in gh-125866.)

• os: Soft deprecate os.popen() and os.spawn* functions. They should no longer be used to write new
code. The subprocess module is recommended instead. (Contributed by Victor Stinner in gh-120743.)

• pathlib: pathlib.PurePath.as_uri() is deprecated and will be removed in Python 3.19. Use
pathlib.Path.as_uri() instead. (Contributed by Barney Gale in gh-123599.)

• pdb: The undocumented pdb.Pdb.curframe_locals attribute is now a deprecated read-only property.
The low overhead dynamic frame locals access added in Python 3.13 by PEP 667 means the frame locals cache
reference previously stored in this attribute is no longer needed. Derived debuggers should access pdb.Pdb.
curframe.f_locals directly in Python 3.13 and later versions. (Contributed by Tian Gao in gh-124369
and gh-125951.)

• symtable: Deprecate symtable.Class.get_methods() due to the lack of interest. (Contributed
by Bénédikt Tran in gh-119698.)

• tkinter: The tkinter.Variable methods trace_variable(), trace_vdelete() and
trace_vinfo() are now deprecated. Use trace_add(), trace_remove() and trace_info()
instead. (Contributed by Serhiy Storchaka in gh-120220.)

37

https://github.com/python/cpython/issues/127949
https://github.com/python/cpython/issues/109218
https://github.com/python/cpython/issues/133036
https://github.com/python/cpython/issues/133036
https://github.com/python/cpython/issues/131747
https://github.com/python/cpython/issues/100926
https://github.com/python/cpython/issues/100926
https://github.com/python/cpython/issues/121676
https://github.com/python/cpython/issues/115032
https://github.com/python/cpython/issues/75223
https://github.com/python/cpython/issues/125866
https://github.com/python/cpython/issues/120743
https://github.com/python/cpython/issues/123599
https://github.com/python/cpython/issues/124369
https://github.com/python/cpython/issues/125951
https://github.com/python/cpython/issues/119698
https://github.com/python/cpython/issues/120220


• urllib.parse: Accepting objects with false values (like 0 and []) except empty strings, byte-like
objects and None in urllib.parse functions parse_qsl() and parse_qs() is now deprecated.
(Contributed by Serhiy Storchaka in gh-116897.)

10.1 Pending removal in Python 3.15

• The import system:

– Setting __cached__ on a module while failing to set __spec__.cached is deprecated. In Python
3.15, __cached__ will cease to be set or take into consideration by the import system or standard
library. (gh-97879)

– Setting __package__ on a module while failing to set __spec__.parent is deprecated. In Python
3.15, __package__ will cease to be set or take into consideration by the import system or standard
library. (gh-97879)

• ctypes:

– The undocumented ctypes.SetPointerType() function has been deprecated since Python 3.13.

• http.server:

– The obsolete and rarely used CGIHTTPRequestHandler has been deprecated since Python 3.13. No
direct replacement exists. Anything is better than CGI to interface a web server with a request handler.

– The --cgi flag to the python -m http.server command-line interface has been deprecated
since Python 3.13.

• importlib:

– load_module() method: use exec_module() instead.

• locale:

– The getdefaultlocale() function has been deprecated since Python 3.11. Its removal was
originally planned for Python 3.13 (gh-90817), but has been postponed to Python 3.15. Use
getlocale(), setlocale(), and getencoding() instead. (Contributed by Hugo van
Kemenade in gh-111187.)

• pathlib:

– PurePath.is_reserved() has been deprecated since Python 3.13. Use os.path.
isreserved() to detect reserved paths on Windows.

• platform:

– java_ver() has been deprecated since Python 3.13. This function is only useful for Jython support,
has a confusing API, and is largely untested.

• sysconfig:

– The check_home argument of sysconfig.is_python_build() has been deprecated since
Python 3.12.

• threading:

– RLock() will take no arguments in Python 3.15. Passing any arguments has been deprecated since
Python 3.14, as the Python version does not permit any arguments, but the C version allows any number
of positional or keyword arguments, ignoring every argument.

• types:

– types.CodeType: Accessing co_lnotab was deprecated in PEP 626 since 3.10 and was planned
to be removed in 3.12, but it only got a proper DeprecationWarning in 3.12. May be removed in
3.15. (Contributed by Nikita Sobolev in gh-101866.)

• typing:

38

https://github.com/python/cpython/issues/116897
https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/90817
https://github.com/python/cpython/issues/111187
https://peps.python.org/pep-0626/
https://github.com/python/cpython/issues/101866


– The undocumented keyword argument syntax for creating NamedTuple classes (for example, Point
= NamedTuple("Point", x=int, y=int)) has been deprecated since Python 3.13. Use the
class-based syntax or the functional syntax instead.

– When using the functional syntax of TypedDicts, failing to pass a value to the fields parameter (TD =
TypedDict("TD")) or passing None (TD = TypedDict("TD", None)) has been deprecated
since Python 3.13. Use class TD(TypedDict): pass or TD = TypedDict("TD", {})
to create a TypedDict with zero field.

– The typing.no_type_check_decorator() decorator function has been deprecated since
Python 3.13. After eight years in the typing module, it has yet to be supported by any major type
checker.

• wave:

– The getmark(), setmark(), and getmarkers() methods of the Wave_read and
Wave_write classes have been deprecated since Python 3.13.

• zipimport:

– load_module() has been deprecated since Python 3.10. Use exec_module() instead.
(Contributed by Jiahao Li in gh-125746.)

10.2 Pending removal in Python 3.16

• The import system:

– Setting __loader__ on a module while failing to set __spec__.loader is deprecated. In Python
3.16, __loader__ will cease to be set or taken into consideration by the import system or the standard
library.

• array:

– The'u' format code (wchar_t) has been deprecated in documentation since Python 3.3 and at runtime
since Python 3.13. Use the 'w' format code (Py_UCS4) for Unicode characters instead.

• asyncio:

– asyncio.iscoroutinefunction() is deprecated and will be removed in Python 3.16; use
inspect.iscoroutinefunction() instead. (Contributed by Jiahao Li and Kumar Aditya in
gh-122875.)

– asyncio policy system is deprecated and will be removed in Python 3.16. In particular, the following
classes and functions are deprecated:

∗ asyncio.AbstractEventLoopPolicy

∗ asyncio.DefaultEventLoopPolicy

∗ asyncio.WindowsSelectorEventLoopPolicy

∗ asyncio.WindowsProactorEventLoopPolicy

∗ asyncio.get_event_loop_policy()

∗ asyncio.set_event_loop_policy()

Users should use asyncio.run() or asyncio.Runner with loop_factory to use the desired event
loop implementation.

For example, to use asyncio.SelectorEventLoop on Windows:

import asyncio

async def main():
...

asyncio.run(main(), loop_factory=asyncio.SelectorEventLoop)

39

https://github.com/python/cpython/issues/125746
https://github.com/python/cpython/issues/122875


(Contributed by Kumar Aditya in gh-127949.)

• builtins:

– Bitwise inversion on boolean types, ~True or ~False has been deprecated since Python 3.12, as it
produces surprising and unintuitive results (-2 and -1). Use not x instead for the logical negation of
a Boolean. In the rare case that you need the bitwise inversion of the underlying integer, convert to int
explicitly (~int(x)).

• functools:

– Calling the Python implementation of functools.reduce() with function or sequence as keyword
arguments has been deprecated since Python 3.14.

• logging:

Support for custom logging handlers with the strm argument is deprecated and scheduled for removal in Python
3.16. Define handlers with the stream argument instead. (Contributed by Mariusz Felisiak in gh-115032.)

• mimetypes:

– Valid extensions start with a “.” or are empty formimetypes.MimeTypes.add_type(). Undotted
extensions are deprecated and will raise a ValueError in Python 3.16. (Contributed by Hugo van
Kemenade in gh-75223.)

• shutil:

– The ExecError exception has been deprecated since Python 3.14. It has not been used by any function
in shutil since Python 3.4, and is now an alias of RuntimeError.

• symtable:

– The Class.get_methods method has been deprecated since Python 3.14.

• sys:

– The _enablelegacywindowsfsencoding() function has been deprecated since Python 3.13.
Use the PYTHONLEGACYWINDOWSFSENCODING environment variable instead.

• sysconfig:

– The sysconfig.expand_makefile_vars() function has been deprecated since Python 3.14.
Use the vars argument of sysconfig.get_paths() instead.

• tarfile:

– The undocumented and unused TarFile.tarfile attribute has been deprecated since Python 3.13.

10.3 Pending removal in Python 3.17

• typing:

– Before Python 3.14, old-style unions were implemented using the private class typing.
_UnionGenericAlias. This class is no longer needed for the implementation, but it has been
retained for backward compatibility, with removal scheduled for Python 3.17. Users should use
documented introspection helpers like typing.get_origin() and typing.get_args()
instead of relying on private implementation details.

10.4 Pending removal in Python 3.19

• ctypes:

– Implicitly switching to the MSVC-compatible struct layout by setting _pack_ but not _layout_ on
non-Windows platforms.

40

https://github.com/python/cpython/issues/127949
https://github.com/python/cpython/issues/115032
https://github.com/python/cpython/issues/75223


10.5 Pending removal in future versions

The following APIs will be removed in the future, although there is currently no date scheduled for their removal.

• argparse:

– Nesting argument groups and nesting mutually exclusive groups are deprecated.

– Passing the undocumented keyword argument prefix_chars to add_argument_group() is now
deprecated.

– The argparse.FileType type converter is deprecated.

• builtins:

– bool(NotImplemented).

– Generators: throw(type, exc, tb) and athrow(type, exc, tb) signature is deprecated:
use throw(exc) and athrow(exc) instead, the single argument signature.

– Currently Python accepts numeric literals immediately followed by keywords, for example 0in x, 1or
x, 0if 1else 2. It allows confusing and ambiguous expressions like [0x1for x in y] (which
can be interpreted as [0x1 for x in y] or [0x1f or x in y]). A syntax warning is raised if
the numeric literal is immediately followed by one of keywords and, else, for, if, in, is and or.
In a future release it will be changed to a syntax error. (gh-87999)

– Support for __index__() and __int__() method returning non-int type: these methods will be
required to return an instance of a strict subclass of int.

– Support for__float__()method returning a strict subclass offloat: thesemethods will be required
to return an instance of float.

– Support for __complex__() method returning a strict subclass of complex: these methods will be
required to return an instance of complex.

– Delegation of int() to __trunc__() method.

– Passing a complex number as the real or imag argument in the complex() constructor is now
deprecated; it should only be passed as a single positional argument. (Contributed by Serhiy Storchaka
in gh-109218.)

• calendar: calendar.January and calendar.February constants are deprecated and replaced
by calendar.JANUARY and calendar.FEBRUARY. (Contributed by Prince Roshan in gh-103636.)

• codecs: use open() instead of codecs.open(). (gh-133038)

• codeobject.co_lnotab: use the codeobject.co_lines() method instead.

• datetime:

– utcnow(): use datetime.datetime.now(tz=datetime.UTC).

– utcfromtimestamp(): use datetime.datetime.fromtimestamp(timestamp,
tz=datetime.UTC).

• gettext: Plural value must be an integer.

• importlib:

– cache_from_source() debug_override parameter is deprecated: use the optimization parameter
instead.

• importlib.metadata:

– EntryPoints tuple interface.

– Implicit None on return values.

• logging: the warn() method has been deprecated since Python 3.3, use warning() instead.

• mailbox: Use of StringIO input and text mode is deprecated, use BytesIO and binary mode instead.

41

https://github.com/python/cpython/issues/87999
https://github.com/python/cpython/issues/109218
https://github.com/python/cpython/issues/103636
https://github.com/python/cpython/issues/133038


• os: Calling os.register_at_fork() in multi-threaded process.

• pydoc.ErrorDuringImport: A tuple value for exc_info parameter is deprecated, use an exception
instance.

• re: More strict rules are now applied for numerical group references and group names in regular expressions.
Only sequence of ASCII digits is now accepted as a numerical reference. The group name in bytes patterns
and replacement strings can now only contain ASCII letters and digits and underscore. (Contributed by Serhiy
Storchaka in gh-91760.)

• sre_compile, sre_constants and sre_parse modules.

• shutil: rmtree()”s onerror parameter is deprecated in Python 3.12; use the onexc parameter instead.

• ssl options and protocols:

– ssl.SSLContext without protocol argument is deprecated.

– ssl.SSLContext: set_npn_protocols() and selected_npn_protocol() are
deprecated: use ALPN instead.

– ssl.OP_NO_SSL* options

– ssl.OP_NO_TLS* options

– ssl.PROTOCOL_SSLv3

– ssl.PROTOCOL_TLS

– ssl.PROTOCOL_TLSv1

– ssl.PROTOCOL_TLSv1_1

– ssl.PROTOCOL_TLSv1_2

– ssl.TLSVersion.SSLv3

– ssl.TLSVersion.TLSv1

– ssl.TLSVersion.TLSv1_1

• threading methods:

– threading.Condition.notifyAll(): use notify_all().

– threading.Event.isSet(): use is_set().

– threading.Thread.isDaemon(), threading.Thread.setDaemon(): use
threading.Thread.daemon attribute.

– threading.Thread.getName(), threading.Thread.setName(): use threading.
Thread.name attribute.

– threading.currentThread(): use threading.current_thread().

– threading.activeCount(): use threading.active_count().

• typing.Text (gh-92332).

• The internal class typing._UnionGenericAlias is no longer used to implement typing.Union.
To preserve compatibility with users using this private class, a compatibility shim will be provided until at least
Python 3.17. (Contributed by Jelle Zijlstra in gh-105499.)

• unittest.IsolatedAsyncioTestCase: it is deprecated to return a value that is not None from a
test case.

• urllib.parse deprecated functions: urlparse() instead

– splitattr()

– splithost()

– splitnport()

42

https://github.com/python/cpython/issues/91760
https://github.com/python/cpython/issues/92332
https://github.com/python/cpython/issues/105499


– splitpasswd()

– splitport()

– splitquery()

– splittag()

– splittype()

– splituser()

– splitvalue()

– to_bytes()

• wsgiref: SimpleHandler.stdout.write() should not do partial writes.

• xml.etree.ElementTree: Testing the truth value of an Element is deprecated. In a future release it
will always return True. Prefer explicit len(elem) or elem is not None tests instead.

• sys._clear_type_cache() is deprecated: use sys._clear_internal_caches() instead.

11 CPython bytecode changes

• Replaced the opcode BINARY_SUBSCR by BINARY_OP with oparg NB_SUBSCR. (Contributed by Irit
Katriel in gh-100239.)

12 Porting to Python 3.14

This section lists previously described changes and other bugfixes that may require changes to your code.

12.1 Changes in the Python API

• functools.partial is now a method descriptor. Wrap it in staticmethod() if you want to preserve
the old behavior. (Contributed by Serhiy Storchaka and Dominykas Grigonis in gh-121027.)

• The garbage collector is now incremental, which means that the behavior of gc.collect() changes slightly:

– gc.collect(1): Performs an increment of garbage collection, rather than collecting generation 1.

– Other calls to gc.collect() are unchanged.

• The locale.nl_langinfo() function now temporarily sets the LC_CTYPE locale in some cases. This
temporary change affects other threads. (Contributed by Serhiy Storchaka in gh-69998.)

• types.UnionType is now an alias for typing.Union, causing changes in some behaviors. See above
for more details. (Contributed by Jelle Zijlstra in gh-105499.)

• The runtime behavior of annotations has changed in various ways; see above for details. While most code that
interacts with annotations should continue to work, some undocumented details may behave differently.

13 Build changes

• GNUAutoconf 2.72 is now required to generateconfigure. (Contributed by ErlendAasland in gh-115765.)

• #pragma-based linking with python3*.lib can now be switched off with Py_NO_LINK_LIB.
(Contributed by Jean-Christophe Fillion-Robin in gh-82909.)

13.1 PEP 761: Discontinuation of PGP signatures

PGP signatures will not be available for CPython 3.14 and onwards. Users verifying artifacts must use Sigstore
verification materials for verifying CPython artifacts. This change in release process is specified in PEP 761.

43

https://github.com/python/cpython/issues/100239
https://github.com/python/cpython/issues/121027
https://github.com/python/cpython/issues/69998
https://github.com/python/cpython/issues/105499
https://github.com/python/cpython/issues/115765
https://github.com/python/cpython/issues/82909
https://www.python.org/downloads/metadata/sigstore/
https://www.python.org/downloads/metadata/sigstore/
https://peps.python.org/pep-0761/


14 C API changes

14.1 New features

• Add PyLong_GetSign() function to get the sign of int objects. (Contributed by Sergey B Kirpichev in
gh-116560.)

• Add a new PyUnicodeWriter API to create a Python str object:

– PyUnicodeWriter_Create()

– PyUnicodeWriter_DecodeUTF8Stateful()

– PyUnicodeWriter_Discard()

– PyUnicodeWriter_Finish()

– PyUnicodeWriter_Format()

– PyUnicodeWriter_WriteASCII()

– PyUnicodeWriter_WriteChar()

– PyUnicodeWriter_WriteRepr()

– PyUnicodeWriter_WriteStr()

– PyUnicodeWriter_WriteSubstring()

– PyUnicodeWriter_WriteUCS4()

– PyUnicodeWriter_WriteUTF8()

– PyUnicodeWriter_WriteWideChar()

(Contributed by Victor Stinner in gh-119182.)

• Add PyIter_NextItem() to replace PyIter_Next(), which has an ambiguous return value.
(Contributed by Irit Katriel and Erlend Aasland in gh-105201.)

• Add PyLong_IsPositive(), PyLong_IsNegative() and PyLong_IsZero() for checking if
PyLongObject is positive, negative, or zero, respectively. (Contributed by James Roy and Sergey B
Kirpichev in gh-126061.)

• Add new functions to convert C <stdint.h> numbers from/to Python int:

– PyLong_AsInt32()

– PyLong_AsInt64()

– PyLong_AsUInt32()

– PyLong_AsUInt64()

– PyLong_FromInt32()

– PyLong_FromInt64()

– PyLong_FromUInt32()

– PyLong_FromUInt64()

(Contributed by Victor Stinner in gh-120389.)

• Add PyBytes_Join(sep, iterable) function, similar to sep.join(iterable) in Python.
(Contributed by Victor Stinner in gh-121645.)

• Add Py_HashBuffer() to compute and return the hash value of a buffer. (Contributed by Antoine Pitrou
and Victor Stinner in gh-122854.)

• Add functions to get and set the current runtime Python configuration (PEP 741):

– PyConfig_Get()

44

https://github.com/python/cpython/issues/116560
https://github.com/python/cpython/issues/119182
https://github.com/python/cpython/issues/105201
https://github.com/python/cpython/issues/126061
https://github.com/python/cpython/issues/120389
https://github.com/python/cpython/issues/121645
https://github.com/python/cpython/issues/122854
https://peps.python.org/pep-0741/


– PyConfig_GetInt()

– PyConfig_Set()

– PyConfig_Names()

(Contributed by Victor Stinner in gh-107954.)

• Add functions to configure the Python initialization (PEP 741):

– Py_InitializeFromInitConfig()

– PyInitConfig_AddModule()

– PyInitConfig_Create()

– PyInitConfig_Free()

– PyInitConfig_FreeStrList()

– PyInitConfig_GetError()

– PyInitConfig_GetExitCode()

– PyInitConfig_GetInt()

– PyInitConfig_GetStr()

– PyInitConfig_GetStrList()

– PyInitConfig_HasOption()

– PyInitConfig_SetInt()

– PyInitConfig_SetStr()

– PyInitConfig_SetStrList()

(Contributed by Victor Stinner in gh-107954.)

• Add a new import and export API for Python int objects (PEP 757):

– PyLong_GetNativeLayout()

– PyLong_Export()

– PyLong_FreeExport()

– PyLongWriter_Create()

– PyLongWriter_Finish()

– PyLongWriter_Discard()

(Contributed by Sergey B Kirpichev and Victor Stinner in gh-102471.)

• Add PyType_GetBaseByToken() and Py_tp_token slot for easier superclass identification, which
attempts to resolve the type checking issue mentioned in PEP 630. (Contributed in gh-124153.)

• Add PyUnicode_Equal() function to the limited C API: test if two strings are equal. (Contributed by
Victor Stinner in gh-124502.)

• Add PyType_Freeze() function to make a type immutable. (Contributed by Victor Stinner in gh-121654.)

• Add PyUnstable_Object_EnableDeferredRefcount() for enabling deferred reference
counting, as outlined in PEP 703.

• AddPyMonitoring_FireBranchLeftEvent() andPyMonitoring_FireBranchRightEvent()
for generating BRANCH_LEFT and BRANCH_RIGHT events, respectively.

• Add Py_fopen() function to open a file. Similar to the fopen() function, but the path parameter is a
Python object and an exception is set on error. Add also Py_fclose() function to close a file. (Contributed
by Victor Stinner in gh-127350.)

45

https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0741/
https://github.com/python/cpython/issues/107954
https://peps.python.org/pep-0757/
https://github.com/python/cpython/issues/102471
https://peps.python.org/pep-0630/#type-checking
https://peps.python.org/pep-0630/
https://github.com/python/cpython/issues/124153
https://github.com/python/cpython/issues/124502
https://github.com/python/cpython/issues/121654
https://peps.python.org/pep-0703/
https://github.com/python/cpython/issues/127350


• The k and K formats in PyArg_ParseTuple() and similar functions now use __index__() if available,
like all other integer formats. (Contributed by Serhiy Storchaka in gh-112068.)

• Add macros Py_PACK_VERSION() and Py_PACK_FULL_VERSION() for bit-packing Python version
numbers. (Contributed by Petr Viktorin in gh-128629.)

• Add PyUnstable_IsImmortal() for determining whether an object is immortal, for debugging
purposes.

• Add PyImport_ImportModuleAttr() and PyImport_ImportModuleAttrString() helper
functions to import a module and get an attribute of the module. (Contributed by Victor Stinner in gh-128911.)

• Add support for a new p format unit in Py_BuildValue() that allows taking a C integer and produces a
Python bool object. (Contributed by Pablo Galindo in bpo-45325.)

• Add PyUnstable_Object_IsUniqueReferencedTemporary() to determine if an object is a
unique temporary object on the interpreter’s operand stack. This can be used in some cases as a replacement
for checking if Py_REFCNT() is 1 for Python objects passed as arguments to C API functions.

• Add PyUnstable_Object_IsUniquelyReferenced() as a replacement for Py_REFCNT(op)
== 1 on free threaded builds. (Contributed by Peter Bierma in gh-133140.)

14.2 Limited C API changes

• In the limited C API 3.14 and newer, Py_TYPE() and Py_REFCNT() are now implemented as an opaque
function call to hide implementation details. (Contributed by Victor Stinner in gh-120600 and gh-124127.)

• Remove the PySequence_Fast_GET_SIZE, PySequence_Fast_GET_ITEM and
PySequence_Fast_ITEMS macros from the limited C API, since these macros never worked in
the limited C API. Keep PySequence_Fast() in the limited C API. (Contributed by Victor Stinner in
gh-91417.)

14.3 Porting to Python 3.14

• Py_Finalize() now deletes all interned strings. This is backwards incompatible to any C-Extension
that holds onto an interned string after a call to Py_Finalize() and is then reused after a call to
Py_Initialize(). Any issues arising from this behavior will normally result in crashes during the
execution of the subsequent call to Py_Initialize() from accessing uninitialized memory. To fix, use an
address sanitizer to identify any use-after-free coming from an interned string and deallocate it during module
shutdown. (Contributed by Eddie Elizondo in gh-113601.)

• The Unicode Exception Objects C API now raises a TypeError if its exception argument is not a
UnicodeError object. (Contributed by Bénédikt Tran in gh-127691.)

• The interpreter internally avoids some reference count modifications when loading objects onto the
operands stack by borrowing references when possible. This can lead to smaller reference count
values compared to previous Python versions. C API extensions that checked Py_REFCNT() of
1 to determine if an function argument is not referenced by any other code should instead use
PyUnstable_Object_IsUniqueReferencedTemporary() as a safer replacement.

• Private functions promoted to public C APIs:

– _PyBytes_Join(): PyBytes_Join()

– _PyLong_IsNegative(): PyLong_IsNegative()

– _PyLong_IsPositive(): PyLong_IsPositive()

– _PyLong_IsZero(): PyLong_IsZero()

– _PyLong_Sign(): PyLong_GetSign()

– _PyUnicodeWriter_Dealloc(): PyUnicodeWriter_Discard()

– _PyUnicodeWriter_Finish(): PyUnicodeWriter_Finish()

– _PyUnicodeWriter_Init(): use PyUnicodeWriter_Create()

46

https://github.com/python/cpython/issues/112068
https://github.com/python/cpython/issues/128629
https://github.com/python/cpython/issues/128911
https://bugs.python.org/issue?@action=redirect&bpo=45325
https://github.com/python/cpython/issues/133140
https://github.com/python/cpython/issues/120600
https://github.com/python/cpython/issues/124127
https://github.com/python/cpython/issues/91417
https://github.com/python/cpython/issues/113601
https://github.com/python/cpython/issues/127691


– _PyUnicodeWriter_Prepare(): (no replacement)

– _PyUnicodeWriter_PrepareKind(): (no replacement)

– _PyUnicodeWriter_WriteChar(): PyUnicodeWriter_WriteChar()

– _PyUnicodeWriter_WriteStr(): PyUnicodeWriter_WriteStr()

– _PyUnicodeWriter_WriteSubstring(): PyUnicodeWriter_WriteSubstring()

– _PyUnicode_EQ(): PyUnicode_Equal()

– _PyUnicode_Equal(): PyUnicode_Equal()

– _Py_GetConfig(): PyConfig_Get() and PyConfig_GetInt()

– _Py_HashBytes(): Py_HashBuffer()

– _Py_fopen_obj(): Py_fopen()

– PyMutex_IsLocked() : PyMutex_IsLocked()

The pythoncapi-compat project can be used to get most of these new functions on Python 3.13 and older.

14.4 Deprecated

• The Py_HUGE_VAL macro is soft deprecated, use Py_INFINITY instead. (Contributed by Sergey B
Kirpichev in gh-120026.)

• Macros Py_IS_NAN, Py_IS_INFINITY and Py_IS_FINITE are soft deprecated, use instead isnan,
isinf and isfinite available from math.h since C99. (Contributed by Sergey B Kirpichev in gh-
119613.)

• Non-tuple sequences are deprecated as argument for the (items) format unit in PyArg_ParseTuple()
and other argument parsing functions if items contains format units which store a borrowed buffer or a borrowed
reference. (Contributed by Serhiy Storchaka in gh-50333.)

• The previously undocumented function PySequence_In() is soft deprecated. Use
PySequence_Contains() instead. (Contributed by Yuki Kobayashi in gh-127896.)

• The PyMonitoring_FireBranchEvent function is deprecated and should
be replaced with calls to PyMonitoring_FireBranchLeftEvent() and
PyMonitoring_FireBranchRightEvent().

• The following private functions are deprecated and planned for removal in Python 3.18:

– _PyBytes_Join(): use PyBytes_Join().

– _PyDict_GetItemStringWithError(): use PyDict_GetItemStringRef().

– _PyDict_Pop(): use PyDict_Pop().

– _PyLong_Sign(): use PyLong_GetSign().

– _PyLong_FromDigits() and _PyLong_New(): use PyLongWriter_Create().

– _PyThreadState_UncheckedGet(): use PyThreadState_GetUnchecked().

– _PyUnicode_AsString(): use PyUnicode_AsUTF8().

– _PyUnicodeWriter_Init(): replace _PyUnicodeWriter_Init(&writer) with
writer = PyUnicodeWriter_Create(0).

– _PyUnicodeWriter_Finish(): replace _PyUnicodeWriter_Finish(&writer) with
PyUnicodeWriter_Finish(writer).

– _PyUnicodeWriter_Dealloc(): replace _PyUnicodeWriter_Dealloc(&writer)
with PyUnicodeWriter_Discard(writer).

– _PyUnicodeWriter_WriteChar(): replace_PyUnicodeWriter_WriteChar(&writer,
ch) with PyUnicodeWriter_WriteChar(writer, ch).

47

https://github.com/python/pythoncapi-compat/
https://github.com/python/cpython/issues/120026
https://github.com/python/cpython/issues/119613
https://github.com/python/cpython/issues/119613
https://github.com/python/cpython/issues/50333
https://github.com/python/cpython/issues/127896


– _PyUnicodeWriter_WriteStr(): replace _PyUnicodeWriter_WriteStr(&writer,
str) with PyUnicodeWriter_WriteStr(writer, str).

– _PyUnicodeWriter_WriteSubstring(): replace_PyUnicodeWriter_WriteSubstring(&writer,
str, start, end) with PyUnicodeWriter_WriteSubstring(writer, str,
start, end).

– _PyUnicodeWriter_WriteASCIIString(): replace_PyUnicodeWriter_WriteASCIIString(&writer,
str) with PyUnicodeWriter_WriteASCII(writer, str).

– _PyUnicodeWriter_WriteLatin1String(): replace_PyUnicodeWriter_WriteLatin1String(&writer,
str) with PyUnicodeWriter_WriteUTF8(writer, str).

– _Py_HashPointer(): use Py_HashPointer().

– _Py_fopen_obj(): use Py_fopen().

The pythoncapi-compat project can be used to get these new public functions on Python 3.13 and older.
(Contributed by Victor Stinner in gh-128863.)

Pending removal in Python 3.15

• The PyImport_ImportModuleNoBlock(): Use PyImport_ImportModule() instead.

• PyWeakref_GetObject() and PyWeakref_GET_OBJECT(): Use PyWeakref_GetRef()
instead. The pythoncapi-compat project can be used to get PyWeakref_GetRef() on Python 3.12 and
older.

• Py_UNICODE type and the Py_UNICODE_WIDE macro: Use wchar_t instead.

• PyUnicode_AsDecodedObject(): Use PyCodec_Decode() instead.

• PyUnicode_AsDecodedUnicode(): Use PyCodec_Decode() instead; Note that some codecs (for
example, «base64») may return a type other than str, such as bytes.

• PyUnicode_AsEncodedObject(): Use PyCodec_Encode() instead.

• PyUnicode_AsEncodedUnicode(): Use PyCodec_Encode() instead; Note that some codecs (for
example, «base64») may return a type other than bytes, such as str.

• Python initialization functions, deprecated in Python 3.13:

– Py_GetPath(): Use PyConfig_Get("module_search_paths") (sys.path) instead.

– Py_GetPrefix(): Use PyConfig_Get("base_prefix") (sys.base_prefix) instead.
Use PyConfig_Get("prefix") (sys.prefix) if virtual environments need to be handled.

– Py_GetExecPrefix(): Use PyConfig_Get("base_exec_prefix") (sys.
base_exec_prefix) instead. Use PyConfig_Get("exec_prefix") (sys.
exec_prefix) if virtual environments need to be handled.

– Py_GetProgramFullPath(): Use PyConfig_Get("executable") (sys.
executable) instead.

– Py_GetProgramName(): Use PyConfig_Get("executable") (sys.executable)
instead.

– Py_GetPythonHome(): Use PyConfig_Get("home") or the PYTHONHOME environment
variable instead.

The pythoncapi-compat project can be used to get PyConfig_Get() on Python 3.13 and older.

• Functions to configure Python’s initialization, deprecated in Python 3.11:

– PySys_SetArgvEx(): Set PyConfig.argv instead.

– PySys_SetArgv(): Set PyConfig.argv instead.

– Py_SetProgramName(): Set PyConfig.program_name instead.

– Py_SetPythonHome(): Set PyConfig.home instead.

48

https://github.com/python/pythoncapi-compat/
https://github.com/python/cpython/issues/128863
https://github.com/python/pythoncapi-compat/
https://github.com/python/pythoncapi-compat/


– PySys_ResetWarnOptions(): Clear sys.warnoptions and warnings.filters
instead.

The Py_InitializeFromConfig() API should be used with PyConfig instead.

• Global configuration variables:

– Py_DebugFlag: Use PyConfig.parser_debug or PyConfig_Get("parser_debug")
instead.

– Py_VerboseFlag: Use PyConfig.verbose or PyConfig_Get("verbose") instead.

– Py_QuietFlag: Use PyConfig.quiet or PyConfig_Get("quiet") instead.

– Py_InteractiveFlag: Use PyConfig.interactive or
PyConfig_Get("interactive") instead.

– Py_InspectFlag: Use PyConfig.inspect or PyConfig_Get("inspect") instead.

– Py_OptimizeFlag: Use PyConfig.optimization_level or
PyConfig_Get("optimization_level") instead.

– Py_NoSiteFlag: Use PyConfig.site_import or PyConfig_Get("site_import")
instead.

– Py_BytesWarningFlag: Use PyConfig.bytes_warning or
PyConfig_Get("bytes_warning") instead.

– Py_FrozenFlag: Use PyConfig.pathconfig_warnings or
PyConfig_Get("pathconfig_warnings") instead.

– Py_IgnoreEnvironmentFlag: Use PyConfig.use_environment or
PyConfig_Get("use_environment") instead.

– Py_DontWriteBytecodeFlag: Use PyConfig.write_bytecode or
PyConfig_Get("write_bytecode") instead.

– Py_NoUserSiteDirectory: Use PyConfig.user_site_directory or
PyConfig_Get("user_site_directory") instead.

– Py_UnbufferedStdioFlag: Use PyConfig.buffered_stdio or
PyConfig_Get("buffered_stdio") instead.

– Py_HashRandomizationFlag: Use PyConfig.use_hash_seed and PyConfig.
hash_seed or PyConfig_Get("hash_seed") instead.

– Py_IsolatedFlag: Use PyConfig.isolated or PyConfig_Get("isolated") instead.

– Py_LegacyWindowsFSEncodingFlag: Use PyPreConfig.
legacy_windows_fs_encoding orPyConfig_Get("legacy_windows_fs_encoding")
instead.

– Py_LegacyWindowsStdioFlag: Use PyConfig.legacy_windows_stdio or
PyConfig_Get("legacy_windows_stdio") instead.

– Py_FileSystemDefaultEncoding, Py_HasFileSystemDefaultEncoding: Use
PyConfig.filesystem_encoding or PyConfig_Get("filesystem_encoding")
instead.

– Py_FileSystemDefaultEncodeErrors: Use PyConfig.filesystem_errors or
PyConfig_Get("filesystem_errors") instead.

– Py_UTF8Mode: Use PyPreConfig.utf8_mode or PyConfig_Get("utf8_mode")
instead. (see Py_PreInitialize())

The Py_InitializeFromConfig() API should be used with PyConfig to set these options. Or
PyConfig_Get() can be used to get these options at runtime.

49



Pending removal in Python 3.16

• The bundled copy of libmpdec.

Pending removal in Python 3.18

• Deprecated private functions (gh-128863):

– _PyBytes_Join(): use PyBytes_Join().

– _PyDict_GetItemStringWithError(): use PyDict_GetItemStringRef().

– _PyDict_Pop(): PyDict_Pop().

– _PyLong_Sign(): use PyLong_GetSign().

– _PyLong_FromDigits() and _PyLong_New(): use PyLongWriter_Create().

– _PyThreadState_UncheckedGet(): use PyThreadState_GetUnchecked().

– _PyUnicode_AsString(): use PyUnicode_AsUTF8().

– _PyUnicodeWriter_Init(): replace _PyUnicodeWriter_Init(&writer) with
writer = PyUnicodeWriter_Create(0).

– _PyUnicodeWriter_Finish(): replace _PyUnicodeWriter_Finish(&writer) with
PyUnicodeWriter_Finish(writer).

– _PyUnicodeWriter_Dealloc(): replace _PyUnicodeWriter_Dealloc(&writer)
with PyUnicodeWriter_Discard(writer).

– _PyUnicodeWriter_WriteChar(): replace_PyUnicodeWriter_WriteChar(&writer,
ch) with PyUnicodeWriter_WriteChar(writer, ch).

– _PyUnicodeWriter_WriteStr(): replace _PyUnicodeWriter_WriteStr(&writer,
str) with PyUnicodeWriter_WriteStr(writer, str).

– _PyUnicodeWriter_WriteSubstring(): replace_PyUnicodeWriter_WriteSubstring(&writer,
str, start, end) with PyUnicodeWriter_WriteSubstring(writer, str,
start, end).

– _PyUnicodeWriter_WriteASCIIString(): replace_PyUnicodeWriter_WriteASCIIString(&writer,
str) with PyUnicodeWriter_WriteUTF8(writer, str).

– _PyUnicodeWriter_WriteLatin1String(): replace_PyUnicodeWriter_WriteLatin1String(&writer,
str) with PyUnicodeWriter_WriteUTF8(writer, str).

– _PyUnicodeWriter_Prepare(): (no replacement).

– _PyUnicodeWriter_PrepareKind(): (no replacement).

– _Py_HashPointer(): use Py_HashPointer().

– _Py_fopen_obj(): use Py_fopen().

The pythoncapi-compat project can be used to get these new public functions on Python 3.13 and older.

Pending removal in future versions

The following APIs are deprecated and will be removed, although there is currently no date scheduled for their
removal.

• Py_TPFLAGS_HAVE_FINALIZE: Unneeded since Python 3.8.

• PyErr_Fetch(): Use PyErr_GetRaisedException() instead.

• PyErr_NormalizeException(): Use PyErr_GetRaisedException() instead.

• PyErr_Restore(): Use PyErr_SetRaisedException() instead.

• PyModule_GetFilename(): Use PyModule_GetFilenameObject() instead.

50

https://github.com/python/cpython/issues/128863
https://github.com/python/pythoncapi-compat/


• PyOS_AfterFork(): Use PyOS_AfterFork_Child() instead.

• PySlice_GetIndicesEx(): Use PySlice_Unpack() and PySlice_AdjustIndices()
instead.

• PyUnicode_READY(): Unneeded since Python 3.12

• PyErr_Display(): Use PyErr_DisplayException() instead.

• _PyErr_ChainExceptions(): Use _PyErr_ChainExceptions1() instead.

• PyBytesObject.ob_shash member: call PyObject_Hash() instead.

• Thread Local Storage (TLS) API:

– PyThread_create_key(): Use PyThread_tss_alloc() instead.

– PyThread_delete_key(): Use PyThread_tss_free() instead.

– PyThread_set_key_value(): Use PyThread_tss_set() instead.

– PyThread_get_key_value(): Use PyThread_tss_get() instead.

– PyThread_delete_key_value(): Use PyThread_tss_delete() instead.

– PyThread_ReInitTLS(): Unneeded since Python 3.7.

14.5 Removed

• Creating immutable types with mutable bases was deprecated since 3.12 and now raises a TypeError.

• Remove PyDictObject.ma_version_tag member which was deprecated since Python 3.12. Use the
PyDict_AddWatcher() API instead. (Contributed by Sam Gross in gh-124296.)

• Remove the private _Py_InitializeMain() function. It was a provisional API added to Python 3.8 by
PEP 587. (Contributed by Victor Stinner in gh-129033.)

• The undocumented APIs Py_C_RECURSION_LIMIT and PyThreadState.
c_recursion_remaining, added in 3.13, are removed without a deprecation period. Please use
Py_EnterRecursiveCall() to guard against runaway recursion in C code. (Removed in gh-133079,
see also gh-130396.)

51

https://github.com/python/cpython/issues/124296
https://peps.python.org/pep-0587/
https://github.com/python/cpython/issues/129033
https://github.com/python/cpython/issues/133079
https://github.com/python/cpython/issues/130396


Ευρετήριο

μη-αλφαβιτικά
BROWSER, 31
Common Vulnerabilities and Exposures

CVE 2024-12718, 29
CVE 2025-4138, 29
CVE 2025-4330, 29
CVE 2025-4435, 29
CVE 2025-4517, 26

PYTHONHOME, 48
PYTHONLEGACYWINDOWSFSENCODING, 40
PYTHONSTARTUP, 17
PYTHON_BASIC_REPL, 17
PYTHON_DISABLE_REMOTE_DEBUG, 8
PYTHON_JIT, 17
Python Enhancement Proposals

PEP 11#tier-3, 18
PEP 563, 10
PEP 587, 13, 51
PEP 626, 38
PEP 630, 45
PEP 649, 4, 911, 29
PEP 659, 16
PEP 684, 5
PEP 703, 16, 45
PEP 734, 6, 20
PEP 741, 13, 44, 45
PEP 744, 17
PEP 745, 3
PEP 749, 4, 9, 11, 19
PEP 750, 4, 7
PEP 757, 45
PEP 758, 9
PEP 761, 43
PEP 765, 19
PEP 768, 79
PEP 776, 18
PEP 779, 5
PEP 784, 4, 8

RFC
RFC 1494, 25
RFC 2104, 19, 23
RFC 2177, 23
RFC 2361, 25
RFC 3362, 25
RFC 3745, 25
RFC 3950, 25
RFC 4047, 25
RFC 4337, 25
RFC 5334, 25
RFC 6713, 25
RFC 7616, 30
RFC 7903, 25
RFC 8081, 24
RFC 9512, 25

RFC 9559, 24
RFC 9562, 31
RFC 9639, 25

Μ
μεταβλητή περιβάλλοντος

BROWSER, 31
PYTHONHOME, 48
PYTHONLEGACYWINDOWSFSENCODING, 40
PYTHONSTARTUP, 17
PYTHON_BASIC_REPL, 17
PYTHON_DISABLE_REMOTE_DEBUG, 8
PYTHON_JIT, 17

52


	Summary – release highlights
	Incompatible changes
	New features
	PEP 779: Free-threaded Python is officially supported
	PEP 734: Multiple interpreters in the stdlib
	PEP 750: Template strings
	PEP 768: Safe external debugger interface for CPython
	PEP 784: Adding Zstandard to the standard library
	Remote attaching to a running Python process with PDB
	PEP 758 – Allow except and except* expressions without parentheses
	PEP 649 and 749: deferred evaluation of annotations
	Implications for annotated code
	Implications for readers of __annotations__
	Related changes
	from __future__ import annotations

	Improved error messages
	PEP 741: Python configuration C API
	Asyncio introspection capabilities
	A new type of interpreter
	Free-threaded mode
	Syntax highlighting in PyREPL
	Binary releases for the experimental just-in-time compiler
	Concurrent safe warnings control
	Incremental garbage collection

	Platform support
	Other language changes
	PEP 765: Disallow return/break/continue that exit a finally block

	New modules
	Improved modules
	argparse
	ast
	asyncio
	calendar
	concurrent.futures
	configparser
	contextvars
	ctypes
	curses
	datetime
	decimal
	difflib
	dis
	errno
	faulthandler
	fnmatch
	fractions
	functools
	getopt
	getpass
	graphlib
	heapq
	hmac
	http
	imaplib
	inspect
	io
	json
	linecache
	logging.handlers
	math
	mimetypes
	multiprocessing
	operator
	os
	os.path
	pathlib
	pdb
	pickle
	platform
	pydoc
	socket
	ssl
	struct
	symtable
	sys
	sys.monitoring
	sysconfig
	tarfile
	threading
	tkinter
	turtle
	types
	typing
	unicodedata
	unittest
	urllib
	uuid
	webbrowser
	zipfile

	Optimizations
	asyncio
	base64
	bdb
	difflib
	gc
	io
	pathlib
	pdb
	uuid
	zlib

	Removed
	argparse
	ast
	asyncio
	collections.abc
	email
	importlib.abc
	itertools
	pathlib
	pkgutil
	pty
	sqlite3
	typing
	urllib

	Deprecated
	Pending removal in Python 3.15
	Pending removal in Python 3.16
	Pending removal in Python 3.17
	Pending removal in Python 3.19
	Pending removal in future versions

	CPython bytecode changes
	Porting to Python 3.14
	Changes in the Python API

	Build changes
	PEP 761: Discontinuation of PGP signatures

	C API changes
	New features
	Limited C API changes
	Porting to Python 3.14
	Deprecated
	Pending removal in Python 3.15
	Pending removal in Python 3.16
	Pending removal in Python 3.18
	Pending removal in future versions

	Removed

	Ευρετήριο

