The Python Language Reference
Anuooicuon 3.11.13

Guido van Rossum and the Python development team

louAiou 07, 2025

Python Software Foundation
Email: docs@python.org

Meplexoueva

1 Ewoyoyn 3
1.1 EvOMOKTKEG YAOTIOWOELS « « v v v o v v e 4
1.2 ENUEIOYPOPLOL « « v v o v e e e e e e e e e e e e e e e 4

2 Lexical analysis 7
2.1 LINeStructure o i e e e e e e e e e e e e e 7

2.1.1 Logical lines e e 7
2.1.2 Physicallines e e e e e e e 7
2.1.3 0 CommentS . . . v vt v e e e e e e e e e e e e e e e e e 8
2.1.4 Encodingdeclarations e e e e e e e e e e e e e e 8
2.1.5 Explicitline joining o oL e e e e e e e e e e e e 8
2.1.6 Implicitline joining L e e 8
2177 Blanklines. oL e e e e e e e e e e 9
2.1.8 Indentation e e e e e 9
2.1.9 Whitespace between tokenso e e e e e e e 10
22 Othertokens i i i e e e e 10
2.3 Identifiersand keywords Lo 10
231 Keywords e e e e e e e e e 11
232 SoftKeywords e 11
2.3.3 Reservedclasses of identifiers L 11
24 Literals e e e 12
24.1 Stringand Bytes literals L e e e 12
2.4.2 String literal concatenationl oL 14
243 f-Stringsol e 15
244 Numericliterals e e 17
245 Integerliterals L e e e e e e e e e e 17
2.4.6 Floating pointliterals L e e e 17
247 Imaginaryliterals e 18
2.5 OPperators e e e e e 18
2.6 Delimiters e e e e e e 18

3 Data model 19
3.1 Objects, valuesand types 19
3.2 Thestandard type hierarchy L 20

321 NONE. . o ot e e e 20
3.22 NotImplemented e e e e e e e e 20
323 EIIPSIS. .« o o o e e e e e e e 21

324 numbers.NUMDET . . . v v v v vttt e e e e e e e e e e e e e 21

325 0 SeqUences e e e e e e e e e e e e 22
326 SELLYPES . & v v e e e e e e e e e e e e e e e 23
327 Mappings e e e e 23
328 Callable types o e e e e e e e e e 24
329 Modules e 28
32,10 Customclasses 29
3201 Classinstances v v v v vt i e e e e e e e e 29
3.2.12 T/O objects (also known as file objects) 30
3213 Internal types e e 30
3.3 Special method names e e 36
3.3.1 Basiccustomizationo e 36
3.3.2 Customizing attribute aCCeSS . . .« v v v v i e e e e e e e e e e e e e e e e e 40
3.3.3 Customizing class Creation e e e e 44
3.3.4 Customizing instance and subclass checks L oo 0oL 47
33,5 Emulating generiC types e i e e e e e e e e e e e 48
3.3.6 Emulating callable objects 50
3.3.7 Emulating container typPes v v v vt i e 50
3.3.8 Emulating numeric typest i i e e e e e e e e e e e e e e e e e e e 52
3.3.9 With Statement Context Managers e 54
3.3.10 Customizing positional arguments in class pattern matching 55
33.11 Specialmethodlookup e 55
34 COroutiNes vttt e e e e e e e 56
341 Awaitable Objects o o e e e e e e e e e e e e e 56
342 Coroutine ObJeCtst i e e e e e e 57
343 Asynchronous Iterators L Lo e e e e 57
344 Asynchronous Context Managers vt i it i 58
Movtélo eKTELEOTS 59
4.1 Aoun) eVOG TTPOYPAMUOTOS v v v v e 59
4.2 OVOUOOLA KOL GUVOEDN] + « v v v v v i e e e e e et e e e e e e e e e e 59
421 ZUVOEON OVOUTOV o & v v v v e 59
422 ERAUON OVOUGTMV & & v v v v e 60
423 EvOOUOTOUEVEG CUVOPTOELS KOL TTEPLOPLOUEVT] EKTENEON .+ . . v o v v v o v v o e e e n 61
424 AMNentiOpoon Ue OUVOULKEG MELTOVPYLEG .+« v v v v v v e v e e e e e e e e e 61
43 BEOIPEOELS « « v v v v o e e e e e e e e e e e e e e e e e e 62
The import system 63
5.1 Amportlib o oo o o e e e e e e e 64
5.2 Packages e 64
5.2.1 Regularpackages e e e e e e e e e e 64
5.2.2 Namespace packages i it e e e e e e e e e 65
5.3 Searching o L e e e e e e e 65
5.3.1 Themodulecache e 65
53.2 Findersand loaders 66
5.33 Import hooks o o . i e e e e e e e e e e e e 66
534 Themetapath e e e e e e e e 66
54 Loading L e e e e e e e e e e 67
541 Loaders e e e e e e 68
542 Submodules e e e e e e e e e e 69
543 Modulespec 69
5.4.4 TImport-related module attributes 70
545 module.__path__ . .. e e e e e 71
54.6 Modulereprs L e e e e e e e e e 71

547 Cached bytecode invalidation i e e e 71

5.5 ThePathBased Finder e 72
5.5.1 Pathentryfinders e e e e e e 72
5.5.2 Pathentry finder protocol e 73
5.6 Replacing the standard import system 74
5.7 Package Relative Imports e 74
5.8 Special considerations for __main__ L e e e e e 75
581 MAIN__._ SPEC__ .t i i e 75
59 References 75
Expressions 77
6.1 Arithmetic CONVErSions o it e e e e e e e 77
6.2 ALOMS . . . o o e e e e e e 78
6.2.1 Identifiers (NAMES) v v i i e e e e e e e e e e e e e e e e e 78
6.2.2 Literals e 78
6.2.3 Parenthesized forms e 79
6.2.4 Displays for lists, sets and dictionaries L e e e 79
6.2.5 Listdisplays e e e 80
6.2.6 Setdisplays e 80
6.2.7 Dictionary displays L. e e e e e e 80
6.2.8 Generator EXPreSSiONS . . v v v v v v v e 81
6.2.9 Yield eXpressions u e 81
6.3 Primaries L e e e e 86
6.3.1 Attribute references 86
6.3.2 SubsCriptions e e e e e e e 86
6.3.3 SLCINGS e e 87
6.3.4 Calls e 87
6.4 AWt @XPIeSSION . . . v v v v v i e 89
6.5 The power Operator e e e e e e e e e &9
6.6 Unary arithmetic and bitwise operations Lo 90
6.7 Binary arithmetic Operations L e e e e 90
6.8 Shifting operations e e e e e e e e e e e 91
6.9 Binary bitwise Operations ot e e e e e e e e e e e e e e e e e 92
6.10 CompariSOnS i i e 92
6.10.1 Value comparisons oL e 92
6.10.2 Membership teSt OPerationst o i e e e e e e 95
6.10.3 Identity COMPArISONS . . . v v v v v v e 95
6.11 Boolean operations o i i e 95
6.12 ASSIgNMENt eXPIeSSIONS . . . o« v v vttt e e e e e e e e e e e e e e e e e e e 96
6.13 Conditional €Xpressions e e e e e e e e 96
6.14 Lambdas e e e e e e e 96
6.15 Expression liStS oo . e e e e e e e e e e e e e e e e 97
6.16 Evaluationorder e e e 97
6.17 Operator precedence vt i e e e e e e e e e e e e e e e e e e 97
Simple statements 99
7.1 EXpression statements v .t e 99
7.2 ASSIgNMENt StAtEMENLS o v v v e 100
7.2.1 Augmented assignment Statementso et e e e e e e e e e e e 102
7.2.2 Annotated assignment Statementso u e L e e e e e 102
7.3 The assert statement o ittt e e e e e e e e 103
7.4 ThepasssStatemMent o i i i et e e e e e e e e e e e e e e e e e e 103
7.5 Thedel Statement v vt i i it e e e e e e e e e e e e 104
7.6 The returnstatement e e e e 104

10
A)

BI

FI

7.7 The yieldstatement i i i it e e e e e e e e e e e e e e e e 104

7.8 Theraisestatement v v v v i v v et e e e e e e e e e e e e e e e e 105
7.9 Thebreak statement o v v i v v i e e e e e e e e e e e e e e e e e 106
7.10 The continue statementt v vttt e e e e e e e e e e e e e e e e e 107
7.11 The import statement v i e 107
7011 Future Statements v i it e e e e e e e e e e e e e e e 108
7.12 The global statement v i it e e e e e e e e e e e e e e e e e e e 110
7.13 The nonlocal StatemMent v v v v v v v v e e e e e e e e e e e e e e e e e e e 110
Compound statements 111
8.1 The ifstatement v v v v e 112
8.2 Thewhilestatement i v v i ittt et e e e e e e e e e e 112
8.3 The forstatement L i e e e e e e e e e e e e e 112
84 Thetrystatement L it e e e e e e e e e e e e e e e 113
84.1 exceptclause e e e e e 114
842 except*clause e e e e e 115
843 elseclause L e e e e e e e 116
844 finallyclause o o i e e e e e e 116
8.5 Thewithstatement i v i e i e e e e e e e e e e e e e e e e e e e 116
8.6 Thematchstatement i i v i it et e e e e e e e e e e e e e 118
8.6.1 OVEIVIEW o i e e e e 119
.02 Guards. e 120
8.6.3 TIrrefutable Case Blocks e 120
8.6.4 Patterns e e e e e e e e e e e e 120
8.7 Function definitions e e e e e e e e e e e e e e 127
8.8 Class definitions o v it e e e e e e e e e e e e 129
8.9 Coroutines e e e e e e e e e e e e e 130
8.9.1 Coroutine function definition L e 130
8.9.2 Theasync forstatement v v i vttt e e 131
8.9.3 Theasync withstatement ittt 131
Top-level components 133
9.1 Complete Python programs e 133
0.2 Fleinput e e e 134
0.3 Interactive input L e e e e e e e e 134
0.4 EXPressioninpUb v v v v it e 134
ITAp1ic TPOdLOLYPOLPT] YPOUUOTIKNG 135
T'Awocdpt 151
About these documents 169
B’.1 Contributors to the Python Documentation e 169
Iotopio ko Adero 171
7.1 Homoplot TOU MOYLOILKOU + . & v v v o e 171
[7.2 ‘Opol kot tpoimobéoels yio Ty mtpdofaon 1) v xpnon g Python pe ddhovg tpdmovg 172
2.1 PSF LICENSE AGREEMENT FORPYTHON 3.11.13 172
722 ZYMOONIA AAEIAY BEOPEN.COMTTAPYTHON2.0 173
723 ZYMOONIA AAEIAZ CNRITIAPYTHON 1.6.1 174
I’2.4 ZYM®ONIA AAEIAZ CWITTAPYTHONOO9.OEQZ1.2 175
I7.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.13 DOCUMENTATION 176
[7.3 Adeieg ko Evyopiotieg yio Evoopotopuévo AoylowKko o oL Lo 176
I7.3.1 Mersenne TWISLEr o . o v i e e e e e e e e e e e e e e e e 176
732 Sockets o o o i e e e e e 177

"33
734
I7.3.5
3.6
3.7
3.8
I7.3.9
I7.3.10
"3.11
"3.12
I".3.13
[7.3.14
I7.3.15
I3.16
3.17
I".3.18
I".3.19
17.3.20

A’ Copyright

Evpetipro

AoUYYPOVES SOCKEL UTINPEGIEG + « v v v v v o e e e e e e e e e 178

Avoyeiprom Cookie o 178
AVIYVEVON EKTEREOTIG + v v o v v e e e e e e e e e e e e e e e e e e 179
Zvvapthoelg UUencode kow UUdecode o o oo oo oo 179
Kinoeig Amopakpuouévng Atadikaotag XML . . . o oo oo oo 180
test_epoll e e 180
EmhoynKkqueue oo e 181
SipHash24 e 181
strtod ko dtoa.o e e e 182
OpenSSL e 182
EXPAL .« o o e e e e e e e e e e e e e e e e 186
Ol . . o e 186
zlib 187
cfuhash 187
libmpdec 188
W3C C14N GOUITA QOKUUNG « « « v v v v e e e e e e e e e e e e e e e e e e 188
AUdioop e e e e e e e e e e e 189
ASYNCIO + v v v o e 190

191

193

Vi

The Python Language Reference, Anpooiguon 3.11.13

This reference manual describes the syntax and «core semantics» of the language. It is terse, but attempts to be exact and
complete. The semantics of non-essential built-in object types and of the built-in functions and modules are described in
library-index. For an informal introduction to the language, see tutorial-index. For C or C++ programmers, two additional
manuals exist: extending-index describes the high-level picture of how to write a Python extension module, and the c-
api-index describes the interfaces available to C/C++ programmers in detail.

Mepiexopeva 1

The Python Language Reference, Anpooisuon 3.11.13

2 Meplexopeva

KEDAAAIO 1

Elcaywyn

Auto t0 eyYelpidlo avapopdc mepLypdpel TV YAWooo tpoypauatiopoy Python. Agv poopiletal wg eyyelpidlo
ekudonone.

Ztnv poortdOeLla To £yypapo autod va eivar 660 To duvaTov o akpiBéc, emhéyOnKe apykd N Ayyhkn yAdooa,
Kat Votepo. petappdotnke otnv EAMvikY, Kou 0yL oL emionueg mpodlaypapis, Ue EEAPEDT) TNV OUVTAKTIKT KoL
AeE1hoyLKt avalvon. Auto Ba mpémel va Kavel To £yypago o Kotavontd 6Tov HEco avayvhott), oAb Bo apnost
YDPO YLOL CUPLOTiES. ZUVETMDC, av gpdooUV amd tov Apn ko tpooradoloeg va vhomouoelg Eava v Python
07t TO EYYPOPO QVTO KoL OVO, LEAhoV Bl xpetaloToV Vo LOVTEPELG KATOLO TTPAYIATO KL Yo TNV oKpifela
iomg o KaTényeg va VAOTTOLELG iLa. Teleimg drapopetikn YADooa. Amd v Gl Thevpd, av XPNOLUOTTOLEIG TV
Python ko avapmTiésat ToLoL ival oL OKPLPBELS KAVOVEG OYETIKA e £VaV GUYKEKPLUEVO TOpEX TG YAWOOOS, TOTE
otyoupa 0o toug Bpelg edd mépa. Av 0o N0gheg va delg vay mmLo eionuo opLopnd TG YAwooogs, iowg 0o pmopovoeg
VO, TPOOPEPELG MYO aTtd ToV xpOvo cov — 1) va pTdEelg pa pyav) Khwvormoinong :-).

Eival emikivouvo va mpoohéoovpe moAhég AeETTOUEPELEG VAOTTOINOTG OF £VaL £YYPApO Avapopig oG YADooog —
1 vhomoinon dvvatar va aAMGEEL, Ka AAAES VAOTTONOELS THG (OLAG YAMDOOAG WTOPEL VL AELTOVPYOVV SLOPOPETLKA.
Amd v dMm, n CPython eivaw pio vhiomoinom tng Python pe gupeia xpfon (wotd00 EVOAMAKTIKEG VAOTOLOELG
ovveyifouv vo vTooTNPILoVTaL), KOL 0L GUYKEKPLUEVES TNG LOLOUOPPIES eVioTe aEiouv avagopd, eldLKd eKel Tov
1 viomoinon emPdriel emmpoobetovg meploplopovc. Emouéving, Ba fpelg OUVIOUES «ONUELMOELS VAOTTOINONC»
o€ dLAPOPa UEPT TOV KELUEVOU.

Ké&6e vhomoinom tg Python ouvvodevetal amd évav aplBud evoopatopévov Kot cpdtummy module. Autég giva

Katoyeypoupuéveg oto library-index. Kasmowa evowpuatmuéva module avapépovrar 6tov aMNAETOpoUV pe Evav
ONUAVTIKO TPOTTO UE TOV 0PLOUO TNG YAWTOOG.

The Python Language Reference, Anpooisuon 3.11.13

1.1 EVaAAGKTIKEG YAOTIOLNOELG

[Mapodro mov vrdpyet wion viomoinon g Python mwov elval poaxpdy 1 o dudonun, vdpyouv evoroKTIKEG VAO-
TTOLNOELG TTOV £XOVV LOLOLTEPO EVOLAPEPOV YL DLAPOPOVG AVOPDITOVG.

I'vwotég Vool oelg TePLAaUBEvouy:

CPython
Avti glval 1) TPpTOTULTN KoL 1) 7o Kahodotnenuévn vhomoinon g Python, ypauuévn otnv C. Néeg het-
TovpYyieg ™G YAwaoag ouvvifwg eupaviloviol TpmTa 6.

Jython
H vlomoinon tng Python otyv Java. Avti) 1 vhomoinom witopei va ypnouomoindei wg YAwooo dEoung evep-
YELDV YLOL EPOPUOYES OTNV Java, 1 WTOPEL VO XPNOLULOTTONOEL YLOL VO SNULOVPYTCEL EQOPUOYES UE TN XPNON
TV BPAoONKOV TV Khdoewv TG Java. Zvyvd emiong yeNOoLLOTOLELTAL YLa VO SNUOVPYTOEL TECT YL TIG
BuprioONKeg g Java. [leploodtepeg TAnpopopies umopeite va Ppeite oty otooehida g Jython.

Python ywo to .NET
Avti 1 vhomoinom otV TTpayraTikOTNTo Xpnowuortotel Ty vhomtoinon CPython, odAd eivor pio droelpllod-
pevn epapuoyn tov .NET kou kdvel duabéoueg tig NET Biphodnkes. AnpuovpyhOnke amd tov Brian Lloyd.
TN wepLocdTepeg Thnpogoples, deite v apykn oehida g Python yio to .NET.

IronPython
Mua evaihaktiky Python yia to .NET. Z¢ avtifeon pe to Python.NET, avty eivor uia ohokAnpmuévn vio-
moinom g Python ou mapdyer IL, kou kaver petayhotrion tov Kadika g Python amevbeiag otn yhwooo
assembly tov .NET. Anuovpyn6mnke amd tov Jim Hugunin, tov tpotdtumo dnuovpyd g Jython. ' wtepio-
o0tepeg mAnpoopleg deite TNV LoTooelida g IronPython.

PyPy
An implementation of Python written completely in Python. It supports several advanced features not found in
other implementations like stackless support and a Just in Time compiler. One of the goals of the project is to
encourage experimentation with the language itself by making it easier to modify the interpreter (since it is written
in Python). Additional information is available on the PyPy project’s home page.

Ké0e pio 0wd ovtég Tig vhoToLoELg SLopOPOITOLOVVTOL UE KATTOLOV TPOTTO atd TNV YAMOTO HTTmG KOTAYPAQETAL
0€ aUTO TO EYYELPLOLO, 1 ELOGYEL CUYKEKPLUEVT] TTANPOQOPLa TTEPA ATtd O,TL KOAUTTTOUY Ta TPOTUTTOL £YYPOPA TNG
Python. IMapoakadd vo CURPBOVAEVTELTE TO £YYPOPO TG CUYKEKPLUEVNG VAOTTOLNONG YLaL VO TTPOoadLopioeTe Tt dAlo
YPELALETAL VO EEPETE OYETIKA e TNV GUYKEKPLUEVT] VAOTTOINO1) TTOU Y PNOLILOTTOLELTE.

1.2 Inueloypagpia

OL mepLypoéc oty AeELoYIKY avéAvon Ko oUvVTaEn yPNoLHoTToloVy £V TPOTOTOUEVO YPAUUATIKO Gupo-
Moud oty popgn Mrdkovg-Néovp (BNF). Avtd ypnowomolei Tov akdrovbo tpdmo oplopov:

name = lc_letter (lc_letter | "_")x*
lc_letter = "at..."z"

H npotn ypouun Aéer 0tL éva name eivor éva 1c_letter akolovBoUuevo amd pio oelpd amd undév 1 mepLo-
00tepa Lc_letters Ko kdtw mwovkes. 'Eva 1c_letter pe) oelpd Tov gival 0toLoodNmTote amd Toug Hovovs
YOPOKTNPES "a' €mg ' z'. (AUTOG 0 KAVOVAG GTNV TTPAYUOTLKOTITO EQAPUOTETOL YLOL TOL OVOUATA TTOV OpilovTal
0tovg AeELAOYLKOUG KO YPOUUOTLKOUG KOVOVEG auToU ToU eyYPdpov.)

Ka0e xovovog Egkivd e évo dvopa (to omoio eivan £va dOvoua optouévo amtd Tov Kavova) Kat : : =. Mia ka0et
ypauut (1) ¥p1OLLOTTOLELTOL VLo VAL SLaWPLoEL TLG EVOMOKTIKES: €XEL TNV WKPOTEPT] TPOTEPALOTNTO OTNV GELPGL

4 Kegahawo 1. Etcaywyn

https://www.jython.org/
https://pythonnet.github.io/
https://ironpython.net/
https://www.pypy.org/
https://el.wikipedia.org/wiki/%CE%9C%CE%BF%CF%81%CF%86%CE%AE_%CE%9C%CF%80%CE%AC%CE%BA%CE%BF%CF%85%CF%82-%CE%9D%CE%AC%CE%BF%CF%85%CF%81

The Python Language Reference, Anpooiguon 3.11.13

TPOTEPALOTNTOG TTPGEEWV 0vToV TOV cVpPBolouov. ‘Evag aotepiokog (*) anuaivel undév 1 meplocoTtepes em0VaL-
ANYPELG TOV TTPOTYOUUEVOU OLVTLKELUEVOD® TTOPOUOLWG, TO OUV (+) ONUOLVEL (ol 1] TEPLOGOTEPES EMAVOMPELS, KL
uior ppdom mepLpparyuévn otd aykohes ([1) onuoaiver undév 1 pia epimtoon (ue dhho Aoy, 1 TEPLPPAYUEVT
Ao eivar TpoatpeTky). OL TELeOTES * KoL + EVOVOVTOL 600 TO duvaTdV 1o oQLYTd: oL TaPeVOETELS X PNOoLUO-
oLoVVTOL Y10 opadoTToin o). Ou CUUBOAOGELPEG ElvOL TTEPLPPAYUEVES ATTO ELOAYWYLKA. OL KEVOL YOPOKTNPES ELvaLL
UOVO OTUCLVTILKOL Y10 VO Sty wpioouy Ta tokens. OL Kavoveg cuvnBmg ePLEXOVTOL GE it LoV YPOUU: OL KAVOVEG
e TOAMEG EVOALOKTUKEG UTOPEL VO LOP@OTTOL 00UV eVOAMAKTIKG te KEOE ypau HeTd Ty Tpdn vo, EEKLvaeL te

o KEOeTn ypopun.

Ztoug AeEthoyikoUs oplopots (Omtmg 0To Tapadvem mapdderyua), do TePLEoOTEPOL KAVOVES X PTOLULOTTOLOUVTOL:
AVO YOPAKTIPES XWPLOUEVOL ATTO TPELS TELELEG oMuUaiveL Aoy OTOLOU LOVOU YXAPAKTHPO OTO CUYKEKPLUEVO
(khewot0) evpog ASCI yapaxtipwv. H gppdon aviueoo oe yoviakéc mapeviéoelg (<. . . >) diver pia drumn me-
pLypagt| Tov opLopévoy ouuBorov: .., avtd Ba uropovoe va xpnotuoson el yio vo sepLypdapel Ty 1o Tov
“yapaktnpo eréyyou” (control character) ov ypeLaOTEL.

AV KOlL 1] O|UELOYPOLPLOL TTOV Y PN OLULOTTOLELTAL Elval 0YEDOV 1 idLaL, VITAPYEL PEYEAN BLOLPOPA AVAUEDH OTY OTUOCLOL
TOV MeEIMOYIKDOV KOL TMV CUVTOKTIKMOV OPLoUmV: £vag AeEIMoyIKdg opLopdc LeLTovpyel e TOUG UEUOVIUEVOUG
YOPAKTHPESG TNG TNYNG EL0OBOV, eV €Vag 0PLOUOG CUVTAENG AELTOVPYEL 0TIV POT) TV token TOU dNULOVPYEITAL
and ™ AeEhoyikr) avdhvon. ‘Oleg ol xpnoelg tov BNF 0to emdOuevo Kepahowo («AgEihoyikn Avdhlvon») gival
LeEhoyikol oplopoi- oL ypnoeLg oto akdlovBa Ke@AlaLo elval CUVTAKTLKOL OPLOUOL.

1.2. Znuelwoypagpia 5

The Python Language Reference, Anpooisuon 3.11.13

6 Kegahawo 1. Etcaywyn

KEDAAAIO 2

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer. This
chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding declaration
and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError is raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any of the
standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form
using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform. The end of input also serves as an implicit
terminator for the final physical line.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

https://peps.python.org/pep-3120/

The Python Language Reference, Anpooisuon 3.11.13

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored by
the syntax.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding [=:]\s* ([-\w.
]1+), this comment is processed as an encoding declaration; the first group of this expression names the encoding of the
source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first line must also
be a comment-only line. The recommended forms of an encoding expression are

[# —*— coding: <encoding-name> —*—

which is recognized also by GNU Emacs, and

[# vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. If the implicit or explicit encoding of a file is UTF-8,
an initial UTF-8 byte-order mark (b”xefxbbxbf”) is ignored rather than being a syntax error.

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding is
used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does not
continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines using
a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Impilicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April"', 'Mei', 'Juni’', # Dutch names
'Juli’', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

8 Kegdahaio 2. Lexical analysis

The Python Language Reference, Anpooiguon 3.11.13

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE token is
generated). During interactive input of statements, handling of a blank line may differ depending on the implementation
of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e. one containing not
even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of spaces
preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over multiple
physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use a
mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms may
explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may reset
the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The numbers
pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical line, the line’s
indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is pushed on the stack,
and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring on the stack; all numbers
on the stack that are larger are popped off, and for each number popped off a DEDENT token is generated. At the end
of the file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l) :
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r = []
for i in range(len(l)):
s = 1[:1i] + 1[i+1:]
p = perm(s)
for x in p:
r.append (1[i:1+1] + x)
return r

The following example shows various indentation errors:

2.1. Line structure 9

The Python Language Reference, Anpooisuon 3.11.13

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:4] + 1[i+1:]
p = perm(l[:i] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append (1[i:1+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be used
interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could otherwise
be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but serve
to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token, when
read from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes as
defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the
uppercase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits O through 9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier = xid _start xid_continue*

id_start n= <all characters in general categories Lu, L1, Lt, Lm, Lo, N1, the unde:
id_continue = <all characters in id_start, plus characters in the categories Mn, Mc,
xid_start = <all characters in id_start whose NFKC normalization is in "id_start xi

xid_continue <all characters in id_continue whose NFKC normalization is in "id_cont]

The Unicode category codes mentioned above stand for:
o Lu - uppercase letters
o LI - lowercase letters

o Lt - titlecase letters

10 Kegdahaio 2. Lexical analysis

https://peps.python.org/pep-3131/
https://peps.python.org/pep-3131/

The Python Language Reference, Anpooiguon 3.11.13

o Lm - modifier letters
o Lo - other letters
o NI - letter numbers
e Mn - nonspacing marks
e Mc - spacing combining marks
e Nd - decimal numbers
 Pc - connector punctuations
o Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
o Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 14.0.0 can be found at https://www.unicode.
org/Public/14.0.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Soft Keywords

Néo omv éxdoaon 3.10.

Some identifiers are only reserved under specific contexts. These are known as soft keywords. The identifiers match,
case and _ can syntactically act as keywords in contexts related to the pattern matching statement, but this distinction
is done at the parser level, not when tokenizing.

As soft keywords, their use with pattern matching is possible while still preserving compatibility with existing code that
uses match, case and _ as identifier names.

2.3.3 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns of
leading and trailing underscore characters:

*

Not imported by from module import *.

In a case pattern within a mat ch statement, __ is a soft keyword that denotes a wildcard.

2.3. Identifiers and keywords 11

https://www.unicode.org/Public/14.0.0/ucd/PropList.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Anpooisuon 3.11.13

Separately, the interactive interpreter makes the result of the last evaluation available in the variable _. (It is stored
in the bui 1t ins module, alongside built-in functions like print.)

Elsewhere, _ is a regular identifier. It is often used to name «special» items, but it is not special to Python itself.

Inueiwon: The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

It is also commonly used for unused variables.

System-defined names, informally known as «dunder» names. These names are defined by the interpreter and its
implementation (including the standard library). Current system names are discussed in the Special method names
section and elsewhere. More will likely be defined in future versions of Python. Any use of __*___ names, in any
context, that does not follow explicitly documented use, is subject to breakage without warning.

Class-private names. Names in this category, when used within the context of a class definition, are re-written to
use a mangled form to help avoid name clashes between «private» attributes of base and derived classes. See section
Identifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral = [stringprefix] (shortstring | longstring)
stringprefix = "™ | "y" | "R" | "U" | "f" | "E"

| "fr" | "Fr" | "fR" | "FR" | "rf" | "rF" | "Rf" | "RE"
shortstring = "'" shortstringitem* "'"™ | '"' shortstringitem* '"'
longstring = "' o Jongstringitem* "'''" | '"""' Jongstringitem* '"""'
shortstringitem := shortstringchar | stringescapeseq
longstringitem = longstringchar | stringescapeseq
shortstringchar := <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
stringescapeseq = "\" <any source character>
bytesliteral RES bytesprefix(shortbytes | longbytes)
bytesprefix = "b" | "B" | "br" | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb"
shortbytes = "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes = "rr'v" longbytesitem* "'''" | '"""' Jongbytesitem* '"""!'
shortbytesitem := shortbyteschar | bytesescapeseq
longbytesitem = longbyteschar | bytesescapeseq
shortbyteschar = <any ASCII character except "\" or newline or the quote>
longbyteschar = <any ASCII character except "\">
bytesescapeseqg = "\" <any ASCII character>

12 Kegdahaio 2. Lexical analysis

n RB n

The Python Language Reference, Anpooiguon 3.11.13

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix or bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can also
be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted strings).
The backslash (\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash
itself, or the quote character.

Bytes literals are always prefixed with 'b ' or 'B"'; they produce an instance of the byt es type instead of the st r type.
They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with escapes.

Both string and bytes literals may optionally be prefixed with a letter 'r' or 'R"'; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, ' \U"' and '\u' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur' syntax is not
supported.

Néo oty éxdoon 3.3: The 'rb' prefix of raw bytes literals has been added as a synonym of 'br'.

Support for the unicode legacy literal (u'value ') was reintroduced to simplify the maintenance of dual Python 2.x and
3.x codebases. See PEP 414 for more information.

A string literal with ' £' or 'F' in its prefix is a formatted string literal; see f-strings. The ' £' may be combined with
"r',butnot with 'b"' or 'u', therefore raw formatted strings are possible, but formatted bytes literals are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped quotes
in a row terminate the literal. (A «quote» is the character used to open the literal, i.e. either ' or ".)

Escape sequences

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to rules
similar to those used by Standard C. The recognized escape sequences are:

Escape Sequence Meaning Notes
\<newline> Backslash and newline ignored (1)
A\ Backslash (\)

\! Single quote (')

\ @ Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo Character with octal value ooo (2,4)
\xhh Character with hex value hh (3,4)

Escape sequences only recognized in string literals are:

Escape Sequence Meaning Notes
\N{name} Character named name in the Unicode database (5)
\UXXXX Character with 16-bit hex value xxxx (6)
\UXXXXXXXX Character with 32-bit hex value xxxxxxxx @)

2.4. Literals 13

https://peps.python.org/pep-0414/

The Python Language Reference, Anpooisuon 3.11.13

Notes:

(1) A backslash can be added at the end of a line to ignore the newline:

>>> 'This string will not include \
backslashes or newline characters.'
'This string will not include backslashes or newline characters.'

The same result can be achieved using triple-quoted strings, or parentheses and string literal concatenation.
(2) Asin Standard C, up to three octal digits are accepted.

AMoEe otnv €kdoon 3.11: Octal escapes with value larger than 00377 produce a DeprecationWarning.
In a future Python version they will be a SyntaxWarning and eventually a SyntaxError.

(3) Unlike in Standard C, exactly two hex digits are required.

(4) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(5) AMaEe oty éxdoom 3.3: Support for name aliases' has been added.
(6) Exactly four hex digits are required.
(7) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the
result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences only recognized in string literals fall into the
category of unrecognized escapes for bytes literals.

AMoEe otnv £xdoon 3.6: Unrecognized escape sequences produce a DeprecationWarning. In a future Python
version they will be a SyntaxWarning and eventually a SyntaxError.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example, r"\""
is a valid string literal consisting of two characters: a backslash and a double quote; r" \ " is not a valid string literal (even
a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a single backslash
(since the backslash would escape the following quote character). Note also that a single backslash followed by a newline
is interpreted as those two characters as part of the literal, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" ‘'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings conveniently
across long lines, or even to add comments to parts of strings, for example:

re.compile (" [A-Za—-z_]" # letter or underscore
"[A-Za—-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The “+” operator must be used
to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles for each
component (even mixing raw strings and triple quoted strings), and formatted string literals may be concatenated with
plain string literals.

! https://www.unicode.org/Public/11.0.0/ucd/NameAliases. txt

14 Kegdahaio 2. Lexical analysis

https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

The Python Language Reference, Anpooiguon 3.11.13

2.4.3 f-strings

Néo otmv éxdoon 3.6.

A formatted string literal or f-string is a string literal that is prefixed with '£' or 'F'. These strings may contain
replacement fields, which are expressions delimited by curly braces { }. While other string literals always have a constant
value, formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string). After
decoding, the grammar for the contents of the string is:

f_string = (literal_char | "{{" | "}}" | replacement_field)™*
replacement_field = "{" f _expression ["="] ["!" conversion] [":" format_spec]
f_expression = (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or expr)* [","]

| yield expression
conversion = "s" | "r"™ | "a"
format_spec = (literal_char | replacement_field)*
literal_char n= <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces '{{"' or '} } ' are
replaced with the corresponding single curly brace. A single opening curly bracket ' { ' marks a replacement field, which
starts with a Python expression. To display both the expression text and its value after evaluation, (useful in debugging),
an equal sign '="' may be added after the expression. A conversion field, introduced by an exclamation point ' ! ' may
follow. A format specifier may also be appended, introduced by a colon ' : '. A replacement field ends with a closing
curly bracket '} '.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with a few
exceptions. An empty expression is not allowed, and both 1ambda and assignment expressions : = must be surrounded
by explicit parentheses. Replacement expressions can contain line breaks (e.g. in triple-quoted strings), but they cannot
contain comments. Each expression is evaluated in the context where the formatted string literal appears, in order from
left to right.

AMaEe ot ékdoon 3.7: Prior to Python 3.7, an awa i t expression and comprehensions containing an async for
clause were illegal in the expressions in formatted string literals due to a problem with the implementation.

When the equal sign '=" is provided, the output will have the expression text, the '=" and the evaluated value. Spaces
after the opening brace ' { ', within the expression and after the '=" are all retained in the output. By default, the '="
causes the repr () of the expression to be provided, unless there is a format specified. When a format is specified it
defaults to the st r () of the expression unless a conversion ' ! r' is declared.

Néo oty éxdoon 3.8: The equal sign "=".

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion ' ! s ' calls
str () ontheresult, ' !'r' calls repr (),and '!a"' callsascii ().

The result is then formatted using the format () protocol. The format specifier is passed to the _ format__ ()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own conversion
fields and format specifiers, but may not include more deeply nested replacement fields. The format specifier mini-language
is the same as that used by the str. format () method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

2.4. Literals 15

"}"

The Python Language Reference, Anpooisuon 3.11.13

>>> name = "Fred"

>>> f"He said his name is {name!/r}."

"He said his name is 'Fred'."

>>> f"He said his name is {repr (name) }." # repr() is equivalent to !r
"He said his name is 'Fred'."

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f'"result: {value:{width}. {precision}}" # nested fields
'result: 12.35"

>>> today = datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, $Y}" # using date format specifier

'January 27, 2017'
>>> f"{today=:%B %d, %Y}" # using date format specifier and debugging
'today=January 27, 2017’

>>> number = 1024

>>> f" {number:#0x}" # using integer format specifier
'0x400'

>>> foo = "bar"

>>> f"{ foo = }" # preserves whitespace
" foo = 'bar'"

>>> line = "The mill's closed"

>>> f"{line = }"

'line = "The mill\'s closed"'

>>> f"{line = :20}"

"line = The mill's closed "

>>> f"{line = !r:20}"

'line = "The mill\'s closed" '

A consequence of sharing the same syntax as regular string literals is that characters in the replacement fields must not
conflict with the quoting used in the outer formatted string literal:

"]} def" # error: outer string literal ended prematurely

f"abc {al"
'1} def" # workaround: use different quoting

X
f'abec {al'x

Backslashes are not allowed in format expressions and will raise an error:

[f"newline: {ford('\n') }" # raises SyntaxError

To include a value in which a backslash escape is required, create a temporary variable.

>>> newline = ord('\n')
>>> f'"newline: {newline "
'newline: 10'

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

>>> def foo():
f"Not a docstring"”

>>> foo. doc_ is None
True

See also PEP 498 for the proposal that added formatted string literals, and st r . format (), which uses a related format
string mechanism.

16 Kegdahaio 2. Lexical analysis

https://peps.python.org/pep-0498/

The Python Language Reference, Anpooiguon 3.11.13

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no complex
literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary operator
“~” and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer n= decinteger | bininteger | octinteger | hexinteger
decinteger = nonzerodigit (["_"1 digit)* | "O"+ (["_"] "Q")~*
bininteger = "o" ("b" | "B") (["_"] bindigit)+

octinteger = "o" ("o" | "O") (["_"] octdigit)+

hexinteger = oM ("x" | "X") (["_"] hexdigit)+

nonzerodigit = RN A

digit = "o"..."o"

bindigit = "om | omin

octdigit = "o"..."7"

hexdigit = digit | "a"..."f" | "A". . ."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for enhanced
readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

Some examples of integer literals:

7 2147483647 00177 0b100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 Ob_1110_0101

AMoEe oty £xdoon 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber = pointfloat | exponentfloat
pointfloat = [digitpart] fraction | digitpart "."
exponentfloat = (digitpart | pointfloat) exponent
digitpart = digit (["_"] digit)™*

fraction = "." digitpart

exponent = ("e" | "E") ["+"™ | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077010 is legal, and
denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent. As in
integer literals, underscores are supported for digit grouping.

2.4. Literals 17

The Python Language Reference, Anpooisuon 3.11.13

Some examples of floating point literals:

[3.14 10. .001 1e100 3.14e-10 0e0 3.14_15_93 J

AMoEe oty £kdoon 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber = (floatnumber | digitpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.g., (3+47) . Some examples of imaginary literals:

[3.143' 10.7 107 .0013 1e100§ 3.14e-103 3.14_15_937]

2.5 Operators

The following tokens are operators:

+ - * *x / // % @
<< >> & [A ~ g=

< > <= >= == =

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { }

’ . 7 @ = ->

+= -= &S = //= &= @=

& = o= >>= << * k=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning as
an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters, but also
perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to the
lexical analyzer:

G)

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

CE— 1

18 Kegdahaio 2. Lexical analysis

KEGANAIO 3

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations between
objects. (In a sense, and in conformance to Von Neumann’s model of a «stored program computer», code is also
represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may
think of it as the object’s address in memory. The i s operator compares the identity of two objects; the 1d () function
returns an integer representing its identity.

Agmropépera viomoinong CPython: For CPython, id (x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., «does it have a length?») and also defines the
possible values for objects of that type. The type () function returns an object’s type (which is an object itself). Like its
identity, an object’s fype is also unchangeable.'

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains a
reference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same as
having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance, numbers,
strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation quality
how garbage collection is implemented, as long as no objects are collected that are still reachable.

Aemrouépera vhomoinong CPython: CPython currently uses a reference-counting scheme with (optional) delayed
detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not
guaranteed to collect garbage containing circular references. See the documentation of the gc module for information
on controlling the collection of cyclic garbage. Other implementations act differently and CPython may change. Do not
depend on immediate finalization of objects when they become unreachable (so you should always close files explicitly).

! 1t is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can lead to
some very strange behaviour if it is handled incorrectly.

19

The Python Language Reference, Anpooisuon 3.11.13

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally be
collectable. Also note that catching an exception with a t ry...except statement may keep objects alive.

Some objects contain references to «external» resources such as open files or windows. It is understood that these resources
are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen, such objects also
provide an explicit way to release the external resource, usually a close () method. Programs are strongly recommended
to explicitly close such objects. The t ry...finally statement and the wi t h statement provide convenient ways to do
this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists and
dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a container, we
imply the values, not the identities of the contained objects; however, when we talk about the mutability of a container,
only the identities of the immediately contained objects are implied. So, if an immutable container (like a tuple) contains
a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for
immutable types, operations that compute new values may actually return a reference to any existing object with the same
type and value, while for mutable objects this is not allowed. E.g., aftera = 1; b = 1, a and b may or may not refer
to the same object with the value one, depending on the implementation, but after c = []; d = [],cand dare
guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object
to both ¢ and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages, depending
on the implementation) can define additional types. Future versions of Python may add types to the type hierarchy (e.g.,
rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be provided via the standard
library instead.

Some of the type descriptions below contain a paragraph listing “special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

3.2.1 None

This type has a single value. There is a single object with this value. This object is accessed through the built-in name
None. Itis used to signify the absence of a value in many situations, e.g., it is returned from functions that don’t explicitly
return anything. Its truth value is false.

3.2.2 Notimplemented

This type has a single value. There is a single object with this value. This object is accessed through the built-in name
Not Implemented. Numeric methods and rich comparison methods should return this value if they do not implement
the operation for the operands provided. (The interpreter will then try the reflected operation, or some other fallback,
depending on the operator.) It should not be evaluated in a boolean context.

See implementing-the-arithmetic-operations for more details.

AMoEe otv ékdoomn 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of Python.

20 KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

3.2.3 Ellipsis

This type has a single value. There is a single object with this value. This object is accessed through the literal . . . or the
built-in name E11ipsis. Its truth value is true.

3.2.4 numbers.Number

These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in functions.
Numeric objects are immutable; once created their value never changes. Python numbers are of course strongly related
to mathematical numbers, but subject to the limitations of numerical representation in computers.

The string representations of the numeric classes, computed by __repr_ () and __str__ (), have the following
properties:

o They are valid numeric literals which, when passed to their class constructor, produce an object having the value
of the original numeric.

» The representation is in base 10, when possible.

« Leading zeros, possibly excepting a single zero before a decimal point, are not shown.
« Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.

« A sign is shown only when the number is negative.

Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral

These represent elements from the mathematical set of integers (positive and negative).

Inueiwon: The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers.

There are two types of integers:

Integers (int)
These represent numbers in an unlimited range, subject to available (virtual) memory only. For the purpose of shift
and mask operations, a binary representation is assumed, and negative numbers are represented in a variant of 2’s
complement which gives the illusion of an infinite string of sign bits extending to the left.

Booleans (bool)
These represent the truth values False and True. The two objects representing the values False and True are
the only Boolean objects. The Boolean type is a subtype of the integer type, and Boolean values behave like the
values 0 and 1, respectively, in almost all contexts, the exception being that when converted to a string, the strings
"False" or "True" are returned, respectively.

3.2. The standard type hierarchy 21

The Python Language Reference, Anpooisuon 3.11.13

numbers.Real (float)

These represent machine-level double precision floating point numbers. You are at the mercy of the underlying machine
architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does not support
single-precision floating point numbers; the savings in processor and memory usage that are usually the reason for using
these are dwarfed by the overhead of using objects in Python, so there is no reason to complicate the language with two
kinds of floating point numbers.

numbers .Complex (complex)

These represent complex numbers as a pair of machine-level double precision floating point numbers. The same caveats
apply as for floating point numbers. The real and imaginary parts of a complex number z can be retrieved through the
read-only attributes z . real and z . imag.

3.2.5 Sequences

These represent finite ordered sets indexed by non-negative numbers. The built-in function 1en () returns the number
of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1, ..., n-1. Item i of
sequence a is selected by a [i]. Some sequences, including built-in sequences, interpret negative subscripts by adding
the sequence length. For example, a [-2] equals a [n—21], the second to last item of sequence a with length n.

Sequences also support slicing: a [1: j] selects all items with index k& such that i <= k < j. When used as an expression,
a slice is a sequence of the same type. The comment above about negative indexes also applies to negative slice positions.

Some sequences also support «extended slicing» with a third «step» parameter: a [1:j:k] selects all items of a with
index x where x = i + n*k,n>=0andi<=x<].

Sequences are distinguished according to their mutability:

Immutable sequences

An object of an immutable sequence type cannot change once it is created. (If the object contains references to other
objects, these other objects may be mutable and may be changed; however, the collection of objects directly referenced
by an immutable object cannot change.)

The following types are immutable sequences:

Strings
A string is a sequence of values that represent Unicode code points. All the code points in the range U+0000 -
U+10FFFF can be represented in a string. Python doesn’t have a char type; instead, every code point in the string
is represented as a string object with length 1. The built-in function ord () converts a code point from its string
form to an integer in the range 0 — 10FFFF; chr () converts an integer in the range 0 — 10FFFF to the
corresponding length 1 string object. str.encode () can be used to convert a st r to bytes using the given
text encoding, and bytes.decode () can be used to achieve the opposite.

Tuples
The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-separated
lists of expressions. A tuple of one item (a “singleton”) can be formed by affixing a comma to an expression (an
expression by itself does not create a tuple, since parentheses must be usable for grouping of expressions). An
empty tuple can be formed by an empty pair of parentheses.

Bytes
A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range 0 <= x < 256.
Bytes literals (like b ' abc ') and the built-in bytes () constructor can be used to create bytes objects. Also, bytes
objects can be decoded to strings via the decode () method.

22 KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

Mutable sequences

Mutable sequences can be changed after they are created. The subscription and slicing notations can be used as the target
of assignment and de 1 (delete) statements.

Inueiwon: The collections and array module provide additional examples of mutable sequence types.

There are currently two intrinsic mutable sequence types:

Lists
The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of expressions
in square brackets. (Note that there are no special cases needed to form lists of length O or 1.)

Byte Arrays
A bytearray object is a mutable array. They are created by the built-in bytearray () constructor. Aside from
being mutable (and hence unhashable), byte arrays otherwise provide the same interface and functionality as
immutable bytes objects.

3.2.6 Set types

These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any subscript.
However, they can be iterated over, and the built-in function 1en () returns the number of items in a set. Common uses
for sets are fast membership testing, removing duplicates from a sequence, and computing mathematical operations such
as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal rules
for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0), only one of them can be contained in a set.

There are currently two intrinsic set types:

Sets
These represent a mutable set. They are created by the built-in set () constructor and can be modified afterwards
by several methods, such as add () .

Frozen sets
These represent an immutable set. They are created by the built-in frozenset () constructor. As a frozenset is
immutable and hashable, it can be used again as an element of another set, or as a dictionary key.

3.2.7 Mappings

These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k] selects the item indexed
by k from the mapping a; this can be used in expressions and as the target of assignments or de I statements. The built-in
function len () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

3.2. The standard type hierarchy 23

The Python Language Reference, Anpooisuon 3.11.13

Dictionaries

These represent finite sets of objects indexed by nearly arbitrary values. The only types of values not acceptable as keys
are values containing lists or dictionaries or other mutable types that are compared by value rather than by object identity,
the reason being that the efficient implementation of dictionaries requires a key’s hash value to remain constant. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0) then
they can be used interchangeably to index the same dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were added sequentially
over the dictionary. Replacing an existing key does not change the order, however removing a key and re-inserting it will
add it to the end instead of keeping its old place.

Dictionaries are mutable; they can be created by the { . . . } notation (see section Dictionary displays).

The extension modules dbm.ndbm and dbm.gnu provide additional examples of mapping types, as does the
collections module.

AMoEe otnv ékdoon 3.7: Dictionaries did not preserve insertion order in versions of Python before 3.6. In CPython
3.6, insertion order was preserved, but it was considered an implementation detail at that time rather than a language
guarantee.

3.2.8 Callable types

These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions

A user-defined function object is created by a function definition (see section Function definitions). It should be called
with an argument list containing the same number of items as the function’s formal parameter list.

Special read-only attributes

Attribute Meaning

A reference to the di ct i onary that holds the function’s
global variables - the global namespace of the module in
which the function was defined.

None or a tuple of cells that contain bindings for the
function’s free variables.

A cell object has the attribute cel1l contents. This
can be used to get the value of the cell, as well as set the
value.

function.__globals_

function.___closure

24 KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

Special writable attributes

Most of these attributes check the type of the assigned value:

Attribute Meaning
' The function’s documentation string, or None if
function.__doc__ unavailable. Not inherited by subclasses.
The function’s name. See also: _ name_
function._ _name___ B e e EE.
' The function’s qualified name. See also:
function.__qualname _ _qualname__ attributes.
Néo otnv €kdoon 3.3.
. The name of the module the function was defined in, or
e None if unavailable.
. A tuple containing default parameter values for those
function.__defaults__ parameters that have defaults, or None if no parameters
have a default value.
The code object representing the compiled function body.
function.___code___
.) The namespace supporting arbitrary function attributes.
function.__dict__ Seealso: dict attributes.
.] A dictionary containing annotations of parameters.
function.__annotations__ The keys of the dictionary are the parameter names, and
'return' for the return annotation, if provided. See
also: annotations-howto.
A dictionary containing defaults for keyword-only
function.__kwdefaults_

parameters.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach metadata
to functions. Regular attribute dot-notation is used to get and set such attributes.

Agnrouépera. vhortoinong CPython: CPython’s current implementation only supports function attributes on user-
defined functions. Function attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object (accessible via the ___code_

attribute).

3.2. The standard type hierarchy

25

The Python Language Reference, Anpooisuon 3.11.13

Instance methods

An instance method object combines a class, a class instance and any callable object (normally a user-defined function).

Special read-only attributes:

Refers to the class instance object to which the method is
method.__self T

Refers to the original function object
method.___func___

The method’s documentation (same as method.
__func__.__doc__). A string if the original
function had a docstring, else None.

The name of the method (same as method.
_ func__.__ _name_)

method.__doc___

method._ _name_

The name of the module the method was defined in, or

method.__module_ None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of that class),
if that attribute is a user-defined function object or a classmethod object.

When an instance method object is created by retrieving a user-defined function object from a class via one of its instances,
its___self _ attributeis the instance, and the method object is said to be bound. The new method’s___ func___ attribute
is the original function object.

‘When an instance method object is created by retrieving a c1as smethod object from a class or instance, its __self
attribute is the class itself, and its ___ func___ attribute is the function object underlying the class method.

When an instance method object is called, the underlying function (__ func__) is called, inserting the class instance
(__self__)infront of the argument list. For instance, when C is a class which contains a definition for a function £ (),
and x is an instance of C, calling x. £ (1) is equivalent to calling C.f (x, 1).

When an instance method object is derived from a classmethod object, the «class instance» stored in __self
will actually be the class itself, so that calling either x. £ (1) or C.f (1) is equivalent to calling £ (C, 1) where £ is
the underlying function.

Note that the transformation from function object to instance method object happens each time the attribute is retrieved
from the instance. In some cases, a fruitful optimization is to assign the attribute to a local variable and call that local
variable. Also notice that this transformation only happens for user-defined functions; other callable objects (and all non-
callable objects) are retrieved without transformation. It is also important to note that user-defined functions which are
attributes of a class instance are not converted to bound methods; this only happens when the function is an attribute of
the class.

26 KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

Generator functions

A function or method which uses the yield statement (see section The yield statement) is called a generator function.
Such a function, when called, always returns an iterator object which can be used to execute the body of the function:
calling the iterator’s iterator.__next__ () method will cause the function to execute until it provides a value
using the yield statement. When the function executes a ret urn statement or falls off the end, a StopIteration
exception is raised and the iterator will have reached the end of the set of values to be returned.

Coroutine functions

A function or method which is defined using async def is called a coroutine function. Such a function, when called,
returns a coroutine object. It may contain awa it expressions, as well as async withand async for statements.
See also the Coroutine Objects section.

Asynchronous generator functions

A function or method which is defined using async de £ and which uses the yie1d statement is called a asynchronous
generator function. Such a function, when called, returns an asynchronous iterator object which can be used inan async
for statement to execute the body of the function.

Calling the asynchronous iterator’s aiterator.___anext__ method will return an awaitable which when awaited will
execute until it provides a value using the yie1d expression. When the function executes an empty ret urn statement
or falls off the end, a StopAsyncIteration exception is raised and the asynchronous iterator will have reached the
end of the set of values to be yielded.

Built-in functions

A built-in function object is a wrapper around a C function. Examples of built-in functions are 1en () andmath.sin ()
(math is a standard built-in module). The number and type of the arguments are determined by the C function. Special
read-only attributes:

e __doc___is the function’s documentation string, or None if unavailable. See function.__doc___
e _ name___is the function’s name. See function._ _name .
e __self__ issettoNone (but see the next item).

e _ module__is the name of the module the function was defined in or None if unavailable. See function.
__module__.

Built-in methods

This is really a different disguise of a built-in function, this time containing an object passed to the C function as an
implicit extra argument. An example of a built-in method is alist . append (), assuming alist is a list object. In this
case, the special read-only attribute __self__isset to the object denoted by alist. (The attribute has the same semantics
as it does with ot her instance methods.)

3.2. The standard type hierarchy 27

The Python Language Reference, Anpooisuon 3.11.13

Classes

Classes are callable. These objects normally act as factories for new instances of themselves, but variations are possible
for class types that override __new___ (). The arguments of the call are passedto ___new__ () and, in the typical case,
to_ init () to initialize the new instance.

Class Instances

Instances of arbitrary classes can be made callable by defininga ___call__ () method in their class.

3.2.9 Modules

Modules are a basic organizational unit of Python code, and are created by the import system as invoked either by the
import statement, or by calling functions such as importlib.import_module () and built-in__import__ ().
A module object has a namespace implemented by a dictionary object (this is the dictionary referenced by the
__globals___ attribute of functions defined in the module). Attribute references are translated to lookups in this
dictionary, e.g., m.x is equivalent to m.__dict__ ["x"]. A module object does not contain the code object used
to initialize the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g.,m.x = 1isequivalenttom.__dict__ ["x"]
= 1.

Predefined (writable) attributes:

__name___
The module’s name.

doc

The module’s documentation string, or None if unavailable.

file
The pathname of the file from which the module was loaded, if it was loaded from a file. The
___file___ attribute may be missing for certain types of modules, such as C modules that are statically
linked into the interpreter. For extension modules loaded dynamically from a shared library, it’s the
pathname of the shared library file.

__annotations___
A dictionary containing variable annotations collected during module body execution. For best
practices on working with __annotations__, please see annotations-howto.

Special read-only attribute: __dict__ is the module’s namespace as a dictionary object.

Aemrouépera vhomoinong CPython: Because of the way CPython clears module dictionaries, the module dictionary
will be cleared when the module falls out of scope even if the dictionary still has live references. To avoid this, copy the
dictionary or keep the module around while using its dictionary directly.

28 KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

3.2.10 Custom classes

Custom class types are typically created by class definitions (see section Class definitions). A class has a namespace
implemented by a dictionary object. Class attribute references are translated to lookups in this dictionary, e.g., C.x
is translated to C.__dict__ ["x"] (although there are a number of hooks which allow for other means of locating
attributes). When the attribute name is not found there, the attribute search continues in the base classes. This search
of the base classes uses the C3 method resolution order which behaves correctly even in the presence of “diamond”
inheritance structures where there are multiple inheritance paths leading back to a common ancestor. Additional details
on the C3 MRO used by Python can be found in the documentation accompanying the 2.3 release at https://www.python.
org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an instance
method object whose __self attribute is C. When it would yield a staticmethod object, it is transformed into
the object wrapped by the static method object. See section Implementing Descriptors for another way in which attributes
retrieved from a class may differ from those actually contained inits __dict_ .

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.

A class object can be called (see above) to yield a class instance (see below).

Special attributes:

__name___
The class name.

__module___
The name of the module in which the class was defined.

__dict___
The dictionary containing the class’s namespace.

__bases___
A tuple containing the base classes, in the order of their occurrence in the base class list.

doc_
The class’s documentation string, or None if undefined.

__annotations_
A dictionary containing variable annotations collected during class body execution. For best practices
on working with __annotations__, please see annotations-howto.

3.2.11 Class instances

A class instance is created by calling a class object (see above). A class instance has a namespace implemented as a
dictionary which is the first place in which attribute references are searched. When an attribute is not found there, and
the instance’s class has an attribute by that name, the search continues with the class attributes. If a class attribute
is found that is a user-defined function object, it is transformed into an instance method object whose __ self
attribute is the instance. Static method and class method objects are also transformed; see above under «Classes». See
section /mplementing Descriptors for another way in which attributes of a class retrieved via its instances may differ
from the objects actually stored in the class's __dict__ . If no class attribute is found, and the object’s class has a
__getattr__ () method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has a
__setattr__ () or__delattr__ () method, this is called instead of updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names. See
section Special method names.

3.2. The standard type hierarchy 29

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Anpooisuon 3.11.13

Special attributes: ___dict___is the attribute dictionary; __class___is the instance’s class.

3.2.12 1/0 objects (also known as file objects)

A file object represents an open file. Various shortcuts are available to create file objects: the open () built-in function, and
also os.popen (), os.fdopen (), and themakefile () method of socket objects (and perhaps by other functions
or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to the
interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow the interface
defined by the 10.Text IOBase abstract class.

3.2.13 Internal types

A few types used internally by the interpreter are exposed to the user. Their definitions may change with future versions
of the interpreter, but they are mentioned here for completeness.

Code objects

Code objects represent byte-compiled executable Python code, or bytecode. The difference between a code object and a
function object is that the function object contains an explicit reference to the function’s globals (the module in which it
was defined), while a code object contains no context; also the default argument values are stored in the function object,
not in the code object (because they represent values calculated at run-time). Unlike function objects, code objects are
immutable and contain no references (directly or indirectly) to mutable objects.

30 KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

Special read-only attributes

codeobject

codeobject

codeobject

codeobject

codeobject

codeobject.

codeobject

codeobject.

codeobject.

codeobject

codeobject.

codeobject.

codeobject

codeobject

codeobject

codeobject.

codeobject

.co_name

.co_qualname

.co_argcount

.co_posonlyargcount

.co_kwonlyargcount

co_nlocals

.CO_varnames

co_cellvars

co_freevars

.co_code

co_consts

CO_names

.co_filename

.co_firstlineno

.co_lnotab

co_stacksize

.co_£flags

The function name

The fully qualified function name
Néo oty éxdoom 3.11.

The total number of positional parameters (including
positional-only parameters and parameters with default
values) that the function has

The number of positional-only parameters (including
arguments with default values) that the function has

The number of keyword-only parameters (including
arguments with default values) that the function has

The number of local variables used by the function
(including parameters)

A tuple containing the names of the local variables in
the function (starting with the parameter names)

A tuple containing the names of local variables that are
referenced by nested functions inside the function

A tuple containing the names of free variables in the
function

A string representing the sequence of byfecode
instructions in the function

A tuple containing the literals used by the byrecode in
the function

A tuple containing the names used by the byrecode in
the function

The name of the file from which the code was compiled

The line number of the first line of the function

A string encoding the mapping from bytecode offsets to
line numbers. For details, see the source code of the
interpreter.

The required stack size of the code object

An integer encoding a number of flags for the
interpreter.

3.2. The standard type hierarchy

31

The Python Language Reference, Anpooisuon 3.11.13

The following flag bits are defined for co_flags: bit 0x04 is set if the function uses the *arguments syntax to
accept an arbitrary number of positional arguments; bit 0x08 is set if the function uses the **keywords syntax to
accept arbitrary keyword arguments; bit 0x20 is set if the function is a generator. See inspect-module-co-flags for details
on the semantics of each flags that might be present.

Future feature declarations (from _ future_ import division) also use bits in co_flags to indicate
whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if the function was compiled
with future division enabled; bits 0x10 and 0x1000 were used in earlier versions of Python.

Other bits in co_ f1ags are reserved for internal use.

If a code object represents a function, the first item in co_ const s is the documentation string of the function, or None
if undefined.

Methods on code objects

codeobject.co_positions ()
Returns an iterable over the source code positions of each bytecode instruction in the code object.

The iterator returns tuples containing the (start_line, end_line, start_column,
end_column). The i-th tuple corresponds to the position of the source code that compiled to the i-th code
unit. Column information is O-indexed utf-8 byte offsets on the given source line.

This positional information can be missing. A non-exhaustive lists of cases where this may happen:
o Running the interpreter with —X no_debug_ranges.
» Loading a pyc file compiled while using -X no_debug_ranges.
« Position tuples corresponding to artificial instructions.
o Line and column numbers that can’t be represented due to implementation specific limitations.
When this occurs, some or all of the tuple elements can be None.

Néo otnv ékdoon 3.11.

Enueiwon: This feature requires storing column positions in code objects which may result in a small increase
of disk usage of compiled Python files or interpreter memory usage. To avoid storing the extra information
and/or deactivate printing the extra traceback information, the —X no_debug_ranges command line flag or
the PYTHONNODEBUGRANGES environment variable can be used.

codeobject.co_lines ()

Returns an iterator that yields information about successive ranges of bytecodes. Each item yielded isa (start,
end, lineno) tuple:

e start (an int) represents the offset (inclusive) of the start of the bytecode range
e end (an int) represents the offset (exclusive) of the end of the byrecode range

e linenoisan int representing the line number of the bytecode range, or None if the bytecodes in the given
range have no line number

The items yielded will have the following properties:
« The first range yielded will have a start of 0.

o The (start, end) ranges will be non-decreasing and consecutive. That is, for any pair of tuples, the
start of the second will be equal to the end of the first.

32 KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

« No range will be backwards: end >= start for all triples.
o The last tuple yielded will have end equal to the size of the bytecode.

Zero-width ranges, where start == end, are allowed. Zero-width ranges are used for lines that are present in
the source code, but have been eliminated by the byrecode compiler.

Néo otnv éxdoon 3.10.

Agite emiong:

PEP 626 - Precise line numbers for debugging and other tools.
The PEP that introduced the co_lines () method.

codeobject . replace (**kwargs)

Return a copy of the code object with new values for the specified fields.

Néo oty éxdoon 3.8.

Frame objects

Frame objects represent execution frames. They may occur in traceback objects, and are also passed to registered trace
functions.

Special read-only attributes

Points to the previous stack frame (towards the caller), or
frame.f_back None if this is the bottom stack frame
The code object being executed in this frame. Accessing
this attribute raises an auditing event object.
__getattr__ with arguments obj and "f_code™".
The dictionary used by the frame to look up local
variables

frame.f_code

frame.f_locals

The dictionary used by the frame to look up global
frame.f_globals DI
L The dictionary used by the frame to look up built-in
frame.f builtins (intrinsic) names
The «precise instruction» of the frame object (this is an

frame.f_lasti index into the byrecode string of the code object)

3.2. The standard type hierarchy 33

https://peps.python.org/pep-0626/

The Python Language Reference, Anpooisuon 3.11.13

Special writable attributes

If not None, this is a function called for various
events during code execution (this is used by debuggers).
Normally an event is triggered for each new source line
(see f_trace_lines).
Set this attribute to False to disable triggering a tracing
event for each source line.

frame.f_trace

frame.f_ trace_lines

Set this attribute to True to allow per-opcode events
to be requested. Note that this may lead to undefined
interpreter behaviour if exceptions raised by the trace
function escape to the function being traced.

The current line number of the frame — writing to this
from within a trace function jumps to the given line (only
for the bottom-most frame). A debugger can implement
a Jump command (aka Set Next Statement) by writing to
this attribute.

frame.f_ trace_opcodes

frame.f_lineno

Frame object methods

Frame objects support one method:

frame.clear ()

This method clears all references to local variables held by the frame. Also, if the frame belonged to a generator,
the generator is finalized. This helps break reference cycles involving frame objects (for example when catching an
exception and storing its fraceback for later use).

RuntimeError is raised if the frame is currently executing.

Néo oty éxdoon 3.4.

Traceback objects

Traceback objects represent the stack trace of an exception. A traceback object is implicitly created when an exception
occurs, and may also be explicitly created by calling t ypes . TracebackType.

AMaEe oty £kdoon 3.7: Traceback objects can now be explicitly instantiated from Python code.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at each unwound
level a traceback object is inserted in front of the current traceback. When an exception handler is entered, the stack trace
is made available to the program. (See section The try statement.) It is accessible as the third item of the tuple returned
by sys.exc_info (), and asthe __ traceback___ attribute of the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error stream;
if the interpreter is interactive, it is also made available to the user as sys.last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the t b_next attributes should
be linked to form a full stack trace.

Special read-only attributes:

34 KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

Points to the execution frame of the current level.
Accessing this attribute raises an auditing event
object._ getattr_ with arguments obj and
"tb_frame".

Gives the line number where the exception occurred

traceback.tb_frame

traceback.tb_lineno

Indicates the «precise instruction».
traceback.tb_lasti

The line number and last instruction in the traceback may differ from the line number of its frame object if the exception
occurred in a t ry statement with no matching except clause or with a Final 1y clause.
traceback.tb_next
The special writable attribute tb_next is the next level in the stack trace (towards the frame where the exception
occurred), or None if there is no next level.

AlhaEe oty ékdoon 3.7: This attribute is now writable

Slice objects

Slice objects are used to represent slices for __getitem () methods. They are also created by the built-in s1ice ()
function.

Special read-only attributes: start is the lower bound; st op is the upper bound; step is the step value; each is None
if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices (self, length)

This method takes a single integer argument length and computes information about the slice that the slice object
would describe if applied to a sequence of length items. It returns a tuple of three integers; respectively these are
the start and stop indices and the step or stride length of the slice. Missing or out-of-bounds indices are handled in
a manner consistent with regular slices.

Static method objects

Static method objects provide a way of defeating the transformation of function objects to method objects described
above. A static method object is a wrapper around any other object, usually a user-defined method object. When a static
method object is retrieved from a class or a class instance, the object actually returned is the wrapped object, which is
not subject to any further transformation. Static method objects are also callable. Static method objects are created by the
built-in staticmethod () constructor.

3.2. The standard type hierarchy 35

The Python Language Reference, Anpooisuon 3.11.13

Class method objects

A class method object, like a static method object, is a wrapper around another object that alters the way in which that
object is retrieved from classes and class instances. The behaviour of class method objects upon such retrieval is described
above, under «instance methods». Class method objects are created by the built-in classmethod () constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subscripting
and slicing) by defining methods with special names. This is Python’s approach to operator overloading, allowing
classes to define their own behavior with respect to language operators. For instance, if a class defines a method
named _ getitem__ (), and x is an instance of this class, then x[1] is roughly equivalent to type (x) .
__getitem__ (x, 1i). Except where mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined (typically AttributeError or TypeError).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class sets
__iter__ () to None, the class is not iterable, so calling iter () on its instances will raise a TypeError (without
falling back to ___getitem ()).?

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented to the
degree that it makes sense for the object being modelled. For example, some sequences may work well with retrieval of
individual elements, but extracting a slice may not make sense. (One example of this is the NodeList interface in the
W3C’s Document Object Model.)

3.3.1 Basic customization

object._ new_ (cls[,])

Called to create a new instance of class cls. __new___ () is a static method (special-cased so you need not declare
it as such) that takes the class of which an instance was requested as its first argument. The remaining arguments are
those passed to the object constructor expression (the call to the class). The return value of ___new__ () should
be the new object instance (usually an instance of cls).

Typical implementations create a new instance of the class by invoking the superclass’s __new__ () method
using super () .__new__ (cls[, ...]) withappropriate arguments and then modifying the newly created
instance as necessary before returning it.

If _ _new__ () is invoked during object construction and it returns an instance of cls, then the new instance’s
__init__ () method will be invoked like __init__ (self[, ...]),where self is the new instance and
the remaining arguments are the same as were passed to the object constructor.

If _ _new__ () does not return an instance of cls, then the new instance’s _ init__ () method will not be
invoked.

__new___ () isintended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize instance
creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init__ (self[,])
Called after the instance has been created (by ___new___ ()), but before it is returned to the caller. The arguments
are those passed to the class constructor expression. If a base class has an ___init__ () method, the derived
class's ___init__ () method, if any, must explicitly call it to ensure proper initialization of the base class part of
the instance; for example: super () .__init__ ([args...]).

2The__hash__ (), _iter (), _reversed__ (),and___contains__ () methods have special handling for this; others will still raise
a TypeError, but may do so by relying on the behavior that None is not callable.

36 KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

Because __new__ () and __init__ () work together in constructing objects (__new__ () to create it, and
__init___ () to customize it), no non-None value may be returned by ___init__ (); doing so will cause a
TypeError to be raised at runtime.

object.__del__ (self)

Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If a
base classhasa __ del_ () method, the derived class’s ___del () method, if any, must explicitly call it to
ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) for the _ del () method to postpone destruction of the instance
by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether
__del__ () is called a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that ___del__ () methods are called for objects that still exist when the interpreter exits.

Enueiwon: del x doesn’t directly call x.__del__ () — the former decrements the reference count for x by
one, and the latter is only called when x’s reference count reaches zero.

Agmropépera. vhomoinong CPython: It is possible for a reference cycle to prevent the reference count of an
object from going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector.
A common cause of reference cycles is when an exception has been caught in a local variable. The frame’s locals
then reference the exception, which references its own traceback, which references the locals of all frames caught
in the traceback.

Agite emiong:

Documentation for the gc module.

Ipozdomoinon: Due to the precarious circumstances under which __ del () methods are invoked,
exceptions that occur during their execution are ignored, and a warning is printed to sys . stderr instead. In
particular:

e __del__ () canbe invoked when arbitrary code is being executed, including from any arbitrary thread.
If _ del () needs to take a lock or invoke any other blocking resource, it may deadlock as the
resource may already be taken by the code that gets interrupted to execute ___del__ ().

e __del_ () can be executed during interpreter shutdown. As a consequence, the global variables
it needs to access (including other modules) may already have been deleted or set to None. Python
guarantees that globals whose name begins with a single underscore are deleted from their module before
other globals are deleted; if no other references to such globals exist, this may help in assuring that
imported modules are still available at the time when the __del () method is called.

object.__repr__ (self)

Called by the repr () built-in function to compute the «official» string representation of an object. If at all possible,
this should look like a valid Python expression that could be used to recreate an object with the same value (given an
appropriate environment). If this is not possible, a string of the form <. . . some useful description...>
should be returned. The return value must be a string object. If aclass defines__repr. () butnot___str__ (),
then ___repr__ () is also used when an «informal» string representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and unambiguous.

object._ _str__ (self)

Called by str (object) and the built-in functions format () and print () to compute the «informal» or
nicely printable string representation of an object. The return value must be a string object.

3.3. Special method names 37

The Python Language Reference, Anpooisuon 3.11.13

This method differs from object.___repr () inthat there is no expectation that ___str__ () return a valid
Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object. repr ().

object._ bytes__ (self)

Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

object.__format__ (self, format_spec)

Called by the format () built-in function, and by extension, evaluation of formatted string literals and the str.
format () method, to produce a «formatted» string representation of an object. The format_spec argument is a
string that contains a description of the formatting options desired. The interpretation of the format_spec argument
is up to the type implementing ___ format___ (), however most classes will either delegate formatting to one of
the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.
The return value must be a string object.

AMoEe otnv ékdoon 3.4: The _ format__ method of object itself raises a TypeError if passed any non-
empty string.

AMoEe oty ékdoomn 3.7: object._ format__ (x, '') is now equivalent to str (x) rather than
format (str(x), ''").

object.__1t__ (self, other)

object.__le__ (self, other)

object.__eq _ (self, other)

object._ _ne__ (self, other)

object.__gt__ (self, other)

object.__ge__ (self, other)

These are the so-called «rich comparison» methods. The correspondence between operator symbols and method
names is as follows: x<ycallsx.__1t_ (y),x<=ycallsx.__le_ (y),x==ycallsx.__eq (y),x!=y
calls x.__ne_ (y),x>ycallsx.__ gt (y),and x>=ycallsx.__ge_ (y).

A rich comparison method may return the singleton Not Implemented if it does not implement the operation for
a given pair of arguments. By convention, False and True are returned for a successful comparison. However,
these methods can return any value, so if the comparison operator is used in a Boolean context (e.g., in the condition
of an 1if statement), Python will call bool () on the value to determine if the result is true or false.

By default, object implements __eqg () by using is, returning Not Implemented in the case of a false
comparison: True if x 1s y else NotImplemented. For _ ne (), by default it delegates
to __eqg__ () and inverts the result unless it is Not Implemented. There are no other implied relationships
among the comparison operators or default implementations; for example, the truth of (x<y or x==y) does
not imply x<=y. To automatically generate ordering operations from a single root operation, see functools.
total_ordering().

See the paragraphon ___hash__ () for some important notes on creating rashable objects which support custom
comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support the
operation but the right argument does); rather, 1t () and___gt__ () areeach other’sreflection, __1e__ ()
and _ ge_ () are each other’s reflection, and _ _eq () and _ _ne__ () are their own reflection. If the
operands are of different types, and the right operand’s type is a direct or indirect subclass of the left operand’s
type, the reflected method of the right operand has priority, otherwise the left operand’s method has priority. Virtual
subclassing is not considered.

When no appropriate method returns any value other than Not Implemented, the == and ! = operators will fall
back to is and is not, respectively.

38

KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

object._ _hash__ (self)

Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset, and dict. The _ hash__ () method should return an integer. The only required property is
that objects which compare equal have the same hash value; it is advised to mix together the hash values of the
components of the object that also play a part in comparison of objects by packing them into a tuple and hashing
the tuple. Example:

def _ hash_ (self):
return hash((self.name, self.nick, self.color))

Enueiwon: hash () truncates the value returned from an object’s custom ___hash__ () method to the size of a
Py_ssize_t. Thisis typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s ___hash__ ()
must interoperate on builds of different bit sizes, be sure to check the width on all supported builds. An easy way
to do this is with python -c "import sys; print(sys.hash_info.width)".

If aclass does notdefinean __eq_ () method it should not definea ___hash__ () operation either; if it defines
__eq__ () butnot ___hash__ (), its instances will not be usable as items in hashable collections. If a class
defines mutable objects and implements an __eq__ () method, it should not implement ___hash__ (), since
the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s hash value
changes, it will be in the wrong hash bucket).

User-defined classes have __eq () and __hash__ () methods by default; with them, all objects compare
unequal (except with themselves) and x.__hash__ () returns an appropriate value such that x == vy implies
boththat x is yand hash (x) == hash (y).

A class that overrides ___eqg___ () and does not define ___hash__ () will have its __hash__ () implicitly set
to None. When the __hash__ () method of a class is None, instances of the class will raise an appropriate
TypeError when a program attempts to retrieve their hash value, and will also be correctly identified as
unhashable when checking isinstance (obj, collections.abc.Hashable).

If a class that overrides ___eqg__ () needs to retain the implementation of ___hash__ () from a parent class, the
interpreter must be told this explicitly by setting __hash__ = <ParentClass>._ _hash_ .

If a class that does not override __eq () wishes to suppress hash support, it should include __hash__ =
None in the class definition. A class which defines its own ___hash__ () that explicitly raises a TypeError
would be incorrectly identified as hashable by an isinstance (obj, collections.abc.Hashable)
call.

Ynueimon: By default, the __hash__ () values of str and bytes objects are «salted» with an unpredictable
random value. Although they remain constant within an individual Python process, they are not predictable between
repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that exploit the
worst case performance of a dict insertion, O(n?) complexity. See http://ocert.org/advisories/ocert-2011-003.html
for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering (and
it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

AlhoEe oty éxdoon 3.3: Hash randomization is enabled by default.

object._ bool__ (self)
Called to implement truth value testing and the built-in operation boo1l () ; should return False or True. When

3.3. Special method names 39

http://ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, Anpooisuon 3.11.13

this method is not defined, __71en__ () is called, if it is defined, and the object is considered true if its result is
nonzero. If a class defines neither __1en_ () nor __bool__ (), all its instances are considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion of
x .name) for class instances.

object._ _getattr__ (self, name)

Called when the default attribute access fails with an AttributeError (either _ getattribute__ ()
raises an Att ributeError because name is not an instance attribute or an attribute in the class tree for self;
or ___get__ () of aname property raises Att ributeError). This method should either return the (computed)
attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, getattr__ () is not called. (This is an
intentional asymmetry between __getattr__ () and __setattr__ ().) This is done both for efficiency
reasons and because otherwise ___getattr__ () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance attribute
dictionary (but instead inserting them in another object). See the __getattribute__ () method below for a
way to actually get total control over attribute access.

object.__getattribute__ (self, name)

Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr__ (), the latter will not be called unless _ getattribute__ () either calls it explicitly
or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, ocbject.
__getattribute__ (self, name).

Ynueiwon: This method may still be bypassed when looking up special methods as the result of implicit invocation
via language syntax or built-in functions. See Special method lookup.

For certain sensitive attribute accesses, raises an auditing event object.___getattr__ with arguments obj
and name.
object.__setattr__ (self, name, value)

Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store the
value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If _ _setattr__ () wants to assign to an instance attribute, it should call the base class method with the same
name, for example, object.___setattr_ (self, name, value).

For certain sensitive attribute assignments, raises an auditing event object._ setattr__ with arguments
ob7j, name, value.
object._ _delattr__ (self, name)

Like __setattr__ () butfor attribute deletion instead of assignment. This should only be implemented if de 1
obj.name is meaningful for the object.

For certain sensitive attribute deletions, raises an auditing event object ._ delattr__ with arguments obj
and name.

40 KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

object._ dir__ (self)

Called when dir () is called on the object. An iterable must be returned. dir () converts the returned iterable
to a list and sorts it.

Customizing module attribute access

Special names __getattr__ and _ dir__ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and return
the computed value or raise an AttributeError. If an attribute is not found on a module object through the normal
lookup, i.e. object.__getattribute__ (),then __getattr__ issearched in the module _ dict__ before
raising an AttributeError. If found, it is called with the attribute name and the result is returned.

The _ dir__ function should accept no arguments, and return an iterable of strings that represents the names accessible
on module. If present, this function overrides the standard dir () search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class___ attribute of a module object to a subclass of t ypes.ModuleType. For example:

import sys
from types import ModuleType

class VerboseModule (ModuleType) :
def _ repr_ (self):
return f'Verbose {self.__ _name

def _ setattr_ (self, attr, wvalue):
print (f'Setting {attr}..."')

super () ._ _setattr__ (attr, wvalue)

sys.modules [name]. class = VerboseModule

Ynueioon: Defining module __getattr__ and setting module __class__ only affect lookups made using the
attribute access syntax — directly accessing the module globals (whether by code within the module, or via a reference to
the module’s globals dictionary) is unaffected.

AMaEe oty ékdoon 3.5: ___class___ module attribute is now writable.
Néo otny éxdoon 3.7: __getattr__and __ dir__ module attributes.
Agite gmiong:

PEP 562 - Module __getattr__ and __dir__
Describes the __getattr___and __dir___ functions on modules.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one
of its parents). In the examples below, «the attribute» refers to the attribute whose name is the key of the property in the
owner class” __dict_ .

object.__get__ (self, instance, owner=None)

Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance attribute
access). The optional owner argument is the owner class, while instance is the instance that the attribute was accessed
through, or None when the attribute is accessed through the owner.

3.3. Special method names 4

https://peps.python.org/pep-0562/

The Python Language Reference, Anpooisuon 3.11.13

This method should return the computed attribute value or raise an AttributeError exception.

PEP 252 specifies that ___get__ () is callable with one or two arguments. Python’s own built-in descriptors
support this specification; however, it is likely that some third-party tools have descriptors that require both
arguments. Python’s own ___getattribute__ () implementation always passes in both arguments whether
they are required or not.

object.__set__ (self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.
Note,adding___set___ () or__delete__ () changes the kind of descriptor to a «data descriptor». See Invoking
Descriptors for more details.

object.__delete__ (self, instance)
Called to delete the attribute on an instance instance of the owner class.

Instances of descriptors may also have the __objclass___ attribute present:

object.__objclass_
The attribute __objclass__ is interpreted by the inspect module as specifying the class where this object
was defined (setting this appropriately can assist in runtime introspection of dynamic class attributes). For callables,
it may indicate that an instance of the given type (or a subclass) is expected or required as the first positional
argument (for example, CPython sets this attribute for unbound methods that are implemented in C).

Invoking Descriptors

In general, a descriptor is an object attribute with «binding behavior», one whose attribute access has been overridden
by methods in the descriptor protocol: __get_ (), __set_ (),and __delete__ ().If any of those methods are
defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance, a . x
has a lookup chain starting with a.__ dict_ ['x'], then type(a).__dict__ ['x"'], and continuing through
the base classes of type (a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which
descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a . x. How the arguments are assembled depends on a:

Direct Call
The simplest and least common call is when user code directly invokes a descriptor method: x.___get__ (a).

Instance Binding

If binding to an object instance, a . x is transformed into the call: type (a) .__dict__ ['x'].__get__ (a,
type(a)).

Class Binding
If binding to a class, A . x is transformed into the call: A.__dict__ ['x'].__get__ (None, A).

Super Binding
A dotted lookup such as super (A, a) .xsearchesa.__class__.__mro___ for a base class B following A
and thenreturns B. __dict__ ['x'].__get__ (a, A).If nota descriptor, x is returned unchanged.

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined. A

descriptor can define any combination of __get__ (), __set__ () and __delete__ (). If it does not define
__get__ (), then accessing the attribute will return the descriptor object itself unless there is a value in the object’s
instance dictionary. If the descriptor defines __set__ () and/or __delete__ (), itis a data descriptor; if it defines

neither, it is a non-data descriptor. Normally, data descriptors define both __get__ () and __set__ (), while non-
data descriptors have just the _ get__ () method. Data descriptors with __get__ () and __set__ () (and/or

42 KegaAaio 3. Data model

https://peps.python.org/pep-0252/

The Python Language Reference, Anpooiguon 3.11.13

__delete__ ()) defined always override a redefinition in an instance dictionary. In contrast, non-data descriptors
can be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as non-
data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to acquire
behaviors that differ from other instances of the same class.

The property () function is implemented as a data descriptor. Accordingly, instances cannot override the behavior of
a property.

__slots__

_ slots__ allow us to explicitly declare data members (like properties) and deny the creation of __dict__ and
__weakref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using ___dict__ can be significant. Attribute lookup speed can be significantly improved as well.

object.__slots___

This class variable can be assigned a string, iterable, or sequence of strings with variable names used by instances.
__slots__ reserves space for the declared variables and prevents the automatic creation of _ dict__ and
__weakref__ for each instance.

Notes on using __slots__:

When inheriting from a class without __slots__, the __dict__ and __ weakref _ attribute of the instances will
always be accessible.

Without a __dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition.
Attempts to assign to an unlisted variable name raises At t ributeError. If dynamic assignment of new variables
is desired, then add ' __dict__ ' to the sequence of strings in the __slots__ declaration.

Without a __weakref__ variable for each instance, classes defining __slots__do not support weak references
to its instances. If weak reference support is needed, then add ' __weakref__ ' to the sequence of strings in the
__slots__ declaration.

__slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class
attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class
attribute would overwrite the descriptor assignment.

The action of a __slots__ declaration is not limited to the class where it is defined. __slots__ declared in parents
are available in child classes. However, child subclasses will geta ___dict___ and _ weakref _ unless they also
define __slots__ (which should only contain names of any additional slots).

If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is inaccessible
(except by retrieving its descriptor directly from the base class). This renders the meaning of the program undefined.
In the future, a check may be added to prevent this.

TypeError will be raised if nonempty __slots__ are defined for a class derived froma "variable-length"
built-in typesuchas int, bytes, and tuple.

Any non-string iferable may be assigned to __slots__.

If adictionary is used to assign __slots__, the dictionary keys will be used as the slot names. The values of
the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect .getdoc ()
and displayed in the output of help ().

e _ class__ assignment works only if both classes have the same __slots__.

Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have
attributes created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

3.3. Special method names 43

The Python Language Reference, Anpooisuon 3.11.13

o If an iterator is used for __slots__then a descriptor is created for each of the iterator’s values. However, the __slots__

attribute will be an empty iterator.

3.3.3 Customizing class creation

Whenever a class inherits from another class,

init_subclass__ () is called on the parent class. This way, it is

possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but where class

decorators only affect the specific class they’re applied to,

init_subclass__ solely applies to future subclasses of

the class defining the method.

classmethod object.__init_subclass__ (cls)

This method is called whenever the containing class is subclassed. cs is then the new subclass. If defined as a normal
instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent class’s __init_subclass__.
For compatibility with other classes using ___init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

-
class Philosopher:

def _ init_subclass__ (cls, /, default_name, **kwargs):
super () .__init_subclass__ (**kwargs)
cls.default_name = default_ _name

class AustralianPhilosopher (Philosopher, default_name="Bruce"):
pass

The default implementation object.__init_subclass__ does nothing, but raises an error if it is called
with any arguments.

Inueiwon: The metaclass hint metaclass is consumed by the rest of the type machinery, and is never passed
to__init_subclass__ implementations. The actual metaclass (rather than the explicit hint) can be accessed
as type (cls).

Néo otnv €kdoon 3.6.

When a class is created, type._ new__ () scans the class variables and makes callbacks to those with a
___set_name___ () hook.

object.__ set_name__ (self, owner, name)

Automatically called at the time the owning class owner is created. The object has been assigned to name in that
class:

class A:

x = C() # Automatically calls: x.__set_name__ (A, 'x'")

If the class variable is assigned after the class is created, __set_name__ () will not be called automatically. If
needed, set_name__ () can be called directly:

class A:
pass
c =C()
A.Xx = C # The hook is not called
c._ set_name__ (A, 'x'") # Manually invoke the hook

44

KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

See Creating the class object for more details.

Néo oty éxdoon 3.6.

Metaclasses

By default, classes are constructed using t ype () . The class body is executed in a new namespace and the class name is
bound locally to the result of type (name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition line,
or by inheriting from an existing class that included such an argument. In the following example, both MyClass and
MySubclass are instances of Meta:

class Meta (type) :
pass

class MyClass (metaclass=Meta) :
pass

class MySubclass (MyClass) :
pass

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:
« MRO entries are resolved;
« the appropriate metaclass is determined;
« the class namespace is prepared;
« the class body is executed;

« the class object is created.

Resolving MRO entries

object._ _mro_entries__ (self, bases)
If a base that appears in a class definition is not an instance of type, thenan __mro_entries__ () method is
searched on the base. If an __mro_entries__ () method is found, the base is substituted with the result of a
callto__mro_entries__ () when creating the class. The method is called with the original bases tuple passed
to the bases parameter, and must return a tuple of classes that will be used instead of the base. The returned tuple
may be empty: in these cases, the original base is ignored.

Agite griong:

types.resolve_bases ()
Dynamically resolve bases that are not instances of type.

PEP 560
Core support for typing module and generic types.

3.3. Special method names 45

https://peps.python.org/pep-0560/

The Python Language Reference, Anpooisuon 3.11.13

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:
« if no bases and no explicit metaclass are given, then t ype () is used;
« if an explicit metaclass is given and it is not an instance of type (), then it is used directly as the metaclass;

« if an instance of type () is given as the explicit metaclass, or bases are defined, then the most derived metaclass
is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type (cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these candidate
metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail with TypeError.

Preparing the class nhamespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has
a _ prepare__ attribute, it is called as namespace = metaclass._ prepare__ (name, bases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The __prepare_
method should be implemented as a classmethod. The namespace returned by __prepare__ is passed in to
__new___, but when the final class object is created the namespace is copied into a new dict.

If the metaclass hasno __prepare___ attribute, then the class namespace is initialised as an empty ordered mapping.
Agite gmiong:

PEP 3115 - Metaclasses in Python 3000
Introduced the __prepare__ namespace hook

Executing the class body

The class body is executed (approximately) as exec (body, globals (), namespace). The key difference from
anormal call to exec () is that lexical scoping allows the class body (including any methods) to reference names from
the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see names
defined at the class scope. Class variables must be accessed through the first parameter of instance or class methods, or
through the implicit lexically scoped __class___ reference described in the next section.

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass (name, bases, namespace, **kwds) (the additional keywords passed here are the same as
those passed to __prepare_).

This class object is the one that will be referenced by the zero-argument form of super (). ___class__ is an implicit
closure reference created by the compiler if any methods in a class body refer to either __class__ or super. This
allows the zero argument form of super () to correctly identify the class being defined based on lexical scoping, while
the class or instance that was used to make the current call is identified based on the first argument passed to the method.

Aemropépera viomoinong CPython: In CPython 3.6 and later, the __class__ cell is passed to the metaclass as a
__classcell__ entry in the class namespace. If present, this must be propagated up to the type._ _new__ callin
order for the class to be initialised correctly. Failing to do so will result in a Runt imeError in Python 3.8.

When using the default metaclass t ype, or any metaclass that ultimately calls t ype . ___new
customization steps are invoked after creating the class object:

, the following additional

46 KegaAaio 3. Data model

https://peps.python.org/pep-3115/

The Python Language Reference, Anpooiguon 3.11.13

1) The type._ new__ method collects all of the attributes in the class namespace that define a
__set_name___ () method;

2) Those ___set_name__ methods are called with the class being defined and the assigned name of that particular
attribute;

3) The __init_subclass__ () hook is called on the immediate parent of the new class in its method resolution
order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the resulting
object is bound in the local namespace as the defined class.

When a new class is created by type .___new__, the object provided as the namespace parameter is copied to a new
ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which becomes the
__dict___ attribute of the class object.

Agite emiong:

PEP 3135 - New super
Describes the implicit __class___ closure reference

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging,
interface checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource
locking/synchronization.

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance () and issubclass () built-in
functions.

In particular, the metaclass abc . ABCMeta implements these methods in order to allow the addition of Abstract Base
Classes (ABCs) as «virtual base classes» to any class or type (including built-in types), including other ABCs.
class.__instancecheck__ (self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to implement
isinstance (instance, class).
class.__subclasscheck__ (self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to implement

issubclass (subclass, class).

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods in
the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case the
instance is itself a class.

Agite emiong:

PEP 3119 - Introducing Abstract Base Classes
Includes the specification for customizing isinstance () and issubclass () behavior through
__instancecheck__ ()and___subclasscheck__ (),withmotivation for this functionality in the context
of adding Abstract Base Classes (see the abc module) to the language.

3.3. Special method names 47

https://peps.python.org/pep-3135/
https://peps.python.org/pep-3119/

The Python Language Reference, Anpooisuon 3.11.13

3.3.5 Emulating generic types

When using type annotations, it is often useful to parameterize a generic type using Python’s square-brackets notation. For
example, the annotation 1ist [int] might be used to signify a 1ist in which all the elements are of type int.
Agite emiong:

PEP 484 - Type Hints
Introducing Python’s framework for type annotations

Generic Alias Types
Documentation for objects representing parameterized generic classes

Generics, user-defined generics and typing.Generic
Documentation on how to implement generic classes that can be parameterized at runtime and understood by static
type-checkers.

A class can generally only be parameterized if it defines the special class method __class_getitem__ ().

classmethod object._ class_getitem__ (cls, key)

Return an object representing the specialization of a generic class by type arguments found in key.

When defined on aclass, __class_getitem_ _ () is automatically a class method. As such, there is no need
for it to be decorated with @classmethod when it is defined.

The purpose of __class_getitem _

The purpose of __class_getitem _ () isto allow runtime parameterization of standard-library generic classes in
order to more easily apply 7ype hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers, users
should either inherit from a standard library class that already implements ___class_getitem__ (), or inherit from
typing.Generic, which has its own implementation of __class_getitem__ ().

Custom implementations of __class_getitem__ () on classes defined outside of the standard library may not be
understood by third-party type-checkers such as mypy. Using __class_getitem__ () on any class for purposes
other than type hinting is discouraged.

__class_getitem__ versus __getitem _

Usually, the subscription of an object using square brackets will call the __getitem__ () instance method defined on
the object’s class. However, if the object being subscribed is itself a class, the class method __class_getitem _ ()
may be called instead. ___class_getitem__ () should return a GenericAlias object if it is properly defined.

Presented with the expression obj [x], the Python interpreter follows something like the following process to decide
whether _ getitem () or___class_getitem_ _ () should be called:

from inspect import isclass

def subscribe (obj, x):
"""Return the result of the expression 'obj[x]'"""

class_of_obj = type (obj)

If the class of obj defines __getitem ,
call class_of obj.__getitem _ (obj, x)
if hasattr(class_of_obj, '_ _getitem '):

(ouvéyela otV emoOUEV oeld)

48 KegaAaio 3. Data model

https://peps.python.org/pep-0484/

The Python Language Reference, Anpooiguon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

return class_of_obj._ getitem_ _ (obj, x)

Else, 1f obj is a class and defines __class_getitem__,

call obj._ _class_getitem _ (x)

elif isclass(obj) and hasattr(obj, ' class_getitem_ '"):
return obj.___class_getitem__ (x)

Else, raise an exception
else:
raise TypeError (
f"'"{class_of_obj.__name__}' object is not subscriptable"

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s metaclass, and
most classes have the t ype class as their metaclass. t ype does not define __getitem__ (), meaning that expressions
suchas 1ist [int],dict[str, float] and tuple([str, bytes] allresultin__ class_getitem _ ()
being called:

>>> # 1ist has class "type" as its metaclass, like most classes:
>>> type(list)
<class 'type'>

>>> type(dict) == type(list) == type(tuple) == type(str) == type (bytes)
True

>>> # "list[int]" calls "list.__class_getitem_ _ (int)"

>>> list[int]

list[int]

>>> # list.__class_getitem _ returns a GenericAlias object:

>>> type(list[int])
<class 'types.GenericAlias'>

However, if a class has a custom metaclass that defines ___getitem (), subscribing the class may result in different
behaviour. An example of this can be found in the enum module:

>>> from enum import Enum

>>> class Menu (Enum) :
"""A breakfast menu"""
SPAM = 'spam'
BACON = 'bacon'

>>> # Enum classes have a custom metaclass:

>>> type (Menu)

<class 'enum.EnumMeta'>

>>> # EnumMeta defines __getitem ,

>>> # so __class_getitem__ 1is not called,

>>> # and the result is not a GenericAlias object:
>>> Menu['SPAM']

<Menu.SPAM: 'spam'>

>>> type (Menu['SPAM'])

<enum 'Menu'>

Agite gmiong:

PEP 560 - Core Support for typing module and generic types
Introducing ___class_getitem _ (),and outlining when a subscriptionresultsin __class_getitem__ ()
being called instead of __getitem ()

3.3. Special method names 49

https://peps.python.org/pep-0560/

The Python Language Reference, Anpooisuon 3.11.13

3.3.6 Emulating callable objects

object.__ecall (self[, args...])

Called when the instance is «called» as a function; if this method is defined, x (argl, arg2, ...) roughly
translates to type (x) .__call__ (x, argl, ...).

3.3.7 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as 1ists
or tuples) or mappings (like dict ionaries), but can represent other containers as well. The first set of methods is
used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys should
be the integers k for which 0 <= k < N where N is the length of the sequence, or s1ice objects, which define a
range of items. It is also recommended that mappings provide the methods keys (), values (), items (), get (),
clear (),setdefault (), pop(),popitem(), copy (),and update () behaving similar to those for Python’s
standard dictionary objects. The collections.abc module provides a MutableMapping abstract base class
to help create those methods from a base set of ___getitem__ (), setitem__ (), delitem (), and
keys (). Mutable sequences should provide methods append (), count (), index (), extend (), insert (),
pop (), remove (), reverse () and sort (), like Python standard 1ist objects. Finally, sequence types
should implement addition (meaning concatenation) and multiplication (meaning repetition) by defining the methods
_add__(), radd__ (), iadd__ (), mul__ (), rmul__ () and __ _imul__ () described below;
they should not define other numerical operators. It is recommended that both mappings and sequences implement the
__contains__ () method to allow efficient use of the in operator; for mappings, in should search the mapping’s
keys; for sequences, it should search through the values. It is further recommended that both mappings and sequences
implement the __iter__ () method to allow efficient iteration through the container; for mappings, __iter__ ()
should iterate through the object’s keys; for sequences, it should iterate through the values.

object.__len__ (self)
Called to implement the built-in function 1en () . Should return the length of the object, an integer >= 0. Also, an
object that doesn’t definea __bool_ () method and whose ___len__ () method returns zero is considered to
be false in a Boolean context.

Agmropépera. vhomoinong CPython: In CPython, the length is required to be at most sys.maxsize. If the
length is larger than sys.maxsize some features (such as 1en ()) may raise OverflowError. To prevent
raising OverflowError by truth value testing, an object must definea __ bool__ () method.

object.__length_hint__ (self)

Called to implement operator.length_hint (). Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer >= 0. The return value may also be
Not Implemented, which is treated the same as if the __length_hint__ method didn’t exist at all. This
method is purely an optimization and is never required for correctness.

Néo oty éxdoon 3.4.

Enueiwon: Slicing is done exclusively with the following three methods. A call like

[a[1:2] = 9

is translated to

[a[slice(l, 2, None)] = Db

and so forth. Missing slice items are always filled in with None.

50 KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

object._ _getitem__ (self, key)

Called to implement evaluation of self [key]. For sequence types, the accepted keys should be integers.
Optionally, they may support slice objects as well. Negative index support is also optional. If key is of an
inappropriate type, TypeError may be raised; if key is a value outside the set of indexes for the sequence (after
any special interpretation of negative values), IndexError should be raised. For mapping types, if key is missing
(not in the container), KeyError should be raised.

Inueiwon: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection
of the end of the sequence.

Inueiwon: When subscripting a class, the special class method __class_getitem__ () may be called instead
of __getitem__ ().See _ class_getitem__ versus __getitem__ for more details.

object.__ _setitem__ (self, key, value)
Called to implement assignment to self [key]. Same note as for __getitem__ (). This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added,
or for sequences if elements can be replaced. The same exceptions should be raised for improper key values as for
the getitem__ () method.

object._ _delitem__ (self, key)

Called to implement deletion of self [key]. Same note as for __getitem__ (). This should only be
implemented for mappings if the objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for improper key values as for the __getitem _ ()
method.

object._ _missing _ (self, key)
Called by dict._ _getitem _ () to implement self [key] for dict subclasses when key is not in the
dictionary.
object.__iter_ _ (self)
This method is called when an iterator is required for a container. This method should return a new iterator object
that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the container.
object._ reversed_ (self)
Called (if present) by the reversed () built-in to implement reverse iteration. It should return a new iterator

object that iterates over all the objects in the container in reverse order.

Ifthe reversed__ () method is not provided, the reversed () built-in will fall back to using the sequence
protocol (__Ien_ () and __getitem__ ()). Objects that support the sequence protocol should only provide
_ _reversed__ () if they can provide an implementation that is more efficient than the one provided by
reversed().

The membership test operators (inand not 1in)are normally implemented as an iteration through a container. However,
container objects can supply the following special method with a more efficient implementation, which also does not
require the object be iterable.

object.__contains__ (self, item)
Called to implement membership test operators. Should return true if ifem is in self, false otherwise. For mapping
objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define ___contains__ (), the membership test first tries iterationvia___iter__ (), then
the old sequence iteration protocol via___getitem__ (), see this section in the language reference.

3.3. Special method names 51

The Python Language Reference, Anpooisuon 3.11.13

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should be
left undefined.

object.__add__ (self, other)

object.__sub__ (self, other)

object._ _mul__ (self, other)

object._ _matmul__ (self, other)

object.__truediv__ (self, other)

object._ floordiv__ (self, other)

object._ _mod__ (self, other)

object.__divmod__ (self, other)

object._ pow__ (self, other[, modulo])

object.__1shift__ (self, other)

object._ _rshift__ (self, other)

object.__and__ (self, other)

object.__ xor__ (self, other)

object.__oxr__ (self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod (),pow (),
**x <<, >>, &, ", |). For instance, to evaluate the expression x + vy, where x is an instance of a class that has
an__add__ () method, type (x) .__add__(x, y) iscalled. The _divmod__ () method should be the
equivalent tousing __ floordiv.__ () and __mod__ ();it should not be related to __truediv__ (). Note
that __pow__ () should be defined to accept an optional third argument if the ternary version of the built-in
pow () function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return
NotImplemented.

object.__radd__ (self, other)
object.__rsub__ (self, other)

object.__rmul__ (self, other)
object.__rmatmul__ (self, other)
object.__rtruediv__ (self, other)

object.__rfloordiv__ (self, other)
object.__rmod__ (self, other)
object.__rdivmod__ (self, other)
object._ rpow__ (self, other[, modulo])
object.__rlshift__ (self, other)
object._ _rrshift__ (self, other)
object.__rand__ (self, other)

object.__rxor__ (self, other)

object.__ror__ (self, other)
These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, ~, |) with reflected (swapped) operands. These functions are only called if the left

52 KegaAaio 3. Data model

The Python Language Reference, Anpooiguon 3.11.13

operand does not support the corresponding operation® and the operands are of different types.* For instance, to
evaluate the expression x — vy, where y is an instance of a class thathasan ___rsub___ () method, type (y) .
__rsub__(y, x)iscalledif type (x).__sub__ (x, y) returns Not Implemented.

Note that ternary pow () will not try calling __rpow__ () (the coercion rules would become too complicated).

Inueiwon: If the right operand’s type is a subclass of the left operand’s type and that subclass provides a different
implementation of the reflected method for the operation, this method will be called before the left operand’s
non-reflected method. This behavior allows subclasses to override their ancestors” operations.

object.__iadd__ (self, other)
object.__isub__ (self, other)
object._ _imul__ (self, other)
object._ _imatmul__ (self, other)
object.__itruediv__ (self, other)
object._ ifloordiv__ (self, other)
object.__imod__ (self, other)
object._ _ipow__ (self, other[, modulo])
object._ _ilshift__ (self, other)
object.__irshift__ (self, other)
object.__iand__ (self, other)

object.__ixor__ (self, other)

object.__ior__ (self, other)
These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, @=, /=, //=, %=,
F= <<=, >>=, &=, =, |=). These methods should attempt to do the operation in-place (modifying self) and

return the result (which could be, but does not have to be, self). If a specific method is not defined, or if that
method returns Not Implemented, the augmented assignment falls back to the normal methods. For instance,
if x is an instance of a class withan ___iadd__ () method, x += yisequivalenttox = x.__iadd__ (y)
Jf_ iadd () does not exist, or if x.___iadd__ (y) returns Not Implemented, x.__add__ (y) and
y.__radd__ (x) are considered, as with the evaluation of x + y. In certain situations, augmented assignment
can result in unexpected errors (see fag-augmented-assignment-tuple-error), but this behavior is in fact part of the
data model.

object._ neg__ (self

)
object._ pos__ (self)
object._ _abs__ (self)

object.__invert__ (self)

Called to implement the unary arithmetic operations (-, +, abs () and ~).

object._ complex__ (self)
object.__int__ (self)
object._ float__ (self)

Called to implement the built-in functions complex (), int () and float (). Should return a value of the
appropriate type.

3 «Does not support» here means that the class has no such method, or the method returns Not Implemented. Do not set the method to None
if you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such fallback.

4 For operands of the same type, it is assumed that if the non-reflected method — such as __add__ () - fails then the overall operation is not
supported, which is why the reflected method is not called.

3.3. Special method names 53

The Python Language Reference, Anpooisuon 3.11.13

object.__index__ (self)

Called to implement operator.index (), and whenever Python needs to losslessly convert the numeric object
to an integer object (such as in slicing, or in the built-in bin (), hex () and oct () functions). Presence of this
method indicates that the numeric object is an integer type. Must return an integer.

If int_ (), __float__ () and __complex__ () are not defined then corresponding built-in functions
int (), float () and complex () fallbackto __ index__ ().

object.__round__ (self[, ndigits])
object._ _trunc__ (self)

object._ floor__ (self)

object._ ceil__ (self)

Called to implement the built-in function round () and math functions trunc (), floor () and ceil ().
Unless ndigits is passed to __round___ () all these methods should return the value of the object truncated to an
Integral (typically an int).

The built-in function int () fallsbackto_ trunc__ () ifneither __int__ () nor__ index__ () isdefined.

AlhaEe oty ékdoon 3.11: The delegation of int () to___trunc__ () is deprecated.

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a wi t h statement. The
context manager handles the entry into, and the exit from, the desired runtime context for the execution of the block of
code. Context managers are normally invoked using the with statement (described in section The with statement), but
can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking
resources, closing opened files, etc.

For more information on context managers, see typecontextmanager.

object.__enter__ (self)
Enter the runtime context related to this object. The with statement will bind this method’s return value to the
target(s) specified in the as clause of the statement, if any.

object.__exit__ (self, exc_type, exc_value, traceback)

Exit the runtime context related to this object. The parameters describe the exception that caused the context to be
exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being propagated),
it should return a true value. Otherwise, the exception will be processed normally upon exit from this method.

Note that __exit__ () methods should not reraise the passed-in exception; this is the caller’s responsibility.
Agite emiong:

PEP 343 - The «with» statement
The specification, background, and examples for the Python wi t h statement.

54 KegaAaio 3. Data model

https://peps.python.org/pep-0343/

The Python Language Reference, Anpooiguon 3.11.13

3.3.10 Customizing positional arguments in class pattern matching

When using a class name in a pattern, positional arguments in the pattern are not allowed by default, i.e. case
MyClass (x, vy) is typically invalid without special support in MyClass. To be able to use that kind of pattern,
the class needs to define a __march_args__ attribute.

object._ match_args_
This class variable can be assigned a tuple of strings. When this class is used in a class pattern with positional

arguments, each positional argument will be converted into a keyword argument, using the corresponding value in
__match_args__ as the keyword. The absence of this attribute is equivalent to setting it to ().

For example, if MyClass.__match_args__is ("left", "center", "right") that means that case
MyClass (x, y) isequivalentto case MyClass (left=x, center=y).Note thatthe number of arguments in
the pattern must be smaller than or equal to the number of elements in __match_args__; if it is larger, the pattern match
attempt will raise a TypeError.

Néo omv éxdoon 3.10.
Agite emiong:

PEP 634 - Structural Pattern Matching
The specification for the Python mat ch statement.

3.3.11 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an object’s
type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an exception:

>>> class C:

pass
>>> ¢ = C()
>>> c.__len_ = lambda: 5

>>> len (c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods such as __hash__ () and __repr__ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the conventional
lookup process, they would fail when invoked on the type object itself:

>>> 1 ._ _hash__ () == hash(1l)
True
>>> int._ hash_ () == hash(int)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash__' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as “metaclass
confusion”, and is avoided by bypassing the instance when looking up special methods:

>>> type(l).__hash__ (1) == hash(1)

True

>>> type(int) .__hash__ (int) == hash (int)
True

3.3. Special method names 55

https://peps.python.org/pep-0634/

The Python Language Reference, Anpooisuon 3.11.13

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the __getattribute () method even of the object’s metaclass:

>>> class Meta (type):
def _ _getattribute__ (*args):
print ("Metaclass getattribute invoked")
return type._ _getattribute__ (*args)

>>> class C(object, metaclass=Meta):
def _ len_ (self):
return 10
def _ getattribute__ (*args):
print ("Class getattribute invoked")
return object.__getattribute__ (*args)
>>> ¢ = C{()
>>> c.__len_ () # Explicit lookup via instance

Class getattribute invoked
10

>>> type(c).__len__ (c) # Explicit lookup via type
Metaclass getattribute invoked

10

>>> len (c) # Implicit lookup

10

Bypassing the __getattribute__ () machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be set
on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implements an __await__ () method. Coroutine objects returned from async def
functions are awaitable.

Inueiwon: The generator iterator objects returned from generators decorated with types.coroutine () are also
awaitable, but they do not implement __await__ ().

object.__await__ (self)

Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future
implements this method to be compatible with the awa i t expression.

Enueiwon: The language doesn’t place any restriction on the type or value of the objects yielded by the iterator
returned by ___await__, as this is specific to the implementation of the asynchronous execution framework (e.g.
asyncio) that will be managing the awaitable object.

Néo omv éxdoon 3.5.
Agite gmiong:

PEP 492 for additional information about awaitable objects.

56 KegaAaio 3. Data model

https://peps.python.org/pep-0492/

The Python Language Reference, Anpooiguon 3.11.13

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling__await__ () and iterating
over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration, and the
exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by the iterator.
Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator
methods). However, unlike generators, coroutines do not directly support iteration.

AMaEe oty €kdoon 3.5.2: It is a Runt imeError to await on a coroutine more than once.

coroutine.send (value)

Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator returned
by___await__ ().If value is not None, this method delegates to the send () method of the iterator that caused
the coroutine to suspend. The result (return value, StopIteration, or other exception) is the same as when
iterating over the __await__ () return value, described above.

coroutine.throw (value)

coroutine.throw (type[, value[, traceback]])

Raises the specified exception in the coroutine. This method delegates to the t hrow () method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the
__await__ () return value, described above. If the exception is not caught in the coroutine, it propagates back
to the caller.

coroutine.close ()

Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close () method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the
coroutine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4.3 Asynchronous lterators

An asynchronous iterator can call asynchronous code inits ___anext___ method.
Asynchronous iterators can be used in an async for statement.
object.__aiter__ (self)

Must return an asynchronous iterator object.

object.__anext__ (self)

Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration error
when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

def @ aiter_ (self):
return self

(ouvéyela otV emouev oekida)

3.4. Coroutines 57

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

async def _ anext_ (self):
val = await self.readline ()
if val == b'"':

raise StopAsyncIteration
return val

Néo oty éxdoonm 3.5.

AMaEe oty ékdoon 3.7: Prior to Python 3.7,
asynchronous iterator.

aiter () could return an awaitable that would resolve to an

Starting with Python 3.7,
ina TypeError error.

aiter__ () mustreturn an asynchronous iterator object. Returning anything else will result

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter___ and
__aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object.__aenter__ (self)

Semantically similar to ___enter__ (), the only difference being that it must return an awaitable.

object.__aexit__ (self, exc_type, exc_value, traceback)

Semantically similar to __exit__ (), the only difference being that it must return an awaitable.

An example of an asynchronous context manager class:

class AsyncContextManager:
async def _ aenter_ (self):
await log('entering context')

async def _ aexit__ (self, exc_type, exc, tb):
await log('exiting context')

Néo omv éxdoom 3.5.

58 KegaAaio 3. Data model

KE®ANAIO 4

MovTeEAho eKTEAEONQ

4.1 Aopn €vOg MPOYPAHHATOG

"Eva tpodypaupo Python amoteleiton amd pmhok kwdiko. ‘Eva umxdok eivor £vo Koppdtt KEWEVOU TPOYPAUUOTOG
Python mov ekteheiton og puo povéda. Ta mapakdto sivan umAok: évo module, To GO (UOG CUVEPTNONG, O £VOG
opLopdg kAdong. Kébe evtodt) mov minktpoloyeitol diadpaotikd amotehel uwhok. 'Eva apyeio déoung evepyelmv
(éva apyelo mov divetar mg Tumiky) €ic0d0g 0To dlepunvéa 1 Kaboplletal wg OPLOUa YPOUUNG EVIOLDV GTOV dlep-
unvéa) eivor €vo phok Koduka. Mua script evioAt) (uLo. evioAt) ov Kabopiletar 0to diepunvéa (e TV emhoy
—c) giva éva umhok Kmdika. Mo evotnta mov ekTeleliTon wg avoTépov emmédov script (wg module __main_)
oo TN YPAUUY EVTOLDV XPNOLUOTOLDVTOG £Va OPLOUO. —m OpLopa. eivar emtiong éva umhok koduka. To dplopa
OUUPBOLOCELPAS TTOU TEPVAEL OTLG EVOMUATOUEVEG CUVOPTNOELS eval () Kol exec () elval éva UTAoK KMOLKO.

'Evo. prthox kmdika exteleital o€ éva mAaioto extédeans. 'Eva mhailolo mepLéyel oplopéveg Thnpopopies dloyeipt-
o1 (;TOU YPNOLUOTTOLOVVTAL YLOL ATOCQPUALGTWON) KoL KaBopilel Tov Kat Twg ouvveyileTol 1) eKTEAEOT UETE TV
OMOKANPWOT) TNG EKTELEDTG TOV UTAOK KMOLKAL.

4.2 Ovopaocia KkatL ouvdeon

4.2.1 Xuvdeon ovouatwy

Names avogépovtal oe avitkeipeva. Ta ovopato elodyoviol HECm LELTOVPYLMV dETUEVONG OVOUATOV.
O mapakdtw douég deopevouv ovouoTa:

o TUTILKEG TTAPAUETPOL CUVOPTIOEMY,

o oplouoi KAGoewv,

o 0PLOUOL CUVAPTHOEMY

o eK(pPAoELG avadeong

o fargets TOV ELVOL OVOLYVWPLOTLKG OV EULPOVILOVTAL OE (o ovabeon:

59

The Python Language Reference, Anpooisuon 3.11.13

- gmKe@aiida fpdyov for,

- uetd to as oe o Mhwon with, o€ pATPO except, 08 PNTPO except * 1) 0To as-pattern Kotd T
dopukt avtiotoiynong notipwv,

- 0€ £vo OTLYLOTUITO HOTIPOU KOTA T dOULKY] AVTILOTOlYNoNG LOTIPwV
o dMlwoelg import.

H dnhwon import g popeng from ... import * ouvvdéel dha ta ovouaTa oV 0plLovIoL OTO ELOAYOUEVO
module, eKTOG ATO AVTA TTOV EEKLYOUV Ue (o KATw stavda. At 1) pop@1| uropet va xpnoutomowdei évo oto
enimedo tov module.

'‘Evag otdyog mov eppavitetor oe o dMiwon de] Bewpeiton emiong deouevpévog yio autd tov okomd (ov Ko 1
TPAYUOTLKY] ONUOoLONOYIOL Elval VO ATtooUVOETEL TO dvoual).

Kd&0e dMhwon avadbeong N eloaywyng ovupaiver uéoo og €va Whok mov opiletor omd €vav oplond KAdong M
ovvapTnong 1 oto enimtedo tov module (To HIThOK KOILKA 0VAOTUTOU EMLTEDOV).

Av éva Ovopo deoueveTOL 08 EVO UTTAOK, E(VOL ULa TOTTLKY|] HETAPANTY avtol Tou Withok, ektdg av dnimBbel wg
nonlocal M global. Av éva dvouo deopevetal 0to emimedo tov module, eivor o kKaBolkn petafint. (O
uetofANTéG Tou umhok tov module givor TOVTOYPOVO TOTTLKES Kot KAOOMKES.) AV (o UETOPANTN XPNOLUOTTOLELTOL
o€ £va UTTAoK Kmdtka olha dev opiletal ekel, elvon pa free variable.

Kd&0e engpdvion evog ovootog 0To KELUEVO TOV TPOYPAUUATOS AVAMEPETAL 0T binding 0vTo TOU OVOUOTOG TTOU
Kabopiletar ard Tovg TOPAKATW KOVOVES ETIAVONG OVOUdTWY.

4.2.2 EniAuon ovopatwyv

'Eval scope opileL TV 0patdTNTOL €VOG OVOLOTOG UECA O€ €VOl WITAOK. AV WO TOTILKY) uetafAnth) oplotel o €va
umhox, to medio g mephapfdvel To PIThok avtd. Av 0 0plopdg OVUPALVEL OF Vo WTTAOK GUVAPTNONG, TO TTedio
EMEKTEIVETOL OE OTTOLODTTTOTE UITAOK TTEPLEYOVTAL UECO O QUTO TTOV TNV OPLLEL, EKTOC OV €VaL TTEPLEXOUEVO WITAOK
ELOAYEL DLOLPOPETLKT) GUVOEDT] YL TO OVOLLQL.

‘Otav éva dvopa pNoLoTtoLeitat o€ £va UITAOK KOILKA, ETAVETOL XPNOLUOTOLDVTOG TO TTANOLEOTEPO TTEPLBAANOV
7edlo. To ovvoro MV TV TTediwV OV €lval 0paTd o€ €Vo UThok KOOLKA 0VOUATETOL environment TOU WITAOK.

‘Otav éva dvopa dev Bpiloketal kKabolov, yivetar raise wa eEaipeon NameError. Av to Tpéyov medio eiva
71edl0 CUVAPTNONG KOL TO OVOUC AVOPEPETOL OF (0L TOTTLKT] UETOPANT 7OV dev €xel aKOua deoUeVTEL 08 KO-
TTOLOL TUUY) OTO ONUELD TTOV YPNOLUOTOLEITAL TO OVoua, Yivetol raise wa eEaipegon UnboundLocalError. H
UnboundLocalError gival o vtokidon g NameError.

Av a kettovpyia oUvoeomg ovoudtmv ovppel orovdnmote HEoo o€ £va UITAOK KOILKa, OAES OL XPNOELS TOV OVO-
UOTOG LEGOL OTO UTTAOK QLVTLUETMITLLOVTIOL G AVOPOPES OTO TPEYOV WITAOK. AUTO LWITOPEL VO 0O1YNOEL O OPAAUOTAL
otav éva dGvouo XPNOLULOTTOLELITOL HECTL OE £vaL UTTAOK TTPLY deouevtel. Autog o Kavovag eivar Aemrtdg. H Python dev
dLaBétel OMMADOELS Ko ETLTPETEL TIG hettovpyieg oUvdeo ovoudtmy vo ouufaivouy omovdnmote uéoo oe éva
urthok Kddika. O Tomkég HETAPANTES EVOG WITAOK KMOLKO WITOPOUV VO, TTPOGILOPLOTOVY GApMVOVTOS OMOKANPO
TO Kelevo Tou Wthok Yo AeLttoupyieg ovvdeong ovopdtwyv. Agtte v eyypagr oto FAQ yia to UnboundLocalError
YLoL TP OdELYLOLTOL.

If the global statement occurs within a block, all uses of the names specified in the statement refer to the bindings of
those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global namespace,
i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace of the module
builtins. The global namespace is searched first. If the names are not found there, the builtins namespace is searched.
The global statement must precede all uses of the listed names.

H dhwon global éxel to idlo medio ue o hettovpyio ovvOeoN 0vOUaTOG 0TO 110 UITAoK. AV TO TANOLECTEPO

mepBdihov mediou yia o eEheV0epn pueTofAnTh mepLéyer won dMiwon global, N eAevOepn uetafinti avruetwsi-
Cetal mg KaOoMKT).

60 Kepahaio 4. MovteAo EKTEAEONG

The Python Language Reference, Anpooiguon 3.11.13

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function
scope.

O ywpog ovoudtmv yio €vo module dnpovpyeitor avtopata Ty TpdTh Qopd mtov To module ewodyetal To KVpLo
module yio éva script ovopdletol mdvte, __main_ .

Class definition blocks and arguments to exec () and eval () are special in the context of name resolution. A class
definition is an executable statement that may use and define names. These references follow the normal rules for name
resolution with an exception that unbound local variables are looked up in the global namespace. The namespace of the
class definition becomes the attribute dictionary of the class. The scope of names defined in a class block is limited to the
class block; it does not extend to the code blocks of methods - this includes comprehensions and generator expressions
since they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + 1 for i in range(10))

4.2.3 EVOWHATWHEVEG OUVAPTHOELG KAl TIEPLOPLOUEVN EKTEAEON

Aemrouépera vhomoinong CPython: Ou yprioteg dev 0o mpémel vo. Tporomolovy to __builtins__ - elvow ow-
otpd W Aesrtopépera vhomoinong. Ot xpNnoteg mov BELOVY VA TOPAKAUPOVY TLUEG OTOV XDPO OVOLATOV TWV
EVOOUATOUEVDV oVVapPTHoE®Y Oa Tpémel vo Kavouv import 1o module builtins Ko vo TPOTOTOLOVY TA YOI
PAKTNPLOTIKA TOV KOTAAANAQL.

O X®POG OVOUATWV TWV EVOMUOTOUEVMY CUVAPTIOEMV TTOVU OYETILETOL UE TNV EKTELEOT EVOG UTTAOK KDOLKO Bpi-
OKETOL OTNV TPOYUOTIKOTITA HECW AvalHTHONG TOV OVOUOTOG __builtins_ 0Tov KABOAKO TOU YMPO OVO-
waTwv: outd Oa péme va eivon éva AeEtkd 1) éva module (ot devtepn mepimtwon ypnouomoteiton to AeEukd Tov
module). A6 mpoemhoyt), 0Tav Bprokouaote otomodule __main__ ,to__builtins__ &lvolLTo EVOOUOTWUEVO
module builtins: étav Bplokduaote og omolodnote Ghho module, To _ builtins_ elval éva Pevdmvupo
yia To AeELko6 tov idtov Tov module builtins.

4.2.4 ANAnAemidpaon e SUVAMLKEG AELTOUPYIEQ

H enilvon ovopdtov twv ehetbepmv petafAntav ovppaivel Katd 1o xpovo eKtéheoncs, OxL KATd To XpOVO UETO-
YADOTTLONG. AVTO onuaivel OTL 0 TOPAKATO KMOOLKAG B0 eKTUTDOEL TO 42:

i =10

def f():
print (1)

i = 42

£0)

Ou ouvaptioelg eval () koL exec () dev €xovv TpOoPaoN 0T0 TANPES TEPLFAMOV YLoL TNV ETAVOY OVOUdT™Y.
To oOVOUOTO WITOPEL VO ETAVOVTOL 0TOVUG TOTLKOVS Kot KOOOAMKOUG MPOoug 0voudTtmv Tou Kohovvtog. Ot ehev-
Oepec uetaphntéc dev emddovral oto minoléotepo mepPdriov medtov, arid otov KaboAKkd yhpo ovoudtwy.'
Ou ouvapnoelg exec () koL eval () €XOUV TPOOLPETIKG OPLOUATO YLOL VA TTAPOKAUPOUY TOVG KAOOMKOVG Kot
TOTILKOVG Y MPOVG OVOUATMV. AV KaBopLoTEL LOVO EVOG Y MPOG OVOUATMV, XPNOUOTOLELTAL KAl YL0L TOUG dVO0.

! Autdg o meploplopd mpoKvTeL EMELdT 0 KOOKAG OV eKTeleiTon amd auTég Tig Aettovpyieg dev eival Stadéoynog T oLy mov 10
module petayhmtriCeTor.

4.2. Ovopacia kat ouvdeon 61

The Python Language Reference, Anpooisuon 3.11.13

4.3 EEalpgoelq

O eEaupéoeig eivar £vag Tpdmog SLaKomnG TG KavoviKhg por|g eLEYYoU evOg LITAOK KOOLKA, TIPOKELUEVOU VA, ALVTL-
UETWILOTOVV odpata 1 dhheg eEatpeTikég ovvOnkes. Mia eEaipeon pivetar raise 6To onueio Gmov evromiteTol
T0 OAAIO: UTopel va avtiuetwmotel amd 1o TEPLBEAOY UITAOK KOOLKOL 1) artd 0TT0L001It0Te UTAOK KMOLKOL TTOV
dueoa 1 ¢uueca eKTELETE TO WTAOK KMALKO OTTOV OLVERT TO OPAUAL.

O diepunvéag g Python eyeiper puo eEaipeon Otav evtomiost £va opdhuo Katd v ektéheon(6mmg 1 dlaipeon
ue to undév). ‘Eva mpdypappoe Python pmopei emiong vo eyeiper pntd wa eEaipean pe ™ dhwon raise. O
draelplotég eEapéoewv Kabopifovral pe T dHhwon try ... except. HpNtpa finally wog Tétolag SHAwong
wropel va ypnowuortotn el yio va kafoprotel kKddikog kaapLopov, o omoiog dev diayelpiletol v eEaipeon oAG
extereiTon aveEdptnTo amd to av tponynonke eSaipeon 1 oyl oTov TPONYOUUEVO KOSLKA.

H Python ypnoipomotei to (ovtého dtoyeiplang OQaAudTwy «TEPUATIONOU»: £vag dLayeLpLoThg eEapéoemy umopel
VO SLOTTLOTMOOEL TL CUVERT] KOL VO GUVEYIOEL TNV EKTELEON OF £Vl EEWTEPLKO ETITEDO, AAMG dEV UITOPEL Va. dLopOdTEL
TNV QLT TOV OQAALOTOG KO VO etavald et T Aettovpyio o ammétuye (eKTdg av emavelooy el To TpofANuatiko
KOUUATL KOLKO 0Ttd TNV apyn).

‘Otav wo eEaipeon dev avtetomotel Kabolov, o diepunvéag tepuaTiCer Ty eKTELEOT TOV TPOYPAUUATOG 1)
EMLOTPEPEL OTOV SLAOPATTLKO KVPLO Fpdyo Tov. Kat oTig 000 TePLTTMOELS, EKTUTTMVEL TO (Y VOGS TG OTOIR0G, EKTOG
av 1 eEaipeon eivar SystemExit.

O eEaupéoeig avayvwpifovrar amd otryudtumo kKhdoewv. H pitpo except emhéyetor avdhoya pe tv kAo
TOU OTLYWOTUTTOV: TIPETTEL VO AVAPEPETOL OTNV KAAON TOU OTLYULOTUITIOU 1) OF WLOL 107) ELKOVIKT) faoLKkT) KAGON OUTNG.
To otyodTLITo PWItopEl var TapornpOel aTd Tov dLayeELPLOTY KL v LETOPEPEL TPOODETEG TANPOPOPIES OYETIKA
ue v eEapeTikn ovvonkm.

Inueiwon: To unvopato eEapéoemv dev amotehotv uépog tov API g Python. To mepieyduevd toug umopei vo.
aAMGEeL amd ™) pia ékdoon tng Python otnv enduevn ywpig posidormoinon kou dev Oa mpémer va Booiletal oe
avtd o k®dLKog Tov Oa exteLeoTEL 08 TOMATAES EKOOCELG TOV dlepunvéa.

Agite emiong v mepLypopt) g dNhwong try oty evomta The try statement Kou TG SNAOONG raise oTnv
evomto. The raise statement.

YTOoOnHELWOELG

62 Kepahaio 4. MovteAo EKTEAEONG

KEGAAAIO D

The import system

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions such as
importlib.import_module () and built-in __import__ () can also be used to invoke the import machinery.

The import statement combines two operations; it searches for the named module, then it binds the results of that search
to a name in the local scope. The search operation of the import statement is defined as a call to the __import__ ()
function, with the appropriate arguments. The return value of ___import__ () is used to perform the name binding
operation of the import statement. See the import statement for the exact details of that name binding operation.

Adirectcallto ___import__ () performs only the module search and, if found, the module creation operation. While
certain side-effects may occur, such as the importing of parent packages, and the updating of various caches (including
sys.modules), only the import statement performs a name binding operation.

When an import statement is executed, the standard builtin __import__ () function is called. Other mechanisms
for invoking the import system (such as importlib.import_module ()) may choose to bypass __ import__ ()
and use their own solutions to implement import semantics.

When a module is first imported, Python searches for the module and if found, it creates a module object', initializing it.
If the named module cannot be found, a ModuleNotFoundError is raised. Python implements various strategies to
search for the named module when the import machinery is invoked. These strategies can be modified and extended by
using various hooks described in the sections below.

AMoEe otnv ékdoom 3.3: The import system has been updated to fully implement the second phase of PEP 302. There
is no longer any implicit import machinery - the full import system is exposed through sys.meta_path. In addition,
native namespace package support has been implemented (see PEP 420).

! See types.ModuleType.

63

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/

The Python Language Reference, Anpooisuon 3.11.13

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example importlib.
import_module () provides a recommended, simpler API than built-in ___import__ () for invoking the import
machinery. Refer to the import1ib library documentation for additional detail.

5.2 Packages

Python has only one type of module object, and all modules are of this type, regardless of whether the module is
implemented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python has
a concept of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take
this analogy too literally since packages and modules need not originate from the file system. For the purposes of
this documentation, we'll use this convenient analogy of directories and files. Like file system directories, packages are
organized hierarchically, and packages may themselves contain subpackages, as well as regular modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another way,
packages are just a special kind of module. Specifically, any module that containsa ___path___ attribute is considered a
package.

All modules have a name. Subpackage names are separated from their parent package name by a dot, akin to Python’s
standard attribute access syntax. Thus you might have a package called emai 1, which in turn has a subpackage called
email.mime and a module within that subpackage called email .mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are traditional
packages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory containing
an __init__ .py file. When a regular package is imported, this __init__ .py file is implicitly executed, and the
objects it defines are bound to names in the package’s namespace. The __init__ . py file can contain the same Python
code that any other module can contain, and Python will add some additional attributes to the module when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/

__init__ .py
one/

__init__ .py
two/

__init_ .py
three/

__init__ .py

Importing parent .one will implicitly execute parent/__init__ .py and parent/one/__init__ .py.
Subsequent imports of parent.two or parent.three will execute parent/two/__init__ .py and
parent/three/__init__ .py respectively.

64 KegaAaio 5. The import system

The Python Language Reference, Anpooiguon 3.11.13

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the parent
package. Portions may reside in different locations on the file system. Portions may also be found in zip files, on the
network, or anywhere else that Python searches during import. Namespace packages may or may not correspond directly
to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path___ attribute. They instead use a custom iterable type
which will automatically perform a new search for package portions on the next import attempt within that package if the
path of their parent package (or sys.path for a top level package) changes.

With namespace packages, thereisno parent/__init__ .py file. Infact, there may be multiple parent directories
found during import search, where each one is provided by a different portion. Thus parent /one may not be physically
located next to parent /two. In this case, Python will create a namespace package for the top-level parent package
whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of this
discussion, the difference is immaterial) being imported. This name may come from various arguments to the import
statement, or from the parameters to the importlib.import_module () or __import__ () functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g. foo.
bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo.bar.baz. If any of the
intermediate imports fail, a ModuleNotFoundError is raised.

5.3.1 The module cache

The first place checked during import search is sys.modules. This mapping serves as a cache of all modules
that have been previously imported, including the intermediate paths. So if foo.bar.baz was previously imported,
sys.modules will contain entries for foo, foo.bar, and foo.bar.baz. Each key will have as its value the
corresponding module object.

During import, the module name is looked up in sys.modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then a ModuleNotFoundError is
raised. If the module name is missing, Python will continue searching for the module.

sys .modules is writable. Deleting a key may not destroy the associated module (as other modules may hold references
to it), but it will invalidate the cache entry for the named module, causing Python to search anew for the named module
upon its next import. The key can also be assigned to None, forcing the next import of the module to result in a
ModuleNotFoundError.

Beware though, as if you keep a reference to the module object, invalidate its cache entry in sys.modules, and then
re-import the named module, the two module objects will not be the same. By contrast, importlib.reload () will
reuse the same module object, and simply reinitialise the module contents by rerunning the module’s code.

5.3. Searching 65

https://peps.python.org/pep-0420/

The Python Language Reference, Anpooisuon 3.11.13

5.3.2 Finders and loaders

If the named module is not found in sys.modules, then Python’s import protocol is invoked to find and load the
module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine whether it
can find the named module using whatever strategy it knows about. Objects that implement both of these interfaces are
referred to as importers - they return themselves when they find that they can load the requested module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules, and the
second knows how to locate frozen modules. A third default finder searches an import path for modules. The import path is
a list of locations that may name file system paths or zip files. It can also be extended to search for any locatable resource,
such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module searching.

Finders do not actually load modules. If they can find the named module, they return a module spec, an encapsulation of
the module’s import-related information, which the import machinery then uses when loading the module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create and
register new ones to extend the import machinery.

AMoEe otnv ékdoom 3.4: In previous versions of Python, finders returned loaders directly, whereas now they return
module specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There are two
types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys.modules cache look up. This allows meta hooks to override sys.path processing, frozen modules, or even
built-in modules. Meta hooks are registered by adding new finder objects to sys .meta_path, as described below.

Import path hooks are called as part of sys.path (or package.__path__) processing, at the point where their
associated path item is encountered. Import path hooks are registered by adding new callables to sys.path_hooks
as described below.

5.3.4 The meta path

When the named module is not found in sys.modules, Python next searches sys.meta_path, which contains a
list of meta path finder objects. These finders are queried in order to see if they know how to handle the named module.
Meta path finders must implement a method called £ind_spec () which takes three arguments: a name, an import
path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine whether it can
handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the named
module, it returns None. If sys.meta_path processing reaches the end of its list without returning a spec, then a
ModuleNotFoundError israised. Any other exceptions raised are simply propagated up, aborting the import process.

The find_spec () method of meta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo.bar.baz. The second argument is the path entries to use for
the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the second
argument is the value of the parent package’s ___path___ attribute. If the appropriate __path___ attribute cannot be
accessed, a ModuleNotFoundError is raised. The third argument is an existing module object that will be the target
of loading later. The import system passes in a target module only during reload.

66 KegaAaio 5. The import system

The Python Language Reference, Anpooiguon 3.11.13

The meta path may be traversed multiple times for a single import request. For example, assuming none of the modules
involved has already been cached, importing foo.bar.baz will first perform a top level import, calling mpf .
find_spec("foo", None, None) on each meta path finder (mpf). After foo has been imported, foo.
bar will be imported by traversing the meta path a second time, calling mpf.find_spec ("foo.bar", foo.
__path__, None). Once foo.bar has been imported, the final traversal will call mpf.find_spec ("foo.
bar.baz", foo.bar._ _path__, None).

Some meta path finders only support top level imports. These importers will always return None when anything other
than None is passed as the second argument.

Python’s default sys .meta_path has three meta path finders, one that knows how to import built-in modules, one that
knows how to import frozen modules, and one that knows how to import modules from an import path (i.e. the path based
finder).

AMoEe oty €xdoon 3.4: The £ind_spec () method of meta path finders replaced £ind_module (), which is now
deprecated. While it will continue to work without change, the import machinery will try it only if the finder does not
implement £ind_spec ().

AMoEe oty ékdoon 3.10: Use of find_module () by the import system now raises ImportWarning.

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the module.
Here is an approximation of what happens during the loading portion of import:

module = None

if spec.loader is not None and hasattr (spec.loader, 'create_module'):
It is assumed 'exec_module' will also be defined on the loader.
module = spec.loader.create_module (spec)

if module is None:
module = ModuleType (spec.name)

The import-related module attributes get set here:

_init_module_attrs (spec, module)

if spec.loader is None:
unsupported
raise ImportError

if spec.origin is None and spec.submodule_search_locations is not None:
namespace package

sys.modules[spec.name] = module
elif not hasattr (spec.loader, 'exec_module'):
module = spec.loader.load_module (spec.name)
Set __loader_ and __package__ 1if missing.
else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module (module)
except BaseException:
try:
del sys.modules([spec.name]
except KeyError:
pass
raise
return sys.modules[spec.name]

Note the following details:

5.4. Loading 67

The Python Language Reference, Anpooisuon 3.11.13

« If there is an existing module object with the given name in sy s .modules, import will have already returned it.

o The module will exist in sys .modules before the loader executes the module code. This is crucial because the
module code may (directly or indirectly) import itself; adding it to sy s . modules beforehand prevents unbounded
recursion in the worst case and multiple loading in the best.

« If loading fails, the failing module — and only the failing module — gets removed from sys .modules. Any module
already in the sys.modules cache, and any module that was successfully loaded as a side-effect, must remain
in the cache. This contrasts with reloading where even the failing module is left in sys .modules.

« After the module is created but before execution, the import machinery sets the import-related module attributes
(«_init_module_attrs» in the pseudo-code example above), as summarized in a later section.

e Module execution is the key moment of loading in which the module’s namespace gets populated. Execution is
entirely delegated to the loader, which gets to decide what gets populated and how.

« The module created during loading and passed to exec_module() may not be the one returned at the end of import.

AMoEe oty éxdoon 3.4: The import system has taken over the boilerplate responsibilities of loaders. These were
previously performed by the importlib.abc.Loader.load_module () method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the importlib.
abc.Loader.exec_module () method with a single argument, the module object to execute. Any value returned
from exec_module () is ignored.

Loaders must satisfy the following requirements:

« If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the loader
should execute the module’s code in the module’s global name space (module.__dict_).

« If the loader cannot execute the module, it should raise an ImportError, although any other exception raised
during exec_module () will be propagated.

In many cases, the finder and loader can be the same object; in such cases the find_spec () method would just return
a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module ()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module () does not need to set any attributes on the module object. If the method returns None, the import
machinery will create the new module itself.

Néo oty éxdoon 3.4: The create_module () method of loaders.

AMoEe oty ékdoon 3.4: The 1load_module () method was replaced by exec_module () and the import
machinery assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the 1oad_module () method of loaders if it
exists and the loader does not also implement exec_module (). However, Load_module () has been deprecated
and loaders should implement exec_module () instead.

The 1oad_module () method must implement all the boilerplate loading functionality described above in addition to
executing the module. All the same constraints apply, with some additional clarification:

« If there is an existing module object with the given name in sys.modules, the loader must use that existing
module. (Otherwise, importlib.reload () will not work correctly.) If the named module does not exist in
sys.modules, the loader must create a new module object and add it to sys .modules.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in sys .
modules. The indirect effect of this is that an imported module may replace itself in sys.modules. This is implementation-specific behavior that
is not guaranteed to work in other Python implementations.

68 KegaAaio 5. The import system

The Python Language Reference, Anpooiguon 3.11.13

o The module must exist in sys.modules before the loader executes the module code, to prevent unbounded
recursion or multiple loading.

« If loading fails, the loader must remove any modules it has inserted into sys . modules, but it must remove only
the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

AMoEe oty €ékdoom 3.5: A DeprecationWarning is raised when exec_module () is defined but
create_module () isnot.

AMoEe otnv €kdoom 3.6: An ImportError is raised when exec_module () is defined but create_module ()
is not.

AMaEe oty ékdoon 3.10: Use of 1oad_module () will raise ImportWarning.

5.4.2 Submodules

When a submodule is loaded using any mechanism (e.g. import1ib APIs, the import or import—from statements,
orbuilt-in__import__ ())abindingis placed in the parent module’s namespace to the submodule object. For example,
if package spam has a submodule foo, after importing spam. foo, spam will have an attribute £oo which is bound
to the submodule. Let’s say you have the following directory structure:

spam/
__init__ .py
foo.py

and spam/__init__ .py has the following line in it:

[from .foo import Foo

then executing the following puts name bindings for foo and Foo in the spam module:

>>> import spam

>>> spam. foo

<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.Foo

<class 'spam.foo.Foo'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental feature of the import
system. The invariant holding is that if you have sys.modules ['spam'] and sys.modules|['spam.foo'] (as
you would after the above import), the latter must appear as the foo attribute of the former.

5.4.3 Module spec

The import machinery uses a variety of information about each module during import, especially before loading. Most of
the information is common to all modules. The purpose of a module’s spec is to encapsulate this import-related information
on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the finder that
creates the module spec and the loader that executes it. Most importantly, it allows the import machinery to perform the
boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

The module’s spec is exposed as the ___spec___ attribute on a module object. See ModuleSpec for details on the
contents of the module spec.

Néo oty éxdoom 3.4.

5.4. Loading 69

The Python Language Reference, Anpooisuon 3.11.13

5.4.4 Import-related module attributes

The import machinery fills in these attributes on each module object during loading, based on the module’s spec, before
the loader executes the module.

name

The __name___ attribute must be set to the fully qualified name of the module. This name is used to uniquely
identify the module in the import system.

__loader___

The __loader__ attribute must be set to the loader object that the import machinery used when loading the
module. This is mostly for introspection, but can be used for additional loader-specific functionality, for example
getting data associated with a loader.

package_

The module’s ___package___ attribute must be set. Its value must be a string, but it can be the same value as its
__name__. When the module is a package, its ___package___ value should be set toits __name___. When the
module is not a package, _package___should be set to the empty string for top-level modules, or for submodules,
to the parent package’s name. See PEP 366 for further details.

This attribute is used instead of __name___ to calculate explicit relative imports for main modules, as defined in
PEP 366. It is expected to have the same value as ___spec___.parent.

AMoEe oty £xdoon 3.6: The value of __package___ is expected to be the same as __spec___.parent.

—_Spec__

The __spec___ attribute must be set to the module spec that was used when importing the module. Setting
___spec___ appropriately applies equally to modules initialized during interpreter startup. The one exception is
__main__,where ___spec___is set to None in some cases.

When ___package___isnotdefined, __spec__.parent is used as a fallback.
Néo otnv €kdoon 3.4.

AMoEe oty £xdoon 3.6: __spec__.parent is used as a fallback when __package___is not defined.

path__

If the module is a package (either regular or namespace), the module object’s __path__ attribute must be set.
The value must be iterable, but may be empty if __path__ has no further significance. If __path___ is not
empty, it must produce strings when iterated over. More details on the semantics of __path___ are given below.

Non-package modules should not have a __path___ attribute.

__file_

__cached___

__file_ is optional (if set, value must be a string). It indicates the pathname of the file from which the
module was loaded (if loaded from a file), or the pathname of the shared library file for extension modules loaded
dynamically from a shared library. It might be missing for certain types of modules, such as C modules that are
statically linked into the interpreter, and the import system may opt to leave it unset if it has no semantic meaning
(e.g. a module loaded from a database).

If __file_ issetthenthe __ cached__ attribute might also be set, which is the path to any compiled version
of the code (e.g. byte-compiled file). The file does not need to exist to set this attribute; the path can simply point
to where the compiled file would exist (see PEP 3147).

Note that __cached__ may be set even if __file_ _ is not set. However, that scenario is quite atypical.
Ultimately, the loader is what makes use of the module spec provided by the finder (from which __file_
and _ cached___ are derived). So if a loader can load from a cached module but otherwise does not load from
a file, that atypical scenario may be appropriate.

70

KegaAaio 5. The import system

https://peps.python.org/pep-0366/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-3147/

The Python Language Reference, Anpooiguon 3.11.13

5.4.5 module.__path__

By definition, if a module has a __path___ attribute, it is a package.

A package’s __path__ attribute is used during imports of its subpackages. Within the import machinery, it functions
much the same as sy s . path,i.e. providing a list of locations to search for modules during import. However, __path___
is typically much more constrained than sys.path.

__path__ must be an iterable of strings, but it may be empty. The same rules used for sys.path also apply
to a package’s __path__ , and sys.path_hooks (described below) are consulted when traversing a package’s
__path__.

A package’s __init__ .py file may set or alter the package’s _ path__ attribute, and this was typically the way
namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace packages no longer
need tosupply __init__ .py files containingonly __path__ manipulation code; the import machinery automatically
sets __path__ correctly for the namespace package.

5.4.6 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s spec, you
can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or there is no
spec, the import system will craft a default repr using whatever information is available on the module. It will try to use
the module._ name_ ,module._ file_,and module.__loader__ as input into the repr, with defaults
for whatever information is missing.

Here are the exact rules used:

« If the module has a __spec___ attribute, the information in the spec is used to generate the repr. The «name»,
«loader», «origin», and «has_location» attributes are consulted.

o If the module hasa __ file_ attribute, this is used as part of the module’s repr.

o If the module hasno __file__ butdoes havea __ loader__ thatis not None, then the loader’s repr is used
as part of the module’s repr.

o Otherwise, just use the module’s __name___in the repr.

AMoEe oty €kdoon 3.4: Use of loader.module_repr () has been deprecated and the module spec is now used
by the import machinery to generate a module repr.

For backward compatibility with Python 3.3, the module repr will be generated by calling the loader’s module_repr ()
method, if defined, before trying either approach described above. However, the method is deprecated.

AMaEe ot €kdoon 3.10: Calling module_repr () now occurs after trying to use a module’s ___spec___ attribute
but before falling backon ___file . Useof module_repr () is slated to stop in Python 3.12.

5.4.7 Cached bytecode invalidation

Before Python loads cached bytecode from a . pyc file, it checks whether the cache is up-to-date with the source . py
file. By default, Python does this by storing the source’s last-modified timestamp and size in the cache file when writing
it. At runtime, the import system then validates the cache file by checking the stored metadata in the cache file against
the source’s metadata.

Python also supports «hash-based» cache files, which store a hash of the source file’s contents rather than its metadata.
There are two variants of hash-based . pyc files: checked and unchecked. For checked hash-based . pyc files, Python
validates the cache file by hashing the source file and comparing the resulting hash with the hash in the cache file. If a

5.4. Loading 71

https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/

The Python Language Reference, Anpooisuon 3.11.13

checked hash-based cache file is found to be invalid, Python regenerates it and writes a new checked hash-based cache
file. For unchecked hash-based . pyc files, Python simply assumes the cache file is valid if it exists. Hash-based .pyc
files validation behavior may be overridden with the ——check-hash-based-pycs flag.

AMaEe oty ékdoon 3.7: Added hash-based .pyc files. Previously, Python only supported timestamp-based
invalidation of bytecode caches.

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based finder
(PathFinder), searches an import path, which contains a list of path entries. Each path entry names a location to search
for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries,
associating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling special
file types such as Python source code (. py files), Python byte code (.pyc files) and shared libraries (e.g. . so files).
When supported by the zipimport module in the standard library, the default path entry finders also handle loading
all of these file types (other than shared libraries) from zipfiles.

Path entries need not be limited to file system locations. They can refer to URLSs, database queries, or any other location
that can be specified as a string.

The path based finder provides additional hooks and protocols so that you can extend and customize the types of searchable
path entries. For example, if you wanted to support path entries as network URLs, you could write a hook that implements
HTTP semantics to find modules on the web. This hook (a callable) would return a path entry finder supporting the protocol
described below, which was then used to get a loader for the module from the web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using the terms
meta path finder and path entry finder. These two types of finders are very similar, support similar protocols, and function
in similar ways during the import process, but it’s important to keep in mind that they are subtly different. In particular,
meta path finders operate at the beginning of the import process, as keyed off the sys.meta_path traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the path
based finder were to be removed from sys.meta_path, none of the path entry finder semantics would be invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is specified
with a string path entry. Most path entries name locations in the file system, but they need not be limited to this.

As a meta path finder, the path based finder implements the find_spec () protocol previously described, however it
exposes additional hooks that can be used to customize how modules are found and loaded from the import path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and sys.
path_importer_cache. The _ path__ attributes on package objects are also used. These provide additional
ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries in
sys.path can name directories on the file system, zip files, and potentially other «locations» (see the site module)
that should be searched for modules, such as URLSs, or database queries. Only strings should be present on sys.path;
all other data types are ignored.

The path based finder is a meta path finder, so the import machinery begins the import path search by calling the path
based finder’s find_spec () method as described previously. When the path argument to find_spec () is given,

72 KegaAaio 5. The import system

The Python Language Reference, Anpooiguon 3.11.13

it will be a list of string paths to traverse - typically a package’s __path___ attribute for an import within that package.
If the path argument is None, this indicates a top level import and sys .path is used.

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate path entry
Jinder (PathEntryFinder) for the path entry. Because this can be an expensive operation (e.g. there may be stat ()
call overheads for this search), the path based finder maintains a cache mapping path entries to path entry finders. This
cache is maintained in sys.path_importer_cache (despite the name, this cache actually stores finder objects
rather than being limited to importer objects). In this way, the expensive search for a particular path entry location’s path
entry finder need only be done once. User code is free to remove cache entries from sys.path_importer_cache
forcing the path based finder to perform the path entry search again’.

If the path entry is not present in the cache, the path based finder iterates over every callable in sys.path_hooks.
Each of the path entry hooks in this list is called with a single argument, the path entry to be searched. This callable may
either return a parh entry finder that can handle the path entry, or it may raise ImportError. An ImportError is
used by the path based finder to signal that the hook cannot find a path entry finder for that path entry. The exception is
ignored and import path iteration continues. The hook should expect either a string or bytes object; the encoding of bytes
objects is up to the hook (e.g. it may be a file system encoding, UTF-8, or something else), and if the hook cannot decode
the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec () method will store None in sys.path_importer_cache (to indicate that there is no finder for
this path entry) and return None, indicating that this meta path finder could not find the module.

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory — denoted by an empty string — is handled slightly differently from other entries on sys.
path. First, if the current working directory is found to not exist, no value is stored in sys .path_importer_cache.
Second, the value for the current working directory is looked up fresh for each module lookup. Third, the path used
for sys.path_importer_cache and returned by importlib.machinery.PathFinder.find_spec ()
will be the actual current working directory and not the empty string.

5.5.2 Path entry finder protocol

In order to support imports of modules and initialized packages and also to contribute portions to namespace packages,
path entry finders must implement the find_spec () method.

find_spec () takes two arguments: the fully qualified name of the module being imported, and the (optional) target
module. find_spec () returns a fully populated spec for the module. This spec will always have «loader» set (with one
exception).

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets
«submodule_search_locations» to a list containing the portion.

AMoEe otnv ékdoon 3.4: £ind_spec () replaced find_loader () and £ind_module (), both of which are
now deprecated, but will be used if £ind_spec () is not defined.

Older path entry finders may implement one of these two deprecated methods instead of £ind_spec (). The methods
are still respected for the sake of backward compatibility. However, if find_spec () is implemented on the path entry
finder, the legacy methods are ignored.

find_loader () takes one argument, the fully qualified name of the module being imported. £ind_loader ()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion.

For backwards compatibility with other implementations of the import protocol, many path entry finders also
support the same, traditional find_module () method that meta path finders support. However path entry finder

3 In legacy code, it is possible to find instances of imp.NullImporter inthe sys.path_importer_cache. It is recommended that code
be changed to use None instead. See portingpythoncode for more details.

5.5. The Path Based Finder 73

The Python Language Reference, Anpooisuon 3.11.13

find_module () methods are never called with a path argument (they are expected to record the appropriate path
information from the initial call to the path hook).

The find_module () method on path entry finders is deprecated, as it does not allow the path entry finder to contribute
portions to namespace packages. If both find_loader () and find_module () exist on a path entry finder, the
import system will always call find_loader () in preference to find_module ().

AMoEe ot €xdoon 3.10: Calls to find_module () and find_loader () by the import system will raise
ImportWarning.

5.6 Replacing the standard import system

The most reliable mechanism for replacing the entire import system is to delete the default contents of sys .meta_path,
replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the import
system, then replacing the builtin __import__ () function may be sufficient. This technique may also be employed at
the module level to only alter the behaviour of import statements within that module.

To selectively prevent the import of some modules from a hook early on the meta path (rather than disabling the standard
import system entirely), it is sufficient to raise ModuleNotFoundError directly from find_spec () instead of
returning None. The latter indicates that the meta path search should continue, while raising an exception terminates it
immediately.

5.7 Package Relative Imports

Relative imports use leading dots. A single leading dot indicates a relative import, starting with the current package. Two
or more leading dots indicate a relative import to the parent(s) of the current package, one level per dot after the first. For
example, given the following package layout:

package/

__init__ .py

subpackagel/
__init__ .py
moduleX.py
moduleY.py

subpackage?2/
__init__ .py
moduleZ.py

moduleA.py

Ineither subpackagel/moduleX.pyor subpackagel/__init__ .py, the followingare valid relative imports:

from .moduleY import spam

from .moduleY import spam as ham

from . import moduleY

from ..subpackagel import moduleY
from ..subpackage2.moduleZ import eggs
from ..moduleA import foo

Absolute imports may use either the import <> or from <> import <> syntax, but relative imports may only
use the second form; the reason for this is that:

74 KegaAaio 5. The import system

The Python Language Reference, Anpooiguon 3.11.13

[import XXX.YYY.ZZZ

should expose XXX .YYY.ZZZ as a usable expression, but .moduleY is not a valid expression.

5.8 Special considerations for __main__

The __main__ module is a special case relative to Python’s import system. As noted elsewhere,the __main___ module
is directly initialized at interpreter startup, much like sys and builtins. However, unlike those two, it doesn’t strictly
qualify as a built-in module. This is because the manner in which __main__ is initialized depends on the flags and other
options with which the interpreter is invoked.

5.8.1 __main__.__spec__

Depending on how __main__ isinitialized, __main__._ spec__ gets set appropriately or to None.

When Python is started with the —m option, ___spec___is set to the module spec of the corresponding module or package.
___spec__ is also populated when the __main__ module is loaded as part of executing a directory, zipfile or other
sys.path entry.

In the remaining cases __main__.__ spec__ 1issetto None, as the code used to populate the _ _main__ does not
correspond directly with an importable module:

« interactive prompt

e —C option

o running from stdin

« running directly from a source or bytecode file

Note that __main___.__spec___ isalways None in the last case, even if the file could technically be imported directly
as a module instead. Use the —m switch if valid module metadata is desired in ___main_ .

Note also that even when __main__ corresponds with an importable module and __main__ ._ spec__ is set
accordingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by if _ name_
== "__main__ ": checks only execute when the module is used to populate the __main__ namespace, and not

during normal import.

5.9 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages is still
available to read, although some details have changed since the writing of that document.

The original specification for sys .meta_path was PEP 302, with subsequent extension in PEP 420.

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader () protocol as
an alternative to find_module ().

PEP 366 describes the addition of the ___package___ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed __name___ for semantics PEP 366
would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

5.8. Special considerations for __main__ 75

https://www.python.org/doc/essays/packages/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0328/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0338/

The Python Language Reference, Anpooisuon 3.11.13

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs in the
import system and also addition of new methods to finders and loaders.

76 KegaAaio 5. The import system

https://peps.python.org/pep-0451/

KE®GANAIO O

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name .= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase «the numeric arguments are converted to a common
type», this means that the operator implementation for built-in types works as follows:

« If either argument is a complex number, the other is converted to complex;
« otherwise, if either argument is a floating point number, the other is converted to floating point;
« otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the “%” operator). Extensions must
define their own conversion behavior.

77

The Python Language Reference, Anpooisuon 3.11.13

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom identifier | literal | enclosure
enclosure = parenth_form | list_display | dict_display | set_display
| generator_expression | yield_atom

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section
Ovouaoio kow cvvdeon for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more underscore
characters and does not end in two or more underscores, it is considered a private name of that class. Private names are
transformed to a longer form before code is generated for them. The transformation inserts the class name, with leading
underscores removed and a single underscore inserted, in front of the name. For example, the identifier ___spam occurring
in a class named Ham will be transformed to _Ham___spam. This transformation is independent of the syntactical context
in which the identifier is used. If the transformed name is extremely long (longer than 255 characters), implementation
defined truncation may happen. If the class name consists only of underscores, no transformation is done.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:

literal = stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number)
with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals. See
section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence) may
obtain the same object or a different object with the same value.

78 Kegahaio 6. Expressions

The Python Language Reference, Anpooiguon 3.11.13

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form := "(" [starred expression] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it yields
a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals apply
(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma. The exception is the empty tuple,
for which parentheses are required — allowing unparenthesized «nothing» in expressions would cause ambiguities and
allow common typos to pass uncaught.

6.2.4 Displays for lists, sets and dictionaries

For constructing a list, a set or a dictionary Python provides special syntax called «displays», each of them in two flavors:
« either the container contents are listed explicitly, or
« they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension = assignment_expression comp_for

comp_for = ["async"] "for" target_Ilist "in" or_test [comp_iter]
comp_iter = comp_for | comp_1if

comp_if = "if" or_test [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or if
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time the
innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate
implicitly nested scope. This ensures that names assigned to in the target list don’t «leak» into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an
argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: [x*y for x in range (10) for y in range(x, x+10)].

To ensure the comprehension always results in a container of the appropriate type, yieldand yield from expressions
are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous
iterator. A comprehension in an async def function may consist of either a for or async for clause following
the leading expression, may contain additional for or async for clauses, and may also use await expressions. If
a comprehension contains either async for clauses or await expressions or other asynchronous comprehensions it
is called an asynchronous comprehension. An asynchronous comprehension may suspend the execution of the coroutine
function in which it appears. See also PEP 530.

Néo otmv éxdoom 3.6: Asynchronous comprehensions were introduced.

6.2. Atoms 79

https://peps.python.org/pep-0530/

The Python Language Reference, Anpooisuon 3.11.13

AMaEe oty ékdoon 3.8: yield and yield from prohibited in the implicitly nested scope.

AMoEe oty ékdoon 3.11: Asynchronous comprehensions are now allowed inside comprehensions in asynchronous
functions. Outer comprehensions implicitly become asynchronous.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display = "[" [starred _list | comprehension] "1"

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension.
‘When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into the
list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting from the
comprehension.

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating keys
and values:

set_display := "{" (starred _list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and
added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting from the
comprehension.

An empty set cannot be constructed with { }; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of dict items (key/value pairs) enclosed in curly braces:

dict_display = "{" [dict_item_list | dict_comprehension] "}"
dict_item_list = dict_item ("," dict_item)* [","]

dict_item = expression ":" expression | "**" or_expr
dict_comprehension = expression ":" expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of dict items is given, they are evaluated from left to right to define the entries of the
dictionary: each key object is used as a key into the dictionary to store the corresponding value. This means that you can
specify the same key multiple times in the dict item list, and the final dictionary’s value for that key will be the last one
given.

A double asterisk ** denotes dictionary unpacking. Its operand must be a mapping. Each mapping item is added to the
new dictionary. Later values replace values already set by earlier dict items and earlier dictionary unpackings.

Néo otV éxdoon 3.5: Unpacking into dictionary displays, originally proposed by PEP 448.

80 Kegahaio 6. Expressions

https://peps.python.org/pep-0448/

The Python Language Reference, Anpooiguon 3.11.13

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon followed
by the usual «for» and «if» clauses. When the comprehension is run, the resulting key and value elements are inserted in
the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section The standard type hierarchy. (To summarize, the
key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected; the
last value (textually rightmost in the display) stored for a given key value prevails.

AMoEe oty €xdoon 3.8: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was not
well-defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before the value,
as proposed by PEP 572.

6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression = "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is
enclosed in parentheses instead of brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the __next__ () method is called for the generator
object (in the same fashion as normal generators). However, the iterable expression in the leftmost for clause is
immediately evaluated, so that an error produced by it will be emitted at the point where the generator expression is
defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter condition in
the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained from the
leftmost iterable. For example: (x*y for x in range(10) for y in range(x, x+10)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself, yieldand yield from expressions
are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or awa it expressions it is called an asynchronous generator
expression. An asynchronous generator expression returns a new asynchronous generator object, which is an asynchronous
iterator (see Asynchronous Iterators).

Néo omv £€xdoon 3.6: Asynchronous generator expressions were introduced.

AMaEe oty ékdoan 3.7: Prior to Python 3.7, asynchronous generator expressions could only appear in async def
coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

AMoEe oty ékdoon 3.8: yield and yield from prohibited in the implicitly nested scope.

6.2.9 Yield expressions

yield_atom "(" yield expression ")"
yield_from "yield" "from" expression
yield_expression = "yield" expression_list | yield_from

The yield expression is used when defining a generator function or an asynchronous generator function and thus can only
be used in the body of a function definition. Using a yield expression in a function’s body causes that function to be a
generator function, and using it in an async def function’s body causes that coroutine function to be an asynchronous
generator function. For example:

6.2. Atoms 81

https://peps.python.org/pep-0572/

The Python Language Reference, Anpooisuon 3.11.13

def gen(): # defines a generator function
yield 123

async def agen(): # defines an asynchronous generator function
yield 123

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly defined
scopes used to implement comprehensions and generator expressions.

AMoEe oty ékdoon 3.8: Yield expressions prohibited in the implicitly nested scopes used to implement comprehensions
and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section
Asynchronous generator functions.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution
of the generator function. The execution starts when one of the generator’s methods is called. At that time, the execution
proceeds to the first yield expression, where it is suspended again, returning the value of expression_1list to the
generator’s caller, or None if expression_1ist is omitted. By suspended, we mean that all local state is retained,
including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any
exception handling. When the execution is resumed by calling one of the generator’s methods, the function can proceed
exactly as if the yield expression were just another external call. The value of the yield expression after resuming depends
on the method which resumed the execution. If __next___ () is used (typically via either a for or the next () builtin)
then the result is None. Otherwise, if send () is used, then the result will be the value passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry
point and their execution can be suspended. The only difference is that a generator function cannot control where the
execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a ¢ ry construct. If the generator is not resumed before it is finalized (by
reaching a zero reference count or by being garbage collected), the generator-iterator’s c1ose () method will be called,
allowing any pending £inally clauses to execute.

When yield from <expr> is used, the supplied expression must be an iterable. The values produced by iterating
that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send () and
any exceptions passed in with throw () are passed to the underlying iterator if it has the appropriate methods. If this is
not the case, then send () will raise AttributeError or TypeError, while t hrow () will just raise the passed
in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes the
value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically when the
subiterator is a generator (by returning a value from the subgenerator).

AMoEe oty ékdoon 3.3: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an assignment
statement.

Agite emiong:

PEP 255 - Simple Generators
The proposal for adding generators and the yie1d statement to Python.

PEP 342 - Coroutines via Enhanced Generators
The proposal to enhance the API and syntax of generators, making them usable as simple coroutines.

PEP 380 - Syntax for Delegating to a Subgenerator
The proposal to introduce the yield_from syntax, making delegation to subgenerators easy.

PEP 525 - Asynchronous Generators
The proposal that expanded on PEP 492 by adding generator capabilities to coroutine functions.

82 Kegahaio 6. Expressions

https://peps.python.org/pep-0255/
https://peps.python.org/pep-0342/
https://peps.python.org/pep-0380/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Language Reference, Anpooiguon 3.11.13

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.

generator.__next__ ()

Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator
function is resumed with a ___next__ () method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value of the
expression_listisreturnedto ___ next__ ()”s caller. If the generator exits without yielding another value,
a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next () function.

generator.send (value)

Resumes the execution and «sends» a value into the generator function. The value argument becomes the result
of the current yield expression. The send () method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send () is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive the
value.

generator.throw (value)

generator.throw (type[, value[, traceback]])

Raises an exception at the point where the generator was paused, and returns the next value yielded by the generator
function. If the generator exits without yielding another value, a StopIteration exception is raised. If the
generator function does not catch the passed-in exception, or raises a different exception, then that exception
propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older
versions of Python. The type argument should be an exception class, and value should be an exception instance. If
the value is not provided, the fype constructor is called to get an instance. If raceback is provided, it is set on the
exception, otherwise any existing __traceback___ attribute stored in value may be cleared.

generator.close ()

Raises a GeneratorExit at the point where the generator function was paused. If the generator function then
exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close returns to its
caller. If the generator yields a value, a Runt imeError is raised. If the generator raises any other exception, it is
propagated to the caller. c1ose () does nothing if the generator has already exited due to an exception or normal
exit.

Examples

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo (value=None) :

print ("Execution starts when 'next ()' is called for the first time.")
try:
while True:
try:
value = (yield value)

except Exception as e:
(ouvéyela otV emtduevVn oekida)

6.2.

Atoms 83

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)
value = e
finally:
print ("Don't forget to clean up when 'close()' is called.")

>>> generator = echo(1)

>>> print (next (generator))

Execution starts when 'next()' is called for the first time.
1

>>> print (next (generator))

None

>>> print (generator.send(2))

2

>>> generator.throw (TypeError, "spam")

TypeError ('spam',)

>>> generator.close ()

Don't forget to clean up when 'close()' is called.

For examples using yield from, see pep-380 in «What’s New in Python.»

Asynchronous generator functions

The presence of a yield expression in a function or method defined using async def further defines the function as an
asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous
generator object. That object then controls the execution of the generator function. An asynchronous generator object
is typically used in an async for statement in a coroutine function analogously to how a generator object would be
used in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this
object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again,
returning the value of expression_1ist to the awaiting coroutine. As with a generator, suspension means that all
local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation
stack, and the state of any exception handling. When the execution is resumed by awaiting on the next object returned
by the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another
external call. The value of the yield expression after resuming depends on the method which resumed the execution. If
___anext___ () isused then the result is None. Otherwise, if asend () is used, then the result will be the value passed
in to that method.

If an asynchronous generator happens to exit early by break, the caller task being cancelled, or other exceptions, the
generator’s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected context—
perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator garbage
collection hook is called. To prevent this, the caller must explicitly close the async generator by calling aclose ()
method to finalize the generator and ultimately detach it from the event loop.

In an asynchronous generator function, yield expressions are allowed anywhere in a try construct. However, if an
asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage
collected), then a yield expression within a t ry construct could result in a failure to execute pending £inal 1y clauses. In
this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call the asynchronous
generator-iterator's aclose () method and run the resulting coroutine object, thus allowing any pending finally
clauses to execute.

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes
an asynchronous generator-iterator and presumably calls aclose () and executes the coroutine. This finalizer may be
registered by calling sys.set_asyncgen_hooks (). When first iterated over, an asynchronous generator-iterator

84 Kegpalaio 6. Expressions

The Python Language Reference, Anpooiguon 3.11.13

will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method see the
implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

The expression yield from <expr> isa syntax error when used in an asynchronous generator function.

Asynchronous generator-iterator methods

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution of
a generator function.

coroutine agen.__anext_ ()

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last executed
yield expression. When an asynchronous generator function is resumed with an ___anext__ () method, the
current yield expression always evaluates to None in the returned awaitable, which when run will continue to
the next yield expression. The value of the expression_1list of the yield expression is the value of the
StopIteration exception raised by the completing coroutine. If the asynchronous generator exits without
yielding another value, the awaitable instead raises a StopAsyncIteration exception, signalling that the
asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

coroutine agen.asend (value)

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the
send () method for a generator, this «sends» a value into the asynchronous generator function, and the value
argument becomes the result of the current yield expression. The awaitable returned by the asend () method
will return the next value yielded by the generator as the value of the raised StopIteration, or raises
StopAsyncIteration if the asynchronous generator exits without yielding another value. When asend ()
is called to start the asynchronous generator, it must be called with None as the argument, because there is no yield
expression that could receive the value.

coroutine agen.athrow (value)

coroutine agen.athrow (type[, value[, rraceback]])

Returns an awaitable that raises an exception of type type at the point where the asynchronous generator was
paused, and returns the next value yielded by the generator function as the value of the raised StopIteration
exception. If the asynchronous generator exits without yielding another value, a StopAsyncIteration
exception is raised by the awaitable. If the generator function does not catch the passed-in exception, or raises
a different exception, then when the awaitable is run that exception propagates to the caller of the awaitable.

coroutine agen.aclose ()

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator function
at the point where it was paused. If the asynchronous generator function then exits gracefully, is already
closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise a
StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous generator
willraise a St opAsyncIteration exception. If the asynchronous generator yields a value, a Runt imeError
is raised by the awaitable. If the asynchronous generator raises any other exception, it is propagated to the caller
of the awaitable. If the asynchronous generator has already exited due to an exception or normal exit, then further
callsto aclose () will return an awaitable that does nothing.

6.2. Atoms 85

https://github.com/python/cpython/tree/3.11/Lib/asyncio/base_events.py

The Python Language Reference, Anpooisuon 3.11.13

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary = atom | attributeref | subscription | slicing | call

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref = primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object
is then asked to produce the attribute whose name is the identifier. The type and value produced is determined by the
object. Multiple evaluations of the same attribute reference may yield different objects.

This production can be customized by overriding the __getattribute__ () method or the ___getattr__ ()
method. The __getattribute__ () method is called first and either returns a value or raises AttributeError
if the attribute is not available.

If an AttributeError israised and the objecthasa __getattr__ () method, that method is called as a fallback.

6.3.2 Subscriptions

The subscription of an instance of a container class will generally select an element from the container. The subscription
of a generic class will generally return a GenericAlias object.

subscription = primary "[" expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through defining
one or both of __getitem_ () and _ _class_getitem__ (). When the primary is subscripted, the evaluated
result of the expression list will be passed to one of these methods. For more details on when __class_getitem
is called instead of ___getitem__,see _ class_getitem__ versus __getitem__.

If the expression list contains at least one comma, it will evaluate to a t uple containing the items of the expression list.
Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via ___getitem _ ():

1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys
of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An example of
a builtin mapping class is the dict class.

2. Sequences. If the primary is a sequence, the expression list must evaluate to an int or a slice (as discussed in
the following section). Examples of builtin sequence classes include the str, 1ist and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all provide
a__getitem__ () method that interprets negative indices by adding the length of the sequence to the index so that,
for example, x [—1] selects the last item of x. The resulting value must be a nonnegative integer less than the number
of items in the sequence, and the subscription selects the item whose index is that value (counting from zero). Since

86 Kegahaio 6. Expressions

The Python Language Reference, Anpooiguon 3.11.13

the support for negative indices and slicing occurs in the object’s ___getitem__ () method, subclasses overriding this
method will need to explicitly add that support.

A stringis a special kind of sequence whose items are characters. A character is not a separate data type but a string
of exactly one character.

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions or
as targets in assignment or de I statements. The syntax for a slicing:

slicing = primary "[" slice_list "]"

slice_1list = slice_item ("," slice_item)* [","]

slice_item = expression | proper_slice

proper_slice = [lower_bound] ":" [upper_bound] [":" [stride]]
lower_bound = expression

upper_bound = expression

stride = expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any
subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining
that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if the
slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same ___getitem__ () method as normal
subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the
key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The
conversion of a slice item that is an expression is that expression. The conversion of a proper slice is a slice object (see
section The standard type hierarchy) whose start, stop and step attributes are the values of the expressions given
as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call n= primary " (" [argument_list [","] | comprehension] ")"
argument_list = positional_arguments ["," starred_and_keywords]

["," keywords_arguments]

| starred_and_keywords ["," keywords_arguments]

| keywords_arguments

positional_arguments = positional_item ("," positional_item) *
positional_item = assignment_expression | "*" expression
starred_and_keywords = ("*" expression | keyword_ item)

("," "*" expression | "," keyword_item)*
keywords_arguments = (keyword_item | "**" expression)

("," keyword_ item | "," "**" expression)*
keyword_item = identifier "=" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects havinga __call () method are callable). All argument

6.3. Primaries 87

The Python Language Reference, Anpooisuon 3.11.13

expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of formal
parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled slots
is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next, for
each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as the
first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError exception is
raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None, it fills the slot). When all
arguments have been processed, the slots that are still unfilled are filled with the corresponding default value from the
function definition. (Default values are calculated, once, when the function is defined; thus, a mutable object such as a list
or dictionary used as default value will be shared by all calls that don’t specify an argument value for the corresponding
slot; this should usually be avoided.) If there are any unfilled slots for which no default value is specified, a TypeError
exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

Aemropépera viomoinons CPython: An implementation may provide built-in functions whose positional parameters
do not have names, even if they are “named” for the purpose of documentation, and which therefore cannot be supplied
by keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple () to parse
their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless
a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a tuple
containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a
formal parameter using the syntax **identifier is present; in this case, that formal parameter receives a dictionary
containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values),
or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements from
these iterables are treated as if they were additional positional arguments. For the call £ (x1, x2, *y, x3, x4),
if y evaluates to a sequence yl, ..., yM, this is equivalent to a call with M+4 positional arguments x/, x2, y1, ..., yM, x3,
x4.

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it is
processed before the keyword arguments (and any * *expression arguments — see below). So:

>>> def f(a, b):
print (a, b)

>>> f(b=1, *(2,))
21
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f() got multiple values for keyword argument 'a'
>>> f£(1, *(2,))
12

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice this
confusion does not often arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the contents of
which are treated as additional keyword arguments. If a parameter matching a key has already been given a value (by an
explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned to
the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a Python
identifier (e.g. "max-temp °F" isacceptable, although it will not match any formal parameter that could be declared).

88 Kegahaio 6. Expressions

The Python Language Reference, Anpooiguon 3.11.13

If there is no match to a formal parameter the key-value pair is collected by the ** parameter, if there is one, or if there
isnot, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots
or as keyword argument names.

AMaEe oty ékdoon 3.5: Function calls accept any number of * and * * unpackings, positional arguments may follow
iterable unpackings (*), and keyword arguments may follow dictionary unpackings (* *). Originally proposed by PEP
448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends on
the type of the callable object.

If it is—

a user-defined function:
The code block for the function is executed, passing it the argument list. The first thing the code block will do is
bind the formal parameters to the arguments; this is described in section Function definitions. When the code block
executes a return statement, this specifies the return value of the function call.

a built-in function or method:
The result is up to the interpreter; see built-in-funcs for the descriptions of built-in functions and methods.

a class object:
A new instance of that class is returned.

a class instance method:
The corresponding user-defined function is called, with an argument list that is one longer than the argument list
of the call: the instance becomes the first argument.

a class instance:
The class must definea _call () method; the effect is then the same as if that method was called.

6.4 Await expression

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr = "await" primary

Néo omv éxdoon 3.5.

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its
right. The syntax is:

power = (await_expr | primary) ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this
does not constrain the evaluation order for the operands): —1* *2 results in —1.

6.4. Await expression 89

https://peps.python.org/pep-0448/
https://peps.python.org/pep-0448/

The Python Language Reference, Anpooisuon 3.11.13

The power operator has the same semantics as the built-in pow () function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type,
and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case, all
arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**—2 returns
0.01.

Raising 0. O to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional power
results in a complex number. (In earlier versions it raised a ValueError.)

This operation can be customized using the special __pow___ () method.

6.6 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr = power | "-" u_expr | "+" u_expr | "~" u_expr
The unary — (minus) operator yields the negation of its numeric argument; the operation can be overridden with the
__neg___ () special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the
__pos___ () special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is defined
as — (x+1) . It only applies to integral numbers or to custom objects that override the __invert__ () special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators and
one for additive operators:

m_expr I= u_expr | m_expr "*" u_expr | m_expr "Q@" m_expr |
m_expr "//" u_expr | m_expr "/" u_expr |
m_expr "$" u_expr

a_expr = m_expr | a_expr "+" m _expr | a_expr

n_mn

m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or one
argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a common
type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition factor yields
an empty sequence.

This operation can be customized using the special __mul___ () and ___rmul__ () methods.
The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.

Néo oty éxdoom 3.5.

20 Kegahaio 6. Expressions

The Python Language Reference, Anpooiguon 3.11.13

The / (division) and / / (floor division) operators yield the quotient of their arguments. The numeric arguments are first
converted to a common type. Division of integers yields a float, while floor division of integers results in an integer;
the result is that of mathematical division with the “floor” function applied to the result. Division by zero raises the
ZeroDivisionError exception.

This operation can be customized using the special ___truediv.___ () and ___floordiv__ () methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception.
The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + 0.34.)
The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of the
result is strictly smaller than the absolute value of the second operand’.

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y). Floor
division and modulo are also connected with the built-in function divmod () :divmod (x, y) == (x//y, x%y).%.

In addition to performing the modulo operation on numbers, the $ operator is also overloaded by string objects to perform
old-style string formatting (also known as interpolation). The syntax for string formatting is described in the Python
Library Reference, section old-string-formatting.

The modulo operation can be customized using the special __mod___ () method.

The floor division operator, the modulo operator, and the divmod () function are not defined for complex numbers.
Instead, convert to a floating point number using the abs () function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be
sequences of the same type. In the former case, the numbers are converted to a common type and then added together.
In the latter case, the sequences are concatenated.

This operation can be customized using the special __add__ () and __radd__ () methods.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a common
type.

This operation can be customized using the special ___sub___ () method.

6.8 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr = a_expr | shift_expr ("<<" | ">>") a_expr
These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits given
by the second argument.
This operation can be customized using the special __Ishift__ () and___rshift__ () methods.

A right shift by » bits is defined as floor division by pow (2, n) . A left shift by » bits is defined as multiplication with
pow (2,n).

I While abs (x%y) < abs(y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming a
platform on which a Python float is an IEEE 754 double-precision number, in order that ~-1e-100 % 1e100 have the same sign as 1e100, the
computed result is ~1e-100 + 1e100, which is numerically exactly equal to 1e100. The function math. fmod () returns a result whose sign
matches the sign of the first argument instead, and so returns —1e-100 in this case. Which approach is more appropriate depends on the application.

2 If x is very close to an exact integer multiple of , it's possible for x/ /vy to be one larger than (x-x%y) //y due to rounding. In such cases,
Python returns the latter result, in order to preserve that divmod (x,y) [0] * y + x % y be very close to x.

6.8. Shifting operations 91

The Python Language Reference, Anpooisuon 3.11.13

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr
XOY_expr

shift_expr | and _expr "&" shift_expr
and_expr | xor_expr """ and_expr

or_expr xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom object
overriding __and___ () or__rand__ () special methods.

The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must be
a custom object overriding ___xor__ () or __rxor__ () special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a
custom object overriding __or___ () or __ror__ () special methods.

6.10 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic, shifting
or bitwise operation. Also unlike C, expressions like a < b < ¢ have the interpretation that is conventional in
mathematics:

comparison = or_expr (comp_operator or_expr)¥*
comp operator e nen ‘ nsn | wn__m | ns_—n ‘ ne—n | nmyp_mn
| "isl' ["not"] ‘ ["not"] "in"

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean values.
In this case Python will call bool () on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= zisequivalenttox < y and y <= z,exceptthaty is
evaluated only once (but in both cases z is not evaluated at all when x < v is found to be false).

Formally, if a, b, c, ..., y, z are expressions and opl, op2, ..., opN are comparison operators, then a opl b op2 c
y opN zisequivalenttoa opl b and b op2 ¢ and ... y opN z,except that each expression is
evaluated at most once.

Note that a opl b op2 c doesn’t imply any kind of comparison between a and c, so that, e.g., x < y > zis
perfectly legal (though perhaps not pretty).

6.10.1 Value comparisons

The operators <, >, ==, >=, <=, and ! = compare the values of two objects. The objects do not need to have the same
type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an object
is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value. Also, there
is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of all its data
attributes. Comparison operators implement a particular notion of what the value of an object is. One can think of them
as defining the value of an object indirectly, by means of their comparison implementation.

92 Kegahaio 6. Expressions

The Python Language Reference, Anpooiguon 3.11.13

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior from
object. Types can customize their comparison behavior by implementing rich comparison methods like __1t__ (),
described in Basic customization.

The default behavior for equality comparison (== and !=) is based on the identity of the objects. Hence, equality
comparison of instances with the same identity results in equality, and equality comparison of instances with different
identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive (i.e.
x is yimplies x == y).

A default order comparison (<, >, <=, and >=) is not provided; an attempt raises TypeError. A motivation for this
default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be in
contrast to what types will need that have a sensible definition of object value and value-based equality. Such types will
need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

o Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.Fraction
and decimal .Decimal can be compared within and across their types, with the restriction that complex
numbers do not support order comparison. Within the limits of the types involved, they compare mathematically
(algorithmically) correct without loss of precision.

The not-a-number values float ('NaN') and decimal.Decimal ('NaN') are special. Any ordered
comparison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number
values are not equal to themselves. For example, if x = float ('NaN'),3 < x,x < 3andx == xare all
false, while x != x is true. This behavior is compliant with IEEE 754.

e None and Not Implemented are singletons. PEP 8 advises that comparisons for singletons should always be
done with i s or is not, never the equality operators.

« Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They
compare lexicographically using the numeric values of their elements.

« Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of the
built-in function ord ()) of their characters.’

Strings and binary sequences cannot be directly compared.

» Sequences (instances of tuple, 1ist, or range) can be compared only within each of their types, with the
restriction that ranges do not support order comparison. Equality comparison across these types results in inequality,
and ordering comparison across these types raises TypeError.

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers
typically assume identical objects are equal to themselves. That lets them bypass equality tests for identical objects
to improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

- For two collections to compare equal, they must be of the same type, have the same length, and each pair of
corresponding elements must compare equal (for example, [1,2] == (1,2) is false because the type is
not the same).

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. <LATIN CAPITAL LETTER A»). While most
abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition be represented using
a sequence of more than one code point. For example, the abstract character <cLATIN CAPITAL LETTER C WITH CEDILLA» can be represented as
a single precomposed character at code position U+00C7, or as a sequence of a base character at code position U+0043 (LATIN CAPITAL LETTER
C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).

The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example, "\
u00C7"™ == "\u0043\u0327" is False, even though both strings represent the same abstract character «<LATIN CAPITAL LETTER C WITH
CEDILLA».

To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize ().

6.10. Comparisons 93

https://peps.python.org/pep-0008/

The Python Language Reference, Anpooisuon 3.11.13

- Collections that support order comparison are ordered the same as their first unequal elements (for example,
[1,2,x] <= [1,2,y] hasthe same value as x <= vy). If a corresponding element does not exist, the
shorter collection is ordered first (for example, [1,2] < [1,2, 3] istrue).

» Mappings (instances of dict) compare equal if and only if they have equal (key, wvalue) pairs. Equality
comparison of the keys and values enforces reflexivity.

Order comparisons (<, >, <=, and >=) raise TypeError.
« Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total
orderings (for example, the two sets {1, 2} and {2, 3} are not equal, nor subsets of one another, nor supersets
of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering (for
example, min (), max (), and sorted () produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

e Most other built-in types have no comparison methods implemented, so they inherit the default comparison
behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:
» Equality comparison should be reflexive. In other words, identical objects should compare equal:
x 1s y implies x ==
o Comparison should be symmetric. In other words, the following expressions should have the same result:
x == yandy == x
x != yandy != x
x < yandy > x
x <= yandy >= x
» Comparison should be transitive. The following (non-exhaustive) examples illustrate that:
x >y and y > zimpliesx > z
x <y and y <= zimpliesx < z

« Inverse comparison should result in the boolean negation. In other words, the following expressions should have
the same result:

x == yandnot x != vy
x < yandnot x >= y (for total ordering)
x > yand not x <= vy (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings). See
also the total_ordering () decorator.

o The hash () result should be consistent with equality. Objects that are equal should either have the same hash
value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following these
rules.

94 Kegpalaio 6. Expressions

The Python Language Reference, Anpooiguon 3.11.13

6.10.2 Membership test operations

The operators in and not 1in test for membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well as
dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set, frozenset,
dict, or collections.deque, the expression x in vy isequivalentto any (x is e or x == e for e in y).

For the string and bytes types, x in vy is True if and only if x is a substring of y. An equivalent testis y.find (x)
!= —1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return True.

For user-defined classes which define the _ contains__ () method, x in y returns True if y.
___contains__ (x) returns a true value, and False otherwise.

For user-defined classes which do not define _ contains__ () butdodefine iter (),x in yis True if
some value z, for which the expression x is z or x == z istrue,is produced while iterating over y. If an exception
is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem__ (), x in vy is True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i], and no lower integer index raises the
IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not 1in is defined to have the inverse truth value of in.

6.10.3 Identity comparisons

The operators is and is not test for an object’s identity: x is v is true if and only if x and y are the same object.
An Object’s identity is determined using the 1d () function. x is not vy yields the inverse truth value.*

6.11 Boolean operations

or_test = and_test | or_test "or" and test
and_test = not_test | and_test "and" not_test
not_test = comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values
are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings,
tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects can customize
their truth value by providinga ___bool__ () method.

The operator not yields True if its argument is false, False otherwise.

The expression x and v first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

The expression x or v first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting value
is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty,
the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a boolean value
regardless of the type of its argument (for example, not 'foo' produces False rather than ' '.)

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain uses
of the is operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

6.11. Boolean operations 95

The Python Language Reference, Anpooisuon 3.11.13

6.12 Assignment expressions

assignment_expression = [identifier ":="] expression

An assignment expression (sometimes also called a «<named expression» or «walrus») assigns an expression to an
identifier, while also returning the value of the expression.

One common use case is when handling matched regular expressions:

if matching := pattern.search (data):
do_something (matching)

Or, when processing a file stream in chunks:

while chunk := file.read(9000):
process (chunk)

Assignment expressions must be surrounded by parentheses when used as expression statements and when used as sub-
expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions andin assert,with,
and assignment statements. In all other places where they can be used, parentheses are not required, including in i f
and while statements.

Néo omv é€xdoon 3.8: See PEP 572 for more details about assignment expressions.

6.13 Conditional expressions

conditional_expression or_test ["if" or_test "else" expression]

expression conditional_expression | lambda_expr

Conditional expressions (sometimes called a «ternary operator») have the lowest priority of all Python operations.

The expression x if C else vy first evaluates the condition, C rather than x. If C is true, x is evaluated and its value
is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14 Lambdas

lambda_expr = "lambda" [parameter_list] ":" expression

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression 1ambda
parameters: expression yields a function object. The unnamed object behaves like a function object defined
with:

def <lambda> (parameters) :
return expression

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions
cannot contain statements or annotations.

96 Kegahaio 6. Expressions

https://peps.python.org/pep-0572/
https://peps.python.org/pep-0308/

The Python Language Reference, Anpooiguon 3.11.13

6.15 Expression lists

expression_list = expression ("," expression)* [","]
starred_list = starred_item ("," starred item)* [","]
starred_expression = expression | (starred_item ",")* [starred_item]
starred_item = assignment_expression | "*" or_expr

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length of the
tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking. Its operand must be an iterable. The iterable is expanded into a sequence of
items, which are included in the new tuple, list, or set, at the site of the unpacking.

Néo oty €xdoom 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448.

A trailing comma is required only to create a one-item tuple, such as 1, ;itis optional in all other cases. A single expression
without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create an empty tuple,
use an empty pair of parentheses: ().)

6.16 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated
before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, expr4
(exprl, expr2, expr3, expré)
{exprl: expr2, expr3: expréd}

exprl + expr2 * (expr3 - exprd)
exprl (expr2, expr3, *expr4, **exprb)
expr3, exprd4 = exprl, expr2

6.17 Operator precedence

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest
precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for exponentiation and conditional expressions,
which group from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right chaining
feature as described in the Comparisons section.

6.15. Expression lists 97

https://peps.python.org/pep-0448/

The Python Language Reference, Anpooisuon 3.11.13

Operator Description

(expressions...), Binding or parenthesized expression, list display,
[expressions...], {key: value...}, dictionary display, set display
{expressions...}

x[index], x[index:index], x (arguments. .. Subscription, slicing, call, attribute reference
attribute

await x Await expression

* K

+X, =%, ~X

*Q,/,//,%
+, -

<<, >>

&

in, not in, is,is not, <, <=,>,>=

not x
and

or
if-else
lambda

Exponentiation’

Positive, negative, bitwise NOT

Multiplication, matrix multiplication, division,
floor division, remainder®

Addition and subtraction

Shifts

Bitwise AND

Bitwise XOR

Bitwise OR

Comparisons, including membership tests and
identity tests

Boolean NOT

Boolean AND

Boolean OR

Conditional expression

Lambda expression

Assignment expression

3 The power operator ** binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**-11is 0. 5.

6 The % operator is also used for string formatting; the same precedence applies.

98

Kegahaio 6. Expressions

KEDAAAIO 7

Simple statements

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated
by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt

assert_stmt
assignment_stmt
augmented_assignment_stmt
annotated_assignment_stmt
pass_stmt

del_stmt

return_stmt

yield stmt

raise_stmt

break_stmt

continue_stmt

import_stmt

future_stmt

global_stmt

nonlocal_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure
(a function that returns no meaningful result; in Python, procedures return the value None). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt =

starred_expression

99

The Python Language Reference, Anpooisuon 3.11.13

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr () function and the
resulting string is written to standard output on a line by itself (except if the result is None, so that procedure calls do
not cause any output.)

7.2 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt = (target_1list "=")+ (starred_expression | yield_expression)
target_list = target ("," target)* [","]
target = identifier

| "(" [target_list] ")"
| "[" [target_list] "]1"
| attributeref

| subscription

| slicing

| "*" target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated
list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an
attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about
its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the
exceptions raised are given with the definition of the object types (see section The standard type hierarchy).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as
follows.

« If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that
target.

o Else:

- If the target list contains one target prefixed with an asterisk, called a «starred» target: The object must be
an iterable with at least as many items as there are targets in the target list, minus one. The first items of the
iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable
are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned
to the starred target (the list can be empty).

- Else: The object must be an iterable with the same number of items as there are targets in the target list, and
the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.
« If the target is an identifier (name):

— If the name does not occur in a global or nonlocal statement in the current code block: the name is
bound to the object in the current local namespace.

- Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by
nonlocal, respectively.

100 KegaAaio 7. Simple statements

The Python Language Reference, Anpooiguon 3.11.13

The name is rebound if it was already bound. This may cause the reference count for the object previously bound
to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object
with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the
assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not
necessarily AttributeError).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the right-hand side expression, a . x can access either an instance attribute or (if no instance attribute exists) a class
attribute. The left-hand side target a . x is always set as an instance attribute, creating it if necessary. Thus, the two
occurrences of a . x do not necessarily refer to the same attribute: if the right-hand side expression refers to a class
attribute, the left-hand side creates a new instance attribute as the target of the assignment:

class Cls:
x = 3 # class variable
inst = Cls{()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with property ().

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable
sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is
evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the
sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length,
and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range,
IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value
pair (if no key with the same value existed).

For user-defined objects, the ___setitem__ () method is called with appropriate arguments.

If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper
bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds
should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds
are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace
the slice with the items of the assigned sequence. The length of the slice may be different from the length of the
assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

Agmropépera vhortoinong CPython: In the current implementation, the syntax for targets is taken to be the same as for
expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are
“simultaneous” (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables
occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:

=1, 2 # 1 is updated, then x[i] is updated

Agite gmiong:

7.2. Assignment statements 101

The Python Language Reference, Anpooisuon 3.11.13

PEP 3132 - Extended Iterable Unpacking
The specification for the *target feature.

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt = augtarget augop (expression_list | yield expression)

augtarget = identifier | attributeref | subscription | slicing

augop = ny=mn | n__m ‘ Wx_n | "@=" | n/:" I "//:n | no—n | MWk x—=0
I nss=n | Nog=" | ne="m ‘ nA_mn I "|="

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns
the result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 can be rewrittenas x = x + 1 to achieve a similar, but not exactly
equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed
in-place, meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For
example, a[i] += £ (x) first looks-up a[1i], then it evaluates f (x) and performs the addition, and lastly, it writes
the result back to a [1].

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible
in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same cavear about class and instance attributes applies as for regular
assignments.

7.2.2 Annotated assignment statements

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional
assignment statement:

annotated_assignment_stmt = augtarget ":" expression
["=" (starred_expression | yield expression)]

The difference from normal Assignment statements is that only a single target is allowed.

For simple names as assignment targets, if in class or module scope, the annotations are evaluated and stored in a special
class or module attribute __annotations__ thatis a dictionary mapping from variable names (mangled if private) to
evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution,
if annotations are found statically.

For expressions as assignment targets, the annotations are evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and
stored in function scopes.

102 KegaAaio 7. Simple statements

https://peps.python.org/pep-3132/

The Python Language Reference, Anpooiguon 3.11.13

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target
except for the last ___setitem () or __setattr__ () call

Agite emiong:

PEP 526 - Syntax for Variable Annotations
The proposal that added syntax for annotating the types of variables (including class variables and instance
variables), instead of expressing them through comments.

PEP 484 - Type hints
The proposal that added the t yping module to provide a standard syntax for type annotations that can be used in
static analysis tools and IDEs.

AMoEe oty ékdoom 3.8: Now annotated assignments allow the same expressions in the right hand side as regular
assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt = "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if _ debug__ :
if not expression: raise AssertionError

The extended form, assert expressionl, expression?2, isequivalent to

if _ debug__:
if not expressionl: raise AssertionError (expression2)

These equivalences assume that __debug___ and AssertionError refer to the built-in variables with those names.
In the current implementation, the built-in variable ___debug___ is True under normal circumstances, False when
optimization is requested (command line option —0). The current code generator emits no code for an assert statement
when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression
that failed in the error message; it will be displayed as part of the stack trace.

Assignments to ___debug___ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4 The pass statement

pass_stmt = "pass"

pass is anull operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required
syntactically, but no code needs to be executed, for example:

def f (arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.3. The assert statement 103

https://peps.python.org/pep-0526/
https://peps.python.org/pep-0484/

The Python Language Reference, Anpooisuon 3.11.13

7.5 The del statement

del_stmt = "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the
name occurs in a globa I statement in the same code block. If the name is unbound, a NameError exception will be
raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is
in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

AMoEe otV £xdoom 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable
in a nested block.

7.6 The return statement

return_stmt = "return" [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.
return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a t ry statement with a £inally clause, that finally clause is executed before
really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration
to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the
Stoplteration.value attribute.

In an asynchronous generator function, an empty ret urn statement indicates that the asynchronous generator is done and
will cause StopAsyncIteration to beraised. A non-empty return statement is a syntax error in an asynchronous
generator function.

7.7 The yield statement

yield_stmt = yield expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the
parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield
statements

yield <expr>
yield from <expr>

104 Kegpalato 7. Simple statements

The Python Language Reference, Anpooiguon 3.11.13

are equivalent to the yield expression statements

(yield <expr>)
(yield from <expr>)

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the
generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function
instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8 The raise statement

raise_stmt = "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as the
active exception. If there isn’t currently an active exception, a Runt imeError exception is raised indicating that this is
an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance of
BaseException. If it is a class, the exception instance will be obtained when needed by instantiating the class with
no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback__ attribute. You can create an exception and set your own traceback in one step using the
with_traceback () exception method (which returns the same exception instance, with its traceback set to its
argument), like so:

[raise Exception ("foo occurred") .with_traceback (tracebackobj)]

The from clause is used for exception chaining: if given, the second expression must be another exception class or
instance. If the second expression is an exception instance, it will be attached to the raised exception as the __cause_
attribute (which is writable). If the expression is an exception class, the class will be instantiated and the resulting exception
instance will be attached to the raised exception as the __cause___ attribute. If the raised exception is not handled, both
exceptions will be printed:

>>> try:
print (1 / 0)
except Exception as exc:
raise RuntimeError ("Something bad happened") from exc

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
print (1 / 0)

A

ZeroDivisionError: division by zero
The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError ("Something bad happened") from exc
RuntimeError: Something bad happened

7.8. The raise statement 105

The Python Language Reference, Anpooisuon 3.11.13

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An
exception may be handled when an except or finally clause, or a with statement, is used. The previous exception
is then attached as the new exception’s __context___ attribute:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
print (1 / 0)

A

ZeroDivisionError: division by zero
During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError ("Something bad happened")
RuntimeError: Something bad happened

Exception chaining can be explicitly suppressed by specifying None in the from clause:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened") from None

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Additional information on exceptions can be found in section EEapéoeig, and information about handling exceptions is
in section The try statement.

AMaEe oty €kdoon 3.3: None is now permitted as Y in raise X from Y.
Added the __suppress_context___ attribute to suppress automatic display of the exception context.

AMoEe ot éxdoon 3.11: If the traceback of the active exception is modified in an except clause, a subsequent
raise statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with the
traceback it had when it was caught.

7.9 The break statement

break_stmt = "break"

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition
within that loop.

It terminates the nearest enclosing loop, skipping the optional e1se clause if the loop has one.

If a for loop is terminated by break, the loop control target keeps its current value.

106 KegaAaio 7. Simple statements

The Python Language Reference, Anpooiguon 3.11.13

When break passes control out of a ¢ ry statement with a finally clause, that finally clause is executed before
really leaving the loop.

7.10 The continue statement

continue_stmt = "continue"

cont inue may only occur syntactically nested in a for or whi Ie loop, but not nested in a function or class definition
within that loop. It continues with the next cycle of the nearest enclosing loop.

When cont inue passes control out of a try statement with a finally clause, that finally clause is executed
before really starting the next loop cycle.

7.11 The import statement

import_stmt

"import" module ["as" identifier] ("," module ["as" identifier])*

"from" relative_module "import" identifier ["as" identifier]

"," identifier ["as" identifier])*

"from" relative_module "import" " (" identifier ["as" identifier]

"from" relative_module "import" "*"
identifier ".")* identifier
A . LS module ‘ "w . "+

|
(
|
("," identifier ["as" identifierl)* [","] ")"
|
(

module =
relative_module

The basic import statement (no £rom clause) is executed in two steps:
1. find a module, loading and initializing it if necessary
2. define a name or names in the local namespace for the scope where the i mport statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each
clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import system,
which also describes the various types of packages and modules that can be imported, as well as all the hooks that can
be used to customize the import system. Note that failures in this step may indicate either that the module could not be
located, or that an error occurred while initializing the module, which includes execution of the module’s code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three ways:
« If the module name is followed by as, then the name following as is bound directly to the imported module.

« If no other name is specified, and the module being imported is a top level module, the module’s name is bound in
the local namespace as a reference to the imported module

« If the module being imported is not a top level module, then the name of the top level package that contains the
module is bound in the local namespace as a reference to the top level package. The imported module must be
accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:
1. find the module specified in the from clause, loading and initializing it if necessary;

2. for each of the identifiers specified in the import clauses:

7.10. The continue statement 107

The Python Language Reference, Anpooisuon 3.11.13

1. check if the imported module has an attribute by that name

2. if not, attempt to import a submodule with that name and then check the imported module again for that
attribute

3. if the attribute is not found, ImportError is raised.

4. otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if it is
present, otherwise using the attribute name

Examples:

import foo # foo imported and bound locally

import foo.bar.baz foo, foo.bar, and foo.bar.baz imported, foo bound locally
import foo.bar.baz as fbb # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
—bound as fbb

from foo.bar import baz # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.

H

—bound as baz
from foo import attr # foo imported and foo.attr bound as attr

If the list of identifiers is replaced by a star (' * '), all public names defined in the module are bound in the local namespace
for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__;if defined, it must be a sequence of strings which are names defined or imported by that module. The names
givenin__all__ are all considered public and are required to exist. If __all__ isnot defined, the set of public names
includes all names found in the module’s namespace which do not begin with an underscore character (' _'). __all
should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such
as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting to
use it in class or function definitions will raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute name of the module. When a module
or package is contained within another package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the specified module or package after £rom you
can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means
the current package where the module making the import exists. Two dots means up one package level. Three dots is up
two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end up
importing pkg . mod. If you execute from . .subpkg2 import mod from within pkg. subpkgl you will import
pkg.subpkg2 .mod. The specification for relative imports is contained in the Package Relative Imports section.

importlib.import_module () is provided to support applications that determine dynamically the modules to be
loaded.

Raises an auditing event import with arguments module, filename, sys.path, sys.meta_path, sys.
path_hooks.

7.11.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to
the language. It allows use of the new features on a per-module basis before the release in which the feature becomes
standard.

108 KegaAaio 7. Simple statements

The Python Language Reference, Anpooiguon 3.11.13

future_stmt = "from" "__ future_ " "import" feature ["as" identifier]
("," feature ["as" identifier])*
| "from" "__ future_ " "import" " (" feature ["as" identifier]
("," feature ["as" identifier])* [","] M)"

feature n= identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:
« the module docstring (if any),
e comments,
« blank lines, and
« other future statements.
The only feature that requires using the future statement is annotations (see PEP 563).

All historical features enabled by the future statement are still recognized by Python 3. The list includes
absolute_import, division, generators, generator_stop, unicode_literals,
print_function, nested_scopes and with_statement. They are all redundant because they are
always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are
often implemented by generating different code. It may even be the case that a new feature introduces new incompatible
syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions
cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a
future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __ future_ ,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

[import _ future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec () and compile () that occur in a module M containing a future
statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled
by optional arguments to compile () — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an
interpreter is started with the —1i option, is passed a script name to execute, and the script includes a future statement, it
will be in effect in the interactive session started after the script is executed.

Agite gmiong:

PEP 236 - Back to the __ future
The original proposal for the __future__ mechanism.

7.11. The import statement 109

https://peps.python.org/pep-0563/
https://peps.python.org/pep-0236/

The Python Language Reference, Anpooisuon 3.11.13

7.12 The global statement

global_stmt = "global" identifier ("," identifier)*

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers
are to be interpreted as globals. It would be impossible to assign to a global variable without global, although free
variables may refer to globals without being declared global.

Names listed in a g1 oba I statement must not be used in the same code block textually preceding that g1 obal statement.

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements or
except clauses, orina for targetlist, c 1ass definition, function definition, i mport statement, or variable annotation.

Aemropépera vhomoinong CPython: The current implementation does not enforce some of these restrictions, but
programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning
of the program.

Programmer’s note: g1oba is a directive to the parser. It applies only to code parsed at the same time as the global
statement. In particular, a g1l obal statement contained in a string or code object supplied to the built-in exec () function
does not affect the code block containing the function call, and code contained in such a string is unaffected by global
statements in the code containing the function call. The same applies to the eval () and compile () functions.

7.13 The nonlocal statement

nonlocal_stmt = "nonlocal" identifier ("," identifier)™*

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest enclosing
scope excluding globals. This is important because the default behavior for binding is to search the local namespace first.
The statement allows encapsulated code to rebind variables outside of the local scope besides the global (module) scope.

Names listed in a nonlocal statement, unlike those listed in a g1 obal statement, must refer to pre-existing bindings
in an enclosing scope (the scope in which a new binding should be created cannot be determined unambiguously).

Names listed in a nonlocal statement must not collide with pre-existing bindings in the local scope.
Agite gmiong:

PEP 3104 - Access to Names in Outer Scopes
The specification for the nonlocal statement.

110 KegaAaio 7. Simple statements

https://peps.python.org/pep-3104/

KEGANAIO 8

Compound statements

Compound statements contain (groups of)) other statements; they affect or control the execution of those other statements
in some way. In general, compound statements span multiple lines, although in simple incarnations a whole compound
statement may be contained in one line.

The if, while and for statements implement traditional control flow constructs. t ry specifies exception handlers
and/or cleanup code for a group of statements, while the with statement allows the execution of initialization and
finalization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more “clauses.” A clause consists of a header and a “suite.” The clause headers
of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one or
more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can be one
or more indented statements on subsequent lines. Only the latter form of a suite can contain nested compound statements;
the following is illegal, mostly because it wouldn’t be clear to which i £ clause a following e I se clause would belong:

[if testl: if test2: print (x)

)

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or
none of the print () calls are executed:

[if x <y < z: print(x); print(y); print(z)

Summarizing:

compound_stmt = if _stmt

while_stmt
for_stmt
try_stmt
with_stmt
match_stmt
funcdef
classdef

111

The Python Language Reference, Anpooisuon 3.11.13

| async_with_stmt
| async_for_stmt
| async_funcdef

suite = stmt_1list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement = stmt_list NEWLINE | compound_stmt
stmt_list = simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the “dangling e 1se”
problem is solved in Python by requiring nested i £ statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

8.1 The if statement

The i r statement is used for conditional execution:

if_stmt = "if" assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else"™ ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operations for the definition of true and false); then that suite is executed (and no other part of the i £ statement
is executed or evaluated). If all expressions are false, the suite of the e se clause, if present, is executed.

8.2 The while statement

The whi Ie statement is used for repeated execution as long as an expression is true:

while_stmt = "while" assignment_expression ":" suite
["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be the
first time it is tested) the suite of the e 1se clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt = "for" target_list "in" starred _list ":" suite

["else" suite]

112 Kegahaio 8. Compound statements

The Python Language Reference, Anpooiguon 3.11.13

The starred_list expression is evaluated once; it should yield an iterable object. An iterator is created for that
iterable. The first item provided by the iterator is then assigned to the target list using the standard rules for assignments
(see Assignment statements), and the suite is executed. This repeats for each item provided by the iterator. When the
iterator is exhausted, the suite in the e 1 se clause, if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the el se clause if there is no next item.

The for-loop makes assignments to the variables in the target list. This overwrites all previous assignments to those
variables including those made in the suite of the for-loop:

for i in range(10):
print (i)
i=25 # this will not affect the for-loop
because i will be overwritten with the next
index in the range

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have been
assigned to at all by the loop. Hint: the built-in type range () represents immutable arithmetic sequences of integers.
For instance, iterating range (3) successively yields 0, 1, and then 2.

AMoEe ot ékdoom 3.11: Starred elements are now allowed in the expression list.

8.4 The try statement

The t ry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt = tryl_stmt | try2 stmt | try3 _stmt
tryl_stmt = "try" ":" suite
("except" [expression ["as" identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try2_stmt = "try" ":" suite
("except" "*" expression ["as" identifier] ":" suite)+
["else" ":" suite]
["finally"™ ":" suite]
try3_stmt = "try" ":" suite
"finally" ":" suite

Additional information on exceptions can be found in section EEapéoeig, and information on using the ra i se statement
to generate exceptions may be found in section The raise statement.

8.4. The try statement 113

The Python Language Reference, Anpooisuon 3.11.13

8.4.1 except clause

The except clause(s) specify one or more exception handlers. When no exception occurs in the t ry clause, no exception
handler is executed. When an exception occurs in the t ry suite, a search for an exception handler is started. This search
inspects the except clauses in turn until one is found that matches the exception. An expression-less except clause, if
present, must be last; it matches any exception. For an except clause with an expression, that expression is evaluated,
and the clause matches the exception if the resulting object is «compatible» with the exception. An object is compatible
with an exception if the object is the class or a non-virtual base class of the exception object, or a tuple containing an
item that is the class or a non-virtual base class of the exception object.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code and
on the invocation stack.'

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a handler
is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated as if the
entire t ry statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword in that
except clause, if present, and the except clause’s suite is executed. All except clauses must have an executable
block. When the end of this block is reached, execution continues normally after the entire ¢ ry statement. (This means
that if two nested handlers exist for the same exception, and the exception occurs in the t ry clause of the inner handler,
the outer handler will not handle the exception.)

When an exception has been assigned using as target, itis cleared at the end of the except clause. This is as if

except E as N:
foo

was translated to

except E as N:
try:
foo
finally:
del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause. Exceptions
are cleared because with the traceback attached to them, they form a reference cycle with the stack frame, keeping all
locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, the exception is stored in the sys module, where it can be accessed
from within the body of the except clause by calling sys.exception (). When leaving an exception handler, the
exception stored in the sy s module is reset to its previous value:

>>> print (sys.exception())

None

>>> try:
raise TypeError

except:
print (repr (sys.exception()))
try:
raise ValueError
except:
print (repr (sys.exception()))
print (repr (sys.exception()))
(ouvéyela otV emtouevn oekida)

! The exception is propagated to the invocation stack unless there isa £ na 11y clause which happens to raise another exception. That new exception
causes the old one to be lost.

114 Kegahaio 8. Compound statements

The Python Language Reference, Anpooiguon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

TypeError ()

ValueError ()

TypeError ()

>>> print (sys.exception())
None

8.4.2 except* clause

The except * clause(s) are used for handling Except ionGroups. The exception type for matching is interpreted as
in the case of except, but in the case of exception groups we can have partial matches when the type matches some of
the exceptions in the group. This means that multiple except * clauses can execute, each handling part of the exception
group. Each clause executes at most once and handles an exception group of all matching exceptions. Each exception in
the group is handled by at most one except * clause, the first that matches it.

>>> try:
raise ExceptionGroup ("eg",
[ValueError (1), TypeError(2), OSError(3), OSError(4)])
except* TypeError as e:
print (f'caught {type (e) with nested {e.exceptions/')
except* OSError as e:
print (f'caught {type(e)} with nested {e.exceptions}"')

caught <class 'ExceptionGroup'> with nested (TypeError (2),)
caught <class 'ExceptionGroup'> with nested (OSError(3), OSError(4))
+ Exception Group Traceback (most recent call last):
| File "<stdin>", line 2, in <module>
| ExceptionGroup: eg
oo 1 ———————
| ValueError: 1

Any remaining exceptions that were not handled by any except * clause are re-raised at the end, combined into an
exception group along with all exceptions that were raised from within except * clauses.

From version 3.11.4, when the entire Except ionGroup is handled and only one exception is raised from an except *
clause, this exception is no longer wrapped to form a new ExceptionGroup.

If the raised exception is not an exception group and its type matches one of the except* clauses, it is caught and
wrapped by an exception group with an empty message string.

>>> try:
raise BlockingIOError
except* BlockingIOError as e:
print (repr (e))

ExceptionGroup ('', (BlockingIOError()))

An except* clause must have a matching type, and this type cannot be a subclass of BaseExceptionGroup. Itis
not possible to mix except and except* in the same try. break, cont inue and return cannot appear in an
except* clause.

8.4. The try statement 115

The Python Language Reference, Anpooisuon 3.11.13

8.4.3 else clause

The optional e1se clause is executed if the control flow leaves the t ry suite, no exception was raised, and no return,
continue, or break statement was executed. Exceptions in the else clause are not handled by the preceding
except clauses.

8.4.4 finally clause

If finally is present, it specifies a “cleanup” handler. The t ry clause is executed, including any except and else
clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved. The finally
clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If the finally clause
raises another exception, the saved exception is set as the context of the new exception. If the finally clause executes
a return, break or continue statement, the saved exception is discarded:

>>> def f():
try:
1/0
finally:
return 42
>>> f ()
42

The exception information is not available to the program during execution of the finally clause.

When a return, break or continue statement is executed in the ¢ ry suite of a try...finally statement, the
finally clause is also executed “on the way out.”

The return value of a function is determined by the last ret urn statement executed. Since the finally clause always
executes, a return statement executed in the finally clause will always be the last one executed:

>>> def fool():
try:
return 'try'
finally:
return 'finally'
>>> foo ()
'finally'

AMaEe otv ékdoon 3.8: Prior to Python 3.8, a cont inue statement was illegal in the finally clause due to a
problem with the implementation.

8.5 The with statement

The with statement is used to wrap the execution of a block with methods defined by a context manager (see section
With Statement Context Managers). This allows common t ry...except...final ly usage patterns to be encapsulated
for convenient reuse.

with_stmt L= "with" (" (" with_stmt_contents ","? ")" | with_stmt_contents
with_stmt_contents = with_item ("," with_item)*
with_item n= expression ["as" target]

116 Kegahaio 8. Compound statements

)

The Python Language Reference, Anpooiguon 3.11.13

The execution of the wi t h statement with one «item» proceeds as follows:

1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.
The context manager’s ___enter__ () isloaded for later use.
The context manager’s ___exit__ () is loaded for later use.

The context manager’s __enter__ () method is invoked.

A I

If a target was included in the wi t h statement, the return value from ___enter__ () is assigned to it.

Ynueiwon: The with statement guarantees that if the __enter__ () method returns without an error, then
__exit__ () will always be called. Thus, if an error occurs during the assignment to the target list, it will be
treated the same as an error occurring within the suite would be. See step 7 below.

6. The suite is executed.

7. The context manager’s ___exit__ () method is invoked. If an exception caused the suite to be exited, its type,
value, and traceback are passed as arguments to __exit__ (). Otherwise, three None arguments are supplied.

If the suite was exited due to an exception, and the return value from the __exit__ () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the
statement following the wi t h statement.

If the suite was exited for any reason other than an exception, the return value from __exit__ () isignored, and
execution proceeds at the normal location for the kind of exit that was taken.

The following code:

with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)

enter = type (manager).__enter_
exit = type (manager) .__exit_
value = enter (manager)

hit_except = False

try:
TARGET = value
SUITE
except :
hit_except = True
if not exit (manager, *sys.exc_info()):
raise
finally:

if not hit_except:
exit (manager, None, None, None)

With more than one item, the context managers are processed as if multiple w1 t h statements were nested:

with A() as a, B() as b:
SUITE

is semantically equivalent to:

8.5. The with statement 117

The Python Language Reference, Anpooisuon 3.11.13

with A() as a:
with B() as b:
SUITE

You can also write multi-item context managers in multiple lines if the items are surrounded by parentheses. For example:

with (
A() as a,
B() as b,
) :
SUITE

AMaEe oty €kdoon 3.1: Support for multiple context expressions.
AMaEe oty €kdoon 3.10: Support for using grouping parentheses to break the statement in multiple lines.
Agite eriong:

PEP 343 - The «with» statement
The specification, background, and examples for the Python wi t h statement.

8.6 The match statement

Néo oty éxdoom 3.10.

The match statement is used for pattern matching. Syntax:

match_stmt = 'match' subject_expr ":" NEWLINE INDENT case_block+ DEDENT
subject_expr = star_named_expression "," star_named_expressions?
| named_expression

case_block 'case' patterns [guard] ":" block

Enueimon: This section uses single quotes to denote soft keywords.

Pattern matching takes a pattern as input (following case) and a subject value (following mat ch). The pattern (which
may contain subpatterns) is matched against the subject value. The outcomes are:

« A match success or failure (also termed a pattern success or failure).

« Possible binding of matched values to a name. The prerequisites for this are further discussed below.
The match and case keywords are soft keywords.
Agite emiong:

o PEP 634 - Structural Pattern Matching: Specification

o PEP 636 - Structural Pattern Matching: Tutorial

118 Kegahaio 8. Compound statements

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, Anpooiguon 3.11.13

8.6.1 Overview

Here’s an overview of the logical flow of a match statement:

1. The subject expression subject_expr is evaluated and a resulting subject value obtained. If the subject
expression contains a comma, a tuple is constructed using the standard rules.

2. Each pattern in a case_block is attempted to match with the subject value. The specific rules for success or
failure are described below. The match attempt can also bind some or all of the standalone names within the pattern.
The precise pattern binding rules vary per pattern type and are specified below. Name bindings made during a
successful pattern match outlive the executed block and can be used after the match statement.

Enueiwon: During failed pattern matches, some subpatterns may succeed. Do not rely on bindings being made for
a failed match. Conversely, do not rely on variables remaining unchanged after a failed match. The exact behavior is
dependent on implementation and may vary. This is an intentional decision made to allow different implementations
to add optimizations.

3. If the pattern succeeds, the corresponding guard (if present) is evaluated. In this case all name bindings are
guaranteed to have happened.

« If the guard evaluates as true or is missing, the block inside case_block is executed.
o Otherwise, the next case_block is attempted as described above.

o If there are no further case blocks, the match statement is completed.

Ynueioon: Users should generally never rely on a pattern being evaluated. Depending on implementation, the interpreter
may cache values or use other optimizations which skip repeated evaluations.

A sample match statement:

>>> flag = False
>>> match (100, 200):
case (100, 300): # Mismatch: 200 != 300
print ('Case 1")
case (100, 200) if flag: # Successful match, but guard fails
print ('Case 2'")
case (100, vy): # Matches and binds y to 200
print (f'Case 3, y: {y}")
case _: # Pattern not attempted
print ('Case 4, I match anything!')

Case 3, y: 200

In this case, if flagisa guard. Read more about that in the next section.

8.6. The match statement 119

The Python Language Reference, Anpooisuon 3.11.13

8.6.2 Guards

guard = "if" named_expression

A guard (which is part of the case) must succeed for code inside the case block to execute. It takes the form: i £
followed by an expression.

The logical flow of a case block with a guard follows:

1. Check that the pattern in the case block succeeded. If the pattern failed, the guard is not evaluated and the next
case block is checked.

2. If the pattern succeeded, evaluate the guard.
o If the guard condition evaluates as true, the case block is selected.
« If the guard condition evaluates as false, the case block is not selected.
« If the guard raises an exception during evaluation, the exception bubbles up.

Guards are allowed to have side effects as they are expressions. Guard evaluation must proceed from the first to the last
case block, one at a time, skipping case blocks whose pattern(s) don’t all succeed. (I.e., guard evaluation must happen in
order.) Guard evaluation must stop once a case block is selected.

8.6.3 Irrefutable Case Blocks

An irrefutable case block is a match-all case block. A match statement may have at most one irrefutable case block, and
it must be last.

A case block is considered irrefutable if it has no guard and its pattern is irrefutable. A pattern is considered irrefutable
if we can prove from its syntax alone that it will always succeed. Only the following patterns are irrefutable:

o AS Patterns whose left-hand side is irrefutable

o OR Patterns containing at least one irrefutable pattern
o Capture Patterns

o Wildcard Patterns

« parenthesized irrefutable patterns

8.6.4 Patterns

Enueiwon: This section uses grammar notations beyond standard EBNF:
« the notation SEP . RULE+ is shorthand for RULE (SEP RULE) *

« the notation ! RULE is shorthand for a negative lookahead assertion

The top-level syntax for patterns is:

patterns = open_sequence_pattern | pattern
pattern = as_pattern | or_pattern
closed_pattern = | literal_pattern

120 Kegahaio 8. Compound statements

The Python Language Reference, Anpooiguon 3.11.13

| capture_pattern
| wildcard_ pattern
| value_pattern

| group_pattern

| sequence_pattern
| mapping_pattern
| class_pattern

The descriptions below will include a description «in simple terms» of what a pattern does for illustration purposes (credits
to Raymond Hettinger for a document that inspired most of the descriptions). Note that these descriptions are purely for
illustration purposes and may not reflect the underlying implementation. Furthermore, they do not cover all valid forms.

OR Patterns

An OR pattern is two or more patterns separated by vertical bars |. Syntax:

or_pattern = "|".closed _pattern+t

Only the final subpattern may be irrefutable, and each subpattern must bind the same set of names to avoid ambiguity.

An OR pattern matches each of its subpatterns in turn to the subject value, until one succeeds. The OR pattern is then
considered successful. Otherwise, if none of the subpatterns succeed, the OR pattern fails.

In simple terms, P1 | P2 | ... will try to match P1, if it fails it will try to match P2, succeeding immediately if
any succeeds, failing otherwise.

AS Patterns

An AS pattern matches an OR pattern on the left of the as keyword against a subject. Syntax:

as_pattern = or_pattern "as" capture_pattern

If the OR pattern fails, the AS pattern fails. Otherwise, the AS pattern binds the subject to the name on the right of the
as keyword and succeeds. capture_pattern cannotbe a _.

In simple terms P as NAME will match with P, and on success it will set NAME = <subject>.

Literal Patterns

A literal pattern corresponds to most /iterals in Python. Syntax:

literal pattern = signed_number
| signed_number "+" NUMBER

| signed_number "-" NUMBER

| strings

| "None"

| "True"

| "False"

| signed_number: NUMBER | "-" NUMBER

8.6. The match statement 121

The Python Language Reference, Anpooisuon 3.11.13

The rule strings and the token NUMBER are defined in the standard Python grammar. Triple-quoted strings are
supported. Raw strings and byte strings are supported. f-strings are not supported.

The forms signed_number '+' NUMBER and signed_number '-' NUMBER are for expressing complex
numbers; they require a real number on the left and an imaginary number on the right. E.g. 3 + 47.

In simple terms, LITERAL will succeed only if <subject> == LITERAL. For the singletons None, True and
False, the is operator is used.

Capture Patterns

A capture pattern binds the subject value to a name. Syntax:

capture_pattern = !''_'" NAME
A single underscore _ is not a capture pattern (this is what !'_' expresses). It is instead treated as a
wildcard _pattern.
In a given pattern, a given name can only be bound once. E.g. case x, x: ... isinvalid while case [x] | x:

. 1s allowed.

Capture patterns always succeed. The binding follows scoping rules established by the assignment expression operator in
PEP 572; the name becomes a local variable in the closest containing function scope unless there’s an applicable g1oba 1
or nonlocal statement.

In simple terms NAME will always succeed and it will set NAME = <subject>.
Wildcard Patterns

A wildcard pattern always succeeds (matches anything) and binds no name. Syntax:

wildcard_pattern = v

_ is a soft keyword within any pattern, but only within patterns. It is an identifier, as usual, even within mat ch subject
expressions, guards, and case blocks.

In simple terms, _ will always succeed.

Value Patterns

A value pattern represents a named value in Python. Syntax:
value_pattern = attr

attr name_or_attr "." NAME
name_or_attr attr | NAME

The dotted name in the pattern is looked up using standard Python name resolution rules. The pattern succeeds if the
value found compares equal to the subject value (using the == equality operator).

In simple terms NAME 1 . NAME2 will succeed only if <subject> == NAME1.NAME2

122 Kegahaio 8. Compound statements

https://peps.python.org/pep-0572/

The Python Language Reference, Anpooiguon 3.11.13

Inueiwon: If the same value occurs multiple times in the same match statement, the interpreter may cache the first
value found and reuse it rather than repeat the same lookup. This cache is strictly tied to a given execution of a given
match statement.

Group Patterns
A group pattern allows users to add parentheses around patterns to emphasize the intended grouping. Otherwise, it has

no additional syntax. Syntax:

group_pattern = "(" pattern ")"

In simple terms (P) has the same effect as P.

Sequence Patterns

A sequence pattern contains several subpatterns to be matched against sequence elements. The syntax is similar to the
unpacking of a list or tuple.

sequence_pattern u= "[" [maybe_sequence_pattern] "]"

| "(" [open_sequence_pattern] ")"
open_sequence_pattern u= maybe_star_pattern "," [maybe_sequence_pattern]
maybe_sequence_pattern = ",".maybe_star_ pattern+ ","?

maybe_star_pattern = star_pattern | pattern
star_pattern u= "xW (capture_pattern | wildcard_ pattern)
There is no difference if parentheses or square brackets are used for sequence patterns (i.e. (...) vs [...]).

Inueiwon: A single pattern enclosed in parentheses without a trailing comma (e.g. (3 | 4)) is a group pattern. While
a single pattern enclosed in square brackets (e.g. [3 | 41]) is still a sequence pattern.

At most one star subpattern may be in a sequence pattern. The star subpattern may occur in any position. If no star
subpattern is present, the sequence pattern is a fixed-length sequence pattern; otherwise it is a variable-length sequence
pattern.

The following is the logical flow for matching a sequence pattern against a subject value:
1. If the subject value is not a sequence’, the sequence pattern fails.

2. If the subject value is an instance of str, bytes or bytearray the sequence pattern fails.

2 In pattern matching, a sequence is defined as one of the following:

« a class that inherits from collections.abc.Sequence
« a Python class that has been registered as collections.abc.Sequence
« a builtin class that has its (CPython) Py_TPFLAGS_SEQUENCE bit set
« aclass that inherits from any of the above

The following standard library classes are sequences:
e array.array
e collections.deque
e list
e memoryview
e range
e tuple

8.6. The match statement 123

The Python Language Reference, Anpooisuon 3.11.13

3. The subsequent steps depend on whether the sequence pattern is fixed or variable-length.
If the sequence pattern is fixed-length:
1. If the length of the subject sequence is not equal to the number of subpatterns, the sequence pattern fails

2. Subpatterns in the sequence pattern are matched to their corresponding items in the subject sequence from left
to right. Matching stops as soon as a subpattern fails. If all subpatterns succeed in matching their corresponding
item, the sequence pattern succeeds.

Otherwise, if the sequence pattern is variable-length:

1. If the length of the subject sequence is less than the number of non-star subpatterns, the sequence pattern
fails.

2. The leading non-star subpatterns are matched to their corresponding items as for fixed-length sequences.

3. If the previous step succeeds, the star subpattern matches a list formed of the remaining subject items,
excluding the remaining items corresponding to non-star subpatterns following the star subpattern.

4. Remaining non-star subpatterns are matched to their corresponding subject items, as for a fixed-length
sequence.

Znusim(m: The length of the subject sequence is obtained via 1en () (i.e. viathe __ len__ () protocol). This
length may be cached by the interpreter in a similar manner as value patterns.

In simple terms [P1, P2, P3, ..., P<N>] matches only if all the following happens:
» check <subject> is a sequence
e len(subject) == <N>
e P1 matches <subject>[0] (note that this match can also bind names)
e P2 matches <subject>[1] (note that this match can also bind names)

« ... and so on for the corresponding pattern/element.

Mapping Patterns

A mapping pattern contains one or more key-value patterns. The syntax is similar to the construction of a dictionary.
Syntax:

mapping_pattern x= "{" [items_pattern] "}"
items_pattern = ",".key_value_patternt ","?
key_value_pattern n= (literal pattern | value_pattern) ":" pattern

| double_ star pattern
"xA&W" capture_pattern

double_star_pattern

At most one double star pattern may be in a mapping pattern. The double star pattern must be the last subpattern in the
mapping pattern.

Duplicate keys in mapping patterns are disallowed. Duplicate literal keys will raise a SyntaxError. Two keys that
otherwise have the same value will raise a ValueError at runtime.

Tnueiwon: Subject values of type str, bytes, and bytearray do not match sequence patterns.

124 Kegahaio 8. Compound statements

The Python Language Reference, Anpooiguon 3.11.13

The following is the logical flow for matching a mapping pattern against a subject value:
1. If the subject value is not a mapping’,the mapping pattern fails.

2. If every key given in the mapping pattern is present in the subject mapping, and the pattern for each key matches
the corresponding item of the subject mapping, the mapping pattern succeeds.

3. If duplicate keys are detected in the mapping pattern, the pattern is considered invalid. A SyntaxError is raised
for duplicate literal values; or a ValueError for named keys of the same value.

Ynueioon: Key-value pairs are matched using the two-argument form of the mapping subject’s get () method.
Matched key-value pairs must already be present in the mapping, and not created on-the-fly via _ missing__ ()
or__getitem _ ().

In simple terms {KEY1: P1, KEY2: P2, ... } matches only if all the following happens:
« check <subject> is a mapping
e KEY1l in <subject>
e P1 matches <subject>[KEY1]

e ... and so on for the corresponding KEY/pattern pair.

Class Patterns

A class pattern represents a class and its positional and keyword arguments (if any). Syntax:

class_pattern L= name_or_attr " (" [pattern_arguments ","?] ")"
pattern_arguments positional_patterns ["," keyword_patterns]
| keyword_patterns
positional patterns ", ".pattern+
keyword_patterns ", ".keyword_pattern+
keyword_pattern u= NAME "=" pattern

The same keyword should not be repeated in class patterns.
The following is the logical flow for matching a class pattern against a subject value:
1. If name_or_attr is not an instance of the builtin t ype , raise TypeError.
2. If the subject value is not an instance of name_or_attr (tested via isinstance ()), the class pattern fails.

3. If no pattern arguments are present, the pattern succeeds. Otherwise, the subsequent steps depend on whether
keyword or positional argument patterns are present.

For a number of built-in types (specified below), a single positional subpattern is accepted which will match the
entire subject; for these types keyword patterns also work as for other types.

If only keyword patterns are present, they are processed as follows, one by one:

I. The keyword is looked up as an attribute on the subject.

3 In pattern matching, a mapping is defined as one of the following:
« aclass that inherits from collections.abc.Mapping
« a Python class that has been registered as collections.abc.Mapping
« a builtin class that has its (CPython) Py_TPFLAGS_MAPP ING bit set
« aclass that inherits from any of the above
The standard library classes dict and types.MappingProxyType are mappings.

8.6. The match statement 125

The Python Language Reference, Anpooisuon 3.11.13

« If this raises an exception other than Att ributeError, the exception bubbles up.
o If this raises At tributeError, the class pattern has failed.

« Else, the subpattern associated with the keyword pattern is matched against the subject’s attribute value. If
this fails, the class pattern fails; if this succeeds, the match proceeds to the next keyword.

IL. If all keyword patterns succeed, the class pattern succeeds.

If any positional patterns are present, they are converted to keyword patterns using the __match_args___
attribute on the class name_or_attr before matching:

I. The equivalent of getattr (cls, "__match_args__ ", ()) iscalled.
« If this raises an exception, the exception bubbles up.
« If the returned value is not a tuple, the conversion fails and TypeError is raised.

« If there are more positional patterns than len (cls.__match_args_), TypeError is
raised.

« Otherwise, positional pattern i is converted to a keyword pattern using __match_args__ [1i]
as the keyword. __match_args__ [1] must be a string; if not TypeError is raised.

« If there are duplicate keywords, TypeError is raised.
Agite griong:
Customizing positional arguments in class pattern matching

I1. Once all positional patterns have been converted to keyword patterns,
the match proceeds as if there were only keyword patterns.

For the following built-in types the handling of positional subpatterns is different:
e bool
e bytearray
s bytes
e dict
e float
e frozenset
e int
e list
¢ set
e str
e tuple

These classes accept a single positional argument, and the pattern there is matched against the whole object rather
than an attribute. For example int (0| 1) matches the value 0, but not the value 0. O.

In simple terms CLS (P1, attr=P2) matches only if the following happens:
e isinstance (<subject>, CLS)
e convert P1 to a keyword pattern using CLS.__match_args__
 For each keyword argument att r=P2:

- hasattr (<subject>, "attzr")

126 Kegahaio 8. Compound statements

The Python Language Reference, Anpooiguon 3.11.13

- P2 matches <subject>.attr
e ... and so on for the corresponding keyword argument/pattern pair.
Agite emiong:
o PEP 634 - Structural Pattern Matching: Specification
o PEP 636 - Structural Pattern Matching: Tutorial

8.7 Function definitions

A function definition defines a user-defined function object (see section The standard type hierarchy):

funcdef = [decorators] "def" funcname " (" [parameter_ list]
["->" expression] ":" suite
decorators n= decorator+
decorator n= "@" assignment_expression NEWLINE
parameter_list = defparameter ("," defparameter)* "," "/" ["," [parameter_ .

| parameter_list_no_posonly

parameter_list_no_posonly
| parameter_list_starargs
parameter_list_starargs

I Wxxn parameter [","]

parameter = identifier [":" expression]
defparameter = parameter ["=" expression]
funcname n= identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace to
a function object (a wrapper around the executable code for the function). This function object contains a reference to
the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called.*

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated when
the function is defined, in the scope that contains the function definition. The result must be a callable, which is invoked
with the function object as the only argument. The returned value is bound to the function name instead of the function
object. Multiple decorators are applied in nested fashion. For example, the following code

Qfl (arg)
Qf2
def func(): pass

is roughly equivalent to

def func(): pass
func = £l (arg) (£2 (func))

except that the original function is not temporarily bound to the name func.

AMoEe oty ékdoom 3.9: Functions may be decorated with any valid assignment_expression. Previously, the
grammar was much more restrictive; see PEP 614 for details.

4 A string literal appearing as the first statement in the function body is transformed into the function’s___doc___ attribute and therefore the function’s
docstring.

8.7. Function definitions 127

defparameter ("," defparameter)* ["," [parameter_list_sta.

"*" [parameter] ("," defparameter)* ["," ["**" parameter

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/
https://peps.python.org/pep-0614/

The Python Language Reference, Anpooisuon 3.11.13

When one or more parameters have the form parameter = expression, the function is said to have «default parameter
values.» For a parameter with a default value, the corresponding argument may be omitted from a call, in which case the
parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the «*» must
also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means that
the expression is evaluated once, when the function is defined, and that the same «pre-computed» value is used for each
call. This is especially important to understand when a default parameter value is a mutable object, such as a list or a
dictionary: if the function modifies the object (e.g. by appending an item to a list), the default parameter value is in effect
modified. This is generally not what was intended. A way around this is to use None as the default, and explicitly test for
it in the body of the function, e.g.:

def whats_on_the_telly (penguin=None) :
if penguin is None:
penguin = []
penguin.append ("property of the zoo")
return penguin

Function call semantics are described in more detail in section Calls. A function call always assigns values to all parameters
mentioned in the parameter list, either from positional arguments, from keyword arguments, or from default values. If the
form «*identifier» is present, it is initialized to a tuple receiving any excess positional parameters, defaulting to the
empty tuple. If the form «**identifier» is present, it is initialized to a new ordered mapping receiving any excess
keyword arguments, defaulting to a new empty mapping of the same type. Parameters after «*» or «*identifier»
are keyword-only parameters and may only be passed by keyword arguments. Parameters before «/» are positional-only
parameters and may only be passed by positional arguments.

AMaEe otnv ékdoom 3.8: The / function parameter syntax may be used to indicate positional-only parameters. See
PEP 570 for details.

Parameters may have an annotation of the form «: expression» following the parameter name. Any parameter
may have an annotation, even those of the form *identifier or **identifier. Functions may have «return»
annotation of the form «-> expression» after the parameter list. These annotations can be any valid Python
expression. The presence of annotations does not change the semantics of a function. The annotation values are available
as values of a dictionary keyed by the parameters” names inthe __annotations___ attribute of the function object. If
the annotations import from __future_ is used, annotations are preserved as strings at runtime which enables
postponed evaluation. Otherwise, they are evaluated when the function definition is executed. In this case annotations
may be evaluated in a different order than they appear in the source code.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand for
a simplified function definition; a function defined in a «de £» statement can be passed around or assigned to another
name just like a function defined by a lambda expression. The «de £» form is actually more powerful since it allows the
execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A «de £» statement executed inside a function definition defines
a local function that can be returned or passed around. Free variables used in the nested function can access the local
variables of the function containing the def. See section Ovouacia ko evvdeon for details.

Agite gmiong:

PEP 3107 - Function Annotations
The original specification for function annotations.

PEP 484 - Type Hints
Definition of a standard meaning for annotations: type hints.

PEP 526 - Syntax for Variable Annotations
Ability to type hint variable declarations, including class variables and instance variables.

128 Kegahaio 8. Compound statements

https://peps.python.org/pep-0570/
https://peps.python.org/pep-3107/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python Language Reference, Anpooiguon 3.11.13

PEP 563 - Postponed Evaluation of Annotations
Support for forward references within annotations by preserving annotations in a string form at runtime instead of
eager evaluation.

PEP 318 - Decorators for Functions and Methods
Function and method decorators were introduced. Class decorators were introduced in PEP 3129.

8.8 Class definitions

A class definition defines a class object (see section The standard type hierarchy):

classdef n= [decorators] "class" classname [inheritance] ":" suite
inheritance = "(" [argument_1list] ")"
classname n= identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Metaclasses for
more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes without
an inheritance list inherit, by default, from the base class object; hence,

class Foo:
pass

is equivalent to

class Foo (object) :
pass

The class’s suite is then executed in a new execution frame (see Ovouaocia kaw civdeon), using a newly created local
namespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the class’s
suite finishes execution, its execution frame is discarded but its local namespace is saved.” A class object is then created
using the inheritance list for the base classes and the saved local namespace for the attribute dictionary. The class name
is bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s __dict__ . Note that this is
reliable only right after the class is created and only for classes that were defined using the definition syntax.

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

Qfl (arg)
Qf2
class Foo: pass

is roughly equivalent to

class Foo: pass
Foo = fl(arg) (f2 (Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound to the
class name.

5 A string literal appearing as the first statement in the class body is transformed into the namespace’s __doc___ item and therefore the class’s
docstring.

8.8. Class definitions 129

https://peps.python.org/pep-0563/
https://peps.python.org/pep-0318/
https://peps.python.org/pep-3129/

The Python Language Reference, Anpooisuon 3.11.13

AMoEe oty €kdoon 3.9: Classes may be decorated with any valid assignment_expression. Previously, the
grammar was much more restrictive; see PEP 614 for details.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances. Instance
attributes can be set in a method with se1f.name = value. Both class and instance attributes are accessible through
the notation «sel f . name», and an instance attribute hides a class attribute with the same name when accessed in this
way. Class attributes can be used as defaults for instance attributes, but using mutable values there can lead to unexpected
results. Descriptors can be used to create instance variables with different implementation details.

Agite emiong:

PEP 3115 - Metaclasses in Python 3000
The proposal that changed the declaration of metaclasses to the current syntax, and the semantics for how classes
with metaclasses are constructed.

PEP 3129 - Class Decorators
The proposal that added class decorators. Function and method decorators were introduced in PEP 318.

8.9 Coroutines

Néo omv éxdoon 3.5.

8.9.1 Coroutine function definition

async_funcdef = [decorators] "async" "def" funcname " (" [parameter_list] ")"
["->" expression] ":" suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). await expressions,
async forand async with can only be used in the body of a coroutine function.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or async
keywords.

Itisa SyntaxErrortouseayield from expression inside the body of a coroutine function.

An example of a coroutine function:

async def func(paraml, param2) :
do_stuff ()
await some_coroutine ()

AMoEe oty ékdoom 3.7: await and async are now keywords; previously they were only treated as such inside the
body of a coroutine function.

130 Kegahaio 8. Compound statements

https://peps.python.org/pep-0614/
https://peps.python.org/pep-3115/
https://peps.python.org/pep-3129/
https://peps.python.org/pep-0318/

The Python Language Reference, Anpooiguon 3.11.13

8.9.2 The async for statement

async_for_stmt = "async" for_stmt

An asynchronous iterable provides an __aiter__ method that directly returns an asynchronous iterator, which can call

asynchronous code inits __anext__ method.

The async for statement allows convenient iteration over asynchronous iterables.

The following code:

async for TARGET in ITER:
SUITE

else:
SUITEZ2

Is semantically equivalent to:

iter = (ITER)
iter = type(iter).__aiter_ (iter)
running = True

while running:

try:
TARGET = await type(iter).__anext__ (iter)
except StopAsyncIteration:
running = False
else:
SUITE
else:
SUITEZ2

Seealso aiter () and___anext__ () for details.

Itisa SyntaxError touse an async for statement outside the body of a coroutine function.

8.9.3 The async with statement

async_with_stmt = "async" with_stmt

An asynchronous context manager is a context manager that is able to suspend execution in its enter and exit methods.

The following code:

async with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)

aenter = type (manager).__aenter_
aexit = type (manager) .__aexit_
value = await aenter (manager)

hit_except = False

(ouvéyela otV emtduevVn oekida)

8.9. Coroutines

131

The Python Language Reference, Anpooisuon 3.11.13

try:
TARGET = value
SUITE

except :
hit_except = True

if not await aexit (manager, *sys.exc_info()):

raise
finally:
if not hit_except:
await aexit (manager, None, None, None)

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Seealso aenter () and aexit () for details.

Itisa SyntaxError touse an async with statement outside the body of a coroutine function.

Agite gmiong:

PEP 492 - Coroutines with async and await syntax

The proposal that made coroutines a proper standalone concept in Python, and added supporting syntax.

132

Kegahaio 8. Compound statements

https://peps.python.org/pep-0492/

KE®ANAIO 9

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

9.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion of
a complete Python program. A complete Python program is executed in a minimally initialized environment: all built-in
and standard modules are available, but none have been initialized, except for sy s (various system services), builtins
(built-in functions, exceptions and None) and ___main__ . The latter is used to provide the local and global namespace
for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete program but
reads and executes one statement (possibly compound) at a time. The initial environment is identical to that of a complete
program; each statement is executed in the namespace of __main__ .

A complete program can be passed to the interpreter in three forms: with the —c string command line option, as a file
passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the interpreter
enters interactive mode; otherwise, it executes the file as a complete program.

133

The Python Language Reference, Anpooisuon 3.11.13

9.2 File input

All input read from non-interactive files has the same form:

file_input = (NEWLINE | statement) *

This syntax is used in the following situations:
« when parsing a complete Python program (from a file or from a string);
« when parsing a module;

« when parsing a string passed to the exec () function;

9.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input = [stmt_1list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to help
the parser detect the end of the input.

9.4 Expression input

eval () is used for expression input. It ignores leading whitespace. The string argument to eval () must have the
following form:

eval_input = expression_list NEWLINE*

134 Kegahaio 9. Top-level components

keoanaio 10

[MAnpNng Tpodlaypagn YPAUHATIKAG

Avtn eivoun 1) TN g ypauuatik) tg Python, mov tpoépyetal amevbeiog amd) YPoUpaTik oV (PN OoLLOToLELTOL
yiou T dnuovpyia tov avorvuty) CPython (BA. Grammar/python.gram). H éxdoon avti) mapaheinel Aemtouépeleg mou
oyEeTICOVTaL HE TN dNUOUPYio KOdLKA KoL TNV aVAKTNOT amtd oQAaluoTa.

H onueroypagia eival éva peiyno amd EBNF kouw PEG. Zuykekpuéva, To & mov akolovdeital amd éva ovufolro,
éva token 1 wa wopevOeTtiky] oudda virodnhwvel Oetikn tpoemokdtnon (dnhadn omorteitor vo TopLtdler aAld
OEV KATAVOUADVETAL), EVAD) TO | VITOONADVEL APVITLKT TPOETLOKOTNON (dNhadT) atateitan va unv touplalet). Xpn-
OLOTTOLOVUE TOV TEAEOTY | YL va eKppdooupe TV «taStvounuévny emhoyn» touv PEG (rtov ypdpetal og / otig
mapadootakég ypoupotikéc PEG). Aeite to PEP 617 yio meplocdtepeg LemTouépeLeg oyeTkd te) ouvta&n g

YPOUUATIKNG.

PEG grammar for Python

===== ============ ======= = START OF THE GRAMMAR ====== ============ =======

General grammatical elements and rules:

* Strings with double quotes (") denote SOFT KEYWORDS

* Strings with single quotes (') denote KEYWORDS

* Upper case names (NAME) denote tokens in the Grammar/Tokens file

* Rule names starting with "invalid " are used for specialized syntax errors

— These rules are NOT used in the first pass of the parser.

- Only if the first pass fails to parse, a second pass including the invalid
rules will be executed.

- If the parser fails in the second phase with a generic syntax error, the
location of the generic failure of the first pass will be used (this avoids
reporting incorrect locations due to the invalid rules).

— The order of the alternatives involving invalid rules matter
(like any rule in PEG).

Grammar Syntax (see PEP 617 for more information) :

S H R Y R R Y S R Y R R Y R %R %

(ouvéyela otV emtduevn oekida)

135

https://github.com/python/cpython/tree/3.11/Grammar/python.gram
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://peps.python.org/pep-0617/

The Python Language Reference, Anpocigsuon 3.11.13

S oS e e YR T e R R S R R S R T e R IR Sk R ¥ S R ¥ S R ¥ S R YR R R R R

(ovveyiCetow amd TV Tponyouevn oekida)
rule_name: expression
Optionally, a type can be included right after the rule name, which
specifies the return type of the C or Python function corresponding to the
rule:
rule_name [return_type]: expression
If the return type is omitted, then a void * is returned in C and an Any 1in
Python.
el e2
Match el, then match eZ2.
el | e2
Match el or eZ2.
The first alternative can also appear on the line after the rule name for
formatting purposes. In that case, a | must be used before the first
alternative, like so:
rule_name [return_type]:
| first_alt
| second_alt
(e)
Match e (allows also to use other operators in the group like '(e)*')
[e] or e?
Optionally match e.

e*

Match zero or more occurrences of e.
e+

Match one or more occurrences of e.
s.et

Match one or more occurrences of e, separated by s. The generated parse tree
does not include the separator. This is otherwise identical to (e (s e)*).
&e
Succeed if e can be parsed, without consuming any input.
le
Fail if e can be parsed, without consuming any input.

Commit to the current alternative, even 1if it fails to parse.

STARTING RULES

file: [statements] ENDMARKER

interactive: statement_newline

eval: expressions NEWLINE* ENDMARKER

func_type: ' (' [type_expressions] ')' '->' expression NEWLINE* ENDMARKER
fstring: star_expressions

#

GENERAL STATEMENTS

statements: statement+

statement: compound_stmt | simple_stmts

statement_newline:

| compound_stmt NEWLINE
| simple_stmts

| NEWLINE
|

ENDMARKER
(ouvéyela otV emtduevn oehida)

136 KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

The Python Language Reference, Anpooiguon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

simple_stmts:
| simple_stmt !';' NEWLINE # Not needed, there for speedup
[';'.simple_stmt+ [';'] NEWLINE

NOTE: assignment MUST precede expression, else parsing a simple assignment
will throw a SyntaxError.
simple_stmt:

| assignment
star_expressions
return_stmt
import_stmt
raise_stmt
'pass’'
del_stmt
yield_stmt
assert_stmt
'break'’
'continue'
global_stmt
nonlocal_stmt

compound_stmt:

| function_def
| 1f_ stmt
| class_def
| with_stmt
| for_stmt
| try_stmt
| while_stmt
| match_stmt

SIMPLE STATEMENTS

NOTE: annotated _rhs may start with 'yield'; yield expr must start with 'yield'

assignment:
| NAME ':' expression ['=' annotated_rhs]
[('(' single_target ')'
| single_subscript_attribute_target) ':' expression ['=' annotated_rhs]
| (star_targets '=')+ (yield_expr | star_expressions) !'=' [TYPE_COMMENT]
| single_target augassign ~ (yield_expr | star_expressions)
annotated_rhs: yield_expr | star_expressions
augassign:
["+="
| | J—
| 9%=0
[re="
| /=
| re=
['&="
["=
| VA=
[<<=
| T>>="

(ouvéyela otV emtduevn oehida)

137

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

| vkk=1

| o /4="

return_stmt:
| 'return' [star_expressions]

raise_stmt:
| 'raise' expression ['from' expression]

| 'raise'

global_stmt: 'global' ','.NAME+

nonlocal_stmt: 'nonlocal' ', '.NAME+
del_stmt:
| 'del' del_targets &(';' | NEWLINE)

yield_stmt: yield_expr
assert_stmt: 'assert' expression [',' expression]
import_stmt: import_name | import_from

Import statements

import_name: 'import' dotted_as_names
note below: the ('.' | '...'"') is necessary because '...' is tokenized as ELLIPSIS
import_from:
["from' ('.' | '...')* dotted_name 'import' import_from_ targets
['"from' ('.' | '...")+ 'import' import_from_ targets
import_from_targets:
['('" import_from_as_names [','] ")'
| import_from_ as_names !','
['
import_from_as_names:
| ','.import_from_as_name+
import_from_as_name:
| NAME ['as' NAME]
dotted_as_names:
| ','.dotted_as_name+
dotted_as_name:
| dotted_name ['as' NAME]
dotted_name:
| dotted_name '.' NAME
| NAME

COMPOUND STATEMENTS

| NEWLINE INDENT statements DEDENT
| simple_stmts

(ouvéyela otV emtduevn oehida)

138 KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

The Python Language Reference, Anpocicsuon 3.11.13

(ouveyiletar 0mwd TNV TPONYoUIEVT OEMdN)

decorators: ('Q' named_expression NEWLINE)+

Class definitions

class_def:
| decorators class_def_ raw
| class_def_ raw

class_def raw:
| 'elass' NAME [' (' [arguments] ')'] ':' block

Function definitions

function_def:
| decorators function_def_ raw
| function_def_ raw

function_def_ raw:
| 'def' NAME ' (' [params] '")' ['->' expression] ':' [func_type_comment] block
| ASYNC 'def' NAME ' (' [params] ')' ['->' expression] ':' [func_type_comment].
—block

Function parameters

params:
| parameters

parameters:

| slash_no_default param_no_default* param _with_default* [star_etc]
slash_with_default param with_default* [star_etc]
param _no_default+ param with_default* [star_etc]
param_with_default+ [star_etc]
star_etc

Some duplication here because we can't write (',' | &')'"),
which is because we don't support empty alternatives (yet).

slash_no_default:
| param_no_default+ '/' ',
| param_no_default+ '/' &'")'
slash_with_default:
| param_no_default* param_with_default+ '/' ',
| param_no_default* param _with_default+ '/' &')'

star_etc:
| '"*'" param_no_default param maybe_default* [kwds]
| '"*' param_no_default_star_annotation param _maybe_default* [kwds]
["*' ', ' param_maybe_default+ [kwds]

|

kwds
kwds:
| '"**' param_no_default
One parameter. This *includes* a following comma and type comment.

(ouvéyela otV emtduevn oehida)

139

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

There are three styles:
— No default

- With default

- Maybe with default

There are two alternative forms of each, to deal with type comments:
— Ends in a comma followed by an optional type comment

- No comma, optional type comment, must be followed by close paren
The latter form is for a final parameter without trailing comma.

S o H R R H R R IR R

param_no_default:

| param ',' TYPE_COMMENT?

| param TYPE_COMMENT? &')'
param_no_default_star_annotation:

| param_star_annotation ',' TYPE_COMMENT?

| param_star_annotation TYPE_COMMENT? &')'
param_with_default:

| param default ',' TYPE_COMMENT?

| param default TYPE_COMMENT? &')'
param_maybe_default:

| param default? ',' TYPE_COMMENT?

| param default? TYPE_COMMENT? &')'
param: NAME annotation?
param_star_annotation: NAME star_annotation

annotation: ':' expression
star_annotation: ':' star_expression
default: '=' expression | invalid_default

If statement

,,,,,,,,,,,,
if_ stmt:

| '"if' named_expression ':' block elif_ stmt

| 'if' named_expression ':' block [else_block]
elif stmt:

| 'elif' named_expression ':' block elif_ stmt

| 'elif' named_expression ':' block [else_block]
else_block:

| 'else' ':' block

While statement

while_stmt:
| 'while' named_expression ':' block [else_block]

For statement

,,,,,,,,,,,,,
for_stmt:
| '"for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_block]
| ASYNC 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_
—block]

With statement
(ouvéyela otV emtduevn oehida)

140 KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

The Python Language Reference, Anpooiguon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

,,,,,,,,,,,,,,
with_stmt:
| 'with' ' (' ','.with_item+ ','? ")' ':' block
| 'with' ','.with_item+ ':' [TYPE_COMMENT] block
| ASYNC 'with' '(' ','.with_item+ ','? '")' ':' block
| ASYNC 'with' ','.with_item+ ':' [TYPE_COMMENT] block

with_item:
| expression 'as' star_target &(',' | ")'" | ':")
| expression

Try statement

,,,,,,,,,,,,,
try_stmt:
| 'try' ':' block finally block
'try' ':' block except_blockt+ [else_block] [finally block]
| 'try' ':' block except_star_block+ [else_block] [finally_block]

Except statement

except_block:

| 'except' expression ['as' NAME] ':' block

| 'except' ':' block
except_star_block:

| 'except' '*' expression ['as' NAME] ':' block
finally block:

| 'finally' ':' block

Match statement

match_stmt:
| "match" subject_expr ':' NEWLINE INDENT case_block+ DEDENT

subject_expr:
| star_named_expression ',' star_named_expressions?
| named_expression

case_block:
| "case" patterns guard? ':' block

guard: 'if' named_expression

patterns:
| open_sequence_pattern
| pattern

pattern:
| as_pattern
| or_pattern

as_pattern:

| or_pattern 'as' pattern_capture_target
(ouvéyela otV emtduevn oehida)

14

The Python Language Reference, Anpooisuon 3.11.13

or_pattern:
| "|'.closed_patternt

closed_pattern:

| literal_ pattern
| capture_pattern
| wildcard_pattern
| value_pattern

| group_pattern

| sequence_pattern
| mapping_pattern
| class_pattern

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Literal patterns are used for equality and identity constraints

literal_pattern:

| signed_number ! ('+' | '-')
| complex_number
| strings
| '"None'
| '"True'
| 'False'

Literal expressions are used to restrict permitted mapping pattern keys

literal expr:

| signed_number ! ('+' | '-')
| complex_number
| strings
| '"None'
| '"True'
| 'False'

complex_number:
| signed_real number '+' imaginary_number
| signed_real number '-' imaginary_number

signed_number:
| NUMBER
| '-'" NUMBER

signed_real_number:
| real_number

| '-'" real_number

real number:
| NUMBER

imaginary_number:
| NUMBER

capture_pattern:
| pattern_capture_target

pattern_capture_target:
‘ !H n NAME !(V.l ‘ l(l ‘ l:l)

wildcard_pattern:

(ouvéyela otV emtduevn oehida)

142 KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

The Python Language Reference, Anpooiguon 3.11.13

value_pattern:
| attr ! ('.

attr:

| name_or_attr '.
name_or_attr:

| attr

| NAME

group_pattern:
| '('" pattern '")'
sequence_pattern:
| '"[' maybe_sequenc
| '(' open_sequence

open_sequence_pattern:
| maybe_star_patter

maybe_sequence_pattern:
| ','.maybe_star_pa

maybe_star_pattern:
| star_pattern
| pattern

star_pattern:
| "*' pattern_captu
| '"*'" wildcard_patt
mapping_pattern:
["¢ '}
| "{' double_star_p
| '{' items_pattern
| '"{' items_pattern

items_pattern:
| ', "'".key_value_pat

key_value_pattern:

| (literal_expr | a
double_star_pattern:

| '"**' pattern_capt

class_pattern:
| name_or_attr
| name_or_attr
| name_or_attr
| name_or_attr

positional_patterns:
| ', '.pattern+

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

e_pattern?
_pattern?

v]v
l)l

v
’

n maybe_sequence_pattern?

o
’ g

ttern+

re_target
ern

l, l}l
double_star_pattern
l}l

attern '

v
r

]
’

v

1o
o Ve

v

tern+

ttr) pattern

ure_target

l)l
positional_patterns
keyword_patterns ','?

positional_patterns '

4

keyword_patterns ','? ')'

(ouvéyela otV emtduevn oehida)

143

The Python Language Reference, Anpooisuon 3.11.13

keyword_patterns:
| ', "'".keyword_patternt

keyword_pattern:
| NAME pattern

[

EXPRESSIONS

expressions:

| expression (','
| expression ',
| expression

expression)+

'l

expression:
| disjunction
| disjunction
| lambdef

'if' disjunction 'else'

yield_expr:
| 'yield'
| 'yield'

'from' expression

[star_expressions]

star_expressions:
| star_expression
| star_expression ',
| star_expression

(!

star_expression:
| '"*'" bitwise_or
| expression

star_named_expressions:

star_named_expression:
| '"*'" bitwise_or
| named_expression

assignment_expression:
| NAME ':=' ~ expression
named_expression:

| assignment_expression

| expression

disjunction:
| conjunction
| conjunction

('or' conjunction)+

conjunction:
| inversion
| inversion

('and' inversion)+

inversion:
| 'not'
| comparison

inversion

star_expression)+

', '.star_named_expression+

expression

[l

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

(', ']

(ouvéyela otV emtduevn oehida)

144

Kegahaio 10.

MAnpng npodiaypagpn YPapHaTIKAG

The Python Language Reference, Anpooiguon 3.11.13

Comparison operators

comparison:
| bitwise_or compare_op_bitwise_or_pair+
| bitwise_or

compare_op_bitwise_or_pair:
| eq bitwise_or
| noteg bitwise_or
| lte_bitwise_or
| 1t_bitwise_or
| gte_bitwise_or
| gt_bitwise_or
| notin_bitwise_or
| in_bitwise_or
| isnot_bitwise_or
| is_bitwise_or

eq_bitwise_or: '==' bitwise_or
noteq_bitwise_or:

[("!=') bitwise_or
lte_bitwise_or: '<=' bitwise_or
1t_bitwise_or: '<' bitwise_or
gte_bitwise_or: '>=' bitwise_or
gt_bitwise_or: '>' bitwise_or
notin_bitwise_or: 'mot' 'in' bitwise_or
in_bitwise_or: 'in' bitwise_or
isnot_bitwise_or: 'is' 'not' bitwise_or
is_bitwise_or: 'is' bitwise_or

Bitwise operators

bitwise_or:
| bitwise_or '
| bitwise_xor

bitwise_xor

bitwise_xor:
| bitwise_xor '
| bitwise_and

AT

bitwise_and

bitwise_and:
| bitwise_and '&' shift_expr
| shift_expr

shift_expr:
| shift_expr '<<' sum
| shift_expr '>>' sum
[sum

Arithmetic operators
sum:

| sum '+' term
| sum '-' term

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

(ouvéyela otV emtduevn oehida)

145

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

| term

term:
| term '*' factor
| term '/' factor
| term '//' factor
| term '$%' factor
| term '@' factor
| factor

factor:
| '+' factor
| '-' factor
| '~'" factor
| power

power:

| await_primary '**' factor
| await_primary

Primary elements

Primary elements are things like "obj.something.something", "obj[something]",
—"obj (something)", "obj"

await_primary:
| AWAIT primary
| primary

primary:
| primary '.' NAME
| primary genexp
| primary ' (' [arguments] ')'
| primary '[' slices ']'
| atom

slices:
| slice !','
| ','.(slice | starred_expression)+ [',"']

| [expression] ':' [expression] [':' [expression]]
| named_expression

| NAME

| '"True'

| 'False'

| '"None'

| strings

| NUMBER

| (tuple | group | genexp)
| (list | listcomp)

|

\

(dict | set | dictcomp | setcomp)
\l L}

(ouvéyela otV emtduevn oehida)

146 KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

The Python Language Reference, Anpocicsuon 3.11.13

(ouveyiletar 0mwd TNV TPONYoUIEVT OEMdN)

group:
["('" (yield_expr | named_expression) ')'

Lambda functions

lambdef:
| '"lambda' [lambda_params] ':' expression

lambda_params:
| lambda_parameters

lambda_parameters etc. duplicates parameters but without annotations
or type comments, and if there's no comma after a parameter, we expect
a colon, not a close parenthesis. (For more, see parameters above.)
#
lambda_parameters:
| lambda_slash_no_default lambda_param_no_default* lambda_param_with_default*.
— [lambda_star_etc]
| lambda_slash_with_default lambda_param_with_default* [lambda_star_etc]
| lambda_param no_default+ lambda_param with default* [lambda_star_etc]
| lambda_param with_default+ [lambda_star_etc]
| lambda_star_etc

lambda_slash_no_default:
| lambda_param_no_default+ '/' ',
| lambda_param_no_default+ '/' &':'

lambda_slash_with_default:
| lambda_param_no_default* lambda_param_with_default+ '/' ',
| lambda_param_no_default* lambda_param with_default+ '/' &':'

lambda_star_etc:
["*' lambda_param_no_default lambda_param_maybe_default* [lambda_kwds]
['*' ', ' lambda_param _maybe_default+ [lambda_kwds]
| lambda_kwds

lambda_kwds:
| "**' lambda_param_ no_default

lambda_param_no_default:

| lambda_param ','

| lambda_param &':'
lambda_param_with_default:

| lambda_param default ','

| lambda_param default &':'
lambda_param_maybe_default:

| lambda_param default? ','

| lambda_param default? &':'
lambda_param: NAME

LITERALS

strings: STRING+

list:
(ouvéyela otV emtduevn oehida)

147

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

| '['" [star_named_expressions] ']'

tuple:
| '(' [star_named_expression ',' [star_named_expressions] 1 ")
set: '{' star_named_expressions '}'
Dicts
,,,,,
dict
| '"{'" [double_starred_kvpairs] '}'
double_starred_kvpairs: ','.double_starred_kvpair+ [',']

double_starred_kvpair:

| "**' bitwise_or

| kvpair
kvpair: expression ':' expression
Comprehensions & Generators
for_i1f clauses:

| for_if clause+

for_1if clause:

| ASYNC 'for' star_targets 'in' ~ disjunction ('if' disjunction)*
| "for' star_targets 'in' ~ disjunction ('if' disjunction)*
listcomp:

| '[' named_expression for_if clauses ']'

setcomp:
| '{' named_expression for_if_ clauses '}'

genexp:
['('" (assignment_expression | expression !':=') for_ if clauses ')'

dictcomp:
| '{' kvpair for_if clauses '}'

FUNCTION CALL ARGUMENTS

mmmm————m————m———————
arguments:
| args [','] &'")'
args:
| ','.(starred_expression | (assignment_expression | expression !':=") !'=")+ [',
— "' kwargs]
| kwargs
kwargs:
| ','.kwarg_or_starred+ ',' ','.kwarg_or_double_starred+

| '",'.kwarg_or_starred+
(ouvéyela otV emtduevn oehida)

148 KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

The Python Language Reference, Anpooiguon 3.11.13

| '",'.kwarg_or_double_starred+

starred_expression:

| '*' expression

‘ Tk

kwarg_or_starred:
| NAME expression
| starred_expression

T

kwarg_or_double_starred:
| NAME '="'

‘ Tkxt

expression
expression

ASSIGNMENT TARGETS

,,,,,,,,,,,,,,,
NOTE: star_targets may contain *bitwise_or,
star_targets:

| star_target !',
| star_target (','

)<,

star_target

', '.star_target+ [',"']

star_targets_list_seq:
star_targets_tuple_seq:
| star_target (','

| star_target ',

', ']

star_target)+

star_target:
["*' (!'*' star_target)

| target_with_star_atom

target_with_star_atom:
| t_primary '.' NAME
'['" slices

't _lookahead
| t_primary ']1' 't_lookahead

| star_atom
star_atom:
' target_with_star_atom '")'

[star_targets_tuple_seq]
' [star_targets_list_seq]

l)l
v]v

single_target:
| single_subscript_attribute_target
| NAME
| '"(' single_target ')'
single_subscript_attribute_target:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
t_primary:

| t_primary '.' NAME &t_lookahead

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

targets may not.

(ouvéyela otV emtduevn oehida)

149

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

| t_primary '[' slices ']' &t_lookahead

| t_primary genexp &t_lookahead

| t_primary '(' [arguments] ')' &t_lookahead
\

atom &t_lookahead
t_lookahead: "(' | '[' | '.'

Targets for del statements

,,,,,,,,,,,,,,,,,,,,,,,,,,
del_targets: ','.del_target+ [',']
del_target:

| t_primary '.' NAME !t_lookahead

| t_primary '[' slices ']' !t_lookahead

| del_t_atom

del_t_atom:
| NAME
| '('" del_target '")'
["('" [del_targets] ')'
["[' [del_targets] ']'

TYPING ELEMENTS

type_expressions allow */** but ignore them
type_expressions:

','.expressiont+ ',' '*' expression ',' '"**' expression
','.expressiont ',' '*' expression

', '.expressiont ',' '**' expression

'*' expression ',' '**' expression

'**' expression

|

|

|

|

| '*' expression
|

‘ Al

, ' .expression+
func_type_comment:
| NEWLINE TYPE_COMMENT & (NEWLINE INDENT) # Must be followed by indented block

| TYPE_COMMENT

========================= [ND (OF THE GRAMMAR ============= s ———— ==

150 KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

nAPAPTHMA A’

Mwoodpl

>>>

2to3

To mpoemieyuévo Python prompt tov dradpaotikov shell. Zvyvd eppovileTor yio TOPAdEIYIATO KMOLKA
IOV WITOPOVYV VoL EKTEAEOTOVV dLAdPAOTIKA OTOV interpreter.

Mmopel vo. avapEPETaL OE:

o To mpoemkeyuévo Python prompt tov d1adpaotikov shell Katd tnv eloaywyn Tov KOOLKA YL £Vo PThok
KddLko pe ooy, dtav Bpioketal uéoo oe £va Lelryog ToLPLUOUEVWY aplotepmv Kot deEuhv delimiters
(mapevOéoelg, ayKulesg, AYKLOTPO 1 TPLITAG ELOOYMYLKA), Y| LETA TOV KoBopLoud evog decorator.

o H evoouatouévn otabepd E11ipsis.

‘Eva gpyodeio mov mpoomadel va petatpéel tov kmdiko Python 2.x og kddika Python 3.x diayepiCovrtag
TLG TEPLOTOTEPEG OLOVUBATITITES TTOU UITOPOVY VO EVTOTLOTOVY OLVOAIOVTOG TNV TNy Ko diaoyilovtag to
dévTpo avdhvong.

2t03 elval drabéoipo oty atdvtap PiprodNkn wg 1ib2t o3, mapéyetar évo onueio eloddov mg Tools/
scripts/2to3. Bh. 2to3-reference.

agnpnuévn Bactkr) KAaom

O aupnpnuéveg Pootkéc kKAAoELG CUUTANPOVOLY TO duck-typing Tapéxovtag Evav Tpdmo oplopov interfaces
otav Ghheg teyvikég OTwg N hasattr () Oafrav adéEieg 1 averaioOnta AavOaouéveg (Yo Tapdderypa pe
magic methods). To. ABC (abstract base class) eL.odyouv etkovikég vitokhdoelg, oL omoieg eivol KAAOELS Tov dev
KAnpovopotvrat amd o KAGom, oAhd eEakorovBotv va avayvwpilovtor atd 1o isinstance () ko oo
to issubclass () ” BA. v tekunpimon tov module abe. H Python dta0étel todld evowpotopévo ABC yuo
dopég dedouévwv (0to module collections. abce), apBuovg (0to module numbers), poég (oto module
povéda 10), etoorywyn finders xou loaders (010 module importlib.abc). Mmopeite va dnuovpynoete to
dukd oag ABC pe to module abe.

annotation

Mua eTikéTo TOV O eTICETOL LE ULt LETOPANTY), EVOL (OPAKTPLOTLKO KAAGNG 1) LaL TTAPAUETPOG CUVAPTHONG
1] TLUY] TTOV ETLOTPEPETAL, TTOV Y PN OLUOTTOLELTAL KOTE oUUBOOT WG type hint.

151

The Python Language Reference, Anpooisuon 3.11.13

Aev givor duvat 1 Tpdofaon oto annotations TOV TOTKOV UETAPANTOV KATA TO XpOVO eKTELETNG, OAAA
Ta annotations twv global petafANTmv, TOV KopAKTNPLOTIKOV KAGONG KoL TOV CUVAPTHOEMY 0rtodnKevo-
VTOL 0TO ELOLKO YOpOoKTNPLOTIKO ___annotations__ twv modules, Twv KAAGEMV KAL TWV OUVAPTNOEWY,
avtioToLyd.

B\. variable annotation, function annotation, PEP 484 xou PEP 526, ta omoio wepLypdpouv TV AELToupyLKO-
tra. Estiong BA. annotations-howto yia tig BELTIOTEG TPAKTIKEG dOVAEVOVTOG e annotations.

opopa

Mo tipn petafipaleton oe wia function () method) Katd tv KAHon TG ouvaptnons. Yrdpyouvv dvo €idn
oplopdTmv:

o keyword argument: ¢évo. dpLopo. TPLv atd €vo avayvopLloTikd (.. name=) o€ uLo KAoT ouvapTong v
TEPVAOVTAG TO WG TYN) 0€ Eva AeELkd spLy amtd * *. T'lo opdderyua, To 3 KoL To 5 0ToTEAOUV OPioUaTa,
MEewv-kheldLhv otig akdhovbeg KA oeLg Tpog complex () :

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

o positional argument: éva. dpiopo. wov dev givon dpopa keyword. Ta opiouata OEong umopovv va epgpoa-
viCovtol oty apyng wag Aotog optopudtmy f/xor va uetafLpatovtol mg ototyeia evog iterable mtpv
amd *. T wopdderyua, To 3 kow 1o 5 amotehov opiouata OE0NG 0TLG TOPAKATW KAYOELS:

complex (3, 5)
complex (* (3, 5))

Ta opiopota EKYWPOUVTOL 0TS OVOUAOUEVES TOTILKEG UETOPANTEG OTO OO wa ovvapTnong. BA. v evo-
ta Calls yuo TOUg KAvOVEG TTOU SLETOVV QUTIHV TV EKYDPNOT. ZUVTOKTIKA, 0TTOLAONTOTE £KPPON UTopel
vo xpnolostotn0ei yia vo avostapoaotnoel éva dpopa” 1 aELoAoyoUrEV T EKYWPEITOL OE (WO TOTTLKY)
UETAPANTY.

B. eiong tv eyypagr) Tov yAwooapiov yio. To parameter, Tv FAQ gpdtnomn oto 1 dtagpopd uetav opi-
oudtwv ko mopapétpwv, Ko PEP 362.

0oUYYPOVOS SLoyELpLoTi) context

'‘Evo avtikeipevo mov eléyyel to opatod meptBdihov oe o diwon async with opilovrag tig uedddovg
__aenter__ () Kauv__aexit__ ().Tlov ewonydn and PEP 492.

aoVYYpovogs generator

Mo ouvapTnon mov emoTpépel Evav asynchronous generator iterator. MolaZeL ue (o ovvaptnon coroutine
mov opiletal ue async def ektdg amd OTL TEPLEYEL EKPPAOELS vield YL TNV TOPAYWYT| WS OELPAG
TUUOV TTOV UITopoVV va. ypnowomoimbotv oe évav async for Bpdyo.

ZVvHBwg avopépeTal og o CUVAPTNOY aoUYXPOVOU generator, GAAG umopel va avapépetal og Evav aody-
XOOVO generator iterator 6€ OPLOUEVA contexts. Ze TEPLITTMOELG OTTOV TO ETMLOLWKOUEVO VOTUL OEV ELVOL OOPES,
UE TNV XPNOT TOV TANPWV OPMV ATOQEVYETOL 1] ALTAPELAL.

Mo ovvdpTiom aovyypovou generator WITOPEL va TEPLEYEL EKQPPAOELS awa it , KaBmg kKo dNADOELG async
for,XoLasync with.

aoUyypovog generator iterator

‘Eva aviikeipevo mov dnuovpyndnke amd wa ovvaptnon asynchronous generator.

Avtdg eivan évag asynchronous iterator wov OTav KAAELTOL XPNOLLOTOLOVTAS TV WEO0do _ anext__ ()
emLOTPEPEL VO OVOUEVOUEVO OVTIKELUEVO TTOV Bl eKTENETEL 0TO OMDWO TNG CUVAPTIONG TOV 0LoUYYPOVOU
generator Uy pL TV EmOUEVT] vield EKpPoon.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

152

Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/

The Python Language Reference, Anpooiguon 3.11.13

aovyypovog iterable
'Evo avTIKELIEVO, TTOV Utopei va xpnotpnomowm0el oe o dNhwon async for. [pémel vo emotpépet Eval
asynchronous iterator amd v nébodo __aiter__ (). Iov eionydn and PEP 492,

aovyypovog iterator
‘Eva. aviikeigevo mov vlomolel tig webodovg _ aiter () wouw __anext__ (). H uébodog
__anext__ () mpémeL vo eMOTPEQPEL €vo. awaitable avukeipevo. To async for emAOEL TO. AVOUE-
voueva TTov emoTPEPOVTOL 0td T WEB0d0 _anext_ () gvOg aoUypoVvoU iterator £m¢ OTOU EYELPEL WL
eEaipeon StopAsyncIteration. Ewonyon and PEP 492.

XOPOKTIPLOTIKO
Muia Tur) o OYETICETOL UE EVa aVTLKEIUEVO TTOV GUVIOWG AVOPEPETOL [LE OVOLLOL Y PTOLUOTTOLMVTOG EKPPOL-
o€lg e KoukKideg. T'a mapdderypa, edv évo avTLKEIUEVO 0 €YEL £Vl YOPAKTNPLOTIKO a o avapépeTal wg
o.a.

Eilvow duvatd va dmwooupe 0g £va. aVTIKEIIEVO £VOL YOPOKTNPLOTLIKO TOV TO OVOUA TOU OEV ELVAL AVOYVIPL-
oTKO OmtwG opitetar amd Identifiers and keywords, yio. TOPAdELYILOL XPNOLULOTOLMVTAG Setattr (), av emt-
TpémeTon atd to avtikeipevo. ‘Eva té€tolo yopaktnplotkd dev O eivan TpooBAaoio xpnoLLoToLm VTG TG
teleieg, kow avti autov o mpémel va avaktnOel xpnoomolmviag getattr ().

awaitable
‘Eva. avtikeipevo mov pmopet va ypnowpwomon0el oty ékgppaon await. Mmopel va eivou coroutine 1) éva
avtikelpevo pe wo ___await___ () uébodo. BA. emiong PEP 492.

BDFL
Axpwviuo tov Benevolent Dictator For Life, kahokayabog duktdrtopog g Long, dnhadn Guido van Rossum,
0 dnuovpyodg g Python.

dvadiko apyeio
‘Eva file object tkavo vo dLafpdlel kot va ypapelr dvadikod timov avukeiusva. Tapadeiypnoto duadikmv
apyelwv eivor apyeio ov avoiyouv oe dvadikn hettovpyio (' rb', "wb' 1) 'rb+'), sys.stdin.buffer,
sys.stdout.buffer, KoL OTLYWOTUTIWVY TWV 10.BytesIO KoL gzip.GzipFile.

Bh. emtiong rext file yuo éva avTikeiievo Timou apyeio tkovo vo dtofdoet Kan va ypdapel st r avitkeipeva.

daverkn avagopd
Zto C API g Python, pa daverki) avogopd eivar (o avapopd og £vo. avTLKELIEVO, OTTOV 0 KMOLKOG TV
YPNOLUOTTOLEL TO avTLKeLuEVO dev Katéyel TNV avapopd. [ivetal évag aypnotuomointog deiktng edv 1o avL-
Keipevo kataotpagel. Lo mapaderypna, po drodikaoio garbage collection uopei va opopécel To TehevTaio
strong reference oatd T0 AVTLKEIUEVO KL £TOL VO, TO KOTAOTPEEL.

Zuviotatol) KMon tov Py_INCREF () 0T0 davelkn) ava@ood (e OKOTO VO UETOTPATEL O VO Loy V0T
avagopd EMLTOIOV, EKTOG OTAV TO OVTLKEIUEVO OEV WITOPEL VO KATOOTPAPEL TPLY atd TV TELELTALL Y PNON
g davelkng avagopdc. H ouvaptnon Py_NewRef () umopei va ypnotpomondel wote va dnuovpyndel
éva Loyvon avapopd.

bytes-like avtikeipeva,
‘Eva aviikeipevo ov vrootnpier to bufferobjects kou pmopel va eEayel éva C-contiguous buffer. Avtd
mepthappdver dha ta avtikeipeva bytes, bytearray, KoL array.array, Ko0dg Kot woMd Kowvd
memoryview avukeipevo. Ta dvadikov tumou (bytes-like) avrikeipeva umopov va xpnotuoon0ovy yio
dudipopeg hettoupyieg wov duayerpilovran dvadikd dedouéva” autd mepthappdvouy ouumieon amxodfKevon
og duodLKO apyelo Ko 0rtooTol uéow socket.

Oprouéveg hertovpyieg ypetdCovron ta dvodikd dedopéva va eivor petafintd. H tekunpimon cuyvd avao-
(PEPETOL O€ AUTA WG «dVASIKA AVTILKELUEVO aVayVmonG-eyypapnc» (read-write bytes-like objects). [Tapadeiy-
Lot UETABANTMV AVTIKELUEVOV TPOCWPLVTG ATodfKevong mepLéyovy bytearray Kai éva memoryview
evog bytearray. AMEG AELTOUPYIES ATTALTOVY TNV ATTOONKEVONG TV dVAdKDV dedouéva o€ OUETAPANTA
ovTikeipeva («dvadukd avtikeipeva wovo avaryvoonc»” (read-only bytes-like objects) mopadeiypota ovtdy
mEPLEYOVY bytes KoL éva memoryview evogbytes avitkelévou.

153

https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

The Python Language Reference, Anpooisuon 3.11.13

bytecode

O sinyaiog kwduka ¢ Python petayhwttiCeton og bytecode, | e0WTEPLKY OVOTOPAOTAON EVOG TPOYPAULLOL-
tog Python otov diepunvéa CPython. To byfecode amoOnkevetal emiong TPOoWPLVA MG . Py C OPYEL MOTE N
ekTéLEDT) TOV {810V apyeiov va elval ypnyopdtepn v deltepn popd ektéleong (Lopel va amogpevy el
€K VEOU UETAYADTTLON OTTO TOV TINYOi0 KMOLKA o€ byfcode). Avti 1] «evOLAuean YAwooo» LEyeTol OTL TPEYEL
og wa virtual machine OV €KTENEL TOV KMALKOL unyavNG TOV avTLoToLyel o€ Kabe bytecode. Adfete vdym
Ot ta bytecode 8gv OVOUEVETOL VO, AELTOUPYOUV UETAED SLAPOPETIKMV ELKOVIKMV Uy avdv Python, ovte va
etvar otafepd petal Twv exdooewv g Python.

Mua Mota amd 0d1yieg oyetikd ue To bytecode umopel va Bpedei oty tekunpimon yio to module dis.

callable

"Eva callable eivou £va avTiKeLEVO TOU WITOPEL VO KOAEOTEL, TLOavE e £va ovvolo opropdtwv (Bh. argument),
UE TNV TOPAKATW OVVTAEN:

[callable(argumentl, argument2, argumentN)

1

Mua function, xou xot” enéktaon wa method givar callable. ‘Eva otuyidtumo po KhAomg mov VAOTTOLEL T
uébodo call () eivou emiong callable.

callback

Mua subroutine ouvéaptnon 1 omoia petafipdteton wg dpopa Tov Ba exteleatel Kamolo oTryur) 0to pélhov.

KAdon

'Eva tpdTumo yia T dnuovpyios ovitkelévmy ov opitovio amd 1o ypnot. Ouopiopol khdoewv ouvnBwg
TEPLEYOUV OPLOUOVG HEBODWV TTOV heLToupyoVV 08 OTLYIMOTUTTA TNG KAUONG.

uetafinTi kAdong

Mua petafAnt ov opiletar oe o KAGom Ko tpoopieton va tpomomon el wovo oe emimedo khaong (dnh.
OyL 0€ €V OTLYIOTUTTO Lag KAGoNG).

uryadikog apduog

Mo eTEKTAON TOV YVOGTOU GUCTIILOTOG TPAYUATLKMV aptBumy 0to omoio dlot oL optBuol exppatovial wg
aBpolopa evog TPOYUOTLKOU UEPOVG KOl EVOG (PAVTAOTIKOU pépovs. OL pavtaotikol aptbuol eivat mpary-
HoTKG TOAATAGOLO TG PAVTAOTIKNG Hovada (1) TeTpaywvikh pita Tov —1), mov cuyva yphpovior i
ota padnuatkd 1 j ot unyovikn. H Python éxel evowuatopévy vtootiptEn yio uyadikots aptduoig,
oL 07T0toL YPAPOVTOL Ue AUTOV TOV TEAEUTALO CUUBOMOIO” TO avTooTikd UEpog YpdpeTtol ue to emibnua
j, mY., 3+17. [N va amoktnoete tpdofaon oe ovvOeta Loodvvao to module math, xPNOWOTOLNOTE TO
cmath. H ypflon wyadikov aptBumv eivor £vo apKetd mponyuévo nadnuotiko yopoKkTpLotko. edv dev
YVOPLLETE TV AvAyKT TOUG, €ival oYedOV oiyoupo OTL UTOPELTE VO TOL AryVONOETE UE AOPALELQL.

duayeprotiic context

‘Eva avtikelpuevo mov eléyyet o eptfallov mov eppaviletar og pa dhwon with opifovrog tig uedddoug
__enter () kow__exit__ ().B\h PEP 343.

context petafinTi

Mo petafANTh o uwopei va £xel TOAES dLopopeTLKEG TLES avahoya e TO context. Autd givol Koo 6To
Thread-Local Storage 6mov K&.0¢e eKTéMeOT) TOU VIIUATOG UTTOPEL VAL EXEL DLOPOPETLKN TULY YLOL ULt UETOPATTY.
Mapodia outd, pe Tig context PETAPANTES, WITOPEL VoL VITAPYOUV TOAA TTEPLBaILovTa OE €V Viua EKTELEOTG
Kau 1 KopLa xpnon yio Tig context uetafAntég elval 1 mapokoloiinon Twv LETABANTMV OF TAUTOYPOVEG
diepyooieg. BL. contextvars.

contiguous

"Eva buffer Oewpeiton contiguous akplpaig eqv eivon eite C-contiguous eite Fortran contriguous. To buffer unde-
vikayv dtaotdoewv eivor C kou Fortran contiguous. Ze lovodLdoTaTOUS TTEVOKES, TO. OTOLYELO TPETTEL VAL TO-
mofetovvtoL oty pviun To éva distha oto dAAo, ue OELPG 0OENONG TV SetKTmV EgKLvdvtog amd To undév.
Ze molvdidotatovg C-contiguous mivakes, o tehevtaiog deiktng uetafdlletal ToyvTepa OTAV EmOKETTO-
vTaL To. otolyeia og oelpd devBuvong uvnune. Qotdoo, oe Fortran contiguous mivaKes, 0 TPMOTOG OEIKTNG
peToBAANETOL TTLO YPTYOPOL.

154

Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0343/

The Python Language Reference, Anpooiguon 3.11.13

coroutine
Ou coroutines givan (oL L0 YEVIKEUUEVY wop@1| subroutines. O subroutines eLodyovtaL o€ £va ONUELO KL
eEdryovtal og Gho onueio. Ot coroutines wropei va elooyBovv, va, eEayBotv KoL vo ouveyLoTolv og oA
drapopetkd onueto. Mmopouv va vhomotoovy ue Ty dMhwon async def. B exiong PEP 492.

coroutine ocuvaptnon
Mo GuvApTNON TOV ETLOTPEPEL £VAL coroutine OVTIKELIEVO. Mot GuvapTN oY coroutine umopei va opileTon oo
™ Mhwon async def, kou Wropel va mepiéyel await, async for,Koaw async with MEeig KAedLd.
Avtég elonynoav amd to PEP 492,

CPython
H xavovikt vhomoinon tng YAwooog mpoypapuoatiopov Python, 6mwg dravépetar oto python.org. O 6pog
«CPython» ypnowomoreitan GTov eivor aTapaitnTo Yo Ty SLEKPLoT AUTNG THG VAOTTOINONG 0t GALEG OTTMG
1 Jython Y| m IronPython.

decorator
Mo GUVAPTNON TTOVU ETLOTPEPEL LULaL AAAT) GUVAPTNOT, CLVIOWG EPAPUOTETOL G UETOOYTUATIONOS CUVAP-
TNONG XPNOUOTOLMVTOG TV @wrapper oUvta&n. ZvvnOwouéva mapadeiypata yio tovg decorators gival
classmethod () koL staticmethod ().

H oVvtoEn tov decorator givan amhmg KOAM®ITLOTIKY, oL akdrovBol dvo oplopol ovvaptioewv eivan onua-
OLOAOYLKA LOOdVVOUOL:

p
def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arg):

H idua évvola vdipyet yia tig kKhaoels, alhd ypnowpomoteitor ydtepo ouyva ekel. Bh. v texunplwon yio
Sfunction definitions xou class definitions Y10 TEPLOCOTEPA OYETIKA Ue TOVG decorators.

descriptor

Kd&0e avukeipevo mov opilel g uebddovg _ get_ (), __set_ (), __delete__ (). Otav éva yxo-
POKTNPLOTLKO KAAOTG elvar descriptor, 1) eLOLKT) SECUEVTLKY] TOU CUUTTEPLPOPQ EVEPYOTTOLELTOL KOTA TNV OVOL-
o yopaxtnpiotikov. Kavovikd, xpnowwomoldviog a.b yio va AMdfete, vo opioete 1) va dtorypdapete €va
YOPAKTNPLOTIKO avalnTd To avtikeipevo pe to dvouo b oto heEkd g KAAoNg Y a, alhé edv to b givau
descriptor, kodeitar 1 ovtiotouyn uéBodog descriptor. H katavonon twv descriptors ivor 1o KAeldi yia TV Koi-
AMitepn katovonon g Python yioti autd amotelei tnv fAon yiol ToAG XOpaKTNPLOTIKE 0TS CUVAPTHOELS,
ueboddoug, LLOTNTEG, UEBODOL KAAOTG OTATIKES UEBODOL, Kal avapopd o€ coUTep KAAOELS.

TN teplocdtepeg TANpoopieg avapopLkd ue tig uebddovg twv descriptors, BA. see Implementing Descriptors
1 7o [Ipaktikdg 0dNYOg yia T ypnon tov Descriptor.

AeEiko
‘Eva tpooetaiplotikdg mivaka, omov avbaipeta KAWL avtiotoryiCovtor o tiués. Ta kheldid umopel vo
elval 0oLodMToTe avTLKeipevo pe uedodovg hash () xou __eqg (). Ovoudletan wg hash oto Perl.

Kotavonon AeEikov
‘Eva ovprtayrg tpomog yia vo emeEepyaoteite Oha 1 HEPOG TWV OTOLXEIWV OF £Vl ETOVOANTTTIKO Ko VoL
emotpagel eva ue AeElkd ue ta aotedéopata. results = {n: n ** 2 for n in range(10)}
dnuovpyei éva AeEkd mov mepiéyer To kAewdl n wov avriotouyifeton e v) n ** 2. BA. Displays for
lists, sets and dictionaries.

oyn AeEkov
Ta avukeipeva mov emotpépovtat otd dict . keys (), dict.values (), ko dict.items () Kohov-
vl OPelg AeEtkov. Autég mapéyouvv pa duvak oy Tov Tmv eyypapdv Tov AeELkov, Tov onuaivel ot

155

https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python Language Reference, Anpooisuon 3.11.13

otav to AeELkd petapdidetor, n 6ym avtkotomTpilel avtég Tig alhoyéc. Ia va avaykdoete Ty Oyn AeEL-
KOV vaL Yivel o TApng Aota xpnowuomoote 1o 1ist (dictview) . BA. dict-views.

docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the suite is
executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing class, function or
module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing

"Ev0l 0TUA TTPOYPAUUATIONOU TTOU deV eEETATEL TOV TUTTO EVOG OVTLKELUEVOU YL VO TTPOTOLOPIOEL OV EXEL TN
owoti) diemogr)” avtifeta, 1 uEB0SOG 1 TO YOPAKTNPLOTIKO KaAeltow amhig 1 xpnotuormoteiton («If it looks
like a duck and quacks like a duck, it must be a duck.») Aivovtog Eupaon oTig SLETAPESG KL O)L OF OVYKEKPL-
UEvoug THTTOVG, 0 KOAG 0YESLOOUEVOG KMOOLKAG BEATUDOVEL TNV EVEMELX TOU EMLTPETOVTIAG TNV TTOMUUOPPLKT
vrokatdotoor. O timog duck-typing amogetyelr dokiuég xpNOLUOTOLDOVTOG type () M isinstance ().
(Enuelwon, wotdo0, 6TL 0 THTOG TATLOG duck-typing Witopel va ovprinpwOel ue abstract base classes.) Avti
ovtov, ovvihBwg ypnoLpomolel dokiéc hasattr () 1 mpoypaupoatioud EAFP.

EAFP
Mo gvxoho va TNTHoelg ouyymwpeon mopd adelo. Autd to Kowvd oTuh mpoypauuatiopoy oe Python mpo-
rroBétel TNV VapEn £YKupmv KAEWSUOV 1] YOPUKTNPLOTIKOV Kot oulhaufavelr eEalpéoelg eav 1 vitdfeon
amodey el eapaiuévn. Autd to Kabopd Kot ypiyopo oTuk opaktnpiletol amd TV Tapovsio ToAmY on-
Mdoewv try Ko except. H texvik épyetal oe avtifeon ue to otuh mov eivor LBYL xowvd og molhég dhAeg
vAwooeg, ommg 1 C.

EK@ppaon
"Evo. Koppdtt ovvtaEng mov umopet va aElohoynOsi oe kdmoro tyy). Me ddha Adya, o £k@poon gival
WO GUOCMPEVOT OTOLYELWV EKPPaoTg Omwg KuploreEia, ovopata, mpdopaon XopaKTNPLOTIK®V, TENEOTEG
1] KAMOELS CUVOPTNOEWV TTOU OLEG ETLOTPEPOVY WLOL TUUT). Z€ avTiBeon ue Tolég dhheg YADOOES, dev glva
Oheg oL YAWOOLKEG DOUEG EKPPATELS. YTTAPYOUVE ETLONG statements OV dEV WITOPOVV VO, YPNoLuosTotfovv
g eKppaoeLs, 6mwg to while. Ot avabéoelg TumV eiva emiong dNAWoELg oYL EKPPAOELS.

module ewéktaong
"Eva module ypouuévo oe C 1) C++, wov ypnowpomoteitan ad to C API tng Python yia va alnhemdpdoouvv
LLE TOV TTUPTVAL KOL UE TOV KMOLKO TOV YP1OTH.

f-string
O KupLoreKTikég oUUBOAOOELPES Y PNOLOTOLOVY e TTPoBepa "£' 9 "F ' ovoudtovior ovvihbwg «f-strings»
7OV elva ouvtopoypapio Tov formatted string literals. BA. exiong PEP 498.

OVTIKEUEVO OPyEioV
‘Eva. avtikeipevo mov ekbéter éva APl mpooavatolouévo oe apyeto (e pedddovg dmwg read () 1
write ()) og évav vrokeinevo dpo. Avaroya e Tov TpdITo o dNULovpyYHONKE, £va OVTLKEILEVO 0P ELOV
WITOPEL VO LEGOMAPNOEL 0TIV TTPOOPAON O€ EVa TPAYUATIKO apyelo 0To dioKo 1) 08 A0 TUTTO CUOKEUNG
amoffKevong 1 emkowvmviag (Yo mopaderyno tumiky) eicodog/ €E0dog, in-memory buffers, sockets, pipes,
KAT.). Avtikeipevo apyeiov ovoudlovraon emiong file-like objects N streams.

ZTNV TPAYUATIKOTNTO VTTAPYOUV TPELG KATIYOPLES AVTLKELUEVWV apyELOV raw dvadikd apyela, buffered Sva-
Oukd apyela xou apyela kewuévov. OL dlemapég Tovg opitovral oty evotnta io. O KOvoviKOG TPOTOG YLa
VO SNULOVPYTOETE EVOL AVTLKELUEVO OPYELOV ELVAL YPNOLUOTOLDVTAG TV OVVAPTNOT open () .

OVTIKEIUEVO TTOV HOLATEL UE OPYELD
‘Eva ouvavupo pe o file object.

KWOLKOTOI101] CUGTIUATOS GPYEIWY KoL YELPLOTIS OPUARATOV
H xwdikomoinomn Kat o yeplot)g opaludTmy XpNoLuooLeitor amtd v Python yia thv amokwdikomoinon
TV bytes 0td TO AELTOUPYLKO oVoTNUO Ko TV Kwdikomoinomn og Unicode Yo 1o AeLtoupytkod ovoTnuaL.

H xwdikomoinon cvotuatog apyelwv umopel vo eyyun0el v emtuynuévn amokwdikomoinon 6wy twv

156 Mapdptnua A’. NMwooapt

https://peps.python.org/pep-0498/

The Python Language Reference, Anpooiguon 3.11.13

bytes Katw amd 128. Edv 1 kwdLKomoinon ovoTuatog apyeimv dev mapéyel auTtnv TV £yyUNoT), oL GUVap-
thoelg API umopoiv va eyeipovy éva UnicodeError.

Ou ovvaptioelg sys.getfilesystemencoding () Kot sys.getfilesystemencodeerrors ()
WITOPOUV VO YPNOLULOTONO0UV Yo Vo MABETE TNV KMALKOTOINGOT TOU CUOTNUOTOG OPYEl®V KoL TOU YELpL-
0T OPAAUATOV.

O filesystem encoding and error handler diopoppadvovron Kotd v ekkivnon g Python amd) ouvaptnon
PyConfig Read() B\ filesystem_encoding ko filesystem_errors puéhn tov PyConfig.

B emtiong to locale encoding.

finder
‘Eva aviikeipevo mov poomadei va Bpet to loader yio éva module stov e1omy 0.

Since Python 3.3, there are two types of finder: meta path finders for use with sys .meta_path, and path entry
Jinders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

aKEpoLe draipeon)
H pabnuatikr duaipeon mov otpoyyulomoLel Tpog Ta KATW 0ToV KOVILvOTEPO aKéPaLo. O TeELeoTNG aKEPALOG
daipeong eivon / /. Two mapdderypa, n ékgppaon 11 // 4 oEwoloyeiton o€ 2 oe ovtibeon pue v T 2. 75
OV EMOTPEPETOL ALTTO TNV SLALLPEOT UE VITOdLAOTOMY. Znueiwon ot (-11) // 4 xbvel —3 emeldn avti
glval 1 0TpoyyvLoToinom oog T¢ kdTw Tov -2 . 75. Bh. PEP 238.

ouvapton
Mo oelpdt 0td SNADOELS TTOV EMLOTPEPOVY KATTOLA TUUY OF OVTOV TTOU TV KALeoE. Z€ QUTEG UTOPOVV VL
TEPAOTOVV KavEva 1) TeEPLOCOTEPQ oploaTa TOV WIToPEl va ypnowortolnOel yio tv ektéleon. BA. emiong
TG eVOTNTEG parameter, method, Kau the Function definitions.

ouvapTnon annotation
'Evog annotation pog mopapéTpon ouvapTtnong M WAG TWUNG ETLOTPOPTS.
Ou ouvoptoeLg annotations oUy VA YPNOWOTOLOVVTAL Y0 UTOOEEELS TUTOV: VL0 TAPADELYUA, OUTH 1 OU-
vapTNON ovouéveTal va Ttdpel dVo oplouaTo 1nt KoL ETONG AVAUEVETOL VO £XEL U0 ETLOTPEPOUEVT] TLUN
int:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

H ovvtoEn ovvaptnong annotation ovakvetan oty evotnta Function definitions.

BA. variable annotation xouw PEP 484, mou mepuypdpel avth tnv kettovpyikdtta. Exiong BA. annotations-
howto yia Tig KoAUTEPES TPAKTIKEG HOULEVOVTOG (LE annotations.

future
'Eva future statement, from ___future__ import <feature>,KaO0dNYEL TOV UETOYAWTTLOTY VO UETOL-
vyAwTTioel To Tpé oV module ypnouoroldvrag ovvtagn 1 onuoololoyia tov Oa yiver 1) TuTtLKT 08 HEMOVTLKT
éxd001 g Python. To module _ future_ tekunpuover tig mbavég Tég Tov feature. Me tnv eloorywyn
OUTAG TNG AELTOVPYLKNG LOVAdAG Ko TNV AELOAOYNOT TOV UETABANTDV TG, WTopEite va deite moTe wa véa
duvatoOTNTA TPOOTEONKE YLOL TPWTY (PoPA 0TV YAMOooo Kaw stdte Oa yiver (1] €yLve) 1 Tpoemhoy:

>>> import _ future_
>>> _ future_ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

GUALOYI] ATTOPPLUATOV
H dwadixaoio amehevfépwong g uvnung otav dev ypnotuorsoteiton dhrho. H Python extelel oulhoyn amop-
PLUATMV HECH KATOUETPNONG AVAPOPDV Kal EVOG KUKAKOU GUMEKTY 0KOUmdLDV TTov eival oe BEon va

157

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

The Python Language Reference, Anpooisuon 3.11.13

aviyveveL Kat vo o7tdel Toug KUKAoUg avapopds. O cuMEKTNG OToppLLETmV WTopet vo. eheyyOel xpnotuo-
moudvTog to module ge.

generator
Mo ouvéptnom mov emotpépel €va generator iterator. MOLATEL Ue ULaL KAVOVLKT) GUVAPTNOY €KTOS atd TO
OTL TTEPLEYEL EKPPAOELS v ield Yia TV TOPOYWYT WAG GELPAG TLUMV TTOU UTTOPOVV Va xpnotpomotnfotv oe
évav Bpoyo for | Tov umopovv va avaktnOolv pia T popd pe v cuvdptnon next () function.

ZVvHBwg avagépeTtal o€ o OUVAPTNOT generator, OAAG UTTOPEL VO ovOpEPETaL OF EVav generator iterator €
nepLKd contexts. 2e TEPLTTOOELS OTTOU TO EMOLWKOUEVO VONUOL OEV ElvaL TAPES, 1) YPNOT TWV TANPWV OpwV
AITOPEVYEL TNV OLOAPELQL.

generator iterator
"Evo avTLKEIUEVO TTOU dNIOVPYELTOL ATTd (oL GUVAPTNON generator.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator éK@pa.on
Mo €Kppaon ov emoTpépet Evay iterator. MoldLeL pe Kavovikn £Kgpaot ov akolovbeitol amd ua pd-
taon £for mov opilel o petainth fpoyxov, Eva evpog Kot o tpootpetiky tpdtaon if. H ouvdvaouévn
£K(Paon dMULOVPYEL TLUEG YLOL UL GUVAPTNON EYKAELGUOV:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

YEVIKT] GUVAPTNOT)
Mo ovvaptnomn mov atoteheitol amd TOMATAEG GUVOPTNOELS TOV VAOTTOLOVV TV 1810 Aertoupyia yio dtoi-
popeTikovs Tumovg. ITowa viomoinom mpérmet va xpnolpomon el katd) dubprera puo kKong kabopileta
aTto TOV AAYOPLOUO OITOOTOMNG.

B emtiong v kataywpnon tov single dispatch, tov decorator functools.singledispatch () ko PEP
443.

YEVIKOG TUTOG
'Evag type mov umopel vo mapapetporondel” ouvnOwg wa container class, 6nmg List N dict. Xpnowo-
TOLELTOL YLOL Type hints Kow annotations.

I teproodtepeg Aemtopépelec, PA. generic alias types PEP 483, PEP 484, PEP 585, ko to module typing.

GIL
BA\. global interpreter lock.

global interpreter lock
O umyavioudg mov ypnopomoleitor amd tov depunvéa CPython yia va diaogoliost 6tL udvo €va viua
extelel Python bytecode k&g qopd. Autd amhormolei Tv viomoinon CPython dmuovpydviag to Hoviého
OVTIKELWEVOU (CUUTTEPLMOUPOVOUEVOV KPIOLIMY EVOMUATOUEVDVY TOTTOV OTTOG Y. dict) Euueco aopaiéc
évavtl tautdypovng mpodopaons. To xheidwua oAdKANPoU Tou dtepunvéa dLeEVKOMIVEL TOV dLepunvéa va
glval TOAMATADY YUdTmv, €1g BEpog Tou ueyahov HéPoug Tou TOPAMNALOUOU TOV TOPEYOUV OL UNYAVES
TOMATAOV ETEEEPYOTTMV.

Qo0tH00, OPLOPEVEG AELTOUPYIKEG LOVADEG EMEKTAONG, EiTE TUTTLKEG €iTe TPiTWYV, £XOVV OYESLAOTEL £TOL DOTE
va aserevfepmvouy 1o GIL dtav ektehoVv epyaoie EVIOTIKMY VITOMOYLOUDV OTTMG CUUITTLEDT] 1) KATOKEP-
natouds. Emiong, to GIL amehevbepmveton mévta dtav extereite /0.

Iponyovueveg mpoomadeieg va dnuovpyn0ei évag diepunvéag «ehevBepwv-vnuatwv» (avtdg Tov Kheldwm-
VEL TOL KOOy pNnoto dedopéva ue oA o Aemtopept] evancnoia) dev frav emituyeis emeld 1 arddoon
VITOYMDPNOE OTNV KOLVT| TtEpimTmon evig emeEepyaot. Iliotevetal 6t 1 vépPfaon outol Tov TPOPANUATOG
art6doong Oa Kdvouv oAl Lo TEPITAOKY KoL ETOUEVMGS TTLO dATTAVIPT] 0TV GUVINPNON).

158 Mapdptnua A’. NMwooapt

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python Language Reference, Anpooiguon 3.11.13

hash-based pyc
'‘Eva apyelo Kkpugpng uvnung bytecode tov pNOLLOTOLEL TOV KATAUKEPUOTIONS KoL OYL TOV YPOVO TPOTOTTOL-
NONG TOVU AVTLOTOLXOV aPYelou TPOELEVOTG VL0 VO TTPOGdLOPLoEL TNV eykupoTta Tov. BN, Cached bytecode
invalidation.

hashable
'Eva avtikeipevo eival hashable ebv €xel pua Tuf KOTAKEPUATIONOU TTOV OV aMALEL TOTE KATA T dLdp-
Kewa g ComMg tov (xpetdleton o uébodo _ hash__ ()), Kou wwopel va ouyKpLOet pe dAAo OVILKELEVOL
(yperdetan o uébodo _ eqg ()) . Ta hashable avtiKelueva IOV CUYKPLVOVTAL WG TPOG TNV LOOTNTO TOUG
TPETEL VOL EXOVV TNV (L0 T KATAUKEPUOATLOUOU.

H YmapEn hashable xbver éva aviikeipevo va uwopel vo xpnotposou el mg khewdi AeEukot Ko wg uéhog
€vOGg GUVOLOU, ETTELDT AUTEG OL DOUEG DESOUEVWYV YPNOLUOTOLOVY TUUEG KOTAKEPUATIOUOV.

Ta mepLoodTepo 0md Ta aueTdfinto evoopatwuévo avitkeipevo g Python umopoiv vo Katokepuott-
otovv” ta petafintd Kovtéivep (Ommg ou hoteg 1) ta AeEikd) dev eivan” To apetafinTo Kovrévep (0mmg
mheladeg Kan ta frozesets) UTOPOUV VO KATOKEPUOTIOTOUV UOVO EGV TCL OTOLYELD TOVG ELVOL KOTAKEPUATL-
ouéva. Ta ovtiKelpeva Tov eivar oTLyIOTUTTO KAAGEMY TTOV 0pilovIaL Ao TO ¥PNOTH WIOPOVV VO KOTO-
KEPUATLOTOUV ITO TTPOoETIAOYY. ‘'Ol GUYKPIVOVTOL AVIOA EKTOG OO TOV EAUTO TOUGS) KL 1) TUUY KOTAKEP-
HOTLOUOV TOVG TTPOEPYETOL atd To id () .

IDLE
"Eva ohokAnpwuévo septfarlhov avamtuEng kou udonong yio tnv Python. idle eivan éva faotkd mepifdiiov
emeEepyaoiag Kot diepunvéa Tov guvodeeTal oo TV Ttk diavour) g Python.

immutable
‘Eva ovtikeipevo ue otodepn tur). Ta apetdfinto avitkeipevo mepihappdvouy aplbuoig , cupporooelpég
Ko thelddec. ‘Eva tétolo avtikeipevo dev wopel vo odAhaEer. 'Eva véo avtikeipevo mpémel va dnuovpyn el
edv mpémer va amodnkevtel wa dapopetikt) tiun. Hailovv onuavtikd poho oe uépn Omov pa otabepd
asorteiton, yio mopdderyno wg kAedi oe éva AeEiko.

g1o0yopevo path
Mua Aiota atd tomobeaieg (1) kataywoeloels Stadpouns) Tov UToPovV va avalnmOovv path based finder yio.
va etoayBovv modules. Katd tnv dtadikacio elooymyng, avth 1 Moto e tomobesieg ouvnBmg pyetol amd
sys.path, ald yia Ta VTOTOKETO WToPEL Eiong va €pOeL amd TO YOPAKTNPLOTIKO TOV TOKETOU YOVEL
__path__.

EL60YOYY)
H duadikaoio kotd v omoia 0 Kodikag g Python og éva module givar dtabéoun otov Kmdika Python
€vog dlhov module.

EI00YOYENS
"Evo ovTLKEieEVo (Wtopet ko vo ovalntel Ko va optmvel évo module” Kau éva finder ko loader avtikeipevo.

dadpaotikog
H Python £yeL évav dLadpaotikd diepunvéa 6tov onuaiver OtL WTopEeis va eLodiyelg dNhmaoeLg Ko EKQPATEL
OTNV ELOAYWYY] EVIOADV TOV SLEPUNVEX, EKTEADVTAG TEG AEC KOl EUPAVICOVTAG TO avitkeipeva. ATANg
eKKLVHO0TE TNV python ywpig opiouata (bavmg emAéyovtag To atd To KUPLO UeVOD TOU VITOAOYLOTH 0OG).
Asmtotelel évav amodoTikd TpoTo Yo va dokudote véeg 1déeg 1) va eEeTAOTE AELTOVPYIKEG LOVADES KL TTaL-
Kkéta (BuunOeite help (x)).

interpreted
H Python eivan pua interpreted yAwooa, oe avtifeon e (o UETAYAWTTIOUEVY, OV KoL 1] SLAKPLOT| UITTOPEL VoL
eivar koL o AMdym g mapouoia tov bytecode petoyhwtTioty). Autd onuaiver OTL To apyelo TPoéhevong
WITOPOUV VoL EKTELEGTOUV 0TTeVOEiag Ywpig Vo dNULovpYN Ol pNTA £va EKTEAECLILO ALPYELO TTOU OTNY GUVEYELDL
exteheitar. Ou interpreted yAddhooeg ovviiBmg €xouv wkpdTEPO KUKAO avamTuEng/ eviomiopol 6poiudtmy
aTT0 TLG UETAYAMTTIOUEVES, 0LV KOIL TOL TTPOYPAUUATA TOVG YEVIKA eKTELOVVTOL TTL0 apydt. BA. emtiong inferactive.

TEPUOTIOUOS AELTOUPYING dLepunvin

159

The Python Language Reference, Anpooisuon 3.11.13

‘Otov Tnteitan Tepuatiopds Aettoupyiag, o diepunvéag g Python eloépyetor og pua eldLkn @dom 6mov ate-
LevBepmver oTadLokd OAOUG TOUG SLOTLOEUEVOUG TTOPOUGS, OTTWG LELTOUPYLKES LOVADEG KoL TTOAMAITTAEG KPLOL-
ueg ecwtepLkég doués. Emiong mparypartomoiel apketéc KM OELS 0TO GUAAEKTNS okovmALD V. AUTO UTOPEL VOl
EVEPYOTOLNOEL TNV EKTENEDT KMALKA 0€ KOTAGTPOPELG OV 0piloviol amd o ¥p1ot 1) ot callbacks aobevoig
avtomokpioelg. O kmdLKOg oV ekTELELTOL KOTA TN (PAOT] TEPUATLONOD AELTOVPYIOG UTTOPEL VO CUVOVTHOEL
dudipopeg eEatpéoeic, Kabmg oL TOpoL 0ToVG 0oiovg FacileTor evdéyeTal vo unv Aettoupyouv mhéov (ou-
VO apadeiypato eivor oL Aettoupykég novadeg BBAOONKNG 1 0 U avIoUOg ELOOTONOEWV).

O Baotkdg LOYyos TepuatiopoV hettovpylog tov diepunvéa eivor 6t 1o __main_ module 1) ohokAnpmOnKe
1 EKTEAEDT) TOV KMALKA TTOV ETPEYE.

iterable

An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter__ () method or witha __ getitem__ () method that implements sequence semantics.

Ta iterables umwopouv va ypnowwomotnOouv oe éva for Ppodyo Kou o€ ToMA GAho onueio 0oV YPeLdCeToL
wa axohoubia (zip (), map (), ...). Otav éva iterable aviikeipevo petofpatetar mg OpLoUa 0TV EVow-
HOTOUEVY OVVAPTNOT 1ter (), emoTtpépel évav iterator yio aviikeiuevo. Avtdg o iterator eivan KOG yLo
éva tépaopa oo £va oUVoro TLMV. ‘OToV YXP1NOLUOTTOLEITOL ETAVOATTTLKE, GUVIOmG dev elval amapaitnTo
vo Kohéoete To iter () 1) vo aoyxolnOeite pdvol oag ue ovtikeipeva iterator. H dNiwon for to kéver o-
TOUATO VL0 EGAG, ONUOVPYDVTOG UL TTPOCWPLVY] UETABANTH Y wPlg OVOUO YLo VoL KPaTd TOV iterator yio TV
dudpxela Tov Ppoyov. Bh. extiong iterator, sequence, Ko generator.

iterator

'Evo. 0VTLKEIUEVO TTOU avTLITPOoMIEVEL o pot] dedouévav. Emavalaufavoueveg khfoelg mpog ™ wé-
0080 __next___ () tov iterator (1] peTaBiPaOT TOV OTHY EVOOUATOUEVY OUVAPTNON next ()) EmOTPEPOUV
dradoykd otouyeia otV por). Otav Oyt meploodtepo. dedouéva eivar drabéoo eyeipetan o eSaipeon
StopIteration. Z& Ut TO ONUELD, TO AVTIIKENEVO iterator eEavTAeiTOL KL TUYXOV TEPOUTEPW KAHOELG
ot uébodo __next__ () amhng amhd eyeipovv Eavd 1o StopIteration. O iterators mpémel vo, xouy
o wébodo __iter_ () OV EMOTPEPEL TO DLO TO AVTIKELLEVO iterator, £ToL woTe KAOE iterator va eival
emiong iterable ko pmopel va ypnotuomomnOel oto mePLoodTEPO UEPT OOV YivovTaL 0rTodekTol Ko dAloL
iterators. Mo aEtoonueimtn eEaipeon eivar o kmdukag mou emyelpel molhamhd mepdopata iteration. ‘Eva
avTiKeluevo koviéivep (Omtwg évo 11 st) mapdyetl évov Kabapd véo iterator kaOe popd mov kAOe popd mov
uetaBLpaletar oty ovvdptnon iter () M Tov xpnowomoteital oe évav for Bpdyo. Eqv emyepnoete avtod
ue évav iterator amhwg Oa emotpéete To idLo eEavIAnuévo aviikeipevo iterator o ypnoluomoOnke 0to
TPONYOVUEVO TTEPOOUQ iteration , KAVOVTOG TO VO (POIVETOL OOV EVOL AOELO KOVTELVED.

[epioodtepeg mAnpopopieg wropotv va fpebovv oo typeiter.

Agmropépera. vhomoinong CPython: To CPython dev eqopudlel pue cuvémela v amaitnon va opilel évag
iterator __iter_ ().

ouvaptnon key

Mo ouvapTnon KAEWDL 1) pa ouvapTnomn TaEvounong eivan (o SuvatdTnta KAHONG o EMLOTPEPEL ULOL TUUY
7OV YpMotuoTtoteiton Yo taEvounon 1 duatagn. Ta mapdderypa, locale.strxfrm() ypNOWOTOLEITAL
Yol TV TTapoymyn evog KAELDLOU TaEIvOUNoNG TTov YVopilet Tig oUpPAoELS TAELVOUNONG VL0 CUYKEKPLUEVEG
Tomkég puouioels.

‘Eva. aplbudg epyareiov oty Python déyeton Baoikég ouvaptnoels ylo Tov €Aeyyo Tou TPOTOU UE
TOV 0710i0 Ta OTOLKELD TaELvopoUvTaL 1) ouadomolovvtal. Autd mepéyovy min (), max (), sorted (),
list.sort (), heapg.merge (), heapg.nsmallest (), heapg. nlargest (),Ko itertools.
groupby ().

Yndpyouvv dudpopotr tpdmor Yo vor dnuovpynoete o ovvdptnon khewdov. o mapdderypa. 1 wé-
00d0¢ str.lower () WITOPEL VO XPNOWEVOEL WG CUVAPTNON KAEWDL YLO. TNV TEPITTMON Un SLAKPLONG
meCov-keparaiwv. Evalhaktikd, wo ovvdptnon khewdoy umopel va dnuovpyndei amd wo lambda
éxppaorn 6mtwg lambda r: (r[0], r[2]). Emiong, operator.attrgetter (), operator.

160

Mapaptnua A'. NMwooapt

The Python Language Reference, Anpooiguon 3.11.13

itemgetter () kow operator.methodcaller () &lval TPELG KOATAOKEVAOTESG PACLKMV OCUVAPTHOEWV.
B\. to Ta&wdounon HOW TO yio opadeiyioto SNuovpyiag Ko xpnong Pactkdv cuvapTioemy.

opiopo keyword
BA\. argument.

lambda
Mo ovavVUuTn EVOOUATOUEVT] GUVAPTION TTOV OITOTEAEITOL OTTO (o, LOVADLKT| expression 1) 0oio, AELOAO-
veitar Otav kodeitol 1 ouvdptnon. H ouvtoEn yua t dnuovpyia wog ouvaptnong lambda eivon 1ambda
[parameters]: expression

LBYL
Look before you leap. Autd 10 0TUA KWALKOTOINONG EAEYYXEL PNTA TIG TPOVTOOETELG TPLV TPALYUOTOTTOLOEL
KMjoelg M avalntioelg. Avtd 1o otuk £pyetan og avtifeon ue v Tpooéyyion EAFP kol xopoKtnpileta
oTTo TV TOPOVCLA TOMDY dNAoEWY 1 7.

Ze éva mepLPdihov morhamhwv vnudtomv, 1 tpooéyyon LBYL umopei va SLakivduveoet v eLOGYEL i GUV-
MK aydva ueta&v «the Looking» kou «the leaping». [N wapdderypa o kodikag, if key in mapping:
return mappingl[key] umopel va amotiyel eav éva G0 v agpapéoel To key amd To mapping UETG
T doKLuY), OMG TTPLY aTtd TV avalnTnon. Avtd To TpORAUe Wtopel va Mbel pe KAEdmuoTa 1 eNoLLo-
ToLdVTOg TV TpootyyLon EAFP.

AMoTo
‘Eva evoopatwuévo Python sequence. Tlopd to dvoua tov, Holdler TEPLOCOTEPO e EVAV TTVAKA 08 GALEG
YA®Oooeg Topd ue wo ovvdedeuévn AMota, kabhg 1 Tpodofaon ota otouyel eivar O(1).

list comprehension
"Eva oupstoryng tpdimog yia va ereEepyaoteite Oha 1) HEPOG TV OTOLEIWY OF o aKoAovbia Kat va emotpé-
Pete pua Alota pe ta ootehéopata. result = ['{:#04x}'.format (x) for x in range (256)
if x % 2 == 0] dwovpyei wa Mota cuuforooelpmv ov meptéyouv Luyolg dekaegadikos aptbuoig
(0x..) oto gvpog amd 0 éwg 255. H mpdtaon 1 eivon mpoaupetiki). Eav maparewpbei, Oha ta otoryeio oo
range (256) vropdihovrtal og eneEepyaoia.

loader
An object that loads a module. It must define a method named 1oad_module (). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

TOTKY] KWOKOTTOIN oM
Zto Unix, eivar 1 kwdikomoinon g tomiky pvOuong LC_CTYPE. Mmopsi va pvBuiotel ue locale.
setlocale(locale.LC_CTYPE, new_locale).

Zto. Windows, eivaw 1) code page ANSI (.. "cpl1252").

Zto Android xouw to VxWorks, 1 Python ypnowosmotei to "ut £-8" g Tomk KmdKomoino.
locale.getencoding () umopei va xpnoluomotn0el yio Ty aviKTnon g TomkNG KOdLKOTOiNonG.
Bh. emtiong o filesystem encoding and error handler.

noykt uédodog
"Eva dtumo ouvadvuuo yia special method.

mapping
‘Evo ovtikeipevo Kovtévep ov vootnpilel avbaipeteg avalntoelg KAeWLmv Kat VAoToLeL Tig uefddoug
mov kabopifovtow 0to collections.abc.Mapping 1 collections.abc.MutableMapping
abstract base classes. Ta mapodeiypata mephaupdvovy dict, collections.defaultdict,
collections.OrderedDict Kouw collections.Counter.

meta path finder
'Evag finder mov emiotpdiepnKe pe avalntnorn oto sys .meta_path. Ofinders ueta-diadpopung oxetioval,
oG dLapépovy amtd T finders entry Stadpours.

161

https://peps.python.org/pep-0302/

The Python Language Reference, Anpooisuon 3.11.13

B\ importlib.abc.MetaPathFinder yia tig uebddovg mov viomolovv oL meta path finders.

neta-Khdon

H xhéon wog khdong. Ou opiopoi kKhéong dnuovpyotv éva dvoua khdong, éva AeEtkd kKhaong kot pua Aot
Baolkmv kKhaoewv. H peta-khdomn eivor veetuvn yia v ommoKT)on GUTmVY TV TPV OPLOUETMY KoL TV
dmuovpyia TG KhAonc. OL TEPLOCOTEPES AVILKELUEVOOTPEPELS YAMOOESG TPOYPUUUATIOUOV TOPEXOVV [ULOL
TPOETAEYUEVT] VAOTTOLN 0. AUTO 7oV Kdver Thv Python Eexwplot) eivar dtL eivan duvaty n dnuovpyio stpo-
oapuoouévav petakhaoemv. O teploodTepol ypfoTeg deV YpeldLoviol ToTé ovtd To EpYyaleio, alld dtav
TOPAOTEL OVAYKT), VT TO EPYOhelo, OL LETA-KAAOELS WITOPOVV Va TOPEYOVY LOYVPES, Koppéc Mioels. 'Eyxovv
YPNOLULOTTOLNOEL YLl TNV KOTAYPOLPT) TPOGPAONS XOPOKTNPLOTLKDV, TV TTPOTONKT aopdlelas vudtwy, Ty
TOPOKOAOVONOT dNULOVPYLAS AVTLKELUEVWYV, TV VAOTTOLN 0N singletons, kKou TOAMEG GALEG pyaOLeC.

Meproodrepeg mAnpopopieg wropovv va Bpebotv ato Metaclasses.

nébodog
Mua ouvéptnomn mov opiletar péoa oto omua wag kKhdone. Edv kaleltor og xopaktnplotikd pog mepi-
TTOONG VTNG TNG KAGONG, 1) uEB0d0G B MABEL AVTLKELIEVO TEPITTMONG WG TPWDTO TG argument (TO 0TOLO
ouvnBwg ovopdaleton self). BL. function ko nested scope.

oEp avahvong nedodwv
Method Resolution Order is the order in which base classes are searched for a member during lookup. See The
Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter since the 2.3
release.

module
"EvVOl OVTLKELUEVO TTOU PNOLUEVEL MG OPYOVITLKY Hovada tov kKmdika g Python. Ta modules €xovv évav
YOPO ovouaTtmv Tov TepLEyeL avbaipeta avitkeipeva Python. Ta modules poptdvovtol otnv Python pe tnv
dwadikaoia importing.

B\ emiong package.

TEYVIKES TTPOdLaypapés module
"Evo. namespace tou TEPLEXEL TLG TTAPOQPOPLES TTOV OYETILOVTOL UE TV ELOOYYT) TTOV X PNOLULOTTOLOVVTOL YL
™V optwon evog module. Mia wepimtmon tov importlib.machinery.ModuleSpec.

MRO
B\. method resolution order.

mutable
Ta evpetdpinto avikeipevo wropotv va aldEouv tig twég alhd va kpatioouv to id (). BA. emiong
immutable.

named tuple
O 6pog «named tuple» e@apuodLeTaL Yo 07ToLovVONIToTe TUTO 1 KAGON TOV KANpovoueitan amd TV mhetdda
KO TV OTTOLWYV TOL OTOLYELO WITOPOVV VoL EVPETNPLOTOLNO0UV ElvaL TPOOBACLULO XPNOLUOTOLDVTOG ETTDHVUNLAL
YOPAKTNPELOTLKA. O TOTOG 1) 1) KAAOT WTopEl Vo €xeL Ko GO Y apoKTNPLOTIKA.

Io\hoi evompotwuévol Timot eivar named tuples, CUUTEPIAAUPOAVOUEVOV TOV TULMV TTOV ETLOTPEPOVTAL OLITTO
time.localtime () kawos.stat (). Eva Gho mapdderypa eivan to sys. float_info:

>>> sys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Oplouéveg avayvoplopéveg mhelddeg elvol evomuatmuévol TOmol (0Twg To TAPOTAVED TAPUOELYILOTA).
EvoloKTiKd, po avayveoplopévn mhelddo nropet va dnuovpyndei amd évav oplopd Kovovikng KAAong
IOV KAMPOovopEL artd tuple Kat ov opiletl £ykupa medio. Mia tétola KAAoT WTOoPEL VoL ELVOL YPOUUEVT] e

162 Mapdptnua A’. NMwooapt

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Anpooiguon 3.11.13

TO XEPL 1 WITOPEL Vo dnuovpynBel Kinpovoumvtog to typing . NamedTuple, 1] pe v factory cuvaptnon
collections.namedtuple (). O televtaieg Teyvikég mpoobétovy emiong ueptkés emmhéov neboddovg
7TOV WITopel vo. unv Bpedotv oe xelpdypapes 1) EVOOUOTOUEVES TTAELADES (1E OVOUAL.

namespace

To pépog 6mov amobnkeveTon wa petainty). Ta namespaces VAOTOLOUVTOL WG LeELKE. YTGp) oV oL ToTtL-
Koi, oL K0BOMKOL Kat oL evomuoTmuévol namespaces kKo0dg kou oL £vOetolL namespaces o€ avitkeipevo, (o€
uebodovg). I mapdderypa oL ouvaptoelgbuiltins . open KoL os . open () dLoKpivovToLl amd Tovg y -
PoUg ovoudtmv Tous. Ot xdpotL ovoudtov Fondovv exiong TV avayvoodTnTa Kot T GUVTHPNOLUOTNTO
Kablotmvtag oapéc wolo module viomolel o Aettovpyia. Fia wapdderypa, ypdgpovtag randonm. seed ()
Nitertools.islice () KaOLOTA OOPES OTL AUTEG OL CUVOPTNOELG VAOTTOLOoUVTOL artd To. module random
Kol itertools, aviiotouyo.

TOKETO namespace
A PEP 420 package which serves only as a container for subpackages. Namespace packages may have no physical
representation, and specifically are not like a regular package because they haveno __init__ .py file.

B emiong module.

nested scope
H dvuvatdtnta ovogopdc oe o petafin oe évav mepikhedpevo optopd. Tia mopdderypo po cuvaptnon
mov opiletar uéoa oe wa GAln ouVAPTIOT UITOPEL VO avapépeTtan o LETABANTEG TNV eEwTepLK oLVap-
T™NON. ZNUELMOTE OTL TOL EVOETO TTEdLOL QIO TPOETTLAOYT AELTOUPYOVV LOVO YLOL AVALPOPA KO OYL YL EKYMPNOT).
O tomikég uetafAntég dLafalovral Kot YpagovTaL 0To E0mTEPLKO TTEL0 Epapuoyns. Ouoime, oL KabolKég
HETAPANTES DLOBATOUV Kat Ypapouy 0Tov KaBoAKO xhpo ovoudtwv. To nonloca l eMTPETEL THV EYYPOPN
oe eEmtepLkd medio.

KAGON VEOU GTUL
To mahd dvopa yLo To €160Gg TV KAAOEWV YPNOLUOTTOLELITOL TTAEOV YLaL OMOL TO. AVTLKELUEVOL. Z€ TOMOTEPES
exddoeLg TG Python, povo ot kKAAoELS VEOU GTUA LITOPOVOOV VO Y PTOLULOTTOLT|GOUV TIG VEOTEPES, EVEMKTES OU-
vatdtnteg T Python 6mtwg _ slots_, descriptors, diotteg_ getattribute (), uéBodol Khaong,
Ko oToTikég uébodot.

OVTIKEINEVO
Omoradnmote dedopéva pe Kataotaon (YopoKTeLoTikd 1 tur)) kot Kaboplouévn ovusepipopd (uédodol).
Emiong, 1 tehkn paoikn) kKAAom omolacdfimote new-style class.

TOKETO
‘Eva Python module mov umopel va mepiéyer submodules 1) avadpourkd, vromakéta. Texvikd, £va mokéto
elval pua kettovpylkn povéado Python e éva _ path_ yopokmplotko.

BA. emtiong regular package xou namespace package.

TOPANETPOS
Mo €ykupr ovtotnto o Evav oploud function (| uéBodog) mov kabopilel évo argument () o€ opLOUEVEG
TEPLITTMOOELS, opiopata) Tov umopel va deyOel 1 ouvaptnom. Yadpyovv mévte eldn mapauétpmv:

o AéEn-xdeldi 1) Oéon: xabopilel Eva dpLopo Tov wtopel va petoPifaotel eite Oéoews M| wg dptoua AéEng-
kAetdLov. Autd gival To TPOETAEYUEVO ELDOG TAPAUETPOV, VL0 TAPAdELYUA foo Ko bar ota akdlovOa:

[def func (foo, bar=None): ... J

o Oéoewe udvo: kabopilel éva Oplona wov umopel va mopéyxetan udvo omd ™ 0€om. OL mapdueTpol LdHvo
0£0mMG WITOPOUV VO 0PLOTOUV GUUTEPIAAUPBAVOVTOG Evay YopaKTHpa / 0T AMoTa TopauéTpmy Tov opL-
ouov oUVAPTNONG UETE artd aUTEG, Yo Topdderyuo posonlyl ko posonly? oto. eENg:

[def func (posonlyl, posonly2, /, positional_or_keyword): ...]

o AéEnc-kAeldi uévo: xaBopilel évo OpLopa ov wropel va wapéyetar pdvo pe AEEN khedi. O mapaueTpoL
HOVo YL AEEN-KReLdE WITopovv va 0pLoToUV GUUITEPIAAUBEVOVTOG UL Tapduetpo BEong 1) okéto * ot

163

https://peps.python.org/pep-0420/

The Python Language Reference, Anpooisuon 3.11.13

Mota TapaUETPWY TOU 0PLOUOY CUVAPTNONG TTPLV ATTd OUTES, Yo Tapaderyua kw_onlyl Kou kw_only2
ot aKOAovOL:

{def func(arg, *, kw_onlyl, kw_only2): ...]

o uetafAnti Oéong: xabopilel OTL umopei va mapaoyedel o avbaipetn axorovdia opioudtov OEong
(emumhéov TV oplopdtov BEong Tov givar 1191 amodeKTd 0td dAleg mapauéTpovs). Mo tétola mo-
PAUETPOG WITOPEL VO OPLOTEL TTPOCAPTDVTOG TO OVOLLO TNG TAPAUETPOU UE *, YLOL TAPASELYUX args 0T
axohovOa:

[def func (*args, **kwargs): ...]

o ustafAnth AéEn-kAetdi: Kabopiler 6L pwwopovv va mapéyxovror avbaipeto ToAG opiouato AEENC-
KAELOLOV (emLITAEOV TV 0pLOPdT™mVY AEENG KheldLov o eival amodektd amd dhheg mapauétpous). Mia
TETOLAL TTOPAUETPOG WTOPEL VO OPLOTEL TTPOTUPTWVTAG TO OVOUC TNG TOPUUETPOU UE * *, Y0 TP
devypa kwargs OTMS TOPATAVO.

O TapaueTpoL UITopovv vo. KaBoplioovy TG00 To TPOULPETIKA OCO KAl TO AITOLTOUUEVO. OPLOUATO , KOOMG
KO TTPOETUAEYUEVEG TLUEG YLOL OPLOUEVA TIPOALPETLKA OPLOUALTOL.

BA. emiong tnv argument Kataydplon evpetnpiov, v gpdtnon FAQ oyetikd ue 1 diapopd neta&i oplopd-
TOV KoL TAPOUETPWY, TNV KGO inspect .Parameter, v evomnta Function definitions kon PEP 362.

path entry
Mua pepovouévn torofeoio oto import path v omoia supBovievetat o path based finder yio. vo pper modules
YLOL ELOAYWYT.

path entry finder
'Evag finder mov emotpégetal amd Evav KahoOuevo 0to sys.path_hooks (dnhadi) éva path entry hook)
mov Eépel twg va evromifer modules pe path entry.

Bl importlib.abc.PathEntryFinder yia tig uefddovg mov o entry finder duadpoung vhomotei.

path entry hook
"Eva kohovuevo ot Mota sys . path_hooks, to omoio emotpéger éva path entry finder edv Eépel tmg va
Bploker module og wo ovyKeKpLUEVN path entry.

path based finder
'Evo amtd to. mpoemmheyuéva meta path finders mov avalntd évo import path yio. modules.

path-like avrikeipevo
‘Eva aviikelpevo mov oviutpoowsevel €vo path ovotiuatog apyeiov. Eva aviikeipevo path eivar eite
éva avilkeluevo str 1) bytes mov aviutpoowrtevel €vo. path 1 éva avitkeipevo wov vhomotel To TpwTod-
koMo os.PathLike. Eva avtikeiuevo mov vootpilel To mpmwtoKolho os.PathLike umopei vo pe-
tatpasel oe path cuoTNUOTOg OPYEIWV st 1 bytes Kaldvrog TV cuvapmon os. fspath ()” 10 os.
fsdecode () koL os.fsencode () WTopPoOUV va ¥PNOLUOTomO0oUV yia THY €yyUNoT eVOg amoTeléoIaTog
str N bytes, avtiotorya. Etonydn axd tov PEP 519.

PEP
[potaon Bektimong Python. 'Eva PEP eivan éva €yypapo oxedLaopion mov mopeyeL TANPOQopieg 0TV Kol
votnto Python 1) mepuypdpel o véo duvatdtnta yia v Python 1) tig dadikaoieg 1) 1o mepifallov .
Ta PEP Oa mpérmet vo mopéyouv Uio. GUVOTTTLKY TEXVIKT] TPOdLOYPagpt] KoL Lot LOYLKY] YLOL TOL TTPOTELVOUEVOL
YOPOKTNPLOTLKA.

Ta PEP mpoopilovrol va eival oL KUPLOL W oviouoi Yo TNV TTPOTO0T ONUAVILKMV VEOV YOPOKTPLOTIKMYV,
YLOL T GUAAOYY] TTANPOPOPLOY THG KOLVOTNTOG Yo £va THTNUO KoL Yo TNV TEKUNPLmON TOV 0ToQaoemy
oyedLaopov o £xovv ewoay el otnv Python. O ouyypagéag tov PEP gival veBuvog yio thv otkodoumon
oUVavEONG EVTOG THG KOLVOTNTOG KoL TNV TEKUNPLMON avTtiOeTmwy amdPpewy.

Bi. PEP 1.

164 Mapdptnua A’. NMwooapt

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/

The Python Language Reference, Anpooiguon 3.11.13

i
"‘Eva. 6Uvolo astd apyeio og Evav novo Katdhoyo (evOeouévmg omoONKeUUEVO 08 aPYELO Zip) TOU CUUPBEA-
Lovv og évo namespace TOKETO, OTwg opiletar oto PEP 420.

oplopa 0ong
BA\. argument.

provisional API
"Eva. provisional API eivan autd mov €xel eokeppéva eEaupedei amd Tig backwards eyyunoeig ovufatdTntog
™G TUTLKNG PLPAOONKNG. AV Kot deV avauévoviol ONUOVIIKEG OAAAYEG O TETOLEG BLETTOPES, EQPOCOV ETTL-
onualvovtal wg TPocwpLvés, oalhayég un backwards cuufoatotntog (UéyxpL Kou Kotdpynon g SLemapng)
umopel va Tpoktpouv edv KpLhei amapait)to amd tovg faoctkovs mpoypapatiotés. Tétoleg alhayég dev
Ba yivouv dokoma — Ba ovpPolv wovo eav amokalvpOoy copapd Oepemdr EAATTOUOTO TOV TOPOAE-
POMKav mpLv amd T ovprtepiinyn tov APL

Axoun ko yua provisional AP, ou un backwards cuufatég alhayéc Oempoivran «hiom €oyatng aviykng»- o
eEakolovBei va yivetow k40 poomdeia yia va Bpebei o Mior backwards ovpBaty) og Tuy OV evTomiopéva
mpofinuata.

Avt 1 Sadikaoio emrtpémel oty TuTTLKY BLBAo0 KN va ouveyioel va eEghiooetal pe Ty tépodo tou ypo-
Vou, YwpPig va KAELOMVEL TPOPAUATIKE OPALUATO OYESLAOUOV VIO EKTETAUEVES Y POVIKES TTEPLOdOUG. BA.
PEP 411 yi0 teplocdTepes AeTTOUEPELES,

provisional Tokéto
BA. provisional API.

Python 3000
Wevdmvupo yo to ovvoro ekddcemv Python 3.x (emvonOnke stpLv atd wohl Kapd dtav 1) KukAogopia g
€xd00mg 3 NTav KATL 0T0 LoKPLVO HEAAOV.) Autd ovoudletal emiong wg ovviopoypapio «Py3ks.

Pythonic
Mo 1déa 1) éva Koppdtt Kdduko Tov okohovBel TLoTd To Lo Kowvd tdudpata g Yhwooag Python, avti va
VAOTTOLEL KMOLKA YPNOULOTOLMVTOS £VVOLEG KOLVEG 08 ddAeg Yhwooeg. o mapdderyna, £va Kowvd dimpa
otmv Python ivan va xdvet wo eavanym tdvo amd oha ta otolyelo evag iterable ypNOLLOTOLMVTOG ULOL
Mhwon for. [Modhég dhheg YAMOOES TOV SEV €YOUV QUTOV TOV TUTTO KOTAOKEUNG, £TOL OL AvOpmIToL TTov dev
eivar eEotkelmpévor pe v Python ypnowpomototv peptkéc popég Evav aptbuntkod uetpn):

for i in range(len(food)):
print (food[i])

L

Avtibeta, wo mo kabapn uébodog Pythonic:

p
for piece in food:

print (piece)

AVOYVOPLOUEVO GVou,
'Eva dvopo pe KouKkkideg wov deiyvel T «dradpour)» artd to Kabohkd evpog evdg module oe pwo kKhAom,
ouvaptnon 1 uéBodo mov opileTar o vtV TV evoTiTa, Omtwg opitetor oto PEP 3155. Twa ovvaptioelg
Ko KAAOELS OVATATOV ETLTEDOV, TO OVOLYVWPLOUEVO OVOUQL ELVOL 11O LE TO OVOUX TOV OVTLKEWWEVOU:

g
>>> class C:

class D:
def meth (self):
pass

>>> C._ _qualname_
] C]
>>> C.D.__gualname

(ouvéyela oty emduevn oehida)

165

https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/
https://peps.python.org/pep-3155/

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

'C.DFY
>>> C.D.meth.__qualname
'C.D.meth'

‘Otow ypnowooteitar yia avapopd oe modules , To TAHowS avayvweLlouévo évoua oNUaiveL OMOKAPO TO
drakekopuévo path pog to module, CUNITEPLOUBOVOUEVOV TUYOV YOVIKMV TAKETWV T.). email .mime.
text:

>>> import email.mime.text
>>> email.mime.text. name
'email .mime.text'

i 00g avagopag
The number of references to an object. When the reference count of an object drops to zero, it is deallocated.
Reference counting is generally not visible to Python code, but it is a key element of the CPython implementation.
Programmers can call the sys . getrefcount () function to return the reference count for a particular object.

KOVOVIKO TOKETO
'Eva mopadooiokd package, dmwg £vag KATALOYOS OV TTEPLEXEL VoL __init_ . py opyelo.

B\. exiong namespace package.

slots
Mo dSMhwon péoo o€ po KAGoN TTov EEO0LKOVOUEL UVAUT SNADVOVTAG EK TOV TPOTEPMVY YMPO YLOL PG
SeLyua YopaKTNPLOTIKG Ko eEahelpovtag MeELKd oTIyoTUTmV. AV Kat SNUOQIAAG, 1) TEXVLKY elvol KATmG
dVOKOMO VO YiveL OWOTI Ko TTPOOPLLETAL KOAUTEPQ VL0 OTTAVIES TTEPLTTMOELG OTTOV VITAPYEL LEYAAOG 0pLO-
HOG OTLYILOTUTTOV O€ ULOL EQPOPUOYT KPLoWUNS-Uvihungs.

akolovbic
An iterable which supports efficient element access using integer indices viathe __getitem _ () special method
anddefinesa___ 1en__ () method that returns the length of the sequence. Some built-in sequence typesare 1ist,
str,tuple,and bytes. Note that dict alsosupports ___getitem _ () and __len__ (), butisconsidered
a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

H apnpnuévn faoikr kKhGon collections.abc. Sequence opilel o oD Lo TAOVOL SLETOPT) TOV
Eemepva ta amhd ___getitem () xouw __len__ (), adding count (), index (), __contains__ (),
Kow ___reversed__ (). Ot timot Tov VAOTOL0VV AUTHV THV SLEVPUUEVT] SLETTAPT] WTOPOUV VO KOTAYWPT)-
Bouv pntd ypnopomolwvtag register (). Lo meplocdTepn TEKUNPLOON OYETIKA e TG ueBddovg KO-
hovBiag yevikd, avatpéEte oto Common Sequence Operations.

set comprehension
"Evog oupmayfg Tpomog Yo va emeSepyaoteite OM 1 LEPOG TWV OTOLYEIWV O £va iterable Ko Vo EmLOTPOEL
é€va 0Uvolo e To amotehéopata. results = {c for c in 'abracadabra' if c not in 'abc'}
dnuovpyei To ouvolo cuuforoospwy {'r', 'd'}. BA. Displays for lists, sets and dictionaries.

novaduko dispatch
Mo popny dispatch generic function dmov 1 vVAOTOINOY emAEYETAL UE BAON TOV TUTO €VOG UEUOVOUEVOU

opiouatoc.

slice
‘Eva aviikelpevo mov ouvnOmg mepLéyel vor Tuua iag axkoiovdiag sequence. Anuiovpyetton éva slice ypn-
OLUOTTOLDVTAG T1) oneiman subscript, [] we avw Kol Katw teheieg netaEl aplbudv dtav divovol mwolhoi,

Omwg 010 variable_name[1:3:5]. H onueiwon aykilng (subscript) xpnOLLOTTOLEL EGMTEPLKA OVTLKEL-
ueva slice.

€191k pédodog
Mua puéBodog mov kaheitan oLwanpd amd tv Python yia va exteléoel o ovykekpuévn hettovpylo og évov

166 Mapdptnua A’. NMwooapt

The Python Language Reference, Anpooiguon 3.11.13

U0, O 1 TPooNkn. Tétoeg uéBodol €xovve ovouato Tov EEKLVOVV Kot TEAELDVOUY e SUTAES KATW
mavhec. O eldukég uébodot tekunpLwvovon oto Special method names.

Sroon
Mo TpdTaom eivar uépog pag oouvitag (va «Umhok» Kmdika). Mia tpdtaon eivan eite évag expression eite
o 0td TOAEG dopég ue o AEEN-KAedi Ottwg i F, whileW for.

EAEYKTIS OTATIKOV TUTOV
'Eva. eEwtepikd epyaheio 6mov duafdlel Tov Python kddika Kot Tov avalvel, avalntdviag Tpopfiiuoto
omwg havBaouévol Tomol. Bi. extiong rype hints ko to module t yping.

strong reference
Zto C API tng Python, pa toyvpn avagopd eivor pua ovopopd o€ £vo avTIKEIEVO TOV VITKEL 0TOV KMOLKAL
mov TepLEYEL TNV avagopd. H oyxupn avapopd Aaupdvetor Kahmvtag to Py INCREF () 4toav 1 ovopopd
dmuovpyeitar kol amelevOepmvetan e Py _DECREF () Otav duarypoupel 1) avopopd.

H ovvéptnon Py_NewRef () uropel va xpnoLomotnOel yio T dNpoupyic Loyvpng avoagopdis o€ VoL ovTL-
Keipevo. Zvvilwg, 1 ovvdptnon Py_DECREF () mpémel vo Kaleltar otV 1oyupt| avapopd mpwv Byel amod
TO €VPOG TNG LOYVPNG OVOPOPAC, YLa Vo atopevyDel 1) dLappon Wog avopopdic.

B\. emiong borrowed reference.

KOS1Komoinon kewévou
Mo oupforocelpd oty Python eivar o axolovbia onueimv kddko Unicode (010 €0pog U+0000-
U+10FFFF). [0 vo arroOnkeVoeTe 1] Vo LETAPEPETE PLet OVUBOLOGELPEL, TTPETTEL VOL OELPLOTTOLNDEL MG dVAdLKN
akorovbia.

H oeplomoinomn wag ouufBohooslpdg oe o duadikr akohovbio eival YvmoTh wg «KmdLKOToinon» , Kou 1
avodnuovpylo g ovpporooelpds amd Ty duadiki) akorovdio elvol YVOOTH WG «AUTOKMOLKOTOINON».

Ymdpyer pLo. oLkl SLopOPETLKNG GELPLOTOINOTNG KeLwévou codecs, oL 0TToioL GUALOYLKG OVALPEPOVTIL OG
«KOOLKOTTOLNOELG KELUEVOU».

OPYELO KEWUEVOY
'Eva file object ixavo va dLafalel Kot vo ypdepel avtikeipeva str. Zuyvd, éva apyelo KeWEVOU amoKTd
TPOYUOTLK A TTPOOP 00T O€ Lo por) duadik) pot) dedouévarv Kan xewpiletal avtoporta v text encoding. Tlapa-
delypota apyelmv KEWEVOU lval apyeila TOV ovoiyouv o€ hettoupyia kewnévou ("r' M 'w'), sys.stdin,
sys.stdout, Kou otrypdTuma tov io. StringIO.

B\. extiong binary file yuon €vor AVTUKELUEVO apyELOV pe duVATOHTNTA OVAYVIONG KoL EYYPOPNG dvadikd avit-
Kelueva.

ouuPOAOCELPE TPUTAMY ELCAYMYIKOV
Mo 6uuB0A0TELPA TTOU HETUEVETOL ATTO TPELG TEPLITTMOELG ELTE EVOG ELOAYWYLKOD (») 1] LOlg ArtoaTpdpov (“).
Av xou gV Tap€Xouv Kapio AeltovpytkoTnTo o eV eival dtaféoLun (e oVUBOLOOELPES HE LOVA ELOOYW-
YUKQ, elval YpHOoLIES YL SLOPOPOVS MOYOUG. ZaG ETULTPETOVY VO CUUTTEPLAGPETE LOVA KoL SLTTA eLoarywyLtkd
YWPLG dLapuyT) o€ wa CVIPBOLOTELPA KoL UTTOPOVV VO. EKTELVOVTAL O TOMES YPOUUES XWPLS T XPTION TOV
YOPAKTHPA CUVEXELD, KADLOTMVTAG TO LOLOLTEPA XPNOLUA KATA TN OVVTAEY eYYPaQV (e GuUBOAOOELPEG.

TOMOC
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits __class___ attribute or can be retrieved with type (ob7j).

type alias
‘Eva ouvavupo yua €vov TOmo, Tou dNULOVPYELTOL UE TNV avABEa) TUTTOU O€ €va avaryVmpPLOTLKO.

Ta type aliases eival ypnowua yio v amhomoinon rype alias. Two wapaderypao:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplel[int, int, int]]:
pass

167

The Python Language Reference, Anpooisuon 3.11.13

WITOPEL VoL YivEL TTL0 evavayvwoTto dmwg:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

B\ typing kouw PEP 484, mov meprypdepel authv Tnv hettovpytkdtnta.

type hint
'Evag annotation ov KaBopilel TOV avouevouevo TOmo Lo iot UETOPANTY, EVOL YOPAKTNPLOTLKO KAGONG 1)
Lol TOPAUETPO GUVAPTNONG 1] TLUN| ETTLOTPOGPT|G.
Ou vtodei&eig TOmwV (type hints) eival poarpetikéc Ko dev emiBailovran astd tnv Python, odAd eivou xp1i-
OLUEG YLaL static type checkers. Mmtopovv ertiong va fon0fcovy toug IDEs e) cuumhipwon KoL Ty avadio-
HOPPWOT KOdLKA.

YrodeiEeig timov (type hints) yio kobohkég petafintéc, xapoKTnplotkd KAAong Kar ouvopti-
oelg , OMG Oyl TOmKEG UETAPANTES, WITOPOVV VA TPOOTELACTOUV YPNOLUOTOLWVTAS TO typing.
get_type_hints ().

B\. typing xouw PEP 484, mou mepuypdgper autiv Ty AeLToupyLtkotnTa.

K00 MKES VEES YpaupéS
"Eva 1pdog epunveiag pomv Kelwévou atov omoio dha ta akdrovba avayvopilovral mg MEELS mog ypau-
ung: M ovufoon téhoug ypapuufg tov Unix '\n', n ovppaon twv Windows '\ r\n', Kow tnv woid odufoon
Macintosh "\r'. BL. PEP 278 kauw PEP 3116, ka0wmg koL bytes.splitlines () yio mpdobetn ypnon.

annotation perafintig
'Evag annotation wo. petoFANe 1 evog XopaKT)pLoTiKoy KAGoNG.

‘Otav annotating (o peta AN 1 €va XapaKTnPLoTKo KAAONG, 1) 0vadeon elval TPOALPETLKT):

class C:
field: 'annotation'

Ta annotations HETOPANTOV YPNOLUOTOLOVVTOL GUVNOWMG Yo fype hints: YL, TAPAIELYUA OUTH 1) LETOPANTN
avouévetal vo el Tiég int:

[count: int = 0]

H oVUvtoEn annotation petafAntig mepLypdpetan oty evotta Annotated assignment statements.

B\ function annotation, PEP 484 xouw PEP 526, mov mepuypdpovv avty) Aettovpyio. Aeite emiong
annotations-howto yio. BENTLOTES TPOAKTIKEG OYETIKA UE TNV EPYOCIO LE OXOMATUOVG.

virtual environment
"Eva ouvepyatikd ommoiovouévo mepLBAAlov xpOvou eKTELEDTG TTOV ETLTPETEL OTOVG YPNOTESG KOL TLG EQOP-
noyég g Python va eykataotioovv kou vo avafoabuicovy takéta drovoung Python ywpig va mapepfaivouy
0T ovuTePLPopd Ghhwv epapuoymv Python tov extelovvtal 0To 1610 oVoTYUAL.

BA. emtiong venv.

virtual machine
"Evog vtohoylotig opiletan €€ ohokAnpov amd to hoyiomkd. H eucoviky) unyavi g Python extehei to
bytecode Tov eXTEUTETOL ATTO TOV pPeTAYATTLOTY bytecode.

Zen g Python
Katdhoyog oyedlootikdv apydv KoL QLLOCOQLOV TTOV ELVOL XPNOLUES YLOL TNV KATOVON 0T KoL TN XP1HoN TG
yAwooag. O kotdhoyog uropel vo Ppedel mAnkTpoloywvtag «import this» oty dlodpaoTiK KOVoOla.

168 Mapdptnua A’. NMwooapt

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

nAPAPTHMA B’

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.

H avamtuEn tov eyypleov Kol Tov gpyoleiwv toug eivar eE” ohokhnpov edehovtiky mpoomddera, dmwg Ko 1)
idua 1 Python. EGv Béhete va. ouvelopépete, piEte wo. potid ot oghida reporting-bugs yio, TANPOQOPLES OYETIKEG
e To Twg vo. 1o Kavete. Kawvouplol e0ehoviég eival mdvta evmpdodektol!

[ToAAég vy OpLOTiES TTNYALVOUY OTOVG:
« Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
« 7o Docutils tpdtlekt yio v dnuovpyio tmv epapuoydv reStructured Text ko Docutils:

o Fredrik Lundh yua to 816 tov Alternative Python Reference mpdtlekt amd to omoio to Sphinx mpe ol
KoAég LOgec.

B'.1 Contributors to the Python Documentation

IoAhol avBpwrtoL éxouv ouvela@épel ot Yhwooo Python, thv BiioOnin tng Python, ko ta €yypagpa tng Python.
Agite Misc/ACKS otig minyég dravoung g Python yia pa Moto twv ouvieheotdv.

Moévo ue tn ouufol) Kot Tig OUVELGPOPES TG Kotvotntag tg Python, 1) Python €yel tétola vitépoya éyypapo -
Zag evyoaploTovpe!

169

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.11/Misc/ACKS

The Python Language Reference, Anpooisuon 3.11.13

170 Mapdaptnua B’. About these documents

4
NAPAPTHMA [

loTopla kat Adela

.1 Hotopia Tou AoyLoHLKOU

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most, but
not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

‘Ekdoon Mpoepxduevn and ‘Etogq I[dloktnoia GPL compatible?
09.0éwg 1.2 d/v 1991-1995 CWI Vol
13¢éwg1.52 1.2 1995-1999 CNRI Vol
1.6 1.5.2 2000 CNRI OyL
2.0 1.6 2000 BeOpen.com &yt
1.6.1 1.6 2001 CNRI oL
2.1 2.0+1.6.1 2001 PSF oL
2.0.1 2.0+1.6.1 2001 PSF vou
2.1.1 2.1+2.0.1 2001 PSF vaiL
2.1.2 2.1.1 2002 PSF VoL
2.1.3 2.1.2 2002 PSF VoL
2.2 xou whvey 2.1.1 2001-onuepa. PSF Vo

171

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, Anpooisuon 3.11.13

Inueiwon: GPL-compatible doesn’t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

X&p1, 0toug ToAovg eEmTepLkovg e0eLOVTEG TTOV EpYAOTKAY KUTW 07TO TG 081 Yieg Tov Guido, avtég oL ekddoelg
EyLVay EQLKTEG.

.2 OpolL Kat npoUmnoBeocelg ywa tnv npoéocpacn | tTnv Xpnon tneg
Python pe aAAoug Tpomoug

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Kdamoro Aoyioukd mov eival evomupotouévo otnv Python givan vitd duagpopetikég ddeteg ypnone. O adeleg mapal-
TOEVTAL PE KDOOLKO TOV EUTTLITTEL 0€ QUTNV TNV AdeLaL. Agite Adeies kau Evyaototies yra Evoouatwuévo Aoyiouxd
yLoL uLoL EAMLTTN ALOTaL ATV TV OdELMDV.

".2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.11.13

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),._
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—~Python

3.11.13 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.11.13 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All._
—~Rights
Reserved" are retained in Python 3.11.13 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.11.13 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.11.13.

4. PSF is making Python 3.11.13 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

172 Mapdaptnua . lotopia kat Adsla

The Python Language Reference, Anpooiguon 3.11.13

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION..
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.11.13 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.11.13

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.L
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.11.13, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.11.13, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

r22 YMoQNIA AAEIAZ BEOPEN.COM I'lA PYTHON 2.0

ZYM®ONIA AAEIAZ ANOIXTOY KQAIKA BEOPEN PYTHON EKAOZH 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,

(ouvéyeLa oV ETOUEVT] GEMDQL)

M.2. Opol kai poiimoBgoelg yia tTnv npoopaon i tnv xprion tng Python pe aAAoug tpomnoug173

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

r.2.3 ZYM®QNIA AAEIAZ CNRI I'lA PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR

(ouvéyela otV emouevn oekida)

174 Mapdaptnua . lotopia kat Adsla

The Python Language Reference, Anpooiguon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

r2.4 XYMoOQNIA AAEIAZ CWII'IA PYTHON 0.9.0 EQx 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

M.2. Opol kai poiimoBgoelg yia tnv npoopaon i tnv xprion tng Python pe aAAoug tpomnoug175

The Python Language Reference, Anpooisuon 3.11.13

M.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.13
DOCUMENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

.3 Adeleq kKatL Euxapiotieg yia Evowpatwpévo AOYLOULKO

Avt) 1 evémto eivan wa nutedic, aAhd avEavopevn Mota adeidv Kot uyaplotidv yio AOYLOWKO TPITwYV, T0U
EVOWUOTMOVETOL 0TNV dravouy g Python.

M.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

(ouvéyela otV emtduevVn oekida)

176 Mapdaptnua . lotopia kat Adsla

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference, Anpooiguon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

M.3.2 Sockets

H evémnto socket ypnouomolel TG ovvaptoels, getaddrinfo (), ko getnameinfo (), ta omoio £govv
viomoBei oe draopetikd apyeia amd to WIDE 'Epyo, https://www.wide.ad. jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ' "AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 177

https://www.wide.ad.jp/

The Python Language Reference, Anpooisuon 3.11.13

M.3.3 Aouyxpoveg socket unnpeoieq

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

M.3.4 Awaxeipion Cookie

H evémto http.cookies mepéyel TV TOpAKAT® E1O0TOINON:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

178 Mapdaptnua . lotopia kat Adsla

The Python Language Reference, Anpooiguon 3.11.13

M.3.5 Avixveuon eKTéAeong

H evomto t race mepLéyel v TapokdTm eLd0TOiNo:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

M.3.6 Zuvaptnoelg UUencode kat UUdecode

H evomto uu mepiéyet v mapakdtm edomoinon:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(ouvéyela otV emouevn oekida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 179

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)
version is still 5 times faster, though.
- Arguments more compliant with Python standard

M.3.7 KAfjoeig Anopakpuopevng Awadikaciag XML

H evomta xmlrpc.client mePLEXEL TNV TAPOKATO ELOOTOINON:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

M.3.8 test_epoll

Hevomta test.test_epoll mepLéyel TV TOPAKATm ELOOTOIMON:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(ouvéyeLa oV ETOUEVT] GEMDQL)

180 Mapdaptnua . lotopia kat Adsla

The Python Language Reference, Anpooiguon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

M.3.9 EmAoyn kqueue

H evomta select mepiéyel v mapokdtm ewdoroinon yio v kqueue diemopt):

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

".3.10 SipHash24

To apyelo Python/pyhash. c mepiéyel v vhomoinon tov Marek Majkowski Tou alyopiBpov Tov Dan Bernstein,
SipHash24. Autd mepléyeL tnv mopaKatm oNueiwon:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.
</MIT License>

(ouvéyela otV emtduevVn oekida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 181

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)
Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

M.3.11 strtod kaw dtoa

To apyelo Python/dtoa. c, mov mapéyel TG ouvoptnoelg dtoa kol strtod g C yia uetatpomt) twv C doubles
7TPOG Ka ard strings, Tpogpyetan amd To oumvupo apyeio Tov David M. Gay, tpog to mapdv dadéoipo amd https:
/Iweb.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c. To apyikd apyeio, Omwg avaxthonke oTig
16 Moptiov, 2009, meptéxel To. aKOLOVHO TVEVIOTLKA SIKAULMULALTO, KoL TNV ELO0TTOIN0N 0deL0dOTNONG:

/**

*

* The author of this software is David M. Gay.

*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*

* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.

*

*

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

‘k***********************‘k*‘k*********‘k*‘k************************/

r.3.12 OpenSSL

O povédechashlib, posix, ssl, crypt ypnopomorotv tv Bifrio0nkn OpenSSL yia emuhéov amddoon, edv
dratifevtal oo To Aettoupytko ovotnua. Emumhéov, to mpoypduuato eykatdotaong yo tnv Python yio Windows
ko macOS, evdéyetal va mepthaufavouv éva aveiypago tov fipiodnkdv OpenSSL, erouévwg ovpmephoufa-
voupe éva aviiypago g ddelag OpenSSL edm. T'wa tnv ékdoon OpenSSL 3.0 ko yio vedtepeg eKOOTELG TOV
TPOoEPYovVTaL 0T QUTH), LoYVEL 1) AdeLa Apache v2:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

(ouvéyela otV emoueV oekida)

182 Mapdaptnua . lotopia kat Adsla

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python Language Reference, Anpooiguon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
(ouvéyela otV emtduevn oehida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 183

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution (s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and

may provide additional or different license terms and conditions
(ouvéyela otV emtduevn oehida)

184 Mapdaptnua . lotopia kat Adsla

The Python Language Reference, Anpooiguon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO

185

The Python Language Reference, Anpooisuon 3.11.13

.3.13 expat

H enéxtoon pyexpat dnuLovpyeitot xpNoLuomoldvTog Vo CURTEPLIAAUBOVOUEVO OVTLYPAPO TV TNYMV expat,
eKTOG eV 1 £K8001 €xeL TV pUOWON ——with-system—-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

r.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
——with-system—-1libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

186 Mapdaptnua . lotopia kat Adsla

The Python Language Reference, Anpooiguon 3.11.13

r.3.15 zlib

H eméktaon z1ib dnuovpyeiton xpnoLoToLmVTOS £VO CUUTEPIAAUBAVOUEVOL OVTLYPAPO TOV TTNYWV Zlib, edv 1)
€kd0o0m Tov zlib ov Bpioketal 0To CVOTNUA ElVOL TTOAD TTOAMA YLoL VAL, XPNOLULOTTOLNOEL YLoL TV KOTAOKEVY:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

M.3.16 cfuhash

H vlomoinom tov mivoko KOTAKEPUOTIOUOV TOU YPNOLLOTOLEITAL ad To tracemalloc PBaociletal oto €pyo
cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

(ouvéyela otV emtduevVn oekida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 187

The Python Language Reference, Anpooisuon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

M.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
——with-system-libmpdec

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3.18 W3C C14N ocouita doKLuQ

H covita dokuung C14N 2.0 oto mokéto test (Lib/test/xmltestdata/cl4n-20/) avaktyOnke amd Tov
tototomo tov W3C https://www.w3.org/TR/xml-c14n2-testcases/ kou dravépeton pe v ddewa 3 pritpwv BSD:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

(ouvéyela otV emtduevVn oekida)

188 Mapdaptnua . lotopia kat Adsla

https://www.w3.org/TR/xml-c14n2-testcases/

The Python Language Reference, Anpooiguon 3.11.13

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

r.3.19 Audioop

To module audioop ypnowomolel wg PAaon kKmdika Tou apyeiov g771.c tov épyouv Sox. https://sourceforge.net/
projects/sox/files/sox/12.17.7/sox-12.17.7 .tar.gz

Avtd o mnyaiog KOdKag eival mpoitdv g Sun Microsystems, Inc. Kot mwopéyetal yia ameplopLoT
xpNo1. OL XpNOoTES UTOPOVY VA AVTLYPAYPOUV 1] VO TPOTOTOLNCOVV CUTOV TOV TTNYaio KMALKa ymplg

YPEWON.
O [MHT'AIOZ KOQAIKAZ TOY SUN IMAPEXETAI OITQX EXEI XQPIZ KANENOZ EIAOYZ EITYH-
2EIZ ZSYMITEPIAAMBANOMENQN EITYHZEQN ZXEAIAZMOY, EMITIOPEYZIMOTHTAZ KAI

KATAAAHAOTHTAZ I'TA ZYTKEKPIMENO 2KOIIO 'H ITIOY TTPOKYIITEI ATIO KAIIOIA TIO-
PEIA XYNAAAATHZ, XPHZHZ 'H EMITIOPIKHZ ITPAKTIKHX.

O niyaiog KOdIKAG Tov Sun Tap€yeToL XmPIg TNV VITOoTHPLEN Kot Xwpig Kapio voypéman ek Hépoug
g Sun Microsystems, Inc. va fon0noer otnv yp1omn, oty dtopOwon, Tpomomoinon 1 fertiwon Tov.
SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE

INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
OR ANY PART THEREOF.

Ze kapio mepimtmon M Sun Microsystems, Inc. dev @éper evBivn yio Tuy OV atdAeld 60wV 1) Kep-
dV 1) ddheg edLKég, Euueoeg Kat emakolovleg Tnuieg, axoun kot ov 1 Sun €yl evnuepwOel Yo Tv
TOOVOTNTA TETOLWV THULOV.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, Koligpopvia 94043

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO

189

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz

The Python Language Reference, Anpooisuon 3.11.13

".3.20 asyncio

Mépmn g evottog asyncio gvowpatdvoviol amd to uvloop 0.16, 1 omoio dravéuetol pe ddero MIT:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

190 Mapdaptnua . lotopia kat Adsla

https://github.com/MagicStack/uvloop/tree/v0.16.0

NAPAPTHMA £\’

Copyright

H Python ko vt 1) Tekunpiwon eivod:

Copyright © 2001-2023 Python Software Foundation. ‘Ol To. StkodUoTo SLOTPOUVTAL.

Copyright © 2000 BeOpen.com. OLa T SUKOLMOUOTA SLATNPOVVTOL.

Copyright © 1995-2000 Corporation for National Research Initiatives. Olo. To. StKaLOUATO SLATNPOVVTAL.

Copyright © 1991-1995 Stichting Mathematisch Centrum. ‘Ola Tal SLKOLOUOTA SLATPOVVTOL.

AvatpéEte oto lotopla kar Adewa Yo, TA PN G TANPOQOPN oY OYeTLKd pe TV ddera yprong Ko TG eEouoLodoThHoELC.

191

The Python Language Reference, Anpooisuon 3.11.13

192 Mapaptnua A'. Copyright

Eupetriplo

MN-aAQAPLTIKA
..., 151
ellipsis literal,?2l
string literal, 13
. (dot)
attribute reference, 86
in numeric literal, 17
! (exclamation)
in formatted string literal, 14
— (minus)
binary operator,9l
unary operator, 90
; (semicolon), 111
' (single quote)
string literal, 12
! patterns, 120
" (double quote)
string literal, 12
string literal, 13
(hash)
comment, 8
source encoding declaration,8
% (percent)
operator, 91

o\°
Il

augmented assignment, 102
& (ampersand)
operator, 92
&:
augmented assignment, 102
() (parentheses)
call, 87
class definition, 129
function definition, 127
generator expression, 8l
in assignment target list, 100
tuple display, 79

* (asterisk)
function definition, 128
import statement, 108
in assignment target list, 100
in expression lists,97
in function calls, 88
operator, 90

* *
function definition, 128
in dictionary displays, 80
in function calls, 88
operator, 89

* k=

augmented assignment, 102

augmented assignment, 102
+ (plus)
binary operator, 91
unary operator, 90
+=
augmented assignment, 102
, (comma), 79
argument list, 87
expression list, 80,97,103,129
identifier 1list, 110
import statement, 107
in dictionary displays, 80
in target 1list, 100
parameter list, 127
slicing, 87
with statement, 116
/ (slash)
function definition, 128
operator, 90

//

operator, 90
//=

augmented assignment, 102
/=

augmented assignment, 102

193

The Python Language Reference, Anpooisuon 3.11.13

0b AS pattern, OR pattern, capture
integer literal, 17 pattern, wildcard pattern, 120
0o ASCITI, 5,12
integer literal, 17 AssertionError
0x exception, 103
integer literal, 17 AttributeError
2to3, 151 exception, 86
: (colon) BDFL, 153
annotated variable, 102 BNF, 4, 77
compound statement, 112, 113,116,118, 127, Boolean
129 object, 21
function annotations, 128 operation, 95
in dictionary expressions, 80 c, 13
in formatted string literal, 14 language, 20, 22,27, 92
lambda expression, 96 CPython, 155
slicing, 87 C-contiguous, 154
: = (colon equals), 95 Conditional
< (less) expression, 95
operator, 92 DEDENT token,9, 112
<< EAFP, 156
operator, 91 Ellipsis
<<= object, 21
augmented assignment, 102 False, 21
<= Fortran contiguous, 154
operator, 92 GIL, 158
I= GeneratorExit
operator, 92 exception, 83, 85
—= IDLE, 159
augmented assignment, 102 INDENT token,9
= (equals) ImportError
assignment statement, 100 exception, 107
class definition,45 Java
for help in debugging using string language, 22
literals, 14 LBYL, 161
function definition, 127 MRO, 162
in function calls, 87 NEWLINE token,7,112
== NameError
operator, 92 exception, 78
-> NameError (evowuatwuévn eEaioeon), 60
function annotations, 128 None
> (greater) object, 20, 100
operator, 92 NotImplemented
>= object, 20
operator, 92 PEP, 164
>> PYTHONHASHSEED, 39
operator, 91 PYTHONNODEBUGRANGES, 32
>>= PYTHONPATH, 72
augmented assignment, 102 Python 3000, 165
>>> 151 Python Enhancement Proposals
@ (at) PEP 1, 164
class definition, 129 PEP 8,93
function definition, 127 PEP 236, 109
operator, 90 PEP 238, 157
PEP 252,42

194 Eupetriplo

The Python Language Reference, Anpooiguon 3.11.13

PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP

255, 82

278, 168

302, 63,75, 157, 161
308, 96

318, 129, 130
328,75

338,75

342,82

343,54, 118, 154
362,152, 164
366, 70,75

380, 82
411,165
414,13

420, 63, 65,71,75, 157, 163, 165

443,158
448, 80, 89, 97
451,76, 157
483, 158

484,48, 103, 128, 152, 157, 158, 168
492, 56, 82, 132, 152, 153, 155

498, 16, 156
519, 164
525, 82, 152

526,103, 128, 152, 168

530,79

560, 45, 49
562,41

563, 109, 129
570, 128

572, 81,96, 122
585, 158
614,127, 130
617,135
626,33
634,55, 118, 127
636, 118, 127
3104, 110
3107, 128
3115, 46, 130
3116, 168
3119, 47
3120,7

3129, 129, 130
3131, 10
3132, 102
3135, 47
3147, 70
3155, 165

excepti

SystemExit (evowuatwuévn eEaipeon), 62

True, 21

TypeError
excepti

UNIX, 133

on, 83, 104

on, 90

UnboundLocalError, 60

Unicode, 22

Unicode Consortium, 13

ValueError
excepti
Windows, 133

on, 91

Zen tng¢ Python, 168
ZeroDivisionError

excepti

on, 90

[1 (square brackets)

in assignment target list, 100
list expression, 80

subscription, 86

\ (backslash)

escape
\N

escape
\U

escape
AN\

escape
\a

escape
\b

escape
\f

escape
\n

escape
\r

escape
\t

escape
\u

escape
\v

escape
\x

escape
~ (caret)

operato

A

augmented assignment, 102

sequence, 13
sequence, 13
sequence, 13
sequence, 13
sequence, 13
sequence, 13
sequence, 13
sequence, 13
sequence, 13
sequence, 13
sequence, 13
sequence, 13
sequence, 13

r, 92

Pythonic, 165
Standard C, 13
StopAsynclteration
exception, 85
Stoplteration

_ (underscore)

p—

in numeric literal, 17

identifiers, 11

__, ldentifiers,11

__abs__ () (uébodog tng object), 53

Eupetnplo

195

The Python Language Reference, Anpooisuon 3.11.13

__add___ () (uébodog tn¢ object), 52
__aenter__ () (uéBodog tg object), 58
__aexit__ () (uéBodog tig object), 58
__aiter__ () (uéBodog tng object), 57
__all__ (optional module attribute), 108
__and__ () (uébodog tn¢ object), 52
__anext__ () (uébodog tng agen), 85
__anext__ () (uéBodog tng object), 57

__annotations__ (class attribute), 29
__annotations___ (function attribute), 25
__annotations__ (module attribute), 28
__annotations__ (tdidtnta g function), 25

__await__ () (uéBodog tng object), 56
_ bases__ (class attribute), 29
__bool__ () (object method), 50
__bool__ () (uéBodog tng object), 39
__bytes__ () (uéBodog ¢ object), 38
_ _cached_ ,70

__call__ () (object method), 89
__call__ () (uéBodog tns object), 50
___cause___(exception attribute), 105
__ceil__ () (uéBodog tngs object), 54

__class___ (instance attribute), 29

_ class__ (method cell), 46

_ class__ (module attribute), 41

__class_getitem__ () (uébodog kAdong tng object),
48

__classcell__ (class namespace entry), 46

__closure__ (function attribute), 24

__closure__ (tdidtnta g function), 24

___code__ (function attribute), 25

__code__ (t6idtyra tng function), 25

__complex__ () (uéBodog tig object), 53
__contains__ () (uébodog tg object), 51
__context___ (exception attribute), 105
__debug__, 103

__defaults__ (function attribute), 25
__defaults__ (tdotnta e function), 25

__del__ () (uéOobog tng object), 37
__delattr__ () (uéBodog g object), 40
__delete__ () (uéOodog tng object), 42
__delitem__ () (uéBodog tn¢ object), 51

_dict__ (class attribute), 29
___dict__ (function attribute), 25
__dict__ (instance attribute), 29
__dict__ (module attribute), 28
__dict__ (iddtnra g function), 25
_ dir__ (module attribute), 41
__dir__ () (uébodog tng object), 40
__divmod__ () (uéBodog tng object), 52
__doc___ (class attribute), 29

doc___ (function attribute), 25
__doc__ (method attribute), 26
__doc__ (module attribute), 28

__doc___ (tddtnta ¢ function), 25
__doc__ (tSidtnta g method), 26

__enter__ () (ué0odog tng object), 54
__eq__ () (uéBodog g object), 38
__exit__ () (uéBodog tigs object), 54

_ file_ ,70

__file_ (module attribute), 28
__float__ () (uébodog tng object), 53
__floor__ () (uébodog tng object), 54

_ floordiv__ () (uébodog g object), 52
__format__ () (uéBodog tng object), 38

__func__ (method attribute), 26
__func__ (10dtnra tng method), 26

_ future_ , 157

future statement, 108
__ge__ () (uébodog tng object), 38
__get__ () (uébodog tng object), 41
__getattr__ (module attribute), 41
__getattr__ () (uébodog tng object), 40
__getattribute__ () (uéBodog tng object), 40
__getitem__ () (mapping object method), 36
__getitem__ () (uéBodog tng object), 5O

__globals__ (function attribute), 24

__globals___ (tdtdtnta 116 function), 24
__gt__ () (uéBodog tng object), 38
__hash__ () (uéBodog tnc object), 39
__iadd__ () (uéBodog tng object), 53
__diand__ () (uéBodog tng object), 53
__ifloordiv__ () (uéBodog tig object), 53
__ilshift__ () (uéBodog tng object), 53
__imatmul__ () (uéBodog tngs object), 53
__imod__ () (uéBodog tng object), 53
__imul__ () (uéBodog tng object), 53
__index__ () (uéBodog tng object), 53
__init__ () (uéBodog g object), 36
__init_subclass__ () (ué6odog kAdorngs tng object),
44
__instancecheck__ () (uéBodog g class), 47
__int__ () (uébodog tng object), 53
__invert__ () (uéBodog tng object), 53
__dor__ () (uéBodog tig object), 53
__ipow__ () (uéBodog tng object), 53
__dirshift__ () (uéBodog tng object), 53
__isub__ () (uéBodog tng object), 53
__iter_ () (uébodog g object), 51
__itruediv__ () (uéBodog tng object), 53
__ixor__ () (uéBodog tng object), 53

__kwdefaults___ (function attribute), 25
__kwdefaults__ (idtdtnro tng function), 25
__le__ () (uéBodog tng object), 38

__len__ () (mapping object method), 39
__len__ () (uéBodog trg object), 50
__length_hint__ () (uéBodog tng object), 50
_ loader_ ,70

196

Eupetnplo

The Python Language Reference, Anpooiguon 3.11.13

__1shift__ () (uébodog t1¢ object), 52
1t () (uéBodog tng object), 38
_ _main_

module, 61, 133
__matmul__ () (uéBodog tng object), 52
__missing__ () (uéBodog tngs object), 51
__mod___ () (uéBodog tng object), 52

_ _module__ (class attribute), 29
__module__ (function attribute), 25

_ _module__ (method attribute), 26
__module___ (tddtnta 1156 function), 25
__module__ (totdtnta tng method), 26

__mro_entries__ () (uébodog tng object), 45

__mul__ () (uébodog g object), 52
_ _name__,70

__name___(class attribute), 29
__name___ (function attribute), 25
__name___ (method attribute), 26

__ name___ (module attribute), 28
__name___ (10idtnta tng function), 25

__name___ (t0dtyTa Tng method), 26

ne__ () (uéBodog tic object), 38
__neg___ () (uébodog tng object), 53
__new__ () (uéBodog g object), 36
__next__ () (uéBodog g generator), 83
__objclass__ (tdidtnta g object), 42
__or__ () (uéBodog tng object), 52
__package_ ,70
__path__,70
__pos__ () (uébodog tng object), 53
__pow___() (uéBodog g object), 52

__prepare__ (metaclass method), 46

__qualname___ (tdtotnta e function), 25

__radd__ () (uéBodog tng object), 52
__rand__ () (uéBodog tg object), 52
__rdivmod__ () (uéBodog tng object), 52
__repr__ () (uéBodog tng object), 37
__reversed__ () (uéBodog ¢ object), 51
__rfloordiv__ () (uéBodog tng object), 52
_rlshift__ () (uéBodog trg object), 52
__rmatmul__ () (uéBodog trc object), 52
__rmod__ () (uéBodog tng object), 52
__rmul__ () (uéBodog tng object), 52
__ror__ () (uébodog tng object), 52
__round__ () (uéBodog tng object), 54
__rpow__ () (uéBodog tng object), 52

_ rrshift_ () (uéBodog s object), 52
__rshift__ () (uéBodog g object), 52
__rsub___ () (uéBodog tng object), 52
__rtruediv__ () (uébodog tng object), 52
__rxor__ () (uéBodog tng object), 52

__self__ (method attribute), 26
__self__ (i6dtyra tng method), 26
__set__ () (uébodog tn¢ object), 42

__set_name___ () (uébodog ¢ object), 44
__setattr__ () (uébodog tng object), 40
__setitem__ () (uébodog tng object), 51
_ slots_ , 166

__spec__,70

__str__ () (uébodog tng object), 37
__sub___ () (uébodog tng object), 52
__subclasscheck__ () (uébodog trg class), 47
__traceback__ (exception attribute), 105
__truediv__ () (uébBodog tng object), 52
__trunc__ () (uéBodog ¢ object), 54
__xor___ () (uébodog tn¢ object), 52

abs

built-in function, 53
aclose () (uébodog tnc agen), 85
addition, 91

and
bitwise, 92
operator, 95
annotated

assignment, 102
annotation, 151
annotation petaBAntnicg, 168
annotations

function, 128
anonymous

function, 96
argument

call semantics, 87

function, 24

function definition, 127
arithmetic

conversion, 77

operation,binary, 90

operation, unary, 90
array

module, 23
as

except clause, 114

import statement, 107

keyword, 107, 113, 116, 118

match statement, 118

with statement, 116
asend () (uébodog g agen), 85
assert

statement, 103
assertions

debugging, 103
assignment

annotated, 102

attribute, 100, 101

augmented, 102

class attribute, 29

class instance attribute, 29

Eupetnplo

197

The Python Language Reference, Anpooisuon 3.11.13

slicing, 101
statement, 23, 100
subscription, 101
target list, 100
assignment expression, 95
async
keyword, 130
async def
statement, 130
async for
in comprehensions, 79
statement, 130
async with
statement, 131
asynchronous generator
asynchronous iterator, 27
function, 27
asynchronous—generator
object, 85
athrow () (uébodog s agen), 85
atom, 78
attribute, 20
assignment, 100, 101
assignment, class, 29
assignment, class instance, 29
class, 29
class instance, 29
deletion, 104
generic special, 20
reference, 86
special, 20
augmented
assignment, 102
await
in comprehensions, 79
keyword, 89, 130
awaitable, 153
b \
bytes literal, 13
b"
bytes literal, 13
backslash character,8
binary
arithmetic operation, 90
bitwise operation, 92
binary literal, 17
binding
global name, 110
name, 100, 107, 127, 129
bitwise
and, 92
operation,binary, 92
operation, unary, 90
or, 92

xor, 92
blank line, 9
break
statement, 106, 112, 113, 115, 116
built-in
method, 27
built-in function
abs, 53
bytes, 38
call, 89
chr, 22
compile, 110
complex, 53
divmod, 52
eval, 110, 134
exec, 110
float, 53
hash, 39
id, 19
int, 53
len, 22, 23,50
object, 27, 89
open, 30
ord, 22
pow, 52,53
print, 38
range, 113
repr, 100
round, 54
slice, 35
type, 19, 45
built-in method
call, 89
object, 27, 89
builtins
module, 133
byte, 22
bytearray, 23
bytecode, 30, 154
bytes, 22
built-in function, 38
bytes literal, 12
bytes-like avtikeipeva, 153
call, 87
built-in function, 89
built-in method, 89
class instance, 89
class object, 29, 89
function, 24, 89
instance, 50, 89
method, 89
procedure, 100
user—-defined function, 89
callable, 154

198

Eupetnplo

The Python Language Reference, Anpooiguon 3.11.13

object, 24, 87
callback, 154
case

keyword, 118

match, 118
case block, 120
chaining

comparisons, 92

exception, 105
character, 22, 87
chr

built-in function, 22
class

attribute, 29

attribute assignment, 29

body, 46

constructor, 36

definition, 104, 129

instance, 29

name, 129

object, 29, 89, 129

statement, 129
class instance

attribute, 29

attribute assignment, 29

call, 89

object, 29, 89
class object

call, 29, 89
clause, 111
clear () (ué6odog tng frame), 34
close () (u€6odog tng coroutine), 57
close () (uébodog g generator), 83
co_argcount (code object attribute), 30
co_argcount (tddtnTa e codeobject), 31
co_cellvars (code object attribute), 30
co_cellvars (ididtnTa ¢ codeobject), 31
co_code (code object attribute), 30
co_code (tddtnta g codeobject), 31
co_consts (code object attribute), 30
co_consts (tddtyra e codeobject), 31
co_filename (code object attribute), 30
co_filename (tddtnra 116 codeobject), 31
co_firstlineno (code object attribute), 30
co_firstlineno (tdiotnta g codeobject), 31
co_flags (code object attribute), 30
co_flags (t0dtnTa e codeobject), 31
co_freevars (code object attribute), 30
co_freevars (ididtnra ¢ codeobject), 31
co_kwonlyargcount (code object attribute), 30
co_kwonlyargcount (tddtnta g codeobject), 31
co_lines () (uébodog tnc codeobject), 32
co_lnotab (code object attribute), 30
co_lnotab (tdidtnta 16 codeobject), 31

co_name (code object attribute), 30
co_name (tddtnTa g codeobject), 31
co_names (code object attribute), 30
co_names (t0dtnTa e codeobject), 31
co_nlocals (code object attribute), 30
co_nlocals (tdidtnta e codeobject), 31
co_positions () (uébodog tng codeobject), 32
co_posonlyargcount (code object attribute), 30
co_posonlyargcount (tdtdtnra tng codeobject), 31
co_qualname (code object attribute), 30
co_qualname (tddtnra 116 codeobject), 31
co_stacksize (code object attribute), 30
co_stacksize (ididtnra g codeobject), 31
co_varnamnes (code object attribute), 30
co_varnames (t0étnTa g codeobject), 31
code object, 30
collections

module, 23
comma, 79

trailing, 97
command line, 133
comment, 8
comparison, 92
comparisons, 38

chaining, 92
compile

built-in function, 110
complex

built-in function, 53

number, 22

object, 22
complex literal, 17
compound

statement, 111
comprehensions, 79

dictionary, 80

list, 80

set, 80
conditional

expression, 96
constant, 12
constructor

class, 36
container, 20, 29
context manager, 54
context petafAntn, 154
contiguous, 154
continue

statement, 107, 112, 113, 115, 116
conversion

arithmetic, 77

string, 38, 100
coroutine, 56, 82, 155

function, 27

Eupetnplo

199

The Python Language Reference, Anpooisuon 3.11.13

coroutine ouvdptnon, 155
dangling
else, 112
data, 19
type, 20
type, immutable, 78
dbm.gnu
module, 24
dbm.ndbm
module, 24
debugging
assertions, 103
decimal literal, 17
decorator, 155
def
statement, 127
default
parameter value, 127
definition
class, 104, 129
function, 104, 127
del
statement, 37, 104
deletion
attribute, 104
target, 104
target list, 104
delimiters, 18
descriptor, 155
destructor, 37, 101
dictionary
comprehensions, 80
display, 80
object, 24, 29, 39, 80, 86, 101
display
dictionary, 80
list, 80
set, 80
division, 90
divmod
built-in function, 52
docstring, 129, 156
documentation string, 32
duck-typing, 156
e
in numeric literal, 17
elif
keyword, 112
else
conditional expression, 96
dangling, 112
keyword, 106, 112, 113, 115
empty
list, 80

tuple, 22,79
encoding declarations (source file), 8
escape sequence, 13
eval
built-in function, 110, 134
evaluation
order, 97
exc_info (in module sys), 34
except
keyword, 113
except_star
keyword, 115
exception, 105
AssertionError, 103
AttributeError, 86
GeneratorExit, 83, 85
ImportError, 107
NameError, 78
StopAsyncIteration, 85
StopIteration, 83, 104
TypeError, 90
ValueError, 91
ZeroDivisionError, 90
chaining, 105
handler, 34
raising, 105
exclusive
or, 92
exec
built-in function, 110
execution
frame, 129
stack, 34
expression, 77
Conditional, 95
conditional, 96
generator, 81
lambda, 96, 128

list, 97,99

statement, 99

yield, 81
extension

module, 20
fl

formatted string literal, 13
f"

formatted string literal, 13
f-string, 156
f_back (frame attribute), 33
f_back (t6idtnra g frame), 33
f_builtins (frame attribute), 33
f _builtins (Sidtnra 6 frame), 33
f_code (frame attribute), 33
f_code (tdiotnta e frame), 33

200

Eupetnplo

The Python Language Reference, Anpooiguon 3.11.13

f_globals (frame attribute), 33 name, 127
f_globals (tdidtnta g frame), 33 object, 24,27, 89, 127
f_lasti (frame attribute), 33 user—defined, 24
f_lasti (W0dtnra g frame), 33 future
f_1lineno (frame attribute), 33 statement, 108
f_lineno (tididtnTa 156 frame), 34 garbage collection, 19
f_locals (frame attribute), 33 generator, 158
f_locals (ididtnra tng frame), 33 expression, 81
f_trace (frame attribute), 33 function, 27, 81, 104
f_trace (10otnra N6 frame), 34 iterator, 27, 104
f_trace_1lines (frame attribute), 33 object, 32, 81, 82
f_trace_lines (ididtnta w18 frame), 34 generator iterator, 158
f_trace_opcodes (frame attribute), 33 generator éxppaocn, 158
f_trace_opcodes ((didtnTa 16 frame), 34 generic
finalizer, 37 special attribute, 20
finally global

keyword, 104, 106, 107, 113, 116 name binding, 110
find_spec namespace, 24

finder, 66 statement, 104, 110
finder, 66, 157 global interpreter lock, 158

find_spec, 66 grouping, 9
float guard, 120

built-in function, 53 handler
floating point exception, 34

number, 22 hash

object, 22 built-in function, 39
floating point literal, 17 hash character,8
for hash-based pyc, 159

in comprehensions, 79 hashable, 81, 159

statement, 106, 107, 112 hexadecimal literal, 17
form hierarchy

lambda, 96 type, 20
format () (built-in function) hooks

__str__ () (object method), 37 import, 66
formatted string literal, 14 meta, 66
frame path, 66

execution, 129 id

object, 33 built-in function, 19
from identifier, 10,78

import statement, 107 identity

keyword, 81, 107 test, 95

yield from expression, 82 identity of an object, 19
frozenset if

object, 23 conditional expression, 96
fstring, 14 in comprehensions, 79
f-string, 14 keyword, 118
function statement, 112

annotations, 128 imaginary literal, 17

anonymous, 96 immutable, 159

argument, 24 data type, 78

call, 24, 89 object, 22,78, 81

call,user—defined, 89 immutable object, 19

definition, 104, 127 immutable sequence

generator, 81, 104 object, 22

Eupetnplo 201

The Python Language Reference, Anpooisuon 3.11.13

immutable types
subclassing, 36
import
hooks, 66
statement, 28, 107
import hooks, 66
import machinery, 63
in
keyword, 112
operator, 95
inclusive
or, 92
indentation, 9
index operation,?22
indices () (uéBodog trg slice), 35
inheritance, 129
input, 134
instance
call, 50, 89
class, 29
object, 29, 89
int
built-in function, 53
integer, 22
object, 21
representation, 21
integer literal, 17
interactive mode, 133
internal type, 30
interpolated string literal, 14
interpreted, 159
interpreter, 133
inversion, 90
invocation, 24
io
module, 30
irrefutable case block, 120
is
operator, 95
is not
operator, 95
item
sequence, 86
string, 87
item selection, 22
iterable, 160
unpacking, 97
iterator, 160

async, 130
await, 89, 130
case, 118
elif, 112
else, 106, 112,113,115
except, 113
except_star, 115
finally, 104, 106, 107, 113, 116
from, 81, 107
if, 118
in, 112
yield, 81
lambda, 161
expression, 96, 128
form, 96
language
c, 20, 22,27,92
Java, 22
last_traceback (in module sys), 34
leading whitespace,9
len
built-in function, 22,23, 50
lexical analysis,?
line continuation,8
line joining,7,8
line structure,’
list
assignment, target, 100
comprehensions, 80
deletion target, 104
display, 80
empty, 80
expression, 97,99
object, 23, 80, 86, 87, 101
target, 100, 112
list comprehension, 161
literal, 12,78
loader, 66, 161
logical line,7
loop
statement, 106, 107, 112
loop control
target, 106
magic
nébodog, 161
makefile () (socket method), 30
mangling
name, 78

J mapping, 161
in numeric literal, 18 object, 23, 29, 86, 101
key, 80 match
key/value pair, 80 case, 118
keyword, 11 statement, 118
as, 107,113,116, 118 matrix multiplication, 90
202 Eupetnplo

The Python Language Reference, Anpooiguon 3.11.13

membership

test, 95
meta

hooks, 66
meta hooks, 66
meta path finder, 161
metaclass, 45
metaclass hint, 46

method
built-in, 27
call, 89

object, 26,27, 89
user—-defined, 26
minus, 90
module, 162
__main_ , 61,133
array, 23
builtins, 133
collections, 23
dbm.gnu, 24
dbm.ndbm, 24
extension, 20
importing, 107
io, 30
namespace, 28
object, 28, 86
sys, 114, 133
module spec, 66
module emnéxtaong, 156
modulo, 91
multiplication, 90
mutable, 162
object, 23, 100, 101
mutable object, 19
mutable sequence
object, 23
name, 10, 78

binding, 100, 107, 127, 129

binding, global, 110
class, 129
function, 127
mangling, 78
rebinding, 100
unbinding, 104
named expression,95
named tuple, 162
names
private, 78
namespace, 163
global, 24
module, 28
package, 65
negation, 90
nested scope, 163

nonlocal

not

not

statement, 110

operator, 95
in

operator, 95

null

operation, 103

number, 17

complex, 22
floating point, 22

numeric

object, 21,29

numeric literal, 17
object, 19

Boolean, 21
Ellipsis, 21

None, 20, 100

Not Implemented, 20

asynchronous—-generator, 85
built-in function, 27, 89

built-in method, 27, 89
callable, 24, 87

class, 29, 89, 129

class instance, 29, 89
code, 30

complex, 22

dictionary, 24, 29, 39, 80, 86, 101

floating point, 22
frame, 33

frozenset, 23
function, 24, 27, 89, 127
generator, 32, 81, 82
immutable, 22, 78, 81
immutable sequence, 22
instance, 29, 89
integer, 21

list, 23, 80, 86, 87, 101
mapping, 23, 29, 86, 101
method, 26, 27, 89
module, 28, 86
mutable, 23, 100, 101
mutable sequence, 23
numeric, 21, 29

sequence, 22, 29, 86, 87, 95, 101, 112

set, 23, 80

set type, 23

slice, 50

string, 86, 87
traceback, 34, 105, 114
tuple, 22, 86, 87, 97

user—-defined function, 24,89, 127
user—-defined method, 26

Eupetnplo

203

The Python Language Reference, Anpooisuon 3.11.13

object.__match_args__ (evowuatwuévny ueta-

BAntn), 55

object.__slots__ (evowuatwuévn uetafint), 43

octal literal, 17
open
built-in function, 30
operation
Boolean, 95
binary arithmetic, 90
binary bitwise, 92
null, 103
power, 89
shifting, 91
unary arithmetic, 90
unary bitwise, 90
operator
— (minus), 90, 91
% (percent), 91
& (ampersand), 92
* (asterisk), 90
*% 80
+ (plus), 90, 91
/ (slash), 90
//,90
< (less), 92
<<, 91
<=,92
1=,92
==,92
> (greater), 92
>=02
>>, 91
@ (at), 90
~ (caret), 92
and, 95
in, 95
is,95
is not, 95
not, 95
not 1in, 95
or, 95
overloading, 36
precedence, 97
ternary, 96
| (vertical bar), 92
~ (tilde), 90
operators, 18
or
bitwise, 92
exclusive, 92
inclusive, 92
operator, 95
ord
built-in function, 22

order

evaluation, 97
output, 100

standard, 100
overloading

operator, 36
package, 64

namespace, 65

portion, 65

regular, 64
parameter

call semantics, 87

function definition, 127

value, default, 127
parenthesized form, 79
parser, 7
pass

statement, 103
path

hooks, 66
path based finder, 72, 164
path entry, 164
path entry finder, 164
path entry hook, 164
path hooks, 66
path-like avtikeipevo, 164
pattern matching, 118
physical line,7,8,13
plus, 90
popen () (in module os), 30
portion

package, 65
pow

built-in function, 52,53
power

operation, 89
precedence

operator, 97
primary, 86
print

built-in function, 38
print () (built-in function)

__str__ () (object method), 37
private

names, 78
procedure

call, 100
program, 133
provisional API, 165
provisional mnaxéTo, 165
r A

raw string literal, I3
r n

raw string literal, 13

204

Eupetnplo

The Python Language Reference, Anpooiguon 3.11.13

raise

statement, 105
raising

exception, 105
range

built-in function, 113
raw string, 13
rebinding

name, 100
reference

attribute, 86
reference counting, 19

regular
package, 64

relative
import, 108

replace () (uébodog tnc codeobject), 33

repr
built-in function, 100
repr () (built-in function)

__repr__ () (object method), 37

representation

integer, 21
reserved word, 11
return

statement, 104, 115, 116
round

built-in function, 54
send () (uéBodog tng coroutine), 57
send () (uéBodog g generator), 83
sequence

item, 86

object, 22, 29, 86, 87,95, 101, 112

set
comprehensions, 80
display, 80
object, 23, 80
set comprehension, 166
set type
object, 23
shifting
operation, 91
simple
statement, 99
singleton
tuple, 22
slice, 87,166
built-in function, 35
object, 50
slicing, 22,23, 87
assignment, 101
soft keyword, 11
source character set,8
space, 9

special
attribute, 20
attribute, generic, 20
névodog, 166
stack
execution, 34
trace, 34
standard
output, 100
standard input, 133
start (slice object attribute), 35, 87
statement
assert, 103
assignment, 23, 100
assignment, annotated, 102
assignment, augmented, 102
async def, 130
async for, 130
async with, 131
break, 106, 112, 113, 115, 116
class, 129
compound, 111
continue, 107, 112, 113, 115, 116
def, 127
del, 37,104
expression, 99
for, 106, 107, 112

future, 108
global, 104, 110
if, 112

import, 28, 107
loop, 106, 107, 112
match, 118
nonlocal, 110
pass, 103
raise, 105
return, 104, 115, 116
simple, 99
try, 34,113
while, 106, 107, 112
with, 54, 116
yield, 104
statement grouping,9
stderr (in module sys), 30
stdin (in module sys), 30
stdio, 30
stdout (in module sys), 30
step (slice object attribute), 35, 87
stop (slice object attribute), 35, 87

string
_ format__ () (object method), 38
__str__ () (object method), 37

conversion, 38, 100
formatted literal, 14

Eupetnplo

205

The Python Language Reference, Anpooisuon 3.11.13

immutable sequences, 22
interpolated literal, 14
item, 87
object, 86, 87
string literal, 12
strong reference, 167
subclassing
immutable types, 36
subscription, 22,23, 86
assignment, 101
subtraction, 91
suite, 111
sys
module, 114, 133
sys.exc_info, 34
sys.exception, 34
sys.last_traceback, 34
sys.meta_path, 66
sys.modules, 65
sys.path, 72
sys.path_hooks, 72
sys.path_importer_cache, 72
sys.stderr, 30
sys.stdin, 30
sys.stdout, 30
tab, 9
target, 100
deletion, 104
list, 100, 112
list assignment, 100
list,deletion, 104
loop control, 106
tb_ frame (traceback attribute), 34
tb_frame (tdidtnTa g traceback), 35
tb_lasti (traceback attribute), 34
tb_lasti (tdTnTa g traceback), 35
tb_1lineno (traceback attribute), 34

tb_lineno (tddtnTa 16 traceback), 35

tb_next (traceback attribute), 35
tb_next (1ddtnra g traceback), 35
ternary
operator, 96
test
identity, 95
membership, 95
throw () (uéBodog tng coroutine), 57
throw () (uéBodog g generator), 83

triple—quoted string, 13
try

statement, 34, 113
tuple

empty, 22,79

object, 22, 86, 87,97

singleton, 22

type, 20
built-in function, 19,45
data, 20

hierarchy, 20
immutable data, 78
type alias, 167
type hint, 168
type of an object, 19
types, internal, 30
]

u
string literal, 12

string literal, 12
unary

arithmetic operation, 90

bitwise operation, 90
unbinding

name, 104
unpacking

dictionary, 80

in function calls, 88

iterable, 97
unreachable object, 19

unrecognized escape sequence, 14

user—-defined
function, 24
function call, 89
method, 26
user-defined function
object, 24, 89, 127
user—-defined method
object, 26
value, 80
default parameter, 127
value of an object, 19
values
writing, 100
virtual environment, 168
virtual machine, 168
walrus operator, 95

token, 7 while
trace statement, 106, 107, 112
stack, 34 with
traceback statement, 54, 116
object, 34, 105, 114 writing
trailing values, 100
comma, 97 XOor
206 Eupetnplo

The Python Language Reference, Anpooiguon 3.11.13

bitwise, 92
yield
examples, 83
expression, 81
keyword, 81
statement, 104
{} (curly brackets)
dictionary expression, 80
in formatted string literal, 14
set expression, 80
| (vertical bar)
operator, 92

augmented assignment, 102
~ (tilde)
operator, 90

A

aképalra Srailpeon, 157
axodoubia, 166

eltoaywyn, 159
exTéAeon
neplopiopévn, 61
nAatoilo, 59
éxyppaon, 156
€AEYKTNC oTaAtikoU TtTumnou, 167
eAeUbepn
petaBAntn, 60
ealpeon, 62

K

xaboAlkég véeg ypappég, 168
xdvel raise plra eailpeon, 62
xavovixkxd naxéto, 166
xatavonon Ae&ixou, 155
xAdon, 154
xAdon véou oTul, 163
xwdixac

nmoAox, 59
xwdixomoinon xeilpévou, 167

avayvuwplopévo ovopa, 165 xwdilkomoinon oucotApaTog apyelwv xat
avtikeipevo, 163 XelploTng opaipdtwv, 156
avtikeipevo apyelou, 156
avtikeipevo mou poirdZetr pe apyeto, 156 Al
and Ae&ixd, 155
SnAwon eiltcaywyng, 59 Ae&idhoyikotl oplopoti,5s
apyetlo xeipévou, 167 AoTa, 161
aocuyyxpovoc generator, 152
aocUyxpovoc generator iterator, 152 M
acuyyxpovog iterable, 153 payikn pébodog, 161
acuyypovog iterator, 153 pnébobocg, 162
acuyyxpovoc Sirayeilplothg context, 152 magic, 161
apnenuévn PBaocixr xAdon, 151 special, 166
peta-xAdon, 162
r petaBAnty
yevikn ouvdptnon, 158 eAeUBepn, 60
yevikde tunocg, 158 peTaBAntn xAdong, 154
ypapuatikn, 4 peTaBAnty nepilBAaAAovTog
PYTHONHASHSEED, 39
A PYTHONNODEBUGRANGES, 32
Saveilkn avapopd, 153 PYTHONPATH, 72
S Awon, 167 piya8ikdeg apibudc, 154
§1aSpactixde, 159 pova8ikd dispatch, 166
SlraxeilpileTal pra eaipeon, 62 povTédo extéAeong, 59
Sraxeiplon cparpdtwv, 62 HOVTEAO TEPPATLONOU, 62
SlraxyelploTig context, 154 pnAox, 59
SiaxelploTic efalpéocwv, 62 xwixag, 59
SuaBixd apyeto, 153 O
E évopua, 59
€181k pévodog, 166 , ogvbeon, 59
eltoaydépevo path, 159 ?pLOuQ’ 152
e Loaywytac, 159 bplopa keyword, 161
6plopa Béong, 165
Eupetnplo 207

The Python Language Reference, Anpooisuon 3.11.13

oyn AeZixou, 155

M

nakéto, 163
nak€to namespace, 163
napduetpog, 163
nedio, 59, 60
neplRdAArov, 60
nepLoOpLOpévn
extéAleon, 61
nAatoio
exTéAeon, 59
nAnfoc avaypopdc, 166

)

oelpd avdAiuong pebddwv, 162
onpetloypaplia, 4
oulAoyn anoppipdtwv, 157

oupBoAlocelpd TPLOAWV €lo0aywylkwv, 167

ouvdptnon, 157
ouvdptnon annotation, 157
ouvdptnon key, 160
ouvBeon

évopa, 59
OUVTAKTLKO, 4
opdApata, 62

T

Teppatiopdg Aertoupylag Sirepunvéa, 159
Teyvikécg mpodiraypaypég module, 162

Tunua, 165
Tomikn xwdikomoinon, 161
TUnog, 167

X

XapaktnplotTtiko, 153
Xwpoc ovoupdtwv, 59

208

Eupetnplo

	Εισαγωγή
	Εναλλακτικές Υλοποιήσεις
	Σημειογραφία

	Lexical analysis
	Line structure
	Logical lines
	Physical lines
	Comments
	Encoding declarations
	Explicit line joining
	Implicit line joining
	Blank lines
	Indentation
	Whitespace between tokens

	Other tokens
	Identifiers and keywords
	Keywords
	Soft Keywords
	Reserved classes of identifiers

	Literals
	String and Bytes literals
	Escape sequences

	String literal concatenation
	f-strings
	Numeric literals
	Integer literals
	Floating point literals
	Imaginary literals

	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	None
	NotImplemented
	Ellipsis
	numbers.Number
	numbers.Integral
	numbers.Real (float)
	numbers.Complex (complex)

	Sequences
	Immutable sequences
	Mutable sequences

	Set types
	Mappings
	Dictionaries

	Callable types
	User-defined functions
	Special read-only attributes
	Special writable attributes

	Instance methods
	Generator functions
	Coroutine functions
	Asynchronous generator functions
	Built-in functions
	Built-in methods
	Classes
	Class Instances

	Modules
	Custom classes
	Class instances
	I/O objects (also known as file objects)
	Internal types
	Code objects
	Special read-only attributes
	Methods on code objects

	Frame objects
	Special read-only attributes
	Special writable attributes
	Frame object methods

	Traceback objects
	Slice objects
	Static method objects
	Class method objects

	Special method names
	Basic customization
	Customizing attribute access
	Customizing module attribute access
	Implementing Descriptors
	Invoking Descriptors
	__slots__

	Customizing class creation
	Metaclasses
	Resolving MRO entries
	Determining the appropriate metaclass
	Preparing the class namespace
	Executing the class body
	Creating the class object
	Uses for metaclasses

	Customizing instance and subclass checks
	Emulating generic types
	The purpose of __class_getitem__
	__class_getitem__ versus __getitem__

	Emulating callable objects
	Emulating container types
	Emulating numeric types
	With Statement Context Managers
	Customizing positional arguments in class pattern matching
	Special method lookup

	Coroutines
	Awaitable Objects
	Coroutine Objects
	Asynchronous Iterators
	Asynchronous Context Managers

	Μοντέλο εκτέλεσης
	Δομή ενός προγράμματος
	Ονομασία και σύνδεση
	Σύνδεση ονομάτων
	Επίλυση ονομάτων
	Ενσωματωμένες συναρτήσεις και περιορισμένη εκτέλεση
	Αλληλεπίδραση με δυναμικές λειτουργίες

	Εξαιρέσεις

	The import system
	importlib
	Packages
	Regular packages
	Namespace packages

	Searching
	The module cache
	Finders and loaders
	Import hooks
	The meta path

	Loading
	Loaders
	Submodules
	Module spec
	Import-related module attributes
	module.__path__
	Module reprs
	Cached bytecode invalidation

	The Path Based Finder
	Path entry finders
	Path entry finder protocol

	Replacing the standard import system
	Package Relative Imports
	Special considerations for __main__
	__main__.__spec__

	References

	Expressions
	Arithmetic conversions
	Atoms
	Identifiers (Names)
	Literals
	Parenthesized forms
	Displays for lists, sets and dictionaries
	List displays
	Set displays
	Dictionary displays
	Generator expressions
	Yield expressions
	Generator-iterator methods
	Examples
	Asynchronous generator functions
	Asynchronous generator-iterator methods

	Primaries
	Attribute references
	Subscriptions
	Slicings
	Calls

	Await expression
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Value comparisons
	Membership test operations
	Identity comparisons

	Boolean operations
	Assignment expressions
	Conditional expressions
	Lambdas
	Expression lists
	Evaluation order
	Operator precedence

	Simple statements
	Expression statements
	Assignment statements
	Augmented assignment statements
	Annotated assignment statements

	The assert statement
	The pass statement
	The del statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	Future statements

	The global statement
	The nonlocal statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	except clause
	except* clause
	else clause
	finally clause

	The with statement
	The match statement
	Overview
	Guards
	Irrefutable Case Blocks
	Patterns
	OR Patterns
	AS Patterns
	Literal Patterns
	Capture Patterns
	Wildcard Patterns
	Value Patterns
	Group Patterns
	Sequence Patterns
	Mapping Patterns
	Class Patterns

	Function definitions
	Class definitions
	Coroutines
	Coroutine function definition
	The async for statement
	The async with statement

	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Πλήρης προδιαγραφή γραμματικής
	Γλωσσάρι
	About these documents
	Contributors to the Python Documentation

	Ιστορία και Άδεια
	Η ιστορία του λογισμικού
	Όροι και προϋποθέσεις για την πρόσβαση ή την χρήση της Python με άλλους τρόπους
	PSF LICENSE AGREEMENT FOR PYTHON 3.11.13
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ BEOPEN.COM ΓΙΑ PYTHON 2.0
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CNRI ΓΙΑ PYTHON 1.6.1
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CWI ΓΙΑ PYTHON 0.9.0 ΕΩΣ 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.13 DOCUMENTATION

	Άδειες και Ευχαριστίες για Ενσωματωμένο Λογισμικό
	Mersenne Twister
	Sockets
	Ασύγχρονες socket υπηρεσίες
	Διαχείριση Cookie
	Ανίχνευση εκτέλεσης
	Συναρτήσεις UUencode και UUdecode
	Κλήσεις Απομακρυσμένης Διαδικασίας XML
	test_epoll
	Επιλογή kqueue
	SipHash24
	strtod και dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N σουίτα δοκιμής
	Audioop
	asyncio

	Copyright
	Ευρετήριο

