The Python Language Reference
Anuooicsuon 3.10.18

Guido van Rossum
and the Python development team

louAiou 08, 2025

Python Software Foundation
Email: docs@python.org

Meplexoueva

1 Ewoyoyn 3
1.1 EvOMOKTKEG YAOTIOWOELS « « v v v o v v e 4
1.2 ENUEIOYPOPLOL « « v v o v e e e e e e e e e e e e e e e 4

2 Lexical analysis 7
2.1 LINeStructure o i e e e e e e e e e e e e e 7

2.1.1 Logical lines e e 7
2.1.2 Physicallines e e e e e e e 7
2.1.3 0 CommentS . . . v vt v e e e e e e e e e e e e e e e e e 8
2.1.4 Encodingdeclarations e e e e e e e e e e e e e e 8
2.1.5 Explicitline joining o oL e e e e e e e e e e e e 8
2.1.6 Implicitline joining L e e 8
2177 Blanklines. oL e e e e e e e e e e 9
2.1.8 Indentation e e e e e 9
2.1.9 Whitespace between tokenso e e e e e e e 10
22 Othertokens i i i e e e e 10
2.3 Identifiersand keywords Lo 10
231 Keywords e e e e e e e e e 11
232 SoftKeywords e 11
2.3.3 Reservedclasses of identifiers L 11
24 Literals 12
24.1 Stringand Bytes literals L e e e 12
2.4.2 String literal concatenationl oL 14
243 Formatted string literalso 15
244 Numericliterals e e 17
245 Integerliterals L e e e e e e e e e e 17
2.4.6 Floating pointliterals L e e e 17
247 Imaginaryliterals e 18
2.5 OPperators e e e e e 18
2.6 Delimiters e e e e e e 18

3 Data model 19
3.1 Objects, valuesand types 19
3.2 Thestandard type hierarchy L 20
3.3 Special methodnames L e e e e e e e e e 28

3.3.1 Basic customizationo e e e e e e e e e e e e e e 29
3.3.2 Customizing attribute accesst e e e e e 32

3.3.3 Customizing class Creation v v it e e e e e e e e e e e e
3.3.4 Customizing instance and subclass checkso ..
3.3.5 Emulating eneric types v ot i e e e e e e e e e e e e e e e e e e e
3.3.6 Emulating callable objects e
3.3.77 Emulating container types e e e i e e e e e e e e e e e
3.3.8 Emulating numeric types oo i e e e e e e e e e e e
3.3.9 With Statement Context Managers v v v vt i e e e e e e
3.3.10 Customizing positional arguments in class pattern matching
3.3.11 Specialmethodlookup L
34 COoroutineS . . . v v v v v e
34.1 Awaitable Objects L. e e e e e e e
342 Coroutine ObJectS v v v v v e
3.43 Asynchronous Iterators L. e e e e e e e e e
344 Asynchronous Context Managers i it
Movtého ektéheong
4.1 Aoun eVOG TTPOYPAMUOTOS v v v v e
4.2 OVOUOOLO KOL GUVOEDT] + « v v v v e e e e e e e e e e e e e e e e e e e
42,1 ZUVOEON OVOUGTMIV « « v v v v v e
422 ERmUON OVOUGTMV « « o v v v e e e e i e i e e e e e e e e e e e e e
423 EvoOuotoUEveG GUVOPTNOELS KOL TTEPLOPLOUEVT] EKTENEON .+ o v v v v v v v e oo o e e w
424 AMNETIOPOON UE DUVOULKEG NELTOUPYIEG + v v v v v v e e e e e e e e e e e e e e e
43 EEOIPEOELG « v v v v v ot e e e e e e e e e e e e
The import system
5.1 dmportlib . . .o e e e e e e e e
5.2 Packages e e e e e
5.2.1 Regular packages e e e e e e
5.2.2 Namespace packages e e e e e e e e e e
5.3 Searching o L e e e e e e e e e e
53.1 Themodulecache
5.3.2 Findersandloaders e e e e
533 Importhooks e
5.34 Themetapath e e e e
54 Loading o oL e e
5401 Loaders e e e e e
542 Submodules e e
543 ModuleSpec e e e e e e e e e e
5.4.4 Import-related module attributeso e
545 module.__path
54.6 Modulereprs e e e e e e e e e e e e e e e
5477 Cached bytecode invalidation e
5.5 ThePathBased Finder e e
5.5.1 Pathentryfinders e e e
5.5.2 Pathentryfinder protocol L
5.6 Replacing the standard import System e e e e e e e e e e
5.7 Package Relative Imports o e e e e e e e e e e
5.8 Special considerations for __main__ Lo e e
5.8 1 maIN__._ SPEC_ . . i i e
59 References e
Expressions
6.1 Arithmetic CONVErSIONS L v vt ettt e e e e e e e e e e e e e e e e e
6.2 ALOMS . . . o e e e e e

51
51
51
51
52
53
53
54

55
56
56
56
57
57
57
58
58
58
59
60
61
61
62
63
63
63
64
64
65
66
66
67
67
67

6.3

6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11
6.12
6.13
6.14
6.15
6.16
6.17

6.2.1 Identifiers (NaAmMES) v v i e e e e e e e e e e e e
622 Literals
6.2.3 Parenthesized forms L
6.2.4 Displays for lists, sets and dictionaries L oL
6.2.5 Listdisplays e e
6.2.6 Setdisplays e e
6.2.7 Dictionary displays e e e e e e e e e e e e
6.2.8 Generator EXPreSSiONS . . v v v v v v e
6.2.9 Yield exXpressions e e e e e e
Primaries e e e e
6.3.1 Attribute references L. L
6.3.2 SubSCriptions e e e e e e e e e e e e e e e e
6.3.3 SHCINGS . . . v e e e e e e e e e e e e
6.3.4 Calls e
AWAIL EXPIESSION « . v v v v e
The pOWEr Operator o v it e e e e e e e e e e e e e e e
Unary arithmetic and bitwise operations o oo vt e e
Binary arithmetic Operations i L e e e e e e e e e e e e e e
Shifting operations L e e e e e e e e
Binary bitwise operations e e e
ComPariSONS . . . ¢ v v v ot e
6.10.1 Value compariSOns e e e e e e e e
6.10.2 Membership test OPerations v v v i i e e e e e e e e e e e e e e
6.10.3 Identity COMPATISONS . . .« v v v v v et e e e e e e e e e e e e e e e e e e e
Boolean operations L. e e e e
ASSIGNMENt EXPIESSIONS « + v v v v v e v v e
Conditional XPressions o vt i e e e e e e e e e e e e e
Lambdas e e
EXpression lists o i e e e e e e e e e e e e e
Evaluationorder e e

Simple statements

7.1 EXpression Statements i e e e e e e e e e e e e e e e
7.2 AsSignment StatemMeNts et e
7.2.1 Augmented assignment StatemMentso e u e e e e e e e
7.2.2 Annotated assignment Statements e e e e e e e e e e e e e e
7.3 Theassert StatemMent v v v i v v it e e e e e e e e e e e e e e e
7.4 Thepassstatement v v i i et e e e e e e e e e e e e e e e e e e
7.5 Thedelstatement 0 i i i e e e e e e e e e e e e e e e e e
7.6 The returnstatement i e e e e e e e e e e e e e e e e
7.7 The yieldstatement 0 i i it e e e e e e e e e e e e e e e
7.8 The raisestatement v v v v i v v et e e e e e e e e e e e e e e e e e
7.9 Thebreak statement o v v i v v e e e e e e e e e e e e e e e e e e
7.10 The continuestatement v v i i e e e e e e e e e e e e e e e e e
7.11 The import statement i i e
7.11.1 Future statementst i e
7.12 The global statement v v i it e e e e e e e e e e e e e e e e e
7.13 The nonlocal StatemMent v v v v v v v v e e e e e e e e e e e e e e e e
Compound statements
8.1 Theifstatement v v v v e
8.2 Thewhilestatement i v v i ittt e et e e e e e e e e e e
8.3 The forstatement i e

91
91
92
94
94
95
95
96
96
96
97
98
99
99
100
101
102

103
104
104
104

10
AI

BI

FI

84 Thetrystatement i e e e e e e e e e e e e e e e e e e e 105
8.5 Thewithstatement ot i ittt e e e e e e e e 107
8.6 Thematchstatement e e e 109
8.6.1 Overview e e 109
8.6.2 Guards. e e e e 110
8.6.3 TIrrefutable Case Blocks e 111
8.6.4 Patterns e e e e e e e 111
8.7 Functiondefinitions e e e e e e e 118
8.8 Classdefinitions e e e e e e 120
8.9 Coroutines o i e e e e e e e e e e e e e 121
8.9.1 Coroutine function definition L. 121
8.9.2 Theasync forstatement o i vt it e e e e 121
8.9.3 Theasync withstatement i v i e e e e e e e e e e e e 122
Top-level components 123
9.1 Complete Python programs 0 0 i i e e e e e e e e e e e 123
9.2 Fleinput e e e e e 124
0.3 Interactive INPUL o o i i e 124
9.4 EXpressioninpul vt it e 124
ITAMp1ic TPOdLOYPOLPT] YPOAUUOTIKNG 125
T'\wocdpt 137
About these documents 153
B’.1 Contributors to the Python Documentation oo 153
Iotopia kou Adsra 155
[7.1 Homoplot TOU MOYLOULKOU + . o v v v v e 155
7.2 'Opol kou wpobmoOéaels yio v pdofaon 1) v xpnon g Python pe dhhovg tpomovg 156
I”.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.10.18 156
722 ZYMOQONIA AAEIAZ BEOPEN.COMTIAPYTHON2O0 157
['2.3 ZYMOQONIA AAEIAZ CNRITTAPYTHON 1.6.1 158
['24 ZYM®ODONIA AAEIAZ CWITIAPYTHON09.0EQX 1.2 159
[7.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.18 DOCUMENTATION 160
7.3 Adeieg ko Evuyaprotieg yio EVOOUOTOUEVO AOYIOWKO . . . o o o v oo 160
73,1 Mersenne TWISter o o o e e e e e 160
732 Sockets e e 161
[7.3.3 AcUyypoveg socket UINPEOIES o v v v v i e e e e 162
734 Awyelpion Cookie e e e e e 162
[7.3.5 AVIYVEUON EKTENEONG « « « v v v v et e e e e e e e e e e e e e e e e 163
I7.3.6 Zuvoptioelg UUencode kaw UUdecodeo oot it i i e it 163
I.3.7 KMjoewg Amouokpuouévng Awadikaotog XMLo oL Lo 164
[7.3.8 test_epoll e e e e 164
[73.9 EmdoyNKkqueue o o e e e e e e 165
[7.3.10 SipHash24 o e 165
7311 strtodkondtoa. . . . o oo oL e e e e e e e 166
[7.3.12 OpenSSL o o e e e e 166
I[7.3.13 expat. . . o o e e e e e e e 169
[73.14 Tibfl . . . o e e 169
7305 zib . o o e 170
[73.16 cfuhash e 170
I7.3.17 Hbmpdec o e e e e e e e e e 171
[7.3.18 W3C CI4N GOUITO QOKUUNG + « « v v v v e v e e e e e e e e e e e e e e e e e e e 171
[7.3.19 Audioop v v o i e e 172

A’ Copyright 173

Evpetipro 175

Vi

The Python Language Reference, Anpocisuon 3.10.18

This reference manual describes the syntax and «core semantics» of the language. It is terse, but attempts to be exact and
complete. The semantics of non-essential built-in object types and of the built-in functions and modules are described in
library-index. For an informal introduction to the language, see tutorial-index. For C or C++ programmers, two additional
manuals exist: extending-index describes the high-level picture of how to write a Python extension module, and the c-
api-index describes the interfaces available to C/C++ programmers in detail.

Mepiexopeva 1

The Python Language Reference, Anpoocisuon 3.10.18

2 Meplexopeva

KEDAAAIO 1

Elcaywyn

Auto t0 eyYelpidlo avapopdc mepLypdpel TV YAWooo tpoypauatiopoy Python. Agv poopiletal wg eyyelpidlo
ekudonone.

Ztnv poortdOeLla To £yypapo autod va eivar 660 To duvaTov o akpiBéc, emhéyOnKe apykd N Ayyhkn yAdooa,
Kat Votepo. petappdotnke otnv EAMvikY, Kou 0yL oL emionueg mpodlaypapis, Ue EEAPEDT) TNV OUVTAKTIKT KoL
AeE1hoyLKt avalvon. Auto Ba mpémel va Kavel To £yypago o Kotavontd 6Tov HEco avayvhott), oAb Bo apnost
YDPO YLOL CUPLOTiES. ZUVETMDC, av gpdooUV amd tov Apn ko tpooradoloeg va vhomouoelg Eava v Python
07t TO EYYPOPO QVTO KoL OVO, LEAhoV Bl xpetaloToV Vo LOVTEPELG KATOLO TTPAYIATO KL Yo TNV oKpifela
iomg o KaTényeg va VAOTTOLELG iLa. Teleimg drapopetikn YADooa. Amd v Gl Thevpd, av XPNOLUOTTOLEIG TV
Python ko avapmTiésat ToLoL ival oL OKPLPBELS KAVOVEG OYETIKA e £VaV GUYKEKPLUEVO TOpEX TG YAWOOOS, TOTE
otyoupa 0o toug Bpelg edd mépa. Av 0o N0gheg va delg vay mmLo eionuo opLopnd TG YAwooogs, iowg 0o pmopovoeg
VO, TPOOPEPELG MYO aTtd ToV xpOvo cov — 1) va pTdEelg pa pyav) Khwvormoinong :-).

Eival emikivouvo va mpoohéoovpe moAhég AeETTOUEPELEG VAOTTOINOTG OF £VaL £YYPApO Avapopig oG YADooog —
1 vhomoinon dvvatar va aAMGEEL, Ka AAAES VAOTTONOELS THG (OLAG YAMDOOAG WTOPEL VL AELTOVPYOVV SLOPOPETLKA.
Amd v dMm, n CPython eivaw pio vhiomoinom tng Python pe gupeia xpfon (wotd00 EVOAMAKTIKEG VAOTOLOELG
ovveyifouv vo vTooTNPILoVTaL), KOL 0L GUYKEKPLUEVES TNG LOLOUOPPIES eVioTe aEiouv avagopd, eldLKd eKel Tov
1 viomoinon emPdriel emmpoobetovg meploplopovc. Emouéving, Ba fpelg OUVIOUES «ONUELMOELS VAOTTOINONC»
o€ dLAPOPa UEPT TOV KELUEVOU.

Ké&6e vhomoinom tg Python ouvvodevetal amd évav aplBud evoopatopévov Kot cpdtummy module. Autég giva

Katoyeypoupuéveg oto library-index. Kasmowa evowpuatmuéva module avapépovrar 6tov aMNAETOpoUV pe Evav
ONUAVTIKO TPOTTO UE TOV 0PLOUO TNG YAWTOOG.

The Python Language Reference, Anpocigsuon 3.10.18

1.1 EVaAAGKTIKEG YAOTIOLNOELG

[Mapodro mov vrdpyet wion viomoinon g Python mwov elval poaxpdy 1 o dudonun, vdpyouv evoroKTIKEG VAO-
TTOLNOELG TTOV £XOVV LOLOLTEPO EVOLAPEPOV YL DLAPOPOVG AVOPDITOVG.

I'vwotég Vool oelg TePLAaUBEvouy:

CPython Avti eival 1) TpwTOTLTN KO 1) 7O Kahodtotnpnuévny vhomoinon g Python, ypauuévn otnv C. Néeg
Lettovpyleg g YAWooag cuvnOmg eupaviCoviol TpmTa M.

Jython H vlomoinon tng Python otnv Java. Avt) 1 vhomoinon wropel vo ypnotpomombel wg yAmwooa déoung
EVEPYELDV YLOL EQOPUOYES OTNY Java, 1 Wtopel vor xpMoLuototnOel yior vor dNWOVPYNOEL EPAPUOYES LE TN
xpHon Twv BLpodNKov TV KAGoemv g Java. Zuyva emiong ¥p1OLULOTTOLELTOL YO VO ONULOVPYNOEL TEOT
yio TG Puriodnkeg g Java. Iepioodtepeg minpogopieg umopeite va fpeite otnv totooehido g Jython.

Python yio. to .NET Avuty] 1 vAomoinon oty mpoyuotikoOtnTa ¥pnoLomolel Ty vhomoinon CPython, adAd eival
uio duarerpltopevn epappoyn tov NET ko kéver diabéoueg tig .NET Bifhodnkes. Anuovpynbnke oo
tov Brian Lloyd. T'wo. meplocdtepeg minpopopieg, deite tnv apyikn oelida g Python yia to .NET.

IronPython Mua evolloktiky) Python yia to .NET. Ze avtifeon ue to Python.NET, avt gival pio ohokAnpwuévn
vhomoinon g Python mov mopdyel IL, ko kaver petayhdttion tov kodika g Python amevbeiag ot
vAwooa assembly tov .NET. AnuovpynOnke amd tov Jim Hugunin, tov tpotdtumo dnuovpyo tng Jython.
TN epLocdTepeg Thnpogopieg deite TV Lotooehido g IronPython.

PyPy Mua viomoinon g Python ypauuévn €€ ohokAMipov oe Python. Yrootnpilel apketég mponyuéveg Aertoup-
vieg mov dev vdpyouv o Ghheg vhoTooELg OTwg VITooTPLEY Yo stackless Ko Tov petaryhmtriote| Just in
Time. 'Evag amd tovg 0tdyovs Tov mpdTlekT eival va eviappuvel Tov Telpauationd te Ty idto v yAnooo
KAVOVTOG L0 €UKOAY TNV TPOTTOTOoiNn ot Tov diepunvéa (oot eivon ypauuévog oty Python). Iepioodtepeg
TMpPopopieg eival dLabéouueg oty apyLky oelido tov PyPy mpodtlext.

Kda0e pio 06 ovtég Tig VOO OELG dLOPOPOTTOLOVVTOL UE KATTOLOV TPOTTO atd TNV YAMOOTO HTTmG KOTAYPAPETAL
0€ aUTO TO EYYELPLOLO, 1) ELOGYEL OLYKEKPLUEVT] TTANPOQOpPLa TTEPA amtd O,TL KOAVUTTTOUVY TaL TPOTUTTOL £YYPOPA TNG
Python. IMapokaid vo GURPBOVAEVTELTE TO £YYPOPO TG CUYKEKPLUEVNG VLOTTOLNONG YLaL VO. TPOoadLopioete Tt dAlo
yPELALETaL Vo EEPETE OYETIKA e TNV OUYKEKPLUEVT] VAOTTOINO1) TTOU Y PNOLULOTTOLELTE.

1.2 Znueloypagpia

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style of
definition:

name = lc _letter (lc_letter | "_")~*
lc_letter = "at..."z"

H npotn ypouun Aéer 0t éva name eivor éva 1c_letter akolovOoUuevo amd pio oelpd amd undév 1 mepLo-
00tepa Lc_letters Ko kdtm mwovhes. 'Eva 1c_letter pe) oelpd Tov givol 0toLoodNmote amd Toug Hovous
YOPAKTPESG 'a' €0g 'z " . (AUTOG 0 KOVOVAG 0TIV TPAYUOTIKOTITA EQOPUOTETOL YLOL TO OVOLLOTA TTOV OPLLoVTaL
0Tovg AEELAOYLKOUG KL YPOUUOTLKOUG KAVOVES auTo TOU £YYPAE(pOU.)

Kda0e xovovog Egkivd e évo dvopa (to omoio eivan £va dOvoua optouévo ard Tov Kavova) Kat : : =. Mia ka0et
vpauu (1) %p1OLULOTTOLELTOL YL VAL LaWPLoEL TLG EVOMOKTIKES: €XEL TNV WKPOTEPT] TPOTEPOLOTNTO OTNV GELPAL
TPOTEPALOTNTAG TTPAEEWY CruToV Tov cuufoliopov. ‘Evag aotepiokog (*) onuaiver undév 1 meplocdtepeg emava-
MYPELS TOV TTPONYOVUEVOU OVTLKELUEVOU* TTOPOUOLIG, TO UV (+) ONUaLVEL (ia 1] TTEPLOCOTEPES ETAVOIPELS, KOl
uior pPAoT epLpPayEVN artod aykvheg ([1) onuaiver undév 1 pio mepismrmon (ue dhha Adyia, 1 TepLppayuévn

4 Kegahawo 1. Etcaywyn

https://www.jython.org/
https://pythonnet.github.io/
https://ironpython.net/
https://www.pypy.org/

The Python Language Reference, Anpocisuon 3.10.18

PpAon eivor TPoatpeTky). OL TENEOTEG * KoL + EVOVOVTOL OG0 TO dUVATOV L0 OQPLYTA: oL TaPEVOETELG Y PNOLUO-
TTOLOVVTAL Y10, OLOd0TTOiNOT). Ot CVUPBOLOTELPES elval TTEPLPPAYUEVES ATTO ELOAYWOYLKG. OL KEVOL XOpUKTNPES ELvaLL
UOVO OUCLVTLKOL L0l VO Sl wpioouy Ta tokens. OL Kavoveg ouvnOmg epLéyovial oe Pio Lovy ypouun: oL Kavoveg
e TOAES EVAANOKTUKEG UWTOPEL VO Lop@oTtot oty evolAakTIKA e KGO ypauu petd v mpon vo Eekivael e

uo KAOeTn ypouun.

Zroug AeELoyLKoUg 0pLopovs (OTTwg 0To ToPATavm Tapdderyua), S0 TePLEGOTEPOL KAVOVEG Y PTOLULOTOLOVVTOL:
AYO YopaKTNPES XWPLOUEVOL aTtd TPELG TELEIEG ONUALVEL ETTLOYT OTTOLOV LOVOD YOPAKTHPA GTO GUYKEKPLUEVO
(khewot0) evpog ASCII yapaxtpwv. H gppdon avdueoo oe yoviakés mapeviéoelg (<. . . >) divel pia dtumn me-
PLYPOLPY] TOV OPLOUEVOV CUUPOLOV: TT.Y., OUTO Ba WToPoVoE Vo XPNOLUOTTOLNOEL Yia Vo TTEPLYPAEL TV LOEX TOU
“yapoaktipa eléyyov” (control character) av ypeLaoTe.

Av KO 1] OTUELOYPOPLEL TTOV YPNOLUOTTOLELTAL ELVOIL TYEDOV 1] DL, VITAPYEL LEYAAY dLapopd VAIEDO OTY) ONUOLOLOL
TV AeEOYIKOV KOl TwV OUVTAKTIKOV 0plopdv: évog AeELhoylkdg oploptdg AELTOUpYEL te TOVg UEPOVOUEVOUG
YOPOAKTNPES TNG TINYHG ELOODOV, eV €vag oplouds oVVTAENG AeLTovpYEL 0TV POt TV foken OV dNuLOVPYELTOL
and ™ AeEoyikr] avdhvon. ‘Oleg ol xpnoelg tov BNF oto emduevo Kepahawo («AgEihoyikn Avalvon») gival
LeE1hoyikol oplopoi: oL xpfoelg oto akdAovBo KepAhoLo Vol CUVTOKTIKOL OPLOUOL.

1.2. Znuelwoypagpia 5

The Python Language Reference, Anpoocisuon 3.10.18

6 Kegahawo 1. Etcaywyn

KEDAAAIO 2

Lexical analysis

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer. This
chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding declaration
and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError is raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any of the
standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form
using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform. The end of input also serves as an implicit
terminator for the final physical line.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

https://www.python.org/dev/peps/pep-3120

The Python Language Reference, Anpocigsuon 3.10.18

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored by
the syntax.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding [=:]\s* ([-\w.
]1+), this comment is processed as an encoding declaration; the first group of this expression names the encoding of the
source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first line must also
be a comment-only line. The recommended forms of an encoding expression are

’# —*— coding: <encoding-name> —*-—

which is recognized also by GNU Emacs, and

’# vim:fileencoding=<encoding—-name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. In addition, if the first bytes of the file are the UTF-
8 byte-order mark (b'\xef\xbb\xbf"), the declared file encoding is UTF-8 (this is supported, among others, by
Microsoft’s notepad).

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding is
used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does not
continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines using
a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Impilicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

8 Kegdahaio 2. Lexical analysis

The Python Language Reference, Anpocisuon 3.10.18

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE token is
generated). During interactive input of statements, handling of a blank line may differ depending on the implementation
of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e. one containing not
even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of spaces
preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over multiple
physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use a
mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms may
explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may reset
the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The numbers
pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical line, the line’s
indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is pushed on the stack,
and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring on the stack; all numbers
on the stack that are larger are popped off, and for each number popped off a DEDENT token is generated. At the end
of the file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r = []
for i in range(len(l)):
s = 1[:1i] + 1[i+1:]
p = perm(s)
for x in p:
r.append (1[i:1+1] + x)
return r

The following example shows various indentation errors:

2.1. Line structure 9

The Python Language Reference, Anpocigsuon 3.10.18

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1] + 1[i+1:]
p = perm(l[:i] + 1[i+1:]) # error: unexpected indent

for x in p:
r.append (1[i:1+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be used
interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could otherwise
be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but serve
to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token, when
read from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes as
defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the
uppercase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits O through 9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier = xid _start xid_continue*

id_start n= <all characters in general categories Lu, L1, Lt, Lm, Lo, N1, the unde:
id_continue = <all characters in id_start, plus characters in the categories Mn, Mc,
xid_start = <all characters in id_start whose NFKC normalization is in "id_start xi

xid_continue <all characters in id_continue whose NFKC normalization is in "id_cont]

The Unicode category codes mentioned above stand for:
o Lu - uppercase letters
o LI - lowercase letters

o Lt - titlecase letters

10 Kegdahaio 2. Lexical analysis

https://www.python.org/dev/peps/pep-3131
https://www.python.org/dev/peps/pep-3131

The Python Language Reference, Anpocisuon 3.10.18

o Lm - modifier letters
o Lo - other letters
o NI - letter numbers
e Mn - nonspacing marks
e Mc - spacing combining marks
e Nd - decimal numbers
 Pc - connector punctuations
o Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
o Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 4.1 can be found at https://www.unicode.
org/Public/13.0.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Soft Keywords

Néo omv éxdoaon 3.10.

Some identifiers are only reserved under specific contexts. These are known as soft keywords. The identifiers match,
case and _ can syntactically act as keywords in contexts related to the pattern matching statement, but this distinction
is done at the parser level, not when tokenizing.

As soft keywords, their use with pattern matching is possible while still preserving compatibility with existing code that
uses match, case and _ as identifier names.

2.3.3 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns of
leading and trailing underscore characters:

_* Not imported by from module import *.

_ Ina case pattern within a mat ch statement, __is a soft keyword that denotes a wildcard.

Separately, the interactive interpreter makes the result of the last evaluation available in the variable _. (It is stored
in the built ins module, alongside built-in functions like print.)

2.3. Identifiers and keywords 11

https://www.unicode.org/Public/13.0.0/ucd/PropList.txt
https://www.unicode.org/Public/13.0.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/13.0.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Anpocigsuon 3.10.18

Elsewhere, _ is a regular identifier. It is often used to name «special» items, but it is not special to Python itself.

Ynueimon: The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

It is also commonly used for unused variables.

*__ System-defined names, informally known as «dunder» names. These names are defined by the interpreter and its

implementation (including the standard library). Current system names are discussed in the Special method names
section and elsewhere. More will likely be defined in future versions of Python. Any use of __*___ names, in any
context, that does not follow explicitly documented use, is subject to breakage without warning.

* (lass-private names. Names in this category, when used within the context of a class definition, are re-written to use

a mangled form to help avoid name clashes between «private» attributes of base and derived classes. See section

Identifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral = [stringprefix] (shortstring | longstring)
stringprefix = "r"™ | "y" | "R" | "U" | "£" | "E"

| "fr" | "Fr" | "fR" | "FR" | "rf" | "rgF" | "Rf" | "RE"
shortstring = "'" shortstringitem* "'" | '"' shortstringitem* '"'
longstring = "' Jongstringitem* "'''" | '"""' Jongstringitem* '"""'
shortstringitem := shortstringchar | stringescapeseq
longstringitem = longstringchar | stringescapeseq
shortstringchar := <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
stringescapeseq = "\" <any source character>
bytesliteral = bytesprefix(shortbytes | longbytes)
bytesprefix = "b" | "B" | "br" | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb"
shortbytes = "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes = mrrrw Jongbytesitem* "'''" | '"""' Jongbytesitem* '"""'
shortbytesitem := shortbyteschar | bytesescapeseq
longbytesitem = longbyteschar | bytesescapeseq
shortbyteschar = <any ASCII character except "\" or newline or the quote>
longbyteschar = <any ASCII character except "\">
bytesescapeseq = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix or bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

12

Kegdahaio 2. Lexical analysis

n RB n

The Python Language Reference, Anpocisuon 3.10.18

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can
also be enclosed in matching groups of three single or double quotes (these are generally referred to as riple-quoted
strings). The backslash (\) character is used to give special meaning to otherwise ordinary characters like n, which means
“newline” when escaped (\n). It can also be used to escape characters that otherwise have a special meaning, such as
newline, backslash itself, or the quote character. See escape sequences below for examples.

Bytes literals are always prefixed with 'b ' or 'B'; they produce an instance of the bytes type instead of the st r type.
They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with escapes.

Both string and bytes literals may optionally be prefixed with a letter 'r' or 'R"'; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, ' \U"' and '\u' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur ' syntax is not
supported.

Néo otnv €xdoom 3.3: The 'rb' prefix of raw bytes literals has been added as a synonym of 'br'.

Néo otnv €xdoon 3.3: Support for the unicode legacy literal (u' value ') was reintroduced to simplify the maintenance
of dual Python 2.x and 3.x codebases. See PEP 414 for more information.

A string literal with ' £' or 'F' in its prefix is a formatted string literal; see Formatted string literals. The ' £' may be
combined with 'r ', but not with 'b' or 'u', therefore raw formatted strings are possible, but formatted bytes literals
are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped quotes
in a row terminate the literal. (A «quote» is the character used to open the literal, i.e. either ' or ".)

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to rules
similar to those used by Standard C. The recognized escape sequences are:

Escape Sequence | Meaning Notes
\<newline> Backslash and newline ignored | (1)
N\ Backslash (\)

\' Single quote (')

\" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo Character with octal value ooo | (2,4)
\xhh Character with hex value hh (3.,4)

Escape sequences only recognized in string literals are:

Escape Sequence | Meaning Notes
\N{name} Character named name in the Unicode database | (5)
\uxxxx Character with 16-bit hex value xxxx (6)
\UXXXXXXXX Character with 32-bit hex value xxxxoxxxx @)

Notes:

(1) A backslash can be added at the end of a line to ignore the newline:

2.4. Literals 13

https://www.python.org/dev/peps/pep-0414

The Python Language Reference, Anpocigsuon 3.10.18

>>> 'This string will not include \
backslashes or newline characters.
'This string will not include backslashes or newline characters.'

The same result can be achieved using triple-quoted strings, or parentheses and string literal concatenation.
(2) Asin Standard C, up to three octal digits are accepted.
(3) Unlike in Standard C, exactly two hex digits are required.

(4) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(5) AMoEe oty éxdoon 3.3: Support for name aliases' has been added.
(6) Exactly four hex digits are required.
(7) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the
result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences only recognized in string literals fall into the
category of unrecognized escapes for bytes literals.

AlMoEe oty €kdoon 3.6: Unrecognized escape sequences produce a DeprecationWarning. In a
future Python version they will be a SyntaxWarning and eventually a SyntaxError.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example, r" \ " "
is a valid string literal consisting of two characters: a backslash and a double quote; r" \ " is not a valid string literal (even
a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a single backslash
(since the backslash would escape the following quote character). Note also that a single backslash followed by a newline
is interpreted as those two characters as part of the literal, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings conveniently
across long lines, or even to add comments to parts of strings, for example:

re.compile (" [A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]1*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The “+” operator must be used
to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles for each
component (even mixing raw strings and triple quoted strings), and formatted string literals may be concatenated with
plain string literals.

! https://www.unicode.org/Public/11.0.0/ucd/NameAliases. txt

14 Kegdahaio 2. Lexical analysis

https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

The Python Language Reference, Anpocisuon 3.10.18

2.4.3 Formatted string literals

Néo otmv éxdoon 3.6.

A formatted string literal or f-string is a string literal that is prefixed with '£' or 'F'. These strings may contain
replacement fields, which are expressions delimited by curly braces { }. While other string literals always have a constant
value, formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string). After
decoding, the grammar for the contents of the string is:

f_string = (literal_char | "{{" | "}}" | replacement_field)™*
replacement_field = "{" f _expression ["="] ["!" conversion] [":" format_spec]
f_expression = (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or expr)* [","]

| yield expression
conversion = "s" | "r"™ | "a"
format_spec = (literal_char | NULL | replacement_field)™*
literal_char n= <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces '{{"' or '} } ' are
replaced with the corresponding single curly brace. A single opening curly bracket ' { ' marks a replacement field, which
starts with a Python expression. To display both the expression text and its value after evaluation, (useful in debugging),
an equal sign '="' may be added after the expression. A conversion field, introduced by an exclamation point ' ! ' may
follow. A format specifier may also be appended, introduced by a colon ' : '. A replacement field ends with a closing
curly bracket '} '.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with a few
exceptions. An empty expression is not allowed, and both 1ambda and assignment expressions : = must be surrounded
by explicit parentheses. Replacement expressions can contain line breaks (e.g. in triple-quoted strings), but they cannot
contain comments. Each expression is evaluated in the context where the formatted string literal appears, in order from
left to right.

AMaEe ot ékdoon 3.7: Prior to Python 3.7, an awa i t expression and comprehensions containing an async for
clause were illegal in the expressions in formatted string literals due to a problem with the implementation.

When the equal sign '=" is provided, the output will have the expression text, the '=" and the evaluated value. Spaces
after the opening brace ' { ', within the expression and after the '=" are all retained in the output. By default, the '="
causes the repr () of the expression to be provided, unless there is a format specified. When a format is specified it
defaults to the st r () of the expression unless a conversion ' ! r' is declared.

Néo oty éxdoon 3.8: The equal sign "=".

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion ' ! s ' calls
str () ontheresult, ' !'r' calls repr (),and '!a"' callsascii ().

The result is then formatted using the format () protocol. The format specifier is passed to the _ format__ ()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own conversion
fields and format specifiers, but may not include more deeply nested replacement fields. The format specifier mini-language
is the same as that used by the str. format () method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

2.4. Literals 15

"}"

The Python Language Reference, Anpocigsuon 3.10.18

>>> name = "Fred"

>>> f"He said his name is {name L

"He said his name is 'Fred'."

>>> f"He said his name is {repr (name) }." # repr() is equivalent to !r
"He said his name is 'Fred'."

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f'"result: {value:{width/. {precision} /" # nested fields
'result: 12.35"

>>> today = datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, $Y}" # using date format specifier

'January 27, 2017'
>>> f"{today=:%B %d, %Y }" # using date format specifier and debugging
'today=January 27, 2017'

>>> number = 1024

>>> f"{number:#0x}" # using integer format specifier
'0x400"

>>> foo = "bar"

>>> £"/ foo " # preserves whitespace
" foo = 'bar'"

>>> line = "The mill's closed"

>>> f"{line "

'line = "The mill\'s closed"'

>>> f"/line 20"

"line = The mill's closed "

>>> f"{line 20"

'line = "The mill\'s closed" '

A consequence of sharing the same syntax as regular string literals is that characters in the replacement fields must not
conflict with the quoting used in the outer formatted string literal:

f"abc {al"
f'abc {fal'

"1} def" # error: outer string literal ended prematurely

X
x']} def" # workaround: use different quoting

Backslashes are not allowed in format expressions and will raise an error:

f"newline: ord('\n'") }" # raises SyntaxError

To include a value in which a backslash escape is required, create a temporary variable.

>>> newline = ord('\n")
>>> f'"newline: {newline}"
'newline: 10"

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

>>> def foo():
f"Not a docstring"”

>>> foo. doc_ is None
True

See also PEP 498 for the proposal that added formatted string literals, and st r . format (), which uses a related format
string mechanism.

16 Kegdahaio 2. Lexical analysis

https://www.python.org/dev/peps/pep-0498

The Python Language Reference, Anpocisuon 3.10.18

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no complex
literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary operator
“~” and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer n= decinteger | bininteger | octinteger | hexinteger
decinteger = nonzerodigit (["_"1 digit)* | "O"+ (["_"] "Q")~*
bininteger = "o" ("b" | "B") (["_"] bindigit)+

octinteger = "o" ("o" | "O") (["_"] octdigit)+

hexinteger = oM ("x" | "X") (["_"] hexdigit)+

nonzerodigit = RN A

digit = "o"..."o"

bindigit = "om | omin

octdigit = "o"..."7"

hexdigit = digit | "a"..."f" | "A". . ."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for enhanced
readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

Some examples of integer literals:

7 2147483647 00177 0b100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 Ob_1110_0101

AMoEe oty £xdoon 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber = pointfloat | exponentfloat
pointfloat = [digitpart] fraction | digitpart "."
exponentfloat = (digitpart | pointfloat) exponent
digitpart = digit (["_"] digit)™*

fraction = "." digitpart

exponent = ("e" | "E") ["+"™ | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077010 is legal, and
denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent. As in
integer literals, underscores are supported for digit grouping.

2.4. Literals 17

The Python Language Reference, Anpocigsuon 3.10.18

Some examples of floating point literals:

3.14 10. .001 1el100 3.14e-10 0e0 3.14_15_93

AMoEe oty £kdoon 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber = (floatnumber | digitpart) ("j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.g., (3+47) . Some examples of imaginary literals:

’3.143' 10.5 107 .0013 1e100§ 3.14e-103 3.14_15_937

2.5 Operators

The following tokens are operators:

+ - * *x / /7 % @
<< >> & | A ~ .=

< > <= >= == 1=

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

() [] { }

' i @ = ->

+= -= *= = //= &= @=

&= |= A= >>= <<= * k=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning as
an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters, but also
perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to the
lexical analyzer:

v n # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

’ $?

18 Kegdahaio 2. Lexical analysis

KEGANAIO 3

Data model

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations between
objects. (In a sense, and in conformance to Von Neumann’s model of a «stored program computer», code is also
represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may
think of it as the object’s address in memory. The “i s” operator compares the identity of two objects; the 1d () function
returns an integer representing its identity.

Agmropépera viomoinong CPython: For CPython, id (x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., «does it have a length?») and also defines the
possible values for objects of that type. The type () function returns an object’s type (which is an object itself). Like its
identity, an object’s fype is also unchangeable.'

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is
unchangeable once they are created are called immutable. (The value of an immutable container object that contains a
reference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same as
having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance, numbers,
strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation quality
how garbage collection is implemented, as long as no objects are collected that are still reachable.

Aemrouépera vhomoinong CPython: CPython currently uses a reference-counting scheme with (optional) delayed
detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not
guaranteed to collect garbage containing circular references. See the documentation of the gc module for information
on controlling the collection of cyclic garbage. Other implementations act differently and CPython may change. Do not
depend on immediate finalization of objects when they become unreachable (so you should always close files explicitly).

! 1t is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can lead to
some very strange behaviour if it is handled incorrectly.

19

The Python Language Reference, Anpocigsuon 3.10.18

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally be
collectable. Also note that catching an exception with a “t ry...except” statement may keep objects alive.

Some objects contain references to «external» resources such as open files or windows. It is understood that these resources
are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen, such objects also
provide an explicit way to release the external resource, usually a close () method. Programs are strongly recommended
to explicitly close such objects. The “t ry...finally” statement and the “with” statement provide convenient ways
to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists and
dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a container, we
imply the values, not the identities of the contained objects; however, when we talk about the mutability of a container,
only the identities of the immediately contained objects are implied. So, if an immutable container (like a tuple) contains
a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for
immutable types, operations that compute new values may actually return a reference to any existing object with the same
type and value, while for mutable objects this is not allowed. E.g., aftera = 1; b = 1, a and b may or may not refer
to the same object with the value one, depending on the implementation, but after c = []; d = [],cand dare
guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object
to both ¢ and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages, depending
on the implementation) can define additional types. Future versions of Python may add types to the type hierarchy (e.g.,
rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be provided via the standard
library instead.

Some of the type descriptions below contain a paragraph listing “special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

None This type has a single value. There is a single object with this value. This object is accessed through the built-in
name None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions that
don’t explicitly return anything. Its truth value is false.

NotImplemented This type has a single value. There is a single object with this value. This object is accessed through
the built-in name Not Implemented. Numeric methods and rich comparison methods should return this value if
they do not implement the operation for the operands provided. (The interpreter will then try the reflected operation,
or some other fallback, depending on the operator.) It should not be evaluated in a boolean context.

See implementing-the-arithmetic-operations for more details.

AMoEe oty €kdoon 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of
Python.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the literal
. or the built-in name E11ipsis. Its truth value is true.

numbers .Number These are created by numeric literals and returned as results by arithmetic operators and arithmetic
built-in functions. Numeric objects are immutable; once created their value never changes. Python numbers are of
course strongly related to mathematical numbers, but subject to the limitations of numerical representation in
computers.

The string representations of the numeric classes, computed by __ repr () and __str__ (), have the
following properties:

20 KegaAaio 3. Data model

The Python Language Reference, Anpocisuon 3.10.18

They are valid numeric literals which, when passed to their class constructor, produce an object having the
value of the original numeric.

» The representation is in base 10, when possible.

» Leading zeros, possibly excepting a single zero before a decimal point, are not shown.

Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.
« A sign is shown only when the number is negative.
Python distinguishes between integers, floating point numbers, and complex numbers:
numbers.Integral These represent elements from the mathematical set of integers (positive and negative).
There are two types of integers:

Integers (int) These represent numbers in an unlimited range, subject to available (virtual) memory only.
For the purpose of shift and mask operations, a binary representation is assumed, and negative numbers
are represented in a variant of 2’s complement which gives the illusion of an infinite string of sign bits
extending to the left.

Booleans (bool) These represent the truth values False and True. The two objects representing the values
False and True are the only Boolean objects. The Boolean type is a subtype of the integer type, and
Boolean values behave like the values 0 and 1, respectively, in almost all contexts, the exception being
that when converted to a string, the strings "False" or "True" are returned, respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers.

numbers .Real (float) These represent machine-level double precision floating point numbers. You are at
the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range
and handling of overflow. Python does not support single-precision floating point numbers; the savings in
processor and memory usage that are usually the reason for using these are dwarfed by the overhead of using
objects in Python, so there is no reason to complicate the language with two kinds of floating point numbers.

numbers .Complex (complex) These represent complex numbers as a pair of machine-level double precision
floating point numbers. The same caveats apply as for floating point numbers. The real and imaginary parts
of a complex number z can be retrieved through the read-only attributes z . real and z . imag.

Sequences These represent finite ordered sets indexed by non-negative numbers. The built-in function len () returns
the number of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1,
..., n-1. Item i of sequence a is selected by a [1].

Sequences also support slicing: a [i: 7] selects all items with index k such that i <= k < j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it starts at
0.

Some sequences also support «extended slicing» with a third «step» parameter: a [1: j : k] selects all items of a
with index x where x = 1 + n*k,n>=0andi<=x <.

Sequences are distinguished according to their mutability:

Immutable sequences An object of an immutable sequence type cannot change once it is created. (If the object
contains references to other objects, these other objects may be mutable and may be changed; however, the
collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings A string is a sequence of values that represent Unicode code points. All the code points in the range
U+0000 - U+10FFFF can be represented in a string. Python doesn’t have a char type; instead,
every code point in the string is represented as a string object with length 1. The built-in function ord ()
converts a code point from its string form to an integer in the range 0 - 10FFFF; chr () converts

3.2. The standard type hierarchy 21

The Python Language Reference, Anpocigsuon 3.10.18

an integer in the range 0 — 10FFFF to the corresponding length 1 string object. str.encode ()
can be used to convert a st r to bytes using the given text encoding, and bytes.decode () can be
used to achieve the opposite.

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-
separated lists of expressions. A tuple of one item (a “singleton”) can be formed by affixing a comma
to an expression (an expression by itself does not create a tuple, since parentheses must be usable for
grouping of expressions). An empty tuple can be formed by an empty pair of parentheses.

Bytes A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range
0 <=x < 256. Bytes literals (like b ' abc ') and the built-in bytes () constructor can be used to create
bytes objects. Also, bytes objects can be decoded to strings via the decode () method.

Mutable sequences Mutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignment and de 1 (delete) statements.

There are currently two intrinsic mutable sequence types:

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of
expressions in square brackets. (Note that there are no special cases needed to form lists of length O or

1.)

Byte Arrays A bytearray object is a mutable array. They are created by the built-in bytearray ()
constructor. Aside from being mutable (and hence unhashable), byte arrays otherwise provide the same
interface and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type, as does the
collections module.

Set types These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any
subscript. However, they can be iterated over, and the built-in function len () returns the number of items in
a set. Common uses for sets are fast membership testing, removing duplicates from a sequence, and computing
mathematical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal
rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1 . 0), only one of them can be contained
in a set.

There are currently two intrinsic set types:

Sets These represent a mutable set. They are created by the built-in set () constructor and can be modified
afterwards by several methods, such as add () .

Frozen sets These represent an immutable set. They are created by the built-in frozenset () constructor. As
a frozenset is immutable and hashable, it can be used again as an element of another set, or as a dictionary
key.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k] selects the
item indexed by k from the mapping a; this can be used in expressions and as the target of assignments or de 1
statements. The built-in function 1en () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of values not
acceptable as keys are values containing lists or dictionaries or other mutable types that are compared by value
rather than by object identity, the reason being that the efficient implementation of dictionaries requires a key’s
hash value to remain constant. Numeric types used for keys obey the normal rules for numeric comparison:
if two numbers compare equal (e.g., 1 and 1. 0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were added
sequentially over the dictionary. Replacing an existing key does not change the order, however removing a

22 KegaAaio 3. Data model

The Python Language Reference, Anpocisuon 3.10.18

key and re-inserting it will add it to the end instead of keeping its old place.
Dictionaries are mutable; they can be created by the { . . . } notation (see section Dictionary displays).

The extension modules dbm . ndbm and dbm. gnu provide additional examples of mapping types, as does
the collections module.

AMoEe oty ékdoon 3.7: Dictionaries did not preserve insertion order in versions of Python before 3.6. In
CPython 3.6, insertion order was preserved, but it was considered an implementation detail at that time rather
than a language guarantee.

Callable types These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions A user-defined function object is created by a function definition (see section Function
definitions). It should be called with an argument list containing the same number of items as the function’s
formal parameter list.

Special attributes:

Attribute Meaning

_ _doc___ The function’s documentation string, or None if unavailable; Writable
not inherited by subclasses.

__name___ The function’s name. Writable

__qgualname___ The function’s gualified name. Writable
Néo otnv ¢€kdoom 3.3.

_ _module_ The name of the module the function was defined in, or None Writable
if unavailable.

__defaults___ A tuple containing default argument values for those arguments | Writable
that have defaults, or None if no arguments have a default value.

__code___ The code object representing the compiled function body. Writable

__globals__ A reference to the dictionary that holds the function’s global Read-only

variables — the global namespace of the module in which the
function was defined.

__dict__ The namespace supporting arbitrary function attributes. Writable
__closure___ None or a tuple of cells that contain bindings for the function’s | Read-only
free variables. See below for information on the
cell_contents attribute.
__annotations__ | A dict containing annotations of parameters. The keys of the Writable
dict are the parameter names, and ' return' for the return
annotation, if provided. For more information on working with
this attribute, see annotations-howto.

__kwdefaults__ A dict containing defaults for keyword-only parameters. Writable

Most of the attributes labelled «Writable» check the type of the assigned value.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to
attach metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note that
the current implementation only supports function attributes on user-defined functions. Function attributes on
built-in functions may be supported in the future.

A cell object has the attribute ce11_contents. This can be used to get the value of the cell, as well as set
the value.

Additional information about a function’s definition can be retrieved from its code object; see the description
of internal types below. The cel1l type can be accessed in the t ypes module.

Instance methods An instance method object combines a class, a class instance and any callable object (normally
a user-defined function).

3.2. The standard type hierarchy 23

The Python Language Reference, Anpocigsuon 3.10.18

Special read-only attributes: ___self__ is the class instance object, _ func__ is the function object;
__doc___is the method’s documentation (same as __ func_ _._ _doc__); _ name___ is the method
name (sameas___func__._ name_);_ module___isthe name of the module the method was defined
in, or None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function
object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of
that class), if that attribute is a user-defined function object or a class method object.

When an instance method object is created by retrieving a user-defined function object from a class via one
of its instances, its ___self___ attribute is the instance, and the method object is said to be bound. The new
method’s ___func___ attribute is the original function object.

When an instance method object is created by retrieving a class method object from a class or instance, its
__self attribute is the class itself, and its ___func___ attribute is the function object underlying the
class method.

When an instance method object is called, the underlying function (__func__) is called, inserting the class
instance (__self__)infront of the argument list. For instance, when C is a class which contains a definition
for a function f (), and x is an instance of C, calling x. £ (1) is equivalent to callingC. f (x, 1).

When an instance method object is derived from a class method object, the «class instance» stored in
__self willactually be the class itself, so that calling either x . £ (1) or C. £ (1) is equivalent to calling
f(C, 1) where f is the underlying function.

Note that the transformation from function object to instance method object happens each time the attribute
is retrieved from the instance. In some cases, a fruitful optimization is to assign the attribute to a local variable
and call that local variable. Also notice that this transformation only happens for user-defined functions; other
callable objects (and all non-callable objects) are retrieved without transformation. It is also important to note
that user-defined functions which are attributes of a class instance are not converted to bound methods; this
only happens when the function is an attribute of the class.

Generator functions A function or method which uses the yield statement (see section The yield statement)

is called a generator function. Such a function, when called, always returns an iterator object which can be
used to execute the body of the function: calling the iterator’s iterator._ _next__ () method will cause
the function to execute until it provides a value using the yield statement. When the function executes a
return statement or falls off the end, a StopIteration exception is raised and the iterator will have
reached the end of the set of values to be returned.

Coroutine functions A function or method which is defined using async def is called a coroutine function.

Such a function, when called, returns a coroutine object. It may contain awa i t expressions, as well as async
withand async for statements. See also the Coroutine Objects section.

Asynchronous generator functions A function or method which is defined using async def and which uses

the yield statement is called a asynchronous generator function. Such a function, when called, returns an
asynchronous iterator object which can be used in an async for statement to execute the body of the
function.

Calling the asynchronous iterator’s aiterator.___anext__ method will return an awaitable which when
awaited will execute until it provides a value using the yield expression. When the function executes an
empty return statement or falls off the end, a StopAsyncIteration exception is raised and the
asynchronous iterator will have reached the end of the set of values to be yielded.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in functions are

len () and math.sin () (math is a standard built-in module). The number and type of the arguments
are determined by the C function. Special read-only attributes: __doc___ is the function’s documentation
string, or None if unavailable; __name___is the function’s name; __self__ is set to None (but see the
next item); _ _module_ is the name of the module the function was defined in or None if unavailable.

24

KegaAaio 3. Data model

The Python Language Reference, Anpocisuon 3.10.18

Built-in methods This is really a different disguise of a built-in function, this time containing an object passed
to the C function as an implicit extra argument. An example of a built-in method is alist .append (),
assuming alist is a list object. In this case, the special read-only attribute ___self__ is set to the object
denoted by alist.

Classes Classes are callable. These objects normally act as factories for new instances of themselves, but variations
are possible for class types that override __new__ (). The arguments of the call are passed to __new__ ()
and, in the typical case,to ___init__ () to initialize the new instance.

Class Instances Instances of arbitrary classes can be made callable by defininga ___call__ () method in their
class.

Modules Modules are a basic organizational unit of Python code, and are created by the import system as invoked
either by the i mport statement, or by calling functions such as import1lib.import_module () and built-in
__import__ (). A module object has a namespace implemented by a dictionary object (this is the dictionary
referenced by the ___globals__ attribute of functions defined in the module). Attribute references are translated
to lookups in this dictionary, e.g., m.x is equivalent tom.__dict__ ["x"]. A module object does not contain
the code object used to initialize the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.
__dict__ ["x"] = 1.

Predefined (writable) attributes:
__name__ The module’s name.
__doc___ The module’s documentation string, or None if unavailable.

_ file__ The pathname of the file from which the module was loaded, if it was loaded from a file.
The __file__ attribute may be missing for certain types of modules, such as C modules that
are statically linked into the interpreter. For extension modules loaded dynamically from a shared
library, it’s the pathname of the shared library file.

__annotations___ A dictionary containing variable annotations collected during module body
execution. For best practices on working with __annotations__, please see annotations-
howto.

Special read-only attribute: ___dict__ is the module’s namespace as a dictionary object.

Agnropépera. vhomoinong CPython: Because of the way CPython clears module dictionaries, the module
dictionary will be cleared when the module falls out of scope even if the dictionary still has live references. To
avoid this, copy the dictionary or keep the module around while using its dictionary directly.

Custom classes Custom class types are typically created by class definitions (see section Class definitions). A class
has a namespace implemented by a dictionary object. Class attribute references are translated to lookups in this
dictionary, e.g., C.x is translated to C.__dict__ ["x"] (although there are a number of hooks which allow
for other means of locating attributes). When the attribute name is not found there, the attribute search continues
in the base classes. This search of the base classes uses the C3 method resolution order which behaves correctly
even in the presence of “diamond” inheritance structures where there are multiple inheritance paths leading back
to a common ancestor. Additional details on the C3 MRO used by Python can be found in the documentation
accompanying the 2.3 release at https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an instance
method object whose ___self__ attribute is C. When it would yield a static method object, it is transformed into
the object wrapped by the static method object. See section Implementing Descriptors for another way in which
attributes retrieved from a class may differ from those actually contained inits __dict__ .

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).

Special attributes:

3.2. The standard type hierarchy 25

https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Anpocigsuon 3.10.18

__name___ The class name.

_ module__ The name of the module in which the class was defined.

__dict__ The dictionary containing the class’s namespace.

_ bases__ A tuple containing the base classes, in the order of their occurrence in the base class list.
__doc___ The class’s documentation string, or None if undefined.

__annotations___ A dictionary containing variable annotations collected during class body
execution. For best practices on working with __annotations__, please see annotations-
howto.

Class instances A class instance is created by calling a class object (see above). A class instance has a namespace

implemented as a dictionary which is the first place in which attribute references are searched. When an attribute is
not found there, and the instance’s class has an attribute by that name, the search continues with the class attributes.
If a class attribute is found that is a user-defined function object, it is transformed into an instance method object
whose __self _ attribute is the instance. Static method and class method objects are also transformed; see above
under «Classes». See section Implementing Descriptors for another way in which attributes of a class retrieved via
its instances may differ from the objects actually stored in the class’s __dict__. If no class attribute is found, and
the object’s classhasa ___getattr__ () method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has
a__setattr__ () or __delattr__ () method, this is called instead of updating the instance dictionary
directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names.
See section Special method names.

Special attributes: ___dict__is the attribute dictionary; __class__is the instance’s class.

I/0 objects (also known as file objects) A file object represents an open file. Various shortcuts are available to create file

objects: the open () built-in function, and also os . popen (), os. fdopen (), and the makefile () method
of socket objects (and perhaps by other functions or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to the
interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow the
interface defined by the i0.Text IOBase abstract class.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may change with

future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represent byte-compiled executable Python code, or byfecode. The difference between
a code object and a function object is that the function object contains an explicit reference to the function’s
globals (the module in which it was defined), while a code object contains no context; also the default argument
values are stored in the function object, not in the code object (because they represent values calculated at run-
time). Unlike function objects, code objects are immutable and contain no references (directly or indirectly)
to mutable objects.

Special read-only attributes: co_name gives the function name; co_argcount is the total number
of positional arguments (including positional-only arguments and arguments with default values);
co_posonlyargcount is the number of positional-only arguments (including arguments with default
values); co_kwonlyargcount is the number of keyword-only arguments (including arguments with
default values); co_nlocals is the number of local variables used by the function (including arguments);
co_varnames is a tuple containing the names of the local variables (starting with the argument names);
co_cellvars is a tuple containing the names of local variables that are referenced by nested functions;
co_freevars is a tuple containing the names of free variables; co_code is a string representing the
sequence of bytecode instructions; co_consts is a tuple containing the literals used by the bytecode;
co_names is a tuple containing the names used by the bytecode; co_filename is the filename from
which the code was compiled; co_firstlineno is the first line number of the function; co_lnotab

26

KegaAaio 3. Data model

The Python Language Reference, Anpocisuon 3.10.18

is a string encoding the mapping from bytecode offsets to line numbers (for details see the source code of
the interpreter); co_stacksize is the required stack size; co_f1lags is an integer encoding a number of
flags for the interpreter.

The following flag bits are defined for co_flags: bit 0x04 is set if the function uses the *arguments
syntax to accept an arbitrary number of positional arguments; bit 0x08 is set if the function uses the
**keywords syntax to accept arbitrary keyword arguments; bit 0x20 is set if the function is a generator.

Future feature declarations (from __ future_ import division) also use bits in co_flags
to indicate whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if the
function was compiled with future division enabled; bits 0x10 and 0x1000 were used in earlier versions of
Python.

Other bits in co_flags are reserved for internal use.

If a code object represents a function, the first item in co_consts is the documentation string of the
function, or None if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see below), and
are also passed to registered trace functions.

Special read-only attributes: £_back is to the previous stack frame (towards the caller), or None if this is the
bottom stack frame; £_code is the code object being executed in this frame; £_1ocals is the dictionary
used to look up local variables; £_globals is used for global variables; £_builtins is used for built-in
(intrinsic) names; £_lasti gives the precise instruction (this is an index into the bytecode string of the code
object).

Accessing f_code raises an auditing event object.__getattr_ with arguments obj and
"f_code".

Special writable attributes: £_trace, if not None, is a function called for various events during code
execution (this is used by the debugger). Normally an event is triggered for each new source line - this can be
disabled by setting f_trace_linestoFalse.

Implementations may allow per-opcode events to be requested by setting £_trace_opcodes to True.
Note that this may lead to undefined interpreter behaviour if exceptions raised by the trace function escape
to the function being traced.

f_lineno is the current line number of the frame — writing to this from within a trace function jumps to
the given line (only for the bottom-most frame). A debugger can implement a Jump command (aka Set Next
Statement) by writing to f_lineno.

Frame objects support one method:

frame.clear ()
This method clears all references to local variables held by the frame. Also, if the frame belonged to
a generator, the generator is finalized. This helps break reference cycles involving frame objects (for
example when catching an exception and storing its traceback for later use).

RuntimeError is raised if the frame is currently executing.
Néo oty éxdoon 3.4.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is implicitly
created when an exception occurs, and may also be explicitly created by calling t ypes . TracebackType.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at
each unwound level a traceback object is inserted in front of the current traceback. When an exception handler
is entered, the stack trace is made available to the program. (See section The try statement.) It is accessible
as the third item of the tuple returned by sys.exc_info (), and as the __traceback___ attribute of
the caught exception.

3.2. The standard type hierarchy 27

The Python Language Reference, Anpocigsuon 3.10.18

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard
error stream; if the interpreter is interactive, it is also made available to the useras sys . last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next
attributes should be linked to form a full stack trace.

Special read-only attributes: tb_frame points to the execution frame of the current level; tb_lineno
gives the line number where the exception occurred; tlbo_lasti indicates the precise instruction. The line
number and last instruction in the traceback may differ from the line number of its frame object if the
exception occurred in a t ry statement with no matching except clause or with a finally clause.

Accessing tb_frame raises an auditing event object._ getattr__ with arguments obj and
"tb_frame".

Special writable attribute: tb_next is the next level in the stack trace (towards the frame where the exception
occurred), or None if there is no next level.

AMaEe oty £ékdoon 3.7: Traceback objects can now be explicitly instantiated from Python code, and the
tb_next attribute of existing instances can be updated.

Slice objects Slice objects are used to represent slices for __getitem__ () methods. They are also created by
the built-in s1ice () function.

Special read-only attributes: st art is the lower bound; st op is the upper bound; step is the step value;
each is None if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices (self, length)
This method takes a single integer argument length and computes information about the slice that the
slice object would describe if applied to a sequence of length items. It returns a tuple of three integers;
respectively these are the start and stop indices and the step or stride length of the slice. Missing or
out-of -bounds indices are handled in a manner consistent with regular slices.

Static method objects Static method objects provide a way of defeating the transformation of function objects to
method objects described above. A static method object is a wrapper around any other object, usually a user-
defined method object. When a static method object is retrieved from a class or a class instance, the object
actually returned is the wrapped object, which is not subject to any further transformation. Static method
objects are also callable. Static method objects are created by the built-in staticmethod () constructor.

Class method objects A class method object, like a static method object, is a wrapper around another object
that alters the way in which that object is retrieved from classes and class instances. The behaviour of class
method objects upon such retrieval is described above, under «User-defined methods». Class method objects
are created by the built-in classmethod () constructor.

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subscripting
and slicing) by defining methods with special names. This is Python’s approach to operator overloading, allowing
classes to define their own behavior with respect to language operators. For instance, if a class defines a method
named _ getitem__ (), and x is an instance of this class, then x[i] is roughly equivalent to type (x) .
__getitem__ (x, 1i). Except where mentioned, attempts to execute an operation raise an exception when no
appropriate method is defined (typically AttributeError or TypeError).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class sets
__iter__ () toNone, the class is not iterable, so calling iter () on its instances will raise a TypeError (without

28 KegaAaio 3. Data model

The Python Language Reference, Anpocisuon 3.10.18

falling back to ___getitem _ ()).

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented to the
degree that it makes sense for the object being modelled. For example, some sequences may work well with retrieval of
individual elements, but extracting a slice may not make sense. (One example of this is the NodeLi st interface in the
W3C’s Document Object Model.)

3.3.1 Basic customization

object.__new__ (cls[,])
Called to create a new instance of class cls. __new___ () is a static method (special-cased so you need not declare
it as such) that takes the class of which an instance was requested as its first argument. The remaining arguments are
those passed to the object constructor expression (the call to the class). The return value of ___new__ () should
be the new object instance (usually an instance of cls).

Typical implementations create a new instance of the class by invoking the superclass’s __new__ () method
using super () .__new__ (cls[, ...]) withappropriate arguments and then modifying the newly created
instance as necessary before returning it.

If _ _new__ () is invoked during object construction and it returns an instance of cls, then the new instance’s
__init__ () method will be invoked like __init__ (self[, ...]),where self is the new instance and
the remaining arguments are the same as were passed to the object constructor.

If _ _new_ () does not return an instance of cls, then the new instance’s _ init__ () method will not be
invoked.

__new___ () isintended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize instance
creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init__ (self[,])
Called after the instance has been created (by ___new___ ()), but before it is returned to the caller. The arguments
are those passed to the class constructor expression. If a base class has an __init__ () method, the derived
class's___init__ () method, if any, must explicitly call it to ensure proper initialization of the base class part of
the instance; for example: super () .__init__ ([args...]).

Because _ _new__ () and __init__ () work together in constructing objects (__new__ () to create it, and
__init__ () to customize it), no non-None value may be returned by __init__ (); doing so will cause a
TypeError to be raised at runtime.

object._ del_ (self)
Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If a
base class hasa ___del__ () method, the derived class’s ___del_ () method, if any, must explicitly call it to
ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) for the __del_ () method to postpone destruction of the instance
by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether
__del__ () is called a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that ___del__ () methods are called for objects that still exist when the interpreter exits.

Inueiwon: del x doesn’tdirectly call x.__del__ () — the former decrements the reference count for x by
one, and the latter is only called when x’s reference count reaches zero.

2The__hash__ (), _iter (), _reversed__ (),and__contains__ () methods have special handling for this; others will still raise
a TypeError, but may do so by relying on the behavior that None is not callable.

3.3. Special method names 29

The Python Language Reference, Anpocigsuon 3.10.18

Agmropépera. vhomoinong CPython: It is possible for a reference cycle to prevent the reference count of an
object from going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector.
A common cause of reference cycles is when an exception has been caught in a local variable. The frame’s locals
then reference the exception, which references its own traceback, which references the locals of all frames caught
in the traceback.

Agite emiong:

Documentation for the gc module.

Ipozdomoinon: Due to the precarious circumstances under which __del () methods are invoked,
exceptions that occur during their execution are ignored, and a warning is printed to sys . stderr instead. In
particular:

e __del__ () canbeinvoked when arbitrary code is being executed, including from any arbitrary thread.

If _ del () needs to take a lock or invoke any other blocking resource, it may deadlock as the
resource may already be taken by the code that gets interrupted to execute ___del__ ().

e del () can be executed during interpreter shutdown. As a consequence, the global variables
it needs to access (including other modules) may already have been deleted or set to None. Python
guarantees that globals whose name begins with a single underscore are deleted from their module before
other globals are deleted; if no other references to such globals exist, this may help in assuring that

imported modules are still available at the time when the ___del () method is called.

object.__repr__ (self)

Called by the repr () built-in function to compute the «official» string representation of an object. If at all possible,
this should look like a valid Python expression that could be used to recreate an object with the same value (given an
appropriate environment). If this is not possible, a string of the form <. . . some useful description...>
should be returned. The return value must be a string object. If a class defines__repr_ () butnot___str__ (),
then __ repr_ () is also used when an «informal» string representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and unambiguous.

object.__str__ (self)

Called by str (object) and the built-in functions format () and print () to compute the «informal» or
nicely printable string representation of an object. The return value must be a string object.

This method differs from ob ject.___repr_ () inthat there is no expectation that ___str__ () return a valid
Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object.__repr__ ().

object._ bytes_ (self)

Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

object._ format__ (self, format_spec)

Called by the format () built-in function, and by extension, evaluation of formatted string literals and the str.
format () method, to produce a «formatted» string representation of an object. The format_spec argument is a
string that contains a description of the formatting options desired. The interpretation of the format_spec argument
is up to the type implementing __ format___ (), however most classes will either delegate formatting to one of
the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.
The return value must be a string object.

AMaEe otnv ékdoon 3.4: The __format__ method of object itself raises a TypeError if passed any non-
empty string.

30

KegaAaio 3. Data model

The Python Language Reference, Anpocisuon 3.10.18

AMoEe oty ékdoomn 3.7: object._ _format__ (x, '') is now equivalent to str (x) rather than
format (str(x), ''").

object.__1t__ (self, other)

object.__le__ (self, other)

object.__eq (self, other)

object._ _ne__ (self, other)

object.__gt__ (self, other)

object.__ge_ (self, other)
These are the so-called «rich comparison» methods. The correspondence between operator symbols and method
names is as follows: x<y callsx.___1t__ (y),x<=ycallsx.__le_ (y),x==ycallsx.__eq (y),x!=y
calls x._ _ne_ (y),x>ycallsx._ gt (y),andx>=ycallsx.__ge_ (y).

A rich comparison method may return the singleton Not Implemented if it does not implement the operation for
a given pair of arguments. By convention, False and True are returned for a successful comparison. However,
these methods can return any value, so if the comparison operator is used in a Boolean context (e.g., in the condition
of an i f statement), Python will call bool () on the value to determine if the result is true or false.

By default, object implements __eg () by using is, returning Not Implemented in the case of a false
comparison: True if x 1is y else NotImplemented. For _ _ne (), by default it delegates
to___eqg__ () and inverts the result unless it is Not Implemented. There are no other implied relationships
among the comparison operators or default implementations; for example, the truth of (x<y or x==y) does
not imply x<=y. To automatically generate ordering operations from a single root operation, see functools.
total_ordering().

See the paragraphon ___hash__ () for some important notes on creating rashable objects which support custom
comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support the
operation but the right argument does); rather, 1t () and___gt__ () areeach other’sreflection, _1e__ ()
and __ge__ () are each other’s reflection, and __eq () and __ne__ () are their own reflection. If the
operands are of different types, and right operand’s type is a direct or indirect subclass of the left operand’s type,
the reflected method of the right operand has priority, otherwise the left operand’s method has priority. Virtual
subclassing is not considered.

object._ _hash__ (self)
Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset, and dict. The __hash__ () method should return an integer. The only required property is
that objects which compare equal have the same hash value; it is advised to mix together the hash values of the
components of the object that also play a part in comparison of objects by packing them into a tuple and hashing
the tuple. Example:

def _ hash__ (self):
return hash((self.name, self.nick, self.color))

Xn ueiu}m]: hash () truncates the value returned from an object’s custom ___hash___ () method to the size of a
Py_ssize_t. Thisis typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s ___hash__ ()
must interoperate on builds of different bit sizes, be sure to check the width on all supported builds. An easy way
to do this is with python —-c "import sys; print (sys.hash_info.width)™".

If aclass does notdefinean___eqg () method it should notdefinea___hash__ () operation either; if it defines
__eq_ () butnot __hash__ (), its instances will not be usable as items in hashable collections. If a class
defines mutable objects and implements an __eqg___ () method, it should not implement ___hash__ (), since
the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s hash value
changes, it will be in the wrong hash bucket).

3.3. Special method names 31

The Python Language Reference, Anpocigsuon 3.10.18

User-defined classes have __eqg () and ___hash__ () methods by default; with them, all objects compare
unequal (except with themselves) and x.___hash___ () returns an appropriate value such that x == vy implies
boththat x is yand hash (x) == hash(y).

A class that overrides __eqg___ () and does not define ___hash___ () will have its __hash__ () implicitly set
to None. When the ___hash__ () method of a class is None, instances of the class will raise an appropriate
TypeError when a program attempts to retrieve their hash value, and will also be correctly identified as
unhashable when checking isinstance (obj, collections.abc.Hashable).

If a class that overrides ___eqg__ () needs to retain the implementation of ___hash__ () from a parent class, the
interpreter must be told this explicitly by setting __hash__ = <ParentClass>._ _hash__ .

If a class that does not override ___eqg () wishes to suppress hash support, it should include __hash__ =
None in the class definition. A class which defines its own ___hash__ () that explicitly raises a TypeError
would be incorrectly identified as hashable by an isinstance (obj, collections.abc.Hashable)
call.

Inueiwon: By default, the __hash__ () values of str and bytes objects are «salted» with an unpredictable
random value. Although they remain constant within an individual Python process, they are not predictable between
repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that
exploit the worst case performance of a dict insertion, O(n?) complexity. See http://www.ocert.org/advisories/
ocert-2011-003.html for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering (and
it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

AMEe oty £xdoon 3.3: Hash randomization is enabled by default.

object._ bool__ (self)
Called to implement truth value testing and the built-in operation boo1l () ; should return False or True. When
this method is not defined, __71en__ () is called, if it is defined, and the object is considered true if its result is
nonzero. If a class defines neither _1en () nor ___bool__ (), all its instances are considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion of
x .name) for class instances.

object._ _getattr__ (self, name)
Called when the default attribute access fails with an AttributeError (either _ getattribute_ ()
raises an At t ributeError because name is not an instance attribute or an attribute in the class tree for se1f;
or___get__ () of aname property raises At t ributeError). This method should either return the (computed)
attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, getattr__ () is not called. (This is an
intentional asymmetry between _ getattr () and __setattr__ ().) This is done both for efficiency
reasons and because otherwise ___getattr__ () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance attribute
dictionary (but instead inserting them in another object). See the __getattribute__ () method below for a
way to actually get total control over attribute access.

object._ _getattribute_ (self, name)
Called unconditionally to implement attribute accesses for instances of the class. If the class also defines

32 KegaAaio 3. Data model

http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, Anpocisuon 3.10.18

__getattr__ (), the latter will not be called unless __ getattribute__ () either calls it explicitly
or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, object .
__getattribute__ (self, name).

Enueiwon: This method may still be bypassed when looking up special methods as the result of implicit invocation
via language syntax or built-in functions. See Special method lookup.

For certain sensitive attribute accesses, raises an auditing event object.___getattr__ with arguments obj
and name.
object.__setattr__ (self, name, value)

Called when an attribute assighment is attempted. This is called instead of the normal mechanism (i.e. store the
value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If _ setattr__ () wants to assign to an instance attribute, it should call the base class method with the same
name, for example, object.__setattr__ (self, name, value).

For certain sensitive attribute assignments, raises an auditing event object.___setattr__ with arguments
ob7j, name, value.

object._ _delattr__ (self, name)
Like __setattr__ () butfor attribute deletion instead of assignment. This should only be implemented if de 1
obj.name is meaningful for the object.

For certain sensitive attribute deletions, raises an auditing event object.__delattr__ with arguments obj
and name.

object._ dir__ (self)
Called when dir () is called on the object. A sequence must be returned. dir () converts the returned sequence
to a list and sorts it.

Customizing module attribute access

Special names __getattr__ and _ _dir__ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and return
the computed value or raise an AttributeError. If an attribute is not found on a module object through the normal
lookup, i.e. object.__getattribute__ (),then ___getattr__ is searched in the module _ dict__ before
raising an AttributeError. If found, it is called with the attribute name and the result is returned.

The ___dir__ function should accept no arguments, and return a sequence of strings that represents the names accessible
on module. If present, this function overrides the standard dir () search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class___ attribute of a module object to a subclass of t ypes.ModuleType. For example:

import sys
from types import ModuleType

class VerboseModule (ModuleType) :
def _ repr_ (self):
return f'Verbose {self._ name

def _ setattr_ (self, attr, value):
print (f'Setting {attr/...")

(ouvéyela otV emtoOUEV oerda)

3.3. Special method names 33

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

super () .__setattr__ (attr, wvalue)

sys.modules|[name . class = VerboseModule

Ynueioon: Defining module ___getattr__ and setting module __class__ only affect lookups made using the
attribute access syntax — directly accessing the module globals (whether by code within the module, or via a reference to
the module’s globals dictionary) is unaffected.

AMhaEe oty €xdoomn 3.5: __class__ module attribute is now writable.
Néo oty éxdoon 3.7: __getattr__and __dir__ module attributes.
Agite gmiong:

PEP 562 - Module __getattr__and __dir__ Describes the __getattr___and __dir__ functions on modules.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one
of its parents). In the examples below, «the attribute» refers to the attribute whose name is the key of the property in the
owner class” __ dict_ .

object.__get_ (self, instance, owner=None)
Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance attribute
access). The optional owner argument is the owner class, while instance is the instance that the attribute was accessed
through, or None when the attribute is accessed through the owner.

This method should return the computed attribute value or raise an AttributeError exception.

PEP 252 specifies that __get__ () is callable with one or two arguments. Python’s own built-in descriptors
support this specification; however, it is likely that some third-party tools have descriptors that require both
arguments. Python’s own ___getattribute__ () implementation always passes in both arguments whether
they are required or not.

object.__set_ (self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.

Note,adding___set___ () or__delete__ () changes the kind of descriptor to a «data descriptor». See Invoking
Descriptors for more details.

object.__delete__ (self, instance)
Called to delete the attribute on an instance instance of the owner class.

The attribute __objclass__ is interpreted by the inspect module as specifying the class where this object was
defined (setting this appropriately can assist in runtime introspection of dynamic class attributes). For callables, it may
indicate that an instance of the given type (or a subclass) is expected or required as the first positional argument (for
example, CPython sets this attribute for unbound methods that are implemented in C).

34 KegaAaio 3. Data model

https://www.python.org/dev/peps/pep-0562
https://www.python.org/dev/peps/pep-0252

The Python Language Reference, Anpocisuon 3.10.18

Invoking Descriptors

In general, a descriptor is an object attribute with «binding behavior», one whose attribute access has been overridden
by methods in the descriptor protocol: __get_ (), __set__ (),and __delete__ ().If any of those methods are
defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance, a . x
has a lookup chain starting with a.__dict__ ['x'], then type (a) .__dict__['x"'], and continuing through
the base classes of type (a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which
descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a . x. How the arguments are assembled depends on a:

Direct Call The simplest and least common call is when user code directly invokes a descriptor method: x.
__get___(a).

Instance Binding If binding to an object instance, a . x is transformed into the call: type (a) .__dict__ ['x'].
__get___(a, type(a)).

Class Binding If binding to a class, 2. x is transformed into the call: A. __dict__ ['x'].__get__ (None, A).

Super Binding If a is an instance of super, then the binding super (B, obj) .m() searchesobj.__class__ .
__mro___ for the base class A immediately following B and then invokes the descriptor with the call: A.
_dict__['m'].__get___(obj, obj.__class__).

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined. A
descriptor can define any combination of __get_ (), __set_ () and _ _delete__ (). If it does not define
__get__ (), then accessing the attribute will return the descriptor object itself unless there is a value in the object’s
instance dictionary. If the descriptor defines __set__ () and/or __delete__ (), itis a data descriptor; if it defines
neither, it is a non-data descriptor. Normally, data descriptors define both __get__ () and __set__ (), while non-
data descriptors have just the __get__ () method. Data descriptors with __get__ () and __set__ () (and/or
__delete__ ()) defined always override a redefinition in an instance dictionary. In contrast, non-data descriptors
can be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as non-
data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to acquire
behaviors that differ from other instances of the same class.

The property () function is implemented as a data descriptor. Accordingly, instances cannot override the behavior of
a property.

__slots__

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of _ dict__ and
__weakref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using ___dict__ can be significant. Attribute lookup speed can be significantly improved as well.

object.__slots___
This class variable can be assigned a string, iterable, or sequence of strings with variable names used by instances.
__slots__ reserves space for the declared variables and prevents the automatic creation of _ dict__ and
__weakref__ for each instance.

3.3. Special method names 35

The Python Language Reference, Anpocigsuon 3.10.18

Notes on using __slots__

When inheriting from a class without __slots__, the __dict__ and __weakref__ attribute of the instances will
always be accessible.

Without a ___dict___ variable, instances cannot be assigned new variables not listed in the __ slots__ definition.
Attempts to assign to an unlisted variable name raises At t ributeError. If dynamic assignment of new variables
is desired, then add '__dict__ ' to the sequence of strings in the __slots__ declaration.

Without a __weakref __ variable for each instance, classes defining __slots___ do not support weak references
to its instances. If weak reference support is needed, then add ' ___weakref_ ' to the sequence of strings in the
__slots__ declaration.

__slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class
attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class
attribute would overwrite the descriptor assignment.

The action of a __slots__ declaration is not limited to the class where it is defined. __slots__ declared in parents
are available in child classes. However, child subclasses will geta ___dict__ and _ weakref _ unless they also
define __slots__ (which should only contain names of any additional slots).

If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is inaccessible
(except by retrieving its descriptor directly from the base class). This renders the meaning of the program undefined.
In the future, a check may be added to prevent this.

TypeError will be raised if nonempty __slots__ are defined for a class derived froma "variable-length"
built-in typesuchas int, bytes, and tuple.

Any non-string iterable may be assigned to __slots__.

If adictionary is used to assign __slots__, the dictionary keys will be used as the slot names. The values of
the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect .getdoc ()
and displayed in the output of help ().

__class__ assignment works only if both classes have the same __slots__.

Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have
attributes created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

If an iterator is used for __slots__then a descriptor is created for each of the iterator’s values. However, the __slots__
attribute will be an empty iterator.

3.3.3 Customizing class creation

Whenever a class inherits from another class,

init_subclass__ () is called on the parent class. This way, it is

possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but where class
decorators only affect the specific class they’re applied to, __init_subclass__ solely applies to future subclasses of
the class defining the method.

classmethod object.__init_subeclass__ (cls)

This method is called whenever the containing class is subclassed. cls is then the new subclass. If defined as a normal
instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent’s class ___init_subclass__.
For compatibility with other classes using __init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

36

KegaAaio 3. Data model

The Python Language Reference, Anpocisuon 3.10.18

class Philosopher:

def _ _init_subclass__(cls, /, default_name, **kwargs):
super () .__init_subclass__ (**kwargs)
cls.default_name = default_name

class AustralianPhilosopher (Philosopher, default_name="Bruce"):
pass

The default implementation object.__init_subclass__ does nothing, but raises an error if it is called
with any arguments.

Inueiwon: The metaclass hint metaclass is consumed by the rest of the type machinery, and is never passed
to__init_subclass___ implementations. The actual metaclass (rather than the explicit hint) can be accessed
as type (cls).

Néo otnv €kdoon 3.6.

When a class is created, type._ new__ () scans the class variables and makes callbacks to those with a
__set_name___ () hook.

object.__ set_name__ (self, owner, name)
Automatically called at the time the owning class owner is created. The object has been assigned to name in that
class:
class A:
x = C() # Automatically calls: x.__set_name__ (A, 'x'")

If the class variable is assigned after the class is created, __set_name___ () will not be called automatically. If

needed, _set_name__ () can be called directly:

class A:
pass
c =C()
A.x = C # The hook is not called
c._ _set_name__ (A, 'x'") # Manually invoke the hook

See Creating the class object for more details.

Néo otnv ¢kdoom 3.6.

Metaclasses

By default, classes are constructed using t ype () . The class body is executed in a new namespace and the class name is
bound locally to the result of type (name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition line,
or by inheriting from an existing class that included such an argument. In the following example, both MyClass and
MySubclass are instances of Meta:

class Meta (type):
pass

class MyClass (metaclass=Meta) :
pass

(ouvéyeLa otV emoueV oerida)

3.3. Special method names 37

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

class MySubclass (MyClass) :
pass

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:
« MRO entries are resolved;
« the appropriate metaclass is determined;
« the class namespace is prepared;
« the class body is executed;

« the class object is created.

Resolving MRO entries

If a base that appears in class definition is not an instance of type, thenan ___mro_entries__ method is searched on
it. If found, it is called with the original bases tuple. This method must return a tuple of classes that will be used instead
of this base. The tuple may be empty, in such case the original base is ignored.

Agite emiong:

PEP 560 - Core support for typing module and generic types

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:
« if no bases and no explicit metaclass are given, then type () is used;
« if an explicit metaclass is given and it is not an instance of type (), then it is used directly as the metaclass;

« if an instance of type () is given as the explicit metaclass, or bases are defined, then the most derived metaclass
is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type (cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these candidate
metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail with TypeError.

Preparing the class hamespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has
a _ _prepare___ attribute, it is called as namespace = metaclass.__prepare__ (name, bases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The _ prepare_
method should be implemented as a classmethod. The namespace returned by __prepare__ is passed in to
___new___, but when the final class object is created the namespace is copied into a new dict.

If the metaclass hasno __prepare__ attribute, then the class namespace is initialised as an empty ordered mapping.
Agite emiong:

PEP 3115 - Metaclasses in Python 3000 Introduced the _ prepare__ namespace hook

38 KegaAaio 3. Data model

https://www.python.org/dev/peps/pep-0560
https://www.python.org/dev/peps/pep-3115

The Python Language Reference, Anpocisuon 3.10.18

Executing the class body

The class body is executed (approximately) as exec (body, globals (), namespace). The key difference from
anormal call to exec () is that lexical scoping allows the class body (including any methods) to reference names from
the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see names
defined at the class scope. Class variables must be accessed through the first parameter of instance or class methods, or
through the implicit lexically scoped __class___ reference described in the next section.

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass (name, bases, namespace, **kwds) (the additional keywords passed here are the same as
those passed to __prepare_).

This class object is the one that will be referenced by the zero-argument form of super (). ___class__ is an implicit
closure reference created by the compiler if any methods in a class body refer to either __class__ or super. This
allows the zero argument form of super () to correctly identify the class being defined based on lexical scoping, while
the class or instance that was used to make the current call is identified based on the first argument passed to the method.

Aemropépera viomoinong CPython: In CPython 3.6 and later, the __class__ cell is passed to the metaclass as a
__classcell__ entry in the class namespace. If present, this must be propagated up to the type._ new__ callin
order for the class to be initialised correctly. Failing to do so will result in a Runt imeError in Python 3.8.

When using the default metaclass t ype, or any metaclass that ultimately calls t ype . ___new
customization steps are invoked after creating the class object:

, the following additional

1) The type._ new__ method collects all of the attributes in the class namespace that define a
__set_name () method;

2) Those __set_name__ methods are called with the class being defined and the assigned name of that particular
attribute;

3) The __init_subclass__ () hook is called on the immediate parent of the new class in its method resolution
order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the resulting
object is bound in the local namespace as the defined class.

When a new class is created by t ype.__new__, the object provided as the namespace parameter is copied to a new
ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which becomes the
__dict__ attribute of the class object.

Agite gmiong:

PEP 3135 - New super Describes the implicit __class__ closure reference

3.3. Special method names 39

https://www.python.org/dev/peps/pep-3135

The Python Language Reference, Anpocigsuon 3.10.18

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging,
interface checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource
locking/synchronization.

3.3.4 Customizing instance and subclass checks

The following methods are used to override the default behavior of the isinstance () and issubclass () built-in
functions.

In particular, the metaclass abc . ABCMeta implements these methods in order to allow the addition of Abstract Base
Classes (ABCs) as «virtual base classes» to any class or type (including built-in types), including other ABCs.

class.__instancecheck__ (self, instance)
Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to implement
isinstance (instance, class).

class.__subclasscheck__ (self, subclass)
Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to implement
issubclass (subclass, class).

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods in
the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case the
instance is itself a class.

Agite gmiong:

PEP 3119 - Introducing Abstract Base Classes Includes the specification for customizing isinstance () and

issubclass () behavior through _ instancecheck__ () and __subclasscheck__ (), with
motivation for this functionality in the context of adding Abstract Base Classes (see the abc module) to the
language.

3.3.5 Emulating generic types

When using type annotations, it is often useful to parameterize a generic type using Python’s square-brackets notation. For
example, the annotation 1ist [int] might be used to signify a 1ist in which all the elements are of type int.
Agite emiong:

PEP 484 - Type Hints Introducing Python’s framework for type annotations

Generic Alias Types Documentation for objects representing parameterized generic classes

Generics, user-defined generics and typing.Generic Documentation on how to implement generic classes that
can be parameterized at runtime and understood by static type-checkers.

A class can generally only be parameterized if it defines the special class method ___class_getitem__ ().

classmethod object._ class_getitem__ (cls, key)
Return an object representing the specialization of a generic class by type arguments found in key.

When defined on aclass, __class_getitem__ () is automatically a class method. As such, there is no need
for it to be decorated with @classmethod when it is defined.

40 KegaAaio 3. Data model

https://www.python.org/dev/peps/pep-3119
https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Anpocisuon 3.10.18

The purpose of __class_getitem _

The purpose of __class_getitem__ () is to allow runtime parameterization of standard-library generic classes in
order to more easily apply rype hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers, users
should either inherit from a standard library class that already implements __class_getitem _ (), or inherit from
typing.Generic, which has its own implementation of __class_getitem__ ().

Custom implementations of ___class_getitem__ () on classes defined outside of the standard library may not be
understood by third-party type-checkers such as mypy. Using _ class_getitem__ () on any class for purposes
other than type hinting is discouraged.

__class_getitem__ versus __getitem _

Usually, the subscription of an object using square brackets will call the __getitem__ () instance method defined on
the object’s class. However, if the object being subscribed is itself a class, the class method __class_getitem _ ()
may be called instead. __class_getitem__ () should return a GenericAlias object if it is properly defined.

Presented with the expression ob7j [x], the Python interpreter follows something like the following process to decide
whether _ _getitem () or___class_getitem _ () should be called:

from inspect import isclass

def subscribe (obj, x):
"""Return the result of the expression “obj[x] """

class_of_obj = type (obj)

If the class of obj defines __getitem _,
call class_of_obj.__getitem _ (obj, x)

if hasattr(class_of_obj, ' getitem '):
return class_of_obj._ getitem_ _ (obj, x)
Else, 1f obj 1is a class and defines __class_getitem__,
call obj.__class_getitem__ (x)
elif isclass(obj) and hasattr(obj, ' _class_getitem__ '"):
return obj.__class_getitem__ (x)

Else, raise an exception
else:
raise TypeError (
f"'"{class_of_obj. name ' object is not subscriptable"

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s metaclass, and
most classes have the t ype class as their metaclass. t ype doesnotdefine _getitem_ (), meaning that expressions
suchas 1ist [int],dict[str, float] and tuple([str, bytes] allresultin__ class_getitem _ ()
being called:

>>> # 1list has class "type" as its metaclass, like most classes:
>>> type(list)
<class 'type'>

>>> type(dict) == type(list) == type(tuple) == type(str) == type(bytes)
True
>>> # "list[int]" calls "list.__class_getitem__ (int)"

>>> list[int]

(ouvéyela otV emtduevn oehida)

3.3. Special method names 4

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

list[int]

>>> # list.__class_getitem _ returns a GenericAlias object:
>>> type (list[int])

<class 'types.GenericAlias'>

However, if a class has a custom metaclass that defines ___getitem _ (), subscribing the class may result in different
behaviour. An example of this can be found in the enum module:

>>> from enum import Enum
>>> class Menu (Enum) :

"""A breakfast menu'"""
SPAM = 'spam'
BACON = 'bacon'

>>> # Enum classes have a custom metaclass:

>>> type (Menu)

<class 'enum.EnumMeta'>

>>> # EnumMeta defines __getitem__,

>>> # so __class_getitem__ 1is not called,

>>> # and the result is not a GenericAlias object:
>>> Menu['SPAM']

<Menu.SPAM: 'spam'>

>>> type (Menul['SPAM'])

<enum 'Menu'>

Agite gmiong:

PEP 560 - Core Support for typing module and generic types Introducing _ class_getitem__ (), and
outlining when a subscription results in __class_getitem__ () being called instead of __getitem__ ()

3.3.6 Emulating callable objects

object.__call___ (self[, args...])
Called when the instance is «called» as a function; if this method is defined, x (argl, arg2, ...) roughly
translates to type (x) .__call_ (x, argl, ...).

3.3.7 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as 1ists
or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of methods is
used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys should
be the integers k for which 0 <= k < N where N is the length of the sequence, or s1ice objects, which define a
range of items. It is also recommended that mappings provide the methods keys (), values (), items (), get (),
clear (), setdefault (), pop(),popitem(), copy (),and update () behaving similar to those for Python’s
standard dictionary objects. The collections.abc module provides a MutableMapping abstract base class
to help create those methods from a base set of __getitem__ (), setitem (), delitem (), and
keys (). Mutable sequences should provide methods append (), count (), index (), extend (), insert (),
pop (), remove (), reverse () and sort (), like Python standard 1ist objects. Finally, sequence types
should implement addition (meaning concatenation) and multiplication (meaning repetition) by defining the methods
_add__(), radd__ (), iadd (), mul__ (), _rmul__ () and __ _imul__ () described below;
they should not define other numerical operators. It is recommended that both mappings and sequences implement the
__contains__ () method to allow efficient use of the in operator; for mappings, in should search the mapping’s
keys; for sequences, it should search through the values. It is further recommended that both mappings and sequences

42 KegaAaio 3. Data model

https://www.python.org/dev/peps/pep-0560

The Python Language Reference, Anpocisuon 3.10.18

implement the __iter__ () method to allow efficient iteration through the container; for mappings, __iter__ ()
should iterate through the object’s keys; for sequences, it should iterate through the values.

object._ len_ (self)
Called to implement the built-in function 1en () . Should return the length of the object, an integer >= 0. Also, an
object that doesn’t definea ___bool__ () method and whose __I1en__ () method returns zero is considered to
be false in a Boolean context.

Agnropépera vhomoinong CPython: In CPython, the length is required to be at most sys.maxsize. If the
length is larger than sys.maxsize some features (such as 1en ()) may raise OverflowError. To prevent
raising OverflowError by truth value testing, an object must definea ___bool__ () method.

object._ length_hint__ (self)
Called to implement operator.length_hint (). Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer >= 0. The return value may also be
Not Implemented, which is treated the same as if the __length_hint__ method didn’t exist at all. This
method is purely an optimization and is never required for correctness.

Néo otv ¢€kdoom 3.4.

Enueiwon: Slicing is done exclusively with the following three methods. A call like

all:2] = Db

is translated to

’a[slice(l, 2, None)] = Db

and so forth. Missing slice items are always filled in with None.

object._ _getitem__ (self, key)
Called to implement evaluation of self [key]. For sequence types, the accepted keys should be integers and slice
objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a sequence type) is
uptothe getitem__ () method. If key is of an inappropriate type, TypeError may be raised; if of a value
outside the set of indexes for the sequence (after any special interpretation of negative values), IndexError
should be raised. For mapping types, if key is missing (not in the container), KeyError should be raised.

Inueiwon: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection
of the end of the sequence.

Inueiwon: When subscripting a class, the special class method ___class_getitem__ () may be called instead
of __getitem__ ().See _ class_getitem__ versus __getitem__ for more details.

object.__setitem__ (self, key, value)
Called to implement assignment to self [key]. Same note as for __getitem _ (). This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added,
or for sequences if elements can be replaced. The same exceptions should be raised for improper key values as for
the getitem _ () method.

object.__delitem__ (self, key)
Called to implement deletion of self [key]. Same note as for __ _getitem__ (). This should only be
implemented for mappings if the objects support removal of keys, or for sequences if elements can be removed
from the sequence. The same exceptions should be raised for improper key values as for the __getitem ()
method.

3.3. Special method names 43

The Python Language Reference, Anpocigsuon 3.10.18

object._ _missing _ (self, key)
Called by dict.__getitem _ () to implement self [key] for dict subclasses when key is not in the
dictionary.

object.__iter_ _ (self)
This method is called when an iterator is required for a container. This method should return a new iterator object
that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the container.

object._ reversed_ (self)
Called (if present) by the reversed () built-in to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

Ifthe reversed__ () method is not provided, the reversed () built-in will fall back to using the sequence
protocol (__Ien__ () and __getitem__ ()). Objects that support the sequence protocol should only provide
__reversed__ () if they can provide an implementation that is more efficient than the one provided by
reversed().

The membership test operators (inand not 1in)are normally implemented as an iteration through a container. However,
container objects can supply the following special method with a more efficient implementation, which also does not
require the object be iterable.

object._ contains__ (self, item)
Called to implement membership test operators. Should return true if ifem is in self, false otherwise. For mapping
objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define __contains__ (), the membership test first tries iterationvia___iter__ (), then
the old sequence iteration protocol via ___getitem (), see this section in the language reference.

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should be
left undefined.

object.__add__ (self, other)

object.__sub__ (self, other)

object._ _mul__ (self, other)

object.__matmul__ (self, other)

object._ _truediv__ (self, other)

object._ floordiv__ (self, other)

object._ _mod__ (self, other)

object.__divmod__ (self, other)

object.__ pow__ (self, other[, modulo])

object._ lshift__ (self, other)

object._ _rshift__ (self, other)

object.__and__ (self, other)

object.__xor__ (self, other)

object.__or__ (self, other)
These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod () ,pow (),
**x <<, >> &, ", |). For instance, to evaluate the expression x + vy, where x is an instance of a class that has an
__add__ () method,x.__add__ (y) iscalled. The divmod__ () method should be the equivalent to using
_ floordiv__ () and _ _mod__ ();it should not be related to __truediv__ (). Note that _ _pow__ ()
should be defined to accept an optional third argument if the ternary version of the built-in pow () function is to
be supported.

If one of those methods does not support the operation with the supplied arguments, it should return
NotImplemented.

44 KegaAaio 3. Data model

The Python Language Reference, Anpocisuon 3.10.18

object.__radd__ (self, other)

object.__rsub__ (self, other)

object.__rmul__ (self, other)

object._ _rmatmul__ (self, other)

object.__rtruediv__ (self, other)

object._ _rfloordiv__ (self, other)

object.__rmod__ (self, other)

object.__rdivmod__ (self, other)

object.__ _rpow__ (self, other[, modulo])

object.__rlshift__ (self, other)

object.__ _rrshift__ (self, other)

object.__rand__ (self, other)

object.__rxor__ (self, other)

object.__ror__ (self, other)
These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod (),pow (),
** <<, >>, &, , |) with reflected (swapped) operands. These functions are only called if the left operand does
not support the corresponding operation® and the operands are of different types.* For instance, to evaluate the
expression x — vy, where y is an instance of a class that hasan ___rsub__ () method, y.__rsub__ (x) is
called if x.___sub__ (y) returns Notlmplemented.

Note that ternary pow () will not try calling __rpow__ () (the coercion rules would become too complicated).

Inueiwon: If the right operand’s type is a subclass of the left operand’s type and that subclass provides a different
implementation of the reflected method for the operation, this method will be called before the left operand’s
non-reflected method. This behavior allows subclasses to override their ancestors” operations.

object.__iadd__ (self, other)
object.__isub__ (self, other)
object._ _imul__ (self, other)
object._ _imatmul__ (self, other)
object.__itruediv__ (self, other)
object._ _ifloordiv__ (self, other)
object.__imod__ (self, other)
object._ _ipow__ (self, other[, modulo])
object._ _ilshift__ (self, other)
object.__irshift__ (self, other)
object.__iand__ (self, other)

object.__ixor__ (self, other)

object.__ior__ (self, other)
These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, @=, /=, / /=, %=, **=,
<<=,>>=, &=, "=, | =). These methods should attempt to do the operation in-place (modifying self) and return the

result (which could be, but does not have to be, self). If a specific method is not defined, the augmented assignment
falls back to the normal methods. For instance, if x is an instance of a class withan ___iadd__ () method, x += y
isequivalenttox = x.__iadd__ (y) .Otherwise, x.__add__ (y) andy.__radd__ (x) are considered,
as with the evaluation of x + y. In certain situations, augmented assignment can result in unexpected errors (see
faq-augmented-assignment-tuple-error), but this behavior is in fact part of the data model.

object._ neg__ (self)
object._ pos__ (self)
object.__abs__ (self)

3 «Does not support» here means that the class has no such method, or the method returns Not Implemented. Do not set the method to None
if you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such fallback.

4 For operands of the same type, it is assumed that if the non-reflected method - such as __add__ () - fails then the overall operation is not
supported, which is why the reflected method is not called.

3.3. Special method names 45

The Python Language Reference, Anpocigsuon 3.10.18

object.__invert_ (self)
Called to implement the unary arithmetic operations (-, +, abs () and ~).

object._ complex__ (self)

object.__int__ (self)

object._ float__ (self)
Called to implement the built-in functions complex (), int () and float (). Should return a value of the
appropriate type.

object._ _index__ (self)
Called to implement operator.index (), and whenever Python needs to losslessly convert the numeric object
to an integer object (such as in slicing, or in the built-in bin (), hex () and oct () functions). Presence of this
method indicates that the numeric object is an integer type. Must return an integer.

If _ _int_ (), __float__ () and __complex__ () are not defined then corresponding built-in functions
int (), float () and complex () fallbackto __ index__ ().

object.__round (self[, ndigits])

object.__trunc__ (self)

object._ floor__ (self)

object._ ceil__ (self)
Called to implement the built-in function round () and math functions trunc (), £loor () and ceil ().
Unless ndigits is passed to __round___ () all these methods should return the value of the object truncated to an
Integral (typically an int).

The built-in function int () fallsbackto_ trunc__ () ifneither __int__ () nor___index__ () isdefined.

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a wi t h statement. The
context manager handles the entry into, and the exit from, the desired runtime context for the execution of the block of
code. Context managers are normally invoked using the with statement (described in section The with statement), but
can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking
resources, closing opened files, etc.

For more information on context managers, see typecontextmanager.

object.__enter__ (self)
Enter the runtime context related to this object. The with statement will bind this method’s return value to the
target(s) specified in the as clause of the statement, if any.

object.__exit__ (self, exc_type, exc_value, traceback)
Exit the runtime context related to this object. The parameters describe the exception that caused the context to be
exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being propagated),
it should return a true value. Otherwise, the exception will be processed normally upon exit from this method.

Note that __exit__ () methods should not reraise the passed-in exception; this is the caller’s responsibility.
Agite gmiong:

PEP 343 - The «with» statement The specification, background, and examples for the Python wi t h statement.

46 KegaAaio 3. Data model

https://www.python.org/dev/peps/pep-0343

The Python Language Reference, Anpocisuon 3.10.18

3.3.10 Customizing positional arguments in class pattern matching

When using a class name in a pattern, positional arguments in the pattern are not allowed by default, i.e. case
MyClass (x, vy) is typically invalid without special support in MyClass. To be able to use that kind of pattern,
the class needs to define a __march_args__ attribute.

object._ match_args_
This class variable can be assigned a tuple of strings. When this class is used in a class pattern with positional
arguments, each positional argument will be converted into a keyword argument, using the corresponding value in
__match_args__ as the keyword. The absence of this attribute is equivalent to setting it to ().

For example, if MyClass.__match_args__is ("left", "center", "right") that means that case
MyClass (x, y) isequivalentto case MyClass (left=x, center=y).Note that the number of arguments in
the pattern must be smaller than or equal to the number of elements in __match_args__; if it is larger, the pattern match
attempt will raise a TypeError.

Néo omv éxdoon 3.10.
Agite griong:

PEP 634 - Structural Pattern Matching The specification for the Python mat ch statement.

3.3.11 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an object’s
type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an exception:

>>> class C:

pass
>>> ¢ = C()
>>> c._ len_ = lambda: 5

>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods such as ___hash__ () and __repr__ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the conventional
lookup process, they would fail when invoked on the type object itself:

>>> 1 ._ _hash_ () == hash(1l)
True
>>> int._ _hash__ () == hash(int)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash ' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as “metaclass
confusion”, and is avoided by bypassing the instance when looking up special methods:

>>> type(l).__hash__ (1) == hash(1)

True

>>> type(int).__hash__ (int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the ___getattribute__ () method even of the object’s metaclass:

3.3. Special method names 47

https://www.python.org/dev/peps/pep-0634

The Python Language Reference, Anpocigsuon 3.10.18

>>> class Meta (type) :
def _ _getattribute__ (*args):
print ("Metaclass getattribute invoked")
return type._ _getattribute__ (*args)

>>> class C(object, metaclass=Meta):
def _ len_ (self):
return 10
def _ getattribute__ (*args):
print ("Class getattribute invoked")

return object.__getattribute__ (*args)
>>> ¢ = C()
>>> c.__len_ () # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__ (c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len(c) # Implicit lookup
10

Bypassing the __getattribute__ () machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be set
on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implements an __await__ () method. Coroutine objects returned from async def
functions are awaitable.

Enueiwon: The generator iterator objects returned from generators decorated with types.coroutine () or
asyncio.coroutine () are also awaitable, but they do not implement __await__ ().

object.__await__ (self)
Must return an iterator. Should be used to implement awaitable objects. For instance, asyncio.Future
implements this method to be compatible with the awa i t expression.

Ynueiwon: The language doesn’t place any restriction on the type or value of the objects yielded by the iterator
returned by __await__, as this is specific to the implementation of the asynchronous execution framework (e.g.
asyncio) that will be managing the awaitable object.

Néo omv éxdoon 3.5.
Agite griong:

PEP 492 for additional information about awaitable objects.

48 KegaAaio 3. Data model

https://www.python.org/dev/peps/pep-0492

The Python Language Reference, Anpocisuon 3.10.18

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling__await__ () and iterating
over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration, and the
exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by the iterator.
Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator
methods). However, unlike generators, coroutines do not directly support iteration.

AMaEe oty €kdoon 3.5.2: It is a Runt imeError to await on a coroutine more than once.

coroutine.send (value)
Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator returned
by ___await__ ().If valueis not None, this method delegates to the send () method of the iterator that caused
the coroutine to suspend. The result (return value, StopIteration, or other exception) is the same as when
iterating over the __await__ () return value, described above.

coroutine.throw (value)

coroutine.throw (type[, value[, traceback]])
Raises the specified exception in the coroutine. This method delegates to the throw () method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the
___await__ () return value, described above. If the exception is not caught in the coroutine, it propagates back
to the caller.

coroutine.close ()
Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close () method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the
coroutine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4.3 Asynchronous lterators

An asynchronous iterator can call asynchronous code in its __anext___ method.
Asynchronous iterators can be used in an async for statement.

object.__aiter__ (self)
Must return an asynchronous iterator object.

object.__anext__ (self)
Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration error
when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

def _ aiter_ (self):
return self

async def _ anext__ (self):
val = await self.readline ()

(ouvéyela otV emtduevn oehida)

3.4. Coroutines 49

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

if val == b'"':
raise StopAsyncIteration
return val

Néo otv éxdoom 3.5.

AMaEe oty ékdoon 3.7: Prior to Python 3.7,
asynchronous iterator.

aiter__ () could return an awaitable that would resolve to an

Starting with Python 3.7, aiter_ () mustreturn an asynchronous iterator object. Returning anything else will result
ina TypeError error.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter_ and
__aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object.__aenter_ (self)
Semantically similar to __enter__ (), the only difference being that it must return an awaitable.

object.__aexit__ (self, exc_type, exc_value, traceback)
Semantically similar to ___exit__ (), the only difference being that it must return an awaitable.

An example of an asynchronous context manager class:

class AsyncContextManager:
async def _ aenter_ (self):
await log('entering context')

async def _ aexit__ (self, exc_type, exc, tb):
await log('exiting context')

Néo otmv éxdoon 3.5.

50 KegaAaio 3. Data model

KE®ANAIO 4

MovTeEAho eKTEAEONQ

4.1 Aopn €vOg MPOYPAHHATOG

"Eva tpodypaupo Python amoteleiton amd pmhok kwdiko. ‘Eva umxdok eivor £vo Koppdtt KEWEVOU TPOYPAUUOTOG
Python mov ekteheiton og puo povéda. Ta mapakdto sivan umAok: évo module, To GO (UOG CUVEPTNONG, O £VOG
opLopdg kAdong. Kébe evtodt) mov minktpoloyeitol diadpaotikd amotehel uwhok. 'Eva apyeio déoung evepyelmv
(éva apyelo mov divetar mg Tumiky) €ic0d0g 0To dlepunvéa 1 Kaboplletal wg OPLOUa YPOUUNG EVIOLDV GTOV dlep-
unvéa) eivor €vo phok Koduka. Mua script evioAt) (uLo. evioAt) ov Kabopiletar 0to diepunvéa (e TV emhoy
—c) giva éva umhok Kmdika. Mo evotnta mov ekTeleliTon wg avoTépov emmédov script (wg module __main_)
oo TN YPAUUY EVTOLDV XPNOLUOTOLDVTOG £Va OPLOUO. —m OpLopa. eivar emtiong éva umhok koduka. To dplopa
OUUPBOLOCELPAS TTOU TEPVAEL OTLG EVOMUATOUEVEG CUVOPTNOELS eval () Kol exec () elval éva UTAoK KMOLKO.

'Evo. prthox kmdika exteleital o€ éva mAaioto extédeans. 'Eva mhailolo mepLéyel oplopéveg Thnpopopies dloyeipt-
o1 (;TOU YPNOLUOTTOLOVVTAL YLOL ATOCQPUALGTWON) KoL KaBopilel Tov Kat Twg ouvveyileTol 1) eKTEAEOT UETE TV
OMOKANPWOT) TNG EKTELEDTG TOV UTAOK KMOLKAL.

4.2 Ovopaocia KkatL ouvdeon

4.2.1 Xuvdeon ovouatwy

Names avogépovtal oe avitkeipeva. Ta ovopato elodyoviol HECm LELTOVPYLMV dETUEVONG OVOUATOV.
O mapakdtw douég deopevouv ovouoTa:

o TUTILKEG TTAPAUETPOL CUVOPTIOEMY,

o oplouoi KAGoewv,

o 0PLOUOL CUVAPTHOEMY

o eK(pPAoELG avadeong

o fargets TOV ELVOL OVOLYVWPLOTLKG OV EULPOVILOVTAL OE (o ovabeon:

51

The Python Language Reference, Anpocigsuon 3.10.18

- gmKe@aiida fpdyov for,
- after as ina with statement, except clause or in the as-pattern in structural pattern matching,
- o€ éva OTLYIOTUTTO HOTIBOU KT T1) oMLK avTLOTOlYNONG LOTIBOV

o dMAWOELG Import.

H dnhwon import g popeng from ... import * ouvvdéel dha ta ovouaTa Tou oplilovioL OTO ELOAYOUEVO
module, ekTOG ATO AVTA TTOV EEKLYOUV Ue (o KEATw stavda. Avth) 1) pop@1| uropet va xpnouoowndei ovo oto
entimedo tov module.

'Evag 01006 mov gugaviletal oe o dnhwon del Bewpeitan emiong deoueVIEVOG YLOL AVTO TOV 0KOTTO (aV KL 1
TTPAYUOTLKY] ONUOOLONOYIOL ELvaL VO ATTOGUVOEDEL TO dvouL).

Kda&0e dMhwon avdbeong N eloaywyng ovupaiver uéoo og éva Whok mov opiletor amd €vav oplopd KAdong M
ovvapTnong 1 oto enimtedo tov module (To WIThokK KOLKA 0VAOTATOU ETLTEDOV).

Av éva dvopa deopevetal oe Evo WIThoK, VoL WO TOTILKY) UETAfANTY) ovtol Tou Wthok, €KTOG av dnhwOel wg
nonlocal W global. Av éva dvoua deopevetal 0to emimedo tov module, eivar e kabohky petafinty. (Ou
uetofANTéG Tou urhok tov module givor TaVTOYPOVA TOTLKES Kot KAOOMKES.) AV (o UETOPANTN XPNOLUOTTOLELTOL
o€ ¢va WThok kKmduka ol dev opileton ekel, ivan pa free variable.

Kd&0e eugpdvion evog ovopatog 0To Kelevo Tov Tpoypauuatog avapépetal ot binding orutol Tov ovouaTtog Tov
KoBopiletal amd Tovg TOPUKATMO KOAVOVES ETIAVONG OVOULTMV.

4.2.2 EniAuon ovopdatwyv

"Eval scope opieL TV 0potoTNTOL €VOG OVOLOTOG UECA 0€ €VOL WITAOK. AV WO TOTTLKY) UeTafAnTi) opLotel o€ €va
urthok, to medio g mephapfdvel To PIThok autd. Av 0 0plopdg OVUPALVEL OF Vo WTTAOK GUVAPTNONG, TO TTEdio
enmeKTELVETOL O€ OTOLOOTTOTE UTTAOK TTEPLEXOVTOL UECA OE QUTO TTOV TNV OPILEL, EKTOG OV €Vl TTEPLEYXOUEVO WITAOK
ELOALYEL OLOPOPETLKTY) GVVOED YL TO OVOULO.

‘Otav éva dvopa pNoLoTToLeitaL 08 £va UITAOK KOILKA, EMAIETOL XPNOLUOTOLDVTOG TO TTANOLEOTEPO TEPLBAANOV
medio. To ovvoro OMmV TV TTediwV OV gival 0paTd o€ £vo WThok KOOLKA 0VOUATETOL environment TOU WTAOK.

‘Otav éva dvopa dev Bpioketor KaBolov, yivetou raise wo eEaipeon NameError. Av to tpéyov medio eivan
71edL0 CUVAPTNONG KOL TO OVOUC OVOPEPETOL OE WLOL TOTILKY) UETOPANTY) TTOU OeV €XEL OKOUO OECUEVTEL O KO-
JTOLAL TUUY OTO ONUELO TTOU YPNOLUOTOLELTOL TO dvoua, Yivetar raise wo eEaipeon UnboundLocalError. H
UnboundLocalError eivou (o vtokhdon thg NameError.

Av pa kettovpyia oUvoeog ovoudtmv ovppel omovdnmote Héoa o€ £va UITAOK KDILKa, OAEG OL X PNOELS TOU 0VO-
LLOTOG UECOL 0TO WTAOK OVTLUETWITLLOVTOL 1OG AVAPOPES OTO TPEXOV UWTAoK. Autd umopel vo 0dnyroeL oe opdipato
OTOV £vaL OVOLLOL Y PTOLULOTIOLELTOL LECO O £VOL WITAOK TTPLY deouevtel. Avtog 0 kavovag eival hemtog. H Python dev
drabétel didoelg Kan emrtpénmer Tig hettovpyieg ovvdeon ovoudtmy vo ouufaivovy omouvdnmote uéoa oe éva
wrthok Kddrka. O Tomkég HETAPANTEG EVOG WITAOK KMOLKO WITOPOUV VO, TTPOGILOPLOTOVY GApMVOVTOS OMOKANPO
TO KELUEVO TOV WIThoK YLaL hettovpyleg ouvdeong ovopdtav. Asite v eyypapn oto FAQ yio to UnboundLocalError
Yo TopadeiypotaL.

If the global statement occurs within a block, all uses of the names specified in the statement refer to the bindings of
those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global namespace,
i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace of the module
builtins. The global namespace is searched first. If the names are not found there, the builtins namespace is searched.
The global statement must precede all uses of the listed names.

H dhwon global éyel to 1010 medio pe po Aettovpyior oUvOEoNS 0VOUOTOG 0TO idL0 PITAoK. AV TO TTANOLECTEPO
mepLBdihov mediov yia o eEheVBepy pueTafAnTh epLéyer pon dMiwon global,) eevBepn uetafAnti avoueTwsti-
Cetar mg KaOoMKT).

52 Kepahaio 4. MovteAo EKTEAEONG

The Python Language Reference, Anpocisuon 3.10.18

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function
scope.

O ywpog ovoudtmv yio €vo module dnpovpyeitor avtopata Ty TpdTh Qopd mtov To module ewodyetal To KVpLo
module yio éva script ovopdletol mdvte, __main_ .

Class definition blocks and arguments to exec () and eval () are special in the context of name resolution. A class
definition is an executable statement that may use and define names. These references follow the normal rules for name
resolution with an exception that unbound local variables are looked up in the global namespace. The namespace of the
class definition becomes the attribute dictionary of the class. The scope of names defined in a class block is limited to the
class block; it does not extend to the code blocks of methods - this includes comprehensions and generator expressions
since they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + 1 for i in range(10))

4.2.3 EVOWHATWHEVEG OUVAPTHOELG KAl TIEPLOPLOUEVN EKTEAEON

Aemrouépera vhomoinong CPython: Ou yprioteg dev 0o mpémel vo. Tporomolovy to __builtins__ - elvow ow-
otpd W Aesrtopépera vhomoinong. Ot xpNnoteg mov BELOVY VA TOPAKAUPOVY TLUEG OTOV XDPO OVOLATOV TWV
EVOOUATOUEVDV oVVapPTHoE®Y Oa Tpémel vo Kavouv import 1o module builtins Ko vo TPOTOTOLOVY TA YOI
PAKTNPLOTIKA TOV KOTAAANAQL.

O X®POG OVOUATWV TWV EVOMUOTOUEVMY CUVAPTIOEMV TTOVU OYETILETOL UE TNV EKTELEOT EVOG UTTAOK KDOLKO Bpi-
OKETOL OTNV TPOYUOTIKOTITA HECW AvalHTHONG TOV OVOUOTOG __builtins_ 0Tov KABOAKO TOU YMPO OVO-
waTwv: outd Oa péme va eivon éva AeEtkd 1) éva module (ot devtepn mepimtwon ypnouomoteiton to AeEukd Tov
module). A6 mpoemhoyt), 0Tav Bprokouaote otomodule __main__ ,to__builtins__ &lvolLTo EVOOUOTWUEVO
module builtins: étav Bplokduaote og omolodnote Ghho module, To _ builtins_ elval éva Pevdmvupo
yia To AeELko6 tov idtov Tov module builtins.

4.2.4 ANAnAemidpaon e SUVAMLKEG AELTOUPYIEQ

H enilvon ovopdtov twv ehetbepmv petafAntav ovppaivel Katd 1o xpovo eKtéheoncs, OxL KATd To XpOVO UETO-
YADOTTLONG. AVTO onuaivel OTL 0 TOPAKATO KMOOLKAG B0 eKTUTDOEL TO 42:

i =10

def f():
print (1)

i = 42

£()

Ou ouvaptioelg eval () koL exec () dev €xovv TpOoPaoN 0T0 TANPES TEPLFAMOV YLoL TNV ETAVOY OVOUdT™Y.
To oOVOUOTO WITOPEL VO ETAVOVTOL 0TOVUG TOTLKOVS Kot KOOOAMKOUG MPOoug 0voudTtmv Tou Kohovvtog. Ot ehev-
Oepec uetaphntéc dev emddovral oto minoléotepo mepPdriov medtov, arid otov KaboAKkd yhpo ovoudtwy.'
Ou ouvapnoelg exec () koL eval () €XOUV TPOOLPETIKG OPLOUATO YLOL VA TTAPOKAUPOUY TOVG KAOOMKOVG Kot
TOTILKOVG Y MPOVG OVOUATMV. AV KaBopLoTEL LOVO EVOG Y MPOG OVOUATMV, XPNOUOTOLELTAL KAl YL0L TOUG dVO0.

! Autdg o meploplopdg mPoKvTTEL EMELSH 0 KOOKAG OV eKTeleiTon amd auTég Tig Aettovpyieg dev eival Stadéoynog T oLy mov 1o
module petayhmtriCeTor.

4.2. Ovopacia kat ouvdeon 53

The Python Language Reference, Anpocigsuon 3.10.18

4.3 EEalpgoelq

O eEaupéoeig eivar £vag Tpdmog SLaKomnG TG KavoviKhg por|g eLEYYoU evOg LITAOK KOOLKA, TIPOKELUEVOU VA, ALVTL-
UETWILOTOVV odpata 1 dhheg eEatpeTikég ovvOnkes. Mia eEaipeon pivetar raise 6To onueio Gmov evromiteTol
T0 OAAIO: UTopel va avtiuetwmotel amd 1o TEPLBEAOY UITAOK KOOLKOL 1) artd 0TT0L001It0Te UTAOK KMOLKOL TTOV
dueoa 1 ¢uueca eKTELETE TO WTAOK KMALKO OTTOV OLVERT TO OPAUAL.

O diepunvéag g Python eyeiper puo eEaipeon Otav evtomiost £va opdhuo Katd v ektéheon(6mmg 1 dlaipeon
ue to undév). ‘Eva mpdypappoe Python pmopei emiong vo eyeiper pntd wa eEaipean pe ™ dhwon raise. O
draelplotég eEapéoewv Kabopifovral pe T dHhwon try ... except. HpNtpa finally wog Tétolag SHAwong
wropel va ypnowuortotn el yio va kafoprotel kKddikog kaapLopov, o omoiog dev diayelpiletol v eEaipeon oAG
extereiTon aveEdptnTo amd to av tponynonke eSaipeon 1 oyl oTov TPONYOUUEVO KOSLKA.

H Python ypnoipomotei to (ovtého dtoyeiplang OQaAudTwy «TEPUATIONOU»: £vag dLayeLpLoThg eEapéoemy umopel
VO SLOTTLOTMOOEL TL CUVERT] KOL VO GUVEYIOEL TNV EKTELEON OF £Vl EEWTEPLKO ETITEDO, AAMG dEV UITOPEL Va. dLopOdTEL
TNV QLT TOV OQAALOTOG KO VO etavald et T Aettovpyio o ammétuye (eKTdg av emavelooy el To TpofANuatiko
KOUUATL KOLKO 0Ttd TNV apyn).

‘Otav wo eEaipeon dev avtetomotel Kabolov, o diepunvéag tepuaTiCer Ty eKTELEOT TOV TPOYPAUUATOG 1)
EMLOTPEPEL OTOV SLAOPATTLKO KVPLO Fpdyo Tov. Kat oTig 000 TePLTTMOELS, EKTUTTMVEL TO (Y VOGS TG OTOIR0G, EKTOG
av 1 eEaipeon eivar SystemExit.

O eEaupéoeig avayvwpifovrar amd otryudtumo kKhdoewv. H pitpo except emhéyetor avdhoya pe tv kAo
TOU OTLYWOTUTTOV: TIPETTEL VO AVAPEPETOL OTNV KAAON TOU OTLYULOTUITIOU 1) OF WLOL 107) ELKOVIKT) faoLKkT) KAGON OUTNG.
To otyodTLITo PWItopEl var TapornpOel aTd Tov dLayeELPLOTY KL v LETOPEPEL TPOODETEG TANPOPOPIES OYETIKA
ue v eEapeTikn ovvonkm.

Inueiwon: To unvopato eEapéoemv dev amotehotv uépog tov API g Python. To mepieyduevd toug umopei vo.
aAMGEeL amd ™) pia ékdoon tng Python otnv enduevn ywpig posidormoinon kou dev Oa mpémer va Booiletal oe
avtd o k®dLKog Tov Oa exteLeoTEL 08 TOMATAES EKOOCELG TOV dlepunvéa.

Agite emiong v mepLypopt) g dNhwong try oty evomta The try statement Kou TG SNAOONG raise oTnv
evomto. The raise statement.

YTOoOnHELWOELG

54 Kepahaio 4. MovteAo EKTEAEONG

KEGAAAIO D

The import system

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions such as
importlib.import_module () and built-in __import__ () can also be used to invoke the import machinery.

The import statement combines two operations; it searches for the named module, then it binds the results of that search
to a name in the local scope. The search operation of the import statement is defined as a call to the __import__ ()
function, with the appropriate arguments. The return value of ___import__ () is used to perform the name binding
operation of the import statement. See the import statement for the exact details of that name binding operation.

Adirectcallto ___import__ () performs only the module search and, if found, the module creation operation. While
certain side-effects may occur, such as the importing of parent packages, and the updating of various caches (including
sys.modules), only the import statement performs a name binding operation.

When an import statement is executed, the standard builtin __import__ () function is called. Other mechanisms
for invoking the import system (such as importlib.import_module ()) may choose to bypass __ import__ ()
and use their own solutions to implement import semantics.

When a module is first imported, Python searches for the module and if found, it creates a module object', initializing it.
If the named module cannot be found, a ModuleNotFoundError is raised. Python implements various strategies to
search for the named module when the import machinery is invoked. These strategies can be modified and extended by
using various hooks described in the sections below.

AMoEe otnv ékdoom 3.3: The import system has been updated to fully implement the second phase of PEP 302. There
is no longer any implicit import machinery - the full import system is exposed through sys.meta_path. In addition,
native namespace package support has been implemented (see PEP 420).

! See types.ModuleType.

55

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Anpocigsuon 3.10.18

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example importlib.
import_module () provides a recommended, simpler API than built-in ___import__ () for invoking the import
machinery. Refer to the import1ib library documentation for additional detail.

5.2 Packages

Python has only one type of module object, and all modules are of this type, regardless of whether the module is
implemented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python has
a concept of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take
this analogy too literally since packages and modules need not originate from the file system. For the purposes of
this documentation, we'll use this convenient analogy of directories and files. Like file system directories, packages are
organized hierarchically, and packages may themselves contain subpackages, as well as regular modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another way,
packages are just a special kind of module. Specifically, any module that containsa ___path___ attribute is considered a
package.

All modules have a name. Subpackage names are separated from their parent package name by a dot, akin to Python’s
standard attribute access syntax. Thus you might have a package called emai 1, which in turn has a subpackage called
email.mime and a module within that subpackage called email .mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are traditional
packages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory containing
an __init__ .py file. When a regular package is imported, this __init__ .py file is implicitly executed, and the
objects it defines are bound to names in the package’s namespace. The __init__ . py file can contain the same Python
code that any other module can contain, and Python will add some additional attributes to the module when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/

__init_ .py
one/

__init__ .py
two/

__init__ .py
three/

__init_ .py

Importing parent .one will implicitly execute parent/__init__ .py and parent/one/__init__ .py.
Subsequent imports of parent.two or parent.three will execute parent/two/__init__ .py and
parent/three/__init__ .py respectively.

56 KegaAaio 5. The import system

The Python Language Reference, Anpocisuon 3.10.18

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the parent
package. Portions may reside in different locations on the file system. Portions may also be found in zip files, on the
network, or anywhere else that Python searches during import. Namespace packages may or may not correspond directly
to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path___ attribute. They instead use a custom iterable type
which will automatically perform a new search for package portions on the next import attempt within that package if the
path of their parent package (or sys.path for a top level package) changes.

With namespace packages, thereisno parent/__init__ .py file. Infact, there may be multiple parent directories
found during import search, where each one is provided by a different portion. Thus parent /one may not be physically
located next to parent /two. In this case, Python will create a namespace package for the top-level parent package
whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of this
discussion, the difference is immaterial) being imported. This name may come from various arguments to the import
statement, or from the parameters to the importlib.import_module () or __import__ () functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g. foo.
bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo.bar.baz. If any of the
intermediate imports fail, a ModuleNotFoundError is raised.

5.3.1 The module cache

The first place checked during import search is sys.modules. This mapping serves as a cache of all modules
that have been previously imported, including the intermediate paths. So if foo.bar.baz was previously imported,
sys.modules will contain entries for foo, foo.bar, and foo.bar.baz. Each key will have as its value the
corresponding module object.

During import, the module name is looked up in sys.modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then a ModuleNotFoundError is
raised. If the module name is missing, Python will continue searching for the module.

sys .modules is writable. Deleting a key may not destroy the associated module (as other modules may hold references
to it), but it will invalidate the cache entry for the named module, causing Python to search anew for the named module
upon its next import. The key can also be assigned to None, forcing the next import of the module to result in a
ModuleNotFoundError.

Beware though, as if you keep a reference to the module object, invalidate its cache entry in sys.modules, and then
re-import the named module, the two module objects will not be the same. By contrast, importlib.reload () will
reuse the same module object, and simply reinitialise the module contents by rerunning the module’s code.

5.3. Searching 57

https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Anpocigsuon 3.10.18

5.3.2 Finders and loaders

If the named module is not found in sys.modules, then Python’s import protocol is invoked to find and load the
module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine whether it
can find the named module using whatever strategy it knows about. Objects that implement both of these interfaces are
referred to as importers - they return themselves when they find that they can load the requested module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules, and the
second knows how to locate frozen modules. A third default finder searches an import path for modules. The import path is
a list of locations that may name file system paths or zip files. It can also be extended to search for any locatable resource,
such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module searching.

Finders do not actually load modules. If they can find the named module, they return a module spec, an encapsulation of
the module’s import-related information, which the import machinery then uses when loading the module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create and
register new ones to extend the import machinery.

AMoEe otnv ékdoom 3.4: In previous versions of Python, finders returned loaders directly, whereas now they return
module specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There are two
types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys.modules cache look up. This allows meta hooks to override sys.path processing, frozen modules, or even
built-in modules. Meta hooks are registered by adding new finder objects to sys .meta_path, as described below.

Import path hooks are called as part of sys.path (or package.__path__) processing, at the point where their
associated path item is encountered. Import path hooks are registered by adding new callables to sys.path_hooks
as described below.

5.3.4 The meta path

When the named module is not found in sys.modules, Python next searches sys.meta_path, which contains a
list of meta path finder objects. These finders are queried in order to see if they know how to handle the named module.
Meta path finders must implement a method called £ind_spec () which takes three arguments: a name, an import
path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine whether it can
handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the named
module, it returns None. If sys.meta_path processing reaches the end of its list without returning a spec, then a
ModuleNotFoundError israised. Any other exceptions raised are simply propagated up, aborting the import process.

The find_spec () method of meta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo.bar.baz. The second argument is the path entries to use for
the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the second
argument is the value of the parent package’s ___path___ attribute. If the appropriate __path___ attribute cannot be
accessed, a ModuleNotFoundError is raised. The third argument is an existing module object that will be the target
of loading later. The import system passes in a target module only during reload.

58 KegaAaio 5. The import system

The Python Language Reference, Anpocisuon 3.10.18

The meta path may be traversed multiple times for a single import request. For example, assuming none of the modules
involved has already been cached, importing foo.bar.baz will first perform a top level import, calling mpf .
find_spec("foo", None, None) on each meta path finder (mpf). After foo has been imported, foo.
bar will be imported by traversing the meta path a second time, calling mpf.find_spec ("foo.bar", foo.
__path__, None). Once foo.bar has been imported, the final traversal will call mpf.find_spec ("foo.
bar.baz", foo.bar._ _path__, None).

Some meta path finders only support top level imports. These importers will always return None when anything other
than None is passed as the second argument.

Python’s default sys .meta_path has three meta path finders, one that knows how to import built-in modules, one that
knows how to import frozen modules, and one that knows how to import modules from an import path (i.e. the path based
finder).

AMoEe oty €xdoon 3.4: The £ind_spec () method of meta path finders replaced £ind_module (), which is now
deprecated. While it will continue to work without change, the import machinery will try it only if the finder does not
implement £ind_spec ().

AMoEe oty ékdoon 3.10: Use of find_module () by the import system now raises ImportWarning.

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the module.
Here is an approximation of what happens during the loading portion of import:

module = None

if spec.loader is not None and hasattr (spec.loader, 'create_module'):
It is assumed 'exec_module' will also be defined on the loader.
module = spec.loader.create_module (spec)

if module is None:
module = ModuleType (spec.name)

The import-related module attributes get set here:

_init_module_attrs (spec, module)

if spec.loader is None:
unsupported
raise ImportError

if spec.origin is None and spec.submodule_search_locations is not None:
namespace package

sys.modules[spec.name] = module
elif not hasattr(spec.loader, 'exec_module'):
module = spec.loader.load_module (spec.name)
Set __loader___ and __package__ i1f missing.
else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module (module)
except BaseException:
try:
del sys.modules|[spec.name]
except KeyError:
pass
raise
return sys.modules[spec.name]

Note the following details:

5.4. Loading 59

The Python Language Reference, Anpocigsuon 3.10.18

« If there is an existing module object with the given name in sy s .modules, import will have already returned it.

o The module will exist in sys .modules before the loader executes the module code. This is crucial because the
module code may (directly or indirectly) import itself; adding it to sy s . modules beforehand prevents unbounded
recursion in the worst case and multiple loading in the best.

« If loading fails, the failing module — and only the failing module — gets removed from sys .modules. Any module
already in the sys.modules cache, and any module that was successfully loaded as a side-effect, must remain
in the cache. This contrasts with reloading where even the failing module is left in sys .modules.

« After the module is created but before execution, the import machinery sets the import-related module attributes
(«_init_module_attrs» in the pseudo-code example above), as summarized in a later section.

e Module execution is the key moment of loading in which the module’s namespace gets populated. Execution is
entirely delegated to the loader, which gets to decide what gets populated and how.

« The module created during loading and passed to exec_module() may not be the one returned at the end of import.

AMoEe oty éxdoon 3.4: The import system has taken over the boilerplate responsibilities of loaders. These were
previously performed by the importlib.abc.Loader.load_module () method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the importlib.
abc.Loader.exec_module () method with a single argument, the module object to execute. Any value returned
from exec_module () is ignored.

Loaders must satisfy the following requirements:

« If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the loader
should execute the module’s code in the module’s global name space (module.__dict_).

« If the loader cannot execute the module, it should raise an ImportError, although any other exception raised
during exec_module () will be propagated.

In many cases, the finder and loader can be the same object; in such cases the find_spec () method would just return
a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module ()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module () does not need to set any attributes on the module object. If the method returns None, the import
machinery will create the new module itself.

Néo oty éxdoon 3.4: The create_module () method of loaders.

AMoEe oty ékdoon 3.4: The 1load_module () method was replaced by exec_module () and the import
machinery assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the 1oad_module () method of loaders if it
exists and the loader does not also implement exec_module (). However, Load_module () has been deprecated
and loaders should implement exec_module () instead.

The 1oad_module () method must implement all the boilerplate loading functionality described above in addition to
executing the module. All the same constraints apply, with some additional clarification:

« If there is an existing module object with the given name in sys.modules, the loader must use that existing
module. (Otherwise, importlib.reload () will not work correctly.) If the named module does not exist in
sys.modules, the loader must create a new module object and add it to sys .modules.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in sys .
modules. The indirect effect of this is that an imported module may replace itself in sys.modules. This is implementation-specific behavior that
is not guaranteed to work in other Python implementations.

60 KegaAaio 5. The import system

The Python Language Reference, Anpocisuon 3.10.18

o The module must exist in sys.modules before the loader executes the module code, to prevent unbounded
recursion or multiple loading.

« If loading fails, the loader must remove any modules it has inserted into sys . modules, but it must remove only
the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

AMoEe oty €ékdoom 3.5: A DeprecationWarning is raised when exec_module () is defined but
create_module () isnot.

AMoEe otnv €kdoom 3.6: An ImportError is raised when exec_module () is defined but create_module ()
is not.

AMaEe oty ékdoon 3.10: Use of 1oad_module () will raise ImportWarning.

5.4.2 Submodules

When a submodule is loaded using any mechanism (e.g. import1ib APIs, the import or import—from statements,
orbuilt-in__import__ ())abindingis placed in the parent module’s namespace to the submodule object. For example,
if package spam has a submodule foo, after importing spam. foo, spam will have an attribute £oo which is bound
to the submodule. Let’s say you have the following directory structure:

spam/
__init__ .py
foo.py

and spam/__init__ .py has the following line in it:

from .foo import Foo

then executing the following puts name bindings for foo and Foo in the spam module:

>>> import spam

>>> spam. foo

<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.Foo

<class 'spam.foo.Foo'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental feature of the import
system. The invariant holding is that if you have sys.modules ['spam'] and sys.modules|['spam.foo'] (as
you would after the above import), the latter must appear as the foo attribute of the former.

5.4.3 Module spec

The import machinery uses a variety of information about each module during import, especially before loading. Most of
the information is common to all modules. The purpose of a module’s spec is to encapsulate this import-related information
on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the finder that
creates the module spec and the loader that executes it. Most importantly, it allows the import machinery to perform the
boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

The module’s spec is exposed as the ___spec___ attribute on a module object. See ModuleSpec for details on the
contents of the module spec.

Néo oty éxdoom 3.4.

5.4. Loading 61

The Python Language Reference, Anpocigsuon 3.10.18

5.4.4 Import-related module attributes

The import machinery fills in these attributes on each module object during loading, based on the module’s spec, before
the loader executes the module.

__name___
The __name___ attribute must be set to the fully qualified name of the module. This name is used to uniquely
identify the module in the import system.

__loader___
The __loader__ attribute must be set to the loader object that the import machinery used when loading the
module. This is mostly for introspection, but can be used for additional loader-specific functionality, for example
getting data associated with a loader.

_ package_
The module’s ___package___ attribute must be set. Its value must be a string, but it can be the same value as its
__name___. When the module is a package, its __package___ value should be set toits__name___. When the
module is not a package, _package___ should be set to the empty string for top-level modules, or for submodules,
to the parent package’s name. See PEP 366 for further details.

This attribute is used instead of __name___ to calculate explicit relative imports for main modules, as defined in
PEP 366. It is expected to have the same value as ___spec___.parent.

AlhaEe oty ékdoon 3.6: The value of ___package___is expected to be the same as __spec___.parent.

__spec__
The ___spec___ attribute must be set to the module spec that was used when importing the module. Setting
___spec___ appropriately applies equally to modules initialized during interpreter startup. The one exception is
__main__ ,where __spec__is set to None in some cases.

When ___package__ isnotdefined, __spec_ .parent is used as a fallback.

Néo otnv é€kdoom 3.4.
AMoEe ot ékdoom 3.6: __spec___.parent is used as a fallback when __package___is not defined.

path__
If the module is a package (either regular or namespace), the module object’s __path___ attribute must be set.
The value must be iterable, but may be empty if __path__ has no further significance. If __path__ is not
empty, it must produce strings when iterated over. More details on the semantics of __path___ are given below.

Non-package modules should not have a __path___ attribute.
__file

__cached___
__file__ is optional. If set, this attribute’s value must be a string. The import system may opt to leave
__file_ unsetif it has no semantic meaning (e.g. a module loaded from a database).

If_ _file_ isset, it may also be appropriate to setthe __cached___ attribute which is the path to any compiled
version of the code (e.g. byte-compiled file). The file does not need to exist to set this attribute; the path can simply
point to where the compiled file would exist (see PEP 3147).

It is also appropriate to set __cached___ when ___file_ is not set. However, that scenario is quite atypical.
Ultimately, the loader is what makes use of __file_ and/or _ cached__. So if a loader can load from a
cached module but otherwise does not load from a file, that atypical scenario may be appropriate.

62 KegaAaio 5. The import system

https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-3147

The Python Language Reference, Anpocisuon 3.10.18

5.4.5 module.__path__

By definition, if a module has a __path___ attribute, it is a package.

A package’s __path__ attribute is used during imports of its subpackages. Within the import machinery, it functions
much the same as sy s . path,i.e. providing a list of locations to search for modules during import. However, __path___
is typically much more constrained than sys.path.

__path__ must be an iterable of strings, but it may be empty. The same rules used for sys.path also apply
to a package’s __path__ , and sys.path_hooks (described below) are consulted when traversing a package’s
__path__.

A package’s __init__ .py file may set or alter the package’s _ path__ attribute, and this was typically the way
namespace packages were implemented prior to PEP 420. With the adoption of PEP 420, namespace packages no longer
need tosupply __init__ .py files containingonly __path__ manipulation code; the import machinery automatically
sets __path__ correctly for the namespace package.

5.4.6 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s spec, you
can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or there is no
spec, the import system will craft a default repr using whatever information is available on the module. It will try to use
the module._ name_ ,module._ file_,and module.__loader__ as input into the repr, with defaults
for whatever information is missing.

Here are the exact rules used:

« If the module has a __spec___ attribute, the information in the spec is used to generate the repr. The «name»,
«loader», «origin», and «has_location» attributes are consulted.

o If the module hasa __ file_ attribute, this is used as part of the module’s repr.

o If the module hasno __file__ butdoes havea __ loader__ thatis not None, then the loader’s repr is used
as part of the module’s repr.

o Otherwise, just use the module’s __name___in the repr.

AMoEe oty €kdoon 3.4: Use of loader.module_repr () has been deprecated and the module spec is now used
by the import machinery to generate a module repr.

For backward compatibility with Python 3.3, the module repr will be generated by calling the loader’s module_repr ()
method, if defined, before trying either approach described above. However, the method is deprecated.

AMaEe ot €kdoon 3.10: Calling module_repr () now occurs after trying to use a module’s ___spec___ attribute
but before falling backon ___file . Useof module_repr () is slated to stop in Python 3.12.

5.4.7 Cached bytecode invalidation

Before Python loads cached bytecode from a . pyc file, it checks whether the cache is up-to-date with the source . py
file. By default, Python does this by storing the source’s last-modified timestamp and size in the cache file when writing
it. At runtime, the import system then validates the cache file by checking the stored metadata in the cache file against
the source’s metadata.

Python also supports «hash-based» cache files, which store a hash of the source file’s contents rather than its metadata.
There are two variants of hash-based . pyc files: checked and unchecked. For checked hash-based . pyc files, Python
validates the cache file by hashing the source file and comparing the resulting hash with the hash in the cache file. If a

5.4. Loading 63

https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Anpocigsuon 3.10.18

checked hash-based cache file is found to be invalid, Python regenerates it and writes a new checked hash-based cache
file. For unchecked hash-based . pyc files, Python simply assumes the cache file is valid if it exists. Hash-based .pyc
files validation behavior may be overridden with the ——check-hash-based-pycs flag.

AMaEe oty ékdoon 3.7: Added hash-based .pyc files. Previously, Python only supported timestamp-based
invalidation of bytecode caches.

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based finder
(PathFinder), searches an import path, which contains a list of path entries. Each path entry names a location to search
for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries,
associating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling special
file types such as Python source code (. py files), Python byte code (.pyc files) and shared libraries (e.g. . so files).
When supported by the zipimport module in the standard library, the default path entry finders also handle loading
all of these file types (other than shared libraries) from zipfiles.

Path entries need not be limited to file system locations. They can refer to URLSs, database queries, or any other location
that can be specified as a string.

The path based finder provides additional hooks and protocols so that you can extend and customize the types of searchable
path entries. For example, if you wanted to support path entries as network URLs, you could write a hook that implements
HTTP semantics to find modules on the web. This hook (a callable) would return a path entry finder supporting the protocol
described below, which was then used to get a loader for the module from the web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using the terms
meta path finder and path entry finder. These two types of finders are very similar, support similar protocols, and function
in similar ways during the import process, but it’s important to keep in mind that they are subtly different. In particular,
meta path finders operate at the beginning of the import process, as keyed off the sys.meta_path traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the path
based finder were to be removed from sys.meta_path, none of the path entry finder semantics would be invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is specified
with a string path entry. Most path entries name locations in the file system, but they need not be limited to this.

As a meta path finder, the path based finder implements the find_spec () protocol previously described, however it
exposes additional hooks that can be used to customize how modules are found and loaded from the import path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and sys.
path_importer_cache. The _ path__ attributes on package objects are also used. These provide additional
ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries in
sys.path can name directories on the file system, zip files, and potentially other «locations» (see the site module)
that should be searched for modules, such as URLs, or database queries. Only strings and bytes should be present on
sys.path; all other data types are ignored. The encoding of bytes entries is determined by the individual path entry
finders.

64 KegaAaio 5. The import system

The Python Language Reference, Anpocisuon 3.10.18

The path based finder is a meta path finder, so the import machinery begins the import path search by calling the path
based finder’s find_spec () method as described previously. When the path argument to find_spec () is given,
it will be a list of string paths to traverse - typically a package’s __path___ attribute for an import within that package.
If the path argument is None, this indicates a top level import and sys . path is used.

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate path entry
Jinder (PathEntryFinder) for the path entry. Because this can be an expensive operation (e.g. there may be stat ()
call overheads for this search), the path based finder maintains a cache mapping path entries to path entry finders. This
cache is maintained in sys.path_importer_cache (despite the name, this cache actually stores finder objects
rather than being limited to importer objects). In this way, the expensive search for a particular path entry location’s path
entry finder need only be done once. User code is free to remove cache entries from sys.path_importer_cache
forcing the path based finder to perform the path entry search again’.

If the path entry is not present in the cache, the path based finder iterates over every callable in sys.path_hooks.
Each of the path entry hooks in this list is called with a single argument, the path entry to be searched. This callable may
either return a path entry finder that can handle the path entry, or it may raise ImportError. An ImportError is
used by the path based finder to signal that the hook cannot find a path entry finder for that path entry. The exception is
ignored and import path iteration continues. The hook should expect either a string or bytes object; the encoding of bytes
objects is up to the hook (e.g. it may be a file system encoding, UTF-8, or something else), and if the hook cannot decode
the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec () method will store None in sys.path_importer_cache (to indicate that there is no finder for
this path entry) and return None, indicating that this meta path finder could not find the module.

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory — denoted by an empty string — is handled slightly differently from other entries on sys.
path. First, if the current working directory is found to not exist, no value is stored in sys .path_importer_cache.
Second, the value for the current working directory is looked up fresh for each module lookup. Third, the path used
for sys.path_importer_cache and returned by importlib.machinery.PathFinder.find_spec ()
will be the actual current working directory and not the empty string.

5.5.2 Path entry finder protocol

In order to support imports of modules and initialized packages and also to contribute portions to namespace packages,
path entry finders must implement the find_spec () method.

find_spec () takes two arguments: the fully qualified name of the module being imported, and the (optional) target
module. find_spec () returns a fully populated spec for the module. This spec will always have «loader» set (with one
exception).

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets
«submodule_search_locations» to a list containing the portion.

AMoEe otnv €xdoon 3.4: find_spec () replaced find_loader () and find_module (), both of which are
now deprecated, but will be used if find_spec () is not defined.

Older path entry finders may implement one of these two deprecated methods instead of find_spec (). The methods
are still respected for the sake of backward compatibility. However, if find_spec () is implemented on the path entry
finder, the legacy methods are ignored.

find_loader () takes one argument, the fully qualified name of the module being imported. find_loader ()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion.

3 In legacy code, it is possible to find instances of imp.NullImporter inthe sys.path_importer_cache. It is recommended that code
be changed to use None instead. See portingpythoncode for more details.

5.5. The Path Based Finder 65

The Python Language Reference, Anpocigsuon 3.10.18

For backwards compatibility with other implementations of the import protocol, many path entry finders also
support the same, traditional £ind _module () method that meta path finders support. However path entry finder
find_module () methods are never called with a path argument (they are expected to record the appropriate path
information from the initial call to the path hook).

The find_module () method on path entry finders is deprecated, as it does not allow the path entry finder to contribute
portions to namespace packages. If both find_loader () and find_module () exist on a path entry finder, the
import system will always call find_loader () in preference to find_module ().

AMoEe oty ékdoon 3.10: Calls to find_module () and find_loader () by the import system will raise
ImportWarning.

5.6 Replacing the standard import system

The most reliable mechanism for replacing the entire import system is to delete the default contents of sys.meta_path,
replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the import
system, then replacing the builtin __import__ () function may be sufficient. This technique may also be employed at
the module level to only alter the behaviour of import statements within that module.

To selectively prevent the import of some modules from a hook early on the meta path (rather than disabling the standard
import system entirely), it is sufficient to raise ModuleNotFoundError directly from find_spec () instead of
returning None. The latter indicates that the meta path search should continue, while raising an exception terminates it
immediately.

5.7 Package Relative Imports

Relative imports use leading dots. A single leading dot indicates a relative import, starting with the current package. Two
or more leading dots indicate a relative import to the parent(s) of the current package, one level per dot after the first. For
example, given the following package layout:

package/

__init__ .py

subpackagel/
__init__ .py
moduleX.py
moduleY.py

subpackage?2/
__init_ .py
moduleZ.py

moduleA.py

Ineither subpackagel/moduleX.pyor subpackagel/__init__ .py,the following are valid relative imports:

from .moduleY import spam

from .moduleY import spam as ham

from . import moduleY

from ..subpackagel import moduleY
from ..subpackage2.moduleZ import eggs
from ..moduleA import foo

Absolute imports may use either the import <> or from <> import <> syntax, but relative imports may only
use the second form; the reason for this is that:

66 KegaAaio 5. The import system

The Python Language Reference, Anpocisuon 3.10.18

’ import XXX.YYY.ZZZ

should expose XXX .YYY.ZZZ as a usable expression, but .moduleY is not a valid expression.

5.8 Special considerations for __main__

The __main__ module is a special case relative to Python’s import system. As noted elsewhere,the __main___ module
is directly initialized at interpreter startup, much like sys and builtins. However, unlike those two, it doesn’t strictly
qualify as a built-in module. This is because the manner in which __main__ is initialized depends on the flags and other
options with which the interpreter is invoked.

5.8.1 __main__.__spec__

Depending on how __main__ isinitialized, __main__._ spec__ gets set appropriately or to None.

When Python is started with the —m option, ___spec___is set to the module spec of the corresponding module or package.
___spec__ is also populated when the __main__ module is loaded as part of executing a directory, zipfile or other
sys.path entry.

In the remaining cases __main__.__ spec__ 1issetto None, as the code used to populate the _ _main__ does not
correspond directly with an importable module:

« interactive prompt

e —C option

o running from stdin

« running directly from a source or bytecode file

Note that __main___.__spec___ isalways None in the last case, even if the file could technically be imported directly
as a module instead. Use the —m switch if valid module metadata is desired in ___main_ .

Note also that even when __main__ corresponds with an importable module and __main__ ._ spec__ is set
accordingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by if _ name_
== "__main__ ": checks only execute when the module is used to populate the __main__ namespace, and not

during normal import.

5.9 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages is still
available to read, although some details have changed since the writing of that document.

The original specification for sys .meta_path was PEP 302, with subsequent extension in PEP 420.

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader () protocol as
an alternative to find_module ().

PEP 366 describes the addition of the ___package___ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed __name___ for semantics PEP 366
would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

5.8. Special considerations for __main__ 67

https://www.python.org/doc/essays/packages/
https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0328
https://www.python.org/dev/peps/pep-0366
https://www.python.org/dev/peps/pep-0338

The Python Language Reference, Anpocigsuon 3.10.18

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs in the
import system and also addition of new methods to finders and loaders.

68 KegaAaio 5. The import system

https://www.python.org/dev/peps/pep-0451

KE®GANAIO O

Expressions

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name .= othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase «the numeric arguments are converted to a common
type», this means that the operator implementation for built-in types works as follows:

« If either argument is a complex number, the other is converted to complex;
« otherwise, if either argument is a floating point number, the other is converted to floating point;
« otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the “%” operator). Extensions must
define their own conversion behavior.

69

The Python Language Reference, Anpocigsuon 3.10.18

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom identifier | literal | enclosure
enclosure = parenth_form | list_display | dict_display | set_display
| generator_expression | yield_atom

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section
Ovouaoio kow cvvdeon for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more underscore
characters and does not end in two or more underscores, it is considered a private name of that class. Private names are
transformed to a longer form before code is generated for them. The transformation inserts the class name, with leading
underscores removed and a single underscore inserted, in front of the name. For example, the identifier ___spam occurring
in a class named Ham will be transformed to _Ham___spam. This transformation is independent of the syntactical context
in which the identifier is used. If the transformed name is extremely long (longer than 255 characters), implementation
defined truncation may happen. If the class name consists only of underscores, no transformation is done.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:

literal = stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number)
with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals. See
section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence) may
obtain the same object or a different object with the same value.

70 Kegahaio 6. Expressions

The Python Language Reference, Anpocisuon 3.10.18

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form := "(" [starred expression] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it yields
a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals apply
(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator. The exception is the empty
tuple, for which parentheses are required — allowing unparenthesized «nothing» in expressions would cause ambiguities
and allow common typos to pass uncaught.

6.2.4 Displays for lists, sets and dictionaries

For constructing a list, a set or a dictionary Python provides special syntax called «displays», each of them in two flavors:
« either the container contents are listed explicitly, or
« they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension = assignment_expression comp_for

comp_for = ["async"] "for" target_Ilist "in" or_test [comp_iter]
comp_iter = comp_for | comp_1if

comp_if = "if" or_test [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or if
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time the
innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate
implicitly nested scope. This ensures that names assigned to in the target list don’t «leak» into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an
argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: [x*y for x in range (10) for y in range(x, x+10)].

To ensure the comprehension always results in a container of the appropriate type, yieldand yield from expressions
are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous
iterator. A comprehension in an async def function may consist of either a for or async for clause following
the leading expression, may contain additional for or async for clauses, and may also use awa it expressions. If a
comprehension contains either async for clauses or await expressions it is called an asynchronous comprehension.
An asynchronous comprehension may suspend the execution of the coroutine function in which it appears. See also PEP
530.

Néo otmv éxdoom 3.6: Asynchronous comprehensions were introduced.

6.2. Atoms 71

https://www.python.org/dev/peps/pep-0530
https://www.python.org/dev/peps/pep-0530

The Python Language Reference, Anpocigsuon 3.10.18

AMaEe oty ékdoon 3.8: yield and yield from prohibited in the implicitly nested scope.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display = "[" [starred_list | comprehension] "]1"

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension.
When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into the
list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting from the
comprehension.

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating keys
and values:

set_display = "{" (starred_list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and
added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting from the
comprehension.

An empty set cannot be constructed with { }; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display = "{" [key_datum list | dict_comprehension] "}"
key_datum_list = key_datum ("," key_datum)* [","]
key_datum = expression ":" expression | "**" or_expr

dict_comprehension expression expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of key/datum pairs is given, they are evaluated from left to right to define the entries of
the dictionary: each key object is used as a key into the dictionary to store the corresponding datum. This means that you
can specify the same key multiple times in the key/datum list, and the final dictionary’s value for that key will be the last
one given.

A double asterisk ** denotes dictionary unpacking. Its operand must be a mapping. Each mapping item is added to the
new dictionary. Later values replace values already set by earlier key/datum pairs and earlier dictionary unpackings.

Néo omv £€xdoon 3.5: Unpacking into dictionary displays, originally proposed by PEP 448.

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon followed
by the usual «for» and «if» clauses. When the comprehension is run, the resulting key and value elements are inserted in
the new dictionary in the order they are produced.

72 Kegahaio 6. Expressions

https://www.python.org/dev/peps/pep-0448

The Python Language Reference, Anpocisuon 3.10.18

Restrictions on the types of the key values are listed earlier in section The standard type hierarchy. (To summarize, the
key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected; the
last datum (textually rightmost in the display) stored for a given key value prevails.

AMoEe omv ékdoom 3.8: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was not
well-defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before the value,
as proposed by PEP 572.

6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression = "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is
enclosed in parentheses instead of brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the __next__ () method is called for the generator
object (in the same fashion as normal generators). However, the iterable expression in the leftmost for clause is
immediately evaluated, so that an error produced by it will be emitted at the point where the generator expression is
defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter condition in
the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained from the
leftmost iterable. For example: (x*y for x in range(10) for y in range(x, x+10)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expression itself, yieldand yield from expressions
are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or awa i t expressions it is called an asynchronous generator
expression. An asynchronous generator expression returns a new asynchronous generator object, which is an asynchronous
iterator (see Asynchronous Iterators).

Néo otV €xdoon 3.6: Asynchronous generator expressions were introduced.

AMaEe ot ékdoon 3.7: Prior to Python 3.7, asynchronous generator expressions could only appear in async def
coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

AMoEe oty €xdoon 3.8: yield and yield from prohibited in the implicitly nested scope.

6.2.9 Yield expressions

yield_atom "(" yield expression ")"
yield_expression = "yield" [expression_list | "from" expression]

The yield expression is used when defining a generator function or an asynchronous generator function and thus can only
be used in the body of a function definition. Using a yield expression in a function’s body causes that function to be a
generator function, and using it in an async def function’s body causes that coroutine function to be an asynchronous
generator function. For example:

def gen(): # defines a generator function
yield 123

(ouvéyeLa 0TV ETOUEVT] GEMDQL)

6.2. Atoms 73

https://www.python.org/dev/peps/pep-0572

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

async def agen(): # defines an asynchronous generator function
yield 123

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly defined
scopes used to implement comprehensions and generator expressions.

AMoEe ot £xdoon 3.8: Yield expressions prohibited in the implicitly nested scopes used to implement comprehensions
and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section
Asynchronous generator functions.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution
of the generator function. The execution starts when one of the generator’s methods is called. At that time, the execution
proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to the
generator’s caller, or None if expression_1list is omitted. By suspended, we mean that all local state is retained,
including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any
exception handling. When the execution is resumed by calling one of the generator’s methods, the function can proceed
exactly as if the yield expression were just another external call. The value of the yield expression after resuming depends
on the method which resumed the execution. If __next___ () is used (typically via either a for or the next () builtin)
then the result is None. Otherwise, if send () is used, then the result will be the value passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry
point and their execution can be suspended. The only difference is that a generator function cannot control where the
execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a ¢ ry construct. If the generator is not resumed before it is finalized (by
reaching a zero reference count or by being garbage collected), the generator-iterator’s c1ose () method will be called,
allowing any pending finally clauses to execute.

When yield from <expr> is used, the supplied expression must be an iterable. The values produced by iterating
that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send () and
any exceptions passed in with t hrow () are passed to the underlying iterator if it has the appropriate methods. If this is
not the case, then send () will raise AttributeError or TypeError, while t hrow () will just raise the passed
in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes the
value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically when the
subiterator is a generator (by returning a value from the subgenerator).

AMoEe oty £xdoon 3.3: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an assignment
statement.

Agite griong:
PEP 255 - Simple Generators The proposal for adding generators and the yie1d statement to Python.

PEP 342 - Coroutines via Enhanced Generators The proposal to enhance the API and syntax of generators, making
them usable as simple coroutines.

PEP 380 - Syntax for Delegating to a Subgenerator The proposal to introduce the yield_ from syntax, making
delegation to subgenerators easy.

PEP 525 - Asynchronous Generators The proposal that expanded on PEP 492 by adding generator capabilities to
coroutine functions.

74 Kegpalaio 6. Expressions

https://www.python.org/dev/peps/pep-0255
https://www.python.org/dev/peps/pep-0342
https://www.python.org/dev/peps/pep-0380
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492

The Python Language Reference, Anpocisuon 3.10.18

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.

generator.__next__ ()
Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator
function is resumed with a ___next__ () method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value of the
expression_listisreturnedto__ next__ ()”s caller. If the generator exits without yielding another value,
a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next () function.

generator.send (value)
Resumes the execution and «sends» a value into the generator function. The value argument becomes the result
of the current yield expression. The send () method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send () is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive the
value.

generator.throw (value)

generator.throw (type[, value[, traceback]])
Raises an exception at the point where the generator was paused, and returns the next value yielded by the generator
function. If the generator exits without yielding another value, a StopIteration exception is raised. If the
generator function does not catch the passed-in exception, or raises a different exception, then that exception
propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older
versions of Python. The fype argument should be an exception class, and value should be an exception instance. If
the value is not provided, the type constructor is called to get an instance. If raceback is provided, it is set on the
exception, otherwise any existing __traceback___ attribute stored in value may be cleared.

generator.close ()
Raises a GeneratorExit at the point where the generator function was paused. If the generator function then
exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close returns to its
caller. If the generator yields a value, a Runt imeError is raised. If the generator raises any other exception, it is
propagated to the caller. c1ose () does nothing if the generator has already exited due to an exception or normal
exit.

Examples

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo(value=None) :
print ("Execution starts when 'next ()' is called for the first time.")
try:
while True:
try:
value = (yield value)
except Exception as e:
value = e

(ouvéyela otV emtduevn oehida)

6.2. Atoms 75

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

finally:
print ("Don't forget to clean up when 'close()' 1is called.")

>>> generator = echo (1)

>>> print (next (generator))

Execution starts when 'next()' is called for the first time.
1

>>> print (next (generator))

None

>>> print (generator.send(2))

2

>>> generator.throw (TypeError, "spam")

TypeError ('spam',)

>>> generator.close()

Don't forget to clean up when 'close()' is called.

For examples using yield from, see pep-380 in «What’s New in Python.»

Asynchronous generator functions

The presence of a yield expression in a function or method defined using async def further defines the function as an
asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous
generator object. That object then controls the execution of the generator function. An asynchronous generator object
is typically used in an async for statement in a coroutine function analogously to how a generator object would be
used in a for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this
object is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again,
returning the value of expression_1ist to the awaiting coroutine. As with a generator, suspension means that all
local state is retained, including the current bindings of local variables, the instruction pointer, the internal evaluation
stack, and the state of any exception handling. When the execution is resumed by awaiting on the next object returned
by the asynchronous generator’s methods, the function can proceed exactly as if the yield expression were just another
external call. The value of the yield expression after resuming depends on the method which resumed the execution. If
___anext___ () isused then the result is None. Otherwise, if asend () is used, then the result will be the value passed
in to that method.

If an asynchronous generator happens to exit early by break, the caller task being cancelled, or other exceptions, the
generator’s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected context—
perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator garbage
collection hook is called. To prevent this, the caller must explicitly close the async generator by calling aclose ()
method to finalize the generator and ultimately detach it from the event loop.

In an asynchronous generator function, yield expressions are allowed anywhere in a try construct. However, if an
asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage
collected), then a yield expression within a t ry construct could result in a failure to execute pending £inal 1y clauses. In
this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call the asynchronous
generator-iterator's aclose () method and run the resulting coroutine object, thus allowing any pending finally
clauses to execute.

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes
an asynchronous generator-iterator and presumably calls aclose () and executes the coroutine. This finalizer may be
registered by calling sys.set_asyncgen_hooks (). When first iterated over, an asynchronous generator-iterator
will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method see the
implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

76 Kegahaio 6. Expressions

https://github.com/python/cpython/tree/3.10/Lib/asyncio/base_events.py

The Python Language Reference, Anpocisuon 3.10.18

The expression yield from <expr> isa syntax error when used in an asynchronous generator function.

Asynchronous generator-iterator methods

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution of
a generator function.

coroutine agen.__anext__ ()

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last executed
yield expression. When an asynchronous generator function is resumed with an ___anext__ () method, the
current yield expression always evaluates to None in the returned awaitable, which when run will continue to
the next yield expression. The value of the expression_1list of the yield expression is the value of the
StopIteration exception raised by the completing coroutine. If the asynchronous generator exits without
yielding another value, the awaitable instead raises a StopAsyncIteration exception, signalling that the
asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

coroutine agen.asend (value)

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the
send () method for a generator, this «sends» a value into the asynchronous generator function, and the value
argument becomes the result of the current yield expression. The awaitable returned by the asend () method
will return the next value yielded by the generator as the value of the raised StopIteration, or raises
StopAsyncIteration if the asynchronous generator exits without yielding another value. When asend ()
is called to start the asynchronous generator, it must be called with None as the argument, because there is no yield
expression that could receive the value.

coroutine agen.athrow (value)

coroutine agen.athrow (type[, value[, tmceback]])
Returns an awaitable that raises an exception of type type at the point where the asynchronous generator was
paused, and returns the next value yielded by the generator function as the value of the raised StopIteration
exception. If the asynchronous generator exits without yielding another value, a StopAsyncIteration
exception is raised by the awaitable. If the generator function does not catch the passed-in exception, or raises
a different exception, then when the awaitable is run that exception propagates to the caller of the awaitable.

coroutine agen.aclose ()

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator function
at the point where it was paused. If the asynchronous generator function then exits gracefully, is already
closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise a
StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous generator
will raise a St opAsyncIteration exception. If the asynchronous generator yields a value,a Runt imeError
is raised by the awaitable. If the asynchronous generator raises any other exception, it is propagated to the caller
of the awaitable. If the asynchronous generator has already exited due to an exception or normal exit, then further
calls to aclose () will return an awaitable that does nothing.

6.2. Atoms 77

The Python Language Reference, Anpocigsuon 3.10.18

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary = atom | attributeref | subscription | slicing | call

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref = primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object
is then asked to produce the attribute whose name is the identifier. This production can be customized by overriding the
__getattr__ () method. If this attribute is not available, the exception Att ributeError is raised. Otherwise, the
type and value of the object produced is determined by the object. Multiple evaluations of the same attribute reference
may yield different objects.

6.3.2 Subscriptions

The subscription of an instance of a container class will generally select an element from the container. The subscription
of a generic class will generally return a GenericAlias object.

subscription = primary "[" expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through defining
one or both of _ _getitem () and _ _class_getitem__ (). When the primary is subscripted, the evaluated
result of the expression list will be passed to one of these methods. For more details on when __class_getitem
is called instead of __getitem__,see _ class getitem__ versus __getitem__.

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression list.
Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via___getitem ():

1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys
of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An example of
a builtin mapping class is the dict class.

2. Sequences. If the primary is a sequence, the expression list must evaluate to an int or a slice (as discussed in
the following section). Examples of builtin sequence classes include the str, 1ist and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all provide
a__getitem__ () method that interprets negative indices by adding the length of the sequence to the index so that,
for example, x [-1] selects the last item of x. The resulting value must be a nonnegative integer less than the number
of items in the sequence, and the subscription selects the item whose index is that value (counting from zero). Since
the support for negative indices and slicing occurs in the object’s __getitem__ () method, subclasses overriding this
method will need to explicitly add that support.

78 Kegahaio 6. Expressions

The Python Language Reference, Anpocisuon 3.10.18

A stringis a special kind of sequence whose items are characters. A character is not a separate data type but a string
of exactly one character.

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions or
as targets in assignment or de I statements. The syntax for a slicing:

slicing = primary "[" slice_list "]"

slice_list n= slice_item ("," slice_item)* [","]

slice_item = expression | proper_slice

proper_slice = [lower_bound] ":" [upper_bound] [":" [stride]]
lower_bound = expression

upper_bound = expression

stride = expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any
subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining
that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if the
slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same __getitem__ () method as normal
subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the
key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The
conversion of a slice item that is an expression is that expression. The conversion of a proper slice is a slice object (see
section The standard type hierarchy) whose start, stop and step attributes are the values of the expressions given
as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call = primary " (" [argument_list [","] | comprehension] ")"
argument_list = positional_arguments ["," starred_and_keywords]

["," keywords_arguments]

| starred_and_keywords ["," keywords_arguments]

| keywords_arguments

positional_arguments = positional_item ("," positional_item)*
positional_item u= assignment_expression | "*" expression
starred_and_keywords = ("*" expression | keyword_item)

("," "*" expression | "," keyword_item)*
keywords_arguments = (keyword_item | "**" expression)

("," keyword_ item | "," "**" expression)*
keyword_item = identifier "=" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects havinga __call__ () method are callable). All argument
expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of formal
parameter lists.

6.3. Primaries 79

The Python Language Reference, Anpocigsuon 3.10.18

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled slots
is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next, for
each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as the first
formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError exception is raised.
Otherwise, the value of the argument is placed in the slot, filling it (even if the expression is None, it fills the slot). When
all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value from the
function definition. (Default values are calculated, once, when the function is defined; thus, a mutable object such as a list
or dictionary used as default value will be shared by all calls that don’t specify an argument value for the corresponding
slot; this should usually be avoided.) If there are any unfilled slots for which no default value is specified, a TypeError
exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

Aemrouépera vhomoinong CPython: An implementation may provide built-in functions whose positional parameters
do not have names, even if they are “named” for the purpose of documentation, and which therefore cannot be supplied
by keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple () to parse
their arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless
a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a tuple
containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a
formal parameter using the syntax **identifier is present; in this case, that formal parameter receives a dictionary
containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values),
or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iterable. Elements from
these iterables are treated as if they were additional positional arguments. For the call £ (x1, x2, *y, x3, x4),
if y evaluates to a sequence y/, ..., yM, this is equivalent to a call with M+4 positional arguments x/, x2, y1, ..., yM, x3,
x4.

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it is
processed before the keyword arguments (and any * *expression arguments - see below). So:

>>> def f(a, b):
print (a, b)

>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f£() got multiple values for keyword argument 'a'
>>> f£(1, *(2,))
12

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice this
confusion does not arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the contents of
which are treated as additional keyword arguments. If a parameter matching a key has already been given a value (by an
explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned to
the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a Python
identifier (e.g. "max-temp °F" is acceptable, although it will not match any formal parameter that could be declared).
If there is no match to a formal parameter the key-value pair is collected by the * * parameter, if there is one, or if there
isnot, a TypeError exception is raised.

80 Kegahaio 6. Expressions

The Python Language Reference, Anpocisuon 3.10.18

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots
or as keyword argument names.

AMaEe oty €ékdoon 3.5: Function calls accept any number of * and * * unpackings, positional arguments may follow
iterable unpackings (*), and keyword arguments may follow dictionary unpackings (* *). Originally proposed by PEP
448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends on
the type of the callable object.

If it is—

a user-defined function: The code block for the function is executed, passing it the argument list. The first thing the
code block will do is bind the formal parameters to the arguments; this is described in section Function definitions.
When the code block executes a return statement, this specifies the return value of the function call.

a built-in function or method: The result is up to the interpreter; see built-in-funcs for the descriptions of built-in
functions and methods.

a class object: A new instance of that class is returned.

a class instance method: The corresponding user-defined function is called, with an argument list that is one longer
than the argument list of the call: the instance becomes the first argument.

a class instance: The classmustdefinea call () method; the effect is then the same as if that method was called.

6.4 Await expression

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr = "await" primary

Néo oty éxdoonm 3.5.

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its
right. The syntax is:

power = (await_expr | primary) ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this
does not constrain the evaluation order for the operands): —1* *2 results in —1.

The power operator has the same semantics as the built-in pow () function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type,
and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case, all
arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10* *—2 returns
0.01.

Raising 0. O to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional power
results in a complex number. (In earlier versions it raised a ValueError.)

6.4. Await expression 81

https://www.python.org/dev/peps/pep-0448
https://www.python.org/dev/peps/pep-0448

The Python Language Reference, Anpocigsuon 3.10.18

This operation can be customized using the special __pow___ () method.

6.6 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr = power | "-" u_expr | "+" u_expr | "~" u_expr

The unary — (minus) operator yields the negation of its numeric argument; the operation can be overridden with the
__neg__ () special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the
__pos__ () special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is defined
as — (x+1). It only applies to integral numbers or to custom objects that override the __invert__ () special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators and
one for additive operators:

m_expr I= u_expr | m_expr "*" u_expr | m_expr "Q" m_expr |
m expr "//" u_expr | m_expr "/" u_expr |
m_expr "%" u_expr

a_expr I= m_expr | a_expr "+" m_expr | a_expr "-" m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or one
argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to a common
type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition factor yields
an empty sequence.

This operation can be customized using the special __mul__ () and __rmul__ () methods.
The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.
Néo omv éxdoon 3.5.

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are first
converted to a common type. Division of integers yields a float, while floor division of integers results in an integer;
the result is that of mathematical division with the “floor” function applied to the result. Division by zero raises the
ZeroDivisionError exception.

This operation can be customized using the special __truediv__ () and __floordiv__ () methods.

The $ (modulo) operator yields the remainder from the division of the first argument by the second. The numeric
arguments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception.
The arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + 0.34.)

82 Kegahaio 6. Expressions

The Python Language Reference, Anpocisuon 3.10.18

The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of the
result is strictly smaller than the absolute value of the second operand’.

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y).Floor
division and modulo are also connected with the built-in function divmod () : divmod (x, y) == (x//y, x%y) 2.

In addition to performing the modulo operation on numbers, the $ operator is also overloaded by string objects to perform
old-style string formatting (also known as interpolation). The syntax for string formatting is described in the Python
Library Reference, section old-string-formatting.

The modulo operation can be customized using the special __mod__ () method.

The floor division operator, the modulo operator, and the divmod () function are not defined for complex numbers.
Instead, convert to a floating point number using the abs () function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be
sequences of the same type. In the former case, the numbers are converted to a common type and then added together.
In the latter case, the sequences are concatenated.

This operation can be customized using the special __add__ () and ___radd__ () methods.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a common
type.

This operation can be customized using the special ___sub__ () method.

6.8 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr = a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits given
by the second argument.

This operation can be customized using the special __1shift__ () and __rshift__ () methods.

A right shift by n bits is defined as floor division by pow (2, n) . A left shift by » bits is defined as multiplication with
pow (2,n).

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr = shift_expr | and_expr "&" shift_expr
XOr_expr = and_expr | xor_expr """ and_expr
or_expr = xor_expr | or_expr "|" xor_expr

! While abs (x%y) < abs (y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming a
platform on which a Python float is an IEEE 754 double-precision number, in order that ~-1e—-100 % 1e100 have the same sign as 1100, the
computed result is ~-1e-100 + 1e100, which is numerically exactly equal to 1e100. The function math. fmod () returns a result whose sign
matches the sign of the first argument instead, and so returns —1e—100 in this case. Which approach is more appropriate depends on the application.

2 If x is very close to an exact integer multiple of y, it’s possible for x//y to be one larger than (x-x%y) //y due to rounding. In such cases,
Python returns the latter result, in order to preserve that divmod (x,y) [0] * y + x % y be very close to x.

6.8. Shifting operations 83

The Python Language Reference, Anpocigsuon 3.10.18

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom object
overriding __and__ () or __rand___ () special methods.

The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must be
a custom object overriding ___xor__ () or __rxor__ () special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a
custom object overriding __or___ () or __ror__ () special methods.

6.10 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic, shifting
or bitwise operation. Also unlike C, expressions like a < b < ¢ have the interpretation that is conventional in
mathematics:

comparison n= or_expr (comp_operator or_expr)*
comp operator e nen ‘ nsn | n__mn | ns_—mn ‘ ne—mn | nmyp_n
| "iS" ["not"] ‘ ["not"] "in"

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean values.
In this case Python will call bool () on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= zisequivalenttox < y and y <= z,exceptthaty is
evaluated only once (but in both cases z is not evaluated at all when x < vy is found to be false).

Formally, if a, b, c, ..., y, z are expressions and opl, op2, ..., opN are comparison operators, then a opl b op2 c
y opN zisequivalenttoa opl b and b op2 c¢ and ... y opN z,exceptthat each expression is
evaluated at most once.

Note that a opl b op2 c doesn’'t imply any kind of comparison between a and c, so that,e.g., x < y > zis
perfectly legal (though perhaps not pretty).

6.10.1 Value comparisons

The operators <, >, ==, >=, <=, and ! = compare the values of two objects. The objects do not need to have the same
type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an object
is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value. Also, there
is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of all its data
attributes. Comparison operators implement a particular notion of what the value of an object is. One can think of them
as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of object, they inherit the default comparison behavior from
object. Types can customize their comparison behavior by implementing rich comparison methods like ___1t__ (),
described in Basic customization.

The default behavior for equality comparison (== and !=) is based on the identity of the objects. Hence, equality
comparison of instances with the same identity results in equality, and equality comparison of instances with different
identities results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive (i.e.
x 1s yimplies x == y).

A default order comparison (<, >, <=, and >=) is not provided; an attempt raises TypeError. A motivation for this
default behavior is the lack of a similar invariant as for equality.

84 Kegpalaio 6. Expressions

The Python Language Reference, Anpocisuon 3.10.18

The behavior of the default equality comparison, that instances with different identities are always unequal, may be in
contrast to what types will need that have a sensible definition of object value and value-based equality. Such types will
need to customize their comparison behavior, and in fact, a number of built-in types have done that.

The following list describes the comparison behavior of the most important built-in types.

o Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.Fraction
and decimal.Decimal can be compared within and across their types, with the restriction that complex
numbers do not support order comparison. Within the limits of the types involved, they compare mathematically
(algorithmically) correct without loss of precision.

The not-a-number values float ('NaN') and decimal.Decimal ('NaN') are special. Any ordered
comparison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number
values are not equal to themselves. For example, if x = float ('NaN'),3 < x,x < 3andx == xare all
false, while x != x is true. This behavior is compliant with IEEE 754.

e None and Not Implemented are singletons. PEP 8 advises that comparisons for singletons should always be
done with is or is not, never the equality operators.

« Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They
compare lexicographically using the numeric values of their elements.

« Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of the
built-in function ord ()) of their characters.?

Strings and binary sequences cannot be directly compared.

» Sequences (instances of tuple, 1ist, or range) can be compared only within each of their types, with the
restriction that ranges do not support order comparison. Equality comparison across these types results in inequality,
and ordering comparison across these types raises TypeError.

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers
typically assume identical objects are equal to themselves. That lets them bypass equality tests for identical objects
to improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

- For two collections to compare equal, they must be of the same type, have the same length, and each pair of
corresponding elements must compare equal (for example, [1,2] == (1,2) is false because the type is
not the same).

- Collections that support order comparison are ordered the same as their first unequal elements (for example,
[1,2,x] <= [1,2,y] hasthe same value as x <= y). If a corresponding element does not exist, the
shorter collection is ordered first (for example, [1,2] < [1,2, 3] istrue).

o Mappings (instances of dict) compare equal if and only if they have equal (key, wvalue) pairs. Equality
comparison of the keys and values enforces reflexivity.

Order comparisons (<, >, <=, and >=) raise TypeError.
« Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total
orderings (for example, the two sets {1, 2} and {2, 3} are not equal, nor subsets of one another, nor supersets

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. <\LATIN CAPITAL LETTER A»). While most
abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition be represented using
a sequence of more than one code point. For example, the abstract character «<LATIN CAPITAL LETTER C WITH CEDILLA» can be represented as
a single precomposed character at code position U+00C7, or as a sequence of a base character at code position U+0043 (LATIN CAPITAL LETTER
C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).

The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example, "\
u00C7" == "\u0043\u0327" is False, even though both strings represent the same abstract character <KLATIN CAPITAL LETTER C WITH
CEDILLA>.

To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize ().

6.10. Comparisons 85

https://www.python.org/dev/peps/pep-0008

The Python Language Reference, Anpocigsuon 3.10.18

of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering (for
example, min (), max (), and sorted () produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

e Most other built-in types have no comparison methods implemented, so they inherit the default comparison
behavior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:
» Equality comparison should be reflexive. In other words, identical objects should compare equal:
x 1s yimplies x == y
« Comparison should be symmetric. In other words, the following expressions should have the same result:
x == yandy == x
x != yandy != x
x < yandy > x
x <= yandy >= x
» Comparison should be transitive. The following (non-exhaustive) examples illustrate that:
x >y and y > zimpliesx > z
x <y and y <= zimpliesx < z

« Inverse comparison should result in the boolean negation. In other words, the following expressions should have
the same result:

x == yandnot x !=y
x < yandnot x >= y (for total ordering)
x > yand not x <= vy (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings). See
also the total_ordering () decorator.

e The hash () result should be consistent with equality. Objects that are equal should either have the same hash
value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following these
rules.

6.10.2 Membership test operations

The operators in and not in test for membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well as
dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set, frozenset,
dict, or collections.deque, the expression x in vy isequivalentto any (x is e or x == e for e in y).

For the string and bytes types, x in vy is True if and only if x is a substring of y. An equivalent test is y . find (x)
!= —1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return True.

For user-defined classes which define the _ contains__ () method, x in y returns True if y.
___contains__ (x) returns a true value, and False otherwise.

For user-defined classes which do not define __contains__ () butdodefine _ iter (),x in yis True if
some value z, for which the expression x is z or x == z istrue, is produced while iterating over y. If an exception
is raised during the iteration, it is as if in raised that exception.

86 Kegahaio 6. Expressions

The Python Language Reference, Anpocisuon 3.10.18

Lastly, the old-style iteration protocol is tried: if a class defines __getitem__ (), x in vy is True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i], and no lower integer index raises the
IndexError exception. (If any other exception is raised, it is as if in raised that exception).

The operator not 1in is defined to have the inverse truth value of in.

6.10.3 Identity comparisons

The operators is and is not test for an object’s identity: x is vy is true if and only if x and y are the same object.
An Object’s identity is determined using the 1d () function. x is not vy yields the inverse truth value.*

6.11 Boolean operations

" "

or_test = and_test | or_test "or" and _test
and_test = not_test | and_test "and" not_test
not_test = comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values
are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings,
tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects can customize
their truth value by providinga ___bool__ () method.

The operator not yields True if its argument is false, False otherwise.

The expression x and vy first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

The expression x or vy first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting value
is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty,
the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a boolean value
regardless of the type of its argument (for example, not 'foo' produces False rather than ' '.)

6.12 Assignment expressions

assignment_expression = [identifier ":="] expression

An assignment expression (sometimes also called a «<named expression» or «walrus») assigns an expression to an
identifier, while also returning the value of the expression.

One common use case is when handling matched regular expressions:

if matching := pattern.search(data):
do_something (matching)

Or, when processing a file stream in chunks:

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain uses
of the is operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

6.11. Boolean operations 87

The Python Language Reference, Anpocigsuon 3.10.18

while chunk := file.read(9000):
process (chunk)

Assignment expressions must be surrounded by parentheses when used as sub-expressions in slicing, conditional, lambda,
keyword-argument, and comprehension-if expressions and in assert and with statements. In all other places where
they can be used, parentheses are not required, including in i f and while statements.

Néo otmv éxdoomn 3.8: See PEP 572 for more details about assignment expressions.

6.13 Conditional expressions

conditional_expression
expression

or_test ["if" or_test "else" expression]
conditional_expression | lambda_expr

Conditional expressions (sometimes called a «ternary operator») have the lowest priority of all Python operations.

The expression x 1f C else vy first evaluates the condition, C rather than x. If C is true, x is evaluated and its value
is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14 Lambdas

lambda_expr = "lambda" [parameter_list] ":" expression

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression 1ambda
parameters: expression yields a function object. The unnamed object behaves like a function object defined
with:

def <lambda> (parameters) :
return expression

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions
cannot contain statements or annotations.

6.15 Expression lists

expression_list

expression ("," expression)* [","]
starred_list starred_item ("," starred item)* [","]
starred_expression expression | (starred_item ",")* [starred_item]
starred_item = assignment_expression | "*" or_expr

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length of the
tuple is the number of expressions in the list. The expressions are evaluated from left to right.

88 Kegahaio 6. Expressions

https://www.python.org/dev/peps/pep-0572
https://www.python.org/dev/peps/pep-0308

The Python Language Reference, Anpocisuon 3.10.18

An asterisk * denotes iterable unpacking. Its operand must be an iterable. The iterable is expanded into a sequence of
items, which are included in the new tuple, list, or set, at the site of the unpacking.

Néo omv £€xdoon 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448.

The trailing comma is required only to create a single tuple (a.k.a. a singleton); it is optional in all other cases. A single
expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create an
empty tuple, use an empty pair of parentheses: () .)

6.16 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated
before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, expr4
(exprl, expr2, expr3, expr4)
{exprl: expr2, expr3: expré}

exprl + expr2 * (expr3 - exprd)
exprl (expr2, expr3, *exprd4, **exprb)
expr3, exprd = exprl, expr2

6.17 Operator precedence

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest
precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for exponentiation, which groups from right to
left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right chaining
feature as described in the Comparisons section.

6.16. Evaluation order 89

https://www.python.org/dev/peps/pep-0448

The Python Language Reference, Anpocigsuon 3.10.18

Operator Description

(expressions...), Binding or parenthesized expression, list display,
[expressions...], {key: value. ..}, | dictionary display, set display
{expressions...}

x[index], x[index:index], x (arguments...), x. | Subscription, slicing, call, attribute reference
attribute

await x Await expression

* *

Exponentiation’

+X, —x, ~X

Positive, negative, bitwise NOT

*Q,/,//,% Multiplication, matrix multiplication, division,
floor division, remainder®

+, - Addition and subtraction

<<, >> Shifts

& Bitwise AND

~ Bitwise XOR

| Bitwise OR

in,not in,is, is not, <, <=,>, >= 1= ==

Comparisons, including membership tests and
identity tests

not x Boolean NOT

and Boolean AND

or Boolean OR

if -else Conditional expression
Lambda expression

lambda

Assignment expression

3 The power operator ** binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**-11is 0. 5.

6 The % operator is also used for string formatting; the same precedence applies.

90

Kegahaio 6. Expressions

KEDAAAIO 7

Simple statements

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated
by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt

assert_stmt
assignment_stmt
augmented_assignment_stmt
annotated_assignment_stmt
pass_stmt

del_stmt

return_stmt

yield stmt

raise_stmt

break_stmt

continue_stmt

import_stmt

future_stmt

global_stmt

nonlocal_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure
(a function that returns no meaningful result; in Python, procedures return the value None). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt =

starred_expression

91

The Python Language Reference, Anpocigsuon 3.10.18

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr () function and the
resulting string is written to standard output on a line by itself (except if the result is None, so that procedure calls do
not cause any output.)

7.2 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt = (target_1list "=")+ (starred_expression | yield_expression)
target_list = target ("," target)* [","]
target = identifier

| "(" [target_list] ")"
| "[" [target_list] "]1"
| attributeref

| subscription

| slicing

| "*" target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated
list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an
attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about
its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the
exceptions raised are given with the definition of the object types (see section The standard type hierarchy).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as
follows.

« If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that
target.

o Else:

- If the target list contains one target prefixed with an asterisk, called a «starred» target: The object must be
an iterable with at least as many items as there are targets in the target list, minus one. The first items of the
iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable
are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned
to the starred target (the list can be empty).

- Else: The object must be an iterable with the same number of items as there are targets in the target list, and
the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.
« If the target is an identifier (name):

— If the name does not occur in a global or nonlocal statement in the current code block: the name is
bound to the object in the current local namespace.

- Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by
nonlocal, respectively.

92 KegaAaio 7. Simple statements

The Python Language Reference, Anpocisuon 3.10.18

The name is rebound if it was already bound. This may cause the reference count for the object previously bound
to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

« If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object
with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the
assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not
necessarily AttributeError).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the right-hand side expression, a . x can access either an instance attribute or (if no instance attribute exists) a class
attribute. The left-hand side target a . x is always set as an instance attribute, creating it if necessary. Thus, the two
occurrences of a . x do not necessarily refer to the same attribute: if the right-hand side expression refers to a class
attribute, the left-hand side creates a new instance attribute as the target of the assignment:

class Cls:
x = 3 # class variable
inst = Cls{()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with property ().

« If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable
sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is
evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the
sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length,
and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range,
IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/datum pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value
pair (if no key with the same value existed).

For user-defined objects, the __setitem__ () method is called with appropriate arguments.

« If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper
bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds
should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds
are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace
the slice with the items of the assigned sequence. The length of the slice may be different from the length of the
assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

Agmropépera vhortoinong CPython: In the current implementation, the syntax for targets is taken to be the same as for
expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are
“simultaneous” (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables
occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:

=1, 2 # 1 is updated, then x[i] 1is updated

Agite gmiong:

PEP 3132 - Extended Iterable Unpacking The specification for the *target feature.

7.2. Assignment statements 93

https://www.python.org/dev/peps/pep-3132

The Python Language Reference, Anpocigsuon 3.10.18

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt = augtarget augop (expression_list | yield expression)

augtarget = identifier | attributeref | subscription | slicing

augop = ny—mn | n__m ‘ Wx_—n | n@:" | n/:u I "//:n | no—mn | MWk k=N
| LB) | nog=m | ne="m ‘ nA_mN | "|="

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns
the result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 can be rewrittenas x = x + 1 to achieve a similar, but not exactly
equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed
in-place, meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For
example, a [1] += £ (x) firstlooks-up a[1], then it evaluates £ (x) and performs the addition, and lastly, it writes
the result back toa[1].

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible
in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same cavear about class and instance attributes applies as for regular
assignments.

7.2.2 Annotated assignment statements

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional
assignment statement:

annotated_assignment_stmt = augtarget ":" expression
["=" (starred_expression | yield expression)]

The difference from normal Assignment statements is that only a single target is allowed.

For simple names as assignment targets, if in class or module scope, the annotations are evaluated and stored in a special
class or module attribute __annotations___ thatis a dictionary mapping from variable names (mangled if private) to
evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution,
if annotations are found statically.

For expressions as assignment targets, the annotations are evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and
stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target
except for the last __setitem_ () or __setattr__ () call

Agite gmiong:

94 KegaAaio 7. Simple statements

The Python Language Reference, Anpocisuon 3.10.18

PEP 526 - Syntax for Variable Annotations The proposal that added syntax for annotating the types of variables
(including class variables and instance variables), instead of expressing them through comments.

PEP 484 - Type hints The proposal that added the t yping module to provide a standard syntax for type annotations
that can be used in static analysis tools and IDEs.

AMoaEe oty éxdoon 3.8: Now annotated assignments allow the same expressions in the right hand side as regular
assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt = "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if debug__:
if not expression: raise AssertionError

The extended form, assert expressionl, expression?2, isequivalent to

if _ _debug__:
if not expressionl: raise AssertionError (expression2)

These equivalences assume that __debug___ and AssertionError refer to the built-in variables with those names.
In the current implementation, the built-in variable __debug___ is True under normal circumstances, False when
optimization is requested (command line option —0). The current code generator emits no code for an assert statement
when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression
that failed in the error message; it will be displayed as part of the stack trace.

Assignments to ___debug___ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4 The pass statement

pass_stmt = "pass"

pass is anull operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required
syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.3. The assert statement 95

https://www.python.org/dev/peps/pep-0526
https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Anpocigsuon 3.10.18

7.5 The del statement

del_stmt = "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the
name occurs in a globa I statement in the same code block. If the name is unbound, a NameError exception will be
raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is
in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

AMoEe otV £xdoom 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable
in a nested block.

7.6 The return statement

return_stmt = "return" [expression_list]

return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.
return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a t ry statement with a £inally clause, that finally clause is executed before
really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration
to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the
Stoplteration.value attribute.

In an asynchronous generator function, an empty ret urn statement indicates that the asynchronous generator is done and
will cause StopAsyncIteration to beraised. A non-empty return statement is a syntax error in an asynchronous
generator function.

7.7 The yield statement

yield_stmt = yield expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the
parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield
statements

yield <expr>
yield from <expr>

96 KegaAaio 7. Simple statements

The Python Language Reference, Anpocisuon 3.10.18

are equivalent to the yield expression statements

(yield <expr>)
(yield from <expr>)

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the
generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function
instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8 The raise statement

raise_stmt = "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as the
active exception. If there isn’t currently an active exception, a Runt imeError exception is raised indicating that this is
an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance of
BaseException. If it is a class, the exception instance will be obtained when needed by instantiating the class with
no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback___ attribute, which is writable. You can create an exception and set your own traceback in one step
using the with_traceback () exception method (which returns the same exception instance, with its traceback set
to its argument), like so:

raise Exception("foo occurred") .with_traceback (tracebackobij)

The from clause is used for exception chaining: if given, the second expression must be another exception class or
instance. If the second expression is an exception instance, it will be attached to the raised exception as the ___cause___
attribute (which is writable). If the expression is an exception class, the class will be instantiated and the resulting exception
instance will be attached to the raised exception as the ___cause___ attribute. If the raised exception is not handled, both
exceptions will be printed:

>>> try:
print (1 / 0)
except Exception as exc:
raise RuntimeError ("Something bad happened") from exc

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

7.8. The raise statement 97

The Python Language Reference, Anpocigsuon 3.10.18

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An
exception may be handled when an except or finally clause, or a with statement, is used. The previous exception
is then attached as the new exception’s __context___ attribute:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Exception chaining can be explicitly suppressed by specifying None in the £ rom clause:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened") from None

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Additional information on exceptions can be found in section EEapéoeig, and information about handling exceptions is
in section The try statement.

AMaEe oty €kdoon 3.3: None is now permitted as Y in raise X from Y.

Néo otnv ékdoon 3.3: The __suppress_context__ attribute to suppress automatic display of the exception
context.

7.9 The break statement

break_stmt = "break"

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition
within that loop.

It terminates the nearest enclosing loop, skipping the optional e1se clause if the loop has one.
If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a t ry statement with a £inally clause, that finally clause is executed before
really leaving the loop.

98 KegaAaio 7. Simple statements

The Python Language Reference, Anpocisuon 3.10.18

7.10 The continue statement

continue_stmt = "continue"

continue may only occur syntactically nested in a for or whi Ie loop, but not nested in a function or class definition
within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a t ry statement with a finally clause, that finally clause is executed
before really starting the next loop cycle.

7.11 The import statement

import_stmt

"import" module ["as" identifier] ("," module ["as" identifier])*
| "from" relative _module "import" identifier ["as" identifier]
("," identifier ["as" identifier])*

| "from" relative_module "import" " (" identifier ["as" identifier]
("," identifier ["as" identifier])* [","] ")"

| "from" relative_module "import" "*"

(identifier ".")* identifier

"."* module | "."+

module =
relative_module

The basic import statement (no £ rom clause) is executed in two steps:
1. find a module, loading and initializing it if necessary
2. define a name or names in the local namespace for the scope where the i mport statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each
clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import system,
which also describes the various types of packages and modules that can be imported, as well as all the hooks that can
be used to customize the import system. Note that failures in this step may indicate either that the module could not be
located, or that an error occurred while initializing the module, which includes execution of the module’s code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three ways:
« If the module name is followed by as, then the name following as is bound directly to the imported module.

« If no other name is specified, and the module being imported is a top level module, the module’s name is bound in
the local namespace as a reference to the imported module

« If the module being imported is not a top level module, then the name of the top level package that contains the
module is bound in the local namespace as a reference to the top level package. The imported module must be
accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:
1. find the module specified in the from clause, loading and initializing it if necessary;
2. for each of the identifiers specified in the import clauses:
1. check if the imported module has an attribute by that name

2. if not, attempt to import a submodule with that name and then check the imported module again for that
attribute

7.10. The continue statement 99

The Python Language Reference, Anpocigsuon 3.10.18

3. if the attribute is not found, ImportError is raised.

4. otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if it is
present, otherwise using the attribute name

Examples:
import foo # foo imported and bound locally
import foo.bar.baz # foo, foo.bar, and foo.bar.baz imported, foo bound locally

import foo.bar.baz as fbb # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
—bound as fbb

from foo.bar import baz # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
—bound as baz
from foo import attr # foo imported and foo.attr bound as attr

If the list of identifiers is replaced by a star (' *), all public names defined in the module are bound in the local namespace
for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all_ ;if defined, it must be a sequence of strings which are names defined or imported by that module. The names
givenin __all__ are all considered public and are required to exist. If __all__ isnot defined, the set of public names
includes all names found in the module’s namespace which do not begin with an underscore character (' _'). __all_
should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such
as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting to
use it in class or function definitions will raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute name of the module. When a module
or package is contained within another package it is possible to make a relative import within the same top package
without having to mention the package name. By using leading dots in the specified module or package after from you
can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means
the current package where the module making the import exists. Two dots means up one package level. Three dots is up
two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end up
importing pkg . mod. If you execute from . .subpkg2 import mod from within pkg. subpkgl you will import
pkg. subpkg?2.mod. The specification for relative imports is contained in the Package Relative Imports section.

importlib.import_module () is provided to support applications that determine dynamically the modules to be
loaded.

Raises an auditing event import with arguments module, filename, sys.path, sys.meta_path, sys.
path_hooks.

7.11.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to
the language. It allows use of the new features on a per-module basis before the release in which the feature becomes
standard.

future_stmt = "from" "__ future__ " "import" feature ["as" identifier]
("," feature ["as" identifier])*
| "from" "__ future_ " "import" " (" feature ["as" identifier]

("," feature ["as" identifier])* [","] M)"

100 KegaAaio 7. Simple statements

The Python Language Reference, Anpocisuon 3.10.18

feature n= identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:
« the module docstring (if any),
e comments,
 blank lines, and
« other future statements.
The only feature that requires using the future statement is annotations (see PEP 563).

All historical features enabled by the future statement are still recognized by Python 3. The list includes
absolute_import, division, generators, generator_stop, unicode_literals,
print_function, nested_scopes and with_statement. They are all redundant because they are
always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are
often implemented by generating different code. It may even be the case that a new feature introduces new incompatible
syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions
cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a
future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

import _ future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec () and compile () that occur in a module M containing a future
statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled
by optional arguments to compile () — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an
interpreter is started with the —1 option, is passed a script name to execute, and the script includes a future statement, it
will be in effect in the interactive session started after the script is executed.

Agite emiong:

PEP 236 - Back to the __future__ The original proposal for the __ future_ mechanism.

7.12 The global statement

global_stmt = "global" identifier ("," identifier)™*

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers
are to be interpreted as globals. It would be impossible to assign to a global variable without global, although free
variables may refer to globals without being declared global.

Names listed ina g1 oba I statement must not be used in the same code block textually preceding that g1 obal statement.

7.12. The global statement 101

https://www.python.org/dev/peps/pep-0563
https://www.python.org/dev/peps/pep-0236

The Python Language Reference, Anpocigsuon 3.10.18

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements or
except clauses, orina for targetlist, c 1ass definition, function definition, i mport statement, or variable annotation.

Aemropépera vhomoinons CPython: The current implementation does not enforce some of these restrictions, but
programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning
of the program.

Programmer’s note: g1obal is a directive to the parser. It applies only to code parsed at the same time as the global
statement. In particular, a gl obal statement contained in a string or code object supplied to the built-in exec () function
does not affect the code block containing the function call, and code contained in such a string is unaffected by global
statements in the code containing the function call. The same applies to the eval () and compile () functions.

7.13 The nonlocal statement

nonlocal_stmt = "nonlocal" identifier ("," identifier)*

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest enclosing
scope excluding globals. This is important because the default behavior for binding is to search the local namespace first.
The statement allows encapsulated code to rebind variables outside of the local scope besides the global (module) scope.

Names listed in a nonlocal statement, unlike those listed in a g1 obal statement, must refer to pre-existing bindings
in an enclosing scope (the scope in which a new binding should be created cannot be determined unambiguously).

Names listed in a nonlocal statement must not collide with pre-existing bindings in the local scope.
Agite griong:

PEP 3104 - Access to Names in Outer Scopes The specification for the nonlocal statement.

102 KegaAaio 7. Simple statements

https://www.python.org/dev/peps/pep-3104

KEGANAIO 8

Compound statements

Compound statements contain (groups of)) other statements; they affect or control the execution of those other statements
in some way. In general, compound statements span multiple lines, although in simple incarnations a whole compound
statement may be contained in one line.

The if, while and for statements implement traditional control flow constructs. t ry specifies exception handlers
and/or cleanup code for a group of statements, while the with statement allows the execution of initialization and
finalization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more “clauses.” A clause consists of a header and a “suite.” The clause headers
of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one or
more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can be one
or more indented statements on subsequent lines. Only the latter form of a suite can contain nested compound statements;
the following is illegal, mostly because it wouldn’t be clear to which i £ clause a following e I se clause would belong:

’if testl: if test2: print (x)

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or
none of the print () calls are executed:

’if x <y < z: print(x); print(y); print(z)

Summarizing:

compound_stmt = if _stmt

while_stmt
for_stmt
try_stmt
with_stmt
match_stmt
funcdef
classdef

103

The Python Language Reference, Anpocigsuon 3.10.18

| async_with_stmt
| async_for_stmt
| async_funcdef

suite = stmt_1list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement = stmt_list NEWLINE | compound_stmt
stmt_list = simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the “dangling e 1se”
problem is solved in Python by requiring nested i £ statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

8.1 The if statement

The i r statement is used for conditional execution:

if_stmt = "if" assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else"™ ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operations for the definition of true and false); then that suite is executed (and no other part of the i £ statement
is executed or evaluated). If all expressions are false, the suite of the e se clause, if present, is executed.

8.2 The while statement

The whi Ie statement is used for repeated execution as long as an expression is true:

while_stmt = "while" assignment_expression ":" suite
["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be the
first time it is tested) the suite of the e 1se clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt = "for" target_1list "in" expression_list ":" suite

["else" suite]

104 Kegahaio 8. Compound statements

The Python Language Reference, Anpocisuon 3.10.18

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of the
expression_list. The suite is then executed once for each item provided by the iterator, in the order returned
by the iterator. Each item in turn is assigned to the target list using the standard rules for assignments (see Assignment
statements), and then the suite is executed. When the items are exhausted (which is immediately when the sequence is
empty or an iterator raises a StopIterat ion exception), the suite in the e1se clause, if present, is executed, and the
loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the e1se clause if there is no next item.

The for-loop makes assignments to the variables in the target list. This overwrites all previous assignments to those
variables including those made in the suite of the for-loop:

for i in range(10):
print (i)
i=25 # this will not affect the for-loop
because 1 will be overwritten with the next
index in the range

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have been
assigned to at all by the loop. Hint: the built-in type range () represents immutable arithmetic sequences of integers.
For instance, iterating range (3) successively yields 0, 1, and then 2.

8.4 The try statement

The t ry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt = tryl_stmt | try2_stmt
tryl_ stmt = "try" ":" suite
("except" [expression ["as" identifier]] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try2_stmt = "try" ":" suite
"finally" ":" suite

The except clause(s) specify one or more exception handlers. When no exception occurs in the t ry clause, no exception
handler is executed. When an exception occurs in the t ry suite, a search for an exception handler is started. This search
inspects the except clauses in turn until one is found that matches the exception. An expression-less except clause, if
present, must be last; it matches any exception. For an except clause with an expression, that expression is evaluated, and
the clause matches the exception if the resulting object is «compatible» with the exception. An object is compatible with
an exception if the object is the class or a non-virtual base class of the exception object, or a tuple containing an item that
is the class or a non-virtual base class of the exception object.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code and on
the invocation stack.'

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a handler
is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated as if the
entire t ry statement raised the exception).

! The exception is propagated to the invocation stack unless there isa 71 na 11y clause which happens to raise another exception. That new exception
causes the old one to be lost.

8.4. The try statement 105

The Python Language Reference, Anpocigsuon 3.10.18

When a matching except clause is found, the exception is assigned to the target specified after the as keyword in that
except clause, if present, and the except clause’s suite is executed. All except clauses must have an executable block.
When the end of this block is reached, execution continues normally after the entire try statement. (This means that if
two nested handlers exist for the same exception, and the exception occurs in the try clause of the inner handler, the outer
handler will not handle the exception.)

When an exception has been assigned using as target, it is cleared at the end of the except clause. This is as if

except E as N:
foo

was translated to

except E as N:
try:
foo
finally:
del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause. Exceptions
are cleared because with the traceback attached to them, they form a reference cycle with the stack frame, keeping all
locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, details about the exception are stored in the sy s module and can be accessed
viasys.exc_info ().sys.exc_info () returns a 3-tuple consisting of the exception class, the exception instance
and a traceback object (see section The standard type hierarchy) identifying the point in the program where the exception
occurred. The details about the exception accessed via sys.exc_info () are restored to their previous values when
leaving an exception handler:

>>> print (sys.exc_info())
(None, None, None)
>>> try:
raise TypeError
except:
print (sys.exc_info())
try:
raise ValueError
except:
print (sys.exc_info())
print (sys.exc_info())

(<class 'TypeError'>, TypeError(), <traceback object at 0x10efad080>)
(<class 'ValueError'>, ValueError (), <traceback object at 0x10efad040>)
(<class 'TypeError'>, TypeError(), <traceback object at 0x10efad080>)
>>> print (sys.exc_info())

(None, None, None)

The optional e1se clause is executed if the control flow leaves the ¢ ry suite, no exception was raised, and no return,
continue, or break statement was executed. Exceptions in the else clause are not handled by the preceding
except clauses.

If finally is present, it specifies a “cleanup” handler. The t ry clause is executed, including any except and else
clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved. The finally
clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If the finally clause
raises another exception, the saved exception is set as the context of the new exception. If the finally clause executes
a return, break or continue statement, the saved exception is discarded:

106 Kegahaio 8. Compound statements

The Python Language Reference, Anpocisuon 3.10.18

>>> def f():
try:
1/0
finally:
return 42
>>> f()
42

The exception information is not available to the program during execution of the finally clause.

When a return, break or cont inue statement is executed in the t ry suite of a try...finally statement, the
finally clause is also executed “on the way out.”

The return value of a function is determined by the last ret urn statement executed. Since the finally clause always
executes, a ret urn statement executed in the finally clause will always be the last one executed:

>>> def fool():
try:
return 'try'
finally:
return 'finally'
>>> foo ()
'finally'

Additional information on exceptions can be found in section EEatpéoetg, and information on using the ra i se statement
to generate exceptions may be found in section The raise statement.

AMaEe otnv ékdoon 3.8: Prior to Python 3.8, a continue statement was illegal in the finally clause due to a
problem with the implementation.

8.5 The with statement

The with statement is used to wrap the execution of a block with methods defined by a context manager (see section
With Statement Context Managers). This allows common t ry...except...finally usage patterns to be encapsulated
for convenient reuse.

with_stmt
with_stmt_contents
with_item

with_item ("," with_item)*
expression ["as" target]

The execution of the w1t h statement with one «item» proceeds as follows:
1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.
2. The context manager’s __enter__ () is loaded for later use.
3. The context manager’s __exit__ () is loaded for later use.
4. The context manager’s __enter__ () method is invoked.

5. If a target was included in the wi t h statement, the return value from __enter__ () is assigned to it.

Enueiwon: The with statement guarantees that if the __enter_ () method returns without an error, then
__exit__ () will always be called. Thus, if an error occurs during the assignment to the target list, it will be

8.5. The with statement 107

"with" (" (" with_stmt_contents ","? ")" | with_stmt_contents

)

The Python Language Reference, Anpocigsuon 3.10.18

treated the same as an error occurring within the suite would be. See step 7 below.

6. The suite is executed.

7. The context manager’s __exit__ () method is invoked. If an exception caused the suite to be exited, its type,
value, and traceback are passed as arguments to __exit__ (). Otherwise, three None arguments are supplied.

If the suite was exited due to an exception, and the return value from the __exit__ () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the
statement following the w1 t h statement.

If the suite was exited for any reason other than an exception, the return value from __exit__ () isignored, and
execution proceeds at the normal location for the kind of exit that was taken.

The following code:

with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)

enter = type(manager).__enter_
exit = type(manager)._ _exit_
value = enter (manager)

hit_except = False

try:
TARGET = value
SUITE
except:
hit_except = True
if not exit (manager, *sys.exc_info()):
raise
finally:

if not hit_except:
exit (manager, None, None, None)

With more than one item, the context managers are processed as if multiple wi t h statements were nested:

with A() as a, B() as b:
SUITE

is semantically equivalent to:

with A() as a:
with B() as b:
SUITE

You can also write multi-item context managers in multiple lines if the items are surrounded by parentheses. For example:

with (
A() as a,
B() as b,
)t
SUITE

AMoEe oty €kdoon 3.1: Support for multiple context expressions.

108 Kegahaio 8. Compound statements

The Python Language Reference, Anpocisuon 3.10.18

AMoEe oty €kdoon 3.10: Support for using grouping parentheses to break the statement in multiple lines.
Agite gmiong:

PEP 343 - The «with» statement The specification, background, and examples for the Python wi t h statement.

8.6 The match statement

Néo omv ékdoaon 3.10.

The match statement is used for pattern matching. Syntax:

match_stmt = 'match' subject_expr ":" NEWLINE INDENT case_block+ DEDENT
subject_expr = star_named_expression "," star_named_expressions?
| named_expression

case_block

'case' patterns [guard] ":" block

Inueiwon: This section uses single quotes to denote soft keywords.

Pattern matching takes a pattern as input (following case) and a subject value (following mat ch). The pattern (which
may contain subpatterns) is matched against the subject value. The outcomes are:

« A match success or failure (also termed a pattern success or failure).

« Possible binding of matched values to a name. The prerequisites for this are further discussed below.
The match and case keywords are soft keywords.
Agite gmiong:

o PEP 634 - Structural Pattern Matching: Specification

o PEP 636 - Structural Pattern Matching: Tutorial

8.6.1 Overview

Here’s an overview of the logical flow of a match statement:

1. The subject expression subject_expr is evaluated and a resulting subject value obtained. If the subject
expression contains a comma, a tuple is constructed using the standard rules.

2. Each pattern in a case_block is attempted to match with the subject value. The specific rules for success or
failure are described below. The match attempt can also bind some or all of the standalone names within the pattern.
The precise pattern binding rules vary per pattern type and are specified below. Name bindings made during a
successful pattern match outlive the executed block and can be used after the match statement.

Enueimon: During failed pattern matches, some subpatterns may succeed. Do not rely on bindings
being made for a failed match. Conversely, do not rely on variables remaining unchanged after a failed
match. The exact behavior is dependent on implementation and may vary. This is an intentional decision
made to allow different implementations to add optimizations.

3. If the pattern succeeds, the corresponding guard (if present) is evaluated. In this case all name bindings are
guaranteed to have happened.

8.6. The match statement 109

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0634
https://www.python.org/dev/peps/pep-0636

The Python Language Reference, Anpocigsuon 3.10.18

« If the guard evaluates as true or is missing, the block inside case_block is executed.
o Otherwise, the next case_block is attempted as described above.

« If there are no further case blocks, the match statement is completed.

Inueiwon: Users should generally never rely on a pattern being evaluated. Depending on implementation, the interpreter
may cache values or use other optimizations which skip repeated evaluations.

A sample match statement:

>>> flag = False
>>> match (100, 200):
case (100, 300): # Mismatch: 200 != 300
print ('Case 1")
case (100, 200) if flag: # Successful match, but guard fails
print ('Case 2")
case (100, vy): # Matches and binds y to 200
print (f'Case 3, v: {y}")
case _: # Pattern not attempted
print ('Case 4, I match anything!")

Case 3, y: 200

In this case, if flag is a guard. Read more about that in the next section.

8.6.2 Guards

guard = "if" named_expression

A guard (which is part of the case) must succeed for code inside the case block to execute. It takes the form: i 7
followed by an expression.

The logical flow of a case block with a guard follows:

1. Check that the pattern in the case block succeeded. If the pattern failed, the guard is not evaluated and the next
case block is checked.

2. If the pattern succeeded, evaluate the guard.
o If the guard condition evaluates as true, the case block is selected.
« If the guard condition evaluates as false, the case block is not selected.
« If the guard raises an exception during evaluation, the exception bubbles up.

Guards are allowed to have side effects as they are expressions. Guard evaluation must proceed from the first to the last
case block, one at a time, skipping case blocks whose pattern(s) don’t all succeed. (I.e., guard evaluation must happen in
order.) Guard evaluation must stop once a case block is selected.

110 Kegahaio 8. Compound statements

The Python Language Reference, Anpocisuon 3.10.18

8.6.3 Irrefutable Case Blocks
An irrefutable case block is a match-all case block. A match statement may have at most one irrefutable case block, and
it must be last.

A case block is considered irrefutable if it has no guard and its pattern is irrefutable. A pattern is considered irrefutable
if we can prove from its syntax alone that it will always succeed. Only the following patterns are irrefutable:

o AS Partterns whose left-hand side is irrefutable

» OR Patterns containing at least one irrefutable pattern
 Capture Patterns

o Wildcard Patterns

« parenthesized irrefutable patterns

8.6.4 Patterns

Inueiwon: This section uses grammar notations beyond standard EBNF:
« the notation SEP . RULE+ is shorthand for RULE (SEP RULE) *

« the notation ! RULE is shorthand for a negative lookahead assertion

The top-level syntax for patterns is:

patterns n= open_sequence_pattern | pattern
pattern as_pattern | or_pattern

| literal_pattern
| capture_pattern
| wildcard_ pattern
| value_pattern
|

|

|

|

closed_pattern =

group_pattern
sequence_pattern
mapping_pattern
class_pattern

The descriptions below will include a description «in simple terms» of what a pattern does for illustration purposes (credits
to Raymond Hettinger for a document that inspired most of the descriptions). Note that these descriptions are purely for
illustration purposes and may not reflect the underlying implementation. Furthermore, they do not cover all valid forms.

OR Patterns

An OR pattern is two or more patterns separated by vertical bars |. Syntax:

or_pattern = "|".closed _pattern+

Only the final subpattern may be irrefutable, and each subpattern must bind the same set of names to avoid ambiguity.

An OR pattern matches each of its subpatterns in turn to the subject value, until one succeeds. The OR pattern is then
considered successful. Otherwise, if none of the subpatterns succeed, the OR pattern fails.

8.6. The match statement 111

The Python Language Reference, Anpocigsuon 3.10.18

In simple terms, P1 | P2 | ... will try to match P1, if it fails it will try to match P2, succeeding immediately if
any succeeds, failing otherwise.

AS Patterns

An AS pattern matches an OR pattern on the left of the a s keyword against a subject. Syntax:

as_pattern = or_pattern "as" capture_pattern

If the OR pattern fails, the AS pattern fails. Otherwise, the AS pattern binds the subject to the name on the right of the
as keyword and succeeds. capture_pattern cannot be a _.

In simple terms P as NAME will match with P, and on success it will set NAME = <subject>.

Literal Patterns

A literal pattern corresponds to most lierals in Python. Syntax:

literal_pattern := signed_number
| signed_number "+" NUMBER

| signed_number "-" NUMBER

| strings

| "None"

| "True"

| "False"

| signed_number: NUMBER | "-" NUMBER

The rule strings and the token NUMBER are defined in the standard Python grammar. Triple-quoted strings are
supported. Raw strings and byte strings are supported. Formartted string literals are not supported.

The forms signed_number '+' NUMBER and signed_number '-' NUMBER are for expressing complex
numbers; they require a real number on the left and an imaginary number on the right. E.g. 3 + 47.

In simple terms, LITERAL will succeed only if <subject> == LITERAL. For the singletons None, True and
False, the is operator is used.

Capture Patterns

A capture pattern binds the subject value to a name. Syntax:

capture_pattern = !''_' NAME
A single underscore _ is not a capture pattern (this is what !'_' expresses). It is instead treated as a
wildcard pattern.
In a given pattern, a given name can only be bound once. E.g. case x, x: ... isinvalid while case [x] | x:

. is allowed.

Capture patterns always succeed. The binding follows scoping rules established by the assignment expression operator in
PEP 572; the name becomes a local variable in the closest containing function scope unless there’s an applicable g1 oba I
or nonlocal statement.

112 Kegahaio 8. Compound statements

https://www.python.org/dev/peps/pep-0572

The Python Language Reference, Anpocisuon 3.10.18

In simple terms NAME will always succeed and it will set NAME = <subject>.

Wildcard Patterns

A wildcard pattern always succeeds (matches anything) and binds no name. Syntax:

wildcard_pattern = L

_is a soft keyword within any pattern, but only within patterns. It is an identifier, as usual, even within mat ch subject
expressions, guards, and case blocks.

In simple terms, _ will always succeed.

Value Patterns

A value pattern represents a named value in Python. Syntax:
attr

name_or_attr "." NAME
attr | NAME

value_pattern
attr
name_or_attr

The dotted name in the pattern is looked up using standard Python name resolution rules. The pattern succeeds if the
value found compares equal to the subject value (using the == equality operator).

In simple terms NAME 1 . NAME2 will succeed only if <subject> == NAME1l.NAME2

Enueiwon: If the same value occurs multiple times in the same match statement, the interpreter may cache the first
value found and reuse it rather than repeat the same lookup. This cache is strictly tied to a given execution of a given
match statement.

Group Patterns
A group pattern allows users to add parentheses around patterns to emphasize the intended grouping. Otherwise, it has

no additional syntax. Syntax:

group_pattern = "(" pattern ")"

In simple terms (P) has the same effect as P.

8.6. The match statement 113

The Python Language Reference, Anpocigsuon 3.10.18

Sequence Patterns

A sequence pattern contains several subpatterns to be matched against sequence elements. The syntax is similar to the
unpacking of a list or tuple.

sequence_pattern = "[" [maybe_sequence_pattern] "]1"
| "(" [open_sequence_pattern] ")"
open_sequence_pattern = maybe_star_pattern "," [maybe_sequence_pattern]
maybe_sequence_pattern = ", ".maybe_star_patternt ","?
maybe_star_pattern = star_pattern | pattern
star_pattern = "*" (capture_pattern | wildcard_pattern)
There is no difference if parentheses or square brackets are used for sequence patterns (i.e. (...) vs [...]).

Inueimon: A single pattern enclosed in parentheses without a trailing comma (e.g. (3 | 4))is a group pattern. While
a single pattern enclosed in square brackets (e.g. [3 | 4]) is still a sequence pattern.

At most one star subpattern may be in a sequence pattern. The star subpattern may occur in any position. If no star
subpattern is present, the sequence pattern is a fixed-length sequence pattern; otherwise it is a variable-length sequence
pattern.

The following is the logical flow for matching a sequence pattern against a subject value:
1. If the subject value is not a sequence?, the sequence pattern fails.
2. If the subject value is an instance of str, bytes or bytearray the sequence pattern fails.
3. The subsequent steps depend on whether the sequence pattern is fixed or variable-length.
If the sequence pattern is fixed-length:
1. If the length of the subject sequence is not equal to the number of subpatterns, the sequence pattern fails

2. Subpatterns in the sequence pattern are matched to their corresponding items in the subject sequence from left
to right. Matching stops as soon as a subpattern fails. If all subpatterns succeed in matching their corresponding
item, the sequence pattern succeeds.

Otherwise, if the sequence pattern is variable-length:

1. If the length of the subject sequence is less than the number of non-star subpatterns, the sequence pattern
fails.

2. The leading non-star subpatterns are matched to their corresponding items as for fixed-length sequences.

2 In pattern matching, a sequence is defined as one of the following:

« a class that inherits from collections.abc.Sequence
« a Python class that has been registered as collections.abc.Sequence
« a builtin class that has its (CPython) Py_TPFLAGS_SEQUENCE bit set
« aclass that inherits from any of the above

The following standard library classes are sequences:
e array.array
e collections.deque
e list
e memoryview
e range
e tuple

Tnueiwon: Subject values of type str, bytes, and bytearray do not match sequence patterns.

114 Kegahaio 8. Compound statements

The Python Language Reference, Anpocisuon 3.10.18

3. If the previous step succeeds, the star subpattern matches a list formed of the remaining subject items,
excluding the remaining items corresponding to non-star subpatterns following the star subpattern.

4. Remaining non-star subpatterns are matched to their corresponding subject items, as for a fixed-length
sequence.

Inueiwon: The length of the subject sequence is obtained via 1en () (i.e. viathe __len__ () protocol). This
length may be cached by the interpreter in a similar manner as value patterns.

In simple terms [P1, P2, P3, ..., P<N>] matches only if all the following happens:
 check <subject> is a sequence
e len(subject) == <N>
e P1 matches <subject>[0] (note that this match can also bind names)
e P2 matches <subject>[1] (note that this match can also bind names)

« ... and so on for the corresponding pattern/element.

Mapping Patterns

A mapping pattern contains one or more key-value patterns. The syntax is similar to the construction of a dictionary.
Syntax:

mapping_pattern = "{" [items_pattern] "}"
itemsfpattern = ", L key_value_pattern+ " , "o
key_value_pattern = (literal_pattern | value_pattern) ":" pattern

| double_star_pattern
"x*W capture_pattern

double_star_pattern

At most one double star pattern may be in a mapping pattern. The double star pattern must be the last subpattern in the
mapping pattern.

Duplicate keys in mapping patterns are disallowed. Duplicate literal keys will raise a SyntaxError. Two keys that
otherwise have the same value will raise a ValueError at runtime.

The following is the logical flow for matching a mapping pattern against a subject value:
1. If the subject value is not a mapping’,the mapping pattern fails.

2. If every key given in the mapping pattern is present in the subject mapping, and the pattern for each key matches
the corresponding item of the subject mapping, the mapping pattern succeeds.

3. If duplicate keys are detected in the mapping pattern, the pattern is considered invalid. A SyntaxError is raised
for duplicate literal values; or a ValueError for named keys of the same value.

3 In pattern matching, a mapping is defined as one of the following:
« a class that inherits from collections.abc.Mapping
« a Python class that has been registered as collections.abc.Mapping
« a builtin class that has its (CPython) Py_TPFLAGS_MAPP ING bit set
« aclass that inherits from any of the above
The standard library classes dict and types.MappingProxyType are mappings.

8.6. The match statement 115

The Python Language Reference, Anpocigsuon 3.10.18

Inueiwon: Key-value pairs are matched using the two-argument form of the mapping subject’s get () method.
Matched key-value pairs must already be present in the mapping, and not created on-the-fly via _ _missing__ ()
or __getitem__ ().

In simple terms {KEY1: P1, KEY2: P2, ... } matches only if all the following happens:
o check <subject> is a mapping
e KEY1l in <subject>
e P1 matches <subject>[KEY1]

e ... and so on for the corresponding KEY/pattern pair.

Class Patterns

A class pattern represents a class and its positional and keyword arguments (if any). Syntax:

class_pattern n= name_or_attr " (" [pattern_arguments ","?] ")"
pattern_arguments = positional_ patterns ["," keyword patterns]
| keyword_patterns
positional_patterns = ", ".patternt+
keyword_patterns = ", ".keyword _pattern+
keyword_pattern u= NAME "=" pattern

The same keyword should not be repeated in class patterns.
The following is the logical flow for matching a class pattern against a subject value:
1. If name_or_attr is not an instance of the builtin type , raise TypeError.
2. If the subject value is not an instance of name_or_attr (tested via isinstance ()), the class pattern fails.

3. If no pattern arguments are present, the pattern succeeds. Otherwise, the subsequent steps depend on whether
keyword or positional argument patterns are present.

For a number of built-in types (specified below), a single positional subpattern is accepted which will match the
entire subject; for these types keyword patterns also work as for other types.

If only keyword patterns are present, they are processed as follows, one by one:

I. The keyword is looked up as an attribute on the subject.
« If this raises an exception other than AttributeError, the exception bubbles up.
o If this raises AttributeError, the class pattern has failed.

« Else, the subpattern associated with the keyword pattern is matched against the subject’s attribute value. If
this fails, the class pattern fails; if this succeeds, the match proceeds to the next keyword.

II. If all keyword patterns succeed, the class pattern succeeds.

If any positional patterns are present, they are converted to keyword patterns using the __match_args_
attribute on the class name_or_attr before matching:

I. The equivalent of getattr (cls, "__match_args__", ()) iscalled.
« If this raises an exception, the exception bubbles up.

« If the returned value is not a tuple, the conversion fails and TypeError is raised.

116 Kegahaio 8. Compound statements

The Python Language Reference, Anpocisuon 3.10.18

o If there are more positional patterns than len (cls.__match_args
raised.

), TypeError is

» Otherwise, positional pattern 1 is converted to a keyword pattern using __match_args__ [1i]
as the keyword. __match_args__ [i] must be a string; if not TypeError is raised.

« If there are duplicate keywords, TypeError is raised.
Agite gmiong:
Customizing positional arguments in class pattern matching

I1. Once all positional patterns have been converted to keyword patterns, the match proceeds as if there
were only keyword patterns.

For the following built-in types the handling of positional subpatterns is different:

e bool

e bytearray
e bytes

e dict

e float

e frozenset
e int

e list

e set

e Str

e tuple

These classes accept a single positional argument, and the pattern there is matched against the whole object rather
than an attribute. For example int (0 | 1) matches the value 0, but not the value 0 . 0.

In simple terms CLS (P1, attr=P2) matches only if the following happens:
e isinstance (<subject>, CLS)
» convert P1 to a keyword pattern using CLS.___match_args___
« For each keyword argument attr=P2:
- hasattr (<subject>, "attr")
- P2 matches <subject>.attr
« ... and so on for the corresponding keyword argument/pattern pair.
Agite griong:
o PEP 634 - Structural Pattern Matching: Specification
o PEP 636 - Structural Pattern Matching: Tutorial

8.6. The match statement 117

https://www.python.org/dev/peps/pep-0634
https://www.python.org/dev/peps/pep-0636

The Python Language Reference, Anpocigsuon 3.10.18

8.7 Function definitions

A function definition defines a user-defined function object (see section The standard type hierarchy):

funcdef n= [decorators] "def" funcname " (" [parameter_list] ")"
["->" expression] ":" suite

decorators = decorator+

decorator = "@" assignment_expression NEWLINE

parameter_list = defparameter ("," defparameter)* "," "/" [", "

| parameter_list_no_posonly

parameter_list_no_posonly
| parameter_list_starargs

[parameter._.

defparameter ("," defparameter)* ["," [parameter_list_sta:

parameter_list_starargs = "*" [parameter] ("," defparameter)* ["," ["**" parameter
| "**" parameter [","]

parameter = identifier [":" expression]

defparameter = parameter ["=" expression]

funcname n= identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace to
a function object (a wrapper around the executable code for the function). This function object contains a reference to
the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called.*

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated when
the function is defined, in the scope that contains the function definition. The result must be a callable, which is invoked
with the function object as the only argument. The returned value is bound to the function name instead of the function
object. Multiple decorators are applied in nested fashion. For example, the following code

Qfl (arg)
Qf2
def func(): pass

is roughly equivalent to

def func(): pass
func = fl(arg) (£2 (func))

except that the original function is not temporarily bound to the name func.

AMoEe oty ékdoon 3.9: Functions may be decorated with any valid assignment_expression. Previously, the
grammar was much more restrictive; see PEP 614 for details.

When one or more parameters have the form parameter = expression, the function is said to have «default parameter
values.» For a parameter with a default value, the corresponding argument may be omitted from a call, in which case the
parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the «*» must
also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means that
the expression is evaluated once, when the function is defined, and that the same «pre-computed» value is used for each
call. This is especially important to understand when a default parameter value is a mutable object, such as a list or a
dictionary: if the function modifies the object (e.g. by appending an item to a list), the default parameter value is in effect

4 A string literal appearing as the first statement in the function body is transformed into the function’s__doc___ attribute and therefore the function’s
docstring.

118 Kegahaio 8. Compound statements

https://www.python.org/dev/peps/pep-0614

The Python Language Reference, Anpocisuon 3.10.18

modified. This is generally not what was intended. A way around this is to use None as the default, and explicitly test for
it in the body of the function, e.g.:

def whats_on_the_telly (penguin=None) :
if penguin is None:
penguin = []
penguin.append ("property of the zoo")
return penguin

Function call semantics are described in more detail in section Calls. A function call always assigns values to all parameters
mentioned in the parameter list, either from positional arguments, from keyword arguments, or from default values. If the
form «*identifier» is present, it is initialized to a tuple receiving any excess positional parameters, defaulting to the
empty tuple. If the form «**identifier» is present, it is initialized to a new ordered mapping receiving any excess
keyword arguments, defaulting to a new empty mapping of the same type. Parameters after «*» or «*identifier»
are keyword-only parameters and may only be passed by keyword arguments. Parameters before «/» are positional-only
parameters and may only be passed by positional arguments.

AMaEe otv ékdoon 3.8: The / function parameter syntax may be used to indicate positional-only parameters. See
PEP 570 for details.

Parameters may have an annotation of the form «: expression» following the parameter name. Any parameter
may have an annotation, even those of the form *identifier or **identifier. Functions may have «return»
annotation of the form «-> expression» after the parameter list. These annotations can be any valid Python
expression. The presence of annotations does not change the semantics of a function. The annotation values are available
as values of a dictionary keyed by the parameters” names in the __annotations___ attribute of the function object. If
the annotations import from __future__ is used, annotations are preserved as strings at runtime which enables
postponed evaluation. Otherwise, they are evaluated when the function definition is executed. In this case annotations
may be evaluated in a different order than they appear in the source code.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand for
a simplified function definition; a function defined in a «de £» statement can be passed around or assigned to another
name just like a function defined by a lambda expression. The «de £» form is actually more powerful since it allows the
execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A «de £» statement executed inside a function definition defines
a local function that can be returned or passed around. Free variables used in the nested function can access the local
variables of the function containing the def. See section Ovouacia kot civdeon for details.

Agite emiong:
PEP 3107 - Function Annotations The original specification for function annotations.
PEP 484 - Type Hints Definition of a standard meaning for annotations: type hints.

PEP 526 - Syntax for Variable Annotations Ability to type hint variable declarations, including class variables and
instance variables

PEP 563 - Postponed Evaluation of Annotations Support for forward references within annotations by preserving
annotations in a string form at runtime instead of eager evaluation.

8.7. Function definitions 119

https://www.python.org/dev/peps/pep-0570
https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526
https://www.python.org/dev/peps/pep-0563

The Python Language Reference, Anpocigsuon 3.10.18

8.8 Class definitions

A class definition defines a class object (see section The standard type hierarchy):

classdef = [decorators] "class" classname [inheritance] ":" suite
inheritance = "(" [argument_1list] ")"
classname = identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Metaclasses for
more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes without
an inheritance list inherit, by default, from the base class object; hence,

class Foo:
pass

is equivalent to

class Foo (object) :
pass

The class’s suite is then executed in a new execution frame (see Ovouaocia xor 6vvdeon), using a newly created local
namespace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the class’s
suite finishes execution, its execution frame is discarded but its local namespace is saved.” A class object is then created
using the inheritance list for the base classes and the saved local namespace for the attribute dictionary. The class name
is bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s __dict__ . Note that this is
reliable only right after the class is created and only for classes that were defined using the definition syntax.

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

Qfl (arg)
Qf2
class Foo: pass

is roughly equivalent to

class Foo: pass
Foo = fl(arg) (£2 (Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound to the
class name.

AMoEe ot ékdoon 3.9: Classes may be decorated with any valid assignment_expression. Previously, the
grammar was much more restrictive; see PEP 614 for details.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances. Instance
attributes can be set in a method with self.name = value. Both class and instance attributes are accessible through
the notation «sel f . name», and an instance attribute hides a class attribute with the same name when accessed in this
way. Class attributes can be used as defaults for instance attributes, but using mutable values there can lead to unexpected
results. Descriptors can be used to create instance variables with different implementation details.

Agite gmiong:

5 A string literal appearing as the first statement in the class body is transformed into the namespace’s __doc___ item and therefore the class’s
docstring.

120 Kegahaio 8. Compound statements

https://www.python.org/dev/peps/pep-0614

The Python Language Reference, Anpocisuon 3.10.18

PEP 3115 - Metaclasses in Python 3000 The proposal that changed the declaration of metaclasses to the current
syntax, and the semantics for how classes with metaclasses are constructed.

PEP 3129 - Class Decorators The proposal that added class decorators. Function and method decorators were
introduced in PEP 318.

8.9 Coroutines

Néo omv éxdoon 3.5.

8.9.1 Coroutine function definition

async_funcdef = [decorators] "async" "def" funcname " (" [parameter_list] ")"
["->" expression] ":" suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). await expressions,
async forand async with can only be used in the body of a coroutine function.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or async
keywords.

Itisa SyntaxErrortouseayield from expression inside the body of a coroutine function.

An example of a coroutine function:

async def func(paraml, param2):
do_stuff ()
await some_coroutine ()

AMoEe oty £€xdoon 3.7: await and async are now keywords; previously they were only treated as such inside the
body of a coroutine function.

8.9.2 The async for statement

async_for_stmt = "async" for_stmt

An asynchronous iterable provides an __aiter__ method that directly returns an asynchronous iterator, which can call
asynchronous code inits __anext___ method.

The async for statement allows convenient iteration over asynchronous iterables.

The following code:

async for TARGET in ITER:
SUITE

else:
SUITEZ2

Is semantically equivalent to:

8.9. Coroutines 121

https://www.python.org/dev/peps/pep-3115
https://www.python.org/dev/peps/pep-3129
https://www.python.org/dev/peps/pep-0318

The Python Language Reference, Anpocigsuon 3.10.18

iter = (ITER)
iter = type(iter).__aiter__ (iter)
running = True

while running:

try:
TARGET = await type(iter).__anext__ (iter)
except StopAsyncIteration:
running = False
else:
SUITE
else:
SUITEZ2

Seealso_ _aiter () and___anext_ () for details.

Itisa SyntaxError touse an async for statement outside the body of a coroutine function.

8.9.3 The async with statement

async_with stmt = "async" with_stmt

An asynchronous context manager is a context manager that is able to suspend execution in its enfer and exit methods.

The following code:

async with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)
aenter = type (manager).__ _aenter_
aexit = type (manager).__aexit_

value = await aenter (manager)
hit_except = False

try:
TARGET = value
SUITE

except:
hit_except = True

if not await aexit (manager, *sys.exc_info()):
raise
finally:
if not hit_except:
await aexit (manager, None, None, None)

Seealso__aenter () and__aexit__ () for details.
Itisa SyntaxError touse an async with statement outside the body of a coroutine function.
Agite emiong:

PEP 492 - Coroutines with async and await syntax The proposal that made coroutines a proper standalone concept
in Python, and added supporting syntax.

122 Kegahaio 8. Compound statements

https://www.python.org/dev/peps/pep-0492

KE®ANAIO 9

Top-level components

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

9.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion of
a complete Python program. A complete Python program is executed in a minimally initialized environment: all built-in
and standard modules are available, but none have been initialized, except for sy s (various system services), builtins
(built-in functions, exceptions and None) and ___main__ . The latter is used to provide the local and global namespace
for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete program but
reads and executes one statement (possibly compound) at a time. The initial environment is identical to that of a complete
program; each statement is executed in the namespace of __main__ .

A complete program can be passed to the interpreter in three forms: with the —c string command line option, as a file
passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the interpreter
enters interactive mode; otherwise, it executes the file as a complete program.

123

The Python Language Reference, Anpocigsuon 3.10.18

9.2 File input

All input read from non-interactive files has the same form:

file_input = (NEWLINE | statement) *

This syntax is used in the following situations:
« when parsing a complete Python program (from a file or from a string);
« when parsing a module;

« when parsing a string passed to the exec () function;

9.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input = [stmt_1list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to help
the parser detect the end of the input.

9.4 Expression input

eval () is used for expression input. It ignores leading whitespace. The string argument to eval () must have the
following form:

eval_input = expression_list NEWLINE*

124 Kegahaio 9. Top-level components

keoanaio 10

[MAnpNng Tpodlaypagn YPAUHATIKAG

Avtn eivoun 1) TN g ypauuatik) tg Python, mov tpoépyetal amevbeiog amd) YPoUpaTik oV (PN OoLLOToLELTOL
yiou T dnuovpyia tov avorvuty) CPython (BA. Grammar/python.gram). H éxdoon avti) mapaheinel Aemtouépeleg mou
oyEeTICOVTaL HE TN dNUOUPYio KOdLKA KoL TNV aVAKTNOT amtd oQAaluoTa.

H onueroypagia eival éva peiyno amd EBNF kouw PEG. Zuykekpuéva, To & mov akolovdeital amd éva ovufolro,
éva token 1 wa wopevOeTtiky] oudda virodnhwvel Oetikn tpoemokdtnon (dnhadn omorteitor vo TopLtdler aAld
OEV KATAVOUADVETAL), EVAD) TO | VITOONADVEL APVITLKT TPOETLOKOTNON (dNhadT) atateitan va unv touplalet). Xpn-
OLOTTOLOVUE TOV TEAEOTY | YL va eKppdooupe TV «taStvounuévny emhoyn» touv PEG (rtov ypdpetal og / otig
mapadootakég ypoupotikéc PEG). Aeite to PEP 617 yio meplocdtepeg LemTouépeLeg oyeTkd te) ouvta&n g

YPOUUATIKNG.

PEG grammar for Python

file: [statements] ENDMARKER

interactive: statement_newline

eval: expressions NEWLINE* ENDMARKER

func_type: ' (' [type_expressions] ')' '->' expression NEWLINE* ENDMARKER
fstring: star_expressions

type_expressions allow */** but ignore them
type_expressions:

', '.expressiont+ ',' '*' expression ',' '"**' expression
', '.expressiont ',' '*' expression
', '.expressiont+ ',' '"**' expression

\
|
|
| '"*' expression ',' '"**' expression
| '*' expression

| "**' expression

\

', '.expression+

statements: statement+
statement: compound_stmt | simple_stmts
statement_newline:

| compound_stmt NEWLINE

(ouvéyela otV emtouevVn oehida)

125

https://github.com/python/cpython/tree/3.10/Grammar/python.gram
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://www.python.org/dev/peps/pep-0617

The Python Language Reference, Anpoocisuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

| simple_stmts
| NEWLINE
| ENDMARKER
simple_stmts:
| simple_stmt !';' NEWLINE # Not needed, there for speedup
[';'.simple_stmt+ [';'] NEWLINE
NOTE: assignment MUST precede expression, else parsing a simple assignment
will throw a SyntaxError.
simple_stmt:
| assignment
| star_expressions
| return_stmt
| import_stmt
| raise_stmt
| 'pass'
| del_stmt
| yield_stmt
| assert_stmt
| 'break'
| 'continue'
| global_stmt
| nonlocal_stmt
compound_stmt:
| function_def
| if_stmt
| class_def
| with_stmt
| for_stmt
| try_stmt
| while_stmt
| match_stmt

NOTE: annotated_rhs may start with 'yield'; yield expr must start with 'yield'
assignment:
| NAME ':' expression ['=' annotated_rhs]
[('(' single_target ')'
| single_subscript_attribute_target) ':' expression ['=' annotated_rhs]
| (star_targets '=')+ (yield_expr | star_expressions) !'=' [TYPE_COMMENT]
| single_target augassign ~ (yield_expr | star_expressions)

augassign:

global_stmt: 'global' ','.NAME-+

(ouvéyela otV emtduevn oehida)

126 KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

The Python Language Reference, Anpocicsuon 3.10.18

(ouveyiletar 0mwd TNV TPONYoUIEVT OEMdN)

nonlocal_stmt: 'nonlocal' ', ' .NAME+
yield_stmt: yield_expr
assert_stmt: 'assert' expression [',' expression]
del_stmt:
| 'del' del_targets &(';' | NEWLINE)

import_stmt:
import_name:
note below:
import_from:
| "from' ('.' | '...
| "from' ('.' | '...")+
import_from_targets:
e
| import_from_as_names !'
I Tk Y

import_name |
'import'
the ('." |

import_from_as_names:

[', '.import_from_as_name+

import_from_as_name:

| NAME ['as' NAME]
dotted_as_names:

| ','.dotted_as_name+
dotted_as_name:

| dotted_name ['as' NAME
dotted_name:

| dotted_name '.' NAME

| NAME
if_stmt:

| '"if' named_expression ':

| '"if' named_expression '
elif_stmt:

| 'elif' named_expression

| 'elif' named_expression
else_block:

| 'else' ':' block

while_stmt:
| 'while'

for_stmt:

') * dotted_name
'import'

import_from_as_names

:' block

named_expression

import_from
dotted_as_names
'...'") 1is necessary because '...'

is tokenized as ELLIPSIS

'"import' import_from_targets
import_from_targets

', ']

l)l

' block elif stmt
[else_block]
':'" block elif stmt
block [else_block]

':'" block [else_block]

| "for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_block]
| ASYNC 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_
—block]
with_stmt:
| 'with' '"(' ','.with_item+ ','? ')' ':' block
| 'with' ','.with_item+ ':' [TYPE_COMMENT] block
| ASYNC 'with' '(' ','.with_item+ ','? ')' ':' block
| ASYNC 'with' ','.with_item+ ':' [TYPE_COMMENT] block
with_item:
| expression 'as' star_target &(',' | ")'" | ':")

(ouvEyELa OTNV ETTOLLEVT GEMLDOL)

127

The Python Language Reference, Anpoocisuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

| expression
try_stmt:

| 'try' ':' block finally block

| '"try' ':' block except_block+ [else_block] [finally_block]
except_block:

| 'except' expression ['as' NAME] ':' block

| 'except' ':' block
finally_block:

| 'finally' ':' block

match_stmt:
| "match" subject_expr ':' NEWLINE INDENT case_block+ DEDENT
subject_expr:
| star_named_expression ',' star_named_expressions?
| named_expression
case_block:
| "case" patterns guard? ':' block
guard: 'if' named_expression

patterns:
| open_sequence_pattern
| pattern
pattern:
| as_pattern
| or_pattern
as_pattern:
| or_pattern 'as' pattern_capture_target
or_pattern:
["|]'.closed_pattern+t

closed_pattern:

| literal_pattern
| capture_pattern
| wildcard_pattern
| value_pattern

| group_pattern

| sequence_pattern
| mapping_pattern
| class_pattern

Literal patterns are used for equality and identity constraints
literal_pattern:
| signed_number ! ('+' | '-")
| complex_number
| strings
| '"None'
| "True'
| 'False'

Literal expressions are used to restrict permitted mapping pattern keys
literal_expr:

| signed_number ! ('+' | '=')

| complex_number

| strings

| '"None'

(ouvéyela otV emtduevn oehida)

128 KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

The Python Language Reference, Anpocisuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

| '"True'
| 'False'
complex_number:
| signed_real_number '+' imaginary_number
| signed_real number '-' imaginary_number

signed_number:
| NUMBER
| '-' NUMBER

signed_real_number:
| real_number
| '-'" real_number
real_number:
| NUMBER

imaginary_number:
NUMBER

capture_pattern:
| pattern_capture_target

pattern_capture_target:

!Il_ll NAME !(l.l ‘ l(l

wildcard_pattern:
‘ " "

value_pattern:

attr !('.! (! r=")
attr:
| name_or_attr '.' NAME
name_or_attr:
| attr
| NAME

group_pattern:
| '('" pattern ")'

sequence_pattern:
| '[' maybe_sequence_pattern? ']'
| '"(' open_sequence_pattern? ')'

open_sequence_pattern:

| maybe_star_pattern ',' maybe_sequence_pattern?

maybe_sequence_pattern:

| ', '".maybe_star_patternt+ ','?
maybe_star_pattern:

| star_pattern

| pattern

star_pattern:
| '"*'" pattern_capture_target
| '"*' wildcard_pattern

(ouvéyela otV emtduevn oehida)

129

The Python Language Reference, Anpoocisuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

mapping_pattern:

Loy

| '"{' double_star_pattern ','? '}'

['"{'" items_pattern ',' double_star_pattern ','? '}'

["{'" items_pattern ','? '}’
items_pattern:

| ', "'".key_value_pattern+
key_value_pattern:

| (literal_expr | attr) ':' pattern
double_star_pattern:

| "**' pattern_capture_target

class_pattern:
| name_or_attr "(' ")'
| name_or_attr '(' positional_patterns ','? ')'
| name_or_attr '(' keyword_patterns ','? ")'
| name_or_attr '(' positional_patterns ',' keyword_patterns ','? ')’
positional_patterns:
| ', '".patternt
keyword_patterns:
| '",'.keyword_pattern+
keyword_pattern:
| NAME '=' pattern

return_stmt:
| 'return' [star_expressions]

raise_stmt:
| 'raise' expression ['from' expression]
| 'raise'

function_def:
| decorators function_def raw
| function_def_ raw

function_def raw:
| 'def' NAME ' (' [params] ')' ['->' expression] ':' [func_type_comment] block
| ASYNC 'def' NAME ' (' [params] ')' ['->' expression] ':' [func_type_comment].
—block
func_type_comment:
| NEWLINE TYPE COMMENT & (NEWLINE INDENT) # Must be followed by indented block
| TYPE_COMMENT

params:
| parameters

parameters:
| slash_no_default param_no_default* param_with_default* [star_etc]
| slash_with_default param_with_default* [star_etc]
| param_no_default+ param with_default* [star_etc]
| param_with_default+ [star_etc]
| star_etc

Some duplication here because we can't write (','" | &')"),
which is because we don't support empty alternatives (yet).
#

(ouvéyela otV emtduevn oehida)

130 KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

The Python Language Reference, Anpocicsuon 3.10.18

(ovveyiCetow amd TV Tponyouevn oekida)

slash_no_default:
| param_no_default+ '/' ',"'
| param_no_default+ '/' &'")'
slash_with_default:
| param_no_default* param_with_default+ '/' ',
| param_no_default* param_with_default+ '/' &')'

star_etc:

| '"*' param_no_default param_maybe_default* [kwds]
['*' ', ' param_maybe_default+ [kwds]
|

kwds
kwds '**!' param_no_default
One parameter. This *includes* a following comma and type comment.
#
There are three styles:
— No default
— With default
— Maybe with default
#
There are two alternative forms of each, to deal with type comments:
— Ends in a comma followed by an optional type comment
— No comma, optional type comment, must be followed by close paren
The latter form is for a final parameter without trailing comma.
#

param_no_default:

| param ',' TYPE_COMMENT?

| param TYPE_COMMENT? &')'
param_with_default:

| param default ',' TYPE_COMMENT?

| param default TYPE_COMMENT? &')'
param_maybe_default:

| param default? ',' TYPE_COMMENT?

| param default? TYPE_COMMENT? &')'
param: NAME annotation?

annotation: ':' expression
default: '=' expression
decorators: ('Q@' named_expression NEWLINE)+

class_def:
| decorators class_def raw
| class_def_ raw
class_def_raw:
| 'elass' NAME [' (' [arguments] ')'] ':' block

block:
| NEWLINE INDENT statements DEDENT
| simple_stmts

star_expressions:
| star_expression (',' star_expression)+ [',']
| star_expression ','

|

star_expression

(ouvEyELa OTNV ETTOLLEVT GEMLDOL)

131

The Python Language Reference, Anpocigsuon 3.10.18

(ovveyiCetow amd TV Tponyouevn oekida)

star_expression:
| '"*'" bitwise_or
| expression

star_named_expressions: ','.star_named_expressiont+ [',']
star_named_expression:

| "' bitwise_or

| named_expression

assignment_expression:
| NAME ':=' ~ expression

named_expression:
| assignment_expression
| expression !':="

annotated_rhs: yield _expr | star_expressions

expressions:
| expression (',' expression)+ [',']
| expression ','
| expression

expression:
| disjunction 'if' disjunction 'else' expression
| disjunction
| lambdef

lambdef:
| '"lambda' [lambda_params] ':' expression

lambda_params:
| lambda_parameters

lambda_parameters etc. duplicates parameters but without annotations
or type comments, and if there's no comma after a parameter, we expect
a colon, not a close parenthesis. (For more, see parameters above.)
#
lambda_parameters:
| lambda_slash_no_default lambda_param_no_default* lambda_param_with_default*.
— [lambda_star_etc]
| lambda_slash _with_default lambda_param_with_default* [lambda_star_etc]
| lambda_param_no_default+ lambda_param_with_default* [lambda_star_etc]
| lambda_param with_default+ [lambda_star_etc]
| lambda_star_etc

lambda_slash_no_default:
| lambda_param_no_default+ '/' ',
| lambda_param_no_default+ '/' &':"'
lambda_slash_with_default:
| lambda_param_no_default* lambda_param_with_default+ '/' ','
| lambda_param_no_default* lambda_param_with_default+ '/' &':'

lambda_star_etc:
['"*' lambda_param_no_default lambda_param_maybe_default* [lambda_kwds]
['*' ', ' lambda_param maybe_default+ [lambda_kwds]

(ouvEyELa OTNV ETTOLLEVT GEMLDOL)

132 KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

The Python Language Reference, Anpocicsuon 3.10.18

(ovveyiCetow amd TV Tponyouevn oekida)

| lambda_kwds
lambda_kwds: '**' lambda_param_no_default

lambda_param_no_default:

| lambda_param ','

| lambda_param &':'
lambda_param_with_default:

| lambda_param default ','

| lambda_param default &':'
lambda_param_maybe_default:

| lambda_param default? ','

| lambda_param default? &':'
lambda_param: NAME

disjunction:
| conjunction ('or' conjunction)+
| conjunction
conjunction:
| inversion ('and' inversion)+
| inversion
inversion:
| '"mot' inversion
| comparison
comparison:
| bitwise_or compare_op_bitwise_or_pair+
| bitwise_or
compare_op_bitwise_or_pair:
| eq bitwise_or
| noteg bitwise_or
| lte_bitwise_or
| 1t_bitwise_or
| gte_bitwise_or
| gt_bitwise_or
| notin_bitwise_or
| in_bitwise_or
| isnot_bitwise_or
| is_bitwise_or

eg _bitwise_or: '==' bitwise_or
noteqg_bitwise_or:

[("!=') bitwise_or
lte_bitwise_or: '<=' bitwise_or
lt_bitwise_or: '<' bitwise_or
gte_bitwise_or: '>=' bitwise_or
gt_bitwise_or: '>' bitwise_or
notin_bitwise_or: 'mot' 'in' bitwise_or
in_bitwise_or: 'in' bitwise_or
isnot_bitwise_ or: 'is' 'not' bitwise_or
is_bitwise_or: 'is' bitwise_or

bitwise_or:
| bitwise_or '|' bitwise_xor
| bitwise_xor

bitwise_xor:
| bitwise_xor '~' bitwise_and
| bitwise_and

(ouvEyELa OTNV ETTOLLEVT GEMLDOL)

133

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

bitwise_and:
| bitwise_and
| shift_expr
shift_expr:
| shift_expr
| shift_expr
| sum

'&' shift_expr

Tt
TSt

sum
sum

sum:
term
term

| sum '+'
| sum '-'
| term

(]
|/l
l//l

term 'S$'

factor
factor
factor
factor
factor

factor:
| '+' factor
| '-' factor
| '"~' factor
| power
power:
| await_primary
| await_primary
await_primary:
| AWAIT primary
| primary
primary:
| primary '.' NAME
primary genexp
' (' [arguments]

l[l l]v

'**%' factor

primary

|
\ ')
| slices
|
slices:
| slice !',"
| ', ".slice+ [', "]
| [expression] ':'
| named_expression

[expression]

(tuple |
(list |
(dict |

group | genexp)
listcomp)

set | dictcomp |

strings: STRING+

['":'" [expression]]

setcomp)

(ouvéyela otV emtduevn oehida)

134

KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

The Python Language Reference, Anpocicsuon 3.10.18

(ovveyiCetow amd TV Tponyouevn oekida)

list:

['"['" [star_named_expressions] ']'
listcomp:

| '"[' named_expression for_if clauses ']'

tuple:
| '('" [star_named_expression ',' [star_named_expressions] 1 ")
group:
["('" (yield_expr | named_expression) ')'
genexp:
["('" (assignment_expression | expression !':=') for_if clauses ')'
set: '{' star_named_expressions '}'
setcomp:
| '"{' named_expression for_if_ clauses '}'
dict:
['"{'" [double_starred_kvpairs] '}'
dictcomp:
| '"{' kvpair for_if_ clauses '}'
double_starred_kvpairs: ','.double_starred_kvpair+ [',']

double_starred_kvpair:
| "**' bitwise_or
| kvpair
kvpair: expression ':' expression
for_1if clauses:
| for_if clause+
for_if clause:
| ASYNC 'for' star_targets 'in' ~ disjunction ('if' disjunction)*
| '"for' star_targets 'in' ~ disjunction ('if' disjunction)*

yield_expr:
| 'yield' 'from' expression
| 'yield' [star_expressions]

arguments:
| args [','] &")'
args:
| ','".(starred_expression | (assignment_expression | expression !':=') !'=")+ [',
—"' kwargs]
| kwargs
kwargs:
| ','.kwarg_or_starred+ ',' ','.kwarg_or_double_starred+

| '",'.kwarg_or_starred+

| ','.kwarg_or_double_starred+
starred_expression:

| '*' expression
kwarg_or_starred:

| NAME '=' expression

| starred_expression
kwarg_or_double_starred:

| NAME '=' expression

| "**' expression

NOTE: star_targets may contain *bitwise_or, targets may not.
star_targets:
| star_target !','

(ouvEyELa OTNV ETTOLLEVT GEMLDOL)

135

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

| star_target (',' star_target)* [',']
star_targets_list_seq: ','.star_target+ [',']
star_targets_tuple_seq:

| star_target (',' star_target)+ [',']

| star_target ','
star_target:
["*' (!'"*' star_target)
| target_with_star_atom
target_with_star_atom:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| star_atom
star_atom:

(' target_with_star_atom ')'
'('" [star_targets_tuple_seq] '")'
[[star_targets_list_seq] ']'

single_target:

| single_subscript_attribute_target

| NAME

| '"(' single_target ')'
single_subscript_attribute_target:

| t_primary '.' NAME !t_lookahead

| t_primary '[' slices ']' !t_lookahead

del_targets: ','.del_target+ [',']

del_target:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead

| del_t_atom
del_t_atom:

| NAME

| '('" del_target '")'

["('" [del_targets] '")'

['"[' [del_targets] ']'

t_primary:
| t_primary '.' NAME &t_lookahead
| t_primary '[' slices ']' &t_lookahead
| t_primary genexp &t_lookahead

| t_primary '(' [arguments] ')' &t_lookahead
| atom &t_lookahead
t_lookahead: "(' | '"['" | '."'

136 KegaAaio 10. MAnRpng npodiaypadpn YPAUHATLKNG

nAPAPTHMA A’

Mwoodpl

>>> To mpoemheyuévo Python prompt tov dtadpootiko shell. Zuyvd epgpaviletal yio mapadeiyioto KmdLKa Tou
uITopoVV va, EKTEAETTOUV dLAdPAOTIKA OTOV interpreter.

. Mmnopei va avagépetan o€:

o To mpoemiheyuévo Python prompt tou dtadpaotikov shell katd v eLooymyn Tou KOdIKa Yo £va Whok
KddiKa pe gooyn, otav Bpioketol péoa oe éva Levyog Taplaouévmv aplotepmv Ko deEudv delimiters
(mapevOéoelg, ayKULeg, AYKLOTPO 1) TPLITAN ELOAYMYLKA),) LETA TOV KoBopLond evog decorator.

o H evowpatmuévn otabepd E11ipsis.

2to3 'Eva epyaleio mov mpoomadel vo uetatpépel tov Kodika Python 2.x oe kwduka Python 3.x duayelpilovrog
TLG TTEPLOTOTEPES ALTVUPATOTITES TOU UTOPOVYV VO EVTOTLOTOVV OVOADOVTOG TNV TNy Ko diaoyilovtag to
dévTpo avdivong.

2t03 eival drabéoipo oty atdvtap BirodNKn wg 1ib2t o3, mapéyetar éva onueio e.0ddov mwg Tools/
scripts/2to3. Bh. 2to3-reference.

agnpnuévy fackn) kAaon Ou agnpnuéveg Paotkéc KAAOELSG cuumthnpwvouy To duck-typing mapéyoviag évav
tpoOTo opLopov interfaces dtov dhheg texvikég 6mwg N hasattr () Bo Nrav adéEieg 1 avemaiodnta Aav-
Oaopéveg (yio mapdderypo ue magic methods). Ta. ABC (abstract base class) eLodyouv eLkoviKeg vmoKAAOELS,
oL omoieg eivar KAGoeLg Tov dev Khnpovouovvran ard o kKAGon, odhd eEakolovbotv va avayvopiloval
and to isinstance () kow amd 1o issubclass ()7 BA. TV teKunpimwon tov module abe. H Python dua-
0éteL moAG evowuatwpuéva ABC yia dopég dedouévmv (oto module collections. abe), apOuoig (oto
module numbers), poég (o010 module povada io), eloarywyn finders kou loaders (0to module importlib.
abc). Mmopeite va dnuovpynoete ta dukd oag ABC pe to module abe.

annotation Mo etikéto Tov oyeTIeTan Ue po UETARANTH, £va YopaKTNPELOTIKO KAGONG 1| WOl TTOPAUETPOG GU-
VAPTNONG 1] TLUN TTOV ETLOTPEPETAL, TTOV XPT|OLUOTTOLELTOL KOTd avufacn wg type hint.

Aegv givar duvati) 1) TPoOoPaon oTo annotations TWV TOTLKMOV UETABANTOV KT TO (pdvo eKTéheons, alld
Ta annotations tov global petafANTmv, TOV YoPAKTNPLOTLKOV KAAONG KoL TOV CUVOPTHOE®MY 0rtodnKkevo-
VTOL 0TO ELOLKO YOpOoKTNPLOTIKO __annotations__ twv modules, Twv KAACEMV KOL TV OUVAPTNOEWY,
avtioToya.

B\. variable annotation, function annotation, PEP 484 kaw PEP 526, to omtoia tepLypdepouv tnv AeLtovpytkd-
tnta. Estiong BA. annotations-howto yia tig BELTLOTEG TTPOaKTIKEG dOVAEVOVTOG e annotations.

137

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python Language Reference, Anpocigsuon 3.10.18

opwopo. Mot puetafiatetal oe pio function () method) xotd Ty kAo g ouvaptnong. Yrdpyouv dvo eidn
0PLOUATOV:

o keyword argument: ¢évo. dpLopa. TPLY amd Evo avayvopLoTiko (.. name=) o€ Ui KAMon ovvaptongm
TEPVAVTAG TO WG TY) 0€ éva AeEkd mpy amd * *. T'o mopdderyna, To 3 KoL to 5 0ToTeAoUV opiopata,
MEewv-KheldLmv otig akdrovbeg KM oeLS Tpog complex () :

complex (real=3, imag=b5)
complex (**{'real': 3, 'imag': 5})

o positional argument: £vo. 6pLopa. Tov dev givan OpLopa keyword. To opiopato O£0Mg LTopPovV VoL EUpOL-
viCovtar otnv apyng wag hMotog optopdtmv /Kot va petofipalovrar wg otouyelo evog iterable mpiv
o6 *. ['o wopdderyua, To 3 kow 1o 5 amotehoVv oplopata OE0NG OTLS TOPAKATO KA OELS:

complex (3, 5)
complex (* (3, 5))

Ta opiopota EKYWPOUVTOL OTIG OVOUOUEVES TOTILKEG UETOBANTEG 0TO OO pLe ouvapTnong. BA. v evo-
tta Calls yuo Toug KavOveg Tov SLETOVY QUTHV TV EKYDPNOT. ZUVTOKTIKA, 0TTOLAdNTOTE £KPPOOT UTOPEL
va ypnouortonBel yia va avarapaotioel £va opioua” 1 oELohoyoUHEVT) TIUT EKYMPEITOL OE LLO. TOTILKY)
ueTapAnT.

BA. emtiong v eyypapn Tov YAwooopiov yio to parameter, Ty FAQ epwtnon oto 1 dtagpopd uetaEl opt-
ouatwv ko apapétpwv, kow PEP 362.

aoUyypovos duayeiproTi)g context An object which controls the environment seen in an async wi th statement by
defining __aenter_ () and __aexit__ () methods. Introduced by PEP 492.

0oUyypovog generator Mio. ouvAEPTNON TOU eMLOTPEQEL Eva asynchronous generator iterator. MoldZelL pe puo. ov-
vapTNOoY coroutine OV OPILETAL UE async def eKTOG OTTO OTLTEPLEYEL EKPPAOELS v i e 1 d VLo TV TTapOyw Y
HLOLG OELPAG TUUMV TTOV WITOPOVY va. xpnowworombotv oe évav async for Ppdyo.

ZuviHBmg avopépeTal oe o CUVAPTNOY 0oUYXPOVoU generator, 0AAG umopel va avapépetal oe Evav acdy-
XOOVO generator iterator Gg OPLOUEVA contexts. Ze TEPLITTMOELG OTTOV TO ETMLOLWKOUEVO VOTUL OEV ELVOL OOPES,
UE TNV XPNOT TOV TPV OPMV OITOQEVYETOL 1] ALTAPELAL.

Mo ouvapTNoT Aoy POVoU generator UWITOPEL Vo TEPLEYEL EKPPAOELS awa it , KaBwg Ko dNAMDOELG async
for,KalL async with.

aovyypovog generator iterator 'Evo avtikeipevo mouv dnuovpyndnke amd wa ouvaptnon asynchronous generator.

This is an asynchronous iterator which when called using the __anext___ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yie 1d expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

aovyypovog iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
fromits __aiter__ () method. Introduced by PEP 492.

aovyypovog iterator An object that implements the __aiter_ () and __anext__ () methods. __anext_
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

XOPOKTNPLOTIKO Mia TLut| Tou OyeTileTal Le £va OVILKEIUEVO TTOU CUVIHOMG AVOQEPETAL LE OVOLLO, YPTOLLOTTOLMD-
VTAG EKPPAOELG e KOUKKIOES. TLa mapddeLyna, Qv €vo aVILKELUEVO 0 €xeL EVa YopaKTNPLOTIKO a Oa ava-
PEPETAL WG 0.4

Eilvouw duvatd vo dmooupe 0g €va aVILKELIEVO £VOL YOPOUKTNPLOTLIKO TOV TO OVOUX TOU OEV ELVAL AVOLYVIPL-
OTKO OmWG opileton amd ldentifiers and keywords, yio. TAPASELYLOL XPNOLULOTOLOVTAG setattr (), av emt-

138 Mapdptnua A’. NMwooapt

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492

The Python Language Reference, Anpocisuon 3.10.18

TpémeTor atd To avrkeipevo. ‘Eva tétolo xopaktmplotkd dev Ba eivor TpooBaoiio ypnoLomoLmvTog Tig
teleieg, ko avti autov Ba mpémel va avaktnOel xpnowomoimviog getattr ().

awaitable An object that can be used in an awai t expression. Can be a coroutine or an object withan __await__ ()
method. See also PEP 492.

BDFL Axpwviuo tov Benevolent Dictator For Life, kohokdyo0og diktdtopag g Lomg, dnhadn Guido van Rossum,
0 dnuovpyodg g Python.

dvadiko apyelo A file object able to read and write bytes-like objects. Examples of binary files are files opened in
binarymode ('rb', 'wb' or 'rb+'),sys.stdin.buffer,sys.stdout .buffer,andinstancesof io.
BytesIOand gzip.GzipFile.

BA. emtiong rext file yio évo ovTIKELUEVO TUTTOU 0pYELo LKOVO Vo, dtofdoet Kaw va ypdper st r avItkeipeva.

daverkn avagopa Zto C API g Python, o daverk avagopd eivar o avagpopd og évo aviikeiuevo, érov o
KOOLKOG TTOV Y P OLULOTTOLEL TO arvTLKeinevo dev Katéyel Ty avagopd. ['ivetal évog aypnoluomointog deiktg
edv 1o aviikeipevo kotaotpapel. o tapdderypa, po diadikaoio garbage collection wwopel vo aporpéoet
TO TELEVTOUO Strong reference amd TO AVILKELUEVO KOL ETOL VO TO KATOOTPEPEL.

Zuviotatol 1 KAHon tov Py _INCREF () 0TO daVvelkn) ava@ood Ue 0KOmO Vo UETOTPOTIEL O €Va Loy voT]
avagopd emLTOTOV, EKTOG OTAV TO OVTLKEIUEVO OEV WTOPEL VO KATOOTPOAPEL TPLV atd TV TELevTALL Y PNOoN
g davelkng avagopds. H ouvaptnon Py_NewRef () umopei va ypnotpomowndel wote va dnuovpynOet
EVOL Lo VOT) aVapopd.

bytes-like avtikeipeve Eva avrikeipevo ov vrrootnpilel to bufferobjects kol umopet va eEdyel éva C-contiguous
buffer. Autd mepihaufaver dha to avtikelpeva bytes, bytearray, katarray . array, KoOdg Ko wodAd
Kowd memoryview ovuikeipeva. Ta dvadikot timov (bytes-like) avrtikeipevo Pmopovv vo. P CLULOTTOL-
NOoVV yia dudipopeg Aettovpyieg mov dayelpilovtar dvadikd dedouéva” avtd mepthapufavouv ovusieon
amo01Kevon o duadLKO apyelo kKol aTtooToA nécw socket.

Oplouéveg hettoupyieg yperafovran To duadikd dedouéva va eivor uetafintd. H texunpioon ouyvd ovo-
(PEPETOL 0€ AUTA WG «dVADIKA avTLKelUEVO avayvmong-eyypapnc» (read-write bytes-like objects). [Tapadeiy-
poTe LETABANTOV AVTIKELUEVOV TPOCWPLVTG aobfKevong mepLéyovy bytearray Kot éva memoryview
evog bytearray. AMEG AELTOUPYIES OTTOLTOVY TNV TTOBNKEVONG TWV dVAdLKDV dedouéva o€ aUeTAPANTL
avtikeipevo («dvadikd avrikeipeva povo avayvwong»” (read-only bytes-like objects) mapadeiypoato avtdv
mepléyouv bytes KoL évo memoryview evog bytes avIKelévou.

bytecode O mnyaiog kddka T Python petaryhottiCeton og bytecode, 1| e0WTEPLKY) AVATAPAOTOON EVOG TPOYPALL-
patog Python otov dtepunvéa CPython. To bytecode omoOnKeveTaL TLONG TPOCWPLVA OOG . PY C APYELL DOTE
1 eKTELEDT) TOV (OLOV apyelov va elval Yp1yopoTePT TNV deUTEPT POoPa eKTENEONG (UTTopEl Vo oTopevyOel)
€K VEOU UETAYANDTTLON OTTO TOV TINYOio KMOLKA o€ byfcode). Auti 1] «evOLAuean YAwooo» LEyeToL OTL TPEYEL
oe wa virtual machine oV €KTENEL TOV KMALKOL UNavNG TOV avtLoTolyel o€ Kabe bytecode. Adfete vdym
Ot ta bytecode 8gv aVOUEVETOL VO, AELTOUPYOUV UETAED SLAPOPETIKMV ELKOVIKMV Uy avdv Python, ovte va
glvon 0tafepd petagy twv ekddoewv g Python.

Mua Mota amd 0d1yleg oyetikd ue to bytecode umopel va Bpebei oty tekunpimon yio to module dis.

callable 'Eva callable eivar éva avrikeipevo mov wopei va Kaheotel, mbavd pue éva ovvolo opiopudtwv (BA.
argument), Ug TV TOPAKATO OVVTOEN:

callable (argumentl, argument2, ...)

Mua function, xou xot” eméktaon wa method eivou callable. 'Eva otuyiidtumo wo KhAomg mov VAOTTOLEL T
uébodo _ call () eivow emiong callable.

callback Mua subroutine ouvéptnon 1 omoia petafipdletor wg dplona mov Ba eKTELETTEL KATOLOL OTLYUT OTO
HEAMLOV.

kAdon 'Evo mpdtumo yio) dSnuovpyia aviikeluévov ov opifovrat omd 1o xpnoty. Ot oplopol KAAoEWY Guvi)-
Owg mepLéyouv opLopovg uebOdWV oV AeLTOUPYOUV OE OTLYWOTUTTO TG KAGONC.

139

https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

The Python Language Reference, Anpocigsuon 3.10.18

uetafinti kAdons Mo petofinti) wov opiletor ot pa kKAGom Kat tpoopiletar vo tpomortownOet udvo oe enimedo
KAGonNG (dN. Oyl o€ €va OTIYILOTUTTO (oG KAAOTG).

coercion The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int (3.15) converts the floating point number to the integer 3, but in 3+4. 5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Without coercion, all arguments of even compatible types would have
to be normalized to the same value by the programmer, e.g., f1oat (3) +4 .5 rather than just 3+4.5.

myadikog appos Mio e€KTO0N TOU YVOOTOY GUOTAROATOG TPOYUOTIKMOV aptBudv 6To 0mtoio 6hot oL aplbuol
exppatovral mg aBpoLouo vOg TPAYUOTLKOU LEPOVGS KOl EVOG POVTAOTIKOY UéPovg. OL pavTaoTikol opLd-
pol eivat TPoyHottkd TOMOATAGOLO TG PAVICOTIKNG Lovada (1] TETpaywVviky pila tov —1), Tov ouyva
vpGovTol i ota podnuatikd 1 3 otn unyoavikr. H Python £xel evoopatmuévi vitootiptEn yio puyadikoig
apLOUovg, oL 0ToioL YPAPOVTOL UE AUTOV TOV TEAEUTALO GUUBOMOUO” TO POVTAOTIKO UEPOG YPAPETAL UE TO
emibnua 3, 7w.y., 3+173. To va amoktoete Tpoofaon o ovvOeTa looduvaa to module math, ypropormor-
Note to cmath. H ypnon wyadikdv aplbpmv eivol éva apketd mponyuévo nodnuotiko yapoKkTnpLotkd.

edv dev yvopilete TV avayKr Tovg, eival oedOV Giyoupo OTL WTOPELTE VAL TAL AYVOTOETE UE AOPAAELQ.

draeprotiic context An object which controls the environment seen in a w1 t h statement by defining__enter_ ()
and __exit__ () methods. See PEP 343.

context petafine Mo petafinth mov umopel va £yl TorEG SLaopeTikeg THEG Avaloya Pe To context. Autd
eival kowvd oto Thread-Local Storage 0mwov kG0e eKTELEGT TOV VIULALTOG WITOPEL VAL EXEL DLOPOPETLKT] TLUN YLOL
o petofanty). Hapodia avtd, ue Tig context PETAPANTES, WTOPEL VO VITAPYOVY TTOAG TTEPLBGAlovTa e éva
VIO EKTELEDTG KO 1] KUPLOL (PNOT YLat TLG context PeTaANTég elvan 1) TapakohoONoN TwV UETOPANTOVY O
TavTtdypoveg diepyaoiec. BL. contextvars.

contiguous 'Eva buffer Oewpeiton contiguous axpi3ng edv eivau eite C-contiguous eite Fortran contriguous. To buffer
undevikmv draotdoewv eivar C kow Fortran contiguous. Z& (tovodLAOTATOVG TTIVOKES, TOL OTOLYELOL TTPETEL VOL
torofetovvtaL 0T uviun to éva disha 0to GAlo, ue oelpd avENONG TV deLkTMV EgKivdvtag amd To undév.
Ze molvdidototovg C-contiguous mivaKes, 0 TeEAevTAlog delKTNG petafdhletal TaxvTepa 0TV EMOKETTO-
vTaL To otolyeia og oelpd devbuvong uvnune. Qotdoo, oe Fortran contiguous mivaKes, 0 TPOTOS OEIKTHG
peTafalleTol Lo ypryopa.

coroutine Ou coroutines €lvou (Lo 7TLO YEVIKEVUEVT] Lop1| subroutines. Ot subroutines eL.odyoviol o€ £vo. oNueLo Kal
eEdryovtal g Gho onueio. Ot coroutines wropei va eLooy0ovv, va eEayBov Kot vo ouveyLoTovv o€ oA
drapopetikd onueio. Mmopouv va vhomotoouy pe Ty dMhwon async def. B emiong PEP 492.

coroutine cuvapTNon Mo ouVAPTNON TOV EMLOTPEPEL £VOL coroutine AVTIKELIEVO. Mo GUVAPTNOY coroutine Wio-
pel va opileton amd T dMhwon async def, Kol WITOPEL va TepLéyeL await, async for, KOL async
with MEeg Khedid. Avtég elonydnoav oo to PEP 492,

CPython H xavoviki vhosmoinomn tg yAdooag tpoypapuotiopnov Python, dmwg dravépetal oto python.org. O épog
«CPython» ypnoiuomoteitat OTov eivol amapaiTnTo Yo Ty SLAKPLoT AuTG TG VAOTTOINoNG 0rtd dAleG OTTMG
1 Jython | m IronPython.

decorator Mio. GuvAPTNON TOV EMOTPEQPEL Wiat OAAY oVVAPTNOY, CVVNOWGS EPAPUOTETAL WG UETAOYNUATIONOG
OUVAPTNONG XPNOLUOTOLDVTOG TNV @wrapper oUvtagy. ZuvnOiopéva moapadeiyuorta yio Toug decorators
elvar classmethod () kxou staticmethod ().

H oVvtoEn tov decorator givan amhmg KOAM®ITLOTIKY, oL akdrovBotl dvo oplopoi ovvaptioewv eivan onua-
OLOAOYLKA LoOdVVOUOL:

def f (arqg):

f = staticmethod (f)

@staticmethod

(ouvéygLa TNV ETOUEVT] GEMDQL)

140 Mapdptnua A’. NMwooapt

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python Language Reference, Anpocisuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

def f (arqg):

H idua évvola vtdpyer yio tig kAGoeLs, alhd xpnowpostoteiton Aydtepo ouyva ekel. BA. v tekunpimon yio
function definitions xow class definitions Y0 TePLOCOTEPA TYETLKA e TOVG decorators.

descriptor Any object which defines the methods __get__ (), __set__ (), or __delete__ (). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.

TN teplocdtepeg TAnpoopieg avapopLkd ue tg uebddovg twv descriptors, BA. see Implementing Descriptors
1 7o [paxtikdg 00NYOg yia T ypnon tov Descriptor.

AeBiko An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__ ()
and __eq__ () methods. Called a hash in Perl.

Katavonen AeEukov 'Eva cupmayfg Tpomog yio va eeEepyaoteite Oha M) uépog Twv oot einv oe £vo emavoin-
TTTLKO KO VoL ETLOTPApEL éva pe heEikd ue ta amotedéopata. results = {n: n ** 2 for n in
range (10) } dnuovpyel éva AeEtkd mou mepiéyel To Kheldl n Tou avTLOTOLILETOL UE TV Ti . ** 2,
BA\. Displays for lists, sets and dictionaries.

oyn AeEikov Ta ovtikeipeva ov emotpépoviol amd dict . keys (), dict.values (), koudict.items ()
Kahovvtan peig AeEKoV. AUTEG Tap€youv (o SuvauLKT) Oy TOV TOV EYYPAPOVY TOU AeELKOV, TTou onuaivel
otL 6tav To AeEkd petafarletar, n Oy aviikatomtpiler avtég tig alhoyés. o va avoykdoete v oy
AeELkov va yiver pa tipng AMota xpnotnoorjote to 1ist (dictview) . B, dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing 'Evo otul poypoupatiopoty wov dev eEetdlel Tov THTO €VOG OVTLKELUEVOU YLO. VO TTPOOOLOPLOEL
av el T owoti diemoph” avtifeta, N 1EO0dOG 1 TO XAPUKTNPLOTIKO KAAEITOL ATTADG 1 XPVOWUOTTOLEL-
tau («If it looks like a duck and quacks like a duck, it must be a duck.») Aivovtag éupoon ot diemapég Kot
OYL 08 OVYKEKPLUEVOUG TOTTOVG, 0 KaAG oyediaouévog Khdikag Bertidvel tnv eveMEia Tou emitpémovtag
™V ToAVHOPQLKY vtokatdotao. O timog duck-typing amogetyel dokLuEG XPNOLUOTOLOVTOG type () N
isinstance (). (Enueimon, wotdoo, 0Tl 0 TVTOG Ttdmiog duck-typing umopei va ovurhnpwOel pe abstract
base classes.) Avti autov, cuvnBmg xpnoworotel dokiuég hasattr () N wpoypapuotiond EAFP.

EAFP Ilwo egVkolo vo INTNOELS oVuyydpeon tapd ddeta. Autd 1o Kowvd oTtulk poypauuatiopoy o Python stpo-
rwoBétel TNV VapEn £yKupmv KAEWBUOV 1] YOPAKTNPLOTIKOV Kot oudhaufavel eEaipéoelg edv 1 vitdBeon
amodey el eopaluév. Avtd to Kabapd Kot YpYyopo OTUA XapoKTNPLLETOL OO TNV TAPOVGio TTOAMDV d1)-
Mooewv try Kow except. H texvikn épyetan oe avtifeon pe 1o otuk mov eivon LBYL xowvo o€ molhég dhheg
yAwooeg, omwg 1 C.

ékppaon Eva xoppdt ovvta&ng mov wopel va aEtohoynei oe kdsmoro tuur). Me diha Moyia, pa ékgppaon eiva
WO GUOCMPEVOT OTOLYELWV EKPPaoTg dmwg KuploreEia, ovopata, Tpdopaon xopaKTNPLOTIK®V, TENEOTEG
1 KA OELG OUVAPTIOEMV TTOV OAEG ETLOTPEPOVV LaL TUY). e avtifeon ue mohhég dhdheg YAwooeg, dev eiva
Oheg oL YAWOOLKEG douég eKPPAOELS. YTTAPYOUVE ETLONG statements TOV dEV WITOPOVV Va. xpNoLpototnfov
g eKPpaoeLs, 6mtwg to while. Ou avabéoelg Tumv eiva emiong dNAWoELg 0L EKPPAOELS.

module exéktaong 'Evo module ypauuévo oe C 1) C++, mou ypnowomoteitan 0td 1o C API g Python yia va
AMNAETLOPACOUY UE TOV TUPTVA KO UE TOV KMILKO TOV YPTOTH.

f-string Ou Kuprolektikég ouufolooelpéc ypnotpomoloVv pe mpdlepa '£' N 'F' ovondlovtar cuvnbwg «f-
strings» oV ivol ouvTopoypopia Tov formarted string literals. BL. exiong PEP 498.

141

https://www.python.org/dev/peps/pep-0498

The Python Language Reference, Anpocigsuon 3.10.18

OVTIKEINEVO apyeiov An object exposing a file-oriented API (with methods such as read () or write ()) to an
underlying resource. Depending on the way it was created, a file object can mediate access to a real on-disk file
or to another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.

ZTNV TPAYUATIKOTNTO VTTAPYOUV TPELG KATIYOPLES AVTLKELUEVV apyElOV raw dvadikd apyela, buffered Sva-
Oukd apyela xou apyela kewuévov. OL dlemapég Tovg opitovral oty evotnta io. O Kovovikog TPOTOG Yo
VO SNULOVPYTOETE EVOL AVTIKELUEVO OPYELOV ELVAL YPNOLUOTOUDVTAG TV OVVAPTNOT open () .

OVTIKEIUEVO TTOV poLaler pe apyeio 'Evo ouvavuuo ue To file object.

KWOKOTOI101] CUGTINUATOS UpYEIWY Kot XELPLOTHS opoindtov H kodikomoinon kol o yeplotg opaiudtov
ypnowpomoteital amd v Python yia tv artokmdikomoinon twv bytes amd To A<ovpylkd cUOTNUO KOl
™V Kodikormoinon og Unicode yia to Aettovpytkd ovothua.

H xodikomoinon cvotuartog apyelwv umopel vo eyyun0el v emituynuévn amokwdikomoinon Ghmy twv
bytes kdtw amd 128. Edv 1 kwdLKomoino cuoTiuatog apy elmv deV TapEYEL QUTNY TV EYYUNOT), OL CUVOP-
woelg API pmopovv va eyeipovy éva UnicodeError.

O ovvaptioelg sys.getfilesystemencoding () Kot sys.getfilesystemencodeerrors ()
WITOPOUV VOl YPNOLULOTTONO0UV Yo Vo MABETE TNV KMALKOTOINOT TOV GUOTNUOTOG OPYELWV KoL TOU YELPL-
0T1) OPAMLATOV.

O filesystem encoding and error handler dLapopemvovtal Katd v ekkivnon tng Python amd ™ ouvaptnon
PyConfig_Read () B\ filesystem_encoding kol filesystem_errors uéhn tov PyConfig.

BA\. extiong to locale encoding.
finder 'Eva aviikeipevo mov mpoomadel va Bpet to loader yio éva module wov 101y 0.

Since Python 3.3, there are two types of finder: meta path finders for use with sys .meta_path, and path entry
finders for use with sys .path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

aképora Swaipeon H pabnpotikh Siaipeon ov otpoyyvhomolel Tpog To KUTw 6Tov Koviivdtepo aképato. O te-
Leothg aképarog draipeong eivar / /. T mapdderypa, 1 ékppaon 11 // 4 aElohoyeitol oe 2 oe avtifeon
UE TNV TLuT) 2 . 75 OV ETLOTPEPETAL ATTO TNV SLALPEOT] e VITOdLALOTOM. Znuetwon 6t (-11) // 4 xdvel
-3 gmeldn aut eival 1 oTpoyyvhoToinon moog o kdTw Tov -2 . 75. Bh. PEP 238.

ouvaptnon Mia oelpd amd SNADOELS TOU EMLOTPEPOVY KATTOLO TULY) OF GUTOV TTOU TV KAAEDE. Ze auTég Umopovv
VO TTEPALOTOVV KAVEVQL 1] TTEPLOTOTEPX 0OLGUATA TTOV UWITOPEL VO PN OLULoTOL Ol yia TNV ektéheon. BA. extiong
TG evotnteg parameter, method, Ko the Function definitions.

ouvaptnon annotation 'Evog annotation oG TapoueTpov GuvapTiong 1 Wog TG ETLOTPOQTGS.

Ou ouvaptoeLg annotations ouyvA YPNOWOTOLOVVTAL Y0 UTOOE(SELS TUTOV: VIO TAPADELYUA, QUTH 1 GU-
vapTNON ovouéveTal va Tépel S0 oplouaTo 1nt Kol ETONG AVAUEVETOL VO €XEL UL ETLOTPEPOUEVT] TLUY
int:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

H oVvto&n ouvdptnong annotation avolvetar oty evotnto. Function definitions.

BA\. variable annotation kon PEP 484, mov meprypdpel avty) tnv Aettovpyikotnto. Emiong PA. annotations-
howto yio Tig KoAUTEPES TPAKTIKEG HOULEVOVTOG (L€ annotations.

_ future__ 'Eva future statement, from __future__ import <feature>, KaHodnyel TOV HETOYAOTILOTY
va petayAottioelr to tpéyxov module xpnouomotdvTag oUVTaEn 1 GNUacLoloyio Tov Ba Yiver 1) TUTTLKY O
uedhoviiki) ékdoon tng Python. To module _ future_ tekunpumvel tig mbavég Tiég tov feature. Me tnv

142 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Anpocisuon 3.10.18

ELOOYWYT AUTNG TNG AELTOUPYLKNG LOVADAG KO TV AELOLOYNOT) TV UETABANTMV TNGS, WTOPELTE VO dElTE TOTE
poL vEa duvaTOTNTO TPOOTEONKE YL TPDTN POPA OTHY YADOoO Ko ToTe O yiver (1] £yuve) N TpoemAoy):

>>> import _ future_
>>> _ future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

ouvAloyn amoppudtov H dtodikacio amelevfépmong g uviung Otav dev xpnolpomoteitor diho. H Python ekte-
Ael ouMLOYT QTTOPPLUATOV UECWH KOTOUETPNONG OVOPOPHDV KAl EVOG KUKAMKOUD CUAAEKTY OKOVTILOLMY TTOV
elval g B¢om va aviyvevel Kou va omdel Tovg KUKAoVg avapopds. O culhéKTNG amoppludTmy Wopel va
eheyy el ypnopomolmvtag to module ge.

generator Mo oUVAPTNOT TTOV ETLOTPEPEL Eval generator iterator. MOLATEL (LE LLOL KAVOVLKT] OUVAPTNON EKTOG 0TTO
TO OTL TEPLEYEL EKPPATELG v 1 e 1d Yo TNV TOPUYWOYH WOG OELPAG TUMV TTOV WTOPOUV VAL ¥PNoLULoTTot ot
o€ évav Bpoyo for Y| Tov Wtopovv va. ovoKTNOoUV o T popd e TV ouvaptnon next () function.

ZuvHBwg avagépeTal o€ o OUVAPTNOT generator, OAAG UTopEl va avopépetal Oe Evav generator iterator €
nepLKd contexts. 2e TEPLTTOOELS OTTOU TO EMLOLWKOUEVO VONUOL OEV ELVaL TAPES, 1) YPNOT TWV TANPWV OpwV
ATOPEVYEL TNV OLOAPELQL.

generator iterator 'Eva avtikeigevo mov dnuovpyeiton oo wua GuvapTnon generator.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator £k@paon Mua £k@paon Tov emLoTpEPeL Evay iterator. Moldlel pe Kavovikr) £k@paon Tov akolovdeitan
and o tpdtaon for mov opilet wo UeTaBANT Ppoyov, £va gVpog Kol Wo. TPOaLPETIKY Ttpodtaon 1 f. H
oUVOUAOUEVT EKPPAOT ONULOVPYEL TLUES YLOL (O OLVAPTNOT EYKAELOUOV:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

YEVIKT] oUvapTNe] Mo ovvapTnon mov amotereiton amd TOMATAEG GUVAPTNOELG TTOV VAOTOLOVY TV 181 AeL-
Tovpyia yio draopetikog Thmove. oo vhomoinomn mpémer va ypnolpnomonOel Katd T SLEpKeLo wioL KA1-
omg kabopiletar amd Tov akyopLlOuo arooTorys.

BA. emiong v xataydpnon tov single dispatch, tov decorator functools.singledispatch () ko PEP
443.

vevikog tomog 'Evog rype mov popel va wopapetpomomel” ouvnOwg o container class, dnwg 1ist 1 dict.
Xpnowuosoteiton yio type hints Kow annotations.

T teploodtepeg hemtouépelec, PA. generic alias types PEP 483, PEP 484, PEP 585, kau to module t yping.
GIL BM\. global interpreter lock.

global interpreter lock O unyaviopdg mov ypnotpomoteitan amtd tov diepunveéa CPython Yo v, SLaopaiioel Ot
uovo évo vijua extelel Python bytecode k4Be popd. Avtd amhomorel tv viomoinon CPython dnuovpywm-
VTAG TO LOVTENO OVTLKELWEVOU (CUUTEPLAAUPBAVOUEVWV KPIOWWWY EVOOUATWUEVWV TOTOV 0w TT.). dict)
£UUESA 0OPANEG EVOVTL TOVTOYPOVNG TTPOORaomS. To KAeldmuo oldKANPOL TOU dLepunvéa dLEVKoLUVEL TOV
dLepUNVEQ VO ELvaL TOMOTADY VNULATOV, ELG BAPOG TOU UeYAhOU UEPOUG TOV TTAPOAANALOUOV TOV TOPEYOVY
oL UNYOVEG TTOMOTIAMV ETTEEEPYATTDV.
Qo0tH00, OPLOPEVEG AELTOUPYIKEG LOVADEG EMEKTAONG, EiTE TUTTLKEG €lTE TPiTWYV, £XOVV OYESLAOTEL £TOL DOTE

va aserevfepmvouy 1o GIL dtav ektehoVv epyaoieg EVIOTIKMY VITOMOYLOUDV OTTMG CUUTTLEDT] 1) KATOKEP-
natopuds. Emiong, to GIL amehevbepmveton méva dtav extereite 1/0.

Iponyovueveg mpoomadeieg va dnuovpyn0ei évag diepunvéag «ehevBepwv-vnuatwv» (avtdg Tov Kheldm-
VEL TOL KOWvOypnoto dedopéva ue oA Tlo Aemtopep] evancnoia) dev frav emituyeis emeld 1 artddoon

143

https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

The Python Language Reference, Anpocigsuon 3.10.18

VITOYMPTOE TNV KOLVT| TTEPLTTWOoT evog emeSepyaoti). [Tioteveton dtL M vitépPaon avtol Tov TPoPANUATOG
06d00MG B KAVoLUY 7oA TTL0 TTEPLTAOKT KOl ETOUEVIG TTLO SATTAVIIPY) GTHY GUVTHPNON.

hash-based pyc 'Eva apyelo kpugpng uvnung byfecode mov yp1OLUOTOLEL TOV KOTAKEPUATIONO KoL O%L ToV XpdVo
TPOTOTTOLNOTG TOU AVILOTOLYOV OPYELOV TPOEAEVONG YLO VO TPOoadLopioeL Ty eykvpoTnTa tov. Bh. Cached
bytecode invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needsa __hash__ ()
method), and can be compared to other objects (itneedsan __eqg__ () method). Hashable objects which compare
equal must have the same hash value.

H YmapEn hashable xbver éva aviikeipevo va pwopel vo ypnotposown el mg khewdi AeEukot Kot wg uéhog
€vOg GUVOLOU, ETTELDN QUTEG OL SOUEG DESOUEVYV YPNOLUOTOLOVY TUUES KOTAKEPUATIOUOV.

Ta mepLoodTepa 0md T aueTdfinto evoouatwuévo avitkeipevo g Python umopoiv vo Katokepuott-
otovv” ta petafntd Kovtéivep (Ommg ou Moteg 1) ta AeEikd) dev elvan” T apetafinTo Kovrévep (0mmg
mheladeg Kan to frozesets) UTOPOVV VoL KATUKEPUOTIOTOUV UOVO EGV TCL OTOLYELD TOVG ELVOL KOTAKEPUATL-
ouéva. Ta ovTiKeLpeva OV glval OTLYIOTUTTO. KAAGEMY TTOV 0pilovIaL amtd TO ¥PNOTH WIOPOVV VO KOTO-
KEPUATLOTOUV TTO TTPOoemihoyr). ‘Ol ouyKpivovToL GAvioa €KTOG 0TO TOV EAUTO TOUG) KL 1) TUY KOTAKEP-
HOTLOUOV TOVG TTPOEPYETOL atd To id () .

IDLE 'Eva ohokinpopévo mepidirov avamtugng ko pdbnong yo v Python. idle givau éva fooikd mepiBadiov
eneEepyaoiag Ko diepunvéa mov cuvodevetar amd Ty Tumikr) drovout| tng Python.

immutable 'Eva avtikeipevo ue otabepn tur. Ta opetdfinta ovikeipeva mepthapufavouv apbuots , ovppo-
hooepég koL mhelddec. ‘Eva tétoto aviikeipevo dev umopetl vo alldEel. ‘Evo véo aviikeiyevo mpémel va
dnuovpynOei edv mpémer vo amobnkevtel wa drapopetiky| Ty Iailovv onuaviikd pého og uépmn 6mov
wo otabepd amarteital, yio wopdderypo wg khewdi oe éva heEuko.

ewoayouevo path Mo Mot amd tomobeoieg (] katoywoices Siadpouric) mov umopovv va avalntnboldv path
based finder yio. va. elooy0ovv modules. Kotd v dadikacio eloaywyng, avty M AMota ue tomodeoieg ouvii-
Bwg épyetar amd sys . path, aAhd YLO TO VITOTAKETO, WTOPEL ETLONG VO £POEL AT TO YOPAKTHPLOTIKO TOV
TTOKETOV YovEo ___path__.

awoaywyn Hdwadikaoio katd v omola o khdikag g Python oe éva module eivon Stabéoun otov kmddika Python
evog dAlov module.

aoayoyéas Eva aviikeipevo umopel kou vo avalntel kol vo goptdver £va module” kol éva. finder xon loader
OVTUKELUEVO.

Stadpaotikog H Python éyel évav dtadpaotikd diepunvéo 6mmov onuaiver 6Tt umopeic vo elodyelg SMAMOoeLg Kot
EKPPAOELG OTHY ELOAYWYY EVIOAMV TOU SLEPUNVEX, EKTEAMVTAG TEG AUEC KoL ELPOVILOVTOG TO OVTLKEL-
ueva. Amhng eKKLvinoTe TV python ywpig opiopato (bavidg emiéyovtog To amd T0 KUPLO HEVOU TOV
VITOAOYLOTY) 00G). ATtotehel Evav amodoTiko Tpdmo Yo va dokiudote véeg 1dEeg 1) va eEetdote AelToVPYIKEG
povadeg Ko moakéta (Buunbeite help (x)).

interpreted H Python elvau puo interpreted yYA®ooa, og aviifeon ue o LETAYAMTILOUEVT], AV KOL 1) SLAKPLOY WITOPEL
va givar kow 0ol Loyw g mopovoia tou bytecode petoryhmttioTt). Autd onuaivel 6t Ta apyeia Tpoghevong
WITOPOUV VoL EKTELEGTOVV QITEVOELOG YWPIg VO dNULOVPYNOEL PTG £Va EKTEAECLILO CLPYELO TTOU OTNY OUVEYELDL
ekteheitar. Ou interpreted yAdooeg ovviiBmg £xouv WKkpOTEPO KUKAO avAmTuEng/ eviomiopoy opoiudtmy
aTT0 TLG UETAYAMTTIOUEVES, 0LV KOIL TOL TTPOYPAUUATA TOVG YEVIKA eKTELOVVTOL TTL0 0pydL. BA. emtiong inferactive.

TEPUATIONOS hertovpyiag diepunvéa ‘Otav Inteiton teppotionds Aettovpyiag, o diepunvéag g Python ewoépye-
TOL O UL ELOLKT) pAor OTTov amtelevdepdvel 0TadLokd OLovg Tovg dLaTlOEUEVOUS TOPOUG, OTTMG AELTOVPYL-
Kég novadeg Kau morhamhéc kpioueg eontepiké doués. Emiong mpayuatomolel apketés KAMOELS 0TO GUA-
Aéxtne orovmdidy. Autd WITOPEL VO EVEPYOTTOLTEL TV EKTELEDT] KMOLKO 0 KATAOTPOPELG TTOU 0piovTal
antd 1o pNnotn 1 ot callbacks aobevoig aviamokpiosis. O KOdLKOG OV ekTEAETOL KOTA TN PAOT TEPLLOL-
TLOROU AELTOVPYIOG WTOPEL Vo GUVOVTIOEL SLAQOpPES EEALPETELS, KOOMG oL TOPOL 0Toug oToiovg faoiletal
evdéyetal vo unv Aettovpyovv mhéov (ouvnOm mapadelypota eivar oL AetToupyLkeg novadeg Ppiodnkng 1
0 UNYXOVLOROG ELOOTTOLNOEWV).

144 Mapaptnua A'. NMwooapt

The Python Language Reference, Anpocisuon 3.10.18

O Baotkdg MOYos TepuaTiopoy hettovpyiog tov diepunvéa eivon éti to __main__ module 1) ohokAnpmOnke
1 EKTELEDT TOV KMOLKA TTOV ETPEYE.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter__ () method or witha __getitem__ () method that implements Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (), ...).
When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter () or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

iterator An object representing a stream of data. Repeated calls to the iterator's ___next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
toits___next__ () method justraise StopIteration again. Iterators are required tohavean ___iter_ ()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a 1ist) produces a fresh new iterator each time you pass it to the iter () function or use itin a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

Mepioodtepeg mAnpopopieg wropotv va fpebovv oto typeiter.

Agnropépera vhioroinong CPython: CPython does not consistently apply the requirement that an iterator define
__iter__ ().

ouvvaptnon key Mo ouvdptnon khedi 1 wo ouvaptnon taEvounong sivar wo. Suvotdtta KAong Tov emt-
OTPEPEL O, T TTOV ypnotpomoteiton yio ToEvounomn 1 Suéitokn. o mapdderypa, locale.strxfrm()
YPYOLUOTTOLELTAL YLOL TV TTOPaywyn eVOg KAELSLOU TaELVOUNONG TToV YVmpilet Tig ouufdoetg Tagvounong
YLOL OLYKEKPLUEVEG TOTILKEG puOuioeLs.

‘Eva. aplBudg epyaleiov oty Python déyetor Baoikég ouvaptnoels ylo Tov €heyyo Tou TPOTOu Ue
ToV omoio ta otoryeio taEvopovvtor 1| ouadomotovvrar. Avtd mepiéyxouv min (), max (), sorted (),
list.sort (), heapg.merge (), heapg.nsmallest (), heapg. nlargest (),Koa itertools.
groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a Iambda expression such
as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors:
attrgetter (), itemgetter (), and methodcaller (). See the Sorting HOW TO for examples of how
to create and use key functions.

opiwopo keyword B\. argument.

lambda Muo ovayvoun evOmUATmUEVY GUVAPTNOT) TTOU OITOTEAEITOL ATt Lo LOVOSLKT| expression 1) 0mtoia. aELOLO-
veltaw Otav kodeitol 1 ovvdptnon. H ouvioEn yia t dnuovpyia wog ouvaptnong lambda eivon 1ambda
[parameters]: expression

LBYL Look before you leap. Autd 1o otuk KwdLkomoinong eLEyyeL pnTd Tig TPoUTOOE0ELS TPLY TPOYUCTOTTOLYOEL
KAoelg M ovalnthoelg. Autd 1o oTuk €pyetol o€ avtifeor ne Ty Tpooéyyion EAFP Ko xopoKtnpiCeTol
aItd TV TOPOVoio TOAMDV dINAmoEmY 1 f.

Ze évaL tepLBAMOVY TTOAATAMY VNUdTwV, 1 Tpooéyyon LBYL umopel vo diakivouvevoet va eLoGYEL (o Guv-
oNxm aydva petakd «the Looking» ko «the leaping». Twa tapdderypa o kddikag, 1 £ key in mapping:
return mappingl[key] umopel va amotiyel edv éva aAho v apapéoel To key amd To mapping UETG
™ dokuy), ahhG TPy astd TV avalitnon. Avtd to Tpofinua wropel va Abel pue KAeldouato 1 xpnotuo-
Tolwvtag TV tpooéyyLon EAFP.

145

The Python Language Reference, Anpocigsuon 3.10.18

Tomk1] Kwdukortoinon On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.
setlocale(locale.LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: cp1252).
locale.getpreferredencoding (False) can be used to get the locale encoding.
Python uses the filesystem encoding and error handler to convert between Unicode filenames and bytes filenames.

Moto A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension 'Evo cupmayfg tpdmog yia va eneEepyaoteite OMa 1) UEPOG TV OTOLYELWV O UL, akohouBia
Ko vo emoTpéPpete wua Moto pe ta oatotehéopato. result = ['{:#04x}'.format (x) for x in
range (256) if x % 2 == 0] dnwovpyei wa Aloto ovuforocelpmv mov mepéyovv Luyotg dekaeEa-
dukovg apduovg (0x..) oto evpog amd 0 €wg 255. H mpdtaon 1 £ eivar poarpetiky). Eav mopalewpOei, dha
Ta oToLyelo 0To range (256) vmofailovion oe eneSepyaciaL.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

naykt uédodog 'Eva drumo ovvdvupo yia special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified in the Mapping
or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

meta path finder 'Evog finder mov emiotplepnie pe avalntnon oto sys .meta_path. O finders ueta-diadpoung
oyetiCovral, ol dapépovv amd ta finders entry dtadpour.

Bih. importlib.abc.MetaPathFinder yia tig uebddovg mov vhomolovv oL meta path finders.

ueta-khdon H khdon wag khdong. Ou opropol kKhaong dnuovpyotv éva dvoua. kKAdong, éva AeElkd khdong Kat
o Aloto footkmv kKhaoewv. H peto-khdon givar veifuvn yia v artdKTon auTtdv TV TPLOV 0pLoUATmy
Ko TNV dnuovpyia g kKAAong. O eplocOTEPES AVILKELUEVOOTPEPEIS YADOOES TPOYPAUUATIONOV TTOPE-
YOUV ULOL TTPOETUAEYUEVT] VAOTTOIN 0. AT TTov Kvel Ty Python Egywproth eivor L givan duvorh m dnuovp-
vio Tpooapuoouévav petokidoemyv. O meplocdTePOL XPNOTES OEV XPELALOVTOL TOTE 0UTO TO EPYOlelD, OAAGL
OTOV TOPOOTEL AVAYKT), OUTO TO EPYONELD, OL UETA-KAAOELG WTOPOVYV VAL TTAPEYOVV LOYUPES, KOUPEG MIOELS.
"Ex0ouv %p1noLomombel Yo tnv Kotoypagr| TpooBoong XopoKTNPLoTIKOV, TNV TPoafK acpalelog vnud-
TOV, TNV TOPAKOA0VON0N SNULOVPYIAS AVILKEWUEVWV, TNV VAOTTOINOT| singletons, Ko mtolég dhheg epyaoiec.

[eploodtepeg mAnpopopieg uropovv va Bpebotv ato Metaclasses.

uébodog Mia ouvdpnon o opiletal péoa 0to omua wag kKhaone. Eqv koleitol wg yopakmplotikd wog mepi-
TTOONG AVTNG TG KAAONG, 1) 1EB0d0G B MAPEL AVTIKEIUEVO TEPLTTWONG WG TPWDTO TG argument (TO OTOLO
ovvihiBwg ovoudtetan self). Bh. function xou nested scope.

oepd avaivons nedodwv Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module 'Eva aviikeipevo mov ypnouedel mg opyovmtik povada tov kmdika tng Python. Ta modules éxouv évav
YDOPO OVOUATOV TTOU TTEPLEEL avbaipeta aviikelipeva Python. Ta modules poptwvovtoal otnv Python ue tv
dwadikooio importing.

B emiong package.

TeYVIKES TPodrarypoupés module 'Evo namespace mov TEPLEXEL TG TAPOQOPLES TTOV TYETICOVTOL LE TV ELOOYWYT
IOV YPNOLOTOLOVVTOL Yiet TNV POPT®ON €vog module. Mo mepimtworn tov importlib.machinery.
ModuleSpec.

MRO Bh. method resolution order.

146 Mapdptnua A’. NMwooapt

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Anpocisuon 3.10.18

mutable To svuetdpfinto avikeipevo propovv va oAGEoUV Tig Tuég 0AAG va. kpoathoouv ta 1d () . BA. emtiong
immutable.

named tuple O 0pog «named tuple» epappoCeTol yio 0ToLovONtoTe THTTO 1) KAAON o KAnpovoueital amd v
TLELADC KOL TWV OTTOLWV T GTOLYELD WTOPOUV VAL EVPETNPLOTTOLNOOUV elval TPOoaPAoLua YP1OLULOTOLDVTOG
ETOVLLLA YOPAKTNPLOTLKA. O TOTOg 1) 1) KAAOT UTOPEL VaL el Kol GALA X OpOKTHPLOTLKA.

oMol evowpatmuévor Tomol eivon named tuples, CUUTEPLIAAUBAVOUEVDV TV TLULDV TTOV ETLOTPEPOVTOL OITTO
time.localtime () kawos.stat (). Eva ahho mopdderypa eivan to sys . float_info:

>>> sys.float_info[l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple (). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace To uépog dmov amoOnrevetar wa petafinty. Ta namespaces vhomolovvror wg heEikd. Ymdapyovv ot
TOTTLKOL, OL KAOOALKOL KOl OL EVOMUOTOUEVOL namespaces KoOMG KoL oL £vOETOL namespaces 0€ VILKELLEVOL
(0e ueBddoVg). o mapddeLyna oL ovvapTHoelgbuiltins . open KoL os . open () dLOKPIVOVTAL 0TTO TOUG
Y WPOVG ovoudtwv Toug. OL xmwpot ovopdtwv Fondov emtiong TV ovoyvmoLdT)TO KOt T CUVTNPNoWOT T
Kablotmvtag oapéc wolo module viomolel o Aettovpyia. Tia wapdderypa, ypdgpovtag random. seed ()
Nitertools.islice () kaOLOTA COPES OTL AUTEG OL CUVOPTNOELG VAOTTOLOUVTOL artd To. module random
Kol itertools, aviiotouyo.

mokéto namespace A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they haveno __init_ .
py file.

BA. emtiong module.

nested scope H duvatdmta avagpopdg oe wa petafint oe évav mepikherduevo opopd. Tia mapdderypo puo
oUVAPTNOT TTOU OPITETAL UECA OE (oL (AT GUVAPTNOT WTOPEL VO AVOaQEPETOL OE UETAPBANTEG 0TIV EEWTEPLKT
oUVAPTNOY. ZNUELMOTE OTL TO EvOeTo TEdia amd TPoemAOY AELTOUPYOVV UOVO YLOL OVOLPOPd Kal 0L Yol
ekypnomn. O Tomikég uetafAnTtég SLABATOVTOL KoL YPAPOVIOL 0TO E0MTEPLKO TedLo epapuoyns. Ouoimg,
oL KaBoMKEG petafANTéG dafaCouvv Kot ypdgovy atov Kabohkd ympo ovoudtwv. To nonlocal emitpémnel
™V eyypapn oe eEmteplkd media.

KkAdon véov otvh Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like _ slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

ovukeipevo Omoladnmote dedouévo (e KaTdoTaon (XapaKTNPELoTKE 1 i) Ko Kaboplopuévn ouumeptpopd.
(uéBodor). Emiong, N telkn ookt kKhAom ommolaodftote new-style class.

maxéto 'Eva Python module mov umopei vo epiéyel submodules 1) avadpopukd, vtomakéta. Teyvikd, £va Takéto
elval pa kettovpyLkr povéado Python e éva _ path_ yopokmplotko.

BA. emtiong regular package xou namespace package.

TUPAUETPOS Mia £ykupn ovtdTnTo 08 évav oplopnd function () uéBodog) mov kabopilel éva argument (| og opi-
OUEVEG TIEPLITTAOELS, OPLOUATA) TTOV Wtopel vo. dex el 1 ouvaptnon. Yrdapyovv mévte eidn mopauéTpmy:

o AéEn-xdeldi 1) Oéon: xabopilel Eva dpLopo Tov uropel va petoPifaotel eite Oéoews M| wg dptoua AéEng-

kAetdiov. Autd gival To TPOETAeYUEVO ELDOG TOPAUETPOV, VL0 TAPAdELYUa foo Ko bar ota akdlovba:

147

https://www.python.org/dev/peps/pep-0420

The Python Language Reference, Anpocigsuon 3.10.18

def func(foo, bar=None):

o Oéoewe udvo: kabopilel éva OpLona wov umopel va mopéyxetanr udvo amd ™ 0€om. OL mapdueTpol Lovo
0£0mMG WITopPoUV va. 0pLoTOUV GUUTEPLAAUBAVOVTOG Evay YopaKTHpad / 0T AMoTa TopauéTpmy ToU opL-
ooy oVVAPTNONG HETd 0TTd AUTEG, Yo tapdderyua posonlyl kon posonly2 oto eENg:

def func(posonlyl, posonly2, /, positional_or_keyword) :

o AéEng-kAeldi udvo: xaBopilel Eva OPLoUO TOV WITOPEL va. Tapéyeton wovo ue AEEN Kheldi. Ou mapduetpol
HOVO Yo MEEN-KAELDL WITOPOVV VO 0PLOTOVV GUITTEPLAAUBAVOVTOG [La TOPAUETPO BEONG 1) OKETO * 0T
MoTa TApaUETPWY TOU 0PLOUOY CUVAPTNONG TTPLV Atd OUTES, Yo Tapaderyua kw_onlyl Kou kw_only2
ot aKOAovOL:

def func(arg, *, kw_onlyl, kw_only2):

o uetafAnti Oéong: xabopilel OTL umopei va mapaoyedel wa avbaipetn axorovdia oploudtov 0¢ong
(emumhéov TV oplopdtov BEong Tov givar 1191 amodeKTd 0td dAleg mapauéTpovg). Mia tétola ma-
PAUETPOG WWITOPEL VO OPLOTEL TPOCAPTDVTOG TO OVOLLO TNG TAPAUETPOU UE *, VL0 TAPASELYUA args 0T
akorovba:

def func(*args, **kwargs):

o uetafAnth AéEn-kAeldi: Kabopiler oL pwwopovv va mapéyxovror avbaipeta ToAG opiouato AEENG-
KAELOL0D (eTLITAEOV TV 0pLopdTtmy AENG KAELOLOV Ttov eival omodektd amd dhheg Tapauétpovg). Mo
TETOLAL TTOPAUETPOG WTOPEL VO OPLOTEL TTPOCUPTWVTAG TO OVOUC TNG TOPAUETPOU UE * *, Y0 TP~
devypa kwargs OTMS TOPATAVO.

O mopdpeTpot Wtopov va Kahopicouv TOo ta TPOUPETIKA 00 KOl TAL AoLTOVUEVO Opiopata , Kabwg
KOL TIPOETUAEYUEVES TLES YLOL OPLOUEVOL TIPOALPETIKG OPIOLLOLTOL.

B\ extiong v argument xotaympLon evpetnpiov, Ty epwtion FAQ oyetikd ue 1 dagopd peta&i opropud-
TV KoL TAPAUETpWY, TV KAAOoN inspect .Parameter, v evotnta Function definitions xow PEP 362.

path entry Mua pepovouévn tomobeoia oto import path tv omoio cupBovieveton o path based finder yio va BpeL
modules yio eLoorymy).

path entry finder 'Evog finder mov emotpépetal amd évav KahoOuevo 0to sys . path_hooks (dnhadi éva parh
entry hook) ov Eépel mwg va. evromtiCelr modules e path entry.

Bih. importlib.abc.PathEntryFinder yio tig uefddovg mov o entry finder dtadpoung vhomotei.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder 'Eva amtd ta mpoemiheyuéva meta path finders wov avalntd €va import path yio. modules.

path-like avrikeipevo 'Eva aviikeipevo mov avumtpoowmevel éva path cvotfiuotog apyeiwv. ‘Eva aviikeipevo
path givau gite éva aviikeipevo st r 1 bytes mov aviutpoommevel éva path 1) £va OVTLKELLEVO TTOV VAOTTOLEL
TO TPWTOKOAMO 0s . PathLike. Eva aviikeipevo wov vrootnpilel To mpwtdKorlo os . PathLike umopel
vo petatpamel og path ovothuatog apyelwv str M| bytes Kahdvtag Ty ouvapton os . £spath () ” ta
os.fsdecode () KoL os.fsencode () WIopovV va PNOLUOTONOOVV Lo TNV €yyUmon evdg amotehs-
ouatog str 1 bytes, avtiotoyya. Ewonydn amd tov PEP 519.

PEP Ilpotaon Behtiwong Python. ‘Eva PEP givaw évo €yypopo oyedlaopuol Tov Tapeéyet TANPOoQopies 0TV KoL-
votnto Python 1) mepuypdper o véo duvatdtta yia v Python 1) tig dadikaoieg 1 o mepifallov g,
Ta PEP Oa mpérmet vo mopéyouv Wio. GUVOITTLKY TEXVIKT] TPOSLOYPagpT] KO (Lot LOYLKY] YLOL TOL TTPOTELVOUEVOL
YOPOKTNPLOTLKA.

148 Mapdptnua A’. NMwooapt

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519

The Python Language Reference, Anpocisuon 3.10.18

Ta PEP mipoopiCovtal va eivar oL KOpLoL iiyoviouot Lo Ty IpoTtoot] ONUOVTLKOV VEOV YOP0KTIPLOTIKMOV,
YLOL TN GUALOYY] TANPOPOPLMV TNG KOLVOTNTOG Yo Vo THTNUOL KoL Y10 TV TEKUNPLmON TOV 0Topaoeny
oyedLaopov o £xouv ewoay el oty Python. O cuyypagéag tov PEP gival vrelBuvog yio thv otkodounon
ouvaiveong evtog Thg KoLvOTNTag KoL TNV TeEKuNpimon aviibetmy amdpewy.

B)L. PEP 1.

tuiuoe. ‘Eva ovvoho amd apyeia og Evav povo katdhoyo (evoeyouévmg amofnKevuévo og apyelo zip) Tou GuUBEL-
Lovv og évo namespace TOKETO, OTwg opiletar oto PEP 420.

opwopa 0¢ong BA. argument.

provisional API 'Eva provisional API eival avtd mmov €xel eokepuéva eEarpebei amd Tig backwards eyyunoeig ovp-
Batdtnrag g Tumkng PBAMOOKNG. AV KoL eV avapévovTal CHUAVTIKEG AMOYEG O TETOLEG SLETOEG,
€POCOV EMONUOIVOVTAL WG TPOoWPLVES, alharyég un backwards cuufoatdomrog (UéxpL KoL KOTapynon e
dLemapng) UIopel va TPoKLPouv edv KpLbel amopaitto amd Toug factkols Tpoypaunatiotés. Tétoleg
odhayég dev Ba yivouv dokoma — Ba ouuBouv wovo edv amokalupOovv cofapd Beueliddn eraTTOUOT
7oV TOPoreipONKay TpLv oo T cuumepiinyn tov APL

Axoun kou yo provisional API, ou un backwards ouppatéc alaryég Bewpoivtar «hion Eoyatng avaykne»- Oa
eEaxohovBei vo. yivetan kdBe tpoomdOero yio va Bpedei pua AMbom backwards cupBati| og TuyOV EVIOTLOUEVAL
TPOPfAUaTO.

Avth 1 dtadikaoia emitpémer oty TustkT) BBALOON KT va ouveyioel va eSeliooetan ue Ty Tdpodo Tov xpo-
VOU, YWPIg va KAEWOMVEL TPOPANUATIKE OQALLOTO OYESLAOUOD VL0 EKTETAUEVES YPOVIKES TTEPLOdOVG. BA.
PEP 411 yio tepLoodTtepeg AeTTOUEPELES,

provisional wakéto BA. provisional API.

Python 3000 Wevdwvuuo yio to ovvoro ekdooewv Python 3.x (emvonOnke mpLv amd mwodd koupd 0Tav 1 Kukho-
popia g €xdoong 3 NTav KATL 010 PaKpLvo EALoV.) Avtd ovoudletol emiong wg ovviopoypapia «Py3k».

Pythonic Mua 1déa 1) €vo Kopupdtt KddLKa Tou akohovbel ot taL 710 Kowvd Wumwuato ™G Yhwooag Python, avti
VO VAOTTOLEL KDOLKOL Y PTOLUOTTOLMVTAG EVVOLES KOLVEG 0€ AMAEG YADOOES. Tla mapdderypa, v Kowvo wWimuo
otmv Python ivan va xdvet wo eavanym tdvo amd oha ta otolyelo evag iterable ypNOLLOTOLMVTOG ULOL
Mhwon for. [Modhég dhheg YAMOOES TOV SEV €YOUV QUTOV TOV TUTTO KOTAOKEUNG, £TOL OL AvOpmIToL TTov dev
eivar eEotkelmpévor pe v Python ypnowpomototv peptkéc popég Evav aptbuntkod uetpn):

for i in range(len(food)):
print (food[i])

Avtibeta, wo mo kabapn uébodog Pythonic:

for piece in food:
print (piece)

avayvoplopévo ovoue ‘Eva dvopa pe kovkkideg mov deiyvel T «diadpout)» amd 1o kabokd evpog evog module
oe wo Khdon, ovvdptnon 1 uébodo mov opiletar o ovt)v ™V evotnta, Omtwg opiletal oto PEP 3155.
TN ovvapthoelg Ko KAAGELG OVAOTOTOU ETLITEDOV, TO OVOYVOPLOUEVO dvoua glval idlo pe to dvoua Tou
OVTLKELWEVOU:

>>> class C:
class D:
def meth (self):
pass

>>> C._ _qualname
IC’
>>> C.D.__gualname

(ouvéyela otV emoueV oerida)

149

https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

'C.D'
>>> C.D.meth. qualname
'C.D.meth'

‘Otav ypnowomoteitar yia avapopd o¢ modules , 1o TAowWS avayvwoLleuévo évoua oNUaivel oLOKAPO To
duaxekopuévo path pog to module, cupTePLOUBOVOUEVOY TUYXOV YOVIK®V TAKETWV TT.). email .mime.
text:

>>> import email.mime.text
>>> email.mime.text. name
'email.mime.text'

) 00g avaopac The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sy s module defines a get refcount () function that programmers can call to return the
reference count for a particular object.

Kovoviko mok€ro 'Eva mapadooiako package, Onmg £vag Katdhoyog o mepléyeL éva __init_ . py apyeio.
BA. emtiong namespace package.

__slots__ Mua dHhwon péoa oe pua, KAGoM stov eEotKovopel pviun SNADVOVTOG £K TV TTPOTEPMY XDPO YL TUPG-
deLypaL YopaKTNPLOTIKA Ko eEakeipovtag AeELkd oTyotimmy. Av Ko SNUo@IAAG, 1 TEXVIKN gival Kamwg
dVOKOMO VO YiveL OWOTI Kot TTPOOPLLETL KOAUTEPQ VL0 OTTAVIES TTEPLITTMOELS OTTOV VTTAPYEL LEYAAOG 0pLO-
HOG OTLYILOTVTTOV O€ ULOL EPOAPUOYT KPLoWUNS-UviunG.

okoAlovlia. An iterable which supports efficient element access using integer indices via the __getitem__ () special
method and definesa ___len__ () method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple,and bytes. Note that dict alsosupports ___getitem__ () and__len__ (),butis

considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes

beyond just _ getitem_ () and __ len_ (), adding count (), index(), contains__ (),
and _ _reversed__ (). Types that implement this expanded interface can be registered explicitly using
register().

set comprehension 'Evog ovumayhg tpdmog yio. vo eneEepyaoteite 6ha 1) pépog Twv atolyeimv oe éva iterable ko
VO ETLOTPOPEL EVOL GUVOLO [UE TO atoTeEAéOHOTA. results = {c for c¢ in 'abracadabra' if
c not in 'abc'} dnuouvpyel to ovvolo ovpforocepwv {"'r', 'd'}. BA. Displays for lists, sets and
dictionaries.

novadiko dispatch Muo. popgny dispatch generic function dmov M vhomoinomn emhéyetar pe fAon Tov THTO VoG
UEUOVOUEVOV OPLOUOTOG.

slice 'Evo avtikeipevo mov ouvnbmg mepLéyet £va tunuo uog akorovbiag sequence. Anuovpyeitan éva slice xpn-
OLULOTTOLMVTOG T oNueimaon subscript, []1 ue avo kol Kétw teleieg uetasu apbudv dtav divovrar worroi,
Omwg 010 variable_name [1:3:5]. H onueimon aykding (subscript) xpnoLuomoLel e0mTeptkd avitkei-
ueva slice.

eduki] péfodog Mia 1£0080g Tov Kakeitol oLwnpd amd v Python yia va ektehéoel o GuYKeKPLUEVY AeLToup-
via og évav 1m0, dmwg M wpoobKn. Tétoeg uéBodol éxovve ovopata mov Eekivolv KoL TEAELDVOUV e
dumhég Kdtm mavhes. O eldikég péBodoL tekunpLdvovtan oto Special method names.

dMlwon Mo tpdTaon givar uépog wog covitag (Eva «umhok» KOdka). Mia tpdtaot eivol eite évag expression
gite wa arwd wolhég dopég ue wo AEEN-Kheldi Omwg 1 £, while) for.
strong reference >to C API tng Python, pia toyvpn avagopd elvol o ovogpopd og Vo oVILKEILEVO TTOU OVIKEL

OTOV KMOLKA TTOV TEPLEYEL TNV avapopd. H toyupt avagpopd Aapfdavetor Kahdviag to Py INCREF () Otav
1 avopopd duovpyeitor Ko arehevbepmvetal e Py_DECREF () OTOV dLOYPAPEL 1] Avapopd.

150 Mapdptnua A’. NMwooapt

The Python Language Reference, Anpocisuon 3.10.18

H ovvéptnon Py_NewRef () Wropel va xpnotuomotnei yio) dnuouvpyio Loyvpng avopopdic o€ Vo, ovTL-
Kelpevo. Zuvnbwe, 1 ouvapTNoN Py_DECREF () mpémel vo KOAELTOL 0TV LoYVPY avapopd Ly Byet oo
TO €VPOG TNG LOYVPNG OVOPOPAGS, YL VO ATTOPeVYOEL 1] dLoppon oG avapopdis.

B emtiong borrowed reference.

Kwdkomoinon kewpévov Mia ovuforooelpd otnv Python ivol wa akolovbio onueiwv kddika Unicode (oTo £v-
poc U+0000-U+10FFFF). ['la var artoONKeVOETE 1] VO UETAPEPETE UL CUUPBOLOCELPAL, TIPETTEL VOL GELPLOTTOL-
N0l wg dvadikn akorovbia.

H oewpromoinon wog ouuBorooelpds o€ (o duadiky akohovbic eival YVOoT wg «KOALKOTOINoT» , KoL 1
avadnuovpyia tng ovuforooelpds amd Ty duadikr| okohovBio eival YVmOoT MG «OTOKMALKOTOINo1)».

Yrdpyer pio Torkihion SLapopeTikig oeLpLoToinong Kewévou codecs, oL 0TT0ioL GUALOYLKG OVOPEPOVTOL WG
«KWOLKOTTOLNOELG KELUEVOU».

apyeio kewévov 'Eva file object ixovd vo SlaBatel kau va ypdeper aviikeipeva str. Zuyvd, évo apyeio kewué-
VOU QTTOKTA TPAYUATIKG TTPOOP0on O€ pa pon duadikt) por) dedoUEVMV Kat YeLPLLETOL QUTONATO TNV fext
encoding. Tlopodelypota opyelmv KELWEVOU lvaL apy Lol TTOV avoiyouy o€ Aettovpyia Kewévou ("r' M 'w'),
sys.stdin, sys.stdout, Kot otrypdtume tov io. StringIO.

B\ extiong binary file yuon €vo AVTUKELUEVO apyELOV e duVATOHTITA OVAYVIONG KAt EYYPOPNg Svadikd avit-
Kelueva.

oupforocelpd TPUTA®Y ELCaYMYIKOV Mo GUIBOAOCELPE TTOV SECUEVETOL AT TPELG TEPUTTWOELG ELTE EVOG ELOQL-
yoyrkoU (») 1 pag arrootpdpov (). Av ko dev Tapéyouv Kouia Aettovpytkdtnta ov dev eivar dtabéoiun
1e OVUPBOLOCELPEG UE LOVAL ELOAYWYLKA, ELVOL XPHOLUES YLOL BLapOPOVg AOYOUGS. Zag EMLTPETOUV VO GUUTTE-
pLaPeTE LOVA Kat SAd eLoaymyLkd xwpig dtopuyn o€ uLa GUUBOAOOELPG KOl UTOPOVY VO EKTELVOVTOL
og TOMEG YPOUUES XWPLG TN YPTON TOV XOPAUKTNPO CUVEYELDL, KADLOTMVTAS TO LOLAULTEPO. YPNOLLO KATA TN
oUVTOEN eYYPAPWV He CUUPBOLOCELPES.

timog The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits ___class___ attribute or can be retrieved with type (ob7j).

type alias 'Evo ouvadvupo yua évay thmo, mov dnuiovpyeitor ue ty ovadeor TOmov o€ £va avayvopLoTiko.

Ta type aliases eival ypnowua yio tnv osthomoinom type alias. Tia wapddevypor:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplelint, int, int]]:
pass

WITOPEL VL YIVEL TTL0 eVavAyvVmoTo OTtmg:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) —-> list[Color]:
pass

Bi. typing kou PEP 484, movu mepuypdepel outiv TNV AeLtovpytkdTnTa.

type hint 'Evag annotation wov KaOopileL TOV avapuevopevo TOo yio. (ot LETOPANTY), EVO X apaKTNPLOTIKO KAGOoNg
1] WL TOLPAUETPO CUVAPTNONG 1) TLUT ETLOTPOPNG.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid
IDEs with code completion and refactoring.

YnodeiEeig timou (type hints) yio KaBoMkég UeTOPANTEG, YOPOKTNPLOTIKA KAAONG KoL OUVOPTH-
oelg , OMG Oyl TOTKEG UETAPANTEG, WITOPOUV VA JTPOOTELAOTOVV YPNOLUOTOLMVTAG TO typing.
get_type_hints ().

BML. typing kol PEP 484, mov meprypdgpel ovtiv v AELToupyLtKkOTTO.

151

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484

The Python Language Reference, Anpocigsuon 3.10.18

koBohxég véeg ypauués Eva tpdmog epunveiog pomv Keywévou otov oroio dia ta akdhovbo avayvmpifovran
wg MEeig wag ypauune: ovufaon téhovg ypauung tov Unix '\n', 1 ovupfoon twv Windows '\r\n"',
Kaw TV ol ovppaon Macintosh '\ r'. BA. PEP 278 kau PEP 3116, kabmg koL bytes.splitlines ()
v TpoodeTr P oM.

annotation perapiyeig ‘Evag annotation o, puetafAntg 1 evog yopaktnpLlotikot KAGong.

‘Otov annotating puo eToBANT 1 va xopakTnpLotikod KAGong, 1 avabeon eivol TpoatpeTikn:

class C:
field: 'annotation'

Ta annotations PETOPANTOV YPNOWOTOLOVVTOL GUVNOWMG Yo fype hints: Yio. TAPAIELYUA OUTH 1) LETOPANTY
ovouévetal vo Mafel Tiég int:

count: int = 0

H o¥vta&n annotation petafintg meprypdipetol oty evotnta Annotated assignment statements.

BA. function annotation, PEP 484 xav PEP 526, mov meprypdgpouv avti) ™ Aertovpyio. Agite emiong
annotations-howto yia. BELTLOTES TPAKTIKEG OYETIKA Ue TNV EpYOTia e oXoMaouove.

virtual environment 'Evo cuvepyoatikd amopovmuévo eptBallov xpovoy eKTELEONG TOV EMULTPETEL OTOVG YPT1)-
0TEG Kau TIG eapuoyés tg Python va eyxotaotioovy kot vo avopaduicovv tokéta diovoung Python ympig
va tapeuaivouy oty ovutepLpopd AoV epapuroymv Python mov extelovivtar 0Tto idLo ovoThua.

Bi. emiong venv.

virtual machine 'Evog vroloyiotic opileton €€ ohokipov amd to hoyiowkd. H eucovikhy unyavi tng Python
ektelel To bytecode oV eKTTEUTETAL ALTTO TOV UETAYAWTTLOTY bytecode.

Zen 1 Python Kotdhoyog oyedlaotikmy apymv KoL (LAOGOMLMY TOV ELVOL YPT|OLUES YLOL TV KATOVONOT KoL TN
xPNOoM ™G YAdooag. O kotdhoyog witopel va fpedel mhnktporoydviag «import this» otnv dladpaoTiky
KovaoLa.

152 Mapdptnua A’. NMwooapt

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

nAPAPTHMA B’

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.

H avamtuEn tov eyypleov Kol Tov gpyoleiwv toug eivar eE” ohokhnpov edehovtiky mpoomddera, dmwg Ko 1)
idua 1 Python. EGv Béhete va. ouvelopépete, piEte wo. potid ot oghida reporting-bugs yio, TANPOQOPLES OYETIKEG
e To Twg vo. 1o Kavete. Kawvouplol e0ehoviég eival mdvta evmpdodektol!

[ToAAég vy OpLOTiES TTNYALVOUY OTOVG:
« Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
« 7o Docutils tpdtlekt yio v dnuovpyio tmv epapuoydv reStructured Text ko Docutils:

o Fredrik Lundh yua to 816 tov Alternative Python Reference mpdtlekt amd to omoio to Sphinx mpe ol
KoAég LOgec.

B'.1 Contributors to the Python Documentation

IoAhol avBpwrtoL éxouv ouvela@épel ot Yhwooo Python, thv BiioOnin tng Python, ko ta €yypagpa tng Python.
Agite Misc/ACKS otig minyég dravoung g Python yia pa Moto twv ouvieheotdv.

Moévo ue tn ouufol) Kot Tig OUVELGPOPES TG Kotvotntag tg Python, 1) Python €yel tétola vitépoya éyypapo -
Zag evyoaploTovpe!

153

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.10/Misc/ACKS

The Python Language Reference, Anpoocisuon 3.10.18

154 Mapdaptnua B’. About these documents

4
NAPAPTHMA [

loTopla kat Adela

.1 Hotopia Tou AoyLoHLKOU

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most, but
not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

‘Ekdoon Mpoepxduevn ard | ‘Etoq Idloktnoia | GPL compatible?
0.9.0éwg 1.2 | &/v 1991-1995 CWI v
13¢émg1.52 | 1.2 1995-1999 CNRI VoL
1.6 1.5.2 2000 CNRI oxL
2.0 1.6 2000 BeOpen.com | oyt
1.6.1 1.6 2001 CNRI oyl
2.1 2.0+1.6.1 2001 PSF oYL
2.0.1 2.0+1.6.1 2001 PSF v
2.1.1 2.142.0.1 2001 PSF VoL
2.1.2 2.1.1 2002 PSF VoL
2.1.3 2.1.2 2002 PSF VoL
2.2 kou whve | 2.1.1 2001-ofuepo. | PSF VoL

155

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, Anpocigsuon 3.10.18

Inueiwon: GPL-compatible doesn’t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

X&p1, 0toug ToAovg eEmTepLkovg e0eLOVTEG TTOV EpYAOTKAY KUTW 07TO TG 081 Yieg Tov Guido, avtég oL ekddoelg
EyLVay EQLKTEG.

.2 OpolL Kat npoUmnoBeocelg ywa tnv npoéocpacn | tTnv Xpnon tneg
Python pe aAAoug Tpomoug

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Kdamoro Aoyioukd mov eival evomupotouévo otnv Python givan vitd duagpopetikég ddeteg ypnone. O adeleg mapal-
TOEVTAL PE KDOOLKO TOV EUTTLITTEL 0€ QUTNV TNV AdeLaL. Agite Adeies kau Evyaototies yra Evoouatwuévo Aoyiouxd
yLoL uLoL EAMLTTN ALOTaL ATV TV OdELMDV.

".2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.10.18

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),._
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—~Python

3.10.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.10.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All._
—~Rights
Reserved" are retained in Python 3.10.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.10.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.10.18.

4. PSF is making Python 3.10.18 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

156 Mapdaptnua . lotopia kat Adsla

The Python Language Reference, Anpocisuon 3.10.18

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION..
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.10.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.10.18

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.L
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.10.18, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.10.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

r22 YMoQNIA AAEIAZ BEOPEN.COM I'lA PYTHON 2.0

ZYM®ONIA AAEIAZ ANOIXTOY KQAIKA BEOPEN PYTHON EKAOZH 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,

(ouvéyela otV emtduevn oehida)

M.2. Opol kai poiimoBgoelg yia tTnv npéopaon i tnv Xprion tng Python pe aAAoug tpoémnoug157

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

r.2.3 ZYM®QNIA AAEIAZ CNRI I'lA PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR

(ouvéyela otV emtduevn oehida)

158 Mapdaptnua . lotopia kat Adsla

The Python Language Reference, Anpocisuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

r2.4 XYMoOQNIA AAEIAZ CWII'IA PYTHON 0.9.0 EQx 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

M.2. Opol kai poiimoBgoelg yia tTnv npoopaon i tnv xprion tng Python pe aAAoug tpomnoug 159

The Python Language Reference, Anpocigsuon 3.10.18

M.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.18
DOCUMENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

.3 Adeleg katL Euxaplotieq yia Evowpatwpévo AOYLOULKO

Avt) 1 evoémto eivan o nutedfic, aAhd avEavopevn Mota adeldv Kot EuyaplotidV YioL AOYLOWKOS TPiTwYV, ToU
EVOWUOTMOVETOL 0TNV dtavou g Python.

M.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

(ouvéyela otV emtduevn oehida)

160 Mapdaptnua . lotopia kat Adsla

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference, Anpocisuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

M.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " 'AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 161

https://www.wide.ad.jp/

The Python Language Reference, Anpocigsuon 3.10.18

M.3.3 Aouyxpoveg socket unnpeoieq

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

M.3.4 Awaxeipion Cookie

H evémto http.cookies mepéyel TV TOpAKAT® E1O0TOINON:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

162 Mapdaptnua . lotopia kat Adsla

The Python Language Reference, Anpocisuon 3.10.18

M.3.5 Avixveuon eKTéAeong

H evomto t race mepLéyel v TapokdTm eLd0TOiNo:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

M.3.6 Zuvaptnoelg UUencode kat UUdecode

H evomto uu mepiéyet v mapakdtm edomoinon:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(ouvéyela otV eOUEVT OENIDOL)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 163

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

version is still 5 times faster, though.
— Arguments more compliant with Python standard

M.3.7 KAjoelg Anopakpuopevng Aladikaciag XML

H evomto xmlrpc. client mepiéyel v mopakdtw e100moinon:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

M.3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(ouvéyela otV emtouevVn oehida)

164 Mapdaptnua . lotopia kat Adsla

The Python Language Reference, Anpocisuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

M.3.9 EruAoyn kqueue

H evomta select mepiéyel v mapokdtm ewdomoinon yio v kqueue diemopi):

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

".3.10 SipHash24

To apyelo Python/pyhash. c mepiéyel v vhomoinon tov Marek Majkowski tou alyopiBuov tov Dan Bernstein,
SipHash24. Autd mepléyeL tnv mopaKatom oNueinon:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(ouvéyela otV emtduevn oehida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 165

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

M.3.11 strtod kaw dtoa

To apyelo Python/dtoa. c, mov mapéyet TG ouvaptnoelg dtoa ko strtod g C yia uetatpomt) twv C doubles
7POG KoL artd strings, poépyetan atd To oudvupo apyeio tov David M. Gay, mpog to mapdv dtadéoipo amo https:
/Iweb.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c. To apyikd apyeio, OTWG avakTHONKe 0TIG
16 Maptiov, 2009, epLéyet Ta akOLOUO0 TVEUROTIKE SUKOLMUATO KoL TV ELO0TOIN0T atdELOdOTNONG:

/*~k***********~k***********~k~k*************************************
*

* The author of this software is David M. Gay.
*

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
*

*

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

L

*

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*

* %

***/

M.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

(ouvéyela otV emtduevn oehida)

166 Mapdaptnua . lotopia kat Adsla

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python Language Reference, Anpocisuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

L S S A R N S N S N N S S e R S S N S N S S S T S S N NS S S S SN S S S N NS S S R T S

Original SSLeay License

(ouvéyela otV emtduevn oehida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO

167

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eaylcryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ' "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

L T S A N S S N S N S S S S S S N S S T S R e N S S S SN S S SN T SN SRS N S T S ST S S N S N .

168 Mapdaptnua . lotopia kat Adsla

The Python Language Reference, Anpocisuon 3.10.18

.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured ——with-
system—expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

r.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured —~with-
system—1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 169

The Python Language Reference, Anpocigsuon 3.10.18

r.3.15 zlib

H eméktaon z1ib dnuovpyeiton xpnoLoToLmVTOS £VO CUUTEPIAAUBAVOUEVOL OVTLYPAPO TOV TTNYWV Zlib, edv 1)
€kd0o0m Tov zlib ov Bpioketal 0To CVOTNUA ElVOL TTOAD TTOAMA YLoL VAL, XPNOLULOTTOLNOEL YLoL TV KOTAOKEVY:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

M.3.16 cfuhash

H vhomoinom tov mivoka KoTaKepUATIONoU OV XPNOUOTToLEITOL 0td To tracemalloc facileTon 010 £€pYyo
cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

(ouvéyela otV emtduevn oehida)

170 Mapdaptnua . lotopia kat Adsla

The Python Language Reference, Anpocisuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

M.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured ——with-
system—-1libmpdec

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3.18 W3C C14N ocouita SoKLUNiQ

H covita doxiufig C14N 2.0 oto mokéto test (Lib/test/xmltestdata/cl14n-20/) avaktOnke amd tov
tototoro tov W3C https://www.w3.org/TR/xml-c14n2-testcases/ Ko dtavépeton e v adewa 3 pntpwv BSD:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

(ouvéyela otV emtduevn oehida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 171

https://www.w3.org/TR/xml-c14n2-testcases/

The Python Language Reference, Anpocigsuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

r".3.19 Audioop

To module audioop ypnowomotel wg Paon kKmdKa tov apyetov g771.c tov €pyov Sox. https://sourceforge.net/
projects/sox/files/sox/12.17.7/sox-12.17.7 .tar.gz

Avtd o mnyoiog kmdikag eivar mpoldv g Sun Microsystems, Inc. Ko TOpEYXETAL VIO ATTEPLOPLOTY|
xpNHo1. OL xpNOTES WITOPOVY VAL AVTLYPEPOUV 1] VO, TPOTTOTOLYTOUV GUTOV TOV TTHYOL0 KMALKA Kmpig
YPEWOT).

O ITHI'AIOZ KQAIKAZX TOY SUN ITAPEXETAI OITQZ EXEI XQPIZ KANENOZ EIAOYZ EITYH-
2EIZ ZYMIIEPIAAMBANOMENQN EITYHZEQN ZXEAIAXMOY, EMIIOPEYZIMOTHTAX KAI
KATAAAHAOTHTAZ I'TA 2YTKEKPIMENO ZKOIIO 'H ITOY IMPOKYTIITEI AITO KAIIOIA IIO-
PEIA 2XYNAAAATHZ, XPHZHZ 'H EMITIOPIKHZ ITPAKTIKHZ.

O mtyaiog KmdLKOG ToL Sun JTaPEYETOL YWPIG TNV VITOOTHPLET Kot wpig Kauio vtoypemwon ek Hépovg
g Sun Microsystems, Inc. va fon0noer oty %p1 o1, otn dLopOwon, Tpomomoinon 1 fertiwon Tov.
SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE

INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
OR ANY PART THEREOF.

e kot epimtrwon 1 Sun Microsystems, Inc. dev @péper uBUVN Yo TUXOV aATTWAELD E0OdWV 1| KEP-
SV 1) dhheg edLkég, Euueoeg Kat emokolovbeg Tnuleg, axoun kou ov 1 Sun €yl evnuepwOel yo Tnv
TOOVOTNTA TETOLWV TNULOV.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, Kolgpdopvia 94043

172 Mapdaptnua . lotopia kat Adsla

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz

NAPAPTHMA £\’

Copyright

H Python ko vt 1) Tekunpiwon eivod:

Copyright © 2001-2023 Python Software Foundation. ‘Ol To. StkodUoTo SLOTPOUVTAL.

Copyright © 2000 BeOpen.com. OLa T SUKOLMOUOTA SLATNPOVVTOL.

Copyright © 1995-2000 Corporation for National Research Initiatives. Olo. To. StKaLOUATO SLATNPOVVTAL.

Copyright © 1991-1995 Stichting Mathematisch Centrum. ‘Ola Tal SLKOLOUOTA SLATPOVVTOL.

AvatpéEte oto lotopla kar Adewa Yo, TA PN G TANPOQOPN oY OYeTLKd pe TV ddera yprong Ko TG eEouoLodoThHoELC.

173

The Python Language Reference, Anpoocisuon 3.10.18

174 Mapaptnua A'. Copyright

Eupetriplo

MN-aAQAPLTIKA
..., 137
ellipsis literal, 20
string literal, 12
. (dot)
attribute reference, 78
in numeric literal, 17
! (exclamation)
in formatted string literal, 14
— (minus)
binary operator, 83
unary operator, 82
; (semicolon), 103
' (single quote)
string literal, 12
! patterns, 111
" (double quote)
string literal, 12
string literal, 12
(hash)
comment, 8
source encoding declaration,8
% (percent)
TeleoTNG, 82

o\°
Il

augmented assignment, 94
& (ampersand)
TeleoTNG, 83
&:
augmented assignment, 94
() (parentheses)
call, 79
class definition, 120
function definition, 118
generator expression, 73
in assignment target list,92
tuple display, 71

* (asterisk)
function definition, 119
import statement, 100
in assignment target 1list,92
in expression lists, 88
in function calls, 80
TeleoTNG, 82

* *
function definition, 119
in dictionary displays, 72
in function calls, 80
TeleoTNG, 81

* k=

augmented assignment, 94

augmented assignment, 94

+ (plus)
binary operator, 83
unary operator, 82

+=
augmented assignment, 94

, (comma), 71
argument list,79
expression list, 72, 88,95, 120
identifier 1list, 101, 102
import statement, 99
in dictionary displays, 72
in target list,92
parameter list, 118
slicing, 79
with statement, 107

/ (slash)
function definition, 119
TeleoTNGg, 82

//

TeAeoTNG, 82
//=

augmented assignment, 94
/=

augmented assignment, 94

175

The Python Language Reference, Anpocigsuon 3.10.18

0b AS pattern, OR pattern, capture
integer literal, 17 pattern, wildcard pattern, 11l
0o ASCITI, 5,12
integer literal, 17 AssertionError
0x eEalpeon, 95
integer literal, 17 AttributeError
2to3, 137 ealpeon, 78
: (colon) BDFL, 139
annotated variable, 94 BNF, 4, 69
compound statement, 104, 105, 107, 109, 118, Boolean
120 operation, 87
function annotations, 119 avtikelpevo, 21
in dictionary expressions, 72 c, 13
in formatted string literal, 14 language, 20, 21, 24, 84
lambda expression, 88 CPython, 140
slicing, 79 C-contiguous, 140
: = (colon equals), 87 Conditional
< (less) expression, 87
TeleoTNG, 84 DEDENT token,9, 104
<< EAFP, 141
TeleoTNG, 83 Ellipsis
<<= avtikeilpevo, 20
augmented assignment, 94 False, 21
<= Fortran contiguous, 140
TeleoTNg, 84 GIL, 143
I= GeneratorExit
TeleoTng, 84 etalpeon, 75,77
—-= IDLE, 144
augmented assignment, 94 INDENT token,9
= (equals) ImportError
assignment statement,92 ealpeon, 99
class definition, 37 Java
for help in debugging using string language, 21
literals, 14 LBYL, 145
function definition, 118 MRO, 146
in function calls, 79 NEWLINE token,7, 104
== NameError
TeleoTng, 84 eZalpeon, 70
—> NameError (built-in exception), 52
function annotations, 119 None
> (greater) avtikeilpevo, 20, 92
TeleoTNGg, 84 NotImplemented
>= avtikeilpevo, 20
TeleoTnG, 84 PEP, 148
>> PYTHONHASHSEED, 32
TeleoTNG, 83 PYTHONPATH, 64
>>= Python 3000, 149
augmented assignment, 94 Python Enhancement Proposals
>>> 137 PEP 1, 149
@ (at) PEP 8,85
class definition, 120 PEP 236, 101
function definition, 118 PEP 238,142
TeleoTNG, 82 PEP 252,34
PEP 255,74

176 Eupetnplo

The Python Language Reference, Anpocisuon 3.10.18

PEP 278,152

PEP 302,55, 67,142, 146

PEP 308,88

PEP 318,121

PEP 328,67

PEP 338,67

PEP 342,74

PEP 343,46, 109, 140

PEP 362,138, 148

PEP 366,62, 67

PEP 380,74

PEP 411,149

PEP 414,13

PEP 420, 55,57,63,67, 142, 147, 149

PEP 443,143

PEP 448,72,81, 89

PEP 451,67, 142

PEP 483,143

PEP 484,40,95,119, 137, 142, 143, 151, 152

PEP 492,48, 74,122, 138140

PEP 498, 16, 141

PEP 5109, 148

PEP 525,74, 138

PEP 526,95,119, 137, 152

PEP 530,71

PEP 560, 38,42

PEP 562,34

PEP 563,101,119

PEP 570,119

PEP 572,73,88,112

PEP 585, 143

PEP 614,118,120

PEP 617,125

PEP 634,47,109, 117

PEP 636,109, 117

PEP 3104, 102

PEP 3107,119

PEP 3115,38, 121

PEP 3116,152

PEP 3119,40

PEP 3120,7

PEP 3129121

PEP 3131,10

PEP 3132,93

PEP 3135,39

PEP 3147,62

PEP 3155, 149
Pythonic, 149
Standard C, 13
StopAsyncIteration

eailpeon, 77
StopIteration

ealpeon, 75,96
SystemExit (built-in exception), 54

True, 21

TypeError
eailpeon, 82

UNIX, 123

UnboundLocalError, 52

Unicode, 21

Unicode Consortium, 12

ValueError
ealpeon, 83

Windows, 123

Zen tnc Python, 152

ZeroDivisionError
eailpeon, 82

[1 (square brackets)

in assignment target 1list,92

list expression,72

subscription, 78
\ (backslash)

escape sequence, 13
\N

escape sequence, 13
\U

escape sequence, 13
AR

escape sequence, 13
\a

escape sequence, 13
\b

escape sequence, 13
\f

escape sequence, 13
\n

escape sequence, 13
\r

escape sequence, 13
\t

escape sequence, 13
\u

escape sequence, 13
\v

escape sequence, 13
\x

escape sequence, 13
~ (caret)

TeleoTNg, 84

A_—

augmented assignment, 94
_ (underscore)

in numeric literal, 17
_, ildentifiers, 11
__, 1ldentifiers, 1]

__abs__ () (uéBodog g object), 45
__add__ () (uéBodog ¢ object), 44
__aenter__ () (uéBodog tng object), 50

Eupetnplo

177

The Python Language Reference, Anpocigsuon 3.10.18

__aexit__ () (uéBodog tng object), 50 __floordiv__ () (uébBodog ¢ object), 44
__aiter__ () (uéBodog trg object), 49 __format__ () (uéBodog tng object), 30
__all__ (optional module attribute), 100 _ func__ (method attribute), 23
__and__ () (uéBodog tng object), 44 _ future_ , 142
__anext__ () (uéBodog tng agen), 77 future statement, 100
__anext__ () (uéBodog ¢ object), 49 __ge__ () (uébBodog g object), 31
__annotations__ (class atiribute), 25 __get__ () (uéBodog g object), 34
__annotations___ (function attribute), 23 __getattr__ (module attribute), 33
__annotations__ (module attribute), 25 __getattr__ () (uébodog tng object), 32
__await__ () (uéOodog tng object), 48 __getattribute__ () (uéBodog trg object), 32
_ bases__ (class attribute), 25 __getitem__ () (mapping object method), 28
__bool__ () (object method), 43 __getitem__ () (uéBodog tng object), 43
__bool__ () (uéBodog tns object), 32 __globals__ (function attribute), 23
__bytes__ () (uébodog tng object), 30 __gt__ () (uéBodog tns object), 31
__cached_ ,62 __hash__ () (uéBodog tn¢ object), 31
__call__ () (object method), 81 __iadd__ () (uéBodog tng object), 45
__call__ () (uéBodog tngs object), 42 __dand__ () (uéBodog tng object), 45
___cause___ (exception attribute), 97 __ifloordiv__ () (uéBodog g object), 45
__ceil__ () (uéBodog tng object), 46 __ilshift__ () (uéBodog tng object), 45
__class___(instance attribute), 26 __imatmul__ () (uéBodog tng object), 45
__class__ (method cell), 39 __imod__ () (uéBodog tng object), 45
__class___ (module attribute), 33 __imul__ () (uéBodog tng object), 45
__class_getitem__ () (uéBodog kAdang tng object), __index__ () (uébBodog tng object), 46

40 __init_ () (uébodog s object), 29
__classcell__ (class namespace entry), 39 __init_subclass__ () (uéOodog kAdong tng object),
__closure__ (function attribute), 23 36
___code___ (function attribute), 23 __instancecheck__ () (ué€Bodog tng class), 40
__complex__ () (uébodog tng object), 46 __int__ () (uébodog tng object), 46
__contains__ () (ué0odog t1c object), 44 __invert__ () (uéBodog tng object), 45
__context__ (exception attribute), 97 __ior__ () (uébodog tng object), 45
__debug__,95 __ipow__ () (uéBodog tnc object), 45
__defaults__ (function attribute), 23 __irshift__ () (uéBodog tng object), 45
__del__ () (uébodog tng object), 29 __disub__ () (uéBodog tng object), 45
_ delattr__ () (uébodog tngs object), 33 __iter_ () (uéBodog tng object), 44
__delete__ () (uéBodog tng object), 34 __itruediv__ () (uéBodog tng object), 45
__delitem__ () (ué6Bodog trgs object), 43 __ixor__ () (uébodog tng object), 45
_ dict__ (class attribute), 25 __kwdefaults___ (function attribute), 23
__dict__ (function attribute), 23 __le__ () (uéBodog g object), 31
___dict___ (instance attribute), 26 __len__ () (mapping object method), 32
__dict__ (module attribute), 25 __len__ () (uébodog tng object), 43
_dir__ (module attribute), 33 __length_hint__ () (uéBodog tng object), 43
__dir__ () (uéBodog tng object), 33 _ _loader_ ,62
__divmod__ () (uébodog t1¢ object), 44 __1shift__ () (uéBodog tng object), 44
__doc__ (class attribute), 25 __1t__ () (uéBodog g object), 31
__doc___ (function attribute), 23 _ _main__
_ doc__ (method attribute), 23 povdada, 53, 123
__doc__ (module attribute), 25 __matmul__ () (uéBodog g object), 44
__enter__ () (uéBodog tng object), 46 __missing__ () (uéBodog tng object), 44
__eq__ () (uéBodog tng object), 31 __mod___ () (uébodog t1¢ object), 44
__exit__ () (uéBodog tng object), 46 __module__ (class attribute), 25
_ file_ ,62 __module__ (function attribute), 23
_ file_ (module attribute), 25 _ _module__ (method attribute), 23
_ float__ () (uéBodog tng object), 46 __mul__ () (uéBodog tng object), 44
__floor__ () (uéBodog g object), 46 __name__, 062
178 Eupetnplo

The Python Language Reference, Anpocisuon 3.10.18

__name___ (class attribute), 25 assignment, 94
__name___ (function attribute), 23 annotation, 137
__name___ (method attribute), 23 annotation petafAntnig, 152
__ name___ (module attribute), 25 annotations
__ne__ () (uéBodog tng object), 31 function, 119
__neg___ () (uébodog tn¢ object), 45 anonymous
__new___ () (uéBodog tng object), 29 function, 88
__next__ () (uéBodog tng generator), 75 argument
__or__ () (uéBodog tng object), 44 call semantics,79
__package_ ,62 function, 23
_ _path_ ,62 function definition, 118
__pos__ () (uéBodog tng object), 45 arithmetic
__pow___ () (uéBodog tng object), 44 conversion, 69
__prepare__ (metaclass method), 38 operation,binary, 82
__radd__ () (uéBodog tng object), 44 operation, unary, 82
__rand__ () (uéBodog tng object), 44 array
__rdivmod__ () (uéBodog tngs object), 44 povdé8a, 22
__repr__ () (uébodog tng object), 30 as
__reversed__ () (uéBodog tng object), 44 except clause, 105
__rfloordiv__ () (uébodog tng object), 44 import statement, 99
__rlshift__ () (uéBodog tng object), 44 match statement, 109
__rmatmul__ () (uéBodog tngs object), 44 with statement, 107
__rmod___ () (uéBodog t1¢ object), 44 AEEN xAeldti, 99, 105, 107, 109
__rmul__ () (uébodog tng object), 44 asend () (uéOodog tngc agen), 77
__ror__ () (uébodog tng object), 44 assert
__round__ () (uéBodog s object), 46 8nAwon, 95
__rpow___() (uéBodog tng object), 44 assertions
__rrshift__ () (uéBodog tngs object), 44 debugging, 95
__rshift__ () (uéBodog tng object), 44 assignment
__rsub__ () (uéBodog tng object), 44 annotated, 94
__rtruediv__ () (uéBodog g object), 44 attribute, 92,93
__rxor__ () (uéBodog tng object), 44 augmented, 94
_ self__ (method attribute), 23 class attribute, 25
__set__ () (uéBodog trg object), 34 class instance attribute, 26
__set_name__ () (uéBodog g object), 37 slicing, 93
__setattr__ () (uéBodog trgs object), 33 statement, 22, 92
__setitem__ () (uéBodog tngs object), 43 subscription, 93
__slots_ ,150 target list, 92
_ _spec__,062 assignment expression, 87
__str___ () (uéBodog tng object), 30 async
__sub__ () (uéBodog tng object), 44 A€En xAerdi, 121
__subclasscheck__ () (uébodog tng class), 40 async def
__traceback___ (exception attribute), 97 8nAwon, 121
__truediv__ () (uéBodog tngs object), 44 async for
__trunc__ () (uéBodog tng object), 46 in comprehensions, 71
__xor___ () (uéBodog tng object), 44 8nAwon, 121
abs async with
evowpatwpévn ocuvaptnon, 46 SnAwon, 122
aclose () (uébodog tng agen), 77 asynchronous generator
addition, 83 asynchronous iterator, 24
and function, 24
bitwise, 83 asynchronous—generator
TeleoTNGg, 87 avtikeilpevo, 77
annotated athrow () (uéBodog tng agen), 77

Eupetnplo 179

The Python Language Reference, Anpocigsuon 3.10.18

atom, 70

attribute, 20
assignment, 92,93
assignment, class, 25

assignment, class instance, 26

class, 25
class instance, 26
deletion, 96
generic special, 20
reference, 78
special, 20
augmented
assignment, 94
await

in comprehensions, 71

AEEN xAerbi, 81, 121
awaitable, 139
b'

bytes literal, 13
b"

bytes literal, 13
backslash character, 8
binary

arithmetic operation, 82

bitwise operation, 83
binary literal, 17
binding

global name, 101

name, 51,92, 99, 118, 120
bitwise

and, 83

operation, binary, 83

operation, unary, 82

or, 84

xor, 84
blank line,9
block, 51

code, 51
break

8nAwon, 98, 104107
built-in

method, 25
built-in function

call, 81

avtikeipevo, 24, 81
built-in method

call, 81

avtikeipevo, 25, 81
builtins

povdada, 123
byte, 22
bytearray, 22
bytecode, 26, 139
bytes, 22

evowpatwpévn ouvaptnon, 30
bytes literal, 12
bytes-like avtikeipeva, 139
call, 79

built-in function, 81

built-in method, 81

class instance, 81

class object, 25, 81

function, 23, 81

instance, 42, 81

method, 81

procedure, 92

user—-defined function, 81
callable, 139

avtikelilpevo, 23,79
callback, 139
case

match, 109

AEEN xAeldi, 109
case block, 111
chaining

comparisons, 84

exception, 97
character, 21, 78
chr

evowpatwpévn ouvdptnon, 21
class

attribute, 25

attribute assignment, 25

body, 39

constructor, 29

definition, 96, 120

instance, 26

name, 120

avtikeilpevo, 25, 81, 120

8nAwon, 120
class instance

attribute, 26

attribute assignment, 26

call, 8l

avtikelpevo, 25, 26, 81
class object

call, 25, 81
clause, 103
clear () (ué6odog tng frame), 27
close () (ué€6odog tng coroutine), 49
close () (uébodog tng generator), 75
co_argcount (code object attribute), 26
co_cellvars (code object attribute), 26
co_code (code object attribute), 26
co_consts (code object attribute), 26
co_filename (code object attribute), 26

co_firstlineno (code object attribute), 26

co_flags (code object attribute), 26

180

Eupetnplo

The Python Language Reference, Anpocisuon 3.10.18

co_freevars (code object attribute), 26
co_kwonlyargcount (code object attribute), 26
co_1lnotab (code object attribute), 26
co_name (code object attribute), 26
co_names (code object attribute), 26
co_nlocals (code object attribute), 26
co_posonlyargcount (code object attribute), 26
co_stacksize (code object attribute), 26
co_varnames (code object attribute), 26
code
block, 51
code object, 26
coercion, 140
comma, 71
trailing, 89
command line, 123
comment, 8
comparison, 84
comparisons, 31
chaining, 84
compile
evowpatwpévn ocuvdptnon, 102
complex
number, 21
avtikeipevo, 21
evowpatTwpévn ouvdptnon, 46
complex literal, 17
compound
statement, 103
comprehensions, 71
dictionary, 72
list, 72
set, 72
conditional
expression, 88
constant, 12
constructor
class, 29
container, 20, 25
context manager, 46
context petaPAntn, 140
contiguous, 140
continue
8nAwon, 99, 104107
conversion
arithmetic, 69
string, 30,92
coroutine, 48, 74, 140
function, 24
coroutine ouvdptnon, 140
dangling
else, 104
data, 19
type, 20

type, immutable, 70
datum, 72
dbm.gnu

povdada, 23
dbm.ndbm

povdada, 23
debugging

assertions, 95
decimal literal, 17
decorator, 140

def

SnAwon, 118
default

parameter value, 118
definition

class, 96, 120
function, 96, 118
del
8nAwon, 29, 96
deletion
attribute, 96
target, 96
target list, 96
delimiters, 18
descriptor, 141
destructor, 29, 93
dictionary
comprehensions, 72
display, 72
avtikelpevo, 22, 25,31,72,78,93
display
dictionary, 72
list, 72
set, 72
division, 82
divmod
evowpatwpévn ouvdptnon, 44, 45
docstring, 120, 141
documentation string, 27
duck-typing, 141
e
in numeric literal, 17
elif
AEEN kAelbi, 104
else
conditional expression, 88
dangling, 104
AEEN xAe181, 98, 104106
empty
list,72
tuple, 22,71
encoding declarations (source file), 8
environment, 52
error handling, 54

Eupetnplo

181

The Python Language Reference, Anpocigsuon 3.10.18

errors, 54
escape sequence, 13
eval

evowpatwpévn ouvdptnon, 102, 124

evaluation
order, 89
exc_info (in module sys), 27
except
AEEN xAeldi, 105
exception, 54, 97
chaining, 97
handler, 27
raising, 97
exception handler, 54
exclusive
or, 84
exec
evowpatwpévn ouvdptnon, 102
execution
frame, 51, 120
restricted, 53
stack, 27
execution model, 51
expression, 69
Conditional, 87
conditional, 88
generator, 73
lambda, 88, 119

list, 88,91

statement, 91

yield, 73
extension

module, 20
f'

formatted string literal, 13
f"

formatted string literal, 13
f-string, 141
f_back (frame attribute), 27
f_builtins (frame attribute), 27
f_code (frame attribute), 277
f_globals (frame attribute), 27
f_lasti (frame attribute), 27
f_lineno (frame attribute), 27
f_locals (frame attribute), 27
f_trace (frame attribute), 277
f_trace_lines (frame attribute), 27
f_trace_opcodes (frame attribute), 27
finalizer, 29
finally

AEEN xAeldi, 96,98, 99, 105, 106
find_spec

finder, 58
finder, 58, 142

find_spec, 58
float

evowpatwpévn ouvdptnon, 46
floating point

number, 21

avtikelilpevo, 21
floating point literal, 17
for

in comprehensions, 71

8nAwon, 98, 99, 104

form
lambda, 88
format () (built-in function)

__str__ () (object method), 30
formatted string literal, 14
frame

execution, 51, 120

avtikeilpevo, 27
free

variable, 52
from

import statement, 51,99

yield from expression, 74

AEEN kAerdi, 73,99
frozenset

avtikelilpevo, 22
fstring, 14
f-string, 14
function

annotations, 119

anonymous, 88

argument, 23

call, 23, 81

call, user—-defined, 81

definition, 96, 118

generator, 73, 96

name, 118

user—defined, 23

avtikelpevo, 23,24, 81, 118
future

statement, 100
garbage collection, 19
generator, 143

expression, 73

function, 24, 73, 96

iterator, 24, 96

avtikelpevo, 27,73, 74
generator expression, 143
generator iterator, 143
generator éxppaocn, 143
generic

special attribute, 20
global

name binding, 101

182

Eupetnplo

The Python Language Reference, Anpocisuon 3.10.18

namespace, 23 indices () (uébodog tig slice), 28
8nAwon, 96, 101 inheritance, 120
global interpreter lock, 143 input, 124
grammar, 4 instance
grouping, 9 call, 42,81
guard, 110 class, 26
handle an exception, 54 avtikelpevo, 25, 26, 81
handler int
exception, 27 evowpatwpévn ouvdptnon, 46
hash integer, 21
evowpatwpévn ocuvdptnon, 31 representation, 21
hash character,8 avtikelpevo, 21
hash-based pyc, 144 integer literal, 17
hashable, 72, 144 interactive mode, 123
hexadecimal literal, 17 internal type, 26
hierarchy interpolated string literal, 14
type, 20 interpreted, 144
hooks interpreter, 123
import, 58 inversion, 82
meta, 58 invocation, 23
path, 58 io
id povdada, 26
evowpatwpévn ouvdptnon, 19 irrefutable case block, 111
identifier, 10,70 is
identity TeleoTng, 87
test, 87 is not
identity of an object, 19 TeleoTng, 87
if item
conditional expression, 88 sequence, 78
in comprehensions, 71 string, 78
8nAwon, 104 item selection, 21
AEEN xAel8i, 109 iterable, 145
imaginary literal, 17 unpacking, 88
immutable, 144 iterator, 145
data type, 70 J
object, 70,72 in numeric literal, 18
avtikeipevo, 21 key, 72
immutable object, 19 key/datum pair, 72
immutable sequence keyword, 11
avtikeipevo, 21 lambda, 145
immutable types expression, 88, 119
subclassing, 29 form, 88
import language
hooks, 58 C, 20, 21, 24, 84
&nAwon, 25, 99 Java, 21
import hooks, 58 last_traceback (in module sys), 27
import machinery, 55 leading whitespace,9
in len
AEEn xAel8i, 104 evowpatwpévn ouvdptnon, 21, 22,43
TeleoTNg, 87 lexical analysis,7
inclusive lexical definitions,5
or, 84 line continuation,8
indentation, 9 line joining,7,8
index operation,?21 line structure,?

Eupetnplo 183

The Python Language Reference, Anpoocisuon 3.10.18

list
assignment, target, 92
comprehensions, 72
deletion target, 96
display, 72
empty, 72
expression, 88, 91
target, 92, 104

avtikeipevo, 22,72,78,79,93

list comprehension, 146
literal, 12,70
loader, 58, 146
logical line,7
loop
statement, 98, 99, 104
loop control
target, 98
magic
method, 146
makefile () (socket method), 26
mangling
name, 70
mapping, 146
avtiketipevo, 22, 26, 78, 93
match
case, 109
8nAwon, 109
matrix multiplication, 82
membership
test, 87
meta
hooks, 58
meta hooks, 58
meta path finder, 146
metaclass, 37
metaclass hint, 38
method
built-in, 25
call, 81
magic, 146
special, 150
user—-defined, 23
avtikeipevo, 23, 25, 81
minus, 82
module, 146
extension, 20
importing, 99
namespace, 25
avtikeilpevo, 25,78
module spec, 58
module enéxtaong, 141
modulo, 82
multiplication, 82
mutable, 147

avtikelilpevo, 22,92,93
mutable object, 19
mutable sequence

avtikelpevo, 22
name, 10, 51, 70

binding, 51,92, 99, 118, 120

binding, global, 101

class, 120

function, 118

mangling, 70

rebinding, 92

unbinding, 96
named expression, 87
named tuple, 147
names

private, 70
namespace, 51, 147

global, 23

module, 25

package, 57
negation, 82
nested scope, 147
nonlocal

8nAwon, 102
not

TeleoTNng, 87
not in

TeAeoTng, 87
notation, 4
null

operation, 95
number, 17

complex, 21

floating point, 21
numeric

avtikeilpevo, 20, 26
numeric literal, 17

object, 19
code, 26
immutable, 70, 72
object.__match_args__ (svowuatwuévy ueta-
BAnrn), 47

object.__slots__ (evowuatwuévn uetafintij), 35

octal literal, 17
open

evowpatwpévn ouvdptnon, 26

operation
Boolean, 87
binary arithmetic, 82
binary bitwise, 83
null, 95
power, 81
shifting, 83
unary arithmetic, 82

184

Eupetnplo

The Python Language Reference, Anpocisuon 3.10.18

unary bitwise, 82
operator
— (minus), 82, 83
+ (plus), 82, 83
overloading, 28
precedence, 89
ternary, 88
operators, 18
or
bitwise, 84
exclusive, 84
inclusive, 84
TeleoTNng, 87
ord
evowpatwpévn ouvdptnon, 21
order
evaluation, 89
output, 92
standard, 92
overloading
operator, 28
package, 56
namespace, 57
portion, 57
regular, 56
parameter
call semantics, 79
function definition, 117
value, default, 118
parenthesized form, 71

parser, 7

pass
8nAwon, 95

path
hooks, 58

path based finder, 64, 148
path entry, 148
path entry finder, 148
path entry hook, 148
path hooks, 58
path-like avtikeipevo, 148
pattern matching, 109
physical line,7,8,13
plus, 82
popen () (in module os), 26
portion

package, 57
pow

evowpatwpévn ouvdaptnon, 44, 45

power
operation, 81

precedence
operator, 89

primary, 78

print

evowpatwpévn ouvdptnon, 30
print () (built-in function)

__str__ () (object method), 30
private

names, 70
procedure

call, 92
program, 123
provisional APTI, 149
provisional mnaxéTo, 149
r]

raw string literal, 13
r n

raw string literal, I3
raise

&nAwon, 97
raise an exception, 54
raising

exception, 97
range

evowpatwpévn ouvaptnon, 105
raw string, 12
rebinding

name, 92
reference

attribute, 78
reference counting, 19

regular
package, 56
relative
import, 100
repr

evowpatwpévn ouvdptnon, 92
repr () (built-in function)

__repr__ () (object method), 30
representation
integer, 21
reserved word, 11
restricted
execution, 53
return
8nAwon, 96, 106, 107
round

evowpatwpévn ouvdptnon, 46
scope, 51, 52
send () (uéBodog g coroutine), 49
send () (uéBodog tng generator), 75

sequence
item, 78
avtikelpevo, 21, 26,78, 79, 87,93, 104
set
comprehensions, 72
display, 72

Eupetnplo

185

The Python Language Reference, Anpocigsuon 3.10.18

avtiketilpevo, 22,72
set comprehension, 150
set type
avtikeipevo, 22
shifting
operation, 83
simple
statement, 91
singleton
tuple, 22
slice, 79, 150
avtikeipevo, 43
evowpatwpévn ouvdptnon, 28
slicing,21,22,79
assignment, 93
soft keyword, 11
source character set,8
space, 9
special
attribute, 20
attribute, generic, 20
method, 150
stack
execution, 27
trace, 27
standard
output, 92
standard input, 123
start (slice object attribute), 28, 79
statement
assignment, 22,92
assignment, annotated, 94
assignment, augmented, 94
compound, 103
expression, 91
future, 100
loop, 98,99, 104
simple, 91
statement grouping,9
stderr (in module sys), 26
stdin (in module sys), 26
stdio, 26
stdout (in module sys), 26
step (slice object attribute), 28, 79
stop (slice object attribute), 28, 79
string
_ _format__ () (object method), 30
__str__ () (object method), 30
conversion, 30, 92
formatted literal, 14
immutable sequences, 21
interpolated literal, 14
item, 78
avtikeipevo, 78,79

string literal, 12
strong reference, 150
subclassing
immutable types, 29
subscription, 21, 22,78
assignment, 93
subtraction, 83

suite, 103
syntax, 4
sys

povdada, 106, 123
sys.exc_info, 27
sys.last_traceback, 27
sys.meta_path, 58
sys.modules, 57
sys.path, 64
sys.path_hooks, 64
sys.path_importer_cache, 64
sys.stderr, 26
sys.stdin, 26
sys.stdout, 26
tab, 9
target, 92

deletion, 96

list, 92,104

list assignment, 92

list,deletion, 96

loop control, 98
tb_ frame (traceback attribute), 28
tb_lasti (traceback attribute), 28
tb_1lineno (traceback attribute), 28
tb_next (traceback attribute), 28
termination model, 54
ternary

operator, 88
test

identity, 87

membership, 87
throw () (uéBodog tng coroutine), 49
throw () (uéBodog tng generator), 75
token, 7
trace

stack, 27
traceback

avtikeilpevo, 27,97, 106
trailing

comma, 89
triple—-quoted string, 12
try

&nAwon, 28, 105
tuple

empty, 22,71

singleton, 22

avtikelpevo, 22,78, 79, 88

186

Eupetnplo

The Python Language Reference, Anpocisuon 3.10.18

type, 20
data, 20
hierarchy, 20
immutable data, 70

evowpatwpévn cuvdaptnon, 19, 37

type alias, 151
type hint, 151
type of an object, 19
types, internal, 26
u'

string literal, 12

string literal, 12
unary

arithmetic operation, 82

bitwise operation, 82
unbinding

name, 96
unpacking

dictionary, 72

in function calls, 80

iterable, 88
unreachable object, 19

unrecognized escape sequence, 14

user-defined
function, 23
function call, 81
method, 23
user-defined function
avtikeipevo, 23,81, 118
user-defined method
avtikeipevo, 23
value
default parameter, 118
value of an object, 19
values
writing, 92
variable
free, 52
virtual environment, 152
virtual machine, 152
walrus operator, 87

while

8nAwon, 98, 99, 104
with

8nAwon, 46, 107
writing

values, 92
XOr

bitwise, 84
yield

examples, 75
expression, 73
SrAwon, 96

AEEn xAeldbi,73
{} (curly brackets)
dictionary expression, 72

in formatted string literal, 14

set expression, 72
| (vertical bar)
TeleoTNg, 84

augmented assignment, 94
~ (tilde)
TeAeoTNG, 82

A

aképalra Sralpeon, 142
akoAoubia, 150
avayvwplopévo évopa, 149
avtikelilpevo, 147
Boolean, 21
Ellipsis, 20
None, 20, 92
NotImplemented, 20
asynchronous—generator, 77
built-in function, 24, 81
built—-in method, 25, 81
callable, 23,79
class, 25, 81, 120
class instance, 25, 26, 81
complex, 21
dictionary, 22, 25,31,72,78,93
floating point, 21
frame, 27
frozenset, 22
function, 23, 24, 81, 118
generator, 27,73, 74
immutable, 21
immutable sequence, 21
instance, 25, 26, 81
integer, 21
list,22,72,78,79,93
mapping, 22, 26, 78, 93
method, 23, 25, 81
module, 25, 78
mutable, 22,92, 93
mutable sequence, 22
numeric, 20, 26
sequence, 21, 26, 78, 79, 87, 93, 104
set, 22,72
set type, 22
slice, 43
string, 78,79
traceback, 27, 97, 106
tuple, 22,78, 79, 88

user—-defined function, 23,81, 118

user—-defined method, 23

Eupetnplo

The Python Language Reference, Anpoocisuon 3.10.18

avtikeipevo apyelou, 142

avtikeipevo mou poirdZetr pe apyeto, 142

apyxetio xeipévou, 151

acuyyxpovoc generator, 138

aoUyxpovog generator iterator, 138
acuyyxpovog iterable, 138

acuyyxpovocg iterator, 138

acuyyxpovoc Sraxeiplotig context, 138
apnenuévn PBacikn xAdon, 137

r

yevikn ouvdéptnon, 143
yevikdc TUnog, 143

A
Saveilkn avapopd, 139
8nAwon, 150

assert, 95

async def, 121

async for, 121

async with, 122

break, 98, 104107

class, 120

continue, 99, 104107

def, 118

del, 29, 96

for, 98, 99, 104

global, 96, 101

if, 104

import, 25, 99

match, 109

nonlocal, 102

pass, 95

raise, 97

return, 96, 106, 107

try, 28, 105

while, 98,99, 104

with, 46, 107

yield, 96
Sra8pactixkde, 144
Sraxeilplrotig context, 140
Suabixd apyeto, 139

E

€181k pébodog, 150
eltoaydépevo path, 144
eloaywyéag, 144
eltoaywyn, 144
éxyppaon, 141
EVOWPATWPEVN OUvAapTNon

abs, 46

bytes, 30

chr, 21

compile, 102

complex, 46
divmod, 44, 45
eval, 102, 124
exec, 102
float, 46
hash, 31
id, 19
int, 46
len, 21,22,43
open, 26
ord, 21
pow, 44, 45
print, 30
range, 105
repr, 92
round, 46
slice, 28
type, 19, 37

ealpeon
AssertionError, 95
AttributeError, 78
GeneratorExit, 75,77
ImportError, 99
NameError, 70
StopAsyncIteration, 77
StopIteration, 75,96
TypeError, 82
ValueError, 83
ZeroDivisionError, 82

K

xaboAlxég véec ypappéc, 152
xavovikd makéto, 150

xatavénon Aeixou, 141

xAdon, 139

xAdon véou oTUA, 147

xwdixomoinon xeilpévou, 151
oUCTNHATOC apyelwv
XelplLoTnc owaipdtwv, 142

xwd Lkomoinon

Al

AEEN xAeldi
as, 99, 105, 107, 109
async, 121
await, 81, 121
case, 109
elif, 104
else, 98, 104106
except, 105
finally, 96, 98, 99, 105, 106
from, 73, 99
if, 109
in, 104
yield, 73

Xxatu

188

Eupetnplo

The Python Language Reference, Anpocisuon 3.10.18

AeZrxo, 141 ==, 84
AtloTa, 146 > (greater), 84
>=, 84
M >> 83
payikn pébodoc, 146 @ (at), 82
névodog, 146 ~ (caret), 84
peta-xAdon, 146 and, 87
petaBAntrh xAdong, 140 in, 87
peTaRAnT) nmeplBAAAOVTOC is, 87
PYTHONHASHSEED, 32 is not, 87
piyadikdc apirbpdc, 140 not, 87
povada not in, 87
__main_ ,53,123 or, 87
array, 22 | (vertical bar), 84
builtins, 123 ~ (tilde), 82
dbm.gnu, 23 Teppatiopdc Aeittoupylag Srepunvéa, 144
dbm.ndbm, 23 Teyvikéc npodiraypapéc module, 146
io, 26 Tunpa, 149
sys, 106, 123 Tomikn kxwdikxomoinon, 146
pova8ikd dispatch, 150 TUnog, 151
O X
6plona, 138 XapaxtTnelotiko, 138

oplopa keyword, 145
6plopa Béoncg, 149
oyn Aeikouy, 141

M

nakéto, 147

naxéTto namespace, 147
napduetpog, 147
nAnbog avawopdg, 150

>

celpd avdiuonc pebddwv, 146

ouldoyn amoppipdtwv, 143

oupBolocelpd TpLOAWvV eloaywyilkwv, 151
ouvdptnon, 142

ouvdptnon annotation, 142

ouvdptnon key, 145

T

TeAEOTNC
% (percent), 82
& (ampersand), 83
* (asterisk), 82
*x 8]
/ (slash), 82
//, 82
< (less), 84
<<, 83
<=, 84
=84

Eupetnplo 189

	Εισαγωγή
	Εναλλακτικές Υλοποιήσεις
	Σημειογραφία

	Lexical analysis
	Line structure
	Logical lines
	Physical lines
	Comments
	Encoding declarations
	Explicit line joining
	Implicit line joining
	Blank lines
	Indentation
	Whitespace between tokens

	Other tokens
	Identifiers and keywords
	Keywords
	Soft Keywords
	Reserved classes of identifiers

	Literals
	String and Bytes literals
	String literal concatenation
	Formatted string literals
	Numeric literals
	Integer literals
	Floating point literals
	Imaginary literals

	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	Special method names
	Basic customization
	Customizing attribute access
	Customizing class creation
	Customizing instance and subclass checks
	Emulating generic types
	Emulating callable objects
	Emulating container types
	Emulating numeric types
	With Statement Context Managers
	Customizing positional arguments in class pattern matching
	Special method lookup

	Coroutines
	Awaitable Objects
	Coroutine Objects
	Asynchronous Iterators
	Asynchronous Context Managers

	Μοντέλο εκτέλεσης
	Δομή ενός προγράμματος
	Ονομασία και σύνδεση
	Σύνδεση ονομάτων
	Επίλυση ονομάτων
	Ενσωματωμένες συναρτήσεις και περιορισμένη εκτέλεση
	Αλληλεπίδραση με δυναμικές λειτουργίες

	Εξαιρέσεις

	The import system
	importlib
	Packages
	Regular packages
	Namespace packages

	Searching
	The module cache
	Finders and loaders
	Import hooks
	The meta path

	Loading
	Loaders
	Submodules
	Module spec
	Import-related module attributes
	module.__path__
	Module reprs
	Cached bytecode invalidation

	The Path Based Finder
	Path entry finders
	Path entry finder protocol

	Replacing the standard import system
	Package Relative Imports
	Special considerations for __main__
	__main__.__spec__

	References

	Expressions
	Arithmetic conversions
	Atoms
	Identifiers (Names)
	Literals
	Parenthesized forms
	Displays for lists, sets and dictionaries
	List displays
	Set displays
	Dictionary displays
	Generator expressions
	Yield expressions

	Primaries
	Attribute references
	Subscriptions
	Slicings
	Calls

	Await expression
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Value comparisons
	Membership test operations
	Identity comparisons

	Boolean operations
	Assignment expressions
	Conditional expressions
	Lambdas
	Expression lists
	Evaluation order
	Operator precedence

	Simple statements
	Expression statements
	Assignment statements
	Augmented assignment statements
	Annotated assignment statements

	The assert statement
	The pass statement
	The del statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	Future statements

	The global statement
	The nonlocal statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	The with statement
	The match statement
	Overview
	Guards
	Irrefutable Case Blocks
	Patterns

	Function definitions
	Class definitions
	Coroutines
	Coroutine function definition
	The async for statement
	The async with statement

	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Πλήρης προδιαγραφή γραμματικής
	Γλωσσάρι
	About these documents
	Contributors to the Python Documentation

	Ιστορία και Άδεια
	Η ιστορία του λογισμικού
	Όροι και προϋποθέσεις για την πρόσβαση ή την χρήση της Python με άλλους τρόπους
	PSF LICENSE AGREEMENT FOR PYTHON 3.10.18
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ BEOPEN.COM ΓΙΑ PYTHON 2.0
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CNRI ΓΙΑ PYTHON 1.6.1
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CWI ΓΙΑ PYTHON 0.9.0 ΕΩΣ 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.18 DOCUMENTATION

	Άδειες και Ευχαριστίες για Ενσωματωμένο Λογισμικό
	Mersenne Twister
	Sockets
	Ασύγχρονες socket υπηρεσίες
	Διαχείριση Cookie
	Ανίχνευση εκτέλεσης
	Συναρτήσεις UUencode και UUdecode
	Κλήσεις Απομακρυσμένης Διαδικασίας XML
	test_epoll
	Επιλογή kqueue
	SipHash24
	strtod και dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N σουίτα δοκιμής
	Audioop

	Copyright
	Ευρετήριο

