The Python Language Reference
Anuooicuon 3.11.13

Guido van Rossum and the Python development team

louAiou 07, 2025

Python Software Foundation
Email: docs@python.org

Meplexoueva

1 Ewoyoyn 3
1.1 EvOMOKTKEG YAOTTOWOELS « « « v v v v v e 3
1.2 ENUEIOYPOPIOL + « o v vt e e e e e e e e e e e e e e 4

2 Lexical analysis 7
2.1 LINeStructure o e e e e e e e e e e e e e e 7

2.1.1 Logicallines e e 7
2.1.2 Physicallines L e e e e 7
2.1.3 0 CommentS . . . v v vt e e e e e e e e e e e e e e e e e 8
2.1.4 Encodingdeclarations e e e e e e e e e e 8
2.1.5 Explicitline joining o o e e e e e e e e e e 8
2.1.6 Implicitline joining L e 8
217 Blanklines. oL e e e e 9
2.1.8 Indentation L. e e e 9
2.1.9 Whitespace between tokens L. e e 10
22 Othertokens i i e e e e e e 10
2.3 Identifiersand keywords oL e 10
231 Keywords oL e e e e e e 11
232 SoftKeywords 11
2.3.3 Reserved classes of identifiers oL 11
24 Literals oL e e e e e 12
24.1 Stringand Bytes literals L e e 12
242 String literal concatenation L. Lo L L 14
243 f-Srings o e e e e e e e e 14
244 Numericliterals L e e 16
245 Integerliterals L e e e e e e e e 16
2.4.6 Floating pointliterals e e e 17
247 Imaginaryliterals e 17
2.5 OPErators v v i i e 17
2.6 Delimiters e e e e e 18

3 Data model 19
3.1 Objects, valuesand types L e 19
3.2 Thestandard type hierarchy L 20

32,1 NONE. . . o e e e 20
3.22 NotImplemented e e e e e 20
323 EIIPSIS. .« o o v o e e e e e e e 21
324 numbers.NUumber e e e e e e e 21
325 SeqUENCES v v i e e e e e 22
326 SetLYPeS . v v v e e e e e e e e e e e e e e e e e 23
327 MapPINGS . . v v o e 23

32.8 Callable types o o e e e e 24

329 Modules 28
32,10 Customclasses 28
3201 ClassinStances« v v v v vt e e e e e e e e e e e e 29
3.2.12 1/O objects (also known as file objects) L 29
32,13 Internal types oo e e e e e e e e e 30
3.3 Special methodnames L e e e e e e e e e 35
33.1 Basiccustomization 36
3.3.2 Customizing attribute accesso e e e 39
3.3.3 Customizing class creation Lo 43
3.34 Customizing instance and subclasschecks o oL 46
3.3.,5 Emulating generiC typeso i it e e e e e e e e e e e e e 47
3.3.6 Emulating callable objects e 49
3.3.77 Emulating container types oot et e e e e e e e e e e e 49
3.3.8 Emulating numeric typeso L. e e 51
3.3.9 With Statement Context Managers v v i 53
3.3.10 Customizing positional arguments in class pattern matching 53
3.3.11 Special method lookup e e 54
34 Coroutines e e 55
34.1 Awaitable Objects e 55
342 Coroutine ObJects ot ittt e e e e e e e e e 55
3.4.3 Asynchronous Iterators L 56
3.4.4 Asynchronous Context Managers v v v v v v v vt i e e e e e 56
Movtého ektéheong 59
4.1 Aoun eVOG TTPOYPAIIOTOS o « v v v v e v e e e e e e e e e e e e e e 59
42 OVOUOOLO KOL GUVOEDT] + v v v v e v e 59
421 ZUVOEON OVOUGTOV « & v v v v o v e e e e e e e e e e e e e e e e e e 59
422 ERDUOT OVOUGTOV « . v v v vt e e e e e e e e e e e e e e e e e e e 60
423 EvOoOUOTOUEVEG CUVOPTOELS KOL TTEPLOPLOUEVT] EKTENEON .+ . . v v v v o v v v e . 61
424 AMNMAETIOPOON UE OUVOULKEG LELTOUPYLEG -« « v v v v v e v e e e e e e e e e e e 61
43 BEOIPEOELG « v v v v e e e e e e e e e e e e e e e 61
The import system 63
5.1 dmportlib e e e 64
5.2 Packages e e e e e e e e 64
5.2.1 Regularpackages e e e 64
5.2.2 Namespace packages L e 65
53 Searching e 65
53.1 Themodulecache e 65
532 Findersandloaders 66
5.33 Importhooks o . . e e e e e 66
534 Themetapath e e e 66
54 Loading L e 67
541 Loaders e e e 68
542 Submodules 69
543 ModuleSpeco e e e e e e e e e e e 69
5.4.4 Import-related module attributes L. Lo 69
545 module.__path . .. L e e 71
54.6 Modulereprs ..o ..o e e e e e e 71
5.4.7 Cached bytecode invalidation L 71
5.5 ThePathBased Finder 72
5.5.1 Pathentryfinders e e e e 72
5.5.2 Pathentry finder protocol e 73
5.6 Replacing the standard import systemo Lo e e 74
5.7 Package Relative Imports 74
5.8 Special considerations for __main__o Lo 75
5.8 1 MAIN__._ SPEC__ . . i i e 75

59 References e e e
Expressions
6.1 Arithmetic CONVErSIONS v v v o e
6.2 AMOMS o e e e e e e
6.2.1 Identifiers (NAmMES) v v i e e e e e e e e e e e e
6.2.2 Literalso e e e e e e e
6.2.3 Parenthesized forms e
6.2.4 Displays for lists, sets and dictionarieso
6.2.5 Listdisplays e e e
6.2.6 Setdisplays e e e e e e e e e
6.2.7 Dictionary displays e e e e e e
6.2.8 Generator eXpressions o i e e e e e e e e e
6.2.9 Yield expressions e e
6.3 Primari€s e e e e e e e e e e e e e e e e e e
6.3.1 Attribute references L. e
6.3.2 SubSCriptions e e e e e e e e e e e e e e
6.3.3 SHCINGS e e e e e
6.3.4 Calls e
6.4 AWAIt EXPIESSION . . . v v v v e e e e e e e e e e e e e e e e e e e
6.5 The pOWer OPerator v v v v v e o e
6.6 Unary arithmetic and bitwise Operations v v v v v v v it e e e e e e
6.7 Binary arithmetic operations e
6.8 Shifting operations L L e e e e e e e
6.9 Binary bitwise Operations e e e e e e e e
6.10 CompariSONS v v v v e
6.10.1 Value compariSOns v v v v v i i e e e e e e e e e e e e e e e e e
6.10.2 Membership test Operations ot t ee e e e eeee
6.10.3 Identity compariSOnSo L e e e
6.11 Boolean operationst L e e e e e e e e e e e e e e e e e e
6.12 ASSIgNMENt EXPIESSIONS . . .+« ¢ v v v v v e
6.13 Conditional Xpressions . . . v v v v v i e
6.14 Lambdas e e e
6.15 ExpressionliStS L e e e e e
6.16 Evaluationorder e e e e e e e
6.17 Operator precedence vttt e e e e e e e e e
Simple statements
7.1 EXpression Statements L. et e
7.2 Assignment Statements oL ... oo e e e e e e e e e e e e e e
7.2.1 Augmented assignment Statementso e e e e e e
7.2.2 Annotated assignment Statementso L e e
7.3 Theassertstatement v i it vt i it e e e e e e e e
7.4 Thepassstatement o v v v i et e
7.5 Thedelstatement o v v i e i e
7.6 The returnstatement ittt e e e e e e e e e
7.7 The yieldstatement i i it e e e e e e e e e e e e e e e e e
7.8 The raisestatement v o v v i i i v it e e e e e e e e e e e e e e
7.9 Thebreak statement o v i ittt e e e e e e e e e e
7.10 The continuestatement v i vt vt e e e e e e e e e e e e
7.11 The import statement i e e e e e e e e e e e e e e e e e
7.11.1 Future statements vttt e e e e e e e e e e e e e
7.12 The global statement v i i e
7.13 The nonlocal Statement v v v vt vttt e e e e e e e e e e e e e e
Compound statements
8.1 Theifstatement v i v v it e e e e e e e e e e e e e e e e e
8.2 Thewhilestatement o i v i i v i ittt et e e e e e e
8.3 The forstatement e e e e e e e e e e e e e e e e e

77
77
77
78
78
78
79
79
80
80
80
81
85
85
86
86
87
89
89
89
90
91
91
91
92
94
94
94
95
95
95
96
96
96

99

99
100
102
102
103
103
103
104
104
105
106
106
107
108
109
110

111
112
112
112

10
AI

B’

r’

84 Thetrystatementt it e e e e e e e e e e e e e e e e e
84.1 exceptclause e e e e e e e e e
842 except*clause e e e e e e e e e e e
843 elseclause e e e e
844 finallyclause o . i i e e e e e e e e e e e e e e e
8.5 Thewithstatement it i ittt e e e e e e e e e e e e
8.6 Thematchstatement o v i v i i e e e e e e e e e e e e e e e e
8.6.1 OVEIVIEW e e e e e e e e e e e
8.6.2 Guards. e e e e e e e e e e
8.6.3 Irrefutable Case Blocks e
8.6.4 Patterns e e e e e e e e e e
8.7 Functiondefinitions e e e e e e e e
8.8 Class definitions e e e e e e e e e e e e e e e e e
8.9 Coroutines v v i e
8.9.1 Coroutine function definition e e
8.9.2 Theasync forstatement ittt e
8.93 Theasync withstatementt i v ittt e e e e e e

Top-level components

9.1 Complete Python programs o e
9.2 Fileinput e e e e e e
0.3 Interactive INPUL v v v e ot e
9.4 EXpressioninpul o v vttt e

ITmpng wpodrarypagn) Ypapupatikig
T'Aoocdpt

About these documents
B’.1 Contributors to the Python Documentation

Iotopia ko Adera
7.1 Homoplor TOU ROYLOULKOU + o . v v v v e e i e e e e e e e e e e e e e e e e e
[7.2 'Opol kot tpoimobécelg yio tnv mtpodoBaon 1 v xpnon g Python pe dhhovg tpdmovg
I".2.1 PSF LICENSE AGREEMENT FOR PYTHON3.11.13
2.2 ZYM®QONIA AAEIAY BEOPEN.COMTIAPYTHON20
2.3 ZYMOQONIA AAEIAZ CNRITTAPYTHON 1.6.1
V24 ZYMOQONIA AAEIAZ CWITTIAPYTHONOSOEQZ 1.2
V2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.13
DOCUMENTATION e e e e e e e e e
7.3 Adeieg kou Evyoplotieg yio EvOOROToUEVO AOYIOWKO .+« o o o o ot o e e e
[73.1 Mersenne TWIStEr e
[73.2 Sockets e
[7.3.3 AcoUyypoveg Socket UTNPEOIES « « « o v v v v v o e e e e e e e
["3.4 Awyeipion Cookie e e e e
[7.3.5 AVIYVEUON EKTEREONG « « « v v v v e e e e e e e e e e e e e e e e e e e
[7.3.6 Zuvvapmoeig UUencode ko UUdecode oo oot v i oo e
[7.3.7 KiMjoewg Amopokpuopuévng Awadikootog XML L Lo
[7.3.8 test_epoll e e e
[739 Emdoynkqueueo e
[7.3.10 SipHash24 e e
7311 strtodkandtoa.o oo e e e e e
I7.3.12 OpenSSL e e e e e e
7313 expat. . . o o e e e e e e e e e e
7314 1ibfhi . . . o L e e e e
I[73.15 zIib . . o e
[73.16 cfuhash e
[7.3.17 Hbmpdec e e e e e e e e e
[7.3.18 W3C CI4N GOUITO QOKUUNG - « « v v v v e e e e e e e e e e e e e e e e e e

131
131
131
132
132

133

149

I7.3.19 Audioop
I7.3.20 asyncio

A’ Copyright

Evpetipro

Vi

The Python Language Reference, Anpoocisuon 3.11.13

This reference manual describes the syntax and «core semantics» of the language. It is terse, but attempts to be
exact and complete. The semantics of non-essential built-in object types and of the built-in functions and modules
are described in library-index. For an informal introduction to the language, see tutorial-index. For C or C++
programmers, two additional manuals exist: extending-index describes the high-level picture of how to write a Python
extension module, and the c-api-index describes the interfaces available to C/C++ programmers in detail.

Meplexopeva 1

The Python Language Reference, Anpooisuon 3.11.13

2 Meplexopeva

KE®AAAIO 1

Elcaywyn

AuTo T0 £YYELPLOL0 avapOPAg TEPLYPAPEL TNV YAWOOoO Tpoypauuatiopwoy Python. Aev mpoopiletol wg eyyeL-
pidLo exkpaOnong.

Ztnv mpoomdbeia To £yypapo outd vo. eivar 660 To duvatdv mo akpiéc, emhéyxOnke apykd N Ayyhki
yAdhooa, Kou votepa petappdotnke oty EAviks), kot oy oL emionueg tpodiaypagés, ue eEaipeon tnv ov-
vrokTikn kKo AeSthoyikhy avdduor. Avtd Ba mpémel Vo KAVEL TO £YYPOPO O KATOVONTd 0TOV UECO OvaL-
YVOOTY, 0MG B0 ApNOEL X DPO VLo APPLONULES. ZUVETMOGC, oV ePYOcOVY artd Tov Ap1 Ko Tpoomtadovoes va
viomowmoelg Eavé v Python amd to €yypago avtd kol pdvo, udihov Bo xpetaldtav va povtéels KAmoLo
TPAyROTO. KO YL TV OKpiPeLo iomg Ba KaTéhnyeg va VAOTTOLELG pat Teleimg dtapopetiky] YAwooo. Ao thv
G Thevpd, av xpnolporoteig v Python kot avapwtiéoot oot eival ot akpieig KovOveg OyETIKA Pe Vo
OUYKEKPLUEVO TOUED TNG YADOOOG, TOTE Olyoupa Oa toug Bpels edd mépa. Av Oa 0gheg va delg Evarv mmLo emi-
onuo opLopd g YAwooag, iowg Ba uropovoeg va Tpoopépelg Aiyo amd Tov xpdvo oou — 1) v PTLAEELS UL
unyov KAwvosoinong :-).

Eivou emkivouvo va tpoaBéoovpe morhé hemTouépeLeg VAOTTOINONG O€ £VaL EYYPAPO AVAPOPAS UIAS YADOOOG
— 1 vhomoinom dvvatar vo, aAMGEEL, Kau GAAeg vhoTtoLoeLg TG idLag YAbooag witopel va Aettovpyouv dto-
@opeTLkd. Amtd v G, 1) CPython eivan pio vhomoinon tng Python pe gvpeia xpnon (wotdoo evarhaktikég
VXAOTTOLOELG GUVEXILOUV VO VITOOTNPILOVTOL), KO OL OUYKEKPLUEVES TG LOLOHOPPieg eviote aEilovv avagopd,
eLOLK eXEL OV 1) VAOTToinon emiBatlet emrpoofeTovg meploplopovc. Emouévag, Oa fpelg oUVToueg «onueLm-
OELG VAOTTOINONG» 0€ SLAPOoPa. LEPT TOV KELUEVOD.

Kda0e vihomoinon tng Python ouvodeveton amd évav aptdud evoouatouévoyv Ko tpdtumwv module. Avtég
elval katayeypoupuéveg oto library-index. Kdmolo evoopatwuévo module avogépovtor 0tov odAnlemidpouv
ue Evay onuovItkd TpdTo Ue ToV 0pLoUd TG YAWOOoOG.

1.1 EVaAAaKTIKEG YAOTIOLNOELG

IMapdho ov viapyeL pia vhiortoinon g Python mov eivor pokpdy 1 o dudonun, vdpyouy eVOAAOKTIKEG
VAOTTOLNOELS TTOU £XOVV LOLAUTEPO EVOLAPEPOV YLO. DLAPOPOVG AVOPDITOUG.

I'vwotég vhomounoelg Tepthauavouy:

CPython
Avtn eivar 1 TpwtdTLIN KO 1) TTLo Kahodtotnpnuévn vhomoinon g Python, ypoauuévn otnv C. Néeg
Lertovpyieg TG YADooag cuvnOme eupavilovral TpwTa M.

Jython
H vlomoinon g Python otnv Java. Avti) 1) vhomoinom umopel vo ypnoLpomombel wg yAdooo d¢oung

3

The Python Language Reference, Anpooisuon 3.11.13

EVEPYELDV VL0 EPOPUOYEG 0NV Java, 1] WITOPEL va. YPNOLUOTTOOEL YLaL Vo dNULOVPYNOEL EQAPUOYES e
™ xPNoN Twv BLBMoONKOV TV KAEoEmVY TG Java. Zuyva emiong xpNOLULOTOLELTAL YOl VO dULOVPYNOEL
Te0T V1o TG PLploOTkeg g Java. Tleploodtepeg mAnpoopieg wopeite va Bpeite 0TNV LOTOOEALDO TG
Jython.

Python ywo Tto .NET
Avti 1 VAOTTOINGT OTNY TPAYUOTLKOTNTA XPNOLUoTtoLel Ty vhomoinon CPython, alld eivan pio dia-
yewpouevn epapuoyn tov NET ko kdver drabéoiueg tig NET BifflioOnkes. Anuovpyndnke amd tov
Brian Lloyd. T mtepLoodtepeg TAnpopopies, deite v apy ikt oertdo tg Python yio to .NET.

IronPython
Mua evodhoktiky Python yia to .NET. Ze avtifeon pe to Python.NET, avt) eivar pio ohokinpouévn
vhomoinon g Python mov wapdyel IL, xou Kdvel petayhdttion tov kodiko g Python amevbeiog ot
yAwooo assembly Tou .NET. AnuiovpynOnke amd tov Jim Hugunin, tov mpwtdtumo dnuovpyd tg Jython.
TN wepLocdTepeg Thnpogopleg deite TV Lotooerido g IronPython.

PyPy
An implementation of Python written completely in Python. It supports several advanced features not found
in other implementations like stackless support and a Just in Time compiler. One of the goals of the project is
to encourage experimentation with the language itself by making it easier to modify the interpreter (since it is
written in Python). Additional information is available on the PyPy project’s home page.

Kd&0e piat 06 avtég Tig VAOTOLOELG SLOLOPOTOLOVVTOL e KATTOLOV TPOTTO 0td TV YADOOO OTImG KOTaypaLpe-
TOL 0€ QUTO TO EYYELPIOLO, 1] ELOAYEL OUYKEKPLUEVT TTANPOPOpPia TTEPa ATt O,TL KAAVTTTOUV Ta TPOTUITOL £YYPAPOL
g Python. IMapakodd va ovuovkeuteite 1o £yypapo THg CUYKEKPLUEVNG VAOTTOINONG YLO. VO TTPOOALOPIOETE
TL AANO YPELATETOL VO EEPETE OYETLKA UE TNV OUYKEKPLUEVT VAOTTOINO) TTOV Y P1|OLUOTTOLELTE.

1.2 Inueloypagpia

O mweprypopéc otnv AeEhoyikt| avdivon Kar GUVTOEN xPNOLUOTOL0VY EVOV TPOTOTOLNUEVO YPAUUATIKO GV~
Bolopd oty wop) Madkovg-Naoup (BNF). Autd ypnoipomolei tov akdiovBo 1pdmo opiopo:

name = lc _letter (lc_letter | "_")~*
lc_letter = "a"..."z"

H mpwtn ypauuh Mel ét éva name eivan éva 1c_letter akolovbovuevo amd wio oelpd amd undév 1 me-
pLoodtepa lc_letters kou Kdtw mavkes. 'Eva 1c_letter ue) oelpd TOU €lval 0TOLOGONTOTE OITTO TOVG
HovoUg XOpOKTNPES "a' éwg 'z'. (AUTOG 0 KAvOVOG OTNY TPAYUOTIKOTTO EQPOPUOTETOL VLA TO OVOUOTA
IOV 0pilovTaL 0TOVG AeEILOYIKOVG KOl YPOUUATIKOUG KOVOVESG UTOU TOU EYYPAQOV.)

Kd&0e xovovog Eekivd pe éva dvopa (to omoio eivar éva dvoua oplopévo amd tov kavdva) ko : :=. Mia
K&OeTN ypouun (1) YP1OLUOTTOLELITOL YL VOL SLAWPITEL TIG EVOAMAKTIKES: EXEL TNV WKPOTEPY TPOTEPALOTITO
otV oeLpd mtpotepadTNTog TPGaEemwv avtol Tov ovuBolouo. 'Evog aotepiokog (*) onuaiver undév 1 epLo-
O0TEPEG EMAVOMYPELG TOU TTPOTYOUUEVOU OVTLKELUEVOY: TTAPOUOLIGS, TO GUV (+) ONUALVEL (ol) TEPLOOOTEPEG
ETAVOANPELS, KOL Uit (pPAON TTEPLPPAYUEVT 0O ayKVAeg ([1) onuoiver undév 1 pia epimtmon (ue ddho Lo-
YL, 1 TEPLPPAYUEVT] PPAON elvor TTPOaLPETLKY). OL TELETTEG * KO + EVWVOVTAL OG0 TO SUVOTOV TTLO (LY TA: OL
TapeVOETELS X PNOLUOTOLOVVTAL Yie ouadoToinon. O oupBolooelpég eival TEPLPPAYUEVES OITO ELOAYWYIKAL.
Ot Kevol YopaKTHpES eival HOVo oNUavTiKol yio va ey wpiocovv ta fokens. O kavdveg ovviBmg meptéyovon
O€ Wia UOVY) YUt oL Kavoveg te Torlhég evalhakTikég umopel va popgomonfovv evolhokTikd pe ke
YPOUUT LETE TNV TPMTY VL SEKLVAEL (e PLoL KABETN ypouun.

Ztovug AeEhoytkovg 0pLopovg (6mTme 0To TaPATdve TopAdeLyIa), dV0 TEPLETOTEPOL KAVOVES Y PT|OLULOTTOLOV-
vToL: AUO YOPAKTHPES XWPLOUEVOL OTTO TPELG TEAEIEG ONUALVEL ETTIAOYY OTTOLOV HOVOD YOPOKTNPO OTO OUYKE-
KpLuévo (khewotod) evpog ASCI yoapoxtpwv. H ppdon avdueco o yoviakég mapevhéoels (<. . . >) divel pia
ATUTTN TTEPLYPOLPT] TOU OPLOUEVOD CUUPBOAOY: TT.Y., avTd B0 WIToPOoVoE Vo, Y PNOLUOTOMOEL YL VoL TTEPLYPAPEL
™V Wéa Tov “yapaktipa ehéyyov” (control character) av ypeL0oTEL.

Av KoL 1) ONUELOYPAPLL TOV YPNOLUOTTOLELTAL Elvar oxeddv 1) 1dLa, vITapyeL ueydin diagopd avdaueco ot
oNUaoia TV AEEIMOYIKMOV KL TV OUVTOKTIKOV 0pLopimv: £vag AeEhoykdg oplotdg Aettovpyel ue Toug pe-

2 Kegpdhaio 1. Eloaywyn

https://www.jython.org/
https://www.jython.org/
https://pythonnet.github.io/
https://ironpython.net/
https://www.pypy.org/
https://el.wikipedia.org/wiki/%CE%9C%CE%BF%CF%81%CF%86%CE%AE_%CE%9C%CF%80%CE%AC%CE%BA%CE%BF%CF%85%CF%82-%CE%9D%CE%AC%CE%BF%CF%85%CF%81

The Python Language Reference, Anpoocisuon 3.11.13

LOVOUEVOUG XAPOUKTNPES TNG TNYTG ELOODOV, EVM £VOG 0PLOUOG CUVTOENG AELTOVPYEL OTNV PON TWV foken OV
dmuwovpyeitar artd) AeEhoyikn avdivor. ‘Oleg ot xpNoelg Tov BNF 010 em0Uevo Kepahowo («AeELAOYLKT)
Avaluon») eivor AeEthoyikoi oplopoi: oL xpfoelg ota oKOAoUO0 KEQAlaLa EiVOL OUVTOKTIKOL OPLOUOL.

1.2. Inuewoypapia 5

The Python Language Reference, Anpooisuon 3.11.13

6 KegpdAawo 1. Elcaywyn

KEDAAAIO 2

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer.
This chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding
declaration and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError
is raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any
of the standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the
Windows form using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the
ASCII CR (return) character. All of these forms can be used equally, regardless of platform. The end of input also
serves as an implicit terminator for the final physical line.

‘When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

https://peps.python.org/pep-3120/

The Python Language Reference, Anpooisuon 3.11.13

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical
line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are
ignored by the syntax.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding [=:]\s* ([\
w.] +), this comment is processed as an encoding declaration; the first group of this expression names the encoding
of the source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first
line must also be a comment-only line. The recommended forms of an encoding expression are

[# —*— coding: <encoding-name> —*—

which is recognized also by GNU Emacs, and

[# vim: fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. If the implicit or explicit encoding of a file is
UTEF-8, an initial UTF-8 byte-order mark (b”xefxbbxbf”) is ignored rather than being a syntax error.

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding
is used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Impilicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without
using backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April"', 'Mei', 'Juni’', # Dutch names
'Juli’', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

8 Kegpalato 2. Lexical analysis

The Python Language Reference, Anpoocisuon 3.11.13

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e.
one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of
the line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of
spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over
multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use
a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms
may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring
on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT
token is generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that
is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r = []
for i in range(len(l)):
s = 1[:41] + 1[i+1:]
p = perm(s)
for x in p:
r.append(l[i:i+1] + x)
return r

The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1i] + 1[i+1:]
p = perm(l[:1] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

2.1. Line structure 9

The Python Language Reference, Anpooisuon 3.11.13

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be
used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes
as defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the
uppercase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits O through
9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier = xid _start xid_continue*

id_start n= <all characters in general categories Lu, L1, Lt, Lm, Lo,
id_continue n= <all characters in id_start, plus characters in the categories Mn,
xid_start = <all characters in id_start whose NFKC normalization is in "id_start

xid_continue

The Unicode category codes mentioned above stand for:
o Lu - uppercase letters
» LI - lowercase letters
o Lz - titlecase letters
o Lm - modifier letters
o Lo - other letters
o NI - letter numbers
e Mn - nonspacing marks
e Mc - spacing combining marks
e Nd - decimal numbers

o Pc - connector punctuations

10 Kegahaio 2. Lexical analysis

<all characters in id_continue whose NFKC normalization is in

https://peps.python.org/pep-3131/
https://peps.python.org/pep-3131/

The Python Language Reference, Anpoocisuon 3.11.13

o Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
o Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 14.0.0 can be found at https://www.
unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Soft Keywords

Néo otmv éxdoon 3.10.

Some identifiers are only reserved under specific contexts. These are known as soft keywords. The identifiers mat ch,
case and _ can syntactically act as keywords in contexts related to the pattern matching statement, but this distinction
is done at the parser level, not when tokenizing.

As soft keywords, their use with pattern matching is possible while still preserving compatibility with existing code
that uses mat ch, case and _ as identifier names.

2.3.3 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns
of leading and trailing underscore characters:

*

Not imported by from module import *.

In a case pattern within a mat ch statement, _ is a soft keyword that denotes a wildcard.

Separately, the interactive interpreter makes the result of the last evaluation available in the variable _. (It is
stored in the builtins module, alongside built-in functions like print.)

Elsewhere, _ is a regular identifier. It is often used to name «special» items, but it is not special to Python
itself.

Ynueiwon: The name _ is often used in conjunction with internationalization; refer to the documentation for
the gettext module for more information on this convention.

It is also commonly used for unused variables.

System-defined names, informally known as «dunder» names. These names are defined by the interpreter and
its implementation (including the standard library). Current system names are discussed in the Special method
names section and elsewhere. More will likely be defined in future versions of Python. Any use of __*___
names, in any context, that does not follow explicitly documented use, is subject to breakage without warning.

2.3. Identifiers and keywords 11

https://www.unicode.org/Public/14.0.0/ucd/PropList.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Anpooisuon 3.11.13

Class-private names. Names in this category, when used within the context of a class definition, are re-written
to use a mangled form to help avoid name clashes between «private» attributes of base and derived classes.
See section Identifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral = [stringprefix] (shortstring | longstring)
stringprefix = "r" | "uy" | "R" | "U" | "£" | "F"

| "fr" | "Fr" | "fR" | "FR" | "rf" | "rgF" | "Rf" | "RE"
shortstring = "'" shortstringitem* "'"™ | '"' shortstringitem* '"'
longstring = "rr'" o Jongstringitem* "'''" | '"""' Jongstringitem* '"""'
shortstringitem := shortstringchar | stringescapeseq
longstringitem = longstringchar | stringescapeseq
shortstringchar := <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
stringescapeseq = "\" <any source character>
bytesliteral = bytesprefix(shortbytes | longbytes)
bytesprefix = "b" | "B" | "br"™ | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb"
shortbytes = "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes = "'''" Jongbytesitem* "'''"™ | '"""' Jongbytesitem* '"""'
shortbytesitem := shortbyteschar | bytesescapeseq
longbytesitem = longbyteschar | bytesescapeseq
shortbyteschar = <any ASCII character except "\" or newline or the quote>
longbyteschar = <any ASCII character except "\">
bytesescapeseq = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefixor bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can
also be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted
strings). The backslash (\) character is used to escape characters that otherwise have a special meaning, such as
newline, backslash itself, or the quote character.

Bytes literals are always prefixed with 'b"' or 'B"'; they produce an instance of the bytes type instead of the str
type. They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with
escapes.

Both string and bytes literals may optionally be prefixed with a letter ' r' or 'R'; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, ' \U"' and ' \u' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur' syntax
is not supported.

Néo omnv é€xdoom 3.3: The 'rb' prefix of raw bytes literals has been added as a synonym of 'br'.

12 Kegahaio 2. Lexical analysis

n RB n

The Python Language Reference, Anpoocisuon 3.11.13

Support for the unicode legacy literal (u'value') was reintroduced to simplify the maintenance of dual Python
2.x and 3.x codebases. See PEP 414 for more information.

A string literal with ' £' or 'F' in its prefix is a formatted string literal; see f-strings. The ' £' may be combined
with 'r', butnot with 'b' or 'u"', therefore raw formatted strings are possible, but formatted bytes literals are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
quotes in a row terminate the literal. (A «quote» is the character used to open the literal, i.e. either ' or ".)

Escape sequences

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to
rules similar to those used by Standard C. The recognized escape sequences are:

Escape Sequence

Meaning Notes

\<newline>
AR

\]

\ mw

\a
\b
\f
\n
\r
\t

\v
\ooo
\xhh

Backslash and newline ignored (1)
Backslash (\)

Single quote (')

Double quote (")

ASCII Bell (BEL)

ASCII Backspace (BS)

ASCII Formfeed (FF)

ASCII Linefeed (LF)

ASCII Carriage Return (CR)

ASCII Horizontal Tab (TAB)

ASCII Vertical Tab (VT)

Character with octal value ooo (2,4)
Character with hex value hh (3.4

Escape sequences only recognized in string literals are:

Escape Sequence Meaning

Notes

\N{name}
\UXXXX
\UXXXXXXXX

Character named name in the Unicode database
Character with 16-bit hex value xxxx
Character with 32-bit hex value xxxxxxxx

®)
(6)
(7

Notes:

(1) A backslash can be added at the end of a line to ignore the newline:

>>> 'This string will not include \
. backslashes or newline characters.'

'This string will not include backslashes or newline characters.'

The same result can be achieved using triple-quoted strings, or parentheses and string literal concatenation.

(2) Asin Standard C, up to three octal digits are accepted.

AMoEe omv ékdoon 3.11:

escapes with value larger than

00377 produce a

DeprecationWarning. In a future Python version they will be a SyntaxWarning and eventually a

SyntaxError.

(3) Unlike in Standard C, exactly two hex digits are required.

(4) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(5) AMaEe oty éxdoom 3.3: Support for name aliases' has been added.

U https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

2.4. Literals

13

https://peps.python.org/pep-0414/
https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

The Python Language Reference, Anpooisuon 3.11.13

(6) Exactly four hex digits are required.
(7) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in
the result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more
easily recognized as broken.) It is also important to note that the escape sequences only recognized in string literals
fall into the category of unrecognized escapes for bytes literals.

AMaEe oty £€kdoom 3.6: Unrecognized escape sequences produce a Deprecat ionWarning. Inafuture Python
version they will be a SyntaxWarning and eventually a SyntaxError.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example,
r"\"" is a valid string literal consisting of two characters: a backslash and a double quote; r" \ " is not a valid string
literal (even a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a
single backslash (since the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the literal, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings
conveniently across long lines, or even to add comments to parts of strings, for example:

re.compile (" [A-Za—-z_]" # letter or underscore
"[A-Za—-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The “+” operator must
be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings), and formatted string literals may be
concatenated with plain string literals.

2.4.3 f-strings

Néo omv éxdoon 3.6.

A formatted string literal or f-string is a string literal that is prefixed with ' £' or 'F'. These strings may contain
replacement fields, which are expressions delimited by curly braces { }. While other string literals always have a
constant value, formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string).
After decoding, the grammar for the contents of the string is:

f_string R (literal_char | "{{" | "}}" | replacement_field)™*
replacement_field = "{" f _expression ["="] ["!" conversion] [":" format_spec]
f_expression = (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or expr)* [","]

| yield expression
conversion = "s" | "r"™ | "a"
format_spec = (literal_char | replacement_field)*
literal_char = <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces '{{"' or '} }'
are replaced with the corresponding single curly brace. A single opening curly bracket ' { ' marks a replacement field,
which starts with a Python expression. To display both the expression text and its value after evaluation, (useful in
debugging), an equal sign '=" may be added after the expression. A conversion field, introduced by an exclamation

14 Kegahaio 2. Lexical analysis

"}"

The Python Language Reference, Anpoocisuon 3.11.13

point ' ! ' may follow. A format specifier may also be appended, introduced by a colon ' : '. A replacement field
ends with a closing curly bracket '} '.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with
a few exceptions. An empty expression is not allowed, and both Iambda and assignment expressions : = must be
surrounded by explicit parentheses. Replacement expressions can contain line breaks (e.g. in triple-quoted strings),
but they cannot contain comments. Each expression is evaluated in the context where the formatted string literal
appears, in order from left to right.

AMaEe otnv ékdoon 3.7: Prior to Python 3.7, an await expression and comprehensions containing an async
for clause were illegal in the expressions in formatted string literals due to a problem with the implementation.

When the equal sign '=" is provided, the output will have the expression text, the '="' and the evaluated value.
Spaces after the opening brace '{ ', within the expression and after the '="' are all retained in the output. By
default, the '="' causes the repr () of the expression to be provided, unless there is a format specified. When a
format is specified it defaults to the st r () of the expression unless a conversion ' ! r' is declared.

Néo oty éxdoon 3.8: The equal sign '=".

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion ' ! s
calls str () ontheresult, ' ! r' calls repr(),and '!a"' callsascii ().

The result is then formatted using the format () protocol. The format specifier is passed to the __ format__ ()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own
conversion fields and format specifiers, but may not include more deeply nested replacement fields. The format
specifier mini-language is the same as that used by the str. format () method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

>>> name = "Fred"

>>> f"He said his name is {name L

"He said his name is 'Fred'."

>>> f"He said his name is {repr (name) }." # repr() is equivalent to !r
"He said his name is 'Fred'."

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f"result: {value:{width}. {precision}}" # nested fields
'result: 12.35"

>>> today = datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, $Y}" # using date format specifier

'January 27, 2017'
>>> f"{today=:%B %d, %Y}" # using date format specifier and debugging
'today=January 27, 2017'

>>> number = 1024

>>> f" {number:#0x}" # using integer format specifier
'0x400'"'

>>> foo = "bar"

>>> f"{ foo " # preserves whitespace
" foo = 'bar'"

>>> line = "The mill's closed"

>>> f"{line "

'line = "The mill\'s closed"'

>>> f"{line 20 }"

"line = The mill's closed "

>>> f"{line 20"

'line = "The mill\'s closed" '

J

A consequence of sharing the same syntax as regular string literals is that characters in the replacement fields must
not conflict with the quoting used in the outer formatted string literal:

2.4. Literals 15

The Python Language Reference, Anpooisuon 3.11.13

f"abc {a["x"]} def" # error: outer string literal ended prematurely
f'abe {al'x'] def" # workaround: use different quoting

Backslashes are not allowed in format expressions and will raise an error:

[f"newline: ord('\n') }" # raises SyntaxError

To include a value in which a backslash escape is required, create a temporary variable.

>>> newline = ord('\n')
>>> f"newline: {newline}"
'newline: 10"

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

>>> def fool():
f"Not a docstring"

>>> foo.__doc is None
True

See also PEP 498 for the proposal that added formatted string literals, and str. format (), which uses a related
format string mechanism.

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no
complex literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary
operator “-” and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer RES decinteger | bininteger | octinteger | hexinteger
decinteger = nonzerodigit (["_"]1 digit)* | "O"+ (["_"] "Qm")~*
bininteger = "0" ("b" | "B") (["_"] bindigit)+

octinteger = "0" ("o"™ | "O") (["_"] octdigit)+

hexinteger = "o ("x"™ | "X"™) (["_"] hexdigit)+

nonzerodigit = mmLLLmon

digit = "o"..."o"

bindigit = "om | omin

octdigit RES "or...mn

hexdigit RES digit | "a"..."f" | "A"..."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for
enhanced readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

Some examples of integer literals:

16 Kegahaio 2. Lexical analysis

https://peps.python.org/pep-0498/

The Python Language Reference, Anpoocisuon 3.11.13

7 2147483647 00177 0b100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 Ob_1110_0101

AMaEe oty ékdoon 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber u= pointfloat | exponentfloat
pointfloat = [digitpart] fraction | digitpart "."
exponentfloat = (digitpart | pointfloat) exponent
digitpart = digit (["_"] digit)™*

fraction = "." digitpart

exponent = ("e"™ | "E") ["+" | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077e010 is legal, and
denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent. As in

integer literals, underscores are supported for digit grouping.

Some examples of floating point literals:

[3.14 10. .001 1e100 3.14e-10 0e0 3.14_15_93

AMoEe oty £kdoon 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber = (floatnumber | digitpart) ("j3" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair
of floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero

real part, add a floating point number to it, e.g., (3+4 7). Some examples of imaginary literals:

[3.143' 10.7 107 .0013 1e100§ 3.14e-103 3.14_15_937

2.5 Operators

The following tokens are operators:

0 - * *x / // 3 @
<< >> & | 2 ~ .=
< > <= >= == =

2.5. Operators

17

The Python Language Reference, Anpooisuon 3.11.13

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

G |

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

O]

18 Kegahaio 2. Lexical analysis

KEGANAIO 3

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a «stored program computer», code is
also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you
may think of it as the object’s address in memory. The i s operator compares the identity of two objects; the 1d ()
function returns an integer representing its identity.

Agmropépera viomoinong CPython: For CPython, id (x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., «does it have a length?») and also defines
the possible values for objects of that type. The t ype () function returns an object’s type (which is an object itself).
Like its identity, an object’s fype is also unchangeable.'

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains
areference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same
as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation
quality how garbage collection is implemented, as long as no objects are collected that are still reachable.

Aemrouépera vhoroinong CPython: CPython currently uses a reference-counting scheme with (optional) delayed
detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not
guaranteed to collect garbage containing circular references. See the documentation of the gc module for information
on controlling the collection of cyclic garbage. Other implementations act differently and CPython may change. Do
not depend on immediate finalization of objects when they become unreachable (so you should always close files
explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception with a t ry...except statement may keep objects alive.

11t is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can
lead to some very strange behaviour if it is handled incorrectly.

19

The Python Language Reference, Anpooisuon 3.11.13

Some objects contain references to «external» resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, usually a close () method. Programs
are strongly recommended to explicitly close such objects. The t ry...finally statement and the w1 t h statement
provide convenient ways to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples,
lists and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability
of a container, only the identities of the immediately contained objects are implied. So, if an immutable container
(like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with

the same type and value, while for mutable objects this is not allowed. E.g., aftera = 1; b = 1, a and b may
or may not refer to the same object with the value one, depending on the implementation, but afterc = []; d =
[1, c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note thatc = d = []

assigns the same object to both c and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be
provided via the standard library instead.

Some of the type descriptions below contain a paragraph listing “special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

3.2.1 None

This type has a single value. There is a single object with this value. This object is accessed through the built-in name
None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions that don’t
explicitly return anything. Its truth value is false.

3.2.2 Notimplemented

This type has a single value. There is a single object with this value. This object is accessed through the built-in
name Not Implemented. Numeric methods and rich comparison methods should return this value if they do not
implement the operation for the operands provided. (The interpreter will then try the reflected operation, or some
other fallback, depending on the operator.) It should not be evaluated in a boolean context.

See implementing-the-arithmetic-operations for more details.

AMaEe oty €kdoon 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of Python.

20 Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

3.2.3 Ellipsis

This type has a single value. There is a single object with this value. This object is accessed through the literal . . .
or the built-in name E11ipsis. Its truth value is true.

3.2.4 numbers.Number

These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in functions.
Numeric objects are immutable; once created their value never changes. Python numbers are of course strongly related
to mathematical numbers, but subject to the limitations of numerical representation in computers.

The string representations of the numeric classes, computedby ___ repr__ () and__str__ (), have the following
properties:

o They are valid numeric literals which, when passed to their class constructor, produce an object having the
value of the original numeric.

» The representation is in base 10, when possible.

« Leading zeros, possibly excepting a single zero before a decimal point, are not shown.
« Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.

« A sign is shown only when the number is negative.

Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral

These represent elements from the mathematical set of integers (positive and negative).

Inueiwon: The rules for integer representation are intended to give the most meaningful interpretation of shift and
mask operations involving negative integers.

There are two types of integers:

Integers (int)
These represent numbers in an unlimited range, subject to available (virtual) memory only. For the purpose
of shift and mask operations, a binary representation is assumed, and negative numbers are represented in a
variant of 2’s complement which gives the illusion of an infinite string of sign bits extending to the left.

Booleans (bool)
These represent the truth values False and True. The two objects representing the values False and True
are the only Boolean objects. The Boolean type is a subtype of the integer type, and Boolean values behave
like the values 0 and 1, respectively, in almost all contexts, the exception being that when converted to a string,
the strings "False" or "True" are returned, respectively.

numbers.Real (float)

These represent machine-level double precision floating point numbers. You are at the mercy of the underlying
machine architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does
not support single-precision floating point numbers; the savings in processor and memory usage that are usually the
reason for using these are dwarfed by the overhead of using objects in Python, so there is no reason to complicate the
language with two kinds of floating point numbers.

3.2. The standard type hierarchy 21

The Python Language Reference, Anpooisuon 3.11.13

numbers .Complex (complex)

These represent complex numbers as a pair of machine-level double precision floating point numbers. The same
caveats apply as for floating point numbers. The real and imaginary parts of a complex number z can be retrieved
through the read-only attributes z . real and z . imag.

3.2.5 Sequences

These represent finite ordered sets indexed by non-negative numbers. The built-in function 1en () returns the number
of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1, ..., n-1. Item
i of sequence a is selected by a [i]. Some sequences, including built-in sequences, interpret negative subscripts by
adding the sequence length. For example, a [-2] equals a [n—2], the second to last item of sequence a with length
n.

Sequences also support slicing: a [1 : j] selects all items with index k such thati <=k < j. When used as an expression,
a slice is a sequence of the same type. The comment above about negative indexes also applies to negative slice
positions.

Some sequences also support «extended slicing» with a third «step» parameter: a [1:7j:k] selects all items of a
with index x where x = 1 + n*k,n>=0andi<=x<j.

Sequences are distinguished according to their mutability:

Immutable sequences

An object of an immutable sequence type cannot change once it is created. (If the object contains references to
other objects, these other objects may be mutable and may be changed; however, the collection of objects directly
referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings
A string is a sequence of values that represent Unicode code points. All the code points in the range U+0000
- U+10FFFF can be represented in a string. Python doesn’t have a char type; instead, every code point in
the string is represented as a string object with length 1. The built-in function ord () converts a code point
from its string form to an integer in the range 0 - 10FFFF; chr () converts an integer in the range 0
— 10FFFF to the corresponding length 1 string object. str.encode () can be used to convert a str to
bytes using the given text encoding, and bytes.decode () can be used to achieve the opposite.

Tuples
The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-separated
lists of expressions. A tuple of one item (a “singleton”) can be formed by affixing a comma to an expression
(an expression by itself does not create a tuple, since parentheses must be usable for grouping of expressions).
An empty tuple can be formed by an empty pair of parentheses.

Bytes
A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range 0 <=x <
256. Bytes literals (like b ' abc ') and the built-in bytes () constructor can be used to create bytes objects.
Also, bytes objects can be decoded to strings via the decode () method.

22 Kegpalaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

Mutable sequences

Mutable sequences can be changed after they are created. The subscription and slicing notations can be used as the
target of assignment and de I (delete) statements.

Inueiwon: The collections and array module provide additional examples of mutable sequence types.

There are currently two intrinsic mutable sequence types:

Lists
The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of
expressions in square brackets. (Note that there are no special cases needed to form lists of length O or 1.)

Byte Arrays
A bytearray object is a mutable array. They are created by the built-in bytearray () constructor. Aside from
being mutable (and hence unhashable), byte arrays otherwise provide the same interface and functionality as
immutable bytes objects.

3.2.6 Settypes

These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any subscript.
However, they can be iterated over, and the built-in function 1en () returns the number of items in a set. Common
uses for sets are fast membership testing, removing duplicates from a sequence, and computing mathematical
operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal
rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0), only one of them can be contained
in a set.

There are currently two intrinsic set types:

Sets
These represent a mutable set. They are created by the built-in set () constructor and can be modified
afterwards by several methods, such as add () .

Frozen sets
These represent an immutable set. They are created by the built-in frozenset () constructor. As a frozenset
is immutable and hashable, it can be used again as an element of another set, or as a dictionary key.

3.2.7 Mappings

These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k] selects the item
indexed by k from the mapping a; this can be used in expressions and as the target of assignments or de I statements.
The built-in function 1en () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries

These represent finite sets of objects indexed by nearly arbitrary values. The only types of values not acceptable
as keys are values containing lists or dictionaries or other mutable types that are compared by value rather than by
object identity, the reason being that the efficient implementation of dictionaries requires a key’s hash value to remain
constant. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(e.g., 1 and 1. 0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were added
sequentially over the dictionary. Replacing an existing key does not change the order, however removing a key and
re-inserting it will add it to the end instead of keeping its old place.

3.2. The standard type hierarchy 23

The Python Language Reference, Anpooisuon 3.11.13

Dictionaries are mutable; they can be created by the { . . . } notation (see section Dictionary displays).

The extension modules dbm.ndbm and dbm.gnu provide additional examples of mapping types, as does the
collections module.

AMoEe otnv ékdoon 3.7: Dictionaries did not preserve insertion order in versions of Python before 3.6. In CPython
3.6, insertion order was preserved, but it was considered an implementation detail at that time rather than a language
guarantee.

3.2.8 Callable types

These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions

A user-defined function object is created by a function definition (see section Function definitions). It should be called
with an argument list containing the same number of items as the function’s formal parameter list.

Special read-only attributes

Attribute Meaning

A reference to the dictionary that holds the
function’s global variables — the global namespace of
the module in which the function was defined.

None or a tuple of cells that contain bindings for the
function’s free variables.

A cell object has the attribute ce11_contents. This
can be used to get the value of the cell, as well as set the
value.

function.__globals_

function.___closure

24 Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

Special writable attributes

Most of these attributes check the type of the assigned value:

Attribute

Meaning

function.__doc

function._ _name_

function._ _qualname_

function.__module_

function.__defaults___

function.___code___

function.__dict___

function._ annotations_

function.__kwdefaults_

The function’s documentation string, or None if
unavailable. Not inherited by subclasses.

The function’s name. See also: _ name_
attributes.

The function’s qualified name. See also:
__gqualname___ attributes.

Néo otnyv éxdoonm 3.3.

The name of the module the function was defined in, or
None if unavailable.

A tuple containing default parameter values for those
parameters that have defaults, or None if no parameters
have a default value.

The code object representing the compiled function
body.

The namespace supporting arbitrary function attributes.
See also: __dict__ attributes.

A dictionary containing annotations of
parameters. The keys of the dictionary are the
parameter names, and 'return' for the return
annotation, if provided. See also: annotations-howto.
A dictionary containing defaults for keyword-only
param eters.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach
metadata to functions. Regular attribute dot-notation is used to get and set such attributes.

Agnropépera. vhomoinong CPython: CPython’s current implementation only supports function attributes on user-
defined functions. Function attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object (accessible via the

___code___ attribute).

3.2. The standard type hierarchy

25

The Python Language Reference, Anpooisuon 3.11.13

Instance methods

An instance method object combines a class, a class instance and any callable object (normally a user-defined
function).

Special read-only attributes:

Refers to the class instance object to which the method
method.__self N

Refers to the original function object
method.___func___

The method’s documentation (same as method.
__func__.__doc__). A string if the original
function had a docstring, else None.

The name of the method (same as method.
_ func__.__ _name_)

method.__doc___

method._ _name_

The name of the module the method was defined in, or

method.__module__ None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of that
class), if that attribute is a user-defined function object or a classmethod object.

When an instance method object is created by retrieving a user-defined function object from a class via one of its
instances, its ___self_ __ attribute is the instance, and the method object is said to be bound. The new method’s
___func___ attribute is the original function object.

When an instance method object is created by retrieving a classmethod object from a class or instance, its
__self _ attributeisthe classitself,andits___ func___ attribute is the function object underlying the class method.

When an instance method object is called, the underlying function (__ func__) is called, inserting the class instance
(__self__)infront of the argument list. For instance, when C is a class which contains a definition for a function
f (), and x is an instance of C, calling x. f (1) is equivalent to calling C. f (x, 1).

When an instance method object is derived from a cLassmethod object, the «class instance» storedin ___self
will actually be the class itself, so that calling either x. £ (1) or C. £ (1) is equivalent to calling £ (C, 1) where £
is the underlying function.

Note that the transformation from function object to instance method object happens each time the attribute is
retrieved from the instance. In some cases, a fruitful optimization is to assign the attribute to a local variable and
call that local variable. Also notice that this transformation only happens for user-defined functions; other callable
objects (and all non-callable objects) are retrieved without transformation. It is also important to note that user-defined
functions which are attributes of a class instance are not converted to bound methods; this only happens when the
function is an attribute of the class.

26 Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

Generator functions

A function or method which uses the yield statement (see section The yield statement) is called a generator
function. Such a function, when called, always returns an iterator object which can be used to execute the body
of the function: calling the iterator’s iterator.__next__ () method will cause the function to execute until it
provides a value using the yield statement. When the function executes a ret urn statement or falls off the end, a
StopIteration exception is raised and the iterator will have reached the end of the set of values to be returned.

Coroutine functions

A function or method which is defined using async def is called a coroutine function. Such a function, when
called, returns a coroutine object. It may contain awa it expressions, as well as async withand async for
statements. See also the Coroutine Objects section.

Asynchronous generator functions

A function or method which is defined using async def and which uses the yield statement is called a
asynchronous generator function. Such a function, when called, returns an asynchronous iterator object which can
be used in an async for statement to execute the body of the function.

Calling the asynchronous iterator’s aiterator.___anext__ method will return an awaitable which when awaited
will execute until it provides a value using the yield expression. When the function executes an empty return
statement or falls off the end, a StopAsyncIteration exception is raised and the asynchronous iterator will
have reached the end of the set of values to be yielded.

Built-in functions

A built-in function object is a wrapper around a C function. Examples of built-in functions are 1en () and math.
sin () (math is a standard built-in module). The number and type of the arguments are determined by the C
function. Special read-only attributes:

e __doc___is the function’s documentation string, or None if unavailable. See function.__doc___
e _ name___is the function’s name. See function._ _name .
e __self__ issettoNone (but see the next item).

e _ module__isthe name of the module the function was defined in or None if unavailable. See function.
__module__.

Built-in methods

This is really a different disguise of a built-in function, this time containing an object passed to the C function as an
implicit extra argument. An example of a built-in method is alist . append (), assuming alist is a list object. In
this case, the special read-only attribute ___self__is set to the object denoted by alist. (The attribute has the same
semantics as it does with ot her instance methods.)

3.2. The standard type hierarchy 27

The Python Language Reference, Anpooisuon 3.11.13

Classes

Classes are callable. These objects normally act as factories for new instances of themselves, but variations are possible
for class types that override __new__ (). The arguments of the call are passed to __new__ () and, in the typical
case,to init__ () to initialize the new instance.

Class Instances

Instances of arbitrary classes can be made callable by defininga ___call__ () method in their class.

3.2.9 Modules

Modules are a basic organizational unit of Python code, and are created by the import system as invoked either
by the import statement, or by calling functions such as importlib.import_module () and built-in
__import__ (). A module object has a namespace implemented by a dictionary object (this is the dictionary
referenced by the __globals__ attribute of functions defined in the module). Attribute references are translated
to lookups in this dictionary, e.g., m. x is equivalent tom.___dict__ ["x"]. A module object does not contain the
code object used to initialize the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.
__dict__ ["x"] = 1.

Predefined (writable) attributes:

__name___
The module’s name.

doc

The module’s documentation string, or None if unavailable.

file
The pathname of the file from which the module was loaded, if it was loaded from a file. The
__file___ attribute may be missing for certain types of modules, such as C modules that are
statically linked into the interpreter. For extension modules loaded dynamically from a shared
library, it’s the pathname of the shared library file.

__annotations___
A dictionary containing variable annotations collected during module body execution. For best
practices on working with __annotations__, please see annotations-howto.

Special read-only attribute: __dict__ is the module’s namespace as a dictionary object.

Aemrouépera vhomoinong CPython: Because of the way CPython clears module dictionaries, the module dictionary
will be cleared when the module falls out of scope even if the dictionary still has live references. To avoid this, copy
the dictionary or keep the module around while using its dictionary directly.

3.2.10 Custom classes

Custom class types are typically created by class definitions (see section Class definitions). A class has a namespace
implemented by a dictionary object. Class attribute references are translated to lookups in this dictionary, e.g., C.
x is translated to C.__dict__ ["x"] (although there are a number of hooks which allow for other means of
locating attributes). When the attribute name is not found there, the attribute search continues in the base classes.
This search of the base classes uses the C3 method resolution order which behaves correctly even in the presence
of “diamond” inheritance structures where there are multiple inheritance paths leading back to a common ancestor.
Additional details on the C3 MRO used by Python can be found in the documentation accompanying the 2.3 release
at https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an instance
method object whose __self attribute is C. When it would yield a stat icmethod object, it is transformed

28 Kegahaio 3. Data model

https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Anpoocisuon 3.11.13

into the object wrapped by the static method object. See section Implementing Descriptors for another way in which
attributes retrieved from a class may differ from those actually contained inits __dict__.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.

A class object can be called (see above) to yield a class instance (see below).

Special attributes:

__name___
The class name.

__module___
The name of the module in which the class was defined.

__dict__
The dictionary containing the class’s namespace.

__bases___
A tuple containing the base classes, in the order of their occurrence in the base class list.

doc

The class’s documentation string, or None if undefined.

__annotations___
A dictionary containing variable annotations collected during class body execution. For best
practices on working with __annotations__, please see annotations-howto.

3.2.11 Class instances

A class instance is created by calling a class object (see above). A class instance has a namespace implemented as a
dictionary which is the first place in which attribute references are searched. When an attribute is not found there,
and the instance’s class has an attribute by that name, the search continues with the class attributes. If a class attribute
is found that is a user-defined function object, it is transformed into an instance method object whose ___self
attribute is the instance. Static method and class method objects are also transformed; see above under «Classes».
See section Implementing Descriptors for another way in which attributes of a class retrieved via its instances may
differ from the objects actually stored in the class’s __dict__ . If no class attribute is found, and the object’s class
hasa___getattr__ () method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has a
__setattr__ ()or__delattr__ () method, this is called instead of updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names.
See section Special method names.

Special attributes: __dict__ is the attribute dictionary; __class___ is the instance’s class.

3.2.12 1/0 objects (also known as file objects)

A file object represents an open file. Various shortcuts are available to create file objects: the open () built-in function,
and also os .popen (), os.fdopen (), and the makefile () method of socket objects (and perhaps by other
functions or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to the
interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow the interface
defined by the 10.Text IOBase abstract class.

3.2. The standard type hierarchy 29

The Python Language Reference, Anpooisuon 3.11.13

3.2.13 Internal types

A few types used internally by the interpreter are exposed to the user. Their definitions may change with future
versions of the interpreter, but they are mentioned here for completeness.

Code objects

Code objects represent byte-compiled executable Python code, or byfecode. The difference between a code object
and a function object is that the function object contains an explicit reference to the function’s globals (the module
in which it was defined), while a code object contains no context; also the default argument values are stored in the
function object, not in the code object (because they represent values calculated at run-time). Unlike function objects,
code objects are immutable and contain no references (directly or indirectly) to mutable objects.

30 Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

Special read-only attributes

codeobject

codeobject

codeobject

codeobject

codeobject

codeobject.

codeobject

codeobject.

codeobject.

codeobject

codeobject.

codeobject.

codeobject

codeobject

codeobject

codeobject.

codeobject

.co_name

.co_qualname

.co_argcount

.co_posonlyargcount

.co_kwonlyargcount

co_nlocals

.CO_varnames

co_cellvars

co_freevars

.co_code

co_consts

CO_names

.co_filename

.co_firstlineno

.co_lnotab

co_stacksize

.co_£flags

The function name

The fully qualified function name
Néo oty éxdoon 3.11.

The total number of positional parameters (including
positional-only parameters and parameters with default
values) that the function has

The number of positional-only parameters (including
arguments with default values) that the function has

The number of keyword-only parameters (including
arguments with default values) that the function has

The number of local variables used by the function
(including parameters)

A tuple containing the names of the local variables
in the function (starting with the parameter names)

A tuple containing the names of local variables that
are referenced by nested functions inside the function

A tuple containing the names of free variables in the
function

A string representing the sequence of bytecode
instructions in the function

A tuple containing the literals used by the byrecode
in the function

A tuple containing the names used by the byrecode in
the function

The name of the file from which the code was compiled

The line number of the first line of the function

A string encoding the mapping from byfecode oftsets
to line numbers. For details, see the source code of the
interpreter.

The required stack size of the code object

An integer encoding a number of flags for the
interpreter.

The following flag bits are defined for co_ f1ags: bit 0x04 is set if the function uses the *argument s syntax to
accept an arbitrary number of positional arguments; bit 0x 08 is set if the function uses the * *keywords syntax to
accept arbitrary keyword arguments; bit 0x20 is set if the function is a generator. See inspect-module-co-flags for

3.2. The standard type hierarchy

31

The Python Language Reference, Anpooisuon 3.11.13

details on the semantics of each flags that might be present.

Future feature declarations (from __ future_ import division)also use bitsin co_f1ags to indicate
whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if the function was compiled
with future division enabled; bits 0x10 and 0x1000 were used in earlier versions of Python.

Other bits in co_ f1ags are reserved for internal use.

If a code object represents a function, the first item in co_const s is the documentation string of the function, or
None if undefined.

Methods on code objects

codeobject.co_positions ()

Returns an iterable over the source code positions of each bytecode instruction in the code object.

The iterator returns tuples containing the (start_line, end_line, start_column,
end_column) . The i-th tuple corresponds to the position of the source code that compiled to the i-th code
unit. Column information is O-indexed utf-8 byte offsets on the given source line.

This positional information can be missing. A non-exhaustive lists of cases where this may happen:
o Running the interpreter with -X no_debug_ranges.
» Loading a pyc file compiled while using -X no_debug_ranges.
« Position tuples corresponding to artificial instructions.
« Line and column numbers that can’t be represented due to implementation specific limitations.
When this occurs, some or all of the tuple elements can be None.

Néo otnv éxdoomn 3.11.

Ynueiwon: This feature requires storing column positions in code objects which may result in a small increase
of disk usage of compiled Python files or interpreter memory usage. To avoid storing the extra information
and/or deactivate printing the extra traceback information, the —X no_debug_ranges command line flag
or the PYTHONNODEBUGRANGES environment variable can be used.

codeobject.co_lines ()

Returns an iterator that yields information about successive ranges of byfecodes. Each item yielded is a
(start, end, lineno) tuple:

e start (an int) represents the offset (inclusive) of the start of the bytecode range
« end (an int) represents the offset (exclusive) of the end of the byfecode range

e linenoisan int representing the line number of the bytecode range, or None if the bytecodes in the
given range have no line number

The items yielded will have the following properties:
o The first range yielded will have a start of 0.

e The (start, end) ranges will be non-decreasing and consecutive. That is, for any pair of tuples,
the start of the second will be equal to the end of the first.

» No range will be backwards: end >= start for all triples.
o The last tuple yielded will have end equal to the size of the byfecode.

Zero-width ranges, where start == end, are allowed. Zero-width ranges are used for lines that are present
in the source code, but have been eliminated by the bytecode compiler.

Néo otv éxdoon 3.10.

Agite emiong:

32

Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

PEP 626 - Precise line numbers for debugging and other tools.
The PEP that introduced the co_lines () method.

codeobject . replace (**kwargs)

Return a copy of the code object with new values for the specified fields.

Néo otnv ékdoom 3.8.

Frame objects

Frame objects represent execution frames. They may occur in fraceback objects, and are also passed to registered

trace functions.

Special read-only attributes

frame.f_back

frame.f_code

frame.f_locals

frame.f_globals

frame.f_builtins

frame.f_lasti

Points to the previous stack frame (towards the caller),
or None if this is the bottom stack frame

The code object being executed in this frame.
Accessing this attribute raises an auditing event
object.__getattr__ with arguments obj and
"f_code".

The dictionary used by the frame to look up local
variables

The dictionary used by the frame to look up global
variables

The dictionary used by the frame to look up built-in
(intrinsic) names

The «precise instruction» of the frame object (this is an
index into the byrecode string of the code object)

Special writable attributes

frame.f_ trace

frame.f_trace_lines

frame.f_trace_opcodes

frame.f_lineno

If not None, this is a function called for various events
during code execution (this is used by debuggers).
Normally an event is triggered for each new source line
(see f_trace_lines).

Set this attribute to False to disable triggering a
tracing event for each source line.

Set this attribute to True to allow per-opcode events
to be requested. Note that this may lead to undefined
interpreter behaviour if exceptions raised by the trace
function escape to the function being traced.

The current line number of the frame - writing to
this from within a trace function jumps to the given
line (only for the bottom-most frame). A debugger can
implement a Jump command (aka Set Next Statement)
by writing to this attribute.

3.2. The standard type hierarchy

33

https://peps.python.org/pep-0626/

The Python Language Reference, Anpooisuon 3.11.13

Frame object methods

Frame objects support one method:

frame.clear ()

This method clears all references to local variables held by the frame. Also, if the frame belonged to a generator,
the generator is finalized. This helps break reference cycles involving frame objects (for example when catching
an exception and storing its fraceback for later use).

RuntimeError is raised if the frame is currently executing.

Néo otnv ékdoon 3.4.

Traceback objects

Traceback objects represent the stack trace of an exception. A traceback object is implicitly created when an exception
occurs, and may also be explicitly created by calling t ypes . TracebackType.

AMoEe oty €xdoon 3.7: Traceback objects can now be explicitly instantiated from Python code.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at each
unwound level a traceback object is inserted in front of the current traceback. When an exception handler is entered,
the stack trace is made available to the program. (See section 7he try statement.) It is accessible as the third item of
the tuple returned by sys.exc_info (), and asthe __traceback___ attribute of the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error
stream; if the interpreter is interactive, it is also made available to the user as sys.last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next attributes
should be linked to form a full stack trace.

Special read-only attributes:

Points to the execution frame of the current level.
Accessing this attribute raises an auditing event
object.__getattr__ with arguments obj and
"tb_frame".

Gives the line number where the exception occurred

traceback.tb_frame

traceback.tb_lineno

Indicates the «precise instruction».
traceback.tb_lasti

The line number and last instruction in the traceback may differ from the line number of its frame object if the
exception occurred in a t ry statement with no matching except clause or with a finally clause.

traceback.tb_next

The special writable attribute tb_next is the next level in the stack trace (towards the frame where the
exception occurred), or None if there is no next level.

AMoEe ot ékdoon 3.7: This attribute is now writable

34 Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

Slice objects

Slice objects are used to represent slices for __getitem__ () methods. They are also created by the built-in
slice () function.

Special read-only attributes: start is the lower bound; stop is the upper bound; step is the step value; each is
None if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices (self, length)

This method takes a single integer argument length and computes information about the slice that the slice
object would describe if applied to a sequence of length items. It returns a tuple of three integers; respectively
these are the start and stop indices and the step or stride length of the slice. Missing or out-of-bounds indices
are handled in a manner consistent with regular slices.

Static method objects

Static method objects provide a way of defeating the transformation of function objects to method objects described
above. A static method object is a wrapper around any other object, usually a user-defined method object. When a
static method object is retrieved from a class or a class instance, the object actually returned is the wrapped object,
which is not subject to any further transformation. Static method objects are also callable. Static method objects are
created by the built-in staticmethod () constructor.

Class method objects

A class method object, like a static method object, is a wrapper around another object that alters the way in which
that object is retrieved from classes and class instances. The behaviour of class method objects upon such retrieval
is described above, under «instance methods». Class method objects are created by the built-in classmethod ()
constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or
subscripting and slicing) by defining methods with special names. This is Python’s approach to operator overloading,
allowing classes to define their own behavior with respect to language operators. For instance, if a class defines a
methodnamed ___getitem (), and x is an instance of this class, then x [1] is roughly equivalent to t ype (x) .
__getitem__ (x, 1i).Except where mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined (typically AttributeError or TypeError).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class
sets___iter__ () toNone, the class is not iterable, so calling iter () on its instances will raise a TypeError
(without falling back to __getitem ()).2

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of this is the NodeList
interface in the W3C’s Document Object Model.)

2The hash (), _iter (), _reversed _(),and _ contains__ () methods have special handling for this; others will
still raise a TypeError, but may do so by relying on the behavior that None is not callable.

3.3. Special method names 35

The Python Language Reference, Anpooisuon 3.11.13

3.3.1 Basic customization

object.__new__ (cls[,])

Called to create a new instance of class cls. __new__ () is a static method (special-cased so you need not
declare it as such) that takes the class of which an instance was requested as its first argument. The remaining
arguments are those passed to the object constructor expression (the call to the class). The return value of
__new___ () should be the new object instance (usually an instance of cls).

Typical implementations create a new instance of the class by invoking the superclasss __new__ () method
using super () .__new__ (cls[, ...]) with appropriate arguments and then modifying the newly
created instance as necessary before returning it.

If __new__ () isinvoked during object construction and it returns an instance of cls, then the new instance’s
__init__ () method will be invoked like __init__ (self[, ...]),where self is the new instance
and the remaining arguments are the same as were passed to the object constructor.

If new () does not return an instance of cls, then the new instance’s init () method will not be
invoked.

__new___ () is intended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init__ (self[,..]

Called after the instance has been created (by __ _new__ ()), but before it is returned to the caller. The
arguments are those passed to the class constructor expression. If a base class hasan ___init__ () method,
the derived class’s ___init__ () method, if any, must explicitly call it to ensure proper initialization of the
base class part of the instance; for example: super () .__init_ ([args...]).

Because __new__ () and __init__ () work together in constructing objects (__new__ () to create it,
and ___init__ () to customize it), no non-None value may be returned by ___init__ (); doing so will
cause a TypeError to be raised at runtime.

object._ del_ (self)

Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If
abaseclasshasa ___del__ () method, the derived class’s ___del__ () method, if any, must explicitly call
it to ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) forthe _del () method to postpone destruction of the instance
by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether
__del__ () iscalled a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that ___del__ () methods are called for objects that still exist when the interpreter exits.

Znusi(ﬂ(m: del x doesn’t directly call x.___del__ () — the former decrements the reference count for
x by one, and the latter is only called when x’s reference count reaches zero.

Agnropépera vioroinong CPython: It is possible for a reference cycle to prevent the reference count of
an object from going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage
collector. A common cause of reference cycles is when an exception has been caught in a local variable. The
frame’s locals then reference the exception, which references its own traceback, which references the locals of
all frames caught in the traceback.

Agite emiong:

Documentation for the gc module.

IIpoedomoinon: Due to the precarious circumstances under which __del__ () methods are invoked,
exceptions that occur during their execution are ignored, and a warning is printed to sy s . st derr instead.
In particular:

36

Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

e __del__ () can be invoked when arbitrary code is being executed, including from any arbitrary
thread. If __del__ () needs to take a lock or invoke any other blocking resource, it may deadlock
as the resource may already be taken by the code that gets interrupted to execute __del ().

e __del__ () can be executed during interpreter shutdown. As a consequence, the global variables
it needs to access (including other modules) may already have been deleted or set to None. Python
guarantees that globals whose name begins with a single underscore are deleted from their module
before other globals are deleted; if no other references to such globals exist, this may help in assuring
that imported modules are still available at the time when the __del () method is called.

object._ repr_ _ (self)
Called by the repr () built-in function to compute the «official» string representation of an object. If at
all possible, this should look like a valid Python expression that could be used to recreate an object with
the same value (given an appropriate environment). If this is not possible, a string of the form <. . . some
useful description...> should be returned. The return value must be a string object. If a class
defines _ repr () butnot __str__ (),then __ repr _ () is also used when an «informal» string
representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and
unambiguous.

object._ _str__ (self)
Called by str (object) and the built-in functions format () and print () to compute the «informal»
or nicely printable string representation of an object. The return value must be a string object.

This method differs from object.___repr__ () in that there is no expectation that ___str___ () return a
valid Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object._ repr_ ().

object._ bytes_ (self)
Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

object._ format_ (self, format_spec)

Called by the format () built-in function, and by extension, evaluation of formatted string literals and the
str.format () method, to produce a «formatted» string representation of an object. The format_spec
argument is a string that contains a description of the formatting options desired. The interpretation of the
format_spec argument is up to the type implementing ___format___ (), however most classes will either
delegate formatting to one of the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.
The return value must be a string object.

AMoEe otnv ékdoon 3.4: The __format__ method of object itself raises a TypeError if passed any
non-empty string.

AM0Ee oty ékdoon 3.7: object . _format__ (x, '') is now equivalent to str (x) rather than
format (str(x), '').

object.__1lt__ (self, other)

object.__le__ (self, other)

object.__eq (self, other)

object._ _ne__ (self, other)

object.__gt__ (self, other)

object.__ge__ (self, other)
These are the so-called «rich comparison» methods. The correspondence between operator symbols and
method names is as follows: x<y calls x.__1t__ (y), x<=y calls x.__le_ (y), x==y calls x.

eq (y),x!=ycallsx. ne_ (y),x>ycallsx.__gt_ (y),andx>=ycallsx._ _ge_ (y).

3.3. Special method names 37

The Python Language Reference, Anpooisuon 3.11.13

A rich comparison method may return the singleton Not Implemented if it does not implement the
operation for a given pair of arguments. By convention, False and True are returned for a successful
comparison. However, these methods can return any value, so if the comparison operator is used in a Boolean
context (e.g., in the condition of an i f statement), Python will call bool () on the value to determine if the
result is true or false.

By default, object implements __eqg () by using is, returning Not Implemented in the case of
a false comparison: True if x 1is y else NotImplemented. For _ _ne_ (), by default it
delegates to ___eqg () and inverts the result unless it is Not Implemented. There are no other implied
relationships among the comparison operators or default implementations; for example, the truth of (x<y or
x==y) does not imply x<=y. To automatically generate ordering operations from a single root operation, see
functools.total_ordering ().

See the paragraph on ___hash__ () for some important notes on creating hashable objects which support
custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support
the operation but the right argument does); rather, 1t () and __ _gt__ () are each other’s reflection,
__le () and _ _ge__ () are each other’s reflection, and _ _eq () and _ ne__ () are their own
reflection. If the operands are of different types, and the right operand’s type is a direct or indirect subclass
of the left operand’s type, the reflected method of the right operand has priority, otherwise the left operand’s
method has priority. Virtual subclassing is not considered.

When no appropriate method returns any value other than Not Implemented, the == and ! = operators will
fall back to is and is not, respectively.

object._ _hash__ (self)

Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset,and dict. The __hash__ () method should return an integer. The only required property is
that objects which compare equal have the same hash value; it is advised to mix together the hash values of
the components of the object that also play a part in comparison of objects by packing them into a tuple and
hashing the tuple. Example:

def _ hash__ (self):
return hash((self.name, self.nick, self.color))

Ynueiowon: hash () truncates the value returned from an object’s custom _ hash_ () method to the
size of a Py_ssize_t. This is typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s
___hash__ () must interoperate on builds of different bit sizes, be sure to check the width on all supported
builds. An easy way to do this is with python -c "import sys; print(sys.hash_info.
width)".

If a class does not define an __eqg___ () method it should not define a ___hash__ () operation either; if it
defines_ _eq () butnot___hash__ (),itsinstances will not be usable as items in hashable collections. If a
class defines mutable objects and implementsan __eqg___ () method, it should not implement ___hash__ (),
since the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s
hash value changes, it will be in the wrong hash bucket).

User-defined classeshave __eq () and__hash___ () methods by default; with them, all objects compare
unequal (except with themselves) and x . __hash___ () returns an appropriate value such that x == y implies
boththat x is yand hash (x) == hash (y).

A class that overrides __eqg__ () and does not define __hash___ () will haveits ___hash__ () implicitly
set to None. When the _ hash__ () method of a class is None, instances of the class will raise an
appropriate TypeError when a program attempts to retrieve their hash value, and will also be correctly
identified as unhashable when checking isinstance (obj, collections.abc.Hashable).

If a class that overrides ___eqg___ () needs to retain the implementation of ___hash___ () from a parent class,
the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__ .

If a class that does not override __eqg__ () wishes to suppress hash support, it should include __hash___

38

Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

= None in the class definition. A class which defines its own ___hash__ () that explicitly raises a
TypeError would be incorrectly identified as hashable by an isinstance (obj, collections.
abc.Hashable) call

Ynueiwon: By default, the __hash__ () values of str and bytes objects are «salted» with an unpredictable
random value. Although they remain constant within an individual Python process, they are not predictable
between repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that
exploit the worst case performance of a dict insertion, O(n?) complexity. See http://ocert.org/advisories/
ocert-2011-003.html for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering
(and it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

AlhaEe otnv €xdoon 3.3: Hash randomization is enabled by default.

object._ bool__ (self)

Called to implement truth value testing and the built-in operation bool () ; should return False or True.
When this method is not defined, __1en__ () is called, if it is defined, and the object is considered true if its
result is nonzero. If a class defines neither __1en__ () nor __bool__ (), all its instances are considered
true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion
of x.name) for class instances.

object.__getattr__ (self, name)

Called when the default attribute access fails with an Att ributeError (either _ getattribute__ ()
raises an AttributeError because name is not an instance attribute or an attribute in the class tree for
self;or ___get__ () of a name property raises AttributeError). This method should either return
the (computed) attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, ___getattr__ () isnot called. (This is an
intentional asymmetry between __getattr () and ___setattr__ ().) This is done both for efficiency
reasons and because otherwise ___getattr__ () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance
attribute dictionary (but instead inserting them in another object). See the __getattribute__ () method
below for a way to actually get total control over attribute access.

object._ _getattribute_ (self, name)

Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr__ (), the latter will not be called unless ___getattribute__ () either calls it explicitly
or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, object .
__getattribute__ (self, name).

Ynueimon: This method may still be bypassed when looking up special methods as the result of implicit
invocation via language syntax or built-in functions. See Special method lookup.

For certain sensitive attribute accesses, raises an auditing event object.__getattr__ with arguments
obj and name.

3.3.

Special method names 39

http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, Anpooisuon 3.11.13

object.__setattr__ (self, name, value)

Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store
the value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If _ _setattr__ () wants to assign to an instance attribute, it should call the base class method with the
same name, for example, object.__setattr__ (self, name, value).

For certain sensitive attribute assignments, raises an auditing event object . ___setattr__ with arguments
ob7j, name, value.

object.__delattr__ (self, name)

Like _setattr__ () but for attribute deletion instead of assignment. This should only be implemented if
del obj.name is meaningful for the object.

For certain sensitive attribute deletions, raises an auditing event object.__delattr__ with arguments
obj and name.

object._ _dir__ (self)

Called when dir () iscalled on the object. An iterable must be returned. dir () converts the returned iterable
to a list and sorts it.

Customizing module attribute access

Special names __getattr___ and __dir__ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and
return the computed value or raise an AttributeError. If an attribute is not found on a module object through
the normal lookup, i.e. object.__getattribute__ (), then __getattr__ is searched in the module
__dict__ before raising an AttributeError. If found, it is called with the attribute name and the result
is returned.

The __dir___ function should accept no arguments, and return an iterable of strings that represents the names
accessible on module. If present, this function overrides the standard dir () search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class___ attribute of a module object to a subclass of t ypes.ModuleType. For example:

import sys
from types import ModuleType

class VerboseModule (ModuleType) :
def _ repr_ (self):
return f'Verbose {self._ name !

def _ setattr_ (self, attr, value):
print (f'Setting {attr}..."')
super () ._ _setattr__ (attr, wvalue)

sys.modules|[name]. class = VerboseModule

Enueiwon: Defining module __getattr__ and setting module __class___ only affect lookups made using the
attribute access syntax — directly accessing the module globals (whether by code within the module, or via a reference
to the module’s globals dictionary) is unaffected.

AMoEe ot ékdoon 3.5: __class___ module attribute is now writable.
Néo omv éxdoon 3.7: __getattr___and __ dir__ module attributes.

Agite gmiong:

40 Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

PEP 562 - Module __getattr__and __ dir__
Describes the __getattr___and __dir__ functions on modules.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for
one of its parents). In the examples below, «the attribute» refers to the attribute whose name is the key of the property
in the owner class” __dict_ .

object.__get__ (self, instance, owner=None)

Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute access). The optional owner argument is the owner class, while instance is the instance that the attribute
was accessed through, or None when the attribute is accessed through the owner.

This method should return the computed attribute value or raise an AttributeError exception.

PEP 252 specifies that ___get__ () is callable with one or two arguments. Python’s own built-in descriptors
support this specification; however, it is likely that some third-party tools have descriptors that require both
arguments. Python'sown ___getattribute__ () implementation always passes in both arguments whether
they are required or not.

object.__set__ (self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.
Note, adding __set__ () or __delete__ () changes the kind of descriptor to a «data descriptor». See
Invoking Descriptors for more details.

object.__delete_ (self, instance)

Called to delete the attribute on an instance instance of the owner class.
Instances of descriptors may also have the __objclass___ attribute present:

object._ _objclass_

The attribute __objclass__ is interpreted by the inspect module as specifying the class where this
object was defined (setting this appropriately can assist in runtime introspection of dynamic class attributes).
For callables, it may indicate that an instance of the given type (or a subclass) is expected or required as the
first positional argument (for example, CPython sets this attribute for unbound methods that are implemented
in C).

Invoking Descriptors

In general, a descriptor is an object attribute with «binding behavior», one whose attribute access has been overridden
by methods in the descriptor protocol: __get__ (), __set___ (),and __delete__ ().If any of those methods
are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance,
a . x has a lookup chain starting with a.__dict__ ['x'],thentype(a).__dict__['x'], and continuing
through the base classes of type (a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a . x. How the arguments are assembled depends on a:

Direct Call
The simplest and least common call is when user code directly invokes a descriptor method: x . ___get__ (a).

Instance Binding
If binding to an object instance, a.x is transformed into the call: type(a).__dict_ ['x'].
__get__(a, type(a)).

3.3. Special method names 4

https://peps.python.org/pep-0562/
https://peps.python.org/pep-0252/

The Python Language Reference, Anpooisuon 3.11.13

Class Binding
If binding to a class, A . x is transformed into the call: A.__dict__['x'].__get__ (None, A).
Super Binding
A dotted lookup such as super (A, a) .xsearchesa.__class__.__mro__ forabase class B following
Aandthenreturns B.__dict_ ['x'].__get__ (a, A).If nota descriptor, x is returned unchanged.

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined. A
descriptor can define any combination of __get__ (), ___set__ () and __delete__ (). If it does not define
__get__ (), then accessing the attribute will return the descriptor object itself unless there is a value in the object’s
instance dictionary. If the descriptor defines __set__ () and/or __delete__ (), it is a data descriptor; if it
defines neither, it is a non-data descriptor. Normally, data descriptors define both __get__ () and __set__ (),
while non-data descriptors have justthe _get__ () method. Datadescriptorswith__get__ () and___set__ ()
(and/or __delete__ ()) defined always override a redefinition in an instance dictionary. In contrast, non-data
descriptors can be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as
non-data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to
acquire behaviors that differ from other instances of the same class.

The property () function is implemented as a data descriptor. Accordingly, instances cannot override the behavior
of a property.

__slots__

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of __dict__ and
__weakref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using ___dict__ can be significant. Attribute lookup speed can be significantly improved as
well.

object.__slots___

This class variable can be assigned a string, iterable, or sequence of strings with variable names used
by instances. _ slots__ reserves space for the declared variables and prevents the automatic creation of
__dict__ and _ weakref__ for each instance.

Notes on using __slots__:

o When inheriting from a class without __slots__,the __dict__ and __weakref _ attribute of the instances
will always be accessible.

o Withouta___dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition.
Attempts to assign to an unlisted variable name raises AttributeError. If dynamic assignment of new
variables is desired, then add '___dict__ ' to the sequence of strings in the __slots__ declaration.

o Without a _ weakref__ variable for each instance, classes defining _ slots__ do not support weak
references to its instances. If weak reference support is needed, then add '___weakref__ ' to the
sequence of strings in the __slots__ declaration.

o _ slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class
attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class
attribute would overwrite the descriptor assignment.

o Theactionof a__slots__declaration is not limited to the class where it is defined. __slots__ declared in parents
are available in child classes. However, child subclasses will geta __dict__ and __weakref__ unless they
also define __slots__ (which should only contain names of any additional slots).

« If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of the
program undefined. In the future, a check may be added to prevent this.

e TypeError will be raised if nonempty _ slots__ are defined for a class derived from a
"variable—-length" built-in typesuchas int,bytes,and tuple.

» Any non-string iterable may be assigned to __slots__.

42 Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

e Ifadictionary is used to assign __slots__, the dictionary keys will be used as the slot names. The values
of the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect.
getdoc () and displayed in the output of help ().

e _ class__ assignment works only if both classes have the same __slots__.

o Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have
attributes created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

o If an iterator is used for __slots__ then a descriptor is created for each of the iterator’s values. However, the
__slots__ attribute will be an empty iterator.

3.3.3 Customizing class creation

Whenever a class inherits from another class, __init_subclass__ () is called on the parent class. This way, it
is possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but
where class decorators only affect the specific class they’re applied to, __init_subclass__ solely applies to
future subclasses of the class defining the method.

classmethod object.__init_subeclass__ (cls)

This method is called whenever the containing class is subclassed. cls is then the new subclass. If defined as a
normal instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent class’s __init_subclass__.
For compatibility with other classes using __init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

(class Philosopher:
def _ init_subclass__(cls, /, default_name, **kwargs):
super () .__init_subclass__ (**kwargs)
cls.default_name = default_name

class AustralianPhilosopher (Philosopher, default_name="Bruce"):
pass

The default implementation object.__init_subclass__ doesnothing, but raises an error if it is called
with any arguments.

Enueiwon: The metaclass hint metaclass is consumed by the rest of the type machinery, and is never
passedto __init_subclass__ implementations. The actual metaclass (rather than the explicit hint) can
be accessed as type (cls).

Néo otnv ¢€kdoom 3.6.

When a class is created, type._ _new__ () scans the class variables and makes callbacks to those with a
__set_name___ () hook.

object.__ set_name__ (self, owner, name)
Automatically called at the time the owning class owner is created. The object has been assigned to name in
that class:
class A:
x = C{() # Automatically calls: x.__set_name__ (A, 'x'")

If the class variable is assigned after the class is created,
If needed, __set_name__ () can be called directly:

set_name___ () will not be called automatically.

class A:
pass

(ouvéyela oty exopevn oehida)

3.3. Special method names 43

The Python Language Reference, Anpooisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
c =CQ()
A.x = C # The hook is not called
©o set_name__ (A, 'x") # Manually invoke the hook

See Creating the class object for more details.

Néo oty éxdoon 3.6.

Metaclasses

By default, classes are constructed using t ype () . The class body is executed in a new namespace and the class name
is bound locally to the result of type (name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition
line, or by inheriting from an existing class that included such an argument. In the following example, both MyClass
and MySubclass are instances of Meta:

class Meta(type) :
pass

class MyClass (metaclass=Meta) :
pass

class MySubclass (MyClass) :
pass

J

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:
« MRO entries are resolved;
« the appropriate metaclass is determined;
« the class namespace is prepared;
« the class body is executed;

« the class object is created.

Resolving MRO entries

object._ _mro_entries__ (self, bases)
If a base that appears in a class definition is not an instance of type, thenan__mro_entries__ () method
is searched on the base. If an __mro_entries__ () method is found, the base is substituted with the result
of acallto __mro_entries__ () when creating the class. The method is called with the original bases
tuple passed to the bases parameter, and must return a tuple of classes that will be used instead of the base.
The returned tuple may be empty: in these cases, the original base is ignored.

Agite gmiong:

types.resolve_bases ()
Dynamically resolve bases that are not instances of type.

PEP 560
Core support for typing module and generic types.

44 Kegahaio 3. Data model

https://peps.python.org/pep-0560/

The Python Language Reference, Anpoocisuon 3.11.13

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:
« if no bases and no explicit metaclass are given, then t ype () is used;
« if an explicit metaclass is given and it is not an instance of type (), then it is used directly as the metaclass;

« if an instance of type () is given as the explicit metaclass, or bases are defined, then the most derived
metaclass is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type (cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these
candidate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail
with TypeError.

Preparing the class hamespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has a
__prepare__ attribute, it is called as namespace = metaclass.__prepare__ (name, bases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The __prepare_
method should be implemented as a classmethod. The namespace returned by __prepare_ is passed in to
__new___, but when the final class object is created the namespace is copied into a new dict.

If the metaclass has no __prepare__ attribute, then the class namespace is initialised as an empty ordered
mapping.
Agite emiong:

PEP 3115 - Metaclasses in Python 3000
Introduced the __prepare__ namespace hook

Executing the class body

The class body is executed (approximately) as exec (body, globals (), namespace). The key difference
from a normal call to exec () is that lexical scoping allows the class body (including any methods) to reference
names from the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see
names defined at the class scope. Class variables must be accessed through the first parameter of instance or class
methods, or through the implicit lexically scoped __class___ reference described in the next section.

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass (name, bases, namespace, **kwds) (the additional keywords passed here are the same as
those passed to __prepare_).

This class object is the one that will be referenced by the zero-argument form of super (). __class__ is an
implicit closure reference created by the compiler if any methods in a class body refer to either _ _class__ or
super. This allows the zero argument form of super () to correctly identify the class being defined based on
lexical scoping, while the class or instance that was used to make the current call is identified based on the first
argument passed to the method.

Agnrouépera viomoinong CPython: In CPython 3.6 and later, the __class__ cell is passed to the metaclass as
a_ classcell__ entry in the class namespace. If present, this must be propagated up to the type._ new___
call in order for the class to be initialised correctly. Failing to do so will result in a Runt imeError in Python 3.8.

When using the default metaclass type, or any metaclass that ultimately calls type._ _new__, the following
additional customization steps are invoked after creating the class object:

3.3. Special method names 45

https://peps.python.org/pep-3115/

The Python Language Reference, Anpooisuon 3.11.13

1) The type._ _new__ method collects all of the attributes in the class namespace that define a
__set_name___ () method;

2) Those __set_name___ methods are called with the class being defined and the assigned name of that
particular attribute;

3) The __init_subclass__ () hook is called on the immediate parent of the new class in its method
resolution order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the
resulting object is bound in the local namespace as the defined class.

When a new class is created by type.___new__, the object provided as the namespace parameter is copied to a
new ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which
becomes the ___dict___ attribute of the class object.

Agite emiong:

PEP 3135 - New super
Describes the implicit __class___ closure reference

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging,
interface checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource
locking/synchronization.

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance () and issubclass ()
built-in functions.

In particular, the metaclass abc . ABCMeta implements these methods in order to allow the addition of Abstract
Base Classes (ABCs) as «virtual base classes» to any class or type (including built-in types), including other ABCs.

class.__instancecheck__ (self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to
implement isinstance (instance, class).

class.__subclasscheck__ (self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to

implement issubclass (subclass, class).

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods
in the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case
the instance is itself a class.

Agite emiong:

PEP 3119 - Introducing Abstract Base Classes
Includes the specification for customizing isinstance () and issubclass () behavior through
__instancecheck__ () and __subclasscheck__ (), with motivation for this functionality in the
context of adding Abstract Base Classes (see the abc module) to the language.

46 Kegahaio 3. Data model

https://peps.python.org/pep-3135/
https://peps.python.org/pep-3119/

The Python Language Reference, Anpoocisuon 3.11.13

3.3.5 Emulating generic types

When using type annotations, it is often useful to parameterize a generic type using Python’s square-brackets notation.
For example, the annotation 1ist [int] might be used to signify a 1ist in which all the elements are of type
int.

Agite griong:

PEP 484 - Type Hints
Introducing Python’s framework for type annotations

Generic Alias Types
Documentation for objects representing parameterized generic classes

Generics, user-defined generics and typing.Generic
Documentation on how to implement generic classes that can be parameterized at runtime and understood by
static type-checkers.

A class can generally only be parameterized if it defines the special class method __class_getitem__ ().

classmethod object._ class_getitem__ (cls, key)

Return an object representing the specialization of a generic class by type arguments found in key.

When defined on a class, __class_getitem__ () is automatically a class method. As such, there is no
need for it to be decorated with @classmethod when it is defined.

The purpose of __class_getitem _

The purpose of ___class_getitem _ () isto allow runtime parameterization of standard-library generic classes
in order to more easily apply type hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers,
users should either inherit from a standard library class that already implements ___class_getitem__ (), or
inherit from typing.Generic, which has its own implementation of __class_getitem__ ().

Custom implementations of ___class_getitem__ () on classes defined outside of the standard library may
not be understood by third-party type-checkers such as mypy. Using __class_getitem__ () on any class for
purposes other than type hinting is discouraged.

__class_getitem__ versus __getitem _

Usually, the subscription of an object using square brackets will call the _ getitem () instance method
defined on the object’s class. However, if the object being subscribed is itself a class, the class method
__class_getitem _ () may be called instead. _ class_getitem__ () should return a GenericAlias
object if it is properly defined.

Presented with the expression obj [x], the Python interpreter follows something like the following process to decide
whether __getitem () or__class_getitem _ () should be called:

from inspect import isclass

def subscribe (obj, x):
"""Return the result of the expression 'obj[x]'"""

class_of_obj = type (obj)

If the class of obj defines __getitem _,
call class_of _obj.__getitem _(obj, x)

if hasattr(class_of_obj, ' _getitem_ '):
return class_of_obj._ _getitem__ (obj, x)
Else, 1f obj is a class and defines __class_getitem_ _,

(ouvéyela oty eV oehida)

3.3. Special method names 47

https://peps.python.org/pep-0484/

The Python Language Reference, Anpooisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
call obj._ _class_getitem _ (x)
elif isclass(obj) and hasattr(obj, ' class_getitem_'"):
return obj.__ _class_getitem__ (x)

Else, raise an exception
else:
raise TypeError (
f"'{class_of_obj._ name_}' object is not subscriptable"

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s
metaclass, and most classes have the type class as their metaclass. t ype does not define _ getitem (),
meaning that expressions such as 1ist [int],dict [str, float] and tuple([str, bytes] all resultin
__class_getitem () being called:

>>> # 1list has class "type" as its metaclass, like most classes:
>>> type(list)
<class 'type'>

>>> type(dict) == type(list) == type(tuple) == type(str) == type (bytes)
True

>>> # "list[int]" calls "list.__class_getitem_ _ (int)"

>>> list[int]

list[int]

>>> # list.__class_getitem _ returns a GenericAlias object:

>>> type(list[int])
<class 'types.GenericAlias'>

However, if a class has a custom metaclass that defines __getitem__ (), subscribing the class may result in
different behaviour. An example of this can be found in the enum module:

>>> from enum import Enum

>>> class Menu (Enum) :
"""A breakfast menu"""
SPAM = 'spam'
BACON = 'bacon'

>>> # Enum classes have a custom metaclass:

>>> type (Menu)

<class 'enum.EnumMeta'>

>>> # EnumMeta defines __getitem ,

>>> # so __class_getitem__ 1is not called,

>>> # and the result is not a GenericAlias object:
>>> Menu['SPAM']

<Menu.SPAM: 'spam'>

>>> type (Menu['SPAM'])

<enum 'Menu'>

Agite gmiong:

PEP 560 - Core Support for typing module and generic types
Introducing __ class_getitem__ (), and outlining when a subscription results in
__class_getitem__ () beingcalled instead of __ getitem__ ()

48 Kegahaio 3. Data model

https://peps.python.org/pep-0560/

The Python Language Reference, Anpoocisuon 3.11.13

3.3.6 Emulating callable objects

object.__ecall (self[, args...])

Called when the instance is «called» as a function; if this method is defined, x (argl, arg2, ...) roughly
translates to type (x) .__call_ (x, argl, ...).

3.3.7 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as
lists or tuples) or mappings (like dict ionaries), but can represent other containers as well. The first set
of methods is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence,
the allowable keys should be the integers k for which 0 <= k < N where N is the length of the sequence,
or slice objects, which define a range of items. It is also recommended that mappings provide the methods
keys (), values (), items (), get (), clear (), setdefault (), pop (), popitem(), copy (), and
update () behaving similar to those for Python’s standard dictionary objects. The collections.abc
module provides a MutableMapping abstract base class to help create those methods from a base set of
__getitem__ (), setitem__ (), delitem__ (), and keys (). Mutable sequences should provide
methods append (), count (), index (), extend (), insert (), pop (), remove (), reverse () and
sort (), like Python standard 1ist objects. Finally, sequence types should implement addition (meaning
concatenation) and multiplication (meaning repetition) by defining the methods ___add__ (), radd__ (),
__diadd__ (), _mul__ (), __rmul__ () and __imul__ () described below; they should not define other
numerical operators. It is recommended that both mappings and sequences implement the _contains__ ()
method to allow efficient use of the in operator; for mappings, in should search the mapping’s keys; for sequences,
it should search through the values. It is further recommended that both mappings and sequences implement the
___iter__ () method to allow efficient iteration through the container; for mappings, __iter__ () should iterate
through the object’s keys; for sequences, it should iterate through the values.

object._ len__ (self)
Called to implement the built-in function len (). Should return the length of the object, an integer >= 0.
Also, an object that doesn’t definea ___bool__ () method and whose __len__ () method returns zero is
considered to be false in a Boolean context.

Agmropépera vhomoinong CPython: In CPython, the length is required to be at most sys .maxsize. If
the length is larger than sys.maxsize some features (such as len ()) may raise OverflowError. To
prevent raising Over flowError by truth value testing, an object must definea ___bool__ () method.

object._ length_hint__ (self)

Called to implement operator.length_hint ().Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer >= 0. The return value may also
be Not Implemented, which is treated the same as if the __length_hint__ method didn’t exist at all.
This method is purely an optimization and is never required for correctness.

Néo otnv ¢kdoom 3.4.

Ynueioon: Slicing is done exclusively with the following three methods. A call like

[a[l:Z] =

is translated to

[a[slice(l, 2, None)] = Db

and so forth. Missing slice items are always filled in with None.

object._ _getitem__ (self, key)
Called to implement evaluation of self [key]. For sequence types, the accepted keys should be integers.
Optionally, they may support s11ice objects as well. Negative index support is also optional. If key is of an
inappropriate type, TypeError may be raised; if key is a value outside the set of indexes for the sequence

3.3. Special method names 49

The Python Language Reference, Anpooisuon 3.11.13

(after any special interpretation of negative values), IndexError should be raised. For mapping types, if key
is missing (not in the container), KeyError should be raised.

Ynueimon: forloops expect thatan ITndexError will be raised for illegal indexes to allow proper detection
of the end of the sequence.

Znuei(ﬂm]: When subscripting a class, the special class method class_getitem _ () may be called
instead of __getitem__ ().See _ class_getitem__ versus __ getitem__ for more details.

object.__setitem__ (self, key, value)
Called to implement assignment to self [key]. Same note as for __getitem__ (). This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added,
or for sequences if elements can be replaced. The same exceptions should be raised for improper key values as
forthe _ getitem__ () method.

object._ _delitem__ (self, key)
Called to implement deletion of self [key]. Same note as for __getitem__ (). This should only be
implemented for mappings if the objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for improper key values asforthe __getitem _ ()
method.

object._ _missing _ (self, key)
Called by dict._ getitem () to implement self [key] for dict subclasses when key is not in the
dictionary.

object._ _iter _ (self)

This method is called when an iterator is required for a container. This method should return a new iterator
object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the
container.

object._ reversed_ (self)

Called (if present) by the reversed () built-in to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

If the _ reversed__ () method is not provided, the reversed () built-in will fall back to using the
sequence protocol (__Ien__ () and __getitem _ ()). Objects that support the sequence protocol should
only provide __reversed__ () if they can provide an implementation that is more efficient than the one
provided by reversed ().

The membership test operators (in and not in) are normally implemented as an iteration through a container.
However, container objects can supply the following special method with a more efficient implementation, which also
does not require the object be iterable.

object._ contains__ (self, item)
Called to implement membership test operators. Should return true if item is in self, false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don't define __contains__ (), the membership test first tries iterationvia___iter__ (),
then the old sequence iteration protocol via___getitem__ (), see this section in the language reference.

50 Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should
be left undefined.

object.__add__ (self, other)

object.__sub__ (self, other)

object._ _mul__ (self, other)

object._ _matmul__ (self, other)

object.__truediv__ (self, other)

object._ floordiv__ (self, other)

object._ _mod__ (self, other)

object.__divmod__ (self, other)

object._ pow__ (self, other[, modulo])

object.__1shift__ (self, other)

object._ _rshift__ (self, other)

object.__and__ (self, other)

object.__ xor__ (self, other)

object.__oxr__ (self, other)

These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, *, |). For instance, to evaluate the expression x + y, where x is an instance of
a class that has an ___add__ () method, type (x) .__add__(x, vy) iscalled. The _divmod _ ()
method should be the equivalent to using _ floordiv.__ () and __mod__ (); it should not be related to
_ _truediv__ (). Note that __pow__ () should be defined to accept an optional third argument if the
ternary version of the built-in pow () function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return

NotImplemented.
object.__radd__ (self, other)
object.__rsub__ (self, other)
object.__rmul__ (self, other)
object.__rmatmul__ (self, other)
object.__rtruediv__ (self, other)
object.__rfloordiv__ (self, other)
object.__rmod__ (self, other)
object.__rdivmod__ (self, other)
object._ rpow__ (self, other[, modulo])
object.__rlshift__ (self, other)
object._ _rrshift__ (self, other)
object.__rand__ (self, other)
object.__rxor__ (self, other)
object.__ror__ (self, other)

These methods are called to implement the binary arithmetic operations (+, —, *, @, /, //, %, divmod (),
pow (), **, <<, >>, &, ~, |) with reflected (swapped) operands. These functions are only called if the left
operand does not support the corresponding operation® and the operands are of different types.* For instance,

3 «Does not support» here means that the class has no such method, or the method returns Not Implemented. Do not set the method to
None if you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such
fallback.

4 For operands of the same type, it is assumed that if the non-reflected method — suchas ___add__ () - fails then the overall operation is not
supported, which is why the reflected method is not called.

3.3. Special method names 51

The Python Language Reference, Anpooisuon 3.11.13

to evaluate the expression x — vy, where y is an instance of a class that has an ___rsub__ () method,
type(y) ._ _rsub__ (y, x) iscalledif type (x).__sub__ (x, y) returns NotImplemented.

Note that ternary pow () will not try calling __ rpow__ () (the coercion rules would become too
complicated).

Inueiwon: If the right operand’s type is a subclass of the left operand’s type and that subclass provides a
different implementation of the reflected method for the operation, this method will be called before the left
operand’s non-reflected method. This behavior allows subclasses to override their ancestors” operations.

object.__iadd__ (self, other)
object.__isub__ (self, other)
object.__imul__ (self, other)
object.__imatmul__ (self, other)
object.__itruediv__ (self, other)
object._ ifloordiv__ (self, other)
object.__imod__ (self, other)
object._ ipow__ (self, other[, modulo])
object._ _ilshift__ (self, other)
object.__irshift__ (self, other)
object.__iand__ (self, other)
object._ _ixor__ (self, other)

object._ _ior__ (self, other)

These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, @=, /=, //=,
§=, **=, <<=, >>=, &=, *=, | =). These methods should attempt to do the operation in-place (modifying

self) and return the result (which could be, but does not have to be, self). If a specific method is not defined,
or if that method returns Not Implemented, the augmented assignment falls back to the normal methods.
For instance, if x is an instance of a class withan ___iadd__ () method, x += vy isequivalentto x = x.
__diadd__(y).If__iadd () doesnotexist,orif x.___iadd__ (y) returns Not Implemented, x.
__add__(y)andy.__radd__ (x) are considered, as with the evaluation of x + y. In certain situations,
augmented assignment can result in unexpected errors (see fag-augmented-assignment-tuple-error), but this
behavior is in fact part of the data model.

object._ neg__ (self)

object._ pos__ (self)

object.__abs__ (self)

object.__invert_ (self)

Called to implement the unary arithmetic operations (-, +, abs () and ~).

object._ complex__ (self)

object.__int__ (self)

object._ float__ (self)
Called to implement the built-in functions complex (), int () and f£1loat (). Should return a value of the
appropriate type.

object._ _index__ (self)

Called to implement operator.index (), and whenever Python needs to losslessly convert the numeric
object to an integer object (such as in slicing, or in the built-inbin () ,hex () and oct () functions). Presence
of this method indicates that the numeric object is an integer type. Must return an integer.

If _ int_ (), float__ () and __complex__ () are not defined then corresponding built-in
functions int (), float () and complex () fallbackto __ index ().

object.__round__ (self[, ndigits])
object.__trunc__ (self)

52 Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

object._ floor__ (self)
object._ _ceil__ (self)

Called to implement the built-in function round () and math functions t runc (), floor () andceil ().
Unless ndigits is passed to ___round__ () all these methods should return the value of the object truncated
toan Integral (typically an int).

The built-in function int () falls back to _ trunc__ () if neither __int () nor __index__ () is
defined.

AlhaEe ot ékdoon 3.11: The delegation of int () to___trunc__ () is deprecated.

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a wi t h statement.
The context manager handles the entry into, and the exit from, the desired runtime context for the execution of the
block of code. Context managers are normally invoked using the with statement (described in section The with
statement), but can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking
resources, closing opened files, etc.

For more information on context managers, see typecontextmanager.

object.__enter__ (self)
Enter the runtime context related to this object. The with statement will bind this method’s return value to
the target(s) specified in the as clause of the statement, if any.

object.__exit__ (self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context

to be exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being
propagated), it should return a true value. Otherwise, the exception will be processed normally upon exit from
this method.

Note that __exit__ () methods should not reraise the passed-in exception; this is the caller’s responsibility.
Agite eriong:

PEP 343 - The «with» statement
The specification, background, and examples for the Python wi ¢ h statement.

3.3.10 Customizing positional arguments in class pattern matching

When using a class name in a pattern, positional arguments in the pattern are not allowed by default, i.e. case
MyClass (x, vy) is typically invalid without special support in MyClass. To be able to use that kind of pattern,
the class needs to define a __match_args__ attribute.

object._ _match_args_

This class variable can be assigned a tuple of strings. When this class is used in a class pattern with positional
arguments, each positional argument will be converted into a keyword argument, using the corresponding value
in __match_args__ as the keyword. The absence of this attribute is equivalent to setting it to ().

For example, if MyClass._ _match_args__is ("left", "center", "right") that meansthatcase
MyClass (x, y) isequivalentto case MyClass (left=x, center=y).Note thatthe number of arguments
in the pattern must be smaller than or equal to the number of elements in __match_args__; if it is larger, the pattern
match attempt will raise a TypeError.

Néo omv éxdoaon 3.10.

Agite gmiong:

3.3. Special method names 53

https://peps.python.org/pep-0343/

The Python Language Reference, Anpooisuon 3.11.13

PEP 634 - Structural Pattern Matching
The specification for the Python mat ch statement.

3.3.11 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an
object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an
exception:

>>> class C:
pass

>>> ¢ = C()
>>> ¢c._ _len_ = lambda: 5
>>> len(c)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methodssuchas___hash__ () and__repr__ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the
conventional lookup process, they would fail when invoked on the type object itself:

>>> 1 ._ _hash_ () == hash(1l)
True
>>> int._ _hash__ () == hash(int)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash ' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as “metaclass
confusion”, and is avoided by bypassing the instance when looking up special methods:

>>> type(l).__hash__ (1) == hash (1)

True

>>> type(int).__hash__ (int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the __getattribute__ () method even of the object’s metaclass:

>>> class Meta (type) :
def _ _getattribute__ (*args):
print ("Metaclass getattribute invoked")
return type._ getattribute__ (*args)

>>> class C(object, metaclass=Meta):
def _ len_ (self):
return 10
def _ getattribute__ (*args):
print ("Class getattribute invoked")

return object.__getattribute__ (*args)
>>> ¢ = C()
>>> c.__len_ () # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__ (c) # Explicit lookup via type
Metaclass getattribute invoked
10

(ouvéyela otV emtopevn oehida)

54 Kegahaio 3. Data model

https://peps.python.org/pep-0634/

The Python Language Reference, Anpoocisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

>>> len(c) # Implicit lookup
10

Bypassingthe __getattribute__ () machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be
set on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implementsan___await___ () method. Coroutine objects returned from async def
functions are awaitable.

Enueiwon: The generator iterator objects returned from generators decorated with t ypes.coroutine () are
also awaitable, but they do not implement __await__ ().

object._ _await__ (self)

Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future
implements this method to be compatible with the awa i t expression.

Ynueiwon: The language doesn’t place any restriction on the type or value of the objects yielded by the iterator
returned by __await__, as this is specific to the implementation of the asynchronous execution framework
(e.g. asyncio) that will be managing the awaitable object.

Néo oty éxdoonm 3.5.
Agite griong:

PEP 492 for additional information about awaitable objects.

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling ___await__ () and
iterating over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration,
and the exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by
the iterator. Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator
methods). However, unlike generators, coroutines do not directly support iteration.

AMoEe oty €kdoon 3.5.2: Tt is a Runt imeError to await on a coroutine more than once.

coroutine.send (value)

Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator
returned by __await__ (). If value is not None, this method delegates to the send () method of the
iterator that caused the coroutine to suspend. The result (return value, St opIteration, or other exception)
is the same as when iterating over the __await__ () return value, described above.

coroutine.throw (value)

coroutine.throw (type[, value[, traceback]])

Raises the specified exception in the coroutine. This method delegates to the t hrow () method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the

3.4. Coroutines 55

https://peps.python.org/pep-0492/

The Python Language Reference, Anpooisuon 3.11.13

__await__ () return value, described above. If the exception is not caught in the coroutine, it propagates
back to the caller.

coroutine.close ()

Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close () method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the
coroutine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4.3 Asynchronous lterators

An asynchronous iterator can call asynchronous code inits __anext___ method.
Asynchronous iterators can be used in an async for statement.
object.__aiter__ (self)

Must return an asynchronous iterator object.

object.__anext__ (self)

Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration
error when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

def _ aiter_ (self):
return self

async def _ anext_ (self):
val = await self.readline ()
if val == b'"':
raise StopAsynclteration
return val

Néo omv éxdoon 3.5.

AMoEe oty ékdoon 3.7: Prior to Python 3.7, __aiter () could return an awaitable that would resolve to an

(,lS_}/'I’l(,'/’ll”()l”l()LlS iterator.

Starting with Python 3.7, __aiter__ () must return an asynchronous iterator object. Returning anything else will
result in a TypeError error.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter__ and
__aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object.__aenter__ (self)
Semantically similar to __enter__ (), the only difference being that it must return an awaitable.

object.__aexit__ (self, exc_type, exc_value, traceback)

Semantically similarto __exit__ (), the only difference being that it must return an awaitable.

An example of an asynchronous context manager class:

56 Kegahaio 3. Data model

The Python Language Reference, Anpoocisuon 3.11.13

class AsyncContextManager:
async def _ aenter_ (self):
await log('entering context')

async def _ aexit_ (self, exc_type, exc, tb):
await log('exiting context')

Néo omv éxdoon 3.5.

3.4. Coroutines 57

The Python Language Reference, Anpooisuon 3.11.13

58 Kegahaio 3. Data model

KE®ANAIO 4

MovTtEAo ekTEAEONC

4.1 Aopn €vOg MPOYPAHHATOG

"Eva tpdypapo Python astoteheiton amd pmhok kmdika. ‘Eva umdok eivor Eva Koppdtt Kelwévou mpoyplupo-
tog Python mov extedeiton og wo povada. Ta wapakdto eivor phok: éva module, To COUA ULOG CUVAPTNONG,
o0 évag oplopdg kKhaong. Kabe eviol mov minktpohoyeitor duadpaotkd amotelel umhok. ‘Eva apyeio déoung
EVEPYELDV (EVaL Py ELO TOU SLVETOL MG TUTILKT) EL00O0G 0TO dlepunvéa 1) KabopileTol mg OPLoUa YPOUUNG EVTO-
AV oToV dLepunvéa) eivan £va pthok Kmdika. Mia script evtoln (o evroln ov kabopiletal oto diepunvea
ue TV emhoyn —c) eivor éva umhok Kodika. Mio evdtnta mov ekteleitan g avmtépov emmédou script (wg
module __main__) omwd) YPOUU] EVIOLDV PN OLUOTTOLMVTAGS £Vl OPLOUO. —m OPLOUAL ELVOL ETTLONG £VaL UITAOK
Kodka. To dpiopua ouuBoLoCELPAG TTOU TEPVAEL OTLG EVOMUATOUEVEG OUVAPTNOELS eval () KoL exec () &l-
vou €va WthoK KmOLKa.

‘Eva umhok kmduka exteleitor oe éva mlaloto extédeons. 'Eva mhaiolo mepiéyel oplopéveg TaAnpopopieg dia-
YelpLong (ITov XPNOLUOTOLOVVTAL VL0, ATTOOQPOALATWOT) Ko KaOOopiLel mov Ko Tweg cuveyiCeTol 1 eKTéleon
UETA TNV OAOKAPWOT TNG EKTELEONG TOU WITAOK KMOLKAL.

4.2 Ovopaocia Kkat cuvdeon

4.2.1 Xuyvdeon OVOUATWYV

Names avagépovtal oe avitkeipeva. Ta ovopato elodyoviol HEGm LELTOVPYLMV dETUEVONG OVOUATOV.
Ou mapakdtw douég deopevouv ovopoTa:

o TUTTLKEG TTOPAUETPOL GUVOPTIOEWVY,

o oplouoi KAGoewv,

e 0pPLOUOL CUVOPTIHOEMY

o EKQpPAOoELG avabeong

o fargets TOV ELVOL OVOLYVWPLOTLKG OV ELPOVICOVTAL OE (o avaBeon:

- grmkepaiida fpoyov for,

- uetd to as og puo MAwon with, oe pNIpa except, 0€ PATPO except * 1| 0TO as-pattern KaTd T
douKt avtLotoiynong potifwv,

59

The Python Language Reference, Anpooisuon 3.11.13

- 0€ éva OTLYILOTUTTO HOTIBOV KT T1) SOULKY] OVTLOTOlXMONG HOTIRWV
o dMlwoelg import.

H diwon import g popeng from ... import * ovvdéel Oha Ta ovouaTo Tov opiloval 0To eLoa-
youevo module, eKTOG 0O 0T TTOV EEKIVOUV e e KATm TTodAo. AVTH M LoppY) WITOPEL va. ypnotuortoun el
uovo oto enisedo Tov module.

'Evag 0t0)0¢ mov gugpaviletan o wa dMhwon del Bewpeiton emiong deouevuévog yior avtd Tov 0Komto (av
KOl 1) TTPOYUOTLKT] OTUOLOLOAOYLOL ELVOL VOL TTOOUVOEDEL TO GVvoua).

Kd&0e dnhwon avébeong 1 eloaymyng cvufaivel péoa og évo uhok mov opiletor omd Evav oplopd KAAong 1
oUVAPTNONG 1 070 emtimedo Tov module (To WTAOK KMOLKO AVATATOU ETLITEAOV).

Av éva dvopa deopevetal og Evol (IThOK, ELVAL ULCL TOTTILKY) UETOPANTH) AuToU TOU WITAOK, EKTOG oV dNAWOEL g
nonlocal W global. Av éva dvouo deouevetan oto enimedo tov module, eivor pa KaOoAkn uetaint.
(Ou petafintég tou purhok tov module elvor Tautdypova TOoMKEG Ko KaBoAkéS.) Av (o wetafSAnt xpnoLuo-
TOLELTOL O EVOL UTTAOK KOOLko 0AAG eV opiletau eKel, elvon pwua free variable.

Ké0e eugpdvion evog ovoUoTog 0To KEUEVO TOV TTPOYPAUUATOG avapépeTal 0Tt binding avtoy Tov ovOUATOog
7tov kaBopileTor amd Toug TOPAKATW KAVOVES ETIAVOTG OVOULTMYV.

4.2.2 EniAuon ovoupdatwv

"‘Eva scope opileL TV opatoTNTa £VOG OVOUOTOG HECM O €VoL WTAOK. AV (Lo TOTILKY] UETABANTY] OpLoTeL o
éva umhoxk, to medio g TePAaBAvEL To WITAoK auTd. Av 0 oplopdg ovupaivel og Eva PThok oVvAPTNOoNG, TO
71edL0 EMEKTELVETOL OE OTTOLALONTTOTE WITAOK TTEPLEYOVTOL UEGO OE AUTO TTOV TNV OPILEL, EKTOG ALV VL TTEPLEXOUEVO
WIThoK €L0GyEL DLOPOPETLKT) GUVOEDT] YLl TO OVOLULQL.

‘Otav éva dvouo XPNOLULOTTOLEITOL 08 EVOL UWTAOK KMOLKO, ETLAMVETOL XPNOLUOTOLDVTIOG TO TANOLEOTEPO TTEPL-
Barrov medio. To oUvoro OhwV TV TEdiWV TOU €ival 0patd o€ Eva UITAOK KmALKA 0VOUALeTOL environment
TOU UITAOK.

‘Otav éva dvopo dev Bpioketar kabohov, yivetal raise o eEaipeon NameError. Av to Tpéyov medio eival
71edlo CUVAPTNONG KL TO OVOUOL OVOPEPETAL O€ ULOL TOTILKY) UETABANTY TTOU deV €xel KON dECUEVTEL 08 K-
TTOLOL TUUT) OTO ONUELO TTOV YPNOLUOTTOLELTAL TO Ovoua, Yivetal raise uo eEaipeon UnboundLocalError. H
UnboundLocalError givol i vitokAdon g NameError.

Av o Aettoupyio oUuvoeong ovoudtmv cuufel 0movdNIToTte HEoa og Vo WITAOK KWMLK, OLEG OL YPNOELS TOV
0VOUOTOG EGO 0TO (WTAOK OVTLUETWITLLOVTAL G AVAPOPES OTO TPEXOV UTAOK. AuTtd Umopel vor odnyfHoeL oe
opaluata dtav Eva dGvoua pNoLoToLeital LEao o€ Vo WITAOK TTPLY deoUeVTEL. AUTOG 0 KAvOVOG Eival AETTTOC.
H Python dev dL0.0€teL SNADOELG KOl ETLTPETEL TIG AELTOVPYiEG OVVIEDT OVOUATOV VO GUUPBOLVOUY 0TTOVONTTOTE
uéoa o€ evo ok Kwdika. Ol Tomikég HETAPINTEG EVOG UTAOK KMOLKA (WITOPOVV VA TTPOCGILOPLOTOVY GOPMm-
vovtag OMOKANPO TO KELUEVO TOV WITAOK YLOL AELTOVpYieg 0UvdeoNG ovoudtwy. Agite Ty eyypagn oto FAQ yia
to UnboundLocalError yia wapodeiyporta.

If the global statement occurs within a block, all uses of the names specified in the statement refer to the bindings
of those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace
of the module builtins. The global namespace is searched first. If the names are not found there, the builtins
namespace is searched. The global statement must precede all uses of the listed names.

H dMiwon global €xel 1o 1010 medio pue wa Aettovpyio oUvoeong ovouatog 0to (8o UTAoK. Av 10 TANOLE-
otepo mePLPatlov mediov yia o ehevBepn petofinT mepLéxel poe dMhwon global, 1 ehetBepn petafinm
OVTLUETOTULETAL WG KAOOMKY).

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function
scope.

O ywpog ovopdtmv yio €va module dnuovpyeital avtopato v Tpwtn eopd mov To module elodyeton To
KUpto module yia €va script ovoudletan wévta __main__ .

60 Kegpadlawo 4. MovteAo eKTEAEONG

The Python Language Reference, Anpoocisuon 3.11.13

Class definition blocks and arguments to exec () and eval () are special in the context of name resolution. A class
definition is an executable statement that may use and define names. These references follow the normal rules for name
resolution with an exception that unbound local variables are looked up in the global namespace. The namespace of
the class definition becomes the attribute dictionary of the class. The scope of names defined in a class block is limited
to the class block; it does not extend to the code blocks of methods - this includes comprehensions and generator
expressions since they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + 1 for i in range(10))

4.2.3 EVOWHATWHEVEG OUVAPTHOELG KAl TIEPLOPLOUEVN EKTEAEON

Aemrouépera vhomoinong CPython: O ypfioteg dev Oa mpémel va Tpomomotovy To __builtins__ " elvan
aVOoTNPAG (o Aesttopépela viomoinomng. Ou xpnoteg mov BELOUV Vi TOPAKAUPOUV TLUEG OTOV XDPO OVOUATWV
TOV EVOOUATOUEVWV CUVOPTNOEWY Oa TTpémel vo kdvovy import to module builtins KoL Vo TPOTOTOLOVY
TOL OPAKTNPLOTIKG TOU KATAAANAOL.

O x®POG OVOUATOV TV EVOMUATOUEVDV CUVAPTIOEWV TOV OYETILETAL e TNV EKTENEON EVOG WITAOK KDOLKOL
BpilokeTon otV TPOYUOTIKOTITA UECW OVOaLNTNONG TOU ovOuaTog _builtins__ otov KaBoMKO Tov xhpo
ovoudtwv: autd Oa mpémer va eivon Eva AeEukd 1 éva module (ot devtepn meEPimTWON YPNOUOTOLELTAL TO
LeEukd tov module). Amtd mpoemhoyr|, 6tov Bplokduoote oto module _main_ ,To _ _builtins__ eivaw
t0 evoopatwuévo module builtins: dtov BpLokdUOOTE 08 0TOLOONTOTE GAA0 module, To _ builtins_
elvan éva Pevddvupo yio to AeELko tou idov Tov module builtins.

4.2.4 AAAnAemidpaon pe SUVAULKEG AELTOUPYIEQ

H emidvon ovoudtwv twv eletBepwv uetofntmv ovppaiver Katd to xpovo eKtéleons, Oyl KaTd 10 YpOvo
UETOYADTTLONG. AUTO ONUaiveL OTL O TOPAKATO KMOALKAG B0 eKTUTTMOEL TO 42:

i =10

def f():
print (i)

i = 42

£0)

OL ovvoptnoelg eval () Ko exec () dev éxovv mpdofaon oto mANpeg mepParlov yia TV emilvon ovoud-
tov. Ta ovOuOTo WTopEet va eAVOVTOL 0TOVG TOTLKOVS KoL KABOAKOUG X(HPOoUg OVOUATOV TOU KAAOUVTOG.
O ehevBepeg petafintég dev emhvoviol 0to TANoLEaTEPO TEPPAALOV TEdIOV, AAMG 0TOV KAOOAKO YMPO
ovoudtwv.! OL cuvapTioelg exec () KoL eval () €X0UV TPOGLPETIKG OPLOUOTO YL VO TOPOKAUPOUV TOUG
KaBOAKOVG Kol TOTLKOUG Y MPOVS OVOUATOV. AV KOO0PLOTEL UOVO €VOG XMDPOG OVOUAT®Y, XPNOLULOTTOLELTOL
KoL Yo Toug dvo.

4.3 Etaipeoelg

O eEaupéoelg eivar évag TpOTOG SLOKOITHG TNG KAVOVIKNG PONG EAEYYOU eVOG WITAOK KOSLKA, TPOKELUEVOU
VO, AVTLETOITLOTOUV o@dAuato 1 Ghheg eEaupetikég ouvOnkee. Mia eEaipeon yiverau raise oto onpeio 6mmov
evromiCetal o opdlua: umopel va avruetwmotel omd 10 TEPLBAAOV UITAOK KOILKA 1] amd 0ToLod1Tote
WITAOK KMALKO TTOV Apueoa 1 Epueca eKTELECE TO WITAOK KMALKO OTTov GUVERN TO opdiua.

O diepunvéag tng Python eyeipet pua eEaipeon dtav evromioet Eva o@AaAuo Kot TNV eKTEAEO(OTTMG 1) SLaipeon)

ue To undév). ‘Eva mpdypaupa Python popel emiong va eyeiper pntd o eEaipeon pe) dMhwon raise.
O duayelplotés eEaupéoewv Kabopilovrar pe ™ dhwon try ... except. H pntpa finally wag t€tolog

1 Autdc 0 meploplotdg TPoKVITTEL EMELdT 0 KOOLKOG OV eXTeleiTon ammd auTég TG Aettovpyieg dev eival Stadéoyog T otLyur mov o
module petayhmtriCeTor.

4.3. EEaipgoelq 61

The Python Language Reference, Anpooisuon 3.11.13

dMrwong umopel va ypnowpomon et yio va Kaboprotel Kndikag Kabaplopov, o omoiog dev drayeipiletar tnv
eEaipeon alld exteheitar aveEGpTnTa 0rtd To 0V TPoNYONKe eEaipeon 1) Oyl oTOV PO YO VUEVO KOSLKA.

H Python ypnowpomotel To povTého SLoelplong CEOIETOV «TEPUATIONOU»: Evag dLayelpLoTig e5apéoemv
WITOPEL VO SLOTTLOTMOEL TL CUVERT] KoL VO OUVEYIOEL TNV EKTELEDT] OF £va eEmTEPLKO emimedo, alhd dev pumopel
va S1opODOEL TV ATl TOV OPAMIOTOG Ko VO, ETTOVORAPEL T AeLToupyio Tov améTuye (eKTOG av emaveloayOet
TO TPOPANUATIKS KOpudTL KOOLKO ard TV apyh).

‘Otav wa eEaipeon dev avupetwmotel kKaBOAov, o Stepunveag TepUaTiCel TV eKTELEDT TOU TPOYPAUIATOG
1) eTLOTPEPEL OTOV DLAdPAOTLKO KUPLO Bpdyo Tov. Kat oTig 800 mepLntmoelg, EKTUTMVEL TO L)VOg TG 0Toiog,
eKTOg av 1) eEaipeon eivar SystemExit.

Ou eEaupéoelg avayvmpitovror amd otrypdtuna kKhdoemv. H pitpa except emléyetan ovaloyo pe thv
KAGLON TOU OTLYMLOTUTTOV: TIPETEL VOL AVAPEPETOL 0TV KAAGT TOU OTLYWOTUTTOU 1] OF WL (7] ELKOVIKT] BOOLKT)
kAdon avte. To oTypdTUITO UITopel Vo TapanpOel 0rtd TOV dLoELPLOTH Kal Vo UeTapépeL Tpdodeteg TAn-
POQOPIES OYETIKA [LE TNV EEALPETLKY] CUVONKY).

Inueiwon: To unvopoto eEalpéoemv dev amotelovv uépog touv API tng Python. To mepleyduevo Toug wmopel
vo, 0AMGEeL atd T pia ékdoom g Python otnv emduevn xwpig poetdomoinom kau dev Oa ipémel va fooiletan
0€ aUTA 0 KOdLKAG oV O eKTENeTTEL 08 TOMOTAEG EKDOTELG TOU dLepUnvEQ.

Agite emiong v mepLypa] ™g dAwong try oty evotnta The try statement KoL g SNAWONG raise oty
evomto. The raise statement.

YTOONHELWOELG

62 Kegpadlawo 4. MovteAo eKTEAEONG

KEGAAAIO D

The import system

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions such
as importlib.import_module () and built-in _ import__ () can also be used to invoke the import
machinery.

The import statement combines two operations; it searches for the named module, then it binds the results of
that search to a name in the local scope. The search operation of the import statement is defined as a call to
the _ import__ () function, with the appropriate arguments. The return value of ___import__ () is used to
perform the name binding operation of the import statement. See the import statement for the exact details of
that name binding operation.

A direct call to __import__ () performs only the module search and, if found, the module creation operation.
While certain side-effects may occur, such as the importing of parent packages, and the updating of various caches
(including sy s .modules), only the import statement performs a name binding operation.

When an import statement is executed, the standard builtin __ import__ () function is called. Other
mechanisms for invoking the import system (such as importlib.import_module ()) may choose to bypass
__import__ () and use their own solutions to implement import semantics.

When a module is first imported, Python searches for the module and if found, it creates a module object', initializing
it. If the named module cannot be found, a ModuleNotFoundError is raised. Python implements various
strategies to search for the named module when the import machinery is invoked. These strategies can be modified
and extended by using various hooks described in the sections below.

AMaEe oty ékdoom 3.3: The import system has been updated to fully implement the second phase of PEP 302.
There is no longer any implicit import machinery - the full import system is exposed through sys.meta_path.
In addition, native namespace package support has been implemented (see PEP 420).

' See types.ModuleType.

63

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/

The Python Language Reference, Anpooisuon 3.11.13

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example importlib.
import_module () provides a recommended, simpler API than built-in __import__ () for invoking the
import machinery. Refer to the import1ib library documentation for additional detail.

5.2 Packages

Python has only one type of module object, and all modules are of this type, regardless of whether the module is
implemented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python has
a concept of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take
this analogy too literally since packages and modules need not originate from the file system. For the purposes of this
documentation, we’ll use this convenient analogy of directories and files. Like file system directories, packages are
organized hierarchically, and packages may themselves contain subpackages, as well as regular modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another way,
packages are just a special kind of module. Specifically, any module that containsa ___path___ attribute is considered
a package.

All modules have a name. Subpackage names are separated from their parent package name by a dot, akin to Python’s
standard attribute access syntax. Thus you might have a package called ema i 1, which in turn has a subpackage called
email.mime and a module within that subpackage called email .mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are traditional
packages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory
containing an __init__ .py file. When a regular package is imported, this __init__ .py file is implicitly
executed, and the objects it defines are bound to names in the package’s namespace. The __init__ .py file can
contain the same Python code that any other module can contain, and Python will add some additional attributes to
the module when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/

__init__ .py
one/

__init__ .py
two/

__init__ .py
three/

__init__ .py

Importing parent .one will implicitly execute parent/__init__ .py and parent/one/__init_ .
py. Subsequent imports of parent . two or parent .three will execute parent /two/__init__ .pyand
parent/three/__init__ .py respectively.

64 Kegahaio 5. The import system

The Python Language Reference, Anpoocisuon 3.11.13

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the parent
package. Portions may reside in different locations on the file system. Portions may also be found in zip files, on the
network, or anywhere else that Python searches during import. Namespace packages may or may not correspond
directly to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path___ attribute. They instead use a custom iterable
type which will automatically perform a new search for package portions on the next import attempt within that
package if the path of their parent package (or sys.path for a top level package) changes.

With namespace packages, there is no parent/__init__ .py file. In fact, there may be multiple parent
directories found during import search, where each one is provided by a different portion. Thus parent/one
may not be physically located next to parent /two. In this case, Python will create a namespace package for the
top-level parent package whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of
this discussion, the difference is immaterial) being imported. This name may come from various arguments to
the import statement, or from the parameters to the importlib.import_module () or __import__ ()
functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g.
foo.bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo .bar .baz. If any
of the intermediate imports fail, a ModuleNotFoundError is raised.

5.3.1 The module cache

The first place checked during import search is sys . modules. This mapping serves as a cache of all modules that
have been previously imported, including the intermediate paths. So if foo.bar.baz was previously imported,
sys.modules will contain entries for foo, foo.bar, and foo.bar.baz. Each key will have as its value the
corresponding module object.

During import, the module name is looked up in sys .modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then aModuleNotFoundError
is raised. If the module name is missing, Python will continue searching for the module.

sys.modules is writable. Deleting a key may not destroy the associated module (as other modules may hold
references to it), but it will invalidate the cache entry for the named module, causing Python to search anew for the
named module upon its next import. The key can also be assigned to None, forcing the next import of the module
to result in a ModuleNotFoundError.

Beware though, as if you keep a reference to the module object, invalidate its cache entry in sys . modules, and then
re-import the named module, the two module objects will not be the same. By contrast, importlib.reload ()
will reuse the same module object, and simply reinitialise the module contents by rerunning the module’s code.

5.3. Searching 65

https://peps.python.org/pep-0420/

The Python Language Reference, Anpooisuon 3.11.13

5.3.2 Finders and loaders

If the named module is not found in sy s .modules, then Python’s import protocol is invoked to find and load the
module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine whether
it can find the named module using whatever strategy it knows about. Objects that implement both of these interfaces
are referred to as importers - they return themselves when they find that they can load the requested module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules, and
the second knows how to locate frozen modules. A third default finder searches an import path for modules. The
import path is a list of locations that may name file system paths or zip files. It can also be extended to search for any
locatable resource, such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module searching.

Finders do not actually load modules. If they can find the named module, they return a module spec, an encapsulation
of the module’s import-related information, which the import machinery then uses when loading the module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create and
register new ones to extend the import machinery.

AMoEe otnv ékdoon 3.4: In previous versions of Python, finders returned loaders directly, whereas now they return
module specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There are
two types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys.modules cache look up. This allows meta hooks to override sy s . path processing, frozen modules, or even
built-in modules. Meta hooks are registered by adding new finder objects to sys .meta_path, as described below.

Import path hooks are called as part of sys.path (or package.___path__) processing, at the point where their
associated path item is encountered. Import path hooks are registered by adding new callables to sy s . path_hooks
as described below.

5.3.4 The meta path

When the named module is not found in sy s .modules, Python next searches sy s .meta_path, which contains
a list of meta path finder objects. These finders are queried in order to see if they know how to handle the named
module. Meta path finders must implement a method called find_spec () which takes three arguments: a name,
an import path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine
whether it can handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the named
module, it returns None. If sys.meta_path processing reaches the end of its list without returning a spec, then
aModuleNotFoundError is raised. Any other exceptions raised are simply propagated up, aborting the import
process.

The find_spec () method of meta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo .bar .baz. The second argument is the path entries to use
for the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the
second argument is the value of the parent package’s __path___ attribute. If the appropriate ___path___ attribute
cannot be accessed, a ModuleNotFoundError is raised. The third argument is an existing module object that
will be the target of loading later. The import system passes in a target module only during reload.

The meta path may be traversed multiple times for a single import request. For example, assuming none of the modules
involved has already been cached, importing foo.bar .baz will first perform a top level import, calling mpf .
find_spec ("foo", None, None) on each meta path finder (mpf). After foo has been imported, foo.
bar will be imported by traversing the meta path a second time, callingmpf . find_spec ("foo.bar", foo.

66 Kegahaio 5. The import system

The Python Language Reference, Anpoocisuon 3.11.13

__path__, None).Once foo.bar has been imported, the final traversal will call mpf . find_spec ("foo.
bar.baz", foo.bar._ _path__, None).

Some meta path finders only support top level imports. These importers will always return None when anything other
than None is passed as the second argument.

Python’s default sys . meta_path has three meta path finders, one that knows how to import built-in modules, one
that knows how to import frozen modules, and one that knows how to import modules from an import path (i.e. the
path based finder).

AMoEe oty £€xdoon 3.4: The find_spec () method of meta path finders replaced find_module (), which
is now deprecated. While it will continue to work without change, the import machinery will try it only if the finder
does not implement find_spec ().

AMoEe oty €kdoon 3.10: Use of £ind_module () by the import system now raises ImportWarning.

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the
module. Here is an approximation of what happens during the loading portion of import:

module = None

if spec.loader is not None and hasattr (spec.loader, 'create_module'):
It is assumed 'exec_module' will also be defined on the loader.
module = spec.loader.create_module (spec)

if module is None:
module = ModuleType (spec.name)

The import-related module attributes get set here:

_init_module_attrs (spec, module)

if spec.loader is None:
unsupported
raise ImportError

if spec.origin is None and spec.submodule_search_locations is not None:
namespace package

sys.modules [spec.name] = module
elif not hasattr (spec.loader, 'exec_module'):
module = spec.loader.load_module (spec.name)
Set __loader___ and __package__ 1f missing.
else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module (module)
except BaseException:
try:
del sys.modules|[spec.name]
except KeyError:
pass
raise
return sys.modules[spec.name]

Note the following details:
« If there is an existing module object with the given name in sy s . modules, import will have already returned
it.
e The module will exist in sys .modules before the loader executes the module code. This is crucial because

the module code may (directly or indirectly) import itself; adding it to sy s .modules beforehand prevents
unbounded recursion in the worst case and multiple loading in the best.

o If loading fails, the failing module - and only the failing module - gets removed from sys.modules.
Any module already in the sys.modules cache, and any module that was successfully loaded as a side-

5.4. Loading 67

The Python Language Reference, Anpooisuon 3.11.13

effect, must remain in the cache. This contrasts with reloading where even the failing module is left in sys .
modules.

» After the module is created but before execution, the import machinery sets the import-related module
attributes («_init_module_attrs» in the pseudo-code example above), as summarized in a later section.

« Module execution is the key moment of loading in which the module’s namespace gets populated. Execution
is entirely delegated to the loader, which gets to decide what gets populated and how.

o The module created during loading and passed to exec_module() may not be the one returned at the end of
import”.

AMoEe ot ékdoon 3.4: The import system has taken over the boilerplate responsibilities of loaders. These were
previously performed by the importlib.abc.Loader.load_module () method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the
importlib.abc.Loader.exec_module () method with a single argument, the module object to execute.
Any value returned from exec_module () is ignored.

Loaders must satisfy the following requirements:

o If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the
loader should execute the module’s code in the module’s global name space (module.__dict_).

« If the loader cannot execute the module, it should raise an ImportError, although any other exception
raised during exec_module () will be propagated.

In many cases, the finder and loader can be the same object; in such cases the find_spec () method would just
return a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module ()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module () does not need to set any attributes on the module object. If the method returns None, the
import machinery will create the new module itself.

Néo oty éxdoon 3.4: The create_module () method of loaders.

AMoEe ot £€xdoon 3.4: The 1oad_module () method was replaced by exec_module () and the import
machinery assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the 1oad_module () method of loaders if it
exists and the loader does not also implement exec_module (). However, load_module () hasbeen deprecated
and loaders should implement exec_module () instead.

The 1oad_module () method must implement all the boilerplate loading functionality described above in addition
to executing the module. All the same constraints apply, with some additional clarification:

« If there is an existing module object with the given name in sy s .modules, the loader must use that existing
module. (Otherwise, importlib.reload () will not work correctly.) If the named module does not exist
in sys.modules, the loader must create a new module object and add it to sys .modules.

o The module must exist in sys .modules before the loader executes the module code, to prevent unbounded
recursion or multiple loading.

« If loading fails, the loader must remove any modules it has inserted into sy s .modules, but it must remove
only the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

AMoEe otv ékdoon 3.5: A DeprecationWarning is raised when exec_module () is defined but
create_module () isnot.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in
sys.modules. The indirect effect of this is that an imported module may replace itself in sys.modules. This is implementation-specific
behavior that is not guaranteed to work in other Python implementations.

68 Kegahaio 5. The import system

The Python Language Reference, Anpoocisuon 3.11.13

AMoEe oty €kdoon 3.6 An ImportError is raised when exec_module () is defined but
create_module () is not.

AMoEe oty €xdoon 3.10: Use of 1oad_module () will raise ImportWarning.

5.4.2 Submodules

When a submodule is loaded using any mechanism (e.g. importlib APIs, the import or import-from
statements, or built-in __import__ ()) a binding is placed in the parent module’s namespace to the submodule
object. For example, if package spam has a submodule foo, after importing spam. foo, spam will have an
attribute £oo which is bound to the submodule. Let’s say you have the following directory structure:

spam/
__init__ .py
foo.py

and spam/__init__ .py has the following line in it:

[from .foo import Foo

then executing the following puts name bindings for foo and Foo in the spam module:

>>> import spam

>>> spam. foo

<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.Foo

<class 'spam.foo.Foo'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental feature of the
import system. The invariant holding is that if you have sys .modules ['spam'] and sys.modules|['spam.
foo'] (as you would after the above import), the latter must appear as the foo attribute of the former.

5.4.3 Module spec

The import machinery uses a variety of information about each module during import, especially before loading. Most
of the information is common to all modules. The purpose of a module’s spec is to encapsulate this import-related
information on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the finder
that creates the module spec and the loader that executes it. Most importantly, it allows the import machinery to
perform the boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

The module’s spec is exposed as the ___spec___ attribute on a module object. See ModuleSpec for details on the
contents of the module spec.

Néo omv éxdoon 3.4.

5.4.4 Import-related module attributes

The import machinery fills in these attributes on each module object during loading, based on the module’s spec,
before the loader executes the module.
__name___

The __name___ attribute must be set to the fully qualified name of the module. This name is used to uniquely
identify the module in the import system.

5.4. Loading 69

The Python Language Reference, Anpooisuon 3.11.13

__loader___

The __loader__ attribute must be set to the loader object that the import machinery used when loading
the module. This is mostly for introspection, but can be used for additional loader-specific functionality, for
example getting data associated with a loader.

package_

The module’s __package___ attribute must be set. Its value must be a string, but it can be the same value
asits __name__. When the module is a package, its __package___ value should be set to its __name__.
When the module is not a package, __package___ should be set to the empty string for top-level modules,
or for submodules, to the parent package’s name. See PEP 366 for further details.

This attribute is used instead of __name___to calculate explicit relative imports for main modules, as defined
in PEP 366. It is expected to have the same value as __spec___.parent.

AlLaEe oty ékdoom 3.6: The value of __package___is expected to be the same as __spec___.parent.

__spec__

The ___spec___ attribute must be set to the module spec that was used when importing the module. Setting
___spec__ appropriately applies equally to modules initialized during interpreter startup. The one exception
iS_ _main_ ,where __ spec__is set to None in some cases.

When __package___isnot defined, __spec___.parent is used as a fallback.
Néo oty éxdoon 3.4.

AlaEe oty ékdoon 3.6: __spec___.parent is used as a fallback when __package___ is not defined.

path__

If the module is a package (either regular or namespace), the module object’s __path___ attribute must be
set. The value must be iterable, but may be empty if __path__ has no further significance. If __path__ is
not empty, it must produce strings when iterated over. More details on the semantics of __path__ are given
below.

Non-package modules should not have a __path___ attribute.

__file

__cached___

__file__ is optional (if set, value must be a string). It indicates the pathname of the file from which the
module was loaded (if loaded from a file), or the pathname of the shared library file for extension modules
loaded dynamically from a shared library. It might be missing for certain types of modules, such as C modules
that are statically linked into the interpreter, and the import system may opt to leave it unset if it has no semantic
meaning (e.g. a module loaded from a database).

If __file_ issetthenthe ___cached__ attribute might also be set, which is the path to any compiled
version of the code (e.g. byte-compiled file). The file does not need to exist to set this attribute; the path can
simply point to where the compiled file would exist (see PEP 3147).

Note that __cached__ maybesetevenif _ file_ is not set. However, that scenario is quite atypical.
Ultimately, the loader is what makes use of the module spec provided by the finder (from which ___file_
and __ cached__ are derived). So if a loader can load from a cached module but otherwise does not load
from a file, that atypical scenario may be appropriate.

70

Kegahaio 5. The import system

https://peps.python.org/pep-0366/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-3147/

The Python Language Reference, Anpoocisuon 3.11.13

5.4.5 module.__path__

By definition, if a module has a __path___ attribute, it is a package.

Apackage’s__path__ attribute is used during imports of its subpackages. Within the import machinery, it functions
much the same as sys.path, i.e. providing a list of locations to search for modules during import. However,
__path__ is typically much more constrained than sys.path.

__path__ must be an iterable of strings, but it may be empty. The same rules used for sys.path also apply
to a package’s __path__, and sys.path_hooks (described below) are consulted when traversing a package’s
__path__.

A package’s __init__ .py file may set or alter the package’s _ _path__ attribute, and this was typically the way
namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace packages no
longer need to supply __init__ .py files containing only __path__ manipulation code; the import machinery
automatically sets __path___ correctly for the namespace package.

5.4.6 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s spec,
you can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or there
is no spec, the import system will craft a default repr using whatever information is available on the module. It will
try to use the module._ _name_ ,module._ file ,andmodule.__ loader__ as input into the repr,
with defaults for whatever information is missing.

Here are the exact rules used:

o If themodule hasa ___spec___ attribute, the information in the spec is used to generate the repr. The «name»,
«loader», «origin», and «has_location» attributes are consulted.

o If the module hasa __ file_ attribute, this is used as part of the module’s repr.

o If the module hasno __file__ butdoes have a __ loader__ thatis not None, then the loader’s repr is
used as part of the module’s repr.

o Otherwise, just use the module’s __name___in the repr.

AMoEe oty ékdoom 3.4: Use of loader.module_repr () has been deprecated and the module spec is now
used by the import machinery to generate a module repr.

For backward compatibility with Python 3.3, the module repr will be generated by calling the loader’s
module_repr () method, if defined, before trying either approach described above. However, the method is
deprecated.

AMoEe oty ékdoon 3.10: Calling module_repr () now occurs after trying to use a module’s __spec
attribute but before falling back on __file . Use of module_repr () is slated to stop in Python 3.12.

5.4.7 Cached bytecode invalidation

Before Python loads cached bytecode from a . pyc file, it checks whether the cache is up-to-date with the source
. py file. By default, Python does this by storing the source’s last-modified timestamp and size in the cache file when
writing it. At runtime, the import system then validates the cache file by checking the stored metadata in the cache
file against the source’s metadata.

Python also supports «hash-based» cache files, which store a hash of the source file’s contents rather than its metadata.
There are two variants of hash-based . pyc files: checked and unchecked. For checked hash-based . pyc files, Python
validates the cache file by hashing the source file and comparing the resulting hash with the hash in the cache file. If
a checked hash-based cache file is found to be invalid, Python regenerates it and writes a new checked hash-based
cache file. For unchecked hash-based . pyc files, Python simply assumes the cache file is valid if it exists. Hash-based
. pyc files validation behavior may be overridden with the -——check-hash-based-pycs flag.

5.4. Loading 71

https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/

The Python Language Reference, Anpooisuon 3.11.13

AMoEe omv €xdoon 3.7: Added hash-based .pyc files. Previously, Python only supported timestamp-based
invalidation of bytecode caches.

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based
Jfinder (PathFinder), searches an import path, which contains a list of path entries. Each path entry names a
location to search for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries,
associating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling
special file types such as Python source code (. py files), Python byte code (. pyc files) and shared libraries (e.g.
. so files). When supported by the zipimport module in the standard library, the default path entry finders also
handle loading all of these file types (other than shared libraries) from zipfiles.

Path entries need not be limited to file system locations. They can refer to URLs, database queries, or any other
location that can be specified as a string.

The path based finder provides additional hooks and protocols so that you can extend and customize the types of
searchable path entries. For example, if you wanted to support path entries as network URLs, you could write a hook
that implements HTTP semantics to find modules on the web. This hook (a callable) would return a path entry finder
supporting the protocol described below, which was then used to get a loader for the module from the web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using the
terms meta path finder and path entry finder. These two types of finders are very similar, support similar protocols,
and function in similar ways during the import process, but it’s important to keep in mind that they are subtly different.
In particular, meta path finders operate at the beginning of the import process, as keyed off the sys.meta_path
traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the
path based finder were to be removed from sys.meta_path, none of the path entry finder semantics would be
invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is specified
with a string path entry. Most path entries name locations in the file system, but they need not be limited to this.

As a meta path finder, the path based finder implements the £ind_spec () protocol previously described, however
it exposes additional hooks that can be used to customize how modules are found and loaded from the import path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and sys.
path_importer_cache. The _ _path__ attributes on package objects are also used. These provide
additional ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries
in sys.path can name directories on the file system, zip files, and potentially other «locations» (see the site
module) that should be searched for modules, such as URLS, or database queries. Only strings should be present on
sys .path; all other data types are ignored.

The path based finder is a meta path finder, so the import machinery begins the import path search by calling the
path based finder’s find_spec () method as described previously. When the path argument to find_spec ()
is given, it will be a list of string paths to traverse - typically a package’s __path___ attribute for an import within
that package. If the path argument is None, this indicates a top level import and sys . path is used.

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate path
entry finder (PathEntryFinder) for the path entry. Because this can be an expensive operation (e.g. there may
be stat () call overheads for this search), the path based finder maintains a cache mapping path entries to path

72 Kegahaio 5. The import system

The Python Language Reference, Anpoocisuon 3.11.13

entry finders. This cache is maintained in sys.path_importer_cache (despite the name, this cache actually
stores finder objects rather than being limited to importer objects). In this way, the expensive search for a particular
path entry location’s path entry finder need only be done once. User code is free to remove cache entries from sys .
path_importer_cache forcing the path based finder to perform the path entry search again’.

If the path entry is not present in the cache, the path based finder iterates over every callable in sys.path_hooks.
Each of the path entry hooks in this list is called with a single argument, the path entry to be searched. This callable may
either return a path entry finder that can handle the path entry, or it may raise ImportError. An ImportError
is used by the path based finder to signal that the hook cannot find a path entry finder for that path entry. The exception
is ignored and import path iteration continues. The hook should expect either a string or bytes object; the encoding
of bytes objects is up to the hook (e.g. it may be a file system encoding, UTF-8, or something else), and if the hook
cannot decode the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec () method will store None in sys.path_importer_cache (to indicate that there is no finder
for this path entry) and return None, indicating that this meta path finder could not find the module.

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory — denoted by an empty string — is handled slightly differently from other entries
on sys.path. First, if the current working directory is found to not exist, no value is stored in sys.
path_importer_cache. Second, the value for the current working directory is looked up fresh for each module
lookup. Third, the path used for sys.path_importer_cache and returned by importlib.machinery.
PathFinder.find_spec () will be the actual current working directory and not the empty string.

5.5.2 Path entry finder protocol

In order to support imports of modules and initialized packages and also to contribute portions to namespace packages,
path entry finders must implement the £ind_spec () method.

find_spec () takes two arguments: the fully qualified name of the module being imported, and the (optional)
target module. £ind_spec () returns a fully populated spec for the module. This spec will always have «loader»
set (with one exception).

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets
«submodule_search_locations» to a list containing the portion.

AMoEe otnv ékdoom 3.4: find_spec () replaced £ind_loader () and find_module (), both of which
are now deprecated, but will be used if £ind_spec () is not defined.

Older path entry finders may implement one of these two deprecated methods instead of £ind_spec (). The
methods are still respected for the sake of backward compatibility. However, if £ind_spec () is implemented on
the path entry finder, the legacy methods are ignored.

find_loader () takes one argument, the fully qualified name of the module being imported. find_loader ()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion.

For backwards compatibility with other implementations of the import protocol, many path entry finders also
support the same, traditional £ind_module () method that meta path finders support. However path entry finder
find_module () methods are never called with a path argument (they are expected to record the appropriate
path information from the initial call to the path hook).

The find_module () method on path entry finders is deprecated, as it does not allow the path entry finder to
contribute portions to namespace packages. If both find_loader () and f£ind_module () exist on a path
entry finder, the import system will always call find_loader () in preference to find_module ().

AMoEe otnv ékdoon 3.10: Calls to find_module () and £ind_loader () by the import system will raise
ImportWarning.

3 In legacy code, it is possible to find instances of imp.NullImporter inthe sys.path_importer_cache. It is recommended that
code be changed to use None instead. See portingpythoncode for more details.

5.5. The Path Based Finder 73

The Python Language Reference, Anpooisuon 3.11.13

5.6 Replacing the standard import system

The most reliable mechanism for replacing the entire import system is to delete the default contents of sys.
meta_path, replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the import
system, then replacing the builtin ___import__ () function may be sufficient. This technique may also be employed
at the module level to only alter the behaviour of import statements within that module.

To selectively prevent the import of some modules from a hook early on the meta path (rather than disabling the
standard import system entirely), it is sufficient to raise ModuleNotFoundError directly from £ind_spec ()
instead of returning None. The latter indicates that the meta path search should continue, while raising an exception
terminates it immediately.

5.7 Package Relative Imports

Relative imports use leading dots. A single leading dot indicates a relative import, starting with the current package.
Two or more leading dots indicate a relative import to the parent(s) of the current package, one level per dot after
the first. For example, given the following package layout:

package/

__init__ .py

subpackagel/
__init__ .py
moduleX.py
moduleY.py

subpackage?2/
__init__ .py
moduleZ.py

moduleA.py

In either subpackagel/moduleX.py or subpackagel/__init__ .py, the following are valid relative
imports:

from .moduleY import spam

from .moduleY import spam as ham

from . import moduleY

from ..subpackagel import moduleY
from ..subpackage2.moduleZ import eggs
from ..moduleA import foo

Absolute imports may use either the import <> or from <> import <> syntax, but relative imports may
only use the second form; the reason for this is that:

[import XXX .YYY.ZZZ

should expose XXX .YYY.ZZZ as a usable expression, but .moduleY is not a valid expression.

74 Kegahaio 5. The import system

The Python Language Reference, Anpoocisuon 3.11.13

5.8 Special considerations for __main__

The _ _main__ module is a special case relative to Python’s import system. As noted elsewhere, the __main___
module is directly initialized at interpreter startup, much like sys and builtins. However, unlike those two, it
doesn'’t strictly qualify as a built-in module. This is because the manner in which __main___ is initialized depends
on the flags and other options with which the interpreter is invoked.

5.8.1 __main__.__spec__

Depending on how __main__ isinitialized, __main_._ spec__ gets set appropriately or to None.

When Python is started with the —m option, __spec___is set to the module spec of the corresponding module
or package. __spec___is also populated when the __main__ module is loaded as part of executing a directory,
zipfile or other sys.path entry.

In the remaining cases __main__.__ spec__ isset to None, as the code used to populate the __main__ does
not correspond directly with an importable module:

« interactive prompt

e —C option

« running from stdin

« running directly from a source or bytecode file

Note that __main__ .__ spec__ is always None in the last case, even if the file could technically be imported
directly as a module instead. Use the —m switch if valid module metadata is desired in __main__.

Note also that even when __main__ corresponds with an importable module and __main__.__ spec__ isset
accordingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by if _ name_
== "__main__": checks only execute when the module is used to populate the __main__ namespace, and not

during normal import.

5.9 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages is
still available to read, although some details have changed since the writing of that document.

The original specification for sys .meta_path was PEP 302, with subsequent extension in PEP 420.

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader () protocol
as an alternative to find_module ().

PEP 366 describes the addition of the ___package___ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed ___name___ for semantics PEP
366 would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs in
the import system and also addition of new methods to finders and loaders.

5.8. Special considerations for __main__ 75

https://www.python.org/doc/essays/packages/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0328/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0338/
https://peps.python.org/pep-0451/

The Python Language Reference, Anpooisuon 3.11.13

76 Kegahaio 5. The import system

KE®GAAAIO O

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name .= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase «the numeric arguments are converted to a
common type», this means that the operator implementation for built-in types works as follows:

« If either argument is a complex number, the other is converted to complex;
« otherwise, if either argument is a floating point number, the other is converted to floating point;
« otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the “%” operator). Extensions
must define their own conversion behavior.

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom = identifier | literal | enclosure
enclosure = parenth_form | 1ist_display | dict_display | set_display
| generator_expression | yield _atom

77

The Python Language Reference, Anpooisuon 3.11.13

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section
Ovouaoio kow cvvdeon for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more
underscore characters and does not end in two or more underscores, it is considered a private name of that class.
Private names are transformed to a longer form before code is generated for them. The transformation inserts the
class name, with leading underscores removed and a single underscore inserted, in front of the name. For example,
the identifier ___spam occurring in a class named Ham will be transformed to _Ham___spam. This transformation is
independent of the syntactical context in which the identifier is used. If the transformed name is extremely long (longer
than 255 characters), implementation defined truncation may happen. If the class name consists only of underscores,
no transformation is done.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:

literal = stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number)
with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals.
See section Liferals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence)
may obtain the same object or a different object with the same value.

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form := "(" [starred_expression] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it
yields a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals
apply (i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma. The exception is the empty tuple,
for which parentheses are required — allowing unparenthesized «nothing» in expressions would cause ambiguities
and allow common typos to pass uncaught.

78 Kegahawo 6. Expressions

The Python Language Reference, Anpoocisuon 3.11.13

6.2.4 Displays for lists, sets and dictionaries
For constructing a list, a set or a dictionary Python provides special syntax called «displays», each of them in two
flavors:

« either the container contents are listed explicitly, or

« they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension = assignment_expression comp_for
comp_for ["async"] "for" target_list "in
comp_iter comp_for | comp_if

comp_if RES "if" or_test [comp_iter]

or_test [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or 1 £
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time
the innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate
implicitly nested scope. This ensures that names assigned to in the target list don’t «leak» into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an
argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: [x*y for x in range(10) for y in range(x, x+10)].

To ensure the comprehension always results in a container of the appropriate type, yield and yield from
expressions are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous
iterator. A comprehension in an async def function may consist of either a for or async for clause following
the leading expression, may contain additional for or async for clauses, and may also use awa i t expressions. If
a comprehension contains either async for clauses or await expressions or other asynchronous comprehensions
it is called an asynchronous comprehension. An asynchronous comprehension may suspend the execution of the
coroutine function in which it appears. See also PEP 530.

Néo oty €xdoon 3.6: Asynchronous comprehensions were introduced.
AMoEe oty ékdoon 3.8: yield and yield from prohibited in the implicitly nested scope.

AMoEe otnv ékdoon 3.11: Asynchronous comprehensions are now allowed inside comprehensions in asynchronous
functions. Outer comprehensions implicitly become asynchronous.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display = "[" [starred_list | comprehension] "]1"

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension.
When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into
the list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting
from the comprehension.

6.2. Atoms 79

https://peps.python.org/pep-0530/

The Python Language Reference, Anpooisuon 3.11.13

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating
keys and values:

set_display := "{" (starred_list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right
and added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting
from the comprehension.

An empty set cannot be constructed with { }; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of dict items (key/value pairs) enclosed in curly braces:

dict_display = "{" [dict_item list | dict_comprehension] "}"
dict_item_list n= dict_item ("," dict_item)* [","]

dict_item = expression ":" expression | "**" or_expr
dict_comprehension := expression ":" expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of dict items is given, they are evaluated from left to right to define the entries of the
dictionary: each key object is used as a key into the dictionary to store the corresponding value. This means that you
can specify the same key multiple times in the dict item list, and the final dictionary’s value for that key will be the
last one given.

A double asterisk ** denotes dictionary unpacking. Its operand must be a mapping. Each mapping item is added to
the new dictionary. Later values replace values already set by earlier dict items and earlier dictionary unpackings.

Néo otnv éxdoom 3.5: Unpacking into dictionary displays, originally proposed by PEP 448.

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon
followed by the usual «for» and «if» clauses. When the comprehension is run, the resulting key and value elements
are inserted in the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section 7he standard type hierarchy. (To summarize, the
key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected;
the last value (textually rightmost in the display) stored for a given key value prevails.

AMaEe oty €kdoom 3.8: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was
not well-defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before
the value, as proposed by PEP 572.

6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression = "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is
enclosed in parentheses instead of brackets or curly braces.

80 Kegahawo 6. Expressions

https://peps.python.org/pep-0448/
https://peps.python.org/pep-0572/

The Python Language Reference, Anpoocisuon 3.11.13

Variables used in the generator expression are evaluated lazily when the __next__ () method is called for the
generator object (in the same fashion as normal generators). However, the iterable expression in the leftmost for
clause is immediately evaluated, so that an error produced by it will be emitted at the point where the generator
expression is defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter
condition in the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values
obtained from the leftmost iterable. For example: (x*y for x in range (10) for y in range (x,
x+10)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself, yield and yield from
expressions are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or await expressions it is called an asynchronous
generator expression. An asynchronous generator expression returns a new asynchronous generator object, which is
an asynchronous iterator (see Asynchronous Iterators).

Néo oty éxdoom 3.6: Asynchronous generator expressions were introduced.

AMoEe otnv ékdoom 3.7: Prior to Python 3.7, asynchronous generator expressions could only appear in async
def coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

AMoEe oty €kdoon 3.8: yield and yield from prohibited in the implicitly nested scope.

6.2.9 Yield expressions

yield_atom "(" yield expression ")"
yield_ from "yield" "from" expression
yield_expression = "yield" expression_list | yield_ from

The yield expression is used when defining a generator function or an asynchronous generator function and thus can
only be used in the body of a function definition. Using a yield expression in a function’s body causes that function
to be a generator function, and using it in an async def function’s body causes that coroutine function to be an
asynchronous generator function. For example:

def gen(): # defines a generator function
yield 123

async def agen(): # defines an asynchronous generator function
yield 123

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly
defined scopes used to implement comprehensions and generator expressions.

AMoEe omv ékdoon 3.8: Yield expressions prohibited in the implicitly nested scopes used to implement
comprehensions and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section
Asynchronous generator functions.

When a generator function is called, it returns an iterator known as a generator. That generator then controls
the execution of the generator function. The execution starts when one of the generator’s methods is called. At
that time, the execution proceeds to the first yield expression, where it is suspended again, returning the value of
expression_list to the generators caller, or None if expression_1list is omitted. By suspended, we
mean that all local state is retained, including the current bindings of local variables, the instruction pointer, the
internal evaluation stack, and the state of any exception handling. When the execution is resumed by calling one of
the generator’s methods, the function can proceed exactly as if the yield expression were just another external call. The
value of the yield expression after resuming depends on the method which resumed the execution. If __next__ ()
is used (typically via either a for or the next () builtin) then the result is None. Otherwise, if send () is used,
then the result will be the value passed in to that method.

6.2. Atoms 81

The Python Language Reference, Anpooisuon 3.11.13

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one
entry point and their execution can be suspended. The only difference is that a generator function cannot control
where the execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a t ry construct. If the generator is not resumed before it is finalized (by
reaching a zero reference count or by being garbage collected), the generator-iterator’'s close () method will be
called, allowing any pending finally clauses to execute.

Whenyield from <expr> isused, the supplied expression must be an iterable. The values produced by iterating
that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send ()
and any exceptions passed in with t hrow () are passed to the underlying iterator if it has the appropriate methods.
If this is not the case, then send () will raise AttributeError or TypeError, while t hrow () will just raise
the passed in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes
the value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically
when the subiterator is a generator (by returning a value from the subgenerator).

AMoEe oty ékdoon 3.3: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an
assignment statement.

Agite emiong:

PEP 255 - Simple Generators
The proposal for adding generators and the yie1d statement to Python.

PEP 342 - Coroutines via Enhanced Generators
The proposal to enhance the API and syntax of generators, making them usable as simple coroutines.

PEP 380 - Syntax for Delegating to a Subgenerator
The proposal to introduce the yield from syntax, making delegation to subgenerators easy.

PEP 525 - Asynchronous Generators
The proposal that expanded on PEP 492 by adding generator capabilities to coroutine functions.

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.

generator.__next__ ()

Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator
function is resumed witha___next___ () method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value
of the expression_list is returned to __next__ ()”s caller. If the generator exits without yielding
another value, a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next () function.

generator.send (value)

Resumes the execution and «sends» a value into the generator function. The value argument becomes the result
of the current yield expression. The send () method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send () is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive
the value.

generator.throw (value)

82 Kegahawo 6. Expressions

https://peps.python.org/pep-0255/
https://peps.python.org/pep-0342/
https://peps.python.org/pep-0380/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Language Reference, Anpoocisuon 3.11.13

generator.throw (type[, value[, traceback]])

Raises an exception at the point where the generator was paused, and returns the next value yielded by the
generator function. If the generator exits without yielding another value, a StopIteration exception is
raised. If the generator function does not catch the passed-in exception, or raises a different exception, then
that exception propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the ra i se keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older
versions of Python. The fype argument should be an exception class, and value should be an exception instance.
If the value is not provided, the fype constructor is called to get an instance. If traceback is provided, it is set
on the exception, otherwise any existing __traceback___ attribute stored in value may be cleared.

generator.close ()

Raises a GeneratorExit at the point where the generator function was paused. If the generator function
then exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close
returns to its caller. If the generator yields a value, a Runt imeError is raised. If the generator raises any
other exception, it is propagated to the caller. c1ose () does nothing if the generator has already exited due

to an exception or normal exit.

Examples

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo (value=None) :

print ("Execution starts when 'next ()' is called for the first time.")

try:
while True:
try:
value = (yield value)
except Exception as e:
value = e
finally:
print ("Don't forget to clean up when 'close()' is called.")

>>> generator = echo (1)

>>> print (next (generator))

Execution starts when 'next()' is called for the first time.
1

>>> print (next (generator))

None

>>> print (generator.send(2))

2

>>> generator.throw (TypeError, "spam")

TypeError ('spam',)

>>> generator.close()

Don't forget to clean up when 'close()' is called.

For examples using yield from, see pep-380 in «What’s New in Python.»

6.2. Atoms

83

The Python Language Reference, Anpooisuon 3.11.13

Asynchronous generator functions

The presence of a yield expression in a function or method defined using async def further defines the function
as an asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous
generator object. That object then controls the execution of the generator function. An asynchronous generator object
is typically used in an async for statement in a coroutine function analogously to how a generator object would
be used in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this
object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again,
returning the value of expression_11ist tothe awaiting coroutine. As with a generator, suspension means that all
local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation
stack, and the state of any exception handling. When the execution is resumed by awaiting on the next object returned
by the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another
external call. The value of the yield expression after resuming depends on the method which resumed the execution.
If anext () isused then the result is None. Otherwise, if asend () is used, then the result will be the value
passed in to that method.

If an asynchronous generator happens to exit early by break, the caller task being cancelled, or other exceptions,
the generator’s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected
context—perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator
garbage collection hook is called. To prevent this, the caller must explicitly close the async generator by calling
aclose () method to finalize the generator and ultimately detach it from the event loop.

In an asynchronous generator function, yield expressions are allowed anywhere in a ¢ ry construct. However, if an
asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage
collected), then a yield expression within a t ry construct could result in a failure to execute pending finally
clauses. In this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call
the asynchronous generator-iterator’s aclose () method and run the resulting coroutine object, thus allowing any
pending finally clauses to execute.

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes
an asynchronous generator-iterator and presumably calls acIose () and executes the coroutine. This finalizer may
be registered by calling sys.set_asyncgen_hooks (). When first iterated over, an asynchronous generator-
iterator will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method
see the implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

The expression yield from <expr> isa syntax error when used in an asynchronous generator function.

Asynchronous generator-iterator methods

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution
of a generator function.

coroutine agen.__anext__ ()

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last
executed yield expression. When an asynchronous generator function is resumed with an __anext__ ()
method, the current yield expression always evaluates to None in the returned awaitable, which when run will
continue to the next yield expression. The value of the expression_1list of the yield expression is the
value of the StopIteration exception raised by the completing coroutine. If the asynchronous generator
exits without yielding another value, the awaitable instead raises a StopAsyncIteration exception,
signalling that the asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

coroutine agen.asend (value)

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the
send () method for a generator, this «sends» a value into the asynchronous generator function, and the
value argument becomes the result of the current yield expression. The awaitable returned by the asend ()

84 Kegahawo 6. Expressions

https://github.com/python/cpython/tree/3.11/Lib/asyncio/base_events.py

The Python Language Reference, Anpoocisuon 3.11.13

method will return the next value yielded by the generator as the value of the raised StopIteration, or
raises StopAsyncIteration if the asynchronous generator exits without yielding another value. When
asend () is called to start the asynchronous generator, it must be called with None as the argument, because
there is no yield expression that could receive the value.

coroutine agen.athrow (value)

coroutine agen.athrow (type[, value[, traceback]])

Returns an awaitable that raises an exception of type type at the point where the asynchronous generator
was paused, and returns the next value yielded by the generator function as the value of the raised
StopIteration exception. If the asynchronous generator exits without yielding another value, a
StopAsyncIteration exception is raised by the awaitable. If the generator function does not catch the
passed-in exception, or raises a different exception, then when the awaitable is run that exception propagates
to the caller of the awaitable.

coroutine agen.aclose ()

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator function
at the point where it was paused. If the asynchronous generator function then exits gracefully, is already
closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise
a StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous
generator will raise a StopAsyncIteration exception. If the asynchronous generator yields a value, a
RuntimeError is raised by the awaitable. If the asynchronous generator raises any other exception, it is
propagated to the caller of the awaitable. If the asynchronous generator has already exited due to an exception
or normal exit, then further calls to aclose () will return an awaitable that does nothing.

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary = atom | attributeref | subscription | slicing | call

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref = primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object
is then asked to produce the attribute whose name is the identifier. The type and value produced is determined by the
object. Multiple evaluations of the same attribute reference may yield different objects.

This production can be customized by overriding the __getattribute__ () methodorthe _getattr__ ()
method. The _ getattribute_ () method is called first and either returns a value or raises
AttributeError if the attribute is not available.

If an AttributeError is raised and the object has a __getattr__ () method, that method is called as a
fallback.

6.3. Primaries 85

The Python Language Reference, Anpooisuon 3.11.13

6.3.2 Subscriptions

The subscription of an instance of a container class will generally select an element from the container. The
subscription of a generic class will generally return a GenericAlias object.

subscription = primary "[" expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through
defining one or both of ___getitem () and __class_getitem__ (). When the primary is subscripted,
the evaluated result of the expression list will be passed to one of these methods. For more details on when
__class_getitem__ iscalled instead of __getitem__,see _ class_getitem__ versus __getitem__.

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression
list. Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via __getitem _ ():

1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the
keys of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An
example of a builtin mapping class is the dict class.

2. Sequences. If the primary is a sequence, the expression list must evaluate to an int or a s1ice (as discussed
in the following section). Examples of builtin sequence classes include the str, 1ist and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all
provide a ___getitem__ () method that interprets negative indices by adding the length of the sequence to the
index so that, for example, x [-1] selects the last item of x. The resulting value must be a nonnegative integer less
than the number of items in the sequence, and the subscription selects the item whose index is that value (counting
from zero). Since the support for negative indices and slicing occurs in the object’s ___getitem__ () method,
subclasses overriding this method will need to explicitly add that support.

A string is a special kind of sequence whose items are characters. A character is not a separate data type but a
string of exactly one character.

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions
or as targets in assignment or de I statements. The syntax for a slicing:

slicing u= primary "[" slice_list "]"

slice_1list = slice_item ("," slice_item)* [","]

slice_item = expression | proper_slice

proper_slice = [lower_bound] ":" [upper_bound] [":" [stride]]
lower_bound = expression

upper_bound = expression

stride = expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so
any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated
by defining that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this
is the case if the slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same ___getitem__ () method as
normal subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one
comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice
item is the key. The conversion of a slice item that is an expression is that expression. The conversion of a proper
slice is a slice object (see section The standard type hierarchy) whose start, stop and step attributes are the

86 Kegahawo 6. Expressions

The Python Language Reference, Anpoocisuon 3.11.13

values of the expressions given as lower bound, upper bound and stride, respectively, substituting None for missing
expressions.

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call u= primary " (" [argument_list [","] | comprehension]
argument_list = positional_arguments ["," starred_and_keywords]
["," keywords_arguments]
| starred_and _keywords ["," keywords_arguments]
| keywords_arguments

positional_arguments = positional_item ("," positional_item)*
positional_item u= assignment_expression | "*" expression
starred_and_keywords = ("*" expression | keyword_item)

("," "*" expression | "," keyword_item)*
keywords_arguments u= (keyword _item | "**" expression)

("," keyword_ item | "," "**" expression)*
keyword_item = identifier "=" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the
semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects havinga ___call__ () method are callable). All argument
expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of
formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots.
Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the
same as the first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError
exception is raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None, it fills the
slot). When all arguments have been processed, the slots that are still unfilled are filled with the corresponding default
value from the function definition. (Default values are calculated, once, when the function is defined; thus, a mutable
object such as a list or dictionary used as default value will be shared by all calls that don’t specify an argument value
for the corresponding slot; this should usually be avoided.) If there are any unfilled slots for which no default value
is specified, a TypeError exception is raised. Otherwise, the list of filled slots is used as the argument list for the
call.

Agmropépera. vhomoinons CPython: An implementation may provide built-in functions whose positional
parameters do not have names, even if they are “named” for the purpose of documentation, and which
therefore cannot be supplied by keyword. In CPython, this is the case for functions implemented in C that use
PyArg_ParseTuple () to parse their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised,
unless a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a
tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised,
unless a formal parameter using the syntax **identifier is present; in this case, that formal parameter receives
a dictionary containing the excess keyword arguments (using the keywords as keys and the argument values as
corresponding values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements
from these iterables are treated as if they were additional positional arguments. For the call £ (x1, %2, *y, x3,
x4), if y evaluates to a sequence y/, ..., yM, this is equivalent to a call with M+4 positional arguments x/, x2, yI,
ey YM, X3, x4.

6.3. Primaries 87

") n

The Python Language Reference, Anpooisuon 3.11.13

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it
is processed before the keyword arguments (and any * *expression arguments — see below). So:

>>> def f(a, b):
print (a, b)

>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f£() got multiple values for keyword argument 'a'
>>> £(1, *(2,))
12

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice
this confusion does not often arise.

If the syntax * *expression appears in the function call, expression must evaluate to a mapping, the contents
of which are treated as additional keyword arguments. If a parameter matching a key has already been given a value
(by an explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned
to the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a
Python identifier (e.g. "max—-temp °F" is acceptable, although it will not match any formal parameter that could
be declared). If there is no match to a formal parameter the key-value pair is collected by the * * parameter, if there
is one, or if there is not, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument
slots or as keyword argument names.

AMoEe otnv ékdoom 3.5: Function calls accept any number of * and ** unpackings, positional arguments may
follow iterable unpackings (*), and keyword arguments may follow dictionary unpackings (* *). Originally proposed
by PEP 448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends
on the type of the callable object.

If it is—
a user-defined function:
The code block for the function is executed, passing it the argument list. The first thing the code block will

do is bind the formal parameters to the arguments; this is described in section Function definitions. When the
code block executes a return statement, this specifies the return value of the function call.

a built-in function or method:
The result is up to the interpreter; see built-in-funcs for the descriptions of built-in functions and methods.

a class object:
A new instance of that class is returned.

a class instance method:
The corresponding user-defined function is called, with an argument list that is one longer than the argument
list of the call: the instance becomes the first argument.

a class instance:
The class must definea _call () method; the effect is then the same as if that method was called.

88 Kegahawo 6. Expressions

https://peps.python.org/pep-0448/

The Python Language Reference, Anpoocisuon 3.11.13

6.4 Await expression

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr = "await" primary

Néo otv éxdoonm 3.5.

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on
its right. The syntax is:

power = (await_expr | primary) ["**" u_expr]
Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left
(this does not constrain the evaluation order for the operands): —1**2 results in - 1.

The power operator has the same semantics as the built-in pow () function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common
type, and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case,
all arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10**-2
returns 0.01.

Raising 0. 0 to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional
power results in a complex number. (In earlier versions it raised a ValueError.)

This operation can be customized using the special __pow__ () method.

6.6 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr = power | "-" u_expr | "+" u_expr | "~" u_expr
The unary — (minus) operator yields the negation of its numeric argument; the operation can be overridden with the
__neg___ () special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the
__pos___ () special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is
defined as — (x+1) . It only applies to integral numbers or to custom objects that override the ___invert__ ()
special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.4. Await expression 89

The Python Language Reference, Anpooisuon 3.11.13

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators
and one for additive operators:

m_expr I= u_expr | m_expr "*" u_expr | m_expr "Q@" m_expr |
m _expr "//" u_expr | m_expr "/" u_expr |
m_expr "%" u_expr

a_expr = m_expr | a_expr "+" m_expr | a_expr "-" m _expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a
common type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition
factor yields an empty sequence.

This operation can be customized using the special __mul___ () and __rmul___ () methods.
The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.
Néo oty éxdoonm 3.5.

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are
first converted to a common type. Division of integers yields a float, while floor division of integers results in an
integer; the result is that of mathematical division with the “floor” function applied to the result. Division by zero
raises the ZeroDivisionError exception.

This operation can be customized using the special ___truediv.___ () and ___floordiv__ () methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception.
The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + O.
34.) The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value
of the result is strictly smaller than the absolute value of the second operand’.

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y).
Floor division and modulo are also connected with the built-in function divmod () : divmod (x, y) == (x//y,
X3y) 2.

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to
perform old-style string formatting (also known as interpolation). The syntax for string formatting is described in the
Python Library Reference, section old-string-formatting.

The modulo operation can be customized using the special __mod___ () method.

The floor division operator, the modulo operator, and the divmod () function are not defined for complex numbers.
Instead, convert to a floating point number using the abs () function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be
sequences of the same type. In the former case, the numbers are converted to a common type and then added together.
In the latter case, the sequences are concatenated.

This operation can be customized using the special __add__ () and ___radd__ () methods.

The — (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a
common type.

I While abs (x3y) < abs (y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming
a platform on which a Python float is an IEEE 754 double-precision number, in order that ~-1e-100 % 1e100 have the same signas 1e100,
the computed resultis ~1e-100 + 1e100, which is numerically exactly equal to 1e100. The functionmath . fmod () returns a result whose
sign matches the sign of the first argument instead, and so returns —1e~-100 in this case. Which approach is more appropriate depends on the
application.

2 If x is very close to an exact integer multiple of y, it’s possible for x//y to be one larger than (x-x%y) //y due to rounding. In such cases,
Python returns the latter result, in order to preserve that divmod (x,y) [0] * y + x % y be very close to x.

90 Kegahawo 6. Expressions

The Python Language Reference, Anpoocisuon 3.11.13

This operation can be customized using the special ___sub__ () method.

6.8 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr = a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits
given by the second argument.

This operation can be customized using the special __ I1shift__ () and ___rshift__ () methods.

A right shift by n bits is defined as floor division by pow (2, n) . A left shift by » bits is defined as multiplication
with pow (2, n).

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr = shift_expr | and _expr "&" shift_expr
XOr_expr = and_expr | xor_expr """ and_expr
Oor_expr = xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom
object overriding __and__ () or __rand__ () special methods.

The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must
be a custom object overriding ___xor___ () or __rxor___ () special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a
custom object overriding __or___ () or __ror__ () special methods.

6.10 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional
in mathematics:

comparison = or_expr (comp_operator or_expr)*
comp operator ce— nen ‘ nsn | n__mn | ns—n ‘ nWe=mn | nmyp_n
| "iS" ["not"] ‘ ["not"] "in"

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean
values. In this case Python will call bool () on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= zisequivalenttox < y and y <= z,exceptthaty
is evaluated only once (but in both cases z is not evaluated at all when x < v is found to be false).

Formally, if a, b, c, ..., y, z are expressions and opl, op2, ..., opN are comparison operators, then a opl b op2
C ... y opN zisequivalenttoa opl b and b op2 ¢ and ... y opN z,except that each expression
is evaluated at most once.

6.8. Shifting operations 91

The Python Language Reference, Anpooisuon 3.11.13

Note that a opl b op2 c doesn’t imply any kind of comparison between a and c, so that,e.g., x < y > zis
perfectly legal (though perhaps not pretty).

6.10.1 Value comparisons

The operators <, >, ==, >=, <=, and ! = compare the values of two objects. The objects do not need to have the same
type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an
object is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value.
Also, there is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of
all its data attributes. Comparison operators implement a particular notion of what the value of an object is. One can
think of them as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior
from object. Types can customize their comparison behavior by implementing rich comparison methods like
1t (), described in Basic customization.

The default behavior for equality comparison (== and !=) is based on the identity of the objects. Hence, equality
comparison of instances with the same identity results in equality, and equality comparison of instances with different
identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive
(i.e. x is yimpliesx == y).

A default order comparison (<, >, <=, and >=) is not provided; an attempt raises TypeError. A motivation for
this default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be
in contrast to what types will need that have a sensible definition of object value and value-based equality. Such types
will need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

e Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.
Fraction and decimal.Decimal can be compared within and across their types, with the restriction
that complex numbers do not support order comparison. Within the limits of the types involved, they compare
mathematically (algorithmically) correct without loss of precision.

The not-a-number values float ('NaN') and decimal.Decimal ('NaN') are special. Any ordered
comparison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number
values are not equal to themselves. For example, if x = float ('NaN'),3 < x,x < 3andx == x
are all false, while x != x is true. This behavior is compliant with IEEE 754.

e None and Not Implemented are singletons. PEP 8 advises that comparisons for singletons should always
be done with is or is not, never the equality operators.

« Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They
compare lexicographically using the numeric values of their elements.

« Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of
the built-in function ord ()) of their characters.?

Strings and binary sequences cannot be directly compared.

» Sequences (instances of tuple, 1ist, or range) can be compared only within each of their types, with
the restriction that ranges do not support order comparison. Equality comparison across these types results in
inequality, and ordering comparison across these types raises TypeError.

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. <LATIN CAPITAL LETTER A»). While
most abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition be
represented using a sequence of more than one code point. For example, the abstract character <KLATIN CAPITAL LETTER C WITH CEDILLA»
can be represented as a single precomposed character at code position U+00C7, or as a sequence of a base character at code position U+0043
(LATIN CAPITAL LETTER C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).

The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example,
"\u00C7" == "\u0043\u0327" is False, even though both strings represent the same abstract character <LATIN CAPITAL LETTER
C WITH CEDILLA».

To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize ().

92 Kegahawo 6. Expressions

https://peps.python.org/pep-0008/

The Python Language Reference, Anpoocisuon 3.11.13

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers
typically assume identical objects are equal to themselves. That lets them bypass equality tests for identical
objects to improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

- For two collections to compare equal, they must be of the same type, have the same length, and each pair
of corresponding elements must compare equal (for example, [1,2] == (1, 2) is false because the
type is not the same).

- Collections that support order comparison are ordered the same as their first unequal elements (for
example, [1,2,x] <= [1,2,y] has the same value as x <= vy). If a corresponding element
does not exist, the shorter collection is ordered first (for example, [1,2] < [1,2, 3] istrue).

o Mappings (instances of dict) compare equal if and only if they have equal (key, wvalue) pairs. Equality
comparison of the keys and values enforces reflexivity.

Order comparisons (<, >, <=, and >=) raise TypeError.
« Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total
orderings (for example, the twosets {1, 2} and { 2, 3} are not equal, nor subsets of one another, nor supersets
of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering
(for example, min (), max (), and sorted () produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

» Most other built-in types have no comparison methods implemented, so they inherit the default comparison
behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:
» Equality comparison should be reflexive. In other words, identical objects should compare equal:
x is yimplies x == y
o Comparison should be symmetric. In other words, the following expressions should have the same result:
x == yandy == x
x != yandy != x
x < yandy > x
x <= yandy >= x
o Comparison should be transitive. The following (non-exhaustive) examples illustrate that:
x >y and y > zimpliesx > z
x <y and y <= zimpliesx < z

« Inverse comparison should result in the boolean negation. In other words, the following expressions should
have the same result:

x == yandnot x !=y
x < yand not x >= y (for total ordering)
x > yand not x <= y (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings).
See also the total_ordering () decorator.

e The hash () result should be consistent with equality. Objects that are equal should either have the same hash
value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following
these rules.

6.10. Comparisons 93

The Python Language Reference, Anpooisuon 3.11.13

6.10.2 Membership test operations

The operators in and not 1in testfor membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well
as dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set,

frozenset, dict, or collections.deque, the expression x in y isequivalentto any (x is e or x == e for e
in y).

For the string and bytes types, x in y is True if and only if x is a substring of y. An equivalent testis y . £ind (x)
!= -1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return
True.

For user-defined classes which define the = contains () method, x in vy returns True if y.
___contains__ (x) returns a true value, and False otherwise.

For user-defined classes which do not define __contains__ () butdodefine __iter (),x in yis True
if some value z, for which the expression x is z or x == =z is true, is produced while iterating over y. If an
exception is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem (),x in yis True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i],and no lower integer index raises
the IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not 1in is defined to have the inverse truth value of in.

6.10.3 Identity comparisons

The operators i s and is not test for an object’s identity: x is vy is true if and only if x and y are the same object.
An Object’s identity is determined using the id () function. x is not vy yields the inverse truth value.*

6.11 Boolean operations

or_test L= and_test | or_test "or" and test
and_test = not_test | and_test "and" not_test
not_test = comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following
values are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including
strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects
can customize their truth value by providinga ___bool__ () method.

The operator not yields True if its argument is false, False otherwise.

The expression x and vy first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

The expression x or vy first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is
empty, the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a
boolean value regardless of the type of its argument (for example, not 'foo' produces False rather than ''.)

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain
uses of the i s operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

94 Kegahawo 6. Expressions

The Python Language Reference, Anpoocisuon 3.11.13

6.12 Assignment expressions

assignment_expression = [identifier ":="] expression

An assignment expression (sometimes also called a «named expression» or «walrus») assigns an expression to
an identifier, while also returning the value of the expression.

One common use case is when handling matched regular expressions:

if matching := pattern.search (data):
do_something (matching)

Or, when processing a file stream in chunks:

while chunk := file.read(9000):
process (chunk)

Assignment expressions must be surrounded by parentheses when used as expression statements and when used as sub-
expressions in slicing, conditional, lambda, keyword-argument, and comprehension-if expressions and in assert,
with, and assignment statements. In all other places where they can be used, parentheses are not required,
including in i f and whi le statements.

Néo omv éxdoomn 3.8: See PEP 572 for more details about assignment expressions.

6.13 Conditional expressions

conditional_expression = or_test ["if" or_test "else" expression]
expression conditional_expression | lambda_expr

Conditional expressions (sometimes called a «ternary operator») have the lowest priority of all Python operations.

The expression x 1f C else vy first evaluates the condition, C rather than x. If C is true, x is evaluated and its
value is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14 Lambdas

lambda_expr = "lambda" [parameter_list] ":" expression

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression
lambda parameters: expression yields a function object. The unnamed object behaves like a function
object defined with:

def <lambda> (parameters) :
return expression

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions
cannot contain statements or annotations.

6.12. Assignment expressions 95

https://peps.python.org/pep-0572/
https://peps.python.org/pep-0308/

The Python Language Reference, Anpooisuon 3.11.13

6.15 Expression lists

expression_list = expression ("," expression)* [","]
starred_list = starred_item ("," starred item)* [","]
starred_expression = expression | (starred_item ",")* [starred_item]
starred_item = assignment_expression | "*" or_expr

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length
of the tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking. Its operand must be an iferable. The iterable is expanded into a sequence
of items, which are included in the new tuple, list, or set, at the site of the unpacking.

Néo oty €xdoom 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448.

A trailing comma is required only to create a one-item tuple, such as 1, ; it is optional in all other cases. A single
expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create
an empty tuple, use an empty pair of parentheses: () .)

6.16 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is
evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, expr4
(exprl, expr2, expr3, expré)
{exprl: expr2, expr3: expréd}

exprl + expr2 * (expr3 - exprd)
exprl (expr2, expr3, *expr4, **exprb)
expr3, exprd4 = exprl, expr2

6.17 Operator precedence

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest
precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly
given, operators are binary. Operators in the same box group left to right (except for exponentiation and conditional
expressions, which group from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right
chaining feature as described in the Comparisons section.

96 Kegahawo 6. Expressions

https://peps.python.org/pep-0448/

The Python Language Reference, Anpoocisuon 3.11.13

Operator Description

(expressions...), Binding or parenthesized expression, list display,
[expressions...], {key: value...}, dictionary display, set display
{expressions...}

x[index], x[index:index], x (arguments...

x.attribute

await x
* *

+X, =%, ~X

*Q,/,//,%
+, -

<<, >>

&

in, not in, is,is not, <, <=,>,>=

not x
and

or
if-else
lambda

Subscription, slicing, call, attribute reference

Await expression

Exponentiation’

Positive, negative, bitwise NOT

Multiplication, matrix multiplication, division,
floor division, remainder®

Addition and subtraction

Shifts

Bitwise AND

Bitwise XOR

Bitwise OR

Comparisons, including membership tests and
identity tests

Boolean NOT

Boolean AND

Boolean OR

Conditional expression

Lambda expression

Assignment expression

5 The power operator * * binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**-1is 0. 5.
6 The % operator is also used for string formatting; the same precedence applies.

6.17. Operator precedence

97

The Python Language Reference, Anpooisuon 3.11.13

98 Kegahawo 6. Expressions

KEDAAAIO 7

Simple statements

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line
separated by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt
| assert_stmt

| assignment_stmt

| augmented_assignment_stmt
| annotated_assignment_stmt
| pass_stmt

| del_stmt

| return_stmt

| yield stmt

| raise_stmt

| break_stmt

| continue_stmt

| import_stmt

| future_stmt

| global_stmt

| nonlocal_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a
function that returns no meaningful result; in Python, procedures return the value None). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt = starred_expression

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr () function and the
resulting string is written to standard output on a line by itself (except if the result is None, so that procedure calls
do not cause any output.)

99

The Python Language Reference, Anpooisuon 3.11.13

7.2 Assighment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt = (target_1list "=")+ (starred_expression | yield_expression)
target_list n= target ("," target)* [","]
target = identifier

| "(" [target_list] "™)"
"[" [target_list] "1"
attributeref

|
|
| subscription
| slicing

| "*" target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-
separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to
right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object
(an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide
about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types
and the exceptions raised are given with the definition of the object types (see section The standard type hierarchy).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined
as follows.

o If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to
that target.

o Else:

— If the target list contains one target prefixed with an asterisk, called a «starred» target: The object must
be an iterable with at least as many items as there are targets in the target list, minus one. The first items
of the iterable are assigned, from left to right, to the targets before the starred target. The final items of
the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable
is then assigned to the starred target (the list can be empty).

- Else: The object must be an iterable with the same number of items as there are targets in the target list,
and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.
« If the target is an identifier (name):

- If the name does not occur in a global or nonlocal statement in the current code block: the name
is bound to the object in the current local namespace.

— Otherwise: the name is bound to the object in the global namespace or the outer namespace determined
by nonlocal, respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be
called.

« If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an
object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to
assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception
(usually but not necessarily Att ributeError).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the right-hand side expression, a . x can access either an instance attribute or (if no instance attribute exists) a

100 Kegahawo 7. Simple statements

The Python Language Reference, Anpoocisuon 3.11.13

class attribute. The left-hand side target a . x is always set as an instance attribute, creating it if necessary. Thus,
the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression
refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

class Cls:

x = 3 # class variable
inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with
property ().

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either
a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript
expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative,
the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s
length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of
range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new
key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem__ () method is called with appropriate arguments.

If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and
upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length.
The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The
resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence
object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be
different from the length of the assigned sequence, thus changing the length of the target sequence, if the
target sequence allows it.

Aemrouépera viomoinong CPython: In the current implementation, the syntax for targets is taken to be the same as
for expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are
“simultaneous” (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to
variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:

=1, 2 # 1 is updated, then x[i] is updated

Agite griong:

PEP

3132 - Extended Iterable Unpacking
The specification for the *target feature.

7.2.

Assighment statements 101

https://peps.python.org/pep-3132/

The Python Language Reference, Anpooisuon 3.11.13

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt = augtarget augop (expression_list | yield expression)

augtarget = identifier | attributeref | subscription | slicing

augop = ny—mn | n__m ‘ Wx_—n | n@:" | n/:u I "//:n | no—mn | LIS |
| LB) | nog=m | ne="m ‘ nA_mN | "|="

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and
assigns the result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is
performed in-place, meaning that rather than creating a new object and assigning that to the target, the old object is
modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side.
For example, a[1] += £ (x) first looks-up a [1], then it evaluates f (x) and performs the addition, and lastly,
it writes the result back toa[1i].

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-
place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular
assignments.

7.2.2 Annotated assignment statements

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional
assignment statement:

annotated_assignment_stmt = augtarget ":" expression

["=" (starred_expression | yield expression)]

The difference from normal Assignment statements is that only a single target is allowed.

For simple names as assignment targets, if in class or module scope, the annotations are evaluated and stored in a
special class or module attribute __annotations__ thatis a dictionary mapping from variable names (mangled if
private) to evaluated annotations. This attribute is writable and is automatically created at the start of class or module
body execution, if annotations are found statically.

For expressions as assignment targets, the annotations are evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and
stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the
target except for the last __setitem () or __setattr__ () call

Agite gmiong:

PEP 526 - Syntax for Variable Annotations
The proposal that added syntax for annotating the types of variables (including class variables and instance
variables), instead of expressing them through comments.

102 Kegahawo 7. Simple statements

https://peps.python.org/pep-0526/

The Python Language Reference, Anpoocisuon 3.11.13

PEP 484 - Type hints
The proposal that added the t yping module to provide a standard syntax for type annotations that can be
used in static analysis tools and IDEs.

AMoEe ot ékdoon 3.8: Now annotated assignments allow the same expressions in the right hand side as regular
assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt = "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if debug___:
if not expression: raise AssertionError

The extended form, assert expressionl, expression2,isequivalent to

if _ debug__ :
if not expressionl: raise AssertionError (expression2)

These equivalences assume that __debug___ and AssertionError refer to the built-in variables with those
names. In the current implementation, the built-in variable __debug___ is True under normal circumstances,
False when optimization is requested (command line option —0). The current code generator emits no code for
an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source
code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to ___debug___ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4 The pass statement

pass_stmt = "pass"

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is
required syntactically, but no code needs to be executed, for example:

def f (arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.5 The del statement

del_stmt = "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

7.3. The assert statement 103

https://peps.python.org/pep-0484/

The Python Language Reference, Anpooisuon 3.11.13

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the
name occurs in a globa 1 statement in the same code block. If the name is unbound, a NameError exception will
be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a
slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the
sliced object).

AMaEe oty ékdoon 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free
variable in a nested block.

7.6 The return statement

return_stmt = "return" [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.
return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a t ry statement with a finally clause, that finally clause is executed
before really leaving the function.

In a generator function, the ret urn statement indicates that the generator is done and will cause StopIteration
to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the
StopIlteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is
done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in
an asynchronous generator function.

7.7 The yield statement

yield_stmt = yield expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the
parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield
statements

yield <expr>
yield from <expr>

are equivalent to the yield expression statements

(yield <expr>)
(yield from <expr>)

Yield expressions and statements are only used when defining a generator function, and are only used in the body of
the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator
function instead of a normal function.

For full details of yie1d semantics, refer to the Yield expressions section.

104 Kegahawo 7. Simple statements

The Python Language Reference, Anpoocisuon 3.11.13

7.8 The raise statement

raise_stmt = "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known
as the active exception. If there isn’t currently an active exception, a Runt imeError exception is raised indicating
that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance
of BaseException. If itis a class, the exception instance will be obtained when needed by instantiating the class
with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback__ attribute. You can create an exception and set your own traceback in one step using the
with_traceback () exception method (which returns the same exception instance, with its traceback set to
its argument), like so:

[raise Exception ("foo occurred") .with_traceback (tracebackobj) }

The from clause is used for exception chaining: if given, the second expression must be another exception class
or instance. If the second expression is an exception instance, it will be attached to the raised exception as the
___cause___ attribute (which is writable). If the expression is an exception class, the class will be instantiated and
the resulting exception instance will be attached to the raised exception as the ___cause___ attribute. If the raised
exception is not handled, both exceptions will be printed:

>>> try:
print (1 / 0)
except Exception as exc:
raise RuntimeError ("Something bad happened") from exc

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
print (1 / 0)

ZeroDivisionError: division by zero
The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError ("Something bad happened") from exc
RuntimeError: Something bad happened

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled.
An exception may be handled when an except or finally clause, or a with statement, is used. The previous
exception is then attached as the new exception’s ___context___ attribute:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
print (1 / 0)

A

ZeroDivisionError: division by zero

(ouvéyela oty eV oehida)

7.8. The raise statement 105

The Python Language Reference, Anpooisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
raise RuntimeError ("Something bad happened")
RuntimeError: Something bad happened

Exception chaining can be explicitly suppressed by specifying None in the from clause:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened") £from None

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Additional information on exceptions can be found in section EEapéoerg, and information about handling exceptions
is in section The try statement.

AMoEe ot ékdoomn 3.3: None is now permitted as Y in raise X from Y.
Added the ___suppress_context___ attribute to suppress automatic display of the exception context.

AMoEe ot ékdoom 3.11: If the traceback of the active exception is modified in an except clause, a subsequent
raise statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with
the traceback it had when it was caught.

7.9 The break statement

break_stmt = "break"

break may only occur syntactically nested in a for or whi Ie loop, but not nested in a function or class definition
within that loop.

It terminates the nearest enclosing loop, skipping the optional e 1 se clause if the loop has one.
If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed
before really leaving the loop.

7.10 The continue statement

continue_stmt = "continue"

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class
definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When cont inue passes control out of a t ry statement witha 7inally clause, that finally clause is executed
before really starting the next loop cycle.

106 Kegahawo 7. Simple statements

The Python Language Reference, Anpoocisuon 3.11.13

7.11 The import statement

import_stmt =

module n=
relative_module

"import" module ["as" identifier] ("," module ["as" identifier])?*
| "from" relative_module "import" identifier ["as" identifier]
("," identifier ["as" identifier])™*

| "from" relative_module "import" " (" identifier ["as" identifie:
("," identifier ["as" identifier])* [","] ™)"

| "from" relative_module "import" "*"

(identifier ".")* identifier

"."* module | "."+

The basic import statement (no £rom clause) is executed in two steps:

1. find a module, loading and initializing it if necessary

2. define a name or names in the local namespace for the scope where the i mport statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for
each clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import
system, which also describes the various types of packages and modules that can be imported, as well as all the hooks
that can be used to customize the import system. Note that failures in this step may indicate either that the module
could not be located, or that an error occurred while initializing the module, which includes execution of the module’s

code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three

ways:

o If the module name is followed by as, then the name following as is bound directly to the imported module.

« If no other name is specified, and the module being imported is a top level module, the module’s name is bound
in the local namespace as a reference to the imported module

« If the module being imported is not a top level module, then the name of the top level package that contains
the module is bound in the local namespace as a reference to the top level package. The imported module must
be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:

1. find the module specified in the £ rom clause, loading and initializing it if necessary;

2. for each of the identifiers specified in the import clauses:

1. check if the imported module has an attribute by that name

2. if not, attempt to import a submodule with that name and then check the imported module again for that

attribute

3. if the attribute is not found, ImportError is raised.

4. otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if
it is present, otherwise using the attribute name

Examples:

import foo

import foo.bar.baz
—locally

import foo.bar.baz as fbb
—bound as fbb

from foo.bar import baz
—bound as baz

from foo import attr

foo imported and bound locally
foo, foo.bar, and foo.bar.baz imported, foo bound.

foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.

foo imported and foo.attr bound as attr

7.11. The import statement

107

The Python Language Reference, Anpooisuon 3.11.13

If the list of identifiers is replaced by a star (' * '), all public names defined in the module are bound in the local
namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__;if defined, it must be a sequence of strings which are names defined or imported by that module. The
names givenin __all__ are all considered public and are required to exist. If __all__ is not defined, the set of
public names includes all names found in the module’s namespace which do not begin with an underscore character
('"_").__all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are
not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import * — isonly allowed at the module level. Attempting
to use it in class or function definitions will raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute name of the module. When a module
or package is contained within another package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the specified module or package after from
you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading
dot means the current package where the module making the import exists. Two dots means up one package level.
Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package
then you will end up importing pkg.mod. If you execute from . .subpkg2 import mod from within pkg.
subpkgl you will import pkg . subpkg?2 .mod. The specification for relative imports is contained in the Package
Relative Imports section.

importlib.import_module () is provided to support applications that determine dynamically the modules to
be loaded.

Raises an auditing event import with arguments module, filename, sys.path, sys.meta_path, sys.
path_hooks.

7.11.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to
the language. It allows use of the new features on a per-module basis before the release in which the feature becomes
standard.

future_stmt = "from" "__ future_ " "import" feature ["as" identifier]
("," feature ["as" identifier])*
| "from" "__ future__ " "import" " (" feature ["as" identifier]
("," feature ["as" identifier])* [","] ™))"

feature = identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement
are:

« the module docstring (if any),
e comments,
« blank lines, and
« other future statements.
The only feature that requires using the future statement is annotations (see PEP 563).

All historical features enabled by the future statement are still recognized by Python 3. The list
includes absolute_import, division, generators, generator_stop, unicode_literals,
print_function,nested_scopesandwith_statement. They are all redundant because they are always
enabled, and only kept for backwards compatibility.

108 Kegahawo 7. Simple statements

https://peps.python.org/pep-0563/

The Python Language Reference, Anpoocisuon 3.11.13

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs
are often implemented by generating different code. It may even be the case that a new feature introduces new
incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module
differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error
if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module ___future__,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

[import _ future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec () and compile () that occur in a module M containing a
future statement will, by default, use the new syntax or semantics associated with the future statement. This can be
controlled by optional arguments to compile () — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session.
If an interpreter is started with the —1 option, is passed a script name to execute, and the script includes a future
statement, it will be in effect in the interactive session started after the script is executed.

Agite griong:

PEP 236 - Back to the __ future__
The original proposal for the __ future__ mechanism.

7.12 The global statement

global_stmt = "global" identifier ("," identifier)™*

The global statement is a declaration which holds for the entire current code block. It means that the listed
identifiers are to be interpreted as globals. It would be impossible to assign to a global variable without global,
although free variables may refer to globals without being declared global.

Names listed in a global statement must not be used in the same code block textually preceding that global
statement.

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements
or except clauses, or in a for target list, c1ass definition, function definition, i mport statement, or variable
annotation.

Aemrouépera vhomoinong CPython: The current implementation does not enforce some of these restrictions, but
programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning
of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the
global statement. In particular, a global statement contained in a string or code object supplied to the built-in
exec () function does not affect the code block containing the function call, and code contained in such a string is
unaffected by global statements in the code containing the function call. The same applies to the eval () and
compile () functions.

7.12. The global statement 109

https://peps.python.org/pep-0236/

The Python Language Reference, Anpooisuon 3.11.13

7.13 The nonlocal statement

nonlocal_stmt = "nonlocal" identifier ("," identifier)*

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest enclosing
scope excluding globals. This is important because the default behavior for binding is to search the local namespace
first. The statement allows encapsulated code to rebind variables outside of the local scope besides the global (module)
scope.

Names listed in a nonlocal statement, unlike those listed in a global statement, must refer to pre-existing
bindings in an enclosing scope (the scope in which a new binding should be created cannot be determined
unambiguously).

Names listed in a nonlocal statement must not collide with pre-existing bindings in the local scope.
Agite griong:

PEP 3104 - Access to Names in Outer Scopes
The specification for the nonlocal statement.

110 Kegahawo 7. Simple statements

https://peps.python.org/pep-3104/

KEGAAAIO 8

Compound statements

Compound statements contain (groups of) other statements; they affect or control the execution of those other
statements in some way. In general, compound statements span multiple lines, although in simple incarnations a
whole compound statement may be contained in one line.

The i £, whileand for statements implement traditional control flow constructs. t ry specifies exception handlers
and/or cleanup code for a group of statements, while the with statement allows the execution of initialization and
finalization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more “clauses.” A clause consists of a header and a “suite.” The clause
headers of a particular compound statement are all at the same indentation level. Each clause header begins with a
uniquely identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can
be one or more semicolon-separated simple statements on the same line as the header, following the header’s colon,
or it can be one or more indented statements on subsequent lines. Only the latter form of a suite can contain nested
compound statements; the following is illegal, mostly because it wouldn’t be clear to which i 7 clause a following
else clause would belong:

[if testl: if test2: print (x) }

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all
or none of the print () calls are executed:

{if X <y < z: print(x); print(y); print(z)]

Summarizing:

compound_stmt = i1f stmt

| while_stmt

| for_stmt

| try_stmt

| with_stmt

| match_stmt

| funcdef

| classdef
| async_with_stmt
| async_for_stmt
| async_funcdef
s

suite = tmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT

111

The Python Language Reference, Anpooisuon 3.11.13

statement
stmt_list

stmt_1list NEWLINE | compound_stmt
simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the “dangling e 1 se”
problem is solved in Python by requiring nested i f statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

8.1 The if statement

The i r statement is used for conditional execution:

if_stmt = "if" assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operations for the definition of true and false); then that suite is executed (and no other part of the irf
statement is executed or evaluated). If all expressions are false, the suite of the e se clause, if present, is executed.

8.2 The while statement

The whi 1e statement is used for repeated execution as long as an expression is true:

while_stmt = "while" assignment_expression ":" suite
["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be
the first time it is tested) the suite of the e1se clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

ln"

m.mn

for_stmt = "for" target_list starred_1list suite

["else" ":" suite]

The starred_1list expression is evaluated once; it should yield an iterable object. An iterator is created for that
iterable. The first item provided by the iterator is then assigned to the target list using the standard rules for assignments
(see Assignment statements), and the suite is executed. This repeats for each item provided by the iterator. When the
iterator is exhausted, the suite in the e 1 se clause, if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the el se clause if there is no next item.

112 KegaAaio 8. Compound statements

The Python Language Reference, Anpoocisuon 3.11.13

The for-loop makes assignments to the variables in the target list. This overwrites all previous assignments to those
variables including those made in the suite of the for-loop:

for i in range (10):
print (i)
i=25 # this will not affect the for-loop
because 1 will be overwritten with the next
index in the range

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have
been assigned to at all by the loop. Hint: the built-in type range () represents immutable arithmetic sequences of
integers. For instance, iterating range (3) successively yields 0, 1, and then 2.

AlhaEe oty €xdoon 3.11: Starred elements are now allowed in the expression list.

8.4 The try statement

The t ry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt = tryl _stmt | tryZ_stmt | try3 stmt
tryl_stmt = "try" ":" suite
("except" [expression ["as" identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try2_stmt = "try" ":" suite
("except" "*" expression ["as" identifier] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try3_stmt = "try" ":" suite
"finally" ":" suite

Additional information on exceptions can be found in section EEapéoeig, and information on using the raise
statement to generate exceptions may be found in section The raise statement.

8.4.1 except clause

The except clause(s) specify one or more exception handlers. When no exception occurs in the t ry clause, no
exception handler is executed. When an exception occurs in the try suite, a search for an exception handler is
started. This search inspects the except clauses in turn until one is found that matches the exception. An expression-
less except clause, if present, must be last; it matches any exception. For an except clause with an expression,
that expression is evaluated, and the clause matches the exception if the resulting object is «compatible» with the
exception. An object is compatible with an exception if the object is the class or a non-virtual base class of the
exception object, or a tuple containing an item that is the class or a non-virtual base class of the exception object.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code
and on the invocation stack.'

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a
handler is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated
as if the entire ¢ ry statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword
in that except clause, if present, and the except clause’s suite is executed. All except clauses must have an
executable block. When the end of this block is reached, execution continues normally after the entire t ry statement.

! The exception is propagated to the invocation stack unless there is a £inal 1y clause which happens to raise another exception. That new
exception causes the old one to be lost.

8.4. The try statement 113

The Python Language Reference, Anpooisuon 3.11.13

(This means that if two nested handlers exist for the same exception, and the exception occurs in the t ry clause of
the inner handler, the outer handler will not handle the exception.)

When an exception has been assigned using as target, itis cleared at the end of the except clause. This is as if

except E as N:
foo

was translated to

except E as N:
try:
foo
finally:
del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause.
Exceptions are cleared because with the traceback attached to them, they form a reference cycle with the stack
frame, keeping all locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, the exception is stored in the sy s module, where it can be accessed
from within the body of the except clause by calling sys.exception (). When leaving an exception handler,
the exception stored in the sy s module is reset to its previous value:

>>> print (sys.exception())

None

>>> try:
raise TypeError

except:
print (repr (sys.exception()))
try:
raise ValueError
except:
print (repr (sys.exception()))

print (repr (sys.exception()))

TypeError ()

ValueError ()

TypeError ()

>>> print (sys.exception())
None

8.4.2 except* clause

The except * clause(s) are used for handling Except ionGroups. The exception type for matching is interpreted
as in the case of except, but in the case of exception groups we can have partial matches when the type matches
some of the exceptions in the group. This means that multiple except * clauses can execute, each handling part of
the exception group. Each clause executes at most once and handles an exception group of all matching exceptions.
Each exception in the group is handled by at most one except * clause, the first that matches it.

>>> try:
raise ExceptionGroup ("eg",
[ValueError (1), TypeError(2), OSError(3), OSError(4)])
except* TypeError as e:
print (f'caught {type (e) with nested {e.exceptions/')
except* OSError as e:
print (f'caught {type(e) } with nested {e.exceptions}"')

caught <class 'ExceptionGroup'> with nested (TypeError (2),)
caught <class 'ExceptionGroup'> with nested (OSError(3), OSError(4))
+ Exception Group Traceback (most recent call last):

(ouvéyela oty eV oehida)

114 KegaAaio 8. Compound statements

The Python Language Reference, Anpoocisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
| File "<stdin>", line 2, in <module>
| ExceptionGroup: eg

Any remaining exceptions that were not handled by any except * clause are re-raised at the end, combined into an
exception group along with all exceptions that were raised from within except * clauses.

From version 3.11.4, when the entire ExceptionGroup is handled and only one exception is raised from an
except * clause, this exception is no longer wrapped to form a new ExceptionGroup.

If the raised exception is not an exception group and its type matches one of the except * clauses, it is caught and
wrapped by an exception group with an empty message string.

>>> try:
raise BlockingIOError
except* BlockingIOError as e:
print (repr(e))

ExceptionGroup ('', (BlockingIOError()))

An except * clause must have a matching type, and this type cannot be a subclass of BaseExceptionGroup. It
is not possible to mix except and except * in the same try. break, continue and return cannot appear
in an except * clause.

8.4.3 else clause

The optional else clause is executed if the control flow leaves the try suite, no exception was raised, and no
return, continue, or break statement was executed. Exceptions in the el se clause are not handled by the
preceding except clauses.

8.4.4 finally clause

If finally is present, it specifies a “cleanup” handler. The t ry clause is executed, including any except and
else clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved.
The finally clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If
the finally clause raises another exception, the saved exception is set as the context of the new exception. If the
finally clause executes a return, break or cont inue statement, the saved exception is discarded:

>>> def f():
try:
1/0
finally:
return 42
>>> f()
42

The exception information is not available to the program during execution of the finally clause.

When a return, break or cont inue statement is executed in the t ry suite of a try...finally statement,
the finally clause is also executed “on the way out.”

The return value of a function is determined by the last return statement executed. Since the finally clause
always executes, a return statement executed in the finally clause will always be the last one executed:

8.4. The try statement 115

The Python Language Reference, Anpooisuon 3.11.13

>>> def fool():
try:
return 'try'
finally:
return 'finally'
>>> foo ()
'finally'

AMaEe oty ékdoaon 3.8: Prior to Python 3.8, a cont inue statement was illegal in the £inally clause due to
a problem with the implementation.

8.5 The with statement

The with statement is used to wrap the execution of a block with methods defined by a context manager (see
section With Statement Context Managers). This allows common try...except...finally usage patterns to be
encapsulated for convenient reuse.

with_stmt
with_stmt_contents
with_item

"with" (" (" with_stmt_contents ","? ")" | with_stmt_contents
with _item ("," with_item)*
expression ["as" target]

The execution of the wi t h statement with one «item» proceeds as follows:

1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.
The context manager’s _enter () is loaded for later use.
The context manager’s ___exit__ () is loaded for later use.

The context manager’s __enter__ () method is invoked.

A

If a target was included in the wi ¢ h statement, the return value from __enter__ () is assigned to it.

Znusim(m: The with statement guarantees that if the _ _enter () method returns without an error,
then _ _exit__ () will always be called. Thus, if an error occurs during the assignment to the target list, it
will be treated the same as an error occurring within the suite would be. See step 7 below.

6. The suite is executed.

7. The context manager’s __exit__ () method is invoked. If an exception caused the suite to be exited, its
type, value, and traceback are passed as arguments to __exit__ (). Otherwise, three None arguments are
supplied.

If the suite was exited due to an exception, and the return value fromthe __exit__ () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with
the statement following the wi t h statement.

If the suite was exited for any reason other than an exception, the return value from __exit__ () isignored,
and execution proceeds at the normal location for the kind of exit that was taken.

The following code:

with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

116 KegaAaio 8. Compound statements

The Python Language Reference, Anpoocisuon 3.11.13

manager = (EXPRESSION)

enter = type (manager).__enter_
exit = type (manager) .__exit_
value = enter (manager)

hit_except = False

try:
TARGET = value
SUITE

except:
hit_except = True

if not exit (manager, *sys.exc_info()):
raise
finally:
if not hit_except:
exit (manager, None, None, None)

With more than one item, the context managers are processed as if multiple w1 t h statements were nested:

with A() as a, B() as b:
SUITE

is semantically equivalent to:

with A () as a:
with B() as b:
SUITE

You can also write multi-item context managers in multiple lines if the items are surrounded by parentheses. For
example:

with (
A() as a,
B() as b,
) 8
SUITE

AMaEe oty €kdoon 3.1: Support for multiple context expressions.
AMaEe ot €ékdoon 3.10: Support for using grouping parentheses to break the statement in multiple lines.
Agite gmiong:

PEP 343 - The «with» statement
The specification, background, and examples for the Python wi t h statement.

8.6 The match statement

Néo omv éxdoon 3.10.

The match statement is used for pattern matching. Syntax:

match_stmt u= 'match' subject_expr ":" NEWLINE INDENT case_block+ DEDENT
subject_expr = star_named_expression "," star_named_expressions?
| named_expression

case_block 'case' patterns [gquard] ":" block

Enueiwon: This section uses single quotes to denote soft keywords.

8.6. The match statement 117

https://peps.python.org/pep-0343/

The Python Language Reference, Anpooisuon 3.11.13

Pattern matching takes a pattern as input (following case) and a subject value (following match). The pattern
(which may contain subpatterns) is matched against the subject value. The outcomes are:

» A match success or failure (also termed a pattern success or failure).

« Possible binding of matched values to a name. The prerequisites for this are further discussed below.
The match and case keywords are soft keywords.
Agite gmiong:

o PEP 634 - Structural Pattern Matching: Specification

o PEP 636 - Structural Pattern Matching: Tutorial

8.6.1 Overview

Here’s an overview of the logical flow of a match statement:

1. The subject expression subject_expr is evaluated and a resulting subject value obtained. If the subject
expression contains a comma, a tuple is constructed using the standard rules.

2. Each pattern in a case_block is attempted to match with the subject value. The specific rules for success
or failure are described below. The match attempt can also bind some or all of the standalone names within
the pattern. The precise pattern binding rules vary per pattern type and are specified below. Name bindings
made during a successful pattern match outlive the executed block and can be used after the match
statement.

Enueiwon: During failed pattern matches, some subpatterns may succeed. Do not rely on bindings being
made for a failed match. Conversely, do not rely on variables remaining unchanged after a failed match. The
exact behavior is dependent on implementation and may vary. This is an intentional decision made to allow
different implementations to add optimizations.

3. If the pattern succeeds, the corresponding guard (if present) is evaluated. In this case all name bindings are
guaranteed to have happened.

« If the guard evaluates as true or is missing, the block inside case_block is executed.
o Otherwise, the next case_block is attempted as described above.

« If there are no further case blocks, the match statement is completed.

Inueiwon: Users should generally never rely on a pattern being evaluated. Depending on implementation, the
interpreter may cache values or use other optimizations which skip repeated evaluations.

A sample match statement:

>>> flag = False
>>> match (100, 200):
case (100, 300): # Mismatch: 200 != 300
print ('Case 1'")
case (100, 200) if flag: # Successful match, but guard fails
print ('Case 2'")
case (100, y): # Matches and binds y to 200
print (f'Case 3, y: {y}')
case _: # Pattern not attempted
print ('Case 4, I match anything!"')

Case 3, y: 200

In this case, 1f flag is a guard. Read more about that in the next section.

118 KegaAaio 8. Compound statements

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, Anpoocisuon 3.11.13

8.6.2 Guards

guard = "if" named_expression

A guard (which is part of the case) must succeed for code inside the case block to execute. It takes the form:
1 f followed by an expression.

The logical flow of a case block with a guard follows:

1. Check that the pattern in the case block succeeded. If the pattern failed, the guard is not evaluated and the
next case block is checked.

2. If the pattern succeeded, evaluate the guard.
o If the guard condition evaluates as true, the case block is selected.
« If the guard condition evaluates as false, the case block is not selected.
« If the guard raises an exception during evaluation, the exception bubbles up.

Guards are allowed to have side effects as they are expressions. Guard evaluation must proceed from the first to the
last case block, one at a time, skipping case blocks whose pattern(s) don’t all succeed. (I.e., guard evaluation must
happen in order.) Guard evaluation must stop once a case block is selected.

8.6.3 Irrefutable Case Blocks
An irrefutable case block is a match-all case block. A match statement may have at most one irrefutable case block,
and it must be last.

A case block is considered irrefutable if it has no guard and its pattern is irrefutable. A pattern is considered irrefutable
if we can prove from its syntax alone that it will always succeed. Only the following patterns are irrefutable:

o AS Patterns whose left-hand side is irrefutable

o OR Patterns containing at least one irrefutable pattern
o Capture Patterns

o Wildcard Patterns

« parenthesized irrefutable patterns

8.6.4 Patterns

Enueiwon: This section uses grammar notations beyond standard EBNF:
« the notation SEP . RULE+ is shorthand for RULE (SEP RULE) *

« the notation ! RULE is shorthand for a negative lookahead assertion

The top-level syntax for patterns is:

patterns = open_sequence_pattern | pattern
pattern as_pattern | or_pattern
closed_pattern = | literal_pattern

| capture_pattern

| wildcard_pattern
|
|

value_pattern
group_pattern

8.6. The match statement 119

The Python Language Reference, Anpooisuon 3.11.13

| sequence_pattern
| mapping_pattern
| class_pattern

The descriptions below will include a description «in simple terms» of what a pattern does for illustration purposes
(credits to Raymond Hettinger for a document that inspired most of the descriptions). Note that these descriptions
are purely for illustration purposes and may not reflect the underlying implementation. Furthermore, they do not
cover all valid forms.

OR Patterns

An OR pattern is two or more patterns separated by vertical bars | . Syntax:

or_pattern = "|".closed pattern+

Only the final subpattern may be irrefutable, and each subpattern must bind the same set of names to avoid ambiguity.

An OR pattern matches each of its subpatterns in turn to the subject value, until one succeeds. The OR pattern is
then considered successful. Otherwise, if none of the subpatterns succeed, the OR pattern fails.

In simple terms, P1 | P2 | ... will try to match P1, if it fails it will try to match P 2, succeeding immediately
if any succeeds, failing otherwise.

AS Patterns

An AS pattern matches an OR pattern on the left of the a s keyword against a subject. Syntax:

as_pattern = or_pattern "as" capture_pattern

If the OR pattern fails, the AS pattern fails. Otherwise, the AS pattern binds the subject to the name on the right of
the as keyword and succeeds. capture_pattern cannotbe a _.

In simple terms P as NAME will match with P, and on success it will set NAME = <subject>.

Literal Patterns

A literal pattern corresponds to most /iterals in Python. Syntax:

literal pattern = signed_number
| signed_number "+" NUMBER

| signed_number "-" NUMBER

| strings

| "None"

| "True"

| "False"

| signed_number: NUMBER | "-" NUMBER

The rule st rings and the token NUMBER are defined in the standard Python grammar. Triple-quoted strings are
supported. Raw strings and byte strings are supported. f-strings are not supported.

The forms signed_number '+' NUMBERand signed_number '-' NUMBER are for expressing complex
numbers; they require a real number on the left and an imaginary number on the right. E.g. 3 + 47.

In simple terms, LITERAL will succeed only if <subject> == LITERAL. For the singletons None, True and
False, the is operator is used.

120 KegaAaio 8. Compound statements

The Python Language Reference, Anpoocisuon 3.11.13

Capture Patterns

A capture pattern binds the subject value to a name. Syntax:

capture_pattern = ' ' NAME
A single underscore _ is not a capture pattern (this is what !'_"' expresses). It is instead treated as a
wildcard _pattern.
In a given pattern, a given name can only be bound once. E.g. case x, x: ... isinvalid while case [x] |

x: ... isallowed.

Capture patterns always succeed. The binding follows scoping rules established by the assignment expression operator
in PEP 572; the name becomes a local variable in the closest containing function scope unless there’s an applicable
global or nonlocal statement.

In simple terms NAME will always succeed and it will set NAME = <subject>.
Wildcard Patterns

A wildcard pattern always succeeds (matches anything) and binds no name. Syntax:

wildcard_pattern = L

_ is a soft keyword within any pattern, but only within patterns. It is an identifier, as usual, even within mat ch subject
expressions, guards, and case blocks.

In simple terms, _ will always succeed.

Value Patterns

A value pattern represents a named value in Python. Syntax:

value_pattern = attr
attr = name_or_attr "." NAME
name_or_attr = attr | NAME

The dotted name in the pattern is looked up using standard Python name resolution rules. The pattern succeeds if the
value found compares equal to the subject value (using the == equality operator).

In simple terms NAME1 . NAME2 will succeed only if <subject> == NAME1.NAME2

Inueiwon: If the same value occurs multiple times in the same match statement, the interpreter may cache the first
value found and reuse it rather than repeat the same lookup. This cache is strictly tied to a given execution of a given
match statement.

8.6. The match statement 121

https://peps.python.org/pep-0572/

The Python Language Reference, Anpooisuon 3.11.13

Group Patterns

A group pattern allows users to add parentheses around patterns to emphasize the intended grouping. Otherwise, it
has no additional syntax. Syntax:

group_pattern = "(" pattern ")"

In simple terms (P) has the same effect as P.

Sequence Patterns

A sequence pattern contains several subpatterns to be matched against sequence elements. The syntax is similar to
the unpacking of a list or tuple.

sequence_pattern u= "[" [maybe_sequence_pattern] "]1"
| "(" [open_sequence_pattern] ")"
open_sequence_pattern u= maybe_star_pattern "," [maybe_sequence_pattern]

", ".maybe_star_patternt ","?
star_pattern | pattern

maybe_sequence_pattern
maybe_star_pattern

star_pattern = "*" (capture_pattern | wildcard_pattern)
There is no difference if parentheses or square brackets are used for sequence patterns (i.e. (...) vs [...]).
Ynueimon: A single pattern enclosed in parentheses without a trailing comma (e.g. (3 | 4)) is a group pattern.

While a single pattern enclosed in square brackets (e.g. [3 | 4]) is still a sequence pattern.

At most one star subpattern may be in a sequence pattern. The star subpattern may occur in any position. If no
star subpattern is present, the sequence pattern is a fixed-length sequence pattern; otherwise it is a variable-length
sequence pattern.

The following is the logical flow for matching a sequence pattern against a subject value:
1. If the subject value is not a sequence?, the sequence pattern fails.
2. If the subject value is an instance of str, bytes or bytearray the sequence pattern fails.
3. The subsequent steps depend on whether the sequence pattern is fixed or variable-length.
If the sequence pattern is fixed-length:

1. If the length of the subject sequence is not equal to the number of subpatterns, the sequence pattern fails

2 In pattern matching, a sequence is defined as one of the following:

« a class that inherits from collections.abc.Sequence
« a Python class that has been registered as collections.abc.Sequence
 a builtin class that has its (CPython) Py_TPFLAGS_SEQUENCE bit set
« aclass that inherits from any of the above

The following standard library classes are sequences:
e array.array
e collections.deque
e list
e memoryview
e range
e tuple

Ynueiwon: Subject values of type str, bytes, and bytearray do not match sequence patterns.

122 KegaAaio 8. Compound statements

The Python Language Reference, Anpoocisuon 3.11.13

2. Subpatterns in the sequence pattern are matched to their corresponding items in the subject sequence
from left to right. Matching stops as soon as a subpattern fails. If all subpatterns succeed in matching
their corresponding item, the sequence pattern succeeds.

Otherwise, if the sequence pattern is variable-length:

1. If the length of the subject sequence is less than the number of non-star subpatterns, the sequence pattern
fails.

2. The leading non-star subpatterns are matched to their corresponding items as for fixed-length sequences.

3. If the previous step succeeds, the star subpattern matches a list formed of the remaining subject items,
excluding the remaining items corresponding to non-star subpatterns following the star subpattern.

4. Remaining non-star subpatterns are matched to their corresponding subject items, as for a fixed-length
sequence.

Ynueiwon: The length of the subject sequence is obtained via 1en () (i.e. viathe __len__ () protocol).
This length may be cached by the interpreter in a similar manner as value patterns.

In simple terms [P1, P2, P3, ..., P<N>] matches only if all the following happens:
 check <subject> is a sequence
e len(subject) == <N>
e P1 matches <subject>[0] (note that this match can also bind names)
e P2 matches <subject>[1] (note that this match can also bind names)

« ... and so on for the corresponding pattern/element.

Mapping Patterns

A mapping pattern contains one or more key-value patterns. The syntax is similar to the construction of a dictionary.
Syntax:

mapping_pattern x= "{" [items_pattern] "}"
items_pattern = ",".key_value_patternt ","?
key_value_pattern = (literal_pattern | value_pattern) ":" pattern

| double_star_ pattern
"x*&W" capture_pattern

double_star_pattern

At most one double star pattern may be in a mapping pattern. The double star pattern must be the last subpattern in
the mapping pattern.

Duplicate keys in mapping patterns are disallowed. Duplicate literal keys will raise a SyntaxError. Two keys that
otherwise have the same value will raise a ValueError at runtime.

The following is the logical flow for matching a mapping pattern against a subject value:
1. If the subject value is not a mapping’,the mapping pattern fails.

2. If every key given in the mapping pattern is present in the subject mapping, and the pattern for each key matches
the corresponding item of the subject mapping, the mapping pattern succeeds.

3 In pattern matching, a mapping is defined as one of the following:
o a class that inherits from collections.abc.Mapping
« a Python class that has been registered as collections.abc.Mapping
« a builtin class that has its (CPython) Py_TPFLAGS_MAPP ING bit set
« aclass that inherits from any of the above
The standard library classes dict and types.MappingProxyType are mappings.

8.6. The match statement 123

The Python Language Reference, Anpooisuon 3.11.13

3. If duplicate keys are detected in the mapping pattern, the pattern is considered invalid. A SyntaxError is
raised for duplicate literal values; or a ValueError for named keys of the same value.

Ynueioon: Key-value pairs are matched using the two-argument form of the mapping subject’s get () method.
Matched key-value pairs must already be present in the mapping, and not created on-the-fly via___missing__ ()
or__getitem ().

In simple terms {KEY1: P1, KEY2: P2, ... } matches only if all the following happens:
 check <subject> is a mapping
¢« KEY1 in <subject>
e P1 matches <subject>[KEY1]

« ... and so on for the corresponding KEY/pattern pair.

Class Patterns

A class pattern represents a class and its positional and keyword arguments (if any). Syntax:

class_pattern = name_or_attr " (" [pattern_arguments ","?] ")"
pattern_arguments = positional_patterns ["," keyword_patterns]
| keyword patterns
positional_patterns = ", ".pattern+
keyword_patterns = ", ".keyword pattern+
keyword_pattern u= NAME "=" pattern

The same keyword should not be repeated in class patterns.
The following is the logical flow for matching a class pattern against a subject value:
1. If name_or_attr is not an instance of the builtin t ype , raise TypeError.

2. If the subject value is not an instance of name_or_attr (tested via isinstance ()), the class pattern
fails.

3. If no pattern arguments are present, the pattern succeeds. Otherwise, the subsequent steps depend on whether
keyword or positional argument patterns are present.

For a number of built-in types (specified below), a single positional subpattern is accepted which will match
the entire subject; for these types keyword patterns also work as for other types.

If only keyword patterns are present, they are processed as follows, one by one:

I. The keyword is looked up as an attribute on the subject.
« If this raises an exception other than AttributeError, the exception bubbles up.
o If this raises Att ributeError, the class pattern has failed.

« Else, the subpattern associated with the keyword pattern is matched against the subject’s attribute value.
If this fails, the class pattern fails; if this succeeds, the match proceeds to the next keyword.

IL. If all keyword patterns succeed, the class pattern succeeds.

If any positional patterns are present, they are converted to keyword patterns using the __match_args_
attribute on the class name_or_attr before matching:

I. The equivalent of getattr (cls, "__match_args_ ", ()) iscalled.
« If this raises an exception, the exception bubbles up.

« If the returned value is not a tuple, the conversion fails and TypeError is raised.

124 KegaAaio 8. Compound statements

The Python Language Reference, Anpoocisuon 3.11.13

o If there are more positional patterns than len (cls.__match_args
is raised.

), TypeError

o Otherwise, positional pattern i is converted to a keyword pattern using
_ match_args__ [i] as the keyword. _ match_args__ [i] must be a string;
if not TypeError is raised.

« If there are duplicate keywords, TypeError is raised.
Agite gmiong:
Customizing positional arguments in class pattern matching

I1. Once all positional patterns have been converted to keyword patterns,
the match proceeds as if there were only keyword patterns.

For the following built-in types the handling of positional subpatterns is different:

e bool

e bytearray
e bytes

e dict

e float

e frozenset
e int

e list

s set

e Str

e tuple

These classes accept a single positional argument, and the pattern there is matched against the whole object
rather than an attribute. For example int (0| 1) matches the value 0, but not the value 0. 0.

In simple terms CLS (P1, attr=P2) matches only if the following happens:
e isinstance (<subject>, CLS)
« convert P1 to a keyword pattern using CLS.___match_args___
« For each keyword argument attr=P2:
- hasattr (<subject>, "attr")
- P2 matches <subject>.attr
« ... and so on for the corresponding keyword argument/pattern pair.
Agite gmiong:
o PEP 634 - Structural Pattern Matching: Specification
o PEP 636 - Structural Pattern Matching: Tutorial

8.6. The match statement 125

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, Anpooisuon 3.11.13

8.7 Function definitions

A function definition defines a user-defined function object (see section The standard type hierarchy):

funcdef = [decorators] "def" funcname " (" [parameter_list]
["->" expression] ":" suite

decorators = decorator+

decorator = "@" assignment_expression NEWLINE

parameter_list = defparameter ("," defparameter)* "," "/" [", "

| parameter_list_no_posonly

parameter_list_no_posonly
| parameter_list_starargs

ll) n

[paramete

defparameter ("," defparameter)* ["," [parameter_list_:

parameter_list_starargs = "*" [parameter] ("," defparameter)* ["," ["**" paramete
| "**" parameter [","]

parameter = identifier [":" expression]

defparameter = parameter ["=" expression]

funcname = identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace
to a function object (a wrapper around the executable code for the function). This function object contains a reference
to the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called.*

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated
when the function is defined, in the scope that contains the function definition. The result must be a callable, which
is invoked with the function object as the only argument. The returned value is bound to the function name instead
of the function object. Multiple decorators are applied in nested fashion. For example, the following code

Qfl (arg)
Qf2
def func(): pass

is roughly equivalent to

def func(): pass
func = fl (arg) (£2 (func))

except that the original function is not temporarily bound to the name func.

AMoEe ot ékdoon 3.9: Functions may be decorated with any valid assignment_expression. Previously,
the grammar was much more restrictive; see PEP 614 for details.

When one or more parameters have the form parameter = expression, the function is said to have «default parameter
values.» For a parameter with a default value, the corresponding argument may be omitted from a call, in which case
the parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the
«*» must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means
that the expression is evaluated once, when the function is defined, and that the same «pre-computed» value is used
for each call. This is especially important to understand when a default parameter value is a mutable object, such as
a list or a dictionary: if the function modifies the object (e.g. by appending an item to a list), the default parameter
value is in effect modified. This is generally not what was intended. A way around this is to use None as the default,
and explicitly test for it in the body of the function, e.g.:

def whats_on_the_telly (penguin=None) :
if penguin is None:
(ouvéyela oty enopevn oehida)

4 A string literal appearing as the first statement in the function body is transformed into the function’s __doc___ attribute and therefore the
function’s docstring.

126 KegaAaio 8. Compound statements

https://peps.python.org/pep-0614/

The Python Language Reference, Anpoocisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
penguin = []
penguin.append ("property of the zoo")
return penguin

Function call semantics are described in more detail in section Calls. A function call always assigns values to all
parameters mentioned in the parameter list, either from positional arguments, from keyword arguments, or from
default values. If the form «*identifier» is present, it is initialized to a tuple receiving any excess positional
parameters, defaulting to the empty tuple. If the form «**ident ifier» is present, it is initialized to a new ordered
mapping receiving any excess keyword arguments, defaulting to a new empty mapping of the same type. Parameters
after «*» or «*identifier» are keyword-only parameters and may only be passed by keyword arguments.
Parameters before «/» are positional-only parameters and may only be passed by positional arguments.

AMaEe otnv ékdoon 3.8: The / function parameter syntax may be used to indicate positional-only parameters. See
PEP 570 for details.

Parameters may have an annotation of the form «: expression» following the parameter name. Any parameter
may have an annotation, even those of the form *identifier or **identifier. Functions may have «return»
annotation of the form «-> expression» after the parameter list. These annotations can be any valid Python
expression. The presence of annotations does not change the semantics of a function. The annotation values are
available as values of a dictionary keyed by the parameters” names in the __annotations__ attribute of the
function object. If the annotations import from __ future_ is used, annotations are preserved as strings at
runtime which enables postponed evaluation. Otherwise, they are evaluated when the function definition is executed.
In this case annotations may be evaluated in a different order than they appear in the source code.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand
for a simplified function definition; a function defined in a «def» statement can be passed around or assigned to
another name just like a function defined by a lambda expression. The «de £» form is actually more powerful since
it allows the execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A «def» statement executed inside a function definition
defines a local function that can be returned or passed around. Free variables used in the nested function can access
the local variables of the function containing the def. See section Ovouaoia kar cvvdeon for details.

Agite griong:

PEP 3107 - Function Annotations
The original specification for function annotations.

PEP 484 - Type Hints
Definition of a standard meaning for annotations: type hints.

PEP 526 - Syntax for Variable Annotations
Ability to type hint variable declarations, including class variables and instance variables.

PEP 563 - Postponed Evaluation of Annotations
Support for forward references within annotations by preserving annotations in a string form at runtime instead
of eager evaluation.

PEP 318 - Decorators for Functions and Methods
Function and method decorators were introduced. Class decorators were introduced in PEP 3129.

8.7. Function definitions 127

https://peps.python.org/pep-0570/
https://peps.python.org/pep-3107/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0563/
https://peps.python.org/pep-0318/
https://peps.python.org/pep-3129/

The Python Language Reference, Anpooisuon 3.11.13

8.8 Class definitions

A class definition defines a class object (see section The standard type hierarchy):

classdef = [decorators] "class" classname [inheritance] ":" suite
inheritance = "(" [argument_1list] ")"
classname = identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Metaclasses
for more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes
without an inheritance list inherit, by default, from the base class object; hence,

class Foo:
pass

is equivalent to

class Foo (object) :
pass

The class’s suite is then executed in a new execution frame (see Ovouaocio kaw cvvoeon), using a newly created local
namespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the
class’s suite finishes execution, its execution frame is discarded but its local namespace is saved.> A class object is
then created using the inheritance list for the base classes and the saved local namespace for the attribute dictionary.
The class name is bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s __dict__ . Note that this
is reliable only right after the class is created and only for classes that were defined using the definition syntax.

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

Qfl (arqg)
Qf2
class Foo: pass

is roughly equivalent to

class Foo: pass
Foo = f1(arg) (f2 (Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound
to the class name.

AMoEe otnv ékdoon 3.9: Classes may be decorated with any valid assignment_expression. Previously, the
grammar was much more restrictive; see PEP 614 for details.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances.
Instance attributes can be set in a method with self.name = value. Both class and instance attributes are
accessible through the notation «se 1 f . name», and an instance attribute hides a class attribute with the same name
when accessed in this way. Class attributes can be used as defaults for instance attributes, but using mutable values
there can lead to unexpected results. Descriptors can be used to create instance variables with different implementation
details.

Agite emiong:

5 A string literal appearing as the first statement in the class body is transformed into the namespace’s__doc___item and therefore the class’s
docstring.

128 KegaAaio 8. Compound statements

https://peps.python.org/pep-0614/

The Python Language Reference, Anpoocisuon 3.11.13

PEP 3115 - Metaclasses in Python 3000
The proposal that changed the declaration of metaclasses to the current syntax, and the semantics for how
classes with metaclasses are constructed.

PEP 3129 - Class Decorators
The proposal that added class decorators. Function and method decorators were introduced in PEP 318.

8.9 Coroutines

Néo otmv éxdoonm 3.5.

8.9.1 Coroutine function definition

async_funcdef = [decorators] "async" "def" funcname " (" [parameter_list] ")"
["->" expression] ":" suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). await expressions,
async forand async with can only be used in the body of a coroutine function.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or
async keywords.

Itisa SyntaxErrortouseayield from expression inside the body of a coroutine function.

An example of a coroutine function:

async def func (paraml, param?2):
do_stuff ()
await some_coroutine ()

AMaEe oty ékdoon 3.7: await and async are now keywords; previously they were only treated as such inside
the body of a coroutine function.

8.9.2 The async for statement

async_for_stmt = "async" for_stmt

An asynchronous iterable provides an __aiter__ method that directly returns an asynchronous iterator, which can
call asynchronous code inits __anext__ method.

The async for statement allows convenient iteration over asynchronous iterables.

The following code:

async for TARGET in ITER:
SUITE

else:
SUITEZ2

Is semantically equivalent to:

iter = (ITER)
iter = type(iter).__aiter__ (iter)
running = True

(ouvéyela oty enopevn oehida)

8.9. Coroutines 129

https://peps.python.org/pep-3115/
https://peps.python.org/pep-3129/
https://peps.python.org/pep-0318/

The Python Language Reference, Anpooisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

while running:

try:
TARGET = await type(iter).__anext__ (iter)
except StopAsyncIteration:
running = False
else:
SUITE
else:
SUITEZ2

Seealso aiter () and___anext__ () for details.

Itisa SyntaxError touse an async for statement outside the body of a coroutine function.

8.9.3 The async with statement

async_with_stmt = "async" with_stmt

An asynchronous context manager is a context manager that is able to suspend execution in its enter and exit methods.

The following code:

async with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)

aenter = type (manager) .__aenter_
aexit = type (manager) .__aexit_
value = await aenter (manager)

hit_except = False

try:
TARGET = wvalue
SUITE
except:
hit_except = True
if not await aexit (manager, *sys.exc_info()):
raise
finally:

if not hit_except:
await aexit (manager, None, None, None)

Seealso __aenter () and__aexit__ () for details.
Itisa SyntaxError touse an async with statement outside the body of a coroutine function.
Agite emiong:

PEP 492 - Coroutines with async and await syntax
The proposal that made coroutines a proper standalone concept in Python, and added supporting syntax.

130 KegaAaio 8. Compound statements

https://peps.python.org/pep-0492/

KE®AAAIO 9

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

9.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion
of a complete Python program. A complete Python program is executed in a minimally initialized environment: all
built-in and standard modules are available, but none have been initialized, except for sys (various system services),
builtins (built-in functions, exceptions and None) and __main__. The latter is used to provide the local and
global namespace for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete program
but reads and executes one statement (possibly compound) at a time. The initial environment is identical to that of a
complete program; each statement is executed in the namespace of __main__.

A complete program can be passed to the interpreter in three forms: with the —c sfring command line option, as a
file passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the
interpreter enters interactive mode; otherwise, it executes the file as a complete program.

9.2 File input

All input read from non-interactive files has the same form:

file_input = (NEWLINE | statement)*

This syntax is used in the following situations:
« when parsing a complete Python program (from a file or from a string);
o when parsing a module;

» when parsing a string passed to the exec () function;

131

The Python Language Reference, Anpooisuon 3.11.13

9.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input = [stmt_1list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to
help the parser detect the end of the input.

9.4 Expression input

eval () is used for expression input. It ignores leading whitespace. The string argument to eval () must have the
following form:

eval_input = expression_list NEWLINE*

132 Kegahiaio 9. Top-level components

keoanaio 10

[MAnpng Tpodlaypagn YPAUUATIKAG

Avt elvow M Tpng ypapuotiky g Python, mov mpoépyetar amevbeiog amd) YPOUUOTIKY) TOV ¥PNOL-
uozoteitan yio T dnwovpyio tov avorvuti) CPython (BA. Grammar/python.gram). H ékdoon avt) mapaleinet
LETTTOUEPELEG TTOV OYETICOVTOL UE T dNUOVPYICL KDOSLKO KoL TNV AvAKTNGT 0TT0 0PAAMLATA.

H onuewoypapio eivar éva peiyna amd EBNF ko PEG. Zvykekpuiéva, 1o & mov akohovbeitor amd €va ovp-
Boro, éva token 1 po TapevOeTLKT 0pdda VITOdNAMVEL OETIKT) TPOETLOKOTNON (dNAOOT ATTALTELTAL VO TOLPLO-
Cel aAlG OV KOTAVAADVETAL), EVED TO | VITOONAMVEL APVNTLKT| TPOETLOKOTNON (dNhadY| amarteitan va unv
tapLder). XpnowwomotoUie Tov TeheoTn) | Yo va eKppdoovue v «ta&wvounuévn emhoyn» tov PEG (tou
vphopeton wg / otig mapadooiakég ypoupatikég PEG). Agite to PEP 617 yio meplocdtepeg Aemtouépeteg oye-

TUKG e T OVVTOEN TG YPOUUOTLKTG.

PEG grammar for Python

=========———=———=——======= SGTART OF THE GRAMMAR =========== s ==
General grammatical elements and rules:

* Strings with double quotes (") denote SOFT KEYWORDS

* Strings with single quotes (') denote KEYWORDS

* Upper case names (NAME) denote tokens in the Grammar/Tokens file

* Rule names starting with "invalid " are used for specialized syntax errors

— These rules are NOT used in the first pass of the parser.

— Only 1if the first pass fails to parse, a second pass including the invalid
rules will be executed.

- If the parser fails in the second phase with a generic syntax error, the
location of the generic failure of the first pass will be used (this avoids
reporting incorrect locations due to the invalid rules).

— The order of the alternatives involving invalid rules matter
(like any rule in PEG).

Grammar Syntax (see PEP 617 for more information):

rule_name: expression
Optionally, a type can be included right after the rule name, which
specifies the return type of the C or Python function corresponding to the
rule:

S o e e Y e R Y T R YR P R YR T R YR R R R R W%

rule_name [return_type]: expression
(ouvéyela oty eV oehida)

133

https://github.com/python/cpython/tree/3.11/Grammar/python.gram
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://peps.python.org/pep-0617/

The Python Language Reference, Anpocigsuon 3.11.13

(ovveyiCeton amd Ty ponyovuevn oehida)
If the return type is omitted, then a void * is returned in C and an Any in
Python.
el e2
Match el, then match eZ2.
el | e2
Match el or e2.
The first alternative can also appear on the line after the rule name for
formatting purposes. In that case, a | must be used before the first
alternative, like so:
rule_name [return_type]:
| first_alt
| second_alt
(e)
Match e (allows also to use other operators in the group like '(e)*')
[e] or e?
Optionally match e.
e*
Match zero or more occurrences of e.
e+
Match one or more occurrences of e.
s.et
Match one or more occurrences of e, separated by s. The generated parse tree
does not include the separator. This is otherwise identical to (e (s e)*).
&e
Succeed if e can be parsed, without consuming any input.
le
Fail if e can be parsed, without consuming any Input.
#
#
#

Commit to the current alternative, even if it fails to parse.
STARTING RULES

file: [statements] ENDMARKER

interactive: statement_newline

eval: expressions NEWLINE* ENDMARKER

func_type: '(' [type_expressions] ')' '->' expression NEWLINE* ENDMARKER
fstring: star_expressions

GENERAL STATEMENTS

statements: statement+
statement: compound_stmt | simple_stmts

statement_newline:
| compound_stmt NEWLINE
| simple_stmts
| NEWLINE
| ENDMARKER

simple_stmts:
| simple_stmt !';' NEWLINE # Not needed, there for speedup
['";'.simple_stmt+ [';'] NEWLINE

NOTE: assignment MUST precede expression, else parsing a simple assignment
will throw a SyntaxError.
simple_stmt:

| assignment

(ouvéyela otV entopevn oehida)

134 KegaAaio 10. MAnRpng npodiaypagpn YPAUHATLKAG

The Python Language Reference, Anpoocisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
star_expressions
return_stmt
import_stmt
raise_stmt
'pass’'
del_stmt
yield_stmt
assert_stmt
'break'’
'continue'
global_stmt
nonlocal_stmt

compound_stmt:

| function_def
| 1f_stmt
| class_def
| with_stmt
| for_stmt
| try_stmt
| while_stmt
| match_stmt

SIMPLE STATEMENTS

NOTE: annotated _rhs may start with 'yield'; yield expr must start with 'yield'

assignment:
| NAME ':' expression ['=' annotated_rhs]
[("(' single_target ')'
| single_subscript_attribute_target) ':' expression ['=' annotated_rhs]
| (star_targets '=')+ (yield_expr | star_expressions) !'=' [TYPE_COMMENT]
| single_target augassign ~ (yield_expr | star_expressions)
annotated_rhs: yield_expr | star_expressions
augassign:
| V=t
| | J—
| rx=T
[re="
| /=
["%="
['&="
["=
| PA=U
[<<=
| '>>="
| rRE=
| '//="

return_stmt:
| 'return' [star_expressions]

raise_stmt:
| 'raise' expression ['from' expression]
| 'raise'

global_stmt: 'global' ', '.NAME-+

nonlocal_stmt: 'nonlocal' ', '.NAME+

(ouvéyela otV entopevn oehida)

135

The Python Language Reference, Anpooisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

del_stmt:
| 'del' del_targets &(';' | NEWLINE)

yield_stmt: yield_expr
assert_stmt: 'assert' expression [',' expression]
import_stmt: import_name | import_from

Import statements

import_name: 'import' dotted as_names

note below: the ('.' | '...') is necessary because '...' is tokenized as ELLIPSIS
import_from:

| '"from' ('.' | '...')* dotted_name 'import' import_from_ targets

["from' ('.' | '...")t 'import' import_from_ targets

import_from_targets:

['"('" import_from_as_names [','] ")'

| import_from as_names !','

‘ Tk
import_from_as_names:

[', '.import_from_as_name+
import_from_as_name:

| NAME ['as' NAME]
dotted_as_names:

| ','".dotted_as_name+
dotted_as_name:

| dotted_name ['as' NAME]
dotted_name:

| dotted_name '.' NAME

| NAME

COMPOUND STATEMENTS
M

,,,,,,,,,,,,,,,
block:
| NEWLINE INDENT statements DEDENT
| simple_stmts
decorators: ('Q' named_expression NEWLINE)+

Class definitions

class_def:
| decorators class_def raw
| class_def_ raw

class_def raw:
| 'elass' NAME ['(' [arguments] ')'] ':' block

Function definitions

function_def:
| decorators function_def_raw

(ouvéyela otV entopevn oehida)

136 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpocigsuon 3.11.13

(ovveyiCeton amd Ty ponyovuevn oehida)

| function_def raw

function_def_raw:
| 'def' NAME ' (' [params] ')' ['->' expression] ':' [func_type_comment] block
| ASYNC 'def' NAME ' (' [params] ')' ['->' expression] ':' [func_type_comment].
—block

Function parameters

,,,,,,,,,,,,,,,,,,,
params:
| parameters
parameters:
| slash_no_default param_no_default* param with_default* [star_etc]
| slash_with_default param with_default* [star_etc]
| param_no_default+ param_with_default* [star_etc]
| param_with_default+ [star_etc]
| star_etc
Some duplication here because we can't write (',' [&')'"),

which is because we don't support empty alternatives (yet).

slash_no_default:
| param_no_default+ '/' ','
| param_no_default+ '/' &'")'
slash_with_default:
| param_no_default* param_with_default+ '/' ','
| param_no_default* param_with_default+ '/' &'")'

star_etc:
| '"*' param_no_default param_maybe_default* [kwds]
| '"*' param_no_default_star_annotation param maybe_default* [kwds]
["*' ', ' param_maybe_default+ [kwds]

|

kwds

kwds:

| "**' param_no_default
One parameter. This *includes* a following comma and type comment.
#
There are three styles:
— No default
— With default
— Maybe with default
#
There are two alternative forms of each, to deal with type comments:
— Ends in a comma followed by an optional type comment
— No comma, optional type comment, must be followed by close paren
The latter form is for a final parameter without trailing comma.
#

param_no_default:

| param ',' TYPE_COMMENT?

| param TYPE_COMMENT? &')'
param_no_default_star_annotation:

| param_star_annotation ',' TYPE_COMMENT?

| param_star_annotation TYPE_COMMENT? &')'
param_with default:

| param default ',' TYPE_COMMENT?

| param default TYPE_COMMENT? &')'

(ouvéyela otV entopevn oehida)

137

The Python Language Reference, Anpooisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
param_maybe_default:
| param default? ',' TYPE_COMMENT?
| param default? TYPE_COMMENT? &')'
param: NAME annotation?
param_star_annotation: NAME star_annotation

annotation: ':' expression
star_annotation: ':' star_expression
default: '=' expression | invalid_default

If statement

,,,,,,,,,,,,
if_stmt:

| "if' named_expression ':' block elif_ stmt

| "if' named_expression ':' block [else_block]
elif stmt:

| 'elif' named_expression ':' block elif_ stmt

| 'elif' named_expression ':' block [else_block]
else_block:

| 'else' ':' block

While statement

while_stmt:
| 'while' named_expression ':' block [else_block]

For statement

,,,,,,,,,,,,,
for_stmt:

| '"for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_
—block]

| ASYNC 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block.

— [else_block]

With statement

,,,,,,,,,,,,,,
with_stmt:
| 'with' ' (' ','.with_item+ ','? ")' ':' block
| 'with' ','.with_item+ ':' [TYPE_COMMENT] block
| ASYNC 'with' '(' ','.with_item+ ','? ')' ':' block
| ASYNC 'with' ','.with_item+ ':' [TYPE_COMMENT] block

with_item:
| expression 'as' star_target &('," | ")'" | ':")
| expression

Try statement

,,,,,,,,,,,,,
try_stmt:
| 'try' ':' block finally block
| 'try' ':' block except_block+ [else_block] [finally block]
| 'try' ':' block except_star_block+ [else_block] [finally block]

Except statement

(ouvéyela otV entopevn oehida)

138 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpoocisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

except_block:

| 'except' expression ['as' NAME] ':' block

| 'except' ':' block
except_star_block:

| 'except' '*' expression ['as' NAME] ':' block
finally block:

| '"finally' ':' block

Match statement

match_stmt:
| "match" subject_expr ':' NEWLINE INDENT case_block+ DEDENT

subject_expr:
| star_named_expression ',' star_named_expressions?
| named_expression

case_block:
| "case" patterns guard? ':' block

guard: 'if' named_expression

patterns:
| open_sequence_pattern
| pattern

pattern:
| as_pattern
| or_pattern

as_pattern:
| or_pattern 'as' pattern_capture_target

or_pattern:
| "|'.closed_patternt

closed_pattern:

| literal_pattern
| capture_pattern
| wildcard_pattern
| value_pattern

| group_pattern

| sequence_pattern
| mapping_pattern
| class_pattern

Literal patterns are used for equality and identity constraints
literal_pattern:
| signed_number ! ('+' | '-"')
| complex_number
| strings
| '"None'
| '"True'
| 'False'

Literal expressions are used to restrict permitted mapping pattern keys
literal_expr:

| signed_number !('+' | '-")

| complex_number

| strings

(ouvéyela otV entopevn oehida)

139

The Python Language Reference, Anpooisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

| '"None'
| '"True'
| 'False'

complex_number:
| signed_real_number '+' imaginary_number
| signed_real number '-' imaginary_number

signed_number:
| NUMBER
| '-' NUMBER
signed_real_ number:
| real_number
| '"=' real number

real_number:
| NUMBER

imaginary_number:
| NUMBER

capture_pattern:
| pattern_capture_target

pattern_capture_target:
‘ !Il n NAME !(l.l ‘ l(l ‘ l:l)

wildcard_pattern:

‘ non

value_pattern:
| attr 1L (] =)

attr:
| name_or_attr '.' NAME

name_or_attr:
| attr
| NAME

group_pattern:
["(' pattern ')'

sequence_pattern:
| '['" maybe_sequence_pattern? ']’
| '(' open_sequence_pattern? ')'

open_sequence_pattern:
| maybe_star_pattern ',' maybe_sequence_pattern?
maybe_sequence_pattern:

| ','.maybe_star_pattern+ ','?

maybe_star_pattern:
| star_pattern
| pattern

star_pattern:
| "*' pattern_capture_target
| '"*'" wildcard_pattern

(ouvéyela otV entopevn oehida)

140 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpoocisuon 3.11.13

mapping_pattern:
‘ l{l I}l
!
l{’
‘ l{l

items_pattern:

double_star_pattern ',
items_pattern
items_pattern

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

l? l}l
','" double_star_pattern ',
LI 5}

'

v

v}v

| ',"'.key_value_pattern+

key_value_pattern:
| (literal_expr |

double_star_pattern:
‘ T k%!

class_pattern:
| name_or_attr '(
| name_or_attr '(
| name_or_attr ' ('
| name_or_attr '(

positional_patterns:
| ','.pattern+

keyword_patterns:

attr)

pattern

pattern_capture_target

l)l
positional_patterns ',
keyword_patterns ','? ")'

positional_patterns ',' keyword patterns ','?

l)l

| '",'.keyword_pattern+

keyword_pattern:

| NAME '=' pattern
EXPRESSIONS
,,,,,,,,,,,
expressions:
| expression (',' expression)+ [',']
| expression ','
| expression
expression:
| disjunction 'if' disjunction 'else' expression
| disjunction
| lambdef
yield expr:
| 'yield' 'from' expression
| 'yield' [star_expressions]

star_expressions:
| star_expression
| star_expression '
| star_expression

star_expression:
| "' bitwise_or
| expression

star_named_expressions:

star_named_expression:
| "' bitwise_or

(G

star_expression)+ [',']

v
’

', '.star_named_expression+

(', ']

(ouvéyela otV entopevn oehida)

141

The Python Language Reference, Anpooisuon 3.11.13

| named_expression

assignment_expression:
| NAME ':=' ~ expression

named_expression:
| assignment_expression
| expression !':="

disjunction:
| conjunction ('or' conjunction)+
| conjunction

conjunction:
| inversion ('and' inversion)+
| inversion

inversion:
| "mot' inversion
| comparison

Comparison operators

comparison:
| bitwise_or compare_op_bitwise_or_pair+
| bitwise_or

compare_op_bitwise_or_pair:
| eq bitwise_or

| noteg bitwise_or
| lte_bitwise_or

| 1t_bitwise_or

| gte_bitwise_or

| gt_bitwise_or

| notin_bitwise_or
| in_bitwise_or

| isnot_bitwise_or
| is_bitwise_or

eq_bitwise_or: '==' bitwise_or
noteq _bitwise_or:

| ('"!='") bitwise_or
lte_bitwise_or: '<=' bitwise_or
1t _bitwise_or: '<' bitwise_or
gte_bitwise_or: '>=' bitwise_or
gt_bitwise_or: '>' bitwise_or
notin_bitwise or: 'mot' 'in' bitwise_ or
in bitwise_or: 'in' bitwise_or
isnot_bitwise_or: 'is' 'not' bitwise_or
is_bitwise_or: 'is' bitwise_or

Bitwise operators

bitwise_or:
| bitwise_or '|' bitwise_xor
| bitwise_xor

bitwise_xor:
| bitwise_xor '"' bitwise_and

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

(ouvéyela otV entopevn oehida)

142 Kegpahato 10.

MAripNng Mpodlaypagpr YPauHaTIKiG

The Python Language Reference, Anpoocisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

| bitwise_and

bitwise_and:
| bitwise_and '&' shift_expr
| shift_expr

shift_expr:
| shift_expr '<<' sum
| shift_expr '>>' sum
| sum

Arithmetic operators

,,,,,,,,,,,,,,,,,,,,
sum:
| sum '+' term
| sum '-' term
| term
term:
| term '*' factor
| term '/' factor
| term '//' factor
| term '$' factor
| term '@' factor
| factor
factor:
| '+' factor
| '"-' factor
| '~'" factor
| power
power:

| await_primary '**' factor
| await_primary

Primary elements
Primary elements are things like "obj.something.something"”, "obj[something]",
—"obj (something)'", "obj"

await_primary:
| AWAIT primary

| primary
primary:

| primary '.' NAME

| primary genexp

| primary ' (' [arguments] ')'

| primary '[' slices ']'

| atom
slices:

| slice !'',!

| ','.(slice | starred_expression)+ [',"']
slice:

| [expression] ':' [expression] [':' [expression]]

| named_expression

(ouvéyela otV entopevn oehida)

143

The Python Language Reference, Anpooisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

| NAME

| '"True'

| 'False'

| '"None'

| strings

| NUMBER

| (tuple | group | genexp)
| (list | listcomp)

|

\

(dict | set | dictcomp | setcomp)
\l A}

["('" (yield_expr | named_expression) ')'

Lambda functions

lambdef:
| '"lambda' [lambda_params] ':' expression

lambda_params:
| lambda_parameters

lambda_parameters etc. duplicates parameters but without annotations
or type comments, and if there's no comma after a parameter, we expect
a colon, not a close parenthesis. (For more, see parameters above.)
#
lambda_parameters:
| lambda_slash no_default lambda_param no_default* lambda_param with_default*.
— [lambda_star_etc]
| lambda_slash_with_default lambda_param_with_default* [lambda_star_etc]
| lambda_param no_default+ lambda_param with_default* [lambda_star_etc]
| lambda_param_with_default+ [lambda_star_etc]
| lambda_star_etc

lambda_slash_no_default:
| lambda_param_no_default+ '/' ',
| lambda_param_no_default+ '/' &':'

lambda_slash_with_default:
| lambda_param_no_default* lambda_param with_default+ '/' ',
| lambda_param_no_default* lambda_param _with_default+ '/' &':'

lambda_star_etc:
| '"*' lambda_param_no_default lambda_param_maybe_default* [lambda_kwds]
['*' ', ' lambda_param maybe_default+ [lambda_kwds]
| lambda_kwds

lambda_kwds:
| '"**' lambda_param_no_default

lambda_param_no_default:

| lambda_param ','

| lambda_param &':'
lambda_param_with_default:

| lambda_param default ','

| lambda_param default &':'
lambda_param_maybe_default:

| lambda_param default? ','

(ouvéyela otV entopevn oehida)

144 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpoocisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
| lambda_param default? &':'
lambda_param: NAME

LITERALS

strings: STRING+

list:
| '['" [star_named_expressions] ']'
tuple:
| '('" [star_named_expression ',' [star_named_expressions] IR
set: '{' star_named_expressions '}'
Dicts
,,,,,
dict
| '"{'" [double_starred_kvpairs] '}'
double_starred_kvpairs: ','.double_starred_kvpair+ [',']

double_starred_kvpair:
| "**' bitwise_or
| kvpair

kvpair: expression ':' expression

Comprehensions & Generators
for_1if clauses:
| for_if clause+

for_1if clause:

| ASYNC 'for' star_targets 'in' ~ disjunction ('if' disjunction)*
| 'for' star_targets 'in' ~ disjunction ('if' disjunction)*
listcomp:

| '[' named_expression for_if clauses ']'

setcomp:
['{' named_expression for_if clauses '}'

genexp:
['"('" (assignment_expression | expression !':=') for if clauses ')'

dictcomp:
| '{' kvpair for_if clauses '}'

FUNCTION CALL ARGUMENTS

=====—————————————————c
arguments:
‘ args ["lJ &l)'
args:
| ','.(starred_expression | (assignment_expression | expression !':="') !'=")+_

—~['," kwargs]

(ouvéyela otV entopevn oehida)

145

The Python Language Reference, Anpooisuon 3.11.13

| kwargs

kwargs:

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

| ','.kwarg_or_starred+ ',' ','.kwarg_or_double_starred+

| ','".kwarg_or_starred+
| '",'.kwarg_or_double_starred+

starred_expression:

| '*' expression
‘ Tx!

kwarg_or_starred:
| NAME '=' expression
| starred_expression

kwarg_or_double_starred:
| NAME '=' expression

| "**' expression

ASSIGNMENT TARGETS

NOTE: star_targets may contain *bitwise_or,
star_targets:

| star_target !','
| star_target (',' star_target)* [',']
star_targets_list_seq: ','.star_target+ [',']

star_targets_tuple_seq:
| star_target (',' star_target)+ [',']
| star_target ','

star_target:
["*' (!'*' star_target)
| target_with_star_atom

target_with_star_atom:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| star_atom

star_atom:

(' target_with_star_atom ')'
'('" [star_targets_tuple_seq] '")'
[" [star_targets_list_seq] ']'

single_target:
| single_subscript_attribute_target
| NAME
| '"(' single_target ')'

single_subscript_attribute_target:
| t_primary '.' NAME !t_lookahead

| t_primary '[' slices ']' !t_lookahead

t_primary:

targets may not.

(ouvéyela otV entopevn oehida)

146 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

The Python Language Reference, Anpocigsuon 3.11.13

(ovveyiCeton amd Ty ponyovuevn oehida)

| t_primary '.' NAME &t_lookahead

| t_primary '[' slices ']' &t_lookahead

| t_primary genexp &t_lookahead

| t_primary '(' [arguments] ')' &t_lookahead
|

atom &t_lookahead
t_lookahead: "(' | '"['" | '."'

Targets for del statements

,,,,,,,,,,,,,,,,,,,,,,,,,,
del_targets: ','.del _target+ [',']
del_target:

| t_primary '.' NAME !t_lookahead

| t_primary '[' slices ']' !t_lookahead

| del_t_atom

del_t_atom:

| NAME

["('" del_target ')'
["('" [del_targets] ")
| '[" [del_targets] ']'

TYPING ELEMENTS

type_expressions allow */** but ignore them
type_expressions:

','.expressiont ',' '*' expression ',' '**' expression
', '.expressiont ',' '*' expression
','.expressiont ',' '"**' expression

|
|
|
['*' expression ',' '**' expression
| '*' expression

| "**' expression

|

', ' .expression+

func_type_comment:

| NEWLINE TYPE_COMMENT & (NEWLINE INDENT) # Must be followed by indented block
| TYPE_COMMENT

== == = START OF INVALID RULES =====

147

The Python Language Reference, Anpooisuon 3.11.13

148 Kegpalawo 10. MAnRpng npodiaypadn YPAHHATIKAG

nAPAPTHMA A’

Mwoodpt

>>>
To wtpoemheyuévo Python prompt tov dradpaotiko shell. Zuyva epupaviteTon yia mopadeliypato kndiko
IOV WITOPOVYV VoL EKTEAEOTOVV dLAdPAOTIKA OTOV interpreter.

Mmopel vo. avapEPETaL OE:

e To mpoemkeyuévo Python prompt tov dtadpootikov shell katd v eloaymyr Tov KOdLKO Yo Eva
WIThok KmALKa e 0oy, Otav Bpioketal péoa oe £va Levyog ToLPLOoUEVMDY OPLOTEPMV Ko dEELMV
delimiters (;wapevOéoels, ayKiieg, AyKLOTPO 1 TPLITAG EL0OYOYLKA), 1| UeTd Tov KabopLopd evog
decorator.

o H evoouatouévn otabepd E11ipsis.

2to3
'Eva epyodeio mov poomadet va uetatpéper tov kmdika Python 2.x og kwduka Python 3.x duaepito-
VTAG TIG TTEPLOGOTEPES ALOVUPBATOTNTEG TTOV (WTOPOVV VAL EVTOTILETOVV OVOADOVTOG TNV TTNYT) Ko dLooyi-
Covtag 1o 9éVTpo avaluong.

2to3 elvan droBéoo oty otdvtap PPAodNKNn wg 1ib2to3, mapéyetor éva onueio elcddov mg
Tools/scripts/2to3. BA. 2to3-reference.

agnpnuévn faotkr) KAaom

O agnpnuéveg Pootkéc KANAOELG CUUTANPMOVOUY TO duck-typing mopéXOVTAS EVOV TPOTO OPLOUOY
interfaces 6tav Gheg texvikég Omwg M hasattr () Oa Nrov 0dégieg M avenaiodnto hovOaouéveg
(ywo wopddeyno pue magic methods). Ta. ABC (abstract base class) eLOGyOUV €LKOVIKEG VITOKAAOELS, OL
omoieg eivat KAMAOELG TTOV deV KANpovouovvToL artd po kAo, odd eEakorovBoiv va avoyvwpifovion
amd to isinstance () koL amd 10 issubclass ()7 Bh. v TeEKUNpiwon tov module abe. H Python
duabéter modd evowpatmuéva ABC yia douég dedopuévmv (0to module collections.abc), apld-
povg (oto module numbers), poég (oto module povada io), etoaywyn finders ko loaders (oto module
importlib.abc). Mmopeite va dnuovpynoete ta dukd oag ABC ue to module abe.

annotation
Mo eTKETO TTOU OYETILETOL UE JLoL LETABANTY, EVOL YOPAKTNPLOTIKO KAAONG 1) Mol TTOUPAUETPOG GUVEP-
TNONG 1) TULY TOU ETOTPEPETAL, TTOV YPNOLUOTOLELTAL KATA oCVUPBaon WG fype hint.

Aev givor duvati M TpodoPaoy oto annotations TwV TOTLKDV UETAPANTOV KATA TO POVO EKTELETNG, AAAG
To annotations twv global LETAPANTOV, TWV XOPAKTNPLOTIKMV KAAOTG KOl TOV GUVAPTHOEMV AoOnKey-
OVTOL 0TO EOLKO XOPOKTNPLOTIKO _annotations_ twv modules, twv KAAOEMY KOL TWV CUVAPTY-
CEMV, OVTIOTOLY .

149

The Python Language Reference, Anpooisuon 3.11.13

BA\. variable annotation, function annotation, PEP 484 kaw PEP 526, ta omoio meplypdpouv v Aettovp-
yikdtto. Exiong BA. annotations-howto yia tig BéATIOTEG TPOKTIKEG doVAEVOVTAG UE annotations.

opopa
Mo T petofialetan oe wlo function () method) xotd v KAHon g ovvdptnong. Yrdpyovv dvo
€LdMN opLopdTv:

o keyword argument: £va. OpLOUOL TTPLV ATTO €VOL OVOLYVIPLOTLKO (FT.%. name=) O€ (o, KAon ouvap-
oNG 1 TEPVADVTAG TO WG TIUT| 08 £va heELko mtpLv amd * *. Tia wapdderypua, To 3 KoL To 5 amotehovv
opiopata MEEemv-kheldunv otig akodhovdeg KA OELG TTpog complex () :

complex (real=3, imag=5)
complex (**{'real': 3, 'imag': 5})

o positional argument: €vo. dpLopo. Tov dgv gival oplopa keyword. Ta oplopato O€ong pmopovv va eu-
paviCovrol otV apyns wag Motag oplopdtmv H/Kot va uetapLatovral wg otovyeio evog iterable
mpwv oo *. T wopdderyna, To 3 xou 1o 5 amotehoVv opiopata 0Eong 0TLg TOPAKATO KANOELS:

complex (3, 5)
complex (* (3, 5))

Ta opiouato eKymPoVVTOL 0TS OVOLLOOUEVES TOTILKES UETAPANTEG 0TO GmUL Wa ovvapTnong. Bi. Ty
evotnta Calls yio Tovg KAvOVES TOU SLETOUV QUTIHV TNV EKYDPTOY. ZUVTOKTLKE, 0TOLOONTOTE £K(PPOON
WITOPEL VAL PN OLUOTOINOEL YLOL VOL AVATTAPOOTNOEL EVaL OpLoua” 1) AELOAOYOUEVT TLUN EKYWPELTOL OE LLOL
TOTILKT) UETOPANTA.

Bh. emtiong v eyypagt| tov yhwooapiov yia to parameter, Tyv FAQ gpdnon oto 1 dagpopd puetao
oplopdTmv kou Topouétpmv, kol PEP 362.

aoUYYPOVOS dtoyelpLoTi)g context
'‘Evo avtikeipevo mov eréyyel to opatod meptBdihov o o SNAwon async with opilovrag tg uedo-
dovg__aenter () kav__aexit__ ().Ilov ewonyOn and PEP 492.

aovyypovog generator
M oUVAPTNOT| TTOV ETLOTPEPEL £V asynchronous generator iterator. MolGLeL ue o ouvaptnon coroutine
7ov opiletal ue async def ektog amod Ot mePLEYEL EKPPATELG v ield YLt TV TAPoymYN HOG OELPAS
TLWOV TTOV UIropoBv va ypnoworoinbotv oe évav async for Bpdyo.

ZVvHOOG oVOQEPETOL OE WLOL GUVAPTNOT CLOVYYPOVOU generator, GAAG WITOPEL VO AVAPEPETOL O EVOY
aclyypovo generator iterator 0€ OpLOUEVA contexts. 2 TEPLTTOOELS OTOV TO EMLILWKOUEVO VOTUOL dEV
eLvaL OOUPES, LUE TNV XPNOT) TWV TPV OPWV OITOQEVYETOL 1] ALTAPELAL.

Mo ouvapTNON 0oUYYPOVOU generator (WTOPEl Vo TEPLEYEL EKPPAOELS await , KOOGS K dNAMOELS
async for,KdlLasync with.

aoVyypovogs generator iterator
‘Eva aviikeipevo mov dnuovpyndnke amd wa ovvaptnon asynchronous generator.

Avtog elval évag asynchronous iterator ov 6TaV KAAELTOL XPNOLUOTOLDOVTOG TNV UEB0dO ___anext__ ()
ETLOTPEPEL EVOL AVOUEVOULEVO OVTIKELUEVO TTOU B0l EKTEAETEL OTO GMUA TNG CUVAPTHONG TOV ALoVYYPOVOU
generator UEYpL TNV eTOUEVT] vield EKpPOon.

Each yield temporarily suspends processing, remembering the location execution state (including local
variables and pending try-statements). When the asynchronous generator iterator effectively resumes with
another awaitable returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

aovyypovog iterable
'Evo avTiKeijlevo, mov wopet va ypnowwomondei oe wio dMhwon async for. [pémel vo emotpépel
éva asynchronous iterator om6d v pébodo __aiter (). Ilov ewonydn amd PEP 492,

aoUyypovog iterator
‘Evo. ovtikeigevo mov vhomotel TG pebddovg _ aiter () xou __anext_ (). H uébodog
__anext__ () mpémeL vo emOTPEQPEL £va awaitable avtikeipevo. To async for emAVeL TO OVOUE-
vOpEVa TTOV ELOTPEPOVTOL 0TTO T WEB0d0 _ anext () gvOg aoUypovov iterator ¢ OTOU eYeipeL
wo eEaipeon StopAsyncIteration. Ewoflydn amd PEP 492.

150 Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/

The Python Language Reference, Anpoocisuon 3.11.13

XOPOKTIPLOTIKO
Mo TLut) oV OETICETOL e £VaL AVTIKELUEVO TTOV CUVNOWG AVAPEPETAL LLE OVOUD YPTOLUOTTOLMVTAG EK-
ppaoelg pue Koukkideg. o mapdderypa, edv éva avitkeipevo o €xel éva xapokpLotkd a Ha avopé-
pETOL WG 0.4.

Elvow duvato vo dmoovue o€ Eva OVTLKELLEVO VAl YOPOKTNPLOTLKO TTOU TO OVOUO. TOU OEV ELVOL VALY Vm-
pLoTikd Omwg opiletan amd Identifiers and keywords, yio. TopddeLyuo xpNOLUOTOLDVTOG setattr (), ov
emtpémetal amd to avitkeipevo. 'Eva t1olo yopaktnplotikd dev Oa eival mpooBaciio xpnoLuoroLm-
vTag TIG Teheieg, Kau ovti outov Oa pémel vo avaktn el xpnolwomolmvtas getattr ().

awaitable
'Eva 0VTLKELLEVO TTOU UTTOPEL VO X pNoLuomtotn0el oty ékgppaon awa i t. Mmopel va elval coroutine M €vo.
avtikeigevo pe o await__ () uéBodo. Bh. emiong PEP 492.

BDFL
Axpwviuo tov Benevolent Dictator For Life, kahokdyafog diktdropag g Cone, dradn Guido van
Rossum, o dnpouvpydg tng Python.

dvadiko apyeio
'Eva. file object tkovd va. dLaalel ko va ypagpeL Svadikot timov aviikelueva. Tapadelyuato dvadikmy
apyelwv eivar apyelor mov avoiyovv oe dvadikn Aettovpyio ("rb', '"wb' 1] 'rb+'), sys.stdin.
buffer, sys.stdout.buffer, Kol OTLyIOTUTOV TV 10.BytesIO koL gzip.GzipFile.

B emtiong text file yio. €vor OVTLKELPEVO TUTTOV OPYELO LKAVO VaL SLABAOEL Kot VL YPAYEL ST T OVTLKELUEVAL.

daverkn avagopd
Zto C API g Python, o davelkt| ovopopd elval (o avopopd og €vo. OVILKEIUEVO, OTTOV 0 KMALKOG
TTOV YPTOLUOTTOLEL TO avTLKELUEVO deV KaTéxel TNV avapopd. [ivetan évag aypnoipuomointog deiktng edv
TO avtikeipevo Kataotpopei. o mapdderypa, o dadikaoio garbage collection pwwopei vo apaipéoet
TO TELEVTOUO Strong reference amd TO AVILKELUEVO KOL ETOL VO TO KOTOOTPEPEL.

Zuviotatol 1 KMo tov Py__INCREF () 070 daveiki] avagood e 0KOmd VoL LETATPATEL 08 £VaL LGy V0T
avagopd EMITOMOV, EKTOG OTAV TO AVILKELUEVO OEV UITOPEL VO KOTAOTPOPEL TTPLY OO TNV TEAEVTALN
xphHon g davelkng avagopds. H cuvaptnon Py_NewRef () umopet va xpnotpomown0el dote vo. om-
wovpyn el Eva Loy vo1 avapood.

bytes-like avrikeipeva,
'Evo. avTiKeipevo mov vitootnpilel To bufferobjects kou pmopel va eEqyer éva C-contiguous buffer. Avtd
mepthappdver Oha ta aviikeipevo bytes, bytearray, Kaw array . array, Kafmg Kot ToAAd Kowva
memoryview avikeipeva. Ta dvadikov tomov (bytes-like) avitkeipevo propotv va xpnotuootnovy
ya dudipopeg hettovpyieg wou droyepitovion dvadikd dedouéva” avtd TePAauBAvVoUV CUNITTIEST OITO-
OMkevon og duadikd apyeio ko amooTol uéow socket.

Oplouéveg hertovpyieg yperdtovrol tor duadikd dedouéva va eivor uetofintd. H texunpioon ovyva
AVOPEPETOL 08 AUTA MG «dVAdIKA avTiKelpeva avayvoonc-eyypogc» (read-write bytes-like objects).
Mapadelynato PeTABANTOV OVILKEWEVMY TPOCWPLVTG 000N KEVOoT G TTEPLEXOUV bytearray Kol éva
memoryview evog bytearray. AMeg hettovpyleg amantovv Ty amofnKevong tmv dvadikmv de-
dopéva oe auetdfinta avitkeipeva («duadtkd ovTikeipeva wovo avayvwang»” (read-only bytes-like
objects) wopadeiyuaTo oVTOV TEPLEXOVY bytes Kot éva memoryview evog bytes avitkeluévou.

bytecode

O mnyaiog kwdika g Python uetaylottiCetol og byfecode, M €0MTEPLKT) OVOTOPAOTAON EVOG TTPO-
vpdupatog Python otov diepunvéa CPython. To bytecode amobnkevetol emiong Tpoowpvd og . pyc
apyelor MmoTe M eKTELEON TOV idLOV apYELOV Va. givan YpNyopdTEPN TNV devTEPT POPA eKTENEONG (WITO-
pel vo amopevy el 1) €K VEOU HETOYADTTLON aItd TOV TTNyoio KOdika oe bytcode). Avti 1 «evaldpeon
YADOoO» Aéyetal OTL TpExel 08 WwoL virtual machine oV €KTENEL TOV KMOLKO N AVAG TTOV OVTLOTOLYEL
oe kGOe bytecode. AGfete vty OtL To. bytecode dev avOUEVETOL VO AELTOUPYOUV HETAED SLOPOPETLKMV
ELKOVIKMV piyovarv Python, ovte va eival otabepd petalt twv ekddoemv g Python.

Mua Mota amd 0dnyieg oyetikd ue ta bytecode umopel va Bpebei otnv tekunpimon yio to module dis.

callable
‘Eva callable eival évo aviikeipevo mov umopel vo kKaheotel, mbava pe éva ovvolo opopdtmv (BA.
argument), A€ TNV TOPAKATO OVVTAEY:

151

https://peps.python.org/pep-0492/
https://gvanrossum.github.io/
https://gvanrossum.github.io/

The Python Language Reference, Anpooisuon 3.11.13

[callable(argumentl, argument2, argumentN) }

Mua function, Kau kot” eméktaon wo method givon callable. 'Eva otryudtumo pa KAGonMG o vhorotel
™ puébodo _ call () eivaw emiong callable.

callback
Mua subroutine cuvaptnon 1 omoia petafLpateTor wg OpLona Tov Bo EKTENEOTEL KATOLA OTLYUH OTO
UEALOV.

KAdon
‘Eva pdTumo yia T dnuovpyia avitkeluévav mov opifovtat amd to ypnot. Ot opiouol Khdoewv ov-
vii0wg TepLExovv opLopovc uefoddmVY Tov Aettovpyolv oe OTLYULOTUTTA TS KAGOTG.

uetafinTy kAdong
Mo petapinti wov opiletat oe o KAGoN Ko Tpoopiletol va tpomomotn0el wovo oe emimedo KAAong
(. Oy o€ éva OTLYIOTUTTO (aG KAAONG).

uryodikog apdpdg
Mo eTTEKTO.0T TOV YVMOTOU GUOTHUOTOS TTPOYIATIKDV aptOimy 6To 05toio dhot ot aptboi ekgppdLovon
wg dBpolopa evOg TPAYLOTLKOV HEPOUG Kot evOG pavtaotikol uépovg. OL pavtootikol aptbuot eivor
TPAYUOTLKG TOAMATAAOLO TG PAVTOOTIKTG Hovada (1 TeTpaymvikn pila Tov —1), mov ovyva yplgo-
vtou i ota padnpotikd 1 3 oty unyovikr. H Python €yel evoopotmpuévn voothplEn yio wyadikoig
apLBuovg, oL omoioL YPApovToL (e autdV TOV TELEVTOL0 CUUPBOLLOWO” TO PAVTOOTIKO WEPOG YPApETOL
ue to eminua j, m.y., 3+13. [Na vo arokthoete mpdofaoy oe ovvOeTa LodUvaua to module math,
ypnopomomote to cmath. H xpnon uyadikmv aptBumy eivor £va apkeTd Tponyuévo nodmuotiko xo-
POKTNPLOTLKO. €AV OEV YVWPILLETE TNV OVAYKT) TOVUG, ELVAL OYEDOV GLYOUPO OTL UTOPELTE VOL TOL OLYVOT|OETE
UE ALOPANELXL.

duayeploTiic context
‘Eva avtikeipuevo mou ehéyyet 1o meplpdilov mov gugavitetar og pio dNhwon with opilovtog Tig [e-
00dovg___enter () xou__exit__ ().B\k PEP 343.

context petafinTi
Mo petoAnti mov uropet vo €xel ToAEG SLAPOPETIKES TUEG OVAAOYX UE TO context. AUTO elval KOLvo
oto Thread-Local Storage 0mmov k@0e eKTELEOT TOV VIUOTOG WTOPEL VAL €XEL OLAPOPETLKT] TLUT YLOL [LLCL
uetapint. Mapodho ovtd, pe Tig context ueTaANTES, WTOPEL VoL VITaPYouV TOMA TEPBAILoVTa o8 Eval
Vo EKTELEONG KO 1) KOPLAL Y P1 01 YLaL TIG context UETAPANTES eival 1) TOPAKOAOVONON TV HETOLANTMV
oge Tovtdypoveg depyooies. Bh. contextvars.

contiguous
‘Eva buffer Oewpeital contiguous axplpag edv eivar elte C-contiguous eite Fortran contriguous. To buffer
undevikdv draotdoemv givor C kou Fortran contiguous. Ze ovodSLAOTATOVG TEVOKES, TO OTOLYELL TPE-
7EL Vo Toro0eTovvVTaL 0T Ui To éva Sistha 0To GAAO, Ue OELPG aOENONG TWV SEKTHOV EEKLVAVTaG
o to undév. Ze mohvdidotatovg C-contiguous Tivakes, 0 TehevTaiog deikThg neTafdiletan TayvTePa
OTaV EMLOKETTOVTOL TOL OTOLYELO O OELPA dlevBuvong uvhung. Qotdoo, oe Fortran contiguous mtivakeg, o
TPADTOG OELKTNG LETAUBAMLETAL TTLO YPT)YOPOL.

coroutine
O coroutines eivou puo. Lo yevikevpéve nope subroutines. Ot subroutines el0dyovtol og £va onuelo Ko
eEdyovtan oe dAho onueio. Ou coroutines umopei va. elooyBovv, va eEoybolv Ko vo ouveLoTovV o

TTOAGL dLapopeTikd onpeia. Mmopovv va vhomoumoouy e Ty dnhwon async def. Bh. eniong PEP
492.

coroutine ocuvaptnon
Mo GUVAPTNON TTOV ETLOTPEPEL EVOL coroutine OVTIKELIEVO. Mia ouvaptnor coroutine Wtopei va opieTon
omd ™ dhwon async def, KoL WTOPEL va TEPLEXEL await, async for, kKoL async with MEeig
KAEWOLA. AvTtég eLonyOnoav amd to PEP 492.

CPython
H xavovikn vihomoinon g yhwooog mpoypoppatiopot Python, 6mwg duavéuetan ato python.org. O 6pog
«CPython» ypnowpomoteiton 6Tav eivol omopaiT)To Yio TV dLAKPLoN GuThG THG VAOTTOIN NG atd dAleg
omwg M Jython) m IronPython.

152 Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python Language Reference, Anpoocisuon 3.11.13

decorator
Mo oUVAPTNOT TOU ETOTPEPEL ULt GARY GUVAPTNON, CUVNOWG EQPAPUOTETAL WG UETOTYUATIOUOS OU-
VAPTNONG YPNOWOTOUDVTAG THY Rwrapper oUvtagl. Zuvnoiouéva mapadeiyuoto yio Toug decorators
gival classmethod () Kaw staticmethod ().

H ovvtaEn tou decorator eivar amhmg KAA®ITLOTIKY, 0oL akOhovBoL &0 0pLopol ouvapTHoemv eival
ONUaoLOA0YLKG LoodUvauoL:

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arqg):

H idua évvola vtdipyer yio g kKAGoerg, ol ypnolpomoteitol Myotepo ovyvd exei. BL. v tekunpimon
ywo. function definitions xou class definitions yio. tepLocdTEPO OYETIKA 1e TOovg decorators.

descriptor

Kd&0e avrikeipevo mov opitel tig peboddovg __get_ (), __set__ (), __delete__ (). Otov é€va
YOPOKTNPLOTIKO KAAoNG givar descriptor, 1) €L0LKY) SEOUEVTIKT) TOV CUUTEPLPOPE EVEPYOTTOLELTOL KATA
TV avalNTNon XopoKTNPLoTiKdv. Kovovikd, ypnouomoimvtag a.b yuo va AMfete, va opioete 1) va dia-
YPAPETE VA XOPAKTIPLOTIKO avalnTd TO AVIIKELUEVO UE TO Ovopa b 0To AeELKO NG KAGONG Yo @, AN
edv to b elvon descriptor, kahettor) aviiotolyn nébodog descriptor. H xatavonon twv descriptors eivol
70 KAEWSL Yo TNV KahOTepn kotavonon g Python yioti avtd amotehel Ty fdon yio ok yapoktn-
PLOTLKA 0T CUVOPTNHOELS, ueBOdovg, LLOTNTES, HEB0dOL KhAONG oTaTikég uéBodoL, KoL avagpopd oe
ooUTEP KAAOELS.

To. epLocdTepeg TANPOQOPieg avapoplkd e Tig uebodovg twv descriptors, BA. see Implementing
Descriptors) to Ilpaxtikodg 0d1y0g yio) ¥p1on tov Descriptor.

AeEiko
"Evol TpOooeTOLpLOTIKOG TTivaka, 0mov avbaipeta khewdid avriotoryilovtat og Tuésg. Ta kheldid wopei
VoL glvan 0TToL0dIToTE AVTLKELEVO ue uefddovg hash_ () xou___eqg (). OvoudZetar wg hash oto
Perl.

KaTavonoen Aeukov
"Eva ouprtoyfg tpomog yio va eneEepyaoteite OMa 1) HEPOG TWV OTOLYELMY 08 £VaL ETAVOUAITTLKO KL VO
emotpagel £va pe MeELko pe ta amotehéopota. results = {n: n ** 2 for n in range (10)}
dnuovpyei évo AeEkd mou mepLéyet to kKAewdi n mov avriotouyieton pe v T n ** 2. BA. Displays
for lists, sets and dictionaries.

oym AeEkov
Ta avikeipeva Tov emoTpépovior oo dict .keys (), dict .values (), kouwdict.items () xo-
hovvtar 0elg AeEkov. AuTég Tapéouy wa dSuvoutky dym Twv TV eyypap®v tou AeELkov, Tov o)-
naiver ot dtov To heEukd puetafadietol, 1 6Py ovitkatomtpilel avtég Tig odayés. Na va avoykdoete
v 0y AeEkov va yivel pa hpng Mota ypnowwomowmote to 1ist (dictview) . BL. dict-views.

docstring
A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the
object.

duck-typing
"Eva. 6Tl Tpoypoptotiopot ov dev eEeTdleL ToV THo eVOG VTLKELUEVOD YLOL VO TTPOGOLOPLOEL OV EYEL
T 0ot dLemagn” avtibeTa, 1 nEB0SOG N TO XOPAKTNPLOTIKO KaAEiTOL ammhidg 1) xpnowworoteitan («If
it looks like a duck and quacks like a duck, it must be a duck.») Aivovtog éugpaon otig diemapés Kan oyt
0€ OUYKEKPLUEVOUG TUITOVG, 0 KOAG OxedLaouévog KHdKag BeAtiddvel Tv eveMEia Tov emitpémovtag
™V TohvpopLkn vrokatdotaot. O timog duck-typing amogpelyel doKLIES Y PN OLLOTOLMVTAS type ()
N isinstance (). (Enueiwon, wotdoo, 6Tl 0 THTOG TATLAG duck-typing umwopet vo cuumAnpwOeL pe
abstract base classes.) Avti awtol, cuvnOmg ypnowomolel dokuég hasattr () fapoypaupatiopnd FAFP.

153

The Python Language Reference, Anpooisuon 3.11.13

EAFP
ITwo e0K0AO VO TNTNOELG OLVYYDPEDT TTaPd AdELD. AVTd TO KOLvd 0TV Tpoypauuatiopnoy og Python tpois-
o0&TEL TNV VTTapEN £YKUPmV KAELSLMV 1] (OPOKTHPLOTIKOV Kot cuhhaufdver eEanpéoelg edv 1) vitdeon
arodey el eopaluév. Avtd to Kabapo Kot ypNyopo OTVA XopoKTNPILETAL Amd THY TAPOVGLO TTOMMV
dMhwoewv try kou except. H texvikn épyetal oe avtiBeon pe to otuk ov eivar LBYL kowvd o€ moAhég
deg yhnooeg, dmtmg 1 C.

£€K@ppaon
"Eva. Koppdtt oUuvtaEng mov propel vo agtohoynOel oe kdmoro tur). Me dhho AoyLa, o €K@paat eiva
HWoL CVOOMPEVOT aToLyelmV EKppaong dmwg kKuploreEia, ovopata, TpOaBaon YAPAKTPLOTIKGOVY, TeEhe-
0T£G 1] KMOELG OUVAPTHOEMV TOV OLEG EMOTPEPOVY (uaL TUY). Ze avtifeon pe mohhég dhheg yYhwooeg,
dev eivar Oheg oL YAwooukég douég exppdioets. YAy ovve emiong statements Tov deV Itopovv vo. xpnot-
pozomBouv mg ekpPATELS, Omtwg to while. Ovavabéoelg Tudv eival emiong dniboelg oyl ekppdoeLc.

module exékTO0NG
'Eva module ypoupévo oe C 1) C++, wov ypnoipomoteitol amd to C API tng Python yia vor ahdniemidpd-
GOUV L€ TOV TTUPNVOL KOl L€ TOV KMOLKA TOV YPNOTH).

f-string
Ou xvplokektikég oupporooelpés ypnowwomoloty pe mpdhepa "£' M "F' ovoudtovior ouvnOwg «f-
strings» oV eivol ouvopoypopia Tov formatted string literals. B. exiong PEP 498.

OVTIKEIUEVO apyEiov
‘Eva avtikeipevo mov exBétel évo API mpooavatolouévo oe apyeio (e nebddovg dmwg read () M
write ()) og évav vmoKeipuevo mopo. Avdhoya pe tov TpdITo Tov dNUoVPYNONKE, £va AVIIKEIUEVO
apyelov wwopei vo pecorafinoel oty Tpdofacn o€ Evo TPAYUOTIKO apyelo 1o dloko 1 o€ GAlo TUmo
ovoKeUNG amodnkevong 1 emtkowvoviag (Yo mopdderypa tumiky) eicodog/ €50d0g, in-memory buffers,
sockets, pipes, kKA .). Avtikeipevo apyeiov ovoudtovron emiong file-like objects N streams.

2TV TPOYUOTLKOTITA VITAPYOUV TPELS KATNYOPLES AVTLKEWWEVWV apyelov raw dvadikd apyela, buffered
dvadikd apyelo xon apyelo keyévov. OLdLemapég Tovg opilovtal oty evotnta i o. O Kavovikdg Tpdmog
YLOL VO ONULOVPYNOETE VOl OVTLKELUEVO QY ELOV EVAL XPNOLUOTOLDVTOG TV CUVAPTNON open () .

OVTIKEINEVO TOV noLALEL pe apyeio
‘Eva ouvavupo pe to file object.

KWOLKOTOI1)01] CUGTIUATOS UPYELMY KO XELPLOTHS CPUAUATOV
H xwdikomoinon Kot 0 XEPLoTNg 0QaAndTov ypnotpomoteitor amd v Python yio tv ammokmdiko-
moinon twv bytes amd To Aettovpylkod cuoTnUa KoL TV Kodikoroinon og Unicode yio 1o Aettovpylko
avoTNU.

H xwdikomoinon cvothuatog apyeiov Wwropel vo eyyunbel v emTuynuévn amokmdLkomoinon Ohmy
TV bytes kKatw oo 128. EAv 1 KwdLKOTOiN01 CUOTHUATOS APYELDV SEV TOPEYEL ALUTIHV TNV EYYUNOT), OL
ouvoptnoelg API umopovv va gyeipovy éva UnicodeError.

Ovouvoptioelg sys.getfilesystemencoding () Katsys.getfilesystemencodeerrors ()
uopovV va xpNoLtuootnBovy Yo var MAPETE TV KmALKOTOINoN TOU CUOTHUOTOS OPYELWV KOl TOU
YELPLOTH OPOALATWY.

O filesystem encoding and error handler duopop@mvoviol Katd thv ekkivnon tg Python amd ™ ov-
vaptnon PyConfig_Read () Ph. filesystem_encoding kou filesystem_errors uéln tou
PyConfig.

BM. emiong to locale encoding.

finder
‘Eva aviikeipevo mov poomadel va Bpet to loader yio éva module wou e1omy 0.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path
entry finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

aKEPOLO draipeo)
H padnuotixn diaipeon mov oTpoyyvhomoLel Tpog ta KATw 0Tov Kovitvotepo aképato. O teheotng oke-
porag daipeong eivon / /. Twa mopdderyna,) éxgpaon 11 // 4 aSlohoyeitol og 2 o ovtifeon ue v

154 Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0498/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/

The Python Language Reference, Anpoocisuon 3.11.13

T 2. 75 TOV EMLOTPEPETAL OTTO TNV LALPEON Pe VITOdLOOTOM). EZnueiwon 6tL (-11) // 4 xGver -3
emELN AT ELVOL 1] OTPOYYULOTTOINGT /P0G Tar Kdtw tov —2 . 75. BL. PEP 238.

ouvapToN
Mo oelpdt 06 dNAMDOELG TOU EMLOTPEPOVY KATOLA TLUT] O QUTOV TTOU TNV KAAEDE. e aUTéG UTOPOVY
V0L TEPOAOTOVV KAVEVA 1] TTEPLOOOTEPA OOLGLUATA TTOV UITOPEL VO XPNoLootn el Yo TV ektéleot). Bh.
emiong TG evotteg parameter, method, xou the Function definitions.

ouvapTNo annotation
'Evag annotation Wog TopapéTpon GuVAPTNOoNG 1 WLAG TWUNG ETLOTPOGPTS.

Ou ovvOPTNOELG annotations GUY VA YPNOLOTTOLOUVTOL YO vodelEels Thmov: yio, ToPdderyua, auty M
OUVAPTNON OVOUEVETAL VO TTAPEL HVO OPLOUATO 1Nt Ko ETLONG AVAUEVETOL VO £XEL L0 ETLOTPEPOUEVT|
T int:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

H oVvtoEn ouvdptnong annotation avolvetar oty evotnto Function definitions.

B\ variable annotation xou PEP 484, tov mepLypapet ovt) v Aertovpytkotnta. Emxiong BA. annotations-
howto yi0. Tig KOAUTEPES TPAKTIKEG HOULEVOVTOG e annotations.

future
‘Eva future statement, from ___future__ import <feature>, k000dnyel TOV UETAYAWTTLOTH VO
uetayhmtrioet to Tpéyxov module yPNOLUOTOLHOVTOG GUVTOEY 1) ONpactoloyia tov Ba Yiver 1) TumtLKY og
pelhovriky) ékdoom tng Python. To module _ future_ tekunpuwvel T mbove TWES Tov feature. Me
TV ELOOYWYY OUTAG TNG AELTOVPYIKNG LOVASOG Kat TV AELOAOYNOT TWV UETAPANTMOV TG, umopeite va
deite moTE oL vEa duvatdTNTO TPOOTEONKE YL TPWTN POPd 0TV YADooo Ko tote Oa yiver (1) €yive)
1) TTPOETLAOYY):

>>> import _ future
>>> _ future__ .division
7Feature((2, 2, O, 'alpha', 2)/ (31 OI OI 'alpha'/ O)l 8192)

OUALOYT] CLTTOPPLUATOV
H drodikaoia amehevbépmong g uvnung otav dev ypnotpomoteitar ahho. H Python ektehei ovihoyi
ATOPPLULATOV UECH KATOUETPNONG AVAPOPMY KoL EVOG KUKMKOU OUALEKTH OKOUTILOLMV TTOV elvoLl o€
Béom va aviyvevel Kol vo omtdel Toug KUKhovg avapopds. O ovihéktng amoppludtwv uropel va eheyyOel
xpnoomotwvtag to module ge.

generator
Mo ouvApTNON TTOV ETLOTPEPEL EVaL generator iterator. MOLATEL UE O KAVOVLKY) GUVAPTNON EKTOG 0ITO TO
OTL TTEPLEYEL EKPPAOELS 1 eld VLo TNV TOPAYWYY WO OELPAG TULMV TOV UITOPOVV VO XPNOLUOTTOLN 000V
og évav pdyo for M| Tov uTopoVv va ovokTNOoUV o T Qopd pe TV ovvaptnon next () function.

ZVVHBWG AVapEPETOL OE L0 GUVAPTNOT) generator, GAAG LWITOPEL VO VOPEPETOL OE EVALV generator iterator
0€ PEPLKA contexts. Ze TEPLITTMOELG OTTOV TO ETMLOLWKOUEVO VOO OEV ELVaL OAPES, 1] XPNOT) TWV TAPWV
OpWV ATOPEVYEL TNV ACAUPELQL.

generator iterator
'‘Eva avTLKELIEVO TOU dNULOVPYELTOL OTtd (i oVVApTNOY generator.

Each yield temporarily suspends processing, remembering the location execution state (including local
variables and pending try-statements). When the generator iterator resumes, it picks up where it left off (in
contrast to functions which start fresh on every invocation).

generator £K@pao)
Mua ékppaon Tou emLOTPEPEL Evav iterator. Moldlet pe Kavoviky £kgpaon mov akolovBeitan amd wo

npdtaon for mov opilel o petafint) fpodyov, Eva evpog Ko o Tpoapetikt) tpdtaon if. H ouvv-
duaouévn EKpPaoT dNUOVPYEL TLUES YLO. 0L CUVAPTNOT EYKAELOUOV:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

155

https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

The Python Language Reference, Anpooisuon 3.11.13

YEVIKT] GUVAPTNOT)

Mo ouvdptnon mov asoteheitan amd ToMMATAEG CUVAPTHOELS TTOV VAOTTOLOUV TNV idLol Aertoupyia yio
drapopetikovg Tomovg. TTowa vAomoinom mpémet va ypnotpomotn el Katd) dLapKeLo wo KAHong Ka-
Bopiletan amd tov adydpLOuo amooToMC.

B emiong v Katoympnon tov single dispatch, tov decorator functools.singledispatch () Ko
PEP 443.

YEVIKOG TUTOG

GIL

'Evag type Tov WITOPEL Vo TOPAUETPOTOOel” ouvnOwe wa container class, dnwg 1ist 1 dict. Xpnot-
HOTTOLELTOL Y10 Type hints KoL annotations.

TN epLoooTepeg Aemtouépeies, PA. generic alias types PEP 483, PEP 484, PEP 585, xou to module
typing.

BA. global interpreter lock.

global interpreter lock

O unyoviopds mou ypnotuosoteiton amd tov diepunvéa CPython Yo va dLaopaiioer 6t povo va viuo
extelel Python byrecode k&0 @opd. Autd amlomotel v vhomoinon CPython dnuovpydvrog to po-
VTELO OVTLKELUEVOD (CUIITTEPLNOUBOVOLEVOY KPLOLW®WY EVOOUATOUEV®Y TUTTMVY OTTwg Y. dict) éupeoa
aoparéc évavt toutdypovng Tpdopaong. To kheldwua ohdkAnpov tov diepunvéa dlevkoruvel Tov diep-
UNVEQ VaL ELVOL TTOAMATTADV VIUATOV, LG BAPOG TOU UEYAAOU UEPOVG TOV TTAPUANALOUOV TTOV TTOPEYOUV
oL UMy aveg TOAMATAWV eneEepyaoTdy.

Qo0t600, 0pLOUEVES AELTOUPYIKEG LOVADES ETEKTOONG, €iTe TUTILKEG eite Tpitwv, ELouvV oYedLAOTEL £TOL
wote va omehevdfepdvouy to GIL dtav ektehoUv £pyaoieg EVIOTIKMV VITOLOYLOU®DV OTTMWG CUUTTiETN 1)
katokeppotionds. Eniong, to GIL anelevbepwvetal wdvto otav extereite 1/0O.

[ponyoupeveg tpoomdbereg va dnuovpynel évag drepunvéag «eAevBepwv-vnudtwvy» (AUTdg ToU KAEL-
ddveL ta Kowvoypnota dedopéva pe ol Lo AemTouepy evancOnoio) dev NTov emTVYElG ETELON 1) OITO-
8001 VITOYMPNOE 0TV KOLVT| TTEPimTmaon evig eneEepyaoth. [liotevetal dTL 1) vTépBoon outov Tou Tpo-
BAuatog amddoong Ba KAvouv oA TTLo TEPLTAOKT KoL ETOUEVIS TTILO OATTAVIPT) OTNV GUVTIHPNOT).

hash-based pyc

'Evo apyeio Kpugng wnung bytecode mtov ypnOLUOTOLEL TOV KATOKEPLATIONO Kot L Tov (pdvo Tpo-
TTOTTOLNONG TOV OVTLOTOLXOV OPYELOV TTPOEAEVOTG YLOL VO TTPOOALOPLOEL TV eykupdTnTa tov. BL. Cached
bytecode invalidation.

hashable

IDLE

‘Eva ovtikeipevo eivan hashable v €yel pua Ty KaTtokepuotlopoV ov dev aAldlel moté kotd) dudp-
KELOLTNG Cwmg Tov (xperdleton o uébodo __hash__ ()), Kow uwopel va ouykplOei ue dhho ovtikeipevo
(xperaetan o uébodo __eqg ()) . To hashable ovTIKEIUEVO TTOV GUYKPIVOVTOL G TTPOG TV LOOTNTO.
TOVG TTPETEL VAL £XOVV TNV idL0L TLUT| KATUKEPUOTIOUOV.

H YmapEn hashable kéivel évo aviikeipevo va pumopel vo ypnotpomon el mg kheldi AeEikov Kau mg uéhog
€vOg OUVOLOU, ETTELDN AUTEG OL HOUEG DEDOUEVV YPTOLUOTTOLOVV TUUEG KATOKEPUOTLOUOU.

Ta mepLocdTEPa Ad TO QUETAPATA EVOOUATOUEVO avTLKELpEVa TN Python witopoiv va kortakepuatt-
0ToUV” TaL UETAPANTA KOVTELVEP (OTTWG oL MoTeg 1) Tat AeELK @) dev elvar” ta apetdfinto Koviévep (OTmg
mhelddeg ko ta frozesets) LITOPOUV VoL KOTOKEPUATLOTOVY UOVO €AV TO. OTOLYXELD TOVG ElvOL KATAKEPUO-
twouéva. Ta aviikeipeva mov eivar oTyumoTumo KAMLoewy ov opifovtal amd 1o xpNot UTopouv vo
KOTaKePUOTLOTOUV amtd poemihoyn. ‘Oha oCUyKpLvovTaL AVioo EKTOG OITO TOV EQUTO TOVUGS) KOL 1) TLUY
KATOUKEPUOATLOUOV TOVG TTPOEPYETOL Atd TO id () .

"Eva. ohokAnpouévo meptBdilov avamtuEng Ko udbnong yia thv Python. idle givon éva Booukd mept-
Barov eneEepyaoiag Kat diepunvéon ov guvodeteton ord TV Ttk diavour| g Python.

immutable

‘Eva avtikeipevo pe otabepn) tuy. Ta ouetdfinta avitkeipeva tepthaufavouv apbuots , ouuBoro-
oelpég Kau mhelddec. ‘Eva tétoto avtikeipevo dev popei vor odAGEeL. 'Eva véo avtikeipevo mpémel vo.
dnuovpynOei v mpémer va amodnkevtel o dropopetik) tiur). [aifovv onuovtikd pdoro og pépn 6o
wo. 0tafepd asmarteital, yio mopdderyno wg KAedi oe évo AeEko.

156

Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python Language Reference, Anpoocisuon 3.11.13

e1oayouevo path
Mo Mota amd tomobeoieg (] kataywoloeis diadoounc) mov uTopovy va avalntOoOv path based finder
yio va gloayBotv modules. Katd tv duadikacio eloaymyng, ovth 1 Aiota ue torobeoieg ouvnbwg ép-
yetal amd sys.path, alhd yia ta vromoakéta umopel emiong va €pBel amd To YOPAKTNPLOTIKO TOV
TOKETOV YOVEQ __path__ .

EL6UYOYY)
H dradikaoia Katd tv omoia 0 Khdikag e Python o éva module eivon dto0€ouun otov kwduko Python
evog dlhov module.

1o0ymyEng
‘Eva avTLKELIEVO UTTOPEL KoL var avoCNTEL Kot va poptwvel éva module” kou éva finder xou loader ovti-
Kelpevo.

dadpaotikog
H Python éygt évov dLadpaotikd dieppunvéa 0ov onuaivel Ot (WTOPELS VoL ELOGYELS ONAMOELG Kal EKPPU-
OELG OTV ELOAYWYT) EVIOMMV TOU SLEPUNVEX, EKTEADVTOG TEG AUECO KOl EUPOVICOVTAG TO OVTLKELUEVAL.
Amlwg ekKLvijoTe TV python ywpig opiouata (bavamg emléyovtag To amd To KUPLO LEVOD TOV VIT0-
Loyloth oac). Amotehel Evov 0rrodoTIKd TPOTTO YLaL va SoKLAOTE VEeg 1OEEG 1) va eEeTdoTe AetTovpyLkég
povadeg Ko mokéta (Buunbeite help (x)).

interpreted
H Python eivouw pa interpreted yYAwooa, og avtifeon pe po LETOYAMTTLOUEVT], AV KoL 1) SLAKPLOY UITOPEL
va givar kow BoA Moym g Tapouoia tov bytecode petayhmtTioTy). Autd onpaiver OTL To apyEio TPO-
£\evomg Wtopouv vo. ekteleoToVV artevdeiog ywpig vo dnuovpyndei pntd éva exteréolo apyeio mov
oty ouvéyelo extereitol. Ol interpreted yAdooeg ovvnBwg éxovv WKpOTEPO KUKAO ovamTuENG/ evto-
TLOROV CPAMLATOV ATtd TLG UETAYADTTLOUEVES, OV KL TO TTPOYPAUUOTA TOUG YEVIK(EKTELOVVTAL TTLO
apYd. B, eniong inferactive.

TEPUOTIOUOS AELTOUPYING drepunvin

‘Otov Tnelton tepuatiopds Aettovpyiag, o diepunvéag g Python eloépyetar oe o eldik @pdaon dmov
amehevfepdvel 0TadLAKAE OLOVS TOUG dLaTLOEUEVOUG TTOPOUGS, OTTWG AELTOVPYIKEG UOVADES Ko oML
ég kploeg eomtepikég dopéc. Emiong mpayuatomolel apketéc KAMOELS 0TO GUAAEK TG GKOVTLOLDV.
AvTO UITOpEL VO EVEPYOTTOLT|OEL TNV EKTELEDT] KDOLKA 08 KATOOTPOPELS TOV 0pilovTal amd To Yot 1
oe callbacks ao0evoig avramokpioels. O kmdiKag Tov eKTELEITAL KATA T1) (PAOT TEPUOTLONOV AELTOVP-
viag umopet va ouvavtnoel dudpopeg eEatpéoels, kKabmg oL TOPoL 0Tovg 0moiovg PacileTar evogyeTon
vo. unv hertovpyotv mhéov (ouvnOm mopadeiyuato eivar oL Aettovpytkég novadeg PLpiodfkng M o un-
YOVLOUOG ELOOTTOLTEMV).

O Baoikdg hoyog Tepuatlopot Aettovpyiog Tov diepunvéa eivor 6tL to __main__ module 1) ohokAnpw-
OnKe 1 EKTELEON TOV KMOOLKO TTOV £TPEYE.

iterable
An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes
you define with an __iter__ () method or witha __getitem _ () method that implements sequence
semantics.

Ta iterables umopovv va xpnotpnomotn0ovv og éva for Bpdyo Kat og Todd Ghha onueia dTov ypeLdite-
T W akohoudia (zip (), map (), ...). Otov éva iterable avtikeipevo petafLpatetor wg OpLona oTny
EVOOUATMUEVY OVVAPTNON 1ter (), emOTPEPEL Evay iterator yia AVTLKELEVO. AuTtOg o iterator eivol
KOAOG Y10l €va TEpaoua amd Eva gUvolo Tmv. Otav XpNoLUOTTOLELTL ETOVOANTTTLKA, CUVNO®GS eV €l-
VoL OTTaPOiTTO VO KOAESETE TO iter () 1 va aoyolndeite wdvol oag ue oviikeipeva iterator. H dnhmon
£Or TO KAVEL QUTOULATOL Y10, E0AG, ONULOVPYMVTAGS L0 TTPOCWPLVT] UETOPANTA XWPLG OVOUA YL VAL KPOTA
ToV iterator yio TNV dudpkeia Tov Bpdyov. Bh. emiong iterator, sequence, Ko generator.

iterator
'‘Eval 0VTLKELUEVO TTOU OVTLITPOCMITEVEL Ui, por] dedouévmv. Exavahaupovoueveg kANoeLg Tpog T wé-
00d0 __next__ () Tou iterator (1] petaifoon Tov OTHY EVOOUATOUEVY CUVAPTNON next ()) emoTpé-

oV dLadoy Lk otolyeia aTnVv pot). Otav Oy teplocdtepo dedouéva eivar dStadéoua eyeipetal pua eEai-
peon StopIteration. Ze autd To onueio, To avtikeipevo iterator eEaviieital Kot TuyOV mEPOLTEPW
KMoewg ot uébodo __next_ () amhog amhd eyeipovv Eavd to StopIlteration. O iterators mwpé-
TEL VAL EXOUV WoL uéB0do __iter_ () mov emloTPEPEL TO D10 TO avTLKELUEVO iterator, £TOL WoTE KAOE

157

The Python Language Reference, Anpooisuon 3.11.13

iterator va. eivow emiong iterable Kau umopel va ypnopwomombel ota mEPLOGOHTEPQ UEPT OOV YivovTon
omodeKktol Kot dAhol iterators. Mio. aEtoonueimty eEaipeon eival o kddLKOg Tov emLyeLpel TOMATAG
mepdopata iteration. 'Eva aviikeipevo koviéivep (Ommg éva 1ist) mapdyel évav kobapd véo iterator
K&Oe popd mov kAOe popd Tov peTaPLBAleTaL 0TV CUVAPTNON 1ter () N TOV XPNOLULOTOLELTAL OF VO
for Bpoyo. Edv emyeipnoete avtd pe évay iterator amhdg Oo emotpéyete 1o id1o eEavtinuévo avri-
KELWEVO iterator Tov YPNOLOTOLONKE 0TO TPONYOUUEVO TEPOOpQ iteration , KAvovtag To va Qaivetol
oav €va GOEL0 KOVTELVEP.

[Meproodtepeg mAnpoopieg wmopotv va fpedolv oto typeiter.

Agmropépera viomoinons CPython: To CPython dev epappolel pe ovvémelo v amaitnon va opitet
évag iterator __iter_ ().

ouvaptnon key
Muia ouvapTnon KAEWSi 1] o cuvapTon TaELVOUNOoNG Eivor UL SuvaTOTHTO KAHONG TTOV ENLOTPEPEL (L0,
Ty Tou yprotporoteiton yio toEvounon 1 dudtokn. Mo mapddeyua, locale.strxfrm() ypnot-
LLOTCOLELTOL YLOL TV TTOPpay WYY VoG KAELDLOU TaEivounong mov yvmpilet Tig ovuBaoelg ToEvounong yio
OUYKEKPLUEVES TOTILKES pLOULOELS.

‘Eva oplBudg epyodleimv omnv Python &éyetar Paotkég ouvaptnoels yio Tov €AEYX0 TOU TPOTOU
ue Tov omoio Tt otouyeiar taivouovviar 1 opadormolovvtol. Avtd mepéyovv min (), max (),
sorted(), list.sort (), heapg.merge (), heapg.nsmallest (), heapg. nlargest(),
Kow itertools.groupby ().

Yndpyouv didgopotr tpdrot yio vo dnuovpynoete uia ovvapton khewdov. INa mapdderypo. 1 ué-
00d0¢ str.lower () WTOPEL VO (PNOLUEVOEL WG OLVAPTNOT KAELDL YLOL TV TEPLTTWOT WY dLAKPLONG
seCov-kegaraiwv. Evollaktikd, ua cuvaptnon kiewdot pmopet vo dnuovpynbel amd wo Iambda
éxppaon 0mwg lambda r: (r[0], r[2]).Emiong operator.attrgetter (), operator.
itemgetter () KoL operator.methodcaller () &lvoul TPELG KATOOKEVOOTEG FOOLKMV GUVAPTI-
oewv. B\, 1o Ta&woéunon HOW TO yia mapadeiyuoto dnuovpyiog Kol xpfong PActk®v GuvopToEmV.

opropa keyword
B\. argument.

lambda
Mo avavUpIY EVOOUOTWUEVY GUVEPTION TTOV OITOTEAEITOL OTTO LOL LOVADLKT) expression M 0toio aELo-
hoyeitar Otav kaheiton n ovvdptnon. H ovvtaEn yuo t dnuovpyia wag ovvdptnong lambda eivon
lambda [parameters]: expression

LBYL
Look before you leap. Avtd to oTvh Kmdikomoinong eréyyel prtd TG TPoiToOETELS TPLV TPAYUATOTTOL-
NoeL KMoeg N avalnmoels. Avtd To oTul EpyeTaL 08 avtifeon ue v Tpooéyylon EAFP Ko yapoKT)-
piletan amd v mopovoio TOADV dNhwoemy 1 .

e éva meplailov molamhmv vnudtmv, 1 tpoogyyion LBYL pmopel va diakivouveloel vo. ELoAyEL
o ovvOfKn aydva uetall «the Looking» kau «the leaping». ['o tapdderyna o khdikag, 1f key in
mapping: return mappingl[key] wropel vo amotiyel v Eva GALo VU apalpEceL To key amd
TO mapping petd ™ dokiun, alG TP oTd THY ovalNTNon. Auto to TPOPANUO umopel va Avbel pe
KA OUOTO 1 XpnoLpuomolmvtag Ty mpocéyyion EAFP.

Aiota
'‘Eva evoouotouévo Python sequence. Iapd to Ovopa tov, LoLaLeL TEPLOCOTEPO LE EVOLV TIVOKA 08 GAAES
YAwooeS Topd ue po ovvoedeuévn hMota, kabag 1 tpocPaon oto otolyel eivar O(1).

list comprehension
'Eva. oupstayng Tpomog yo va eneSepyooteite Oho 1 LEPOG TV OTOLYEIWY 08 pLa 0KoAovbia KoL vo.
EMOTPEYETE WO MoTa ue T ommotedéopata. result = ['{:#04x}'.format (x) for x in
range (256) if x % 2 == 0] dNWOUPYEL wiat AloTa CURPBOLOCELPDV TTOU TTEPLEXOUV LUYOVG dekaie-
Eadrkovg apbuotg (0x..) oto evpog oo 0 éwg 255. H mpdtaon 1 £ eivon tpooupetikn. Edv maparerpOei,
O\oL TOL oTOLYELDL 0TO range (256) vmofahllovtal oe emeSepyaoiaL.

loader

An object that loads a module. It must define a method named load_module (). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

158 Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0302/

The Python Language Reference, Anpoocisuon 3.11.13

TOTKY] KWOKOTOiNoM
Zto Unix, givae 1 kmdikomoinom g tomky pubuwong LC_CTYPE. Mmopet va puBuotei ue locale.
setlocale(locale.LC_CTYPE, new_locale).

Zta Windows, eivow 1) code page ANSI (;t.y. "cpl252™").

Zto Android xow to VxWorks, 1 Python ypnowosmotei to "ut £-8" wg Tomk KmdtKomoino.
locale.getencoding () WIopEL va xpNOLUoTotn el yio TV avaKTnon TG TOmKNG KmOLKOToinong.
BA. emtiong o filesystem encoding and error handler.

noykt) uédodog
"Eva &tumo ovvdvuuo yia special method.

mapping
‘Eva aviikelpevo Koviéwvep mov vmootnpiler avbaipeteg avalntioelg KAeWOLDOV Kol VAOTTOLEL
©g uefoddovg mov kobopilovior oto collections.abc.Mapping W collections.abc.
MutableMapping abstract base classes. Ta mopadeiyuata mepthaufdvovy dict, collections.
defaultdict, collections.OrderedDict Kauw collections.Counter.

meta path finder
'Evag finder mov emiotpdpnKe (e avalntnon oto sys.meta_path. O finders peta-diadpourig oyeti-
Covtat, aAld dropépouv amo ta finders entry dtadooung.

B\ importlib.abc.MetaPathFinder yia tig uebddovg mov vhomolovv oL meta path finders.

neta-KAdon

H khéon wag khaong. O opropoi kKhong dnuovpyotv éva dvopa Ko, éva AeELkd KAAomG Kol (o,
Mota faotkav kKhaoewv. H peto-khdon eivor veufuvn yio v amdKTnon outmy TV TPLmV 0pLopid-
TV Ko TNV dNuovpyio TG KhGomg. OL TeEPLO0OTEPES AVTLKELUEVOOTPEPELG YMDOOES TPOYPAUUOTLOUOV
TOPEYLOVV UL TTPOETUAEYUEVT VIOTTOIN 0. Autd Tov Kdver v Python Eeywpioti| eivor tL givor duvari
1 dnuovpyio TPOGUPUOoUEVWVY HeToKAGoEWY. OL TEPLOGOTEPOL XPNOTES dEV YPELALoVTAL TOTE OVTO TO
epyoheto, aAhG OTOY TOPOAOTEL AVAYKT), AUTO TO EPYOLELD, OL LETA-KAAOELS WTOPOUV VAL TTOPEYOVV LOY V-
péc, Koupég Moeis. 'Exovv ypnowwomondei yio tnv Katoypapn Tpoofoong yopakTpLoTik®y, TV Tpo-
oONKN AoPALELOG VNULATOV, TNV TOPAKOAOVONON INOVPYLOG OVILKEWEVMY, TV VAoTToiN o singletons,
Ko ToMES AMLEG epYOLOLES.

[MepLoodtepeg mANpoopieg umopovv va Bpedolv oto Metaclasses.

uébodog
Mo cuvaptnon mov opiletat uéoa 0to omuo pwag Khaong. Edv kakeitar og yopaKTnpLoTko Wog me-
picTmong avtig g KAdong, N uéBodog O MafeL avItKeileVo TEPLTTMONG WG TPWTO TG argument (To
omoio ouvBwg ovoudLeton self). BL. function Kau nested scope.

e avahvong nedodwv
Method Resolution Order is the order in which base classes are searched for a member during lookup. See The
Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter since the 2.3
release.

module
"EvoL OVTLKELLEVO TTOV Y PT|OLUEVEL G OPYAVOTLKY LoVAada Tov kKmduka tng Python. Ta modules éyxouv évay
YOPO ovoudTtwv Tov TepLEyEL avbaipeta avitkeipeva Python. Ta modules qpoptdvovtor otnv Python pe
™V dwodiKaoia importing.

BA. emiong package.

TEYVIKES TTPOdLaypapés module
"Evo. namespace tov JepLEYEL TLG TTAPOPOPLES TOV TYETICOVTOL [LE TV ELOAYMYT] TTOV (P OLULOTOLOVVTOL
Yo TV @OpTmon evog module. Mia stepintwon tov importlib.machinery.ModuleSpec.

MRO
B\. method resolution order.

mutable
Ta gvuetdfinto avrkeipeva uropotv va oldEouv Tig Tuég oG va Kpathoovy ta id () . Bh. exiong
immutable.

159

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Anpooisuon 3.11.13

named tuple
O 6pog «named tuple» epapudletar yio 0molovonmote THmo 1 KAAGT OV KANpOvoueital amd Ty
TAELAS A KOL TV OTTOLWV TO. OTOLYELD WITOPOVV VAL EVPETNPLOTTOLNO0VV ElVOL TPOGRAGLUO. YP1OLULOTOL®-
VTAG ETMOVUUA YOoPAKTNPLOTLKA. O TOTOG 1) 1) KAAOT WTOPEL Vo €YEL KoL GANOL Y APOKTNPLOTIKA.

ITo\hoi evompatwuévol Tomot eivor named tuples, GUUTEPLOUBAVOUEVOV TOV TLUODV TTOV ETLOTPEPOVTAL
and time.localtime () kow os.stat (). Eva d\o moapdderypo eivor 1o sys. float_info:

>>> sys.float_info[1l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

OpLOUEVES AVOLYVIPLOUEVES TIAELADEG EIVOL EVOOUATMUEVOL TUTTOL (OTTMG TOL TAPATAV® TOPAELYUATA).
EvalhokTikd, pa avayvoplopévn mheldda uropet vo dnuovpynoei amod évav opopd Kovovikng kAd-
01g OV KANpovouel amd tuple kot wov opilel ykupa medio. Mo tétoto kAo umopel va ivan ypou-
uévn e to yépL N uopel va dmuovpyn el Kinpovoumviog to typing . NamedTuple,) ue v factory
ouvdpton collections.namedtuple (). Ol televtoieg TeyVikég TPOTHETOVV ETIONG UEPLKEG ETTL-
éov uefddovg ov umopel va unv Bpefolv og XeLPOYPOPES 1) EVOMUATWUEVEG TAELADES Ue OVOLLO.

namespace

To uépog dmov amodnkevetar wo petafinty. To namespaces VAOTOLOUVTOL WG AEELKA. YTTAPYOUV OL
ToTTLKol, oL KaBOALKOL KoL oL EVOmOTOUEVOL namespaces KoOMG KoL oL £vOeToL namespaces 0€ AVTIKEL-
ueva (oe peboddovg). I'a Tapdderyua oL ouvaptoeigbuiltins . open KoL os . open () dlokpivoviol
AITO TOVG Y WPOVG OVOUATWV TOVS. OL XpoL ovopdtwv fonfolv exiong v avayvwoudTTa KoL T ov-
vInpNowoTTa KabLotmvtag oapég toro module vhomotel o Aettovpyio. I'ia mapdderyua, ypdpovtog
random.seed () Nitertools.islice () kaBLotd capég OTL AUVTEG OL GCUVOPTOELG VAOTOLOVVTOL
artd to module random kow itertools, aviioTtouya.

TUK£TO namespace
A PEP 420 package which serves only as a container for subpackages. Namespace packages may have no

physical representation, and specifically are not like a regular package because they haveno ___init__ .py
file.

B\ emiong module.

nested scope
H dvvatéomta avagpopds oe pa petafint) oe évav meptkhelopevo opopnd. o mapdderyo e ov-
VAPTNOT TTOV opileTal néoa og Wo GAA CUVAPTNON WITtopel Vo ovagépetal o PeTaPANTég oty eEw-
TEPLKY CUVAPTNON. Znuerwote Ot to évOeta medio amd mpoemhoyn Aettovpyov HOVo Yo avapopd
Ka OyL o ekympnon. O tomkés petaAntég duafBaovral KoL YpagovTal 0To E0MTEPLKO TEDIO EPap-
poyns. Onolwg, ov kaBolkés uetafintég dtafdlovv Kot ypdpouv otov Kabohko ywpo ovoudtwv. To
nonlocal emTPENEL TNV eYYPOPY 0t EEWTEPLIKA medial.

KAGon vEou OTUA
To o Gvopa 1oL To 100G TV KAAGEWY PN OLUOTTOLELTOL TTAEOV YLa OMaL TOL AvTLKELUEVO. Z€ TOMOTEPES
exd00¢eLg TG Python, wovo oL KhAoELg VEOU OTUA LITOPOVOOY VO Y PTOLULOTTOLT|OOUV TIG VEOTEPES, EVEMKTEG
duvatodtnteg g Python émtwwg slots_ , descriptors, 1Ol0thteg _ getattribute (), uébodol
KAAOMG, Ko 0ToTiKEG HEB0dOL.

OVTIKEIUEVO
OmoLad1rtote dedouéva [1e KaTaoToot (XoPaKTNPLOTIKA 1 Tiun) Ko Kaboplopévn cuumepipopd (uébo-
dov). Emtiong, N telkn fooikn khéon omolaodote new-style class.

TOKETO
"Eva Python module mov ptopei va epiéyer submodules 1) avadpoukd, vtomokéta. Texvikd, éva makéto
elvar wa hettovpyikt) povada Python pe éva__path_ yopoktnplotiko.

BA. emtiong regular package xou namespace package.

TAPAUETPOS
Mua €yKupn ovtotnta o€ Evav oploud function () ué00dog) mov kabopilel Eva argument (1) 6 OPLOPEVEG

160 Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0420/

The Python Language Reference, Anpoocisuon 3.11.13

TEPLITTOOELS, Opiopata) Tov uopel va dexOel 1 ouvdptnomn. Yadpyovv mévte eidn mapouétpmv:

o AéEn-kAeldi 1) Oéon: kabopilel éva dpLopa Tov witopet vo petafipaotel gite Oéoewe N wg dotoua
AéEng-kAetdiov. Avtd eival To TPOETUAEYUEVO ELO0G TAPAUETPOV, VIOl TAPADdELYUA foo KoL bar oTa.
akorovba:

[def func (foo, bar=None): ... }

o Oéoewg uévo: xaBopilel Eva OpLopa TOV PITOPEL Va TOPEYETOL LOVO artd TN B€om. OL mapduetpot
uovo B€omg WTopovV vaL 0pLOTOVV GUUTEPLLAUBAVOVTOG EVOY XUPAKTHPO / 0T AMOTO TAPOUETPOV
TOU OPLOUOY CVVAPTNONG UETE 0TTd QUTEG, Yo Tapdderyua posonlyl kon posonly2 oto eENG:

[def func (posonlyl, posonly2, /, positional_or_keyword): ... }

o AéEng-kAeldi udvo: kaBopilel évo OpLopa ov propel vo mopéyetor udvo ue MEN khewdi. Ou ma-
paueTpol wovo yio MEN-KAeWdi wrtopodv va 0pLoTtovv ouUTEPLAOUPBAVOVTOG ULt TTOPGUETPO BE-
ong 1 ok€To * 0T MOTA TAPAUETPWV TOU OPLOUOY GUVAPTNONG TIPLY OO AUTEG, YLOL TTOPAELYLL
kw_onlyl xou kw_only2 oto. oxdiovba:

[def func (arg, *, kw_onlyl, kw_only2): ... }

o uetafAnti Oéong: koBopilel 0TL umopel va mapaoyedel wa avbaipetn axohovbio oplopdtwv BEong
(emumhéov TV opopdtmv B€omng mov elvor 101 amodekTd amd GAeg TOPAUETPOUS). Mia TéTolo
TOPAUETPOS WTOPEL VO OPLOTEL TPOCAPTDVTOG TO OVOUQL TG TTAPAUETPOV UE *, YLO. TTOPAELY UL
args oto. axohovbo:

[def func (*args, **kwargs): ... }

o uetafinth AéEn-kAeidi: kabopilel OTL umopovv vo mapéyovtar cvdaipeto TOAG opiopoata AEENG-
KAewdLov (emuthéov Twv opropdtwv MENG KAEWdL0U oV givan 0rrodektd 0td dleg mapauétpoug).
Mo tétola TOPAUETPOS UTOPEL VO OPLOTEL TPOCUPTMVTAS TO OVOUD TNG TOPAUETPOV UE * *, YLl
TOPAdELYHO kwargs Omme ToPpaTAV®.

O mopdpeTpol wropotv va Kabopicouvy TO00 Ta TPOALPETLKG OGO KL T OITOLTOVUEVO OPIOUOTO. , KO-
0mG KoL TPOETAEYUEVES TUILEG YLOL OPLOUEVA TTPOOLPETLKG OPLOUATAL.

BA. exiong v argument Kotaymplon gupetnpiov, Ty epdtnon FAQ oyetkd pe 1 dogopd petalo
0PLOUATMV Kol TOPAUETPWV, TNV KAAON inspect .Parameter, v evotnto Function definitions Ko
PEP 362.

path entry
Mua pepovouévny tomobeoia. oto import path tv omoto ovupovievetan o path based finder yio vo, Bpet
modules yio eLoorymyr).

path entry finder
'Evag finder mov emotpépetan amd évov KohoUuevo oto sys.path_hooks (dnhadn éva path entry
hook) mov Eépet mwg vo. evromntiler modules pe path entry.

Bi. importlib.abc.PathEntryFinder yio tig uefddovg mov o entry finder dtadpoung vhomotei.

path entry hook
"Eva kahoUpuevo ot Mota sys . path_hooks, To omtoto emiotpépeL éva. path entry finder edv Eépel mwg
va Bploker module og pow oLYKEKPUEYT path entry.

path based finder
‘Eva amd ta poemheyuéva meta path finders mov avolnta éva import path yio. modules.

path-like avrikeipevo
'Evo vTLKELIEVO TTOV avTLITPoommevEL éva path ovothuatog apyeiwv. ‘Eva aviikeipevo path eivou gite
éva avTiKeipevo str 1 bytes mov aviutpoowstevel £va path 1 £va AVTLKEIUEVO TTOV VAOTTIOLEL TO TTPW-
tOkoMo os . PathLike. Eva avtikeipevo mov vrootnpilel to tpwtdkolho os . PathLike umopel va
petotpostel oe path cvoTNpaTog apyelmv str 1) bytes Kahdvrog Ty ouvaptnon os . £spath () ” 1o
os.fsdecode () KoL os.fsencode () UTOPOVV VO YPNOLUOTOLNOOUV YLOL TNV EYYUNOT] EVOG ATTOTE-
Méopatog str) bytes, avtiotoryo. Ewonydn amd tov PEP 519.

161

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/

The Python Language Reference, Anpooisuon 3.11.13

PEP

[Mpétaon Bedtiwong Python. ‘Eva PEP sivan éva €yypago oyedlaopot o mapéyel IANpoQopieg otny
Kowvotnta Python 1) mepuypdgper wa véa duvatdtnrta yioo Ty Python 1 tig dradikaocieg 1 to mepifih-
Lov . To PEP B mpémel va mop€youv (o GUVOTTTLKT) TEYVLKT TPOdLOrypaLpy] Kot (o AOYLKY) YLt T
TPOTELVOUEVOQL Y OPOKTNPLOTLKAL.

Ta PEP mtpoopiCovror va givar oL KUpLot unyaviopuol yior v pdtaot uovILK®V VEmV XopaKTPL-
OTIKAV, L0 TN OVALOYT] TANPOQOPLAV TNG KOVOTITAG Yo Vo TNTNUOL KO YLoL TNV TEKUNPLDOT TWV
ATOPAoEMV OYEDLOTUOV TTOV €Youv eloayOel otnv Python. O ouyypagéag tov PEP gival vteubuvog yio
TV 0LK0dOUN 0N CUVaLVETNG eVTOG THG KOLVOTNTAG KOL TNV TEKUNPLDON AVTIOET™V OTOPewV.

BL. PEP 1.

o

‘Eva 6volo amtd apyeto og évav wovo Kotdhoyo (evoexouévmg amoONKeVUEVO 0E APYELO Zip) TTOV GUW-
Barovv og évo namespace TOKETO, OTWG opiletar oto PEP 420.

opiopa 0¢ong

BA. argument.

provisional API

"Eva. provisional API givar autd mmov éxer eokeupéva eEonpebdei oo tig backwards eyyunoeig cuppatoTn-
TAG TNG TUTILKNG BLBAOOTIKNG. AV KoL OEV OVOUEVOVTOL ONUOVTLKES OMAYEG OF TETOLEG DLETAPES, EPOTOV
ETLONUOLVOVTOL WG TTPOCWPLVES, alhayég un backwards cuufatotntog (UEypL Kol Katdpynon g oie-
TOPNG) WITOPEL VAL TPOKMPoUV eGv KpLbel amapaitnto amd Toug Faotkovg Tpoypounatiotés. Tétoleg
oadhayég dev Ba yivouv Gokoma - Oa cupfotv udvo edv amokoluBouv copapd Bepelmon eraTTmpoTo
TTOV FTOPOLELPONKAY TTPLV aTTo T cuuTtepilinyn tov APL

Axoun xou ywo provisional API, ou un backwards ouvppotéc odhayég Bempovvror «hvorn Eoyxatng
avaykne»- Ba eEaxolovbei va yivetar ke mpoomdBera yio va Bpebel wa Ao backwards cupfoti
0€ TUYOV EVTOTLOUEVO. TTPOBANUOITOL.

Avti) dradikooio emrtpémer oty Tustkt BlobnKn va ovveyioel va eEgliooeTal (e TV TAPodo Tou
YPOVOU, YwPIG Vo KAELOMVEL TPOPANUATIKG OAALOTA OYESLAOUOV VL0 EKTETAUEVES YPOVIKES TTEPLODOUG.
Bi. PEP 411 yia teploodtepeg AETTOUEPELEG.

provisional Tokéro

BA\. provisional API.

Python 3000

Wevdmvupo yia to ovvolo ekdooewv Python 3.x (emvonOnke spuv amd okt koupd dtav 1 kKvkhogopio
™G €kdoong 3 tav KATL 0T0 PakpLvo wéMov.) Autd ovoudleton emtiong wg cuviopoypogio «Py3k».

Pythonic

Mo 1déa 1) £va Koupdtt KOdLKa Tov akohoVOEL TTLOTA T 710 KoLV tdudpota e yAwooog Python, avi
Vo VLOTTOLEL KMALKOL YPNOLUOTOLMVTOG £VVOLES KOLVEG oe dAheg YAmooeg. Ta mapdderypa, £va Kowvo
wimuo otnv Python eivar va kéver wo emavédinym ctave amd oha to otouyeio evog iterable ypnoiuo-
molwvtag o dMiwon for. Iodhég dhheg YADOOES TOV HEV £YOUV OUTOV TOV TUTO KOTAOKEVNG, £TOL OL
avBpwmol ov dev eivan eEotkelmwuévol ue v Python ypnowwomolotv ueptkég @opég évav aptduntikd
peTpNTh:

{

for i in range(len(food)):
print (food[i])

Avtifeta, o o Kabopr nébodog Pythonic:

|

for piece in food:
print (piece)

AVOYVOPLOUEVO OVoud.

'Eva dvoua pue Koukkideg mwov deiyvel) «dradpour)» amd to kabolko evpog evdg module oe puo kKAdon,
ouvaptnon 1 uéBodo mov opiletal o autnV TV EVOTNTA, dmtwg opiletar oto PEP 3155. o cuvoptioelg
Kol KAAOELS OVATATOV ETLTEDOV, TO OVOLYVWPLOUEVO GVOUCL ELVaL 1OLO LLE TO OVOUX TOV OVTLKEWEVOU:

162

Mapaptnua A'. NMwooapt

https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/
https://peps.python.org/pep-3155/

The Python Language Reference, Anpoocisuon 3.11.13

s N

>>> class C:
class D:
def meth (self):
pass

>>> C._ _qualname_

IC’

>>> C.D.__gualname
IC.DI

>>> C.D.meth.__ _qualname
'C.D.meth'

‘Otav ypnopomoleiton yio ovapopa oe modules , To TAOWS aVayvVwELGUEVO dvoua ONUOLVEL OLOKANPO
To drakekoupévo path mpog to module, cuvumephauBavouévav ToyxOv YOVIK®OV TOKETWVY T.Y. email.
mime.text:

>>> import email.mime.text
>>> email.mime.text. name
'email .mime.text'

N 00g avagopig
The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. Programmers can call the sys.getrefcount () function to return the reference count
for a particular object.

KOVOVIKO TOKETO
"Eva mopadooiokd package, dmwg £vag KATALOYOS OV TTEPLEXEL Eva __init__ . py opyelo.

B\. exiong namespace package.

slots
Mo dNhwon péoa oe pe KAGom mtov eEotkovouel uvijun Snhmvovtog €K TmV TPOTEPWV XDPO LA, T
paderyua xopoKmpLotikd Ko eEaleipovrog MeEikd oTrypotimwy. Av Ko SNUOQLANG, 1 TEXVIKT| elvor
KAmwg dUOKOAO vaL Yivel 0WOTI| Ko TPoopiletol KaAITEPO YLo GIAVIEG TEPLTTMOELG OTTOV VITAPYEL UE-
YOLOG aPLOUOG OTLYILOTOTTMV GE 0L EQOPUOYT KPLOWNG-UVIUNG.

akolovbic
An iterable which supports efficient element access using integer indices via the ___getitem__ () special
method and definesa __1en__ () method that returns the length of the sequence. Some built-in sequence
types are list, str, tuple, and bytes. Note that dict also supports __ getitem__ () and
__len__ (),butis considered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.

H agnpnuévn Paokn khdon collections.abc.Sequence opilel o mohd mo mhovoto die-
oy mov Eemepvd to oA __getitem () xow __len__ (), adding count (), index(),
__contains__ (),Ka__reversed__ ().OutdmoL wov vhomotohv autiv TV dlevpupévn diemop
WITOPOUV va KoTampnOouv pntd xpnowomoimviag register () . [o mepiocdtepn tekunpiwon oye-
Tk e Tig uebodovug axorovdiag yevikd, avatpéEre oto Common Sequence Operations.

set comprehension
'Evog ovpmaymg Tpdmog yio vo eneEepyaoteite OAa 1) uEPOg Twv aToLyElwv o éva iterable Ko vo emi-
oTpapel €vo ouvolo pe ta omoteléoparta. results = {c for c¢ in 'abracadabra' if c
not in 'abc'} dnwovpyei to ovvolo cuuforoocepwv {'r', 'd'}. B\ Displays for lists, sets and
dictionaries.

povadiko dispatch
Mo wopep) dispatch generic function 6stov 1) vhomoiNom ETAEYETOL PE BAON TOV TUTTO EVOG LELOVWUEVOD

oplouortoc.

slice
‘Evo ovtikeipevo mov ouvnOmg mepLéyel £va tufua (og axorovbiag sequence. Anpuovpyeiton éva slice
YPNOLULOTTOLMVTAG TN onueiwon subscript, [] pe dvow Ko Kétw teleieg ueta&y apbumv otav divovron

163

The Python Language Reference, Anpooisuon 3.11.13

oAhoi, Otwg 0to variable_name[1:3:5]. H onueiwon aykiing (subscript) xpnOLUOTOLEL E0WTE-
pLKd oviikelpeva slice.

e1dk1] uédodog
Mo uéBodog mov Kaheitol olwmnpd amd v Python yia vo ekTeAEoEL (oL OLYKEKPLUEVT) hetToupyia oe
évav TOmo, drtmg 1 tpoodNKn. Tétoleg péBodol £xovve ovouaTo Tov EeKLVoY Ko TELELDVOUV (e dUTAEG
Katw movheg. Ou eldukég uéBodol tekunprwvovtan oto Special method names.

dMlwon
Mo tpdtaom eivor uépog wag covitag (vo «Umhok» Khdika). Mia tpdtaon givau eite évag expression
elte wa oo wodég dopég e wo AEEN-Khewdi Omtwg 1 £, while) for.

EAEYKTIG CTATIKOV TUTOV
"Eva eEmtepukd epyaieto dmmov duafdlel Tov Python kddika KoL Tov avalvel, avalntmviog Tpopfiiuoto.
omwg havbaouévol Tomol. Bi. extiong rype hints ko to module typing.

strong reference
2to C API g Python, pua 1oyupn ovopopd eivat pia ovapopd 0g Vo AVIIKELIEVO TTOU AVIKEL OTOV
KddLko Tov meptéxel v avagopd. H woyvpn avagopd houfdvetal kohovtag to Py INCREF () dtav
1 avopopd duouvpyeitol Kou aehevbepmvetal e Py DECREF () OTOV SLOYPAPEL 1] AVA(pOpdL.

H ouvaptnon Py_NewRef () wmopei vo xpnoluosotn0el yia tn dnuiovpyia Loyupmg avapopaig oe éva
ovrikeipevo. Zuvnbwe, 1 cuvaptnon Py DECREF () mpémel vo KOAELTOL 0TV Loyvpn ovopopd oLy
ByeL amd o VPOg TG LOYVPNG AVAPOPACS, VLo VO, ATtopevy el 1) dLopPoT) LLOG AVOPOPAS.

BA. emtiong borrowed reference.

KWOKOTOIN01 KENEVOY
Mo ovpporooelpd otnv Python eivor por axorouBia onueimv kodika Unicode (oto eVpog U+0000-
U+10FFFF). ['a va armoOnkeVoeTe 1 Vo UETAPEPETE WO CUUBOLOCELPA, TPETEL VO OELPLOTTOLNOEL WG
duadikn axolovdia.

H oeipromoinom pog oupforooelpds oe o dSuadiki| akohovbio elval yvwoTy g «KmILKOToinon» , Kot
N avodnuovpyia g oupporooelpds amd v dvadiki| akohovdia elvol Yoot mg «aToKmOLKoTol-
non».

Ymdpyel pia otkihio SLopopeTLKNG GELPLOTOLNOMG KELWEVOU codecs, oL 0Tolol CUALOYLKA avapépovTal
WG «KMOUKOTOLNOELG KEWWEVOU».

OPYELO KEWUEVOY
'Eva file object tkavd va SLaf3ael Ko vo YpAgpeL avitkeipeva str. Zuyvd, EVo apyelo KELWEVOL UTOKTA
TPOYUOTLKA TTPOOPaoT 0€ wo. por) duadiky) por) dedopuévarv Kat xelpiletar avtduota TV text encoding.
Mapadeiypato apyeimwv KEWEVOD eivat apyeio Tov avoiyouv o Aettovpyio kKewévou ("r' 1 "w'), sys.
stdin, sys.stdout, kot oTLyudTUITO TOV i0. StringIO.

BA\. emiong binary file yio éva avitkeipevo apyeiov pe duvatdtnta aviryvoong Kat eyypapng dvadikd
(ZV‘L’LKSL’HEV(X.

ouuPOAOCELPE TPUTAMY ELCAYWMYIKOV
Mo ouporooelpd Tov dECUEVETAL OO TPELS TEPUTTMOELS ELTE EVOG ELOAYWYLKOV (») 1] OG ATOTTPO-
@ov (). Av Ko deV TaPEXOUV KOULa AELTOVPYLKOTNTO TTov deV givar diadéoun pe ovuporooelpés e
ROV ELOAYWYLKA, €ivol YPTIOLUES YO LapOPOVg AOYOUGS. Z0G ETLTPETOUV VO, CUMITTEPIAAPETE LOVA KoL
ALTAG ELOAYYLKA Y wpig dLopuyn) 0 (o CUUBOAOCELPG KoL UWITOPOUV VO. EKTEIVOVTAL OF TOMES VPO~
UEG YWPLG TN XPNON TOV YOPAKTHPA GUVEXELD, KOOLOTOVTOG Ta LOLaiTEPa XpNoLUa Kotd T ovvtagn
eyYPAPoV ue ouporooelpéc.

TOMOG
The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class___ attribute or can be retrieved with t ype (ob7j).

type alias
"Evo. GUvV@VUUO Y10 VAV TUTTO, TTOV dMuovpyeitan pe v avafeon Timov oe Vo ovoryvwpLoTiKo.

Ta type aliases eival ypnowua yio v amhomoinon rype alias. Two tapaderypa:

164 Mapaptnua A'. NMwooapt

The Python Language Reference, Anpoocisuon 3.11.13

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:
pass

WITOPEL VoL YIVEL TTL0 EVAVAYVOTO dTTWG:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

B\ typing kouw PEP 484, mov mepuypdepel authv tnv hettovpytkdtnta.

type hint
"Evag annotation wov KaBopilel TovV avapevouevo THIo yLo. (ol LETABANT, £va XopaKTpLoTko KAdong

1] WL TTOLPAUETPO CUVAPTNONG 1) TLUT) ETLOTPOPNG.

O vtodeikelg Timmy (type hints) eivar wpoonpetikéc Kal dev emBaiovran amd v Python, alld eivon
YPHOWES YL static type checkers. Mmopolv emiong va fondnoouvv tovg IDEs pe t ovumhpwon Kot thy
AVOSLAUOPPOOT KMOLKAL.

YmodeiEeig tomov (type hints) yia Kabolkég petafintésg, xapoakKTnplotkd KAAoNG Kou cuvopti-
oelg , aAAG OxL TOTLKEG UETAPANTES, UTOPOUV VO TTPOOTELOCTOUV YPNOLWOTOLDVING TO typing.
get_type_hints ().

B\. typing xouw PEP 484, mou mepLypdgper autiv Ty AeLToupyLtkotnTa.

Ka0oMKEg VEES Ypaupés
"Eva TpOTTog epUNVELNG pOMV KEWWEVOU GTOV 0TT0l0 OAa To akOAOUO avaryvwpilovtol mg MEELG wag
ypouung: 1 ovppaon téhovg ypapurhg tov Unix '"\n', 1 oVupaon tov Windows '\r\n', Kou v na-
Mé ovuPaon Macintosh "\ r'. Br. PEP 278 xou PEP 3116, xa0d¢ Kaw bytes.splitlines () ywo
pdodeTn yphHom.

annotation petafinrig
'Evag annotation o, PeToPANTIG 1] VOGS YOPOKTNPLOTLKOU KAAOTG.

‘Otov annotating puo PeTo AT 1 £va xopakTnpLotikod KAdong, 1 avdbeon eivol TpoapeTikn:

class C:
field: 'annotation'

Ta annotations HETAPANTOV XPNOLUOTOLOVVTAL CUVIOWGS YLOL 1ype hints: Y10 TOPAdeLyuo auth N LeTaPAnTy
ovouévetal vo Al Tiég int:

[count: int = 0 }

H oVvtoEn annotation petafintig mepLypdpetan oty evotta Annotated assignment statements.

BA\. function annotation, PEP 484 xouw PEP 526, wov meprypdpouv avuti| T Aertovpyia. Aegite emiong
annotations-howto yia. BENTLOTES TPOAKTIKEG OYETIKA UE TNV EPYOTIO e OXOMAOUOVC.

virtual environment
'Eva. ovvepyatikd ommoiovouévo mepLBAALov ¥pOvVoU EKTELEDTG TTOV ETLTPETEL OTOVGS YPNOTEG KOL TLG
epapuoyég g Python va eykatootmoovv Kot va avofabuicovv mokéta diavoung Python ywpig va
mopeufaivouv ot ovuTEPLPOoPE AWV epapuoymv Python tou ektehovvtol 0to idto cuoThua.

B. emiong venv.

virtual machine
"Evog vitohoylotig opileton €€ ohokApou amd to Aoyioukd. H eucovikr| unyavn tg Python extelei to
bytecode mov eXTTEUTETOL ATTO TOV peTayAwTTioT)) bytecode.

Zen g Python
Katdhoyog oyedlaotikdv apydv KoL QLLOCOQLOV TTOV EIVOL XPTNOLUES YLO TNV KATOVONOoT KoL T 10T

165

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python Language Reference, Anpooisuon 3.11.13

™g Yhwooog. O Katdhoyog umopet vo Bpedel minktporoydviog «import this» oty dLodpaoTiky
KOvGOLa.

166 Mapaptnua A'. NMwooapt

nAPAPTHMA B’

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

H avamtuEn tov eyypdewv kol Tov epyaleimv Toug eivat e€” ohokApou eBehovtiki] TtpoomtddeLa., dwg Kat
1 idua 1 Python. Edv 0éhete va ouvelopépete, piEte wa potid oty oelido reporting-bugs yio Anpogopieg
OYETIKEG e TO TG VO, To Kdvete. Kawvouprol eBehoviég eivan mavta evmpdodektol!

[ToAAég vy OpLOTiES TTNYALVOUY OTOVG:
« Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
« 7o Docutils tpdtlekt yio v dnuovpyio tmv epapuoydv reStructured Text ko Docutils:

o Fredrik Lundh yia to 61k6 Ttou Alternative Python Reference mpdtlext amd 1o omoio to Sphinx mpe ol
KoAég LOgec.

B'.1 Contributors to the Python Documentation

IMoAhol GvBpwmoL éxovv ouvelopéper otn yAwooo Python, tnv Bupiobnkn g Python, kol to €yypago tg
Python. Aeite Misc/ACKS otig mtnyég dravoung g Python yia wo Aoto tov ouvieheotav.

Movo e T ouUBoAT| KoL TIG CUVELOQOPEG THG KoLvotntag tg Python, 1 Python €yeL tétola vépoya éyypapa
- Zag evyopLotovpe!

167

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.11/Misc/ACKS

The Python Language Reference, Anpooisuon 3.11.13

168 Mapaptnua B’. About these documents

4
NAPAPTHMA [

lotopla kat Adela

.1 Hotopia Tou AoyLoHLKOU

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
/Iwww.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

‘Ekdocn Mpoepxduevn and ‘Etoq Idloktnoia GPL compatible?
09.0éwg 1.2 d/v 1991-1995 CWI VoL
13émg1.52 1.2 1995-1999 CNRI Vol
1.6 1.5.2 2000 CNRI OyL
2.0 1.6 2000 BeOpen.com &y
1.6.1 1.6 2001 CNRI oYL
2.1 2.0+1.6.1 2001 PSF oL
2.0.1 2.0+1.6.1 2001 PSF vou
2.1.1 2.1+2.0.1 2001 PSF valL
2.1.2 2.1.1 2002 PSF VoL
2.1.3 2.1.2 2002 PSF VoL
2.2 xou whvey 2.1.1 2001-onuepo. PSF Vo

Enueiwon: GPL-compatible doesn’t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

169

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, Anpooisuon 3.11.13

Xapm, otovg morhoVg eEmTepLkolg e0ehovteg Tov epydotnKav Katm amd Tig 0dnyieg Tov Guido, avtég ot
eKOO0ELS EYLVALY EPLKTEC.

.2 Opol kaL nipoumoBbEoeLg yLa TNV npéopacn n} TNV XPrion tTng
Python pe aAAoug tpomnoug

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Kdémolo Aoyioukd mou givan evowuatmuévo otny Python eivoar vd dragpopetikég adeteg ypnons. OL adeteg
ToPOTOEVTAL (LE KMOLKO TOV EUTTLTTTEL 08 AUTHV TNV Gdeia. Agite Adeies ko Evyapioties yio Evewuatwuévo
Aoyioukd yuow puoL EAMTTN MOTa AUTOV TV 0dELmV.

M.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.11.13

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.11.13 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF._
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.11.13 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All_
—Rights

Reserved" are retained in Python 3.11.13 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.11.13 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.11.13.

4. PSF is making Python 3.11.13 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY..
—OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY..
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.11.13 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

170 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoocisuon 3.11.13

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.11.13

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A._
—~RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.11.13, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—This License

Agreement does not grant permission to use PSF trademarks or trade name.
—in a

trademark sense to endorse or promote products or services of Licensee, .
—O0r any

third party.

8. By copying, installing or otherwise using Python 3.11.13, Licensee.

—agrees
to be bound by the terms and conditions of this License Agreement.

r2.2 ZYMoQNIA AAEIAZ BEOPEN.COM I'lA PYTHON 2.0

ZYM®ONIA AAEIAZ ANOIXTOY KQAIKA BEOPEN PYTHON EKAOZH 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
(ouvéyela oty emtopevn oehida)

M.2. Opol Kal poiinoBeoeLg yua Tnv npocpaon 1} Tnv Xprion tng Python pe aAAoug tponddd

The Python Language Reference, Anpooisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

r.2.3 ZYM®QNIA AAEIAZ CNRI I'lA PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or

(ouvéyela oty emtdpevn oehida)

172 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoocisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement

does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

r.2.4 XYMoOQNIA AAEIAZ CWII'lA PYTHON 0.9.0 EQX 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

M.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.13
DOCUMENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

M.2. Opol kai poiinmoBeoeLg yia tTnv npoopaon 1 tnv Xprion tng Python pe aAAouqg tpondd§

The Python Language Reference, Anpooisuon 3.11.13

.3 Adeleq katL Euxaplotieg yia Evoopatwpévo AOYLOULKO

Avti M evotita givor o nutelic, odd avEavouevn Moto adewmv KoL EVapLoTImV Yo, AOYLOWKO Tpitmv,
IOV EVOOUOTOVETOL 0TV dtavour| g Python.

M.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/
MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

174 Mapaptnua I'. lotopia kat Adsla

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference, Anpoocisuon 3.11.13

M.3.2 Sockets

H evdtnta socket ypnopomotel 1ig ovvaptoels, getaddrinfo (), koL getnameinfo (), Ta 0moio €OV

viomon0ei oe draopetikd apyeia amd to WIDE 'Epyo, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " “AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3.3 Aouyxpoveg socket unnpeoieq

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

r.3. Adeleq kat Euxaplotieg yia Evowpatwpgvo AOyLOHLKO

175

https://www.wide.ad.jp/

The Python Language Reference, Anpooisuon 3.11.13

M.3.4 Awaxeipion Cookie

H evomto http.cookies mepléyel TV mopaKdT® E100TOINON:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

M.3.5 Avixveuon eKTéAeong

H evomto t race mepiéyel v TapokdTm eL00TOiN0:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

176 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoocisuon 3.11.13

M.3.6 Zuvaptnioelg UUencode kat UUdecode

H evomto uu mepLéyet v mopakdtm domoinon:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

M.3.7 KAjoelg Anopakpuopevng Awadikaciag XML

H evomto xmlrpc. client mepiéyel v mopakdtw e1d0moinon:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 177

The Python Language Reference, Anpooisuon 3.11.13

".3.8 test_epoll

H evomto test.test_epoll mepLéyet TV TAPaKATm ELOOTOIMON:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

M.3.9 EmAoyn kqueue

H evomta select mepiéyel tv mapokdtm ewdomoinon yio v kqueue diemagpi):

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

178 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoocisuon 3.11.13

r".3.10 SipHash24

To apyelo Python/pyhash.c mepiéyxer v vhomoinon tov Marek Majkowski tov olyopiBuov tov Dan
Bernstein, SipHash24. Autd mepléyel v mapakdatm onueinon:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

M.3.11 strtod kau dtoa

To apyelo Python/dtoa. ¢, mov mopéyel TG ovvaptnoelg dtoa ko strtod tng C yio petatpormt) twv C doubles
7TPOG Ko atd strings, Tpoépyetat amd to oudvupo apyeto tov David M. Gay, mtpog to mopdv diabéoiuo amod
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c. To apykod apyeio, OTWG AvaKTY)-
Onke otig 16 Maptiov, 2009, mepiéyet ta akOAOVOa TVEVUATIKG SUKOLDUOTA KOL TNV ELOOTOIN0N 0dEL0dOTN-

ongc:

/**

*

* The author of this software is David M. Gay.
*

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % of

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % o

* % o

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 179

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python Language Reference, Anpooisuon 3.11.13

r.3.12 OpenSSL

Ou povédechashlib, posix, ssl, crypt xpnotpnomorovv thv Bifiiodnkn OpenSSL yia emuthéov amddoon,
eqv dratifevton amd to hettovpykd ovotnua. Emumhiéov, ta mpoypduuota eykatdotaong yio v Python yio
Windows ko macOS, evdéyetar va mepthapfiavouy éva avtiypago twv Bipiodnkdv OpenSSL, erouévog ov-
usepthapupavouue eva aviiypago g aderag OpenSSL €d®. Tia tnv €ékdoon OpenSSL 3.0 ko yua vedTtepeg
€KOO0ELS TTOV TPOEPYOVTOL aTtd auTh, LoyveL 1) ddela Apache v2:

Apache License
Version 2.0, January 2004
https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1.

Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
(ouvéyela oty enopevn oehida)

180 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoocisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution (s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross—claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents

(ouvéyela otV entopevn oehida)

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 181

The Python Language Reference, Anpooisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

182 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoocisuon 3.11.13

.3.13 expat

H enéxtaon pyexpat MUWOUPYELTOL XPNOLUOTOLMVTAG £VO CUWTEPINOUBOVOUEVO OVTLYPAPO TV TTIYMV
expat, ektOg edv 1) €kdoom €xeL TNy pUOULON ——with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

r.3.14 libffi

The _ctypes extension is built using an included copy of the libfli sources unless the build is configured
——with-system—-1libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 183

The Python Language Reference, Anpooisuon 3.11.13

r.3.15 zlib

H eméxtaon z1ib dnuovpyeital ¥p1oLUoTOLmMVTAS VO, CUUTEPIAAUBAVOUEVOL avTiypapo Tov Tnydv zlib,
eqv 1 £xdoom Tov zlib wov BpiokeTol 0To CVOTNUO ELVOL TTOA) TTOME YLOL VAL X PN OLULOTTOLNOEL YL TNV KATOOKEVT):

N

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

M.3.16 cfuhash

H vhomoinon tov mivaKa KoTaKepUATIONOU OV xpnotiomoteital amd 10 tracemalloc faociletol oto €pyo
cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(ouvéyela oty enopevn oehida)

184 Mapaptnua I'. lotopia kat Adsla

The Python Language Reference, Anpoocisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

M.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
——with-system—-libmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

.3.18 W3C C14N ocouita SoKLUNiG

H covita doxiurig C14N 2.0 oto mokéto test (Lib/test/xmltestdata/c14n-20/) avaxtibnke amxd
tov totdtomo tov W3C https://www.w3.0org/TR/xml-c14n2-testcases/ kot drovéuetor pe thv adewa 3 pNTpwv
BSD:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without

(OUVEyELD TNV ETTOUEVY] GEMDO)

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 185

https://www.w3.org/TR/xml-c14n2-testcases/

The Python Language Reference, Anpooisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

r".3.19 Audioop

To module audioop ypnowwomotel wg Baon kKmdika tov apyeiov g771.c Tov épyou Sox. https://sourceforge.net/
projects/sox/files/sox/12.17.7/s0x-12.17.7 .tar.gz

Avuto o nyaiog kmdikag eival Tpoidv tng Sun Microsystems, Inc. Ko wopéyetal yLo omepLopLoTh
xphHon. Ou %pfoTeEG UTOPOVV VO OVTLYPAPOUV 1] VO TPOTOTOLOOUV OUTOV TOV TTNYoio KmALKa

YWPLS YPEWOT.

O [MTHT'AIOZ KQAIKAZ TOY SUN ITAPEXETAI OIIQX EXEI XQPIY KANENOZ EIAOYZ ET-
I'YHZEIX XYMIIEPIAAMBANOMENQN EITYHXEQN ZXEAIA>MOY, EMIIOPEYZIMOTH-
TAZ KAI KATAAAHAOTHTAZ I'TA 2YTKEKPIMENO ZKOIIO ‘H ITIOY ITPOKYTITEI AITO
KATIOIA ITOPEIA XYNAAAATHZ, XPH>XHX 'H EMITOPIKHZ ITPAKTIKHZ.

O myaiog KmdLkog Tov Sun TapEYETOL YWPIg TV VITOOTHPLEN Ko wpig Kauio voypEwon) ek ué-
povg g Sun Microsystems, Inc. va fon01oeL otnv xpnomn, oty S1dpOwon, Tpomomoinon 1 fertimon
TOV.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS
SOFTWARE OR ANY PART THEREOF.

Ze Kapia sepizmtworn 1 Sun Microsystems, Inc. dev @épel evOUVH yLoL TUXOV OTTOAELD EGODWV 1)
KepdWV 1N dAheg e1dIKES, Euueoeg Kat emakOlovbeg Tnuieg, akoun kol av 1 Sun €yl eviuepwoei
Yol TV TTOavOTHTA TETOLWV TNILOY.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, Koligpdpvio 94043

".3.20 asyncio

Mépn g evotitag asyncio evomuatmvoviol amd to uvloop 0.16, 1 omoia dwavéuetar ue ddewa MIT:

Copyright (c) 2015-2021 MagicStack Inc. http://magic.io

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

(ouvéyela oty enopevn oehida)

186 Mapaptnua I'. lotopia kat Adsla

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://github.com/MagicStack/uvloop/tree/v0.16.0

The Python Language Reference, Anpoocisuon 3.11.13

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 187

The Python Language Reference, Anpooisuon 3.11.13

188 Mapaptnua I'. lotopia kat Adsla

nAPAPTHMA £\’

Copyright

H Python ko vt 1) Tekunpiwon eivod:

Copyright © 2001-2023 Python Software Foundation. ‘Ol To. StkodUoTo SLOTPOUVTAL.

Copyright © 2000 BeOpen.com. OLa T SUKOLMOUOTA SLATNPOVVTOL.

Copyright © 1995-2000 Corporation for National Research Initiatives. Olo. To. StKaLOUATO SLATNPOVVTAL.

Copyright © 1991-1995 Stichting Mathematisch Centrum. ‘Ola Tal SLKOLOUOTA SLATPOVVTOL.

AvatpéEte 010 lotopla kar Adea Yo TPNG TANPOQOPNON OYETIKE te TNV AdeLa YpNoNG Ko Tig eE0V010d0-
THOELS.

189

The Python Language Reference, Anpooisuon 3.11.13

190 Mapaptnua A'. Copyright

Eupetriplo

Hr]'O]\(pGBlTLKd in expression lists, 96
..., 149 in function calls, 87
ellipsis literal,?2l operator, 90
string literal, 12 function definition, 127
. (dot) in dictionary displays, 80
in function calls, 88
operator, 89

attribute reference, 85
in numeric literal, 17

! (exclamation) =
in formatted string literal, 14 augmented assignment, 102
— (minus) *=
binary operator, 90 augmented assignment, 102
unary operator, 89 + (plus)
; (semicolon), 111 binary operator, 90
' (single quote) unary operator, 89
+=

string literal, 12
! patterns, 119
" (double quote) , (comma), 78

string literal, 12 argument list,87
wun expression list, 79, 80,96, 103, 128

string literal, 12 identifier list, 109,110
(hash) import statement, 107
in dictionary displays, 80
in target list, 100

augmented assignment, 102

comment, 8
source encoding declaration,8

% (percent) pallrarpeter list, 126
operator, 90 slicing, 86
$= with statement, 116
/ (slash)

augmented assignment, 102
& (ampersand)
operator, 91

function definition, 127
operator, 90

o= //
augmented assignment, 102 operator, 90
() (parentheses) //=
call. 87 augmented assignment, 102
class definition, 128 /= .
function definition, 126 augmented assignment, 102
generator expression, 80 Ob . .
in assignment target list, 100 integer literal, 16
tuple display, 78 0o
* (asterisk) integer literal, 16
function definition, 127 0x . .
import statement, 108 integer literal, 16
in assignment target list, 100 2to3, 149
: (colon)

191

The Python Language Reference, Anpooisuon 3.11.13

annotated variable, 102 language, 20, 21, 27,91
compound statement, 112, 113, 116, 117, CPython, 152
126, 128 C-contiguous, 152
function annotations, 127 Conditional
in dictionary expressions, 80 expression, %4
in formatted string literal, 14 DEDENT token,9, 112
lambda expression, 95 EAFP, 154
slicing, 86 Ellipsis
: = (colon equals), 94 object, 21
< (less) False, 21
operator, 91 Fortran contiguous, 152
<< GIL, 156
operator, 91 GeneratorExit
<<= exception, 83, 85
augmented assignment, 102 IDLE, 156
<= INDENT token,9
operator, 91 ImportError
l= exception, 107
operator, 91 Java
-= language, 21
augmented assignment, 102 LBYL, 158
= (equals) MRO, 159
assignment statement, 100 NEWLINE token,7,112
class definition, 44 NameError
for help in debugging using string exception, 78
literals, 14 NameError (evowuatwuévn eEaipeon), 60
function definition, 126 None
in function calls, 87 object, 20, 99
== NotImplemented
operator, 91 object, 20
> PEP, 162
function annotations, 127 PYTHONHASHSEED, 39
> (greater) PYTHONNODEBUGRANGES, 32
operator, 91 PYTHONPATH, 72
>= Python 3000, 162
operator, 91 Python Enhancement Proposals
>> PEP 1,162
operator, 91 PEP 8,92
>>= PEP 236,109
augmented assignment, 102 PEP 238,155
>>> 149 PEP 252,41
@ (ar) PEP 255, 82
class definition, 128 PEP 278, 165
function definition, 126 PEP 302, 63,75, 154, 158
operator, 90 PEP 308,95
AS pattern, OR pattern, capture PEP 318,127,129
pattern, wildcard pattern, 119 PEP 328,75
ASCII,4, 12 PEP 338,75
AssertionError PEP 342,82
exception, 103 PEP 343,53,117,152
AttributeError PEP 362, 150, 161
exception, 85 PEP 366, 70,75
BDFL, 151 PEP 380, 82
BNF, 4, 77 PEP 411,162
Boolean PEP 414,13
object, 21 PEP 420,63,65,71,75,154, 160, 162
operation, 94 PEP 443,156
c, 13 PEP 448, 80, 88,96

192 Eupetniplo

The Python Language Reference, Anpoocisuon 3.11.13

PEP 451,75,154
PEP 483,156
PEP 484,47,103, 127, 150, 155, 156, 165
PEP 492,55, 82,130, 150152
PEP 498, 16, 154
PEP 519, 161
PEP 525,82, 150
PEP 526, 102, 127, 150, 165
PEP 530,79
PEP 560,44,48
PEP 562,41
PEP 563,108, 127
PEP 570, 127
PEP 572, 80,95, 121
PEP 585,156
PEP 614,126, 128
PEP 617,133
PEP 626,33
PEP 634,54, 118,125
PEP 636, 118, 125
PEP 3104, 110
PEP 3107, 127
PEP 3115,45,129
PEP 3116, 165
PEP 3119,46
PEP 3120,7
PEP 3129,127,129
PEP 3131, 10
PEP 3132, 101
PEP 3135,46
PEP 3147,70
PEP 3155, 162
Pythonic, 162
Standard C, 13
StopAsyncIteration
exception, 84
StopIteration
exception, 82, 104
SystemExit (evowuatwuévny eEaipeon), 62
True, 21
TypeError
exception, 89
UNIX, 131
UnboundLocalError, 60
Unicode, 22
Unicode Consortium, 12
ValueError
exception, 91
Windows, 131
Zen tnc¢ Python, 165
ZeroDivisionError
exception, 90
[1 (square brackets)
in assignment target list, 100
list expression, 79
subscription, 86
\ (backslash)
escape sequence, 13

\N

escape sequence, 13
\U

escape sequence, 13
A\

escape sequence, 13
\a

escape sequence, 13
\b

escape sequence, 13
\f

escape sequence, 13
\n

escape sequence, 13
\r

escape sequence, 13
\t

escape sequence, 13
\u

escape sequence, 13
\v

escape sequence, 13
\x

escape sequence, 13
~ (caret)

operator, 91

A

augmented assignment, 102
_ (underscore)

in numeric literal, 16,17
_, identifiers,11
__, ldentifiers,11

__abs__ () (uébodog tn¢ object), 52
__add___ () (uébodog tng object), 51
__aenter__ () (uéBodog g object), 56
__aexit__ () (uéBodog tng object), 56
__aiter__ () (uéBodog tng object), 56
__all__ (optional module attribute), 108
__and___ () (uébodog tng object), 51
__anext__ () (uébodog tng agen), 84
__anext__ () (uéBodog tng object), 56

__annotations__ (class attribute), 29
__annotations___ (function attribute), 25
__annotations__ (module attribute), 28
__annotations__ (tSidtnta g function), 25

__await__ () (uéBodog tng object), 55
_ bases__ (class attribute), 29
__bool__ () (object method), 49
__bool__ () (uéBodog tngs object), 39
__bytes__ () (uébodog tng object), 37
__cached_ ,70

__call__ () (object method), 88
__call__ () (uéBodog tnc object), 49
___cause___ (exception attribute), 105
__ceil__ () (uéBodog trgs object), 52

__class__ (instance attribute), 29
_ class__ (method cell), 45
__class___(module attribute), 40

Eupetniplo

193

The Python Language Reference, Anpooisuon 3.11.13

_ class_getitem_ () (uéfodog xAdons g
object), 47

__classcell__ (class namespace entry), 45

__closure__ (function attribute), 24

__closure__ (t&idtnTa 6 function), 24

___code___ (function attribute), 25

__code__ (10iétnTa g function), 25

__complex__ () (uéBodog g object), 52
__contains__ () (uébodog tng object), 50
__context___ (exception attribute), 105

_ _debug__, 103

__defaults___ (function attribute), 25
__defaults__ (10dtnra g function), 25

__del__ () (uébodog trg object), 36
__delattr__ () (uéBodog tng object), 40
__delete__ () (uéBodog tng object), 41
__delitem__ () (uéBodog tngs object), 50

__dict__ (class attribute), 29
__dict__ (function attribute), 25
__dict__ (instance attribute), 29
__dict__ (module attribute), 28
__dict__ (tdiétnta N6 function), 25
__dir__ (module attribute), 40
__dir__ () (uébodog trg object), 40
__divmod__ () (uéBodog tng object), 51
__doc__ (class attribute), 29
___doc___(function attribute), 25
__doc__ (method attribute), 26
__doc__ (module attribute), 28
__doc__ (tSidtnTa g function), 25
__doc__ (tdidtnTa g method), 26

__enter__ () (uéBodog tng object), 53
__eq__ () (uéBodog tng object), 37
__exit__ () (uébodog tng object), 53

_ file_ ,70

_ file_ (module attribute), 28

_ float__ () (uéBodog tng object), 52
__floor__ () (uéBodog g object), 52

_ floordiv__ () (uébodog ts object), 51
_ format__ () (uéBodog tng object), 37

_ func__ (method attribute), 26
__func__ (16idtyra tng method), 26
_ future_ , 155

future statement, 108

__ilshift__ () (uéBodog tngs object), 52
__imatmul__ () (uéBodog tng object), 52
__imod__ () (uéBodog g object), 52
__imul__ () (uéBodog tngs object), 52
__index__ () (uéBodog tng object), 52
__init__ () (uéBodog tngs object), 36
__init_subclass__() (uéOodog xAdons tng
object), 43
__instancecheck__ () (ué6odog tng class), 46
__int__ () (uéBodog g object), 52
__invert__ () (uéBodog t1g object), 52
__ior__ () (uéBodog tng object), 52
__ipow__ () (uéBodog tng object), 52
__irshift_ () (uéBodog g object), 52
__isub__ () (uéBodog tngs object), 52
__iter__ () (uéBodog tng object), 50
__itruediv__ () (uébodog ¢ object), 52
__ixor__ () (uéBodog g object), 52

__kwdefaults__ (function attribute), 25
__kwdefaults__ (iddtnta e function), 25
__le__ () (uéBodog tng object), 37
__len__ () (mapping object method), 39
__len__ () (uéBodog tng object), 49
_ length_hint__ () (uébodog tng object), 49
_ loader_ , 69
__1shift__ () (uéBodog tngs object), 51
_1t__ () (uéBodog tng object), 37
__main___

module, 60, 131
__matmul__ () (uéBodog tng object), 51
__missing__ () (uéBodog tng object), 50
__mod__ () (uéBodog tng object), 51
__module__ (class attribute), 29
__module___ (function attribute), 25
__module___ (method attribute), 26
__module__ (tdtdtnta 16 function), 25
__module__ (t6dtnra tng method), 26
__mro_entries__ () (uébodog ¢ object), 44
__mul__ () (uéBodog tg object), 51
_ _name_ , 069
_ name___ (class attribute), 29
___name___ (function attribute), 25
__name___ (method attribute), 26
__name___ (module attribute), 28

__ge__ () (uéBodog tng object), 37 __name___ (t0idtnra tng function), 25
__get__ () (uéBodog tng object), 41 __name___ (10dtnTa tng method), 26
__getattr__ (module attribute), 40 __ne__ () (uéBodog g object), 37
__getattr__ () (uéBodog tng object), 39 __neg__ () (uéBodog tng object), 52
__getattribute__ () (uéBodog tng object), 39 __new___ () (uébodog tng object), 36
__getitem__ () (mapping object method), 35 __next__ () (uéBodog tng generator), 82
__getitem__ () (uébodog tng object), 49 __objclass__ (1ddtnra s object), 41
__globals__ (function attribute), 24 __or__ () (uéBodog tng object), 51
__globals__ (t&idtnTa w6 function), 24 __package__,70

__gt__ () (uéBodog tng object), 37 __path__,70

__hash__ () (uéBodog tng object), 38 __pos___() (uébodog tng object), 52
__iadd__ () (uéBodog tng object), 52 __pow___() (uébodog tng object), 51
__iand__ () (uéBodog tng object), 52 __prepare___ (metaclass method), 45
__ifloordiv__ () (uéBodog tng object), 52 __qualname__ (tddtnta g function), 25
194 Eupetniplo

The Python Language Reference, Anpoocisuon 3.11.13

__radd__ () (uéBodog tngs object), 51
__rand__ () (uéBodog g object), 51
__rdivmod__ () (uéBodog tng object), 51
__repr__ () (uéBodog g object), 37
__reversed__()(yﬁbéognmcﬁkd%SO
__rfloordiv__ () (uéBodog tng object), 51
__rlshift__ () (ue@oéog ¢ object), 51
__rmatmul () (uéBodog tng object), 51
__rmod__ () (uéBodog tng object), 51
__rmul__ () (uéBodog tng object), 51
(u t0odog tng object), 51
round () (uéBodog g object), 52
__rpow___ () (uéBodog tng object), 51
rrshlft ()(uﬁ%ﬁogﬂgohdeSI
__rshift__ () (uéBodog tng object), 51
__rsub__ () (uéBodog tng object), 51
__rtruediv__ () (uébBodog ¢ object), 51
__rxor__ () (uébodog tng object), 51

_ self__ (method attribute), 26
__self__ (i6dtyra tng method), 26
__set__ () (uéBodog tng object), 41
__set_name__ () (uébodog ¢ object), 43

__setattr__ () (uébodog tng object), 39
__setitem__ () (uéBodog tng object), 50
__slots_ ,163

__spec__,70

__str__ () (uébodog 18 object), 37
__sub___ () (uébodog tng object), 51
__subclasscheck___

__traceback___ (exception attribute), 105

__truediv__ () (uébodog T object), 51
__trunc__ () (uéBodog tng object), 52
__xor___ () (uébodog tng object), 51

abs

built-in function, 52
aclose () (uébodog tng agen), 85
addition, 90
and

bitwise, 91

operator, 94
annotated

assignment, 102
annotation, 149
annotation petaPAntnig, 165
annotations

function, 127
anonymous

function, 95
argument

call semantics, 87

function, 24

function definition, 126
arithmetic

conversion, 77

operation, binary, 90

operation, unary, 89
array

module, 23

) (uéBodog tng class), 46

as
except clause, 113
import statement, 107
keyword, 107, 113, 116, 117
match statement, 117
with statement, 116

asend () (uéBodog tng agen), 84

assert
statement, 103

assertions
debugging, 103

assignment

annotated, 102
attribute, 100
augmented, 102
class attribute, 29
class instance attribute, 29
slicing, 101
statement, 23, 100
subscription, 101
target list, 100
assignment expression, 94
async
keyword, 129
async def
statement, 129
async for
in comprehensions, 79
statement, 129
async with
statement, 130
asynchronous generator
asynchronous iterator, 27
function, 27
asynchronous—generator
object, 84
athrow () (uébodog T agen), 85
atom, 77
attribute, 20
assignment, 100
assignment, class, 29
assignment, class instance, 29
class, 28
class instance, 29
deletion, 104
generic special, 20
reference, 85
special, 20
augmented
assignment, 102
await
in comprehensions, 79
keyword, 88, 129
awaitable, 151
b]
bytes literal, 12
b mw
bytes literal, 12

Eupetniplo

195

The Python Language Reference, Anpooisuon 3.11.13

backslash character, 8
binary

arithmetic operation, 90

bitwise operation, 91
binary literal, 16
binding

global name, 109

name, 100, 107, 126, 128
bitwise

and, 91

operation, binary, 91

operation, unary, 89

or, 91

xor, 91
blank line,9
break

statement, 106, 112, 115
built-in

method, 27
built-in function

abs, 52

bytes, 37

call, 88

chr, 22

compile, 109

complex, 52

divmod, 51

eval, 109, 132

exec, 109

float, 52

hash, 38

id, 19

int, 52

len, 22,23,49

object, 27, 88

open, 29

ord, 22

pow, 51,52

print, 37

range, 113

repr, 99

round, 53

slice, 35

type, 19, 44
built-in method

call, 88

object, 27, 88
builtins

module, 131
byte, 22
bytearray, 23
bytecode, 30, 151
bytes, 22

built-in function, 37
bytes literal, 12

bytes-1like avtikxeipeva, 151

call, 87
built-in function, 88

built—-in method, 88

class instance, 88

class object, 28,29, 88

function, 24, 88

instance, 49, 88

method, 88

procedure, 99

user—-defined function, 88
callable, 151

object, 24, 87
callback, 152
case

keyword, 117

match, 117
case block, 119
chaining

comparisons, 91

exception, 105
character, 22, 86
chr

built-in function, 22
class

attribute, 28

attribute assignment, 29

body, 45

constructor, 36

definition, 104, 128

instance, 29

name, 128

object, 28, 88, 128

statement, 128
class instance

attribute, 29

attribute assignment, 29

call, 88

object, 28, 29, 88
class object

call, 28,29, 88
clause, 111
clear () (ué6odog tng frame), 34
close () (ué6odog tng coroutine), 56
close () (uéBodog tng generator), 83
co_argcount (code object attribute), 30
co_argcount (tddtnta ¢ codeobject), 31
co_cellvars (code object attribute), 30
co_cellvars (ididtnta g codeobject), 31
co_code (code object attribute), 30
co_code (tddtnra e codeobject), 31
co_consts (code object attribute), 30
co_consts (tddtnta g codeobject), 31
co_filename (code object attribute), 30
co_filename (t&dtnTa e codeobject), 31
co_firstlineno (code object attribute), 30
co_firstlineno (tdidtnTa T8 codeobject), 31
co_flags (code object attribute), 30
co_flags (tdiotnta 16 codeobject), 31
co_freevars (code object attribute), 30
co_freevars (iddtnTa e codeobject), 31

196

Eupetniplo

The Python Language Reference, Anpoocisuon 3.11.13

co_kwonlyargcount (code object attribute), 30
co_kwonlyargcount (tddtnta g codeobject), 31
co_lines () (uébBodog tng codeobject), 32
co_lnotab (code object attribute), 30
co_lnotab (tddtnra s codeobject), 31
co_name (code object attribute), 30
co_name (tddtnTa g codeobject), 31
co_names (code object attribute), 30
co_names (tdtotnta tNg codeobject), 31
co_nlocals (code object attribute), 30
co_nlocals (tdidtnta e codeobject), 31
co_positions () (uébodog tng codeobject), 32
co_posonlyargcount (code object attribute), 30
co_posonlyargcount (tdotnta tng codeobject),
31

co_qualname (code object attribute), 30
co_qualname (tddtnta ¢ codeobject), 31
co_stacksize (code object attribute), 30
co_stacksize (tdiotnra g codeobject), 31
co_varnames (code object attribute), 30
co_varnames (tddtnTa ¢ codeobject), 31
code object, 30
collections

module, 23
comma, 78

trailing, 96
command line, 131
comment, 8
comparison, 91
comparisons, 37

chaining, 91
compile

built-in function, 109
complex

built-in function, 52

number, 22

object, 22
complex literal, 16
compound

statement, 111
comprehensions, 79

dictionary, 80

list, 79

set, 80
conditional

expression, 95
constant, 12
constructor

class, 36
container, 20, 28
context manager, 53
context petaPAntn, 152
contiguous, 152
continue

statement, 106, 112, 115
conversion

arithmetic, 77

string, 37,99

coroutine, 55, 81, 152

function, 27
coroutine ouvdptnon, 152
dangling

else, 112
data, 19

type, 20

type, immutable, 78
dbm.gnu

module, 24
dbm.ndbm

module, 24
debugging

assertions, 103
decimal literal, 16
decorator, 153

def

statement, 126
default

parameter value, 126
definition

class, 104, 128
function, 104, 126
del
statement, 36, 103
deletion
attribute, 104
target, 103
target list, 103
delimiters, 18
descriptor, 153
destructor, 36, 100
dictionary
comprehensions, 80
display, 80
object, 23, 28, 38, 80, 86, 101
display
dictionary, 80
list, 79
set, 80
division, 90
divmod
built-in function, 51
docstring, 128, 153
documentation string, 32
duck-typing, 153

e
in numeric literal, 17
elif
keyword, 112
else
conditional expression,95
dangling, 112
keyword, 106, 112, 113, 115
empty
list, 79
tuple, 22,78

encoding declarations (source file), 8

Eupetniplo

197

The Python Language Reference, Anpooisuon 3.11.13

escape sequence, 13
eval

built-in function, 109, 132

evaluation
order, 96
exc_info (in module sys), 34
except
keyword, 113
except_star
keyword, 114
exception, 105
AssertionError, 103
AttributeError, 85
GeneratorExit, 83, 85
ImportError, 107
NameError, 78
StopAsyncIteration, 84
Stoplteration, 82, 104
TypeError, 8§89
ValueError, 91
ZeroDivisionError, 90
chaining, 105
handler, 34
raising, 105
exclusive
or, 91
exec
built-in function, 109
execution
frame, 128
stack, 34
expression, 77
Conditional, 94
conditional, 95
generator, 80
lambda, 95, 127

list, 96,99

statement, 99

yield, 81
extension

module, 20
f'

formatted string literal, 13
f"

formatted string literal, 13

f-string, 154

f_back (frame attribute), 33
f_back (tddtyra g frame), 33
f_builtins (frame attribute), 33

f_builtins (W0dtnra g frame), 33

f_code (frame attribute), 33
f_code («0dtnTa g frame), 33
f_globals (frame attribute), 33

f_globals (tdiotnta e frame), 33

f_lasti (frame attribute), 33
f_lasti (tSidtnta g frame), 33
f_lineno (frame attribute), 33
f_lineno (tddtyTa ¢ frame), 33

f_locals (frame attribute), 33
f_locals (i6idtnta tng frame), 33
f_trace (frame attribute), 33
f_trace (W0dtnTa N6 frame), 33
f_trace_1lines (frame attribute), 33
f_trace_lines (tididtnta 118 frame), 33
f_trace_opcodes (frame attribute), 33
f_trace_opcodes (ididtnta g frame), 33
finalizer, 36
finally

keyword, 104, 106, 113, 115
find_spec

finder, 66
finder, 66, 154

find_spec, 66
float

built—-in function, 52
floating point

number, 21

object, 21
floating point literal, 16
for

in comprehensions, 79

statement, 106, 112

form
lambda, 95
format () (built-in function)
__str__ () (object method), 37
formatted string literal, 14
frame
execution, 128
object, 33
from

import statement, 107
keyword, 81, 107
yield from expression, 82
frozenset
object, 23
fstring, 14
f-string, 14
function
annotations, 127
anonymous, 95
argument, 24
call, 24, 88
call,user—-defined, 88
definition, 104, 126
generator, 81, 104
name, 126
object, 24,27, 88, 126
user—-defined, 24
future
statement, 108
garbage collection, 19
generator, 155
expression, 80
function, 27, 81, 104
iterator, 27, 104

198

Eupetniplo

The Python Language Reference, Anpoocisuon 3.11.13

object, 31, 80, 82
generator iterator, 155
generator éxwppaon, 155
generic

special attribute, 20
global

name binding, 109

namespace, 24

statement, 103, 109
global interpreter lock, 156
grouping, 9
guard, 119
handler

exception, 34
hash

built-in function, 38
hash character,8
hash-based pyc, 156
hashable, 80, 156
hexadecimal literal, 16
hierarchy

type, 20
hooks

import, 66

meta, 66

path, 66
id

built-in function, 19
identifier, 10,78
identity

test, 94
identity of an object, 19
if

conditional expression, 95

in comprehensions, 79

keyword, 117

statement, 112
imaginary literal, 16
immutable, 156

data type, 78

object, 22,78, 80
immutable object, 19
immutable sequence

object, 22
immutable types

subclassing, 36
import

hooks, 66

statement, 28, 107
import hooks, 66
import machinery, 63
in

keyword, 112

operator, 94
inclusive

or, 91
indentation, 9
index operation,?22

indices () (uébodog tig slice), 35
inheritance, 128
input, 132
instance
call, 49, 88
class, 29
object, 28, 29, 88
int
built-in function, 52
integer, 22
object, 21
representation, 21
integer literal, 16
interactive mode, 131
internal type, 30

interpolated string literal, 14

interpreted, 157
interpreter, 131
inversion, 89
invocation, 24
io
module, 29
irrefutable case block, 119
is
operator, %4
is not
operator, 94
item
sequence, 86
string, 86
item selection,?22
iterable, 157
unpacking, 96
iterator, 157
J
in numeric literal, 17
key, 80
key/value pair, 80
keyword, 11
as, 107,113, 116, 117
async, 129
await, 88, 129
case, 117
elif, 112
else, 106,112, 113,115
except, 113
except_star, 114
finally, 104, 106, 113, 115
from, 81, 107
if, 117
in, 112
yield, 81
lambda, 158
expression, 95, 127
form, 95
language
c, 20, 21, 27,91
Java, 21

Eupetniplo

199

The Python Language Reference, Anpooisuon 3.11.13

last_traceback (in module sys), 34

leading whitespace, 9
len

built-in function, 22, 23,49

lexical analysis,7
line continuation,8
line joining,7,8
line structure,’
list
assignment, target, 100
comprehensions, 79
deletion target, 103
display, 79
empty, 79
expression, 96,99
object, 23,79, 85, 86, 101
target, 100, 112
list comprehension, 158
literal, 12,78
loader, 66, 158
logical line,7
loop
statement, 106, 112
loop control
target, 106
magic
névodog, 159
makefile () (socket method), 29
mangling
name, 78
mapping, 159
object, 23, 29, 86, 101
match
case, 117
statement, 117
matrix multiplication, 90
membership
test, 94
meta
hooks, 66
meta hooks, 66
meta path finder, 159
metaclass, 44
metaclass hint, 45

method
built-in, 27
call, 88

object, 26,27, 88
user—defined, 26
minus, 89
module, 159
_ _main
array, 23
builtins, 131
collections, 23
dbm.gnu, 24
dbm.ndbm, 24
extension, 20

, 60, 131

importing, 107
io, 29
namespace, 28
object, 28, 85
sys, 114,131
module spec, 66
module eméxtaong, 154
modulo, 90
multiplication, 90
mutable, 159
object, 23, 100, 101
mutable object, 19
mutable sequence
object, 23
name, 10, 78
binding, 100, 107, 126, 128
binding, global, 109
class, 128
function, 126
mangling, 78
rebinding, 100
unbinding, 103
named expression, 94
named tuple, 160
names
private, 78
namespace, 160
global, 24
module, 28
package, 65
negation, 89
nested scope, 160
nonlocal
statement, 110
not
operator, 94
not in
operator, 94
null
operation, 103
number, 16
complex, 22
floating point, 21
numeric
object, 21,29
numeric literal, 16
object, 19
Boolean, 21
Ellipsis, 21
None, 20, 99
NotImplemented, 20

asynchronous—generator, 84
built-in function, 27, 88

built-in method, 27, 88
callable, 24, 87
class, 28, 88, 128

class instance, 28, 29, 88
code, 30

200

Eupetniplo

The Python Language Reference, Anpoocisuon 3.11.13

complex, 22

dictionary, 23, 28, 38, 80, 86, 101

floating point, 21

frame, 33

frozenset, 23

function, 24, 27, 88, 126

generator, 31, 80, 82

immutable, 22, 78, 80

immutable sequence, 22

instance, 28, 29, 88

integer, 21

list, 23,79, 85, 86, 101

mapping, 23, 29, 86, 101

method, 26, 27, 88

module, 28, 85

mutable, 23, 100, 101

mutable sequence, 23

numeric, 21, 29

sequence, 22, 29, 86, 94, 101, 112

set, 23, 80

set type, 23

slice, 49

string, 86

traceback, 34, 105, 114

tuple, 22, 86, 96

user—-defined function, 24, 88, 126

user—defined method, 26
object.__match_args__ (evowuoatwuévn ueta-

BAnziy), 53
object.__slots__ (evowuatwuévy uetafintn),
42

octal literal, 16
open

built—-in function, 29
operation

Boolean, 94

binary arithmetic, 90

binary bitwise, 91

null, 103

power, 89

shifting, 91

unary arithmetic, 89

unary bitwise, 89
operator

— (minus), 89, 90

% (percent), 90

& (ampersand), 91

* (asterisk), 90

*% 80

+ (plus), 89, 90

/ (slash), 90

//,90

< (less), 91

<<, 91

<=,91

1=,91

==,91

> (greater), 91

>=, 0]

>>, 91

@ (ar), 90

~ (caret), 91

and, 94

in, 94

is, 94

is not, %4

not, 94

not in, 94

or, 94

overloading, 35

precedence, 96

ternary, 95

| (vertical bar), 91

~ (tilde), 89
operators, 17
or

bitwise, 91

exclusive, 91

inclusive, 91

operator, 94
ord

built-in function, 22
order

evaluation, 96
output, 99

standard, 99
overloading

operator, 35
package, 64

namespace, 65

portion, 65

regular, 64
parameter

call semantics, 87

function definition, 125

value, default, 126
parenthesized form, 78
parser, 7
pass

statement, 103
path

hooks, 66
path based finder, 72, 161
path entry, 161
path entry finder, 161
path entry hook, 161
path hooks, 66
path-like avtikeipevo, 161
pattern matching, 117
physical line, 7,8, 13
plus, 89
popen () (in module os), 29
portion

package, 65
pow

built—-in function, 51,52

Eupetniplo

201

The Python Language Reference, Anpooisuon 3.11.13

power

operation, 89
precedence

operator, 96
primary, 85
print

built-in function, 37
print () (built-in function)

__str__ () (object method), 37
private

names, 78
procedure

call, 99
program, 131
provisional API, 162
provisional mnaxéTo, 162
T]

raw string literal, 2
r mw

raw string literal, 12
raise

statement, 105
raising

exception, 105
range

built-in function, 113
raw string, 12
rebinding

name, 100
reference

attribute, 85
reference counting, 19

regular
package, 64
relative
import, 108
replace () (uéBodog tng codeobject), 33
repr

built-in function, 99
repr () (built-in function)
__repr__ () (object method), 37
representation
integer, 21
reserved word, 11
return
statement, 104, 115
round
built-in function, 53
send () (uébodog ¢ coroutine), 55
send () (uéBodog tng generator), 82
sequence
item, 86
object, 22, 29, 86, 94, 101, 112
set
comprehensions, 80
display, 80
object, 23, 80
set comprehension, 163

set type
object, 23
shifting
operation, 91
simple
statement, 99
singleton
tuple, 22
slice, 86,163
built-in function, 35
object, 49
slicing, 22,23, 86
assignment, 101
soft keyword, 11
source character set,8
space, 9
special
attribute, 20
attribute, generic, 20
névodog, 164
stack
execution, 34
trace, 34
standard
output, 99
standard input, 131
start (slice object attribute), 35, 86
statement
assert, 103
assignment, 23, 100
assignment, annotated, 102
assignment, augmented, 102
async def, 129
async for, 129
async with, 130
break, 106, 112, 115
class, 128
compound, 111
continue, 106, 112, 115
def, 126
del, 36, 103
expression, 99
for, 106, 112
future, 108
global, 103, 109
if, 112
import, 28, 107
loop, 106, 112
match, 117
nonlocal, 110
pass, 103
raise, 105
return, 104, 115
simple, 99
try, 34,113
while, 106, 112
with, 53, 116
yield, 104

202

Eupetniplo

The Python Language Reference, Anpoocisuon 3.11.13

statement grouping,9 throw () (uéfodog ¢ generator), 82
stderr (in module sys), 29 token, 7
stdin (in module sys), 29 trace
stdio, 29 stack, 34
stdout (in module sys), 29 traceback
step (slice object attribute), 35, 86 object, 34, 105, 114
stop (slice object attribute), 35, 86 trailing
string comma, 96
_ _format__ () (object method), 37 triple—-quoted string, 12
__str__ () (object method), 37 try
conversion, 37, 99 statement, 34, 113
formatted literal, 14 tuple
immutable sequences, 22 empty, 22, 78
interpolated literal, 14 object, 22, 86, 96
item, 86 singleton, 22
object, 86 type, 20
string literal, 12 built-in function, 19,44
strong reference, 164 data, 20
subclassing hierarchy, 20
immutable types, 36 immutable data, 78
subscription, 22,23, 86 type alias, 164
assignment, 101 type hint, 165
subtraction, 90 type of an object, 19
suite, 111 types, internal, 30
sSys u'
module, 114, 131 string literal, 12
sys.exc_info, 34 u"
sys.exception, 34 string literal, 12
sys.last_traceback, 34 unary
sys.meta_path, 66 arithmetic operation, 89
sys.modules, 65 bitwise operation, 89
sys.path, 72 unbinding
sys.path_hooks, 72 name, 103
sys.path_importer_cache, 72 unpacking
sys.stderr, 29 dictionary, 80
sys.stdin, 29 in function calls, 87
sys.stdout, 29 iterable, 96
tab, 9 unreachable object, 19
target, 100 unrecognized escape sequence, 14
deletion, 103 user—-defined
list, 100, 112 function, 24
list assignment, 100 function call, 88
list,deletion, 103 method, 26
loop control, 106 user—defined function
tb_ frame (traceback attribute), 34 object, 24, 88, 126
tb_frame (tdidtyTa g traceback), 34 user-defined method
tb_lasti (traceback attribute), 34 object, 26
tb_lasti (tSidtnTa g traceback), 34 value, 80
tb_1lineno (traceback attribute), 34 default parameter, 126
tb_lineno (tdidtnta tng traceback), 34 value of an object, 19
tb_next (traceback attribute), 34 values
tb_next (1didtnra g traceback), 34 writing, 99
ternary virtual environment, 165
operator, 95 virtual machine, 165
test walrus operator, 94
identity, 94 while
membership, 94 statement, 106, 112
throw () (uéBodog tng coroutine), 55 with

Eupetniplo 203

The Python Language Reference, Anpooisuon 3.11.13

statement, 53, 116
writing
values, 99
XOor
bitwise, 91
yield
examples, 83
expression, 81
keyword, 81
statement, 104
{} (curly brackets)
dictionary expression, 80
in formatted string literal, 14
set expression, 80
| (vertical bar)
operator, 91

augmented assignment, 102
~ (tilde)
operator, 89

A

aképalra Srailpeon, 154
akoAoubia, 163
avayvwplopévo ovoua, 162
avtikeipevo, 160
avtikeipevo apyetiou, 154
avtikeipevo nou poirdZer pe apyelo, 154
and
8nAwon eilocaywyng, 59
apyxetio xeipévou, 164
acUyypovog generator, 150
aouyxpovo¢ generator iterator, 150
acuyyxpovog iterable, 150
acuyyxpovog iterator, 150
acuyyxpovoc Srayeiplotig context, 150
apnenuévn PBacikn xAdon, 149

r

yevikn ouvdptnon, 156
yevikdg TUnog, 156
ypappatiky, 4

A

Saveilkn avaypopd, 151

8nAwon, 164

SraBpactixkde, 157
Sraxeipiletar pra eaipeon, 61
Srayxelpion owpaApdtwv, 61
Sirayeilplotic context, 152
Sraxelplrotic efaipéoewv, 61
SuaBikd apyeto, 151

E

€181k pévodocg, 164
eltoaydépevo path, 157
elLoaywyéag, 157
eltoaywyn, 157

eXTEAEODN
neplopiopévn, 61
nAatoiro, 59
éxyppaon, 154
eAeyKTAC otatikou tunou, 164
eAeUbepn
petaBAntn, 60
ealpeon, 61

K

xaboAlkég véeg ypappécg, 165
xdvel raise pia efaipeon, 61
kxavovikd naxéto, 163
xatavoénon Aefixou, 153
xAdon, 152
xAdon véou oTul, 160
Kwd ixag
umiox, 59
xwdixomoinon xeipévou, 164
kw8 lkomoilnon ouctnuatog apyeilwv
XelploTnc owpaipdtwv, 154

Xxatu

Al

AeZixd, 153
AeZilAoyikol oplopot,4
AloTa, 158

M

payikn pébodoc, 159
nébodoc, 159

magic, 159

special, 164
peta-xAdon, 159
petaBAnty

eAeubBepn, 60
petaBAntrh xAdong, 152
peTaRAnT) neplBAAAOVTOC

PYTHONHASHSEED, 39

PYTHONNODEBUGRANGES, 32

PYTHONPATH, 72
piya8ikde apibudg, 152
pova8ikd dispatch, 163
povtéAo exTéAeong, 59
HovTéAo Teppatiopou, 62
pmiox, 59

kxwdixag, 59

O

dvoua, 59

ouvdeon, 59
6plona, 150
6plopa keyword, 158
6plopa 6éong, 162
oyn AeZixou, 153

M

nakéto, 160
naxéto namespace, 160

204

Eupetniplo

The Python Language Reference, Anpoocisuon 3.11.13

napduetpog, 160
ne&io, 59, 60
neplRdAAiov, 60
neplLopLOpévn

extéAleon, 61
nAaioiro

extéAleon, 59
nAnfoc avawpopdcg, 163

)2

celpd avdiuoncg pebddwv, 159
onueiloypawpia, 4
oulAloyn amoppipdtwy, 155
ouppBolocelpd TplLOnAwv eloaywylxwv, 164
ouvdptnon, 155
ouvdptnon annotation, 155
ouvdptnon key, 158
ouvBeon

évopa, 59
OUVTAKT1kO, 4
opdApata, 61

T

Teppatiopdc Aeiltoupylac Sirepunvéa, 157
Texvikéc mpoSiraypapéc module, 159
Tpnpa, 162

Tomikn xwdikomoinon, 159

TUnog, 164

X

Xapaktnelotiko, 151
Xwpoc ovoupdtwv, 59

Eupetniplo

205

	Εισαγωγή
	Εναλλακτικές Υλοποιήσεις
	Σημειογραφία

	Lexical analysis
	Line structure
	Logical lines
	Physical lines
	Comments
	Encoding declarations
	Explicit line joining
	Implicit line joining
	Blank lines
	Indentation
	Whitespace between tokens

	Other tokens
	Identifiers and keywords
	Keywords
	Soft Keywords
	Reserved classes of identifiers

	Literals
	String and Bytes literals
	Escape sequences

	String literal concatenation
	f-strings
	Numeric literals
	Integer literals
	Floating point literals
	Imaginary literals

	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	None
	NotImplemented
	Ellipsis
	numbers.Number
	numbers.Integral
	numbers.Real (float)
	numbers.Complex (complex)

	Sequences
	Immutable sequences
	Mutable sequences

	Set types
	Mappings
	Dictionaries

	Callable types
	User-defined functions
	Special read-only attributes
	Special writable attributes

	Instance methods
	Generator functions
	Coroutine functions
	Asynchronous generator functions
	Built-in functions
	Built-in methods
	Classes
	Class Instances

	Modules
	Custom classes
	Class instances
	I/O objects (also known as file objects)
	Internal types
	Code objects
	Special read-only attributes
	Methods on code objects

	Frame objects
	Special read-only attributes
	Special writable attributes
	Frame object methods

	Traceback objects
	Slice objects
	Static method objects
	Class method objects

	Special method names
	Basic customization
	Customizing attribute access
	Customizing module attribute access
	Implementing Descriptors
	Invoking Descriptors
	__slots__

	Customizing class creation
	Metaclasses
	Resolving MRO entries
	Determining the appropriate metaclass
	Preparing the class namespace
	Executing the class body
	Creating the class object
	Uses for metaclasses

	Customizing instance and subclass checks
	Emulating generic types
	The purpose of __class_getitem__
	__class_getitem__ versus __getitem__

	Emulating callable objects
	Emulating container types
	Emulating numeric types
	With Statement Context Managers
	Customizing positional arguments in class pattern matching
	Special method lookup

	Coroutines
	Awaitable Objects
	Coroutine Objects
	Asynchronous Iterators
	Asynchronous Context Managers

	Μοντέλο εκτέλεσης
	Δομή ενός προγράμματος
	Ονομασία και σύνδεση
	Σύνδεση ονομάτων
	Επίλυση ονομάτων
	Ενσωματωμένες συναρτήσεις και περιορισμένη εκτέλεση
	Αλληλεπίδραση με δυναμικές λειτουργίες

	Εξαιρέσεις

	The import system
	importlib
	Packages
	Regular packages
	Namespace packages

	Searching
	The module cache
	Finders and loaders
	Import hooks
	The meta path

	Loading
	Loaders
	Submodules
	Module spec
	Import-related module attributes
	module.__path__
	Module reprs
	Cached bytecode invalidation

	The Path Based Finder
	Path entry finders
	Path entry finder protocol

	Replacing the standard import system
	Package Relative Imports
	Special considerations for __main__
	__main__.__spec__

	References

	Expressions
	Arithmetic conversions
	Atoms
	Identifiers (Names)
	Literals
	Parenthesized forms
	Displays for lists, sets and dictionaries
	List displays
	Set displays
	Dictionary displays
	Generator expressions
	Yield expressions
	Generator-iterator methods
	Examples
	Asynchronous generator functions
	Asynchronous generator-iterator methods

	Primaries
	Attribute references
	Subscriptions
	Slicings
	Calls

	Await expression
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Value comparisons
	Membership test operations
	Identity comparisons

	Boolean operations
	Assignment expressions
	Conditional expressions
	Lambdas
	Expression lists
	Evaluation order
	Operator precedence

	Simple statements
	Expression statements
	Assignment statements
	Augmented assignment statements
	Annotated assignment statements

	The assert statement
	The pass statement
	The del statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	Future statements

	The global statement
	The nonlocal statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	except clause
	except* clause
	else clause
	finally clause

	The with statement
	The match statement
	Overview
	Guards
	Irrefutable Case Blocks
	Patterns
	OR Patterns
	AS Patterns
	Literal Patterns
	Capture Patterns
	Wildcard Patterns
	Value Patterns
	Group Patterns
	Sequence Patterns
	Mapping Patterns
	Class Patterns

	Function definitions
	Class definitions
	Coroutines
	Coroutine function definition
	The async for statement
	The async with statement

	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Πλήρης προδιαγραφή γραμματικής
	Γλωσσάρι
	About these documents
	Contributors to the Python Documentation

	Ιστορία και Άδεια
	Η ιστορία του λογισμικού
	Όροι και προϋποθέσεις για την πρόσβαση ή την χρήση της Python με άλλους τρόπους
	PSF LICENSE AGREEMENT FOR PYTHON 3.11.13
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ BEOPEN.COM ΓΙΑ PYTHON 2.0
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CNRI ΓΙΑ PYTHON 1.6.1
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CWI ΓΙΑ PYTHON 0.9.0 ΕΩΣ 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.13 DOCUMENTATION

	Άδειες και Ευχαριστίες για Ενσωματωμένο Λογισμικό
	Mersenne Twister
	Sockets
	Ασύγχρονες socket υπηρεσίες
	Διαχείριση Cookie
	Ανίχνευση εκτέλεσης
	Συναρτήσεις UUencode και UUdecode
	Κλήσεις Απομακρυσμένης Διαδικασίας XML
	test_epoll
	Επιλογή kqueue
	SipHash24
	strtod και dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N σουίτα δοκιμής
	Audioop
	asyncio

	Copyright
	Ευρετήριο

