Extending and Embedding Python
Anuooicsuon 3.10.18

Guido van Rossum
and the Python development team

louAiou 08, 2025

Python Software Foundation
Email: docs@python.org

Meplexoueva

1 Recommended third party tools 3
2 Creating extensions without third party tools 5
2.1 Extending Pythonwith Cor C++ e 5
2.1.1 ASimple Example e e e e e 6

2.1.2 Intermezzo: Errors and Exceptions L e 7

2.1.3 Backtothe Example e 9

2.1.4 The Module’s Method Table and Initialization Function 9

2.1.5 Compilationand Linkage e 11

2.1.6 Calling Python Functions from C 12

2.1.7 Extracting Parameters in Extension Functions 14

2.1.8 Keyword Parameters for Extension Functions 15

2.1.9 Building Arbitrary Values 16
2.1.10 Reference Counts o it e e e e e 17
2.1.11 Writing Extensions in C++ oL e e 20
2.1.12 Providinga C API for an Extension Module 21

2.2 Defining Extension Types: Tutorial 24
221 TheBasics o e e e e e e e e e e 24

2.2.2 Adding data and methods to the Basicexample 28

2.2.3 Providing finer control over data attributes Lo 35

2.2.4 Supporting cyclic garbage collection e e 40

2.2.5 Subclassing other types e e e e e e e e e e 46

2.3 Defining Extension Types: Assorted Topics 48
2.3.1 Finalization and De-allocation L e 51

2.3.2 ObjectPresentationo e e e e e e 52

2.3.3 Attribute Management oL ..o e e e e e e e e e e e e 53

2.3.4 Object COMPATiSON . . . v v v v v e v e 55

2.3.5 Abstract Protocol Support oL e 56

2.3.6 Weak Reference Supporto e 57

237 More Suggestions u i e e e e e e e e e e e e e e e e e 58

2.4 Building Cand C++ EXtensions 0o it e e e e 59
2.4.1 Building C and C++ Extensions with distutils 59

2.4.2 Distributing your extensionmodules L. oL Lo 60

2.5 Building C and C++ Extensionson Windows L ... 61
2.5.1 A Cookbook Approach 61

2.5.2 Differences Between Unix and Windows Lo 61

253 UsingDLLsinPractice e 62

3 Embedding the CPython runtime in a larger application 63
3.1 Embedding Python in Another Application 63
3.1.1 VeryHighLevel Embedding 64

3.1.2 Beyond Very High Level Embedding: Anoverview 64

3.1.3 PureEmbedding. e e e e 65

3.14 Extending Embedded Python oo 67

3.1.5 Embedding Pythonin C++ 68

3.1.6 Compiling and Linking under Unix-like systems 68

A’ Thooodpu 71
B’ About these documents 87
B’.1 Contributors to the Python Documentation, . 87

I’ Iotopio kot Adero 89
I[7.1 HoTopio TOU MOYLOULKOU + o v v v v v v v e 89
[7.2 'Opol kot tpoimobéoels yio tnv mtpdofaon 1 v xpnon s Python pe ddhovg tpdmovg 90
[7.2.1 PSFLICENSE AGREEMENT FOR PYTHON 3.10.18 90

22 ZYM®ONIA AAEIAZ BEOPEN.COMTIITIA PYTHON2.0 91

723 ZYMOQONIA AAEIAZ CNRITTAPYTHON 1.6.1 92

V24 ZYMOQONIA AAEIAZ CWITTIAPYTHONOOSOEQZ1.2 93

[7.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.18 DOCUMENTATION 94

[7.3 Adeieg kau Evyopiotieg yio Evoopatouévo Aoylowko o oL Lo 94
3.1 Mersenne TWIStEr o i i e e e e e 94

[7.3.2 Sockets e 95

[7.3.3 AoUyypoveg SOCKEt UINPEOIES « « « o v v v v v o e e e e e e e e e e e 96

[7.3.4 Awyelpton Cookie e e e e e e 96

[7.3.5 AVVEUON EKTEREONG « « v v v o v e e e e e e e e e e e e e e e e e e e 97

[73.6 Zuvvopmoelg UUencode kaw UUdecode oo oo oo oo 97

I7.3.7 KMjoeg Aopokpuopuévng Awadikaotog XMLo 98

I7.3.8 test_epoll e e e e e e e 98

[7.3.9 Emdoyfkqueue e e e e e e e 99

[7.3.10 SipHash24 e 99

[V3.01 strtod ko dtoa o o . oo e e e e e e e e 100

[7.3.12 OpenSSL . . . o o o e 100

I73.13 eXpat. . o o v e e e e e e e e e e e e e 103

[V3.14 Libfl . . . L o 103

[V3.15 zlib . . . L 104

[7.3.16 cfuhash e 104

[7.3.17 libmpdec e e 105

[7.3.18 W3C CI4N GOUITO QOKUUNG « + « « v v v e v e 105

I[73.19 Audioop ¢ o oo e e e e 106

A’ Copyright 107
Euvpetijpro 109

Extending and Embedding Python, Anpoociguon 3.10.18

This document describes how to write modules in C or C++ to extend the Python interpreter with new modules. Those
modules can not only define new functions but also new object types and their methods. The document also describes how
to embed the Python interpreter in another application, for use as an extension language. Finally, it shows how to compile
and link extension modules so that they can be loaded dynamically (at run time) into the interpreter, if the underlying
operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the language, see tutorial-
index. reference-index gives a more formal definition of the language. library-index documents the existing object types,
functions and modules (both built-in and written in Python) that give the language its wide application range.

For a detailed description of the whole Python/C API, see the separate c-api-index.

Mepiexopeva 1

Extending and Embedding Python, Anpooicuon 3.10.18

2 Meplexopeva

KEDAAAIO 1

Recommended third party tools

This guide only covers the basic tools for creating extensions provided as part of this version of CPython. Third party
tools like Cython, cffi, SWIG and Numba offer both simpler and more sophisticated approaches to creating C and C++
extensions for Python.

Agite gmiong:

Python Packaging User Guide: Binary Extensions The Python Packaging User Guide not only covers several
available tools that simplify the creation of binary extensions, but also discusses the various reasons why creating
an extension module may be desirable in the first place.

https://cython.org/
https://cffi.readthedocs.io
https://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/guides/packaging-binary-extensions/

Extending and Embedding Python, Anpooicuon 3.10.18

4 KegdaAaio 1. Recommended third party tools

KEDAAAIO 2

Creating extensions without third party tools

This section of the guide covers creating C and C++ extensions without assistance from third party tools. It is intended
primarily for creators of those tools, rather than being a recommended way to create your own C extensions.

2.1 Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension modules can do
two things that can’t be done directly in Python: they can implement new built-in object types, and they can call C library
functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C
source file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on your system setup; details are given in
later chapters.

Inueimon: The C extension interface is specific to CPython, and extension modules do not work on other Python
implementations. In many cases, it is possible to avoid writing C extensions and preserve portability to other
implementations. For example, if your use case is calling C library functions or system calls, you should consider using
the ct ypes module or the cffi library rather than writing custom C code. These modules let you write Python code to
interface with C code and are more portable between implementations of Python than writing and compiling a C extension
module.

https://cffi.readthedocs.io/

Extending and Embedding Python, Anpooicuon 3.10.18

2.1.1 A Simple Example

Let’s create an extension module called spam (the favorite food of Monty Python fans...) and let’s say we want to create a
Python interface to the C library function system () !. This function takes a null-terminated character string as argument
and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls —-1")

Begin by creating a file spammodule.c. (Historically, if a module is called spam, the C file containing its
implementation is called spammodule. c; if the module name is very long, like spammi fy, the module name can
be just spammify.c.)

The first two lines of our file can be:

#define PY_SSIZE_T CLEAN
#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice if
you like).

Enueiwon: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must include Python . h before any standard headers are included.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python . h. See Extracting Parameters in
Extension Functions for a description of this macro.

All user-visible symbols defined by Pyt hon . h have a prefix of Py or PY, except those defined in standard header files.
For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few standard
header files: <stdio.h>, <string.h>, <errno.h>, and <stdlib.h>. If the latter header file does not exist on
your system, it declares the functions malloc (), free () and realloc () directly.

The next thing we add to our module file is the C function that will be called when the Python expression spam.
system (string) is evaluated (we’ll see shortly how it ends up being called):

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

return PylLong_FromLong (sts);

There is a straightforward translation from the argument list in Python (for example, the single expression "1s -1")to
the arguments passed to the C function. The C function always has two arguments, conventionally named self and args.

The self argument points to the module object for module-level functions; for a method it would point to the object
instance.

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple corresponds
to an argument in the call’s argument list. The arguments are Python objects — in order to do anything with them in our
C function we have to convert them to C values. The function PyArg_ParseTuple () in the Python API checks the

! An interface for this function already exists in the standard module os — it was chosen as a simple and straightforward example.

6 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

argument types and converts them to C values. It uses a template string to determine the required types of the arguments
as well as the types of the C variables into which to store the converted values. More about this later.

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw in the
example).

2.1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an
exception condition and return an error value (usually —1 or a NULL pointer). Exception information is stored in three
members of the interpreter’s thread state. These are NULL if there is no exception. Otherwise they are the C equivalents
of the members of the Python tuple returned by sys.exc_info (). These are the exception type, exception instance,
and a traceback object. It is important to know about them to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one is PyErr_SetString (). Its arguments are an exception object and a C string. The exception
object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the cause of the error
and is converted to a Python string object and stored as the «associated value» of the exception.

Another useful function is PyErr_SetFromErrno (), which only takes an exception argument and constructs the
associated value by inspection of the global variable errno. The most general function is PyErr_SetObject (),
which takes two object arguments, the exception and its associated value. You don’t need to Py_INCREF () the objects
passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_Occurred (). This returns the current
exception object, or NULL if no exception has occurred. You normally don’t need to call PyErr_Occurred () to see
whether an error occurred in a function call, since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or —1). It should not call one of the PyErr_* functions — one has already been called by g. f’s caller is then
supposed to also return an error indication to its caller, again without calling PyErr_*, and so on — the most detailed
cause of the error was already reported by the function that first detected it. Once the error reaches the Python interpreter’s
main loop, this aborts the currently executing Python code and tries to find an exception handler specified by the Python
programmer.

(There are situations where a module can actually give a more detailed error message by calling another PyErr_ *
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause information
about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear (). The only time C code should call PyErr_Clear () is if it doesn’t want to pass the error on to
the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing went
wrong).

Every failing malloc () call must be turned into an exception — the direct caller of malloc () (or realloc())
must call PyErr_NoMemory () and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong ()) already do this, so this note is only relevant to those who callmalloc () directly.

Also note that, with the important exception of PyArg_ParseTuple () and friends, functions that return an integer
status usually return a positive value or zero for success and —1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (by making Py_ XDECREF () or Py_DECREF () calls for objects you have already
created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you should choose

2.1. Extending Python with C or C++ 7

Extending and Embedding Python, Anpooicuon 3.10.18

exceptions wisely — don’t use PyExc_TypeError to mean that a file couldn’t be opened (that should probably be
PyExc_IOError). If something’s wrong with the argument list, the PyArg_ParseTuple () function usually raises
PyExc_TypeError. If you have an argument whose value must be in a particular range or must satisfy other conditions,
PyExc_ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable at
the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization function (PyInit_spam ()) with an exception object:

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

SpamError = PyErr_ NewException ("spam.error", NULL, NULL);
Py_XINCREF (SpamError) ;
if (PyModule_AddObject (m, "error", SpamError) < 0) {
Py_XDECREF (SpamError) ;
Py_CLEAR (SpamError) ;
Py_DECREF (m) ;
return NULL;

return m;

Note that the Python name for the exception object is spam.error. The PyErr_ NewException () function may
create a class with the base class being Exception (unless another class is passed in instead of NULL), described in
bltin-exceptions.

Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional! Since
the exception could be removed from the module by external code, an owned reference to the class is needed to ensure
that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling pointer, C
code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

The spam.error exception can be raised in your extension module using a call to PyErr_SetString () asshown
below:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command) ;
if (sts < 0) {
PyErr_SetString(SpamError, "System command failed");

(ouvéyela 0TV ETOUEVT] GEMDQL)

8 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

return NULL;
}

return PyLong_FromLong (sts);

2.1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has been copied
to the local variable command. This is a pointer assignment and you are not supposed to modify the string to which it
points (so in Standard C, the variable command should properly be declared as const char *command).

The next statement is a call to the Unix function system(), passing it the string we just got from
PyArg_ParseTuple():

’sts = system(command) ;

Our spam.system () function must return the value of sts as a Python object. This is done using the function
PyLong_FromLong ().

’return PyLong_FromLong (sts);

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returning void), the corresponding Python function
must return None. You need this idiom to do so (which is implemented by the Py_ RETURN_NONE macro):

Py_INCREF (Py_None);
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL pointer,
which means «error» in most contexts, as we have seen.

2.1.4 The Module’s Method Table and Initialization Function

I promised to show how spam_system () is called from Python programs. First, we need to list its name and address
in a «method table»:

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, O, NULL} /* Sentinel */
bi

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value of 0
means that an obsolete variant of PyArg_ParseTuple () is used.

2.1. Extending Python with C or C++ 9

Extending and Embedding Python, Anpooicuon 3.10.18

When using only METH_VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple () ; more information on this function is provided below.

The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords () to parse the arguments to such a function.

The method table must be referenced in the module definition structure:

static struct PyModuleDef spammodule = {
PyModuleDef_ HEAD_INIT,
"spamn", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,
or -1 if the module keeps state in global variables. */
SpamMethods
bi

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization function
must be named PyInit_name (), where name is the name of the module, and should be the only non-static item
defined in the module file:

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spammodule) ;

Note that PyMODINIT_FUNC declares the function as PyObject * return type, declares any special linkage
declarations required by the platform, and for C++ declares the function as extern "C".

When the Python program imports module spam for the first time, PyInit_spam() is called. (See below for
comments about embedding Python.) It calls PyModule_Create (), which returns a module object, and inserts built-
in function objects into the newly created module based upon the table (an array of PyMethodDef structures) found in
the module definition. PyModule_Create () returns a pointer to the module object that it creates. It may abort with
a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily. The init function must
return the module object to its caller, so that it then gets inserted into sys .modules.

When embedding Python, the PyInit_spam () function is not called automatically unless there’s an entry in the
PyImport_Inittab table. To add the module to the initialization table, use PyImport_AppendInittab (),
optionally followed by an import of the module:

int
main (int argc, char *argv([])
{
wchar_t *program = Py_DecodelLocale(argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1);

/* Add a built-in module, before Py_Initialize */

if (PyImport_AppendInittab ("spam", PyInit_spam) == -1) {
fprintf (stderr, "Error: could not extend in-built modules table\n");
exit (1);

/* Pass argv/[0] to the Python interpreter */

(ouveéyela otV emtduevVn oerida)

10 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Py_SetProgramName (program) ;

/* Initialize the Python interpreter. Required.
If this step fails, it will be a fatal error. */
Py_Initialize();

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */
PyObject *pmodule = PyImport_ImportModule ("spam");
if (!pmodule) {
PyErr_Print ();
fprintf (stderr, "Error: could not import module 'spam'\n");

PyMem_RawFree (program) ;
return 0;

Inueiwon: Removing entries from sys.modules or importing compiled modules into multiple interpreters within
a process (or following a fork () without an intervening exec ()) can create problems for some extension modules.
Extension module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as Modules/xxmodule. c. This file
may be used as a template or simply read as an example.

Ynueiwon: Unlike our spam example, xxmodule uses multi-phase initialization (new in Python 3.5), where a
PyModuleDef structure is returned from PyInit_spam, and creation of the module is left to the import machinery.
For details on multi-phase initialization, see PEP 489.

2.1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python system.
If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see the chapters
about building extension modules (chapter Building C and C++ Extensions) and additional information that pertains only
to building on Windows (chapter Building C and C++ Extensions on Windows) for more information about this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter, you
will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just place
your file (spammodule. c for example) in the Modules/ directory of an unpacked source distribution, add a line to
the file Modules/Setup. local describing your file:

spam spammodule.o

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the Modules/
subdirectory, but then you must first rebuild Makefile there by running “make Makefile”. (This is necessary each
time you change the Setup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well,
for instance:

2.1. Extending Python with C or C++ 11

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, Anpooicuon 3.10.18

spam spammodule.o —-1X11

2.1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called «callback» functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python programmer;
the implementation will require calling the Python callback functions from a C callback. Other uses are also imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python function.
(I won’t dwell on how to call the Python parser with a particular string as input — if you’re interested, have a look at the
implementation of the —c command line option in Modules/main. c from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object. You
should provide a function (or some other interface) to do this. When this function is called, save a pointer to the Python
function object (be careful to Py_INCREF () it!) in a global variable — or wherever you see fit. For example, the
following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback (PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;

PyObject *temp;

if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check (temp)) {
PyErr_SetString (PyExc_TypeError, "parameter must be callable");
return NULL;
}

Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */
Py_INCREF (Py_None) ;
result = Py_None;

}

return result;

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section
The Module’s Method Table and Initialization Function. The PyArg_ParseTuple () function and its arguments are
documented in section Extracting Parameters in Extension Functions.

The macros Py_XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are safe
in the presence of NULL pointers (but note that temp will not be NULL in this context). More info on them in section
Reference Counts.

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function has two
arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument list must
always be a tuple object, whose length is the number of arguments. To call the Python function with no arguments, pass
in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildValue () returns a tuple
when its format string consists of zero or more format codes between parentheses. For example:

12 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

/* Time to call the callback */

arglist = Py_BuildvValue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);

PyObject_CallObject () returns a Python object pointer: this is the return value of the Python function.
PyObject_CallObject () is «reference-count-neutral» with respect to its arguments. In the example a
new tuple was created to serve as the argument list, which is Py_DECREF ()-ed immediately after the
PyObject_CallObject () call

The return value of PyObject_CallObject () is «new»: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py_DECREF () the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’t NULL. If it is, the Python function terminated
by raising an exception. If the C code that called PyObject_CallObject () is called from Python, it should now
return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling Python code can
handle the exception. If this is not possible or desirable, the exception should be cleared by calling PyErr_Clear ().
For example:

if (result == NULL)
return NULL; /* Pass error back */
..use result...
Py_DECREF (result) ;

Depending on the desired interface to the Python callback function, you may also have to provide an argument list to
PyObject_CallObject (). In some cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this is
tocall Py_Buildvalue (). For example, if you want to pass an integral event code, you might use the following code:

PyObject *arglist;

arglist = Py_BuildValue (" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

Note the placement of Py_ DECREF (arglist) immediately after the call, before the error check! Also note that
strictly speaking this code is not complete: Py_BuildValue () may run out of memory, and this should be checked.

You may also call a function with keyword arguments by using PyObject_Call (), which supports arguments and
keyword arguments. As in the above example, we use Py_BuildvValue () to construct the dictionary.

PyObject *dict;

dict = Py_BuildvValue("{s:i}", "name", wval);
result = PyObject_Call (my_callback, NULL, dict);

(ouvéyela otV emtduevn oehida)

2.1. Extending Python with C or C++ 13

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Py_DECREF (dict) ;
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

2.1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple () function is declared as follows:

int PyArg ParseTuple (PyObject *arg, const char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format
argument must be a format string, whose syntax is explained in arg-parsing in the Python/C API Reference Manual. The
remaining arguments must be addresses of variables whose type is determined by the format string.

Note that while PyArg_ParseTuple () checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably crash
or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller are borrowed references; do not decrement their
reference count!

Some example calls:

#define PY_SSIZE_T _CLEAN /* Make "s#" use Py_ssize_t rather than int. */
#include <Python.h>

int ok;

int i, 3;

long k, 1;

const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple(args, "1lls", ¢k, &1, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple (args, " (ii)s#", &i, &3j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */

const char *file;

const char *mode = "r";

int bufsize = 0;

ok = PyArg_ParseTuple (args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */

(ouvéyela otV emoueV oerida)

14 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

/* Possible Python calls:
f('spam')
f('spam', 'w')
f('spam', 'wb', 100000) */

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, " ((ii) (ii)) (ii)",
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
£(((0, 0), (400, 300)), (10, 10)) */

Py_complex c;

ok = PyArg_ParseTuple(args, "D:myfunction", &c);

/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction (1+27) */

2.1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords () function is declared as follows:

int PyArg ParseTupleAndKeywords (PyObject *arg, PyObject *kwdict,
const char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict parameter
is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is a NULL-
terminated list of strings which identify the parameters; the names are matched with the type information from format
from left to right. On success, PyArg_ParseTupleAndKeywords () returns true, otherwise it returns false and
raises an appropriate exception.

Ynueimon: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are
not present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):

#define PY _SSIZE_T CLEAN /* Make "s#'" use Py_ssize_t rather than int. */
#include <Python.h>

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

const char *state = "a stiff";

const char *action = "voom";

const char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

(ouvéyela otV emtduevn oehida)

2.1. Extending Python with C or C++ 15

mailto:philbrick@hks.com

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

if (!PyArg_ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

printf ("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf ("-—- Lovely plumage, the %s —- It's %s!\n", type, state);

Py_RETURN_NONE;

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg parrot () takes
* three.
*/
{"parrot", (PyCFunction) (void(*) (void))keywdarg_ parrot, METH_VARARGS | METH_
—~KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0O, NULL} /* sentinel */
bi

static struct PyModuleDef keywdargmodule = {
PyModuleDef_HEAD_INIT,
"keywdarg",
NULL,
-1,
keywdarg_methods
bi

PyMODINIT_FUNC
PyInit_keywdarg (void)
{
return PyModule_Create (&keywdargmodule) ;

2.1.9 Building Arbitrary Values

This function is the counterpart to PyArg_ParseTuple (). It is declared as follows:

PyObject *Py_BuildValue (const char *format, ...);

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple (), but the arguments (which
are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable for returning
from a C function called from Python.

One difference with PyArg_ParseTuple (): while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_BuildValue () does not always build a tuple. It builds
a tuple only if its format string contains two or more format units. If the format string is empty, it returns None; if it
contains exactly one format unit, it returns whatever object is described by that format unit. To force it to return a tuple
of size 0 or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

16 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

Py_Buildvalue ("") None
Py_Buildvalue ("i", 123) 123
Py_Buildvalue ("iii", 123, 456, 789) (123, 456, 789)
Py_BuildvValue ("s", "hello") 'hello'
Py_Buildvalue ("y", "hello") b'hello'
Py_Buildvalue("ss", "hello", "world") ('"hello', 'world')
Py_BuildvValue ("s#", "hello", 4) 'hell'
Py_Buildvalue ("y#", "hello", 4) b'hell'
Py_Buildvalue(" () ") ()
Py_Buildvalue (" (i)", 123) (123,)
Py_Buildvalue (" (ii)", 123, 456) (123, 456)
Py_Buildvalue (" (i,1)", 123, 456) (123, 456)
Py_Buildvalue("[i,i]", 123, 456) [123, 456]
Py_Buildvalue ("{s:i,s:i}",

"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_Buildvalue (" ((ii) (ii)) (ii)",

1, 2, 3, 4, 5, 6) (1, 2), (3, 4)), (5, 6))

2.1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on the
heap. In C, this is done using the functionsmalloc () and free (). In C++, the operators new and delete are used
with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated with malloc () should eventually be returned to the pool of available memory by
exactly one callto free () . Itisimportant to call free () at the right time. If a block’s address is forgotten but free ()
is not called for it, the memory it occupies cannot be reused until the program terminates. This is called a memory leak.
On the other hand, if a program calls free () for a block and then continues to use the block, it creates a conflict with
re-use of the block through another malloc () call. This is called using freed memory. It has the same bad consequences
as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block of
memory, do some calculation, and then free the block again. Now a change in the requirements for the function may add
a test to the calculation that detects an error condition and can return prematurely from the function. It’s easy to forget
to free the allocated memory block when taking this premature exit, especially when it is added later to the code. Such
leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small fraction of all calls,
and most modern machines have plenty of virtual memory, so the leak only becomes apparent in a long-running process
that uses the leaking function frequently. Therefore, it’s important to prevent leaks from happening by having a coding
convention or strategy that minimizes this kind of errors.

Since Python makes heavy use of malloc () and free (), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object contains a
counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when a
reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the object
is freed.

An alternative strategy is called automatic garbage collection. (Sometimes, reference counting is also referred to as a
garbage collection strategy, hence my use of «automatic» to distinguish the two.) The big advantage of automatic garbage
collection is that the user doesn’t need to call free () explicitly. (Another claimed advantage is an improvement in
speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is no truly portable
automatic garbage collector, while reference counting can be implemented portably (as long as the functions malloc ()
and free () are available — which the C Standard guarantees). Maybe some day a sufficiently portable automatic
garbage collector will be available for C. Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to detect
reference cycles. This allows applications to not worry about creating direct or indirect circular references; these are the

2.1. Extending Python with C or C++ 17

Extending and Embedding Python, Anpooicuon 3.10.18

weakness of garbage collection implemented using only reference counting. Reference cycles consist of objects which
contain (possibly indirect) references to themselves, so that each object in the cycle has a reference count which is non-
zero. Typical reference counting implementations are not able to reclaim the memory belonging to any objects in a
reference cycle, or referenced from the objects in the cycle, even though there are no further references to the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them. The gc module exposes a way to run the detector
(the collect () function), as well as configuration interfaces and the ability to disable the detector at runtime.

Reference Counting in Python

There are two macros, Py_INCREF (x) and Py_DECREF (x), which handle the incrementing and decrementing of
the reference count. Py_ DECREF () also frees the object when the count reaches zero. For flexibility, it doesn’t call
free () directly — rather, it makes a call through a function pointer in the object’s type object. For this purpose (and
others), every object also contains a pointer to its type object.

The big question now remains: when to use Py_ INCREF (x) and Py_DECREF (x) ? Let’s first introduce some terms.
Nobody «owns» an object; however, you can own a reference to an object. An object’s reference count is now defined
as the number of owned references to it. The owner of a reference is responsible for calling Py_DECREF () when the
reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose of an owned
reference: pass it on, store it, or call Py_DECREF () . Forgetting to dispose of an owned reference creates a memory
leak.

It is also possible to borrow” a reference to an object. The borrower of a reference should not call Py_DECREF () . The
borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed reference
after the owner has disposed of it risks using freed memory and should be avoided completely’.

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference on
all possible paths through the code — in other words, with a borrowed reference you don’t run the risk of leaking when
a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations where in
seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in fact disposed
of it.

A borrowed reference can be changed into an owned reference by calling Py_ INCREF (). This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification whether
ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions whose
function it is to create a new object, such as PyLong_FromLong () and Py_BuildvValue (), pass ownership to the
receiver. Even if the object is not actually new, you still receive ownership of a new reference to that object. For instance,
PyLong_FromLong () maintains a cache of popular values and can return a reference to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for instance
PyObject_GetAttrString (). The pictureis less clear, here, however, since a few common routines are exceptions:
PyTuple_GetItem(),PyList_GetItem(),PyDict_GetItem(),andPyDict_GetItemString () all
return references that you borrow from the tuple, list or dictionary.

The function PyImport_AddModule () also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored in sys .modules.

2 The metaphor of «borrowing» a reference is not completely correct: the owner still has a copy of the reference.
3 Checking that the reference count is at least 1 does not work — the reference count itself could be in freed memory and may thus be reused for
another object!

18 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will use Py_INCREF () to become an independent owner. There are exactly two important
exceptions to this rule: PyTuple_SetItem() and PyList_SetItem (). These functions take over ownership of
the item passed to them — even if they fail! (Note that PyDict_SetItem () and friends don’t take over ownership
— they are «normal.»)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference by calling Py_ INCREF ().

The object reference returned from a C function that is called from Python must be an owned reference — ownership is
transferred from the function to its caller.

Thin Ice
There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have to
do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is using Py_DECREF () on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_FromLong (0L));
PyObject_Print (item, stdout, 0); /* BUG! */

This function first borrows a reference to 1ist [0], then replaces 1ist [1] with the value O, and finally prints the
borrowed reference. Looks harmless, right? But it’s not!

Let’s follow the control flow into PyList_SetItem (). The list owns references to all its items, so when item 1 is
replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a user-defined
class, and let’s further suppose that the class defined a ___del__ () method. If this class instance has a reference count
of 1, disposing of it will callits __del__ () method.

Since it is written in Python, the __del__ () method can execute arbitrary Python code. Could it perhaps do something
to invalidate the reference to item in bug () ? You bet! Assuming that the list passed into bug () is accessible to the
__del__ () method, it could execute a statement to the effect of del 1ist[0], and assuming this was the last
reference to that object, it would free the memory associated with it, thereby invalidating i tem.

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The correct
version of the function reads:

void
no_bug (PyObject *list)
{
PyObject *item = PyList_GetItem(list, 0);

Py_INCREF (item) ;

PyList_SetItem(list, 1, PyLong_FromLong (0L)) ;
PyObject_Print (item, stdout, 0);

Py DECREF (item) ;

2.1. Extending Python with C or C++ 19

Extending and Embedding Python, Anpooicuon 3.10.18

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable amount
of time in a C debugger to figure out why his __del__ () methods would fail...

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in the
Python interpreter can’t get in each other’s way, because there is a global lock protecting Python’s entire object space.
However, it is possible to temporarily release this lock using the macro Py_BEGIN_ALLOW_THREADS, and to re-
acquire it using Py_END_ALLOW_THREADS. This is common around blocking /O calls, to let other threads use the
processor while waiting for the I/O to complete. Obviously, the following function has the same problem as the previous
one:

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);
Py_BEGIN_ALLOW_THREADS
..some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print (item, stdout, 0); /* BUG! */

NULL Pointers

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL only
to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often pass the
objects they receive on to other function — if each function were to test for NULL, there would be a lot of redundant tests
and the code would run more slowly.

It is better to test for NULL only at the «source:» when a pointer that may be NULL is received, for example, from
malloc () or from a function that may raise an exception.

The macros Py_INCREF () and Py_DECREF () do not check for NULL pointers — however, their variants
Py_XINCREF () and Py_XDECREF () do.

The macros for checking for a particular object type (Pytype_Check ()) don’t check for NULL pointers — again,
there is much code that calls several of these in a row to test an object against various different expected types, and this
would generate redundant tests. There are no variants with NULL checking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples) is
never NULL — in fact it guarantees that it is always a tuple”.

It is a severe error to ever let a NULL pointer «escape» to the Python user.

2.1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python interpreter) is
compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a problem
if the main program is linked by the C++ compiler. Functions that will be called by the Python interpreter (in particular,
module initialization functions) have to be declared using extern "C". It is unnecessary to enclose the Python header
files in extern "C" {...} — they use this form already if the symbol __ cplusplus is defined (all recent C++
compilers define this symbol).

4 These guarantees don’t hold when you use the «old» style calling convention — this is still found in much existing code.

20 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

2.1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in an
extension module can be useful for other extension modules. For example, an extension module could implement a type
«collection» which works like lists without order. Just like the standard Python list type has a C API which permits
extension modules to create and manipulate lists, this new collection type should have a set of C functions for direct
manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring them st at ic, of course), provide an appropriate
header file, and document the C API. And in fact this would work if all extension modules were always linked statically
with the Python interpreter. When modules are used as shared libraries, however, the symbols defined in one module
may not be visible to another module. The details of visibility depend on the operating system; some systems use one
global namespace for the Python interpreter and all extension modules (Windows, for example), whereas others require
an explicit list of imported symbols at module link time (AIX is one example), or offer a choice of different strategies
(most Unices). And even if symbols are globally visible, the module whose functions one wishes to call might not have
been loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in extension
modules should be declared st at ic, except for the module’s initialization function, in order to avoid name clashes with
other extension modules (as discussed in section The Module’s Method Table and Initialization Function). And it means
that symbols that should be accessible from other extension modules must be exported in a different way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another one:
Capsules. A Capsule is a Python data type which stores a pointer (void*). Capsules can only be created and accessed via
their C API, but they can be passed around like any other Python object. In particular, they can be assigned to a name in
an extension module’s namespace. Other extension modules can then import this module, retrieve the value of this name,
and then retrieve the pointer from the Capsule.

There are many ways in which Capsules can be used to export the C API of an extension module. Each function could
get its own Capsule, or all C API pointers could be stored in an array whose address is published in a Capsule. And the
various tasks of storing and retrieving the pointers can be distributed in different ways between the module providing the
code and the client modules.

Whichever method you choose, it’s important to name your Capsules properly. The function PyCapsule_New () takes
aname parameter (const char*);you're permitted to pass in a NULL name, but we strongly encourage you to specify
a name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to tell one unnamed
Capsule from another.

In particular, Capsules used to expose C APIs should be given a name following this convention:

modulename.attributename

The convenience function PyCapsule_Import () makes it easy to load a C API provided via a Capsule, but only if
the Capsule’s name matches this convention. This behavior gives C API users a high degree of certainty that the Capsule
they load contains the correct C API.

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an
array of void pointers which becomes the value of a Capsule. The header file corresponding to the module provides a
macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call this
macro before accessing the C API.

The exporting module is a modification of the spam module from section A Simple Example. The function spam.
system () does not call the C library function system () directly, but a function PySpam_System (), which
would of course do something more complicated in reality (such as adding «spam» to every command). This function
PySpam_System () is also exported to other extension modules.

The function PySpam_System () is a plain C function, declared stat ic like everything else:

2.1. Extending Python with C or C++ 21

Extending and Embedding Python, Anpooicuon 3.10.18

static int
PySpam_System (const char *command)
{

return system(command) ;

The function spam_system () is modified in a trivial way:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = PySpam_System (command) ;

return PyLong_FromLong(sts);

In the beginning of the module, right after the line

#include <Python.h>

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The #define is used to tell the header file that it is being included in the exporting module, not a client module. Finally,
the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC

PyInit_spam(void)

{
PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

/* Initialize the C API pointer array */
PySpam_API [PySpam_System_ NUM] = (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New((void *)PySpam_ API, "spam._ C_API", NULL);

if (PyModule_AddObject(m, " C API", c_api_object) < 0) {
Py_XDECREF (c_api_object);
Py_DECREF (m) ;
return NULL;

return m;

22 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

Note that PySpam_APT is declared stat ic; otherwise the pointer array would disappear when PyInit_spam ()
terminates!

The bulk of the work is in the header file spammodule . h, which looks like this:

#ifndef Py SPAMMODULE_H
#define Py_SPAMMODULE_H
#ifdef cplusplus
extern "C" {

#endif

/* Header file for spammodule */

/* C API functions */

#define PySpam System NUM 0

#define PySpam_System RETURN int

#define PySpam System_PROTO (const char *command)

/* Total number of C API pointers */
#define PySpam API_pointers 1

#ifdef SPAM _MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_ RETURN PySpam_System PySpam_System_ PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_ API;

#define PySpam_System \
(* (PySpam_System_ RETURN (*)PySpam_System PROTO) PySpam API[PySpam_System NUM])

/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception 1if there's an error.
*/

static int

import_spam(void)

{

PySpam_API = (void **)PyCapsule_Import ("spam._ C_API", 0);
return (PySpam API != NULL) 2 0 : -1;

3

#endif

#ifdef __cplusplus
}
#endif

#endif /* !defined (Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the function PySpam_System () is to call the function (or
rather macro) import_spam () in its initialization function:

PyMODINIT_FUNC
PyInit_client (void)

(ouvéyela otV emtouevVn oehida)

2.1. Extending Python with C or C++ 23

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

PyObject *m;

m = PyModule_Create (&clientmodule);
if (m == NULL)
return NULL;
if (import_spam() < 0)
return NULL;
/* additional initialization can happen here */
return m;

The main disadvantage of this approach is that the file spammodule.h is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that Capsules offer additional functionality, which is especially useful for memory allocation
and deallocation of the pointer stored in a Capsule. The details are described in the Python/C API Reference Manual
in the section capsules and in the implementation of Capsules (files Include/pycapsule.h and Objects/
pycapsule. c in the Python source code distribution).

2.2 Defining Extension Types: Tutorial

Python allows the writer of a C extension module to define new types that can be manipulated from Python code, much
like the built-in st r and 1ist types. The code for all extension types follows a pattern, but there are some details that
you need to understand before you can get started. This document is a gentle introduction to the topic.

2.2.1 The Basics

The CPython runtime sees all Python objects as variables of type PyObject*, which serves as a «base type» for all
Python objects. The PyObject structure itself only contains the object’s reference count and a pointer to the object’s
«type object». This is where the action is; the type object determines which (C) functions get called by the interpreter
when, for instance, an attribute gets looked up on an object, a method called, or it is multiplied by another object. These
C functions are called «type methods».

So, if you want to define a new extension type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new type
named Custom inside a C extension module custom:

EInueiwon: What we're showing here is the traditional way of defining static extension types. It should be adequate for
most uses. The C API also allows defining heap-allocated extension types using the PyType_FromSpec () function,
which isn’t covered in this tutorial.

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

typedef struct {

PyObject_HEAD

/* Type-specific fields go here. */
} CustomObiject;

(ouvéyela otV emtduevn oehida)

24 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

static PyTypeObject CustomType = {
PyVarObject_ HEAD_INIT (NULL, O)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,
.m_name = "custom",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom(void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0)
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the previous chapter. This file defines
three things:

1. What a Custom object contains: this is the CustomObject struct, which is allocated once for each Custom
instance.

2. How the Custom type behaves: this is the Cust omType struct, which defines a set of flags and function pointers
that the interpreter inspects when specific operations are requested.

3. How to initialize the custom module: this is the PyInit_custom function and the associated
custommodule struct.

The first bit is:

typedef struct {
PyObject_HEAD
} CustomObject;

This is what a Custom object will contain. PyObject_HEAD is mandatory at the start of each object struct and defines
a field called ob_base of type PyObject, containing a pointer to a type object and a reference count (these can be

2.2. Defining Extension Types: Tutorial 25

Extending and Embedding Python, Anpooicuon 3.10.18

accessed using the macros Py_TYPE and Py_REFCNT respectively). The reason for the macro is to abstract away the
layout and to enable additional fields in debug builds.

Ynueioon: There is no semicolon above after the PyObject_HEAD macro. Be wary of adding one by accident: some
compilers will complain.

Of course, objects generally store additional data besides the standard PyObject_HEAD boilerplate; for example, here
is the definition for standard Python floats:

typedef struct {
PyObject_HEAD
double ob_fval;
} PyFloatObiject;

The second bit is the definition of the type object.

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

Inueiwon: We recommend using C99-style designated initializers as above, to avoid listing all the Py TypeObject
fields that you don’t care about and also to avoid caring about the fields” declaration order.

The actual definition of PyTypeObject in object . h has many more fields than the definition above. The remaining
fields will be filled with zeros by the C compiler, and it’s common practice to not specify them explicitly unless you need
them.

We're going to pick it apart, one field at a time:

’PyVarObject_HEAD_INIT(NULL, 0)

This line is mandatory boilerplate to initialize the ob_base field mentioned above.

’.tpiname = "custom.Custom",

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

>>> "" + custom.Custom{()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is custom and the type is Custom, so we set the type name to custom. Custom. Using the
real dotted import path is important to make your type compatible with the pydoc and pickle modules.

.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,

26 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

This is so that Python knows how much memory to allocate when creating new Custom instances. tp_itemsize is
only used for variable-sized objects and should otherwise be zero.

Ynueioon: If you want your type to be subclassable from Python, and your type has the same tp_basicsize as its
base type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your type
firstinits _ bases__, or else it will not be able to call your type’s __new__ () method without getting an error. You
can avoid this problem by ensuring that your type has a larger value for tp_basicsize than its base type does. Most
of the time, this will be true anyway, because either your base type will be object, or else you will be adding data
members to your base type, and therefore increasing its size.

We set the class flags to Py_ TPFLAGS_DEFAULT.

.tp_flags = Py_TPFLAGS_DEFAULT,

All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If you
need further members, you will need to OR the corresponding flags.

We provide a doc string for the type in tp_doc.

.tp_doc = PyDoc_STR("Custom objects"),

To enable object creation, we have to provide a tp_new handler. This is the equivalent of the Python method
__new__ (), but has to be specified explicitly. In this case, we can just use the default implementation provided by
the API function PyType_GenericNew ().

.tp_new = PyType_GenericNew,

Everything else in the file should be familiar, except for some code in PyInit_custom():

if (PyType_Ready (&CustomType) < 0)
return;

This initializes the Custom type, filling in a number of members to the appropriate default values, including ob_type
that we initially set to NULL.

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

This adds the type to the module dictionary. This allows us to create Custom instances by calling the Cust om class:

>>> import custom
>>> mycustom = custom.Custom/()

That’s it! All that remains is to build it; put the above code in a file called custom. c and:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=[Extension ("custom", ["custom.c"])])

in a file called setup . py; then typing

2.2. Defining Extension Types: Tutorial 27

Extending and Embedding Python, Anpooicuon 3.10.18

$ python setup.py build

at a shell should produce a file custom. so in a subdirectory; move to that directory and fire up Python — you should
be able to import custom and play around with Custom objects.

That wasn’t so hard, was it?

Of course, the current Custom type is pretty uninteresting. It has no data and doesn’t do anything. It can’t even be
subclassed.

Ynueioon: While this documentation showcases the standard distutils module for building C extensions, it is
recommended in real-world use cases to use the newer and better-maintained setuptools library. Documentation on
how to do this is out of scope for this document and can be found in the Python Packaging User’s Guide.

2.2.2 Adding data and methods to the Basic example

Let’s extend the basic example to add some data and methods. Let’s also make the type usable as a base class. We'll create
a new module, custom? that adds these capabilities:

#define PY _SSIZE_T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObiject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;

}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {

Py_DECREF (self);
return NULL;

(ouvéyela otV emtduevn oehida)

28 Kegahaiwo 2. Creating extensions without third party tools

https://packaging.python.org/tutorials/distributing-packages/

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

self->number = 0;

}
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|00i", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) A
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

;

if (last) {
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

3

return O;

static PyMemberDef Custom_members([] = {
{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
3
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
}

return PyUnicode_FromFormat ("$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {

(ouvéyela otV emtduevn oehida)

2.2. Defining Extension Types: Tutorial 29

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
by
{NULL} /* Sentinel */

i

static PyTypeObject CustomType = {
PyVarObject_ HEAD_INIT (NULL, O)
.tp_name = "custom2.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members Custom_members,
.tp_methods = Custom_methods,

bi

static PyModuleDef custommodule = {
PyModuleDef_HEAD_INIT,
.m_name = "custom2",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom2 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0)
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

This version of the module has a number of changes.

We've added an extra include:

#include <structmember.h>

This include provides declarations that we use to handle attributes, as described a bit later.

The Custom type now has three data attributes in its C struct, first, last, and number. The first and last variables are

Python strings containing first and last names. The number attribute is a C integer.

30 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

The object structure is updated accordingly:

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

Because we now have data to manage, we have to be more careful about object allocation and deallocation. At a minimum,
we need a deallocation method:

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

which is assigned to the tp_dealloc member:

.tp_dealloc = (destructor) Custom_dealloc,

This method first clears the reference counts of the two Python attributes. Py_ XDECREF () correctly handles the case
where its argument is NULL (which might happen here if tp_new failed midway). It then calls the tp_free member
of the object’s type (computed by Py_TYPE (self)) to free the object’s memory. Note that the object’s type might not
be CustomType, because the object may be an instance of a subclass.

Inueimon: The explicit cast to destructor above is needed because we defined Custom_dealloc to take a
CustomObject * argument, but the tp_dealloc function pointer expects to receive a PyObject * argument.
Otherwise, the compiler will emit a warning. This is object-oriented polymorphism, in C!

We want to make sure that the first and last names are initialized to empty strings, so we provide a tp_new
implementation:

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) A
Py_DECREF (self);
return NULL;
}
self->number = 0;
3
return (PyObject *) self;

2.2. Defining Extension Types: Tutorial 31

Extending and Embedding Python, Anpooicuon 3.10.18

and install it in the t p_ new member:

.tp_new = Custom_new,

The tp_new handler is responsible for creating (as opposed to initializing) objects of the type. It is exposed in Python
as the _ _new__ () method. It is not required to define a tp_new member, and indeed many extension types will
simply reuse PyType_GenericNew () as done in the first version of the Cust om type above. In this case, we use the
tp_new handler to initialize the first and last attributes to non-NULL default values.

tp_new is passed the type being instantiated (not necessarily CustomType, if a subclass is instantiated) and any
arguments passed when the type was called, and is expected to return the instance created. tp_new handlers always
accept positional and keyword arguments, but they often ignore the arguments, leaving the argument handling to initializer
(aka. tp_initinCor__init__ in Python) methods.

Inueiwon: tp_new shouldn’t call tp_init explicitly, as the interpreter will do it itself.

The tp_new implementation calls the tp_alloc slot to allocate memory:

self = (CustomObject *) type->tp_alloc(type, 0);

Since memory allocation may fail, we must check the tp_alloc result against NULL before proceeding.

Inueimon: We didn't fill the tp_alloc slot ourselves. Rather PyType_Ready () fills it for us by inheriting it from
our base class, which is object by default. Most types use the default allocation strategy.

Ynueioon: If you are creating a co-operative t p_new (one that calls a base type’s tp_new or __new___ ()), you must
not try to determine what method to call using method resolution order at runtime. Always statically determine what type
you are going to call, and call its t p_new directly, or via t ype—>tp_base->tp_new. If you do not do this, Python
subclasses of your type that also inherit from other Python-defined classes may not work correctly. (Specifically, you may
not be able to create instances of such subclasses without getting a TypeError.)

We also define an initialization function which accepts arguments to provide initial values for our instance:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "[00i", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_XDECREF (tmp) ;

3

if (last) |
tmp = self->last;

(OVVEYELAL TNV ETTOUEVT OEALOL)

32 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Py_INCREF (last);
self->last = last;
Py_XDECREF (tmp) ;

3

return 0;

by filling the tp_init slot.

.tp_init = (initproc) Custom_init,

The tp_init slotis exposed in Pythonasthe _ init__ () method. It is used to initialize an object after it’s created.
Initializers always accept positional and keyword arguments, and they should return either O on success or —1 on error.

Unlike the tp_new handler, there is no guarantee that tp_init is called at all (for example, the pickle module
by default doesn’t call __init__ () on unpickled instances). It can also be called multiple times. Anyone can call the
__init__ () method on our objects. For this reason, we have to be extra careful when assigning the new attribute
values. We might be tempted, for example to assign the £irst member like this:

if (first) |
Py_XDECREF (self->first);
Py_INCREF (first);
self->first = first;

But this would be risky. Our type doesn’t restrict the type of the £irst member, so it could be any kind of object. It
could have a destructor that causes code to be executed that tries to access the £1irst member; or that destructor could
release the Global interpreter Lock and let arbitrary code run in other threads that accesses and modifies our object.

To be paranoid and protect ourselves against this possibility, we almost always reassign members before decrementing
their reference counts. When don’t we have to do this?

« when we absolutely know that the reference count is greater than 1;

« when we know that deallocation of the object' will neither release the GIL nor cause any calls back into our type’s
code;

« when decrementing a reference count in a tp_dealloc handler on a type which doesn’t support cyclic garbage
collection”.

We want to expose our instance variables as attributes. There are a number of ways to do that. The simplest way is to
define member definitions:

static PyMemberDef Custom_members|[] = {
{"first", T_OBJECT_EX, offsetof (CustomObject, first), O,
"first name"},
{"last", T_OBJECT_EX, offsetof (CustomObject, last), O,
"last name"},
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

and put the definitions in the tp_members slot:

! This is true when we know that the object is a basic type, like a string or a float.
2 We relied on this in the t p_dealloc handler in this example, because our type doesn’t support garbage collection.

2.2. Defining Extension Types: Tutorial 33

Extending and Embedding Python, Anpooicuon 3.10.18

.tp_members = Custom_members,

Each member definition has a member name, type, offset, access flags and documentation string. See the Generic Attribute
Management section below for details.

A disadvantage of this approach is that it doesn’t provide a way to restrict the types of objects that can be assigned to the
Python attributes. We expect the first and last names to be strings, but any Python objects can be assigned. Further, the
attributes can be deleted, setting the C pointers to NULL. Even though we can make sure the members are initialized to
non-NULL values, the members can be set to NULL if the attributes are deleted.

We define a single method, Custom. name (), that outputs the objects name as the concatenation of the first and last
names.

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{
if (self->first == NULL) {
PyErr_SetString (PyExc_AttributeError, "first");
return NULL;
}
if (self->last == NULL) {
PyErr_SetString (PyExc_AttributeError, "last");
return NULL;
3

return PyUnicode_FromFormat ("%S %S", self->first, self->last);

The method is implemented as a C function that takes a Custom (or Custom subclass) instance as the first argument.
Methods always take an instance as the first argument. Methods often take positional and keyword arguments as well, but
in this case we don’t take any and don’t need to accept a positional argument tuple or keyword argument dictionary. This
method is equivalent to the Python method:

def name (self):
return " " % (self.first, self.last)

Note that we have to check for the possibility that our first and 1ast members are NULL. This is because they can
be deleted, in which case they are set to NULL. It would be better to prevent deletion of these attributes and to restrict
the attribute values to be strings. We'll see how to do that in the next section.

Now that we’ve defined the method, we need to create an array of method definitions:

static PyMethodDef Custom_methods|[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

(note that we used the METH_NOARGS flag to indicate that the method is expecting no arguments other than self)

and assign it to the tp_methods slot:

.tp_methods = Custom_methods,

Finally, we’ll make our type usable as a base class for subclassing. We've written our methods carefully so far so that
they don’t make any assumptions about the type of the object being created or used, so all we need to do is to add the
Py_TPFLAGS_BASETYPE to our class flag definition:

34 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

.tp_flags = Py _TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,

We rename PyInit_custom() to PyInit_custom2 (), update the module name in the PyModuleDef struct,
and update the full class name in the PyTypeObject struct.

Finally, we update our setup . py file to build the new module:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=]|
Extension ("custom", ["custom.c"]),
Extension("custom2", ["custom2.c"]),

1)

2.2.3 Providing finer control over data attributes

In this section, we'll provide finer control over how the first and last attributes are set in the Cust om example. In
the previous version of our module, the instance variables first and last could be set to non-string values or even
deleted. We want to make sure that these attributes always contain strings.

#define PY SSIZE_T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static void
Custom_dealloc (CustomObject *self)
{
Py_XDECREF (self->first);
Py_XDECREF (self->last);
Py_TYPE (self)->tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);
if (self != NULL) {

self->first = PyUnicode_FromString("");

if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) {
Py_DECREF (self);
return NULL;
}

self->number = 0;

(ouvéyela otV emtduevn oehida)

2.2. Defining Extension Types: Tutorial 35

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

3
return (PyObject *) self;

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)
{
static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0;

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

static PyObject *
Custom_getfirst (CustomObject *self, woid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, wvoid *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
3
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;

(ouvéyela otV emtduevn oehida)

36 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

tmp = self->first;
Py_INCREF (value);
self->first = value;
Py_DECREF (tmp) ;
return 0;

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->last);

return self->last;

static int
Custom_setlast (CustomObject *self, PyObject *value, wvoid *closure)
{
PyObject *tmp;
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
;
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;
3
tmp = self->last;
Py_INCREF (value);
self->last = value;
Py_DECREF (tmp) ;
return O;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("%$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */
bi

static PyTypeObject CustomType = {

(ouvéyela otV emtduevn oehida)

2.2. Defining Extension Types: Tutorial 37

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

PyVarObject_HEAD_INIT (NULL, O)
.tp_name = "custom3.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_new = Custom_new,
.tp_init = (initproc) Custom_init,
.tp_dealloc = (destructor) Custom_dealloc,
.tp_members = Custom_members,
.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,
.m_name = "custom3",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom3 (void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

To provide greater control, over the first and last attributes, we'll use custom getter and setter functions. Here are
the functions for getting and setting the first attribute:

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->first);

return self->first;

static int
Custom_setfirst (CustomObject *self, PyObject *value, wvoid *closure)
{

PyObject *tmp;

(ouvéyela 0TV ETOUEVT) OEMDA)

38 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
tmp = self->first;
Py_INCREF (value);
self->first = value;
Py_DECREF (tmp) ;
return O;

The getter function is passed a Custom object and a «closure», which is a void pointer. In this case, the closure is
ignored. (The closure supports an advanced usage in which definition data is passed to the getter and setter. This could,
for example, be used to allow a single set of getter and setter functions that decide the attribute to get or set based on data
in the closure.)

The setter function is passed the Cust om object, the new value, and the closure. The new value may be NULL, in which
case the attribute is being deleted. In our setter, we raise an error if the attribute is deleted or if its new value is not a
string.

We create an array of PyGet SetDef structures:

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
bi

and register it in the tp_getset slot:

.tp_getset = Custom_getsetters,

The last item in a PyGet SetDef structure is the «closure» mentioned above. In this case, we aren’t using a closure, so
we just pass NULL.

‘We also remove the member definitions for these attributes:

static PyMemberDef Custom_members|[] = {
{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

bi

We also need to update the t p_init handler to only allow strings® to be passed:

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)

(ouveéyela otV emtduevVn oehida)

3 We now know that the first and last members are strings, so perhaps we could be less careful about decrementing their reference counts, however,
we accept instances of string subclasses. Even though deallocating normal strings won’t call back into our objects, we can’t guarantee that deallocating
an instance of a string subclass won't call back into our objects.

2.2. Defining Extension Types: Tutorial 39

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))
return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0;

With these changes, we can assure that the first and 1ast members are never NULL so we can remove checks for
NULL values in almost all cases. This means that most of the Py_ XDECREF () calls can be converted to Py_DECREF ()
calls. The only place we can’t change these calls is in the t p_dealloc implementation, where there is the possibility
that the initialization of these members failed in tp_new.

‘We also rename the module initialization function and module name in the initialization function, as we did before, and
we add an extra definition to the setup. py file.

2.2.4 Supporting cyclic garbage collection

Python has a cyclic garbage collector (GC) that can identify unneeded objects even when their reference counts are not
zero. This can happen when objects are involved in cycles. For example, consider:

>>> 1 = []
>>> 1.append (1)
>>> del 1

In this example, we create a list that contains itself. When we delete it, it still has a reference from itself. Its reference
count doesn’t drop to zero. Fortunately, Python’s cyclic garbage collector will eventually figure out that the list is garbage
and free it.

In the second version of the Custom example, we allowed any kind of object to be stored in the first or last
attributes®. Besides, in the second and third versions, we allowed subclassing Custom, and subclasses may add arbitrary
attributes. For any of those two reasons, Custom objects can participate in cycles:

>>> import custom3
>>> class Derived (custom3.Custom) : pass

>>> n = Derived()
>>> n.some_attribute = n

4 Also, even with our attributes restricted to strings instances, the user could pass arbitrary st r subclasses and therefore still create reference cycles.

40 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

To allow a Custom instance participating in a reference cycle to be properly detected and collected by the cyclic GC,
our Custom type needs to fill two additional slots and to enable a flag that enables these slots:

#define PY SSIZE_ T CLEAN
#include <Python.h>
#include "structmember.h"

typedef struct {
PyObject_HEAD
PyObject *first; /* first name */
PyObject *last; /* last name */
int number;

} CustomObject;

static int
Custom_traverse (CustomObject *self, visitproc visit, wvoid *arg)
{

Py _VISIT(self->first);

Py _VISIT (self->last);

return 0;

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0O;

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self) >tp_free ((PyObject *) self);

static PyObject *
Custom_new (PyTypeObject *type, PyObject *args, PyObject *kwds)
{

CustomObject *self;

self = (CustomObject *) type->tp_alloc(type, 0);

if (self != NULL) {
self->first = PyUnicode_FromString("");
if (self->first == NULL) {

Py_DECREF (self);
return NULL;
}
self->last = PyUnicode_FromString("");
if (self->last == NULL) H{
Py_DECREF (self);
return NULL;
}
self->number = 0;

;
return (PyObject *) self;

(ouvéyela otV emtoduevn oehida)

2.2. Defining Extension Types: Tutorial 41

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

{

bi

{

{

static int
Custom_init (CustomObject *self, PyObject *args, PyObject *kwds)

static PyMemberDef Custom_members|[] = {

static PyObject *
Custom_getfirst (CustomObject *self, wvoid *closure)

static int
Custom_setfirst (CustomObject *self, PyObject *value, void *closure)

static char *kwlist[] = {"first", "last", "number", NULL};
PyObject *first = NULL, *last = NULL, *tmp;

if (!PyArg_ParseTupleAndKeywords (args, kwds, "|UUi", kwlist,
sfirst, &last,
&self->number))

return -1;

if (first) |
tmp = self->first;
Py_INCREF (first);
self->first = first;
Py_DECREF (tmp) ;

}

if (last) |
tmp = self->last;
Py_INCREF (last);
self->last = last;
Py_DECREF (tmp) ;

}

return 0;

{"number", T_INT, offsetof (CustomObject, number), O,
"custom number"},
{NULL} /* Sentinel */

Py_INCREF (self->first);
return self->first;

if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the first attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The first attribute value must be a string");
return -1;
}
Py_INCREF (value);
Py_CLEAR(self->first);
self->first = value;
return 0;

(ouvéyela otV emtduevn oehida)

42

Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

static PyObject *
Custom_getlast (CustomObject *self, wvoid *closure)
{

Py_INCREF (self->1last);

return self->last;

static int
Custom_setlast (CustomObject *self, PyObject *value, wvoid *closure)
{
if (value == NULL) {
PyErr_SetString (PyExc_TypeError, "Cannot delete the last attribute");
return -1;
}
if (!PyUnicode_Check (value)) {
PyErr_SetString (PyExc_TypeError,
"The last attribute value must be a string");
return -1;
}
Py_INCREF (value);
Py_CLEAR(self->last);
self->last = value;
return 0;

static PyGetSetDef Custom_getsetters[] = {
{"first", (getter) Custom_getfirst, (setter) Custom_setfirst,
"first name", NULL},
{"last", (getter) Custom_getlast, (setter) Custom_setlast,
"last name", NULL},
{NULL} /* Sentinel */
bi

static PyObject *
Custom_name (CustomObject *self, PyObject *Py_UNUSED (ignored))
{

return PyUnicode_FromFormat ("$S %S", self->first, self->last);

static PyMethodDef Custom_methods[] = {
{"name", (PyCFunction) Custom_name, METH_NOARGS,
"Return the name, combining the first and last name"
}I
{NULL} /* Sentinel */

bi

static PyTypeObject CustomType = {
PyVarObject_ HEAD_INIT (NULL, O0)

.tp_name = "customé4.Custom",

.tp_doc = PyDoc_STR("Custom objects"),

.tp_basicsize = sizeof (CustomObject),

.tp_itemsize = 0,

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = Custom_new,

(ouvéyela otV emtduevn oehida)

2.2. Defining Extension Types: Tutorial 43

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

bi

.tp_init = (initproc) Custom_init,

.tp_dealloc = (destructor) Custom_dealloc,
.tp_traverse = (traverseproc) Custom_traverse,
.tp_clear = (inquiry) Custom_clear,
.tp_members = Custom_members,

.tp_methods = Custom_methods,
.tp_getset = Custom_getsetters,

static PyModuleDef custommodule = {
PyModuleDef HEAD_INIT,
.m_name = "customd",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom4 (void)

{

PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

First, the traversal method lets the cyclic GC know about subobjects that could participate in cycles:

static int
Custom_traverse (CustomObject *self, visitproc visit, woid *arqg)

{

int vret;
if (self->first) {
vret = visit(self->first, arg);
if (vret != 0)
return vret;
3
if (self->last) {
vret = visit (self->last, arg);
if (vret != 0)
return vret;
}

return 0O;

For each subobject that can participate in cycles, we need to call the visit () function, which is passed to the traversal

44

Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

method. The visit () function takes as arguments the subobject and the extra argument arg passed to the traversal
method. It returns an integer value that must be returned if it is non-zero.

Python provides a Py_VISIT () macro that automates calling visit functions. With Py_VISIT (), we can minimize
the amount of boilerplate in Custom_traverse:

static int
Custom_traverse (CustomObject *self, visitproc visit, void *arg)
{

Py _VISIT (self->first);

Py _VISIT (self->last);

return 0O;

Inueiwon: The tp_traverse implementation must name its arguments exactly visit and arg in order to use
Py _VISIT().

Second, we need to provide a method for clearing any subobjects that can participate in cycles:

static int
Custom_clear (CustomObject *self)
{
Py_CLEAR(self->first);
Py_CLEAR(self->last);
return 0O;

Notice the use of the Py_ CLEAR () macro. It is the recommended and safe way to clear data attributes of arbitrary types
while decrementing their reference counts. If you were to call Py_ XDECREF () instead on the attribute before setting
it to NULL, there is a possibility that the attribute’s destructor would call back into code that reads the attribute again
(especially if there is a reference cycle).

Znueiw(m: You could emulate Py_ CLEAR () by writing:

PyObject *tmp;

tmp = self->first;
self->first = NULL;
Py_XDECREF (tmp) ;

Nevertheless, it is much easier and less error-prone to always use Py_CLEAR () when deleting an attribute. Don’t try to
micro-optimize at the expense of robustness!

The deallocator Custom_dealloc may call arbitrary code when clearing attributes. It means the circular GC can be
triggered inside the function. Since the GC assumes reference count is not zero, we need to untrack the object from the
GC by calling PyObject_GC_UnTrack () before clearing members. Here is our reimplemented deallocator using
PyObject_GC_UnTrack () and Custom_clear:

static void
Custom_dealloc (CustomObject *self)
{
PyObject_GC_UnTrack (self);
Custom_clear (self);
Py_TYPE (self)->tp_free ((PyObject *) self);

2.2. Defining Extension Types: Tutorial 45

Extending and Embedding Python, Anpooicuon 3.10.18

Finally, we add the Py_ TPFLAGS_HAVE_GC flag to the class flags:

.tp_flags = Py _TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,

That’s pretty much it. If we had written custom tp_alloc or tp_free handlers, we'd need to modify them for cyclic
garbage collection. Most extensions will use the versions automatically provided.

2.2.5 Subclassing other types

It is possible to create new extension types that are derived from existing types. It is easiest to inherit from the built in
types, since an extension can easily use the PyTypeObject it needs. It can be difficult to share these Py TypeObject
structures between extension modules.

In this example we will create a SubL1i st type that inherits from the built-in 1i st type. The new type will be completely
compatible with regular lists, but will have an additional increment () method that increases an internal counter:

>>> import sublist

>>> s = sublist.SubList (range(3))
>>> s.extend(s)

>>> print (len(s))

6

>>> print (s.increment ())

>>> print (s.increment ())

#define PY_SSIZE_T CLEAN
#include <Python.h>

typedef struct {
PyListObject list;
int state;

} SubListObiject;

static PyObject *
SubList_increment (SubListObject *self, PyObject *unused)
{

self->state++;

return PylLong_FromLong(self->state);

static PyMethodDef SubList_methods[] = {
{"increment", (PyCFunction) SubList_increment, METH_NOARGS,
PyDoc_STR("increment state counter")},
{NULL},

bi

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{
if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;
self->state = 0;
return 0O;

(ouvéyeLa 0TV ETOUEVT] GEMDQL)

46 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

static PyTypeObject SubListType = {
PyVarObject_ HEAD_INIT (NULL, O)
.tp_name = "sublist.SubList",
.tp_doc = PyDoc_STR("SubList objects"),
.tp_basicsize = sizeof (SubListObject),

.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_init = (initproc) SubList_init,

.tp_methods = SubList_methods,
bi

static PyModuleDef sublistmodule = {
PyModuleDef_HEAD_INIT,

.m_name = "sublist",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject *m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&SubListType) ;

if (PyModule_AddObject (m, "SubList", (PyObject *) &SubListType) < 0) |
Py_DECREF (&SubListType) ;
Py_DECREF (m) ;
return NULL;

return m;

As you can see, the source code closely resembles the Cust om examples in previous sections. We will break down the
main differences between them.

typedef struct {
PyListObject list;
int state;

} SubListObiject;

The primary difference for derived type objects is that the base type’s object structure must be the first value. The base
type will already include the PyObject_HEAD () at the beginning of its structure.

When a Python object is a SubList instance, its PyObject * pointer can be safely cast to both PyListObject
* and SubListObject *:

static int
SubList_init (SubListObject *self, PyObject *args, PyObject *kwds)
{

(ouvéyela otV emtduevn oehida)

2.2. Defining Extension Types: Tutorial 47

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

if (PyList_Type.tp_init ((PyObject *) self, args, kwds) < 0)
return -1;

self->state = 0;

return 0;

We see above how to call through to the __init__ method of the base type.

This pattern is important when writing a type with custom tp_new and tp_dealloc members. The t p_new handler
should not actually create the memory for the object with its tp_alloc, but let the base class handle it by calling its
own tp_new.

The PyTypeObject struct supports a tp_base specifying the type’s concrete base class. Due to cross-platform
compiler issues, you can't fill that field directly with a reference to PyList_ Type; it should be done later in the module
initialization function:

PyMODINIT_FUNC
PyInit_sublist (void)
{
PyObject* m;
SubListType.tp_base = &PyList_Type;
if (PyType_Ready (&SubListType) < 0)
return NULL;

m = PyModule_Create (&sublistmodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&SubListType) ;

if (PyModule_AddObject (m, "SubList", (PyObject *) &SubListType) < 0) {
Py_DECREF (&SubListType) ;
Py_DECREF (m) ;
return NULL;

return m;

Before calling PyType_Ready (), the type structure must have the tp_base slot filled in. When we are deriving an
existing type, it is not necessary to fill out the tp_alloc slot with PyType_GenericNew () - the allocation function
from the base type will be inherited.

After that, calling PyType_Ready () and adding the type object to the module is the same as with the basic Custom
examples.

2.3 Defining Extension Types: Assorted Topics

This section aims to give a quick fly-by on the various type methods you can implement and what they do.

Here is the definition of PyTypeObject, with some fields only used in debug builds omitted:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

(ouvéyela otV emtduevVn oelida)

48 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpocicsuon 3.10.18

(ovveyiCetow amd TV Tponyouevn oekida)

/* Methods to implement standard operations */

destructor tp_dealloc;

Py_ssize_t tp_vectorcall_offset;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */

struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

// Strong reference on a heap type, borrowed reference on a static type

(ouvEyELa OTNV ETTOLLEVT GEMLDOL)

2.3. Defining Extension Types: Assorted Topics 49

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;
vectorcallfunc tp_vectorcall;
} PyTypeObiject;

Now that’s a lot of methods. Don’t worry too much though - if you have a type you want to define, the chances are very
good that you will only implement a handful of these.

As you probably expect by now, we're going to go over this and give more information about the various handlers. We
won’t go in the order they are defined in the structure, because there is a lot of historical baggage that impacts the ordering
of the fields. It’s often easiest to find an example that includes the fields you need and then change the values to suit your
new type.

’const char *tp_name; /* For printing */

The name of the type — as mentioned in the previous chapter, this will appear in various places, almost entirely for
diagnostic purposes. Try to choose something that will be helpful in such a situation!

’Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

These fields tell the runtime how much memory to allocate when new objects of this type are created. Python has some
built-in support for variable length structures (think: strings, tuples) which is where the tp_itemsize field comes in.
This will be dealt with later.

’const char *tp_doc;

Here you can put a string (or its address) that you want returned when the Python script references obj.__ _doc__ to
retrieve the doc string.

Now we come to the basic type methods — the ones most extension types will implement.

50 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

2.3.1 Finalization and De-allocation

destructor tp_dealloc;

This function is called when the reference count of the instance of your type is reduced to zero and the Python interpreter
wants to reclaim it. If your type has memory to free or other clean-up to perform, you can put it here. The object itself
needs to be freed here as well. Here is an example of this function:

static wvoid
newdatatype_dealloc (newdatatypeobject *obj)
{
free (obj->obj_UnderlyingDatatypePtr);
Py_TYPE (obj)->tp_free ((PyObject *)obj);

If your type supports garbage collection, the destructor should call PyObject_GC_UnTrack () before clearing any
member fields:

static void
newdatatype_dealloc (newdatatypeobject *obj)
{

PyObject_GC_UnTrack (obj) ;

Py_CLEAR (obj->other_obj);

Py_TYPE (obj) —>tp_free ((PyObject *)obj);

One important requirement of the deallocator function is that it leaves any pending exceptions alone. This is important
since deallocators are frequently called as the interpreter unwinds the Python stack; when the stack is unwound due to
an exception (rather than normal returns), nothing is done to protect the deallocators from seeing that an exception has
already been set. Any actions which a deallocator performs which may cause additional Python code to be executed may
detect that an exception has been set. This can lead to misleading errors from the interpreter. The proper way to protect
against this is to save a pending exception before performing the unsafe action, and restoring it when done. This can be
done using the PyErr_Fetch () and PyErr_Restore () functions:

static void

my_dealloc (PyObject *obj)

{
MyObject *self = (MyObject *) obj;
PyObject *cbresult;

if (self->my_callback != NULL) {
PyObject *err_type, *err_value, *err_traceback;

/* This saves the current exception state */
PyErr_Fetch (&err_type, &err_value, &err_traceback);

cbresult = PyObject_CallNoArgs (self->my_callback);
if (cbresult == NULL)

PyErr_WriteUnraisable (self->my_callback);
else

Py_DECREF (cbresult) ;

/* This restores the saved exception state */
PyErr_Restore (err_type, err_value, err_traceback);

(ouvéyela otV emtouevn oehida)

2.3. Defining Extension Types: Assorted Topics 51

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Py_DECREF (self->my_callback);

}
Py_TYPE (obj)—>tp_free ((PyObject*)self);

Enueiwon: There are limitations to what you can safely do in a deallocator function. First, if your type supports garbage
collection (using tp_traverse and/or tp_clear), some of the object’s members can have been cleared or finalized
by the time tp_dealloc is called. Second, in tp_dealloc, your object is in an unstable state: its reference count
is equal to zero. Any call to a non-trivial object or API (as in the example above) might end up calling tp_dealloc
again, causing a double free and a crash.

Starting with Python 3.4, it is recommended not to put any complex finalization code in tp_dealloc, and instead use
the new tp_finalize type method.

Agite gmiong:

PEP 442 explains the new finalization scheme.

2.3.2 Object Presentation

In Python, there are two ways to generate a textual representation of an object: the repr () function, and the str ()
function. (The print () function just calls str ().) These handlers are both optional.

reprfunc tp_repr;
reprfunc tp_str;

The tp_repr handler should return a string object containing a representation of the instance for which it is called.
Here is a simple example:

static PyObject *
newdatatype_repr (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Repr-ified newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);

If no tp_repr handler is specified, the interpreter will supply a representation that uses the type’s tp_name and a
uniquely identifying value for the object.

The tp_str handleris to str () what the tp_repr handler described above is to repr () ; that is, it is called when
Python code calls str () on an instance of your object. Its implementation is very similar to the tp_repr function,
but the resulting string is intended for human consumption. If tp_str is not specified, the tp_repr handler is used
instead.

Here is a simple example:

static PyObject *
newdatatype_str (newdatatypeobject * obj)
{
return PyUnicode_FromFormat ("Stringified newdatatype{{size:%d}}",
obj->obj_UnderlyingDatatypePtr->size);

52 Kegahaiwo 2. Creating extensions without third party tools

https://www.python.org/dev/peps/pep-0442

Extending and Embedding Python, Anpoociguon 3.10.18

2.3.3 Attribute Management

For every object which can support attributes, the corresponding type must provide the functions that control how the
attributes are resolved. There needs to be a function which can retrieve attributes (if any are defined), and another to set
attributes (if setting attributes is allowed). Removing an attribute is a special case, for which the new value passed to the
handler is NULL.

Python supports two pairs of attribute handlers; a type that supports attributes only needs to implement the functions for
one pair. The difference is that one pair takes the name of the attribute as a char *, while the other acceptsaPyObject *.
Each type can use whichever pair makes more sense for the implementation’s convenience.

getattrfunc tp_getattr; /* char * version */
setattrfunc tp_setattr;

S L. K/

getattrofunc tp_getattro; /* PyObject * version */

setattrofunc tp_setattro;

If accessing attributes of an object is always a simple operation (this will be explained shortly), there are generic
implementations which can be used to provide the PyObject * version of the attribute management functions. The
actual need for type-specific attribute handlers almost completely disappeared starting with Python 2.2, though there are
many examples which have not been updated to use some of the new generic mechanism that is available.

Generic Attribute Management

Most extension types only use simple attributes. So, what makes the attributes simple? There are only a couple of conditions
that must be met:

1. The name of the attributes must be known when Py Type_Ready () is called.

2. No special processing is needed to record that an attribute was looked up or set, nor do actions need to be taken
based on the value.

Note that this list does not place any restrictions on the values of the attributes, when the values are computed, or how
relevant data is stored.

When PyType_Ready () is called, it uses three tables referenced by the type object to create descriptors which are
placed in the dictionary of the type object. Each descriptor controls access to one attribute of the instance object. Each
of the tables is optional; if all three are NULL, instances of the type will only have attributes that are inherited from their
base type, and should leave the tp_getattro and tp_setattro fields NULL as well, allowing the base type to
handle attributes.

The tables are declared as three fields of the type object:

struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;

If tp_methods is not NULL, it must refer to an array of PyMethodDef structures. Each entry in the table is an
instance of this structure:

typedef struct PyMethodDef {

const char *ml_name; /* method name */

PyCFunction ml_meth; /* implementation function */
int ml_flags; /* flags */

const char *ml_doc; /* docstring */

} PyMethodDef;

2.3. Defining Extension Types: Assorted Topics 53

Extending and Embedding Python, Anpooicuon 3.10.18

One entry should be defined for each method provided by the type; no entries are needed for methods inherited from a
base type. One additional entry is needed at the end; it is a sentinel that marks the end of the array. The m1_name field
of the sentinel must be NULL.

The second table is used to define attributes which map directly to data stored in the instance. A variety of primitive C
types are supported, and access may be read-only or read-write. The structures in the table are defined as:

typedef struct PyMemberDef {
const char *name;

int type;
int offset;
int flags;

const char *doc;
} PyMemberDef;

For each entry in the table, a descriptor will be constructed and added to the type which will be able to extract a value
from the instance structure. The type field should contain one of the type codes defined in the st ructmember.h
header; the value will be used to determine how to convert Python values to and from C values. The f1ags field is used
to store flags which control how the attribute can be accessed.

The following flag constants are defined in st ructmember . h; they may be combined using bitwise-OR.

Constant Meaning
READONLY Never writable.
PY_AUDIT_READ | Emitan object.__getattr__ audit events before reading.

AMoEe otv ékdoon 3.10: RESTRICTED, READ_RESTRICTED and WRITE_RESTRICTED are deprecated.
However, READ_RESTRICTED is an alias for PY _AUDIT_READ, so fields that specify either RESTRICTED or
READ_RESTRICTED will also raise an audit event.

An interesting advantage of using the t p_members table to build descriptors that are used at runtime is that any attribute
defined this way can have an associated doc string simply by providing the text in the table. An application can use the
introspection API to retrieve the descriptor from the class object, and get the doc string using its ___doc___ attribute.

As with the tp_methods table, a sentinel entry with a name value of NULL is required.

Type-specific Attribute Management

For simplicity, only the char* version will be demonstrated here; the type of the name parameter is the only difference
between the char* and PyObject * flavors of the interface. This example effectively does the same thing as the generic
example above, but does not use the generic support added in Python 2.2. It explains how the handler functions are called,
so that if you do need to extend their functionality, you'll understand what needs to be done.

The tp_getattr handler is called when the object requires an attribute look-up. It is called in the same situations
where the __getattr__ () method of a class would be called.

Here is an example:

static PyObject *
newdatatype_getattr (newdatatypeobject *obj, char *name)
{
if (strcmp(name, "data") == 0)
{
return Pylong_FromLong (obj->data);

(ouvéyela otV emoOUEVT OENDOL)

54 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

PyErr_Format (PyExc_AttributeError,
"'%$.50s' object has no attribute '%.400s'",
tp—>tp_name, name);

return NULL;

The tp_setattr handler is called when the _ setattr__ () or _ delattr__ () method of a class instance
would be called. When an attribute should be deleted, the third parameter will be NULL. Here is an example that simply
raises an exception; if this were really all you wanted, the t p_setattr handler should be set to NULL.

static int

newdatatype_setattr (newdatatypeobject *obj, char *name, PyObject *v)

{
PyErr_Format (PyExc_RuntimeError, "Read-only attribute: %s", name);
return -1;

2.3.4 Object Comparison

richcmpfunc tp_richcompare;

The tp_richcompare handler is called when comparisons are needed. It is analogous to the rich comparison methods,
like__1t__ (), and also called by PyObject_RichCompare () and PyObject_RichCompareBool ().

This function is called with two Python objects and the operator as arguments, where the operator is one of Py_EQ,
Py_NE,Py_LE,Py_GE,Py_LTor Py_GT. It should compare the two objects with respect to the specified operator and
return Py_True or Py_False if the comparison is successful, Py_Not Implemented to indicate that comparison
is not implemented and the other object’s comparison method should be tried, or NULL if an exception was set.

Here is a sample implementation, for a datatype that is considered equal if the size of an internal pointer is equal:

static PyObject *
newdatatype_richcmp (PyObject *objl, PyObject *obj2, int op)
{

PyObject *result;

int c, sizel, size2;

/* code to make sure that both arguments are of type
newdatatype omitted */

sizel = objl->obj_UnderlyingDatatypePtr->size;
size2 = obj2->o0bj_UnderlyingDatatypePtr->size;

switch (op) {

case : ¢ = sizel < size2; break;
case c = sizel <= size2; break;
case : ¢ = sizel == size2; break;
case c = sizel != size2; break;
case c = sizel > size2; break;
case c = sizel >= size2; break;

}

result = ¢ ? Py_True : Py_False;
Py_INCREF (result);
return result;

2.3. Defining Extension Types: Assorted Topics 55

Extending and Embedding Python, Anpooicuon 3.10.18

2.3.5 Abstract Protocol Support

Python supports a variety of abstract “protocols;” the specific interfaces provided to use these interfaces are documented
in abstract.

A number of these abstract interfaces were defined early in the development of the Python implementation. In particular,
the number, mapping, and sequence protocols have been part of Python since the beginning. Other protocols have been
added over time. For protocols which depend on several handler routines from the type implementation, the older protocols
have been defined as optional blocks of handlers referenced by the type object. For newer protocols there are additional
slots in the main type object, with a flag bit being set to indicate that the slots are present and should be checked by the
interpreter. (The flag bit does not indicate that the slot values are non-NULL. The flag may be set to indicate the presence
of a slot, but a slot may still be unfilled.)

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

If you wish your object to be able to act like a number, a sequence, or a mapping object, then you place the address of
a structure that implements the C type PyNumberMethods, PySequenceMethods, or PyMappingMethods,
respectively. It is up to you to fill in this structure with appropriate values. You can find examples of the use of each of
these in the Objects directory of the Python source distribution.

hashfunc tp_hash;

This function, if you choose to provide it, should return a hash number for an instance of your data type. Here is a simple
example:

static Py_hash_t
newdatatype_hash (newdatatypeobject *obj)

{
Py_hash_t result;

result = obj->some_size + 32767 * obj->some_number;
if (result == -1)
result -2;

return result;

Py_hash_t is a signed integer type with a platform-varying width. Returning —1 from tp_hash indicates an error,
which is why you should be careful to avoid returning it when hash computation is successful, as seen above.

ternaryfunc tp_call;

This function is called when an instance of your data type is «called», for example, if obj1 is an instance of your data
type and the Python script contains obj1 ('hello'), the tp_call handler is invoked.

This function takes three arguments:

1. self is the instance of the data type which is the subject of the call. If the call is obj1 ('hello'), then self is
objl.

2. args is a tuple containing the arguments to the call. You can use PyArg ParseTuple () to extract the
arguments.

3. kwds is a dictionary of keyword arguments that were passed. If this is non-NULL and you support keyword
arguments, use PyArg_ParseTupleAndKeywords () to extract the arguments. If you do not want to support
keyword arguments and this is non-NULL, raise a TypeError with a message saying that keyword arguments are
not supported.

Here is a toy tp_call implementation:

56 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

static PyObject *
newdatatype_call (newdatatypeobject *self, PyObject *args, PyObject *kwds)
{

PyObject *result;

const char *argl;

const char *arg2;

const char *arg3;

if (!PyArg_ParseTuple(args, "sss:call", &argl, &arg2, &arg3)) A
return NULL;

}

result = PyUnicode_FromFormat (
"Returning —-- value: [%d] argl: [%s] arg2: [%s] arg3: [
obj->obj_UnderlyingDatatypePtr->size,
argl, arg2, arg3);

return result;

oe

sl\n",

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

These functions provide support for the iterator protocol. Both handlers take exactly one parameter, the instance for
which they are being called, and return a new reference. In the case of an error, they should set an exception and return
NULL. tp_iter corresponds to the Python __iter_ () method, while tp_iternext corresponds to the Python
__next__ () method.

Any iterable object must implement the t p_ i t er handler, which must return an iterator object. Here the same guidelines
apply as for Python classes:

« For collections (such as lists and tuples) which can support multiple independent iterators, a new iterator should be
created and returned by each callto tp_iter.

« Objects which can only be iterated over once (usually due to side effects of iteration, such as file objects) can
implement tp_iter by returning a new reference to themselves — and should also therefore implement the
tp_iternext handler.

Any iterator object should implement both tp_iter and tp_iternext. An iterator’s tp_iter handler should
return a new reference to the iterator. Its tp_iternext handler should return a new reference to the next object in
the iteration, if there is one. If the iteration has reached the end, tp_iternext may return NULL without setting an
exception, or it may set StopIteration in addition to returning NULL; avoiding the exception can yield slightly better
performance. If an actual error occurs, tp_iternext should always set an exception and return NULL.

2.3.6 Weak Reference Support

One of the goals of Python’s weak reference implementation is to allow any type to participate in the weak reference
mechanism without incurring the overhead on performance-critical objects (such as numbers).

Agite gmiong:

Documentation for the weakre £ module.

For an object to be weakly referencable, the extension type must do two things:

1. Include a PyObject* field in the C object structure dedicated to the weak reference mechanism. The object’s
constructor should leave it NULL (which is automatic when using the default tp_alloc).

2.3. Defining Extension Types: Assorted Topics 57

Extending and Embedding Python, Anpooicuon 3.10.18

2. Setthe tp_weaklistoffset type member to the offset of the aforementioned field in the C object structure,
so that the interpreter knows how to access and modify that field.

Concretely, here is how a trivial object structure would be augmented with the required field:

typedef struct {

PyObject_HEAD

PyObject *weakreflist; /* List of weak references */
} TrivialObject;

And the corresponding member in the statically declared type object:

static PyTypeObject TrivialType = {
PyVarObject_ HEAD_INIT (NULL, O)
/* ... other members omitted for brevity ... */
.tp_weaklistoffset = offsetof(TrivialObject, weakreflist),

bi

The only further addition is that tp_dealloc needs to clear any weak references (by calling
PyObject_ClearWeakRefs ()) if the field is non-NULL:

static void
Trivial dealloc(TrivialObject *self)
{

/* Clear weakrefs first before calling any destructors */

if (self->weakreflist != NULL)
PyObject_ClearWeakRefs ((PyObject *) self);
/* ... remainder of destruction code omitted for brevity ... */

Py_TYPE (self)->tp_free ((PyObject *) self);

2.3.7 More Suggestions

In order to learn how to implement any specific method for your new data type, get the CPython source code.
Go to the Objects directory, then search the C source files for tp_ plus the function you want (for example,
tp_richcompare). You will find examples of the function you want to implement.

When you need to verify that an object is a concrete instance of the type you are implementing, use the
PyObject_TypeCheck () function. A sample of its use might be something like the following:

if (!PyObject_TypeCheck (some_object, &MyType)) A
PyErr_SetString (PyExc_TypeError, "arg #1 not a mything");
return NULL;

Agite gmiong:
Download CPython source releases. https://www.python.org/downloads/source/

The CPython project on GitHub, where the CPython source code is developed. https://github.com/python/
cpython

58 Kegahaiwo 2. Creating extensions without third party tools

https://www.python.org/downloads/source/
https://github.com/python/cpython
https://github.com/python/cpython

Extending and Embedding Python, Anpoociguon 3.10.18

2.4 Building C and C++ Extensions

A Cextension for CPython is a shared library (e.g. a . so file on Linux, . pyd on Windows), which exports an inifialization
Sfunction.

To be importable, the shared library must be available on PYTHONPATH, and must be named after the module name,
with an appropriate extension. When using distutils, the correct filename is generated automatically.

The initialization function has the signature:
PyObject *PyInit_modulename (void)
It returns either a fully initialized module, or a PyModuleDef instance. See initializing-modules for details.

For modules with ASCII-only names, the function must be named PyInit_<modulename>, with <modulename>
replaced by the name of the module. When using multi-phase-initialization, non-ASCII module names are allowed. In this
case, the initialization function name is PyInitU_<modulename>, with <modulename> encoded using Python’s
punycode encoding with hyphens replaced by underscores. In Python:

def initfunc_name (name) :

try:
suffix = b' ' + name.encode('ascii')
except UnicodeEncodeError:
suffix = b'U_' + name.encode ('punycode') .replace(b'-"', b'_")

return b'PyInit' + suffix

It is possible to export multiple modules from a single shared library by defining multiple initialization functions. However,
importing them requires using symbolic links or a custom importer, because by default only the function corresponding
to the filename is found. See the «Multiple modules in one library» section in PEP 489 for details.

2.4.1 Building C and C++ Extensions with distutils
Extension modules can be built using distutils, which is included in Python. Since distutils also supports creation of binary
packages, users don’t necessarily need a compiler and distutils to install the extension.

A distutils package contains a driver script, setup . py. This is a plain Python file, which, in the most simple case, could
look like this:

from distutils.core import setup, Extension

modulel = Extension('demo',
sources = ['demo.c'])
setup (name = 'PackageName',
version = '1.0",
description = 'This is a demo package',
ext_modules = [modulel])

With this setup . py, and a file demo . ¢, running

python setup.py build

will compile demo . ¢, and produce an extension module named demo in the bui 1d directory. Depending on the system,
the module file will end up in a subdirectory build/1lib.system, and may have a name like demo. so or demo.

pyd.

In the setup . py, all execution is performed by calling the setup function. This takes a variable number of keyword
arguments, of which the example above uses only a subset. Specifically, the example specifies meta-information to build

2.4. Building C and C++ Extensions 59

https://www.python.org/dev/peps/pep-0489

Extending and Embedding Python, Anpooicuon 3.10.18

packages, and it specifies the contents of the package. Normally, a package will contain additional modules, like Python
source modules, documentation, subpackages, etc. Please refer to the distutils documentation in distutils-index to learn
more about the features of distutils; this section explains building extension modules only.

It is common to pre-compute arguments to setup (), to better structure the driver script. In the example above, the
ext_modules argument to setup () is a list of extension modules, each of which is an instance of the Extension.
In the example, the instance defines an extension named demo which is build by compiling a single source file, demo . c.

In many cases, building an extension is more complex, since additional preprocessor defines and libraries may be needed.
This is demonstrated in the example below.

from distutils.core import setup, Extension

modulel = Extension('demo',
define_macros = [('MAJOR_VERSION', '1'"),
("MINOR_VERSION', '0')1,
include_dirs = ['/usr/local/include'],
libraries = ['tcl83'],
library_dirs = ['/usr/local/lib'],
sources = ['demo.c'])
setup (name = 'PackageName',
version = '1.0",
description = 'This is a demo package',
author = '"Martin v. Loewis',
author_email = 'martin@v.loewis.de',
url = 'https://docs.python.org/extending/building’,

long_description = '''
This is really just a demo package.

[
4

ext_modules = [modulel])

In this example, setup () is called with additional meta-information, which is recommended when distribution packages
have to be built. For the extension itself, it specifies preprocessor defines, include directories, library directories, and
libraries. Depending on the compiler, distutils passes this information in different ways to the compiler. For example, on
Unix, this may result in the compilation commands

gcc -DNDEBUG —-g -03 -Wall -Wstrict-prototypes —-fPIC -DMAJOR_VERSION=1 -DMINOR_
< VERSION=0 -I/usr/local/include -I/usr/local/include/python2.2 -c demo.c -o build/
—temp.linux-1686-2.2/demo.o

gcc —shared build/temp.linux-i1686-2.2/demo.o -L/usr/local/lib -1tcl83 -o build/lib.
—1linux—-1686-2.2/demo.so

These lines are for demonstration purposes only; distutils users should trust that distutils gets the invocations right.

2.4.2 Distributing your extension modules

When an extension has been successfully built, there are three ways to use it.

End-users will typically want to install the module, they do so by running

python setup.py install

Module maintainers should produce source packages; to do so, they run

60 Kegahaiwo 2. Creating extensions without third party tools

Extending and Embedding Python, Anpoociguon 3.10.18

python setup.py sdist

In some cases, additional files need to be included in a source distribution; this is done through a MANIFEST. in file;
see manifest for details.

If the source distribution has been built successfully, maintainers can also create binary distributions. Depending on the
platform, one of the following commands can be used to do so.

python setup.py bdist_rpm
python setup.py bdist_dumb

2.5 Building C and C++ Extensions on Windows

This chapter briefly explains how to create a Windows extension module for Python using Microsoft Visual C++, and
follows with more detailed background information on how it works. The explanatory material is useful for both the
Windows programmer learning to build Python extensions and the Unix programmer interested in producing software
which can be successfully built on both Unix and Windows.

Module authors are encouraged to use the distutils approach for building extension modules, instead of the one described
in this section. You will still need the C compiler that was used to build Python; typically Microsoft Visual C++.

Ynueiwon: This chapter mentions a number of filenames that include an encoded Python version number. These
filenames are represented with the version number shown as XY; in practice, 'X' will be the major version number
and 'Y"' will be the minor version number of the Python release you’re working with. For example, if you are using
Python 2.2.1, XY will actually be 22.

2.5.1 A Cookbook Approach

There are two approaches to building extension modules on Windows, just as there are on Unix: use the distutils
package to control the build process, or do things manually. The distutils approach works well for most extensions;
documentation on using distutils to build and package extension modules is available in distutils-index. If you find
you really need to do things manually, it may be instructive to study the project file for the winsound standard library
module.

2.5.2 Differences Between Unix and Windows

Unix and Windows use completely different paradigms for run-time loading of code. Before you try to build a module
that can be dynamically loaded, be aware of how your system works.

In Unix, a shared object (. so) file contains code to be used by the program, and also the names of functions and data
that it expects to find in the program. When the file is joined to the program, all references to those functions and data
in the file’s code are changed to point to the actual locations in the program where the functions and data are placed in
memory. This is basically a link operation.

In Windows, a dynamic-link library (. d11) file has no dangling references. Instead, an access to functions or data goes
through a lookup table. So the DLL code does not have to be fixed up at runtime to refer to the program’s memory; instead,
the code already uses the DLL’s lookup table, and the lookup table is modified at runtime to point to the functions and
data.

2.5. Building C and C++ Extensions on Windows 61

https://github.com/python/cpython/tree/3.10/PCbuild/winsound.vcxproj

Extending and Embedding Python, Anpooicuon 3.10.18

In Unix, there is only one type of library file (. a) which contains code from several object files (. o). During the link
step to create a shared object file (. so), the linker may find that it doesn’t know where an identifier is defined. The linker
will look for it in the object files in the libraries; if it finds it, it will include all the code from that object file.

In Windows, there are two types of library, a static library and an import library (both called . 1ib). A static library is
like a Unix . a file; it contains code to be included as necessary. An import library is basically used only to reassure the
linker that a certain identifier is legal, and will be present in the program when the DLL is loaded. So the linker uses the
information from the import library to build the lookup table for using identifiers that are not included in the DLL. When
an application or a DLL is linked, an import library may be generated, which will need to be used for all future DLLs
that depend on the symbols in the application or DLL.

Suppose you are building two dynamic-load modules, B and C, which should share another block of code A. On Unix,
you would not pass A . a to the linker for B. so and C . so; that would cause it to be included twice, so that B and C would
each have their own copy. In Windows, building A .d11 will also build A. 1ib. You do pass A. 1ib to the linker for B
and C. A. 11ib does not contain code; it just contains information which will be used at runtime to access A’s code.

In Windows, using an import library is sort of like using import spam; it gives you access to spam’s names, but does
not create a separate copy. On Unix, linking with a library is more like from spam import *; it does create a
separate copy.

2.5.3 Using DLLs in Practice
Windows Python is built in Microsoft Visual C++; using other compilers may or may not work. The rest of this section
is MSVC++ specific.

When creating DLLs in Windows, you must pass pythonXY . 1ib to the linker. To build two DLLs, spam and ni (which
uses C functions found in spam), you could use these commands:

cl /LD /I/python/include spam.c ../libs/pythonXY.lib
cl /LD /I/python/include ni.c spam.lib ../libs/pythonXY.lib

The first command created three files: spam.obj, spam.dll and spam.lib. Spam.dll does not contain any
Python functions (such as PyArg_ParseTuple ()), but it does know how to find the Python code thanks to
pythonXY.1lib.

The second command created ni.d11 (and .obj and . 11ib), which knows how to find the necessary functions from
spam, and also from the Python executable.

Not every identifier is exported to the lookup table. If you want any other modules (including Python) to be able
to see your identifiers, you have to say _declspec (dllexport), as in void _declspec (dllexport)
initspam(void) or PyObject _declspec(dllexport) *NiGetSpamData (void).

Developer Studio will throw in a lot of import libraries that you do not really need, adding about 100K to your
executable. To get rid of them, use the Project Settings dialog, Link tab, to specify ignore default libraries. Add the
correct msvcrtxx.lib to the list of libraries.

62 Kegahaiwo 2. Creating extensions without third party tools

KEGANAIO 3

Embedding the CPython runtime in a larger application

Sometimes, rather than creating an extension that runs inside the Python interpreter as the main application, it is desirable
to instead embed the CPython runtime inside a larger application. This section covers some of the details involved in doing
that successfully.

3.1 Embedding Python in Another Application

The previous chapters discussed how to extend Python, that is, how to extend the functionality of Python by attaching a
library of C functions to it. It is also possible to do it the other way around: enrich your C/C++ application by embedding
Python in it. Embedding provides your application with the ability to implement some of the functionality of your
application in Python rather than C or C++. This can be used for many purposes; one example would be to allow users
to tailor the application to their needs by writing some scripts in Python. You can also use it yourself if some of the
functionality can be written in Python more easily.

Embedding Python is similar to extending it, but not quite. The difference is that when you extend Python, the main
program of the application is still the Python interpreter, while if you embed Python, the main program may have nothing
to do with Python — instead, some parts of the application occasionally call the Python interpreter to run some Python
code.

So if you are embedding Python, you are providing your own main program. One of the things this main program has to
do is initialize the Python interpreter. At the very least, you have to call the function Py_Initialize (). There are
optional calls to pass command line arguments to Python. Then later you can call the interpreter from any part of the
application.

There are several different ways to call the interpreter: you can pass a string containing Python statements to
PyRun_SimpleString (), or you can pass a stdio file pointer and a file name (for identification in error messages
only) to PyRun_SimpleFile (). You can also call the lower-level operations described in the previous chapters to
construct and use Python objects.

Agite emiong:

c-api-index The details of Python’s C interface are given in this manual. A great deal of necessary information can be
found here.

63

Extending and Embedding Python, Anpooicuon 3.10.18

3.1.1 Very High Level Embedding

The simplest form of embedding Python is the use of the very high level interface. This interface is intended to execute
a Python script without needing to interact with the application directly. This can for example be used to perform some
operation on a file.

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

int
main (int argc, char *argv[])
{
wchar_t *program = Py_DecodelLocale (argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1) ;

}
Py_SetProgramName (program); /* optional but recommended */
Py_Initialize();
PyRun_SimpleString ("from time import time,ctime\n"
"print ('Today is', ctime (time()))\n");

if (Py_FinalizeEx () < 0) {

exit (120);
}
PyMem_RawFree (program) ;
return 0;

The Py_SetProgramName () function should be called before Py_Initialize () toinform the interpreter about
paths to Python run-time libraries. Next, the Python interpreter is initialized with Py_Initialize (), followed by the
execution of a hard-coded Python script that prints the date and time. Afterwards, the Py_FinalizeEx () call shuts
the interpreter down, followed by the end of the program. In a real program, you may want to get the Python script from
another source, perhaps a text-editor routine, a file, or a database. Getting the Python code from a file can better be done
by using the PyRun_SimpleFile () function, which saves you the trouble of allocating memory space and loading
the file contents.

3.1.2 Beyond Very High Level Embedding: An overview

The high level interface gives you the ability to execute arbitrary pieces of Python code from your application, but
exchanging data values is quite cumbersome to say the least. If you want that, you should use lower level calls. At the cost
of having to write more C code, you can achieve almost anything.

It should be noted that extending Python and embedding Python is quite the same activity, despite the different intent.
Most topics discussed in the previous chapters are still valid. To show this, consider what the extension code from Python
to C really does:

1. Convert data values from Python to C,
2. Perform a function call to a C routine using the converted values, and
3. Convert the data values from the call from C to Python.
When embedding Python, the interface code does:
1. Convert data values from C to Python,
2. Perform a function call to a Python interface routine using the converted values, and

3. Convert the data values from the call from Python to C.

64 Kegahawo 3. Embedding the CPython runtime in a larger application

Extending and Embedding Python, Anpoociguon 3.10.18

As you can see, the data conversion steps are simply swapped to accommodate the different direction of the cross-language
transfer. The only difference is the routine that you call between both data conversions. When extending, you call a C
routine, when embedding, you call a Python routine.

This chapter will not discuss how to convert data from Python to C and vice versa. Also, proper use of references and
dealing with errors is assumed to be understood. Since these aspects do not differ from extending the interpreter, you can
refer to earlier chapters for the required information.

3.1.3 Pure Embedding

The first program aims to execute a function in a Python script. Like in the section about the very high level interface,
the Python interpreter does not directly interact with the application (but that will change in the next section).

The code to run a function defined in a Python script is:

#define PY _SSIZE_T CLEAN
#include <Python.h>

int

main (int argc, char *argv([])

{
PyObject *pName, *pModule, *pFunc;
PyObject *pArgs, *pValue;
int i;

if (argc < 3) {
fprintf (stderr, "Usage: call pythonfile funcname [args]\n");
return 1;

Py_Initialize();
pName = PyUnicode_DecodeFSDefault (argv([1l]);
/* Error checking of pName left out */

pModule = PyImport_Import (pName) ;
Py_DECREF (pName) ;

if (pModule != NULL) {
pFunc = PyObject_GetAttrString (pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) |
pArgs = PyTuple_New(argc - 3);
for (i = 0; 1 < argc - 3; ++1i) A
pValue = PylLong_FromLong (atoi (argv[i + 31));
if (!pvalue) {
Py_DECREF (pArgs) ;
Py_DECREF (pModule) ;
fprintf (stderr, "Cannot convert argument\n");
return 1;
}
/* pValue reference stolen here: */
PyTuple_SetItem(pArgs, i, pValue);
}
pValue = PyObject_CallObject (pFunc, pArgs);
Py_DECREF (pArgs) ;
if (pValue != NULL) {

(ouvéyela otV emtduevn oehida)

3.1. Embedding Python in Another Application 65

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

printf ("Result of call: %1d\n", PyLong_AsLong (pValue));
Py_DECREF (pValue) ;
}
else {
Py_DECREF (pFunc) ;
Py_DECREF (pModule) ;
PyErr_Print ();
fprintf (stderr,"Call failed\n");
return 1;

}
else {
if (PyErr_Occurred())
PyErr_Print ();
fprintf (stderr, "Cannot find function \"%s\"\n", argv[2]);
}
Py_XDECREF (pFunc) ;
Py_DECREF (pModule) ;
;
else {
PyErr_Print ();
fprintf (stderr, "Failed to load \"%s\"\n", argv[1]);
return 1;
I3
if (Py_FinalizeEx () < 0) {
return 120;
3

return 0;

This code loads a Python script using argv [1], and calls the function named in argv [2]. Its integer arguments are
the other values of the argv array. If you compile and link this program (let’s call the finished executable call), and
use it to execute a Python script, such as:

def multiply(a,b):
print ("Will compute", a, "times", b)

c =20
for i in range (0, a):
c=c¢c+b

return c

then the result should be:

$ call multiply multiply 3 2
Will compute 3 times 2
Result of call: 6

Although the program is quite large for its functionality, most of the code is for data conversion between Python and C,
and for error reporting. The interesting part with respect to embedding Python starts with

Py_Initialize();

pName = PyUnicode_DecodeFSDefault (argv([1]);
/* Error checking of pName left out */
pModule = PyImport_Import (pName) ;

After initializing the interpreter, the script is loaded using Py Import_Import (). This routine needs a Python string
as its argument, which is constructed using the PyUnicode_FromString () data conversion routine.

66 Kegahawo 3. Embedding the CPython runtime in a larger application

Extending and Embedding Python, Anpoociguon 3.10.18

pFunc = PyObject_GetAttrString(pModule, argv[2]);
/* pFunc is a new reference */

if (pFunc && PyCallable_Check (pFunc)) {

}
Py_XDECREF (pFunc) ;

Once the script is loaded, the name we're looking for is retrieved using PyObject_GetAttrString (). If the name
exists, and the object returned is callable, you can safely assume that it is a function. The program then proceeds by
constructing a tuple of arguments as normal. The call to the Python function is then made with:

pValue = PyObject_CallObject (pFunc, pArgs);

Upon return of the function, pvalue is either NULL or it contains a reference to the return value of the function. Be
sure to release the reference after examining the value.

3.1.4 Extending Embedded Python

Until now, the embedded Python interpreter had no access to functionality from the application itself. The Python API
allows this by extending the embedded interpreter. That is, the embedded interpreter gets extended with routines provided
by the application. While it sounds complex, it is not so bad. Simply forget for a while that the application starts the Python
interpreter. Instead, consider the application to be a set of subroutines, and write some glue code that gives Python access
to those routines, just like you would write a normal Python extension. For example:

static int numargs=0;

/* Return the number of arguments of the application command line */
static PyObject*
emb_numargs (PyObject *self, PyObject *args)
{
if (!PyArg_ParseTuple (args, ":numargs"))
return NULL;
return PylLong_FromLong (numargs) ;

static PyMethodDef EmbMethods[] = {
{"numargs", emb_numargs, METH_VARARGS,
"Return the number of arguments received by the process."},
{NULL, NULL, 0O, NULL}

bi

static PyModuleDef EmbModule = {
PyModuleDef_ HEAD_INIT, "emb", NULL, -1, EmbMethods,
NULL, NULL, NULL, NULL

bi

static PyObject*
PyInit_emb (void)
{
return PyModule_Create (&EmbModule) ;

Insert the above code just above the main () function. Also, insert the following two statements before the call to
Py_Initialize():

3.1. Embedding Python in Another Application 67

Extending and Embedding Python, Anpooicuon 3.10.18

numargs = argc;
PyImport_AppendInittab ("emb", &PyInit_emb);

These two lines initialize the numargs variable, and make the emb . numargs () function accessible to the embedded
Python interpreter. With these extensions, the Python script can do things like

import emb
print ("Number of arguments", emb.numargs())

In a real application, the methods will expose an API of the application to Python.

3.1.5 Embedding Python in C++

It is also possible to embed Python in a C++ program; precisely how this is done will depend on the details of the C++
system used; in general you will need to write the main program in C++, and use the C++ compiler to compile and link
your program. There is no need to recompile Python itself using C++.

3.1.6 Compiling and Linking under Unix-like systems

It is not necessarily trivial to find the right flags to pass to your compiler (and linker) in order to embed the Python
interpreter into your application, particularly because Python needs to load library modules implemented as C dynamic
extensions (. so files) linked against it.

To find out the required compiler and linker flags, you can execute the pythonX. Y-config script which is generated
as part of the installation process (a python3—-config script may also be available). This script has several options,
of which the following will be directly useful to you:

e pythonX.Y-config —--cflags will give you the recommended flags when compiling:

$ /opt/bin/python3.11-config --cflags
-I/opt/include/python3.11 -I/opt/include/python3.11 -Wsign-compare -DNDEBUG -g -
—fwrapv -03 -Wall

pythonX.Y-config --1ldflags --embed will give you the recommended flags when linking:

$ /opt/bin/python3.11-config —--1ldflags —--embed
-L/opt/lib/python3.11/config-3.11-x86_64-1linux—gnu —-L/opt/lib -lpython3.11 -
—lpthread -1dl -lutil -1m

Ynueioon: To avoid confusion between several Python installations (and especially between the system Python and
your own compiled Python), it is recommended that you use the absolute path to pythonX.Y-config, as in the
above example.

If this procedure doesn’t work for you (it is not guaranteed to work for all Unix-like platforms; however, we welcome bug
reports) you will have to read your system’s documentation about dynamic linking and/or examine Python’s Makefile
(use sysconfig.get_makefile_filename () to find its location) and compilation options. In this case, the
sysconfig module is a useful tool to programmatically extract the configuration values that you will want to combine
together. For example:

>>> import sysconfig
>>> sysconfig.get_config_var ('LIBS")
'-lpthread -1dl -—lutil'

(ouvéyela otV emoOUEVT 0eNdO)

68 Kegahawo 3. Embedding the CPython runtime in a larger application

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

>>> gysconfig.get_config_var ('LINKFORSHARED")
'-Xlinker -export-dynamic'

3.1. Embedding Python in Another Application 69

Extending and Embedding Python, Anpooicuon 3.10.18

70

Kegahawo 3. Embedding the CPython runtime in a larger application

nAPAPTHMA A’

Mwoodpl

>>> To mpoemheyuévo Python prompt tov dtadpootiko shell. Zuyvd epgpaviletal yio mapadeiyioto KmdLKa Tou
uITopoVV va, EKTEAETTOUV dLAdPAOTIKA OTOV interpreter.

. Mmnopei va avagépetan o€:

o To mpoemiheyuévo Python prompt tou dtadpaotikov shell katd v eLooymyn Tou KOdIKa Yo £va Whok
KddiKa pe gooyn, otav Bpioketol péoa oe éva Levyog Taplaouévmv aplotepmv Ko deEudv delimiters
(mapevOéoelg, ayKULeg, AYKLOTPO 1) TPLITAN ELOAYMYLKA),) LETA TOV KoBopLond evog decorator.

o H evowpatmuévn otabepd E11ipsis.

2to3 'Eva epyaleio mov mpoomadel vo uetatpépel tov Kodika Python 2.x oe kwduka Python 3.x duayelpilovrog
TLG TTEPLOTOTEPES ALTVUPATOTITES TOU UTOPOVYV VO EVTOTLOTOVV OVOADOVTOG TNV TNy Ko diaoyilovtag to
dévTpo avdivong.

2t03 eival drabéoipo oty atdvtap BirodNKn wg 1ib2t o3, mapéyetar éva onueio e.0ddov mwg Tools/
scripts/2to3. Bh. 2to3-reference.

agnpnuévy fackn) kAaon Ou agnpnuéveg Paotkéc KAAOELSG cuumthnpwvouy To duck-typing mapéyoviag évav
tpoOTo opLopov interfaces dtov dhheg texvikég 6mwg N hasattr () Bo Nrav adéEieg 1 avemaiodnta Aav-
Oaopéveg (Yo topdderypna pe magic methods). Tao ABC (abstract base class) eLodyovv elKOVIKEG VTOKAAOELS,
oL omoieg eivar KAGoeLg Tov dev Khnpovouovvran ard o kKAGon, odhd eEakolovbotv va avayvopiloval
amd to isinstance () kow amd 10 issubclass () ” BA. v teKunpimwon tov module abe. H Python dia-
0éteL moAG evowpatwpuéva ABC yia dopég dedopévmv (oto module collections. abe), apOuovg (oto
module numbers), poég (o010 module povada io), eloarywyn finders kou loaders (0to module importlib.
abc). Mmopeite va dnuovpynoete ta dukd oag ABC pe to module abe.

annotation Mo etikéto Tov oyeTIeTan Ue po UETARANTH, £va YopaKTNPELOTIKO KAGONG 1| WOl TTOPAUETPOG GU-
VAPTNONG 1] TLUN TTOV ETLOTPEPETAL, TTOV XPT|OLUOTTOLELTOL KOTd avufacn wg type hint.

Aegv givar duvati) 1) TPoOoPaon oTo annotations TWV TOTLKMOV UETABANTOV KT TO (pdvo eKTéheons, alld
Ta annotations tov global petafANTmv, TOV YoPAKTNPLOTLKOV KAAONG KoL TOV CUVOPTHOE®MY 0rtodnKkevo-
VTOL 0TO ELOLKO YOpOoKTNPLOTIKO __annotations__ twv modules, Twv KAACEMV KOL TV OUVAPTNOEWY,
avtioToya.

B\. variable annotation, function annotation, PEP 484 kaw PEP 526, to omtoia tepLypdepouv tnv AeLtovpytkd-
tnta. Estiong BA. annotations-howto yia tig BELTLOTEG TTPOaKTIKEG dOVAEVOVTOG e annotations.

71

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

Extending and Embedding Python, Anpooicuon 3.10.18

opwopo. Mot puetafiatetal oe pio function () method) xotd Ty kAo g ouvaptnong. Yrdpyouv dvo eidn
0PLOUATOV:

o keyword argument: ¢évo. dpLopa. TPLY amd Evo avayvopLoTiko (.. name=) o€ Ui KAMon ovvaptongm
TEPVAVTAG TO WG TY) 0€ éva AeEkd mpy amd * *. T'o mopdderyna, To 3 KoL to 5 0ToTeAoUV opiopata,
MEewv-KheldLmv otig akdrovbeg KM oeLS Tpog complex () :

complex (real=3, imag=b5)
complex (**{'real': 3, 'imag': 5})

o positional argument: £vo. 6pLopa. Tov dev givan OpLopa keyword. To opiopato O£0Mg LTopPovV VoL EUpOL-
viCovtar otnv apyng wag hMotog optopdtmv /Kot va petofipalovrar wg otouyelo evog iterable mpiv
o6 *. ['o wopdderyua, To 3 kow 1o 5 amotehoVv oplopata OE0NG OTLS TOPAKATO KA OELS:

complex (3, 5)
complex (* (3, 5))

Ta opiopota EKYWPOUVTOL OTIG OVOUOUEVES TOTILKEG UETOBANTEG 0TO OO pLe ouvapTnong. BA. v evo-
Tita calls yia Tovug Kavoveg o SLETOUV auThHv TNV EKYMPNOT. ZUVTAKTIKA, 0TTOL0ONTOTE £KQPOON UITOPEL
va ypnouortoBel yia va avarapaotioel £va oproua’” 1 oELohoyoUHEVT) TIUT EKYMPEITOL OE LLC. TOTILKY)
ueTapAnT.

BA. emtiong v eyypapn Tov YAwooopiov yio to parameter, Ty FAQ epwtnon oto 1 dtagpopd uetaEl opt-
ouatwv ko apapétpwv, kow PEP 362.

aoUyypovos duayeiproTi)g context An object which controls the environment seen in an async with statement by
defining __aenter_ () and __aexit__ () methods. Introduced by PEP 492.

0oUyypovog generator Mio. ouvAEPTNON TOU eMLOTPEQEL Eva asynchronous generator iterator. MoldZelL pe puo. ov-
vapTNom coroutine Tov opileToL ue async def eKTOG atd OTL TEPLEYEL EKPPAOELS yield Yo TNV Tapoywyn
HLOLG OELPAG TUUDV TTOV UIT0PoVY va. xpnoworoboiv oe évav async for Bpdyo.

ZuviHBmg avopépeTal oe o CUVAPTNOY 0oUYXPOVoU generator, 0AAG umopel va avapépetal oe Evav acdy-
XOOVO generator iterator Gg OPLOUEVA contexts. Ze TEPLITTMOELG OTTOV TO ETMLOLWKOUEVO VOTUL OEV ELVOL OOPES,
UE TNV XPNOT TOV TPV OPMV OITOQEVYETOL 1] ALTAPELAL.

Mo ovvapTnom achyypovou generator WITOPEel va. TEPLEYEL EKPPAOELS await , Kabmg kol dNAdoeLg async
for, KoL async with.

aovyypovog generator iterator 'Evo avtikeipevo mouv dnuovpyndnke amd wa ouvaptnon asynchronous generator.

This is an asynchronous iterator which when called using the __anext___ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

aovyypovog iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
fromits __aiter__ () method. Introduced by PEP 492.

aovyypovog iterator An object that implements the __aiter_ () and __anext__ () methods. __anext_
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

XOPOKTNPLOTIKO Mia TLut| Tou OyeTileTal Le £va OVILKEIUEVO TTOU CUVIHOMG AVOQEPETAL LE OVOLLO, YPTOLLOTTOLMD-
VTAG EKPPAOELG e KOUKKIOES. TLa mapddeLyna, Qv €vo aVILKELUEVO 0 €xeL EVa YopaKTNPLOTIKO a Oa ava-
PEPETAL WG 0.4

Eilvouw duvatd vo dmooupe 0g €va aVILKELIEVO £VOL YOPOUKTNPLOTLIKO TOV TO OVOUX TOU OEV ELVAL AVOLYVIPL-
0Tk Omtwg opiletan oo identifiers, Yo TAPAdELYLLOL XPNOLULOTOLDVTAG sSetattr (), AV EMLTPETETOL ALTTO TO

72 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492

Extending and Embedding Python, Anpoociguon 3.10.18

avtikeipevo. 'Eva TTolo xopaktnplotikd dev 0a eival TpooBAoLo ¥p1oLomoumnvTas TG TELEIES, KoL ovTi
avtov Oa mpémel va ovoKTNOel ypnolwomolmvtag getattr ().

awaitable An object that can be used in an await expression. Can be a coroutine or an object withan __await__ ()
method. See also PEP 492.

BDFL Axpwviuo tov Benevolent Dictator For Life, kohokdyo0og diktdtopag g Lomg, dnhadn Guido van Rossum,
0 dnuovpyodg g Python.

dvadiko apyelo A file object able to read and write bytes-like objects. Examples of binary files are files opened in
binarymode ('rb', 'wb' or 'rb+'),sys.stdin.buffer,sys.stdout .buffer,andinstancesof io.
BytesIOand gzip.GzipFile.

BA. emtiong rext file yio évo ovTIKELUEVO TUTTOU 0pYELo LKOVO Vo, dtofdoet Kaw va ypdper st r avItkeipeva.

daverkn avagopa Zto C API g Python, o daverk avagopd eivar o avagpopd og évo aviikeiuevo, érov o
KOOLKOG TTOV Y P OLULOTTOLEL TO arvTLKeinevo dev Katéyel Ty avagopd. ['ivetal évog aypnoluomointog deiktg
edv 1o aviikeipevo kotaotpapel. o tapdderypa, po diadikaoio garbage collection wwopel vo aporpéoet
TO TELEVTOUO Strong reference amd TO AVILKELUEVO KOL ETOL VO TO KATOOTPEPEL.

Zuviotatol 1 KAHon tov Py _INCREF () 0TO daVvelkn) ava@ood Ue 0KOmO Vo UETOTPOTIEL O €Va Loy voT]
avagopd emLTOTOV, EKTOG OTAV TO OVTLKEIUEVO OEV WTOPEL VO KATOOTPOAPEL TPLV atd TV TELevTALL Y PNOoN
g davelkng avagopds. H ouvaptnon Py_NewRef () umopei va ypnotpomowndel wote va dnuovpynOet
EVOL Lo VOT) aVapopd.

bytes-like avtikeipeve Eva avrikeipevo ov vrrootnpilel to bufferobjects kol umopet va eEdyel éva C-contiguous
buffer. Autd mepihaufaver dha to avtikelpeva bytes, bytearray, katarray . array, KoOdg Ko wodAd
Kowd memoryview ovuikeipeva. Ta dvadikot timov (bytes-like) avrtikeipevo Pmopovv vo. P CLULOTTOL-
NOoVV yia dudipopeg Aettovpyieg mov dayelpilovtar dvadikd dedouéva” avtd mepthapufavouv ovusieon
amo01Kevon o duadLKO apyelo kKol aTtooToA nécw socket.

Oplouéveg hettoupyieg yperafovran To duadikd dedouéva va eivor uetafintd. H texunpioon ouyvd ovo-
(PEPETOL 0€ AUTA WG «dVADIKA avTLKelUEVO avayvmong-eyypapnc» (read-write bytes-like objects). [Tapadeiy-
poTe LETABANTOV AVTIKELUEVOV TPOCWPLVTG aobfKevong mepLéyovy bytearray Kot éva memoryview
evog bytearray. AMEG AELTOUPYIES OTTOLTOVY TNV TTOBNKEVONG TWV dVAdLKDV dedouéva o€ aUeTAPANTL
avtikeipevo («dvadikd avrikeipeva povo avayvwong»” (read-only bytes-like objects) mapadeiypoato avtdv
mepléyouv bytes KoL évo memoryview evog bytes avIKelévou.

bytecode O mnyaiog kddka T Python petaryhottiCeton og bytecode, 1| e0WTEPLKY) AVATAPAOTOON EVOG TPOYPALL-
patog Python otov dtepunvéa CPython. To bytecode omoOnKeveTaL TLONG TPOCWPLVA OOG . PY C APYELL DOTE
1 eKTELEDT) TOV (OLOV apyelov va elval Yp1yopoTePT TNV deUTEPT POoPa eKTENEONG (UTTopEl Vo oTopevyOel)
€K VEOU UETAYANDTTLON OTTO TOV TINYOio KMOLKA o€ byfcode). Auti 1] «evOLAuean YAwooo» LEyeToL OTL TPEYEL
oe wa virtual machine oV €KTENEL TOV KMALKOL UNavNG TOV avtLoTolyel o€ Kabe bytecode. Adfete vdym
Ot ta bytecode 8gv aVOUEVETOL VO, AELTOUPYOUV UETAED SLAPOPETIKMV ELKOVIKMV Uy avdv Python, ovte va
glvon 0tafepd petagy twv ekddoewv g Python.

Mua Mota amd 0d1yleg oyetikd ue to bytecode umopel va Bpebei oty tekunpimon yio to module dis.

callable 'Eva callable eivar éva avrikeipevo mov wopei va Kaheotel, mbavd pue éva ovvolo opiopudtwv (BA.
argument), Ug TV TOPAKATO OVVTOEN:

callable (argumentl, argument2, ...)

Mua function, xou xot” eméktaon wa method eivou callable. 'Eva otuyiidtumo wo KhAomg mov VAOTTOLEL T
uébodo __call () eivow emiong callable.

callback Mua subroutine ouvéptnon 1 omoia petafipdletor wg dplona mov Ba eKTELETTEL KATOLOL OTLYUT OTO
HEAMLOV.

kAdon 'Evo mpdtumo yio) dSnuovpyia aviikeluévov ov opifovrat omd 1o xpnoty. Ot oplopol KAAoEWY Guvi)-
Owg mepLéyouv opLopovg uebOdWV oV AeLTOUPYOUV OE OTLYWOTUTTO TG KAGONC.

73

https://www.python.org/dev/peps/pep-0492
https://gvanrossum.github.io/

Extending and Embedding Python, Anpooicuon 3.10.18

uetafinti kAdons Mo petofinti) wov opiletor ot pa kKAGom Kat tpoopiletar vo tpomortownOet udvo oe enimedo
KAGonNG (dN. Oyl o€ €va OTIYILOTUTTO (oG KAAOTG).

coercion The implicit conversion of an instance of one type to another during an operation which involves two arguments
of the same type. For example, int (3.15) converts the floating point number to the integer 3, but in 3+4. 5,
each argument is of a different type (one int, one float), and both must be converted to the same type before they
can be added or it will raise a TypeError. Without coercion, all arguments of even compatible types would have
to be normalized to the same value by the programmer, e.g., f1oat (3) +4 .5 rather than just 3+4.5.

myadikog appos Mio e€KTO0N TOU YVOOTOY GUOTAROATOG TPOYUOTIKMOV aptBudv 6To 0mtoio 6hot oL aplbuol
exppatovral mg aBpoLouo vOg TPAYUOTLKOU LEPOVGS KOl EVOG POVTAOTIKOY UéPovg. OL pavTaoTikol opLd-
pol eivat TPoyHottkd TOMOATAGOLO TG PAVICOTIKNG Lovada (1] TETpaywVviky pila tov —1), Tov ouyva
vpGovTol i ota podnuatikd 1 3 otn unyoavikr. H Python £xel evoopatmuévi vitootiptEn yio puyadikoig
apLOUovg, oL 0ToioL YPAPOVTOL UE AUTOV TOV TEAEUTALO GUUBOMOUO” TO POVTAOTIKO UEPOG YPAPETAL UE TO
emibnua 3, 7w.y., 3+173. To va amoktoete Tpoofaon o ovvOeTa looduvaa to module math, ypropormor-
Note to cmath. H ypnon wyadikdv aplbpmv eivol éva apketd mponyuévo nodnuotiko yapoKkTnpLotkd.

edv dev yvopilete TV avayKr Tovg, eival oedOV Giyoupo OTL WTOPELTE VAL TAL AYVOTOETE UE AOPAAELQ.

draeproTiic context An object which controls the environment seen in a with statement by defining__enter_ ()
and __exit__ () methods. See PEP 343.

context petafine Mo petafinth mov umopel va £yl TorEG SLaopeTikeg THEG Avaloya Pe To context. Autd
eival kowvd oto Thread-Local Storage 0mwov kG0e eKTELEGT TOV VIULALTOG WITOPEL VAL EXEL DLOPOPETLKT] TLUN YLOL
o petofanty). Hapodia avtd, ue Tig context PETAPANTES, WTOPEL VO VITAPYOVY TTOAG TTEPLBGAlovTa e éva
VIO EKTELEDTG KO 1] KUPLOL (PNOT YLat TLG context PeTaANTég elvan 1) TapakohoONoN TwV UETOPANTOVY O
TavTtdypoveg diepyaoiec. BL. contextvars.

contiguous 'Eva buffer Oewpeiton contiguous axpi3ng edv eivau eite C-contiguous eite Fortran contriguous. To buffer
undevikmv draotdoewv eivar C kow Fortran contiguous. Z& (tovodLAOTATOVG TTIVOKES, TOL OTOLYELOL TTPETEL VOL
torofetovvtaL 0T uviun to éva disha 0to GAlo, ue oelpd avENONG TV deLkTMV EgKivdvtag amd To undév.
Ze molvdidototovg C-contiguous mivaKes, 0 TeEAevTAlog delKTNG petafdhletal TaxvTepa 0TV EMOKETTO-
vTaL To otolyeia og oelpd devbuvong uvnune. Qotdoo, oe Fortran contiguous mivaKes, 0 TPOTOS OEIKTHG
peTafalleTol Lo ypryopa.

coroutine Ou coroutines €lvou (Lo 7TLO YEVIKEVUEVT] Lop1| subroutines. Ot subroutines eL.odyoviol o€ £vo. oNueLo Kal
eEdryovtal g Gho onueio. Ot coroutines wropei va eLooy0ovv, va eEayBov Kot vo ouveyLoTovv o€ oA
drapopetikd onueio. Mmopovv va vhomotjoovy pe v dMlwon async def. Bh. exniong PEP 492.

coroutine cuvapTNon Mo ouVAPTNON TOV EMLOTPEPEL £VOL coroutine AVTIKELIEVO. Mo GUVAPTNOY coroutine Wio-
pel vo opiCetal amd) dhwon async def, kou umopel va mepiéyel await, async for, KoL async
with AEeig Khewdid. Avtég elonydnoav oo to PEP 492,

CPython H xavoviki vhosmoinomn tg yAdooag tpoypapuotiopnov Python, dmwg dravépetal oto python.org. O épog
«CPython» ypnoiuomoteitat OTov eivol amapaiTnTo Yo Ty SLAKPLoT AuTG TG VAOTTOINoNG 0rtd dAleG OTTMG
1 Jython | m IronPython.

decorator Mio. GuvAPTNON TOV EMOTPEQPEL Wiat OAAY oVVAPTNOY, CVVNOWGS EPAPUOTETAL WG UETAOYNUATIONOG
OUVAPTNONG XPNOLUOTOLDVTOG TNV @wrapper oUvtagy. ZuvnOiopéva moapadeiyuorta yio Toug decorators
elvar classmethod () kxou staticmethod ().

H oVvtoEn tov decorator givan amhmg KOAM®ITLOTIKY, oL akdrovBotl dvo oplopoi ovvaptioewv eivan onua-
OLOAOYLKA LoOdVVOUOL:

def f (arqg):

f = staticmethod (f)

@staticmethod

(ouvéygLa TNV ETOUEVT] GEMDQL)

74 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

def f (arqg):

H idua évvola vtdpyer yio tig kAGoeLs, alhd xpnowpostoteiton Aydtepo ouyva ekel. BA. v tekunpimon yio
function definitions kou class definitions yio epLocdTEPQ OYETLKG Ue TOVG decorators.

descriptor Any object which defines the methods __get__ (), __set__ (), or __delete__ (). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.

TN wepLocdtepes TANPOPopieg avapopLkd (e Tig uedddovg tv descriptors, BA. see descriptors 1) to [lpakti-
KOG 0O YOG Yo T X pNom Tov Descriptor.

AeBiko An associative array, where arbitrary keys are mapped to values. The keys can be any object with __hash__ ()
and __eq__ () methods. Called a hash in Perl.

Katavonen AeEukov 'Eva cupmayfg Tpomog yio va eeEepyaoteite Oha M) uépog Twv oot einv oe £vo emavoin-
TTTLKO KO VoL ETLOTPApEL éva pe heEikd ue ta amotedéopata. results = {n: n ** 2 for n in
range (10) } dnuovpyel éva AeEtkd mou mepiéyel To Kheldl n Tou avTLOTOLILETOL UE TV Ti . ** 2,
BA. comprehensions.

oyn AeEikov Ta ovtikeipeva ov emotpépoviol amd dict . keys (), dict.values (), koudict.items ()
Kahovvtan peig AeEKoV. AUTEG Tap€youv (o SuvauLKT) Oy TOV TOV EYYPAPOVY TOU AeELKOV, TTou onuaivel
otL 6tav To AeEkd petafarletar, n Oy aviikatomtpiler avtég tig alhoyés. o va avoykdoete v oy
AeELkov va yiver pa tipng AMota xpnotnoorjote to 1ist (dictview) . B, dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when the
suite is executed, it is recognized by the compiler and put into the _ doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing 'Evo otul poypoupatiopoty wov dev eEetdlel Tov THTO €VOG OVTLKELUEVOU YLO. VO TTPOOOLOPLOEL
av el T owoti diemoph” avtifeta, N 1EO0dOG 1 TO XAPUKTNPLOTIKO KAAEITOL ATTADG 1 XPVOWUOTTOLEL-
tau («If it looks like a duck and quacks like a duck, it must be a duck.») Aivovtag éupoon ot diemapég Kot
OYL 08 OVYKEKPLUEVOUG TOTTOVG, 0 KaAG oyediaouévog Khdikag Bertidvel tnv eveMEia Tou emitpémovtag
™V ToAVHOPQLKY vtokatdotao. O timog duck-typing amogetyel dokLuEG XPNOLUOTOLOVTOG type () N
isinstance (). (Enueimon, wotdoo, 0Tl 0 TVTOG Ttdmiog duck-typing umopei va ovurhnpwOel pe abstract
base classes.) Avti autov, cuvnBmg xpnoworotel dokiuég hasattr () N wpoypapuotiond EAFP.

EAFP Ilwo egVkolo vo INTNOELS oVuyydpeon tapd ddeta. Autd 1o Kowvd oTtulk poypauuatiopoy o Python stpo-
rwoBétel TNV VapEn £yKupmv KAEWBUOV 1] YOPAKTNPLOTIKOV Kot oudhaufavel eEaipéoelg edv 1 vitdBeon
amodey el eopaluév. Avtd to Kabapd Kot YpYyopo OTUA XapoKTNPLLETOL OO TNV TAPOVGio TTOAMDV d1)-
Mooewv try Ko except. H teyvikn épyetat og avtifeon ue 1o 6tuk mov eivar LBYL xowvo o€ molhég dhheg
yAwooeg, omwg 1 C.

ékppaon Eva xoppdt ovvta&ng mov wopel va aEtohoynei oe kdsmoro tuur). Me diha Moyia, pa ékgppaon eiva
WO GUOCMPEVOT OTOLYELWV EKPPaoTg dmwg KuploreEia, ovopata, Tpdopaon xopaKTNPLOTIK®V, TENEOTEG
1 KA OELG OUVAPTIOEMV TTOV OAEG ETLOTPEPOVV LaL TUY). e avtifeon ue mohhég dhdheg YAwooeg, dev eiva
Oheg oL YAWOOLKEG douég eKPPAOELS. YTTAPYOUVE ETLONG statements TOV dEV WITOPOVV Va. xpNoLpototnfov
g eKppaoeis, 6mtwg to while. Ot avabéoelg Tumv eiva emiong dNAWOELg oYL EKPPAOELS.

module exéktaong 'Evo module ypauuévo oe C 1) C++, mou ypnowomoteitan 0td 1o C API g Python yia va
AMNAETLOPACOUY UE TOV TUPTVA KO UE TOV KMILKO TOV YPTOTH.

f-string Ou Kuprolektikég ouufolooelpéc ypnotpomoloVv pe mpdlepa '£' N 'F' ovondlovtar cuvnbwg «f-
strings» wov eivon cuvtopoypagpia tov formatted string literals. BL. extiong PEP 498.

75

https://www.python.org/dev/peps/pep-0498

Extending and Embedding Python, Anpooicuon 3.10.18

OVTIKEINEVO apyeiov An object exposing a file-oriented API (with methods such as read () or write ()) to an
underlying resource. Depending on the way it was created, a file object can mediate access to a real on-disk file
or to another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.

ZTNV TPAYUATIKOTNTO VTTAPYOUV TPELG KATIYOPLES AVTLKELUEVV apyElOV raw dvadikd apyela, buffered Sva-
Oukd apyela xou apyela kewuévov. OL dlemapég Tovg opitovral oty evotnta io. O Kovovikog TPOTOG Yo
VO SNULOVPYTOETE EVOL AVTIKELUEVO OPYELOV ELVAL YPNOLUOTOUDVTAG TV OVVAPTNOT open () .

OVTIKEIUEVO TTOV poLaler pe apyeio 'Evo ouvavuuo ue To file object.

KWOKOTOI101] CUGTINUATOS UpYEIWY Kot XELPLOTHS opoindtov H kodikomoinon kol o yeplotg opaiudtov
ypnowpomoteital amd v Python yia tv artokmdikomoinon twv bytes amd To A<ovpylkd cUOTNUO KOl
™V Kodikormoinon og Unicode yia to Aettovpytkd ovothua.

H xodikomoinon cvotuartog apyelwv umopel vo eyyun0el v emituynuévn amokwdikomoinon Ghmy twv
bytes kdtw amd 128. Edv 1 kwdLKomoino cuoTiuatog apy elmv deV TapEYEL QUTNY TV EYYUNOT), OL CUVOP-
woelg API pmopovv va eyeipovy éva UnicodeError.

O ovvaptioelg sys.getfilesystemencoding () Kot sys.getfilesystemencodeerrors ()
WITOPOUV VOl YPNOLULOTTONO0UV Yo Vo MABETE TNV KMALKOTOINOT TOV GUOTNUOTOG OPYELWV KoL TOU YELPL-
0T1) OPAMLATOV.

O filesystem encoding and error handler dLapopemvovtal Katd v ekkivnon tng Python amd ™ ouvaptnon
PyConfig_Read () B\ filesystem_encoding kol filesystem_errors uéhn tov PyConfig.

BA\. extiong to locale encoding.
finder 'Eva aviikeipevo mov mpoomadel va Bpet to loader yio éva module wov 101y 0.

Since Python 3.3, there are two types of finder: meta path finders for use with sys .meta_path, and path entry
finders for use with sys .path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

aképora Swaipeon H pabnpotikh Siaipeon ov otpoyyvhomolel Tpog To KUTw 6Tov Koviivdtepo aképato. O te-
Leothg aképarog draipeong eivar / /. T mapdderypa, 1 ékppaon 11 // 4 aElohoyeitol oe 2 oe avtifeon
UE TNV TLuT) 2 . 75 OV ETLOTPEPETAL ATTO TNV SLALPEOT] e VITOdLALOTOM. Znuetwon 6t (-11) // 4 xdvel
-3 gmeldn aut eival 1 oTpoyyvhoToinon moog o kdTw Tov -2 . 75. Bh. PEP 238.

ouvaptnon Mia oelpd amd SNADOELS TOU EMLOTPEPOVY KATTOLO TULY) OF GUTOV TTOU TV KAAEDE. Ze auTég Umopovv
VO TTEPALOTOVV KAVEVQL 1] TTEPLOTOTEPX 0OLGUATA TTOV UWITOPEL VO PN OLULoTOL Ol yia TNV ektéheon. BA. extiong
TG evOTNTEG parameter, method, Ko the function.

ouvaptnon annotation 'Evog annotation oG TapoueTpov GuvapTiong 1 Wog TG ETLOTPOQTGS.

Ou ouvaptoeLg annotations ouyvA YPNOWOTOLOVVTAL Y0 UTOOE(SELS TUTOV: VIO TAPADELYUA, QUTH 1 GU-
vapTNON ovouéveTal va Tépel S0 oplouaTo 1nt Kol ETONG AVAUEVETOL VO €XEL UL ETLOTPEPOUEVT] TLUY
int:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

H oUvto&n ouvdptnong annotation avolvetar oty evotnto. function.

BA\. variable annotation kon PEP 484, mwov meprypdipel avty) tnv Aettovpyrkotnto. Emiong PA. annotations-
howto yio Tig KoAUTEPES TPAKTIKEG HOULEVOVTOG (L€ annotations.

_ future__ 'Eva future statement, from __ future_ import <feature>, KaB0odNYEL TOV HETOYAOTTLOTY
va petayhottioelr to tpéyxov module xpnouomotdvTag oUVTaEn 1 GNUacLoAoyYio Tou Ba YiveL 1) TUTTLKY O
uedhoviikt) ékdoon tng Python. To module _ future_ tekunpuivel tig mbavég Tiuég tov feature. Me tnv

76 Mapdptnua A’. NMwooapt

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

Extending and Embedding Python, Anpoociguon 3.10.18

ELOOYWYT AUTNG TNG AELTOUPYLKNG LOVADAG KO TV AELOLOYNOT) TV UETABANTMV TNGS, WTOPELTE VO dElTE TOTE
poL vEa duvaTOTNTO TPOOTEONKE YL TPDTN POPA OTHY YADOoO Ko ToTe O yiver (1] £yuve) N TpoemAoy):

>>> import _ future_
>>> _ future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

ouvAloyn amoppudtov H dtodikacio amelevfépmong g uviung Otav dev xpnolpomoteitor diho. H Python ekte-
Ael ouMLOYT QTTOPPLUATOV UECWH KOTOUETPNONG OVOPOPHDV KAl EVOG KUKAMKOUD CUAAEKTY OKOVTILOLMY TTOV
elval g B¢om va aviyvevel Kou va omdel Tovg KUKAoVg avapopds. O culhéKTNG amoppludTmy Wopel va
eheyy el ypnopomolmvtag to module ge.

generator Mo oUVAPTNOT TTOV ETLOTPEPEL Eval generator iterator. MOLATEL (LE LLOL KAVOVLKT] OUVAPTNON EKTOG 0TTO
TO OTL TEPLEYEL EKPPATELG yield Yio THV Tapoymyr Wag 0eLpds TUMV TTOU (WTOPOUV VoL ¥P1oLuomot ot
o€ évav Bpoyo for Y| Tou Wtopovv va ovokTNOoUV o T popd e TV ovvaptnon next () function.

ZuvHBwg avagépeTal o€ o OUVAPTNOT generator, OAAG UTopEl va avopépetal Oe Evav generator iterator €
nepLKd contexts. 2e TEPLTTOOELS OTTOU TO EMLOLWKOUEVO VONUOL OEV ELVaL TAPES, 1) YPNOT TWV TANPWV OpwV
ATOPEVYEL TNV OLOAPELQL.

generator iterator 'Eva avtikeigevo mov dnuovpyeiton oo wua GuvapTnon generator.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator £k@paon Mua £k@paon Tov emLoTpEPeL Evay iterator. Moldlel pe Kavovikr) £k@paon Tov akolovdeitan
and o tpdtaon for mov opilet wo UeTaBANT Ppoyov, £va gVpog Kol Wo. TPOaLPETIKY Ttpodtaon 1 f. H
oUVOUAOUEVT EKPPAOT ONULOVPYEL TLUES YLOL (O OLVAPTNOT EYKAELOUOV:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

YEVIKT] oUvapTNe] Mo ovvapTnon mov amotereiton amd TOMATAEG GUVAPTNOELG TTOV VAOTOLOVY TV 181 AeL-
Tovpyia yio draopetikog Thmove. oo vhomoinomn mpémer va ypnolpnomonOel Katd T SLEpKeLo wioL KA1-
omg kabopiletar amd Tov akyopLlOuo arooTorys.

BA. emiong v xataydpnon tov single dispatch, tov decorator functools.singledispatch () ko PEP
443.

vevikog tomog 'Evog rype mov uopel va mapoapetpomomel” ouvnbwg wo container class, émwg 1ist 1 dict.
Xpnowuosoteiton yia type hints Kow annotations.

T teploodtepeg hemtouépelec, PA. generic alias types PEP 483, PEP 484, PEP 585, kau to module t yping.
GIL BM\. global interpreter lock.

global interpreter lock O unyaviopdg mov ypnotpomoteitan amtd tov diepunveéa CPython Yo v, SLaopaiioel Ot
uovo évo vijua extelel Python bytecode k4Be popd. Avtd amhomorel tv viomoinon CPython dnuovpywm-
VTAG TO LOVTENO OVTLKELWEVOU (CUUTEPLAAUPBAVOUEVWV KPIOWWWY EVOOUATWUEVWV TOTOV 0w TT.). dict)
£UUESA 0OPANEG EVOVTL TOVTOYPOVNG TTPOORaomS. To KAeldmuo oldKANPOL TOU dLepunvéa dLEVKoLUVEL TOV
dLepUNVEQ VO ELvaL TOMOTADY VNULATOV, ELG BAPOG TOU UeYAhOU UEPOUG TOV TTAPOAANALOUOV TOV TOPEYOVY
oL UNYOVEG TTOMOTIAMV ETTEEEPYATTDV.
Qo0tH00, OPLOPEVEG AELTOUPYIKEG LOVADEG EMEKTAONG, EiTE TUTTLKEG €lTE TPiTWYV, £XOVV OYESLAOTEL £TOL DOTE

va aserevfepmvouy 1o GIL dtav ektehoVv epyaoieg EVIOTIKMY VITOMOYLOUDV OTTMG CUUTTLEDT] 1) KATOKEP-
natopuds. Emiong, to GIL amehevbepmveton méva dtav extereite 1/0.

Iponyovueveg mpoomadeieg va dnuovpyn0ei évag diepunvéag «ehevBepwv-vnuatwv» (avtdg Tov Kheldm-
VEL TOL KOWvOypnoto dedopéva ue oA Tlo Aemtopep] evancnoia) dev frav emituyeis emeld 1 artddoon

77

https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

Extending and Embedding Python, Anpooicuon 3.10.18

VITOYMPTOE TNV KOLVT| TTEPLTTWOoT evog emeSepyaoti). [Tioteveton dtL M vitépPaon avtol Tov TPoPANUATOG
06d00MG B KAVoLUY 7oA TTL0 TTEPLTAOKT KOl ETOUEVIG TTLO SATTAVIIPY) GTHY GUVTHPNON.

hash-based pyc 'Eva apyelo kpugpng uvnung byfecode mov yp1OLUOTOLEL TOV KOTAKEPUATIONO KoL O%L ToV XpdVo
TPOTOTTOINONG TOU CAVILOTOLXOU OPYELOV TPOELEVONG YLOL VO TPOOALOPLOEL TNV €YKUPOTNTO TOU. BA. pyc-
invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needsa __hash__ ()
method), and can be compared to other objects (itneedsan __eqg__ () method). Hashable objects which compare
equal must have the same hash value.

H YmapEn hashable xbver éva aviikeipevo va pwopel vo ypnotposown el mg khewdi AeEukot Kot wg uéhog
€vOg GUVOLOU, ETTELDN QUTEG OL SOUEG DESOUEVYV YPNOLUOTOLOVY TUUES KOTAKEPUATIOUOV.

Ta mepLoodTepa 0md T aueTdfinto evoouatwuévo avitkeipevo g Python umopoiv vo Katokepuott-
otovv” ta petafntd Kovtéivep (Ommg ou Moteg 1) ta AeEikd) dev elvan” T apetafinTo Kovrévep (0mmg
mheladeg Kan to frozesets) UTOPOVV VoL KATUKEPUOTIOTOUV UOVO EGV TCL OTOLYELD TOVG ELVOL KOTAKEPUATL-
ouéva. Ta ovTiKeLpeva OV glval OTLYIOTUTTO. KAAGEMY TTOV 0pilovIaL amtd TO ¥PNOTH WIOPOVV VO KOTO-
KEPUATLOTOUV TTO TTPOoemihoyr). ‘Ol ouyKpivovToL GAvioa €KTOG 0TO TOV EAUTO TOUG) KL 1) TUY KOTAKEP-
HOTLOUOV TOVG TTPOEPYETOL atd To id () .

IDLE 'Eva ohokinpopévo mepidirov avamtugng ko pdbnong yo v Python. idle givau éva fooikd mepiBadiov
eneEepyaoiag Ko diepunvéa mov cuvodevetar amd Ty Tumikr) drovout| tng Python.

immutable 'Eva avtikeipevo ue otabepn tur. Ta opetdfinta ovikeipeva mepthapufavouv apbuots , ovppo-
hooepég koL mhelddec. ‘Eva tétoto aviikeipevo dev umopetl vo alldEel. ‘Evo véo aviikeiyevo mpémel va
dnuovpynOei edv mpémer vo amobnkevtel wa drapopetiky| Ty Iailovv onuaviikd pého og uépmn 6mov
wo otabepd amarteital, yio wopdderypo wg khewdi oe éva heEuko.

ewoayouevo path Mo Mot amd tomobeoieg (] katoywoices Siadpouric) mov umopovv va avalntnboldv path
based finder yio. va. elooy0ovv modules. Kotd v dadikacio eloaywyng, avty M AMota ue tomodeoieg ouvii-
Bwg épyetar amd sys . path, aAhd YLO TO VITOTAKETO, WTOPEL ETLONG VO £POEL AT TO YOPAKTHPLOTIKO TOV
TTOKETOV YovEo ___path__.

awoaywyn Hdwadikaoio katd v omola o khdikag g Python oe éva module eivon Stabéoun otov kmddika Python
evog dAlov module.

aoayoyéas Eva aviikeipevo umopel kou vo avalntel kol vo goptdver £va module” kol éva. finder xon loader
OVTUKELUEVO.

Stadpaotikog H Python éyel évav dtadpaotikd diepunvéo 6mmov onuaiver 6Tt umopeic vo elodyelg SMAMOoeLg Kot
EKPPAOELG OTHY ELOAYWYY EVIOAMV TOU SLEPUNVEX, EKTEAMVTAG TEG AUEC KoL ELPOVILOVTOG TO OVTLKEL-
ueva. Amhng eKKLvinoTe TV python ywpig opiopato (bavidg emiéyovtog To amd T0 KUPLO HEVOU TOV
VITOAOYLOTY) 00G). ATtotehel Evav amodoTiko Tpdmo Yo va dokiudote véeg 1dEeg 1) va eEetdote AelToVPYIKEG
povadeg Ko moakéta (Buunbeite help (x)).

interpreted H Python elvau puo interpreted yYA®ooa, og aviifeon ue o LETAYAMTILOUEVT], AV KOL 1) SLAKPLOY WITOPEL
va givar kow 0ol Loyw g mopovoia tou bytecode petoryhmttioTt). Autd onuaivel 6t Ta apyeia Tpoghevong
WITOPOUV VoL EKTELEGTOVV QITEVOELOG YWPIg VO dNULOVPYNOEL PTG £Va EKTEAECLILO CLPYELO TTOU OTNY OUVEYELDL
ekteheitar. Ou interpreted yAdooeg ovviiBmg £xouv WKkpOTEPO KUKAO avAmTuEng/ eviomiopoy opoiudtmy
aTT0 TLG UETAYAMTTIOUEVES, 0LV KOIL TOL TTPOYPAUUATA TOVG YEVIKA eKTELOVVTOL TTL0 0pydL. BA. emtiong inferactive.

TEPUATIONOS hertovpyiag diepunvéa ‘Otav Inteiton teppotionds Aettovpyiag, o diepunvéag g Python ewoépye-
TOL O UL ELOLKT) pAor OTTov amtelevdepdvel 0TadLokd OLovg Tovg dLaTlOEUEVOUS TOPOUG, OTTMG AELTOVPYL-
Kég novadeg Kau morhamhéc kpioueg eontepiké doués. Emiong mpayuatomolel apketés KAMOELS 0TO GUA-
Aéxtne orovmdidy. Autd WITOPEL VO EVEPYOTTOLTEL TV EKTELEDT] KMOLKO 0 KATAOTPOPELG TTOU 0piovTal
antd 1o pNnotn 1 ot callbacks aobevoig aviamokpiosis. O KOdLKOG OV ekTEAETOL KOTA TN PAOT TEPLLOL-
TLOROU AELTOVPYIOG WTOPEL Vo GUVOVTIOEL SLAQOpPES EEALPETELS, KOOMG oL TOPOL 0Toug oToiovg faoiletal
evdéyetal vo unv Aettovpyovv mhéov (ouvnOm mapadelypota eivar oL AetToupyLkeg novadeg Ppiodnkng 1
0 UNYXOVLOROG ELOOTTOLNOEWV).

78 Mapdptnua A’. NMwooapt

Extending and Embedding Python, Anpoociguon 3.10.18

O Baotkdg MOYos TepuaTiopoy hettovpyiog tov diepunvéa eivon éti to __main__ module 1) ohokAnpmOnke
1 EKTELEDT TOV KMOLKA TTOV ETPEYE.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter__ () method or witha __getitem__ () method that implements Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (), ...).
When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter () or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

iterator An object representing a stream of data. Repeated calls to the iterator's ___next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
toits___next__ () method justraise StopIteration again. Iterators are required tohavean ___iter_ ()
method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a 1ist) produces a fresh new iterator each time you pass it to the iter () function or use itin a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

Mepioodtepeg mAnpopopieg wropotv va Bpebovv oto typeiter.

Agnropépera vhioroinong CPython: CPython does not consistently apply the requirement that an iterator define
__iter__ ().

ouvvaptnon key Mo ouvdptnon khedi 1 wo ouvaptnon taEvounong sivar wo. Suvotdtta KAong Tov emt-
OTPEPEL O, T TTOV ypnotpomoteiton yio ToEvounomn 1 Suéitokn. o mapdderypa, locale.strxfrm()
YPYOLUOTTOLELTAL YLOL TV TTOPaywyn eVOg KAELSLOU TaELVOUNONG TToV YVmpilet Tig ouufdoetg Tagvounong
YLOL OLYKEKPLUEVEG TOTILKEG puOuioeLs.

‘Eva. aplBudg epyaleiov oty Python déyetor Baoikég ouvaptnoels ylo Tov €heyyo Tou TPOTOu Ue
ToV omoio ta otoryeio taEvopovvtor 1| ouadomotovvrar. Avtd mepiéyxouv min (), max (), sorted (),
list.sort (), heapg.merge (), heapg.nsmallest (), heapg. nlargest (),Koa itertools.
groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such
as lambda r: (r[0], r[2]). Also, the operator module provides three key function constructors:
attrgetter (), itemgetter (), and methodcaller (). See the Sorting HOW TO for examples of how
to create and use key functions.

opiwopo keyword B\. argument.

lambda Muo ovayvoun evOmUATmUEVY GUVAPTNOT) TTOU OITOTEAEITOL ATt Lo LOVOSLKT| expression 1) 0mtoia. aELOLO-
veltaw Otav kodeitol 1 ovvdptnon. H ouvioEn yia t dnuovpyia wog ouvaptnong lambda eivon 1ambda
[parameters]: expression

LBYL Look before you leap. Autd 1o otuk KwdLkomoinong eLEyyeL pnTd Tig TPoUTOOE0ELS TPLY TPOYUCTOTTOLYOEL
KAoelg M ovalnthoelg. Autd 1o oTuk €pyetol o€ avtifeor ne Ty Tpooéyyion EAFP Ko xopoKtnpiCeTol
artd ™V Tepovoio ToAdV dnhwoemy if.

Ze évaL tepLBAMOVY TTOAATAMY VNUdTwV, 1 Tpooéyyon LBYL umopel vo diakivouvevoet va eLoGYEL (o Guv-
oNxm aydva petakd «the Looking» ko «the leaping». Twa tapdderypa o kddikag, 1 £ key in mapping:
return mappingl[key] umopel va amotiyel edv éva aAho v apapéoel To key amd To mapping UETG
™ dokuy), ahhG TPy astd TV avalitnon. Avtd to Tpofinua wropel va Abel pue KAeldouato 1 xpnotuo-
Tolwvtag TV tpooéyyLon EAFP.

79

Extending and Embedding Python, Anpooicuon 3.10.18

Tomk1] Kwdukortoinon On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.
setlocale(locale.LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: cp1252).
locale.getpreferredencoding (False) can be used to get the locale encoding.
Python uses the filesystem encoding and error handler to convert between Unicode filenames and bytes filenames.

Moto A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension 'Evo cupmayfg tpdmog yia va eneEepyaoteite OMa 1) UEPOG TV OTOLYELWV O UL, akohouBia
Ko vo emoTpéPpete wua Moto pe ta oatotehéopato. result = ['{:#04x}'.format (x) for x in
range (256) if x % 2 == 0] dnwovpyei wa Aloto ovuforocelpmv mov mepéyovv Luyotg dekaeEa-
dukovg apuovg (0x..) oto evpog amd 0 €mg 255. H mpdtoom 1 £ eivan mpooupetiky). Eqv mapaleipOei, dha
Ta oToLyelo 0To range (256) vmofailovion oe eneSepyaciaL.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

naykt uédodog 'Eva drumo ovvdvupo yia special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified in the Mapping
or MutableMapping abstract base classes. Examples include dict, collections.defaultdict,
collections.OrderedDict and collections.Counter.

meta path finder 'Evog finder mov emiotplepnie pe avalntnon oto sys .meta_path. O finders ueta-diadpoung
oyetiCovral, ol dapépovv amd ta finders entry dtadpour.

Bih. importlib.abc.MetaPathFinder yia tig uebddovg mov vhomolovv oL meta path finders.

ueta-khdon H khdon wag khdong. Ou opropol kKhaong dnuovpyotv éva dvoua. kKAdong, éva AeElkd khdong Kat
o Aloto footkmv kKhaoewv. H peto-khdon givar veifuvn yia v artdKTon auTtdv TV TPLOV 0pLoUATmy
Ko TNV dnuovpyia g kKAAong. O eplocOTEPES AVILKELUEVOOTPEPEIS YADOOES TPOYPAUUATIONOV TTOPE-
YOUV ULOL TTPOETUAEYUEVT] VAOTTOIN 0. AT TTov Kvel Ty Python Egywproth eivor L givan duvorh m dnuovp-
vio Tpooapuoouévav petokidoemyv. O meplocdTePOL XPNOTES OEV XPELALOVTOL TOTE 0UTO TO EPYOlelD, OAAGL
OTOV TOPOOTEL AVAYKT), OUTO TO EPYONELD, OL UETA-KAAOELG WTOPOVYV VAL TTAPEYOVV LOYUPES, KOUPEG MIOELS.
"Ex0ouv %p1noLomombel Yo tnv Kotoypagr| TpooBoong XopoKTNPLoTIKOV, TNV TPoafK acpalelog vnud-
TOV, TNV TOPAKOA0VON0N SNULOVPYIAS AVILKEWUEVWV, TNV VAOTTOINOT| singletons, Ko mtolég dhheg epyaoiec.

[eploodtepeg mAnpopopieg wropotv va Bpebolv oto metaclasses.

uébodog Mia ouvdpnon o opiletal péoa 0to omua wag kKhaone. Eqv koleitol wg yopakmplotikd wog mepi-
TTOONG AVTNG TG KAAONG, 1) 1EB0d0G B MAPEL AVTIKEIUEVO TEPLTTWONG WG TPWDTO TG argument (TO OTOLO
ovvihiBwg ovoudtetan self). Bh. function xou nested scope.

oepd avaivons nedodwv Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module 'Eva aviikeipevo mov ypnouedel mg opyovmtik povada tov kmdika tng Python. Ta modules éxouv évav
YDOPO OVOUATOV TTOU TTEPLEEL avbaipeta aviikelipeva Python. Ta modules poptwvovtoal otnv Python ue tv
dwadikooio importing.

B emiong package.

TeYVIKES TPodrarypoupés module 'Evo namespace mov TEPLEXEL TG TAPOQOPLES TTOV TYETICOVTOL LE TV ELOOYWYT
IOV YPNOLOTOLOVVTOL Yiet TNV POPT®ON €vog module. Mo mepimtworn tov importlib.machinery.
ModuleSpec.

MRO Bh. method resolution order.

80 Mapdptnua A’. NMwooapt

https://www.python.org/dev/peps/pep-0302
https://www.python.org/download/releases/2.3/mro/

Extending and Embedding Python, Anpoociguon 3.10.18

mutable To svuetdpfinto avikeipevo propovv va oAGEoUV Tig Tuég 0AAG va. kpoathoouv ta 1d () . BA. emtiong
immutable.

named tuple O 0pog «named tuple» epappoCeTol yio 0ToLovONtoTe THTTO 1) KAAON o KAnpovoueital amd v
TLELADC KOL TWV OTTOLWV T GTOLYELD WTOPOUV VAL EVPETNPLOTTOLNOOUV elval TPOoaPAoLua YP1OLULOTOLDVTOG
ETOVLLLA YOPAKTNPLOTLKA. O TOTOg 1) 1) KAAOT UTOPEL VaL el Kol GALA X OpOKTHPLOTLKA.

oMol evowpatmuévor Tomol eivon named tuples, CUUTEPLIAAUBAVOUEVDV TV TLULDV TTOV ETLOTPEPOVTOL OITTO
time.localtime () kawos.stat (). Eva ahho mopdderypa eivan to sys . float_info:

>>> sys.float_info[l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple (). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace To uépog dmov amoOnrevetar wa petafinty. Ta namespaces vhomolovvror wg heEikd. Ymdapyovv ot
TOTTLKOL, OL KAOOALKOL KOl OL EVOMUOTOUEVOL namespaces KoOMG KoL oL £vOETOL namespaces 0€ VILKELLEVOL
(0e ueBddoVg). o mapddeLyna oL ovvapTHoelgbuiltins . open KoL os . open () dLOKPIVOVTAL 0TTO TOUG
Y WPOVG ovoudtwv Toug. OL xmwpot ovopdtwv Fondov emtiong TV ovoyvmoLdT)TO KOt T CUVTNPNoWOT T
Kablotmvtag oapéc wolo module viomolel o Aettovpyia. Tia wapdderypa, ypdgpovtag random. seed ()
Nitertools.islice () kaOLOTA COPES OTL AUTEG OL CUVOPTNOELG VAOTTOLOUVTOL artd To. module random
Kol itertools, aviiotouyo.

mokéto namespace A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they haveno __init_ .
py file.

BA. emtiong module.

nested scope H duvatdmta avagpopdg oe wa petafint oe évav mepikherduevo opopd. Tia mapdderypo puo
oUVAPTNOT TTOU OPITETAL UECA OE (oL (AT GUVAPTNOT WTOPEL VO AVOaQEPETOL OE UETAPBANTEG 0TIV EEWTEPLKT
oUVAPTNOY. ZNUELMOTE OTL TO EvOeTo TEdia amd TPoemAOY AELTOUPYOVV UOVO YLOL OVOLPOPd Kal 0L Yol
ekypnomn. O Tomikég uetafAnTtég SLABATOVTOL KoL YPAPOVIOL 0TO E0MTEPLKO TedLo epapuoyns. Ouoimg,
oL KaBoMKEG puetafANTég daffaCouvv Kot ypdgovy atov Kabohkd ympo ovoudtwv. To nonlocal emitpénel
™V eyypapn oe eEmteplkd media.

KkAdon véov otvh Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like _ slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

ovukeipevo Omoladnmote dedouévo (e KaTdoTaon (XapaKTNPELoTKE 1 i) Ko Kaboplopuévn ouumeptpopd.
(uéBodor). Emiong, N telkn ookt kKhAom ommolaodftote new-style class.

maxéto 'Eva Python module mov umopei vo epiéyel submodules 1) avadpopukd, vtomakéta. Teyvikd, £va Takéto
elval pa kettovpyLkr povéado Python e éva _ path_ yopokmplotko.

BA. emtiong regular package xou namespace package.

TUPAUETPOS Mia £ykupn ovtdTnTo 08 évav oplopnd function () uéBodog) mov kabopilel éva argument (| og opi-
OUEVEG TIEPLITTAOELS, OPLOUATA) TTOV Wtopel vo. dex el 1 ouvaptnon. Yrdapyovv mévte eidn mopauéTpmy:

o AéEn-xdeldi 1) Oéon: xabopilel Eva dpLopo Tov uropel va petoPifaotel eite Oéoews M| wg dptoua AéEng-

kAetdiov. Autd gival To TPOETAeYUEVO ELDOG TOPAUETPOV, VL0 TAPAdELYUa foo Ko bar ota akdlovba:

81

https://www.python.org/dev/peps/pep-0420

Extending and Embedding Python, Anpooicuon 3.10.18

def func(foo, bar=None):

o Oéoewe udvo: kabopilel éva OpLona wov umopel va mopéyxetanr udvo amd ™ 0€om. OL mapdueTpol Lovo
0£0mMG WITopPoUV va. 0pLoTOUV GUUTEPLAAUBAVOVTOG Evay YopaKTHpad / 0T AMoTa TopauéTpmy ToU opL-
ooy oVVAPTNONG HETd 0TTd AUTEG, Yo tapdderyua posonlyl kon posonly2 oto eENg:

def func(posonlyl, posonly2, /, positional_or_keyword) :

o AéEng-kAeldi udvo: xaBopilel Eva OPLoUO TOV WITOPEL va. Tapéyeton wovo ue AEEN Kheldi. Ou mapduetpol
HOVO Yo MEEN-KAELDL WITOPOVV VO 0PLOTOVV GUITTEPLAAUBAVOVTOG [La TOPAUETPO BEONG 1) OKETO * 0T
MoTa TApaUETPWY TOU 0PLOUOY CUVAPTNONG TTPLV Atd OUTES, Yo Tapaderyua kw_onlyl Kou kw_only2
ot aKOAovOL:

def func(arg, *, kw_onlyl, kw_only2):

o uetafAnti Oéong: xabopilel OTL umopei va mapaoyedel wa avbaipetn axorovdia oploudtov 0¢ong
(emumhéov TV oplopdtov BEong Tov givar 1191 amodeKTd 0td dAleg mapauéTpovg). Mia tétola ma-
PAUETPOG WWITOPEL VO OPLOTEL TPOCAPTDVTOG TO OVOLLO TNG TAPAUETPOU UE *, VL0 TAPASELYUA args 0T
akorovba:

def func(*args, **kwargs):

o uetafAnth AéEn-kAeldi: Kabopiler oL pwwopovv va mapéyxovror avbaipeta ToAG opiouato AEENG-
KAELOL0D (eTLITAEOV TV 0pLopdTtmy AENG KAELOLOV Ttov eival omodektd amd dhheg Tapauétpovg). Mo
TETOLAL TTOPAUETPOG WTOPEL VO OPLOTEL TTPOCUPTWVTAG TO OVOUC TNG TOPAUETPOU UE * *, Y0 TP~
devypa kwargs OTMS TOPATAVO.

O mopdpeTpot Wtopov va Kahopicouv TOo ta TPOUPETIKA 00 KOl TAL AoLTOVUEVO Opiopata , Kabwg
KOL TIPOETUAEYUEVES TLES YLOL OPLOUEVOL TIPOALPETIKG OPIOLLOLTOL.

B\ extiong v argument xotaympLon evpetnpiov, Ty epwtion FAQ oyetikd ue 1 dagopd peta&i opropud-
TV KoL TAPAUETpwy, TV KAAoN inspect .Parameter, v evotyta function ko PEP 362.

path entry Mua pepovouévn tomobeoia oto import path tv omoio cupBovieveton o path based finder yio va BpeL
modules yio eLoorymy).

path entry finder 'Evog finder mov emotpépetal amd évav KahoOuevo 0to sys . path_hooks (dnhadi éva parh
entry hook) ov Eépel mwg va. evromtiCelr modules e path entry.

Bih. importlib.abc.PathEntryFinder yio tig uefddovg mov o entry finder dtadpoung vhomotei.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder 'Eva amtd ta mpoemiheyuéva meta path finders wov avalntd €va import path yio. modules.

path-like avrikeipevo 'Eva aviikeipevo mov avumtpoowmevel éva path cvotfiuotog apyeiwv. ‘Eva aviikeipevo
path givau gite éva aviikeipevo st r 1 bytes mov aviutpoommevel éva path 1) £va OVTLKELLEVO TTOV VAOTTOLEL
TO TPWTOKOAMO 0s . PathLike. Eva aviikeipevo wov vrootnpilel To mpwtdKorlo os . PathLike umopel
vo petatpamel og path ovothuatog apyelwv str M| bytes Kahdvtag Ty ouvapton os . £spath () ” ta
os.fsdecode () KoL os.fsencode () WIopovV va PNOLUOTONOOVV Lo TNV €yyUmon evdg amotehs-
ouatog str 1 bytes, avtiotoyya. Ewonydn amd tov PEP 519.

PEP Ilpotaon Behtiwong Python. ‘Eva PEP givaw évo €yypopo oyedlaopuol Tov Tapeéyet TANPOoQopies 0TV KoL-
votnto Python 1) mepuypdper o véo duvatdtta yia v Python 1) tig dadikaoieg 1 o mepifallov g,
Ta PEP Oa mpérmet vo mopéyouv Wio. GUVOITTLKY TEXVIKT] TPOSLOYPagpT] KO (Lot LOYLKY] YLOL TOL TTPOTELVOUEVOL
YOPOKTNPLOTLKA.

82 Mapdptnua A’. NMwooapt

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519

Extending and Embedding Python, Anpoociguon 3.10.18

Ta PEP mipoopiCovtal va eivar oL KOpLoL iiyoviouot Lo Ty IpoTtoot] ONUOVTLKOV VEOV YOP0KTIPLOTIKMOV,
YLOL TN GUALOYY] TANPOPOPLMV TNG KOLVOTNTOG Yo Vo THTNUOL KoL Y10 TV TEKUNPLmON TOV 0Topaoeny
oyedLaopov o £xouv ewoay el oty Python. O cuyypagéag tov PEP gival vrelBuvog yio thv otkodounon
ouvaiveong evtog Thg KoLvOTNTag KoL TNV TeEKuNpimon aviibetmy amdpewy.

B)L. PEP 1.

tuiuoe. ‘Eva ovvoho amd apyeia og Evav povo katdhoyo (evoeyouévmg amofnKevuévo og apyelo zip) Tou GuUBEL-
Lovv og évo namespace TOKETO, OTwg opiletar oto PEP 420.

opwopa 0¢ong BA. argument.

provisional API 'Eva provisional API eival avtd mmov €xel eokepuéva eEarpebei amd Tig backwards eyyunoeig ovp-
Batdtnrag g Tumkng PBAMOOKNG. AV KoL eV avapévovTal CHUAVTIKEG AMOYEG O TETOLEG SLETOEG,
€POCOV EMONUOIVOVTAL WG TPOoWPLVES, alharyég un backwards cuufoatdomrog (UéxpL KoL KOTapynon e
dLemapng) UIopel va TPoKLPouv edv KpLbel amopaitto amd Toug factkols Tpoypaunatiotés. Tétoleg
odhayég dev Ba yivouv dokoma — Ba ouuBouv wovo edv amokalupOovv cofapd Beueliddn eraTTOUOT
7oV TOPoreipONKay TpLv oo T cuumepiinyn tov APL

Axoun kou yo provisional API, ou un backwards ouppatéc alaryég Bewpoivtar «hion Eoyatng avaykne»- Oa
eEaxohovBei vo. yivetan kdBe tpoomdOero yio va Bpedei pua AMbom backwards cupBati| og TuyOV EVIOTLOUEVAL
TPOPfAUaTO.

Avth 1 dtadikaoia emitpémer oty TustkT) BBALOON KT va ouveyioel va eSeliooetan ue Ty Tdpodo Tov xpo-
VOU, YWPIg va KAEWOMVEL TPOPANUATIKE OQALLOTO OYESLAOUOD VL0 EKTETAUEVES YPOVIKES TTEPLOdOVG. BA.
PEP 411 yio tepLoodTtepeg AeTTOUEPELES,

provisional wakéto BA. provisional API.

Python 3000 Wevdwvuuo yio to ovvoro ekdooewv Python 3.x (emvonOnke mpLv amd mwodd koupd 0Tav 1 Kukho-
popia g €xdoong 3 NTav KATL 010 PaKpLvo EALoV.) Avtd ovoudletol emiong wg ovviopoypapia «Py3k».

Pythonic Mua 1déa 1) €vo Kopupdtt KddLKa Tou akohovbel ot taL 710 Kowvd Wumwuato ™G Yhwooag Python, avti
VO VAOTTOLEL KDOLKOL Y PTOLUOTTOLMVTAG EVVOLES KOLVEG 0€ AMAEG YADOOES. Tla mapdderypa, v Kowvo wWimuo
otmv Python ivan va xdvet wo eavanym tdvo amd oha ta otolyelo evag iterable ypNOLLOTOLMVTOG ULOL
dMhwon £or. [Todrég dhheg YADOOEG TTOV dEV EYOUV CUTOV TOV TUTTO KATAOKEUNG, £T0L 0L AvOpwIToL Tov dev
eivar eEotkelmpévor pe v Python ypnowwomototv peptkéc popég Evav aptbuntko uetpn):

for i in range(len(food)):
print (food[i])

Avtibeta, wo mo kabapn uébodog Pythonic:

for piece in food:
print (piece)

avayvoplopévo ovoue ‘Eva dvopa pe kovkkideg mov deiyvel T «diadpout)» amd 1o kabokd evpog evog module
oe wo Khdon, ovvdptnon 1 uébodo mov opiletar o ovt)v ™V evotnta, Omtwg opiletal oto PEP 3155.
TN ovvapthoelg Ko KAAGELG OVAOTOTOU ETLITEDOV, TO OVOYVOPLOUEVO dvoua glval idlo pe to dvoua Tou
OVTLKELWEVOU:

>>> class C:
class D:
def meth (self):
pass

>>> C._ _qualname
IC’
>>> C.D.__gualname

(ouvéyela otV emoueV oerida)

83

https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411
https://www.python.org/dev/peps/pep-3155

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

'C.D'
>>> C.D.meth. qualname
'C.D.meth'

‘Otav ypnowomoteitar yia avapopd o¢ modules , 1o TAowWS avayvwoLleuévo évoua oNUaivel oLOKAPO To
duaxekopuévo path pog to module, cupTePLOUBOVOUEVOY TUYXOV YOVIK®V TAKETWV TT.). email .mime.
text:

>>> import email.mime.text
>>> email.mime.text. name
'email.mime.text'

) 00g avaopac The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sy s module defines a get refcount () function that programmers can call to return the
reference count for a particular object.

Kovoviko mok€ro 'Eva mapadooiako package, Onmg £vag Katdhoyog o mepléyeL éva __init_ . py apyeio.
BA. emtiong namespace package.

__slots__ Mua dHhwon péoa oe pua, KAGoM stov eEotKovopel pviun SNADVOVTOG £K TV TTPOTEPMY XDPO YL TUPG-
deLypaL YopaKTNPLOTIKA Ko eEakeipovtag AeELkd oTyotimmy. Av Ko SNUo@IAAG, 1 TEXVIKN gival Kamwg
dVOKOMO VO YiveL OWOTI Kot TTPOOPLLETL KOAUTEPQ VL0 OTTAVIES TTEPLITTMOELS OTTOV VTTAPYEL LEYAAOG 0pLO-
HOG OTLYILOTVTTOV O€ ULOL EPOAPUOYT KPLoWUNS-UviunG.

okoAlovlia. An iterable which supports efficient element access using integer indices via the __getitem__ () special
method and definesa ___len__ () method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple,and bytes. Note that dict alsosupports ___getitem__ () and__len__ (),butis

considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes

beyond just _ getitem_ () and __ len_ (), adding count (), index(), contains__ (),
and _ _reversed__ (). Types that implement this expanded interface can be registered explicitly using
register().

set comprehension 'Evog ovumayhg tpdmog yio. vo eneEepyaoteite 6ha 1) pépog Twv atolyeimv oe éva iterable ko
VO ETLOTPAPEL VO OVVOAO Le Ta amoTteréopnota. results = {c for ¢ in 'abracadabra' if c
not in 'abc'} dnuovpyel To oUvoro ovuPorooelpdv { 'r', 'd'}. Bl comprehensions.

novadiko dispatch Muo popgny dispatch generic function dmov M vhomoinon emhéyetar pe PAon Tov THTO VoG
UEUOVOUEVOV OPLOUOTOG,

slice "Evo avtikeipevo mov ouvnbmg mepLéyet Eva tunuo uog akorovbiag sequence. Anuovpyeitan éva slice xpn-
OLUOTTOLDVTAG T1) oneiman subscript, [] pe avw Kol Kdtw teheieg peta&l aplbudv otav divovol wolhoi,
Omwg 010 variable_name[1:3:5]. H onueiwon aykilng (subscript) xpnOLLOTOLEL EGMTEPLKA OVTLKEL-
ueva slice.

€191k péBodog Mia uéBodog mov Kaheitar orwsnpd omrd Ty Python yia va ekteléoel pua ouyKekpLuév Aertoup-
via og évav tOmo, dmwg M TpoodfKn. Tétoeg uéBodol éxovve ovopata Tov Eekvolv KoL TEAELDVOUV e
dumhéc KbTw movheg. Ou edLkég néBodol TekunpLvovTaL 0To specialnames.

dMlwon Mo pdTaon eivar uépog wog covitag (£va «umhok» KOdka). Mia tpdtaon eival gite Evag expression
elte wa oo wodhég doudg ue o AEEN-KAewdt émtwg i f, while i for.
strong reference =to C API g Python, pia toyvph avogopd eivol o ovopopd og Evo oVTLKEILEVO TOU OVIKEL

OTOV KMOLKA TTOV TEPLEYEL TNV avapopd. H toyvpn avagpopd haufdvetan Kahmvtag to Py INCREF () otav
1 avagopd dnuiovpyeiton ko aehevfepmvetal e Py DECREF () Otav dloypopet 1 avopopd.

84 Mapdptnua A’. NMwooapt

Extending and Embedding Python, Anpoociguon 3.10.18

H ovvéptnon Py_NewRef () Wropel va xpnotuomotnei yio) dnuouvpyio Loyvpng avopopdic o€ Vo, ovTL-
Kelpevo. Zuvnbwe, 1 ouvapTNoN Py_DECREF () mpémel vo KOAELTOL 0TV LoYVPY avapopd Ly Byet oo
TO €VPOG TNG LOYVPNG OVOPOPAS, YLa Vo artopevyOel 1 dLappon Wog avopopdic.

B emtiong borrowed reference.

Kwdkomoinon kewpévov Mia ovuforooelpd otnv Python ivol wa akolovbio onueiwv kddika Unicode (oTo £v-
poc U+0000-U+10FFFF). ['la var artoONKeVOETE 1] VO UETAPEPETE UL CUUPBOLOCELPAL, TIPETTEL VOL GELPLOTTOL-
N0l wg dvadikn akorovbia.

H oewpromoinon wog ouuBorooelpds o€ (o duadiky akohovbic eival YVOoT wg «KOALKOTOINoT» , KoL 1
avadnuovpyia tng ovuforooelpds amd Ty duadikr| okohovBio eival YVmOoT MG «OTOKMALKOTOINo1)».

Yrdpyer pio Torkihion SLapopeTikig oeLpLoToinong Kewévou codecs, oL 0TT0ioL GUALOYLKG OVOPEPOVTOL WG
«KWOLKOTTOLNOELG KELUEVOU».

apyeio kewévov 'Eva file object ixovd vo SlaBatel kau va ypdeper aviikeipeva str. Zuyvd, évo apyeio kewué-
VOU QTTOKTA TPAYUATIKG TTPOOP0on O€ pa pon duadikt) por) dedoUEVMV Kat YeLPLLETOL QUTONATO TNV fext
encoding. Tlopodelypota opyelmv KELWEVOU lvaL apy Lol TTOV avoiyouy o€ Aettovpyia Kewévou ("r' M 'w'),
sys.stdin, sys.stdout, Kot otrypdtume tov io. StringIO.

B\ extiong binary file yuon €vo AVTUKELUEVO apyELOV e duVATOHTITA OVAYVIONG KAt EYYPOPNg Svadikd avit-
Kelueva.

oupforocelpd TPUTA®Y ELCaYMYIKOV Mo GUIBOAOCELPE TTOV SECUEVETOL AT TPELG TEPUTTWOELG ELTE EVOG ELOQL-
yoyrkoU (») 1 pag arrootpdpov (). Av ko dev Tapéyouv Kouia Aettovpytkdtnta ov dev eivar dtabéoiun
1e OVUPBOLOCELPEG UE LOVAL ELOAYWYLKA, ELVOL XPHOLUES YLOL BLapOPOVg AOYOUGS. Zag EMLTPETOUV VO GUUTTE-
pLaPeTE LOVA Kat SAd eLoaymyLkd xwpig dtopuyn o€ uLa GUUBOAOOELPG KOl UTOPOVY VO EKTELVOVTOL
og TOMEG YPOUUES XWPLG TN YPTON TOV XOPAUKTNPO CUVEYELDL, KADLOTMVTAS TO LOLAULTEPO. YPNOLLO KATA TN
oUVTOEN eYYPAPWV He CUUPBOLOCELPES.

timog The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits ___class___ attribute or can be retrieved with type (ob7j).

type alias 'Evo ouvadvupo yua évay thmo, mov dnuiovpyeitor ue ty ovadeor TOmov o€ £va avayvopLoTiko.

Ta type aliases eival ypnowua yio tnv osthomoinom type alias. Tia wapddevypor:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplelint, int, int]]:
pass

WITOPEL VL YIVEL TTL0 eVavAyvVmoTo OTtmg:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) —-> list[Color]:
pass

Bi. typing kou PEP 484, movu mepuypdepel outiv TNV AeLtovpytkdTnTa.

type hint 'Evag annotation wov KaOopileL TOV avapuevopevo TOo yio. (ot LETOPANTY), EVO X apaKTNPLOTIKO KAGOoNg
1] WL TOLPAUETPO CUVAPTNONG 1) TLUT ETLOTPOPNG.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid
IDEs with code completion and refactoring.

YnodeiEeig timou (type hints) yio KaBoMkég UeTOPANTEG, YOPOKTNPLOTIKA KAAONG KoL OUVOPTH-
oelg , OMG Oyl TOTKEG UETAPANTEG, WITOPOUV VA JTPOOTELAOTOVV YPNOLUOTOLMVTAG TO typing.
get_type_hints ().

BML. typing kol PEP 484, mov meprypdgpel ovtiv v AELToupyLtKkOTTO.

85

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484

Extending and Embedding Python, Anpooicuon 3.10.18

koBohxég véeg ypauués Eva tpdmog epunveiog pomv Keywévou otov oroio dia ta akdhovbo avayvmpifovran
wg MEeig wag ypauune: ovufaon téhovg ypauung tov Unix '\n', 1 ovupfoon twv Windows '\r\n"',
Kaw TV ol ovppaon Macintosh '\ r'. BA. PEP 278 kau PEP 3116, kabmg koL bytes.splitlines ()
v TpoodeTr P oM.

annotation perapiyeig ‘Evag annotation o, puetafAntg 1 evog yopaktnpLlotikot KAGong.

‘Otov annotating puo eToBANT 1 va xopakTnpLotikod KAGong, 1 avabeon eivol TpoatpeTikn:

class C:
field: 'annotation'

Ta annotations PETOPANTOV YPNOWOTOLOVVTOL GUVNOWMG Yo fype hints: Yio. TAPAIELYUA OUTH 1) LETOPANTY
ovouévetal vo Mafel Tiég int:

count: int = 0

H o¥vta&n annotation petafAnNTig meptypdpetal 0Ty evOTITa. annassign.

BA. function annotation, PEP 484 xav PEP 526, mov meprypdgpouv avti) ™ Aertovpyio. Agite emiong
annotations-howto yia. BELTLOTES TPAKTIKEG OYETIKA Ue TNV EpYOTia e oXoMaouove.

virtual environment 'Evo cuvepyoatikd amopovmuévo eptBallov xpovoy eKTELEONG TOV EMULTPETEL OTOVG YPT1)-
0TEG Kau TIG eapuoyés tg Python va eyxotaotioovy kot vo avopaduicovv tokéta diovoung Python ympig
va tapeuaivouy oty ovutepLpopd AoV epapuroymv Python mov extelovivtar 0Tto idLo ovoThua.

Bi. emiong venv.

virtual machine 'Evog vroloyiotic opileton €€ ohokipov amd to hoyiowkd. H eucovikhy unyavi tng Python
ektelel To bytecode oV eKTTEUTETAL ALTTO TOV UETAYAWTTLOTY bytecode.

Zen 1 Python Kotdhoyog oyedlaotikmy apymv KoL (LAOGOMLMY TOV ELVOL YPT|OLUES YLOL TV KATOVONOT KoL TN
xPNOoM ™G YAdooag. O kotdhoyog witopel va fpedel mhnktporoydviag «import this» otnv dladpaoTiky
KovaoLa.

86 Mapdptnua A’. NMwooapt

https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

nAPAPTHMA B’

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.

H avamtuEn tov eyypleov Kol Tov gpyoleiwv toug eivar eE” ohokhnpov edehovtiky mpoomddera, dmwg Ko 1)
idua 1 Python. EGv Béhete va. ouvelopépete, piEte wo. potid ot oghida reporting-bugs yio, TANPOQOPLES OYETIKEG
e To Twg vo. 1o Kavete. Kawvouplol e0ehoviég eival mdvta evmpdodektol!

[ToAAég vy OpLOTiES TTNYALVOUY OTOVG:
« Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
« 7o Docutils tpdtlekt yio v dnuovpyio tmv epapuoydv reStructured Text ko Docutils:

o Fredrik Lundh yua to 816 tov Alternative Python Reference mpdtlekt amd to omoio to Sphinx mpe ol
KoAég LOgec.

B'.1 Contributors to the Python Documentation

IoAhol avBpwrtoL éxouv ouvela@épel ot Yhwooo Python, thv BiioOnin tng Python, ko ta €yypagpa tng Python.
Agite Misc/ACKS otig minyég dravoung g Python yia pa Moto twv ouvieheotdv.

Moévo ue tn ouufol) Kot Tig OUVELGPOPES TG Kotvotntag tg Python, 1) Python €yel tétola vitépoya éyypapo -
Zag evyoaploTovpe!

87

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.10/Misc/ACKS

Extending and Embedding Python, Anpooicuon 3.10.18

88

Mapdaptnua B'. About these documents

4
NAPAPTHMA [

loTopla kat Adela

.1 Hotopia Tou AoyLoHLKOU

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/Iwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most, but
not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

‘Ekdoon Mpoepxduevn ard | ‘Etoq Idloktnoia | GPL compatible?
0.9.0éwg 1.2 | &/v 1991-1995 CWI v
13¢émg1.52 | 1.2 1995-1999 CNRI VoL
1.6 1.5.2 2000 CNRI oxL
2.0 1.6 2000 BeOpen.com | oyt
1.6.1 1.6 2001 CNRI oyl
2.1 2.0+1.6.1 2001 PSF oYL
2.0.1 2.0+1.6.1 2001 PSF v
2.1.1 2.142.0.1 2001 PSF VoL
2.1.2 2.1.1 2002 PSF VoL
2.1.3 2.1.2 2002 PSF VoL
2.2 kou whve | 2.1.1 2001-ofuepo. | PSF VoL

89

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Extending and Embedding Python, Anpooicuon 3.10.18

Inueiwon: GPL-compatible doesn’t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

X&p1, 0toug ToAovg eEmTepLkovg e0eLOVTEG TTOV EpYAOTKAY KUTW 07TO TG 081 Yieg Tov Guido, avtég oL ekddoelg
EyLVay EQLKTEG.

.2 OpolL Kat npoUmnoBeocelg ywa tnv npoéocpacn | tTnv Xpnon tneg
Python pe aAAoug Tpomoug

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Kdamoro Aoyioukd mov eival evomupotouévo otnv Python givan vitd duagpopetikég ddeteg ypnone. O adeleg mapal-
TOEVTAL PE KDOOLKO TOV EUTTLITTEL 0€ QUTNV TNV AdeLaL. Agite Adeies kau Evyaototies yra Evoouatwuévo Aoyiouxd
yLoL uLoL EAMLTTN ALOTaL ATV TV OdELMDV.

".2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.10.18

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),._
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—~Python

3.10.18 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.10.18 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All._
—~Rights
Reserved" are retained in Python 3.10.18 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.10.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.10.18.

4. PSF is making Python 3.10.18 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

20 Mapdaptnua . lotopia kat Adsla

Extending and Embedding Python, Anpoociguon 3.10.18

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION..
—OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.10.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.10.18

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.L
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.10.18, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.10.18, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

r22 YMoQNIA AAEIAZ BEOPEN.COM I'lA PYTHON 2.0

ZYM®ONIA AAEIAZ ANOIXTOY KQAIKA BEOPEN PYTHON EKAOZH 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,

(ouvéyela otV emtduevn oehida)

M.2. Opol kai poiinmoBgoeLg yia tTnv npoocpaon 1 tnv Xprion tng Python pe aAAoug tponoug 91

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by and interpreted in all respects

by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

r.2.3 ZYM®QNIA AAEIAZ CNRI I'lA PYTHON 1.6.1

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR

(ouvéyela otV emtduevn oehida)

92

Mapdaptnua . lotopia kat Adsla

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

r2.4 XYMoOQNIA AAEIAZ CWII'IA PYTHON 0.9.0 EQx 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

M.2. Opol kai poiimoBgoelqg yia tTnv npoopaon i tnv xprion tng Python pe aAAoug tponoug 93

Extending and Embedding Python, Anpooicuon 3.10.18

M.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.18
DOCUMENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

.3 Adeleg katL Euxaplotieq yia Evowpatwpévo AOYLOULKO

Avt) 1 evoémto eivan o nutedfic, aAhd avEavopevn Mota adeldv Kot EuyaplotidV YioL AOYLOWKOS TPiTwYV, ToU
EVOWUOTMOVETOL 0TNV dtavou g Python.

M.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

(ouvéyela otV emtduevn oehida)

94 Mapdaptnua . lotopia kat Adsla

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

M.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " 'AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 95

https://www.wide.ad.jp/

Extending and Embedding Python, Anpooicuon 3.10.18

M.3.3 Aouyxpoveg socket unnpeoieq

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

M.3.4 Awaxeipion Cookie

H evémto http.cookies mepéyel TV TOpAKAT® E1O0TOINON:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

96 Mapdaptnua . lotopia kat Adsla

Extending and Embedding Python, Anpoociguon 3.10.18

M.3.5 Avixveuon eKTéAeong

H evomto t race mepLéyel v TapokdTm eLd0TOiNo:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

M.3.6 Zuvaptnoelg UUencode kat UUdecode

H evomto uu mepiéyet v mapakdtm edomoinon:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C

(ouvéyela otV eOUEVT OENIDOL)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 97

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

version is still 5 times faster, though.
— Arguments more compliant with Python standard

M.3.7 KAjoelg Anopakpuopevng Aladikaciag XML

H evomto xmlrpc. client mepiéyel v mopakdtw e100moinon:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

M.3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

(ouvéyela otV emtouevVn oehida)

98 Mapdaptnua . lotopia kat Adsla

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

M.3.9 EruAoyn kqueue

H evomta select mepiéyel v mapokdtm ewdomoinon yio v kqueue diemopi):

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

".3.10 SipHash24

To apyelo Python/pyhash. c mepiéyel v vhomoinon tov Marek Majkowski tou alyopiBuov tov Dan Bernstein,
SipHash24. Autd mepléyeL tnv mopaKatom oNueinon:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

(ouvéyela otV emtduevn oehida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 99

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/1little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

M.3.11 strtod kaw dtoa

To apyelo Python/dtoa. c, mov mapéyet TG ouvaptnoelg dtoa ko strtod g C yia uetatpomt) twv C doubles
7POG KoL artd strings, poépyetan atd To oudvupo apyeio tov David M. Gay, mpog to mapdv dtadéoipo amo https:
/Iweb.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c. To apyikd apyeio, OTWG avakTHONKe 0TIG
16 Maptiov, 2009, epLéyet Ta akOLOUO0 TVEUROTIKE SUKOLMUATO KoL TV ELO0TOIN0T atdELOdOTNONG:

/*~k***********~k***********~k~k*************************************
*

* The author of this software is David M. Gay.
*

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

*
*

*

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

L

*

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*

* %

***/

M.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

(ouvéyela otV emtduevn oehida)

100 Mapdaptnua . lotopia kat Adsla

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

L S S A R N S N S N N S S e R S S N S N S S S T S S N NS S S S SN S S S N NS S S R T S

Original SSLeay License

(ouvéyela otV emtduevn oehida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 101

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eaylcryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ' "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

L T S A N S S N S N S S S S S S N S S T S R e N S S S SN S S SN T SN SRS N S T S ST S S N S N .

102 Mapdaptnua . lotopia kat Adsla

Extending and Embedding Python, Anpoociguon 3.10.18

.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured ——with-
system—expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

r.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured —~with-
system—1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 103

Extending and Embedding Python, Anpooicuon 3.10.18

r.3.15 zlib

H eméktaon z1ib dnuovpyeiton xpnoLoToLmVTOS £VO CUUTEPIAAUBAVOUEVOL OVTLYPAPO TOV TTNYWV Zlib, edv 1)
€kd0o0m Tov zlib ov Bpioketal 0To CVOTNUA ElVOL TTOAD TTOAMA YLoL VAL, XPNOLULOTTOLNOEL YLoL TV KOTAOKEVY:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

M.3.16 cfuhash

H vhomoinom tov mivoka KoTaKepUATIONoU OV XPNOUOTToLEITOL 0td To tracemalloc facileTon 010 £€pYyo
cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

(ouvéyela otV emtduevn oehida)

104 Mapdaptnua . lotopia kat Adsla

Extending and Embedding Python, Anpoociguon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

M.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured ——with-
system—-1libmpdec

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3.18 W3C C14N ocouita SoKLUNiQ

H covita doxiufig C14N 2.0 oto mokéto test (Lib/test/xmltestdata/cl14n-20/) avaktOnke amd tov
tototoro tov W3C https://www.w3.org/TR/xml-c14n2-testcases/ Ko dtavépeton e v adewa 3 pntpwv BSD:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

(ouvéyela otV emtduevn oehida)

M.3. Adeleq kal Euxaplotieg yia Evowpatwpeévo AOYLOULKO 105

https://www.w3.org/TR/xml-c14n2-testcases/

Extending and Embedding Python, Anpooicuon 3.10.18

(ouveyiletar 0mwd TNV PO YoUIEVT OeNdQ)

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

r".3.19 Audioop

To module audioop ypnowomotel wg Paon kKmdKa tov apyetov g771.c tov €pyov Sox. https://sourceforge.net/
projects/sox/files/sox/12.17.7/sox-12.17.7 .tar.gz

Avtd o mnyoiog kmdikag eivar mpoldv g Sun Microsystems, Inc. Ko TOpEYXETAL VIO ATTEPLOPLOTY|
xpNHo1. OL xpNOTES WITOPOVY VAL AVTLYPEPOUV 1] VO, TPOTTOTOLYTOUV GUTOV TOV TTHYOL0 KMALKA Kmpig

YPEWOT).

O ITHI'AIOZ KQAIKAZX TOY SUN ITAPEXETAI OITQZ EXEI XQPIZ KANENOZ EIAOYZ EITYH-
2EIZ ZYMIIEPIAAMBANOMENQN EITYHZEQN ZXEAIAXMOY, EMIIOPEYZIMOTHTAX KAI
KATAAAHAOTHTAZ I'TA 2YTKEKPIMENO ZKOIIO 'H ITOY IMPOKYTIITEI AITO KAIIOIA IIO-
PEIA 2XYNAAAATHZ, XPHZHZ 'H EMITIOPIKHZ ITPAKTIKHZ.

O mtyaiog KmdLKOG ToL Sun JTaPEYETOL YWPIG TNV VITOOTHPLET Kot wpig Kauio vtoypemwon ek Hépovg
g Sun Microsystems, Inc. va fon0noer oty %p1 o1, otn dLopOwon, Tpomomoinon 1 fertiwon Tov.
SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE

INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
OR ANY PART THEREOF.

e kot epimtrwon 1 Sun Microsystems, Inc. dev @péper uBUVN Yo TUXOV aATTWAELD E0OdWV 1| KEP-
SV 1) dhheg edLkég, Euueoeg Kat emokolovbeg Tnuleg, axoun kou ov 1 Sun €yl evnuepwOel yo Tnv
TOOVOTNTA TETOLWV TNULOV.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, Kolgpdopvia 94043

106 Mapdaptnua . lotopia kat Adsla

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz

NAPAPTHMA £\’

Copyright

H Python ko vt 1) Tekunpiwon eivod:

Copyright © 2001-2023 Python Software Foundation. ‘Ol To. StkodUoTo SLOTPOUVTAL.

Copyright © 2000 BeOpen.com. OLa T SUKOLMOUOTA SLATNPOVVTOL.

Copyright © 1995-2000 Corporation for National Research Initiatives. Olo. To. StKaLOUATO SLATNPOVVTAL.

Copyright © 1991-1995 Stichting Mathematisch Centrum. ‘Ola Tal SLKOLOUOTA SLATPOVVTOL.

AvatpéEte oto lotopla kar Adewa Yo, TA PN G TANPOQOPN oY OYeTLKd pe TV ddera yprong Ko TG eEouoLodoThHoELC.

107

Extending and Embedding Python, Anpooicuon 3.10.18

108 Mapaptnua A'. Copyright

Eupetriplo

MN-aApaBLTIKA
A |
2to3,71
>>> 71
BDFL, 73
CPython, 74
C-contiguous, 74
EAFP, 75
Fortran contiguous, 74
GIL,77
IDLE, 78
LBYL, 79
MRO, 80
PEP, 82
PYTHONPATH, 59
PY_AUDIT_READ, 54
Philbrick, Geoff, 15
PyArg_ParseTuple (), 14
PyArg_ParseTupleAndKeywords (), 15
PyErr_Fetch (), 51
PyErr_Restore (), 5]
PyInit_modulename (C function), 59
PyObject_CallObject (), 12
Python 3000, 83
Python Enhancement Proposals
PEP 1,83
PEP 238,76
PEP 278, 86
PEP 302,76, 80
PEP 343,74
PEP 362,72,82
PEP 411,83
PEP 420,76, 81, 83
PEP 442,52
PEP 443,77
PEP 451,76
PEP 483,77
PEP 484,71,76,77, 85, 86
PEP 489,11,59

PEP 492,7274

PEP 498,75

PEP 519,82

PEP 525,72

PEP 526,71, 86

PEP 585,77

PEP 3116,86

PEP 3155,83
Pythonic, 83
READONLY, 54
READ_RESTRICTED, 54
RESTRICTED, 54
WRITE_RESTRICTED, 54
Zen tnc¢ Python, 86
_ future_ ,76
__slots_ ,84
annotation, 71
annotation petaBAntng, 86
awaitable, 73
bytecode, 73
bytes-like avtikeipeva, 73
callable, 73
callback, 73
coercion, 74
context petafAintn, 74
contiguous, 74
coroutine, 74
coroutine ouvdptnon, 74
deallocation, object,5l
decorator, 74
descriptor, 75
docstring, 75
duck-typing, 75
f-string, 75
finalization, of objects,5l
finder, 76
generator, 77
generator expression,77
generator iterator, 77
generator éxypaon, 77

109

Extending and Embedding Python, Anpooicuon 3.10.18

global interpreter lock,77
hash-based pyc, 78
hashable, 78
immutable, 78
interpreted, 78
iterable, 79
iterator,79
lambda, 79
list comprehension, 80
loader, 80
magic

method, 80
mapping, 80
meta path finder, 80
method

magic, 80

special, 84
module, 80
module enéxtaong, 75
mutable, 81
named tuple, 81
namespace, 81
nested scope, 81
object

deallocation, 51

finalization,5l1
path based finder, 82
path entry, 82
path entry finder, 82
path entry hook, 82
path-like avtikeipevo, 82
provisional APIT, 83
provisional maxéTo, 83
repr

evowpatwpévn ouvdptnorn, 52
set comprehension, 84
slice, 84
special

method, 84
string

object representation, 52
strong reference, 84
type alias,85
type hint, 85
virtual environment, 86
virtual machine, 86

A

aképalra Srailpeon, 76
axoAioubia, 84
avayvwplopévo ovoua, 83
avtikeipevo, 81
avtikeipevo apyelou, 76

avtikeipevo mou poirdlelr pe apyeto, 76

apxeto xeiwpévou, 85

acuyxpovoc generator, 72

acuyyxpovog generator iterator,72
acuyyxpovog iterable, 72

acuyyxpovog iterator,72

aocuyyxpovoc dirayelploTng context,72
apnenupévn PRacikn xAdon, 71

r

yevikn ouvdptnorn, 77
yevikdg tunog, 77

A

Saveilxny avaypopd, 73
&nAwon, 84
Srabpactixde, 78
Sirayeilplotnc context, 74
SuaBixd apyeto,73

E

€181k pébodoc, 84

elroaybépevo path, 78

elLoaywyéag, 78

eltoaywyrn, 78

éxppaon, 75

evowpatwpévn ouvdptnon
repr, 52

K

xaboAlxéc véec ypappéc, 86

kavovikd maxketo, 84

xatavonon Aefixou,75

xAdon, 73

kxAdon véou oTul, 81

xwdixomoinon xeilpévou, 85

xwdlkomoilnon OUCTNUATOC apXelwv
XelpLlLOoTAG oyparipdtwyv, 76

A

AeZ1x6, 75
AloTa, 80

M

payikn pébodog, 80
nébobog, 80
peta-xAdon, 80
petaBAnty xAdong, 74
petaBAnty nepilBAAAovTog
PYTHONPATH, 59
piya8ikde apibudg, 74
pova8ixd dispatch, 84

O

6propa, 72

Xxatu

110

Eupetnplo

Extending and Embedding Python, Anpoociguon 3.10.18

6plopa keyword, 79
6plopa Béong, 83
oyn AeZixkou, 75

M

naxéto, 81

nax£To namespace, 81
napduetpoc, 81
nAnboc avawpopdc, 84

2

cel1pd avdiuonc peboduv, 80

oculAAloyny amnoppipdatwv, 77

oupBoAocelpd TPLOAWV €1l10Aywy LKWV, 85
ouvdptnon, 76

ouvdptnon annotation, 76

ouvdptnon key,79

T

Teppatiopdc Aeittoupylag Srepunvéa, 78
Texvikéc mpoSiraypapéc module, 80
Tunpa, 83

Tomikn xwdikomoinorn, 80

TUnog, 85

X

XapakTneloTiko, 72

Eupetnplo

111

	Recommended third party tools
	Creating extensions without third party tools
	Extending Python with C or C++
	A Simple Example
	Intermezzo: Errors and Exceptions
	Back to the Example
	The Module’s Method Table and Initialization Function
	Compilation and Linkage
	Calling Python Functions from C
	Extracting Parameters in Extension Functions
	Keyword Parameters for Extension Functions
	Building Arbitrary Values
	Reference Counts
	Writing Extensions in C++
	Providing a C API for an Extension Module

	Defining Extension Types: Tutorial
	The Basics
	Adding data and methods to the Basic example
	Providing finer control over data attributes
	Supporting cyclic garbage collection
	Subclassing other types

	Defining Extension Types: Assorted Topics
	Finalization and De-allocation
	Object Presentation
	Attribute Management
	Object Comparison
	Abstract Protocol Support
	Weak Reference Support
	More Suggestions

	Building C and C++ Extensions
	Building C and C++ Extensions with distutils
	Distributing your extension modules

	Building C and C++ Extensions on Windows
	A Cookbook Approach
	Differences Between Unix and Windows
	Using DLLs in Practice

	Embedding the CPython runtime in a larger application
	Embedding Python in Another Application
	Very High Level Embedding
	Beyond Very High Level Embedding: An overview
	Pure Embedding
	Extending Embedded Python
	Embedding Python in C++
	Compiling and Linking under Unix-like systems

	Γλωσσάρι
	About these documents
	Contributors to the Python Documentation

	Ιστορία και Άδεια
	Η ιστορία του λογισμικού
	Όροι και προϋποθέσεις για την πρόσβαση ή την χρήση της Python με άλλους τρόπους
	PSF LICENSE AGREEMENT FOR PYTHON 3.10.18
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ BEOPEN.COM ΓΙΑ PYTHON 2.0
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CNRI ΓΙΑ PYTHON 1.6.1
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CWI ΓΙΑ PYTHON 0.9.0 ΕΩΣ 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.18 DOCUMENTATION

	Άδειες και Ευχαριστίες για Ενσωματωμένο Λογισμικό
	Mersenne Twister
	Sockets
	Ασύγχρονες socket υπηρεσίες
	Διαχείριση Cookie
	Ανίχνευση εκτέλεσης
	Συναρτήσεις UUencode και UUdecode
	Κλήσεις Απομακρυσμένης Διαδικασίας XML
	test_epoll
	Επιλογή kqueue
	SipHash24
	strtod και dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N σουίτα δοκιμής
	Audioop

	Copyright
	Ευρετήριο

