The Python/C API
Anuooicuon 3.10.18

Guido van Rossum
and the Python development team

louAiou 08, 2025

Python Software Foundation
Email: docs@python.org

Meplexoueva

1 Introduction

.1 Codingstandards e e e e e e e e e
1.2 Include Files e
1.3 Useful macros o o e e e e e e e e
1.4 Objects, Types and Reference Counts it
1.4.1 Reference Counts i i e e e e e
LA2 TYPES . v o o e e e e e e e e e e e e e e e e
1.5 EXCeptions o i e e e e e e e e e e e
1.6 Embedding Python e
1.7 Debugging Builds
C API Stability
2.1 Stable Application Binary Interface L L
2.1.1 Limited API Scope and Performance
2.1.2 Limited API Caveats it
2.2 Platform Considerations i e e e e e e e e e
2.3 Contents of Limited APT e

The Very High Level Layer

Reference Counting

Exception Handling

5.1 Printingand clearing L e e e e e e e
5.2 RaiSing eXCeptions i it e e e e e e e e e e e e e
5.3 ISSUINZ WAININGS . . . v v v v e
5.4 Querying the error indicator L. e e e e e e e e e e
5.5 SignalHandling e e e e
5.6 Exception Classes e e e
5.7 Exception Objects L e e e e
5.8 Unicode Exception Objects o i i e e
5.9 Recursion Controlo e e e e e e
5.10 Standard EXceptions L e e e e e e e e e e e e
5.11 Standard Warning Categoriest e e e e e e
Utilities

6.1 Operating System Utilities 0 0 i e e e e e
6.2 SystemFunctions e
6.3 Process Control L e e e e e e e e
6.4 Importing Modules
6.5 Datamarshalling support e e e e e e e e e e e e e e e

13
13
14
14
14
15

39

45

6.6 Parsing arguments and building values L e 68
6.6.1 Parsingargumentst e e e e e e e e e e e e e e e e e e e 68
6.6.2 Buildingvalues e e e 74
6.7 String conversion and formattingo Lo 76
6.8 Reflection L 77
6.9 Codec registry and support functions ool 78
6.9.1 Codeclookup APL. e e e 78
6.9.2 Registry API for Unicode encoding error handlers 79
Abstract Objects Layer 81
7.1 Object Protocol e e e 81
7.2 Call Protocol e e 85
7.2.1 Thetp_call Protocol e e e e 85
7.2.2 The Vectorcall Protocol 85
7.23 Object Calling API e 87
7.2.4 Call Support APT e e e e 89
7.3 Number Protocol e 89
7.4 Sequence Protocol e 92
7.5 Mapping Protocolo e 94
7.6 Tterator Protocol e 95
7.7 Buffer Protocol e 96
7.7.1 Bufferstructure e 97
7.77.2 Bufferrequesttypes e e 98
7773 Complex arrays e e e e 100
7.7.4 Buffer-related functions L L 101
7.8 OldBuffer Protocol e e e e e e e e 102
Concrete Objects Layer 105
8.1 Fundamental Objects L e e e e 105
8.1.1 Type ObJects o v i i e e e e e e e 105
8.1.2 TheNone Object i i e 108
8.2 Numeric ObJeCtS o v i e e e e e e e e e e e e e e 109
8.2.1 Integer Objects i e e e e e e 109
8.2.2 Boolean ObJects o it e e e 112
8.2.3 Floating Point Objects e e 112
824 Complex Number Objects i i 113
83 Sequence ObJeCts e e e e e e e e e 114
83.1 BytesObjects e 114
8.3.2 Byte Array Objects e e e e e e e e e 116
8.3.3 Unicode Objectsand Codecs oo v ittt it 117
834 Tuple ObJects v o v i e e e e e e e e e e e e e e 136
8.3.5 StructSequence Objects i e e e e e e e e e 137
8.3.6 ListObjects i i e e e e e e e e 138
8.4 Container Objects L e 139
8.4.1 Dictionary ObJects oot e e e e e e 139
8.4.2 SetODbJects o i e e e e e e e e e e e 142
8.5 Function ObJects o v i e e e e e e e e e e e e 144
8.5.1 Function Objects i e e e e e e e e 144
8.5.2 Imstance Method Objects 145
853 Method Objects o e e e 145
854 CellObjects v v v v e e e 146
8.5.5 Code ObJeCts v v i i e e e e e e e e e e e e 146
8.6 Other ObJECtS o i i i e e e e e e e e e e e e e e e 147
8.6.1 FileObjects e e e e e 147
8.6.2 Module Objects 148
8.6.3 Tterator Objects o i i e e e e e 155
8.6.4 Descriptor ODJECtS v v v vt e e e e e e e e e e e e e e 156
8.6.5 Slice ObJECtS v i i e e e e e e e e e e e 156

8.6.6 EllipsisObject o v i e e e e e e e e e e e e e 157

8.6.7 MemoryView Objects e e e e e e e e e e e e 158

8.6.8 Weak Reference Objects o . i i e 158

8.69 Capsules e 159
8.6.10 Generator ObJects o o vt e e e e e e 161

8.6.11 Coroutine ObjJects« v v v it e e e e e e e 161
8.6.12 Context Variables Objects o v v it s e e e e 161
8.6.13 DateTime Objects o o v i it e e e e e e e e e e 163
8.6.14 Objectsfor Type Hinting 166

9 Initialization, Finalization, and Threads 167
9.1 Before Python Initialization e e e e 167
9.2 Global configuration variables L. oL e 168
9.3 Initializing and finalizing the interpreter L. 170
9.4 Process-wide parameterst e e e e e e e e e e e e e e e e e 171
9.5 Thread State and the Global Interpreter Lock 174
9.5.1 Releasing the GIL from extensioncode, 174

9.5.2 Non-Pythoncreated threads 175

9.5.3 Cautionsabout fork() e e e e 176

9.54 High-level APT e 176

955 Low-level APL L e 178

0.6 Sub-interpreter SUPPOTL . .« v v v v v o e 181
9.6.1 Bugsandcaveats e 182

9.7 Asynchronous Notifications L e 182
9.8 Profilingand Tracing e e e e 183
9.9 Advanced Debugger Support e 184
9.10 Thread Local Storage Support o 0 i e e e e e e e e e e e 184
9.10.1 Thread Specific Storage (TSS) APT 185
9.10.2 Thread Local Storage (TLS) APL 186

10 Python Initialization Configuration 187
10.1 Example e e e e e e e e 187
10.2 PyWideStringLList L. e e 188
103 PyStatus L e 189
10.4 PyPreConfig o i e e e e 190
10.5 Preinitialize Python with PyPreConfig 191
10.6 PyConfig o e e e 192
10.7 Imitialization with PyConfig 201
10.8 Isolated Configuration e 203
10.9 Python Configuration o e e e 203
10.10 Python Path Configuration i i i e e e e e e e 203
10.11 Py_RunMain() o o o e e e e e e e e e e e e e e e e e 204
10.12 Py_GetArgcArgv() . . .« o v e e e e e e e e e e e e e e 205
10.13 Multi-Phase Initialization Private Provisional APT 205
11 Memory Management 207
IT.L Overview o e e e e e 207
11.2 Allocator Domains oo e e e e e e e e 208
11.3 Raw Memory Interface e 208
11.4 Memory Interface e e e e e e e e e 209
11.5 Objectallocators v v v i i e 210
11.6 Default Memory ALlOCAtors o i i e e e e e e e e e e e e e e e 211
11.7 Customize Memory Allocators o o v i i e e e 212
11.8 Debug hooks on the Python memory allocators 213
11.9 The pymalloc allocator o o i i e e e e e 214
11.9.1 Customize pymalloc Arena Allocator i vt it 215

11.10 tracemalloc C APT o e 215
IT.11 Examples oo o e e e 215

12 Object Implementation Support
Allocating Objectsonthe Heap e
12.2 Common Object StruCtures v v v i i e e e e e e e e e e e e e e e

13

BI

FI

12.1

12.3

12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11

12.2.1
12.2.2
12.2.3

Base object typesand macros oL
Implementing functionsand methods oL
Accessing attributes of extension types ool

Type Objects o o o o e e e e e e

12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7

Quick Reference e
PyTypeObject Definition e
PyObject Slots o o e e
PyVarObject SIots o o e
PyTypeObject Slots o o i e e
Static TYPES . . o v v o o e e e e e e e e e e e e e e e
Heap Types o o e e e e e e e e

Number Object Structures o o v it e e e e e e e e e e
Mapping Object StrUCIUIES vttt it it e e e e e e e e
Sequence Object StrUCTUIes o o v v ittt e e e e e e e e e
Buffer Object Structures o e e e e e e e e e
Async Object StrUCtUTES v v v v o ot e e e e e e e e e e e e e e e e
Slot Type typedefs e
Examples L e e e e e
Supporting Cyclic Garbage Collection o

12.11.1

Controlling the Garbage Collector State

API and ABI Versioning

I'\owoodapt

About these documents
Contributors to the Python Documentation

B’.1

Iotopio ko Adero
H 1omoplor TOU ROYLOILKOU + . . o v v o o e e e e e e e e e e e e e e e e
‘Opol Kot TtpoimobEcels yio v tpdoBaon 1 Thv xpNnorn g Python pe dhhovg tpdmovg

.1
.2

'3

2.1
.22
23
24
I7.2.5

PSF LICENSE AGREEMENT FOR PYTHON 3.10.18
ZYM®ONIA AAEIAY BEOPEN.COMTIAPYTHON2.0
ZYM®OONIA AAETAX CNRITIAPYTHON 1.6.1
ZYM®OONIA AAEIAZ CWITTIA PYTHONO0S.OEQZ 1.2
ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.18

DOCUMENTATION s

Adeieg kau Evyaprotieg o EvOOUATOUEVO AOYIOWKO o o o oo

3.1
[7.3.2
"33
34
3.5
3.6
I7.3.7
I7.3.8
3.9
I3.10
"3.11
".3.12
I7.3.13
[7.3.14
I".3.15
I"3.16
I".3.17
I7.3.18

Mersenne TWISTEr o o i i e e e e
Sockets . . .o e
Aolyypoveg socket UINPESLEG L L L
Awoyelpton CooKie e e e e e e e
AVIYVEUON EKTELEDTIG « « v v v v e e e e e e e e e e e e e e e e e
Zuvopmoelg UUencode kaw UUdecode o o oo oo
Kinoeig Amopakpuopévng Atadikaotag XML Lo
test_epoll . . . L e e e e e e e e e
Emhoynkqueueo e
SipHash24 o e
strtod KoL dtoa L. e e e e e e

libmpdec o e
W3C CI4N GOVITO QOKUIIG + + v v v o e v e e e e e e e e e e e e e e e e e

217
217
218
218
220
222
223
224
228
229
230
230
247
247
248
250
250
251
252
253
254
256
258

261

263

279
279

[7.3.19 Audioop
A’ Copyright

Evpetipro

Vi

The Python/C API, Anpooicuon 3.10.18

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion to extending-index, which describes the general principles of extension writing but does
not document the API functions in detail.

Meplexopeva 1

The Python/C API, Anpooicuon 3.10.18

2 Meplexopeva

KE®AAAIO 1

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter
at a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension
modules for specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to as embedding Python in an application.

Writing an extension module is a relatively well-understood process, where a «cookbook» approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether youre embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it’s probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards

If you're writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7.
These guidelines apply regardless of the version of Python you are contributing to. Following these conventions is
not necessary for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#define PY _SSIZE_T CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,<limits.
h>, <assert.h>and <stdlib.h> (if available).

Ynueiwon: Since Python may define some pre-processor definitions which affect the standard headers on some
systems, you must include Python . h before any standard headers are included.

https://www.python.org/dev/peps/pep-0007

The Python/C API, Anpooicuon 3.10.18

It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See Parsing arguments
and building values for a description of this macro.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py or _Py. Names beginning with _ Py are for internal use by the Python implementation and should not
be used by extension writers. Structure member names do not have a reserved prefix.

Xnueiwon: User code should never define names that begin with Py or _Py. This confuses the reader, and
jeopardizes the portability of the user code to future Python versions, which may define additional names beginning
with one of these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/
include/pythonversion/ and exec_prefix/include/pythonversion/, where prefix and
exec_prefix are defined by the corresponding parameters to Python’s configure script and version is ' $d.
%$d' % sys.version_info[:2]. On Windows, the headers are installed in prefix/include, where
prefix is the installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>;this will break on
multi-platform builds since the platform independent headers under pre f£ix include the platform specific headers
from exec_prefix.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry
points to be extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

Py_UNREACHABLE ()
Use this when you have a code path that cannot be reached by design. For example, in the default : clause
in a switch statement for which all possible values are covered in case statements. Use this in places where
you might be tempted to put an assert (0) or abort () call.

In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable
code. For example, the macro is implemented with __builtin_unreachable () on GCC in release
mode.

A use for Py_ UNREACHABLE () is following a call a function that never returns but that is not declared
_Py_NO_RETURN.

If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used.
For example, under low memory condition or if a system call returns a value out of the expected range. In this
case, it’s better to report the error to the caller. If the error cannot be reported to caller, Py_FatalError ()
can be used.

Néo otnv €kdoon 3.7.

Py_ABS (x)
Return the absolute value of x.

Néo omnv ékdoom 3.3.

Py MIN (x, y)
Return the minimum value between x and y.

Néo otv éxdoom 3.3.

Py MAX (x, y)
Return the maximum value between x and y.

4 Kegahaio 1. Introduction

The Python/C API, Anpooicuon 3.10.18

Néo otv ¢kdoom 3.3.

Py_STRINGIFY (x)
Convert x to a C string. E.g. Py_ STRINGIFY (123) returns "123".

Néo otnv ¢kdoon 3.4.

Py_MEMBER_SIZE (fype, member)
Return the size of a structure (t ype) member in bytes.

Néo otnv ¢kdoom 3.6.

Py CHARMASK (c¢)
Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to
an unsigned char.

Py_GETENV (s)
Like getenv(s), but returns NULL if -E was passed on the command line (ie. if
Py_IgnoreEnvironmentFlag is set).

Py_UNUSED (arg)
Use this for unused arguments in a function definition to silence compiler warnings. Example: int
func(int a, int Py_UNUSED (b)) { return a; }.

Néo otnv ékdoon 3.4.

Py_DEPRECATED (version)
Use this for deprecated declarations. The macro must be placed before the symbol name.

Example:

Py_DEPRECATED (3.8) PyAPI_FUNC (int) Py_OldFunction (void);

AMoEe oty ékdoon 3.8: MSVC support was added.

PyDoc_STRVAR (name, str)
Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the
value will be empty.

Use PyDoc_STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
V2
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
VYRR

PyDoc_STR (str)
Creates a docstring for the given input string or an empty string if docstrings are disabled.

Use PyDoc_ STR in specifying docstrings to support building Python without docstrings, as specified in PEP
7.

Example:

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR("Returns the keys of the row.")},
{NULL, NULL}
i

1.3. Useful macros 5

https://www.python.org/dev/peps/pep-0007
https://www.python.org/dev/peps/pep-0007
https://www.python.org/dev/peps/pep-0007

The Python/C API, Anpooicuon 3.10.18

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject*. This type
is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated
the same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it
is only fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you
never declare an automatic or static variable of type PyOb ject, only pointer variables of type PyObject* can
be declared. The sole exception are the type objects; since these must never be deallocated, they are typically static
PyTypeObject objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of
the well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a)
is true if (and only if) the object pointed to by a is a Python list.

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a strong reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When the last strong reference to an
object is released (i.e. its reference count becomes zero), the object is deallocated. If it contains references to other
objects, those references are released. Those other objects may be deallocated in turn, if there are no more references
to them, and so on. (There’s an obvious problem with objects that reference each other here; for now, the solution is
«don’t do that.»)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py INCREF () to take a
new reference to an object (i.e. increment its reference count by one), and Py_ DECREF () to release that reference
(i.e. decrement the reference count by one). The Py_ DECREF () macro is considerably more complex than the
incref one, since it must check whether the reference count becomes zero and then cause the object’s deallocator to
be called. The deallocator is a function pointer contained in the object’s type structure. The type-specific deallocator
takes care of releasing references for other objects contained in the object if this is a compound object type, such as
a list, as well as performing any additional finalization that’s needed. There’s no chance that the reference count can
overflow; at least as many bits are used to hold the reference count as there are distinct memory locations in virtual
memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count increment is a
simple operation.

It is not necessary to hold a strong reference (i.e. increment the reference count) for every local variable that contains
a pointer to an object. In theory, the object’s reference count goes up by one when the variable is made to point to
it and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the
end the reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from
being deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to take a new strong reference (i.e. increment the
reference count) temporarily. An important situation where this arises is in objects that are passed as arguments to C
functions in an extension module that are called from Python; the call mechanism guarantees to hold a reference to
every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without taking a new
reference. Some other operation might conceivably remove the object from the list, releasing that reference, and
possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code which
could do this; there is a code path which allows control to flow back to the user from a Py DECREF (), so almost
any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_,
PyNumber_, PySequence_ or PyMapping_). These operations always create a new strong reference (i.e.
increment the reference count) of the object they return. This leaves the caller with the responsibility to call
Py_DECREF () when they are done with the result; this soon becomes second nature.

6 Kegahaio 1. Introduction

The Python/C API, Anpooicuon 3.10.18

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). «Owning a
reference» means being responsible for calling Py_ DECREF on it when the reference is no longer needed. Ownership
can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually releasing it by calling Py DECREF () or Py_XDECREF () when it’s no longer needed—or passing on
this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive a new reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing
needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals
a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that
function assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and
PyTuple_SetItem(), which steal a reference to the item (but not to the tuple or list into which the item
is put!). These functions were designed to steal a reference because of a common idiom for populating a tuple or
list with newly created objects; for example, the code to create the tuple (1, 2, "three") could look like this
(forgetting about error handling for the moment; a better way to code this is shown below):

PyObject *t;

3);

t, 0, PyLong_FromLong(1lL));

t, 1, PyLong_FromLong(2L));

t, 2, PyUnicode_FromString("three"));

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem

(
(
(
PyTuple_SetItem(

Here, PyLong FromLong () returns a new reference which is immediately stolen by PyTuple SetItem().
When you want to keep using an object although the reference to it will be stolen, use Py TNCREF () to grab another
reference before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem /() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py_BuildValue (), that can create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *1list;

tuple = Py_Buildvalue(" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem () and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
references is much saner, since you don’t have to take a new reference just so you can give that reference away («have
it be stolen»). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, nj;

n = PyObject_Length (target);
if (n < 0)

return -1;
for (i = 0; 1 < n; 1i++) {

(ouvéyela 0TV emOpEVY 0edL)

1.4. Objects, Types and Reference Counts 7

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

PyObject *index = PyLong_FromSsize_t (i);

if (!index)
return -1;

if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;

}

Py_DECREF (index) ;

}

return 0;

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give
you ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject_GetItem() and PySequence_GetItem (), always return a new reference (the caller becomes
the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumage (the type of the object passed as an argument to the function) doesnt enter into it! Thus, if you
extract an item from a list using PyList_GetItem(), you don’t own the reference — but if you obtain the same
item from the same list using PySequence_GetItem () (which happens to take exactly the same arguments),
you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
using PyList_GetItem (), and once using PySequence_GetItem().

long

sum_list (PyObject *1list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; 1 < n; i++) {
item = PyList_GetItem(list, 1); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}

return total;

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence) ;
if (n < 0)
return -1; /* Has no length */
for (i = 0; 1 < n; i++) {

(OVVEYELA OTNV ETTOUEVY OENLOL)

8 Kegahaio 1. Introduction

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

item = PySequence_GetItem(sequence, 1i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong(item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += wvalue;
}
else {
Py_DECREF (item); /* Discard reference ownership */

}

return total;

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int, long, double and char*. A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type, and another is used to describe the value of a
complex number. These will be discussed together with the functions that use them.

type Py_ssize_t
Part of the Stable ABI. A signed integral type such that sizeof (Py_ssize_t) == sizeof (size_t).
C99 doesn’t define such a thing directly (size_t is an unsigned integral type). See PEP 353 for details.
PY_SSIZE_T_MAX is the largest positive value of type Py_ssize_ t.

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled
exceptions are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level
interpreter, where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator.
If not documented otherwise, this indicator is either NULL or —1, depending on the function’s return type. A few
functions return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error
indicator or have an ambiguous return value, and require explicit testing for errors with PyErr Occurred().
These exceptions are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded
application). A thread can be in one of two states: an exception has occurred, or not. The function
PyErr_Occurred () can be used to check for this: it returns a borrowed reference to the exception type object
when an exception has occurred, and NULL otherwise. There are a number of functions to set the exception state:
PyErr_SetString () is the most common (though not the most general) function to set the exception state, and
PyErr_Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info();
however, they are not the same: the Python objects represent the last exception being handled by a Python try ...
except statement, while the C level exception state only exists while an exception is being passed on between C
functions until it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.
exc_info () and friends.

1.5. Exceptions 9

https://www.python.org/dev/peps/pep-0353

The Python/C API, Anpooicuon 3.10.18

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code
is to call the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it should not set another exception — that would overwrite the exception
that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above.
It so happens that this example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dictlkey]
except KeyError:
item = 0
dictlkey] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py _XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
3
const_one = PyLong_FromLong (1L) ;
if (const_one == NULL)
goto error;

incremented_item = PyNumber_ Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */

(ouvéyela otV emtdpevn oehida)

10 KegdAawo 1. Introduction

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

Py_XDECREF (item) ;
Py_XDECREF (const_one);
Py_XDECREF (incremented_item);

return rv; /* -1 for error, 0 for success */

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr ExceptionMatches () and PyErr Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X"' in the name; Py_ DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set
to success after the final call made is successful.

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization functionis Py_ Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, ___main__, and sys. It also initializes the module search path (sys.path).

Py Initialize () does not set the «script argument list» (sys.argv). If this variable is needed by Python
code that will be executed later, it must be set explicitly with a call to PySys_SetArgvEx (argc, argv,
updatepath) afterthecallto Py _Tnitialize().

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py _Initialize () calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory named 1ib/pythonX. Y relative to the parent directory
where the executable named python is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries
arein /usr/local/lib/pythonX. Y. (Infact, this particular path is also the «fallback» location, used when no
executable file named python is found along PATH.) The user can override this behavior by setting the environment
variable PYTHONHOME, or insert additional directories in front of the standard path by setting PY THONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_Initialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front
of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath (), Py_GetPrefix (), Py_GetExecPrefix(),and Py _GetProgramFullPath () (all
defined in Modules/getpath.c).

Sometimes, it is desirable to «uninitialize» Python. For instance, the application may want to start over (make
another call to Py_TInitialize ()) or the application is simply done with its use of Python and wants to
free memory allocated by Python. This can be accomplished by calling Py_FinalizeEx (). The function
Py_IsInitialized () returns true if Python is currently in the initialized state. More information about these
functions is given in a later chapter. Notice that Py_FinalizeEx () does not free all memory allocated by the
Python interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.6. Embedding Python 11

The Python/C API, Anpooicuon 3.10.18

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds. txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-
level profiling of the main interpreter loop. Only the most frequently used builds will be described in the remainder
of this section.

Compiling the interpreter with the Py_ DEBUG macro defined produces what is generally meant by a debug build of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugto the . /configure command.
It is also implied by the presence of the not-Python-specific _ DEBUG macro. When Py_DEBUG is enabled in the
Unix build, compiler optimization is disabled.

In addition to the reference count debugging described below, extra checks are performed, see Python Debug Build.

Defining Py_ TRACE_REF'S enables reference tracing (see the configure —-with-trace-refs option).
When defined, a circular doubly linked list of active objects is maintained by adding two extra fields to every
PyObject. Total allocations are tracked as well. Upon exit, all existing references are printed. (In interactive mode
this happens after every statement run by the interpreter.)

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

12 KegdAawo 1. Introduction

KEDAAAIO 2

C API Stability

Python’s C API is covered by the Backwards Compatibility Policy, PEP 387. While the C API will change with
every minor release (e.g. from 3.9 to 3.10), most changes will be source-compatible, typically by only adding new
API. Changing existing API or removing API is only done after a deprecation period or to fix serious issues.

CPython’s Application Binary Interface (ABI) is forward- and backwards-compatible across a minor release (if these
are compiled the same way; see Platform Considerations below). So, code compiled for Python 3.10.0 will work on
3.10.8 and vice versa, but will need to be compiled separately for 3.9.x and 3.10.x.

Names prefixed by an underscore, suchas _Py_InternalState, are private API that can change without notice
even in patch releases.

2.1 Stable Application Binary Interface

Python 3.2 introduced the Limited API, a subset of Python’s C API. Extensions that only use the Limited API can be
compiled once and work with multiple versions of Python. Contents of the Limited API are listed below.

To enable this, Python provides a Stable ABI: a set of symbols that will remain compatible across Python 3.x versions.
The Stable ABI contains symbols exposed in the Limited API, but also other ones — for example, functions necessary
to support older versions of the Limited API.

(For simplicity, this document talks about extensions, but the Limited API and Stable ABI work the same way for all
uses of the API - for example, embedding Python.)

Py LIMITED_ API
Define this macro before including Python . h to opt in to only use the Limited API, and to select the Limited
API version.

Define Py_ LIMITED_APT to the value of PY_VERSION_HEX corresponding to the lowest Python version
your extension supports. The extension will work without recompilation with all Python 3 releases from the
specified one onward, and can use Limited API introduced up to that version.

Rather than using the PY_VERSION_HEX macro directly, hardcode a minimum minor version (e.g.
0x030A0000 for Python 3.10) for stability when compiling with future Python versions.

You can also define Py_LIMITED_APT to 3. This works the same as 0x03020000 (Python 3.2, the version
that introduced Limited API).

On Windows, extensions that use the Stable ABI should be linked against python3.d11 rather than a version-
specific library such as python39.d11.

13

https://www.python.org/dev/peps/pep-0387

The Python/C API, Anpooicuon 3.10.18

On some platforms, Python will look for and load shared library files named with the abi3 tag (e.g. mymodule.
abi3. so). It does not check if such extensions conform to a Stable ABI. The user (or their packaging tools) need to
ensure that, for example, extensions built with the 3.10+ Limited API are not installed for lower versions of Python.

All functions in the Stable ABI are present as functions in Python’s shared library, not solely as macros. This makes
them usable from languages that don’t use the C preprocessor.

2.1.1 Limited API Scope and Performance

The goal for the Limited API is to allow everything that is possible with the full C API, but possibly with a
performance penalty.

For example, while PyList_GetItem() isavailable, its “unsafe” macro variant PyList_GET_TTEM/() is not.
The macro can be faster because it can rely on version-specific implementation details of the list object.

Without Py LIMITED_API defined, some C API functions are inlined or replaced by macros. Defining
Py_LIMITED_APT disables this inlining, allowing stability as Python’s data structures are improved, but possibly
reducing performance.

By leaving out the Py_LIMITED_API definition, it is possible to compile a Limited API extension with a version-
specific ABI. This can improve performance for that Python version, but will limit compatibility. Compiling with
Py_LIMITED_APT will then yield an extension that can be distributed where a version-specific one is not available
— for example, for prereleases of an upcoming Python version.

2.1.2 Limited API Caveats

Note that compiling with Py_LIMITED_APT is not a complete guarantee that code conforms to the Limited API or
the Stable ABIL. Py_LIMITED_APTI only covers definitions, but an API also includes other issues, such as expected
semantics.

One issue that Py_LIMITED_API does not guard against is calling a function with arguments that are invalid in
a lower Python version. For example, consider a function that starts accepting NULL for an argument. In Python
3.9, NULL now selects a default behavior, but in Python 3.8, the argument will be used directly, causing a NULL
dereference and crash. A similar argument works for fields of structs.

Another issue is that some struct fields are currently not hidden when Py_ LIMITED_APT is defined, even though
they’re part of the Limited API.

For these reasons, we recommend testing an extension with a/l minor Python versions it supports, and preferably to
build with the lowest such version.

We also recommend reviewing documentation of all used API to check if it is explicitly part of the Limited
APL Even with Py_LIMITED_API defined, a few private declarations are exposed for technical reasons (or even
unintentionally, as bugs).

Also note that the Limited API is not necessarily stable: compiling with Py_LIMITED_AP I with Python 3.8 means
that the extension will run with Python 3.12, but it will not necessarily compile with Python 3.12. In particular, parts
of the Limited API may be deprecated and removed, provided that the Stable ABI stays stable.

2.2 Platform Considerations

ABI stability depends not only on Python, but also on the compiler used, lower-level libraries and compiler options.
For the purposes of the Stable ABI, these details define a “platform”. They usually depend on the OS type and
processor architecture

It is the responsibility of each particular distributor of Python to ensure that all Python versions on a particular
platform are built in a way that does not break the Stable ABI. This is the case with Windows and macOS releases
from python . org and many third-party distributors.

14 Kegahaio 2. C API Stability

The Python/C API, Anpoocigsuon 3.10.18

2.3

Currently, the Limited API includes the following items:

Contents of Limited API

PyAlter Check ()

PyArg Parse ()
PyArg_ParseTuple ()

PyArg ParseTupleAndKeywords ()
PyArg UnpackTuple ()
PyArg_VaParse ()

PyArg VaParseTupleAndKeywords ()
PyArg ValidateKeywordArguments ()
PyBaseObject_Type
PyBool_FromLong ()

PyBool_ Type
PyByteArraylIter_ Type
PyByteArray AsString()
PyByteArray_ Concat ()
PyByteArray FromObject ()
PyByteArray FromStringAndSize ()
PyByteArray_Resize ()
PyByteArray_Size ()
PyByteArray_Type

PyBytesIter_ Type
PyBytes_AsString()
PyBytes_AsStringAndSize ()
PyBytes_Concat ()
PyBytes_ConcatAndDel ()
PyBytes_DecodeEscape ()
PyBytes_FromFormat ()
PyBytes_FromFormatV ()
PyBytes_FromObject ()
PyBytes_FromString ()
PyBytes_FromStringAndSize ()
PyBytes_Repr ()

PyBytes_Size ()

PyBytes_Type

PyCFunction
PyCFunctionWithKeywords

PyCFunction_Call ()

2.3. Contents of Limited API

15

The Python/C API, Anpoocisuon 3.10.18

e PyCFunction_GetFlags ()

e PyCFunction_GetFunction ()

e PyCFunction_GetSelf ()

e PyCFunction_New ()

e PyCFunction_NewEx ()

e PyCFunction_Type

¢ PyCMethod_New ()

e PyCallIlter_ New/()

e PyCallIter_Type

e PyCallable_Check ()

e PyCapsule Destructor

e PyCapsule_GetContext ()

e PyCapsule_GetDestructor ()

e PyCapsule_GetName ()

e PyCapsule_GetPointer ()

e PyCapsule_Import ()

e PyCapsule_IsValid()

e PyCapsule New()

e PyCapsule_SetContext ()

e PyCapsule_SetDestructor ()

e PyCapsule_SetName ()

e PyCapsule_SetPointer ()

e PyCapsule_Type

e PyClassMethodDescr_Type

e PyCodec_BackslashReplaceErrors ()
e PyCodec_Decode ()

e PyCodec_Decoder ()

e PyCodec_Encode ()

e PyCodec_Encoder ()

e PyCodec_IgnoreErrors ()

e PyCodec_IncrementalDecoder ()
e PyCodec_IncrementalEncoder ()
e PyCodec_KnownEncoding ()

e PyCodec_LookupError ()

e PyCodec_NameReplaceErrors ()
e PyCodec_Register ()

e PyCodec_RegisterError()

e PyCodec_ReplaceErrors ()

e PyCodec_StreamReader ()

16 Kegahaio 2. C API Stability

The Python/C API, Anpoocigsuon 3.10.18

e PyCodec_StreamWriter ()

e PyCodec_StrictErrors()

e PyCodec_Unregister ()

e PyCodec_XMLCharRefReplaceErrors ()
e PyComplex_FromDoubles ()
e PyComplex_ImagAsDouble ()
e PyComplex_ RealAsDouble ()
o PyComplex_Type

e PyDescr_NewClassMethod()
e PyDescr_NewGetSet ()

e PyDescr_NewMember ()

e PyDescr._NewMethod ()

e PyDictItems_Type

e PyDictIterItem Type

e PyDictIterKey_Type

e PyDictIterValue_Type

e PyDictKeys_Type

e PyDictProxy_New()

e PyDictProxy_Type

e PyDictRevIterItem_Type

e PyDictRevIterKey_Type

e PyDictRevIterValue_Type
e PyDictValues_Type

e PyDict_Clear/()

e PyDict_Contains ()

e PyDict_Copy ()

e PyDict_DelItem()

e PyDict_DelItemString()

e PyDict_GetItem()

e PyDict_GetItemString/()

e PyDict_GetItemWithError ()
e PyDict_TItems ()

e PyDict_Keys ()

e PyDict_Merge ()

e PyDict_MergeFromSeqgZ ()

e PyDict_New ()

e PyDict_Next ()

e PyDict_SetItem()

e PyDict_SetItemString()

2.3. Contents of Limited API 17

The Python/C API, Anpoocisuon 3.10.18

PyDict_Size ()

PyDict_Type
PyDict_Update ()
PyDict_Values ()
PyEllipsis_Type
PyEnum_Type

PyErr BadArgument ()
PyErr_BadInternalCall ()
PyErr CheckSignals ()

PyErr Clear ()
PyErr_Display ()

PyErr ExceptionMatches ()
PyErr_Fetch ()

PyErr Format ()

PyErr. FormatV()
PyErr_GetExcInfo ()

PyErr GivenExceptionMatches ()
PyErr._ NewException ()
PyErr_NewExceptionWithDoc ()
PyErr_NoMemory ()

PyErr NormalizeException ()
PyErr_Occurred()
PyErr_Print ()

PyErr PrintEx()
PyErr_ProgramText ()
PyErr_ResourceWarning()
PyErr_Restore()

PyErr_SetExcFromWindowsErr ()

PyErr_SetExcFromWindowsErrWithFilename ()
PyErr SetExcFromWindowsErrWithFilenameObject ()

PyErr SetExcFromWindowsErrWithFilenameObjects ()

PyErr SetExcInfo()

PyErr_SetFromErrno ()

PyErr SetFromErrnoWithFilename ()
PyErr SetFromErrnoWithFilenameObject ()

PyErr SetFromErrnoWithFilenameObjects ()

PyErr_SetFromWindowsErr ()

PyErr_SetFromWindowsErrWithFilename ()

PyErr_SetImportError ()

18

Kegahaio 2. C API Stability

The Python/C API, Anpoocigsuon 3.10.18

e PyErr SetImportErrorSubclass ()
e PyErr SetInterrupt ()

e PyErr SetInterruptEx()

e PyErr_SetNone ()

e PyErr SetObject ()

e PyErr SetString()

e PyErr SyntaxLocation ()

e PyErr SyntaxLocationEx ()
e PyErr WarnEx ()

e PyErr WarnExplicit ()

e PyErr WarnFormat ()

e PyErr WriteUnraisable ()
e PyEval_AcquireLock ()

e PyEval_ AcquireThread/()

e PyEval_CallFunction ()

e PyEval_CallMethod()

e PyEval CallObjectWithKeywords ()
e PyEval_EvalCode ()

e PyEval_FEvalCodeEx ()

e PyEval EvalFrame ()

e PyEval_ EvalFrameEx ()

e PyEval_GetBuiltins/()

e PyEval_ GetFrame ()

e PyEval GetFuncDesc ()

e PyEval_GetFuncName ()

e PyEval_GetGlobals ()

e PyEval GetLocals ()

e PyEval InitThreads ()

e PyEval_ ReleaseLock ()

e PyEval_ ReleaseThread/()

e PyEval RestoreThread/()

e PyEval_SaveThread()

e PyEval_ThreadsInitialized()
e PyExc_ArithmeticError

e PyExc_AssertionError

e PyExc_AttributeError

e PyExc_BaseException

e PyExc_BlockingIOError

e PyExc_BrokenPipeError

2.3. Contents of Limited API 19

The Python/C API, Anpooicuon 3.10.18

e PyExc_BufferError

e PyExc_BytesWarning

e PyExc_ChildProcessError

e PyExc_ConnectionAbortedError
e PyExc_ConnectionError

e PyExc_ConnectionRefusedError
e PyExc_ConnectionResetError
e PyExc_DeprecationWarning

e PyExc_EOFError

e PyExc_EncodingWarning

e PyExc_EnvironmentError

e PyExc_Exception

e PyExc_FileExistsError

e PyExc_FileNotFoundError

e PyExc_FloatingPointError

e PyExc_FutureWarning

e PyExc_GeneratorExit

e PyExc_IOError

e PyExc_TImportError

e PyExc_ImportWarning

e PyExc_IndentationError

e PyExc_IndexError

e PyExc_InterruptedError

e PyExc_IsADirectoryError

e PyExc_KeyError

e PyExc_KeyboardInterrupt

e PyExc_LookupError

e PyExc_MemoryError

e PyExc_ModuleNotFoundError
e PyExc_NameError

e PyExc_NotADirectoryError

e PyExc_NotImplementedError
e PyExc_OSError

e PyExc_OverflowError

e PyExc_PendingDeprecationWarning
e PyExc_PermissionkError

e PyExc_ProcessLookupError

e PyExc_RecursionError

e PyExc_ReferenceError

20 Kegahaio 2. C API Stability

The Python/C API, Anpooicuon 3.10.18

e PyExc_ResourceWarning

e PyExc_RuntimeError

e PyExc_RuntimeWarning

e PyExc_StopAsynclteration
e PyExc_StopIlteration

e PyExc_SyntaxError

e PyExc_SyntaxWarning

e PyExc_SystemError

e PyExc_SystemExit

e PyExc_TabError

e PyExc_TimeoutError

e PyExc_TypeError

¢ PyExc_UnboundLocalError
e PyExc_UnicodeDecodeError
e PyExc_UnicodeEncodeError
e PyExc_UnicodeError

e PyExc_UnicodeTranslateError
e PyExc_UnicodeWarning

e PyExc_UserWarning

¢ PyExc_ValueError

e PyExc_Warning

e PyExc_WindowsError

e PyExc_ZeroDivisionError
e PyExceptionClass_Name ()
e PyException_GetCause ()

e PyException_GetContext ()
e PyException_GetTraceback ()
e PyException_SetCause ()

e PyException_SetContext ()
e PyException_SetTraceback ()
e PyFile FromFd()

e PyFile GetLine()

e PyFile WriteObject ()

e PyFile WriteString/()

e PyFilter Type

e PyFloat_AsDouble ()

e PyFloat_FromDouble ()

e PyFloat_FromString ()

e PyFloat_GetInfo()

2.3. Contents of Limited API 21

The Python/C API, Anpoocisuon 3.10.18

PyFloat_GetMax ()
PyFloat_GetMin ()

PyFloat_Type

PyFrameObject

PyFrame_GetCode ()
PyFrame_GetLineNumber ()
PyFrozenSet_New ()
PyFrozenSet_Type

PyGC_Collect ()

PyGC_Disable ()

PyGC_Enable ()

PyGC_IsEnabled()

PyGILState Ensure()

PyGILState GetThisThreadState ()
PyGILState_Release ()
PyGILState_ STATE

PyGetSetDef

PyGetSetDescr_Type
PyImport_AddModule ()
PyImport_AddModuleObject ()
PyImport_AppendInittab ()
PyImport_ExecCodeModule ()
PyImport_ExecCodeModuleEx ()
PyImport_ExecCodeModuleObject ()
PyImport_ExecCodeModuleWithPathnames ()
PyImport_GetImporter ()
PyImport_GetMagicNumber ()
PyImport_GetMagicTag ()
PyImport_GetModule ()
PyImport_GetModuleDict ()
PyImport_Import ()
PyImport_ImportFrozenModule ()
PyImport_ImportFrozenModuleObject ()
PyImport_ImportModule ()
PyImport_ImportModuleLevel ()
PyImport_ImportModuleLevelObject ()
PyImport__ImportModuleNoBlock ()
PyImport_ReloadModule ()

PyIndex_Check ()

22

Kegahaio 2. C API Stability

The Python/C API, Anpoocigsuon 3.10.18

e PyInterpreterState

e PyInterpreterState_Clear/()
e PyInterpreterState_Delete ()
e PyInterpreterState_Get ()

e PyInterpreterState_GetDict ()
e PyInterpreterState_GetID()
e PyInterpreterState_New()

e PyIter_ Check/()

e PyTter_ Next ()

e PyIter_Send()

e PyListIter_Type

e PyListRevIter_Type

e PyList_Append()

e PyList_AsTuple()

e PyList_GetItem()

e PyList_GetSlice()

e PyList_Insert ()

e PyList_New/()

e PyList_Reverse()

e PyList_SetItem()

e PyList_SetSlice ()

e PyList_Size()

e PyList_Sort ()

e PyList_Type

e PyLongObject

e PyLongRangeIter_Type

e PyLong_AsDouble ()

e PyLong_AsLong()

e PyLong AsLongAndOverflow ()
e PyLong_AsLongLong ()

e PyLong AsLongLongAndOverflow ()
e PyLong AsSize_t ()

e PyLong_AsSsize_t ()

e PyLong AsUnsignedLong ()

e PyLong AsUnsignedLongLong ()
e PyLong_AsUnsignedLongLongMask ()
e PyLong AsUnsignedLongMask ()
e PyLong _AsVoidPtr ()

e PyLong_ FromDouble ()

2.3. Contents of Limited API 23

The Python/C API, Anpoocisuon 3.10.18

PyLong_FromLong ()
PyLong_FromLongLong ()
PyLong FromSize_ t ()
PyLong_FromSsize_t ()
PyLong_FromString ()
PyLong_FromUnsignedLong ()
PyLong_FromUnsignedLongLong ()
PyLong_FromVoidPtr ()
PyLong_GetInfo ()
PyLong_Type

PyMap_Type
PyMapping_Check ()
PyMapping_ GetItemString ()
PyMapping_ HasKey ()
PyMapping_HasKeyString/()
PyMapping Items ()
PyMapping_ Keys ()
PyMapping_Length ()
PyMapping_SetItemString/()
PyMapping_Size ()
PyMapping Values ()
PyMem_Calloc ()

PyMem Free()
PyMem_Malloc ()

PyMem Realloc ()
PyMemberDef
PyMemberDescr_Type
PyMemoryView_FromMemory ()
PyMemoryView_FromObject ()
PyMemoryView_GetContiguous ()
PyMemoryView_Type
PyMethodDef
PyMethodDescr_Type
PyModuleDef
PyModuleDef_Base
PyModuleDef Init ()
PyModuleDef_Type
PyModule_AddFunctions ()

PyModule_ AddIntConstant ()

24

Kegahaio 2. C API Stability

The Python/C API, Anpoocigsuon 3.10.18

e PyModule_ AddObject ()

e PyModule AddObjectRef ()

e PyModule_ AddStringConstant ()
e PyModule_AddType ()

e PyModule_ Createl ()

e PyModule_ ExecDef ()

e PyModule_ FromDefAndSpec?Z ()

e PyModule_GetDef ()

e PyModule_GetDict ()

e PyModule_GetFilename ()

e PyModule_ GetFilenameObject ()
e PyModule_GetName ()

e PyModule_GetNameObject ()

e PyModule_GetState ()

e PyModule_ New ()

e PyModule_ NewObject ()

e PyModule_SetDocString()

e PyModule_Type

e PyNumber_ Absolute ()

e PyNumber_ Add ()

e PyNumber_And()

e PyNumber AsSsize_t ()

e PyNumber_Check ()

e PyNumber_Divmod ()

e PyNumber_ Float ()

e PyNumber_ FloorDivide ()

e PyNumber_InPlaceAdd/()

e PyNumber_InPlaceAnd/()

e PyNumber_InPlaceFloorDivide ()
e PyNumber_InPlaceLshift ()

e PyNumber_InPlaceMatrixMultiply ()
e PyNumber_InPlaceMultiply ()

e PyNumber_InPlaceOr ()

e PyNumber_InPlacePower ()

e PyNumber._InPlaceRemainder ()

e PyNumber InPlaceRshift ()

e PyNumber_InPlaceSubtract ()

e PyNumber_InPlaceTrueDivide ()

e PyNumber_InPlaceXor ()

2.3. Contents of Limited API 25

The Python/C API, Anpoocisuon 3.10.18

PyNumber_Index ()
PyNumber_ Invert ()
PyNumber_Long ()
PyNumber_ Lshift ()
PyNumber_MatrixMultiply ()
PyNumber_ Multiply()
PyNumber_Negative ()
PyNumber_Or ()
PyNumber_Positive()
PyNumber_Power ()
PyNumber_ Remainder ()
PyNumber_ Rshift ()
PyNumber_ Subtract ()
PyNumber_ToBase ()
PyNumber_ TrueDivide ()
PyNumber_Xor ()
PyOS_AfterFork ()
PyOS_AfterFork_Child()
PyOS_AfterFork_Parent ()
PyOS_BeforeFork ()
PyOS_CheckStack ()
PyOS_FSPath ()
PyOS_InputHook
PyOS_InterruptOccurred()
PyOS_double_to_string()
PyOS_getsig()
PyOS_mystricmp ()
PyOS_mystrnicmp ()
PyOS_setsig()
PyOS_sighandler_t
PyOS_snprintf ()
PyOS_string to_double ()
PyOS_strtol ()
PyOS_strtoul ()
PyOS_vsnprintf ()
PyObject
PyObject.ob_refcnt
PyObject.ob_type

PyObject_ASCII()

26

Kegahaio 2. C API Stability

The Python/C API, Anpoocigsuon 3.10.18

e PyObject_AsCharBuffer()

e PyObject_AsFileDescriptor ()
e PyObject_AsReadBuffer ()

e PyObject_AsWriteBuffer ()

e PyObject_Bytes ()

e PyObject_Call()

e PyObject_CallFunction()

e PyObject_CallFunctionObjArgs ()
e PyObject_CallMethod()

e PyObject_CallMethodObjArgs ()
e PyObject_CallNoArgs ()

e PyObject_CallObject ()

e PyObject_Calloc ()

e PyObject_CheckReadBuffer ()
e PyObject_ClearWeakRefs ()

e PyObject_DelItem()

e PyObject_DelIltemString()

e PyObject_Dir ()

e PyObject_Format ()

e PyObject_Free()

e PyObject_GC_Del ()

e PyObject_GC_IsFinalized()

e PyObject_GC_IsTracked()

e PyObject_GC_Track ()

e PyObject_GC_UnTrack ()

e PyObject_GenericGetAttr ()

e PyObject_GenericGetDict ()

e PyObject_GenericSetAttr ()

e PyObject_GenericSetDict ()

e PyObject_GetAIter ()

e PyObject_GetAttr ()

e PyObject_GetAttrString()

e PyObject_GetItem()

e PyObject_GetIter ()

e PyObject_HasAttr ()

e PyObject_HasAttrString()

e PyObject_Hash ()

e PyObject_HashNotImplemented /()

e PyObject_Init ()

2.3. Contents of Limited API 27

The Python/C API, Anpoocisuon 3.10.18

PyObject_InitVar/()
PyObject_IsInstance()
PyObject_IsSubclass ()
PyObject_IsTrue ()
PyObject_Length ()
PyObject_Malloc ()
PyObject_Not ()
PyObject_Realloc ()
PyObject_Repr()
PyObject_RichCompare ()
PyObject_RichCompareBool ()
PyObject_SelflIter ()
PyObject_SetAttr()
PyObject_SetAttrString/()
PyObject_SetItem()
PyObject_Size ()
PyObject_Str()
PyObject_Type ()
PyProperty_Type
PyRangeIter_Type
PyRange_Type
PyReversed_Type
PySegIter_New()
PySeqlter_Type
PySequence_Check ()
PySequence_Concat ()
PySequence_Contains ()
PySequence_Count ()
PySequence_DelItem()
PySequence_DelSlice ()
PySequence_Fast ()
PySequence_GetItem()
PySequence_GetSlice ()
PySequence_In()
PySequence_InPlaceConcat ()
PySequence_InPlaceRepeat ()
PySequence_Index ()
PySequence_Length ()

PySequence_List ()

28

Kegahaio 2. C API Stability

The Python/C API, Anpoocigsuon 3.10.18

e PySequence_Repeat ()

e PySequence_SetItem()

e PySequence_SetSlice ()

e PySequence_Size ()

e PySequence_Tuple ()

e PySetIter_Type

e PySet_Add()

e PySet_Clear()

e PySet_Contains()

e PySet_Discard()

e PySet_New()

e PySet_Pop ()

e PySet_Size()

e PySet_Type

e PySlice_AdjustIndices()

e PySlice_GetIndices ()

e PySlice_GetIndicesEx()

e PySlice_New/()

e PySlice_Type

e PySlice_Unpack/()

e PyState_ AddModule ()

e PyState_FindModule ()

e PyState_RemoveModule ()

e PyStructSequence_Desc

e PyStructSequence_Field

e PyStructSequence_GetItem()
e PyStructSequence_New ()

e PyStructSequence_NewType ()
e PyStructSequence_SetItem()
e PySuper_Type

e PySys_AddWarnOption ()

e PySys_AddWarnOptionUnicode ()
e PySys_AddXOption ()

e PySys_FormatStderr ()

e PySys_FormatStdout ()

e PySys_GetObject ()

e PySys_GetXOptions ()

e PySys_HasWarnOptions ()

e PySys_ResetWarnOptions ()

2.3. Contents of Limited API 29

The Python/C API, Anpoocisuon 3.10.18

PySys_SetArgv ()
PySys_SetArgvEx ()
PySys_SetObject ()
PySys_SetPath ()
PySys_WriteStderr ()
PySys_WriteStdout ()
PyThreadState
PyThreadState_Clear()
PyThreadState_Delete ()
PyThreadState_Get ()
PyThreadState_GetDict ()
PyThreadState_GetFrame ()
PyThreadState_GetID ()
PyThreadState_GetInterpreter ()
PyThreadState_New ()
PyThreadState_SetAsyncExc ()
PyThreadState_Swap ()
PyThread_GetInfo()

PyThread ReInitTLS ()
PyThread_acquire_lock ()
PyThread_acquire_lock_timed()
PyThread_allocate_lock ()
PyThread create_key ()
PyThread_delete_key ()
PyThread _delete_key_value()
PyThread_exit_thread()
PyThread_free_lock ()
PyThread_get_key_value ()
PyThread_get_stacksize ()
PyThread_get_thread_ident ()
PyThread get_thread_native_id()
PyThread_init_thread()
PyThread_release_lock ()
PyThread_set_key_value ()
PyThread_set_stacksize ()
PyThread_start_new_thread()
PyThread_tss_alloc()
PyThread_tss_create()

PyThread_ tss_delete ()

30

Kegahaio 2. C API Stability

The Python/C API, Anpoocigsuon 3.10.18

e PyThread_ tss_free()

e PyThread tss_get ()

e PyThread_tss_1s_created()

e PyThread_tss_set ()

e PyTraceBack_Here ()

e PyTraceBack_Print ()

e PyTraceBack_Type

e PyTuplelter_Type

e PyTuple_GetItem()

e PyTuple GetSlice ()

e PyTuple New()

e PyTuple_Pack ()

e PyTuple_SetItem()

e PyTuple _Size /()

e PyTuple_Type

e PyTypeObject

e PyType ClearCache ()

e PyType_FromModuleAndSpec ()

e PyType_FromSpec()

e PyType_ FromSpecWithBases ()

e PyType_GenericAlloc ()

e PyType_GenericNew ()

e PyType GetFlags ()

e PyType GetModule ()

e PyType_GetModuleState()

e PyType_GetSlot ()

e PyType_IsSubtype ()

e PyType_Modified()

e PyType_Ready ()

e PyType_Slot

e PyType_Spec

e PyType_Type

e PyUnicodeDecodeError_Create()

e PyUnicodeDecodeError_GetEncoding ()
e PyUnicodeDecodeError_GetEnd()

e PyUnicodeDecodeError_GetObject ()
e PyUnicodeDecodeError_GetReason ()
e PyUnicodeDecodeError_GetStart ()

e PyUnicodeDecodeError_SetEnd()

2.3. Contents of Limited API 31

The Python/C API, Anpoocisuon 3.10.18

PyUnicodeDecodeError_SetReason ()
PyUnicodeDecodeError_SetStart ()
PyUnicodeEncodeError_GetEncoding ()
PyUnicodeEncodeError_GetEnd/()
PyUnicodeEncodeError_GetObject ()
PyUnicodeEncodeError_GetReason ()
PyUnicodeEncodeError _GetStart ()
PyUnicodeEncodeError_SetEnd/()
PyUnicodeEncodeError_SetReason ()
PyUnicodeEncodeError_SetStart ()
PyUnicodeIter_Type
PyUnicodeTranslateError_GetEnd ()
PyUnicodeTranslateError_GetObject ()
PyUnicodeTranslateError_GetReason ()
PyUnicodeTranslateError_GetStart ()
PyUnicodeTranslateError_SetEnd()
PyUnicodeTranslateError_SetReason ()
PyUnicodeTranslateError_SetStart ()
PyUnicode_Append ()
PyUnicode_AppendAndDel ()

PyUnicode_ AsASCIIString()
PyUnicode_AsCharmapString ()
PyUnicode_AsDecodedObject ()
PyUnicode_AsDecodedUnicode ()
PyUnicode_AsEncodedObject ()
PyUnicode_AsEncodedString ()
PyUnicode_AsEncodedUnicode ()
PyUnicode_AsLatinlString()
PyUnicode_AsMBCSString/()
PyUnicode_AsRawUnicodeEscapeString ()
PyUnicode_AsUCS4 ()
PyUnicode_AsUCS4Copy ()
PyUnicode_AsUTF16String()
PyUnicode_AsUTF32String ()

PyUnicode AsUTF8AndSize ()
PyUnicode_AsUTF8String/()
PyUnicode_AsUnicodeEscapeString ()
PyUnicode_AsWideChar ()

PyUnicode_AsWideCharString()

32

Kegahaio 2. C API Stability

The Python/C API, Anpoocigsuon 3.10.18

PyUnicode_BuildEncodingMap ()
PyUnicode_Compare ()
PyUnicode_CompareWithASCIIString ()
PyUnicode_Concat ()
PyUnicode_Contains ()
PyUnicode_Count ()
PyUnicode_Decode ()
PyUnicode_DecodeASCII ()
PyUnicode_DecodeCharmap ()
PyUnicode_DecodeCodePageStateful ()
PyUnicode_DecodeFSDefault ()
PyUnicode_DecodeFSDefaultAndSize ()
PyUnicode_DecodeLatinl ()
PyUnicode_DecodeLocale ()
PyUnicode_DecodeLocaleAndSize ()
PyUnicode_DecodeMBCS ()
PyUnicode_DecodeMBCSStateful ()
PyUnicode_DecodeRawUnicodeEscape ()
PyUnicode_DecodeUTF16 ()
PyUnicode_DecodeUTF16Stateful ()
PyUnicode_DecodeUTF32 ()
PyUnicode_DecodeUTF32Stateful ()
PyUnicode_DecodeUTF7 ()
PyUnicode_DecodeUTF7Stateful ()
PyUnicode_DecodeUTF8 ()
PyUnicode_DecodeUTF8Stateful ()
PyUnicode_DecodeUnicodeEscape ()
PyUnicode_EncodeCodePage ()
PyUnicode_FEncodeFSDefault ()
PyUnicode_EncodeLocale ()
PyUnicode_FSConverter ()
PyUnicode_FSDecoder ()
PyUnicode_Find/()
PyUnicode_FindChar ()
PyUnicode_Format ()
PyUnicode_FromEncodedObject ()
PyUnicode_FromFormat ()
PyUnicode_FromFormatV ()

PyUnicode_ FromObject ()

2.3. Contents of Limited API

33

The Python/C API, Anpoocisuon 3.10.18

e PyUnicode_FromOrdinal ()

e PyUnicode_FromString ()

e PyUnicode_FromStringAndSize ()
e PyUnicode_FromWideChar ()

e PyUnicode_GetDefaultEncoding ()
e PyUnicode_GetLength ()

e PyUnicode_GetSize ()

e PyUnicode_InternFromString()
e PyUnicode_InternImmortal ()
e PyUnicode_InternInPlace()
e PyUnicode_IsIdentifier ()

e PyUnicode_dJoin ()

e PyUnicode_Partition()

e PyUnicode_RPartition()

e PyUnicode_RSplit ()

e PyUnicode_ReadChar ()

e PyUnicode_Replace ()

e PyUnicode_Resize ()

e PyUnicode_RichCompare ()

e PyUnicode_Split ()

e PyUnicode_Splitlines()

e PyUnicode_Substring()

e PyUnicode_Tailmatch ()

e PyUnicode_Translate ()

e PyUnicode_Type

e PyUnicode_WriteChar ()

e PyVarObject

e PyVarObject.ob_base

e PyVarObject.ob_size

e PyWWeakReference

e PyWeakref_ GetObject ()

e PyWeakref NewProxy ()

e PyWeakref NewRef ()

e PyWrapperDescr_Type

e PyWrapper_New ()

e PyZip_ Type

e Py _AddPendingCall ()

e Py AtExit ()

e Py BEGIN_ALLOW_THREADS

34 Kegahaio 2. C API Stability

The Python/C API, Anpoocigsuon 3.10.18

e Py BLOCK_THREADS

e Py _BuildValue/()

e Py _BytesMain ()

e Py CompileString/()

e Py _DecRef ()

e Py _DecodeLocale ()

e Py END ALLOW_THREADS

e Py _EncodeLocale ()

e Py EndInterpreter()

e Py _EnterRecursiveCall /()
e Py Exit ()

e Py FatalError()

e Py FileSystemDefaultEncodeErrors
e Py FileSystemDefaultEncoding
e Py Finalize()

e Py FinalizeEx()

e Py GenericAlias ()

e Py GenericAliasType

e Py _GetBuildInfo()

e Py _GetCompiler()

e Py _GetCopyright ()

e Py GetExecPrefix()

e Py GetPath()

e Py GetPlatform()

e Py GetPrefix ()

e Py _GetProgramFullPath ()
e Py GetProgramName ()

e Py _GetPythonHome ()

e Py_GetRecursionLimit ()
e Py GetVersion()

e Py _HasFileSystemDefaultEncoding
e Py IncRef ()

e Py Initialize()

e Py InitializeEx()

e Py _Is()

e Py IsFalse()

e Py IsInitialized()

e Py _IsNone ()

e Py IsTrue()

2.3. Contents of Limited API 35

The Python/C API, Anpoocisuon 3.10.18

Py_LeaveRecursiveCall ()

Py _Main ()

Py_MakePendingCalls ()

Py_NewInterpreter()

Py_NewRef ()
Py ReprEnter ()
Py _ReprLeave ()

Py_SetPath()

Py_SetProgramName ()
Py SetPythonHome ()

Py_SetRecursionlLimit ()

Py _UCS4

Py_UNBLOCK_THREADS

Py_UTF8Mode

Py_VaBuildValue ()

Py _XNewRef ()
Py_intptr_t
Py _ssize_ t
Py_uintptr_t
allocfunc
binaryfunc
descrgetfunc
descrsetfunc
destructor
getattrfunc
getattrofunc
getiterfunc
getter
hashfunc
initproc
inquiry
iternextfunc
lenfunc
newfunc
objobjargproc
objobjproc
reprfunc
richcmpfunc

setattrfunc

36

Kegahaio 2. C API Stability

The Python/C API, Anpooicuon 3.10.18

e setattrofunc

e setter

e ssizeargfunc

e ssizeobjargproc

e ssizessizeargfunc

e ssizessizeobjargproc
¢ symtable

e ternaryfunc

s traverseproc

e unaryfunc

e Visitproc

2.3. Contents of Limited API 37

The Python/C API, Anpooicuon 3.10.18

38 Kegahaio 2. C API Stability

KEGANAIO 3

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions
which accept them as parameters.

Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled
carefully is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that
the Python runtime is using.

int Py_Main (int arge, wchar_t **argvy)
Fart of the Stable ABIL The main program for the standard interpreter. This is made available for programs
which embed Python. The argc and argv parameters should be prepared exactly as those which are passed to
a C program’s main () function (converted to wchar_t according to the user’s locale). It is important to note
that the argument list may be modified (but the contents of the strings pointed to by the argument list are not).
The return value will be 0 if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits
due to an exception, or 2 if the parameter list does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the
process, as long as Py_ InspectFlag is not set.

int Py_BytesMain (int argc, char **argy)
Fart of the Stable ABI since version 3.8. Similar to Py_Main () but argv is an array of bytes strings.

Néo otnv ¢€kdoom 3.8.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to O.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to
NULL.

39

The Python/C API, Anpooicuon 3.10.18

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags * flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix
pseudo-terminal), return the value of PyRun_InteractiveLoop (), otherwise return the
result of PyRun_SimpleFile (). filename is decoded from the filesystem encoding (sys.
getfilesystemencoding ()). If filename is NULL, this function uses "?7?22" as the filename. If
closeit is true, the file is closed before PyRun_SimpleFileExFlags () returns.

int PyRun_SimpleString (const char *command)
This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the
PyCompilerFlags* argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)
Executes the Python source code from command inthe __main__ module according to the flags argument.
If _ _main__ does not already exist, it is created. Returns 0 on success or —1 if an exception was raised. If
there was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled SystemExit is raised, this function will not return —1, but exit the
process, as long as Py_ InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to O and flags
set to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags * flags)
Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an
in-memory string. filename should be the name of the file, it is decoded from filesystem encoding and error
handler. If closeit is true, the file is closed before PyRun_SimpleFileExFlags () returns.

Enueiwon: On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb")).
Otherwise, Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags * flags)
Read and execute a single statement from a file associated with an interactive device according to the flags
argument. The user will be prompted using sys .psl and sys . ps2. filename is decoded from the filesystem
encoding and error handler.

Returns O when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is
not included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)
This is a simplified interface to PyRun_TInteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags * flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user
will be prompted using sys .psl and sys.ps2. filename is decoded from the filesystem encoding and error
handler. Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook) (void)
Part of the Stable ABI. Can be set to point to a function with the prototype int func (void) . The function
will be called when Python’s interpreter prompt is about to become idle and wait for user input from the
terminal. The return value is ignored. Overriding this hook can be used to integrate the interpreter’s prompt
with other event loops, as done in the Modules/_tkinter. c in the Python source code.

char *(*PyOS_ReadlineFunctionPointer) (FILE*, FILE*, const char*)
Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’s

40 Kegpalato 3. The Very High Level Layer

The Python/C API, Anpooicuon 3.10.18

prompt. The function is expected to output the string prompt if it’s not NULL, and then read a line of input
from the provided standard input file, returning the resulting string. For example, The readl ine module sets
this hook to provide line-editing and tab-completion features.

The result must be a string allocated by PyMem_ RawMalloc () or PyMem_RawRealloc (), or NULL if
an error occurred.

AMoEe omnv ékdoon 3.4: The result must be allocated by PyMem RawMalloc () or
PyMem_ RawRealloc (), instead of being allocated by PyMem Malloc () or PyMem Realloc ().

PyObject *PyRun_String (const char *str, int start, PyObject *globals, PyObject *locals)
Emotoepduevn wun: New reference. This is a simplified interface to PyRun_StringFlags () below,
leaving flags set to NULL.

PyObject *PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)
Emotoepduevn wun: New reference. Execute Python source code from st in the context specified by the
objects globals and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be
any object that implements the mapping protocol. The parameter start specifies the start token that should be
used to parse the source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject *PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Emortoepduevy tiun: New reference. This is a simplified interface to PyRun_FileExFlags () below,
leaving closeit set to 0 and flags set to NULL.

PyObject *PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closeit)
Emortoepduevn tun: New reference. This is a simplified interface to PyRun_ FileExFlags () below,

leaving flags set to NULL.

PyObject *PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject
*locals, PyCompilerFlags *flags)
Emortoepduevn tun: New reference. This is a simplified interface to PyRun_ FileExFlags () below,
leaving closeit set to 0.

PyObject *PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject
*locals, int closeit, PyCompilerFlags * flags)
Emotpepduevn tiun: New reference. Similar to PyRun_StringFlags (), but the Python source code is
read from fp instead of an in-memory string. filename should be the name of the file, it is decoded from the
filesystem encoding and error handler. If closeit is true, the file is closed before PyRun_FileExFlags ()
returns.

PyObject *Py_CompileString (const char *str, const char *filename, int start)
Emortoepduevny wun: New reference. Part of the Stable ABI. This is a simplified interface to
Py _CompileStringFlags () below, leaving flags set to NULL.

PyObject *Py_CompileStringFlags (const char *sr, const char *filename, int start,
PyCompilerFlags *flags)
Emotoepduevn ui): New reference. This is a simplified interface to Py CompileStringExFlags ()
below, with optimize set to —1.

PyObject *Py_CompileStringObject (const char *str, PyObject *filename, int start,
PyCompilerFlags *flags, int optimize)
Emotoepduevn tyur: New reference. Parse and compile the Python source code in str, returning the resulting
code object. The start token is given by start; this can be used to constrain the code which can be compiled
and should be Py_eval_input,Py_file_input,or Py_single_input. The filename specified by
filename is used to construct the code object and may appear in tracebacks or SyntaxError exception
messages. This returns NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of —1 selects the optimization
level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; __debug___is true), 1
(asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

Néo otnv €kdoon 3.4.

41

The Python/C API, Anpooicuon 3.10.18

PyObject *Py_CompileStringExFlags (const char *str, const char *filename, int start,
PyCompilerFlags *flags, int optimize)
Emotoepduevn tun: New reference. Like Py_CompileStringObject (), but filename is a byte string
decoded from the filesystem encoding and error handler.

Néo otnv ¢€kdoom 3.2.

PyObject *PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Emotoepduevny wun: New reference. Part of the Stable ABI This is a simplified interface to
PyEval_EvalCodeEx (), with just the code object, and global and local variables. The other arguments
are set to NULL.

PyObject *PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const
*args, int argcount, PyObject *const *kws, int kwcount, PyObject
*const *defs, int defcount, PyObject *kwdefs, PyObject *closure)
Emotoepduevn wun: New reference. Part of the Stable ABI. Evaluate a precompiled code object, given a
particular environment for its evaluation. This environment consists of a dictionary of global variables, a
mapping object of local variables, arrays of arguments, keywords and defaults, a dictionary of default values
for keyword-only arguments and a closure tuple of cells.

type PyFrameObject
Fart of the Limited API (as an opaque struct). The C structure of the objects used to describe frame objects.
The fields of this type are subject to change at any time.

PyObject *PyEval_EvalFrame (PyFrameObject *f)
Emotoepduevn tyur): New reference. Part of the Stable ABIL Evaluate an execution frame. This is a simplified
interface to PyEval_ EvalFrameEx (), for backward compatibility.

PyObject *PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)
Emortpepduevny tui): New reference. Part of the Stable ABIL This is the main, unvarnished function of Python
interpretation. The code object associated with the execution frame f is executed, interpreting bytecode and
executing calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes an
exception to immediately be thrown; this is used for the throw () methods of generator objects.

AloEe otnv €kdoon 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

int PyEval_MergeCompilerFlags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString ().

intPy_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use with Py CompileString (). This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString ().
This is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags.In
this case, from __ future__ import can modify flags.

Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to O, and any
modification due to from __ future_ import is discarded.

int cf_flags
Compiler flags.

int cf_feature_version
¢f_feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.

42 Kegpalato 3. The Very High Level Layer

The Python/C API, Anpooicuon 3.10.18

The field is ignored by default, it is used if and only if PyCF_ONLY_AST flag is set in ¢f_flags.
AMoEe oty éxdoon 3.8: Added ¢f _feature_version field.

int CO_FUTURE_DIVISION
This bit can be set in flags to cause division operator / to be interpreted as «true division» according to PEP
238.

43

https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0238

The Python/C API, Anpooicuon 3.10.18

44 Kegpalato 3. The Very High Level Layer

KE®ANAIO 4

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void Py_ INCREF (PyObject *0)
Indicate taking a new strong reference to object o, indicating it is in use and should not be destroyed.

This function is usually used to convert a borrowed reference to a strong reference in-place. The Py NewRe £ ()
function can be used to create a new strong reference.

When done using the object, release it by calling Py_ DECREF ().
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py XTNCREF ().
Do not expect this function to actually modify o in any way.

void Py_XINCREF (PyObject *0)
Similar to Py_ TNCREF (), but the object o can be NULL, in which case this has no effect.

See also Py XNewRef ().

PyObject *Py_NewRef£ (PyObject *0)
Fart of the Stable ABI since version 3.10. Create a new strong reference to an object: call Py_ TNCREF () on
o and return the object o.

When the strong reference is no longer needed, Py_ DECREF () should be called on it to release the reference.
The object o must not be NULL; use Py XNewRef () if o can be NULL.

For example:

Py_INCREF (ob7j) ;
self->attr = obj;

can be written as:

self->attr = Py_NewRef (obj);

See also Py TNCREF ().
Néo otmv éxdoon 3.10.

PyObject *Py_XNewRef (PyObject *0)
Part of the Stable ABI since version 3.10. Similar to Py_ NewRef (), but the object o can be NULL.

If the object o is NULL, the function just returns NULL.

45

The Python/C API, Anpooicuon 3.10.18

Néo otnv ékdoaon 3.10.

void Py_DECREF (PyObject *0)
Release a strong reference to object o, indicating the reference is no longer used.

Once the last strong reference is released (i.e. the object’s reference count reaches 0), the object’s type’s
deallocation function (which must not be NULL) is invoked.

This function is usually used to delete a strong reference before exiting its scope.
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_ XDECREF ().

Do not expect this function to actually modify o in any way.

IIpoeidomoinon: The deallocation function can cause arbitrary Python code to be invoked (e.g. when
a class instance with a __ del__ () method is deallocated). While exceptions in such code are not
propagated, the executed code has free access to all Python global variables. This means that any object that
is reachable from a global variable should be in a consistent state before Py DECREF () is invoked. For
example, code to delete an object from a list should copy a reference to the deleted object in a temporary
variable, update the list data structure, and then call Py DECREF () for the temporary variable.

void Py_XDECREF (PyObject *0)
Similar to Py_ DECREF (), but the object o can be NULL, in which case this has no effect. The same warning
from Py_DECREF () applies here as well.

void Py_ CLEAR (PyObject *0)
Release a strong reference for object o. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_ DECREF (), except that the argument is also set to NULL. The
warning for Py_ DECREF () does not apply with respect to the object passed because the macro carefully uses
a temporary variable and sets the argument to NULL before releasing the reference.

It is a good idea to use this macro whenever releasing a reference to an object that might be traversed during
garbage collection.

void Py_ IncRef (PyObject *0)
Part of the Stable ABIL Indicate taking a new strong reference to object o. A function version of
Py_XINCREF (). It can be used for runtime dynamic embedding of Python.

void Py_DecRef (PyObject *0)
Fart of the Stable ABI. Release a strong reference to object o. A function version of Py XDECREF (). It can
be used for runtime dynamic embedding of Python.

The following functions or macros are only for use within the interpreter core: _Py Dealloc (),
_Py_ForgetReference (), _Py_NewReference (), as well as the global variable _Py_RefTotal.

46 Kegahaio 4. Reference Counting

KEGAAAIO D

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a
global indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will
set it to indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL
if they are supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* functions return 1
for success and 0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for
example you can’t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); it should rot continue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

Enueiwon: The error indicator is not the result of sys.exc_info (). The former corresponds to an exception
that is not yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and
has therefore stopped propagating).

5.1 Printing and clearing

void PyErr_Clear ()
Part of the Stable ABI. Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_ PrintEx (int set_sys_last_vars)
Fart of the Stable ABI. Print a standard traceback to sys. stderr and clear the error indicator. Unless the
error is a SystemEx1t, in that case no traceback is printed and the Python process will exit with the error
code specified by the SystemEx1it instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

47

The Python/C API, Anpooicuon 3.10.18

void PyErr_ Print ()
Part of the Stable ABI. Alias for PyErr_PrintEx (1).

void PyErr_WriteUnraisable (PyObject *obj)
Part of the Stable ABI. Call sys.unraisablehook () using the current exception and obj argument.

This utility function prints a warning message to sys.stderr when an exception has been set but it is
impossible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs
inan___del__ () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

An exception must be set when calling this function.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.

void PyErr_SetString (PyObject *type, const char *message)
Fart of the Stable ABI. This is the most common way to set the error indicator. The first argument specifies
the exception type; it is normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need
not create a new strong reference to it (e.g. with Py_ TNCREF ()). The second argument is an error message;
itis decoded from 'ut£-8"'.

void PyErr_SetObject (PyObject *type, PyObject *value)
Fart of the Stable ABI. This function is similar to PyErr_SetString () but lets you specify an arbitrary
Python object for the «value» of the exception.

PyObject *PyErr_Format (PyObject *exception, const char *format, ...)
Emotoepduevn nun: [lavrote NULL. Part of the Stable ABI. This function sets the error indicator and returns
NULL. exception should be a Python exception class. The format and subsequent parameters help format the
error message; they have the same meaning and values as in PyUnicode_FromFormat (). format is an
ASClI-encoded string.

PyObject *PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Emotoepduevn tun: [lavrote NULL. Part of the Stable ABI since version 3.5. Same as PyErr Format (),
but taking a va_11ist argument rather than a variable number of arguments.

Néo otnv ¢€kdoom 3.5.

void PyErr_SetNone (PyObject *type)
Part of the Stable ABI. This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr BadArgument ()
Part of the Stable ABI. This is a shorthand for PyErr_SetString (PyExc_TypeError, message),
where message indicates that a built-in operation was invoked with an illegal argument. It is mostly for internal
use.

PyObject *PyErr_NoMemory ()
Emortoepduevy wun: Ildvrote NULL. Part of the Stable ABI. This is a shorthand for
PyErr_SetNone (PyExc_MemoryError); it returns NULL so an object allocation function can
write return PyErr_NoMemory () ; when it runs out of memory.

PyObject *PyErr_SetFromErrno (PyObject *type)
Emotoepduevy nun: Iavrote NULL. Part of the Stable ABI. This is a convenience function to raise an
exception when a C library function has returned an error and set the C variable errno. It constructs a tuple
object whose first item is the integer e rrno value and whose second item is the corresponding error message
(gotten from strerror ()), and then calls PyErr_SetObject (type, object).On Unix, when the
errno value is EINTR, indicating an interrupted system call, this calls PyErr CheckSignals (), and
if that set the error indicator, leaves it set to that. The function always returns NULL, so a wrapper function

48 Kegahaio 5. Exception Handling

The Python/C API, Anpooicuon 3.10.18

around a system call can write return PyErr_SetFromErrno (type); when the system call returns
an error.

PyObject *PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject
*filenameObject)
Emotoepduevny tun: [lavrote NULL. Part of the Stable ABI. Similar to PyErr_SetFromErrno (), with
the additional behavior that if filenameObject is not NULL, it is passed to the constructor of type as a third
parameter. In the case of OSError exception, this is used to define the £i 1ename attribute of the exception

instance.
PyObject *PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject
* filenameObject, PyObject
* filenameObject2)

Emotoepduevy wun: IHdvrtote NULL. Part of the Stable ABI since version 3.7. Similar to
PyErr SetFromErrnoWithFilenameObject (), but takes a second filename object, for raising
errors when a function that takes two filenames fails.

Néo otv ¢kdoom 3.4.

PyObject *PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Emotoepduevy wun: Havrore NULL. Part of the Stable ABL Similar to
PyErr_SetFromErrnoWithFilenameObject (), but the filename is given as a C string. filename is
decoded from the filesystem encoding and error handler.

PyObject *PyErr_SetFromWindowsErr (int ierr)

Emortoepduevy nun: [avrotre NULL. Part of the Stable ABI on Windows since version 3.7. This is a
convenience function to raise WindowsError. If called with ierr of 0, the error code returned by a call
to GetLastError () is used instead. It calls the Win32 function FormatMessage () to retrieve the
Windows description of error code given by ierr or GetLastError (), then it constructs a tuple object
whose first item is the ierr value and whose second item is the corresponding error message (gotten from
FormatMessage ()), and then calls PyErr_SetObject (PyExc_WindowsError, object).
This function always returns NULL.

Availability: Windows.

PyObject *PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Emoroepduevny nun: Idvrote NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetFromWindowsErr (), with an additional parameter specifying the exception type to be raised.

Availability: Windows.

PyObject *PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)
Emoroepduevny nun: Idvrote NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetFromWindowsErrWithFilenameObject (), but the filename is given as a C string.
filename is decoded from the filesystem encoding (os . fsdecode ()).

Availability: Windows.

PyObject *PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr,
PyObject *filename)
Emotoepduevny nun: Iavrote NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetFromWindowsErrWithFilenameObject (), with an additional parameter specifying
the exception type to be raised.

Availability: Windows.

PyObject *PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr,
PyObject *filename,
PyObject * filename2)
Emoroepduevny nun: Idvrote NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetExcFromWindowsErrWithFilenameObject (), butaccepts a second filename object.

Availability: Windows.
Néo otnv ékdoon 3.4.

5.2. Raising exceptions 49

The Python/C API, Anpooicuon 3.10.18

PyObject *PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char

*filename)
Emotoepduevy nun: Iavrtote NULL. Part of the Stable ABI on Windows since version 3.7. Similar

to PyErr SetFromWindowsErrWithFilename (), with an additional parameter specifying the
exception type to be raised.

Availability: Windows.

PyObject *PyErr_SetImportError (PyObject *msg, PyObject *name, PyObject *path)
Emortoepduevn tun: Ilavrote NULL. Part of the Stable ABI since version 3.7. This is a convenience function
to raise ImportError. msg will be set as the exception’s message string. name and path, both of which can
be NULL, will be set as the ImportError’s respective name and path attributes.

Néo oty éxdoon 3.3.

PyObject *PyErr_SetImportErrorSubclass (PyObject *exception, PyObject *msg, PyObject *name,
PyObject *path)
Emotoepduevy wun: Ilaviote NULL. Part of the Stable ABI since version 3.6. Much like
PyErr_SetImportError () but this function allows for specifying a subclass of ImportError
to raise.

Néo otnv ¢kdoom 3.6.

void PyErr_ SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exceptionisnota SyntaxError,
then it sets additional attributes, which make the exception printing subsystem think the exception is a
SyntaxError.

Néo otnv ¢kdoon 3.4.

void PyErr_ SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Part of the Stable ABI since version 3.7. Like PyErr_SyntaxLocationObject (), but filename is a
byte string decoded from the filesystem encoding and error handler.

Néo omnv ékdoom 3.2.

void PyErr_ SyntaxLocation (const char *filename, int lineno)
Part of the Stable ABI. Like PyErr_SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_ BadInternalCall ()
Part of the Stable ABIL This is a shorthand for PyErr_SetString (PyExc_SystemError,
message), where message indicates that an internal operation (e.g. a Python/C API function) was invoked
with an illegal argument. It is mostly for internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified
that warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the
functions raise an exception because of a problem with the warning machinery. The return value is 0 if no exception
is raised, or —1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed,
nor what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for example, Py_ DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)
Fart of the Stable ABI. Issue a warning message. The cafegory argument is a warning category (see below)
or NULL; the message argument is a UTF-8 encoded string. stack_level is a positive number giving a number
of stack frames; the warning will be issued from the currently executing line of code in that stack frame. A
stack_level of 1 is the function calling PyErr_ WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_Runt imeWarning. The standard Python

50 Kegahaio 5. Exception Handling

The Python/C API, Anpooicuon 3.10.18

warning categories are available as global variables whose names are enumerated at Standard Warning
Categories.

For information about warning control, see the documentation for the warnings module and the —W option
in the command line documentation. There is no C API for warning control.

int PyErr_ WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int
lineno, PyObject *module, PyObject *registry)
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python function warnings.warn_explicit () ;see there for more information. The module
and registry arguments may be set to NULL to get the default effect described there.

Néo otnv ékdoon 3.4.

int PyErr_ WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno,
const char *module, PyObject *registry)
Fart of the Stable ABI. Similar to PyErr_ WarnExplicitObject () except that message and module are
UTF-8 encoded strings, and filename is decoded from the filesystem encoding and error handler.

int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char * format, ...)
Part of the Stable ABI. Function similar to PyErr_WarnEx (),butuse PyUnicode_FromFormat () to
format the warning message. format is an ASClII-encoded string.

Néo oty éxdoon 3.2.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Part of the Stable ABI since version 3.6. Function similar to PyErr WarnFormat (), but category is
ResourceWarning and it passes source to warnings.WarningMessage ().

Néo otnv ¢€kdoom 3.6.

5.4 Querying the error indicator

PyObject *PyErr_Occurred ()
Emotoepduevn tiun: Borrowed reference. Part of the Stable ABI. Test whether the error indicator is set. If
set, return the exception type (the first argument to the last call to one of the PyErr_Set * functions or to
PyErr_Restore ()).If not set, return NULL. You do not own a reference to the return value, so you do not
need to Py_ DECREF () it.

The caller must hold the GIL.

Ynueiwon: Do not compare the return value to a specific exception; use PyErr_ExceptionMatches ()
instead, shown below. (The comparison could easily fail since the exception may be an instance instead of a
class, in the case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)
Part of the Stable ABI. Equivalent to PyErr_GivenExceptionMatches (PyErr_Occurred(),
exc) . This should only be called when an exception is actually set; a memory access violation will occur
if no exception has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)
Fart of the Stable ABL Return true if the given exception matches the exception type in exc. If exc is a class
object, this also returns true when given is an instance of a subclass. If exc is a tuple, all exception types in the
tuple (and recursively in subtuples) are searched for a match.

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Fart of the Stable ABI. Retrieve the error indicator into three variables whose addresses are passed. If the error
indicator is not set, set all three variables to NULL. If it is set, it will be cleared and you own a reference to
each object retrieved. The value and traceback object may be NULL even when the type object is not.

5.4. Querying the error indicator 51

The Python/C API, Anpooicuon 3.10.18

Enueiwon: This function is normally only used by code that needs to catch exceptions or by code that needs
to save and restore the error indicator temporarily, e.g.:

{
PyObject *type, *value, *traceback;
PyErr_Fetch(&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Part of the Stable ABI. Set the error indicator from the three objects. If the error indicator is already set, it
is cleared first. If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-
NULL value or traceback. The exception type should be a class. Do not pass an invalid exception type or value.
(Violating these rules will cause subtle problems later.) This call takes away a reference to each object: you
must own a reference to each object before the call and after the call you no longer own these references. (If
you don’t understand this, don’t use this function. I warned you.)

Ynueimon: This function is normally only used by code that needs to save and restore the error indicator
temporarily. Use PyErr_Fetch () to save the current error indicator.

void PyErr NormalizeException (PyObject **exc, PyObject **val, PyObject **tb)
Part of the Stable ABL Under certain circumstances, the values returned by PyErr_ Fetch () below can
be «unnormalized», meaning that *exc is a class object but *val is not an instance of the same class. This
function can be used to instantiate the class in that case. If the values are already normalized, nothing happens.
The delayed normalization is implemented to improve performance.

Enueiwon: This function does not implicitly set the __traceback___ attribute on the exception value. If
setting the traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);
}

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Part of the Stable ABI since version 3.7. Retrieve the exception info, as known from sys.exc_info ().
This refers to an exception that was already caught, not to an exception that was freshly raised. Returns new
references for the three objects, any of which may be NULL. Does not modify the exception info state.

Ynueiwon: This function is not normally used by code that wants to handle exceptions. Rather, it can be
used when code needs to save and restore the exception state temporarily. Use PyErr_SetExcInfo () to
restore or clear the exception state.

Néo otv éxdoom 3.3.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)
Fart of the Stable ABI since version 3.7. Set the exception info, as known from sys.exc_info (). This
refers to an exception that was already caught, not to an exception that was freshly raised. This function steals
the references of the arguments. To clear the exception state, pass NULL for all three arguments. For general
rules about the three arguments, see PyErr_Restore ().

Ynueiwon: This function is not normally used by code that wants to handle exceptions. Rather, it can be used

52 Kegahaio 5. Exception Handling

The Python/C API, Anpooicuon 3.10.18

when code needs to save and restore the exception state temporarily. Use PyErr_GetExcInfo () toread
the exception state.

Néo otnv ¢kdoon 3.3.

5.5 Signal Handling

int PyErr_CheckSignals ()
Fart of the Stable ABI. This function interacts with Python’s signal handling.

If the function is called from the main thread and under the main Python interpreter, it checks whether a signal
has been sent to the processes and if so, invokes the corresponding signal handler. If the signal module is
supported, this can invoke a signal handler written in Python.

The function attempts to handle all pending signals, and then returns 0. However, if a Python signal handler
raises an exception, the error indicator is set and the function returns —1 immediately (such that other pending
signals may not have been handled yet: they will be on the next PyErr CheckSignals () invocation).

If the function is called from a non-main thread, or under a non-main Python interpreter, it does nothing and
returns 0.

This function can be called by long-running C code that wants to be interruptible by user requests (such as by
pressing Ctrl-C).

Ynueiwon: The default Python signal handler for STGINT raises the KeyboardInterrupt exception.

void PyErr_SetInterrupt ()
Part of the Stable ABIL Simulate the effect of a SIGINT signal arriving. This is equivalent to
PyErr_SetInterruptEx (SIGINT).

Ynueiwon: This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

int PyErr_SetInterruptEx (int signum)
Part of the Stable ABI since version 3.10. Simulate the effect of a signal arriving. The next time
PyErr_CheckSignals () is called, the Python signal handler for the given signal number will be called.

This function can be called by C code that sets up its own signal handling and wants Python signal handlers
to be invoked as expected when an interruption is requested (for example when the user presses Ctrl-C to
interrupt an operation).

If the given signal isn’t handled by Python (it was set to signal .SIG_DFLor signal.SIG_IGN), it will
be ignored.

If signum is outside of the allowed range of signal numbers, -1 is returned. Otherwise, O is returned. The error
indicator is never changed by this function.

Ynueiwon: This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

Néo otnv éxdoon 3.10.

int PySignal_SetWakeupFd (int fd)
This utility function specifies a file descriptor to which the signal number is written as a single byte whenever
a signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalentto signal.set_wakeup_£fd ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be
called from the main thread.

5.5. Signal Handling 53

The Python/C API, Anpooicuon 3.10.18

AMoEe oty £xdoon 3.5: On Windows, the function now also supports socket handles.

5.6 Exception Classes

PyObject *PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Emotoepduevny tiun: New reference. Part of the Stable ABL This utility function creates and returns a new
exception class. The name argument must be the name of the new exception, a C string of the form module.
classname. The base and dict arguments are normally NULL. This creates a class object derived from
Exception (accessible in C as PyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument,
and the class name is set to the last part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a
dictionary of class variables and methods.

PyObject *PyErr_ NewExceptionWithDoc (const char *name, const char *doc, PyObject *base,
PyObject *dict)
Emotoepduevn tui: New reference. Part of the Stable ABL. Same as PyErr_NewException (), except
that the new exception class can easily be given a docstring: If doc is non-NULL, it will be used as the docstring
for the exception class.

Néo oty éxdoon 3.2.

5.7 Exception Objects

PyObject *PyException_GetTraceback (PyObject *ex)
Emotoepduevn tun: New reference. Part of the Stable ABI. Return the traceback associated with the exception
as a new reference, as accessible from Python through __traceback__. If there is no traceback associated,
this returns NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Fart of the Stable ABI. Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject *PyException_GetContext (PyObject *ex)
Emotoepduevn wun: New reference. Part of the Stable ABI. Return the context (another exception instance
during whose handling ex was raised) associated with the exception as a new reference, as accessible from
Python through _context__ . If there is no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Part of the Stable ABI. Set the context associated with the exception to ctx. Use NULL to clear it. There is no
type check to make sure that ctx is an exception instance. This steals a reference to ctx.

PyObject *PyException_GetCause (PyObject *ex)
Emotoepduevn tiun: New reference. Part of the Stable ABI. Return the cause (either an exception instance,
or None, setby raise ... from ...) associated with the exception as a new reference, as accessible
from Python through __cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Part of the Stable ABI. Set the cause associated with the exception to cause. Use NULL to clear it. There is no
type check to make sure that cause is either an exception instance or None. This steals a reference to cause.

___suppress_context__ isimplicitly set to True by this function.

54 Kegahaio 5. Exception Handling

The Python/C API, Anpooicuon 3.10.18

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

PyObject *PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t
length, Py _ssize t start, Py ssize_t end, const char
*reason)
Emotoepduevn tyur: New reference. Part of the Stable ABI. Create a UnicodeDecodeError object with

the attributes encoding, object, length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject *PyUnicodeEncodeError_Create (const char *encoding, const Py_UNICODE *object,
Py_ssize_t length, Py_ssize_t start, Py_ssize_t end,

const char *reason)
Emotoepduevn tut: New reference. Create a UnicodeEncodeError object with the attributes encoding,

object, length, start, end and reason. encoding and reason are UTF-8 encoded strings.
AmoovUpOnke oty €kdoon 3.3: 3.11

Py UNICODE is deprecated since Python 3.3. Please migrate to
PyObject_CallFunction (PyExc_UnicodeEncodeError, "sOnns", ...).

PyObject *PyUnicodeTranslateError_Create (const Py UNICODE *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize t end, const char

*reason)
Emotoepduevn tun: New reference. CreateaUnicodeTranslateError object with the attributes object,

length, start, end and reason. reason is a UTF-8 encoded string.
AmoovpOnke otnv éxdoomn 3.3: 3.11

Py_UNICODE is deprecated since Python 3.3. Please migrate to
PyObject_CallFunction (PyExc_UnicodeTranslateError, "Onns", ...).

PyObject *PyUnicodeDecodeError_GetEncoding (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetEncoding (PyObject *exc)
Emotoepduevny nun: New reference. Part of the Stable ABIL Return the encoding attribute of the given
exception object.

PyObject *PyUnicodeDecodeError_GetObject (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetObject (PyObject *exc)

PyObject *PyUnicodeTranslateError_GetObject (PyObject *exc)
Emotoepduevn niun: New reference. Part of the Stable ABI. Return the object attribute of the given exception
object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Fart of the Stable ABIL Get the start attribute of the given exception object and place it into *start. start must
not be NULL. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Fart of the Stable ABI. Set the start attribute of the given exception object to start. Return O on success, —1
on failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_GetEnd (PyObject *exc, Py_ssize_t *end)
Part of the Stable ABI. Get the end attribute of the given exception object and place it into *end. end must not
be NULL. Return O on success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)

5.8. Unicode Exception Objects 55

The Python/C API, Anpooicuon 3.10.18

int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py ssize_t end)
Part of the Stable ABI. Set the end attribute of the given exception object to end. Return 0 on success, —1 on
failure.

PyObject *PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeTranslateError_GetReason (PyObject *exc)
Emortoepduevn tun: New reference. Part of the Stable ABI. Return the reason attribute of the given exception
object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)

Part of the Stable ABI. Set the reason attribute of the given exception object to reason. Return O on success,
—1 on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension
modules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion
depth automatically). They are also not needed for #p_call implementations because the call protocol takes care of
recursion handling.

int Py_ EnterRecursiveCall (const char *where)
Fart of the Stable ABI since version 3.9. Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using
Py0OS_CheckStack (). In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and
a nonzero value is returned. Otherwise, zero is returned.

where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the
RecursionError message caused by the recursion depth limit.

AMEe oty £xdoon 3.9: This function is now also available in the limited API.

void Py_LeaveRecursiveCall (void)
Part of the Stable ABI since version 3.9. Ends a Py_EnterRecursiveCall (). Must be called once for
each successful invocation of Py_EnterRecursiveCall ().

AMoEe oty £xdoon 3.9: This function is now also available in the limited API.

Properly implementing t o repr for container types requires special recursion handling. In addition to protecting the
stack, t p_ repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

int Py_ReprEnter (PyObject *object)
Part of the Stable ABI. Called at the beginning of the tp_ repr implementation to detect cycles.
If the object has already been processed, the function returns a positive integer. In that case the tp_repr

implementation should return a string object indicating a cycle. As examples, dict objects return { . . . } and
list objectsreturn [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_ repr
implementation should typically return NULL.

Otherwise, the function returns zero and the ¢ p_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)
Part of the Stable ABIL. Ends a Py ReprEnter (). Must be called once for each invocation of
Py_ReprEnter () that returns zero.

56 Kegahaio 5. Exception Handling

The Python/C API, Anpooicuon 3.10.18

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyObject*; they are all class objects. For completeness, here are all the

variables:
C Name Python Name Notes
PyExc_BaseException BaseException !
PyExc_Exception Exception I
PyExc_ArithmeticError ArithmeticError I
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError

PyExc_ChildProcessError

ChildProcessError

PyExc_ConnectionAbortedE

rfonnectionAbortedError

PyExc_ConnectionError

ConnectionError

PyExc_ConnectionRefusedE

rfonnectionRefusedError

PyExc_ConnectionResetErr

pfonnectionResetError

PyExc_EOFError

EOFError

PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError | FileNotFoundError
PyExc_FloatingPointError| FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError

PyExc_IsADirectoryError

IsADirectoryError

PyExc_KeyError

KeyError

PyExc_KeyboardInterrupt | KeyboardInterrupt
PyExc_LookupError LookupError T
PyExc_MemoryError MemoryError

PyExc_ModuleNotFoundErro

rModuleNotFoundError

PyExc_NameError

NameError

PyExc_NotADirectoryError

NotADirectoryError

PyExc_NotImplementedErro

rNotImplementedError

PyExc_OSError

OSError

PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError| ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError
PyExc_RuntimeError RuntimeError
PyExc_StopAsyncIteration| StopAsyncIteration
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError

PyExc_UnboundLocalError

UnboundLocalError

ouveEXela oTny enduevn oeAida

5.10. Standard Exceptions

57

The Python/C API, Anpooicuon 3.10.18

Mivakag 1 - ouvexiCetal and tnv nponyoupevn ceAida
C Name Python Name Notes
PyExc_UnicodeDecodeError| UnicodeDecodeError
PyExc_UnicodeEncodeError| UnicodeEncodeError

PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateErrdnicodeTranslateError
PyExc_ValueError ValueError

PyExc_ZeroDivisionError | ZeroDivisionError

Néo omv £xdoom 3.3: PyExc_BlockingIOError, PyExc_BrokenPipeError,
PyExc_ChildProcessError, PyExc_ConnectionError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError,
PyExc_FileExistsError, PyExc_FileNotFoundError, PyExc_InterruptedError,
PyExc_TIsADirectoryError, PyExc_NotADirectoryError, PyExc_PermissionError,
PyExc_ProcessLookupError and PyExc_TimeoutError were introduced following PEP 3151.

Néo oty é€xdoomn 3.5: PyExc_StopAsynclterationand PyExc_RecursionError.
Néo oty éxdoon 3.6: PyExc_ModuleNotFoundError

These are compatibility aliases to PyExc_OSError:

C Name Notes
PyExc_EnvironmentError
PyExc_IOError
PyExc_WindowsError

9|

AMaEe oty £kdoon 3.3: These aliases used to be separate exception types.

Notes:

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc__ followed by the
Python exception name. These have the type PyOb ject*; they are all class objects. For completeness, here are all
the variables:

C Name Python Name Notes
PyExc_Warning Warning 3
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning | PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

Néo oty £€kdoon 3.2: PyExc_ResourceWarning

Notes:

! This is a base class for other standard exceptions.
2 Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is defined.
3 This is a base class for other standard warning categories.

58 Kegahaio 5. Exception Handling

https://www.python.org/dev/peps/pep-3151

KE®GAAAIO O

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

6.1 Operating System Utilities

PyObject *PyOS_FSPath (PyObject *path)
Emotoepduevy tun: New reference. Part of the Stable ABI since version 3.6. Return the file system
representation for path. If the object is a str or bytes object, then a new strong reference is returned. If
the object implements the os . PathLike interface, then __fspath__ () isreturned as long asitisa str
or bytes object. Otherwise TypeError is raised and NULL is returned.

Néo oty éxdoon 3.6.

int Py_FdIsInteractive (FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case
for files for which isatty (fileno (fp)) is true. If the global flag Py_TnteractiveFlaqg is true,
this function also returns true if the filename pointer is NULL or if the name is equal to one of the strings
'<stdin>"'or '??°?"'.

void PyOS_BeforeFork ()
Fart of the Stable ABI on platforms with fork() since version 3.7. Function to prepare some internal state before
a process fork. This should be called before calling fork () or any similar function that clones the current
process. Only available on systems where fork () is defined.

Ipozdomoinon: The C fork () call should only be made from the «main» thread (of the «main»
interpreter). The same is true for PyOS_BeforeFork ().

Néo otv ¢kdoom 3.7.

void PyOS_AfterFork_Parent ()
Fart of the Stable ABI on platforms with fork() since version 3.7. Function to update some internal state after a
process fork. This should be called from the parent process after calling fork () or any similar function that
clones the current process, regardless of whether process cloning was successful. Only available on systems
where fork () is defined.

59

The Python/C API, Anpooicuon 3.10.18

IIpoedomoinon: The C fork () call should only be made from the «main» thread (of the «main»
interpreter). The same is true for PyOS_AfterFork_Parent ().

Néo omnv ékdoom 3.7.

void PyOS_AfterFork_Child ()
Part of the Stable ABI on platforms with fork() since version 3.7. Function to update internal interpreter state
after a process fork. This must be called from the child process after calling fork (), or any similar function
that clones the current process, if there is any chance the process will call back into the Python interpreter.
Only available on systems where fork () is defined.

IIpoedomoinon: The C fork () call should only be made from the «main» thread (of the «main»
interpreter). The same is true for PyOS_AfterFork_Child().

Néo otnv ¢kdoon 3.7.
Agite emiong:

os.register_at_fork () allows registering custom Python functions to be called by
PyOS_BeforeFork (), PyOS_AfterFork_Parent () and PyOS_AfterFork_Child().

void PyOS_AfterFork ()
Fart of the Stable ABI on platforms with fork(). Function to update some internal state after a process fork;
this should be called in the new process if the Python interpreter will continue to be used. If a new executable
is loaded into the new process, this function does not need to be called.

AmoovpOnke oty €ékdoon 3.7: This function is superseded by PyOS AfterFork Child().

int PyOS_CheckStack ()
Fart of the Stable ABI on platforms with USE_STACKCHECK since version 3.7. Return true when the interpreter
runs out of stack space. This is a reliable check, but is only available when USE_STACKCHECK is defined
(currently on Windows using the Microsoft Visual C++ compiler). USE_STACKCHECK will be defined
automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (int i)
Fart of the Stable ABI. Return the current signal handler for signal i. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef
alias for void (*) int.

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t /)
Part of the Stable ABI. Set the signal handler for signal i to be h; return the old signal handler. This
is a thin wrapper around either sigaction () or signal (). Do not call those functions directly!
PyOS_sighandler_t is a typedef alias for void (*) int.

wchar_t *Py_DecodeLocale (const char *arg, size_t *size)
Part of the Stable ABI since version 3.7.

IIpoeidomoinon: This function should not be called directly: use the PyConfig API with the
PyConfig_SetBytesString () function which ensures that Python is preinitialized.

This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py PreInitialize () function.

Decode a byte string from the filesystem encoding and error handler. If the error handler is surrogateescape
error handler, undecodable bytes are decoded as characters in range U+DC80..U+DCFF; and if a byte
sequence can be decoded as a surrogate character, the bytes are escaped using the surrogateescape error handler
instead of decoding them.

60 Kegahaio 6. Utilities

The Python/C API, Anpooicuon 3.10.18

Return a pointer to a newly allocated wide character string, use PyMem RawFree () to free the memory. If
size is not NULL, write the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is not NULL, *sizeissetto (size_t) -
1 on memory error or setto (size_t) -2 on decoding error.

The filesystem encoding and error handler are selected by PyConfig Read(): see
filesystem encodingand filesystem errors membersof PyConfig.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
Agite emiong:

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

Néo otnv €kdoon 3.5.
AMoEe ot €kdoom 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

AMoEe otv éxdoon 3.8: The function now uses the UTF-8 encoding on Windows if
Py_LegacyWindowsFSEncodingFlag is zero;

char *Py_EncodeLocale (const wchar_t *fext, size_t *error_pos)
Fart of the Stable ABI since version 3.7. Encode a wide character string to the filesystem encoding and
error handler. If the error handler is surrogateescape error handler, surrogate characters in the range
U+DC80..U+DCEFF are converted to bytes 0x80..0xFF.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error.

If error_pos is not NULL, *error_posissetto (size_t) -1 on success, or set to the index of the invalid
character on encoding error.

The filesystem encoding and error handler are selected by PyConfig Read(): see
filesystem encodingand filesystem errors membersof PyConfig.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.

Ipozidomoinon: This function must not be called before Python is preinitialized and so that the
LC_CTYPE locale is properly configured: see the Py_PreTnitialize () function.

Agite emiong:

The PyUnicode_EncodeFSDefault () and PyUnicode_EncodeLocale () functions.
Néo otv ¢€kdoom 3.5.

AMEe oty £xdoon 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

AMoEe otnv ékdoon 3.8: The function now wuses the UTF-8 encoding on Windows if
Py_LegacyWindowsFSEncodingFlag is zero.

6.1. Operating System Utilities 61

The Python/C API, Anpooicuon 3.10.18

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with
the current interpreter thread’s sy s module’s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (const char *name)
Emortoepduevy tun: Borrowed reference. Part of the Stable ABI. Return the object name from the sys
module or NULL if it does not exist, without setting an exception.

int PySys_SetObject (const char *name, PyObject *v)
Part of the Stable ABI. Set name in the sys module to v unless v is NULL, in which case name is deleted from
the sys module. Returns 0 on success, —1 on error.

void PySys_ResetWarnOptions ()
Part of the Stable ABIL. Reset sys.warnoptions to an empty list. This function may be called prior to
Py_Initialize().

void PySys_AddWarnOption (const wchar_t *s)
Part of the Stable ABL Append s to sys.warnoptions. This function must be called prior to
Py_Initialize () in order to affect the warnings filter list.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Part of the Stable ABI. Append unicode to sys .warnoptions.

Note: this function is not currently usable from outside the CPython implementation, as it must be called prior
to the implicit import of warningsin Py_Tnitialize () to be effective, but can’t be called until enough
of the runtime has been initialized to permit the creation of Unicode objects.

void PySys_SetPath (const wchar_t *path)
Fart of the Stable ABI Set sys.path to a list object of paths found in path which should be a list of paths
separated with the platform’s search path delimiter (: on Unix, ; on Windows).

void PySys_WriteStdout (const char *format, ...)
Fart of the Stable ABIL. Write the output string described by format to sys.stdout. No exceptions are
raised, even if truncation occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the
output string is truncated. In particular, this means that no unrestricted «%s» formats should occur; these should
be limited using «%.<N>s» where <N> is a decimal number calculated so that <N> plus the maximum size of
other formatted text does not exceed 1000 bytes. Also watch out for «%f>», which can print hundreds of digits
for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

void PySys_WriteStderr (const char *format, ...)
Part of the Stable ABI. As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)
Part of the Stable ABIL Function similar to PySys_WriteStdout() but format the message using
PyUnicode_ FromFormatV () and don’t truncate the message to an arbitrary length.

Néo otv éxdoom 3.2.

void PySys_FormatStderr (const char *format, ...)
Part of the Stable ABI. As PySys_FormatStdout (), but write to sys . stderr or stderr instead.

Néo otnv é€kdoom 3.2.

void PySys_AddXOption (const wchar_t *s)
Part of the Stable ABI since version 3.7. Parse s as a set of —X options and add them to the current
options mapping as returned by PySys_GetXOptions (). This function may be called prior to
Py Initialize().

Néo otv éxdoom 3.2.

62 Kegahaio 6. Utilities

The Python/C API, Anpooicuon 3.10.18

PyObject *PySys_GetXOptions ()
Emoroepduevny nurn: Borrowed reference. Part of the Stable ABI since version 3.7. Return the current
dictionary of —X options, similarly to sys._xoptions. On error, NULL is returned and an exception is
set.

Néo otnv €kdoon 3.2.

int PySys_Audit (const char *event, const char *format, ...)
Raise an auditing event with any active hooks. Return zero for success and non-zero with an exception set on
failure.

If any hooks have been added, format and other arguments will be used to construct a tuple to pass. Apart
from N, the same format characters as used in Py__BuildValue () are available. If the built value is not a
tuple, it will be added into a single-element tuple. (The N format option consumes a reference, but since there
is no way to know whether arguments to this function will be consumed, using it may cause reference leaks.)

Note that # format characters should always be treated as Py ssize_t, regardless of whether
PY SSIZE T CLEAN was defined.

sys.audit () performs the same function from Python code.
Néo otv éxdoon 3.8.

AMoEe otnv €ékdoon 3.8.2: Require Py_ssize_ t for # format characters. Previously, an unavoidable
deprecation warning was raised.

int PySys_AddAuditHook (Py_AuditHookFunction hook, void *userData)
Append the callable Kook to the list of active auditing hooks. Return zero on success and non-zero on failure.
If the runtime has been initialized, also set an error on failure. Hooks added through this API are called for all
interpreters created by the runtime.

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.

This function is safe to call before Py_Tnitialize (). When called after runtime initialization, existing
audit hooks are notified and may silently abort the operation by raising an error subclassed from Exception
(other errors will not be silenced).

The hook function is of type int (*)const char *event, PyObject *args, void
*userData, where args is guaranteed to be a PyTupleObject. The hook function is always called with
the GIL held by the Python interpreter that raised the event.

See PEP 578 for a detailed description of auditing. Functions in the runtime and standard library that raise
events are listed in the audit events table. Details are in each function’s documentation.

If the interpreter is initialized, this function raises a auditing event sy s . addaudithook with no arguments.
If any existing hooks raise an exception derived from Except ion, the new hook will not be added and the
exception is cleared. As a result, callers cannot assume that their hook has been added unless they control all
existing hooks.

Néo otv ¢€kdoom 3.8.

6.3 Process Control

void Py_FatalError (const char *message)
Fart of the Stable ABI. Print a fatal error message and kill the process. No cleanup is performed. This function
should only be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be corrupted. On Unix, the standard C library
function abort () is called which will attempt to produce a core file.

The Py_FatalError () function is replaced with a macro which logs automatically the name of the current
function, unless the Py_LIMITED_API macro is defined.

AMoEe oty €kdoon 3.9: Log the function name automatically.

6.3. Process Control 63

https://www.python.org/dev/peps/pep-0578

The Python/C API, Anpooicuon 3.10.18

void Py_Exit (int status)
Part of the Stable ABI. Exit the current process. This calls Py_FinalizeFEx () and then calls the standard
C library function exit (status).Ilf Py_FinalizeFEx () indicates an error, the exit status is set to 120.

AlhaEe oty ékdoon 3.6: Errors from finalization no longer ignored.

int Py_AtExit (void (*func))
Part of the Stable ABI. Register a cleanup function to be called by Py_FinalizeEx (). The cleanup
function will be called with no arguments and should return no value. At most 32 cleanup functions can be
registered. When the registration is successful, Py At Exit () returns O;on failure, it returns — 1. The cleanup
function registered last is called first. Each cleanup function will be called at most once. Since Python’s internal
finalization will have completed before the cleanup function, no Python APIs should be called by func.

6.4 Importing Modules

PyObject *PyImport_ImportModule (const char *name)

Emortoepduevny wun: New reference. Part of the Stable ABI. This is a simplified interface to
PyImport_ImportModuleEx () below, leaving the globals and locals arguments set to NULL and level
set to 0. When the name argument contains a dot (when it specifies a submodule of a package), the fromlist
argument is set to the list [' * '] so that the return value is the named module rather than the top-level package
containing it as would otherwise be the case. (Unfortunately, this has an additional side effect when name in fact
specifies a subpackage instead of a submodule: the submodules specified in the package’s __all__ variable
are loaded.) Return a new reference to the imported module, or NULL with an exception set on failure. A
failing import of a module doesn’t leave the module in sys.modules.

This function always uses absolute imports.

PyObject *PyImport_ImportModuleNoBlock (const char *name)
Emoroepduevy nun: New reference. Part of the Stable ABI This function is a deprecated alias of
PyImport__ImportModule ().

AMaEe otnv £kdoom 3.3: This function used to fail immediately when the import lock was held by another
thread. In Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this
function’s special behaviour isn’t needed anymore.

PyObject *PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals,
PyObject * fromlist)
Emotoepduevn tun: New reference. Import a module. This is best described by referring to the built-in Python
function ___import__ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py Tmport_ImportModule ().

PyObject *PyImport_ImportModuleLevelObject (PyObject *name, PyObject *globals, PyObject
*locals, PyObject * fromlist, int level)
Emotoepduevn tun: New reference. Part of the Stable ABI since version 3.7. Import a module. This is best
described by referring to the built-in Python function __import__ (), as the standard ___import__ ()
function calls this function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception
set on failure. Like for __import__ (), the return value when a submodule of a package was requested is
normally the top-level package, unless a non-empty fromlist was given.

Néo otv ¢€kdoom 3.3.

PyObject *PyImport_ImportModulelevel (const char *name, PyObject *globals, PyObject *locals,
PyObject * fromlist, int level)
Emotoepdusvy mun: New reference. Part of the Stable ABL Similar to
PyImport_ImportModuleLevelObject (), but the name is a UTF-8 encoded string instead
of a Unicode object.

64 Kegahaio 6. Utilities

The Python/C API, Anpooicuon 3.10.18

AMoEe oty £xdoon 3.3: Negative values for level are no longer accepted.

PyObject *PyImport_Import (PyObject *name)
Emotoepduevn tun: New reference. Part of the Stable ABL This is a higher-level interface that calls the current
«import hook function» (with an explicit level of 0, meaning absolute import). It invokes the ___import__ ()
function from the __builtins__ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment.

This function always uses absolute imports.

PyObject *PyImport_ReloadModule (PyObject *m)
Emotoepduevn tun: New reference. Part of the Stable ABL Reload a module. Return a new reference to the
reloaded module, or NULL with an exception set on failure (the module still exists in this case).

PyObject *PyImport_AddModuleObject (PyObject *name)
Emortpepduevn wun: Borrowed reference. Part of the Stable ABI since version 3.7. Return the module object
corresponding to a module name. The name argument may be of the form package .module. First check
the modules dictionary if there’s one there, and if not, create a new one and insert it in the modules dictionary.
Return NULL with an exception set on failure.

Ynueimon: This function does not load or import the module; if the module wasn’t already loaded, you will
get an empty module object. Use Py Import_ImportModule () orone of its variants to import a module.
Package structures implied by a dotted name for name are not created if not already present.

Néo otv éxdoon 3.3.

PyObject *PyImport_AddModule (const char *name)
Emotoepduevy nurn: Borrowed — reference. Part of the Stable ABL Similar to
PyImport_AddModuleObject (), but the name is a UTF-8 encoded string instead of a Unicode
object.

PyObject *PyImport_ExecCodeModule (const char *name, PyObject *co)

Emotoepduevny wun: New reference. Part of the Stable ABIL. Given a module name (possibly of the form
package .module) and a code object read from a Python bytecode file or obtained from the built-in function
compile (), load the module. Return a new reference to the module object, or NULL with an exception set
if an error occurred. name is removed from sys.modules in error cases, even if name was already in
sys.modules onentryto PyImport_ ExecCodeModule ().Leaving incompletely initialized modules
in sys.modules is dangerous, as imports of such modules have no way to know that the module object is
an unknown (and probably damaged with respect to the module author’s intents) state.

The module’s __spec___and ___loader__ will be set, if not set already, with the appropriate values. The
spec’s loader will be set to the module’s ___1oader__ (if set) and to an instance of SourceFileLoader
otherwise.

The module’s _ file_ attribute will be set to the code object's co_filename. If applicable,
___cached___ will also be set.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for
the intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created
will still not be created.

Seealso Py Import_ExecCodeModuleEx () and Py Import_ExecCodeModuleWithPathnames ().

PyObject *PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char

*pathname)
Emotoepduevny tiun: New reference. Part of the Stable ABI. Like Py Tmport_ExecCodeModule (), but

the file_ attribute of the module object is set to pathname if it is non-NULL.

See also Py Import_ExecCodeModuleWithPathnames ().

6.4. Importing Modules 65

The Python/C API, Anpooicuon 3.10.18

PyObject *PyImport_ExecCodeModuleObject (PyObject *name, PyObject *co, PyObject *pathname,
PyObject *cpathname)
Emotoepduevy wun: New reference. Part of the Stable ABI since version 3.7. Like
PyImport_ExecCodeModuleEx (), but the _ cached__ attribute of the module object is set
to cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

Néo otv ékdoom 3.3.

PyObject *PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co,
const char *pathname, const char

*cpathname)
Emotoepduevn Tun: New reference. Part of the Stable ABL Like

PyImport_ExecCodeModuleObject (), but name, pathname and cpathname are UTF-8 encoded
strings. Attempts are also made to figure out what the value for pathname should be from cpathname if the
former is set to NULL.

Néo otnv ¢€kdoom 3.2.

AMoEe oty ékdoon 3.3: Uses imp. source_from_cache () in calculating the source path if only the
bytecode path is provided.

long PyImport_GetMagicNumber ()
Fart of the Stable ABI. Return the magic number for Python bytecode files (a.k.a. . pyc file). The magic
number should be present in the first four bytes of the bytecode file, in little-endian byte order. Returns —1 on
error.

AMoEe oty ékdoon 3.3: Return value of —1 upon failure.

const char *PyImport_GetMagicTag ()
Fart of the Stable ABI. Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in
mind that the value at sys.implementation.cache_tag is authoritative and should be used instead
of this function.

Néo omnv ékdoom 3.2.

PyObject *PyImport_GetModuleDict ()
Emotoepduevn tun: Borrowed reference. Part of the Stable ABI. Return the dictionary used for the module
administration (a.k.a. sys .modules). Note that this is a per-interpreter variable.

PyObject *PyImport_GetModule (PyObject *name)
Emotoepduevn tiun: New reference. Part of the Stable ABI since version 3.8. Return the already imported
module with the given name. If the module has not been imported yet then returns NULL but does not set an
error. Returns NULL and sets an error if the lookup failed.

Néo oty éxdoon 3.7.

PyObject *PyImport_GetImporter (PyObject *path)
Emotoepduevn tun: New reference. Part of the Stable ABIL Return a finder object for a sys.path/pkg.
__path__ item path, possibly by fetching it from the sys .path_importer_cache dict. If it wasn’t yet
cached, traverse sys.path_hooks until a hook is found that can handle the path item. Return None if no
hook could; this tells our caller that the path based finder could not find a finder for this path item. Cache the
result in sys.path_importer_cache. Return a new reference to the finder object.

int PyImport_ImportFrozenModuleObject (PyObject *name)
Part of the Stable ABI since version 3.7. Load a frozen module named name. Return 1 for success, 0 if the
module is not found, and —1 with an exception set if the initialization failed. To access the imported module on
a successful load, use Py Import_ ImportModule (). (Note the misnomer — this function would reload
the module if it was already imported.)

Néo otnv ¢€kdoom 3.3.
AMoEe oty éxdoon 3.4: The __file_ attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)
Part of the Stable ABI. Similar to Py Tmport_ImportFrozenModuleObject (), but the name is a
UTF-8 encoded string instead of a Unicode object.

66 Kegahaio 6. Utilities

https://www.python.org/dev/peps/pep-3147

The Python/C API, Anpooicuon 3.10.18

struct _frozen
This is the structure type definition for frozen module descriptors, as generated by the £reeze utility (see
Tools/freeze/ in the Python source distribution). Its definition, found in Include/import.h,is:

struct _frozen {
const char *name;
const unsigned char *code;
int size;

bi

const struct _frozen *PyImport_FrozenModules
This pointer is initialized to point to an array of _ frozen records, terminated by one whose members are
all NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject *(*initfunc)) void
Fart of the Stable ABI. Add a single module to the existing table of built-in modules. This is a convenience
wrapper around Py Import_ExtendInittab (), returning -1 if the table could not be extended. The
new module can be imported by the name name, and uses the function initfunc as the initialization function
called on the first attempted import. This should be called before Py Tnitialize ().

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives
the name and initialization function for a module built into the interpreter. The name is an ASCII
encoded string. Programs which embed Python may use an array of these structures in conjunction with
PyImport_ExtendInittab () to provide additional built-in modules. The structure is defined in
Include/import.h as:

struct _inittab {
const char *name; /* ASCII encoded string */
PyObject* (*initfunc) (void);

bi

int PyImport_ ExtendInittab (struct _inittab *newtab)
Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry
which contains NULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns 0 on success or —1 if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This must be called before Py Tnitialize ().

If Python is initialized multiple times, PyImport_AppendInittab () or
PyImport_ExtendInittab () must be called before each Python initialization.

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version O is the historical version, version 1 shares
interned strings in the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers.
Py_MARSHAL_VERSION indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)
Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of
the size of the native 1ong type. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr Occurred () to check for that.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.

6.5. Data marshalling support 67

The Python/C API, Anpooicuon 3.10.18

This function can fail, in which case it sets the error indicator. Use PyErr_ Occurred () to check for that.

PyObject *PyMarshal_WriteObjectToString (PyObject *value, int version)
Emotoepduevn tyur): New reference. Return a bytes object containing the marshalled representation of value.
version indicates the file format.

The following functions allow marshalled values to be read back in.

long PyMarshal_ReadLongFromFile (FILE *file)
Return a C 1ong from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in
using this function, regardless of the native size of 1ong.

On error, sets the appropriate exception (EOFError) and returns —1.

int PyMarshal_ReadShortFromFile (FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns —1.

PyObject *PyMarshal_ReadObjectFromFile (FILE *file)
Emotoepduevn tiur: New reference. Return a Python object from the data stream in a FILE* opened for
reading.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadLastObjectFromFile (FILE *file)
Emotoepduevn tur: New reference. Return a Python object from the data stream in a FILE* opened for
reading. Unlike PyMarshal_ ReadObjectFromFile (), this function assumes that no further objects
will be read from the file, allowing it to aggressively load file data into memory so that the de-serialization can
operate from data in memory rather than reading a byte at a time from the file. Only use these variant if you
are certain that you won’t be reading anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)
Emotoepduevn tun: New reference. Return a Python object from the data stream in a byte buffer containing
len bytes pointed to by data.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available in extending-index.

The first three of these functions described, PyArg_ParseTuple (), PyArg_ParseTupleAndKeywords (),
and PyArg Parse (), all use format strings which are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

6.6.1 Parsing arguments

A format string consists of zero or more «format units.» A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
quoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format
unit; and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

68 Kegahaio 6. Utilities

The Python/C API, Anpooicuon 3.10.18

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for
the returned unicode or bytes area.

Unless otherwise stated, buffers are not NUL-terminated.
There are three ways strings and buffers can be converted to C:

o Formats such as y* and s* filla Py_ buf fer structure. This locks the underlying buffer so that the caller can
subsequently use the buffer even inside a Py BEGIN_ALLOW_THREADS block without the risk of mutable
data being resized or destroyed. As a result, you have to call PyBuffer Release () after you have finished
processing the data (or in any early abort case).

o The es, es#, et and et # formats allocate the result buffer. You have to call PyMem Free () after you
have finished processing the data (or in any early abort case).

o Other formats take a st r or a read-only bytes-like object, such as bytes, and provide a const char *
pointer to its buffer. In this case the buffer is «borrowed»: it is managed by the corresponding Python object,
and shares the lifetime of this object. You won’t have to release any memory yourself.

To ensure that the underlying buffer may be safely borrowed, the object’s PyBufferProcs.
bf_releasebuffer field must be NULL. This disallows common mutable objects such as bytearray,
but also some read-only objects such as memoryview of bytes.

Besides this bf_releasebuffer requirement, there is no check to verify whether the input object is
immutable (e.g. whether it would honor a request for a writable buffer, or whether another thread can mutate
the data).

Ynueiwon: For all # variants of formats (s#, y#, etc.), the macro PY_SSIZE_T_CLEAN must be defined
before including Python.h. On Python 3.9 and older, the type of the length argument is Py_ssize_ t if the
PY_ SSIZE_T_ CLEAN macro is defined, or int otherwise.

s (str) [const char *] Convert a Unicode object to a C pointer to a character string. A pointer to an existing string
is stored in the character pointer variable whose address you pass. The C string is NUL-terminated. The Python
string must not contain embedded null code points; if it does, a ValueError exception is raised. Unicode
objects are converted to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is
raised.

Ynueiwon: This format does not accept bytes-like objects. If you want to accept filesystem paths and convert
them to C character strings, it is preferable to use the O& format with PyUnicode_ FSConverter () as
converter.

AMoEe otnv €ékdoon 3.5: Previously, TypeError was raised when embedded null code points were
encountered in the Python string.

s* (str or bytes-like object) [Py_buffer] This format accepts Unicode objects as well as bytes-like objects. It fills
a Py_buffer structure provided by the caller. In this case the resulting C string may contain embedded NUL
bytes. Unicode objects are converted to C strings using 'ut £-8"' encoding.

s# (str, read-only byfes-like object) [const char *, Py _ssize t] Like s*, except that it provides a borrowed
buffer. The result is stored into two C variables, the first one a pointer to a C string, the second one its length.
The string may contain embedded null bytes. Unicode objects are converted to C strings using 'utf—-8"'
encoding.

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is
set to NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case
the buf member of the Py _buffer structure is set to NULL.

6.6. Parsing arguments and building values 69

The Python/C API, Anpooicuon 3.10.18

z# (str, read-only byfes-like object or None) [const char *, Py ssize t] Like s#, but the Python object
may also be None, in which case the C pointer is set to NULL.

y (read-only bytes-like object) [const char *] This format converts a bytes-like object to a C pointer to a borrowed
character string; it does not accept Unicode objects. The bytes buffer must not contain embedded null bytes; if
it does, a ValueError exception is raised.

AMoEe ot £xdoon 3.5: Previously, TypeError was raised when embedded null bytes were encountered
in the bytes buffer.

y* (bytes-like object) [Py_buffer] This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This
is the recommended way to accept binary data.

y# (read-only bytes-like object) [const char *, Py _ssize_t] This variant on s# doesn’t accept Unicode objects,
only bytes-like objects.

S (bytes) [PyBytesObject *] Requires that the Python object is a bytes object, without attempting any
conversion. Raises TypeError if the object is not a bytes object. The C variable may also be declared as
PyObject*.

Y (bytearray) [PyByteArrayObject *] Requires that the Python object is a bytearray object, without
attempting any conversion. Raises TypeError if the object is not a bytearray object. The C variable
may also be declared as PyOb ject*.

u (str) [const Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of
Unicode characters. You must pass the address of a Py UNICODE pointer variable, which will be filled with
the pointer to an existing Unicode buffer. Please note that the width of a Py_ UNICODE character depends on
compilation options (it is either 16 or 32 bits). The Python string must not contain embedded null code points;
if it does, a ValueError exception is raised.

AlMoEe otnv ékdoon 3.5: Previously, TypeError was raised when embedded null code points were
encountered in the Python string.

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode_AsWideCharString().

u# (str) [const Py_UNICODE *, Py ssize t] This variant on u stores into two C variables, the first one a
pointer to a Unicode data buffer, the second one its length. This variant allows null code points.

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode_AsWideCharString().

Z (str or None) [const Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode AsWideCharString().

Z# (str or None) [const Py_UNICODE *, Py ssize t] Like u#, but the Python object may also be None,
in which case the Py_ UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode AsWideCharString().

U (str) [PyObject *] Requires that the Python object is a Unicode object, without attempting any conversion.
Raises TypeError if the object is not a Unicode object. The C variable may also be declared as PyOb ject*.

w* (read-write bytes-like object) [Py_buffer] This format accepts any object which implements the read-write
buffer interface. It fills a Py_buffer structure provided by the caller. The buffer may contain embedded
null bytes. The caller have to call PyBuffer Release () when itis done with the buffer.

es (str) [const char *encoding, char **buffer] This variant on s is used for encoding Unicode into a character
buffer. It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char* which
points to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut£-8"' encoding
is used. An exception is raised if the named encoding is not known to Python. The second argument must be

70 Kegahaio 6. Utilities

The Python/C API, Anpooicuon 3.10.18

a char**; the value of the pointer it references will be set to a buffer with the contents of the argument text.
The text will be encoded in the encoding specified by the first argument.

PyArg ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_ Free ()
to free the allocated buffer after use.

et (str,bytes or bytearray) [const char *encoding, char **buffer] Same as es except that byte string
objects are passed through without recoding them. Instead, the implementation assumes that the byte string
object uses the encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, Py ssize t *buffer_length] This variant on s# is used for
encoding Unicode into a character buffer. Unlike the es format, this variant allows input data which contains
NUL characters.

It requires three arguments. The first is only used as input, and must be a const char* which points to the
name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char* *;
the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument. The third argument must be a pointer to an integer;
the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be
set.

In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str,bytes or bytearray) [const char *encoding, char **buffer, Py_ssize_t *buffer_length]
Same as es# except that byte string objects are passed through without recoding them. Instead, the
implementation assumes that the byte string object uses the encoding passed in as parameter.

Numbers
b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned
char.

B (int) [unsigned char] Converta Python integer to a tiny int without overflow checking, storedina C unsigned
char.

h (int) [short int] Convert a Python integer to a C short int.

H (int) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow
checking.

i (int) [int] Convert a Python integer to a plain C int.

I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.

1 (int) [long int] Convert a Python integer toa C long int.

k (int) [unsigned long] Convert a Python integer to a C unsigned long without overflow checking.
L (int) [long long] Convert a Python integer toa C long long.

K (int) [unsigned long long] Convert a Python integer to a C unsigned long long without overflow
checking.

n (int) [Py_ssize t] Convert a Python integertoa C Py_ssize_t.

6.6. Parsing arguments and building values 71

The Python/C API, Anpooicuon 3.10.18

c (bytes or bytearray of length 1) [char] Convert a Python byte, represented as a bytes or bytearray
object of length 1,toa C char.

AlhaEe oty ékdoon 3.3: Allow bytearray objects.
C (str of length 1) [int] Convert a Python character, represented as a st r object of length 1, toa C int.
f (float) [float] Convert a Python floating point number to a C f1loat.
d (float) [double] Convert a Python floating point number to a C double.

D (complex) [Py_complex] Convert a Python complex number to a C Py_ complex structure.

Other objects

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. A new strong reference to the object is not created (i.e. its reference
count is not increased). The pointer stored is not NULL.

0! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject*) into which the object pointer is stored. If the Python object does not have the required
type, TypeError is raised.

0O& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted
to void*. The converter function in turn is called as follows:

status = converter (object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse* function. The returned status should be 1 for a successful conversion and 0 if the conversion
has failed. When the conversion fails, the converter function should raise an exception and leave the content of
address unmodified.

If the converter returns Py_ CLEANUP__SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call.

AMEe oty ékdoon 3.1: Py_CLEANUP_SUPPORTED was added.

p (bool) [int] Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C
true/false integer value. Sets the int to 1 if the expression was true and O if it was false. This accepts any valid
Python value. See truth for more information about how Python tests values for truth.

Néo otnv ¢kdoon 3.3.

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of format
units in items. The C arguments must correspond to the individual format units in ifems. Format units for
sequences may be nested.

It is possible to pass «long» integers (integers whose value exceeds the platform’s LONG_MAX) however no proper
range checking is done — the most significant bits are silently truncated when the receiving field is too small to
receive the value (actually, the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple () does not touch the contents of the corresponding C variable(s).

$ PyArg ParseTupleAndKeywords () only: Indicates that the remaining arguments in the Python argument
list are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must always
be specified before $ in the format string.

Néo otv ¢€kdoom 3.3.

72 Kegahaio 6. Utilities

The Python/C API, Anpooicuon 3.10.18

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
«associated value» of the exception that PyArg ParseTuple () raises).

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not release them
(i.e. do not decrement their reference count)!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse* functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse* functions fail due to conversion failure in one of the format units, the variables at the addresses
corresponding to that and the following format units are left untouched.

API Functions

int PyArg_ParseTuple (PyObject *args, const char *format, ...)
Part of the Stable ABI. Parse the parameters of a function that takes only positional parameters into local
variables. Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)
Part of the Stable ABL. Identical to PyArg ParseTuple (), except that it accepts a va_list rather than a
variable number of arguments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char
*keywordsl], ...)
Part of the Stable ABI. Parse the parameters of a function that takes both positional and keyword parameters

into local variables. The keywords argument is a NULL-terminated array of keyword parameter names. Empty
names denote positional-only parameters. Returns true on success; on failure, it returns false and raises the
appropriate exception.

AMaEe ot €ékdoomn 3.6: Added support for positional-only parameters.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char

*keywords[], va_list vargs)
Part of the Stable ABI Identical to PyArg ParseTupleAndKeywords (),except thatitaccepts a va_list

rather than a variable number of arguments.

int PyArg_ValidateKeywordArguments (PyObject*)
Fart of the Stable ABI. Ensure that the keys in the keywords argument dictionary are strings. This is only
needed if PyArg ParseTupleAndKeywords () is not used, since the latter already does this check.

Néo otnv ¢kdoom 3.2.

int PyArg_Parse (PyObject *args, const char *format, ...)
Fart of the Stable ABI. Function used to deconstruct the argument lists of «old-style» functions — these are
functions which use the METH_OLDARGS parameter parsing method, which has been removed in Python 3.
This is not recommended for use in parameter parsing in new code, and most code in the standard interpreter
has been modified to no longer use this for that purpose. It does remain a convenient way to decompose other
tuples, however, and may continue to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
Fart of the Stable ABI. A simpler form of parameter retrieval which does not use a format string to specify
the types of the arguments. Functions which use this method to retrieve their parameters should be declared as
METH_VARARGS in function or method tables. The tuple containing the actual parameters should be passed
as args; it must actually be a tuple. The length of the tuple must be at least min and no more than max; min and
max may be equal. Additional arguments must be passed to the function, each of which should be a pointer to
a PyObject* variable; these will be filled in with the values from args; they will contain borrowed references.
The variables which correspond to optional parameters not given by args will not be filled in; these should be

6.6. Parsing arguments and building values 73

The Python/C API, Anpooicuon 3.10.18

initialized by the caller. This function returns true on success and false if args is not a tuple or contains the
wrong number of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the _weakref helper module for
weak references:

static PyObject *
weakref ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref NewRef (object, callback);
}

return result;

The call to PyArg UnpackTuple () in this example is entirely equivalent to this call to
PyArg ParseTuple():

PyArg_ParseTuple (args, "O|O:ref", &object, &callback)

6.6.2 Building values

PyObject *Py_BuildValue (const char *format, ...)

Emotpepduevn wun: New reference. Part of the Stable ABIL Create a new value based on a format string
similar to those accepted by the PyArg_Parse* family of functions and a sequence of values. Returns the
value or NULL in the case of an error; an exception will be raised if NULL is returned.

Py_BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s#
formats, the required data is copied. Buffers provided by the caller are never referenced by the objects
created by Py_BuildValue (). In other words, if your code invokes malloc () and passes the allocated
memory to Py_BuildValue (), your code is responsible for calling free () for that memory once
Py BuildValue () returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to
be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
s#). This can be used to make long format strings a tad more readable.

s (str or None) [const char *] Convert a null-terminated C string to a Python st r object using 'ut £-8"
encoding. If the C string pointer is NULL, None is used.

s# (str or None) [const char *, Py _ssize_t] Convert a C string and its length to a Python st r object
using 'ut £-8"' encoding. If the C string pointer is NULL, the length is ignored and None is returned.

y (bytes) [const char *] This converts a C string to a Python byt es object. If the C string pointer is NULL,
None is returned.

yv# (bytes) [const char *, Py _ssize t] This converts a C string and its lengths to a Python object. If the
C string pointer is NULL, None is returned.

z (str or None) [const char *] Same as s.

z# (str or None) [const char *, Py ssize t] Same as s#.

74

Kegahaio 6. Utilities

The Python/C API, Anpooicuon 3.10.18

u (str) [const wchar_t *] Convert a null-terminated wchar_ t buffer of Unicode (UTF-16 or UCS-4) data
to a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.

u# (str) [const wchar_t *, Py ssize t] Convert a Unicode (UTF-16 or UCS-4) data buffer and its
length to a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and
None is returned.

U (str or None) [const char *] Same as s.

U# (str or None) [const char *, Py _ssize t] Same as s#.

i (int) [int] Convert a plain C int to a Python integer object.

b (int) [char] Convert a plain C char to a Python integer object.

h (int) [short int] Convert a plain C short int to a Python integer object.

1 (int) [long int] Converta C long int to a Python integer object.

B (int) [unsigned char] Converta C unsigned char to a Python integer object.

H (int) [unsigned short int] Converta C unsigned short int to a Python integer object.

I (int) [unsigned int] Converta C unsigned int to a Python integer object.

k (int) [unsigned long] Converta C unsigned long to a Python integer object.

L (int) [long long] Converta C long long to a Python integer object.

K (int) [unsigned long long] Convert a C unsigned long long to a Python integer object.

n (int) [Py_ssize t] Converta C Py_ssize_t toa Python integer.

c (bytes of length 1) [char] Convert a C int representing a byte to a Python bytes object of length 1.
C (str of length 1) [int] Convert a C int representing a character to Python st r object of length 1.
d (float) [double] Converta C double to a Python floating point number.

f (float) [float] Converta C float to a Python floating point number.

D (complex) [Py_complex *] Converta C Py_complex structure to a Python complex number.

O (object) [PyObject *] Pass a Python object untouched but create a new strong reference to it (i.e. its
reference count is incremented by one). If the object passed in is a NULL pointer, it is assumed that
this was caused because the call producing the argument found an error and set an exception. Therefore,
Py_BuildValue () will return NULL but won’t raise an exception. If no exception has been raised
yet, SystemError is set.

S (object) [PyObject *] Same as O.

N (object) [PyObject *] Same as O, except it doesn’t create a new strong reference. Useful when the object is
created by a call to an object constructor in the argument list.

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The
function is called with anything (which should be compatible with void*) as its argument and should
return a «<new» Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same
number of items.

[items] (1ist) [matching-items] Convert a sequence of C values to a Python list with the same number
of items.

{items} (dict) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of
consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

PyObject *Py_VaBuildValue (const char *format, va_list vargs)
Emotoepduevn tun: New reference. Part of the Stable ABL Identical to Py_BuildValue (), except that
it accepts a va_list rather than a variable number of arguments.

6.6. Parsing arguments and building values 75

The Python/C API, Anpooicuon 3.10.18

6.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprint £ (char *str, size_t size, const char *format, ...)
Fart of the Stable ABI. Output not more than size bytes to str according to the format string format and the
extra arguments. See the Unix man page snprintf (3).

int PyOS_vsnprint£ (char *str, size_t size, const char *format, va_list va)
Fart of the Stable ABI. Output not more than size bytes to str according to the format string format and the
variable argument list va. Unix man page vsnprintf (3).

PyOS_snprintf () and PyOS_vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure that str[size—1] is always '\O' upon return. They never write more than size bytes

(including the trailing '\ 0 ") into str. Both functions require that str != NULL, size > 0, format !=
NULL and size < INT_MAX. Note that this means there is no equivalent to the C99 n = snprintf (NULL,
0, ...) which would determine the necessary buffer size.

The return value (rv) for these functions should be interpreted as follows:

e« When 0 <= rv < size, the output conversion was successful and rv characters were written to str
(excluding the trailing '\ 0 ' byte at str[rv]).

e When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str[size—-1]is '\0"' in this case.

e When rv < 0, «something bad happened.» str[size—-1] is "\0"' in this case too, but the rest of str is
undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS_string_to_double (const char *s, char **endptr, PyObject *overflow_exception)
Part of the Stable ABI. Convert a string s to a double, raising a Python exception on failure. The set of
accepted strings corresponds to the set of strings accepted by Python’s £1oat () constructor, except that s
must not have leading or trailing whitespace. The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise ValueError and return —1 . O if the string is not a
valid representation of a floating-point number.

If endptr is not NULL, convert as much of the string as possible and set *endptr to point to the first
unconverted character. If no initial segment of the string is the valid representation of a floating-point number,
set *endptr to point to the beginning of the string, raise ValueError, and return —1 . 0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many
platforms) then if overflow_exceptionis NULL return Py_HUGE_VAL (with an appropriate sign) and
don’t set any exception. Otherwise, overflow_exception must point to a Python exception object; raise
that exception and return —1 . 0. In both cases, set *endpt r to point to the first character after the converted
value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate
Python exception and return -1 . 0.

Néo otnv ¢kdoom 3.1.

char *PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
Part of the Stable ABI. Convert a double val to a string using supplied format_code, precision, and flags.
format_code mustbeoneof 'e', 'E', "£', 'F', 'g', 'G' or 'r'. For 'r', the supplied precision must
be 0 and is ignored. The ' r ' format code specifies the standard repr () format.

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_O0, or Py_DTSF_ALT,
or-ed together:

76 Kegahaio 6. Utilities

The Python/C API, Anpooicuon 3.10.18

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

e Py _DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py_DTSF_ALT means to apply «alternate» formatting rules. See the documentation for the
PyOS_snprintf () '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one of Py_DTST_FINITE,
Py_DTST_INFINITE, or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or
not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem_Free ().

Néo otv éxdoon 3.1.

int PyOS_stricmp (const char *s/, const char *s2)
Case insensitive comparison of strings. The function works almost identically to st rcmp () except that it
ignores the case.

int PyOS_strnicmp (const char *s/, const char *s2, Py_ssize_t size)
Case insensitive comparison of strings. The function works almost identically to st rncmp () except that it
ignores the case.

6.8 Reflection

PyObject *PyEval_GetBuiltins (void)
Emotpepduevny ui): Borrowed reference. Part of the Stable ABI. Return a dictionary of the builtins in the
current execution frame, or the interpreter of the thread state if no frame is currently executing.

PyObject *PyEval_GetLocals (void)
Emotoepduevn tyun: Borrowed reference. Part of the Stable ABIL. Return a dictionary of the local variables in
the current execution frame, or NULL if no frame is currently executing.

PyObject *PyEval_GetGlobals (void)
Emotoepduevn tun: Borrowed reference. Part of the Stable ABI. Return a dictionary of the global variables
in the current execution frame, or NULL if no frame is currently executing.

PyFrameObject *PyEval_GetFrame (void)
Emotoepduevny tun: Borrowed reference. Part of the Stable ABIL Return the current thread state’s frame,
which is NULL if no frame is currently executing.

See also PyThreadState_GetFrame ().

PyFrameObject *PyFrame_GetBack (PyFrameObject * frame)
Get the frame next outer frame.

Return a strong reference, or NULL if frame has no outer frame.
Jframe must not be NULL.
Néo otnv ékdoom 3.9.

PyCodeObject *PyFrame_GetCode (PyFrameObject * frame)
Fart of the Stable ABI since version 3.10. Get the frame code.

Return a strong reference.
frame must not be NULL. The result (frame code) cannot be NULL.
Néo otnv ¢€kdoom 3.9.

int PyFrame_GetLineNumber (PyFrameObject * frame)
Fart of the Stable ABI since version 3.10. Return the line number that frame is currently executing.

Jframe must not be NULL.

6.8. Reflection 77

The Python/C API, Anpooicuon 3.10.18

const char *PyEval_GetFuncName (PyObject * func)
Part of the Stable ABI Return the name of func if it is a function, class or instance object, else the name of

funcs type.

const char *PyEval_GetFuncDesc (PyObject * func)
Fart of the Stable ABIL Return a description string, depending on the type of func. Return values include
«()» for functions and methods, » constructor», » instance», and » object». Concatenated with the result of
PyEval_GetFuncName (), the result will be a description of func.

6.9 Codec registry and support functions

int PyCodec_Register (PyObject *search_function)
Fart of the Stable ABI. Register a new codec search function.

As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first
in the list of search functions.

int PyCodec_Unregister (PyObject *search_function)
Fart of the Stable ABI since version 3.10. Unregister a codec search function and clear the registry’s cache.
If the search function is not registered, do nothing. Return O on success. Raise an exception and return -1 on
error.

Néo omv éxdoon 3.10.

int PyCodec_KnownEncoding (const char *encoding)
Part of the Stable ABI. Return 1 or 0 depending on whether there is a registered codec for the given encoding.
This function always succeeds.

PyObject *PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
Emotoepduevn tun: New reference. Part of the Stable ABL. Generic codec based encoding API.

object is passed through the encoder function found for the given encoding using the error handling
method defined by errors. errors may be NULL to use the default method defined for the codec. Raises a
LookupError if no encoder can be found.

PyObject *PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
Emotoepduevn tun: New reference. Part of the Stable ABL Generic codec based decoding APIL.

object is passed through the decoder function found for the given encoding using the error handling
method defined by errors. errors may be NULL to use the default method defined for the codec. Raises a
LookupError if no encoder can be found.

6.9.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes
encodings looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set
and NULL returned.

PyObject *PyCodec_Encoder (const char *encoding)
Emotoepduevn tun: New reference. Part of the Stable ABI. Get an encoder function for the given encoding.

PyObject *PyCodec_Decoder (const char *encoding)
Emotoepduevn tyun: New reference. Part of the Stable ABI. Get a decoder function for the given encoding.

PyObject *PyCodec_IncrementalEncoder (const char *encoding, const char *errors)
Emotoepduevn tiun: New reference. Part of the Stable ABIL Get an IncrementalEncoder object for the
given encoding.

PyObject *PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Emotpepduevn tut): New reference. Part of the Stable ABIL Get an IncrementalDecoder object for the
given encoding.

78 Kegahaio 6. Utilities

The Python/C API, Anpooicuon 3.10.18

PyObject *PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Emotoepduevn tyur): New reference. Part of the Stable ABL Get a St reamReader factory function for the
given encoding.

PyObject *PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)
Emotoepduevn tyun: New reference. Part of the Stable ABL Geta St reamWriter factory function for the
given encoding.

6.9.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError (const char *name, PyObject *error)
Part of the Stable ABI. Register the error handling callback function error under the given name. This callback
function will be called by a codec when it encounters unencodable characters/undecodable bytes and name is
specified as the error parameter in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes
and their offset in the original string (see Unicode Exception Objects for functions to extract this information).
The callback must either raise the given exception, or return a two-item tuple containing the replacement for
the problematic sequence, and an integer giving the offset in the original string at which encoding/decoding
should be resumed.

Return 0 on success, —1 on error.

PyObject *PyCodec_LookupError (const char *name)
Emotoepduevny tur: New reference. Part of the Stable ABI. Lookup the error handling callback function
registered under name. As a special case NULL can be passed, in which case the error handling callback for
«strict» will be returned.

PyObject *PyCodec_StrictErrors (PyObject *exc)
Emotoepduevn wun: Ilavrote NULL. Part of the Stable ABI. Raise exc as an exception.

PyObject *PyCodec_IgnoreErrors (PyObject *exc)
Emotoepduevy wun: New reference. Part of the Stable ABL Ignore the unicode error, skipping the faulty
input.

PyObject *PyCodec_ReplaceErrors (PyObject *exc)
Emortpepduevny wun: New reference. Part of the Stable ABIL Replace the unicode encode error with ? or
U+FFFD.

PyObject *PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
Emotoepduevn tur: New reference. Part of the Stable ABIL Replace the unicode encode error with XML
character references.

PyObject *PyCodec_BackslashReplaceErrors (PyObject *exc)
Emotoepduevn tiun: New reference. Part of the Stable ABI. Replace the unicode encode error with backslash
escapes (\x, \u and \U).

PyObject *PyCodec_NameReplaceErrors (PyObject *exc)
Emotpepduevn tur: New reference. Part of the Stable ABI since version 3.7. Replace the unicode encode
error with \N{ . . . } escapes.

Néo otnv ékdoom 3.5.

6.9. Codec registry and support functions 79

The Python/C API, Anpooicuon 3.10.18

80 Kegahaio 6. Utilities

KEDAAAIO 7

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been
created by PyList_New (), but whose items have not been set to some non-NULL value yet.

7.1 Object Protocol

PyObject *Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type
combination.

Py_RETURN_NOTIMPLEMENTED
Properly handle returning Py Not Implemented from within a C function (that is, create a new strong
reference to Notlmplemented and return it).

int PyObject_Print (PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_ PRINT_RAW; if given, the st r () of the object is written instead
of the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Fart of the Stable ABI. Returns 1 if o has the attribute aftr_name, and 0 otherwise. This is equivalent to the
Python expression hasattr (o, attr_name). This function always succeeds.

Note that exceptions which occur while calling ___getattr__ () and __getattribute__ () methods
will get suppressed. To get error reporting use PyOb ject_GetAttr () instead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)
Fart of the Stable ABIL. Returns 1 if o has the attribute a#tr_name, and 0 otherwise. This is equivalent to the
Python expression hasattr (o, attr_name). This function always succeeds.

Note that exceptions which occur while calling _ getattr_ () and _ getattribute_ ()
methods and creating a temporary string object will get suppressed. To get error reporting use
PyObject_GetAttrString () instead.

PyObject *PyObiject_GetAttr (PyObject *o, PyObject *attr_name)
Emortoepduevn tun: New reference. Part of the Stable ABI. Retrieve an attribute named attr_name from object

81

The Python/C API, Anpooicuon 3.10.18

o. Returns the attribute value on success, or NULL on failure. This is the equivalent of the Python expression
o.attr_name.

PyObject *PyObject_GetAttrString (PyObject *o, const char *attr_name)
Emotpepduevn riun: New reference. Part of the Stable ABI. Retrieve an attribute named attr_name from object
o. Returns the attribute value on success, or NULL on failure. This is the equivalent of the Python expression
o.attr_name.

PyObject *PyObject_GenericGetAttr (PyObject *o0, PyObject *name)
Emotoepduevn tun: New reference. Part of the Stable ABI. Generic attribute getter function that is meant to be
put into a type object’s tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s
MRO as well as an attribute in the object’s ___dict__ (if present). As outlined in descriptors, data descriptors
take preference over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError
is raised.

int PyObject_SetAttrx (PyObject *o, PyObject *attr_name, PyObject *v)
Fart of the Stable ABI. Set the value of the attribute named attr_name, for object o, to the value v. Raise
an exception and return —1 on failure; return O on success. This is the equivalent of the Python statement
o.attr_name = wv.

If v is NULL, the attribute is deleted. This behaviour is deprecated in favour of using
PyObject_DelAttr (), but there are currently no plans to remove it.

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *v)
Fart of the Stable ABI. Set the value of the attribute named attr_name, for object o, to the value v. Raise
an exception and return —1 on failure; return 0 on success. This is the equivalent of the Python statement
o.attr_name = wv.

If v is NULL, the attribute is deleted, but this feature is deprecated in favour of using
PyObject_DelAttrString/().

int PyObject_GenericSetAttr (PyObject *o, PyObject ¥name, PyObject *value)
Part of the Stable ABI. Generic attribute setter and deleter function that is meant to be put into a type object’s
tp_setattroslot. Itlooks for a data descriptor in the dictionary of classes in the object’s MRO, and if found
it takes preference over setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set
or deleted in the object’s___dict__ (if present). On success, O is returned, otherwise an Att ributeError
is raised and -1 is returned.

int PyObject_DelAttrx (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object o. Returns —1 on failure. This is the equivalent of the Python
statement del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python
statement del o.attr_name.

PyObject *PyObject_GenericGetDict (PyObject *o, void *context)
Emotoepduevn tun: New reference. Part of the Stable ABI since version 3.10. A generic implementation for
the getter of a ___dict__ descriptor. It creates the dictionary if necessary.

Néo otv éxdoom 3.3.

int PyObject_GenericSetDict (PyObject *o, PyObject *value, void *context)
Fart of the Stable ABI since version 3.7. A generic implementation for the setter of a ___dict___ descriptor.
This implementation does not allow the dictionary to be deleted.

Néo oty éxdoon 3.3.

PyObject *PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Emotoepduevny wun: New reference. Part of the Stable ABI. Compare the values of o/ and o2 using the
operation specified by opid, which must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE,

corresponding to <, <=, ==, ! =, >, or >= respectively. This is the equivalent of the Python expression o1 op
02, where op is the operator corresponding to opid. Returns the value of the comparison on success, or NULL
on failure.

82 Kegahaio 7. Abstract Objects Layer

The Python/C API, Anpooicuon 3.10.18

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Part of the Stable ABIL. Compare the values of o/ and 02 using the operation specified by opid, which must
be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >=
respectively. Returns —1 on error, 0 if the result is false, 1 otherwise. This is the equivalent of the Python
expression ol op o2, where op is the operator corresponding to opid.

Enueiwon: If o and 02 are the same object, PyObject_RichCompareBool () willalwaysreturn 1 for Py_EQ
and 0O for Py_NE.

PyObject *PyObject_Format (PyObject *obj, PyObject * format_spec)
Part of the Stable ABIL Format obj using format_spec. This is equivalent to the Python expression
format (obj, format_spec).

format_spec may be NULL. In this case the call is equivalent to format (ob7) . Returns the formatted string
on success, NULL on failure.

PyObject *PyObject_Repr (PyObject *0)
Emotoepduevny wun: New reference. Part of the Stable ABL. Compute a string representation of object o.
Returns the string representation on success, NULL on failure. This is the equivalent of the Python expression
repr (o). Called by the repr () built-in function.

AMoEe otnv €xdoon 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject *PyObiject_ASCII (PyObject *0)
Emotoepduevny tun: New reference. Part of the Stable ABL. As PyObject_Repr (), compute a string
representation of object o, but escape the non-ASCII characters in the string returned by PyOb ject_Repr ()
with \ x, \u or \U escapes. This generates a string similar to that returned by PyOb ject_Repr () in Python
2. Called by the ascii () built-in function.

PyObject *PyObiject_Strx (PyObject *0)
Emortoepduevn wun: New reference. Part of the Stable ABI. Compute a string representation of object o.
Returns the string representation on success, NULL on failure. This is the equivalent of the Python expression
str (o). Called by the str () built-in function and, therefore, by the print () function.

AMoEe otnv ékdoom 3.4: This function now includes a debug assertion to help ensure that it does not silently
discard an active exception.

PyObject *PyObject_Bytes (PyObject *0)
Emotoepduevn tun: New reference. Part of the Stable ABL. Compute a bytes representation of object 0. NULL
is returned on failure and a bytes object on success. This is equivalent to the Python expression bytes (o),
when o is not an integer. Unlike bytes (o), a TypeError is raised when o is an integer instead of a zero-
initialized bytes object.

int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Part of the Stable ABI. Return 1 if the class derived is identical to or derived from the class cls, otherwise
return 0. In case of an error, return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

Ifclshasa subclasscheck_ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in
cls._ _mro

Normally only class objects, i.e. instances of t ype or a derived class, are considered classes. However, objects
can override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Part of the Stable ABI. Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error,
returns —1 and sets an exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the
checks returns 1, otherwise it will be 0.

7.1. Object Protocol 83

https://www.python.org/dev/peps/pep-3119

The Python/C API, Anpooicuon 3.10.18

Ifclshasa __instancecheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, inst is an instance of c¢ls if its class is a subclass of cIs.

An instance inst can override what is considered its class by havinga ___class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga _ bases_
attribute (which must be a tuple of base classes).

Py_hash_t PyObject_Hash (PyObject *0)
Fart of the Stable ABL. Compute and return the hash value of an object 0. On failure, return —1. This is the
equivalent of the Python expression hash (o).

AlMoEe omnv ékdoon 3.2: The return type is now Py_hash_t. This is a signed integer the same size as
Py_ssize_ t.

Py_hash_t PyObject_HashNot Implemented (PyObject *0)
Part of the Stable ABI. Set a TypeError indicating that type (o) is not hashable and return —1. This
function receives special treatment when stored in a tp_hash slot, allowing a type to explicitly indicate to
the interpreter that it is not hashable.

int PyObject_IsTrue (PyObject *0)
Part of the Stable ABI. Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent
to the Python expression not not o. On failure, return —1.

int PyObject_Not (PyObject *0)
Fart of the Stable ABI. Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent
to the Python expression not o. On failure, return —1.

PyObject *PyObject_Type (PyObject *0)
Emotoepduevn wun: New reference. Part of the Stable ABL. When o is non-NULL, returns a type object
corresponding to the object type of object 0. On failure, raises SystemError and returns NULL. This is
equivalent to the Python expression t ype (o) . This function creates a new strong reference to the return value.
There’s really no reason to use this function instead of the Py_ TYPE () function, which returns a pointer of
type PyTypeObject*, except when a new strong reference is needed.

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return non-zero if the object o is of type fype or a subtype of fype, and 0 otherwise. Both parameters must be
non-NULL.

Py_ssize_t PyObject_Size (PyObject *0)

Py_ssize_t PyObject_Length (PyObject *0)
Part of the Stable ABI. Return the length of object o. If the object o provides either the sequence and mapping
protocols, the sequence length is returned. On error, —1 is returned. This is the equivalent to the Python
expression len (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t defaultvalue)
Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__ (), and finally return the default value. On error return —1. This is the equivalent to
the Python expression operator.length_hint (o, defaultvalue).

Néo otnv ¢kdoon 3.4.

PyObject *PyObject_GetItem (PyObject *o, PyObject *key)
Emortpepduevny wun: New reference. Part of the Stable ABIL Return element of o corresponding to the object
key or NULL on failure. This is the equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject *key, PyObject *v)
Fart of the Stable ABI. Map the object key to the value v. Raise an exception and return —1 on failure; return
0 on success. This is the equivalent of the Python statement o [key] = wv. This function does not steal a
reference to v.

int PyObject_DelItem (PyObject *o, PyObject *key)
Fart of the Stable ABL. Remove the mapping for the object key from the object 0. Return -1 on failure. This
is equivalent to the Python statement del o [key].

84 Kegahaio 7. Abstract Objects Layer

https://www.python.org/dev/peps/pep-3119

The Python/C API, Anpooicuon 3.10.18

PyObject *PyObject_Dir (PyObject *0)
Emotoepduevny tun: New reference. Part of the Stable ABIL This is equivalent to the Python expression
dir (o), returning a (possibly empty) list of strings appropriate for the object argument, or NULL if there was
an error. If the argument is NULL, this is like the Python dir (), returning the names of the current locals; in
this case, if no execution frame is active then NULL is returned but PyErr_ Occurred () will return false.

PyObject *PyObject_GetIter (PyObject *0)
Emotoepduevn tun: New reference. Part of the Stable ABIL This is equivalent to the Python expression
iter (o). It returns a new iterator for the object argument, or the object itself if the object is already an
iterator. Raises TypeError and returns NULL if the object cannot be iterated.

PyObject *PyObject_GetAIter (PyObject *0)
Emotpepduevn tyun: New reference. Part of the Stable ABI since version 3.10. This is the equivalent to the
Python expression aiter (o). Takes an AsyncIterable object and returns an AsyncIterator for
it. This is typically a new iterator but if the argument is an AsyncIterator, this returns itself. Raises
TypeError and returns NULL if the object cannot be iterated.

Néo otnv ékdoaon 3.10.

7.2 Call Protocol

CPython supports two different calling protocols: #p_call and vectorcall.

7.2.1 The tp_call Protocol

Instances of classes that set t p_cal1 are callable. The signature of the slot is:

PyObject *tp_call (PyObject *callable, PyObject *args, PyObject *kwargs);

A call is made using a tuple for the positional arguments and a dict for the keyword arguments, similarly to
callable (*args, **kwargs) in Python code. args must be non-NULL (use an empty tuple if there are
no arguments) but kwargs may be NULL if there are no keyword arguments.

This convention is not only used by #p_call: tp_new and tp_init also pass arguments this way.

To call an object, use PyObject_Call () or another call API.

7.2.2 The Vectorcall Protocol

Néo omv éxdoon 3.9.
The vectorcall protocol was introduced in PEP 590 as an additional protocol for making calls more efficient.

As rule of thumb, CPython will prefer the vectorcall for internal calls if the callable supports it. However, this is not
a hard rule. Additionally, some third-party extensions use #p_call directly (rather than using PyObject_Call ()).
Therefore, a class supporting vectorcall must also implement tp_call. Moreover, the callable must behave the
same regardless of which protocol is used. The recommended way to achieve this is by setting tp_call to
PyVectorcall_Call (). This bears repeating:

Ipozwdomoinon: A class supporting vectorcall must also implement tp_cal 1 with the same semantics.

A class should not implement vectorcall if that would be slower than #p_call. For example, if the callee needs to
convert the arguments to an args tuple and kwargs dict anyway, then there is no point in implementing vectorcall.

Classes can implement the vectorcall protocol by enabling the Py TPFLAGS_HAVE_VECTORCALL flag and setting
tp_vectorcall_offset tothe offset inside the object structure where a vectorcallfunc appears. This is a pointer
to a function with the following signature:

7.2. Call Protocol 85

https://www.python.org/dev/peps/pep-0590

The Python/C API, Anpooicuon 3.10.18

typedef PyObject *(*vectorcallfunc) (PyObject *callable, PyObject *const *args, size_t nargsf,
PyObject ¥*kwnames)

e callable is the object being called.

« args is a C array consisting of the positional arguments followed by the values of the keyword
arguments. This can be NULL if there are no arguments.

 nargsf is the number of positional arguments plus possibly the PY_VECTORCALIL_ARGUMENTS_OFFSET

flag. To get the actual number of positional arguments from nargsf, use PyVectorcall_ NARGS ().

o kwnames is a tuple containing the names of the keyword arguments; in other words, the keys of the
kwargs dict. These names must be strings (instances of str or a subclass) and they must be unique.
If there are no keyword arguments, then kwnames can instead be NULL.

PY VECTORCALL_ARGUMENTS_OFFSET
If this flag is set in a vectorcall nargsf argument, the callee is allowed to temporarily change args [-1]. In
other words, args points to argument 1 (not 0) in the allocated vector. The callee must restore the value of
args [—1] before returning.

For PyObject_VectorcallMethod (), this flag means instead that args [0] may be changed.

Whenever they can do so cheaply (without additional allocation), callers are encouraged to use
PY_VECTORCALL_ARGUMENTS_OFFSET. Doing so will allow callables such as bound methods to make
their onward calls (which include a prepended self argument) very efficiently.

To call an object that implements vectorcall, use a call APl function as with any other callable.
PyObject_Vectorcall () will usually be most efficient.

Ynueioon: In CPython 3.8, the vectorcall API and related functions were available provisionally under
names with a leading underscore: _PyObject_Vectorcall, _Py_ TPFLAGS_HAVE_VECTORCALL,
_PyObject_VectorcallMethod, _PyVectorcall_Function, _PyObject_CallOneArq,
_PyObject_CallMethodNoArgs, _PyObject_CallMethodOneArgq. Additionally,
PyObject_VectorcallDict was available as _PyObject_FastCallDict. The old names are still
defined as aliases of the new, non-underscored names.

Recursion Control

When using #p_call, callees do not need to worry about recursion: CPython uses Py_EnterRecursiveCall ()
and Py_LeaveRecursiveCall () for calls made using tp_call.

For efficiency, this is not the case for calls done using vectorcall: the callee should use Py_EnterRecursiveCall and
Py_LeaveRecursiveCall if needed.

Vectorcall Support API

Py_ssize_t PyVectorcall_NARGS (size_t nargsf)
Given a vectorcall nargsf argument, return the actual number of arguments. Currently equivalent to:

(Py_ssize_t) (nargsf & ~PY_VECTORCALL_ARGUMENTS_OFFSET)

However, the function PyVectorcall_NARGS should be used to allow for future extensions.
Néo otv éxdoom 3.8.

vectorcallfunc PyVectorcall_Function (PyObject *op)
If op does not support the vectorcall protocol (either because the type does not or because the specific instance
does not), return NULL. Otherwise, return the vectorcall function pointer stored in op. This function never
raises an exception.

This is mostly useful to check whether or not op supports vectorcall, which can be done by checking
PyVectorcall_Function (op) != NULL.

86 Kegahaio 7. Abstract Objects Layer

The Python/C API, Anpooicuon 3.10.18

Néo otv ¢€kdoom 3.8.

PyObject *PyVectorcall_Call (PyObject *callable, PyObject *tuple, PyObject *dict)
Call callable’s vectorcallfunc with positional and keyword arguments given in a tuple and dict,
respectively.

This is a specialized function, intended to be put in the tp_call slot or be used in an implementation of
tp_call. It does not check the Py_ TPFLAGS_HAVE_VECTORCALL flag and it does not fall back to
tp_call.

Néo otnv ékdoom 3.8.

7.2.3 Object Calling API

Various functions are available for calling a Python object. Each converts its arguments to a convention supported by
the called object — either tp_call or vectorcall. In order to do as little conversion as possible, pick one that best fits
the format of data you have available.

The following table summarizes the available functions; please see individual documentation for details.

Function callable args kwargs
PyObject_Call () PyObject * | tuple dict/NULL
PyObject_CallNoArgs () PyObject * | — —
PyObject_CallOneArgqg () PyObject * | 1 object —
PyObject_CallObject () PyObject * | tuple/NULL | —
PyObject_CallFunction () PyObject * | format —
PyObject_CallMethod /() obj + char* format —
PyObject_CallFunctionObjArgs () | PyObject * | variadic —
PyObject_CallMethodObjArgs () obj + name variadic —
PyObject_CallMethodNoArgs () obj + name — —
PyObject_CallMethodOneArg () obj + name 1 object —
PyObject_Vectorcall () PyObject * | vectorcall vectorcall
PyObject_VectorcallDict () PyObject * | vectorcall dict/NULL
PyObject_VectorcallMethod () arg + name vectorcall vectorcall

PyObject *PyObject_Call (PyObject *callable, PyObject *args, PyObject *kwargs)
Emotoepduevn wun: New reference. Part of the Stable ABI Call a callable Python object callable, with
arguments given by the tuple args, and named arguments given by the dictionary kwargs.

args must not be NULL; use an empty tuple if no arguments are needed. If no named arguments are needed,
kwargs can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args, **kwargs).

PyObject *PyObject_CallNoArgs (PyObject *callable)
Part of the Stable ABI since version 3.10. Call a callable Python object callable without any arguments. It is
the most efficient way to call a callable Python object without any argument.

Return the result of the call on success, or raise an exception and return NULL on failure.
Néo otnv ¢kdoom 3.9.

PyObject *PyObject_CallOneArg (PyObject *callable, PyObject *arg)
Call a callable Python object callable with exactly 1 positional argument arg and no keyword arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.

Néo otnv ¢kdoom 3.9.

7.2. Call Protocol 87

The Python/C API, Anpooicuon 3.10.18

PyObject *PyObject_CallObject (PyObject *callable, PyObject *args)
Emotoepduevny tun: New reference. Part of the Stable ABIL Call a callable Python object callable, with
arguments given by the tuple args. If no arguments are needed, then args can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).

PyObject *PyObject_CallFunction (PyObject *callable, const char *format, ...)
Emotpepduevn tun: New reference. Part of the Stable ABI. Call a callable Python object callable, with a
variable number of C arguments. The C arguments are described using a Py BuildValue () style format
string. The format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).

Note that if you only pass PyObject* args, PyObject_CallFunctionObjArgs () is a faster
alternative.

AMEe oty £xdoon 3.4: The type of formar was changed from char *.

PyObject *PyObject_CallMethod (PyObject *obj, const char *name, const char *format, ...)
Emortoepduevn wun: New reference. Part of the Stable ABI. Call the method named name of object obj with
a variable number of C arguments. The C arguments are described by a Py_ BuildValue () format string
that should produce a tuple.

The format can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.

This is the equivalent of the Python expression: obj .name (argl, arg2, ...).

Note that if you only pass PyObject* args, PyObject_CallMethodObjArgs () isafaster alternative.
AMEe oty éxdoon 3.4: The types of name and format were changed from char *.

PyObject *PyObject_CallFunctionObjArgs (PyObject *callable, ...)
Emotoepduevn tun: New reference. Part of the Stable ABI. Call a callable Python object callable, with a
variable number of PyOb ject* arguments. The arguments are provided as a variable number of parameters
followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (argl, arg2, ...).

PyObject *PyObject_CallMethodObjArgs (PyObject *obj, PyObject *name, ...)
Emotoepduevn tun: New reference. Part of the Stable ABIL Call a method of the Python object obj, where
the name of the method is given as a Python string object in name. It is called with a variable number of
PyObject* arguments. The arguments are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

PyObject *PyObject_CallMethodNoArgs (PyObject *obj, PyObject *name)
Call a method of the Python object obj without arguments, where the name of the method is given as a Python
string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.
Néo otnv ¢€kdoom 3.9.

PyObject *PyObject_CallMethodOneArg (PyObject *obj, PyObject *name, PyObject *arg)
Call a method of the Python object obj with a single positional argument arg, where the name of the method
is given as a Python string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.

Néo oty éxdoon 3.9.

88 Kegahaio 7. Abstract Objects Layer

The Python/C API, Anpooicuon 3.10.18

PyObject *PyObject_Vectorcall (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)
Call a callable Python object callable. The arguments are the same as for vectorcallfunc. If callable

supports vectorcall, this directly calls the vectorcall function stored in callable.
Return the result of the call on success, or raise an exception and return NULL on failure.
Néo oty éxdoon 3.9.

PyObject *PyObject_VectorcallDict (PyObject *callable, PyObject *const *args, size_t nargsf,
PyObject *kwdict)
Call callable with positional arguments passed exactly as in the vectorcall protocol, but with keyword arguments
passed as a dictionary kwdict. The args array contains only the positional arguments.

Regardless of which protocol is used internally, a conversion of arguments needs to be done. Therefore, this
function should only be used if the caller already has a dictionary ready to use for the keyword arguments, but
not a tuple for the positional arguments.

Néo otnv ékdoom 3.9.

PyObject *PyObject_VectorcallMethod (PyObject *name, PyObject *const *args, size_t nargsf,
PyObject *kwnames)
Call a method using the vectorcall calling convention. The name of the method is given as a Python string
name. The object whose method is called is args[0], and the args array starting at args/1] represents the
arguments of the call. There must be at least one positional argument. nargsf is the number of positional
arguments including args/0], plus PY_VECTORCALL_ARGUMENTS_OFFSET if the value of args[0]
may temporarily be changed. Keyword arguments can be passed just like in PyOb ject_Vectorcall ().

If the object has the Py TPFLAGS_METHOD_DESCRIPTOR feature, this will call the unbound method
object with the full args vector as arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.

Néo otnv £€kdoom 3.9.

7.2.4 Call Support API

int PyCallable_Check (PyObject *0)
Part of the Stable ABI. Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise.
This function always succeeds.

7.3 Number Protocol

int PyNumber_Check (PyObject *0)
Part of the Stable ABI. Returns 1 if the object o provides numeric protocols, and false otherwise. This function
always succeeds.

AlhaEe oty ékdoon 3.8: Returns 1 if o is an index integer.

PyObject *PyNumber_Add (PyObject *0l, PyObject *02)
Emotoepduevn tyur): New reference. Part of the Stable ABI. Returns the result of adding o/ and 02, or NULL
on failure. This is the equivalent of the Python expression o1 + 02.

PyObject *PyNumber_Subtract (PyObject *ol, PyObject *02)
Emotoepduevn tun: New reference. Part of the Stable ABL Returns the result of subtracting o2 from o1, or
NULL on failure. This is the equivalent of the Python expression o1 - o02.

PyObject *PyNumber_Multiply (PyObject *ol, PyObject *02)

Emotoepduevn tun: New reference. Part of the Stable ABI. Returns the result of multiplying o/ and 02, or
NULL on failure. This is the equivalent of the Python expression o1 * o02.

7.3. Number Protocol 89

The Python/C API, Anpooicuon 3.10.18

PyObject *PyNumber MatrixMultiply (PyObject *ol, PyObject ¥02)
Emotoepduevn tur): New reference. Part of the Stable ABI since version 3.7. Returns the result of matrix
multiplication on o/ and 02, or NULL on failure. This is the equivalent of the Python expression 01 @ 02.

Néo otnv ¢kdoon 3.5.

PyObject *PyNumber_ FloorDivide (PyObject *ol, PyObject *02)
Emotoepduevn tun: New reference. Part of the Stable ABIL Return the floor of o/ divided by 02, or NULL
on failure. This is the equivalent of the Python expression o1 // o2.

PyObject *PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Emotoepduevny nun: New reference. Part of the Stable ABIL Return a reasonable approximation for the
mathematical value of ol divided by 02, or NULL on failure. The return value is «approximate» because
binary floating point numbers are approximate; it is not possible to represent all real numbers in base two.
This function can return a floating point value when passed two integers. This is the equivalent of the Python
expression ol / o02.

PyObject *PyNumber_ Remainder (PyObject *ol, PyObject *¥02)
Emotpepduevny tiun: New reference. Part of the Stable ABI. Returns the remainder of dividing ol by 02, or
NULL on failure. This is the equivalent of the Python expression o1 % o02.

PyObject *PyNumber_Divmod (PyObject *ol, PyObject *02)
Emortoepduevn tun: New reference. Part of the Stable ABI. See the built-in function divmod () . Returns
NULL on failure. This is the equivalent of the Python expression divmod (01, 02).

PyObject *PyNumber_Power (PyObject *ol, PyObject *02, PyObject *03)
Emotoepduevn tyur): New reference. Part of the Stable ABL See the built-in function pow () . Returns NULL
on failure. This is the equivalent of the Python expression pow (o1, 02, o03), where 03 is optional. If 03
is to be ignored, pass Py_None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject *PyNumber_ Negative (PyObject *0)
Emotoepduevn tun: New reference. Part of the Stable ABI. Returns the negation of o on success, or NULL
on failure. This is the equivalent of the Python expression —o.

PyObject *PyNumber_Positive (PyObject *0)
Emotoepduevn wun: New reference. Part of the Stable ABIL Returns o on success, or NULL on failure. This
is the equivalent of the Python expression +o.

PyObject *PyNumber_Absolute (PyObject *0)
Emotoepduevn tut): New reference. Part of the Stable ABL Returns the absolute value of o, or NULL on
failure. This is the equivalent of the Python expression abs (o).

PyObject *PyNumber_Invert (PyObject *0)
Emortpepduevny wun: New reference. Part of the Stable ABL Returns the bitwise negation of o on success, or
NULL on failure. This is the equivalent of the Python expression ~o.

PyObject *PyNumber_Lshift (PyObject *ol, PyObject *02)
Emotoepduevn tiun: New reference. Part of the Stable ABIL Returns the result of left shifting o/ by 02 on
success, or NULL on failure. This is the equivalent of the Python expression 01 << o02.

PyObject *PyNumber_Rshift (PyObject *ol, PyObject *02)
Emotoepduevn tun: New reference. Part of the Stable ABI. Returns the result of right shifting o/ by 02 on
success, or NULL on failure. This is the equivalent of the Python expression 01 >> o2.

PyObject *PyNumber_And (PyObject *ol, PyObject *02)
Emotoepduevn tiun: New reference. Part of the Stable ABI. Returns the «bitwise and» of o/ and 02 on success
and NULL on failure. This is the equivalent of the Python expression o1 & o2.

PyObject *PyNumber_Xor (PyObject *ol, PyObject *02)
Emotoepduevn tun: New reference. Part of the Stable ABI. Returns the «bitwise exclusive or» of ol by 02
on success, or NULL on failure. This is the equivalent of the Python expression o1 ~ o2.

PyObject *PyNumber_Or (PyObject *ol, PyObject *02)
Emotoepduevn tur): New reference. Part of the Stable ABI. Returns the «bitwise or» of 0/ and 02 on success,
or NULL on failure. This is the equivalent of the Python expression o1 | o2.

920 Kegahaio 7. Abstract Objects Layer

The Python/C API, Anpooicuon 3.10.18

PyObject *PyNumber_ InPlaceAdd (PyObject *ol, PyObject *02)
Emotoepduevn tyur): New reference. Part of the Stable ABI. Returns the result of adding o/ and 02, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol += o2.

PyObject *PyNumber_InPlaceSubtract (PyObject *ol, PyObject ¥02)
Emortpepduevy tur: New reference. Part of the Stable ABI. Returns the result of subtracting 02 from ol,
or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement o1 —-= o02.

PyObject *PyNumber_InPlaceMultiply (PyObject *ol, PyObject *02)
Emotoepduevn wun: New reference. Part of the Stable ABI. Returns the result of multiplying o/ and 02, or
NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement o1 *= o2.

PyObject *PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)
Emotoepduevn tur): New reference. Part of the Stable ABI since version 3.7. Returns the result of matrix
multiplication on o/ and 02, or NULL on failure. The operation is done in-place when ol supports it. This is
the equivalent of the Python statement 01 @= o2.

Néo otv éxdoon 3.5.

PyObject *PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject *02)
Emotoepduevn tun: New reference. Part of the Stable ABI. Returns the mathematical floor of dividing o/
by 02, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the
Python statement o1 //= o2.

PyObject *PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject *02)
Emortoepduevn tur: New reference. Part of the Stable ABI. Return a reasonable approximation for the
mathematical value of ol divided by 02, or NULL on failure. The return value is «approximate» because
binary floating point numbers are approximate; it is not possible to represent all real numbers in base two. This
function can return a floating point value when passed two integers. The operation is done in-place when ol
supports it. This is the equivalent of the Python statement 01 /= o02.

PyObject *PyNumber_InPlaceRemainder (PyObject *ol, PyObject ¥02)
Emotoepduevn wun: New reference. Part of the Stable ABIL Returns the remainder of dividing o/ by 02, or
NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement o1 %= o2.

PyObject *PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *03)
Emotoepduevn tur: New reference. Part of the Stable ABIL. See the built-in function pow () . Returns NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol **= 02 when o3 is Py_None, or an in-place variant of pow (01, 02, 03) otherwise. If 03 is to be
ignored, pass Py_None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject *PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Emotoepduevn tiun: New reference. Part of the Stable ABIL Returns the result of left shifting o/ by 02 on
success, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the
Python statement 01 <<= 02.

PyObject *PyNumber_InPlaceRshift (PyObject *ol, PyObject *02)
Emotoepduevn tun: New reference. Part of the Stable ABI. Returns the result of right shifting o/ by 02 on
success, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the
Python statement o1 >>= o02.

PyObject *PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Emotoepduevn un: New reference. Part of the Stable ABI. Returns the «bitwise and» of 0/ and 02 on success
and NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement ol &= o2.

PyObject *PyNumber_InPlaceXor (PyObject *ol, PyObject *02)
Emotoepduevn tun: New reference. Part of the Stable ABI. Returns the «bitwise exclusive or» of o/ by 02
on success, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of
the Python statement o1 "= o02.

7.3. Number Protocol 91

The Python/C API, Anpooicuon 3.10.18

PyObject *PyNumber_InPlaceOr (PyObject *ol, PyObject *02)
Emotpepduevn tuin): New reference. Part of the Stable ABI. Returns the «bitwise or» of 0/ and 02 on success,
or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
statement o1 |= o02.

PyObject *PyNumber_Long (PyObject *0)
Emotpepduevny tiun: New reference. Part of the Stable ABI Returns the o converted to an integer object on
success, or NULL on failure. This is the equivalent of the Python expression int (o).

PyObject *PyNumber_F1loat (PyObject *0)
Emotoepduevny wun: New reference. Part of the Stable ABI. Returns the o converted to a float object on
success, or NULL on failure. This is the equivalent of the Python expression f1oat (o).

PyObject *PyNumber_Index (PyObject *0)
Emotpepduevn un: New reference. Part of the Stable ABI. Returns the o converted to a Python int on success
or NULL with a TypeError exception raised on failure.

AMaEe otnv €kdoom 3.10: The result always has exact type int. Previously, the result could have been an
instance of a subclass of int.

PyObject *PyNumber_ToBase (PyObject *n, int base)
Emotoepduevn wun: New reference. Part of the Stable ABIL Returns the integer n converted to base base
as a string. The base argument must be one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is
prefixed with a base marker of '0b"', '0o"', or '0x"', respectively. If n is not a Python int, it is converted
with PyNumber Index () first.

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
Fart of the Stable ABI. Returns o converted toa Py_ssize_t value if o can be interpreted as an integer. If
the call fails, an exception is raised and -1 is returned.

If o can be converted to a Python int but the attempt to convert to a Py_ssize_ t value would
raise an OverflowError, then the exc argument is the type of exception that will be raised (usually
IndexError or OverflowError). If exc is NULL, then the exception is cleared and the value is clipped
toPY_SSIZE_T_MIN for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check (PyObject *0)
Fart of the Stable ABI since version 3.8. Returns 1 if o is an index integer (has the nb_index slot of the
tp_as_number structure filled in), and 0 otherwise. This function always succeeds.

7.4 Sequence Protocol

int PySequence_Check (PyObject *0)
Fart of the Stable ABI. Return 1 if the object provides the sequence protocol, and 0 otherwise. Note that it
returns 1 for Python classes with a __getitem__ () method, unless they are dict subclasses, since in
general it is impossible to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *0)
Part of the Stable ABI. Returns the number of objects in sequence o on success, and —1 on failure. This is
equivalent to the Python expression len (o).

PyObject *PySequence_Concat (PyObject *ol, PyObject *02)
Emotoepduevn tiun: New reference. Part of the Stable ABI. Return the concatenation of o/ and o2 on success,
and NULL on failure. This is the equivalent of the Python expression o1 + o2.

PyObject *PySequence_Repeat (PyObject *o, Py_ssize_t count)
Emortoepduevn wun: New reference. Part of the Stable ABI. Return the result of repeating sequence object o
count times, or NULL on failure. This is the equivalent of the Python expression o * count.

PyObject *PySequence_InPlaceConcat (PyObject *ol, PyObject *02)
Emotoepduevn tiun: New reference. Part of the Stable ABI. Return the concatenation of o/ and 02 on success,

92 Kegahaio 7. Abstract Objects Layer

The Python/C API, Anpooicuon 3.10.18

and NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python
expression ol += 02.

PyObject *PySequence_InPlaceRepeat (PyObject *o0, Py_ssize_t count)
Emotoepduevn wun: New reference. Part of the Stable ABI. Return the result of repeating sequence object o
count times, or NULL on failure. The operation is done in-place when o supports it. This is the equivalent of
the Python expression o *= count.

PyObject *PySequence_GetItem (PyObject *o, Py_ssize_t i)
Emortoepduevn wun: New reference. Part of the Stable ABI. Return the ith element of o, or NULL on failure.
This is the equivalent of the Python expression o [1].

PyObject *PySequence_GetSlice (PyObject *o, Py_ssize_til, Py_ssize_ti2)
Emotoepduevn tyur): New reference. Part of the Stable ABL. Return the slice of sequence object o between i/
and i2, or NULL on failure. This is the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *v)
Fart of the Stable ABIL. Assign object v to the ith element of 0. Raise an exception and return —1 on failure;
return 0 on success. This is the equivalent of the Python statement o [1] = wv. This function does not steal a
reference to v.

If v is NULL, the element is deleted, but this feature is deprecated in favour of using
PySequence_DelItem().

int PySequence_DelItem (PyObject *o, Py ssize t1i)
Part of the Stable ABI. Delete the ith element of object 0. Returns —1 on failure. This is the equivalent of the
Python statement del o[i].

int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2, PyObject *v)
FPart of the Stable ABI. Assign the sequence object v to the slice in sequence object o from i/ to i2. This is the
equivalent of the Python statement o [11:12] = wv.

int PySequence_DelSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
Part of the Stable ABI. Delete the slice in sequence object o from i/ to i2. Returns —1 on failure. This is the
equivalent of the Python statement del o[i11:12].

Py_ssize_t PySequence_Count (PyObject *o, PyObject *value)
Fart of the Stable ABI. Return the number of occurrences of value in o, that is, return the number of keys
for which o[key] == wvalue. On failure, return —1. This is equivalent to the Python expression o.
count (value).

int PySequence_Contains (PyObject *o, PyObject *value)
Fart of the Stable ABIL Determine if o contains value. If an item in o is equal to value, return 1, otherwise
return 0. On error, return —1. This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index (PyObject *o0, PyObject *value)
Part of the Stable ABI. Return the first index i for which o [1] == wvalue. On error, return —1. This is
equivalent to the Python expression o . index (value).

PyObject *PySequence_List (PyObject *0)
Emotoepduevn tiun: New reference. Part of the Stable ABI. Return a list object with the same contents as the
sequence or iterable o, or NULL on failure. The returned list is guaranteed to be new. This is equivalent to the
Python expression 1ist (o).

PyObject *PySequence_Tuple (PyObject *0)
Emotpepduevny tun: New reference. Part of the Stable ABI. Return a tuple object with the same contents as
the sequence or iterable o, or NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple
will be constructed with the appropriate contents. This is equivalent to the Python expression tuple (o).

PyObject *PySequence_Fast (PyObject *0, const char *m)
Emotoepduevn tun: New reference. Part of the Stable ABIL. Return the sequence or iterable o as an object
usable by the other PySequence_Fast* family of functions. If the object is not a sequence or iterable,
raises TypeError with m as the message text. Returns NULL on failure.

The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
PyListObject and access the data fields of o directly.

7.4. Sequence Protocol 93

The Python/C API, Anpooicuon 3.10.18

As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence_ Fast () and that
o is not NULL. The size can also be retrieved by calling PySequence_Size () on o, but
PySequence_Fast_GET_SIZE () is faster because it can assume o is a list or tuple.

PyObject *PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t i)
Emotoepduevy tun: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence_Fast (), o0is not NULL, and that i is within bounds.

PyObject **PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast ()
and o is not NULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change.

PyObject *PySequence_ITEM (PyObject *o, Py_ssize_t i)
Emotoepduevny tun: New reference. Return the ith element of o or NULL on failure. Faster form of
PySequence_GetItem () but without checking that PySequence_Check () on o is true and without
adjustment for negative indices.

7.5 Mapping Protocol

See also PyObject_GetItem (), PyObject_SetItem() and PyObject_DelItem().

int PyMapping_Check (PyObject *0)
Fart of the Stable ABIL Return 1 if the object provides the mapping protocol or supports slicing, and 0
otherwise. Note that it returns 1 for Python classes with a __getitem__ () method, since in general it
is impossible to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping_Length (PyObject *0)
Part of the Stable ABI. Returns the number of keys in object o on success, and -1 on failure. This is equivalent
to the Python expression len (o).

PyObject *PyMapping_GetItemString (PyObject *0, const char *key)
Emortoepduevny wun: New reference. Part of the Stable ABIL Return element of o corresponding to
the string key or NULL on failure. This is the equivalent of the Python expression o[key]. See also
PyObject_GetItem().

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
Part of the Stable ABI. Map the string key to the value v in object 0. Returns —1 on failure. This is the equivalent
of the Python statement o [key] = wv. See also PyObject_SetItem (). This function does not steal a
reference to v.

int PyMapping_DelItem (PyObject *o0, PyObject *key)
Remove the mapping for the object key from the object 0. Return -1 on failure. This is equivalent to the Python
statement del o [key]. Thisis an alias of PyObject_DelTtem().

int PyMapping_DelItemString (PyObject *o, const char *key)
Remove the mapping for the string key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del of[key].

int PyMapping_HasKey (PyObject *o0, PyObject *key)
Part of the Stable ABI. Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to
the Python expression key in o. This function always succeeds.

Note that exceptions which occur while calling the _ _getitem__ () method will get suppressed. To get
error reporting use PyObject_GetItem () instead.

94 Kegahaio 7. Abstract Objects Layer

The Python/C API, Anpooicuon 3.10.18

int PyMapping_HasKeyString (PyObject *o, const char *key)
Part of the Stable ABI. Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to
the Python expression key in o. This function always succeeds.

Note that exceptions which occur while callingthe __getitem__ () method and creating a temporary string
object will get suppressed. To get error reporting use PyMapping GetItemString () instead.

PyObject *PyMapping_Keys (PyObject *0)
Emotoepduevn wurn: New reference. Part of the Stable ABI. On success, return a list of the keys in object o.
On failure, return NULL.

AlhaEe oty ékdoon 3.7: Previously, the function returned a list or a tuple.

PyObject *PyMapping_Values (PyObject *0)
Emortpepduevny tiun: New reference. Part of the Stable ABI. On success, return a list of the values in object
o. On failure, return NULL.

AlhaEe oty ékdoon 3.7: Previously, the function returned a list or a tuple.

PyObject *PyMapping_Items (PyObject *0)
Emotoepduevn tun: New reference. Part of the Stable ABIL On success, return a list of the items in object o,
where each item is a tuple containing a key-value pair. On failure, return NULL.

AlhaEe ot ékdoon 3.7: Previously, the function returned a list or a tuple.

7.6 lterator Protocol

There are two functions specifically for working with iterators.

int PyIter_Check (PyObject *0)
Part of the Stable ABI since version 3.8. Return non-zero if the object o can be safely passed to
PyIter_ Next (), and O otherwise. This function always succeeds.

int PyAIter_Check (PyObject *0)
Fart of the Stable ABI since version 3.10. Return non-zero if the object o provides the AsyncIterator
protocol, and 0 otherwise. This function always succeeds.

Néo otnv éxdoon 3.10.

PyObject *PyIter_Next (PyObject *0)
Emotoepduevny tun: New reference. Part of the Stable ABI. Return the next value from the iterator o. The
object must be an iterator according to PyTter_ Check () (itis up to the caller to check this). If there are
no remaining values, returns NULL with no exception set. If an error occurs while retrieving the item, returns
NULL and passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while ((item = PyIter_Next (iterator))) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;
}

Py_DECREF (iterator);

(ouvéyela otV TOLEVY OEMD)

7.6. lterator Protocol 95

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

if (PyErr_Occurred()) {
/* propagate error */
}
else {
/* continue doing useful work */

type PySendResult
The enum value used to represent different results of PyIter Send ().

Néo otnv €kdoon 3.10.

PySendResult PyIter_Send (PyObject *iter, PyObject *arg, PyObject **presult)
Fart of the Stable ABI since version 3.10. Sends the arg value into the iterator iter. Returns:

o PYGEN_RETURN if iterator returns. Return value is returned via presult.
e PYGEN_NEXT if iterator yields. Yielded value is returned via presult.
e PYGEN_ERROR if iterator has raised and exception. presult is set to NULL.

Néo omv éxdoon 3.10.

7.7 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the
built-in bytes and bytearray, and some extension types like array . array. Third-party libraries may define
their own types for special purposes, such as image processing or numeric analysis.

While each of these types have their own semantics, they share the common characteristic of being backed by
a possibly large memory buffer. It is then desirable, in some situations, to access that buffer directly and without
intermediate copying.

Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

« on the producer side, a type can export a «buffer interface» which allows objects of that type to expose
information about their underlying buffer. This interface is described in the section Buffer Object Structures;

« on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object
(for example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms
are possible; for example, the elements exposed by an array .array can be multi-byte values.

An example consumer of the buffer interface is the write () method of file objects: any object that can export a
series of bytes through the buffer interface can be written to a file. While write () only needs read-only access
to the internal contents of the object passed to it, other methods such as readinto () need write access to the
contents of their argument. The buffer interface allows objects to selectively allow or reject exporting of read-write
and read-only buffers.

There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:
e call PyObject_GetBuffer () with the right parameters;
e call PyArg ParseTuple () (or one of its siblings) with one of the y*, w* or s* format codes.

In both cases, PyBuffer Release () must be called when the buffer isn’t needed anymore. Failure to do so could
lead to various issues such as resource leaks.

96 Kegahaio 7. Abstract Objects Layer

The Python/C API, Anpooicuon 3.10.18

7.7.1 Buffer structure

Buffer structures (or simply «buffers») are useful as a way to expose the binary data from another object to the
Python programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block
of memory, it is possible to expose any data to the Python programmer quite easily. The memory could be a large,
constant array in a C extension, it could be a raw block of memory for manipulation before passing to an operating
system library, or it could be used to pass around structured data in its native, in-memory format.

Contrary to most data types exposed by the Python interpreter, buffers are not Py Ob ject pointers but rather simple
C structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is
needed, a memoryview object can be created.

For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer().

type Py buffer

void *buf
A pointer to the start of the logical structure described by the buffer fields. This can be any location within
the underlying physical memory block of the exporter. For example, with negative st rides the value
may point to the end of the memory block.

For contiguous arrays, the value points to the beginning of the memory block.

PyObject *ob3j
A new reference to the exporting object. The reference is owned by the consumer and automatically
released (i.e. reference count decremented) and set to NULL by PyBuffer Release (). The field is
the equivalent of the return value of any standard C-API function.

As a special case, for temporary buffers that are wrapped by PyMemoryView FromBuffer () or
PyBuffer FillInfo () this field is NULL. In general, exporting objects MUST NOT use this
scheme.

Py_ssize_t 1en
product (shape) * itemsize. For contiguous arrays, this is the length of the underlying memory
block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied
to a contiguous representation.

Accessing ((char *)buf) [0] up to ((char *)buf) [len-1] is only valid if the
buffer has been obtained by a request that guarantees contiguity. In most cases such a request will be
PyBUF _SIMPLE or PyBUF_WRITABLE.

int readonly
An indicator of whether the buffer is read-only. This field is controlled by the PyBUF_WRI TABLE flag.

Py_ssize_t itemsize
Item size in bytes of a single element. Same as the value of st ruct .calcsize () called on non-NULL
format values.

Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will
be set to NULL, but i temsi ze still has the value for the original format.

If shape is present, the equality product (shape) * itemsize == Llen still holds and the
consumer can use itemsize to navigate the buffer.

If shape is NULL as a result of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer
must disregard i temsize and assume itemsize ==

const char *format
A NUL terminated string in st ruct module style syntax describing the contents of a single item. If this
is NULL, "B" (unsigned bytes) is assumed.

This field is controlled by the PyBUF _FORMAT flag.

7.7. Buffer Protocol 97

The Python/C API, Anpooicuon 3.10.18

int ndim

The number of dimensions the memory represents as an n-dimensional array. If it is 0, buf points to a
single item representing a scalar. In this case, shape, strides and suboffsets MUST be NULL.

The macro PyBUF_MAX_NDIM limits the maximum number of dimensions to 64. Exporters MUST
respect this limit, consumers of multi-dimensional buffers SHOULD be able to handle up to
PyBUF_MAX_NDIM dimensions.

Py_ssize_t *shape

An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional
array. Note that shape[0] * ... * shape[ndim-1] * itemsize MUST beequalto len.

Shape values are restricted to shape [n] >= 0.Thecase shape [n] == 0 requires special attention.
See complex arrays for further information.

The shape array is read-only for the consumer.

Py_ssize_t *strides

An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element
in each dimension.

Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST
be able to handle the case strides [n] <= 0. See complex arrays for further information.

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets

An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the
nth dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after
de-referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding
in a contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for
further information how to access elements of such an array.

The suboffsets array is read-only for the consumer.

void *internal

This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be
freed when the buffer is released. The consumer MUST NOT alter this value.

7.7.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer ().
Since the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument
to specify the exact buffer type it can handle.

All Py_buf fer fields are unambiguously defined by the request type.

98

Kegpalaio 7. Abstract Objects Layer

The Python/C API, Anpooicuon 3.10.18

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: obj, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE
Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

PyBUF_FORMAT
Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field
MUST be NULL.

PyBUF_WRITABLE can be |"d to any of the flags in the next section. Since PyBUF_SIMPLE is defined as 0,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT can be |’d to any of the flags except PyBUF_STMPLE. The latter already implies format B
(unsigned bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each
flag contains all bits of the flags below it.

Request shape | strides | suboffsets
yes yes if needed

PyBUF_INDIRECT

PyBUF_STRIDES yes yes NULL

pyBUF_ND yes NULL | NULL

PyBUF_SIMPLE NULL | NULL | NULL

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information,
the buffer must be C-contiguous.

Request shape | strides | suboffsets | contig
PyBUF_C_CONTIGUOUS yes yes NULL C
PyBUF_F_CONTIGUOUS yes yes NULL F
PyBUF_ANY_ CONTIGUOUS yes yes NULL CorF
PyBUF_ND yes NULL | NULL C

7.7. Buffer Protocol 99

The Python/C API, Anpooicuon 3.10.18

compound requests
All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.

In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer IsContiguous () to determine contiguity.

Request shape | strides | suboffsets | contig | readonly | format
PyBUF_FULL yes yes if needed U 0 yes
PyBUF_FULL_RO yes yes if needed U lor0 yes
PyBUF_RECORDS yes yes NULL U 0 yes
PyBUF_RECORDS_RO yes | yes NULL U LorO | yes
PyBUF_STRIDED yes yes NULL U 0 NULL
PyBUF_STRIDED_RO yes yes NULL U lor0 NULL
PyBUF_CONTIG yes NULL | NULL C 0 NULL
PyBUF_CONTIG_RO yes NULL | NULL C lor0 NULL

7.7.3 Complex arrays

NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by i temsize, ndim, shape and strides.

If ndim == 0, the memory location pointed to by bu £ is interpreted as a scalar of size i temsize. In that case,
both shape and st rides are NULL.

If strides is NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must
access an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof (item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity
of a buffer with this function:

def verify_structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:

(ouvéyela 0TV enopEV) 0ehidL)

100 Kegahaio 7. Abstract Objects Layer

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

return False
o

if any(v % itemsize for v in strides):
return False

if ndim <= 0:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]l-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]* (shape[j]-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imax+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the
next element in a dimension. For example, the regular three-dimensional C-array char v [2] [2] [3] can also be
viewed as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2]) [2] [3].Insuboffsets representation,
those two pointers can be embedded at the start of bu £, pointing to two char x[2] [3] arrays that can be located
anywhere in memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when
there are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, woid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; 1i++) |

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = * ((char**)pointer) + suboffsets[i];

}

return (void*)pointer;

7.7.4 Buffer-related functions

int PyObject_CheckBuffer (PyObject *obj)
Return 1 if obj supports the buffer interface otherwise 0. When 1 is returned, it doesn’t guarantee that
PyObject_GetBuffer () will succeed. This function always succeeds.

int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)
Send a request to exporter to fill in view as specified by flags. If the exporter cannot provide a buffer of the
exact type, it MUST raise PyExc_BufferError, set view—>obj to NULL and return - 1.

On success, fill in view, set view->ob7j to a new reference to exporter and return 0. In the case of chained
buffer providers that redirect requests to a single object, view—>obj MAY refer to this object instead of
exporter (See Buffer Object Structures).

Successful calls to PyObject_GetBuffer () must be paired with calls to PyBuffer Release (),
similar to malloc () and free (). Thus, after the consumer is done with the buffer,
PyBuffer Release () must be called exactly once.

7.7. Buffer Protocol 101

The Python/C API, Anpooicuon 3.10.18

void PyBuffer Release (Py_buffer *view)
Release the buffer view and release the strong reference (i.e. decrement the reference count) to the view’s
supporting object, view—>obj. This function MUST be called when the buffer is no longer being used,
otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_t PyBuffer_SizeFromFormat (const char *format)
Return the implied i temsize from format. On error, raise an exception and return -1.

Néo omnv ékdoom 3.9.

int PyBuffer_IsContiguous (Py_buffer *view, char order)
Return 1 if the memory defined by the view is C-style (orderis ' C") or Fortran-style (order is 'F ') contiguous
or either one (order is ' A"). Return 0 otherwise. This function always succeeds.

void *PyBuffer_GetPointer (Py_buffer *view, Py_ssize_t *indices)
Get the memory area pointed to by the indices inside the given view. indices must point to an array of view-—
>ndim indices.

int PyBuffer_FromContiguous (Py_buffer *view, void *buf, Py_ssize_t len, char fort)
Copy contiguous len bytes from buf to view. fort canbe 'C"' or 'F' (for C-style or Fortran-style ordering). 0
is returned on success, —1 on error.

int PyBuffer_ ToContiguous (void *buf, Py_buffer *src, Py_ssize_t len, char order)
Copy len bytes from src to its contiguous representation in buf. order canbe 'C' or 'F' or 'A" (for C-style
or Fortran-style ordering or either one). O is returned on success, —1 on error.

This function fails if len != src->len.

void PyBuffer FillContiguousStrides (int ndims, Py ssize t *shape, Py_ssize_t *strides, int

itemsize, char order)
Fill the strides array with byte-strides of a contiguous (C-style if order is ' C' or Fortran-style if orderis 'F ")

array of the given shape with the given number of bytes per element.

int PyBuffer_ FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly, int

flags)
Handle buffer requests for an exporter that wants to expose buf of size len with writability set according to

readonly. buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf
has been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view->obj to a new reference to exporter and return 0. Otherwise, raise
PyExc_BufferError, set view—>o0bj to NULL and return —1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must
be passed unmodified. Otherwise, exporter MUST be NULL.

7.8 Old Buffer Protocol

AmooupOnke otv €kdoon 3.0.

These functions were part of the «old buffer protocol» API in Python 2. In Python 3, this protocol doesn’t exist
anymore but the functions are still exposed to ease porting 2.x code. They act as a compatibility wrapper around
the new buffer protocol, but they don’t give you control over the lifetime of the resources acquired when a buffer is
exported.

Therefore, it is recommended that you call PyObject_GetBuffer () (or the y* or w* format codes with the
PyArg_ParseTuple () family of functions) to get a buffer view over an object, and PyBuffer Release ()
when the buffer view can be released.

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)
Part of the Stable ABI. Returns a pointer to a read-only memory location usable as character-based input. The

102 Kegahaio 7. Abstract Objects Layer

The Python/C API, Anpooicuon 3.10.18

obj argument must support the single-segment character buffer interface. On success, returns 0, sets buffer to
the memory location and buffer_len to the buffer length. Returns —1 and sets a TypeError on error.

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
Part of the Stable ABI. Returns a pointer to a read-only memory location containing arbitrary data. The obj
argument must support the single-segment readable buffer interface. On success, returns 0, sets buffer to the
memory location and buffer_len to the buffer length. Returns —1 and sets a TypeError on error.

int PyObject_CheckReadBuffer (PyObject *0)
Fart of the Stable ABI. Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns
0. This function always succeeds.

Note that this function tries to get and release a buffer, and exceptions which occur while calling corresponding
functions will get suppressed. To get error reporting use PyObject_GetBuffer () instead.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Fart of the Stable ABI. Returns a pointer to a writable memory location. The obj argument must support
the single-segment, character buffer interface. On success, returns 0, sets buffer to the memory location and
buffer_len to the buffer length. Returns —1 and sets a TypeError on error.

7.8. Old Buffer Protocol 103

The Python/C API, Anpooicuon 3.10.18

104 Kegahaio 7. Abstract Objects Layer

KEGAAAIO 8

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check (). The
chapter is structured like the «family tree» of Python object types.

Ipozwdomoinon: While the functions described in this chapter carefully check the type of the objects which
are passed in, many of them do not check for NULL being passed instead of a valid object. Allowing NULL to be
passed in can cause memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

type PyTypeObiject
Part of the Limited API (as an opaque struct). The C structure of the objects used to describe built-in types.

PyTypeObject PyType_Type
Fart of the Stable ABI. This is the type object for type objects; it is the same object as t ype in the Python
layer.

int PyType_Check (PyObject *0)
Return non-zero if the object o is a type object, including instances of types derived from the standard type
object. Return 0 in all other cases. This function always succeeds.

int PyType_CheckExact (PyObject *0)
Return non-zero if the object o is a type object, but not a subtype of the standard type object. Return 0 in all
other cases. This function always succeeds.

unsigned int PyType_ClearCache ()
Part of the Stable ABI. Clear the internal lookup cache. Return the current version tag.

105

The Python/C API, Anpooicuon 3.10.18

unsigned long PyType_GetFlags (PyTypeObject *type)
Part of the Stable ABI. Return the tp_ £ 1ags member of type. This function is primarily meant for use with
Py_LIMITED_APT; the individual flag bits are guaranteed to be stable across Python releases, but access to
tp_flagsitself is not part of the limited API.

Néo otnv ¢kdoon 3.2.
AMoEe oty £xdoon 3.4: The return type is now unsigned 1long rather than 1ong.

void PyType_Modified (PyTypeObject *type)
Fart of the Stable ABI. Invalidate the internal lookup cache for the type and all of its subtypes. This function
must be called after any manual modification of the attributes or base classes of the type.

int PyType_HasFeature (PyTypeObject *o, int feature)
Return non-zero if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyTypeObject *0)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS_HAVE_ GC.

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Part of the Stable ABI. Return true if a is a subtype of b.

This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on
b.Call PyObject_IsSubclass () to do the same check that issubclass () would do.

PyObject *PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Emotoepduevn tur): New reference. Part of the Stable ABL Generic handler for the tp_alloc slot of a
type object. Use Python’s default memory allocation mechanism to allocate a new instance and initialize all its
contents to NULL.

PyObject *PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Emotoepduevn turn: New reference. Part of the Stable ABI. Generic handler for the t p_new slot of a type
object. Create a new instance using the type’s tp_alloc slot.

int PyType_Ready (PyTypeObject *type)
Part of the Stable ABI Finalize a type object. This should be called on all type objects to finish their
initialization. This function is responsible for adding inherited slots from a type’s base class. Return 0 on
success, or return —1 and sets an exception on error.

Ynueimon: If some of the base classes implements the GC protocol and the provided type does not include
the Py TPFLAGS_HAVE_GC in its flags, then the GC protocol will be automatically implemented from its
parents. On the contrary, if the type being created does include Py TPFLAGS_HAVE_ GC in its flags then it
must implement the GC protocol itself by at least implementing the tp_t raverse handle.

void *PyType_GetSlot (PyTypeObject *type, int slot)
Fart of the Stable ABI since version 3.4. Return the function pointer stored in the given slot. If the result is
NULL, this indicates that either the slot is NULL, or that the function was called with invalid parameters. Callers
will typically cast the result pointer into the appropriate function type.

See PyType_Slot.slot for possible values of the slor argument.
Néo otnv ¢kdoon 3.4.

AMoEe otnv ékdoon 3.10: PyType_GetSlot () can now accept all types. Previously, it was limited to
heap types.

PyObject *PyType_GetModule (PyTypeObject *type)
Part of the Stable ABI since version 3.10. Return the module object associated with the given type when the
type was created using Py Type_FromModuleAndSpec ().
If no module is associated with the given type, sets TypeError and returns NULL.

This function is usually used to get the module in which a method is defined. Note that in such a method,
PyType_GetModule (Py_TYPE (self)) may not return the intended result. Py_TYPE (self) may

106 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

be a subclass of the intended class, and subclasses are not necessarily defined in the same module as their
superclass. See PyCMethod to get the class that defines the method.

Néo otnv ¢kdoom 3.9.

void *PyType_GetModuleState (PyTypeObject *type)
Fart of the Stable ABI since version 3.10. Return the state of the module object associated with the given type.
This is a shortcut for calling PyModule_GetState () onthe result of PyType_GetModule ().

If no module is associated with the given type, sets TypeError and returns NULL.
If the fype has an associated module but its state is NULL, returns NULL without setting an exception.

Néo otnv ¢€kdoom 3.9.

Creating Heap-Allocated Types

The following functions and structs are used to create /eap types.

PyObject *PyType_FromModuleAndSpec (PyObject *module, PyType_Spec *spec, PyObject *bases)
Emotoepduevn tiun: New reference. Part of the Stable ABI since version 3.10. Creates and returns a heap type
from the spec (Py_TPFLAGS_HEAPTYPE).

The bases argument can be used to specify base classes; it can either be only one class or a tuple of classes. If
bases is NULL, the Py_tp_bases slot is used instead. If that also is NULL, the Py_tp_base slot is used instead.
If that also is NULL, the new type derives from object.

The module argument can be used to record the module in which the new class is defined. It must be a module
object or NULL. If not NULL, the module is associated with the new type and can later be retrieved with
PyType_GetModule (). The associated module is not inherited by subclasses; it must be specified for
each class individually.

This function calls Py Type_Ready () on the new type.
Néo otnv ¢kdoom 3.9.

AlhaEe otnv €kdoom 3.10: The function now accepts a single class as the bases argument and NULL as the
tp_doc slot.

PyObject *PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)
Emotoepduevny wur: New reference. Part of the Stable ABI since version 3.3. Equivalent to
PyType_FromModuleAndSpec (NULL, spec, bases).
Néo otnv ¢€kdoom 3.3.

PyObject *PyType_FromSpec (PyType_Spec *spec)
Emotoepduevy nurn: New reference. Part of the Stable ABL Equivalent to
PyType_FromSpecWithBases (spec, NULL).

type PyType_Spec
Fart of the Stable ABI (including all members). Structure defining a type’s behavior.

const char *PyType_Spec.name
Name of the type, used to set Py TypeObject . tp_name.

int PyType_Spec.basicsize

int PyType_Spec.itemsize
Size of the instance in bytes, used to set PyTypeObject.tp_basicsizeand PyTypeObject.
tp_itemsize.

int PyType_Spec. flags
Type flags, used to set Py TypeObject.tp_flags.

If the Py_ TPFLAGS_HEAPTYPE flag is not set, PyType_ FromSpecWithBases () sets it
automatically.

8.1. Fundamental Objects 107

The Python/C API, Anpooicuon 3.10.18

PyType_Slot *PyType_Spec.slots
Array of PyType_S1ot structures. Terminated by the special slot value {0, NULL}.

type PyType_Slot
Fart of the Stable ABI (including all members). Structure defining optional functionality of a type, containing
a slot ID and a value pointer.

int PyType_Slot.slot
A slot ID.

Slot IDs are named like the field names of the structures PyTypeObject,
PyNumberMethods, PySequenceMethods, PyMappingMethods and
PyAsyncMethods with an added Py__ prefix. For example, use:

e Py_tp_dealloctoset PyTypeObject.tp_dealloc

e Py_nb_addtoset PyNumberMethods.nb_add

e Py _sqg_lengthtoset PySequenceMethods.sq_length
The following fields cannot be set at all using Py Type_Spec and PyType_Slot:

e tp_dict

e tp_mro

e tp_cache

e tp_subclasses

e tp_weaklist

e tp_vectorcall

e tp_weaklistoffset (see PyMemberDef)

e tp_dictoffset (see PyMemberDef)

e tp_vectorcall_offset (see PyMemberDef)

The following fields cannot be set using Py Type_ Specand PyType_S1ot under the limited
API:

e bf getbuffer
e bf releasebuffer

Setting Py_tp_bases or Py_tp_base may be problematic on some platforms. To avoid
issues, use the bases argument of PyType_FromSpecWithBases () instead.

AMaEe oty €kdoon 3.9: Slots in PyBufferProcs may be set in the unlimited APL

void *PyType_Slot.pfunc
The desired value of the slot. In most cases, this is a pointer to a function.

Slots other than Py_ tp_doc may not be NULL.

8.1.2 The None Object

Note that the Py TypeOb ject for None is not directly exposed in the Python/C API. Since None is a singleton,
testing for object identity (using == in C) is sufficient. There is no PyNone_Check () function for the same reason.

PyObject *Py_None
The Python None object, denoting lack of value. This object has no methods. It needs to be treated just like
any other object with respect to reference counts.

108 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

Py_RETURN_NONE
Properly handle returning Py None from within a C function (that is, increment the reference count of None
and return it.)

8.2 Numeric Objects

8.2.1 Integer Objects

All integers are implemented as «long» integer objects of arbitrary size.

On error, most PyLong_As* APIs return (return type) -1 which cannot be distinguished from a number.
Use PyErr_Occurred () to disambiguate.

type PylLongObiject
Part of the Limited API (as an opaque struct). This subtype of PyOb ject represents a Python integer object.

PyTypeObject PyLong_Type
Fart of the Stable ABI. This instance of Py TypeOb ject represents the Python integer type. This is the same
object as int in the Python layer.

int PyLong_Check (PyObject *p)
Return true if its argument is a PyLongObject or a subtype of PyLongOb ject. This function always
succeeds.

int PyLong_CheckExact (PyObject *p)
Return true if its argument is a Py LongOb ject, but not a subtype of PyLongOb ject. This function always
succeeds.

PyObject *PyLong_FromLong (long v)
Emotoepduevn tun: New reference. Part of the Stable ABI. Return a new PyLongObject object from v,
or NULL on failure.

The current implementation keeps an array of integer objects for all integers between —5 and 25 6. When you
create an int in that range you actually just get back a reference to the existing object.

PyObject *PyLong_FromUnsignedLong (unsigned long v)
Emotpepduevn turj: New reference. Part of the Stable ABI. Return a new PyLongOb ject object from a C
unsigned long, or NULL on failure.

PyObject *PyLong_FromSsize_t (Py_ssize_t v)
Emotpepduevn tun: New reference. Part of the Stable ABI. Return a new PyLongOb ject object froma C
Py_ssize_t,or NULL on failure.

PyObject *PyLong_FromSize_t (size_t v)
Emotoepduevn tyur): New reference. Part of the Stable ABL Return a new PyLongObject object from a C
size_t, or NULL on failure.

PyObject *PyLong_FromLongLong (long long v)
Emotoepduevn tiun: New reference. Part of the Stable ABIL Return anew PyLongObject object from a C
long long, or NULL on failure.

PyObject *PyLong_FromUnsignedLongLong (unsigned long long v)
Emotoepduevn tun: New reference. Part of the Stable ABI. Return a new PyLongOb ject object froma C
unsigned long long, or NULL on failure.

PyObject *PyLong_FromDouble (double v)
Emotoepduevn tyur): New reference. Part of the Stable ABI. Return a new PyLongObject object from the
integer part of v, or NULL on failure.

PyObject *PyLong_FromString (const char *str, char **pend, int base)
Emotoepduevny tun: New reference. Part of the Stable ABIL Return a new PyLongObject based on the
string value in str, which is interpreted according to the radix in base. If pend is non-NULL, *pend will point to
the first character in str which follows the representation of the number. If base is 0, str is interpreted using the

8.2. Numeric Objects 109

The Python/C API, Anpooicuon 3.10.18

integers definition; in this case, leading zeros in a non-zero decimal number raises a ValueError. If base
is not O, it must be between 2 and 36, inclusive. Leading spaces and single underscores after a base specifier
and between digits are ignored. If there are no digits, ValueError will be raised.

Agite emiong:

Python methods int .to_bytes () and int.from_bytes () toconverta PyLongObject to/from an
array of bytes in base 256. You can call those from C using PyObject_CallMethod ().

PyObject *PyLong_FromUnicodeObject (PyObject *u, int base)

Emortoepduevn wun: New reference. Convert a sequence of Unicode digits in the string u to a Python integer
value.

Néo otnv ¢€kdoom 3.3.

PyObject *PyLong_FromVoidPtr (void *p)

Emotoepduevn wun: New reference. Part of the Stable ABI. Create a Python integer from the pointer p. The
pointer value can be retrieved from the resulting value using PyLong_AsVoidPtr ().

long PyLong_AsLong (PyObject *obj)

Part of the Stable ABIL Return a C 1ong representation of obj. If obj is not an instance of PyLongObject,
first call its __index__ () method (if present) to convert it to a PyLongObject.

Raise OverflowError if the value of obj is out of range for a 1ong.
Returns —1 on error. Use PyErr_ Occurred () to disambiguate.
AMoEe oty éxdoon 3.8: Use __index__ () if available.

AlhaEe ot ékdoon 3.10: This function will no longer use __int__ ().

long PyLong_AsLongAndOverflow (PyObject *obyj, int *overflow)

Fart of the Stable ABI. Return a C 1ong representation of obj. If obj is not an instance of PyLongOb ject,
first call its __index___ () method (if present) to convert it to a PyLongObject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or —1, respectively,
and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to O and return -1
as usual.

Returns —1 on error. Use PyErr Occurred () to disambiguate.
AMoEe oty éxdoon 3.8: Use __index__ () if available.

AlhaEe ot ékdoon 3.10: This function will no longer use __int__ ().

long long PyLong_AsLongLong (PyObject *obj)

Part of the Stable ABIL Return a C long long representation of obj. If obj is not an instance of
PyLongObject,firstcallits __index__ () method (if present) to convertittoa PyLongObject.

Raise OverflowError if the value of 0bj is out of range fora long long.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.
AMoEe oty €xdoon 3.8: Use __index__ () if available.

AMoEe oty ékdoon 3.10: This function will no longer use __int__ ().

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)

Part of the Stable ABL Return a C long long representation of obj. If obj is not an instance of
PyLongObject,firstcallits ___index__ () method (if present) to convert it to a PyLongOb ject.

If the value of obj is greater than LLONG_MAX or less than LLONG_MIN, set *overflow to 1 or -1, respectively,
and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return —1
as usual.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.
Néo otv éxdoom 3.2.

AlhaEe oty ékdoon 3.8: Use __index__ () if available.

110

Kegpalaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

AMEe oty £xdoon 3.10: This function will no longer use __int__ ().

Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)
Fart of the Stable ABI. Return a C Py_ssize_t representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range fora Py_ssize_ t.
Returns -1 on error. Use PyErr_Occurred () to disambiguate.

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)
Fart of the Stable ABIL. Return a C unsigned long representation of pylong. pylong must be an instance
of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)
Fart of the Stable ABI. Return a C size_t representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range for a size_t.
Returns (size_t) -1 onerror. Use PyErr_Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLonglong (PyObject *pylong)
Fart of the Stable ABI. Return a C unsigned long long representation of pylong. pylong must be an
instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long) -1 onerror. Use PyErr Occurred () to disambiguate.
AMoEe oty £xdoon 3.1: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)
Fart of the Stable ABIL Return a C unsigned long representation of obj. If obj is not an instance of
PyLongObject,firstcallits __index__ () method (if present) to convert it to a PyLongOb ject.

If the value of obj is out of range for an unsigned long, return the reduction of that value modulo
ULONG_MAX + 1.

Returns (unsigned long) -1 onerror. Use PyErr Occurred () to disambiguate.
AlhaEe oty ékdoon 3.8: Use __index__ () if available.
AMEe oty £xdoon 3.10: This function will no longer use __int__ ().

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)
Fart of the Stable ABI Return a C unsigned long long representation of obj. If obj is not an instance
of PyLongObject, firstcallits ___index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
ULLONG_MAX + 1.

Returns (unsigned long long) -1 onerror. Use PyErr Occurred () to disambiguate.
AlhaEe oty ékdoon 3.8: Use __index__ () if available.
AMEe oty £xdoon 3.10: This function will no longer use __int__ ().

double PyLong_AsDouble (PyObject *pylong)
Fart of the Stable ABI. Return a C double representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range for a double.

Returns —1. 0 on error. Use PyErr_Occurred () to disambiguate.

8.2. Numeric Objects 111

The Python/C API, Anpooicuon 3.10.18

void *PyLong_AsVoidPtr (PyObject *pylong)
Part of the Stable ABIL Convert a Python integer pylong to a C void pointer. If pylong cannot be converted,
an OverflowError will be raised. This is only assured to produce a usable void pointer for values created
with PyLong FromVoidPtr ().

Returns NULL on error. Use PyErr_Occurred () to disambiguate.

8.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_False and
Py_True. As such, the normal creation and deletion functions don’t apply to booleans. The following macros are
available, however.

int PyBool_Check (PyObject *0)
Return true if o is of type PyBool_Type. This function always succeeds.

PyObject *Py_False
The Python False object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

PyObject *Py_True
The Python True object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

Py _RETURN_FALSE
Return Py_False from a function, properly incrementing its reference count.

Py _RETURN_TRUE
Return Py_ True from a function, properly incrementing its reference count.

PyObject *PyBool_FromLong (long v)
Emotoepduesvy tun: New reference. Part of the Stable ABIL Return a new reference to Py_True or
Py_False depending on the truth value of v.

8.2.3 Floating Point Objects

type PyFloatObject
This subtype of PyOb ject represents a Python floating point object.

PyTypeObject PyFloat_Type
Fart of the Stable ABI. This instance of PyTypeOb ject represents the Python floating point type. This is
the same object as £1oat in the Python layer.

int PyFloat_Check (PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatOb ject. This function always
succeeds.

int PyFloat_CheckExact (PyObject *p)
Return true if its argument is a PyFloatObject, but not a subtype of PyFloatObject. This function
always succeeds.

PyObject *PyFloat_FromString (PyObject *str)
Emotpepduevn tut): New reference. Part of the Stable ABI. Create a PyFloatObject object based on the
string value in str, or NULL on failure.

PyObject *PyFloat_FromDouble (double v)
Emotoepduevn tun: New reference. Part of the Stable ABIL Create a PyF1loatObject object from v, or
NULL on failure.

double PyFloat_AsDouble (PyObject *pyfloat)
Fart of the Stable ABI. Return a C double representation of the contents of pyfloat. If pyfloat is not a Python
floating point object buthasa ___float__ () method, this method will first be called to convert pyfloat into a

112 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

float. If _ float__ () is notdefined thenitfalls backto __index__ (). This method returns —1 . 0 upon
failure, so one should call PyErr Occurred () to check for errors.

AMoEe oty ékdoomn 3.8: Use __index__ () if available.

double PyFloat_AS_DOUBLE (PyObject *pyfloat)
Return a C doub1le representation of the contents of pyfloat, but without error checking.

PyObject *PyFloat_GetInfo (void)
Emotoepduevn tun: New reference. Part of the Stable ABL Return a structseq instance which contains
information about the precision, minimum and maximum values of a float. It’s a thin wrapper around the
header file f1oat . h.

double PyFloat_GetMax ()
Part of the Stable ABI. Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin ()
Part of the Stable ABI. Return the minimum normalized positive float DBL_MIN as C double.

8.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex number
value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by value rather
than dereferencing them through pointers. This is consistent throughout the API.

type Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)
Return the sum of two complex numbers, using the C Py_ comp1ex representation.

Py_complex _Py_c_dif£ (Py_complex left, Py_complex right)
Return the difference between two complex numbers, using the C Py__ comp 1 ex representation.

Py_complex _Py_c_neg (Py_complex num)
Return the negation of the complex number num, using the C Py_ comp 1 ex representation.

Py_complex _Py_c_prod (Py_complex left, Py_complex right)
Return the product of two complex numbers, using the C Py_ comp 1 ex representation.

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)
Return the quotient of two complex numbers, using the C Py comp1ex representation.

If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_e_pow (Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_ comp I ex representation.

If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

8.2. Numeric Objects 113

The Python/C API, Anpooicuon 3.10.18

Complex Numbers as Python Objects

type PyComplexObject
This subtype of PyOb ject represents a Python complex number object.

PyTypeObject PyComplex_Type
Fart of the Stable ABI. This instance of Py TypeObject represents the Python complex number type. It is
the same object as complex in the Python layer.

int PyComplex_Check (PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject. This function
always succeeds.

int PyComplex_CheckExact (PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject. This
function always succeeds.

PyObject *PyComplex_FromCComplex (Py_complex v)
Emotoepduevn tun: New reference. Create a new Python complex number object from a C Py_complex
value.

PyObject *PyComplex_FromDoubles (double real, double imag)
Emortoepduevn tun: New reference. Part of the Stable ABI. Return anew PyComplexObject object from
real and imag.

double PyComplex_RealAsDouble (PyObject *op)
Part of the Stable ABI. Return the real part of op as a C double.

double PyComplex_ImagAsDouble (PyObject *op)
Part of the Stable ABI. Return the imaginary part of op as a C double.

Py_complex PyComplex_AsCComplex (PyObject *op)
Return the Py_ comp1ex value of the complex number op.

If op is not a Python complex number object but hasa __complex__ () method, this method will first be
called to convert op to a Python complex number object. If __complex__ () is not defined then it falls back
to_ float_ ().If __float__ () isnotdefined then it falls back to ___index__ (). Upon failure, this

method returns —1 . 0 as a real value.

AMoEe oty éxdoon 3.8: Use __index__ () if available.

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and called with a non-bytes parameter.

type PyBytesObject
This subtype of PyOb ject represents a Python bytes object.

PyTypeObject PyBytes_Type
Part of the Stable ABI. This instance of PyTypeObject represents the Python bytes type; it is the same
object as bytes in the Python layer.

int PyBytes_Check (PyObject *0)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type. This function always
succeeds.

114 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

int PyBytes_CheckExact (PyObject *0)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type. This function
always succeeds.

PyObject *PyBytes_FromString (const char *v)
Emotoepduevn nun: New reference. Part of the Stable ABI. Return a new bytes object with a copy of the
string v as value on success, and NULL on failure. The parameter v must not be NULL; it will not be checked.

PyObject *PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)
Emortoepduevn tur: New reference. Part of the Stable ABIL. Return a new bytes object with a copy of the
string v as value and length len on success, and NULL on failure. If v is NULL, the contents of the bytes object
are uninitialized.

PyObject *PyBytes_FromFormat (const char *format, ...)
Emortpepduevny tun: New reference. Part of the Stable ABI. Take a C print £ () -style format string and a
variable number of arguments, calculate the size of the resulting Python bytes object and return a bytes object
with the values formatted into it. The variable arguments must be C types and must correspond exactly to the
format characters in the format string. The following format characters are allowed:

Format Characters | Type Comment

%% n/a The literal % character.

$C int A single byte, represented as a C int.
5d int Equivalent to print f ("9d") K
Su unsigned int Equivalent to printf ("su").!
%1d long Equivalent to printf ("% ld") I
$1lu unsigned long Equivalent to print f ("$1u").!
%zd Py_ssize_t | Equivalentto printf ("$zd"). I
$zu size_t Equivalent to printf ("$zu"). I
$i int Equivalent to print £ ("$i").!
$x int Equivalent to printf ("$x") I
%$s const char* A null-terminated C character array.
9 const void* The hex representation of a C pointer. Mostly equivalent to

printf ("$p") except that it is guaranteed to start with the
literal Ox regardless of what the platform’s print f yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object,
and any extra arguments discarded.

PyObject *PyBytes_FromFormatV (const char *format, va_list vargs)
Emotpepduevn twun: New reference. Part of the Stable ABI. Identical to PyBytes FromFormat () except
that it takes exactly two arguments.

PyObject *PyBytes_FromObject (PyObject *o)
Emotoepduevny wun: New reference. Part of the Stable ABI. Return the bytes representation of object o that
implements the buffer protocol.

Py_ssize_t PyBytes_Size (PyObject *0)
Fart of the Stable ABI. Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE (PyObject *0)
Macro form of PyBytes_Size () but without error checking.

char *PyBytes_AsString (PyObject *0)
Fart of the Stable ABI. Return a pointer to the contents of o. The pointer refers to the internal buffer of o,
which consists of 1en (o) + 1 bytes. The last byte in the buffer is always null, regardless of whether there
are any other null bytes. The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It mustnot be deallocated. If o is not a bytes object
atall, PyBytes_ AsString () returns NULL and raises TypeError.

! For integer specifiers (d, u, 1d, lu, zd, zu, i, x): the O-conversion flag has effect even when a precision is given.

8.3. Sequence Objects 115

The Python/C API, Anpooicuon 3.10.18

char *PyBytes_AS_STRING (PyObject *string)

Macro form of PyBytes_AsString () but without error checking.

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)

Part of the Stable ABI. Return the null-terminated contents of the object obj through the output variables buffer
and length.

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns —1
and a ValueError is raised.

The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not
counted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size).Itmustnotbe deallocated. If obj is not a bytes object
atall, PyBytes AsStringAndSize () returns —1 and raises TypeError.

AlaEe ot ékdoon 3.5: Previously, TypeError was raised when embedded null bytes were encountered
in the bytes object.

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)

Part of the Stable ABI. Create a new bytes object in *byfes containing the contents of newpart appended to
bytes; the caller will own the new reference. The reference to the old value of byfes will be stolen. If the new
object cannot be created, the old reference to bytes will still be discarded and the value of *byfes will be set to
NULL; the appropriate exception will be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)

Part of the Stable ABI. Create a new bytes object in *bytes containing the contents of newpart appended to
bytes. This version releases the strong reference to newpart (i.e. decrements its reference count).

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)

A way to resize a bytes object even though it is «immutable». Only use this to build up a brand new bytes
object; don’t use this if the bytes may already be known in other parts of the code. It is an error to call this
function if the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an
lvalue (it may be written into), and the new size desired. On success, *bytes holds the resized bytes object and
0 is returned; the address in *bytes may differ from its input value. If the reallocation fails, the original bytes
object at *bytes is deallocated, *bytes is set to NULL, MemoryError is set, and —1 is returned.

8.3.2 Byte Array Objects

type PyByteArrayObject

This subtype of PyOb ject represents a Python bytearray object.

PyTypeObject PyByteArray_ Type

Fart of the Stable ABI. This instance of Py TypeOb ject represents the Python bytearray type; it is the same
object as bytearray in the Python layer.

Type check macros

int PyByteArray_ Check (PyObject *0)

Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type. This function
always succeeds.

int PyByteArray_ CheckExact (PyObject *0)

Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type. This
function always succeeds.

116

Kegpalaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

Direct API functions

PyObject *PyByteArray_FromObject (PyObject *0)
Emotoepduevn turn: New reference. Part of the Stable ABIL. Return a new bytearray object from any object,
o, that implements the buffer protocol.

PyObject *PyByteArray FromStringAndSize (const char *string, Py ssize_t len)
Emotoepduevn tyur): New reference. Part of the Stable ABI Create a new bytearray object from string and its
length, len. On failure, NULL is returned.

PyObject *PyByteArray_Concat (PyObject *a, PyObject *b)
Emotoepduevny wun: New reference. Part of the Stable ABI. Concat bytearrays a and b and return a new
bytearray with the result.

Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Fart of the Stable ABI. Return the size of bytearray after checking for a NULL pointer.

char *PyByteArray_AsString (PyObject *bytearray)
Fart of the Stable ABI. Return the contents of byfearray as a char array after checking for a NULL pointer. The
returned array always has an extra null byte appended.

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
Part of the Stable ABI. Resize the internal buffer of bytearray to len.

Macros

These macros trade safety for speed and they don’t check pointers.

char *PyByteArray_AS_STRING (PyObject *bytearray)
Macro version of PyByteArray AsString().

Py_ssize_t PyByteArray_ GET_SIZE (PyObject *bytearray)
Macro version of PyByteArray Size ().

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in
order to allow handling the complete range of Unicode characters while staying memory efficient. There are special
cases for strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112
(which is the full Unicode range).

Py _UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE* representation is deprecated and inefficient.

Due to the transition between the old APIs and the new APIs, Unicode objects can internally be in two states
depending on how they were created:

« «canonical» Unicode objects are all objects created by a non-deprecated Unicode API. They use the most
efficient representation allowed by the implementation.

o «legacy» Unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode ()) and only bear the Py_UNICODE* representation; you will have to
call PyUnicode READY () on them before calling any other APL

Ynueioon: The «legacy» Unicode object will be removed in Python 3.12 with deprecated APIs. All Unicode objects
will be «canonical» since then. See PEP 623 for more information.

8.3. Sequence Objects 117

https://www.python.org/dev/peps/pep-0393
https://www.python.org/dev/peps/pep-0623

The Python/C API, Anpooicuon 3.10.18

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:

type Py_UCS4
type Py_UCS2

type Py _UCS1
Fart of the Stable ABI. These types are typedefs for unsigned integer types wide enough to contain characters
of 32 bits, 16 bits and 8 bits, respectively. When dealing with single Unicode characters, use Py_ UCS4.

Néo oty éxdoon 3.3.

type Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

AMoEe ot €ékdoon 3.3: In previous versions, this was a 16-bit type or a 32-bit type depending on whether
you selected a «narrow» or «wide» Unicode version of Python at build time.

type PyASCIIObject
type PyCompactUnicodeObject
type PyUnicodeObject

These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

Néo otnv ¢kdoom 3.3.

PyTypeObject PyUnicode_Type
Fart of the Stable ABI. This instance of Py TypeObject represents the Python Unicode type. It is exposed
to Python code as str.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject *0)
Return true if the object o is a Unicode object or an instance of a Unicode subtype. This function always
succeeds.

int PyUnicode_CheckExact (PyObject *0)
Return true if the object o is a Unicode object, but not an instance of a subtype. This function always succeeds.
int PyUnicode_READY (PyObject *0)
Ensure the string object o is in the «canonical» representation. This is required before using any of the access
macros described below.

Returns 0 on success and —1 with an exception set on failure, which in particular happens if memory allocation
fails.

Néo oty éxdoon 3.3.

Deprecated since version 3.10, will be removed in version 3.12: This API will be removed with
PyUnicode_FromUnicode ().

Py_ssize_t PyUnicode_GET_LENGTH (PyObject *0)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the «canonical»
representation (not checked).

Néo otnv ékdoom 3.3.
Py _UCSI] *PyUnicode_1BYTE_DATA (PyObject *0)
Py_UCS2 *PyUnicode_2BYTE_DATA (PyObject *0)

Py_UCS4 *PyUnicode_4BYTE_DATA (PyObject *0)
Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct
character access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND () to select the right macro. Make sure PyUnicode_READY () has been called before
accessing this.

118 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

Néo otv ¢kdoom 3.3.

PyUnicode_WCHAR_KIND
PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND
Return values of the PyUnicode_ KIND () macro.
Néo otnv ¢€kdoom 3.3.

Deprecated since version 3.10, will be removed in version 3.12: PyUnicode_ WCHAR_KIND is deprecated.

unsigned int PyUnicode_KIND (PyObject *0)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this
Unicode object uses to store its data. o has to be a Unicode object in the «canonical» representation (not
checked).

Néo otv éxdoom 3.3.

void *PyUnicode_DATA (PyObject *0)
Return a void pointer to the raw Unicode buffer. o has to be a Unicode object in the «canonical» representation
(not checked).

Néo otv éxdoon 3.3.

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA ()). This macro does not do
any sanity checks and is intended for usage in loops. The caller should cache the kind value and data pointer
as obtained from other macro calls. index is the index in the string (starts at 0) and value is the new code point
value which should be written to that location.

Néo otnv ékdoom 3.3.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks
or ready calls are performed.

Néo otnv ¢kdoom 3.3.

Py _UCS4 PyUnicode_READ_CHAR (PyObject *o, Py_ssize_t index)
Read a character from a Unicode object o, which must be in the «canonical» representation. This is less efficient
than PyUnicode_READ () if you do multiple consecutive reads.

Néo otnv ékdoom 3.3.

PyUnicode_MAX_CHAR_VALUE (0)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
«canonical» representation. This is always an approximation but more efficient than iterating over the string.

Néo oty éxdoon 3.3.

Py_ssize_t PyUnicode_GET_SIZE (PyObject *0)
Return the size of the deprecated Py_ UNICODE representation, in code units (this includes surrogate pairs as
2 units). o has to be a Unicode object (not checked).

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode GET_LENGTH ().

Py_ssize_t PyUnicode_GET_DATA_SIZE (PyObject *0)
Return the size of the deprecated Py_ UNICODE representation in bytes. o has to be a Unicode object (not
checked).

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode GET_LENGTH ().

Py _UNICODE *PyUnicode_AS_UNICODE (PyObject *0)

8.3. Sequence Objects 119

The Python/C API, Anpooicuon 3.10.18

const char *PyUnicode_AS_DATA (PyObject *0)
Return a pointer to a Py_ UNICODE representation of the object. The returned buffer is always terminated
with an extra null code point. It may also contain embedded null code points, which would cause the string to
be truncated when used in most C functions. The AS_DATA form casts the pointer to const char*. The o
argument has to be a Unicode object (not checked).

AMoEe oty ékdoomn 3.3: This macro is now inefficient — because in many cases the Py UNICODE
representation does not exist and needs to be created — and can fail (return NULL with an exception set). Try
to port the code to use the new PyUnicode_nBYTE_DATA () macros or use PyUnicode WRITE () or
PyUnicode_READ ().

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using the PyUnicode_nBYTE_DATA () family of macros.

int PyUnicode_IsIdentifier (PyObject *0)
Part of the Stable ABI. Return 1 if the string is a valid identifier according to the language definition, section
identifiers. Return 0 otherwise.

AloEe ot €kdoom 3.9: The function does not call Py_FatalError () anymore if the string is not ready.

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py UCS4 ch)
Return 1 or 0 depending on whether c# is a whitespace character.

int Py UNICODE_ISLOWER (Py_UCS4 ch)
Return 1 or 0 depending on whether ch is a lowercase character.

int Py_UNICODE_ISUPPER (Py UCS4 ch)
Return 1 or 0 depending on whether ch is an uppercase character.

int Py_UNICODE_ISTITLE (Py UCS4 ch)
Return 1 or 0 depending on whether ch is a titlecase character.

int Py _UNICODE_ISLINEBREAK (Py UCS4 ch)
Return 1 or 0 depending on whether c# is a linebreak character.

int Py UNICODE_ISDECIMAL (Py_UCS4 ch)
Return 1 or 0 depending on whether ch is a decimal character.

int Py_UNICODE_ISDIGIT (Py UCS4 ch)
Return 1 or 0 depending on whether c# is a digit character.

int Py UNICODE_ISNUMERIC (Py_UCS4 ch)
Return 1 or 0 depending on whether ch is a numeric character.

int Py_UNICODE_ISALPHA (Py UCS4 ch)
Return 1 or 0 depending on whether ch is an alphabetic character.

int Py UNICODE_ISALNUM (Py UCS4 ch)
Return 1 or O depending on whether c/ is an alphanumeric character.

int Py UNICODE_ISPRINTABLE (Py_UCS4 ch)
Return 1 or 0 depending on whether c# is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as «Other» or «Separator», excepting the ASCII space (0x20) which
is considered printable. (Note that printable characters in this context are those which should not be escaped
when repr () is invoked on a string. It has no bearing on the handling of strings written to sy s . stdout or
sys.stderr.)

These APIs can be used for fast direct character conversions:

120 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

Py_UCS4 Py_UNICODE_TOLOWER (Py_UCS4 ch)
Return the character ch converted to lower case.

AmoovpOnke oty €kdoom 3.3: This function uses simple case mappings.

Py_UCS4 Py_UNICODE_TOUPPER (Py UCS4 ch)
Return the character ch converted to upper case.

AmoovupOnke otnv éxdoon 3.3: This function uses simple case mappings.

Py_UCS4 Py_UNICODE_TOTITLE (Py UCS4 ch)
Return the character ch converted to title case.

AmoovpOnke otnv £kdoon 3.3: This function uses simple case mappings.

int Py_ UNICODE_TODECIMAL (Py_UCS4 ch)
Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This macro
does not raise exceptions.

int Py_UNICODE_TODIGIT (Py UCS4 ch)
Return the character ch converted to a single digit integer. Return —1 if this is not possible. This macro does
not raise exceptions.

double Py_UNICODE_TONUMERIC (Py_UCS4 ch)
Return the character ch converted to a double. Return -1 . 0 if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:

Py_UNICODE_IS_SURROGATE (ch)
Check if ch is a surrogate (0xD800 <= ch <= OxDFFF).

Py UNICODE_IS_HIGH_SURROGATE (ch)
Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).

Py UNICODE_IS_LOW_SURROGATE (ch)
Check if ch is a low surrogate (0xDCO0 <= ch <= OxDFFF).

Py_UNICODE_JOIN_SURROGATES (high, low)
Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject *PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)
Emortoepduevn nun: New reference. Create a new Unicode object. maxchar should be the true maximum
code point to be placed in the string. As an approximation, it can be rounded up to the nearest value in the
sequence 127, 255, 65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not
resizable.

Néo otnv €kdoon 3.3.

PyObject *PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_t size)
Emotoepduevn tun: New reference. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc.,asreturned by PyUnicode_KIND ()). The buffer must point to an array
of size units of 1, 2 or 4 bytes per character, as given by the kind.

Néo otnv ékdoon 3.3.

PyObject *PyUnicode_FromStringAndSize (const char *u, Py_ssize_t size)
Emotoepduevn tun: New reference. Part of the Stable ABI. Create a Unicode object from the char buffer u.
The bytes will be interpreted as being UTF-8 encoded. The buffer is copied into the new object. If the buffer
is not NULL, the return value might be a shared object, i.e. modification of the data is not allowed.

8.3. Sequence Objects 121

The Python/C API, Anpooicuon 3.10.18

If u is NULL, this function behaves like PyUnicode FromUnicode () with the buffer set to NULL. This
usage is deprecated in favor of PyUnicode_New (), and will be removed in Python 3.12.

PyObject *PyUnicode_FromString (const char *u)
Emotoepduevn tun: New reference. Part of the Stable ABIL Create a Unicode object from a UTF-8 encoded
null-terminated char buffer u.

PyObject *PyUnicode_FromFormat (const char *format, ...)
Emotoepduevn tiun: New reference. Part of the Stable ABIL Take a C printf () -style format string and
a variable number of arguments, calculate the size of the resulting Python Unicode string and return a string
with the values formatted into it. The variable arguments must be C types and must correspond exactly to the
format characters in the format ASCII-encoded string. The following format characters are allowed:

Format Characters | Type Comment

% n/a The literal % character.

Ele int A single character, represented as a Cint.

%d int Equivalent to printf (" °/d")

Su unsigned int Equivalent to printf (" my T

%$1d long Equivalent to printf ("$1d").!

$1i long Equivalent to print £ (" %l T

%$1lu unsigned long Equivalent to printf ("$1u").!

$11d long long Equivalent to print f ("$11d").!

$11i long long Equivalent to printf ("$11i").!

$1lu unsigned long long Equivalent to print £ ("$11u").!

%$zd Py _ssize t Equivalent to print f ("$zd").!

$z1 Py _ssize_t Equivalent to printf ("$z1i).1

$zu size_t Equivalent to printf ("$zu").!

%i int Equivalent to printf ("$i"). 1

$x int Equivalent to printf ("$x").!

%s const char* A null-terminated C character array.

$p const void* The hex representation of a C pointer. Mostly
equivalent to printf ("%p") except that it is
guaranteed to start with the literal 0x regardless of
what the platform’s print £ yields.

SA PyObject* The result of calling ascii ().

$U PyObject* A Unicode object.

SV PyObject*, const char* | A Unicode object (which may be NULL) and a
null-terminated C character array as a second
parameter (which will be used, if the first parameter is
NULL).

%S PyObject* The result of calling PyObject_Str().

%R PyObject* The result of calling PyObject_Repr ().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

Enueiwon: The width formatter unit is number of characters rather than bytes. The precision formatter unit
is number of bytes for "%$s" and "$V" (if the PyObject * argument is NULL), and a number of characters
for "SA", "SU", "$S", "SR" and "$V" (if the PyObject* argument is not NULL).

AMEe oty £xdoon 3.2: Support for "$11d" and "$11u" added.
AMoEe otnv ékdoon 3.3: Support for "$1i", "$11i" and "$zi" added.

AMoEe otnv €kdoom 3.4: Support width and precision formatter for "$s™, "$A", "sU", "sV", "3S",
"$R" added.

! For integer specifiers (d, u, 1d, i, lu, 11d, 11i, llu, zd, zi, zu, i, x): the O-conversion flag has effect even when a precision is given.

122 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

PyObject *PyUnicode_FromFormatV (const char *format, va_list vargs)
Emotoepduevn tur): New reference. Part of the Stable ABI. Identical to PyUnicode_FromFormat ()
except that it takes exactly two arguments.

PyObject *PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char

*errors)
Emortoepduevn tun: New reference. Part of the Stable ABIL. Decode an encoded object obj to a Unicode

object.

bytes, bytearray and other bytes-like objects are decoded according to the given encoding and using the
error handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in
Codecs for details).

All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

Py_ssize_t PyUnicode_GetLength (PyObject *unicode)
Part of the Stable ABI since version 3.7. Return the length of the Unicode object, in code points.

Néo otnv ¢kdoon 3.3.

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t to_start, PyObject * from, Py_ssize_t
from_start, Py_ssize_t how_many)
Copy characters from one Unicode object into another. This function performs character conversion when
necessary and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise
returns the number of copied characters.

Néo otnv ¢kdoon 3.3.

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].

Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return —1 and raise an exception on error.
Néo otnv ¢€kdoom 3.3.

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
FPart of the Stable ABI since version 3.7. Write a character to a string. The string must have been created through
PyUnicode_New (). Since Unicode strings are supposed to be immutable, the string must not be shared, or
have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object
can be modified safely (i.e. that it its reference count is one).

Néo omnv ékdoom 3.3.

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)
Fart of the Stable ABI since version 3.7. Read a character from a string. This function checks that
unicode is a Unicode object and the index is not out of bounds, in contrast to the macro version
PyUnicode_READ_CHAR().

Néo otnv ¢kdoon 3.3.

PyObject *PyUnicode_Substring (PyObject *str, Py_ssize_t start, Py_ssize_t end)
Emotoepduevn tun: New reference. Part of the Stable ABI since version 3.7. Return a substring of str, from
character index start (included) to character index end (excluded). Negative indices are not supported.

Néo otnv ¢kdoon 3.3.

Py_UCS4 *PyUnicode_AsUCS4 (PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Part of the Stable ABI since version 3.7. Copy the string u into a UCS4 buffer, including a null character, if
copy_null is set. Returns NULL and sets an exception on error (in particular, a SystemError if buflen is
smaller than the length of u). buffer is returned on success.

Néo otnv ¢kdoon 3.3.

8.3. Sequence Objects 123

The Python/C API, Anpooicuon 3.10.18

Py_UCS4 *PyUnicode_AsUCS4Copy (PyObject *u)
Part of the Stable ABI since version 3.7. Copy the string u into a new UCS4 buffer that is allocated using
PyMem_Malloc (). If this fails, NULL is returned with a MemoryError set. The returned buffer always
has an extra null code point appended.

Néo otnv €kdoon 3.3.

Deprecated Py_UNICODE APIs

Deprecated since version 3.3, will be removed in version 3.12.

These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using
them, as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and
memory hits.

PyObject *PyUnicode_FromUnicode (const Py_UNICODE *u, Py_ssize_t size)
Emotoepduevn wun: New reference. Create a Unicode object from the Py_ UNICODE buffer u of the given
size. u may be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed
data. The buffer is copied into the new object.

If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.

If the buffer is NULL, PyUnicode_ READY () must be called once the string content has been filled before
using any of the access macros such as PyUnicode_KIND ().

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API,
please migrate to using PyUnicode FromKindAndData (), PyUnicode_FromWideChar (), or
PyUnicode_New ().

Py_UNICODE *PyUnicode_AsUnicode (PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py UNICODE buffer, or NULL on error. This will
create the Py UNICODE* representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py UNICODE string may also contain embedded null
code points, which would cause the string to be truncated when used in most C functions.

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode AsUCS4 (), PyUnicode_AsWideChar (), PyUnicode_ReadChar () or
similar new APIs.

PyObject *PyUnicode_TransformDecimalToASCII (Py UNICODE *s, Py_ssize_t size)
Emotoepduevn tun: New reference. Create a Unicode object by replacing all decimal digits in Py UNICODE
buffer of the given size by ASCII digits 0-9 according to their decimal value. Return NULL if an exception
occurs.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py UNICODE API; please
migrate to using Py_ UNICODE_TODECIMAL ().

Py_UNICODE *PyUnicode_AsUnicodeAndSize (PyObject *unicode, Py_ssize_t *size)
Like PyUnicode_AsUnicode (), but also saves the Py_ UNTCODE () array length (excluding the extra
null terminator) in size. Note that the resulting Py UNICODE* string may contain embedded null code points,
which would cause the string to be truncated when used in most C functions.

Néo otnv €kdoon 3.3.

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode AsUCS4 (), PyUnicode_AsWideChar (), PyUnicode_ReadChar () or
similar new APIs.

Py_ssize_t PyUnicode_GetSize (PyObject *unicode)
Fart of the Stable ABI. Return the size of the deprecated Py_UNICODE representation, in code units (this
includes surrogate pairs as 2 units).

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode GET_LENGTH ().

124 KegaAaio 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0393

The Python/C API, Anpooicuon 3.10.18

PyObject *PyUnicode_FromObject (PyObject *obj)
Emotoepduevn tyur): New reference. Part of the Stable ABIL. Copy an instance of a Unicode subtype to a new
true Unicode object if necessary. If obj is already a true Unicode object (not a subtype), return the reference
with incremented refcount.

Objects other than Unicode or its subtypes will cause a TypeError.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject *PyUnicode_DecodelLocaleAndSize (const char *str, Py ssize_t len, const char

*errors)
Emotoepduevn tiun: New reference. Part of the Stable ABI since version 3.7. Decode a string from UTF-8 on

Android and VxWorks, or from the current locale encoding on other platforms. The supported error handlers
are "strict" and "surrogateescape" (PEP 383). The decoder uses "strict" error handler if
errors is NULL. str must end with a null character but cannot contain embedded null characters.

Use PyUnicode_DecodeFSDefaultAndSize () to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).

This function ignores the Python UTF-8 Mode.
Agite emiong:

The Py_DecodeLocale () function.

Néo otnv ¢kdoom 3.3.

AMoEe otqv £éxdoon 3.7: The function now also uses the current locale encoding for the
surrogateescape error handler, except on Android. Previously, Py_DecodelLocale () was
used for the surrogateescape, and the current locale encoding was used for strict.

PyObject *PyUnicode_DecodelLocale (const char *str, const char *errors)
Emortoepduevny wur: New reference. Part of the Stable ABI since version 3.7. Similar to
PyUnicode_DecodeLocaleAndSize (), but compute the string length using strlen ().

Néo otv ékdoom 3.3.

PyObject *PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)
Emotoepduevn tiun: New reference. Part of the Stable ABI since version 3.7. Encode a Unicode object to UTF-
8 on Android and VxWorks, or to the current locale encoding on other platforms. The supported error handlers
are "strict" and "surrogateescape" (PEP 383). The encoder uses "strict" error handler if
errors is NULL. Return a bytes object. unicode cannot contain embedded null characters.

Use PyUnicode_EncodeFSDefault () toencodeastringtoPy_FileSystemDefaultEncoding
(the locale encoding read at Python startup).

This function ignores the Python UTF-8 Mode.
Agite emiong:

The Py_EncodeLocale () function.

Néo otnv ¢kdoon 3.3.

AMoEe omv éxdoon 3.7: The function now also uses the current locale encoding for the
surrogateescape error handler, except on Android. Previously, Py _EncodeLocale () was
used for the surrogateescape, and the current locale encoding was used for strict.

8.3. Sequence Objects 125

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0383

The Python/C API, Anpooicuon 3.10.18

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should
be used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler
(PEP 383 and PEP 529). To encode file names to bytes during argument parsing, the "0O&" converter should be
used, passing PyUnicode_FSConverter () as the conversion function:

int PyUnicode_FSConverter (PyObject *obj, void *result)

Fart of the Stable ABI. ParseTuple converter: encode str objects — obtained directly or through the os.
PathLike interface - to bytes using PyUnicode_EncodeFSDefault ();bytes objects are output
as-is. result must be a PyBytesObject* which must be released when it is no longer used.

Néo otnv ékdoom 3.1.

AlhaEe oty ékdoon 3.6: Accepts a path-like object.

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject *obj, void *result)

Part of the Stable ABI. ParseTuple converter: decode bytes objects — obtained either directly or indirectly
through the os.PathLike interface — to str using PyUnicode_DecodeFSDefaultAndSize ();
str objects are output as-is. result must be a PyUnicodeObject* which must be released when it is no
longer used.

Néo otnv ¢kdoom 3.2.
AMaEe oty ékdoon 3.6: Accepts a path-like object.

PyObject *PyUnicode_DecodeFSDefaultAndSize (const char *s, Py_ssize_t size)

Emotoepduevn tiun: New reference. Part of the Stable ABIL Decode a string from the filesystem encoding and
error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py _FileSystemDefaultEncoding is initialized at startup from the locale encoding and
cannot be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize ().

Agite emiong:
The Py _DecodeLocale () function.

AMEe oty £xdoon 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject *PyUnicode_DecodeFSDefault (const char *s)

Emotoepduevny tun: New reference. Part of the Stable ABL Decode a null-terminated string from the
filesystem encoding and error handler.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize () if you know the string length.

AlhaEe oty ékdoon 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject *PyUnicode_EncodeFSDefault (PyObject *unicode)

Emotoepduevny twun: New reference. Part of the Stable ABL Encode a Unicode object to
Py_FileSystemDefaultEncoding with the Py_FileSystemDefaultEncodeErrors
error handler, and return bytes. Note that the resulting bytes object may contain null bytes.

If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.

Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and
cannot be modified later. If you need to encode a string to the current locale encoding, use
PyUnicode_EncodeLocale ().

Agite emiong:

The Py EncodeLocale () function.

126

Kegpalaio 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0383
https://www.python.org/dev/peps/pep-0529

The Python/C API, Anpooicuon 3.10.18

Néo otv ¢€kdoom 3.2.

AMEe oty £xdoon 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

wchar_t Support

wchar_t support for platforms which support it:

PyObject *PyUnicode_FromWideChar (const wchar_t *w, Py_ssize_t size)
Emotoepduevny tyui): New reference. Part of the Stable ABI. Create a Unicode object from the wchar_t
buffer w of the given size. Passing —1 as the size indicates that the function must itself compute the length,
using weslen. Return NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *w, Py_ssize_t size)
Part of the Stable ABI. Copy the Unicode object contents into the wchar_ t buffer w. At most size
wchar_t characters are copied (excluding a possibly trailing null termination character). Return the number
of wchar_t characters copied or —1 in case of an error. Note that the resulting wchar_t* string may or
may not be null-terminated. It is the responsibility of the caller to make sure that the wchar_t* string is
null-terminated in case this is required by the application. Also, note that the wchar_t * string might contain
null characters, which would cause the string to be truncated when used with most C functions.

wchar_t *PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)
Part of the Stable ABI since version 3.7. Convert the Unicode object to a wide character string. The output
string always ends with a null character. If size is not NULL, write the number of wide characters (excluding
the trailing null termination character) into *size. Note that the resulting wchar_t string might contain null
characters, which would cause the string to be truncated when used with most C functions. If size is NULL and
the wchar_t* string contains null characters a ValueError is raised.

Returns a buffer allocated by PyMem_Alloc () (use PyMem Free () to free it) on success. On error,
returns NULL and *size is undefined. Raises a MemoryError if memory allocation is failed.

Néo otnv €kdoon 3.2.

AMoEe oty £€xdoom 3.7: Raises a ValueError if size is NULL and the wchar_t * string contains null
characters.

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via
the following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones
of the built-in str () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is UTF-8. The file system
calls should use PyUnicode_ FSConverter () for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some
systems, it will be a pointer to a static string, on others, it will change at run-time (such as when the application
invokes setlocale).

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the
codec. Default error handling for all built-in codecs is «strict» (ValueError is raised).

The codecs all use a similar interface. Only deviations from the following generic ones are documented for simplicity.

8.3. Sequence Objects 127

The Python/C API, Anpooicuon 3.10.18

Generic Codecs

These are the generic codec APIs:

PyObject *PyUnicode_Decode (const char *s, Py ssize t size, const char *encoding, const char

*errors)
Emotoepduevn tun: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes

of the encoded string s. encoding and errors have the same meaning as the parameters of the same name in the
str () built-in function. The codec to be used is looked up using the Python codec registry. Return NULL if
an exception was raised by the codec.

PyObject *PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char

*errors)
Emotoepduevn tyun: New reference. Part of the Stable ABI. Encode a Unicode object and return the result

as Python bytes object. encoding and errors have the same meaning as the parameters of the same name in
the Unicode encode () method. The codec to be used is looked up using the Python codec registry. Return
NULL if an exception was raised by the codec.

PyObject *PyUnicode_Encode (const Py _UNICODE *s, Py_ssize_t size, const char *encoding,

const char *errors)
Emotoepduevn tiun: New reference. Encode the Py_ UNICODE buffer s of the given size and return a Python

bytes object. encoding and errors have the same meaning as the parameters of the same name in the Unicode
encode () method. The codec to be used is looked up using the Python codec registry. Return NULL if an
exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode_AsEncodedString().

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject *PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Emotoepduevn tun: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes
of the UTF-8 encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF8Stateful (const char *s, Py ssize_t size, const char *errors,
Py_ssize_t *consumed)
Emotoepduevny nun: New reference. Part of the Stable ABIL If consumed is NULL, behave like
PyUnicode_DecodeUTFS8 (). If consumed is not NULL, trailing incomplete UTF-8 byte sequences will
not be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded
will be stored in consumed.

PyObject *PyUnicode_AsUTF8String (PyObject *unicode)
Emotoepduevn tiun: New reference. Part of the Stable ABIL Encode a Unicode object using UTF-8 and return
the result as Python bytes object. Error handling is «strict». Return NULL if an exception was raised by the
codec.

const char *PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)
Fart of the Stable ABI since version 3.10. Return a pointer to the UTF-8 encoding of the Unicode object, and
store the size of the encoded representation (in bytes) in size. The size argument can be NULL; in this case no
size will be stored. The returned buffer always has an extra null byte appended (not included in size), regardless
of whether there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a
pointer to the same buffer. The caller is not responsible for deallocating the buffer. The buffer is deallocated
and pointers to it become invalid when the Unicode object is garbage collected.

Néo otnv ¢kdoon 3.3.

AMoEe oty £xdoon 3.7: The return type is now const char * rather of char *.

128 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

AMEe otnv £xdoon 3.10: This function is a part of the limited API.

const char *PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode_AsUTF8AndSize (), but does not store the size.

Néo otnv ékdoon 3.3.
AMoEe oty £xdoon 3.7: The return type is now const char * rather of char *.

PyObject *PyUnicode_EncodeUTF8 (const Py UNICODE *s, Py_ssize_t size, const char *errors)
Emotoepduevn tun: New reference. Encode the Py_UNTCODE buffer s of the given size using UTF-8 and
return a Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py UNICODE
API; please migrate to using PyUnicode_ AsUTF8String (), PyUnicode AsUTF8AndSize () or
PyUnicode_AsEncodedString().

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject *PyUnicode_DecodeUTF32 (const char *s, Py ssize t size, const char *errors, int
*byteorder)
Emotoepduevn tiun: New reference. Part of the Stable ABIL. Decode size bytes from a UTF-32 encoded buffer
string and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults
to «strict».

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize_t size, const char *errors,
int *byteorder, Py_ssize_t *consumed)
Emotoepduevny wun: New reference. Part of the Stable ABIL If consumed is NULL, behave like
PyUnicode_DecodeUTF32 ().If consumedisnot NULL, PyUnicode DecodeUTF32Stateful ()
will not treat trailing incomplete UTF-32 byte sequences (such as a number of bytes not divisible by four) as
an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in
consumed.

PyObject *PyUnicode_AsUTF32String (PyObject *unicode)
Emotoepduevn tun: New reference. Part of the Stable ABIL. Return a Python byte string using the UTF-32
encoding in native byte order. The string always starts with a BOM mark. Error handling is «strict». Return
NULL if an exception was raised by the codec.

PyObject *PyUnicode_EncodeUTF32 (const Py UNICODE *s, Py_ssize_t size, const char *errors,
int byteorder)
Emotoepduevny tur): New reference. Return a Python bytes object holding the UTF-32 encoded value of the
Unicode data in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

8.3. Sequence Objects 129

The Python/C API, Anpooicuon 3.10.18

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_ UNICODE_WIDE is not defined, surrogate pairs will be output as a single code point.
Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode AsUTF32String () or PyUnicode_AsEncodedString().

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject *PyUnicode_DecodeUTF16 (const char *s, Py ssize_t size, const char *errors, int

*byteorder)
Emotoepduevn tiun: New reference. Part of the Stable ABI. Decode size bytes from a UTF-16 encoded buffer

string and return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults
to «strict».

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is
-1 or 1, any byte order mark is copied to the output (where it will result in either a \ufeff ora \ufffe
character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.

Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF1l6Stateful (const char *s, Py_ssize_t size, const char *errors,

int *byteorder, Py_ssize_t *consumed)
Emotoepduevny wun: New reference. Part of the Stable ABIL If consumed is NULL, behave like
PyUnicode_DecodeUTF16 ().If consumedisnot NULL, PyUnicode DecodeUTFl16Stateful ()
will not treat trailing incomplete UTF-16 byte sequences (such as an odd number of bytes or a split surrogate
pair) as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be
stored in consumed.

PyObject *PyUnicode_AsUTF16String (PyObject *unicode)

Emotpepduevn tyun: New reference. Part of the Stable ABIL Return a Python byte string using the UTF-16
encoding in native byte order. The string always starts with a BOM mark. Error handling is «strict». Return
NULL if an exception was raised by the codec.

PyObject *PyUnicode_EncodeUTF16 (const Py UNICODE *s, Py ssize_t size, const char *errors,

int byteorder)
Emoroepduevn tun: New reference. Return a Python bytes object holding the UTF-16 encoded value of the

Unicode data in s. Output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: Dbig endian

If byteorder is 0, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

If Py_ UNICODE_WIDE is defined, a single Py UNICODE value may get represented as a surrogate pair. If
it is not defined, each Py_ UNTCODE values is interpreted as a UCS-2 character.

130

Kegpalaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode AsUTF16String () or PyUnicode_AsEncodedString().

UTF-7 Codecs

These are the UTF-7 codec APlIs:

PyObject *PyUnicode_DecodeUTF7 (const char *s, Py_ssize_t size, const char *errors)
Emotoepduevn tun: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes
of the UTF-7 encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF7Stateful (const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)
Emotoepduevy nun: New reference. Part of the Stable ABIL If consumed is NULL, behave like
PyUnicode_DecodeUTF7 ().If consumed is not NULL, trailing incomplete UTF-7 base-64 sections will
not be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded
will be stored in consumed.

PyObject *PyUnicode_EncodeUTF7 (const Py UNICODE *s, Py ssize t size, int base64SetO, int
base64 WhiteSpace, const char *errors)
Emotoepduevn nun: New reference. Encode the Py UNICODE buffer of the given size using UTF-7 and

return a Python bytes object. Return NULL if an exception was raised by the codec.

If base64SetO is nonzero, «Set O» (punctuation that has no otherwise special meaning) will be encoded in
base-64. If base64 WhiteSpace is nonzero, whitespace will be encoded in base-64. Both are set to zero for the
Python «utf-7» codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py_ UNICODE API; please
migrate to using PyUnicode_AsEncodedString ().

Unicode-Escape Codecs

These are the «Unicode Escape» codec APIs:

PyObject *PyUnicode_DecodeUnicodeEscape (const char *s, Py ssize t size, const char

*errors)
Emotoepduevn tun: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes

of the Unicode-Escape encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsUnicodeEscapeString (PyObject *unicode)
Emotpepduevn wun: New reference. Part of the Stable ABIL Encode a Unicode object using Unicode-Escape
and return the result as a bytes object. Error handling is «strict». Return NULL if an exception was raised by
the codec.

PyObject *PyUnicode_EncodeUnicodeEscape (const Py _UNICODE *s, Py_ssize_t size)
Emotoepduevn tun: New reference. Encode the Py UNTCODE buffer of the given size using Unicode-Escape
and return a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode_AsUnicodeEscapeString().

8.3. Sequence Objects 131

The Python/C API, Anpooicuon 3.10.18

Raw-Unicode-Escape Codecs

These are the «Raw Unicode Escape» codec APIs:

PyObject *PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize t size, const char

*errors)
Emotoepduevn tun: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes

of the Raw-Unicode-Escape encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)
Emortoepduevn tun: New reference. Part of the Stable ABIL. Encode a Unicode object using Raw-Unicode-
Escape and return the result as a bytes object. Error handling is «strict». Return NULL if an exception was
raised by the codec.

PyObject *PyUnicode_EncodeRawUnicodeEscape (const Py _UNICODE *s, Py_ssize_t size)
Emotoepduevn wun: New reference. Encode the Py UNICODE buffer of the given size using Raw-Unicode-
Escape and return a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style
Py_UNICODE API; please migrate to using PyUnicode_AsRawUnicodeEscapeString () or
PyUnicode_AsEncodedString ().

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.

PyObject *PyUnicode_DecodeLatinl (const char *s, Py_ssize_t size, const char *errors)
Emotpepduevn tun: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes
of the Latin-1 encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsLatinlString (PyObject *unicode)
Emotoepduevn tun: New reference. Part of the Stable ABIL. Encode a Unicode object using Latin-1 and return
the result as Python bytes object. Error handling is «strict». Return NULL if an exception was raised by the
codec.

PyObject *PyUnicode_EncodeLatinl (const Py _UNICODE *s, Py_ssize_t size, const char *errors)
Emotoepduevn tur: New reference. Encode the Py_ UNTCODE buffer of the given size using Latin-1 and
return a Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode_AsLatinlString () or PyUnicode_AsEncodedString ().

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject *PyUnicode_DecodeASCII (const char *s, Py ssize_t size, const char *errors)
Emotoepduevn turn: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes
of the ASCII encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsASCIIString (PyObject *unicode)
Emotoepduevn tiun: New reference. Part of the Stable ABIL. Encode a Unicode object using ASCII and return
the result as Python bytes object. Error handling is «strict». Return NULL if an exception was raised by the
codec.

PyObject *PyUnicode_EncodeASCII (const Py _UNICODE *s, Py_ssize_t size, const char *errors)
Emotoepduevny wun: New reference. Encode the Py_UNICODE buffer of the given size using ASCII and
return a Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py_ UNTCODE API; please
migrate to using PyUnicode_ AsASCIIString () or PyUnicode_AsEncodedString ().

132 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mappings to encode
and decode characters. The mapping objects provided must support the ___getitem__ () mapping interface;
dictionaries and sequences work well.

These are the mapping codec APIs:

PyObject *PyUnicode_DecodeCharmap (const char *data, Py ssize_t size, PyObject *mapping,
const char *errors)
Emotoepduevn tun: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes

of the encoded string s using the given mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the
range from 0 to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None.
Unmapped data bytes — ones which cause a LookupError, as well as ones which get mapped to None,
OxFFFE or '\ufffe', are treated as undefined mappings and cause an error.

PyObject *PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Emotoepduevn tiun: New reference. Part of the Stable ABI. Encode a Unicode object using the given mapping
object and return the result as a bytes object. Error handling is «strict». Return NULL if an exception was raised
by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255
or None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are
treated as «undefined mapping» and cause an error.

PyObject *PyUnicode_EncodeCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObject *mapping,
const char *errors)
Emotoepduevy tun: New reference. Encode the Py_UNICODE buffer of the given size using the given

mapping object and return the result as a bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py UNICODE API; please
migrate to using PyUnicode_AsCharmapString () or PyUnicode AsEncodedString ().

The following codec API is special in that maps Unicode to Unicode.

PyObject *PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)
Emotoepduevn tun: New reference. Part of the Stable ABI. Translate a string by applying a character mapping
table to it and return the resulting Unicode object. Return NULL if an exception was raised by the codec.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide the _ _getitem__ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

PyObject ¥*PyUnicode_TranslateCharmap (const Py UNICODE *s, Py _ssize_t size, PyObject
*mapping, const char *errors)
Emotpepduevny tiun: New reference. Translate a Py UNTCODE buffer of the given size by applying a character

mapping table to it and return the resulting Unicode object. Return NULL when an exception was raised by the
codec.

Deprecated since version 3.3, will be removed in version 3.11: Part of the old-style Py_ UNICODE API; please
migrate to using PyUnicode_Translate (). or generic codec based API

8.3. Sequence Objects 133

The Python/C API, Anpooicuon 3.10.18

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.

PyObject *PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Emotoepduevn tun: New reference. Part of the Stable ABI on Windows since version 3.7. Create a Unicode
object by decoding size bytes of the MBCS encoded string s. Return NULL if an exception was raised by the
codec.

PyObject *PyUnicode_DecodeMBCSStateful (const char *s, Py_ssize_t size, const char *errors,
Py_ssize_t *consumed)
Emotoepduevy mun: New reference. Part of the Stable ABI on Windows since version 3.7. If
consumed 1is NULL, behave like PyUnicode DecodeMBCS (). If consumed is not NULL,
PyUnicode_DecodeMBCSStateful () will not decode trailing lead byte and the number of bytes that
have been decoded will be stored in consumed.

PyObject *PyUnicode_AsMBCSString (PyObject *unicode)
Emotoepduevn tyur: New reference. Part of the Stable ABI on Windows since version 3.7. Encode a Unicode
object using MBCS and return the result as Python bytes object. Error handling is «strict». Return NULL if an
exception was raised by the codec.

PyObject *PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)
Emotoepduevn un: New reference. Part of the Stable ABI on Windows since version 3.7. Encode the Unicode
object using the specified code page and return a Python bytes object. Return NULL if an exception was raised
by the codec. Use CP_ACP code page to get the MBCS encoder.

Néo oty éxdoon 3.3.

PyObject *PyUnicode_EncodeMBCS (const Py UNICODE *s, Py_ssize_t size, const char *errors)
Emotoepduevny tun: New reference. Encode the Py_ UNTICODE buffer of the given size using MBCS and
return a Python bytes object. Return NULL if an exception was raised by the codec.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py UNICODE
API,; please migrate to using PyUnicode_AsMBCSString (), PyUnicode_EncodeCodePage () or
PyUnicode_AsEncodedString ().

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or -1 if an exception occurs.

PyObject *PyUnicode_Concat (PyObject *left, PyObject *right)
Emortoepduevny wun: New reference. Part of the Stable ABIL. Concat two strings giving a new Unicode string.

PyObject *PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)
Emortoepduevny nun: New reference. Part of the Stable ABI. Split a string giving a list of Unicode strings. If
sep is NULL, splitting will be done at all whitespace substrings. Otherwise, splits occur at the given separator.
At most maxsplit splits will be done. If negative, no limit is set. Separators are not included in the resulting list.

PyObject *PyUnicode_Splitlines (PyObject *s, int keepend)
Emotoepduevn tun: New reference. Part of the Stable ABI. Split a Unicode string at line breaks, returning a
list of Unicode strings. CRLF is considered to be one line break. If keepend is 0, the line break characters are
not included in the resulting strings.

PyObject *PyUnicode_Join (PyObject *separator, PyObject *seq)

Emotoepduevn tun: New reference. Part of the Stable ABI. Join a sequence of strings using the given separator
and return the resulting Unicode string.

134 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

Py_ssize_t PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int
direction)
Fart of the Stable ABI. Return 1 if substr matches str [start :end] at the given tail end (direction == -1

means to do a prefix match, direction == 1 a suffix match), O otherwise. Return —1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py ssize t end, int

direction)
Fart of the Stable ABIL Return the first position of substr in str [start:end] using the given direction
(direction == 1 means to do a forward search, direction == —1 a backward search). The return value is the

index of the first match; a value of —1 indicates that no match was found, and -2 indicates that an error
occurred and an exception has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *str, Py _UCS4 ch, Py_ssize_t start, Py_ssize_t end, int

direction)
Fart of the Stable ABI since version 3.7. Return the first position of the character ch in str [start:end]
using the given direction (direction == 1 means to do a forward search, direction == —1 a backward search).

The return value is the index of the first match; a value of —1 indicates that no match was found, and -2
indicates that an error occurred and an exception has been set.

Néo otnv ékdoon 3.3.
AMoEe oty £xdoon 3.7: start and end are now adjusted to behave like str [start:end].

Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Fart of the Stable ABI. Return the number of non-overlapping occurrences of substr in str [start:end].
Return -1 if an error occurred.

PyObject *PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py _ssize_ t

maxcount)
Emotoepduevn un: New reference. Part of the Stable ABI. Replace at most maxcount occurrences of substr
in str with replstr and return the resulting Unicode object. maxcount == —1 means replace all occurrences.

int PyUnicode_Compare (PyObject *left, PyObject *right)
Fart of the Stable ABL. Compare two strings and return -1, 0, 1 for less than, equal, and greater than,
respectively.

This function returns —1 upon failure, so one should call PyErr_Occurred () to check for errors.

int PyUnicode_CompareWithASCIIString (PyObject *uni, const char *string)
Part of the Stable ABIL. Compare a Unicode object, uni, with string and return —1, 0, 1 for less than, equal, and
greater than, respectively. It is best to pass only ASCII-encoded strings, but the function interprets the input
string as ISO-8859-1 if it contains non-ASCII characters.

This function does not raise exceptions.

PyObject *PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)
Emortoepduevn un: New reference. Part of the Stable ABI. Rich compare two Unicode strings and return
one of the following:

e NULL in case an exception was raised
e Py_True or Py_False for successful comparisons
e Py_NotImplemented in case the type combination is unknown
Possible values for op are Py_GT, Py_GE, Py_FEQ, Py_NE, Py_LT, and Py_LE.
PyObject *PyUnicode_Format (PyObject *format, PyObject *args)

Emotoepduevn tiun: New reference. Part of the Stable ABIL Return a new string object from format and args;

Q

this is analogous to format % args.

int PyUnicode_Contains (PyObject *container, PyObject *element)
Fart of the Stable ABI. Check whether element is contained in container and return true or false accordingly.

element has to coerce to a one element Unicode string. —1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **string)
Part of the Stable ABI. Intern the argument *string in place. The argument must be the address of a pointer
variable pointing to a Python Unicode string object. If there is an existing interned string that is the same as

8.3. Sequence Objects 135

The Python/C API, Anpooicuon 3.10.18

*string, it sets *string to it (releasing the reference to the old string object and creating a new strong reference
to the interned string object), otherwise it leaves *string alone and interns it (creating a new strong reference).
(Clarification: even though there is a lot of talk about references, think of this function as reference-neutral;
you own the object after the call if and only if you owned it before the call.)

PyObject *PyUnicode_InternFromString (const char *v)
Emotoepduevy wun: New reference. Part of the Stable ABL A combination of
PyUnicode_FromString() and PyUnicode_InternInPlace (), returning either a new
Unicode string object that has been interned, or a new («owned») reference to an earlier interned string object
with the same value.

8.3.4 Tuple Objects

type PyTupleObject
This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple_Type
Part of the Stable ABIL. This instance of Py TypeOb ject represents the Python tuple type; it is the same
object as tuple in the Python layer.

int PyTuple_Check (PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type. This function always succeeds.

int PyTuple_CheckExact (PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type. This function always
succeeds.

PyObject *PyTuple_New (Py_ssize_t len)
Emortoepduevn tiun: New reference. Part of the Stable ABI. Return a new tuple object of size len, or NULL
on failure.

PyObject *PyTuple_Pack (Py_ssize_tn, ...)
Emotoepduevn tiun: New reference. Part of the Stable ABIL Return a new tuple object of size n, or NULL
on failure. The tuple values are initialized to the subsequent n C arguments pointing to Python objects.
PyTuple_Pack (2, a, b) isequivalenttoPy_Buildvalue (" (0O)", a, b).

Py_ssize_t PyTuple_Size (PyObject *p)
Fart of the Stable ABI. Take a pointer to a tuple object, and return the size of that tuple.

Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.

PyObject *PyTuple_GetItem (PyObject *p, Py ssize_t pos)
Emotpepduevn tyui): Borrowed reference. Part of the Stable ABI. Return the object at position pos in the tuple
pointed to by p. If pos is negative or out of bounds, return NULL and set an IndexError exception.

PyObject *PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Emotoepduevny wun: Borrowed reference. Like PyTuple_GetItem(), but does no checking of its
arguments.

PyObject *PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Emortoepduevn wun: New reference. Part of the Stable ABIL Return the slice of the tuple pointed to by p
between low and high, or NULL on failure. This is the equivalent of the Python expression p [low:high].
Indexing from the end of the list is not supported.

int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)

Part of the Stable ABI. Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on
success. If pos is out of bounds, return —1 and set an IndexError exception.

Ynueiwon: This function «steals» a reference to o and discards a reference to an item already in the tuple at
the affected position.

136 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *0)
Like PyTuple_SetItem (),butdoesno error checking, and should only be used to fill in brand new tuples.

Znusi(ﬂ(m: This macro «steals» a reference to o, and, unlike PyTuple SetItem (), does not discard a
reference to any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple
may already be known to some other part of the code. The tuple will always grow or shrink at the end. Think
of this as destroying the old tuple and creating a new one, only more efficiently. Returns O on success. Client
code should never assume that the resulting value of *p will be the same as before calling this function. If the
object referenced by *p is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL,
and raises MemoryError or SystemError.

8.3.5 Struct Sequence Objects
Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.

PyTypeObject *PyStructSequence_NewType (PyStructSequence_Desc *desc)
Emotoepduevn tun: New reference. Part of the Stable ABIL Create a new struct sequence type from the data
in desc, described below. Instances of the resulting type can be created with Py St ruct Sequence_New ().

void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type fype from desc in place.

int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)
The same as PySt ruct Sequence_InitType, but returns O on success and —1 on failure.

Néo oty éxdoon 3.4.

type PyStructSequence_Desc
Fart of the Stable ABI (including all members). Contains the meta information of a struct sequence type to

create.
Field C Type Meaning
name const char * name of the struct sequence type
doc const char * pointer to docstring for the type or NULL to omit
fields PyStructSequence_Fiel gointer to NULL-terminated array with field names of
* the new type
n_in_sequenceint number of fields visible to the Python side (if used as
tuple)

type PyStructSequence_Field
Fart of the Stable ABI (including all members). Describes a field of a struct sequence. As a struct sequence
is modeled as a tuple, all fields are typed as PyObject*. The index in the fields array of the
PyStructSequence_Desc determines which field of the struct sequence is described.

Field| C Type Meaning

name const name for the field or NULL to end the list of named fields, set to
char * PyStructSequence_UnnamedField to leave unnamed

doc | const field docstring or NULL to omit
char *

const char *const PyStructSequence_UnnamedField
Special value for a field name to leave it unnamed.

8.3. Sequence Objects 137

The Python/C API, Anpooicuon 3.10.18

AMoEe oty £xdoon 3.9: The type was changed from char *.

PyObject *PyStructSequence_New (PyTypeObject *type)
Emotoepduevn tur): New reference. Part of the Stable ABL Creates an instance of fype, which must have
been created with Py St ruct Sequence_NewType ().

PyObject *PyStructSequence_GetItem (PyObject *p, Py_ssize_t pos)
Emotoepduevn tiun: Borrowed reference. Part of the Stable ABI. Return the object at position pos in the struct
sequence pointed to by p. No bounds checking is performed.

PyObject *PyStructSequence_GET_ITEM (PyObject *p, Py_ssize_t pos)
Emotoepduevn tun: Borrowed reference. Macro equivalent of Py St ructSequence_GetItem().

void PyStructSequence_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)
Part of the Stable ABI. Sets the field at index pos of the struct sequence p to value o. Like
PyTuple_ SET _ITEM/(), this should only be used to fill in brand new instances.

Ynueiwon: This function «steals» a reference to o.

void PyStructSequence_SET_ITEM (PyObject *p, Py_ssize_t *pos, PyObject *0)
Macro equivalent of Py St ruct Sequence_SetItem().

Enueiwon: This function «steals» a reference to o.

8.3.6 List Objects

type PyListObject
This subtype of PyOb ject represents a Python list object.

PyTypeObject PyList_Type
Fart of the Stable ABI. This instance of PyTypeOb ject represents the Python list type. This is the same
object as 1ist in the Python layer.

int PyList_Check (PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type. This function always succeeds.
int PyList_CheckExact (PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type. This function always succeeds.
PyObject *PyList_New (Py_ssize_t len)
Emortpe@pduevny tut): New reference. Part of the Stable ABI. Return a new list of length len on success, or
NULL on failure.

Ynueimon: If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot
use abstract API functions such as Py Sequence_SetItem () or expose the object to Python code before
setting all items to a real object with PyList_SetItem().

Py_ssize_t PyList_Size (PyObject *list)
Fart of the Stable ABIL Return the length of the list object in /ist; this is equivalent to 1en (1ist) on a list
object.

Py_ssize_t PyList_GET_SIZE (PyObject *list)
Macro form of PyList_Size () without error checking.

PyObject *PyList_GetItem (PyObject *list, Py_ssize_t index)
Emotoepduevn tun: Borrowed reference. Part of the Stable ABIL Return the object at position index in the
list pointed to by Zist. The position must be non-negative; indexing from the end of the list is not supported. If
index is out of bounds (<0 or >=len(list)), return NULL and set an IndexError exception.

138 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

PyObject *PyList_GET_ITEM (PyObject *list, Py_ssize_t i)
Emotoepduevn tun: Borrowed reference. Macro form of PyList_Get Item () without error checking.

int PyList_SetItem (PyObject *list, Py_ssize_t index, PyObject *item)

Part of the Stable ABI. Set the item at index index in list to item. Return O on success. If index is out of bounds,
return —1 and set an IndexError exception.

Xnueimon: This function «steals» a reference to ifem and discards a reference to an item already in the list at
the affected position.

void PyList_SET_ITEM (PyObject *list, Py_ssize_t i, PyObject *0)
Macro form of PyList_Set Item () without error checking. This is normally only used to fill in new lists
where there is no previous content.

Ynueiwon: This macro «steals» a reference to item, and, unlike PyList_SetItem (), does not discard a
reference to any item that is being replaced; any reference in /list at position i will be leaked.

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *item)
Part of the Stable ABI. Insert the item ifem into list /ist in front of index index. Return 0 if successful; return
-1 and set an exception if unsuccessful. Analogous to 1ist.insert (index, item).

int PyList_Append (PyObject *list, PyObject *item)
Fart of the Stable ABI. Append the object item at the end of list isz. Return 0 if successful; return —1 and set
an exception if unsuccessful. Analogous to 1ist .append (item).

PyObject *PyList_GetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high)
Emotoepduevny twun: New reference. Part of the Stable ABIL Return a list of the objects in list containing
the objects between low and high. Return NULL and set an exception if unsuccessful. Analogous to
list [low:high]. Indexing from the end of the list is not supported.

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Part of the Stable ABI. Set the slice of list between low and high to the contents of itemlist. Analogous to
list[low:high] = itemlist. The itemlist may be NULL, indicating the assignment of an empty list
(slice deletion). Return O on success, —1 on failure. Indexing from the end of the list is not supported.

int PyList_Sort (PyObject *list)
Part of the Stable ABI. Sort the items of /ist in place. Return 0 on success, —1 on failure. This is equivalent to
list.sort ().

int PyList_Reverse (PyObject *list)
Part of the Stable ABIL Reverse the items of list in place. Return 0 on success, —1 on failure. This is the
equivalent of 1ist.reverse ().

PyObject *PyList_AsTuple (PyObject *list)
Emotoepduevn tiun: New reference. Part of the Stable ABIL Return a new tuple object containing the contents
of list; equivalent to tuple (list).

8.4 Container Objects

8.4.1 Dictionary Objects

type PyDictObject
This subtype of PyOb ject represents a Python dictionary object.

PyTypeObject PyDict_Type

Fart of the Stable ABI. This instance of PyTypeObject represents the Python dictionary type. This is the
same object as dict in the Python layer.

8.4. Container Objects 139

The Python/C API, Anpooicuon 3.10.18

int PyDict_Check (PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type. This function always succeeds.

int PyDict_CheckExact (PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type. This function always succeeds.

PyObject *PyDict_New ()
Emotoepduevn tyun: New reference. Part of the Stable ABI. Return a new empty dictionary, or NULL on
failure.

PyObject *PyDictProxy_New (PyObject *mapping)
Emotoepduevn tun: New reference. Part of the Stable ABI. Returna t ypes .MappingProxyType object
for a mapping which enforces read-only behavior. This is normally used to create a view to prevent modification
of the dictionary for non-dynamic class types.

void PyDict_Clear (PyObject *p)
Fart of the Stable ABI. Empty an existing dictionary of all key-value pairs.

int PyDict_Contains (PyObject *p, PyObject *key)
Part of the Stable ABI. Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise
return 0. On error, return —1. This is equivalent to the Python expression key in p.

PyObject *PyDict_Copy (PyObject *p)
Emotoepduevn wun: New reference. Part of the Stable ABL Return a new dictionary that contains the same
key-value pairs as p.

int PyDict_SetItem (PyObject *p, PyObject *key, PyObject *val)
Part of the Stable ABI. Insert val into the dictionary p with a key of key. key must be hashable; if it isn't,
TypeError will be raised. Return 0 on success or —1 on failure. This function does not steal a reference to
val.

int PyDict_SetItemString (PyObject *p, const char *key, PyObject *val)
Part of the Stable ABL. Insert val into the dictionary p using key as a key. key should be a const char*.
The key object is created using PyUnicode_FromString (key). Return 0 on success or —1 on failure.
This function does not steal a reference to val.

int PyDict_DelItem (PyObject *p, PyObject *key)
Fart of the Stable ABL. Remove the entry in dictionary p with key key. key must be hashable; if it isn't,
TypeError is raised. If key is not in the dictionary, KeyError is raised. Return 0 on success or —1 on
failure.

int PyDict_DelItemString (PyObject *p, const char *key)
Fart of the Stable ABIL. Remove the entry in dictionary p which has a key specified by the string key. If key is
not in the dictionary, KeyError is raised. Return 0 on success or —1 on failure.

PyObject *PyDict_GetItem (PyObject *p, PyObject *key)
Emortoepduevn wun: Borrowed reference. Part of the Stable ABI. Return the object from dictionary p which
has a key key. Return NULL if the key key is not present, but without setting an exception.

Note that exceptions which occur while calling __hash__ () and __eq__ () methods will get suppressed.
To get error reporting use PyDict_GetItemWithError () instead.

AMoEe oty €ékdoon 3.10: Calling this API without GIL held had been allowed for historical reason. It is no
longer allowed.

PyObject *PyDict_GetItemWithError (PyObject *p, PyObject *key)
Emoroepduevny tun: Borrowed reference. Part of the Stable ABIL Variant of PyDict_GetItem () that
does not suppress exceptions. Return NULL with an exception set if an exception occurred. Return NULL
without an exception set if the key wasn’t present.

PyObject *PyDict_GetItemString (PyObject *p, const char *key)
Emotoepduevn tun: Borrowed reference. Part of the Stable ABI. This is the same as PyDict_GetTtem(),
but key is specified as a const char*, rather than a PyObject*.

Note that exceptions which occur while calling _ _hash__ () and __eq__ () methods and creating a
temporary string object will get suppressed. To get error reporting use PyDict_GetItemWithError ()

140 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

instead.

PyObject *PyDict_SetDefault (PyObject *p, PyObject *key, PyObject *defaultobj)
Emotoepduevn tun: Borrowed reference. This is the same as the Python-level dict .setdefault (). If
present, it returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is inserted
with value defaultobj and defaultobj is returned. This function evaluates the hash function of key only once,
instead of evaluating it independently for the lookup and the insertion.

Néo otv éxdoon 3.4.

PyObject *PyDict_Items (PyObject *p)
Emotoepduevn tun: New reference. Part of the Stable ABIL. Return a PyListObject containing all the
items from the dictionary.

PyObject *PyDict_Keys (PyObject *p)
Emotoepduevn tiun: New reference. Part of the Stable ABIL. Return a PyListObject containing all the
keys from the dictionary.

PyObject *PyDict_Values (PyObject *p)
Emortpepduevn tui): New reference. Part of the Stable ABIL Return a PyListObject containing all the
values from the dictionary p.

Py_ssize_t PyDict_Size (PyObject *p)
Fart of the Stable ABL Return the number of items in the dictionary. This is equivalent to len (p) on a
dictionary.

int PyDict_Next (PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)

Fart of the Stable ABI. Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by
ppos must be initialized to O prior to the first call to this function to start the iteration; the function returns true
for each pair in the dictionary, and false once all pairs have been reported. The parameters pkey and pvalue
should either point to PyOb ject * variables that will be filled in with each key and value, respectively, or may
be NULL. Any references returned through them are borrowed. ppos should not be altered during iteration. Its
value represents offsets within the internal dictionary structure, and since the structure is sparse, the offsets are
not consecutive.

For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
/* do something interesting with the values... */

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next (self->dict, &pos, &key, &value)) |
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) A
return -1;
}
PyObject *o = PylLong_ FromLong (i + 1);
if (o == NULL)
return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {
Py_DECREF (0) ;
return -1;

(ouvéyela 0TV TOUEVN OEMD)

8.4. Container Objects 141

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

Py_DECREF (o) ;

int PyDict_Merge (PyObject *a, PyObject *b, int override)
Part of the Stable ABI. Iterate over mapping object b adding key-value pairs to dictionary a. b may be a
dictionary, or any object supporting PyMapping Keys () and PyObject_GetItem (). If override is
true, existing pairs in a will be replaced if a matching key is found in b, otherwise pairs will only be added if
there is not a matching key in a. Return O on success or —1 if an exception was raised.

int PyDict_Update (PyObject *a, PyObject *b)
Part of the Stable ABIL This is the same as PyDict_Merge (a, b, 1) in C, and is similar to a.
update (b) in Python except that PyDict_Update () doesn’t fall back to the iterating over a sequence
of key value pairs if the second argument has no «keys» attribute. Return 0 on success or —1 if an exception
was raised.

int PyDict_MergeFromSeq2 (PyObject *a, PyObject *seq2, int override)
Fart of the Stable ABI. Update or merge into dictionary a, from the key-value pairs in seq2. seq2 must be an
iterable object producing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the
last wins if override is true, else the first wins. Return O on success or —1 if an exception was raised. Equivalent
Python (except for the return value):

def PyDict_MergeFromSeqg2 (a, seqg2, override):
for key, value in seg2:
if override or key not in a:
alkey] = value

8.4.2 Set Objects

This section details the public API for set and frozenset objects. Any functionality
not listed below is best accessed using either the abstract object protocol (including
PyObject_CallMethod(), PyObject_RichCompareBool (), PyObject_Hash (),
PyObject_Repr(), PyObject_IsTrue (), PyObject_Print (), and PyObject_GetIter()) or
the abstract number protocol (including PyNumber_ And (), PyNumber_ Subtract (), PyNumber_ Or (),
PyNumber_Xor(), PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract (),
PyNumber_InPlaceOr (),and PyNumber_ InPlaceXor ()).

type PySetObject
This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
aPyDictObject inthatitis a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of
this structure should be considered public and all are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type
Fart of the Stable ABI. This is an instance of Py TypeOb ject representing the Python set type.

PyTypeObject PyFrozenSet_Type
Fart of the Stable ABI. This is an instance of Py TypeOb ject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.

int PySet_Check (PyObject *p)
Return true if p is a set object or an instance of a subtype. This function always succeeds.

int PyFrozenSet_Check (PyObject *p)
Return true if pis a frozenset object or an instance of a subtype. This function always succeeds.

int PyAnySet_Check (PyObject *p)

Return true if p is a set object, a frozenset object, or an instance of a subtype. This function always
succeeds.

142 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

int PySet_CheckExact (PyObject *p)
Return true if p is a set object but not an instance of a subtype. This function always succeeds.

Néo otnv éxdoon 3.10.

int PyAnySet_CheckExact (PyObject *p)
Return true if pis a set object ora frozenset object but not an instance of a subtype. This function always
succeeds.

int PyFrozenSet_CheckExact (PyObject *p)
Return true if pis a frozenset object but not an instance of a subtype. This function always succeeds.

PyObject *PySet_New (PyObject *iterable)
Emortpepduevny tiun: New reference. Part of the Stable ABI. Return a new set containing objects returned
by the iterable. The iterable may be NULL to create a new empty set. Return the new set on success or NULL
on failure. Raise TypeError if iterable is not actually iterable. The constructor is also useful for copying a
set (c=set (s)).

PyObject *PyFrozenSet_New (PyObject *iterable)
Emotoepduevny tun: New reference. Part of the Stable ABI. Return a new frozenset containing objects
returned by the iferable. The iterable may be NULL to create a new empty frozenset. Return the new set on
success or NULL on failure. Raise TypeError if iferable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

Py_ssize_t PySet_Size (PyObject *anyset)
Part of the Stable ABI. Return the length of a set or frozenset object. Equivalent to 1en (anyset).
Raises a PyExc_SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE (PyObject *anyset)
Macro form of PySet_Size () without error checking.

int PySet_Contains (PyObject *anyset, PyObject *key)
Fart of the Stable ABI. Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Python
__contains__ () method, this function does not automatically convert unhashable sets into temporary
frozensets. Raise a TypeError if the key is unhashable. Raise PyExc_SystemError if anyset is not a
set, frozenset, or an instance of a subtype.

int PySet_Add (PyObject *set, PyObject *key)
Part of the Stable ABIL. Add key to a set instance. Also works with frozenset instances (like
PyTuple_SetItem() itcan be used to fill in the values of brand new frozensets before they are exposed
to other code). Return 0 on success or —1 on failure. Raise a TypeError if the key is unhashable. Raise a
MemoryError if there is no room to grow. Raise a SystemError if sef is not an instance of set or its
subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or
its subtypes.

int PySet_Discard (PyObject *set, PyObject *key)
Part of the Stable ABI. Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error
is encountered. Does not raise KeyError for missing keys. Raise a TypeError if the key is unhashable.
Unlike the Python discard () method, this function does not automatically convert unhashable sets into
temporary frozensets. Raise PyExc_SystemError if sef is not an instance of set or its subtype.

PyObject *PySet_Pop (PyObject *set)
Emotoepduevn tun: New reference. Part of the Stable ABI. Return a new reference to an arbitrary object in
the set, and removes the object from the set. Return NULL on failure. Raise KeyError if the set is empty.
Raise a SystemError if sef is not an instance of set or its subtype.

int PySet_Clear (PyObject *set)
Part of the Stable ABI. Empty an existing set of all elements.

8.4. Container Objects 143

The Python/C API, Anpooicuon 3.10.18

8.5 Function Objects

8.5.1 Function Objects

There are a few functions specific to Python functions.

type PyFunctionObject
The C structure used for functions.

PyTypeObject PyFunction_Type
This is an instance of PyTypeObject and represents the Python function type. It is exposed to Python
programmers as types.FunctionType.

int PyFunction_Check (PyObject *0)
Return true if o is a function object (has type PyFunction_ Type). The parameter must not be NULL. This
function always succeeds.

PyObject *PyFunction_New (PyObject *code, PyObject *globals)
Emortoepduevn niun: New reference. Return a new function object associated with the code object code. globals
must be a dictionary with the global variables accessible to the function.

The function’s docstring and name are retrieved from the code object. __module__ is retrieved from globals.
The argument defaults, annotations and closure are set to NULL. __qualname___is set to the same value as the
function’s name.

PyObject *PyFunction_NewWithQualName (PyObject *code, PyObject *globals, PyObject *qualname)
Emotoepduevn tyun: New reference. As PyFunction_New (), but also allows setting the function object’s
__qualname___ attribute. qualname should be a unicode object or NULL; if NULL, the __qualname___
attribute is set to the same value as its __name___ attribute.

Néo otnv ékdoom 3.3.

PyObject *PyFunction_GetCode (PyObject *op)
Emotpepduevn run: Borrowed reference. Return the code object associated with the function object op.
PyObject *PyFunction_GetGlobals (PyObject *op)
Emotoepduevny tun: Borrowed reference. Return the globals dictionary associated with the function object
op.
PyObject *PyFunction_GetModule (PyObject *op)
Emotoepduevn tun: Borrowed reference. Return a borrowed reference to the __module__ attribute of the
function object op. It can be NULL.

This is normally a string containing the module name, but can be set to any other object by Python code.

PyObject *PyFunction_GetDefaults (PyObject *op)
Emotoepduevny tur: Borrowed reference. Return the argument default values of the function object op. This
can be a tuple of arguments or NULL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.

Raises SystemError and returns —1 on failure.

PyObject *PyFunction_GetClosure (PyObject *op)
Emotoepduevn tyur): Borrowed reference. Return the closure associated with the function object op. This can
be NULL or a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.

Raises SystemError and returns —1 on failure.

PyObject *PyFunction_GetAnnotations (PyObject *op)
Emotoepduevn twun: Borrowed reference. Return the annotations of the function object op. This can be a
mutable dictionary or NULL.

144 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

int PyFunction_SetAnnotations (PyObject *op, PyObject *annotations)
Set the annotations for the function object op. annotations must be a dictionary or Py_None.

Raises SystemError and returns -1 on failure.

8.5.2 Instance Method Objects

An instance method is a wrapper for a PyCFunct ion and the new way to bind a PyCFunct ion to a class object.
It replaces the former call PyMethod_New (func, NULL, class).

PyTypeObject PyInstanceMethod_Type
This instance of Py TypeObject represents the Python instance method type. It is not exposed to Python
programs.

int PyInstanceMethod_Check (PyObject *0)
Return true if o is an instance method object (has type Py InstanceMethod_Type). The parameter must
not be NULL. This function always succeeds.

PyObject *PyInstanceMethod_New (PyObject * func)
Emotoepduevn tun: New reference. Return a new instance method object, with func being any callable object.
func is the function that will be called when the instance method is called.

PyObject *PyInstanceMethod_Function (PyObject *im)
Emotoepduevn tyur): Borrowed reference. Return the function object associated with the instance method im.

PyObject *PyInstanceMethod_GET_FUNCTION (PyObject *im)
Emotoepduevn tyur): Borrowed reference. Macro version of Py TnstanceMethod_Function () which
avoids error checking.

8.5.3 Method Objects

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound
methods (methods bound to a class object) are no longer available.

PyTypeObject PyMethod_Type
This instance of Py TypeOb ject represents the Python method type. This is exposed to Python programs
as types.MethodType.

int PyMethod_Check (PyObject *0)
Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL. This
function always succeeds.

PyObject *PyMethod_New (PyObject *func, PyObject *self')
Emotoepduevn tiun: New reference. Return a new method object, with func being any callable object and self
the instance the method should be bound. func is the function that will be called when the method is called.
self must not be NULL.

PyObject *PyMethod_Function (PyObject *meth)
Emotoepduevn wun: Borrowed reference. Return the function object associated with the method meth.

PyObject *PyMethod_GET_FUNCTION (PyObject *meth)
Emotoepduevn tun: Borrowed reference. Macro version of PyMethod_Function () which avoids error
checking.

PyObject *PyMethod_Sel€£ (PyObject *meth)
Emotoepduevn tun: Borrowed reference. Return the instance associated with the method meth.

PyObject *PyMethod_GET_SELF (PyObject *meth)
Emoroepduevy tun: Borrowed reference. Macro version of PyMethod_Self () which avoids error
checking.

8.5. Function Objects 145

The Python/C API, Anpooicuon 3.10.18

8.5.4 Cell Objects

«Cell» objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the
cells from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used
instead of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code;
these are not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.

type PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell_Type
The type object corresponding to cell objects.

int PyCell_Check (ob)
Return true if ob is a cell object; ob must not be NULL. This function always succeeds.

PyObject *PyCell_New (PyObject *ob)
Emotoepduevn tun: New reference. Create and return a new cell object containing the value ob. The parameter
may be NULL.

PyObject *PyCell_Get (PyObject *cell)
Emotoepduevn wun: New reference. Return the contents of the cell cell.

PyObject *PyCell_GET (PyObject *cell)
Emotpepduevny tiun: Borrowed reference. Return the contents of the cell cell, but without checking that cell
is non-NULL and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell.
value may be NULL. cell must be non-NULL; if it is not a cell object, —1 will be returned. On success, 0 will
be returned.

void PyCell_SET (PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for
safety; cell must be non-NULL and must be a cell object.

8.5.5 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code
that hasn’t yet been bound into a function.

type PyCodeObject
The C structure of the objects used to describe code objects. The fields of this type are subject to change at
any time.

PyTypeObject PyCode_Type
This is an instance of Py TypeOb ject representing the Python code type.

int PyCode_Check (PyObject *co)
Return true if co is a code object. This function always succeeds.

int PyCode_GetNumFree (PyCodeObject *co)
Return the number of free variables in co.

PyCodeObject *PyCode_New (int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyObject
*code, PyObject *consts, PyObject *names, PyObject *varnames, PyObject
*freevars, PyObject *cellvars, PyObject *filename, PyObject *name, int
firstlineno, PyObject *Inotab)
Emotoepduevn tun: New reference. Return a new code object. If you need a dummy code object to create
a frame, use PyCode_NewEmpty () instead. Calling PyCode_New () directly can bind you to a precise
Python version since the definition of the bytecode changes often.

146 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

PyCodeObject *PyCode_NewWithPosOnlyArgs (int argcount, int posonlyargcount, int kwonlyargcount,

int nlocals, int stacksize, int flags, PyObject *code,
PyObject *consts, PyObject *names, PyObject
*varnames, PyObject *freevars, PyObject *cellvars,
PyObject *filename, PyObject *name, int firstlineno,
PyObject *Inotab)

Emotoepduevn tun: New reference. Similar to PyCode_New (), but with an extra «posonlyargcount» for

positional-only arguments.

Néo otnv €kdoon 3.8.

PyCodeObject *PyCode_NewEmpty (const char *filename, const char *funcname, int firstlineno)
Emotoepduevn tun: New reference. Return a new empty code object with the specified filename, function
name, and first line number. It is illegal to exec () or eval () the resulting code object.

int PyCode_Addr2Line (PyCodeObject *co, int byte_offset)
Return the line number of the instruction that occurs on or before byte_offset and ends after it. If you
just need the line number of a frame, use PyFrame_GetLineNumber () instead.

For efficiently iterating over the line numbers in a code object, use the API described in PEP 626.

8.6 Other Objects

8.6.1 File Objects

These APIs are a minimal emulation of the Python 2 C API for built-in file objects, which used to rely on the
buffered I/O (FILE*) support from the C standard library. In Python 3, files and streams use the new io module,
which defines several layers over the low-level unbuffered I/O of the operating system. The functions described below
are convenience C wrappers over these new APIs, and meant mostly for internal error reporting in the interpreter;
third-party code is advised to access the 1o APIs instead.

PyObject *PyFile_FromFd (int fd, const char *name, const char *mode, int buffering, const char

*encoding, const char *errors, const char *newline, int closefd)
Emotoepduevn tun: New reference. Part of the Stable ABI. Create a Python file object from the file descriptor

of an already opened file fd. The arguments name, encoding, errors and newline can be NULL to use the defaults;
buffering can be -1 to use the default. name is ignored and kept for backward compatibility. Return NULL on
failure. For a more comprehensive description of the arguments, please refer to the io.open () function
documentation.

Ipogwdomoinon: Since Python streams have their own buffering layer, mixing them with OS-level file
descriptors can produce various issues (such as unexpected ordering of data).

AMEe oty £xdoon 3.2: Ignore name attribute.

int PyObject_AsFileDescriptor (PyObject *p)
Fart of the Stable ABI. Return the file descriptor associated with p as an int. If the object is an integer,
its value is returned. If not, the object’s £ileno () method is called if it exists; the method must return an
integer, which is returned as the file descriptor value. Sets an exception and returns —1 on failure.

PyObject *PyFile_GetLine (PyObject *p, int n)
Emotoepduevn tun: New reference. Part of the Stable ABI. Equivalenttop . readline ([n]), this function
reads one line from the object p. p may be a file object or any object with a readline () method. If nis O,
exactly one line is read, regardless of the length of the line. If n is greater than 0, no more than n bytes will
be read from the file; a partial line can be returned. In both cases, an empty string is returned if the end of the
file is reached immediately. If » is less than 0, however, one line is read regardless of length, but EOFError
is raised if the end of the file is reached immediately.

int PyFile_SetOpenCodeHook (Py_OpenCodeHookFunction handler)
Overrides the normal behavior of i0.open_code () to pass its parameter through the provided handler.

8.6. Other Objects 147

https://www.python.org/dev/peps/pep-0626/#out-of-process-debuggers-and-profilers

The Python/C API, Anpooicuon 3.10.18

The handler is a function of type PyObject * (*)PyObject *path, void *userData, where
path is guaranteed to be PyUnicodeObject.

The userData pointer is passed into the hook function. Since hook functions may be called from different
runtimes, this pointer should not refer directly to Python state.

As this hook is intentionally used during import, avoid importing new modules during its execution unless they
are known to be frozen or available in sys.modules.

Once a hook has been set, it cannot be removed or replaced, and later calls to
PyFile_SetOpenCodeHook () will fail. On failure, the function returns -1 and sets an exception
if the interpreter has been initialized.

This function is safe to call before Py Tnitialize ().
Raises an auditing event set opencodehook with no arguments.
Néo omnv ékdoom 3.8.

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags)
Part of the Stable ABI. Write object obj to file object p. The only supported flag for flags is Py_ PRINT_RAW;
if given, the str () of the object is written instead of the repr () . Return O on success or —1 on failure; the
appropriate exception will be set.

int PyFile_WriteString (const char *s, PyObject *p)
Fart of the Stable ABI. Write string s to file object p. Return 0 on success or —1 on failure; the appropriate
exception will be set.

8.6.2 Module Objects

PyTypeObject PyModule_Type
Part of the Stable ABI. This instance of Py TypeObject represents the Python module type. This is exposed
to Python programs as t ypes .ModuleType.

int PyModule_Check (PyObject *p)
Return true if p is a module object, or a subtype of a module object. This function always succeeds.

int PyModule_CheckExact (PyObject *p)
Return true if p is a module object, but not a subtype of PyModule_Type. This function always succeeds.

PyObject *PyModule_NewObject (PyObject *name)
Emortoepduevny tur: New reference. Part of the Stable ABI since version 3.7. Return a new module object
with the _ name__ attribute set to name. The module’s _ _name_ , doc__, package__, and
__loader___ attributes are filled in (all but _ _name__ are set to None); the caller is responsible for
providinga __ file_ attribute.

Néo oty éxdoon 3.3.
AlhaEe oty ékdoon 3.4: __package__and __loader___ are set to None.

PyObject *PyModule_New (const char *name)
Emotoepduevn tiun: New reference. Part of the Stable ABI. Similar to PyModule_NewObject (), but the
name is a UTF-8 encoded string instead of a Unicode object.

PyObject *PyModule_GetDict (PyObject *module)
Emotoepduevn tun: Borrowed reference. Part of the Stable ABL Return the dictionary object that implements
module’s namespace; this object is the same as the __dict__ attribute of the module object. If module is not
a module object (or a subtype of a module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* and PyObject_* functions rather than directly
manipulate a module’s __dict__ .

PyObject *PyModule_GetNameObject (PyObject *module)
Emotoepduevy tun: New reference. Part of the Stable ABI since version 3.7. Return module’s __name___
value. If the module does not provide one, or if it is not a string, SystemError is raised and NULL is
returned.

148 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

Néo otv ¢kdoom 3.3.

const char *PyModule_GetName (PyObject *module)
Part of the Stable ABI. Similar to PyModule_GetNameObject () butreturn the name encoded to 'ut £-
8"'.

void *PyModule_GetState (PyObject *module)
Part of the Stable ABI. Return the «state» of the module, that is, a pointer to the block of memory allocated
at module creation time, or NULL. See PyModuleDef.m size.

PyModuleDef *PyModule_GetDef (PyObject *module)
Part of the Stable ABI. Return a pointer to the PyModuleDef struct from which the module was created, or
NULL if the module wasn’t created from a definition.

PyObject *PyModule_GetFilenameObject (PyObject *module)
Emotoepduevny tun: New reference. Part of the Stable ABI. Return the name of the file from which module
was loaded using module’s __file__ attribute. If this is not defined, or if it is not a unicode string, raise
SystemError and return NULL; otherwise return a reference to a Unicode object.

Néo otv é€kdoom 3.2.

const char *PyModule_GetFilename (PyObject *module)
Part of the Stable ABI. Similar to PyModule_GetFilenameObject () butreturn the filename encoded
to “utf-8”.

AmoovpOnke oty ékdoon 3.2: PyModule GetFilename () raises UnicodeEncodeError on
unencodable filenames, use PyModule GetFilenameObject () instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function),
or compiled-in modules (where the initialization function is added using Py Import_AppendInittab ()). See
building or extending-with-embedding for details.

The initialization function can either pass a module definition instance to PyModule_Create (), and return the
resulting module object, or request «multi-phase initialization» by returning the definition struct itself.

type PyModuleDef
Fart of the Stable ABI (including all members). The module definition struct, which holds all information needed
to create a module object. There is usually only one statically initialized variable of this type for each module.

PyModuleDef Base m_base
Always initialize this member to PyModuleDef HEAD_INIT.

const char *m_name
Name for the new module.

const char *m_doc
Docstring for the module; usually a docstring variable created with PyDoc_ STRVAR is used.

Py _ssize_t m_size
Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState (), rather than in static globals. This makes modules safe for use in
multiple sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_ £ ree function has been called, if present.

Setting m_size to —1 means that the module does not support sub-interpreters, because it has global
state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the
additional amount of memory it requires for its state. Non-negative m_s1ize is required for multi-phase
initialization.

See PEP 3121 for more details.

8.6. Other Objects 149

https://www.python.org/dev/peps/pep-3121

The Python/C API, Anpooicuon 3.10.18

PyMethodDef *m_methods
A pointer to a table of module-level functions, described by PyMet hodDe £ values. Can be NULL if no
functions are present.

PyModuleDef _Slot *m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When
using single-phase initialization, m_slots must be NULL.

AMaEe oty ékdoon 3.5: Prior to version 3.5, this member was always set to NULL, and was defined
as:

inquiry m_reload

traverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).
More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState ())is NULL.

AMaEe ot €ékdoon 3.9: No longer called before the module state is allocated.

inquiry m_clear
A clear function to call during GC clearing of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).
More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState ())is NULL.

Like PyTypeObject. tp_clear, this function is not always called before a module is deallocated.
For example, when reference counting is enough to determine that an object is no longer used, the cyclic
garbage collector is not involved and m_ free is called directly.

AlaEe oty £€xdoon 3.9: No longer called before the module state is allocated.

Jfreefunc m_free
A function to call during deallocation of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case
immediately after the module is created and before the module is executed (Py_mod_exec function).
More precisely, this function is not called if m_size is greater than 0 and the module state (as returned
by PyModule_GetState ())is NULL.

AMaEe oty €kdoon 3.9: No longer called before the module state is allocated.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as «single-
phase initialization», and uses one of the following two module creation functions:

PyObject *PyModule_Create (PyModuleDef *def)
Emotoepduevn tun: New reference. Create a new module object, given the definition in def. This behaves
like PyModule_CreateZ () with module_api_version set to PYTHON_API_VERSION.

PyObject *PyModule_Create2 (PyModuleDef *def, int module_api_version)
Emotoepduevny tyur): New reference. Part of the Stable ABI. Create a new module object, given the definition
in def, assuming the API version module_api_version. If that version does not match the version of the running
interpreter, a Runt imeWarning is emitted.

Enueiwon: Most uses of this function should be using PyModule Create () instead; only use this if you
are sure you need it.

150 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

Before it is returned from in the initialization function, the resulting module object is typically populated using
functions like PyModule_ AddObjectRef ().

Multi-phase initialization

An alternate way to specify extensions is to request «multi-phase initialization». Extension modules created this
way behave more like Python modules: the initialization is split between the creation phase, when the module
object is created, and the execution phase, when it is populated. The distinction is similar to the __new__ () and
__dinit__ () methods of classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry
is removed and the module is re-imported, a new module object is created, and the old module is subject to normal
garbage collection — as with Python modules. By default, multiple modules created from the same definition should
be independent: changes to one should not affect the others. This means that all state should be specific to the module
object (using e.g. using PyModule_ GetState ()), or its contents (such as the module’s ___dict__ orindividual
classes created with Py Type_FromSpec ()).

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple
modules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef
instance with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with
the following function:

PyObject *PyModuleDef_Init (PyModuleDef *def)
Emotoepduevn tun: Borrowed reference. Part of the Stable ABI since version 3.5. Ensures a module definition
is a properly initialized Python object that correctly reports its type and reference count.

Returns def cast to PyObject*, or NULL if an error occurred.
Néo otnv é€kdoom 3.5.
The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:

type PyModuleDef_Slot

int slot
A slot ID, chosen from the available values explained below.

void *value
Value of the slot, whose meaning depends on the slot ID.

Néo otnv é€kdoom 3.5.
The m_slots array must be terminated by a slot with id 0.
The available slot types are:

Py_mod_create
Specifies a function that is called to create the module object itself. The value pointer of this slot must point
to a function of the signature:

PyObject *create_module (PyObject *spec, PyModuleDef *def')

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should
return a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New (). The name is taken from spec, not the definition, to allow extension modules to
dynamically adjust to their place in the module hierarchy and be imported under different names through
symlinks, all while sharing a single module definition.

8.6. Other Objects 151

https://www.python.org/dev/peps/pep-0451

The Python/C API, Anpooicuon 3.10.18

There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be
used, as long as it supports setting and getting import-related attributes. However, only PyModule_Type
instances may be returned if the PyModuleDef has non-NULL m_traverse,m_clear,m_free; non-
zero m__s1ize; or slots other than Py_mod_create.

Py_mod_exec
Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python
module: typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module (PyObject *module)
If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used directly,
for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.

PyObject *PyModule_FromDefAndSpec (PyModuleDef *def, PyObject *spec)
Emotoepduevny wun: New reference. Create a new module object, given the definition in def and the
ModuleSpec spec. This behaves like PyModule FromDefAndSpec?2 () with module_api_version set to
PYTHON_API_VERSION.

Néo otnv €kdoon 3.5.

PyObject *PyModule_FromDefAndSpec2 (PyModuleDef *def, PyObject *spec, int
module_api_version)
Emotoepduevn tiun: New reference. Part of the Stable ABI since version 3.7. Create a new module object,
given the definition in def and the ModuleSpec spec, assuming the API version module_api_version. If that
version does not match the version of the running interpreter, a Runt imeWarning is emitted.

Znusiu}(m: Most uses of this function should be using PyModule FromDefAndSpec () instead; only
use this if you are sure you need it.

Néo oty éxdoon 3.5.

int PyModule_ExecDef£ (PyObject *module, PyModuleDef *def)
Fart of the Stable ABI since version 3.7. Process any execution slots (Py_mod_exec) given in def.

Néo otnv ¢€kdoom 3.5.

int PyModule_SetDocString (PyObject *module, const char *docstring)
Part of the Stable ABI since version 3.7. Set the docstring for module to docstring. This function is
called automatically when creating a module from PyModuleDef, using either PyModule_Create or
PyModule_FromDefAndSpec.

Néo otnv ¢€kdoom 3.5.

int PyModule_AddFunctions (PyObject *module, PyMethodDef * functions)
Fart of the Stable ABI since version 3.7. Add the functions from the NULL terminated functions array
to module. Refer to the PyMethodDef documentation for details on individual entries (due to the lack
of a shared module namespace, module level «functions» implemented in C typically receive the module
as their first parameter, making them similar to instance methods on Python classes). This function is
called automatically when creating a module from PyModuleDef, using either PyModule_Create or
PyModule_FromDefAndSpec.

Néo otnv ¢kdoon 3.5.

152 KegaAaio 8. Concrete Objects Layer

https://www.python.org/dev/peps/pep-0489

The Python/C API, Anpooicuon 3.10.18

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution

slot (if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObjectRef (PyObject *module, const char *name, PyObject *value)

Part of the Stable ABI since version 3.10. Add an object to module as name. This is a convenience function
which can be used from the module’s initialization function.

On success, return 0. On error, raise an exception and return —1.
Return NULL if value is NULL. It must be called with an exception raised in this case.

Example usage:

static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong (value);
if (obj == NULL) {
return -1;
}
int res = PyModule_AddObjectRef (module, "spam", obj);
Py_DECREF (obj) ;
return res;

The example can also be written without checking explicitly if obj is NULL:

static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong (value);
int res = PyModule_AddObjectRef (module, "spam", obj);
Py_XDECREF (obj) ;
return res;

Note that Py_XDECREF () should be used instead of Py_DECREF () in this case, since obj can be NULL.

Néo omv éxdoon 3.10.

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value)

Part of the Stable ABI. Similar to PyModule_AddObjectRef (), butsteals a reference to value on success
(>if it returns 0).

The new PyModule_AddObjectRef () function is recommended, since it is easy to introduce reference
leaks by misusing the PyModule_ AddObject () function.

Ynueiwon: Unlike other functions that steal references, PyModule_AddObject () only releases the
reference to value on success.

This means that its return value must be checked, and calling code must Py_ DECREF () value manually on
error.

Example usage:

static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong(value);
if (obj == NULL) {
return -1;

(ouvéyela 0TV emOpEVY 0edL)

8.6. Other Objects 153

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

}

if (PyModule_AddObiject (module, "spam", obj) < 0) {
Py_DECREF (obj) ;
return -1;

}

// PyModule_ AddObject () stole a reference to obj:

// Py_DECREF (ob3j) is not needed here

return O;

The example can also be written without checking explicitly if obj is NULL:

static int
add_spam (PyObject *module, int value)
{
PyObject *obj = PyLong_FromLong(value);
if (PyModule_AddObject (module, "spam", obj) < 0) {
Py_XDECREF (obj) ;
return -1;
}
// PyModule_AddObject () stole a reference to obj:
// Py_DECREF (obj) 1s not needed here
return 0;

Note that Py_XDECREF () should be used instead of Py_DECREF () in this case, since obj can be NULL.

int PyModule_AddIntConstant (PyObject *module, const char *name, long value)
Fart of the Stable ABIL. Add an integer constant to module as name. This convenience function can be used
from the module’s initialization function. Return —1 on error, 0 on success.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value)
Part of the Stable ABI. Add a string constant to module as name. This convenience function can be used from
the module’s initialization function. The string value must be NULL-terminated. Return —1 on error, 0 on
success.

int PyModule_AddIntMacro (PyObject *module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro (module, AF_INET) adds the int constant AF_INET with the value of
AF _INET to module. Return —1 on error, O on success.

int PyModule_AddStringMacro (PyObject *module, macro)
Add a string constant to module.

int PyModule_AddType (PyObject *module, PyTypeObject *type)
Part of the Stable ABI since version 3.10. Add a type object to module. The type object is finalized by calling
internally Py Type_Ready (). The name of the type object is taken from the last component of tp_name
after dot. Return —1 on error, O on success.

Néo otnv ¢€kdoom 3.9.

154 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter.
This allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can
be created from a single definition.

PyObject *PyState_FindModule (PyModuleDef *def)
Emortpepduevn tun: Borrowed reference. Part of the Stable ABI. Returns the module object that was created
from def for the current interpreter. This method requires that the module object has been attached to the
interpreter state with PyState_AddModule () beforehand. In case the corresponding module object is not
found or has not been attached to the interpreter state yet, it returns NULL.

int PyState_AddModule (PyObject *module, PyModuleDef *def’)
Part of the Stable ABI since version 3.3. Attaches the module object passed to the function to the interpreter
state. This allows the module object to be accessible via PyState_ FindModule ().

Only effective on modules created using single-phase initialization.

Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but
harmless) to call it from module initialization code. An explicit call is needed only if the module’s own init code
subsequently calls PyState_FindModule. The function is mainly intended for implementing alternative
import mechanisms (either by calling it directly, or by referring to its implementation for details of the required
state updates).

The caller must hold the GIL.
Return 0 on success or -1 on failure.
Néo otnv ékdoon 3.3.

int PyState_RemoveModule (PyModuleDef *def)
Fart of the Stable ABI since version 3.3. Removes the module object created from def from the interpreter
state. Return O on success or -1 on failure.

The caller must hold the GIL.
Néo otv ¢€kdoom 3.3.

8.6.3 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__ () method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.

PyTypeObject PySeqIter_Type
Part of the Stable ABI Type object for iterator objects returned by PySegIter_ New () and the one-
argument form of the iter () built-in function for built-in sequence types.

int PySeqIter_Check (op)
Return true if the type of op is PySegIter_Type. This function always succeeds.

PyObject *PySeqIter_New (PyObject *seq)
Emotoepduevy tun: New reference. Part of the Stable ABL Return an iterator that works with a general
sequence object, seq. The iteration ends when the sequence raises IndexError for the subscripting
operation.

PyTypeObject PyCallIter_ Type
Fart of the Stable ABI. Type object for iterator objects returned by PyCallIter New () and the two-
argument form of the iter () built-in function.

int PyCallIter_ Check (op)
Return true if the type of op is PyCallIter Type. This function always succeeds.

8.6. Other Objects 155

The Python/C API, Anpooicuon 3.10.18

PyObject *PyCallIter_New (PyObject *callable, PyObject *sentinel)
Emotoepduevny tun: New reference. Part of the Stable ABI Return a new iterator. The first parameter,
callable, can be any Python callable object that can be called with no parameters; each call to it should return
the next item in the iteration. When callable returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor Objects

«Descriptors» are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty_Type
Fart of the Stable ABI. The type object for the built-in descriptor types.

PyObject *PyDescr_NewGetSet (PyTypeObject *type, struct PyGetSetDef *getset)
Emotoepduevn tun: New reference. Part of the Stable ABIL

PyObject *PyDescr_NewMember (PyTypeObject *type, struct PyMemberDef *meth)
Emotoepduevn tun: New reference. Part of the Stable ABL

PyObject *PyDescr_NewMethod (PyTypeObject *type, stxuct PyMethodDef *meth)
Emotoepduevny tiun: New reference. Part of the Stable ABI.

PyObject *PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void
*wrapped)
Emotoepduevn tun: New reference.

PyObject *PyDescr_NewClassMethod (PyTypeObject *type, PyMethodDef *method)
Emotoepduevn tun: New reference. Part of the Stable ABIL

int PyDescr_IsData (PyObject *descr)
Return non-zero if the descriptor objects descr describes a data attribute, or 0 if it describes a method. descr
must be a descriptor object; there is no error checking.

PyObject *PyWrapper_New (PyObject*, PyObject*)
Emotoepduevn tun: New reference. Part of the Stable ABL

8.6.5 Slice Objects

PyTypeObject PySlice_Type
Fart of the Stable ABI. The type object for slice objects. This is the same as s11ice in the Python layer.

int PySlice_Check (PyObject *ob)
Return true if ob is a slice object; ob must not be NULL. This function always succeeds.

PyObject *PyS1lice_New (PyObject *start, PyObject *stop, PyObject *step)
Emotoepduevn tun: New reference. Part of the Stable ABL Return a new slice object with the given values.
The start, stop, and step parameters are used as the values of the slice object attributes of the same names. Any
of the values may be NULL, in which case the None will be used for the corresponding attribute. Return NULL
if the new object could not be allocated.

int PySlice_GetIndices (PyObject *slice, Py _ssize t length, Py _ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step)
Fart of the Stable ABI. Retrieve the start, stop and step indices from the slice object slice, assuming a sequence
of length length. Treats indices greater than length as errors.

Returns 0 on success and —1 on error with no exception set (unless one of the indices was not None and failed
to be converted to an integer, in which case —1 is returned with an exception set).

You probably do not want to use this function.
AMEe oty £xdoon 3.2: The parameter type for the slice parameter was PyS1iceObject * before.

int PySlice_GetIndicesEx (PyObject *slice, Py_ssize_t length, Py ssize_t *start, Py_ssize_t *stop,
Py_ssize_t *step, Py_ssize_t *slicelength)
Fart of the Stable ABI. Usable replacement for PyS1ice GetIndices (). Retrieve the start, stop, and

156 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

step indices from the slice object slice assuming a sequence of length length, and store the length of the slice
in slicelength. Out of bounds indices are clipped in a manner consistent with the handling of normal slices.

Returns O on success and —1 on error with exception set.

Ynueiwon: This function is considered not safe for resizable sequences. Its invocation should be replaced by
a combination of PyS1ice Unpack () and PySlice AdjustIndices () where

if (PySlice_GetIndicesEx(slice, length, &start, &stop, &step, &slicelength) <o
—0) A
// return error

}

is replaced by

if (PySlice_Unpack(slice, &start, &stop, &step) < 0) {
// return error

}
slicelength = PySlice_AdjustIndices (length, &start, &stop, step);

AMaEe ot ékdoon 3.2: The parameter type for the slice parameter was PyS1iceObject * before.

AMEe ot £€kdoon 3.6.1: If Py_LIMITED_APT is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher PySlice_GetIndicesEx () isimplemented
as a macro using PySlice_Unpack () and PySlice_ AdjustIndices (). Arguments start, stop and
step are evaluated more than once.

AmoovpOnke oty éxdoon 3.6.1: If Py LIMITED_ APT is set to the value less than 0x03050400 or
between 0x03060000 and 0x030602100 (not including) PySlice_GetIndicesEx () isa deprecated
function.

int PySlice_Unpack (PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)

Part of the Stable ABI since version 3.7. Extract the start, stop and step data members from a slice object as
C integers. Silently reduce values larger than PY_SSIZE_T_MAXtoPY_SSIZE_T_MAX, silently boost the
start and stop values less than PY_SSIZE_T_MINtoPY_SSIZE_T_MIN, and silently boost the step values
less than —-PY_SSIZE_T_MAXto -PY_SSIZE_T_ MAX.

Return —1 on error, O on success.

Néo otnv ¢kdoom 3.6.1.

Py _ssize_t PySlice_AdjustIndices (Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t

step)
Fart of the Stable ABI since version 3.7. Adjust start/end slice indices assuming a sequence of the specified

length. Out of bounds indices are clipped in a manner consistent with the handling of normal slices.
Return the length of the slice. Always successful. Doesn’t call Python code.

Néo otnv ékdoon 3.6.1.

8.6.6 Ellipsis Object

PyObject *Py_Ellipsis

The Python E11ipsis object. This object has no methods. It needs to be treated just like any other object
with respect to reference counts. Like Py None it is a singleton object.

8.6. Other Objects 157

The Python/C API, Anpooicuon 3.10.18

8.6.7 MemoryView objects

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like
any other object.

PyObject *PyMemoryView_ FromObject (PyObject *obj)
Emotoepduevn tun: New reference. Part of the Stable ABI. Create a memoryview object from an object that
provides the buffer interface. If obj supports writable buffer exports, the memoryview object will be read/write,
otherwise it may be either read-only or read/write at the discretion of the exporter.

PyObject *PyMemoryView FromMemory (char *mem, Py_ssize_t size, int flags)
Emotoepduevn tun: New reference. Part of the Stable ABI since version 3.7. Create a memoryview object
using mem as the underlying buffer. flags can be one of PyBUF_READ or PyBUF_WRITE.

Néo oty éxdoon 3.3.

PyObject *PyMemoryView FromBuffer (Py_buffer *view)
Emotoepduevn tun: New reference. Create a memoryview object wrapping the given buffer structure view.
For simple byte buffers, PyMemoryView FromMemory () is the preferred function.

PyObject *PyMemoryView_GetContiguous (PyObject *obj, int buffertype, char order)
Emotoepduevy un: New reference. Part of the Stable ABIL Create a memoryview object to a contiguous
chunk of memory (in either “C” or “Fortran order) from an object that defines the buffer interface. If memory
is contiguous, the memoryview object points to the original memory. Otherwise, a copy is made and the
memoryview points to a new bytes object.

int PyMemoryView_Check (PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview. This function always succeeds.

Py_buffer *PyMemoryView_GET_BUFFER (PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mview must be a memoryview
instance; this macro doesn’t check its type, you must do it yourself or you will risk crashes.

PyObject *PyMemoryView_ GET_BASE (PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if
the memoryview has been created by one of the functions PyMemoryView_ FromMemory () or
PyMemoryView_FromBuffer ().mview must be a memoryview instance.

8.6.8 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement
weak references. The first is a simple reference object, and the second acts as a proxy for the original object as much
as it can.

int PyWeakref_Check (ob)
Return true if ob is either a reference or proxy object. This function always succeeds.

int PyWeakref_ CheckRef (ob)
Return true if ob is a reference object. This function always succeeds.

int PyWeakref_CheckProxy (ob)
Return true if ob is a proxy object. This function always succeeds.

PyObject *PyWeakref NewRef (PyObject *ob, PyObject *callback)
Emotoepduevn tyur: New reference. Part of the Stable ABIL Return a weak reference object for the object ob.
This will always return a new reference, but is not guaranteed to create a new object; an existing reference object
may be returned. The second parameter, callback, can be a callable object that receives notification when ob is
garbage collected; it should accept a single parameter, which will be the weak reference object itself. callback
may also be None or NULL. If 0b is not a weakly referencable object, or if callback is not callable, None, or
NULL, this will return NULL and raise TypeError.

158 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

PyObject *PyWeakref_NewProxy (PyObject *ob, PyObject *callback)
Emotoepduevn tur): New reference. Part of the Stable ABIL Return a weak reference proxy object for the
object ob. This will always return a new reference, but is not guaranteed to create a new object; an existing
proxy object may be returned. The second parameter, callback, can be a callable object that receives notification
when ob is garbage collected; it should accept a single parameter, which will be the weak reference object itself.
callback may also be None or NULL. If 0b is not a weakly referencable object, or if callback is not callable,
None, or NULL, this will return NULL and raise TypeError.

PyObject *PyWeakref GetObject (PyObject *ref)
Emortoepduevny nun: Borrowed reference. Part of the Stable ABI. Return the referenced object from a weak
reference, ref. If the referent is no longer live, returns Py_None.

Enueiwon: This function returns a borrowed reference to the referenced object. This means that you should
always call Py TNCREF () on the object except when it cannot be destroyed before the last usage of the
borrowed reference.

PyObject *PyWeakref_GET_OBJECT (PyObject *ref)
Emortpepduevny nun: Borrowed reference. Similar to Pyleakref GetObject (), but implemented as a
macro that does no error checking.

void PyObject_ClearWeakRefs (PyObject *object)
Fart of the Stable ABI. This function is called by the tp_ dealloc handler to clear weak references.

This iterates through the weak references for object and calls callbacks for those references which have one. It
returns when all callbacks have been attempted.

8.6.9 Capsules

Refer to using-capsules for more information on using these objects.
Néo otmv éxdoon 3.1.

type PyCapsule
This subtype of PyOb ject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to
access C APIs defined in dynamically loaded modules.

type PyCapsule_Destructor
Fart of the Stable ABI. The type of a destructor callback for a capsule. Defined as:

typedef void (*PyCapsule_Destructor) (PyObject *);

See PyCapsule_New () for the semantics of PyCapsule_Destructor callbacks.

int PyCapsule_CheckExact (PyObject *p)
Return true if its argument is a PyCapsule. This function always succeeds.

PyObject *PyCapsule_New (void *pointer, const char *name, PyCapsule_Destructor destructor)
Emotoepduevn tiun: New reference. Part of the Stable ABI. Create a PyCapsule encapsulating the pointer.
The pointer argument may not be NULL.

On failure, set an exception and return NULL.

The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)

If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.

If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_Import ().

8.6. Other Objects 159

The Python/C API, Anpooicuon 3.10.18

void *PyCapsule_GetPointer (PyObject *capsule, const char *name)
Part of the Stable ABI. Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.

The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule
is NULL, the name passed in must also be NULL. Python uses the C function st rcmp () to compare capsule
names.

PyCapsule_Destructor PyCapsule_GetDestructor (PyObject *capsule)
Part of the Stable ABI Return the current destructor stored in the capsule. On failure, set an exception and
return NULL.

It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

void *PyCapsule_GetContext (PyObject *capsule)
Fart of the Stable ABI. Return the current context stored in the capsule. On failure, set an exception and return
NULL.

It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred () to disambiguate.

const char *PyCapsule_GetName (PyObject *capsule)
Fart of the Stable ABI. Return the current name stored in the capsule. On failure, set an exception and return
NULL.

It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid () or PyErr_Occurred () to disambiguate.

void *PyCapsule_Import (const char *name, int no_block)
Part of the Stable ABIL Import a pointer to a C object from a capsule attribute in a module. The name
parameter should specify the full name to the attribute, as in module.attribute. The name stored in
the capsule must match this string exactly. If no_block is true, import the module without blocking (using
PyImport_ImportModuleNoBlock ()).If no_block is false, import the module conventionally (using
PyImport_ImportModule ()).

Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.

int PyCapsule_IsValid (PyObject *capsule, const char *name)
Part of the Stable ABI. Determines whether or not capsule is a valid capsule. A valid capsule is non-
NULL, passes PyCapsule_CheckExact (), has a non-NULL pointer stored in it, and its internal name
matches the name parameter. (See PyCapsule_GetPointer () for information on how capsule names
are compared.)

In other words, if PyCapsule_IsValid () returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get ()) are guaranteed to succeed.

Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext (PyObject *capsule, void *context)
Part of the Stable ABI. Set the context pointer inside capsule to context.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor (PyObject *capsule, PyCapsule_Destructor destructor)
Part of the Stable ABI. Set the destructor inside capsule to destructor.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName (PyObject *capsule, const char *name)
Fart of the Stable ABI. Set the name inside capsule to name. If non-NULL, the name must outlive the capsule.
If the previous name stored in the capsule was not NULL, no attempt is made to free it.

Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer (PyObject *capsule, void *pointer)
Fart of the Stable ABI. Set the void pointer inside capsule to pointer. The pointer may not be NULL.

160 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

Return 0 on success. Return nonzero and set an exception on failure.

8.6.10 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over
a function that yields values, rather than explicitly calling PyGen_New () or PyGen_NewlWithQualName ().

type PyGenObject
The C structure used for generator objects.

PyTypeObject PyGen_Type
The type object corresponding to generator objects.

int PyGen_Check (PyObject *ob)
Return true if ob is a generator object; ob must not be NULL. This function always succeeds.

int PyGen_CheckExact (PyObject *ob)
Return true if ob’s type is PyGen_ Type; ob must not be NULL. This function always succeeds.

PyObject *PyGen_New (PyFrameObject * frame)
Emotpepduevny tun: New reference. Create and return a new generator object based on the frame object. A
reference to frame is stolen by this function. The argument must not be NULL.

PyObject *PyGen_NewWithQualName (PyFrameObject * frame, PyObject *name, PyObject *qualname)
Emotoepduevn tiun: New reference. Create and return a new generator object based on the frame object, with
__name__and __qualname___setto name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.11 Coroutine Objects

Néo omv éxdoon 3.5.
Coroutine objects are what functions declared with an async keyword return.

type PyCoroObject
The C structure used for coroutine objects.

PyTypeObject PyCoro_Type
The type object corresponding to coroutine objects.

int PyCoro_CheckExact (PyObject *ob)
Return true if ob’s type is PyCoro_ Type; ob must not be NULL. This function always succeeds.

PyObject *PyCoro_New (PyFrameObject * frame, PyObject *name, PyObject *qualname)
Emotoepduevn tiun: New reference. Create and return a new coroutine object based on the frame object, with
__name__and __qualname___setto name and qualname. A reference to frame is stolen by this function.
The frame argument must not be NULL.

8.6.12 Context Variables Objects

Enueiwon: AAaEe otnv ékdoon 3.7.1: In Python 3.7.1 the signatures of all context variables C APIs were changed
to use PyObject pointers instead of PyContext, PyContextVar,and PyContextToken, e.g.:

// in 3.7.0:
PyContext *PyContext_ New (void) ;

// in 3.7.1+:
PyObject *PyContext_New (void) ;

8.6. Other Objects 161

The Python/C API, Anpooicuon 3.10.18

See bpo-34762 for more details.

Néo omv éxdoon 3.7.
This section details the public C API for the contextvars module.

type PyContext
The C structure used to represent a contextvars.Context object.

type PyContextVar
The C structure used to represent a contextvars.ContextVar object.

type PyContextToken
The C structure used to represent a contextvars . Token object.

PyTypeObject PyContext_Type
The type object representing the context type.

PyTypeObject PyContextVar_Type
The type object representing the context variable type.

PyTypeObject PyContextToken_Type
The type object representing the context variable token type.

Type-check macros:

int PyContext_CheckExact (PyObject *0)
Return true if o is of type PyContext_ Type. o must not be NULL. This function always succeeds.

int PyContextVar_CheckExact (PyObject *0)
Return true if o is of type PyContextVar_Type. o must not be NULL. This function always succeeds.

int PyContextToken_CheckExact (PyObject *0)
Return true if o is of type PyContext Token_Type. o must not be NULL. This function always succeeds.

Context object management functions:

PyObject *PyContext_New (void)
Emotoepduevn nun: New reference. Create a new empty context object. Returns NULL if an error has
occurred.

PyObject *PyContext_Copy (PyObject *ctx)
Emotpepduevn tun: New reference. Create a shallow copy of the passed ctx context object. Returns NULL if
an error has occurred.

PyObject *PyContext_CopyCurrent (void)
Emotoepduevn tur): New reference. Create a shallow copy of the current thread context. Returns NULL if an
error has occurred.

int PyContext_Enter (PyObject *ctx)
Set ctx as the current context for the current thread. Returns 0 on success, and —1 on error.

int PyContext_Exit (PyObject *ctx)
Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns
0 on success, and —1 on error.

Context variable functions:

PyObject *PyContextVar_New (const char *name, PyObject *def)
Emotoepduevn tiur): New reference. Create a new ContextVar object. The name parameter is used for
introspection and debug purposes. The def parameter specifies a default value for the context variable, or
NULL for no default. If an error has occurred, this function returns NULL.

int PyContextVar_Get (PyObject *var, PyObject *default_value, PyObject **value)
Get the value of a context variable. Returns -1 if an error has occurred during lookup, and 0 if no error
occurred, whether or not a value was found.

162 KegaAaio 8. Concrete Objects Layer

https://bugs.python.org/issue?@action=redirect&bpo=34762

The Python/C API, Anpooicuon 3.10.18

If the context variable was found, value will be a pointer to it. If the context variable was not found, value will
point to:

o default_value, if not NULL;
o the default value of var, if not NULL;
e NULL
Except for NULL, the function returns a new reference.

PyObject *PyContextVar_Set (PyObject *var, PyObject *value)
Emotoepduevn tyur: New reference. Set the value of var to value in the current context. Returns a new token
object for this change, or NULL if an error has occurred.

int PyContextVar_Reset (PyObject *var, PyObject *token)
Reset the state of the var context variable to that it was in before PyContextVar_Set () that returned the
token was called. This function returns O on success and —1 on error.

8.6.13 DateTime Objects

Various date and time objects are supplied by the dat et ime module. Before using any of these functions, the header
file datet ime . h must be included in your source (note that this is not included by Python. h), and the macro
PyDateTime_IMPORT must be invoked, usually as part of the module initialisation function. The macro puts a
pointer to a C structure into a static variable, PyDateTimeAPT, that is used by the following macros.

Macro for access to the UTC singleton:

PyObject *PyDateTime_TimeZone_UTC
Returns the time zone singleton representing UTC, the same object as datetime.timezone.utc.

Néo otnv ékdoon 3.7.
Type-check macros:

int PyDate_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateType orasubtype of PyDateTime_DateType. ob must
not be NULL. This function always succeeds.

int PyDate_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL. This function always succeeds.

int PyDateTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of
PyDateTime_DateTimeType. ob must not be NULL. This function always succeeds.

int PyDateTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL. This function always
succeeds.

int PyTime_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType orasubtype of PyDateTime_ TimeType. ob must
not be NULL. This function always succeeds.

int PyTime_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL. This function always succeeds.

int PyDelta_Check (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. 0ob
must not be NULL. This function always succeeds.

int PyDelta_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL. This function always
succeeds.

8.6. Other Objects 163

The Python/C API, Anpooicuon 3.10.18

int PyTZInfo_Check (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType.
ob must not be NULL. This function always succeeds.

int PyTZInfo_CheckExact (PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. ob must not be NULL. This function always
succeeds.

Macros to create objects:

PyObject *PyDate_FromDate (int year, int month, int day)
Emotoepduevn tun: New reference. Return a datet ime . date object with the specified year, month and
day.

PyObject *PyDateTime_FromDateAndTime (int year, int month, int day, int hour, int minute, int second,

int usecond)
Emotoepduevn tuun: New reference. Return a datet ime . datet ime object with the specified year, month,

day, hour, minute, second and microsecond.

PyObject *PyDateTime_FromDateAndTimeAndFold (int year, int month, int day, int hour, int minute,

int second, int usecond, int fold)
Emotpepduevny tiun: New reference. Return a datet ime . datet ime object with the specified year, month,

day, hour, minute, second, microsecond and fold.
Néo otnv ¢kdoom 3.6.

PyObject *PyTime_FromTime (int hour, int minute, int second, int usecond)
Emotoepduevny wun: New reference. Return a datetime.time object with the specified hour, minute,
second and microsecond.

PyObject *PyTime_FromTimeAndFold (int hour, int minute, int second, int usecond, int fold)
Emotoepduevn tun: New reference. Return a datetime.time object with the specified hour, minute,
second, microsecond and fold.

Néo otnv ¢€kdoom 3.6.

PyObject *PyDelta_FromDSU (int days, int seconds, int useconds)
Emotoepduevny nun: New reference. Return a datetime.timedelta object representing the given
number of days, seconds and microseconds. Normalization is performed so that the resulting number of
microseconds and seconds lie in the ranges documented for datet ime.timedelta objects.

PyObject *PyTimeZone_FromOffset (PyDateTime_DeltaType *offser)
Emortoepduevn tun: New reference. Return a datetime . t imezone object with an unnamed fixed offset
represented by the offser argument.

Néo otnv ékdoon 3.7.

PyObject *PyTimeZone_FromOffsetAndName (PyDateTime_DeltaType *offset, PyUnicode *name)
Emotoepduevn tiun: New reference. Return a datet ime . t imezone object with a fixed offset represented
by the offset argument and with tzname name.

Néo otnv ¢kdoon 3.7.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including
subclasses (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

int PyDateTime_GET_YEAR (PyDateTime_Date *0)
Return the year, as a positive int.

int PyDateTime_GET_MONTH (PyDateTime_Date *0)
Return the month, as an int from 1 through 12.

int PyDateTime_GET_DAY (PyDateTime_Date *0)
Return the day, as an int from 1 through 31.

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime,
including subclasses. The argument must not be NULL, and the type is not checked:

164 KegaAaio 8. Concrete Objects Layer

The Python/C API, Anpooicuon 3.10.18

int PyDateTime_DATE_GET_HOUR (PyDateTime_DateTime *0)
Return the hour, as an int from 0 through 23.

int PyDateTime_DATE_GET_MINUTE (PyDateTime_DateTime *0)
Return the minute, as an int from O through 59.

int PyDateTime_DATE_GET_SECOND (PyDateTime_DateTime *0)
Return the second, as an int from O through 59.

int PyDateTime_DATE_GET_MICROSECOND (PyDateTime_DateTime *0)
Return the microsecond, as an int from 0 through 999999.

int PyDateTime_DATE_GET_FOLD (PyDateTime_DateTime *0)
Return the fold, as an int from O through 1.

Néo otv éxdoon 3.6.

PyObject *PyDateTime_DATE_GET_TZINFO (PyDateTime_ DateTime *0)
Return the tzinfo (which may be None).

Néo omv éxdoon 3.10.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including
subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_TIME_GET_HOUR (PyDateTime_Time *0)
Return the hour, as an int from O through 23.

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *0)
Return the minute, as an int from O through 59.

int PyDateTime_TIME_GET_SECOND (PyDateTime_Time *0)
Return the second, as an int from 0 through 59.

int PyDateTime_TIME_GET_MICROSECOND (PyDateTime_Time *o0)
Return the microsecond, as an int from O through 999999.

int PyDateTime_TIME_GET_FOLD (PyDateTime_Time *0)
Return the fold, as an int from O through 1.

Néo oty éxdoon 3.6.

PyObject *PyDateTime_TIME_GET_TZINFO (PyDateTime_Time *0)
Return the tzinfo (which may be None).

Néo otnv éxdoon 3.10.

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta,
including subclasses. The argument must not be NULL, and the type is not checked:

int PyDateTime_DELTA_GET_DAYS (PyDateTime_Delta *o)
Return the number of days, as an int from -999999999 to 999999999.

Néo oty éxdoon 3.3.

int PyDateTime_DELTA_GET_SECONDS (PyDateTime_Delta *0)
Return the number of seconds, as an int from O through 86399.

Néo otnv ékdoon 3.3.

int PyDateTime_DELTA_GET_MICROSECONDS (PyDateTime_Delta *0)
Return the number of microseconds, as an int from 0 through 999999.

Néo omnv ékdoom 3.3.
Macros for the convenience of modules implementing the DB API:

PyObject *PyDateTime_FromTimestamp (PyObject *args)
Emotoepduevny tur): New reference. Create and return a new datetime.datetime object given an
argument tuple suitable for passing to datetime.datetime.fromtimestamp ().

8.6. Other Objects 165

The Python/C API, Anpooicuon 3.10.18

PyObject *PyDate_FromTimestamp (PyObject *args)

Emotoepduevn tun: New reference. Create and return a new datetime.date object given an argument
tuple suitable for passing to datetime.date.fromtimestamp ().

8.6.14 Objects for Type Hinting

Various built-in types for type hinting are provided. Currently, two types exist — GenericAlias and Union. Only
GenericAlias is exposed to C.

PyObject *Py_GenericAlias (PyObject *origin, PyObject *args)

Fart of the Stable ABI since version 3.9. Create a GenericAlias object. Equivalent to calling the Python
class types.GenericAlias. The origin and args arguments set the GenericAlias®“s __origin_
and _ args__ attributes respectively. origin should be a PyTypeObject*, and args can be a
PyTupleObject* orany PyObject*. If args passed is not a tuple, a 1-tuple is automatically constructed
and __args__issetto (args,).Minimal checking is done for the arguments, so the function will succeed
even if origin is not a type. The GenericAlias®“ __ parameters__ attribute is constructed lazily from
__args___. On failure, an exception is raised and NULL is returned.

Here’s an example of how to make an extension type generic:

static PyMethodDef my_obj_methods[] = {
// Other methods.

{"_ class getitem_ ", (PyCFunction)Py_GenericAlias, METH_O|METH_CLASS,
—~"See PEP 585"}

Agite gmiong:
The data model method ___class_getitem__ ().

Néo otnv ¢€kdoom 3.9.

PyTypeObject Py_GenericAliasType

Part of the Stable ABI since version 3.9. The C type of the object returned by Py _GenericAlias ().
Equivalent to t ypes .GenericAlias in Python.

Néo omnv ékdoom 3.9.

166

Kegpalaio 8. Concrete Objects Layer

KE®AAAIO 9

Initialization, Finalization, and Threads

See also Python Initialization Configuration.

9.1 Before Python Initialization

In an application embedding Python, the Py_Tnitialize () function must be called before using any other
Python/C API functions; with the exception of a few functions and the global configuration variables.

The following functions can be safely called before Python is initialized:
« Configuration functions:
— PyImport_AppendInittab ()
- PyImport_ExtendInittab ()
- PyInitFrozenExtensions ()
- PyMem_SetAllocator ()
- PyMem_SetupDebugHooks ()
- PyObject_SetArenaAllocator ()
- Py_SetPath()
- Py _SetProgramName ()
- Py_SetPythonHome ()
- Py_SetStandardStreamEncoding ()
- PySys_AddWarnOption ()
- PySys_AddXOption ()
- PySys_ResetWarnOptions ()
« Informative functions:
- Py _IsInitialized()
- PyMem_GetAllocator ()

- PyObject_GetArenaAllocator ()

167

The Python/C API, Anpooicuon 3.10.18

Py_GetBuildInfo()

Py_GetCompiler ()
- Py_GetCopyright ()
- Py_GetPlatform()
- Py_GetVersion/()

« Utilities:
- Py_DecodeLocale ()

o Memory allocators:

- PyMem_RawMalloc ()

PyMem_RawRealloc ()

PyMem RawCalloc ()

- PyMem_RawFree ()

Znueiwon: The following functions should not be called before Py Tnitialize ():Py_EncodeLocale (),
Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), Py _GetProgramFullPath(),
Py_GetPythonHome (), Py_GetProgramName () and PyEval_TInitThreads ().

9.2 Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.

When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, —b
sets Py BytesWarningFlagto 1l and —bb sets Py BytesWarningFlag to 2.

int Py_BytesWarningFlag
Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if
greater or equal to 2.

Set by the —b option.

int Py_DebugFlag
Turn on parser debugging output (for expert only, depending on compilation options).

Set by the —d option and the PYTHONDEBUG environment variable.

int Py_DontWriteBytecodeFlag
If set to non-zero, Python won't try to write . pyc files on the import of source modules.

Set by the —B option and the PYTHONDONTWRITEBYTECODE environment variable.

int Py_FrozenFlag
Suppress error messages when calculating the module search path in Py_GetPath ().

Private flag used by _freeze_importlib and frozenmain programs.

int Py_ HashRandomizationFlag
Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.

If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.

int Py_IgnoreEnvironmentFlag
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PY THONHOME, that might be set.

Set by the —E and - T options.

168 Kegpalawo 9. Initialization, Finalization, and Threads

The Python/C API, Anpooicuon 3.10.18

int Py_InspectFlag
When a script is passed as first argument or the —c option is used, enter interactive mode after executing the
script or the command, even when sys . stdin does not appear to be a terminal.

Set by the —1 option and the PYTHONINSPECT environment variable.

int Py_InteractiveFlag
Set by the —1 option.

int Py_IsolatedFlag
Run Python in isolated mode. In isolated mode sy s . path contains neither the script’s directory nor the user’s
site-packages directory.

Set by the —I option.
Néo otmv éxdoom 3.4.

int Py_LegacyWindowsFSEncodingFlag
If the flag is non-zero, use the mbcs encoding with replace error handler, instead of the UTF-8 encoding
with surrogatepass error handler, for the filesystem encoding and error handler.

Set to 1 if the PYTHONLEGACYWINDOWSFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.
Availability: Windows.

int Py_LegacyWindowsStdioFlag
If the flag is non-zero, use io.FileIO instead of WindowsConsoleIO for sys standard streams.

Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
See PEP 528 for more details.
Availability: Windows.

int Py_NoSiteFlag
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main () if you want them
to be triggered).

Set by the —S option.

int Py_NoUserSiteDirectory
Don’t add the user site-packages directorytosys.path.

Set by the —s and —T options, and the PYTHONNOUSERSITE environment variable.

int Py_OptimizeFlag
Set by the —O option and the PYTHONOPTIMIZE environment variable.

int Py_QuietFlag
Don'’t display the copyright and version messages even in interactive mode.

Set by the —q option.
Néo otnv ékdoom 3.2.

int Py_UnbufferedStdioFlag
Force the stdout and stderr streams to be unbuffered.

Set by the —u option and the PYTHONUNBUFFERED environment variable.

int Py_VerboseFlag
Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit.

Set by the —v option and the PYTHONVERBOSE environment variable.

9.2. Global configuration variables 169

https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0528

The Python/C API, Anpooicuon 3.10.18

9.3 Initializing and finalizing the interpreter

void Py_Initialize ()

Fart of the Stable ABI. Initialize the Python interpreter. In an application embedding Python, this should be
called before using any other Python/C API functions; see Before Python Initialization for the few exceptions.

This initializes the table of loaded modules (sys.modules), and creates the fundamental modules
builtins, __main__ and sys. It also initializes the module search path (sys.path). It does not set
sys.argv;use PySys_SetArgvEx () for that. This is a no-op when called for a second time (without
calling Py_FinalizeEx () first). There is no return value; it is a fatal error if the initialization fails.

Ynueimon: On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect
non-Python uses of the console using the C Runtime.

void Py_InitializeEx (int initsigs)

Fart of the Stable ABI. This function works like Py Tnitialize () if initsigs is 1. If initsigs is 0, it skips
initialization registration of signal handlers, which might be useful when Python is embedded.

intPy_IsInitialized()

Fart of the Stable ABI. Return true (nonzero) when the Python interpreter has been initialized, false (zero) if
not. After Py_FinalizeEx () is called, this returns false until Py_Tnitialize () is called again.

int Py _FinalizeEx ()

Part of the Stable ABI since version 3.6. Undo all initializations made by Py_Tnitialize () and subsequent
use of Python/C API functions, and destroy all sub-interpreters (see Py_NewInterpreter () below)
that were created and not yet destroyed since the last call to Py_Initialize (). Ideally, this frees all
memory allocated by the Python interpreter. This is a no-op when called for a second time (without calling
Py_Initialize () again first). Normally the return value is O. If there were errors during finalization
(flushing buffered data), —1 is returned.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated
by Python before exiting from the application.

Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__ () methods) to fail when they depend on other objects (even functions) or modules.
Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated
by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular
references between objects is not freed. Some memory allocated by extension modules may not be freed. Some
extensions may not work properly if their initialization routine is called more than once; this can happen if an
application calls Py Tnitialize () and Py_FinalizeEx () more than once.

Raises an auditing event cpython._ PySys_ClearAuditHooks with no arguments.

Néo oty éxdoon 3.6.

void Py_Finalize ()

Fart of the Stable ABI. This is a backwards-compatible version of Py_FinalizeEx () that disregards the
return value.

170

Kegahaio 9. Initialization, Finalization, and Threads

The Python/C API, Anpooicuon 3.10.18

9.4 Process-wide parameters

int Py_SetStandardStreamEncoding (const char *encoding, const char *errors)
This function should be called before Py Tnitialize (), if itis called at all. It specifies which encoding
and error handling to use with standard 10, with the same meanings as in str.encode ().

It overrides PYTHONIOENCODING values, and allows embedding code to control IO encoding when the
environment variable does not work.

encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending on other
settings).

Note that sys . stderr always uses the «backslashreplace» error handler, regardless of this (or any other)
setting.

If Py FinalizeEx () is called, this function will need to be called again in order to affect subsequent calls
toPy_Initialize().

Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
Néo oty éxdoon 3.4.

void Py_ SetProgramName (const wchar_t *name)

Part of the Stable ABI. This function should be called before Py Tnitialize () is called for the first time,
if it is called at all. It tells the interpreter the value of the argv [0] argument to the main () function of the
program (converted to wide characters). This is used by Py_GetPath () and some other functions below
to find the Python run-time libraries relative to the interpreter executable. The default value is 'python'.
The argument should point to a zero-terminated wide character string in static storage whose contents will not
change for the duration of the program’s execution. No code in the Python interpreter will change the contents
of this storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

wchar *Py_GetProgramName ()
Part of the Stable ABI. Return the program name set with Py_SetProgramName (), or the default. The
returned string points into static storage; the caller should not modify its value.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.
AlhoEe oty €kdoon 3.10: It now returns NULL if called before Py_Tnitialize ().

wchar_t *Py_GetPrefix ()

Part of the Stable ABIL Return the prefix for installed platform-independent files. This is derived through
a number of complicated rules from the program name set with Py_SetProgramName () and some
environment variables; for example, if the program name is ' /usr/local/bin/python', the prefix
is ' /usr/local"'. The returned string points into static storage; the caller should not modify its value.
This corresponds to the prefix variable in the top-level Makefile and the ——prefix argument to the
configure script at build time. The value is available to Python code as sy s . prefix. Itis only useful on
Unix. See also the next function.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.
AMoEe oty ékdoon 3.10: It now returns NULL if called before Py_Tnitialize ().

wchar_t *Py_GetExecPrefix ()

Fart of the Stable ABIL. Return the exec-prefix for installed platform-dependent files. This is derived through
a number of complicated rules from the program name set with Py _SetProgramName () and some
environment variables; for example, if the program nameis ' /usr/local/bin/python',the exec-prefix
is ' /usr/local'. The returned string points into static storage; the caller should not modify its value. This
corresponds to the exec_prefix variable in the top-level Make file and the ——exec—prefix argument
to the configure script at build time. The value is available to Python code as sys.exec_prefix.Itis
only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files

9.4. Process-wide parameters 171

The Python/C API, Anpooicuon 3.10.18

may be installed in the /usr/local/plat subtree while platform independent may be installed in /usr/
local.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running
the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are
another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Non-Unix operating systems are a different
story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless,
and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

System administrators will know how to configure the mount or automount programs to share /usr/
local between platforms while having /usr/local/plat be a different filesystem for each platform.

This function should not be called before Py _Tnitialize (), otherwise it returns NULL.

AlaEe ot ékdoon 3.10: It now returns NULL if called before Py_Tnitialize ().

wchar_t *Py_GetProgramFullPath ()

Part of the Stable ABI. Return the full program name of the Python executable; this is computed as a side-effect
of deriving the default module search path from the program name (setby Py Set ProgramName () above).
The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys .executable.

This function should not be called before Py _Tnitialize (), otherwise it returns NULL.

AlhoEe oty €kdoon 3.10: It now returns NULL if called before Py_Tnitialize ().

wchar_t *Py_GetPath ()

Part of the Stable ABI. Return the default module search path; this is computed from the program name (set by
Py_SetProgramName () above) and some environment variables. The returned string consists of a series
of directory names separated by a platform dependent delimiter character. The delimiter character is ' : '
on Unix and macOS, '; ' on Windows. The returned string points into static storage; the caller should not
modify its value. The list sys . path is initialized with this value on interpreter startup; it can be (and usually
is) modified later to change the search path for loading modules.

This function should not be called before Py Tnitialize (), otherwise it returns NULL.

AlhoEe oty éxdoon 3.10: It now returns NULL if called before Py_Tnitialize ().

void Py_SetPath (const wchar_t*)

Part of the Stable ABI since version 3.7. Set the default module search path. If this function is called before
Py_Initialize (),thenPy_GetPath () won'tattempt to compute a default search path but uses the one
provided instead. This is useful if Python is embedded by an application that has full knowledge of the location
of all modules. The path components should be separated by the platform dependent delimiter character, which
is ' : ' on Unix and macOS, '; ' on Windows.

This also causes sys.executable to be set to the program full path (see
Py_GetProgramFullPath()) and for sys.prefix and sys.exec_prefix to be empty. It
is up to the caller to modify these if required after calling Py_Tnitialize ().

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
The path argument is copied internally, so the caller may free it after the call completes.

AMoEe otnv €kdoom 3.8: The program full path is now used for sys . executable, instead of the program
name.

const char *Py_GetVersion ()

Part of the Stable ABI. Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first characters are the major
and minor version separated by a period. The returned string points into static storage; the caller should not
modify its value. The value is available to Python code as sys .version.

172

Kegahaio 9. Initialization, Finalization, and Threads

The Python/C API, Anpooicuon 3.10.18

const char *Py_GetPlatform ()
Part of the Stable ABIL Return the platform identifier for the current platform. On Unix, this is formed from
the «official» name of the operating system, converted to lower case, followed by the major revision number;
e.g., for Solaris 2.x, which is also known as SunOS 5.x, the value is ' sunos5"'. OnmacOS, itis 'darwin’'.
On Windows, itis 'win'. The returned string points into static storage; the caller should not modify its value.
The value is available to Python code as sys.platform.

const char *Py_GetCopyright ()
Fart of the Stable ABI. Return the official copyright string for the current Python version, for example

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as sys.copyright.

const char *Py_GetCompiler ()
Fart of the Stable ABI. Return an indication of the compiler used to build the current Python version, in square
brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

const char *Py_GetBuildInfo ()
Fart of the Stable ABI. Return information about the sequence number and build date and time of the current
Python interpreter instance, for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the variable sys.version.

void PySys_ SetArgvEx (int argc, wchar_t **argv, int updatepath)
Part of the Stable ABI. Set sys .argv based on argc and argv. These parameters are similar to those passed
to the program’s main () function with the difference that the first entry should refer to the script file to be
executed rather than the executable hosting the Python interpreter. If there isn’t a script that will be run, the
first entry in argv can be an empty string. If this function fails to initialize sys.argv, a fatal condition is
signalled using Py_FatalError ().

If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys .
path according to the following algorithm:

o If the name of an existing script is passed in argv [0], the absolute path of the directory where the
script is located is prepended to sys .path.

o Otherwise (that is, if argcis 0 or argv [0] doesn’t point to an existing file name), an empty string is
prepended to sys . path, which is the same as prepending the current working directory (" . ").

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

Enueiwon: It is recommended that applications embedding the Python interpreter for purposes other than
executing a single script pass O as updatepath, and update sy s . path themselves if desired. See CVE-2008-
5983.

On versions before 3.1.3, you can achieve the same effect by manually popping the first sys . path element
after having called Py Sys_SetArgv (), for example using:

PyRun_SimpleString ("import sys; sys.path.pop(0)\n");

Néo otv éxdoom 3.1.3.

9.4. Process-wide parameters 173

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, Anpooicuon 3.10.18

void PySys_ SetArgv (int argc, wchar_t **argv)
Part of the Stable ABI. This function works like Py Sys_SetArgvEx () with updatepath set to 1 unless the
python interpreter was started with the —I.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.
AMoEe oty ékdoom 3.4: The updatepath value depends on —T.

void Py_ SetPythonHome (const wchar_t *home)
Part of the Stable ABI. Set the default <home» directory, that is, the location of the standard Python libraries.
See PYTHONHOME for the meaning of the argument string.

The argument should point to a zero-terminated character string in static storage whose contents will not change
for the duration of the program’s execution. No code in the Python interpreter will change the contents of this
storage.

Use Py_DecodeLocale () to decode a bytes string to get a wchar_ * string.

wchar_t *Py_GetPythonHome ()
Part of the Stable ABI Return the default «home», that is, the value set by a previous call to
Py_SetPythonHome (), or the value of the PYTHONHOME environment variable if it is set.

This function should not be called before Py_Tnitialize (), otherwise it returns NULL.

AlaEe oty ékdoon 3.10: It now returns NULL if called before Py_Tnitialize ().

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global
lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference count
could end up being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the G/L may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see
sys.setswitchinterval ()). Thelock is also released around potentially blocking I/O operations like reading
or writing a file, so that other Python threads can run in the meantime.

The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current Py ThreadState: it can be retrieved
using PyThreadState_Get ().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
. Do some blocking I/O operation
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
. Do some blocking I/O operation
Py_END_ALLOW_THREADS

The Py _BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.

174 Kegpalawo 9. Initialization, Finalization, and Threads

The Python/C API, Anpooicuon 3.10.18

The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
. Do some blocking I/O operation
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the
lock is released (since another thread could immediately acquire the lock and store its own thread state in the global
variable). Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing
the thread state pointer.

Ynueioon: Calling system I/O functions is the most common use case for releasing the GIL, but it can also be
useful before calling long-running computations which don’t need access to Python objects, such as compression or
cryptographic functions operating over memory buffers. For example, the standard z1ib and hashlib modules
release the GIL when compressing or hashing data.

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is
automatically associated to them and the code showed above is therefore correct. However, when threads are created
from C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there
a thread state structure for them.

If you need to call Python code from these threads (often this will be part of a callback API provided by the
aforementioned third-party library), you must first register these threads with the interpreter by creating a thread
state data structure, then acquiring the GIL, and finally storing their thread state pointer, before you can start using
the Python/C API. When you are done, you should reset the thread state pointer, release the GIL, and finally free the
thread state data structure.

The PyGILState_Ensure () and PyGILState_Release () functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

PyGILState_ STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction () ;
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release (gstate);

Note that the PyGILState_* functions assume there is only one global interpreter (created automatically by
Py_TInitialize ()).Pythonsupports the creation of additional interpreters (using Py_ NewInterpreter ()),
but mixing multiple interpreters and the PyGILState_* API is unsupported.

9.5. Thread State and the Global Interpreter Lock 175

The Python/C API, Anpooicuon 3.10.18

9.5.3 Cautions about fork()

Another important thing to note about threads is their behaviour in the face of the C fork () call. On most systems
with fork (), after a process forks only the thread that issued the fork will exist. This has a concrete impact both
on how locks must be handled and on all stored state in CPython’s runtime.

The fact that only the «current» thread remains means any locks held by other threads will never be released. Python
solves this for os . fork () by acquiring the locks it uses internally before the fork, and releasing them afterwards.
In addition, it resets any lock-objects in the child. When extending or embedding Python, there is no way to inform
Python of additional (non-Python) locks that need to be acquired before or reset after a fork. OS facilities such
as pthread_atfork () would need to be used to accomplish the same thing. Additionally, when extending or
embedding Python, calling fork () directly rather than through os.fork () (and returning to or calling into
Python) may result in a deadlock by one of Python’s internal locks being held by a thread that is defunct after the
fork. PyOS_AfterFork_Child () tries to reset the necessary locks, but is not always able to.

The fact that all other threads go away also means that CPython’s runtime state there must be cleaned up properly,
which os.fork () does. This means finalizing all other PyThreadState objects belonging to the current
interpreter and all other PyInterpreterState objects. Due to this and the special nature of the «main»
interpreter, fork () should only be called in that interpreter’s «main» thread, where the CPython global runtime
was originally initialized. The only exception is if exec () will be called immediately after.

9.5.4 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the
Python interpreter:

type PyInterpreterState
Part of the Limited API (as an opaque struct). This data structure represents the state shared by a number of
cooperating threads. Threads belonging to the same interpreter share their module administration and a few
other internal items. There are no public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

type PyThreadState
Fart of the Limited API (as an opaque struct). This data structure represents the state of a single thread. The
only public data member is interp (PyInterpreterState*), which points to this thread’s interpreter
state.

void PyEval_InitThreads ()
Fart of the Stable ABI. Deprecated function which does nothing.

In Python 3.6 and older, this function created the GIL if it didn’t exist.
AMEe oty £xdoon 3.9: The function now does nothing.

AlaEe otnv €kdoon 3.7: This function is now called by Py_Tnitialize (), so you don't have to call it
yourself anymore.

AMEe oty £xdoon 3.2: This function cannot be called before Py_Tnitialize () anymore.
Deprecated since version 3.9, will be removed in version 3.11.

int PyEval_ThreadsInitialized()
Part of the Stable ABI. Returns a non-zero value if PyEval_TInitThreads () has been called. This
function can be called without holding the GIL, and therefore can be used to avoid calls to the locking API
when running single-threaded.

AlhaEe oty ékdoon 3.7: The GIL is now initialized by Py_Tnitialize ().

Deprecated since version 3.9, will be removed in version 3.11.

176 Kegpalawo 9. Initialization, Finalization, and Threads

The Python/C API, Anpooicuon 3.10.18

PyThreadState *PyEval_SaveThread ()
Part of the Stable ABI. Release the global interpreter lock (if it has been created) and reset the thread state to
NULL, returning the previous thread state (which is not NULL). If the lock has been created, the current thread
must have acquired it.

void PyEval_RestoreThread (PyThreadState *tstate)
Fart of the Stable ABI. Acquire the global interpreter lock (if it has been created) and set the thread state to
tstate, which must not be NULL. If the lock has been created, the current thread must not have acquired it,
otherwise deadlock ensues.

Ynueiwon: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if
the thread was not created by Python. Youcanuse _Py_IsFinalizing() orsys.is_finalizing/()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted
termination.

PyThreadState *PyThreadState_Get ()
Part of the Stable ABI. Return the current thread state. The global interpreter lock must be held. When the
current thread state is NULL, this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState *PyThreadState_Swap (PyThreadState *tstate)
Fart of the Stable ABI. Swap the current thread state with the thread state given by the argument #state, which
may be NULL. The global interpreter lock must be held and is not released.

The following functions use thread-local storage, and are not compatible with sub-interpreters:

PyGILState_STATE PyGILState_Ensure ()
Fart of the Stable ABI. Ensure that the current thread is ready to call the Python C API regardless of the
current state of Python, or of the global interpreter lock. This may be called as many times as desired by a
thread as long as each call is matched with a call to PyGILState_ Release (). In general, other thread-
related APIs may be used between PyGILState_Ensure () and PyGILState_Release () calls as
long as the thread state is restored to its previous state before the Release(). For example, normal usage of the
Py _BEGIN_ALLOW_THREADS and Py_END_ALLOW_THREADS macros is acceptable.

The return value is an opaque «handle» to the thread state when PyGILState_ Ensure () was called,
and must be passed to PyGILState_Release () to ensure Python is left in the same state. Even though
recursive calls are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure ()
must save the handle for its call to PyGIL.State Release ().

When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code.
Failure is a fatal error.

Enueiwon: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if
the thread was not created by Python. Youcanuse _Py_IsFinalizing() orsys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted
termination.

void PyGILState_Release (PyGILState_STATE)
Fart of the Stable ABI. Release any resources previously acquired. After this call, Python’s state will be the
same as it was prior to the corresponding PyGILState_Ensure () call (but generally this state will be
unknown to the caller, hence the use of the GILState API).

Every callto PyGILState_Ensure () must be matched by acallto PyGILState_Release () onthe
same thread.

PyThreadState *PyGILState_GetThisThreadState ()
Fart of the Stable ABI. Get the current thread state for this thread. May return NULL if no GILState API
has been used on the current thread. Note that the main thread always has such a thread-state, even if no
auto-thread-state call has been made on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check ()
Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread

9.5. Thread State and the Global Interpreter Lock 177

The Python/C API, Anpooicuon 3.10.18

at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return
1. This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory
allocation functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or
otherwise behave differently.

Néo otnv ¢kdoon 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py _BEGIN_ALLOW_THREADS
Part of the Stable ABL This macro expands to { PyThreadState *_save; _save =
PyEval_SaveThread () ;. Note that it contains an opening brace; it must be matched with a following
Py_END_ALLOW_THREADS macro. See above for further discussion of this macro.

Py_END_ALLOW_THREADS
Fart of the Stable ABI. This macro expands to PyEval_RestoreThread(_save); }. Note that it
contains a closing brace; it must be matched with an earlier Py_ BEGIN_ALLOW_THREADS macro. See
above for further discussion of this macro.

Py_BLOCK_THREADS
Part of the Stable ABIL This macro expands to PyEval_RestoreThread (_save) ;: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.

Py UNBLOCK_THREADS
Part of the Stable ABI. This macro expands to _save = PyEval_SaveThread () ;:itis equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

9.5.5 Low-level API

All of the following functions must be called after Py_ Tnitialize ().
AMoEe oty éxdoon 3.7: Py_Tnitialize () now initializes the GIL.

PyInterpreterState *PyInterpreterState_New ()
Fart of the Stable ABI. Create a new interpreter state object. The global interpreter lock need not be held, but
may be held if it is necessary to serialize calls to this function.

Raises an auditing event cpython.PyInterpreterState_New with no arguments.

void PyInterpreterState_Clear (PylnterpreterState *interp)
Part of the Stable ABI. Reset all information in an interpreter state object. The global interpreter lock must be
held.

Raises an auditing event cpython.PyInterpreterState_Clear with no arguments.

void PyInterpreterState_Delete (PylnterpreterState *interp)
Fart of the Stable ABI. Destroy an interpreter state object. The global interpreter lock need not be held. The
interpreter state must have been reset with a previous call to PyInterpreterState_Clear ().

PyThreadState *PyThreadState_New (PylnterpreterState *interp)
Part of the Stable ABI. Create a new thread state object belonging to the given interpreter object. The global
interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear (PyThreadState *tstate)
Fart of the Stable ABI. Reset all information in a thread state object. The global interpreter lock must be held.

AMaEe oty ékdoon 3.9: This function now calls the PyThreadState . on_delete callback. Previously,
that happened in PyThreadState_Delete ().

void PyThreadState_Delete (PyThreadState *tstate)
Part of the Stable ABI. Destroy a thread state object. The global interpreter lock need not be held. The thread
state must have been reset with a previous call to PyThreadState_Clear ().

178 Kegpalawo 9. Initialization, Finalization, and Threads

The Python/C API, Anpooicuon 3.10.18

void PyThreadState_DeleteCurrent (void)
Destroy the current thread state and release the global interpreter lock. Like PyThreadState_Delete (),
the global interpreter lock need not be held. The thread state must have been reset with a previous call to
PyThreadState_Clear().

PyFrameObject *PyThreadState_GetFrame (PyThreadState *tstate)
Fart of the Stable ABI since version 3.10. Get the current frame of the Python thread state zstate.

Return a strong reference. Return NULL if no frame is currently executing.
See also PyEval_GetFrame ().

tstate must not be NULL.

Néo oty éxdoon 3.9.

uint64_t PyThreadState_GetID (PyThreadState *tstate)
Fart of the Stable ABI since version 3.10. Get the unique thread state identifier of the Python thread state zstate.

tstate must not be NULL.
Néo oty éxdoon 3.9.

PyInterpreterState *PyThreadState_GetInterpreter (PyThreadState *tstate)
Fart of the Stable ABI since version 3.10. Get the interpreter of the Python thread state fstate.

tstate must not be NULL.
Néo oty éxdoon 3.9.

PyInterpreterState *PyInterpreterState_Get (void)
Fart of the Stable ABI since version 3.9. Get the current interpreter.

Issue a fatal error if there no current Python thread state or no current interpreter. It cannot return NULL.
The caller must hold the GIL.
Néo otnv ¢kdoom 3.9.

int64_t PyInterpreterState_GetID (PylnterpreterState *interp)
Fart of the Stable ABI since version 3.7. Return the interpreter’s unique ID. If there was any error in doing so
then —1 is returned and an error is set.

The caller must hold the GIL.
Néo otnv ékdoon 3.7.

PyObject *PyInterpreterState_GetDict (PylnterpreterState *interp)
Part of the Stable ABI since version 3.8. Return a dictionary in which interpreter-specific data may be stored.
If this function returns NULL then no exception has been raised and the caller should assume no interpreter-
specific dict is available.

This is not a replacement for PyModule GetState (), which extensions should use to store interpreter-
specific state information.

Néo otv éxdoom 3.8.

typedef PyObject *(*_PyFrameEvalFunction) (PyThreadState *tstate, PyFrameObject *frame, int

throwflag)
Type of a frame evaluation function.

The throwflag parameter is used by the throw () method of generators: if non-zero, handle the current
exception.

AMaEe ot €kdoomn 3.9: The function now takes a tstate parameter.

_PyFrameEvalFunction _PyInterpreterState_GetEvalFrameFunc (PylnterpreterState *interp)
Get the frame evaluation function.

See the PEP 523 «Adding a frame evaluation API to CPython».
Néo otnv ¢€kdoom 3.9.

9.5. Thread State and the Global Interpreter Lock 179

https://www.python.org/dev/peps/pep-0523

The Python/C API, Anpooicuon 3.10.18

void _PyInterpreterState_SetEvalFrameFunc (PylnterpreterState *interp,

_PyFrameEvalFunction eval_frame)
Set the frame evaluation function.

See the PEP 523 «Adding a frame evaluation API to CPython».
Néo otnv ékdoom 3.9.

PyObject *PyThreadState_GetDict ()

Emotoepduevn tur): Borrowed reference. Part of the Stable ABI. Return a dictionary in which extensions
can store thread-specific state information. Each extension should use a unique key to use to store state in
the dictionary. It is okay to call this function when no current thread state is available. If this function returns
NULL, no exception has been raised and the caller should assume no current thread state is available.

int PyThreadState_SetAsyncExc (unsigned long id, PyObject *exc)

Part of the Stable ABI. Asynchronously raise an exception in a thread. The id argument is the thread id of
the target thread; exc is the exception object to be raised. This function does not steal any references to exc.
To prevent naive misuse, you must write your own C extension to call this. Must be called with the GIL held.
Returns the number of thread states modified; this is normally one, but will be zero if the thread id isn’t found.
If exc is NULL, the pending exception (if any) for the thread is cleared. This raises no exceptions.

AMEe oty £xdoon 3.7: The type of the id parameter changed from long to unsigned long.

void PyEval_AcquireThread (PyThreadState *tstate)

Fart of the Stable ABI. Acquire the global interpreter lock and set the current thread state to #state, which must
not be NULL. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.

Enueiwon: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if
the thread was not created by Python. Youcanuse _Py_IsFinalizing () orsys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted
termination.

AMoEe omnv éxdoon 3.8: Updated to be consistent with PyEval RestoreThread(),
Py_END_ALLOW_THREADS (), and PyGILState_ Ensure (), and terminate the current thread
if called while the interpreter is finalizing.

PyEval_RestoreThread () is a higher-level function which is always available (even when threads have
not been initialized).

void PyEval_ReleaseThread (PyThreadState *tstate)

Fart of the Stable ABI. Reset the current thread state to NULL and release the global interpreter lock. The lock
must have been created earlier and must be held by the current thread. The #state argument, which must not be
NULL, is only used to check that it represents the current thread state — if it isn’t, a fatal error is reported.

PyEval_SaveThread () is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_AcquireLock ()

Fart of the Stable ABIL. Acquire the global interpreter lock. The lock must have been created earlier. If this
thread already has the lock, a deadlock ensues.

AmoovpOnke otnv éxdoon 3.2: This function does not update the current thread state. Please use
PyEval_RestoreThread () or PyEval_AcquireThread () instead.

Enueiwon: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if
the thread was not created by Python. Youcanuse _Py_TIsFinalizing () orsys.is_finalizing()
to check if the interpreter is in process of being finalized before calling this function to avoid unwanted
termination.

AMoEe omnv ¢éxdoon 3.8: Updated to be consistent with PyEval RestoreThread(),
Py _END_ALLOW_THREADS (), and PyGILState_Ensure (), and terminate the current thread
if called while the interpreter is finalizing.

180

Kegahaio 9. Initialization, Finalization, and Threads

https://www.python.org/dev/peps/pep-0523

The Python/C API, Anpooicuon 3.10.18

void PyEval_ReleaseLlock ()
Part of the Stable ABI. Release the global interpreter lock. The lock must have been created earlier.

AmoovpOnke otnv éxdoon 3.2: This function does not update the current thread state. Please use
PyEval_SaveThread () or PyEval_ReleaseThread () instead.

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do
that.

The «main» interpreter is the first one created when the runtime initializes. It is usually the only Python interpreter in
a process. Unlike sub-interpreters, the main interpreter has unique process-global responsibilities like signal handling.
It is also responsible for execution during runtime initialization and is usually the active interpreter during runtime
finalization. The Py InterpreterState_Main () function returns a pointer to its state.

You can switch between sub-interpreters using the PyThreadState_Swap () function. You can create and
destroy them using the following functions:

PyThreadState *Py_NewInterpreter ()
Fart of the Stable ABI. Create a new sub-interpreter. This is an (almost) totally separate environment for the
execution of Python code. In particular, the new interpreter has separate, independent versions of all imported
modules, including the fundamental modules builtins, __main__ and sys. The table of loaded modules
(sys.modules) and the module search path (sys.path) are also separate. The new environment has no
sys.argv variable. It has new standard I/O stream file objects sys.stdin, sys.stdout and sys.
stderr (however these refer to the same underlying file descriptors).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made
in the current thread state. Note that no actual thread is created; see the discussion of thread states below. If
creation of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state
is stored in the current thread state and there may not be a current thread state. (Like all other Python/C API
functions, the global interpreter lock must be held before calling this function and is still held when it returns;
however, unlike most other Python/C API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows:

o For modules using multi-phase initialization, e.g. PyModule_ FromDefAndSpec (), a separate
module object is created and initialized for each interpreter. Only C-level static and global variables
are shared between these module objects.

» For modules using single-phase initialization, e.g. PyModule Create (), the first time a particular
extension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is
squirreled away. When the same extension is imported by another (sub-)interpreter, a new module is
initialized and filled with the contents of this copy; the extension’s init function is not called. Objects
in the module’s dictionary thus end up shared across (sub-)interpreters, which might cause unwanted
behavior (see Bugs and caveats below).

Note that this is different from what happens when an extension is imported after the interpreter has been
completely re-initialized by calling Py_FinalizeEx () and Py_TInitialize ();in that case, the
extension’s initmodule function is called again. As with multi-phase initialization, this means that
only C-level static and global variables are shared between these modules.

void Py_EndInterpreter (PyThreadState *tstate)
Part of the Stable ABI. Destroy the (sub-)interpreter represented by the given thread state. The given
thread state must be the current thread state. See the discussion of thread states below. When the call
returns, the current thread state is NULL. All thread states associated with this interpreter are destroyed.
(The global interpreter lock must be held before calling this function and is still held when it returns.)
Py_FinalizeEx () will destroy all sub-interpreters that haven’t been explicitly destroyed at that point.

9.6. Sub-interpreter support 181

The Python/C API, Anpooicuon 3.10.18

9.6.1 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t
perfect — for example, using low-level file operations like os . close () they can (accidentally or maliciously) affect
each other’s open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not
work properly; this is especially likely when using single-phase initialization or (static) global variables. It is possible
to insert objects created in one sub-interpreter into a namespace of another (sub-)interpreter; this should be avoided
if possible.

Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-
interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dictionary of
loaded modules. It is equally important to avoid sharing objects from which the above are reachable.

Also note that combining this functionality with PyGILState_* APIs is delicate, because these APIs assume
a bijection between Python thread states and OS-level threads, an assumption broken by the presence of
sub-interpreters. It is highly recommended that you don’t switch sub-interpreters between a pair of matching
PyGILState_ Ensure () and PyGILState_Release () calls. Furthermore, extensions (such as ctypes)
using these APIs to allow calling of Python code from non-Python created threads will probably be broken when
using sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take
the form of a function pointer and a void pointer argument.

int Py_AddPendingCall (int (*func)) void*
,void *arg Part of the Stable ABI. Schedule a function to be called from the main interpreter thread. On success,
0 is returned and func is queued for being called in the main thread. On failure, —1 is returned without setting
any exception.

When successfully queued, func will be eventually called from the main interpreter thread with the argument
arg. It will be called asynchronously with respect to normally running Python code, but with both these
conditions met:

« on a byfecode boundarys;
« with the main thread holding the global interpreter lock (func can therefore use the full C API).

func must return 0 on success, or —1 on failure with an exception set. func won't be interrupted to perform
another asynchronous notification recursively, but it can still be interrupted to switch threads if the global
interpreter lock is released.

This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.

To call this function in a subinterpreter, the caller must hold the GIL. Otherwise, the function func can be
scheduled to be called from the wrong interpreter.

IIpozdoroinon: This is a low-level function, only useful for very special cases. There is no guarantee that
func will be called as quick as possible. If the main thread is busy executing a system call, func won’t be
called before the system call returns. This function is generally not suitable for calling Python code from
arbitrary C threads. Instead, use the PyGILState API.

AMoEe oty ékdoon 3.9: If this function is called in a subinterpreter, the function func is now scheduled to
be called from the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now
has its own list of scheduled calls.

Néo oty éxdoon 3.1.

182 Kegpalawo 9. Initialization, Finalization, and Threads

The Python/C API, Anpooicuon 3.10.18

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.

This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable
objects, making a direct C function call instead. The essential attributes of the facility have not changed; the interface
allows trace functions to be installed per-thread, and the basic events reported to the trace function are the same as
had been reported to the Python-level trace functions in previous versions.

typedef int (*Py_tracefunc) (PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered using PyEval_ SetProfile () and PyEval_SetTrace ().
The first parameter is the object passed to the registration function as obj, frame is the frame object to which the
event pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION, PyTrace_LINE,
PyTrace_RETURN, PyTrace_C_CALL, PyTrace_C_EXCEPTION, PyTrace_C_RETURN, or
PyTrace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg

PyTrace_CALL Always Py_None.

PyTrace_EXCEPTION Exception information as returned by sys.exc_info ().
PyTrace_LINE Always Py_None.

PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.

PyTrace_C_EXCEPTION | Function object being called.

PyTrace_C_RETURN Function object being called.

PyTrace_OPCODE Always Py_None.

int PyTrace_CALL
The value of the what parameter to a Py_ t race func function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_tracefunc function when an exception has been raised. The
callback function is called with this value for what when after any bytecode is processed after which the
exception becomes set within the frame being executed. The effect of this is that as exception propagation
causes the Python stack to unwind, the callback is called upon return to each frame as the exception propagates.
Only trace functions receives these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a Pyt racefunc function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting £ _trace_lines to 0 on that
frame.

int PyTrace_RETURN
The value for the what parameter to Py_ t race func functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_ t racefunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_ t race func functions when a C function has raised an exception.

int PyTrace_C_RETURN
The value for the what parameter to Py_t racefunc functions when a C function has returned.

int PyTrace_OPCODE
The value for the what parameter to Py_t racefunc functions (but not profiling functions) when a new
opcode is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to I on the frame.

9.8. Profiling and Tracing 183

The Python/C API, Anpooicuon 3.10.18

void PyEval_SetProfile (Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may
be any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except PyTrace_LINE PyTrace_OPCODE and PyTrace_EXCEPTION.

The caller must hold the GIL.

void PyEval_SetTrace (Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_ SetProfile (), except the tracing function
does receive line-number events and per-opcode events, but does not receive any event related to C
function objects being called. Any trace function registered using PyEval_Set Trace () will not receive
PyTrace_C_CALL, PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what
parameter.

The caller must hold the GIL.

9.9 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylInterpreterState *PyInterpreterState_Head ()
Return the interpreter state object at the head of the list of all such objects.

PyInterpreterState *PyInterpreterState_Main ()
Return the main interpreter state object.

PylInterpreterState *PyInterpreterState_Next (PylnterpreterState *interp)
Return the next interpreter state object after interp from the list of all such objects.

PyThreadState *PyInterpreterState_ThreadHead (PylnterpreterState *interp)
Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter
interp.

PyThreadState *PyThreadState_Next (PyThreadState *tstate)
Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState object.

9.10 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native
TLS implementation to support the Python-level thread local storage API (threading. local). The CPython C
level APIs are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void*
value per thread.

The GIL does not need to be held when calling these functions; they supply their own locking.

Note that Python . h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

Xnueimon: None of these API functions handle memory management on behalf of the void* values. You need
to allocate and deallocate them yourself. If the void* values happen to be PyOb ject*, these functions don’t do
refcount operations on them either.

184 Kegpalawo 9. Initialization, Finalization, and Threads

The Python/C API, Anpooicuon 3.10.18

9.10.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses
anew type Py_tss_t instead of int to represent thread keys.

Néo oty éxdoon 3.7.
Agite griong:
«A New C-API for Thread-Local Storage in CPython» (PEP 539)

type Py_tss_t
This data structure represents the state of a thread key, the definition of which may depend on the underlying
TLS implementation, and it has an internal field representing the key’s initialization state. There are no public
members in this structure.

When Py_LIMITED_API is not defined, static allocation of this type by Py tss_NEEDS_INIT is allowed.

Py_tss_NEEDS_INIT
This macro expands to the initializer for Py_ tss_t variables. Note that this macro won't be defined with
Py LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py_tss_ t, required in extension modules built with Py_LIMITED_API, where static
allocation of this type is not possible due to its implementation being opaque at build time.

Py_tss_t *PyThread_tss_alloc ()
Fart of the Stable ABI since version 3.7. Return a value which is the same state as a value initialized with
Py_tss_NEEDS_INIT,or NULL in the case of dynamic allocation failure.

void PyThread_tss_free (Py_fss_t *key)
Part of the Stable ABI since version 3.7. Free the given key allocated by PyThread_tss_alloc (), after
first calling PyThread _tss_delete () to ensure any associated thread locals have been unassigned. This
is a no-op if the key argument is NULL.

Inueimon: A freed key becomes a dangling pointer. You should reset the key to NULL.

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread tss_set ()
and PyThread_tss_get () are undefined if the given Py _tss_t has not been initialized by
PyThread_tss_create().

int PyThread_tss_is_created (Py_fss_t *key)
Fart of the Stable ABI since version 3.7. Return a non-zero value if the given Py_ t ss_ t has been initialized
by PyThread_tss_create().

int PyThread_tss_create (Py_fss_t *key)
Fart of the Stable ABI since version 3.7. Return a zero value on successful initialization of a TSS key. The
behavior is undefined if the value pointed to by the key argument is not initialized by Py_ t ss_ NEEDS_TINIT.
This function can be called repeatedly on the same key - calling it on an already initialized key is a no-op and
immediately returns success.

void PyThread_tss_delete (Py_1ss_t *key)
Fart of the Stable ABI since version 3.7. Destroy a TSS key to forget the values associated with the key across
all threads, and change the key’s initialization state to uninitialized. A destroyed key is able to be initialized
again by PyThread_tss_create (). This function can be called repeatedly on the same key - calling it
on an already destroyed key is a no-op.

9.10. Thread Local Storage Support 185

https://www.python.org/dev/peps/pep-0539

The Python/C API, Anpooicuon 3.10.18

int PyThread_tss_set (Py_tss_t *key, void *value)
Part of the Stable ABI since version 3.7. Return a zero value to indicate successfully associating a void* value
with a TSS key in the current thread. Each thread has a distinct mapping of the key to a void* value.

void *PyThread_tss_get (Py_1ss_t *key)
Part of the Stable ABI since version 3.7. Return the void* value associated with a TSS key in the current
thread. This returns NULL if no value is associated with the key in the current thread.

9.10.2 Thread Local Storage (TLS) API

AmooupOnke otnv ¢€kdoom 3.7: This API is superseded by Thread Specific Storage (TSS) API.

Enueiwon: This version of the API does not support platforms where the native TLS key is defined in a way that
cannot be safely cast to int. On such platforms, PyThread _create_key () will return immediately with a
failure status, and the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.

int PyThread_create_key ()
Part of the Stable ABI.

void PyThread_delete_key (int key)
Part of the Stable ABIL.

int PyThread_set_key_ value (int key, void *value)
Part of the Stable ABI.

void *PyThread_get_key_ value (int key)
Part of the Stable ABL

void PyThread_delete_key_ value (int key)
Part of the Stable ABI.

void PyThread_ReInitTLS ()
Part of the Stable ABL

186 Kegpalawo 9. Initialization, Finalization, and Threads

keoanaio 10

Python Initialization Configuration

Néo omv éxdoom 3.8.

Python can be initialized with Py_TnitializeFromConfig() and the PyConfig structure. It can be
preinitialized with Py_PreInitialize () and the PyPreConfig structure.

There are two kinds of configuration:

o The Python Configuration can be used to build a customized Python which behaves as the regular Python. For

example, environment variables and command line arguments are used to configure Python.

« The Isolated Configuration can be used to embed Python into an application. It isolates Python from the system.

For example, environment variables are ignored, the LC_CTYPE locale is left unchanged and no signal handler

is registered.

The Py_RunMain () function can be used to write a customized Python program.

See also Initialization, Finalization, and Threads.

Agite gmiong:

PEP 587 «Python Initialization Configuration».

10.1 Example

Example of customized Python always running in isolated mode:

int main(int argc, char **argv)

{

PyStatus status;
PyConfig config;
PyConfig_InitPythonConfig(&config);

config.isolated = 1;

/* Decode command line arguments.

Implicitly preinitialize Python (in isolated mode) .

status = PyConfig_SetBytesArgv(&config, argc, argv);
if (PyStatus_Exception(status)) {
goto exception;

*/

(ouvéyela otV TOLEVY OEMD)

187

https://www.python.org/dev/peps/pep-0587

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

status = Py_InitializeFromConfig(&confiqg);
if (PyStatus_Exception(status)) A
goto exception;

}
PyConfig_Clear (&configqg);

return Py_RunMain () ;

exception:

PyConfig_Clear (&configqg);

if (PyStatus_IsExit (status)) {
return status.exitcode;

3

/* Display the error message and exit the process with
non-zero exit code */

Py_ExitStatusException (status);

10.2 PyWideStringList

type PyWideStringList

List of wchar_t* strings.
If length is non-zero, items must be non-NULL and all strings must be non-NULL.
Methods:

PyStatus PyWideStringList_Append (PyWideStringList *list, const wchar_t *item)
Append item to list.

Python must be preinitialized to call this function.

PyStatus PyWideStringList_Insert (PyWideStringList *list, Py_ssize_t index, const wchar_t
) *item)
Insert item into list at index.

If index is greater than or equal to list length, append item to list.
index must be greater than or equal to 0.
Python must be preinitialized to call this function.

Structure fields:

Py_ssize_t length
List length.

wchar_t **items
List items.

188

KegpaAato 10. Python Initialization Configuration

The Python/C API, Anpooicuon 3.10.18

10.3 PyStatus

type PyStatus

Structure to store an initialization function status: success, error or exit.
For an error, it can store the C function name which created the error.
Structure fields:

int exitcode
Exit code. Argument passed to exit ().

const char *err_msg
Error message.

const char *func
Name of the function which created an error, can be NULL.

Functions to create a status:

PyStatus PyStatus_Ok (void)
Success.

PyStatus PyStatus_Error (const char *err_msg)
Initialization error with a message.

err_msg must not be NULL.

PyStatus PyStatus_NoMemory (void)
Memory allocation failure (out of memory).

PyStatus PyStatus_Exit (int exitcode)
Exit Python with the specified exit code.

Functions to handle a status:

int PyStatus_Exception (PyStatus status)
Is the status an error or an exit? If true, the exception must be handled; by -calling
Py _ExitStatusException () for example.

int PyStatus_IsError (PyStatus status)
Is the result an error?

int PyStatus_IsExit (PyStatus status)
Is the result an exit?

void Py_ExitStatusException (PyStatus status)
Call exit (exitcode) if status is an exit. Print the error message and exit with a non-zero exit code
if status is an error. Must only be called if PyStatus_Exception (status) is non-zero.

Xnpueioon: Internally, Python uses macros which set PyStatus . func, whereas functions to create a status set
func to NULL.

Example:

PyStatus alloc(void **ptr, size_t size)

{

*ptr = PyMem_ RawMalloc (size);
if (*ptr == NULL) {

return PyStatus_NoMemory () ;
}
return PyStatus_Ok();

int main(int argc, char **argv)

(ouvéyela 0TV emOpEVY 0edL)

10.3. PyStatus 189

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

void *ptr;

PyStatus status = alloc (&ptr, 16);

if (PyStatus_Exception(status)) A
Py_ExitStatusException(status);

3

PyMem_Free (ptr);

return O;

10.4 PyPreConfig

type PyPreConfig

Structure used to preinitialize Python.
Function to initialize a preconfiguration:

void PyPreConfig InitPythonConfig (PyPreConfig *preconfig)
Initialize the preconfiguration with Python Configuration.

void PyPreConfig InitIsolatedConfig (PyPreConfig *preconfig)
Initialize the preconfiguration with Isolated Configuration.

Structure fields:

intallocator
Name of the Python memory allocators:

e« PYMEM ALLOCATOR_NOT_SET (0): don’t change memory allocators (use defaults).

e PYMEM_ALLOCATOR_DEFAULT (1): default memory allocators.

e PYMEM_ALLOCATOR_DEBUG (2): default memory allocators with debug hooks.

e PYMEM_ALLOCATOR_MALLOC (3):usemalloc () of the C library.

e PYMEM_ALLOCATOR_MALLOC_DEBUG (4): force usage of malloc () with debug hooks.

e PYMEM_ALLOCATOR_PYMALLOC (5): Python pymalloc memory allocator.

e PYMEM_ ALLOCATOR_PYMALLOC_DERUG (6): Python pymalloc memory allocator with debug

hooks.

PYMEM_ALLOCATOR_PYMALLOC and PYMEM ALLOCATOR_PYMALLOC_DEBUG are not

supported if Python is configured using —--without-pymalloc.
See Memory Management.
Default: PYMEM_ALLOCATOR_NOT_SET.

int configure_locale
Set the LC_CTYPE locale to the user preferred locale.

If equals to 0, set coerce_c_localeand coerce_c_locale_warn members to 0.
See the locale encoding.
Default: 1 in Python config, 0 in isolated config.

int coerce_c_locale
If equals to 2, coerce the C locale.

If equals to 1, read the LC_CTYPE locale to decide if it should be coerced.
See the locale encoding.

Default: -1 in Python config, 0 in isolated config.

190

KegpaAato 10. Python Initialization Configuration

The Python/C API, Anpooicuon 3.10.18

int coerce_c_locale_warn
If non-zero, emit a warning if the C locale is coerced.

Default: -1 in Python config, 0 in isolated config.

int dev_mode
If non-zero, enables the Python Development Mode: see PyConfig.dev_mode.

Default: —1 in Python mode, 0 in isolated mode.

int isolated
Isolated mode: see PyConfig.isolated.

Default: 0 in Python mode, 1 in isolated mode.

int legacy_windows_fs_encoding
If non-zero:

e Set PyPreConfig.utf8 _modeto 0,

e Set PyConfig.filesystem _encodingto "mbcs",

e Set PyConfig.filesystem errorsto "replace".
Initialized the from PYTHONLEGACYWINDOWSFSENCODING environment variable value.
Only available on Windows. #1fdef MS_WINDOWS macro can be used for Windows specific code.
Default: 0.

int parse_argv
If non-zero, Py PrelnitializeFromArgs () and Py PrelnitializeFromBytesArgs ()
parse their argv argument the same way the regular Python parses command line arguments: see
Command Line Arguments.

Default: 1 in Python config, 0 in isolated config.

int use_environment
Use environment variables? See PyConfig.use_environment.

Default: 1 in Python config and 0 in isolated config.

int ut £8_mode
If non-zero, enable the Python UTF-8 Mode.

Set by the —X ut £8 command line option and the PYTHONUTF 8 environment variable.

Default: -1 in Python config and 0 in isolated config.

10.5 Preinitialize Python with PyPreConfig

The preinitialization of Python:

« Set the Python memory allocators (PyPreConfig.allocator)

 Configure the LC_CTYPE locale (locale encoding)

« Set the Python UTF-8 Mode (PyPreConfig.utf8_mode)
The current preconfiguration (PyPreConfig type) is stored in _PyRuntime.preconfig.
Functions to preinitialize Python:

PyStatus Py_PreInitialize (const PyPreConfig *preconfig)
Preinitialize Python from preconfig preconfiguration.

preconfig must not be NULL.

10.5. Preinitialize Python with PyPreConfig 191

The Python/C API, Anpooicuon 3.10.18

PyStatus Py_PreInitializeFromBytesArgs (const PyPreConfig *preconfig, int argc, char *const
*argv)
Preinitialize Python from preconfig preconfiguration.

Parse argv command line arguments (bytes strings) if parse_argv of preconfig is non-zero.
preconfig must not be NULL.

PyStatus Py_PreInitializeFromArgs (const PyPreConfig *preconfig, int argc, wchar_t *const
*argv)
Preinitialize Python from preconfig preconfiguration.
Parse argv command line arguments (wide strings) if parse_argv of preconfig is non-zero.

preconfig must not be NULL.

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception () and
Py_ExitStatusException().

For Python Configuration (PyPreConfig_InitPythonConfig ()), if Python is initialized with command line
arguments, the command line arguments must also be passed to preinitialize Python, since they have an effect on the
pre-configuration like encodings. For example, the —X ut £8 command line option enables the Python UTF-8 Mode.

PyMem_SetAllocator () can be called after Py_PrelInitialize() and before
Py _InitializeFromConfig() to install a custom memory allocator. It can be called before
Py _PrelInitialize () if PyPreConfig.allocatorissetto PYMEM ALLOCATOR_NOT_SET.

Python memory allocation functions like PyMem_ RawMalloc () must not be used before the Python
preinitialization, whereas calling directly malloc () and free () is always safe. Py_DecodeLocale () must
not be called before the Python preinitialization.

Example using the preinitialization to enable the Python UTF-8 Mode:

PyStatus status;
PyPreConfig preconfig;
PyPreConfig InitPythonConfig (&preconfiqg);

preconfig.utf8_mode = 1;

status = Py_PrelInitialize (&preconfig);

if (PyStatus_Exception(status)) A
Py_ExitStatusException (status);

I3

/* at this point, Python speaks UTF-8 */
Py_Initialize();

/* ... use Python API here ... */
Py_Finalize();

10.6 PyConfig

type PyConfig
Structure containing most parameters to configure Python.

When done, the PyConfig _Clear () function must be used to release the configuration memory.
Structure methods:

void PyConfig InitPythonConfig (PyConfig *config)
Initialize configuration with the Python Configuration.

void PyConfig InitIsolatedConfig (PyConfig *config)
Initialize configuration with the Isolated Configuration.

192 Kegahawo 10. Python Initialization Configuration

The Python/C API, Anpooicuon 3.10.18

PyStatus PyConfig_SetString (PyConfig *config, wchar_t *const *config_str, const wchar_t

*str)
Copy the wide character string str into *config_str.

Preinitialize Python if needed.

PyStatus PyConfig_SetBytesString (PyConfig *config, wchar_t *const *config_str, const

char *str)
Decode str using Py._DecodeLocale () and set the result into *config_str.

Preinitialize Python if needed.

PyStatus PyConfig_SetArgv (PyConfig *config, int argc, wchar_t *const *argv)
Set command line arguments (argv member of config) from the argv list of wide character strings.

Preinitialize Python if needed.

PyStatus PyConfig_SetBytesArgv (PyConfig *config, int argc, char *const *argv)
Set command line arguments (a rgv member of config) from the argv list of bytes strings. Decode bytes
using Py_DecodeLocale ().

Preinitialize Python if needed.

PyStatus PyConfig_SetWideStringList (PyConfig *config, PyWideStringList *list, Py_ssize_t
length, wchar_t **items)
Set the list of wide strings list to length and items.

Preinitialize Python if needed.

PyStatus PyConfig Read (PyConfig *config)
Read all Python configuration.

Fields which are already initialized are left unchanged.

The PyConfig Read () function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are strippped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.

Preinitialize Python if needed.

AMoEe oty €xdoon 3.10: The PyConfig. argv arguments are now only parsed once, PyConfig.
parse_argv is set to 2 after arguments are parsed, and arguments are only parsed if PyConfig.
parse_argvequals 1.

void PyConfig Clear (PyConfig *config)
Release configuration memory.

Most PyConf ig methods preinitialize Python if needed. In that case, the Python preinitialization configuration
(PyPreConfig) in based on the PyConfig. If configuration fields which are in common with
PyPreConfig are tuned, they must be set before calling a PyCon fig method:

e PyConfig.dev_mode

e PyConfig.isolated

e PyConfig.parse_argv

e PyConfig.use_environment

Moreover, if PyConfig SetArgv () or PyConfig SetBytesArgv () is used, this method must be
called before other methods, since the preinitialization configuration depends on command line arguments (if
parse_argv is non-zero).

The caller of these methods is responsible to handle exceptions (error or exit) using
PyStatus_Exception () and Py_ExitStatusException().

Structure fields:

PyWideStringList axrgv
Command line arguments: sys.argv.

10.6. PyConfig 193

The Python/C API, Anpooicuon 3.10.18

Set parse_argv to 1 to parse argv the same way the regular Python parses Python command line
arguments and then to strip Python arguments from argv.

If argv is empty, an empty string is added to ensure that sys . argv always exists and is never empty.
Default: NULL.
See also the orig argv member.

wchar_t *base_exec_prefix
sys.base_exec_prefix.

Default: NULL.
Part of the Python Path Configuration output.

wchar_t *base_executable
Python base executable: sys._base_executable.

Set by the _ PYVENV_LAUNCHER___ environment variable.
Set from PyConfig.executable if NULL.

Default: NULL.

Part of the Python Path Configuration output.

wchar_t *base_prefix
sys.base_prefix.

Default: NULL.
Part of the Python Path Configuration output.

int buffered_stdio
If equals to 0 and configure_c_stdio is non-zero, disable buffering on the C streams stdout and
stderr.

Set to 0 by the —u command line option and the PYTHONUNBUFFERED environment variable.
stdin is always opened in buffered mode.
Default: 1.

int bytes_warning
If equals to 1, issue a warning when comparing bytes or bytearray with st r, or comparing bytes
with int.

If equal or greater to 2, raise a BytesWarning exception in these cases.
Incremented by the —b command line option.
Default: 0.

int warn_default_encoding
If non-zero, emit a EncodingWarning warning when io.TextIOWrapper uses its default
encoding. See io-encoding-warning for details.

Default: 0.
Néo oty éxdoonm 3.10.

wchar_t *check_hash_pycs_mode
Control the validation behavior of hash-based .pyc files: value of the ——check—-hash-based-
pycs command line option.

Valid values:
e L"always": Hash the source file for invalidation regardless of value of the “check_source” flag.
e L"never": Assume that hash-based pycs always are valid.

e L"default": The “check_source” flag in hash-based pycs determines invalidation.

194 Kegahawo 10. Python Initialization Configuration

The Python/C API, Anpooicuon 3.10.18

Default: L"default".
See also PEP 552 «Deterministic pycs».

int configure_c_stdio
If non-zero, configure C standard streams:

« On Windows, set the binary mode (O_BINARY) on stdin, stdout and stderr.
o If buffered_ stdio equals zero, disable buffering of stdin, stdout and stderr streams.

o If interactive is non-zero, enable stream buffering on stdin and stdout (only stdout on
Windows).

Default: 1 in Python config, 0 in isolated config.

int dev_mode
If non-zero, enable the Python Development Mode.

Default: -1 in Python mode, 0 in isolated mode.

int dump_refs
Dump Python references?

If non-zero, dump all objects which are still alive at exit.
Set to 1 by the PYTHONDUMPREF'S environment variable.

Need a special build of Python with the Py_ TRACE_REFS macro defined: see the configure —--
with-trace-refs option.

Default: 0.

wchar_t *exec_prefix
The site-specific directory prefix where the platform-dependent Python files are installed: sys.
exec_prefix.

Default: NULL.
Part of the Python Path Configuration output.

wchar_t *executable
The absolute path of the executable binary for the Python interpreter: sys.executable.

Default: NULL.
Part of the Python Path Configuration output.

int faulthandler
Enable faulthandler?

If non-zero, call faulthandler.enable () at startup.
Setto 1 by -X faulthandler and the PYTHONFAULTHANDLER environment variable.
Default: —1 in Python mode, 0 in isolated mode.

wchar_t *filesystem_encoding
Filesystem encoding: sys .getfilesystemencoding ().

On macOS, Android and VxWorks: use "ut £-8" by default.

On Windows: use "utf—-8" by default, or "mbcs" if legacy_windows_fs_encoding of
PyPreConfig is non-zero.

Default encoding on other platforms:
e "utf-8"if PyPreConfig.utf8 mode is non-zero.

e "ascii" if Python detects that n1_langinfo (CODESET) announces the ASCII encoding,
whereas the mbstowcs () function decodes from a different encoding (usually Latin1).

e "utf-8"if nl langinfo (CODESET) returns an empty string.

10.6. PyConfig 195

https://www.python.org/dev/peps/pep-0552

The Python/C API, Anpooicuon 3.10.18

o Otherwise, use the locale encoding: n1_langinfo (CODESET) result.

At Python startup, the encoding name is normalized to the Python codec name. For example,
"ANSI_X3.4-1968" is replaced with "ascii™".

See also the filesystem errors member.

wchar_t *filesystem_errors
Filesystem error handler: sys .getfilesystemencodeerrors ().

On Windows: use "surrogatepass" by default, or "replace" if
legacy_windows_fs_encoding of PyPreConfig is non-zero.

On other platforms: use "surrogateescape" by default.
Supported error handlers:
e "strict"
e "surrogateescape"
e "surrogatepass" (only supported with the UTF-8 encoding)
See also the i lesystem encoding member.
unsigned long hash_seed

int use_hash_seed
Randomized hash function seed.

If use_hash_seedis zero, a seed is chosen randomly at Python startup, and hash_ seed is ignored.
Set by the PYTHONHASHSEED environment variable.
Default use_hash_seed value: —1 in Python mode, O in isolated mode.

wchar_t *home
Python home directory.

If Py_SetPythonHome () has been called, use its argument if it is not NULL.
Set by the PYTHONHOME environment variable.

Default: NULL.

Part of the Python Path Configuration input.

int import_time
If non-zero, profile import time.

Set the 1 by the -X importtime option and the PYTHONPROF ILEIMPORTTIME environment
variable.

Default: 0.

int inspect
Enter interactive mode after executing a script or a command.

If greater than 0, enable inspect: when a script is passed as first argument or the -c option is used, enter
interactive mode after executing the script or the command, even when sys . stdin does not appear to
be a terminal.

Incremented by the —i command line option. Set to 1 if the PYTHONINSPECT environment variable
is non-empty.

Default: 0.

int install_signal_handlers
Install Python signal handlers?

Default: 1 in Python mode, 0 in isolated mode.

196 KegpaAato 10. Python Initialization Configuration

The Python/C API, Anpooicuon 3.10.18

int interactive
If greater than 0, enable the interactive mode (REPL).

Incremented by the —1 command line option.
Default: 0.

int isolated
If greater than 0, enable isolated mode:

e sys.path contains neither the script’s directory (computed from argv[0] or the current
directory) nor the user’s site-packages directory.

« Python REPL doesn’t import readline nor enable default readline configuration on interactive
prompts.

e Set use_environment and user_site_directoryto0.
Default: 0 in Python mode, 1 in isolated mode.
See also PyPreConfig.isolated.

int legacy_windows_stdio
If non-zero, use io.FileIOinstead of io.WindowsConsoleIOforsys.stdin, sys.stdout
and sys.stderr.

Set to 1 if the PYTHONLEGACYWINDOWSSTD IO environment variable is set to a non-empty string.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
Default: 0.

See also the PEP 528 (Change Windows console encoding to UTF-8).

intmalloc_stats
If non-zero, dump statistics on Python pymalloc memory allocator at exit.

Set to 1 by the PYTHONMALLOCSTATS environment variable.
The option is ignored if Pythonis configured using the --without-pymalloc option.
Default: 0.

wchar_t *platlibdir
Platform library directory name: sys.platlibdir.

Set by the PYTHONPLATLIBD IR environment variable.

Default: value of the PLATLIBDIR macro which is set by the configure —--with-platlibdir
option (default: "1ib™).

Part of the Python Path Configuration input.
Néo oty éxdoon 3.9.

wchar_t *pythonpath_env
Module search paths (sys.path) as a string separated by DELIM (os .path.pathsep).

Set by the PYTHONPATH environment variable.

Default: NULL.

Part of the Python Path Configuration input.
PyWideStringList module_search_paths

intmodule_search_paths_set
Module search paths: sys.path.

If module_search_paths_setisequal to 0, the function calculating the Python Path Configuration
overrides the module search_paths and sets module search_paths_set to 1.

Default: empty list (nodule_search_paths)and 0 (module_search_paths_set).

10.6. PyConfig 197

https://www.python.org/dev/peps/pep-0528

The Python/C API, Anpooicuon 3.10.18

Part of the Python Path Configuration output.

int optimization_level
Compilation optimization level:

« 0: Peephole optimizer, set __debug__ to True.

e 1:Level 0, remove assertions, set ___debug__ to False.

o 2:Level 1, strip docstrings.
Incremented by the —O command line option. Set to the PYTHONOP TIMI ZE environment variable value.
Default: 0.

PyWideStringList oxig_argv
The list of the original command line arguments passed to the Python executable: sys.orig_argv.

If orig argv list is empty and argv is not a list only containing an empty string,
PyConfig_Read () copies argv into orig_argv before modifying argv (if parse_argv is
Nnon-zero).

See also the a rgv member and the Py_GetArgcArgv () function.
Default: empty list.
Néo oty éxdoonm 3.10.

int parse_argv
Parse command line arguments?

If equals to 1, parse argv the same way the regular Python parses command line arguments, and strip
Python arguments from argv.

The PyConfig Read () function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are strippped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.

Default: 1 in Python mode, 0 in isolated mode.

AMaEe otnv ékdoon 3.10: The PyConfig.argv arguments are now only parsed if PyConfig.
parse_argvequalsto 1.

int parser_debug
Parser debug mode. If greater than O, turn on parser debugging output (for expert only, depending on
compilation options).

Incremented by the —d command line option. Set to the PYTHONDEBUG environment variable value.
Default: 0.

int pathconfig warnings
On Unix, if non-zero, calculating the Python Path Configuration can log warnings into st derr. If equals
to 0, suppress these warnings.

It has no effect on Windows.
Default: 1 in Python mode, 0 in isolated mode.
Part of the Python Path Configuration input.

wchar_t *prefix
The site-specific directory prefix where the platform independent Python files are installed: sys.
prefix.

Default: NULL.
Part of the Python Path Configuration output.

wchar_t *program_name
Program name used to initialize executable and in early error messages during Python initialization.

198 KegpaAato 10. Python Initialization Configuration

The Python/C API, Anpooicuon 3.10.18

o If Py_SetProgramName () has been called, use its argument.
e On macOS, use PYTHONEXECUTABLE environment variable if set.

o Ifthe WITH_NEXT_FRAMEWORK macrois defined, use __ PYVENV_LAUNCHER___environment
variable if set.

e Use argv [0] of argv if available and non-empty.

o Otherwise, use L"python" on Windows, or L"python3" on other platforms.
Default: NULL.
Part of the Python Path Configuration input.

wchar_t *pycache_prefix
Directory where cached . pyc files are written: sys.pycache_prefix.

Set by the -X pycache_prefix=PATH command line option and the PYTHONP YCACHEPREF I X
environment variable.

If NULL, sys.pycache_prefixissetto None.
Default: NULL.

int quiet
Quiet mode. If greater than 0, don’t display the copyright and version at Python startup in interactive
mode.

Incremented by the —g command line option.
Default: 0.

wchar_t *run_command
Value of the —c command line option.

Used by Py_RunMain ().
Default: NULL.

wchar_t *run_filename
Filename passed on the command line: trailing command line argument without —c or —m.

For example, itis set to script.py by the python3 script.py arg command.
Used by Py_RunMain ().
Default: NULL.

wchar_t *run_module
Value of the —m command line option.

Used by Py_RunMain ().
Default: NULL.

int show_ref_count
Show total reference count at exit?

Setto 1 by -X showrefcount command line option.
Need a debug build of Python (the Py_REF_DEBUG macro must be defined).
Default: 0.

int site_import
Import the site module at startup?

If equal to zero, disable the import of the module site and the site-dependent manipulations of sys.
path that it entails.

Also disable these manipulations if the site module is explicitly imported later (call site.main ()
if you want them to be triggered).

10.6. PyConfig 199

The Python/C API, Anpooicuon 3.10.18

Set to 0 by the —S command line option.
sys.flags.no_site is set to the inverted value of site import.
Default: 1.

int skip_source_first_line
If non-zero, skip the first line of the PyConfig. run_filename source.

It allows the usage of non-Unix forms of # ! cmd. This is intended for a DOS specific hack only.
Set to 1 by the —x command line option.
Default: 0.

wchar_t *stdio_encoding

wchar_t *stdio_errors
Encoding and encoding errors of sys.stdin, sys.stdout and sys.stderr (butsys.stderr
always uses "backslashreplace" error handler).

If Py _SetStandardStreamEncoding () has been called, use its error and errors arguments if
they are not NULL.

Use the PYTHONIOENCODING environment variable if it is non-empty.
Default encoding:

e "UTF-8"if PyPreConfig.utf8_mode is non-zero.

o Otherwise, use the locale encoding.
Default error handler:

¢ On Windows: use "surrogateescape".

e "surrogateescape" if PyPreConfig.ut 8 mode is non-zero, or if the LC_CTYPE
locale is «C» or «POSIX».

e "strict" otherwise.

int tracemalloc
Enable tracemalloc?

If non-zero, call tracemalloc.start () atstartup.

Set by -X tracemalloc=N command line option and by the PYTHONTRACEMALLOC environment
variable.

Default: —1 in Python mode, 0 in isolated mode.

int use_environment
Use environment variables?

If equals to zero, ignore the environment variables.
Default: 1 in Python config and 0 in isolated config.

intuser_site_directory
If non-zero, add the user site directory to sys.path.

Set to 0 by the —s and —I command line options.
Set to 0 by the PYTHONNOUSERSITE environment variable.
Default: 1 in Python mode, 0 in isolated mode.

int verbose
Verbose mode. If greater than O, print a message each time a module is imported, showing the place
(filename or built-in module) from which it is loaded.

If greater or equal to 2, print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit.

200 KegpaAato 10. Python Initialization Configuration

The Python/C API, Anpooicuon 3.10.18

Incremented by the —v command line option.
Set to the PYTHONVERBOSE environment variable value.
Default: 0.

PyWideStringList warnoptions
Options of the warnings module to build warnings filters, lowest to highest priority: sys.
warnoptions.

The warnings module adds sys.warnoptions in the reverse order: the last PyConfig.
warnoptions item becomes the first item of warnings. filters which is checked first (highest
priority).

The —W command line options adds its value to warnopt ions, it can be used multiple times.

The PYTHONWARNINGS environment variable can also be used to add warning options. Multiple options
can be specified, separated by commas (,).

Default: empty list.

intwrite_bytecode
If equal to 0, Python won't try to write . pyc files on the import of source modules.

Set to O by the -B command line option and the PYTHONDONTWRITEBYTECODE environment
variable.

sys.dont_write_bytecode is initialized to the inverted value of write bytecode.
Default: 1.

PyWideStringList xoptions
Values of the —X command line options: sys._xoptions.

Default: empty list.

If parse_argv is non-zero, argv arguments are parsed the same way the regular Python parses command line
arguments, and Python arguments are stripped from argv.

The xopt ions options are parsed to set other options: see the —X command line option.

AlhaEe oty €xdoon 3.9: The show_alloc_count field has been removed.

10.7 Initialization with PyConfig

Function to initialize Python:

PyStatus Py_InitializeFromConfig (const PyConfig *config)
Initialize Python from config configuration.

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception () and
Py_ExitStatusException().

If PyImport_FrozenModules (), PyImport_AppendInittab () or
PyImport_ExtendInittab () are used, they must be set or called after Python preinitialization and
before the Python initialization. If Python is initialized multiple times, Py Import_AppendInittab () or
PyImport_ExtendInittab () must be called before each Python initialization.

The current configuration (PyConfig type) is stored in PyInterpreterState.config.

Example setting the program name:

void init_python (void)
{
PyStatus status;

PyConfig config;

(ouvéyela 0TV emOpEVY 0edL)

10.7. Initialization with PyConfig 201

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

PyConfig_InitPythonConfig(&confiqg);

/* Set the program name. Implicitly preinitialize Python. */
status = PyConfig_SetString(&config, &config.program_name,
L"/path/to/my_program") ;
if (PyStatus_Exception (status)) {
goto exception;

status = Py_InitializeFromConfig(&confiqg);
if (PyStatus_Exception(status)) {
goto exception;
3
PyConfig_Clear (&configqg);
return;

exception:

PyConfig_Clear (&configqg);
Py_ExitStatusException (status);

More complete example modifying the default configuration, read the configuration, and then override some
parameters:

PyStatus init_python (const char *program_name)

{

PyStatus status;

PyConfig config;
PyConfig_ InitPythonConfig(&confiqg);

/* Set the program name before reading the configuration
(decode byte string from the locale encoding).

Implicitly preinitialize Python. */
status = PyConfig_SetBytesString(&config, &config.program_name,
program_name) ;
if (PyStatus_Exception(status)) A
goto done;

/* Read all configuration at once */

status = PyConfig_Read(&config);

if (PyStatus_Exception(status)) A
goto done;

/* Append our custom search path to sys.path */
status = PyWideStringList_Append (&config.module_search_paths,
L"/path/to/more/modules") ;
if (PyStatus_Exception(status)) {
goto done;

/* Override executable computed by PyConfig Read() */
status = PyConfig_SetString(&config, &config.executable,
L"/path/to/my_executable");
if (PyStatus_Exception (status)) {
goto done;

(ouvéyela 0TV emtopEV) 0ehidaL)

202

KegpaAato 10. Python Initialization Configuration

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

status = Py_InitializeFromConfig(&config);

done:
PyConfig_Clear (&configqg);
return status;

10.8 Isolated Configuration

PyPreConfig_InitIsolatedConfig() and PyConfig_InitIsolatedConfig () functions create
a configuration to isolate Python from the system. For example, to embed Python into an application.

This configuration ignores global configuration variables, environment variables, command line arguments
(PyConfig.argv is not parsed) and user site directory. The C standard streams (ex: stdout) and the
LC_CTYPE locale are left unchanged. Signal handlers are not installed.

Configuration files are still used with this configuration. Set the Python Path Configuration («output fields») to ignore
these configuration files and avoid the function computing the default path configuration.

10.9 Python Configuration

PyPreConfig_InitPythonConfig() and PyConfig_InitPythonConfig() functions create a
configuration to build a customized Python which behaves as the regular Python.

Environments variables and command line arguments are used to configure Python, whereas global configuration
variables are ignored.

This function enables C locale coercion (PEP 538) and Python UTF-8 Mode (PEP 540) depending on the
LC_CTYPE locale, PYTHONUTF 8 and PYTHONCOERCECLOCALE environment variables.

10.10 Python Path Configuration

PyConf1ig contains multiple fields for the path configuration:
« Path configuration inputs:

- PyConfig.home
- PyConfig.platlibdir
- PyConfig.pathconfig _warnings
- PyConfig.program_name
- PyConfig.pythonpath_env
- current working directory: to get absolute paths
- PATH environment variable to get the program full path (from PyConfig.program name)
- _ PYVENV_LAUNCHER___ environment variable

- (Windows only) Application paths in the registry under «SoftwarePythonPythonCoreX.YPythonPath»
of HKEY_CURRENT_USER and HKEY_LLOCAL_MACHINE (where X.Y is the Python version).

« Path configuration output fields:
- PyConfig.base_exec_prefix

- PyConfig.base_executable

10.8. Isolated Configuration 203

https://www.python.org/dev/peps/pep-0538
https://www.python.org/dev/peps/pep-0540

The Python/C API, Anpooicuon 3.10.18

PyConfig.base_prefix

PyConfig.exec_prefix

- PyConfig.executable

- PyConfig.module_search_paths_set, PyConfig.module_search_paths
- PyConfig.prefix

If at least one «output field» is not set, Python calculates the path configuration to fill unset fields.
If module_search_paths_set 1is equal to 0, module search_paths 1is overridden and
module_search_paths_set issetto 1.

It is possible to completely ignore the function calculating the default path configuration by setting explicitly
all path configuration output fields listed above. A string is considered as set even if it is non-empty.
module_search_paths is considered as set if module_search_paths_set is set to 1. In this case, path
configuration input fields are ignored as well.

Set pathconfig warnings to 0 to suppress warnings when calculating the path configuration (Unix only,
Windows does not log any warning).

If base_prefix or base_exec_prefix fields are not set, they inherit their value from prefix and
exec_prefix respectively.

Py_RunMain () and Py_Main () modify sys.path:

o If run_filename is set and is a directory which contains a __main__ .py script, prepend
run_filenameto sys.path.

o If isolatedis zero:

- If run_moduleis set, prepend the current directory to sys . path. Do nothing if the current directory
cannot be read.

- If run_filename is set, prepend the directory of the filename to sys.path.
- Otherwise, prepend an empty string to sys .path.

If site_import isnon-zero, sys.path can be modified by the site module. If user site_directory
is non-zero and the user’s site-package directory exists, the site module appends the user’s site-package directory
to sys.path.

The following configuration files are used by the path configuration:
e pyvenv.cfg
e python._pth (Windows only)
e pybuilddir.txt (Unix only)

The _ PYVENV_LAUNCHER___ environment variable is used to set PyConfig.base_executable

10.11 Py_RunMain()

int Py_ RunMain (void)
Execute the command (PyConfig. run_command), the script (PyConfig.run_filename) or the
module (PyConfig. run_module) specified on the command line or in the configuration.

By default and when if -1 option is used, run the REPL.
Finally, finalizes Python and returns an exit status that can be passed to the exit () function.

See Python Configuration for an example of customized Python always running in isolated mode using
Py_RunMain/().

204 Kegahawo 10. Python Initialization Configuration

The Python/C API, Anpooicuon 3.10.18

10.12 Py_GetArgcArgv()

void Py_GetArgcArgv (int *argc, wchar_t ***argy)
Get the original command line arguments, before Python modified them.

See also PyConfig.orig_argv member.

10.13 Multi-Phase Initialization Private Provisional API

This section is a private provisional API introducing multi-phase initialization, the core feature of PEP 432:
» «Core» initialization phase, «bare minimum Python»:
— Builtin types;
- Builtin exceptions;
— Builtin and frozen modules;
- The sys module is only partially initialized (ex: sy s .path doesn’t exist yet).

o «Main» initialization phase, Python is fully initialized:

Install and configure importlib;

Apply the Path Configuration;

Install signal handlers;

Finish sys module initialization (ex: create sys . stdout and sys.path);

Enable optional features like faulthandler and tracemalloc;

Import the site module;
- etc.
Private provisional API:

e PyConfig._init_main: if set to 0, Py TnitializeFromConfig() stops at the «Core»
initialization phase.

e PyConfig._isolated_interpreter:if non-zero, disallow threads, subprocesses and fork.

PyStatus _Py_InitializeMain (void)
Move to the «Main» initialization phase, finish the Python initialization.

No module is imported during the «Core» phase and the importlib module is not configured: the Path
Configuration is only applied during the «Main» phase. It may allow to customize Python in Python to override
or tune the Path Configuration, maybe install a custom sys.meta_path importer or an import hook, etc.

It may become possible to calculatin the Path Configuration in Python, after the Core phase and before the Main
phase, which is one of the PEP 432 motivation.

The «Core» phase is not properly defined: what should be and what should not be available at this phase is not
specified yet. The API is marked as private and provisional: the API can be modified or even be removed anytime
until a proper public API is designed.

Example running Python code between «Core» and «Main» initialization phases:

void init_python (void)
{
PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&configqg);
config._init_main = 0;

(ouvéyela 0TV emOpEVY 0edL)

10.12. Py_GetArgcArgv() 205

https://www.python.org/dev/peps/pep-0432
https://www.python.org/dev/peps/pep-0432

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

/* ... customize 'config' configuration ... */

status = Py_InitializeFromConfig(&config);

PyConfig_Clear (&configqg);

if (PyStatus_Exception (status)) {
Py_ExitStatusException (status);

/* Use sys.stderr because sys.stdout is only created
by _Py_InitializeMain() */
int res = PyRun_SimpleString(
"import sys; "
"print ('Run Python code before _Py_InitializeMain',

n

"file=sys.stderr)");
if (res < 0) |
exit (1);
}
/* ... put more configuration code here ... */
status = _Py_InitializeMain();

if (PyStatus_Exception(status)) {
Py_ExitStatusException (status);

206 KegpaAato 10. Python Initialization Configuration

kKeoAralo 11

Memory Management

11.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The
management of this private heap is ensured internally by the Python memory manager. The Python memory manager
has different components which deal with various dynamic storage management aspects, like sharing, segmentation,
preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all
Python-related data by interacting with the memory manager of the operating system. On top of the raw memory
allocator, several object-specific allocators operate on the same heap and implement distinct memory management
policies adapted to the peculiarities of every object type. For example, integer objects are managed differently within
the heap than strings, tuples or dictionaries because integers imply different storage requirements and speed/space
tradeoffs. The Python memory manager thus delegates some of the work to the object-specific allocators, but ensures
that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that
the user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap.
The allocation of heap space for Python objects and other internal buffers is performed on demand by the Python
memory manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions
exported by the C library: malloc (), calloc (), realloc () and free (). This will result in mixed calls
between the C allocator and the Python memory manager with fatal consequences, because they implement different
algorithms and operate on different heaps. However, one may safely allocate and release memory blocks with the C
library allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc (BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
...Do some I/O operation involving buf...
res = PyBytes_FromString (buf);
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the bytes object returned as a result.

207

The Python/C API, Anpooicuon 3.10.18

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the
latter is under control of the Python memory manager. For example, this is required when the interpreter is extended
with new object types written in C. Another reason for using the Python heap is the desire to inform the Python
memory manager about the memory needs of the extension module. Even when the requested memory is used
exclusively for internal, highly specific purposes, delegating all memory requests to the Python memory manager
causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently, under certain
circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage collection,
memory compaction or other preventive procedures. Note that by using the C library allocator as shown in the
previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

Agite griong:
The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.

The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator
every time a new pymalloc object arena is created, and on shutdown.

11.2 Allocator Domains

All allocating functions belong to one of three different «domains» (see also PyMemAllocatorDomain). These
domains represent different allocation strategies and are optimized for different purposes. The specific details on how
every domain allocates memory or what internal functions each domain calls is considered an implementation detail,
but for debugging purposes a simplified table can be found at /ere. There is no hard requirement to use the memory
returned by the allocation functions belonging to a given domain for only the purposes hinted by that domain (although
this is the recommended practice). For example, one could use the memory returned by PyMem_RawMalloc ()
for allocating Python objects or the memory returned by PyOb ject_Malloc () for allocating memory for buffers.

The three allocation domains are:

o Raw domain: intended for allocating memory for general-purpose memory buffers where the allocation must
go to the system allocator or where the allocator can operate without the G/L. The memory is requested directly
to the system.

« «Mem» domain: intended for allocating memory for Python buffers and general-purpose memory buffers where
the allocation must be performed with the G/L held. The memory is taken from the Python private heap.

» Object domain: intended for allocating memory belonging to Python objects. The memory is taken from the
Python private heap.

When freeing memory previously allocated by the allocating functions belonging to a given domain,the matching
specific deallocating functions must be used. For example, PyMem Free () must be used to free memory allocated
using PyMem _Malloc ().

11.3 Raw Memory Interface

The following function sets are wrappers to the system allocator. These functions are thread-safe, the GIL does not
need to be held.

The default raw memory allocator uses the following functions: malloc (), calloc (), realloc () and
free();callmalloc (1) (or calloc (1, 1)) when requestingzero bytes.

Néo oty éxdoom 3.4.

void *PyMem_RawMalloc (size_t n)
Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc (1) had
been called instead. The memory will not have been initialized in any way.

208 Kegahawo 11. Memory Management

The Python/C API, Anpooicuon 3.10.18

void *PyMem_RawCalloc (size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc (1, 1) had been called instead.

Néo otv é€kdoom 3.5.

void *PyMem_RawRealloc (void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the
old and the new sizes.

If p is NULL, the call is equivalent to PyMem_RawMalloc (n);else if n is equal to zero, the memory block
is resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyMem RawMalloc (),
PyMem RawRealloc () or PyMem RawCalloc ().

If the request fails, PyMem RawRealloc () returns NULL and p remains a valid pointer to the previous
memory area.

void PyMem_RawFree (void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call
to PyMem RawMalloc (), PyMem RawRealloc () or PyMem RawCalloc (). Otherwise, or if
PyMem_RawFree (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.4 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

The default memory allocator uses the pymalloc memory allocator.

ITpozwdomoinon: The GIL must be held when using these functions.

AMaEe oty €kdoon 3.6: The default allocator is now pymalloc instead of system malloc ().

void *PyMem_Malloc (size_t n)
Part of the Stable ABI. Allocates n bytes and returns a pointer of type void* to the allocated memory, or
NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem _Malloc (1) had been
called instead. The memory will not have been initialized in any way.

void *PyMem_Calloc (size_t nelem, size_t elsize)
Fart of the Stable ABI since version 3.7. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
ZEeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc (1, 1) had been called instead.

Néo otnv ¢kdoom 3.5.

void *PyMem_Realloc (void *p, size_t n)
Fart of the Stable ABI. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged
to the minimum of the old and the new sizes.

If p is NULL, the call is equivalent to PyMem_Malloc (n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.

11.4. Memory Interface 209

The Python/C API, Anpooicuon 3.10.18

Unless p is NULL, it must have been returned by a previous call to PyMem Malloc (),
PyMem_Realloc () or PyMem_ Calloc ().

If the request fails, PyMem Realloc () returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free (void *p)
Part of the Stable ABIL Frees the memory block pointed to by p, which must have been returned by
a previous call to PyMem_Malloc (), PyMem_Realloc () or PyMem_Calloc (). Otherwise, or if
PyMem_Free (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.
The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.

TYPE *PyMem_New (TYPE, size_t n)
Same as PyMem Malloc (), butallocates (n * sizeof (TYPE)) bytes of memory. Returns a pointer
cast to TYPE*. The memory will not have been initialized in any way.

TYPE *PyMem_Resize (void *p, TYPE, size_t n)
Same as PyMem_Realloc (), butthe memory block is resized to (n * sizeof (TYPE)) bytes. Returns
a pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of
failure.

This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory
when handling errors.

void PyMem_Del (void *p)
Same as PyMem_Free ().

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving
the C API functions listed above. However, note that their use does not preserve binary compatibility across Python
versions and is therefore deprecated in extension modules.

e PyMem_ MALLOC (size)

e PyMem_ NEW (type, size)

e PyMem_REALLOC (ptr, size)

e PyMem_RESIZE (ptr, type, size)
e PyMem_FREE (ptr)

e PyMem_ DEL (ptr)

11.5 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap.

Ynueiwon: There is no guarantee that the memory returned by these allocators can be successfully cast to a Python
object when intercepting the allocating functions in this domain by the methods described in the Customize Memory
Allocators section.

The default object allocator uses the pymalloc memory allocator.

Ipozwdomoinon: The GIL must be held when using these functions.

210 Kegahawo 11. Memory Management

The Python/C API, Anpooicuon 3.10.18

void *PyObject_Malloc (size_t n)

Part of the Stable ABI. Allocates n bytes and returns a pointer of type void* to the allocated memory, or
NULL if the request fails.

Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc (1) had
been called instead. The memory will not have been initialized in any way.

void *PyObject_Calloc (size_t nelem, size_t elsize)

Fart of the Stable ABI since version 3.7. Allocates nelem elements each whose size in bytes is elsize and returns
a pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to
ZEeros.

Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc (1, 1) had been called instead.

Néo otnv ékdoom 3.5.

void *PyObject_Realloc (void *p, size_t n)

Fart of the Stable ABI. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged
to the minimum of the old and the new sizes.

If p is NULL, the call is equivalent to PyObject_Malloc (n);else if n is equal to zero, the memory block
is resized but is not freed, and the returned pointer is non-NULL.

Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc () or PyObject_Calloc ().

If the request fails, PyObject_Realloc () returns NULL and p remains a valid pointer to the previous
memory area.

void PyObject_Free (void *p)

Fart of the Stable ABI. Frees the memory block pointed to by p, which must have been returned by a previous
call to PyObject_Malloc (), PyObject_Realloc () or PyObject_Calloc (). Otherwise, or if
PyObject_Free (p) has been called before, undefined behavior occurs.

If p is NULL, no operation is performed.

11.6 Default Memory Allocators

Default memory allocators:

Configuration Name PyMem_RawMallod®®yMem_Malloc | PyObject_Malloc

Release build "pymalloc" malloc pymalloc pymalloc

Debug build "pymalloc_debugthalloc +debug | pymalloc + | pymalloc +
debug debug

Release build, without | "malloc" malloc malloc malloc

pymalloc

Debug build, without | "malloc_debug"| malloc +debug | malloc + | malloc +

pymalloc debug debug

Legend:

Name: value for PYTHONMALLOC environment variable.

malloc: system allocators from the standard C library, C functions: malloc (),calloc (), realloc ()
and free ().

pymalloc: pymalloc memory allocator.
«+ debug»: with debug hooks on the Python memory allocators.

«Debug build»: Python build in debug mode.

11.6.

Default Memory Allocators 211

The Python/C API, Anpooicuon 3.10.18

11.7 Customize Memory Allocators

Néo oty éxdoon 3.4.

type PyMemAllocatorEx
Structure used to describe a memory block allocator. The structure has the following fields:

Field Meaning

void *ctx user context passed as first argument
void* malloc (void *ctx, size_t size) allocate a memory block

void* calloc (void *ctx, size_t nelem, size_t | allocate a memory block initialized
elsize) with zeros

void* realloc(void *ctx, void *ptr, size_t | allocate or resize a memory block
new_size)
void free(void *ctx, void *ptr) free a memory block

AMEe oty ékdoon 3.5: The PyMemAllocator structure was renamed to PyMemAllocatorEx and
anew calloc field was added.

type PyMemAllocatorDomain
Enum used to identify an allocator domain. Domains:

PYMEM_ DOMAIN_RAW
Functions:

e PyMem RawMalloc ()
e PyMem RawRealloc ()
e PyMem RawCalloc ()
e PyMem RawFree ()

PYMEM DOMAIN MEM
Functions:

e PyMem Malloc(),
e PyMem Realloc()
e PyMem Calloc()
e PyMem Free/()

PYMEM_ DOMAIN_OBJ
Functions:

e PyObject_Malloc()
e PyObject_Realloc ()
e PyObject_Calloc ()
e PyObject_Free ()

void PyMem_GetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Get the memory block allocator of the specified domain.

void PyMem_SetAllocator (PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Set the memory block allocator of the specified domain.

The new allocator must return a distinct non-NULL pointer when requesting zero bytes.

For the PYMEM_DOMAIN_RAW domain, the allocator must be thread-safe: the GIL is not held when the
allocator is called.

If the new allocator is not a hook (does not call the previous allocator), the PyMem_SetupDebugHooks ()
function must be called to reinstall the debug hooks on top on the new allocator.

212 Kegahawo 11. Memory Management

The Python/C API, Anpooicuon 3.10.18

IIpocdomoinon: PyMem_SetAllocator () does have the following contract:

o It can be called after Py _PreInitialize () and before Py_TnitializeFromConfig/()
to install a custom memory allocator. There are no restrictions over the installed allocator other than
the ones imposed by the domain (for instance, the Raw Domain allows the allocator to be called
without the GIL held). See the section on allocator domains for more information.

o If called after Python has finish initializing (after Py_TnitializeFromConfig () has been
called) the allocator must wrap the existing allocator. Substituting the current allocator for some
other arbitrary one is not supported.

void PyMem_SetupDebugHooks (void)
Setup debug hooks in the Python memory allocators to detect memory errors.

11.8 Debug hooks on the Python memory allocators

When Python is built in debug mode, the PyMem SetupDebugHooks () function is called at the Python
preinitialization to setup debug hooks on Python memory allocators to detect memory errors.

The PYTHONMALLOC environment variable can be used to install debug hooks on a Python compiled in release
mode (ex: PYTHONMALLOC=debug).

The PyMem_SetupDebugHooks () function can be wused to set debug hooks after calling
PyMem_SetAllocator ().

These debug hooks fill dynamically allocated memory blocks with special, recognizable bit patterns. Newly
allocated memory is filled with the byte 0xCD (PYMEM_CLEANBYTE), freed memory is filled with the byte
0xDD (PYMEM_DEADBYTE). Memory blocks are surrounded by «forbidden bytes» filled with the byte OxFD
(PYMEM_FORBIDDENBYTE). Strings of these bytes are unlikely to be valid addresses, floats, or ASCII strings.

Runtime checks:

o Detect API violations. For example, detect if PyObject_Free () is called on a memory block allocated by
PyMem Malloc ().

o Detect write before the start of the buffer (buffer underflow).
« Detect write after the end of the buffer (buffer overflow).

o Check that the GIL is held when allocator functions of PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc ())
and PYMEM_DOMAIN_MEM (ex: PyMem Malloc ()) domains are called.

On error, the debug hooks use the t racemalloc module to get the traceback where a memory block was allocated.
The traceback is only displayed if t racemalloc is tracing Python memory allocations and the memory block was
traced.

Let S =sizeof (size_t). 2*S bytes are added at each end of each block of N bytes requested. The memory
layout is like so, where p represents the address returned by a malloc-like or realloc-like function (p [1: j] means
the slice of bytes from * (p+1i) inclusive up to * (p+7) exclusive; note that the treatment of negative indices differs
from a Python slice):

p[—-2*S:-S] Number of bytes originally asked for. This is a size_t, big-endian (easier to read in a memory dump).
p[-S]1 API identifier (ASCII character):

e 'r' for PYMEM_DOMAIN_RAW.

e 'm' for PYMEM_DOMAIN_MEM.

e '0' for PYMEM_DOMAIN_OBJ.
p[-S+1:0] Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.

11.8. Debug hooks on the Python memory allocators 213

The Python/C API, Anpooicuon 3.10.18

p[0:N] The requested memory, filled with copies of PYMEM_CLEANBYTE, used to catch reference to
uninitialized memory. When a realloc-like function is called requesting a larger memory block, the new excess
bytes are also filled with PYMEM_CLEANBYTE. When a free-like function is called, these are overwritten
with PYMEM_DEADBYTE, to catch reference to freed memory. When a realloc- like function is called
requesting a smaller memory block, the excess old bytes are also filled with PYMEM_DEADBYTE.

pI[N:N+S] Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.
PIN+S:N+2*S] Only used if the PYMEM_DEBUG_SERIALNO macro is defined (not defined by default).

A serial number, incremented by 1 on each call to a malloc-like or realloc-like function. Big-endian size_t.
If «<bad memory» is detected later, the serial number gives an excellent way to set a breakpoint on the next run,
to capture the instant at which this block was passed out. The static function bumpserialno() in obmalloc.c is
the only place the serial number is incremented, and exists so you can set such a breakpoint easily.

A realloc-like or free-like function first checks that the PYMEM_FORBIDDENBYTE bytes at each end are intact.
If they’ve been altered, diagnostic output is written to stderr, and the program is aborted via Py_FatalError(). The
other main failure mode is provoking a memory error when a program reads up one of the special bit patterns and
tries to use it as an address. If you get in a debugger then and look at the object, you're likely to see that it’s entirely
filled with PYMEM_DEADBYTE (meaning freed memory is getting used) or PYMEM_CLEANBYTE (meaning
uninitialized memory is getting used).

AMoEe ot €kdoom 3.6: The PyMem_SetupDebugHooks () function now also works on Python compiled
in release mode. On error, the debug hooks now use t racemalloc to get the traceback where a memory block
was allocated. The debug hooks now also check if the GIL is held when functions of PYMEM_DOMAIN_OBJ and
PYMEM_DOMAIN_MEM domains are called.

AMaEe oty ékdoom 3.8: Byte patterns 0xCB (PYMEM_CLEANBYTE), 0xDB (PYMEM_DEADBYTE) and OxFB
(PYMEM_FORBIDDENBYTE) have been replaced with 0xCD, 0xDD and OxFD to use the same values than
Windows CRT debugmalloc () and free ().

11.9 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called «arenas» with a fixed size of 256 KiB. It falls back to PyMem RawMalloc () and
PyMem_RawRealloc () for allocations larger than 512 bytes.

pymalloc is the default allocator of the PYMEM_DOMAIN_MEM (ex: PyMem Malloc()) and
PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc ()) domains.

The arena allocator uses the following functions:
e VirtualAlloc () and VirtualFree () on Windows,
e mmap () and munmap () if available,
e malloc () and free () otherwise.

This allocator is disabled if Python is configured with the ——without-pymalloc option. It can also be disabled
at runtime using the PYTHONMALLOC environment variable (ex: PYTHONMALLOC=malloc).

214 Kegahawo 11. Memory Management

The Python/C API, Anpooicuon 3.10.18

11.9.1 Customize pymalloc Arena Allocator

Néo omv éxdoon 3.4.

type PyObjectArenaAllocator
Structure used to describe an arena allocator. The structure has three fields:

Field Meaning

void *ctx user context passed as first argument
void* alloc(void *ctx, size_t size) allocate an arena of size bytes
void free(void *ctx, void *ptr, size_t size) free an arena

void PyObject_GetArenaAllocator (PyObjectArenaAllocator *allocator)
Get the arena allocator.

void PyObject_SetArenaAllocator (PyObjectArenaAllocator *allocator)
Set the arena allocator.

11.10 tracemalloc C API

Néo omv éxdoom 3.7.

int PyTraceMalloc_Track (unsigned int domain, uintptr_t ptr, size_t size)
Track an allocated memory block in the t racemalloc module.

Return 0 on success, return —1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc
is disabled.

If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack (unsigned int domain, uintptr_t ptr)
Untrack an allocated memory block in the t racemalloc module. Do nothing if the block was not tracked.

Return -2 if tracemalloc is disabled, otherwise return O.

11.11 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by
using the first function set:

PyObject *res;

char *pbuf = (char *) PyMem_Malloc (BUFSIZ); /* for I/O0 */
if (buf == NULL)

return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

res = PyBytes_FromString(buf);
PyMem_Free (buf); /* allocated with PyMem Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New (char, BUFSIZ); /* for I/0 */

if (buf == NULL)
return PyErr_NoMemory () ;
/* ...Do some I/O operation involving buf... */

(ouvéyela 0TV emtOpEV) 0ehidL)

11.10. tracemalloc C API 215

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

res = PyBytes_FromString (buf);
PyMem_Del (buf); /* allocated with PyMem New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed,
it is required to use the same memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as
fatal because it mixes two different allocators operating on different heaps.

char *bufl = PyMem_New (char, BUFSIZ);
char *buf2 (char *) malloc (BUFSIZ);
char *buf3 = (char *) PyMem_Malloc (BUFSIZ);

PyMem_Del (buf3); /* Wrong —- should be PyMem Free() */

free (buf2); /* Right allocated via malloc() */
free (bufl); /* Fatal —-- should be PyMem_Del () */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released with PyOb ject_New (), PyObject_NewVar () and PyObject_Del ().

These will be explained in the next chapter on defining and implementing new object types in C.

216 Kegahawo 11. Memory Management

KEdArAlD 12

Object Implementation Support

This chapter describes the functions, types, and macros used when defining new object types.

12.1 Allocating Objects on the Heap

PyObject *_PyObject_New (PyTypeObject *type)

Emotoepouevn tyun: New reference.

PyVarObject *_PyObject_NewVar (PyTypeObject *type, Py_ssize_t size)

Emotoepduevn tun: New reference.

PyObject *PyObject_Init (PyObject *op, PyTypeObject *type)

Emotoepduevn wun: Borrowed reference. Part of the Stable ABI. Initialize a newly allocated object op with
its type and initial reference. Returns the initialized object. If #ype indicates that the object participates in the
cyclic garbage detector, it is added to the detector’s set of observed objects. Other fields of the object are not
affected.

PyVarObject *PyObject_InitVar (PyVarObject *op, PyTypeObject *type, Py_ssize_t size)

Emotoepduevn wun: Borrowed reference. Part of the Stable ABL This does everything PyOb ject_Tnit ()
does, and also initializes the length information for a variable-size object.

TYPE *PyObject_New (TYPE, PyTypeObject *type)

Emotoepduevn tun: New reference. Allocate a new Python object using the C structure type TYPE and the
Python type object type. Fields not defined by the Python object header are not initialized. The caller will own
the only reference to the object (i.e. its reference count will be one). The size of the memory allocation is
determined from the tp_basicsize field of the type object.

TYPE *PyObject_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)

Emotoepduevn tiun: New reference. Allocate a new Python object using the C structure type TYPE and the
Python type object type. Fields not defined by the Python object header are not initialized. The allocated
memory allows for the TYPE structure plus size fields of the size given by the tp_itemsize field of type.
This is useful for implementing objects like tuples, which are able to determine their size at construction time.
Embedding the array of fields into the same allocation decreases the number of allocations, improving the
memory management efficiency.

void PyObject_Del (void *op)

Releases memory allocated to an object using PyObject_New () or PyObject_NewVar (). This is
normally called from the tp_dea11oc handler specified in the object’s type. The fields of the object should
not be accessed after this call as the memory is no longer a valid Python object.

217

The Python/C API, Anpooicuon 3.10.18

PyObject _Py_NoneStruct
Object which is visible in Python as None. This should only be accessed using the Py_ None macro, which
evaluates to a pointer to this object.

Agite emiong:

PyModule Create () To allocate and create extension modules.

12.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

12.2.1 Base object types and macros

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions
of some macros also used, whether directly or indirectly, in the definition of all other Python objects.

type PyObject
Part of the Limited APL (Only some members are part of the stable ABI.) All object types are extensions of this
type. This is a type which contains the information Python needs to treat a pointer to an object as an object. In
a normal «release» build, it contains only the object’s reference count and a pointer to the corresponding type
object. Nothing is actually declared to be a PyOb ject, but every pointer to a Python object can be cast to a
PyObject*. Access to the members must be done by using the macros Py REFCNT and Py_ TYPE.

type PyVarObject
Part of the Limited APIL (Only some members are part of the stable ABI.) This is an extension of PyObject
that adds the ob_si ze field. This is only used for objects that have some notion of length. This type does not
often appear in the Python/C API. Access to the members must be done by using the macros Py REFCNT,
Py_TYPE,and Py_SIZE.

PyObject_HEAD
This is a macro used when declaring new types which represent objects without a varying length. The
PyObject_ HEAD macro expands to:

PyObject ob_base;

See documentation of PyOb ject above.

PyObject_VAR_HEAD
This is a macro used when declaring new types which represent objects with a length that varies from instance
to instance. The PyObject_ VAR_HEAD macro expands to:

PyVarObject ob_base;

See documentation of PyVarObject above.

int Py_Is (const PyObject *x, const PyObject *y)
Part of the Stable ABI since version 3.10. Test if the x object is the y object, the same as x is y in Python.

Néo otnv £¢xdoon 3.10.

int Py_IsNone (const PyObject *x)
Fart of the Stable ABI since version 3.10. Test if an object is the None singleton, the same as x is None in
Python.

Néo otnv éxdoon 3.10.

218 Kegahaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

int Py_IsTrue (const PyObject *x)
Part of the Stable ABI since version 3.10. Test if an object is the True singleton, the same as x is True in
Python.

Néo otnv ¢kdoon 3.10.

int Py_IsFalse (const PyObject *x)
Part of the Stable ABI since version 3.10. Test if an object is the Fal se singleton, the same as x is False
in Python.

Néo otnv €xdoon 3.10.

PyTypeObject ¥*Py_TYPE (const PyObject *0)
Get the type of the Python object o.

Return a borrowed reference.
Use the Py SET _TYPE () function to set an object type.

int Py_IS_TYPE (PyObject *o, PyTypeObject *type)
Return non-zero if the object o type is type. Return zero otherwise. Equivalent to: Py_TYPE (o) == type.

Néo otv éxdoon 3.9.

void Py_SET_TYPE (PyObject *o, PyTypeObject *type)
Set the object o type to rype.

Néo otv ¢€kdoom 3.9.

Py_ssize_t Py_REFCNT (const PyObject *0)
Get the reference count of the Python object o.

AMoEe omv éxdoon 3.10: Py REFCNT () 1is changed to the inline static function. Use
Py _SET _REFCNT () to set an object reference count.

void Py_SET_REFCNT (PyObject *o, Py_ssize_t refcnt)
Set the object o reference counter to refcnt.

Néo otnv ékdoom 3.9.

Py_ssize_t Py_SIZE (const PyVarObject *0)
Get the size of the Python object o.

Use the Py SET SIZE () function to set an object size.

void Py_SET_SIZE (PyVarObject *o, Py_ssize_t size)
Set the object o size to size.

Néo otv éxdoom 3.9.

PyObject_HEAD_INIT (fype)
This is a macro which expands to initialization values for a new PyOb ject type. This macro expands to:

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT (type, size)
This is a macro which expands to initialization values for anew PyVarOb ject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

12.2. Common Object Structures 219

The Python/C API, Anpooicuon 3.10.18

12.2.2 Implementing functions and methods

type PyCFunction
Part of the Stable ABI. Type of the functions used to implement most Python callables in C. Functions of this
type take two PyOb ject* parameters and return one such value. If the return value is NULL, an exception
shall have been set. If not NULL, the return value is interpreted as the return value of the function as exposed
in Python. The function must return a new reference.

The function signature is:

PyObject *PyCFunction (PyObject *self,
PyObject *args);

type PyCFunctionWithKeywords
Fart of the Stable ABL Type of the functions used to implement Python callables in C with signature
METH_VARARGS | METH_KEYWORDS. The function signature is:

PyObject *PyCFunctionWithKeywords (PyObject *self,
PyObject *args,
PyObject *kwargs);

type _PyCFunctionFast
Type of the functions used to implement Python callables in C with signature METH_FASTCALL. The function
signature is:

PyObject *_PyCFunctionFast (PyObject *self,
PyObject *const *args,
Py_ssize_t nargs);

type _PyCFunctionFastWithKeywords
Type of the functions used to implement Python callables in C with signature METH_FASTCALL |
METH_KEYWORDS. The function signature is:

PyObject *_PyCFunctionFastWithKeywords (PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames) ;

type PyCMethod
Type of the functions used to implement Python callables in C with signature METH_METHOD |
METH_FASTCALL | METH_KEYWORDS. The function signature is:

PyObject *PyCMethod (PyObject *self,
PyTypeObject *defining_class,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames)

Néo otv ¢€kdoom 3.9.

type PyMethodDef
Fart of the Stable ABI (including all members). Structure used to describe a method of an extension type. This
structure has four fields:

const char *ml_name
name of the method

PyCFunction m1_meth
pointer to the C implementation

intml_flags
flags bits indicating how the call should be constructed

220 Kegahaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

const char *ml_doc
points to the contents of the docstring

The m1_meth is a C function pointer. The functions may be of different types, but they always return PyOb ject *.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyOb ject *, it is common that the method implementation uses the
specific C type of the self object.

The m1_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.

There are these calling conventions:

METH_VARARGS
This is the typical calling convention, where the methods have the type PyCFunct ion. The function expects
two PyObject* values. The first one is the self object for methods; for module functions, it is the module
object. The second parameter (often called args) is a tuple object representing all arguments. This parameter
is typically processed using PyArg_ParseTuple () or PyArg _UnpackTuple ().

METH_VARARGS | METH_KEYWORDS
Methods with these flags must be of type PyCFunctionWithKeywords. The function expects
three parameters: self, args, kwargs where kwargs is a dictionary of all the keyword arguments or
possibly NULL if there are no keyword arguments. The parameters are typically processed using
PyArg_ParseTupleAndKeywords ().

METH_FASTCALL
Fast calling convention supporting only positional arguments. The methods have the type
_PyCFunctionFast. The first parameter is self, the second parameter is a C array of PyObject* values
indicating the arguments and the third parameter is the number of arguments (the length of the array).

Néo otnv ¢€kdoom 3.7.
AMoEe oty £xdoon 3.10: METH_FASTCALL is now part of the stable ABI.

METH_FASTCALL | METH_KEYWORDS
Extension of METH _FASTCALL supporting also keyword arguments, with methods of type
_PyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the vectorcall
protocol: there is an additional fourth PyOb ject* parameter which is a tuple representing the names of the
keyword arguments (which are guaranteed to be strings) or possibly NULL if there are no keywords. The
values of the keyword arguments are stored in the args array, after the positional arguments.

Néo otnv ékdoon 3.7.

METH_METHOD | METH_FASTCALL | METH_KEYWORDS
Extension of METH_FASTCALL | METH_KEYWORDS supporting the defining class, that is, the class that
contains the method in question. The defining class might be a superclass of Py_TYPE (self).

The method needs to be of type PyCMethod, the same as for METH_FASTCALL | METH_KEYWORDS
with defining_class argument added after self.

Néo otnv ¢€kdoom 3.9.

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.

METH_O
Methods with a single object argument can be listed with the METH O flag, instead of invoking
PyArg ParseTuple () with a "O" argument. They have the type PyCFunction, with the self
parameter, and a PyOb ject* parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

12.2. Common Object Structures 221

The Python/C API, Anpooicuon 3.10.18

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is
used to create class methods, similar to what is created when using the classmethod () built-in function.

METH_STATIC
The method will be passed NULL as the first parameter rather than an instance of the type. This is used to
create static methods, similar to what is created when using the stat icmethod () built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains
slot, for example, would generate a wrapped method named __contains__ () and preclude the loading of
a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in
place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are
optimized more than wrapper object calls.

12.2.3 Accessing attributes of extension types

type PyMemberDef
Fart of the Stable ABI (including all members). Structure which describes an attribute of a type which
corresponds to a C struct member. Its fields are:

Field C Type Meaning

name const char * | name of the member

type int the type of the member in the C struct

offset | Py_ssize_t the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable

doc const char * | points to the contents of the docstring

type can be one of many T_ macros corresponding to various C types. When the member is accessed in
Python, it will be converted to the equivalent Python type.

Macro name C type
T_SHORT short

T_INT int

T_LONG long
T_FLOAT float
T_DOUBLE double
T_STRING const char *
T_OBIJECT PyObject *
T_OBJECT_EX PyObject *

T CHAR char

T _BYTE char

T UBYTE unsigned char
T_UINT unsigned int

T _USHORT unsigned short
T_ULONG unsigned long
T _BOOL char
T_LONGLONG long long
T_ULONGLONG | unsigned long long
T_PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError. Try to use T_OBJECT_EX over T_OBJECT because
T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.

222 Kegahaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for
type implies READONLY. T_STRING data is interpreted as UTF-8. Only T_OBJECT and T_OBJECT_EX
members can be deleted. (They are set to NULL).

Heap allocated types (created using PyType_ FromSpec () or similar), PyMemberDef may
contain definitions for the special members _ dictoffset_ , _ weaklistoffset__ and
_ _vectorcalloffset_ , corresponding to tp dictoffset, tp weaklistoffset and
tp_vectorcall_offset in type objects. These must be defined with T_PYSSIZET and READONLY,
for example:

static PyMemberDef spam_type_members[] = {
{"_ dictoffset_ ", T_PYSSIZET, offsetof (Spam_object, dict), READONLY},

{NULL} /* Sentinel */

bi

PyObject *PyMember_GetOne (const char *obj_addr, struct PyMemberDef *m)
Get an attribute belonging to the object at address obj_addr. The attribute is described by PyMemberDef m.
Returns NULL on error.

int PyMember_SetOne (char *obj_addr, struct PyMemberDef *m, PyObject *0)
Set an attribute belonging to the object at address obj_addr to object o. The attribute to set is described by
PyMemberDef m. Returns 0 if successful and a negative value on failure.

type PyGetSetDef
Fart of the Stable ABI (including all members). Structure to define property-like access for a type. See also
description of the Py TypeObject.tp_getset slot.

Field C Type Meaning

name const char * | attribute name

get getter C function to get the attribute

set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc const char * | optional docstring

closure | void * optional function pointer, providing additional data for getter and setter

The get function takes one PyOb ject* parameter (the instance) and a function pointer (the associated
closure):

typedef PyObject * (*getter) (PyObject *, woid *);

It should return a new reference on success or NULL with a set exception on failure.

set functions take two PyOb ject* parameters (the instance and the value to be set) and a function pointer
(the associated closure):

typedef int (*setter) (PyObject *, PyObject *, wvoid *);

In case the attribute should be deleted the second parameter is NULL. Should return O on success or —1 with
a set exception on failure.

12.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of the PyObject_* or PyType_ * functions,
but do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects
behave, so they are very important to the interpreter itself and to any extension module that implements new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object
stores a large number of values, mostly C function pointers, each of which implements a small part of the type’s

12.3. Type Objects 223

The Python/C API, Anpooicuon 3.10.18

functionality. The fields of the type object are examined in detail in this section. The fields will be described in the
order in which they occur in the structure.

In addition to the following quick reference, the Examples section provides at-a-glance insight into the meaning and

use of PyTypeObject.

12.3.1 Quick Reference

«tp slots»
PyTypeObiject Slot’ Type special methods/attrs Info?
QT DI
<R> tp_name const char * __name__ X X
tp_basicsize Py_ssize_t X X X
tp_itemsize Py_ssize_ t X X
tp_dealloc destructor X X X
tp_vectorcall_offset Py _ssize t X X
(tp_getattr) getattrfunc __getattribute__, __getattr__ G
(tp_setattr) setattrfunc _ setattr__, _ delattr___ G
tp_as_async PyAsyncMethods * sub-slots %
tp_repr reprfunc __repr__ X X X
tp_as_number PyNumberMethods * sub-slots %
tp_as_sequence PySequenceMethods * sub-slots %
tp_as_mapping PyMappingMethods * sub-slots %
tp_hash hashfunc __hash__ X €
tp_call ternaryfunc _call__ X X
tp_str reprfunc _str__ X X
tp_getattro getattrofunc __getattribute__, __ getattr__ X X G
tp_setattro setattrofunc __setattr__, _ delattr__ X X G
tp_as_buffer PyBufferProcs * %
tp_flags unsigned long X X ?
tp_doc const char * __doc X X
tp_traverse traverseproc X G
tp_clear inquiry X G
tp_richcompare richcmpfunc _It ,_le ,_ eq_,_ne X G
gt_,__ge__
tp_weaklistoffset Py_ssize_t X ?
tp_iter getiterfunc iter X
tp_iternext iternextfunc next X
tp_methods PyMethodDef [] X X
tp_members PyMemberDef [] X
tp_getset PyGetSetDef [] X X
tp_base PyTypeObject * __base__ X
tp_dict PyObject * _ dict__ ?
tp_descr_get descrget func _get X
tp_descr_set descrsetfunc _set_, delete_ X
tp_dictoffset Py_ssize_t X ?
tp_init initproc __init__ X X X
tp_alloc allocfunc X ?
tp_new newfunc __new__ X X ?
tp_free freefunc X X ?
tp_is_gc inquiry X X
<tp_bases> PyObject * __bases__ ~
<tp_mro> PyObject * __mro__ ~
OuvEXELa TNV EMOPEVN oA (da
224 Kegahaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

Mivakag 1 - cuveyiCetal amnd tnv nponyoupevn ceAida

PyTypeObiject Slot’ Type special methods/attrs Info?
D1

[tp_cache] PyObject *

[tp_subclasses] PyObject * __subclasses___

[tp_weaklist] PyObject *

(tp_del) destructor ‘

[tp_version_tag] unsigned int

tp_finalize destructor _del X

tp_vectorcall vectorcallfunc

sub-slots
Slot Type special methods
am_await unaryfunc __await__
am_aiter unaryfunc __aiter__
am_anext unaryfunc __anext___
am_send sendfunc
nb_add binaryfunc _add__ _ radd__
nb_inplace_add binaryfunc _jadd__
nb_subtract binaryfunc _sub___ rsub__
nb_inplace_subtract binaryfunc __isub__
nb_multiply binaryfunc _mul__ _ rmul__
nb_inplace_multiply binaryfunc __imul__
nb_remainder binaryfunc _mod__ __rmod__
nb_inplace_remainder binaryfunc __imod__
nb_divmod binaryfunc __divmod__

_ rdivmod___
nb_power ternaryfunc __poOW__ _ Ipow__
nb_inplace_power ternaryfunc __mow__
nb_negative unaryfunc __neg
nb_positive unaryfunc __pos__
nb_absolute unaryfunc __abs__
nb_bool inquiry __bool
nb_invert unaryfunc __invert__

1 (): A slot name in parentheses indicates it is (effectively) deprecated.
<>: Names in angle brackets should be initially set to NULL and treated as read-only.
[1: Names in square brackets are for internal use only.
<R> (as a prefix) means the field is required (must be non-NULL).

2 Columns:

«O»: seton PyBaseObject_Type

«T»:seton PyType_ Type
«D»: default (if slot is set to NULL)

X - PyType_Ready sets this wvalue if it is NULL

~ — PyType_Ready always sets this wvalue

(it should be

ouvEXela oTnyv enouevn oeA(da

NULL)

? — PyType_Ready may set this value depending on other slots

Also see the inheritance column ("I").

«I»: inheritance

b

o°

QR

— it's complicated;

Note that some slots are effectively inherited through the normal attribute lookup chain.

— type slot is inherited via *PyType_Ready* if defined with a *NULL* value
— the slots of the sub-struct are inherited individually

- inherited, but only in combination with other slots;
see the slot's description

see the slot's description

12.3. Type Objects

225

The Python/C API, Anpooicuon 3.10.18

Mivakag 2 - ouveyiCetal and tnv nponyoupevn ceAida

Slot Type special methods
nb_lshift binaryfunc _Ishift rlshift
nb_inplace_1lshift binaryfunc __ilshift__
nb_rshift binaryfunc __rshift

__rrshift__
nb_inplace_rshift binaryfunc __irshift__
nb_and binaryfunc _and__ _ rand__
nb_inplace_and binaryfunc __dand__
nb_xor binaryfunc __XOr__ __IXOr__
nb_inplace_xor binaryfunc _ixor__
nb_or binaryfunc _Oor__ _ ror__
nb_inplace_or binaryfunc _dor__
nb_int unaryfunc _int__
nb_reserved void *
nb_float unaryfunc _ float__
nb_floor divide binaryfunc _ floordiv__
nb_inplace_floor_divide binaryfunc __ifloordiv__
nb_true divide binaryfunc _truediv__
nb_inplace_true_divide binaryfunc __itruediv__
nb_index unaryfunc __index___
nb_matrix_multiply binaryfunc __matmul__

_ rmatmul
nb_inplace_matrix_multiply binaryfunc __imatmul__
mp_length lenfunc _len__
mp_subscript binaryfunc __getitem__
mp_ass_subscript objobjargproc _ setitem__,

_delitem__
sq_length lenfunc _len__
sq_concat binaryfunc _add__
sqg_repeat ssizeargfunc _mul__
sq_item ssizeargfunc __getitem___
sq_ass_item ssizeobjargproc __setitem___

_delitem___
sqg_contains objobjproc __contains__
sq_inplace_concat binaryfunc _jadd__
sq_inplace_repeat ssizeargfunc __imul__

bf_getbuffer

getbufferproc ()

bf _releasebuffer

releasebufferproc()

226

Kegalaio 12. Object Implementation Support

The Python/C API, Anpoocigsuon 3.10.18

slot typedefs
typedef Parameter Types Return Type
allocfunc PyObject *
PyTypeObject *
Py _ssize_t
destructor void * void
freefunc void * void
traverseproc int
void *
visitproc
void *
newfunc PyObject *
PyObject *
PyObject *
PyObject *
initproc int
PyObject *
PyObject *
PyObject *
reprfunc PyObject * PyObject *
getattrfunc PyObject *
PyObject *
const char *
setattrfunc int
PyObject *
const char *
PyObject *
getattrofunc PyObject *
PyObject *
PyObject *
setattrofunc int
PyObject *
PyObject *
PyObject *
descrgetfunc PyObject *
PyObject *
PyObject *
PyObject *
descrsetfunc int
PyObject *

%k

12.3. Type Objects

Dz = +
L_YUA/JC\/(_

PyObject *

227

hashfunc

PyObject *

Py_hash_t

richcmpfunc

PyObiect *

The Python/C API, Anpooicuon 3.10.18

See Slot Type typedefs below for more detail.

12.3.2 PyTypeObject Definition

The structure definition for Py TypeOb ject canbe foundin Include/object . h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_lbasicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;

Py_ssize_t tp_vectorcall offset;

getattrfunc tp_getattr;

setattrfunc tp_setattr;

PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)
or tp_reserved (Python 3) */

reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

(ouvéyela otV TOUEVY 0EMDL)

228 Kegahaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

Py_ssize_t tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;
vectorcallfunc tp_vectorcall;
} PyTypeObiject;

12.3.3 PyObject Slots

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types
(created by type_new (), usually called from a class statement). Note that PyType_Type (the metatype)
initializes tp_ itemsize, which means that its instances (i.e. type objects) must have the ob_size field.

Py _ssize_t PyObject .ob_refcnt
Part of the Stable ABIL This is the type object’s reference count, initialized to 1 by the
PyObject_HEAD_INIT macro. Note that for statically allocated type objects, the type’s instances
(objects whose ob_type points back to the type) do not count as references. But for dynamically allocated
type objects, the instances do count as references.

Inheritance:
This field is not inherited by subtypes.

PyTypeObject *PyObject .ob_type
Fart of the Stable ABIL This is the type’s type, in other words its metatype. It is initialized by the argument
to the PyObject_HEAD_INIT macro, and its value should normally be &PyType_Type. However, for
dynamically loadable extension modules that must be usable on Windows (at least), the compiler complains
that this is not a valid initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INIT
macro and to initialize this field explicitly at the start of the module’s initialization function, before doing
anything else. This is typically done like this:

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. Py Type_Ready () checks if ob_type
is NULL, and if so, initializes it to the ob_t ype field of the base class. PyType_ Ready () will not change
this field if it is non-zero.

Inheritance:

12.3. Type Objects 229

The Python/C API, Anpooicuon 3.10.18

This field is inherited by subtypes.

PyObject *PyObject ._ob_next

PyObject *PyObject ._ob_prewv

These fields are only present when the macro Py_ TRACE_REF'S is defined (see the configure ——with-
trace-refs option).

Their initialization to NULL is taken care of by the PyObject_HEAD_ INIT macro. For statically allocated
objects, these fields always remain NULL. For dynamically allocated objects, these two fields are used to link
the object into a doubly linked list of all live objects on the heap.

This could be used for various debugging purposes; currently the only uses are the sys.getobjects ()
function and to print the objects that are still alive at the end of a run when the environment variable
PYTHONDUMPREF'S is set.

Inheritance:

These fields are not inherited by subtypes.

12.3.4 PyVarObject Slots

Py _ssize t PyVarObject .ob_size

Part of the Stable ABI. For statically allocated type objects, this should be initialized to zero. For dynamically
allocated type objects, this field has a special internal meaning.

Inheritance:

This field is not inherited by subtypes.

12.3.5 PyTypeObiject Slots

Each slot has a section describing inheritance. If PyType_ Ready () may set a value when the field is set to
NULL then there will also be a «Default» section. (Note that many fields set on PyBaseObject_Type and
PyType_ Type effectively act as defaults.)

const char *PyTypeObject .tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type named T defined in module M in subpackage Q in package
P should have the tp_name initializer "P.Q .M. T".

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored
in the type dict as the value for key ' __module__ '.

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is
made accessible as the __module__ attribute, and everything after the last dot is made accessible as the
__name___ attribute.

If no dot is present, the entire tp_name field is made accessible as the _ _name__ attribute, and the
_ _module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created
with pydoc.

This field must not be NULL. It is the only required field in PyTypeObject () (other than potentially
tp_itemsize).

Inheritance:

This field is not inherited by subtypes.

Py _ssize_t PyTypeObject .tp_basicsize

230

Kegalaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

Py _ssize_t PyTypeObject.tp_itemsize
These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all
instances have the same size, given in tp_basicsize.

For a type with variable-length instances, the instances must have an ob_size field, and the instance size
is tp_basicsize plus N times tp_itemsize, where N is the «length» of the object. The value of N
is typically stored in the instance’s ob_size field. There are exceptions: for example, ints use a negative
ob_size toindicate a negative number, and N is abs (ob_size) there. Also, the presence of an ob_size
field in the instance layout doesn’t mean that the instance structure is variable-length (for example, the structure
for the list type has fixed-length instances, yet those instances have a meaningful ob_size field).

The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prevand _ob_next fields if they are present. This means that the only correct way to get an initializer
for the tp_basicsizeistousethe sizeof operator on the struct used to declare the instance layout. The
basic size does not include the GC header size.

A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value of tp_basicsize. Example: suppose a type implements an array of double. tp itemsize
is sizeof (double). It is the programmer’s responsibility that tp_basicsize is a multiple of
sizeof (double) (assuming this is the alignment requirement for double).

For any type with variable-length instances, this field must not be NULL.
Inheritance:

These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is
generally not safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on
the implementation of the base type).

destructor Py TypeObject .tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that
its instances will never be deallocated (as is the case for the singletons None and E11ipsis). The function
signature is:

void tp_dealloc (PyObject *self);

The destructor function is called by the Py_ DECREF () and Py_ XDECREF () macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor
function should free all references which the instance owns, free all memory buffers owned by the instance
(using the freeing function corresponding to the allocation function used to allocate the buffer), and call
the type’s tp_ free function. If the type is not subtypable (doesn’t have the Py TPFLAGS_BASETYPE
flag bit set), it is permissible to call the object deallocator directly instead of via tp_free. The object
deallocator should be the one used to allocate the instance; this is normally PyOb ject_Del () if the instance
was allocated using PyObject_New () or PyObject_VarNew (), or PyObject_GC_Del () if the
instance was allocated using PyOb ject_GC_New () or PyObject_GC_NewVar ().

If the type supports garbage collection (has the Py TPFLAGS_HAVE_ GC flag bit set), the destructor should
call PyObject_GC_UnTrack () before clearing any member fields.

static void foo_dealloc (foo_object *self) {
PyObject_GC_UnTrack (self);
Py_CLEAR (self->ref);
Py_TYPE (self)->tp_free ((PyObject *)self);

Finally, if the type is heap allocated (Py_TPFLAGS_HEAPTYPE), the deallocator should release the owned
reference to its type object (via Py_ DECREF ()) after calling the type deallocator. In order to avoid dangling
pointers, the recommended way to achieve this is:

12.3. Type Objects 231

The Python/C API, Anpooicuon 3.10.18

static void foo_dealloc (foo_object *self) {
PyTypeObject *tp = Py_TYPE (self);
// free references and buffers here
tp—>tp_free (self);
Py_DECREF (tp) ;

Inheritance:

This field is inherited by subtypes.

Py _ssize t PyTypeObject .tp_vectorcall_offset

An optional offset to a per-instance function that implements calling the object using the vectorcall protocol, a
more efficient alternative of the simpler tp_call.

This field is only used if the flag Py TPFLAGS HAVE_VECTORCALL is set. If so, this must be a positive
integer containing the offset in the instance of a vectorcallfunc pointer.

The vectorcallfunc pointer may be NULL, in which case the instance behaves as if
Py_TPFLAGS_HAVE_VECTORCALL was not set: calling the instance falls back to tp_call.

Any class that sets Py TPFLAGS_HAVE_VECTORCALL must also set tp_call and make sure
its behaviour is consistent with the vectorcallfunc function. This can be done by setting #p_call to
PyVectorcall Call().

Iposwdomoinon: It is not recommended for eap types to implement the vectorcall protocol. When a user
sets__call__ in Python code, only #p_call is updated, likely making it inconsistent with the vectorcall
function.

AlaEe ot €kdoom 3.8: Before version 3.8, this slot was named tp_print. In Python 2.x, it was used for
printing to a file. In Python 3.0 to 3.7, it was unused.

Inheritance:

This field is always inherited. However, the Py TPFLAGS HAVE_VECTORCALL flagis not always inherited.
If it’s not, then the subclass won’t use vectorcall, except when PyVectorcall_Call () is explicitly called.
This is in particular the case for heap types (including subclasses defined in Python).

getattrfunc PyTypeObject .tp_getattr

An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_getattro function, but taking a C string instead of a Python string object to give the attribute name.

Inheritance:
Group: tp_getattr, tp_getattro

This field is inherited by subtypes together with t p_getatt ro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.

setattrfunc PyTypeObject .tp_setattr

An optional pointer to the function for setting and deleting attributes.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_setattro function, but taking a C string instead of a Python string object to give the attribute name.

Inheritance:
Group: tp_setattr, tp_setattro

This field is inherited by subtypes together with tp_setattro: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

232

Kegalaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

PyAsyncMethods *PyTypeObject .tp_as_async
Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and
asynchronous iterator protocols at the C-level. See Async Object Structures for details.

Néo omnv ¢xdoom 3.5: Formerly known as tp_compare and tp_reserved.
Inheritance:
The tp_as_async field is not inherited, but the contained fields are inherited individually.

reprfunc Py TypeObject .tp_repr
An optional pointer to a function that implements the built-in function repr ().

The signature is the same as for PyOb ject_Repr ():

PyObject *tp_repr (PyObject *self);

The function must return a string or a Unicode object. Ideally, this function should return a string that, when
passed to eval (), given a suitable environment, returns an object with the same value. If this is not feasible,
it should return a string starting with ' <' and ending with ' >' from which both the type and the value of the
object can be deduced.

Inheritance:
This field is inherited by subtypes.
Default:

When this field is not set, a string of the form <%s object at $%p> isreturned, where %s is replaced by
the type name, and $p by the object’s memory address.

PyNumberMethods *PyTypeObject .tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documented in Number Object Structures.

Inheritance:
The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods *PyTypeObject .tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documented in Sequence Object Structures.

Inheritance:
The tp_as_sequence field is not inherited, but the contained fields are inherited individually.

PyMappingMethods *PyTypeObject .tp_as_mapping
Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented in Mapping Object Structures.

Inheritance:
The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc Py TypeObject .tp_hash
An optional pointer to a function that implements the built-in function hash ().

The signature is the same as for PyObject_Hash ():

Py_hash_t tp_hash (PyObject *);

The value -1 should not be returned as a normal return value; when an error occurs during the computation
of the hash value, the function should set an exception and return —1.

When this field is not set (and tp_richcompare is not set), an attempt to take the hash of the object raises
TypeError. This is the same as setting it to PyObject_HashNot Implemented().

This field can be set explicitly to PyOb ject_HashNot Implemented () to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of _ _hash_ = None at the Python

12.3. Type Objects 233

The Python/C API, Anpooicuon 3.10.18

level, causing isinstance (o, collections.Hashable) to correctly return False. Note that the
converse is also true - setting __hash__ = None on a class at the Python level will result in the tp_hash
slot being set to PyOb ject_HashNot Implemented ().

Inheritance:
Group: tp_hash, tp_richcompare

This field is inherited by subtypes together with tp_richcompare: a subtype inherits both of
tp_richcompareand tp_hash, when the subtype’s tp_richcompareand tp_hash are both NULL.

ternaryfunc PyTypeObject .tp_call

An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call ():

PyObject *tp_call (PyObject *self, PyObject *args, PyObject *kwargs);

Inheritance:

This field is inherited by subtypes.

reprfunc Py TypeObject .tp_str

An optional pointer to a function that implements the built-in operation st r () . (Note that st r is a type now,
and str () calls the constructor for that type. This constructor calls PyObject_Str () to do the actual
work, and PyObject_Str () will call this handler.)

The signature is the same as for PyObject_Str():

PyObject *tp_str (PyObject *self);

The function must return a string or a Unicode object. It should be a «friendly» string representation of the
object, as this is the representation that will be used, among other things, by the print () function.

Inheritance:
This field is inherited by subtypes.
Default:

When this field is not set, PyObject_Repr () is called to return a string representation.

getattrofunc PyTypeObject .tp_getattro

An optional pointer to the get-attribute function.

The signature is the same as for PyObject_GetAttr():

PyObject *tp_getattro(PyObject *self, PyObject *attr);

It is usually convenient to set this field to PyObject_GenericGetAttr (), which implements the normal
way of looking for object attributes.

Inheritance:

Group: tp_getattr, tp_getattro

This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and

tp_getattro from its base type when the subtype’s tp_getattrand tp_getattro are both NULL.
Default:

PyBaseObject_Type uses PyObject_GenericGetAttr ().

setattrofunc Py TypeObject .tp_setattro

An optional pointer to the function for setting and deleting attributes.

The signature is the same as for PyObject_SetAttr():

int tp_setattro(PyObject *self, PyObject *attr, PyObject *value);

234

Kegalaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

In addition, setting value to NULL to delete an attribute must be supported. It is usually convenient to set this
field to PyObject_GenericSetAttr (), which implements the normal way of setting object attributes.

Inheritance:
Group: tp_setattr, tp_setattro

This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattrand tp_setattro are both NULL.

Default:
PyBaseObject_Type uses PyObject_GenericSetAttr ().

PyBufferProcs *Py TypeObject .tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer
interface. These fields are documented in Buffer Object Structures.

Inheritance:
The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

unsigned long PyTypeObject .tp_£flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others
are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number, tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically
not always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must
be considered to have a zero or NULL value instead.

Inheritance:

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py TPFLAGS_HAVE_ GC flag bit is inherited together with the
tp_traverseand tp_clear fields, i.e. if the Py TPFLAGS_ HAVE_GC flag bit is clear in the subtype
and the tp_traverse and tp_clear fields in the subtype exist and have NULL values.

Default:
PyBaseObject_Type uses Py TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE.
Bit Masks:

The following bit masks are currently defined; these can be ORed together using the | operator to form the
value of the tp_ f1ags field. The macro PyType HasFeature () takes a type and a flags value, #p and
f, and checks whether tp—>tp_flags & f£ isnon-zero.

Py _TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap, for example, types created dynamically
using Py Type_FromSpec ().Inthis case, the ob_t ype field of its instances is considered a reference
to the type, and the type object is INCREFed when a new instance is created, and DECREFed when
an instance is destroyed (this does not apply to instances of subtypes; only the type referenced by the
instance’s ob_type gets INCREFed or DECREFed).

Inheritance:
77?
Py TPFLAGS_BASETYPE

This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a «final» class in Java).

Inheritance:
77?

Py_TPFLAGS_READY
This bit is set when the type object has been fully initialized by Py Type_Ready ().

12.3. Type Objects 235

The Python/C API, Anpooicuon 3.10.18

Inheritance:

7

Py_TPFLAGS_READYING

This bit is set while Py Type_Ready () is in the process of initializing the type object.

Inheritance:

7

Py _TPFLAGS_HAVE_GC

This bit is set when the object supports garbage collection. If this bit is set, instances must be created using
PyObject_GC_New () and destroyed using PyObject_GC_Del (). More information in section
Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_traverse
and tp_clear are present in the type object.

Inheritance:
Group: Py TPFLAGS_HAVE_GC,tp_traverse, tp_clear

The Py_TPFLAGS_HAVE_ GC flag bit is inherited together with the tp_traverse and tp_clear
fields, i.e. if the Py TPFLAGS_HAVE_ GC flag bit is clear in the subtype and the tp_traverse and
tp_clear fields in the subtype exist and have NULL values.

Py TPFLAGS_DEFAULT

This is a bitmask of all the bits that pertain to the existence of certain fields in
the type object and its extension structures. Currently, it includes the following bits:
Py_TPFLAGS_HAVE_STACKLESS_EXTENSION.

Inheritance:

7

Py_TPFLAGS_METHOD_DESCRIPTOR

This bit indicates that objects behave like unbound methods.
If this flag is set for t ype (meth), then:

e meth._ get_ (obj, cls) (*args, **kwds) (with obj not None) must be equivalent
tometh (obj, *args, **kwds).

e meth.__get_ (None, cls) (*args, **kwds) mustbe equivalent to meth (*args,
**kwds).

This flag enables an optimization for typical method calls like obj.meth (): it avoids creating a
temporary «bound method» object for ob7j .meth.

Néo omv éxdoon 3.8.
Inheritance:

This flag is never inherited by /eap types. For extension types, it is inherited whenever t p_descr_get
is inherited.

Py_TPFLAGS_LONG_SUBCLASS
Py TPFLAGS_LIST SUBCLASS
Py_TPFLAGS_TUPLE_SUBCLASS
Py_TPFLAGS_BYTES_SUBCLASS
Py TPFLAGS_UNICODE_SUBCLASS
Py_TPFLAGS_DICT_ SUBCLASS

Py_TPFLAGS_BASE_EXC_SUBCLASS

236

Kegalaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

Py TPFLAGS_TYPE_SUBCLASS

These flags are used by functions such as PyLong_Check () to quickly determine if a type
is a subclass of a built-in type; such specific checks are faster than a generic check, like
PyObject_IsInstance (). Custom types that inherit from built-ins should have their tp_flags
set appropriately, or the code that interacts with such types will behave differently depending on what
kind of check is used.

Py _TPFLAGS_HAVE_FINALIZE

This bit is set when the tp_ finalize slotis present in the type structure.
Néo oty éxdoon 3.4.

AmooupOnke omv €ékdoon 3.8: This flag isn’t necessary anymore, as the interpreter assumes the
tp_finalize slotis always present in the type structure.

Py_TPFLAGS_HAVE_VECTORCALL

This bit is set when the class implements the vectorcall protocol. See tp_vectorcall_ offset for
details.

Inheritance:

This bit is inherited for static subtypes if tp_call is also inherited. Heap types do not inherit
Py_TPFLAGS_HAVE_VECTORCALL

Néo omv éxdoomn 3.9.

Py TPFLAGS_IMMUTABLETYPE

This bit is set for type objects that are immutable: type attributes cannot be set nor deleted.
PyType_Ready () automatically applies this flag to static types.

Inheritance:

This flag is not inherited.

Néo omv éxdoon 3.10.

Py TPFLAGS_DISALLOW_INSTANTIATION

Disallow creating instances of the type: set t p_new to NULL and don’t create the ___new___key in the
type dictionary.

The flag must be set before creating the type, not after. For example, it must be set before
PyType_Ready () is called on the type.

The flag is set automatically on static types if tp_base is NULL or &§PyBaseObject_Type and
tp_new is NULL.

Inheritance:

This flag is not inherited. However, subclasses will not be instantiable unless they provide a non-NULL
tp_new (which is only possible via the C API).

Ynueiwon: To disallow instantiating a class directly but allow instantiating its subclasses (e.g. for an
abstract base class), do not use this flag. Instead, make tp_new only succeed for subclasses.

Néo oty éxdoonm 3.10.

Py TPFLAGS_MAPPING

This bit indicates that instances of the class may match mapping patterns when used as the subject of a
mat ch block. It is automatically set when registering or subclassing collections.abc.Mapping,
and unset when registering collections.abc.Sequence.

Ynueiwon: Py TPFLAGS_MAPPING and Py _TPFLAGS_SEQUENCE are mutually exclusive; it is
an error to enable both flags simultaneously.

12.3.

Type Objects 237

The Python/C API, Anpooicuon 3.10.18

Inheritance:

This flag is inherited by types that do not already set Py TPFLAGS_SEQUENCE.
Agite emiong:

PEP 634 - Structural Pattern Matching: Specification

Néo omv éxdoon 3.10.

Py_TPFLAGS_SEQUENCE
This bit indicates that instances of the class may match sequence patterns when used as the subject
of a match block. It is automatically set when registering or subclassing collections.abc.
Sequence, and unset when registering collections.abc.Mapping.

Ynueiwon: Py TPFLAGS_MAPPING and Py TPFLAGS_SEQUENCE are mutually exclusive; it is
an error to enable both flags simultaneously.

Inheritance:

This flag is inherited by types that do not already set Py TPFLAGS_MAPPING.
Agite emiong:

PEP 634 - Structural Pattern Matching: Specification

Néo omv ékdoon 3.10.

const char *PyTypeObject.tp_doc

An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as
the __doc___ attribute on the type and instances of the type.

Inheritance:

This field is not inherited by subtypes.

traverseproc Py TypeObject .tp_traverse

An optional pointer to a traversal function for the garbage collector. This is only used if the
Py _TPFLAGS_HAVE_GC flag bit is set. The signature is:

int tp_traverse (PyObject *self, visitproc visit, wvoid *arg);

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical
implementation of a tp_ t raverse function simply calls Py VISTT () on each of the instance’s members
that are Python objects that the instance owns. For example, this is function local_traverse () from the
_thread extension module:

static int
local_traverse (localobject *self, visitproc visit, woid *arg)
{

Py _VISIT (self->args);

Py_VISIT (self->kw);

Py_VISIT (self->dict);

return O;

Note that Py_ VISIT () is called only on those members that can participate in reference cycles. Although
there is also a self—>key member, it can only be NULL or a Python string and therefore cannot be part of
a reference cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want
to visit it anyway just so the gc module’s get_referents () function will include it.

238

Kegalaio 12. Object Implementation Support

https://www.python.org/dev/peps/pep-0634
https://www.python.org/dev/peps/pep-0634

The Python/C API, Anpooicuon 3.10.18

IIpoeidomoinon: When implementing tp_t raverse, only the members that the instance owns (by
having strong references to them) must be visited. For instance, if an object supports weak references via
the tp_weaklist slot, the pointer supporting the linked list (What tp_weaklist points to) must not be
visited as the instance does not directly own the weak references to itself (the weakreference list is there to
support the weak reference machinery, but the instance has no strong reference to the elements inside it, as
they are allowed to be removed even if the instance is still alive).

Note that Py VISIT () requires the visit and arg parametersto local_traverse () tohave these specific
names; don’t name them just anything.

Instances of heap-allocated types hold a reference to their type. Their traversal function must therefore either
visit Py TYPE (self), or delegate this responsibility by calling tp_t raverse of another heap-allocated
type (such as a heap-allocated superclass). If they do not, the type object may not be garbage-collected.

AlhoEe oty ékdoon 3.9: Heap-allocated types are expected to visit Py_TYPE (self) intp_traverse.
In earlier versions of Python, due to bug 40217, doing this may lead to crashes in subclasses.

Inheritance:
Group: Py TPFLAGS_HAVE_GC,tp_traverse, tp_clear

This field is inherited by subtypes together with tp_clear and the Py TPFLAGS_ HAVE_GC flag bit: the
flaghbit, tp_traverse,and tp_clear areall inherited from the base type if they are all zero in the subtype.

inquiry PyTypeObject .tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. The signature is:

int tp_clear (PyObject *);

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_ clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supply a t p__c 1 ea r function. For example, the tuple type does not implement
a tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to break any cycle containing a tuple.
This isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.

Implementations of tp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those members to NULL, as in the following example:

static int

local_clear (localobject *self)

{
Py_CLEAR (self->key);
Py_CLEAR (self->args);
Py_CLEAR (self->kw);
Py_CLEAR (self->dict);
return 0;

The Py_CLEAR () macro should be used, because clearing references is delicate: the reference to the
contained object must not be released (via Py_DECREF ()) until after the pointer to the contained object
is set to NULL. This is because releasing the reference may cause the contained object to become trash,
triggering a chain of reclamation activity that may include invoking arbitrary Python code (due to finalizers, or
weakref callbacks, associated with the contained object). If it’s possible for such code to reference self again,
it’s important that the pointer to the contained object be NULL at that time, so that self knows the contained
object can no longer be used. The Py_ CLEAR () macro performs the operations in a safe order.

Note that tp_clear is not always called before an instance is deallocated. For example, when reference
counting is enough to determine that an object is no longer used, the cyclic garbage collector is not involved
and tp_dealloc is called directly.

12.3. Type Objects 239

https://bugs.python.org/issue40217

The Python/C API, Anpooicuon 3.10.18

Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained
objects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s t p_ dea 1 1oc function to invoke
tp_clear.

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.

Inheritance:
Group: Py_ TPFLAGS_HAVE_GC,tp_traverse, tp_clear

This field is inherited by subtypes together with tp_traverse and the Py TPFLAGS_HAVE_GC flag bit:
the flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the
subtype.

richcmpfunc PyTypeObject .tp_richcompare
An optional pointer to the rich comparison function, whose signature is:

PyObject *tp_richcompare (PyObject *self, PyObject *other, int op);

The first parameter is guaranteed to be an instance of the type that is defined by Py TypeObject.

The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_Not Implemented, if another error occurred it must return NULL and set
an exception condition.

The following constants are defined to be used as the third argument for tp_richcompare and for
PyObject_RichCompare ():

Constant | Comparison
Py LT <

Py_LE <=

Py_EQ ==

Py_NE 1=

Py GT >

Py_GE >=

The following macro is defined to ease writing rich comparison functions:

Py_RETURN_RICHCOMPARE (VAL_A, VAL_B, op)
Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A
and VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats).
The third argument specifies the requested operation, as for PyOb ject_RichCompare ().

The returned value is a new strong reference.
On error, sets an exception and returns NULL from the function.
Néo oty éxdoon 3.7.

Inheritance:

Group: tp_hash, tp_richcompare

This field is inherited by subtypes together with tp_hash: a subtype inherits tp_richcompare and
tp_hash when the subtype’s tp_richcompare and tp_hash are both NULL.

Default:

PyBaseObject_Type providesa tp_richcompare implementation, which may be inherited. However,
if only tp_hash is defined, not even the inherited function is used and instances of the type will not be able
to participate in any comparisons.

Py _ssize_t PyTypeObject.tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in

240 Kegahaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used
by PyObject_ClearWeakRefs () and the PyWeakref_* functions. The instance structure needs to
include a field of type PyOb ject* which is initialized to NULL.

Do not confuse this field with t p_weak 11 st;thatis the list head for weak references to the type object itself.
Inheritance:

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found
via tp_weaklistoffset, this should not be a problem.

When a type defined by a class statement has no ___slots__ declaration, and none of its base types are
weakly referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the
instance layout and setting the tp_weaklistoffset of that slot’s offset.

When a type’s ___slots__ declaration contains a slot named ___weakref__, that slot becomes the weak
reference list head for instances of the type, and the slot’s offset is stored in the type’s t p_weaklistoffset.

When a type’s ___slots__ declaration does not contain a slot named ___weakref__, the type inherits its
tp_weaklistoffset from its base type.

getiterfunc PyTypeObject.tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iferable (although sequences may be iterable without this function).

This function has the same signature as PyObject_GetIter():

PyObject *tp_iter (PyObject *self);

Inheritance:
This field is inherited by subtypes.

iternextfunc Py TypeObject .tp_iternext
An optional pointer to a function that returns the next item in an iterator. The signature is:

PyObject *tp_iternext (PyObject *self);

When the iterator is exhausted, it must return NULL; a StopIteration exception may or may not be set.
When another error occurs, it must return NULL too. Its presence signals that the instances of this type are
iterators.

Iterator types should also define the tp_ i ter function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signature as PyIter Next ().
Inheritance:
This field is inherited by subtypes.

struct PyMethodDef *PyTypeObject .tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular
methods of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a
method descriptor.

Inheritance:
This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef *PyTypeObject .tp_members
An optional pointer to a static NULL-terminated array of PyMemberDe £ structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a
member descriptor.

12.3. Type Objects 241

The Python/C API, Anpooicuon 3.10.18

Inheritance:

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef *PyTypeObject .tp_getset

An optional pointer to a static NULL-terminated array of PyGet SetDef structures, declaring computed
attributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.

Inheritance:

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject ¥*PyTypeObject .tp_base

An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

Inueiwon: Slot initialization is subject to the rules of initializing globals. C99 requires the initializers to
be «address constants». Function designators like Py Type GenericNew (), with implicit conversion to a
pointer, are valid C99 address constants.

However, the unary “&” operator applied to a non-static variable like PyBaseObject_Type () is not
required to produce an address constant. Compilers may support this (gcc does), MSVC does not. Both
compilers are strictly standard conforming in this particular behavior.

Consequently, tp_base should be set in the extension module’s init function.

Inheritance:
This field is not inherited by subtypes (obviously).
Default:

This field defaults to sPyBaseObject_Type (which to Python programmers is known as the type
object).

PyObject *PyTypeObject .tp_dict

The type’s dictionary is stored here by Py Type_Ready ().

This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once Py Type_Ready () has initialized the type, extra
attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations
(like __add__()).

Inheritance:

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

Default:

If this field is NULL, Py Type_Ready () will assign a new dictionary to it.

Iposwdomoinon: It is not safe to use PyDict_SetItem() on or otherwise modify tp_dict with
the dictionary C-API.

descrgetfunc PyTypeObject .tp_descr_get

An optional pointer to a «descriptor get» function.

The function signature is:

PyObject * tp_descr_get (PyObject *self, PyObject *obj, PyObject *type);

242

Kegalaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

Inheritance:
This field is inherited by subtypes.

descrsetfunc PyTypeObject .tp_descr_set
An optional pointer to a function for setting and deleting a descriptor’s value.

The function signature is:

int tp_descr_set (PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value.
Inheritance:
This field is inherited by subtypes.

Py _ssize_t PyTypeObject.tp_dictoffset
If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr ().

Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure.
If the value is less than zero, it specifies the offset from the end of the instance structure. A negative
offset is more expensive to use, and should only be used when the instance structure contains a variable-
length part. This is used for example to add an instance variable dictionary to subtypes of str or tuple.
Note that the tp_basicsize field should account for the dictionary added to the end in that case, even
though the dictionary is not included in the basic object layout. On a system with a pointer size of 4 bytes,
tp_dictoffset should be set to —4 to indicate that the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negative tp_dictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof (void*) :
round up to sizeof (void*)

where tp_basicsize, tp_itemsize and tp_dictoffset are taken from the type object, and
ob_size is taken from the instance. The absolute value is taken because ints use the sign of ob_size
to store the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr().)

Inheritance:

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is
always found via t p_dictoffset, this should not be a problem.

When a type defined by a class statement has no ___slots__ declaration, and none of its base types has an
instance variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set
to that slot’s offset.

When a type defined by a class statement has a _ slots__ declaration, the type inherits its
tp_dictoffset from its base type.

(Adding a slot named __dict__ tothe _ slots__ declaration does not have the expected effect, it just
causes confusion. Maybe this should be added as a feature just like __weakref___ though.)

Default:
This slot has no default. For static types, if the field is NULL thenno ___dict___ gets created for instances.

initproc PyTypeObject .tp_init
An optional pointer to an instance initialization function.

12.3. Type Objects 243

The Python/C API, Anpooicuon 3.10.18

This function corresponds to the __init__ () method of classes. Like _ _init__ (), it is possible to
create an instance without calling __init__ (), and it is possible to reinitialize an instance by calling its
__init__ () method again.

The function signature is:

int tp_init (PyObject *self, PyObject *args, PyObject *kwds);

The self argument is the instance to be initialized; the args and kwds arguments represent positional and
keyword arguments of the callto __init__ ().

The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after
the type’s t p_new function has returned an instance of the type. If the t p_new function returns an instance
of some other type that is not a subtype of the original type, no tp_init function is called; if tp_new
returns an instance of a subtype of the original type, the subtype’s tp_init is called.

Returns 0 on success, —1 and sets an exception on error.
Inheritance:

This field is inherited by subtypes.

Default:

For static types this field does not have a default.

allocfunc PyTypeObject .tp_alloc

An optional pointer to an instance allocation function.

The function signature is:

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems);

Inheritance:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement).
Default:

For dynamic subtypes, this field is always set to PyType_GenericAlloc (), to force a standard heap
allocation strategy.

For static subtypes, PyBaseObject_Typeuses PyType_GenericAlloc (). Thatis the recommended
value for all statically defined types.

newfunc PyTypeObject .tp_new

An optional pointer to an instance creation function.

The function signature is:

PyObject *tp_new (PyTypeObject *subtype, PyObject *args, PyObject *kwds);

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).

The t p_new function should call subtype->tp_alloc (subtype, nitems) toallocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely
be ignored or repeated should be placed in the tp_ init handler. A good rule of thumb is that for immutable
types, all initialization should take place in tp_new, while for mutable types, most initialization should be
deferred to tp_init.

Set the Py TPFLAGS_DISALLOW_INSTANTIATION flag to disallow creating instances of the type in
Python.

Inheritance:

244

Kegalaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type.

Default:

For static types this field has no default. This means if the slot is defined as NULL, the type cannot be called to
create new instances; presumably there is some other way to create instances, like a factory function.

freefunc PyTypeObject .tp_£free
An optional pointer to an instance deallocation function. Its signature is:

void tp_free(void *self);

An initializer that is compatible with this signature is PyObject_Free ().

Inheritance:

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement)
Default:

In dynamic subtypes, this field is set to a deallocator suitable to match Py Type_GenericAlloc () and the
value of the Py_ TPFLAGS_HAVE_GC flag bit.

For static subtypes, PyBaseObject_Type uses PyObject_Del.

inquiry PyTypeObject .tp_is_gec
An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’s type’s tp_ f1ags field, and check the Py TPFLAGS_HAVE_GC flag bit. But some
types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are
not collectible. Such types should define this function; it should return 1 for a collectible instance, and 0 for a
non-collectible instance. The signature is:

int tp_is_gc(PyObject *self);

(The only example of this are types themselves. The metatype, PyType_Type, defines this function to
distinguish between statically and dynamically allocated types.)

Inheritance:

This field is inherited by subtypes.

Default:

This slot has no default. If this field is NULL, Py_ TPFLAGS_HAVE_GC is used as the functional equivalent.

PyObject *PyTypeObject .tp_bases
Tuple of base types.

This field should be set to NULL and treated as read-only. Python will fill it in when the typeis initialized.

For dynamically created classes, the Py_tp_bases slot can be used instead of the bases argument of
PyType_FromSpecWithBases (). The argument form is preferred.

Ipozidoroinon: Multiple inheritance does not work well for statically defined types. If you set
tp_bases to a tuple, Python will not raise an error, but some slots will only be inherited from the first
base.

Inheritance:
This field is not inherited.

PyObject *PyTypeObject .tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in
Method Resolution Order.

12.3. Type Objects 245

The Python/C API, Anpooicuon 3.10.18

This field should be set to NULL and treated as read-only. Python will fill it in when the typeis initialized.
Inheritance:
This field is not inherited; it is calculated fresh by Py Type_Ready ().

PyObject *PyTypeObject .tp_cache
Unused. Internal use only.

Inheritance:
This field is not inherited.

PyObject *PyTypeObject .tp_subclasses
List of weak references to subclasses. Internal use only.

Inheritance:
This field is not inherited.

PyObject *PyTypeObject .tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

Inheritance:
This field is not inherited.

destructor Py TypeObject .tp_del
This field is deprecated. Use tp_ finalize instead.

unsigned int Py TypeObject.tp_version_tag
Used to index into the method cache. Internal use only.

Inheritance:
This field is not inherited.

destructor PyTypeObject .tp_£finalize
An optional pointer to an instance finalization function. Its signature is:

void tp_finalize (PyObject *self);

If tp_finalizeis set, the interpreter calls it once when finalizing an instance. It is called either from the
garbage collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated.
Either way, it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the
object in a sane state.

tp_finalize should not mutate the current exception status; therefore, a recommended way to write a
non-trivial finalizer is:

static void
local finalize (PyObject *self)
{

PyObject *error_type, *error_value, *error_traceback;

/* Save the current exception, if any. */
PyErr_Fetch(&error_type, &error_value, &error_traceback);

VA V4

/* Restore the saved exception. */
PyErr_Restore (error_type, error_value, error_traceback);

Also, note that, in a garbage collected Python, t p_dealloc may be called from any Python thread, not just
the thread which created the object (if the object becomes part of a refcount cycle, that cycle might be collected
by a garbage collection on any thread). This is not a problem for Python API calls, since the thread on which
tp_dealloc is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn

246 Kegahaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

destroys objects from some other C or C++ library, care should be taken to ensure that destroying those objects
on the thread which called tp_dealloc will not violate any assumptions of the library.

Inheritance:
This field is inherited by subtypes.
Néo otv ¢€kdoom 3.4.

AMEe otnv €xdoon 3.8: Before version 3.8 it was necessary to set the Py TPFLAGS_HAVE_FINALIZE
flags bit in order for this field to be used. This is no longer required.

Agite emiong:
«Safe object finalization» (PEP 442)

vectorcallfunc PyTypeObject .tp_vectorcall
Vectorcall function to use for calls of this type object. In other words, it is used to implement vectorcall for
type.__call_ . If tp_vectorcall is NULL, the default call implementation using __new___ and
__init__ isused.

Inheritance:
This field is never inherited.

Néo otnv €kdoom 3.9: (the field exists since 3.8 but it’s only used since 3.9)

12.3.6 Static Types

Traditionally, types defined in C code are static, that is, a static Py TypeOb ject structure is defined directly in code
and initialized using Py Type_Ready ().

This results in types that are limited relative to types defined in Python:
« Static types are limited to one base, i.e. they cannot use multiple inheritance.

« Static type objects (but not necessarily their instances) are immutable. It is not possible to add or modify the
type object’s attributes from Python.

« Static type objects are shared across sub-interpreters, so they should not include any subinterpreter-specific
state.

Also, since Py TypeOb ject is only part of the Limited API as an opaque struct, any extension modules using static
types must be compiled for a specific Python minor version.

12.3.7 Heap Types
An alternative to static types is heap-allocated types, or heap types for short, which correspond closely to classes
created by Python’s c1lass statement. Heap types have the Py TPFLAGS _HEAPTYPE flag set.

This is done by filling a PyType Spec structure and calling PyType FromSpec (),
PyType_FromSpecWithBases (),or PyType_FromModuleAndSpec ().

12.3. Type Objects 247

https://www.python.org/dev/peps/pep-0442

The Python/C API, Anpooicuon 3.10.18

12.4 Number Object Structures

type PyNumberMethods

This structure holds pointers to the functions which an object uses to implement the number protocol. Each
function is used by the function of similar name documented in the Number Protocol section.

Here is the structure definition:

typedef struct {
binaryfunc
binaryfunc
binaryfunc

nb_add;
nb_subtract;
nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
unaryfunc nb_int;

void *nb_reserved;
unaryfunc nb_float;

binaryfunc
binaryfunc

nb_inplace_add;
nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

nb_floor_divide;
nb_true_divide;

binaryfunc
binaryfunc
binaryfunc
binaryfunc

nb_inplace_true_divide;
unaryfunc nb_index;

binaryfunc nb_matrix _multiply;

} PyNumberMethods;

nb_inplace_floor_divide;

binaryfunc nb_inplace_matrix_multiply;

Enueiwon: Binary and ternary functions must check the type of all their operands, and implement the
necessary conversions (at least one of the operands is an instance of the defined type). If the operation is not
defined for the given operands, binary and ternary functions must return Py_Not Implemented, if another
error occurred they must return NULL and set an exception.

Ynueimon: The nb_reserved field should alway:
renamed in Python 3.0.1.

s be NULL. It was previously called nb_1ong, and was

248

Kegalaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.

ternaryfunc PyNumberMethods

nb_add
nb_subtract
nb_multiply
nb_remainder

nb_divmod

.nb_power

unaryfunc PyNumberMethods .nb_negative

unaryfunc PyNumberMethods .nb_positive

unaryfunc PyNumberMethods.nb_absolute

inquiry PyNumberMethods.nb_bool

unaryfunc PyNumberMet hods .nb_invert

binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.

binaryfunc PyNumberMethods.

nb_1lshift
nb_rshift
nb_and
nb_xor

nb_or

unaryfunc PyNumberMethods.nb_int

void *PyNumberMethods.nb_reserved

unaryfunc PyNumberMethods.nb_float

binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.

binaryfunc PyNumberMethods.

ternaryfunc PyNumberMethods.

binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMethods.
binaryfunc PyNumberMet hods

binaryfunc PyNumberMethods.

nb_inplace_add
nb_inplace_subtract
nb_inplace_multiply
nb_inplace_remainder
nb_inplace_power
nb_inplace_lshift
nb_inplace_rshift
nb_inplace_and
nb_inplace_xor
nb_inplace_or
nb_floor_divide

nb_true_divide

.nb_inplace_floor_divide

nb_inplace_true_divide

unaryfunc PyNumberMethods.nb_index

binaryfunc PyNumberMethods

binaryfunc PyNumberMet hods

.nb_matrix_multiply

.nb_inplace_matrix multiply

12.4. Number Object Structures

249

The Python/C API, Anpooicuon 3.10.18

12.5 Mapping Object Structures

type PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has
three members:

lenfunc PyMappingMethods .mp_length
This function is used by PyMapping_Size () and PyObject_Size (), and has the same signature. This
slot may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods.mp_subscript
This function is used by PyObject_GetItem() and PySequence_GetSlice (), and has the same
signature as PyObject_GetItem (). This slot must be filled for the PyMapping Check () function to
return 1, it can be NULL otherwise.

objobjargproc PyMappingMethods.mp_ass_subscript
This function is used by PyObject_SetItem(), PyObject_DelItem(),
PyObject_SetSlice() and PyObject_DelSlice(). It has the same signature as
PyObject_SetItem(), but v can also be set to NULL to delete an item. If this slot is NULL, the
object does not support item assignment and deletion.

12.6 Sequence Object Structures

type PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence_Size () and PyObject_Size (), and has the same signature. It
is also used for handling negative indices via the sg_itemand the sg_ass_itemslots.

binaryfunc PySequenceMethods.sq_concat
This function is used by PySequence_Concat () and has the same signature. It is also used by the +
operator, after trying the numeric addition via the nb_ add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence_Repeat () and has the same signature. It is also used by the *
operator, after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item
This function is used by PySequence_GetItem() and has the same signature. It is also used by
PyObject_GetItem(), after trying the subscription via the mp_subscript slot. This slot must be
filled for the PySequence_Check () function to return 1, it can be NULL otherwise.

Negative indexes are handled as follows: if the sgq_length slot s filled, it is called and the sequence length is
used to compute a positive index which is passed to sq_item. If sq_length is NULL, the index is passed
as is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item
This function is used by PySequence_SetItem () and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem (), after trying the item assignment and deletion via
the mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment
and deletion.

objobjproc PySequenceMethods.sq _contains
This function may be used by PySequence_Contains () and has the same signature. This slot may be
left to NULL, in this case PySequence_Contains () simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat
This function is used by PySequence_InPlaceConcat () and has the same signature. It
should modify its first operand, and return it. This slot may be left to NULL, in this case

250 Kegahaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

PySequence_InPlaceConcat () will fall back to PySequence_Concat (). It is also used by the
augmented assignment +=, after trying numeric in-place addition via the nb_inplace_add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat
This function is used by PySequence_InPlaceRepeat () and has the same signature. It
should modify its first operand, and return it. This slot may be left to NULL, in this case
PySequence_InPlaceRepeat () will fall back to PySequence Repeat (). It is also used by the
augmented assignment *=, after trying numeric in-place multiplication via the nb_inplace_multiply
slot.

12.7 Buffer Object Structures

type PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an
exporter object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs.bf_getbuffer
The signature of this function is:

int (PyObject *exporter, Py_buffer *view, int flags);

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:

(1) Check if the request can be met. If not, raise PyExc_BufferError, set view—>o0bj to NULL and
return —1.

(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view->o0b7 to exporter and increment view—>ob7j.
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

» Re-export: Each member of the tree acts as the exporting object and sets view—>obj to a new reference
to itself.

« Redirect: The buffer request is redirected to the root object of the tree. Here, view—>obj will be a new
reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to
specific requests are in section Buffer request types.

All memory pointed to in the Py__buf fer structure belongs to the exporter and must remain valid until there
are no consumers left. format, shape, strides, suboffsets and internal are read-only for the
consumer.

PyBuffer FillInfo () provides an easy way of exposing a simple bytes buffer while dealing correctly
with all request types.

PyObject_GetBuffer () is the interface for the consumer that wraps this function.

releasebufferproc PyBufferProcs.bf_releasebuffer
The signature of this function is:

void (PyObject *exporter, Py_buffer *view);

Handle a request to release the resources of the buffer. If no resources need to be released, PyBufferProcs.
bf_releasebuffer may be NULL. Otherwise, a standard implementation of this function will take these
optional steps:

(1) Decrement an internal counter for the number of exports.

12.7. Buffer Object Structures 251

The Python/C API, Anpooicuon 3.10.18

(2) If the counter is 0, free all memory associated with view.

The exporter MUST use the i nterna 1 field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.

This function MUST NOT decrement view->obj, since that is done automatically in
PyBuffer Release () (this scheme is useful for breaking reference cycles).

PyBuffer_Release () is the interface for the consumer that wraps this function.

12.8 Async Object Structures

Néo oty éxdoonm 3.5.

type PyAsyncMethods

This structure holds pointers to the functions required to implement awaitable and asynchronous iterator
objects.

Here is the structure definition:

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
sendfunc am_send;

} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await
The signature of this function is:

PyObject *am_await (PyObject *self);

The returned object must be an iterator, i.e. PyIter Check () must return 1 for it.
This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter
The signature of this function is:

PyObject *am_aiter (PyObject *self);

Must return an asynchronous iterator object. See __anext__ () for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext
The signature of this function is:

PyObject *am_anext (PyObject *self);

Must return an awaitable object. See __anext___ () for details. This slot may be set to NULL.

sendfunc PyAsyncMethods.am_send
The signature of this function is:

PySendResult am_send(PyObject *self, PyObject *arg, PyObject **result);

See PyIter_Send () for details. This slot may be set to NULL.

Néo otnv ékdoon 3.10.

252 Kegahaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

12.9 Slot Type typedefs

typedef PyObject *(*allocfunc) (PyTypeObject *cls, Py_ssize_t nitems)

Part of the Stable ABIL The purpose of this function is to separate memory allocation from memory
initialization. It should return a pointer to a block of memory of adequate length for the instance, suitably
aligned, and initialized to zeros, but with ob_refcnt set to 1 and ob_type set to the type argument. If
the type’s tp_itemsize is non-zero, the object’s ob_size field should be initialized to nifems and the
length of the allocated memory block should be tp_basicsize + nitems*tp_itemsize, rounded
up to a multiple of sizeof (void*); otherwise, nitems is not used and the length of the block should be
tp_basicsize.

This function should not do any other instance initialization, not even to allocate additional memory; that should
be done by tp_new.

typedef void (*destructor) (PyObject*)
Part of the Stable ABL

typedef void (*£reefunc) (void*)
See tp_free.
typedef PyObject *(*newfunc) (PyObject*, PyObject*, PyObject™*)
Fart of the Stable ABI. See tp_new.
typedef int (*initproc) (PyObject*, PyObject*, PyObject*)
Part of the Stable ABI. See tp_init.
typedef PyObject *(*reprfunc) (PyObject*)
Part of the Stable ABI. See tp_repr.

typedef PyObject *(*getattrfunc) (PyObject *self, char *attr)
Fart of the Stable ABI. Return the value of the named attribute for the object.

typedef int (*setattrfunc) (PyObject *self, char *attr, PyObject *value)
Part of the Stable ABI. Set the value of the named attribute for the object. The value argument is set to NULL
to delete the attribute.

typedef PyObject *(*getattrofunc) (PyObject *self, PyObject *attr)
Fart of the Stable ABI. Return the value of the named attribute for the object.

See tp_getattro.

typedef int (*setattrofunc) (PyObject *self, PyObject *attr, PyObject *value)
Fart of the Stable ABI. Set the value of the named attribute for the object. The value argument is set to NULL
to delete the attribute.

See tp_setattro.

typedef PyObject *(*descrget func) (PyObject*, PyObject*, PyObject™)
Part of the Stable ABI. See tp_descr_get.

typedef int (*descrsetfunc) (PyObject*, PyObject*, PyObject*)
Fart of the Stable ABI. See tp_descr_set.

typedef Py_hash_t (*hashfunc) (PyObject*)
Part of the Stable ABIL. See tp_hash.

typedef PyObject *(*richempfunc) (PyObject*, PyObject*, int)
Part of the Stable ABI. See tp_richcompare.

typedef PyObject *(*getiterfunc) (PyObject*)
Part of the Stable ABL See tp_iter.

typedef PyObject *(*iternextfunc) (PyObject*)
Part of the Stable ABIL. See tp_iternext.

typedef Py _ssize_t (*lenfunc) (PyObject™*)
Part of the Stable ABI.

12.9. Slot Type typedefs 253

The Python/C API, Anpooicuon 3.10.18

typedef int (*getbufferproc) (PyObject*, Py_buffer*, int)
typedef void (*releasebufferproc) (PyObject*, Py_buffer*)

typedef PyObject *(*unaryfunc) (PyObject*)
Part of the Stable ABI.

typedef PyObject *(*binaryfunc) (PyObject*, PyObject*)
Part of the Stable ABI.

typedef PySendResult (*sendfunc) (PyObject*, PyObject*, PyObject**)
See am send.

typedef PyObject *(*ternaryfunc) (PyObject*, PyObject*, PyObject*)
Part of the Stable ABIL.

typedef PyObject *(*ssizeargfunc) (PyObject*, Py_ssize_t)
Fart of the Stable ABIL.

typedef int (*ssizeobjargproc) (PyObject*, Py ssize_t, PyObject*)
Part of the Stable ABI.

typedef int (*objobjproc) (PyObject*, PyObject*)
Part of the Stable ABIL.

typedef int (*fobjobjargproc) (PyObject*, PyObject*, PyObject*)
Part of the Stable ABIL.

12.10 Examples

The following are simple examples of Python type definitions. They include common usage you may encounter.
Some demonstrate tricky corner cases. For more examples, practical info, and a tutorial, see defining-new-types and
new-types-topics.

A basic static type:

typedef struct {
PyObject_HEAD
const char *data;
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_ HEAD_INIT (NULL, O)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof (MyObject),
.tp_doc = PyDoc_STR("My objects"),
.tp_new = myobj_new,
.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

bi

You may also find older code (especially in the CPython code base) with a more verbose initializer:

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT (NULL, O)

"mymod.MyObject", /* tp_name */

sizeof (MyObject), /* tp_basicsize */

0, /* tp_itemsize */
(destructor)myobj_dealloc, /* tp_dealloc */

0, /* tp_vectorcall_offset */
0, /* tp_getattr */

0, /* tp_setattr */

0, /* tp_as_async */

(ouvéyela 0TV emOpEVY 0edL)

254 Kegahaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

(reprfunc)myobij_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
0, /* tp_flags */
PyDoc_STR("My objects"), /* tp_doc */

, /* tp_traverse */

, /* tp_clear */

, /* tp_richcompare */

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

tp_weaklistoffset
tp_iter */
tp_iternext */
tp_methods */
tp_members */
tp_getset */
tp_base */
tp_dict */
tp_descr_get
tp_descr_set
tp_dictoffset
tp_init */
tp_alloc */
tp_new */

~

~

~

~

~

~

~

*/
*/
*/

~ S~ 0~ 0~

O O O O O O OO OO oo oo oo
~

~

myobj_new,
bi

*/

A type that supports weakrefs, instance dicts, and hashing:

typedef struct {
PyObject_HEAD
const char *data;
PyObject *inst_dict;
PyObject *weakreflist;
} MyObject;

static PyTypeObject MyObject_Type
PyVarObject_HEAD_INIT (NULL, O0)

=1

.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof (MyObject),
.tp_doc = PyDoc_STR("My objects"),

.tp_weaklistoffset offsetof (MyObject, weakreflist),
.tp_dictoffset offsetof (MyObject, inst_dict),

.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE
.tp_new = myobj_new,

.tp_traverse = (traverseproc)myobj_traverse,
.tp_clear = (inquiry)myobj_clear,

.tp_alloc = PyType_GenericNew,

.tp_dealloc = (destructor)myobj_dealloc,

.tp_repr = (reprfunc)myobj_repr,

.tp_hash = (hashfunc)myobj_hash,

.tp_richcompare

PyBaseObject_Type.tp_richcompare,
bi

| Py_TPFLAGS_HAVE_GC,

A str subclass that cannot be subclassed and cannot be called to create instances (e.g. uses a separate factory func)

using Py_ TPFLAGS_DISALLOW_INSTANTIATION flag:

12.10. Examples

255

The Python/C API, Anpooicuon 3.10.18

typedef struct {
PyUnicodeObject raw;
char *extra;

} MyStr;

static PyTypeObject MyStr_Type = {
PyVarObject_ HEAD_INIT (NULL, O)
.tp_name = "mymod.MyStr",
.tp_basicsize = sizeof (MyStr),
.tp_base = NULL, // set to &PyUnicode_Type in module init
.tp_doc = PyDoc_STR("my custom str"),
.tp_flags = Py_TPFLAGS_DEFAULT | Py TPFLAGS_DISALLOW_INSTANTIATION,
.tp_repr = (reprfunc)myobj_repr,
bi

The simplest static type with fixed-length instances:

typedef struct {
PyObject_HEAD
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "mymod.MyObject",

bi

The simplest static type with variable-length instances:

typedef struct {
PyObject_VAR_HEAD
const char *datalll];
} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_ HEAD_INIT (NULL, O0)

.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof (MyObject) - sizeof (char *),
.tp_itemsize = sizeof (char *),

bi

12.11 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are «containers» for other objects which may also be containers. Types which do not store references to
other objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any
explicit support for garbage collection.

To create a container type, the tp_flags field of the type object must include the Py TPFLAGS _HAVE_GC
and provide an implementation of the t p_t raverse handler. If instances of the type are mutable, a tp_clear
implementation must also be provided.

Py_TPFLAGS_HAVE_GC
Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:

1. The memory for the object must be allocated using PyObject_GC_New() or
PyObject_GC_NewVar ().

256 Kegahaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject_GC_Track ().

Similarly, the deallocator for the object must conform to a similar pair of rules:
1. Before fields which refer to other containers are invalidated, PyObject_GC_UnTrack () must be called.

2. The object’s memory must be deallocated using PyObject_GC_Del ().

Ipozdomoinon: If a type adds the Py_TPFLAGS_HAVE_GC, then it must implement at least a
tp_traverse handler or explicitly use one from its subclass or subclasses.

When calling PyType Ready () or some of the APIs that indirectly call it like
PyType_FromSpecWithBases () or PyType_ FromSpec () the interpreter will automatically
populate the tp_flags, tp_traverse and tp_clear fields if the type inherits from a
class that implements the garbage collector protocol and the child class does notr include the
Py TPFLAGS_HAVE_GC flag.

TYPE *PyObject_GC_New (TYPE, PyTypeObject *type)
Analogous to PyOb ject_New () but for container objects with the Py_ TPFLAGS_HAVE_ GC flag set.

TYPE *PyObject_GC_NewVar (TYPE, PyTypeObject *type, Py_ssize_t size)
Analogous to PyObject_NewVar () but for container objects with the Py TPFLAGS_HAVE_ GC flag set.

TYPE *PyObject_GC_Resize (TYPE, PyVarObject *op, Py_ssize_t newsize)
Resize an object allocated by PyObject_NewVar (). Returns the resized object or NULL on failure. op
must not be tracked by the collector yet.

void PyObject_GC_Track (PyObject *op)
Part of the Stable ABI. Adds the object op to the set of container objects tracked by the collector. The collector
can run at unexpected times so objects must be valid while being tracked. This should be called once all the
fields followed by the tp_ t raverse handler become valid, usually near the end of the constructor.

int PyObject_IS_GC (PyObject *obyj)
Returns non-zero if the object implements the garbage collector protocol, otherwise returns 0.

The object cannot be tracked by the garbage collector if this function returns 0.

int PyObject_GC_IsTracked (PyObject *op)
Fart of the Stable ABI since version 3.9. Returns 1 if the object type of op implements the GC protocol and op
is being currently tracked by the garbage collector and O otherwise.

This is analogous to the Python function gc.is_tracked().
Néo omnv ékdoom 3.9.

int PyObject_GC_IsFinalized (PyObject *op)
Part of the Stable ABI since version 3.9. Returns 1 if the object type of op implements the GC protocol and op
has been already finalized by the garbage collector and 0 otherwise.

This is analogous to the Python function gc.is_finalized().
Néo otnv ékdoom 3.9.

void PyObject_GC_Del (void *op)
Part of the Stable ABIL Releases memory allocated to an object using PyObject_GC_New () or
PyObject_GC_NewVar ().

void PyObject_GC_UnTrack (void *op)
Fart of the Stable ABIL. Remove the object op from the set of container objects tracked by the collector. Note
that PyObject_GC_Track () can be called again on this object to add it back to the set of tracked objects.
The deallocator (tp_dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

AMoEe otnv ékdoon 3.8: The _PyObject_GC_TRACK () and _PyObject_GC_UNTRACK () macros have
been removed from the public C APL

12.11. Supporting Cyclic Garbage Collection 257

The Python/C API, Anpooicuon 3.10.18

The tp_traverse handler accepts a function parameter of this type:

typedef int (*visitproc) (PyObject *object, void *arg)
Part of the Stable ABI. Type of the visitor function passed to the t p_ t raverse handler. The function should
be called with an object to traverse as object and the third parameter to the tp_t raverse handler as arg.
The Python core uses several visitor functions to implement cyclic garbage detection; it’s not expected that
users will need to write their own visitor functions.

The tp_traverse handler must have the following type:

typedef int (*traverseproc) (PyObject *self, visitproc visit, void *arg)
FPart of the Stable ABI. Traversal function for a container object. Implementations must call the visit function
for each object directly contained by self, with the parameters to visit being the contained object and the arg
value passed to the handler. The visit function must not be called with a NULL object argument. If visit returns
a non-zero value that value should be returned immediately.

To simplify writing tp_traverse handlers, a Py VISIT () macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:

void Py_VISIT (PyObject *0)

If 0 is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return
it. Using this macro, tp_ t raverse handlers look like:

static int
my_traverse (Noddy *self, visitproc visit, woid *arg)
{

Py_VISIT (self->foo0);

Py_VISIT (self->bar);

return 0O;

The tp_clear handler must be of the inguiry type, or NULL if the object is immutable.

typedef int (*inquiry) (PyObject *self)
Fart of the Stable ABI. Drop references that may have created reference cycles. Immutable objects do not
have to define this method since they can never directly create reference cycles. Note that the object must still
be valid after calling this method (don’t just call Py DECREF () on a reference). The collector will call this
method if it detects that this object is involved in a reference cycle.

12.11.1 Controlling the Garbage Collector State

The C-API provides the following functions for controlling garbage collection runs.

Py_ssize_t PyGC_Collect (void)
Fart of the Stable ABI. Perform a full garbage collection, if the garbage collector is enabled. (Note that gc .
collect () runs it unconditionally.)

Returns the number of collected + unreachable objects which cannot be collected. If the garbage collector is
disabled or already collecting, returns O immediately. Errors during garbage collection are passed to sys.
unraisablehook. This function does not raise exceptions.

int PyGC_Enable (void)
Fart of the Stable ABI since version 3.10. Enable the garbage collector: similar to gc.enable (). Returns
the previous state, O for disabled and 1 for enabled.

Néo oty éxdoon 3.10.

int PyGC_Disable (void)
Fart of the Stable ABI since version 3.10. Disable the garbage collector: similar to gc . disable (). Returns
the previous state, O for disabled and 1 for enabled.

Néo otv éxdoon 3.10.

258 Kegahaio 12. Object Implementation Support

The Python/C API, Anpooicuon 3.10.18

int PyGC_IsEnabled (void)
Part of the Stable ABI since version 3.10. Query the state of the garbage collector: similar to gc.
isenabled (). Returns the current state, O for disabled and 1 for enabled.

Néo otnv ¢kdoon 3.10.

12.11. Supporting Cyclic Garbage Collection 259

The Python/C API, Anpooicuon 3.10.18

260 Kegahaio 12. Object Implementation Support

kKEoAanalo 13

APl and ABI Versioning

CPython exposes its version number in the following macros. Note that these correspond to the version code is built
with, not necessarily the version used at run time.

See C API Stability for a discussion of API and ABI stability across versions.

PY_MAJOR_VERSION

The 3in3.4.1a2.

PY_MINOR_VERSION

The 4in3.4.1a2.

PY_MICRO_VERSION

Thel1in3.4.1a2.

PY_RELEASE_LEVEL

The a in 3.4 .1a2. This can be 0xA for alpha, 0xB for beta, 0xC for release candidate or OxF for final.

PY RELEASE_SERIAL

The 2 in 3.4 . 1a2. Zero for final releases.

PY_VERSION_HEX

The Python version number encoded in a single integer.

The underlying version information can be found by treating it as a 32 bit number in the following manner:

Bytes | Bits (big endian order) | Meaning Value for 3.4.1a2
1 1-8 PY_MAJOR_VERSION 0x03
2 9-16 PY_MINOR_VERSION 0x04
3 17-24 PY_MICRO_VERSION 0x01
4 25-28 PY_RELEASE_LEVEL 0xA
29-32 PY_RELEASE_SERIAL | 0x2

Thus 3.4.1a2 is hexversion 0x030401a2 and 3.10.0 is hexversion 0x030a00£0.

All the given macros are defined in Include/patchlevel.h.

261

https://github.com/python/cpython/tree/3.10/Include/patchlevel.h

The Python/C API, Anpooicuon 3.10.18

262 Kegahawo 13. API and ABI Versioning

nAPAPTHMA A’

Mwoodpt

>>> To mpoemheypévo Python prompt tov dtadpaotikov shell. Zuyvd epgpaviCetal yio tapadeiyuato Kndiko
OV UITOPOVV VO, EKTEAEGTOVV SLALdPAOTIKA OTOV interpreter.

. Mmnopei va avagépetan o€:

o To mpoemiheyuévo Python prompt tov duadpaotikov shell Katd TV eLooymyr Tou KOdKa yLo éva
WThok Kdduka pe ooy, dtav Ppioketar péoa o va Lehyog TaLpLoouévav aplotepdv Kot deEuhv
delimiters (;wopevOéoels, aykiies, AyKLOTPO 1) TPLTAG ELOAYMYLKA), 1| uetd tov Kabopoud evog
decorator.

o H evowpatmuévn otabepd E11ipsis.

2to3 'Eva epyodeio mov mpoomadei vo petotpéypel tov kmduko Python 2.x og k®dika Python 3.x dtoyelpiCovtag
TLG TTEPLOOOTEPES ALTVUBATOTNTES TTOV WITOPOVV VO EVTOTLOTOUV OVOAIOVTOG TNV TTNYT) Ko dLaoyilovtag
T0 dEVTPO avdluaong.

2t03 eivan drabéowo oty otdvtap PPAodNKn wg 1ib2to3, mapéyetor éva onueio elsddov wg
Tools/scripts/2to3. BA. 2to3-reference.

agnpnuévny Baokn kAaon Ou agnpnuéveg Baotkég kKhAoelg ouumAnpdvouy to duck-typing mopéyovtog évav
TPOTO opLopo interfaces 6tav Ghheg teyvikég 6mwg 1 hasattr () Ba Nrav adégieg 1 avemaicdnto
havBaopéveg (Yo mopdderypo e magic methods). Ta ABC (abstract base class) e106youv elKoVIKEG VITO-
KMAOELS, OL 0TT0leg elvan KAAoELG TToU eV KANpovopouvToL amd o KAGGT, oAld eEakolouBotv va ava-
yvopitovior amd 10 isinstance () ko amwd to issubclass ()” A v Tekunpiwon tov module
abce. H Python dua6éter modhd evoopatwuévo ABC yio douég dedouévav (0to module collections.
abce), apBuovg (oto module numbers), poég (oto module povdda i o), eloaywyn finders ko loaders (oto
module importlib.abc). Mmopeite va dnwovpynoete to dikd oag ABC pe to module abce.

annotation Mo eTikéta oV OYETICETAL UE WO LETAPANT, £Vl YOPAKTNPLOTIKO KAGONG 1 (WOl TAPGUETPOG
OUVAPTNONG 1) TUY TTOV ETLOTPEPETAL, TOV YPNOLUOTTOLELTAL KOTA oVUBOOT WG fype hint.

Aev givor duvati M Tpdofaoy oto annotations TwV TOTLKOV UETAPANTOV KATA TO YPOVO EKTELETNG, AAAG
To annotations twv global LETOUPANTOV, TWV XOPAKTNPLOTIKMV KAAOTG KOl TOV GUVAPTHOEMV AroOnKey-
oVTaL 0TO EOLKO XOPAKTNPLOTIKO __annotations_ twv modules, Twv KAACEWV KAl TMV GUVOPTN-
CGEMV, OVTIOTOLY .

BA\. variable annotation, function annotation, PEP 484 kaw PEP 526, ta omolio weplypdgpouv v Aettovp-
yikdtnto. Exiong BA. annotations-howto yia tig BéATLOTEG TPOKTIKEG doUAeVOVTAG e annotations.

opopo. Mo) petoaBipdletan oe wio function () method) xoxd v KAMon TG ouvdptnong. Yrdpyovv do
€idn opLopdtov:

263

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, Anpooicuon 3.10.18

o keyword argument: £vo. OpLOUOL TTPLV ATTO €VOL OVOLYVIPLOTLKO (TT.%. name=) O€ o, KAon ouvapT-
oNG 1 TEPVADVTAG TO WG TUUT| 08 £va heELko mtpLv amd * *. Tia TapddeLyua, To 3 KoL To 5 amotehovv
optopata AEEewv-kheldLhv otig akolovbeg KA oELS Tpog complex () :

complex (real=3, imag=>5)
complex (**{'real': 3, 'imag': 5})

o positional argument: €vo. dpLopo. Tov dev givar optopo keyword. Ta opilopato O€ong pumopovv va eu-
paviCovrol otV apyNs Wag Motag oplopdtmv n/Kot va netapLatovral mg otouyeio evog iterable
mpwv oo *. T wapdderyna, To 3 koL 1o 5 amotehoVv opiopata 0Eong 0TLg TopaKaTm KANOELS:

complex (3, 5)
complex (* (3, 5))

Ta opiouato eKymPOVVTOL 0TS OVOLLOOUEVES TOTILKES UETAPANTEG 0TO GmUA Wa ovvapTnong. Bi. Ty
evotnta calls yio Toug KaVOVES TOU SLETOUV QLUTNV THV EKYMPNOT]. ZUVTOKTIKY, OTTOL0ONTOTE EKPPUOT|
WITOPEL VAL (PN OLUOTONOEL YLOL VO AVATTAPOOTNOEL EVaL OpLona” 1) AELOAOYOUEVT] TLUN EKYWPELTOL OE L.
TOTTLKT) UETOPANTY.

B\. emtiong v eyypagn Tov YAwooapiov yio. to parameter, thv FAQ gpdtnomn oto 1 duagopd peta&n
oplopdTmv kor Topouétpwv, kol PEP 362.

0oUyYpOvog dtyelproTi)s context An object which controls the environment seen in an async with statement
by defining __aenter__ () and __aexit__ () methods. Introduced by PEP 492.

aovyypovog generator Mio. ouVAPTNOY TTOV EMLOTPEQEL Evay asynchronous generator iterator. MowdCeL pe wio.
ouvapTnon coroutine tov opiletal pue async def ektdg amd OTL mEPLEYEL EKPPATELS yield yio TV
TOPAYOYY WLAG OELPAG TLUDV TTOV (WITOPOUV VAL ¥pnoLpomomBouv oe évav async for Bpdyo.

ZuvhBwg avagépeTal 08 WO OUVAPTNOY aoVYYPOVOU generator, GAAG WTOPEL VO AVAPEPETOL O VOV
aclyypovo generator iterator 0€ OpLOUEVA. contexts. Ze TEPLITTMOELG OTOV TO EMILWKOUEVO VONUOL dEV
elval oapéc, (e TNV XPNOoN TV TANPOV 0wV OTTOPEVYETAL 1] ATAPELD.

Mo GUVAPTNON AOVYXPOVOU generator WITOPEL VAL TEPLEYEL EKPPACELS awalt , KaOdg KoL dNADOELS
async for,xaLasync with.

aovyypovog generator iterator 'Evo aviikeigevo mou dnuovpyhnke amd wo ouvvaptnon asynchronous
generator.

This is an asynchronous iterator which when called using the __anext__ () method returns an awaitable
object which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local
variables and pending try-statements). When the asynchronous generator iterator effectively resumes with
another awaitable returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

aovyypovog iterable An object, that can be used inan async for statement. Must return an asynchronous iterator
fromits __aiter__ () method. Introduced by PEP 492.

aoUyypovog iterator An object that implementsthe __aiter_ () and __anext__ () methods. __anext___
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

XOPOKTPLOTIKO Mia TLut) IOV OYETILETOL (e £Va OVILKEINEVO TTOU OVVIOWG aVapEPETUL LE GVOUX XPTOLULO-
TOLDVTOG eKPphoelg ue Kovkkidec. Iia mapdderyua, edv €va avTikeiievo o €xet £va yopaKTnpLoTKO a
Oa avagépeTal wg o.a.

Eival duvatod vo SmoouUEe 08 Vo AVTLKELUEVO EVOL OPAKTIPLOTLKO TTOU TO OVOULA TOV EV ELVAL VALYV~
PLoTLKO OTtmG opitetar amd identifiers, yio ToPAdELYO XPNOWOTOLMOVTAG setattr (), oV EMLTPETETOL
aIt0 TO OVTLKELUEVO. 'Eva T€T010 Yo paKTNpLotiko dev Oa eival TpooBAacLiuo XPNOLULOTTOLDVTIOG TLG TEAELES,
Ko ovti avtov Ba mtpémel va ovakTnOel ypnopwomoumvtag getattr ().

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an
__await__ () method. See also PEP 492.

264 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0525
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492

The Python/C API, Anpooicuon 3.10.18

BDFL Axpwviuo tov Benevolent Dictator For Life, kolokdyaBog diktatopag g Lwrg, dnradn Guido van
Rossum, o dnpovpydg tng Python.

duadiko apyeio A file object able to read and write bytes-like objects. Examples of binary files are files opened in
binary mode ('rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout.buffer, and instances of
io.BytesIOand gzip.GzipFile.

BA. emiong rext file yio €va avTiKELPEVO TUTTOU OPYELO LKAVO VO LA AOEL Ko VL YPAWPEL ST T AVIIKELUEVL.

daverkn avagopa Zto C API g Python, wa dovelkr) avogpopd eivar puo avagopd og £va aviikeipevo, 6rrou
0 KMOOLKOG TTOV YPNOULOTOLEL TO OVTLKELLEVO deV KaTéYEL TNV avaopd. Tivetal évag oypnoLuomointog
delktng edv To aviikeipevo Kataotpapei. [a mapdderypa, po dtadikacia garbage collection propet va
apaLp£oeL To TENEVTALO strong reference amd TO OVTIKEIUEVO KOL ETOL VOL TO KATAOTPEYEL.

Zuviotatol 1 KMo Tov Py INCREF () 070 Sdavelki] avagood (e 0Komd Vo, LETATPATEL 08 £Val tayvoT)
avagopd emITOTOV, EKTOG OTAV TO GVILKELUEVO OEV UITOPEL VO KATAOTPOPEL TTPLY OO TNV TEAEVTALN
xpNom TG davelkng avagopds. H cuvapmon Py_NewRef () uropel va xpnotpomown0el dote vo. om-
wovpynOel Eva Loy vo1 avapood.

bytes-like avtikeipeve Eva aviikeipevo mov vrootnpiler to Buffer Protocol xon umopet vo eEdyer éva C-
contiguous buffer. Autd mephaufdver Oha ta avtikeineva bytes, bytearray, KoL array.array,
Kabmg Kat ToAd Kowvd memoryview avukeipeva. Ta dvadikoy tomov (bytes-like) aviikeipevo pumo-
pouv va ypnoworotnfovv yio dLbipopes hettovpyieg ov draryelpifoviar duadikd dedouéva” vt me-
pLhappdvouv oupmtieon amodnkevon oe duadikd apyeio Kou aTooTolr] nécw socket.

Oplouéveg hertovpyieg yperdtovrol tor duadikd dedouéva va eivar uetafintd. H texunpioon ovyva
AVOPEPETOL 08 AUTA MG «dVAdIKA avTKElpEva avayvoonc-eyypagphc» (read-write bytes-like objects).
Mapadelypato PETABANTOV OVILKEWEVMY TPOCWPLVTG 00O KEVOoT g TTEPLEXOUV bytearray kol éva
memoryview €vog bytearray. AMeg heLTovpYleg OTTOLTOUV TNV OTTOONKEVONG TV JUOSKMV dE-
douéva oe auetaPinTo avikeipeva («dvadlkd avitkeipeva povo avayvmone»” (read-only bytes-like
objects) wopadeiyUOTO OVTOV TEPLEXOVY bytes Kot éva memoryview evog bytes avitkeluévou.

bytecode O mnyaiog kmdika tng Python petayhwtrtiteton oe bytecode, 1) e00TEPLKT AVATOPAOTAOY EVOG TTPO-
vpduuatog Python otov diepunvéa CPython. To bytecode amoOnkevetal eniong TPOCWPLVA WG . Py C
apyeta moTe 1 eKTELEOT TOV (BLOV apyelov var elvorl YpNYopoTepN TV deUTePT opd ekTéheong (UTo-
pel va amopevyOel 1 ek vEou LETOYAMTTLON artd ToV mTNyaio Kmdiko o€ bytcode). Auti) M «evoLdueon
YADOoo» Aéyetal OTL TpExel 08 wo virtual machine oV €KTENEL TOV KMOLKO (NYAVIG TTOV OVTLOTOLYEL
og kGOe bytecode. AGfete vty OtL TO. bytecode dev aVOUEVETOL VO AELTOUPYOVV HETAED SLOPOPETLKMV
ELKOVIK®OV pnyavdv Python, ovte va givar otabepd uetoEo tmv ekdooewv tng Python.

Mua Aiota amd 0dnyieg oyetikd pe ta bytecode popel va fpedei otnv texunpioon yio to module dis.

callable 'Eva callable ivow éva avtikeipevo mov umopel vo Kaheotel, mbavd pe éva ovvolo optopdtwv (BA.
argument), U€ TV TOPAKATO OVVTOEN:

callable (argumentl, argument2, ...)

Mua function, Kau xot” eméktaon o method givon callable. 'Eva otryudtumo pa KAGONG o vhostotel
™ puébodo _call () eivou emiong callable.

callback Mua subroutine cuvaptnon 1 omoio uetafLpaletal wg opLopa Tov Ba exteLeoTel KATOLO OTLYY 0TO
HEALOV.

kAdon ‘Eva mpdtumo yio) dnuiovpyio avitkeluévov mov opiloviol atd 1o xpnoty. Ot oplopoi KAAoewv
ouvNOmg TEPLEXOVY 0PLOLOVS UEBOOWV TTOV AELTOUPYOUV O GTLYULOTUTTA THG KAAOTG.

ueropinti kKAaons Mo petofint mov opiletan oe wa khdon ko mpoopiletar vo tpomomonOel pdvo oe
emimedo KhAong (dnh. Oyt o€ €va oTLYIOTUITO ULolg KAAONS).

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For example, int (3.15) converts the floating point number to the integer 3,
but in 3+4 .5, each argument is of a different type (one int, one float), and both must be converted to the
same type before they can be added or it will raise a TypeError. Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the programmer, e.g., float (3) +4.5
rather than just 3+4.5.

265

https://gvanrossum.github.io/
https://gvanrossum.github.io/

The Python/C API, Anpooicuon 3.10.18

mryadikog apipuog Mio eTéKTO01 TOU YVOOTOU GUOTHUATOG TTPOYUATIKMOVY aptOudv 6To 07t0io Orot oL aptd-
pot ekppatoviol wg aBpoloua evig TPAYIATIKOU HEPOUG KoL VOGS avTaoTikol uépovs. O pavtaoTi-
Kol apbuoi elvor Tpoynatikd ToMoTAAoLOL TG PAVIOOTIKNG Lovada (1) TeTpaywviky pila tov —1),
IOV OVY VA YphpovTal i ot podnuotikd 1 § ot unxovikr. H Python éyel evowuatmpévn vootpiEn
YLoL Ly adLkovg apLtBrovs, oL 0TToioL YPAQOVTOL (LE GUTOV TOV TEAEUTALO0 CUUBOAOUO” TO POVTOOTIKO Wé-
pOG YpageTaL pe to emibnua j, m.y., 3+1 3. [N va amoxthoete mpdofact oe cUVOETA LOOdVVOUD TO
module math, ypnowwomouote To cmath. H xpfon wyodikmv aptOumv givat évo apKeTa Tponyuévo
HOONUOTIKO XOPOKTNPLOTIKO. €AV OEV YVWOPILETE TNV OVAYKT TOVG, Elval 0yedOV alyoupo dtu wmopeite
VO TOL AYVOT|OETE UE ALOPAAELQL.

Sduayeprotijc context An object which controls the environment seen in a with statement by defining
__enter_ () and __exit__ () methods. See PEP 343.

context petafAnt) Mo petafinTy) ov uropei va éxel ToMES dLOPOPETIKEG TIWEG AvALOYO. LLE TO context.
Avto givar kowvd oto Thread-Local Storage 0mov kd0e ektéheon Tov VIUATOG WITOPEL Vo €XEL dLapo-
peTLKT TN yrow wior petainti). Iapdha avtd, pe tig context uetafAntég, Wropel va vdpyovv Tolhd
TEPLPAMLOVTO O€ EVa VIO EKTELEONC KL 1] KUPLAL ¥ PO VLo TG context HeTaPANTég eivat 1) TopaKohov-
Onomn Twv peETaPATOV o8 TOTOYPOVEG dlepyaoies. Bh. contextvars.

contiguous 'Eva buffer Oewpeiton contiguous axpimg edv eivon eite C-contiguous eite Fortran contriguous. To
buffer undevikmv draotdoemv givar C kou Fortran contiguous. Ze (lovodLdotatovs mivakes, ta oTolyeio
TPEmEL vaL TortoBeToUuvTal o wviu To va Sistha 0To A0, e GELPG aENCTG TmV SELKTHOV EEKLVAVTAG
atod 1o undév. Ze mohvdidotatovg C-contiguous mivakes, o TeELeVTOLOG deikTng UeETABAMETOL TAYXVTEP
OTaV EMLOKETTOVTOL TO OTOLXELO O OELPA dleuBuvong uvhung. Qotdoo, oe Fortran contiguous mtivakeg, o
TPADTOG OELKTNG LETABAMETAL TTLO YPTYOPOL.

coroutine O\ coroutines €ivol (oL TTLo YEVIKEUUEVT pop@n) subroutines. Ot subroutines eloéryovtal o€ éva onueio
Ko eEdyovral oe dAho onueio. Ot coroutines witopei va eloayBotv, vo eEayBov KoL vo ouveyLoTovv og
oM drapopeTikd onueio. Mmopov va vhomotoovy pe v dMiwon async def. Bh. emiong PEP
492.

coroutine cuvaptnon Mo OUVEPTNOT TOV ETUOTPEQPEL £VAL coroutine OVTIKEIEVO. Mo GuvapTtnoy coroutine
Witopel vo opiletol amd) dMlwon async def, KoL Uwopel va mepLéyeL await, async for, kot
async with AEeig khedd. Autég eronydnoav amd to PEP 492.

CPython H xavoviki) vhomoinon g yAdoooag tpoypaupatiopot Python, 6ctwg diavéuetor oto python.org. O
O6pog «CPython» ypnowwomoteital OTav eivor amapaiTnTo Yo TV SLAKPLoN QUTNG TG VAOTOINGNG atd
dheg O0mwg M Jython M v IronPython.

decorator Mia ovvdptnon mou emotpépel wa dGAhn ovvdptnom, ovvibwg epapudleTtal mg LETAOYUNLTL-
ouOg GUVAPTNONG XPNOWOTOUDVTAG TNV @wrapper oUVTOEN. ZuvnOwouévo mapadeiyuata yio Tovg
decorators eivow classmethod () ko staticmethod ().

H oUvtaEn tov decorator givar amhdg KoAhwtioTiky), ou ak6Aovbolr V0 opLopol cuvapTioewy gival
ONUOOLOAOYLKA LOOSVVOUOL:

def f (arqg):
f = staticmethod (f)

@staticmethod
def f (arqg):

H {81 évvola vtdipyet yio g khdoelg, odhd ypnolpomoleitol Ayotepo ovyvd ekel. BL. v tekunpimon
yia function definitions kau class definitions yio wepLoodTepa oyeTikd we Tovg decorators.

descriptor Any object which defines the methods __get__ (),__set_ (),or__delete__ (). Whenaclass
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

266 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0343
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org/dev/peps/pep-0492
https://www.python.org

The Python/C API, Anpooicuon 3.10.18

TN tepLoodTepeg mANpopopieg ovapoplkd ue tig uebddovg twv descriptors, BA. see descriptors 1) to Ipa-
KTkOg 00MY0g Yo Tt xpron tov Descriptor.

AeElk6 An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eq__ () methods. Called a hash in Perl.

Kkotavonon AeEikov 'Evo ovumoyng Tpomog Yo vo, emteEepyooteite OAa 1| n€pog TV OTOLEIWV Ot £Val ETTO-
VOATTTLKO KoL VoL eLoTpoel v e heELko ue To amotehéopata. results = {n: n ** 2 for
n in range (10) } dnwovpyel éva heEukod mmov mepLéyel To KAewdi n o avtiotolyiletal ue Thv T
n ** 2. B\. comprehensions.

oyn AgEikov Ta aviikeipeva mov emotpépovion amd dict.keys (), dict.values (), kot dict.
items () xolovvrol 0elg heEtkov. AUTEG TOPELOUV ULC SUVOULKT Oy TOV TOV EYYPUPDV TOV Ag-
ELko0, ov onpaiver 6Tt dtov To AeEko petafdiretar, 1 dyn aviikotomTpiler ovtég Tig adhayée. T
VO OVOYKGOETE TNV 01 heELkol va yiver o hhpng Alota ypnowomomote to 1ist (dictview) . BA.
dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation of
the object.

duck-typing 'Eva otul mpoypapuatiopot wov dev eEetdlel Tov TUmo evOg OVTLKELUEVOU YLOL VO TTPOTOLOPIOEL
av €xeL T owoth diemapn” avtifeTa,) 1EB0O0G 1) TO YOPAKTNPLOTIKO Kadeltan amhmg 1 xpNOoLULomoLeltaL
(«If it looks like a duck and quacks like a duck, it must be a duck.») Aivovtog éupaon otig demapég Ko
OYL 08 OLYKEKPLUEVOUG TUTTOUG, 0 KUK OYESLOOUEVOG KOLKOG BeTLDVEL TNV eveMELQ TOV emLTPémovTag
™V ohvpoppLkn vrokotdotaot. O timog duck-typing amogpelyel dokLég ypnouomolmvTas type ()
N isinstance (). (Enueiwon, wotd00, 6TL 0 TUTOG TATLOG duck-typing umopel va uUTANPWOEL e
abstract base classes.) Avti avtot, cuvnOwg ypnolwomotel dokiuég hasattr () 1 mpoypopuationd EAFP.

EAFP Ilwo g0xolo va Tnthoelg ouyympeon mopd adeto. Autd to Kowvd otul mpoypappuatiopoy og Python
potimo0ETeL TNV VIapEN EYKUpwV KAEWSUOV 1] YOPOKTNPLOTIKMOV Kot ovAapupdver eEalpéoelg edv 1
vtdeon amodey el ecpaluévy). Auto to kabopd Kot Yp1yopo OTUl YopoKTNPILETAL 0T TV TOPOVoLa
oMMV INhwoewv try ko except. H teyvikn épyetar oe avtifeon e to otuk mov eivar LBYL Kowvo
o€ MOMEG GAleg Yhwooeg, 0mtmg 1) C.

éxgppaon Eva kouudtt ouvtaEng mov umopet vo a&oloyn0el oe kdmowa tur. Me dhha Moy, pa Ekgppaon
glvol o ovoompevon ototyelwv ékppaong dmwg kKuplodeEia, ovopata, TPOGROOY YAPAKTPLOTIKOV,
TELEOTEG 1] KAOELG CUVOPTNOEMY TTOU OAEG ETLOTPEPOUV L TLLY. Z€ aviifeon ue molég dhheg YAmo-
0gg, Oev elval OAeg oL YAWOOLKEG dOUES eXPPAOELS. YTTAPYOUVE ETTLONG statements TOV eV UTOPOVV VO
ypnooTomBovv wg eKpPAceLs, OmTmg To while. O avaféoelg TMMV eival emiong dNAMOELG 0L eK-
ppaoeLs.

module exéktaons 'Evo module ypapuévo oe C 1) C++, o ypnotpomoteitar amd to C API tng Python yia va.
OMNAETLOPACOUY UE TOV TTUPTVA KO UE TOV KDILKO TOV Y PTOTH.

f-string Ou kupLohekTikég oupforooelpég ypnotpomotovy e tpdbepa '£' N 'F' ovoudlovior cuvnwg «f-
strings» wov eivon cuvtopoypapic tov formatted string literals. BL. extiong PEP 498.

OVTIKEINEVO apyeiov An object exposing a file-oriented API (with methods such as read () or write ())toan
underlying resource. Depending on the way it was created, a file object can mediate access to a real on-disk file
or to another type of storage or communication device (for example standard input/output, in-memory buffers,
sockets, pipes, etc.). File objects are also called file-like objects or streams.

2TV TPOYUOTLKOTITA VITAPYOUV TPELS KATNYOPLES OVTLKEWWEVMV apyelov raw dvadikd apyela, buffered
dvadikd apyelo xon apyela keyévov. O dLemapég Tovg opilovtal oty evotnta 1 0. O Kavovikdg Tpdmog
YLOL VO OULOVPYTOETE VOl OVTLKELUEVO 0P ELOV ELVAL XPNOLUOTOLDVTOG TV OCUVAPTNON open () .

OVTIKEUEVO TTOU poLaler pe apyeio 'Evo ouvavuuo ue To file object.

KWOLKOTOI101] CUOTIUATOS UPYEL®MY Kot XELPLOTHS 0puiudtov H kwdikomoinon Kol o YelpLotig o@oiud-
TOV ypnoLpomoteitol artd v Python yia tnv aokwdikomoinon tmv bytes astd to hettovpyikd cvotnuo
Ko TV Kodikormoinon og Unicode yia to Aettovpytkd ovothuo.

267

https://www.python.org/dev/peps/pep-0498

The Python/C API, Anpooicuon 3.10.18

H xwdikomoinon cvothuatog apyeiov Wropel vo eyyunbel v emTuynuévn amokmwdLkomoinon Ohmy
TV bytes kKatw oo 128. EAv 1 KwdLKOToiN0on CUOTHUATOS APy eIV SEV TOPEYEL ALUTIHV TNV EYYUNOT), OL
ouvoptnoelg API umopovv va eyeipovy éva UnicodeError.

OLouvoptioelg sys.getfilesystemencoding () Kot sys.getfilesystemencodeerrors ()
uopoVV va xpnotuorotnfovy yio va MaPete TV KmALKOTOINo TOU CUOTHUOTOS OPYELWV KOl TOU
YELPLOTH OPOALATWY.

O filesystem encoding and error handler duopop@mvoviol Katd tv ekkivnon tg Python amdé ™ ov-
vaptnon PyConfig_Read () P\ filesystem encoding kKoL filesystem_errors UéN Tou
PyConfig.

B emtiong to locale encoding.
finder 'Eva aviikeipevo mov mpoomadel va Bpet to loader yio éva module wov 10y Om.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path
entry finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

oaképare dwaipeon H podnuatiky) Slaipeon wov otpoyyvhomtoLel Tpog Ta KATw 6Tov Kovivotepo akeépato. O
teleoThg aképanag diaipeong eivan / /. T mapdderypa, n ékgppaon 11 // 4 aEwoloyeital oe 2 ot
ovtifeon pe Ty T 2 . 75 oV ETLOTPEPETOL ATt TV dLOiPEDT) e VTTOOLAOTOAY). Znueiwon ot (—11)
// 4 KdveL —3 emed] ouT) ELVOL 1) GTPOYYULOTTOINOT 700G Tet KdTw Tov -2 . 75. Bh. PEP 238.

ouvaptnon Mia oelpd 0td SNADOELG TTOU ETLOTPEPOVY KAITTOLOL TLUT) OF OUTOV TTOV TV KAAEOE. Z€ OUTEG UITO-
POUV VAL TTEPUOTOVV KOVEVAL 1] TTEPLOGOTEPO. OVIGUATA TTOV WTOPEL VOL YPNOLLOTONOEL Y10 TNV EKTELEDT).
BA. emtiong tig evotnteg parameter, method, xou the function.

ouvaptnon annotation 'Evog annotation oG TapauéTpov Guvaptong 1 Wog TG ETLOTPOQNS.

Ou ouvapTOELG annotations GuY VA PNOLULOTTOLOVVTOL YIot vrodelEels TOTOV: YLl TOPAdELYUQ, VT 1
OUVAPTNON OVOUEVETAL VO TTAPEL HVO OPLoUATO 1nt Ko ETLONG AVAUEVETOL VO EXEL WOl ETLOTPEPOUEVT
T int:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

H o¥vta&n ouvaptmong annotation avalvetor otnv evotnto function.

BA. variable annotation xou PEP 484, mov mteprypdpet ovti) tnv Aertovpyrkotnta. Emiong fA. annotations-
howto yia Tig Kahitepeg TpakTikég dovhevovtog ue annotations.

__future__ 'Evafuture statement, from _ future_ import <feature>,KabodNYel TOVUETAYAMTILOT
vo ueTayhmTTioeL To TpEyov module ¥PNoLUOTOLMVTAG CUVTAET 1] ONUACLOLoYio Tov B Yivel 1) TUTTLKY
oge pehhovtiky| ékdoon g Python. To module __ future_ texunpudvel TG mbavég Tyuég Tou feature.
Me v eloaymyr] oUThG TNG AELTOVPYLKNG LOVASAG KoL TNV 0ELOAOYN 0T TWV UETABANTHOV TG, UTopEite
va deite OTE ULaL VEQ dUVTOTNTO TTPOOTEONKE VL0 TPADTN POPA 0TV YAWOOoo KoL oTe Oat yivel (1) £yLve)
1 TTPOETULAOYT):

>>> import _ future_
>>> _ future__ .division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

ouvAloyn amoppudtov H dwadikacio amehevBépwong g wvnung otav dev ypnowwostoteitar dArho. H Python
exterel oVMLOY ATOPPLUATOV UECW KATAUETPNONG AVAPOPMV KoL EVOG KUKMKOU GUAAEKTY OKOUTTL-
LV OV elval o€ BE0T Vo avLyVEVEL KoL VO OTTAEL TOVG KUKAOUG avaipopds. O GUMLEKTNG AtoppLudTtmy
umopei va eheyyOel ypnopwomolwvtag to module ge.

generator Mua cuvapTnoN TTOV emLoTPEPeEL Eva generator iterator. MOLALEL LE PLeL KOVOVLKT] GUVAPTNON EKTOG
aTto TO OTL TEPLEXEL EKPPATELG yield yia THY Tapaymyr) Wog 0eLpds TUMV TTOV UITOPOVV VA XP1NOLUO-
ooy og évav podyo for M| TOV PTOPOVV Vo avoKTNOOUV pia TN POoPA HE THV CUVAPTNON next ()
function.

268 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0451
https://www.python.org/dev/peps/pep-0238
https://www.python.org/dev/peps/pep-0484

The Python/C API, Anpooicuon 3.10.18

ZVVHBWG AVaPEPETOL OE L0 GUVAPTNOT) generator, GALG LWTOPEL VO VOPEPETOL OE EVALV generator iterator
0€ UEPLKA contexts. Ze TEPLITTMOELG OTTOV TO ETMLOLWKOUEVO VOO OEV ELvaL OAPES, 1] XPNOT) TWV TR PWV
OPWV ATOPEVYEL TV OLOAPELCL.

generator iterator 'Eva aviikeipevo mov dnuovpyeiton amd wa ovvaptnon generator.

Each yield temporarily suspends processing, remembering the location execution state (including local
variables and pending try-statements). When the generator iterator resumes, it picks up where it left off (in
contrast to functions which start fresh on every invocation).

generator £k@pact) Muo £K@paon Tov emotpépet vay iterator. Moldlel pe Kavoviki £Kgppaon Tov akolov-
Oeiton amd po tpoTaon for mov opilet o LeTafAN Ty fPOYoV, £Va VP0G KL (LaL TTPOOLPETLKT TPOTAOT
i f. H ouvdvaouévn £Keppaon dNuovpyet TLEG yia (o OuvapTNon eYKAELOUOV:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

YEVIKT] ouvapTnon Mo ouvdpTnon mov asoteleitar amtd TOAATAEG CUVAPTIOELS TTOV VAOTTOLOVY TNV idLa.
Lettovpyia yiow dLapopeTikovg Tumovs. Tlowa vhomoinon mpémel va ypnouomonel Katd t didpkela
o KAong xobopitetor amd Tov akyopLlbuo omrooTo|s.

BA. emtiong v kataympnon tov single dispatch, Tov decorator functools.singledispatch () Ko
PEP 443.

vevikdg Tomog 'Evag rype o utopel vo apapetpomomndel” ouviBwg wa container class, dmwg 1ist fidict.
XpnoLuostoLeiton yLo. fype hints Kow annotations.

TN weploodtepeg hemropuépetes, BA. generic alias types PEP 483, PEP 484, PEP 585, kol to module
typing.
GIL BA\. global interpreter lock.

global interpreter lock O pnyaviouodg ov ypnoipomoteitan amd tov diepunvéo CPython Yo va. dlo.opatioet
OTL uovo éva viua extelel Python byrecode kd0e opd. Avtd asthomotel v viomoinoyn CPython 6m-
ULOUPYDVTOG TO LOVTELD OVTLKELUEVOU (OUUITEPIAAUBAVOUEVMY KPLOLUWV EVOOUATOUEVMY THTOV HTTMG
w.y. dict) épueco aopalég Evavtt Tautdypovng tpoofaons. To Kheidwuo ohdxinpov tov diepunvéa
SLEVKOMOVEL TOV DLEPUNVEQ VAL ELVOL TTOAAATAMY VIUATOV, €S BAPOG TOV HeYdAov HEPOug ToU ToPaiin-
Mopov Tov TaPEYOLVV OL Y aVES TOMATAMV ETeEEPYAOTMV.

Q01000, OPLOUEVEG AELTOVPYLKEG LOVADEG ETTEKTAONG, ELTE TUTTLKEG ELTE TPLTV, £XOVV OYEALOOTEL £T0L
wote va oehevfepdvouy to GIL 6tav ekTeMOUV EPYOOIEG EVIUTIKMV VITOAOYLOUMY OTTMG GUUTTiETN 1)
Kkatokeppotionds. Emiong, to GIL anelevbepwvetal mdvto dtav extereite I/0.

[ponyovueveg Tpoomdbeies va dnuovpyn el évog diepunvéag «eAevBepmv-ynudtwv» (AUTdg TOU KAEL-
dwvel Ta Kowvoypnota dedopéva pe oAl o Aemrtouep) evoucOnoia) dev Ntov emLTUYELG EeELdN 1) artd-
001 VITOYMPNOE TNV KOLVN TTEPLTTTWON VOGS emeEepyaoty). [TioteveTal OTL 1) VITEPPaon ovTov Tov TPOo-
BAuatog artddoong Ba KAVoUV TOA TTLO TEPLITAOKT] KO ETTOUEVIG TTLO OATTAVPY) TNV GUVTHPNO1).

hash-based pyc 'Evo apyelo kpugrig uvhung bytecode mov ypNoLULOTOLEL TOV KOTOKEPUATIOUO KoL OYL TOV
YPOVO TPOTOTOLNONG TOV AVTIOTOLYOU OPYELOV TTPOELEVONG YLOL VA TTPOOALOPLOEL TNV EYKUPOTITOL TOV.
BM\. pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (it needs an __eq__ () method). Hashable
objects which compare equal must have the same hash value.

H YmapEn hashable kéivel évo aviikeipevo va pumopel vo ypnotpomonei mg kheldi AeEikov Kau mg uéhog
€vOg OUVOLOU, ETTELDN AUTEG OL HOUEG DEDOUEVV YPTOLUOTTOLOVV TUUEG KATOKEPUOTLOUOU.

Ta epLocdTEP Ad TO QUETAPANTA EVOOUATOWUEVO OvTLKELIEVA TN Python witopoiv va kortakepuatt-
0ToUV” Tl UETAPBANTA KOVTELVEP (OTTWG oL MoTeg 1) Tt AeELK @) dev eivan” ta apetdfinto Koviévep (OTmg
mhelddeg ko ta frozesets) LITOPOUV VoL KOTAKEPUATLOTOVY UOVO €AV TO. OTOLYELD TOVG ElVOL KATAKEPUO-
twopéva. Ta aviikeipeva mov eivar oTyumoTumo KALoewy ov opifovtal amd To xpNotn UTopouv vo
KoTaKepUOTLoToUV amtd mpoemihoyn. ‘Oha ouyKpivovTal GVioo EKTOG OTd TOV EQUTO TOVUGS) KOL 1) TLUY
KATOKEPUOATLOUOU TOVG TTPOEPYETOL Atd TO id () .

269

https://www.python.org/dev/peps/pep-0443
https://www.python.org/dev/peps/pep-0483
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

The Python/C API, Anpooicuon 3.10.18

IDLE 'Eva ohokAnpouévo meptBaihov avamtuEng ko pdbnong ywo v Python. idle sivan évo faotkd mept-
Barhov emeEepyaociog Ko diepunvéa ov cuvodevetal amd TV Tkl dtovour| g Python.

immutable 'Eva avtikeipevo ue otabepn tpn. Ta apetdfinto avikeipevo mepihaupdvovy apbuots , ou-
Bolooelpéc Kau mheddeg. 'Eva tétolo aviikeipevo dev wmopel va alhdEet. ‘Eva véo aviikeipevo mpémel
va dnuovpynOel edv mpémer va amoOnkevtel wa draopetikt| . IHailovv onuoaveikd poro o uépn
Omou e otadepd astorteital, yio Tapaderyno og kKhewdi ot £va AeELKo.

gioayopevo path Mua Aiota 0mtd tomoBeoieg (1) kataywoloes Stadpour)s) mov wtopov va avalntnovv path
based finder ywa vo. eLooy0oUv modules. Katd v diadikacio elooymyng, avty 1 Moto pe tomodeoieg
ouvNOmg €pyeTaL 0o sys . path, olhd yio ta vtomokéta pmopel eniong va £pbel amd To yopaKTnpL-
OTLKO TOV TAKETOV YOVEQ __path_ .

aoayoyn H dwodikaoio kotd Ty omoia o kdhdikag g Python o éva module givar Stabéoiun otov Kmdka,
Python gvog dAhov module.

awoaywyéas Evo aviikeipevo umopel ko vo ovalntel kow vo poptdvel évo module” kau éva finder kou loader
QVTLKELUEVO.

duadpaotikog H Python éyel évav SLadpaotikd Siepunvéa 6mtov onuaiver dtL Wopelg va. eLodyelg SNAmoeLg
KoL EKQPAOELS OTNV ELOOYMYT] EVTOLDV TOU dlepunvéa, EKTEMDVTOG TEG AUETO KL EUPOVICOVTAS T
ovTikeipevo. AThdg ekKLviote TV python ywpic opiopuata (avodg emhéyoviog To amd To KUpLo
HEVOU TOV VITOLOYLOTH 0aC). ATtotelel évav 0mmodoTikd Tpdmo yia va doKudote véeg 1déeg 1) va eEetdiote
Lertoupyikég povadeg kou wokéto (Buunbeite help (x)).

interpreted H Python eival o interpreted yAdooa, o avtifeon pe o LeTayAmTTIoNEVT, oV Ko 1) dLAKPLoT
Witopet va givat Ko ol Moym g mtapouoia Tou bytecode petayhmTTioTy). Autd onuoaivel 0Tt To apyeio
TPOENEVONG UTOPOUV VoL EKTELEOTOUV amtevdeiog ywpic va dnuovpyndel pntd éva exteléono apyelo
ov oty ovvéyelo ekteleitar. Ou interpreted yAdooeg ouviiBwg éxouvv wkpoTePO KUKAO avamtuEng/
EVTOTILOUOV GPOALATOV OO TIG UETAYAWTILOUEVES, OV KO TO TPOYPAUUOTA TOUG YEVIKA eKTELOVVTAL
mo apyd. Bh. exiong interactive.

TEPUOTIONOS AerToupyiag diepunvéa ‘Otov Inteiton tepuationds hettovpyiog, o diepunvéag tng Python ei-
OEPYETOL OE ULaL ELOLKT) PAoT OOV ortehevBepdvel oTadlokd Ohovg Tovg dtatbépevovg Topove, dmtmg
LeLtoupyLkég LoVAdES Kal TOMATAEG Kpiolueg eomTepikés douéc. Emiong mparyuatomotel apketés KAN-
OELG 0TO GUAAEK TG GKOVmMALD V. AUTO WITOPEL VO EVEPYOTTOLNCEL TNV EKTELEDT KMOLKA O KATOOTPOPELG
7oV opilovral amd to ypnotn M o¢ callbacks aoBevoig avtamokpioelg. O KHdLKAG o eKTeleiTan KOTA
™ Ao TEPUATIONOV AELTOVPYiaG Uopel v ouvavtioel diipopeg eEalpéoels, kKabmg oL TOPOL 0Toug
omolovg Baoiletor evdéyetal vo unv kettovpyotv mhéov (ovviOn mapadeiyuata eival oL AelToupytkég
novadeg BUBALOBNKNG 1) 0 UNYAVIOUOS ELOOTOLCEMY).

O Baotkdg MOYOG TEPUATIONOU AeLTOVPYiaG TOV diepunvéa eivar 6tL to __main__ module 1 ohokAnpod-
OnKe 1 EKTELEON TOV KMOOLKO TTOV ETPEYE.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types
(such as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of any
classes you define with an __iter__ () method or with a _ getitem__ () method that implements
Sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary to call iter () or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further
calls to its _ _next__ () method just raise StopIteration again. Iterators are required to have an
__iter__ () method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple
iteration passes. A container object (such as a 11 st) produces a fresh new iterator each time you pass it to the

270 Mapaptnua A'. NMwooapt

The Python/C API, Anpooicuon 3.10.18

iter () function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

[epioodtepeg mAnpopopieg wropotv va fpebolv oo typeiter.

Agmropépera viomoinong CPython: CPython does not consistently apply the requirement that an iterator
define _ _iter ().

ouvvaptnon key Mo ouvaptnon khewdi 1 wo ovvdptnon tagvdunong eivar uo duvatdtnto KANong mou
emLOTPEPEL Lo TYY] TTOV PN OLLOTToLEiTaL Yoo ToEwvounon M dudtan. Ta mapdderyua, locale.
strxfrm () YPNOLWOTOLEiTaL YIO TNV TOPaywYY evOg KAEWdL0U Ta&Lvdunong wov yvwpilel tig ovufa-
OELG TAELVOUNONG YL CUYKEKPLUEVEG TOTILKEG puOuioeLs.
‘Eva. aplBudg epyodleimv omnv Python &éyetor Paotkég ouvaptnoels yio Tov €AEyX0 TOU TPOTOoU
ue Tov omoio Tt otouyeiar Tafivououviar 1 opuadomolovvtol. Avtd mepéyovv min (), max (),
sorted(), list.sort (), heapg.merge (), heapg.nsmallest (), heapg. nlargest(),
Kol itertools.groupby ().

There are several ways to create a key function. For example. the st r. lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a 1ambda expression such
as lambda r: (r[0], r[2]).Also,the operator module provides three key function constructors:
attrgetter (), itemgetter (), and methodcaller (). See the Sorting HOW TO for examples of
how to create and use key functions.

opwopa keyword B\. argument.

lambda Mo avdvuun evoouotouévy cuvapTnon mov amoteleital amd o LoVadLKY) expression 1) Omoio.
aEohoyeitan Otav kakeitow) ouvaptnon. H ovvtagn yia t dnwovpyia wog ovvéptnong lambda eivor
lambda [parameters]: expression

LBYL Look before you leap. Autd 10 0Tvh Kodikomoinong ehéyyer pntd tig mpoimoEéoels mpLv mTparyuato-
7oL oEL KM OELG 1) avalnToels. Autd To oTtul €pyeTal o€ avtiBeon e v Tpooéyyion EAFP Ko xopo-
KTnpiletan amd v mopovoia ToAdV dnhwoemy 1 £.

e éva mepLailov modhamhmv vnudtov, 1 tpoogyyion LBYL umopel va diakivéuveloel vo. eLoAyEL
wo ovvOfKn aydva uetaEl «the Looking» kau «the leaping». ['o mapdderyna o khdikag, if key in
mapping: return mappingl[key] wropel vo amotiyel v Eva GALo VU apaLpEceL To key amtd
TO mapping petd ™ dokiun, olG TP otd TV ovolNTnon. Autod to TPOPANUa umopel va Avbel pe
KAELDMUOTA 1] XPpNoLHoToLmvTas TV tpooéyyion EAFP.

Tomik1) kmdkomoinoen On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.
setlocale(locale.LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: cp1252).
locale.getpreferredencoding (False) can be used to get the locale encoding.

Python uses the filesystem encoding and error handler to convert between Unicode filenames and bytes
filenames.

Mot A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked
list since access to elements is O(1).

list comprehension 'Evo ovumayfg tpdmog yia vo. emeEepyaoteite OAa 1 H€POG TV OTOLYEIWY OF MOl 0KO-
MovBia Kat vo emotpépete po Mota pe ta amotehéoparta. result = ['{:4#04x}'.format (x)
for x in range(256) if x % 2 == 0] dnuovpyei wo Aoto CVUBOLOCELPMY TOV TTEPLEYOVV
Cuyovg dexaeEadikoig aptduoig (0x..) oto evpog amd 0 éwg 255. H wpdtoon i f eivar mpoarpetiky. EGv
mopalewpBei, Oha To oTOLKELCL 0TO range (256) vrofdihovtal ot emeEepyaoia.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

noykt uédodog ‘Eva drumo ovvdvupo yia special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified in
the Mapping or MutableMapping abstract base classes. Examples include dict, collections.
defaultdict, collections.OrderedDict and collections.Counter.

271

https://www.python.org/dev/peps/pep-0302

The Python/C API, Anpooicuon 3.10.18

meta path finder 'Evog finder mov emotpaenke pe avalfitmon oto sys.meta_path. O finders peta-
duadpoung oyxetiCovat, ald drapépovy amd ta finders entry Stadpourg.

B\ importlib.abc.MetaPathFinder yia tig uebddovg mov viomolovy ow meta path finders.

uera-khdon H xhdon wag khéong. Ou opropol khaomng dnuovpyotv éva dvoua kKAdong, £va AeElkd khdong
Ko e Mota Baotkav kKhdoswv. H peta-khdon givar vedfuvny yio Ty amdKTnon outmy TV Tpuny
0pLOUATOV KoL TNV dnpovpyia g kKAdong. OL eploooTePES AVILKELUEVOOTPEPELS YADOOES TPOYPO-
UOTLOUOV TTOPEXOUV Wo. TTPOETUAEYUEVY VIOTTOiNoY. Autd mov Kaver Tnv Python Egywploti) eivan 6t
elval duvati 1 dnuovpyia Tpooapuoouévev uetakhdoswv. O TeplocdTepol xpNoTeg dev ypeLdlovol
TOTE QUTO TO EPYAAELD, AAME OTOV TAPAOTEL AVAYKT), AUTO TO EPYOLELD, OL UETO-KAAOELG UTTOPOVV VO
TaPEXOVV LOYVPES, Kopég AMioels. 'Exovv ypnouomo0el yio v katorypagpt) tpodofaong xapoKTnpL-
OTIKADV, TNV TPOTONKN 00PALELOS VHUATMY, TNV TOPAKOALOVONOY dNULOVPYIOG OVTLKELUEVOV, TV VAO-
moinon singletons, Kau ToMEG GAAES epyaOiEC.

[eploodtepeg mAnpopopieg wropotv va Bpebovv oto metaclasses.

uébodog Mia ouvaptnom ov opifetol uéoo 0to omua wag KAaong. EGv kakeitar wg xopaktnplotikd wog
mEPLITTOONG AUTAHG TG KAAONG, M 1EO0O0G Bl MABEL AVTLKEIUEVO TEPITTWONG WG TPWTO TNG argument
(to omoio ovviBwg ovopdtetor sel £). BA. function xou nested scope.

oepd avaivons nedodwv Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python
interpreter since the 2.3 release.

module 'Eva avTiKeipevo mov ypnoLuever wg opyovmtike povada tov kmdika tg Python. Ta modules €yovv
évav ympo ovoudtmv mou mepLExeL avbaipeta avtikeipeva Python. Ta modules goptdvoviar otny
Python pe v dwodikaoio importing.

B emiong package.

TeYVIKES Tpodiaypapés module ‘Evo namespace mov mepléyel TG TANPOQopieg Tov OyeTiLovion pe v eL-
oaYWYN TOV YPNOLUOTOLOVVTOL VIO THY OpTwon evog module. Mia mepismttwon tov importlib.
machinery.ModuleSpec.

MRO Bh. method resolution order.

mutable To supetdfinta avrkeipeva wropotv va aldEouv Tig Tiég ald va kpatnoouv to id (). BA.
emiong immutable.

named tuple O Opog «named tuple» epapudletar Yo, 0moLovdNToTE TUTTO 1 KAAOT Tov KAnpovoueital amd
TNV TAELADO. KOL TV OTTOLMY TO. OTOLXELD WITOPOVY VA EVPETNPLOTOLNOOVV Elval TPOGBATLUOL ¥ PNOLILO-
TOLWVTAG ETMVUUA XAPOKTNPLOTIKA. O TOTO0G 1 1) KAGON WITOPEL VO €YEL KO GO OPAKTPLOTLKAL.

Tolhol evomuotouévol timol eivor named tuples, CUUTEPIAAUPBAVOUEVDV TWV TLUMV TTOV ETLOTPEPOVTOL
oo time.localtime () kou os.stat (). Eva dho mopdderyuo eivor 1o sys. £loat_info:

>>> sys.float_info[l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be
written by hand or it can be created with the factory function collections.namedtuple (). The latter
technique also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace To pépog dmov arodnkevetan o petofAnt. To namespaces VAOTOLOVVTAL WG AeELKA. YTdpyovy
0L TOTTLKOL, 0L KatBOMKOL KO 0L EVowIaTwuévol namespaces Kabmg Kot oL EVOETOL namespaces 0€ AVIIKE(-
ueva (oe pebddovg). o Tapaderypa oL ouvapToelgbuiltins . open Kol 0s . open () dlokpivoviol
aTTo TOUG YWPOVG OVOUAT™V Tovs. O xmwpotl ovoudtwv fondolv exiong tnv avayvooludTnTa Kot T ov-
VTNpPNoLoTNTO KofLotdvtog oapéc woto module vhormotel wa Aettovpyia. o mopdderyua, ypdgoviag

272 Mapaptnua A'. NMwooapt

https://www.python.org/download/releases/2.3/mro/

The Python/C API, Anpooicuon 3.10.18

random.seed () N itertools.islice () kaBLotd capéc OTL AUTEG OL CUVOPTOELS VAOTOLOVVTOL
artd To module random kow itertools, aviioTouya.

moxéto namespace A PEP 420 package which serves only as a container for subpackages. Namespace packages
may have no physical representation, and specifically are not like a regular package because they have no
__init_ .pyfile.

BA. emtiong module.

nested scope H duvatdtnta avagpopds oe (o petafAnty o évav meptkhelopevo optopod. I wapdderypa o
ouvapTNo oV OpileTal HECO Oe W GAAY GUVAPTNOT UITOPEL Va. avapépetol oe LETABANTEG 0TV EEW-
TEPLKT] CUVAPTNON. Znuelmote Ot ta évOeta medio amd mPOoETLOYH AELTOUPYOUV HOVO Yo avapopd
Kaw Oy o ekympnon. Ou tomikég petafintég duaffaovral KoL ypagovTaL 0To E0MTEPLKO TEDIO EPap-
poyns. Ouoiwg, ot kaBolkéc uetafintég drofdtovv Kot ypdpouv otov Kabohkod ympo ovopdtwy. To
nonlocal emtpémel TNV eYYPAPY 08 EEWTEPLKA TTEdIAL.

KkAdon véov otvh Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like ___slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

avukeipevo Omoladnmote dedouéva ue KoTaoToon (YopaKTNPLoTLKa 1) TLU) Kot KafopLopévi oupstepLpopd.
(uébodor). Emiong, N telkn ookt kAo omolaodfote new-style class.

nmokéro 'Eva Python module wov ptopetl va. mepiéyer submodules 1) ovadpomkd, vromakéta. Teyvikd, éva
TOKETO Elval (o Aettoupyky) povada Python pe éva __path__ xopoktnplotiko.

B\. exiong regular package kaw namespace package.

mapapeTpos Mia £ykupn ovidTnta oe évov oploud function (i néBodog) mov kabopilel Eva argument (| oe
OPLOUEVEG TIEPLITTOOELS, OPLOUATO) TOV UTopel vo. deyBel 1 ouvaptnon. Yrdpyovv mévie eidn mapoué-
TPOV:

o MéEn-kAedi 1) Oéon: kabopilel éva OpLopa Tov Witopet vo petafipaotel eite Oéoewe | wg dptoua
AéEnG-kAetdtov. Avtd givarl To TPOETUAEYUEVO ELOOG TAPAUETPOV, VIOl TAPAdELYUA foo KoL bar oTa.
akohovba:

def func(foo, bar=None) :

o Oéoewe udvo: Kabopilel £va dpLopa mov uropel va mapéyetor uovo amd) Béon. Ou mapduetpol
uovo B€omg WTopovV va, 0pLOTOVV CUUTEPAAUBAVOVTOG EVOY XAPAKTHPO / 0T AMOTO TAPAUETPOV
TOV OPLOPOY GUVAPTNONG UETA OTTO QUTES, Yo Tapaderyua posonlyl kou posonly2 ota eENG:

’def func (posonlyl, posonly2, /, positional_or_keyword) :

o AéEng-kAeldi udvo: kabopilel éva dpLopa Tov Wtopel vo mapéyetor wovo ue AEN khewdi. Ou ma-
paueTpoL wovo Yo MEN-KAedL wrtopoldv va 0pLoTtovv ouUTEPLAOUPBAVOVTOG UL TTOPGUETPO BF-
ong 1 ok€to * 0T MOTA TAPAUETPWY TOU OPLOUOY CUVAPTNONG TIPLY OO AUTEG, YLOL TTOPAELYLOL
kw_onlyl xou kw_only2 oto. axdrovOo:

def func(arg, *, kw_onlyl, kw_only2):

o uetafAnti Oéong: koBopilel OTL umopel va mapaoyedel wa avbaipetn akohovbio oplopdtwv BEong
(emumhéov TV opopdtwv 0€ong mov eivor 01 amodektd amd GAeg TOPAUETPOUS). Mia TéToLo
TOPAUETPOS WTOPEL VO, OPLOTEL TPOCAPTDVTAG TO OVOUQL TNG TAPAUETPOV UE *, YLO. TTOPAELY UL
args oto. aKkOhovbo:

def func(*args, **kwargs):

o uetaPintih AéEn-kAeldi: kabopilel OTL umopovv vo mapéyovtal cvdaipeto ToAG opiopota AEENG-
KAeLdLov (emuthéov Twv opropdtwv MENG KAEWdL0U Tov givan 0rrodektd 0td dleg Tapauétpoug).
Mo tétole TOPAUETPOS UTOPEL VO OPLOTEL TPOCUPTMVTAS TO OVOUDL TNG TOPAUETPOV UE * *, YLl
TOPAdELYHO. kwargs Omme ToPpaTaV®.

273

https://www.python.org/dev/peps/pep-0420

The Python/C API, Anpooicuon 3.10.18

O opdpeTpol wropotv va Kabopicouvy TO00 Ta TPOALPETLIKA OG0 KL T OITOLTOVUEVO OPIOUOTO. , KO-
OMG Ko TPOETUAEYUEVES TUIEG VLA OPLOUEVA TTPOOLPETLKG OPLOUALTAL.

BA. emiong v argument KotaympLon gupetnpiov, Ty epdtnon FAQ oyetikd pe 1 dtogopd petaso
OPLOUATOV KO TAPOUETPWY, TV KMAON inspect .Parameter, tnv evotnta function kaw PEP 362.

path entry Mua pepovouévn tomobeoio oto import path thv omoio. gupufovieveton o path based finder yio. vo.
Bper modules yio eLoorywyn.

path entry finder 'Evog finder mov emotpépetar amd évav Kaloiuevo 0to sys.path_hooks (dnhadr éva
path entry hook) mov Eépel mwg va evtomiCel modules pe path entry.

BL. importlib.abc.PathEntryFinder yia tig uefoddovg mov o entry finder duadpoung vhomotei.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder 'Eva amé ta mpoemheyuéva meta path finders mov ovalntd évo. import path ywo. modules.

path-like avrikeipevo 'Evo avtikeipevo mov aviummpoonmevel évo path cuvothuatog apyeiov. ‘Eva aviikei-
uevo path eivar eite éva avtikeipevo str f bytes mov avimpoonmevel £va path 1 éva aviikeiuevo
7tov vhormotel To TPwTdKoMo os . PathLike. Eva aviikeinevo mov vootnpilel 10 TPpwTOKOMAO O .
PathLike umopel vo uetatpamel o path ovotiuatog apyeimv str 1 bytes Kahdvrog v cuvap-
™on os. fspath () ”ta os.fsdecode () KoL os. f£sencode () Wropovv va xpnotomondovv yio
™V eyyinom evog amotehéouatog str 1 bytes, avriotovya. Ewonydn amd tov PEP 519.

PEP TIIpotoomn Beltimong Python. 'Eva PEP givou éva €yypago oyedloonol mov mapéyel IAnpoqopieg otny
Kowvotnta Python 1) mepuypdper wa véa duvatdtnta yio v Python 1 tig dradikaocieg 1 to mepiih-
Lov . To PEP Ba mpémel var mop€youy (o GUVOTTTLKT) TEYVLKT TPOdLOlypapY] KoL (o AOYLKY) YLt T
TPOTELVOUEVOL Y OLPOKTNPLOTLKAL.

Ta PEP mpoopiCovror va givar oL KUpLot unyaviouol yior v pdtaot CUoVILK®V VEWV XOpUKTNPL-
OTIKAV, YL TN OVAMOYT TANPOQOPLAV TNG KOVOTITAG Yo Vo TNTNUOL KO YLoL TNV TEKUNPLWOoT TWV
ATOPAoEMV OYEDLOTUOV TTOV €Youv eloayOel otnv Python. O ouyypagéag tov PEP gival vteibuvog yio
TV 01KkodOUN 0N CUVaiveoNS evTOg THG KOLVOTNTOG KoL TNV TEKUNPLDON AVTIOET™mV amdPewy.

B\L. PEP 1.

tuiuoe. ‘Eva ouvolo amd apyeio oe évav udvo kotdhoyo (evdeyouévmg amodnkevuévo oe apyelo zip) mov
ouupdriovy og éva namespace TakéTo, dmmg opiteTon oto PEP 420.

opwopa 0éong BA. argument.

provisional API 'Eva provisional API givow ovtd mmou éxel eokepuévo eEarpedei amd tig backwards eyyunoelg
ouppotdTnTag TG TUTTLKNG PBAMOOKNG. AV Ko dev avauévovtor ONuovTkéG odayég o Tétoleg die-
TTOPES, EPOOOV ETLONUALVOVTAL WG TPOCWPLVES, alharyég un backwards cupfatdotnrog (Léypt Ko Kotdp-
YNON TG DLETAPNS) WITOPEL VO TPOKMPOVV €QV KPLOEL ammopaitnTo amd Toug BaotKovg TPoyPOLULALTL-
otéc. Tétoleg ohhayég dev Oa yivouv dokomo — Oa ouufouv uovo edv amokaivgphotv cofapd Oepehimon
ehaTTdpaTo IOV TopaleipOnKay tpv amd T cuumepiinyn tov APL

Axoun xou yio provisional API, ov un backwards ovufatég arhayéc Bewpovvtar «hbon £oyotng
avaykne»- 0a eEakorovdel va yivetar kdbe mpoomdOeia yio va Bpebei wa AMor backwards ovufoti
O€ TUYOV EVIOTLOUEVO. TTPOPAUOTAL.

Avth 1 dadikaoio emitpémer oty TVTKT BLPAOONKN va ouveyioel va eEeMoeTOL e TV TAPOSO TOV
YPOVOL, YwPLG VA KAELOMVEL TPOPANUOTLKA ORALUATO OYEDLOOUOD VL0 EKTETAUEVEG Y POVIKEG TTEPLODOVG,.
BA. PEP 411 yia tepLoodtepeg AeTTOUEPELEC.

provisional wakéto BA. provisional API.

Python 3000 Weudmvupo yia to ovvolo ekddoewv Python 3.x (emvonOnke mpLv amtd mold Kapd 6tav 1) Ku-
Khogopia tng €kdoong 3 NTay KATL 0TO UOKPLVO UEALOV.) AUTO OVOUALETOL ETTLONG G OUVTOUOYPOLPLAL
«Py3k».

Pythonic Mua 16¢a] éva Koupdtt Kodiko wov akolovdel motd ta o Kowvd ididpata thg Yhwooag Python,
VTl Vo VAOTTOLEL KMOLKA X PTOLLOTOLMVTAG EVVOLEG KOLVEG O Ahheg Yhdooes. o mapdderypa, £va kowvd

274 Mapaptnua A'. NMwooapt

https://www.python.org/dev/peps/pep-0362
https://www.python.org/dev/peps/pep-0519
https://www.python.org/dev/peps/pep-0001
https://www.python.org/dev/peps/pep-0420
https://www.python.org/dev/peps/pep-0411

The Python/C API, Anpooicuon 3.10.18

wWimpo otnv Python eivar va kéver pa eavddnym cave amd oha ta otouxeio evog iterable ypnoluo-
oldvtog wo dNhwon for. [orhég dhheg YADOOES TOU deV £XOUV AUTOV TOV TUITO KOTAOKEVNG, £TOL OL
avBpwrol wov dev eivan eEotkelmuévol ue v Python ypnolpwomolotv uepikég @opég évav aptduntikd
ueTpNT:

for i in range(len(food)):
print (foodl[i])

Avtifeta, wo mo kabapn uébodog Pythonic:

for piece in food:
print (piece)

avoyvoplopevo ovoua 'Eva dvoua pe Koukkideg mou deiyver T «Stadpourp» amtd 1o kKaBohkd gupog evog
module oe wa KAGom, ouvaptnon 1 uébodo mov opiletar o avthv TV evdtnTa, Omtmg opileTal 0To
PEP 3155. T'o. ouvoptiogLs Ko KAAGELG OVATATOV ETLITEOOV, TO OVOYVWPLOUEVO Ovopa elvorl (8o e To
OVOUO. TOV LVTLKELUEVOU:

>>> class C:
class D:
def meth (self):
pass

>>> C.__qualname

L} C L}

>>> C.D.__qualname___
'C.D'

>>> C.D.meth. qgualname
'C.D.meth’

‘Otov ypnotuomoteito yie avopopd oe modules , 10 TAHOWS avayvweLouévo évoua onuoivelr ohoOkANPo
To drakekoupévo path mpog to module, cuuTEPAAUPBAVOUEVDV TUXOV YOVIKMDV TAKETWV TT.). email.
mime.text:

>>> import email.mime.text
>>> email.mime.text. name
'email.mime.text'

i 00c avaopac The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. The sy s module defines a get refcount () function that programmers can call to return
the reference count for a particular object.

Kovoviko mokéro 'Eva mopadoolakd package, dnwg évag Katdhoyog mou mepiéyel évo __init_ .py op-
YElo.

Bh. emiong namespace package.

__slots__ Mua dMhwon péoa o o kKAdon mov eEotkovouel uviun dNAmvovTog €K TwV TPOTEPMY XMDPO YL
TOPABELYUO. XAPOUKTNPLOTIKG Ko eEoheipovtag AeElkd oTrypotimwy. Av Kat SHUOEIMIG, 1) TEXVIKT
elval Kammg SVOKONO VAL YivEL OMOT Kol TPo0pileTol KAADTEPO VL0 OTTAVIES TEPLTTMOELG OTTOV VITAPYEL
peydhog apLBudsg OTLYUOTUTTMV OF WLOL EQAPUOYT] KPLoLUNG-UVUNG.

okolovlio. An iterable which supports efficient element access using integer indices via the __getitem__ ()
special method and defines a ___len__ () method that returns the length of the sequence. Some built-in
sequence types are 1ist, str, tuple, and bytes. Note that dict also supports __getitem__ () and
__len__ (),butis considered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes

beyond just _ getitem__ () and _ len__ (), adding count (), index (), contains__ (),
and _ reversed__ (). Types that implement this expanded interface can be registered explicitly using
register ().

275

https://www.python.org/dev/peps/pep-3155

The Python/C API, Anpooicuon 3.10.18

set comprehension 'Evog cupmayhg tpomog yia va eneEepyooteite OMa M uépog Twv otoryeimy oe éva iterable
KOL VO ETILOTPAPEL £Vl GUVOLO UE TOL autoTeEAéouoTa. results = {c for c in 'abracadabra'
if ¢ not in 'abc'} dwovpyel to oUuvoro cupPporocelpwy {'r', 'd'}. B\ comprehensions.

novaduko dispatch Mo pop@ny dispatch generic function 6tov 1 vAoTOINOY EmMAEYETOL e BAOY TOV TUTTO £VOG
UELOVOUEVOU OPLOUOTOG,

slice 'Eva avtikeigevo mov ovviBmg mepiéyel Eva tufiua wog akohovdiog sequence. Anuovpyeitan éva slice
YPNOLUOTTOLMVTAG T onueiman subscript, [] pe dvo kou KGtw teleieg uetaEl aplbudv otav divovia
mtoAhol, 0mwg 0to variable name[1:3:5]. H onueiwon aykiing (subscript) xpnoLUOTOLEL EGWTE-
pLKd avtikelpeva slice.

181k uédodog Mia uébodog ov Kakeitar olwnpd atd v Python yia vor eKTeAE0EL Lo OUYKEKPLUEVT] AEL-
Tovpyia og évav TOmo, 6TTwg 1 TPooO K. TéToleg uéBodol xovve ovopaTa IOV EEKLVOUV KOL TELELHVOUY
ue dumhég kdtm mavhes. O eldikég uéBodoL TEKUNPLDVOVTOL 0TO specialnames.

dMrwon Mo mpdtoon eivol pépog wag covitag (éva «umhok» Kdduka). Mia mpdtaon eival eite évog
expression gite o, ard modhég douég e pa MEN-Khewdi dmwg if, while M for.

strong reference Zto C API g Python, wo woyvpn ovogopd eivar o avagpopd o€ Vo aVILKEIUEVO
IOV OVIKEL OTOV KOdLKaA TTov TtepLéyel Ty avagopd. H woyvpn avagpopd houfdavetor KaAoviog to
Py INCREF () OtV 1 avapopd dnuovpyeitol ko amehevdepdvetol ue Py DECREF () OTov dLorypo-
el N avagopd.

H ouvaptnon Py_NewRef () Wtopei vo xpnNouototn0el yia T dSnuovpyia loyuphg avapopag og éva
avtikeipevo. Zuvnbwe, N ouvapton Py _DECREF () JPEmeL Vo, KUAELTOL 0TV LOYVPY ovapopd oLy
ByeL ammd to €VPOG TG LOYVPNG AVOPOPAGS, YL VO OTTOPEVYOEL 1] dLOPPON LA AVAPOPAGS.

Bh. emtiong borrowed reference.

Kwdkomoinon kewnévov Mia ovuforooelpd otnv Python givar po akohoubio onueiwv kddika Unicode (oto
eVpog U+0000-U+10FFFF). ['la vo auroBnkevoeTe 1 va. PETAPEPETE o OUUPBOLOCELPA, TIPETEL VaL OEL-
promonOei mg dvadiki) akorovdia.

H ogipromoinon pag ouuforooelpdg oe pua dSuadikt) akorovdia elvol yvmot wg «<KwdLKomoinon» , Ko
N ovodnuovpyia TG oupporooelpds amd v dvadikr| akohovbia elvol yvmoT oG «amoKmolKomTol-

nomn».

Yrdpyer po workihion SLopopeTIKNG OELPLOTOINONG KELEVOL codecs, 0L 0TToioL CUAAOYIKA avapépovTaL
WG «KMOUKOTOLNOELG KEWEVOU».

apyeio kewévov 'Eva file object tkavd vo SLOBALEL Kol voL YpAgeL avTIKeileva st r. Zuyvd, éva apyeio Keué-
VOU AITOKTA TTPAYUATLKA TTPOOPaoT] o€ (o por] duadik) por dedouévwv ko xewpiletal avtopota v
text encoding. TTopadeiynorto apyeinv KeEVoL eival apyeio Tov avoiyouv og hettovpyio kepévou (' r'
N 'w'), sys.stdin, sys.stdout, Kot oTLyWOTUITO TOV 10. StringIO.

BA. emiong binary file yio évar OVTLKEILEVO OPYELOV [LE dUVATOTITA AVAYVWONG KaL YYPAPNG dvadikd
avTikelueva.

oupforocelpd TPUTA®Y ELoaymYIKOV Muio ouuBOA0CELPE OV SeoUEVETOL OTTO TPELG TTEPLTTWOELG EiTE EVOG
eLooywytkov (») N wag amootpdpov (). Av xor dev Tapéyouv Kouio AeLtovpytkotnTa Tov dev eivol
duabéaun pe ouufolooELpEéG He LOVA ELOOYMYLKE, elvarl xpfoLues yio dtagpdpoug Adyous. Zag emiTpé-
TTOUV VO CUIITEPLLAPETE LOVA KO DLTTAG ELOAYDYLKA Y WPLG dLOpUYY O (o OVIBOLOCELPA Kall UTTOPOVY
VoL EKTEVOVTOL 08 TTOMES YPOUUES XWPLG T XPNON TOU YOPAKTHPC CUVEXELX, KOOLOTDOVTOG Ta LOLLTEPQL
YPHOLO KATd T GUVTOEN eYYPAPoV He oupporooelpéc.

tomog The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits ___class___ attribute or can be retrieved with type (ob7j).

type alias 'Evo ouvadvupo yo évay thmo, mov dnuiovpyeitar ue tv ovafeorn TOmov o€ £V avayvopLoTko.

Ta type aliases eival ypnowpa yio tnv osthomoinom type alias. Tia tapdderypor:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) —-> list[tuplelint, int, int]]:
pass

276 Mapaptnua A'. NMwooapt

The Python/C API, Anpooicuon 3.10.18

WITOPEL VoL YivEL TTL0 evavayvwoTto dmwg:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:
pass

B\ typing kouw PEP 484, mov meprypdepel authv Tnv hettovpytkdtnta.

type hint 'Evag annotation mov KaHopilel TOV avoueVOUEVO TUTTO VLol (o UETOPANTY], EVOL YUPAKTNPLOTIKO
KAGONG) Wt TTAPAUETPO OVVAPTNOTG 1) TLUT) ETLOTPOPTG.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid
IDEs with code completion and refactoring.

YrodeiEeig tomov (type hints) yia kabBolkég petaPinTés, xapoaKTHPLOTIKE KAAONG KoL ouvapTh-
oelg , OMG Oyl ToTké ueTafANTég, UmopovV VA TPOOTEAACTOUV YPNOLUOTOLMVTAG TO typing.
get_type_hints ().

B\ typing ko PEP 484, mov meprypdepel outhv Tnv hettovpytkdtnto.

kobohxés véeg ypaupés Eva tpdmog epunveilag podv Keluévou otov omoio Oha ta akdlovba avayvwpilo-
vtar g MEelg wag ypopung: 1 ovufaon téhovg ypouug tov Unix '\n', 1 ovupaon twv Windows
"\r\n', ko v moid ovppaon Macintosh '\r'. BL. PEP 278 xauw PEP 3116, kabng ko bytes.
splitlines () yw mpooOetn xpnon.

annotation pevapiyeig ‘Evag annotation o, petaAng 1 evog xopaktnpLlotko KAGoNG.

‘Otov annotating puo HeTaBANTY 1 va xopakTnpLotikod kKAdong, 1 avabeon eivol TpoatpeTikn:

class C:
field: 'annotation'

Ta annotations HETAPANTOV X PNOLULOTOLOVVTAL CUVIOWGS YLaL fype hints: Y10 ToPAdeLyuo outh N LeTaFAnTy
avapéveral va MfeL Tiég int:

count: int = 0

H ovvtoEn annotation petafintig epLypdgpetan oty evoTnTo annassign.

BA\. function annotation, PEP 484 wouw PEP 526, mov mepuypdgovv aut) Aettovpyia. Agite emiong
annotations-howto yia BELTLOTEG TPAKTIKEG OYETIKA Ue TNV EpYacia e oyxoMaouove.

virtual environment 'Evo cuvepyotikd ommopovopévo meptBdlhov xpovou eXTELECTG TOVU EMLTPETEL OTOVG
¥PNOTEG KoL TIG eOpuoyés ™G Python va eykataotioovv ko vo avafaduicovv mokéto diavoung
Python ywpic vo mapepfaivovy ot ouumeplpopd dlwv epapuoymv Python mov extelovvral oto idro
ovoTNUO.

B emiong venv.

virtual machine 'Evag vmohoyioti|g opiletar €€ ohokApov astd to hoyioukod. H eucoviky) unyovn tg Python
eKTeELEL TO bytecode mov ekmépmetal ortd Tov peToylwttioti) bytecode.

Zen tc Python Kotdhoyog oyedlaotikdv apydv KoL (LLOGOQLOV TTOV ELVOL YPTOLUES YLOL TNV KATOVONOT
Kaw ™) ¥phHon g YAwooac. O Katdhoyog umopel va Bpedel tinKtporoymvtag «import this» oty
dLadPaoTIKY KOVOOLQL.

277

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0278
https://www.python.org/dev/peps/pep-3116
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0526

The Python/C API, Anpooicuon 3.10.18

278 Mapaptnua A'. NMwooapt

nAPAPTHMA B’

About these documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

H avamtuEn tov eyypdewv kol Tov epyaleimv Toug eivat e€” ohokApou eBehovtiki] TtpoomtddeLa., dwg Kat
1 idua 1 Python. Edv 0éhete va ouvelopépete, piEte wa potid oty oelido reporting-bugs yio Anpogopieg
OYETIKEG e TO TG VO, To Kdvete. Kawvouprol eBehoviég eivan mavta evmpdodektol!

[ToAAég vy OpLOTiES TTNYALVOUY OTOVG:
« Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
« 7o Docutils tpdtlekt yio v dnuovpyio tmv epapuoydv reStructured Text ko Docutils:

o Fredrik Lundh yia to 61k6 Ttou Alternative Python Reference mpdtlext amd 1o omoio to Sphinx mpe ol
KoAég LOgec.

B'.1 Contributors to the Python Documentation

IMoAhol GvBpwmoL éxovv ouvelopéper otn yAwooo Python, tnv Bupiobnkn g Python, kol to €yypago tg
Python. Aeite Misc/ACKS otig mtnyég dravoung g Python yia wo Aoto tov ouvieheotav.

Movo e T ouUBoAT| KoL TIG CUVELOQOPEG THG KoLvotntag tg Python, 1 Python €yeL tétola vépoya éyypapa
- Zag evyopLotovpe!

279

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.10/Misc/ACKS

The Python/C API, Anpooicuon 3.10.18

280 Mapaptnua B’. About these documents

4
NAPAPTHMA [

lotopla kat Adela

.1 Hotopia Tou AoyLoHLKOU

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
/Iwww.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

‘Ekdoon Mpoepxduevn ard | ‘Etoq Idloktnoia | GPL compatible?
0.9.0éwg 1.2 | 8/v 1991-1995 CWI vau
13¢éwg1.52 | 1.2 1995-1999 CNRI VoL
1.6 1.5.2 2000 CNRI oyl
2.0 1.6 2000 BeOpen.com | OyL
1.6.1 1.6 2001 CNRI oyl
2.1 2.0+1.6.1 2001 PSF oYL
2.0.1 2.0+1.6.1 2001 PSF va
2.1.1 2.142.0.1 2001 PSF VoL
2.1.2 2.1.1 2002 PSF VoL
2.1.3 2.1.2 2002 PSF VoL
2.2 kou whvo | 2.1.1 2001-ofuepo. | PSF VoL

Enueiwon: GPL-compatible doesn’t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

281

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python/C API, Anpooicuon 3.10.18

Xapm, otovg morhoVg eEmTepLkolg e0ehovteg Tov epydotnKav Katm amd Tig 0dnyieg Tov Guido, avtég ot
eKOO0ELS EYLVALY EPLKTEC.

.2 Opol kaL nipoumoBbEoeLg yLa TNV npéopacn n} TNV XPrion tTng
Python pe aAAoug tpomnoug

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Kdémolo Aoyioukd mou givan evowuatmuévo otny Python eivoar vd dragpopetikég adeteg ypnons. OL adeteg
ToPOTOEVTAL (LE KMOLKO TOV EUTTLTTTEL 08 AUTHV TNV Gdeia. Agite Adeies ko Evyapioties yio Evewuatwuévo
Aoyioukd yuow puoL EAMTTN MOTa AUTOV TV 0dELmV.

M.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.10.18

1. This LICENSE AGREEMENT is between the Python Software Foundation.
— ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.10.18 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF._
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.10.18 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All_
—Rights

Reserved" are retained in Python 3.10.18 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.10.18 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.10.18.

4. PSF is making Python 3.10.18 available to Licensee on an "AS IS" basis.

PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY..
—OF

EXAMPLE, BUT NOT LIMITATION, PSEF MAKES NO AND DISCLAIMS ANY..
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.10.18 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

282 Mapaptnua I'. lotopia kat Adsla

The Python/C API, Anpooicuon 3.10.18

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.10.18

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A._
—~RESULT OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.10.18, OR ANY.
—~DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. .
—This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

trademark sense to endorse or promote products or services of Licensee, .
—O0r any

third party.

8. By copying, installing or otherwise using Python 3.10.18, Licensee.

—agrees
to be bound by the terms and conditions of this License Agreement.

r2.2 ZYMoQNIA AAEIAZ BEOPEN.COM I'lA PYTHON 2.0

ZYM®ONIA AAEIAZ ANOIXTOY KQAIKA BEOPEN PYTHON EKAOZH 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License

(ouvéyela otV TOUEVY 0EMDL)

M.2. Opol kai poiinmoBeoeLg yia Tnv npoopaon 1 tnv Xprion tng Python pe aAAouqg Tpon@sds

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

r.2.3 ZYM®QNIA AAEIAZ CNRI I'lA PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or

(ouvEyEeLa TNV ETTOUEVT) GENDQ)

284 Mapaptnua I'. lotopia kat Adsla

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

r.2.4 ZYMoOQNIA AAEIAZ CWI I'lA PYTHON 0.9.0 EQx 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

".2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.18
DOCUMENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

M.2. Opol kai poiinoBeoeLg yia Tnv npoopaon 1 Tnv Xprion tng Python pe aAAouqg Tpon@dG

The Python/C API, Anpooicuon 3.10.18

.3 Adeleq katL Euxaplotieg yia Evoopatwpévo AOYLOULKO

Avti M evotita givor o nutelic, odd avEavouevn Moto adewmv KoL EVapLoTImV Yo, AOYLOWKO Tpitmv,
IOV EVOOUOTOVETOL 0TV dtavour| g Python.

M.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/
MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

286 Mapaptnua I'. lotopia kat Adsla

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, Anpooicuon 3.10.18

M.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate

source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " 'AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3.3 Aouyxpoveg socket unnpeoieq

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

r.3. Adeleq kat Euxaplotieg yia Evowpatwpgvo AOyLOHLKO

287

https://www.wide.ad.jp/

The Python/C API, Anpooicuon 3.10.18

M.3.4 Awaxeipion Cookie

H evomto http.cookies mepléyel TV mopaKdT® E100TOINON:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

M.3.5 Avixveuon eKTéAeong

H evomto t race mepiéyel v TapokdTm eL00TOiN0:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

288 Mapaptnua I'. lotopia kat Adsla

The Python/C API, Anpooicuon 3.10.18

M.3.6 Zuvaptnioelg UUencode kat UUdecode

H evomto uu mepLéyet v mopakdtm domoinon:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

M.3.7 KAjoelg Anopakpuopevng Awadikaciag XML

H evomto xmlrpc. client mepiéyel v mopakdtw e1d0moinon:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 289

The Python/C API, Anpooicuon 3.10.18

".3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

M.3.9 EmAoyn kqueue

H evomta select mepiéyel tv mapokdtm ewdomoinon yio v kqueue diemagpi):

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " 'AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

290 Mapaptnua I'. lotopia kat Adsla

The Python/C API, Anpooicuon 3.10.18

r".3.10 SipHash24

To apyelo Python/pyhash.c mepiéyxer v vhomoinon tov Marek Majkowski tov olyopiBuov tov Dan
Bernstein, SipHash24. Autd mepléyel v mapakdatm onueinon:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

M.3.11 strtod kau dtoa

To apyelo Python/dtoa. ¢, mov mopéyel TG ovvaptnoelg dtoa ko strtod tng C yio petatpormt) twv C doubles
7TPOG Ko atd strings, Tpoépyetat amd to oudvupo apyeto tov David M. Gay, mtpog to mopdv diabéoiuo amod
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c. To apykod apyeio, OTWG AvaKTY)-
Onke otig 16 Maptiov, 2009, mepiéyet ta akOAOVOa TVEVUATIKG SUKOLDUOTA KOL TNV ELOOTOIN0N 0dEL0dOTN-

ongc:

/**

*

* The author of this software is David M. Gay.
*

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % o

* % o

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 291

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python/C API, Anpooicuon 3.10.18

r.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corelopenssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "“AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

EE R R e . N S N S S SN SRS S S T SIS S SN S N S N S S S e R N S N S N S T S T R

(ouvéyela otV eV oehida)

292 Mapaptnua I'. lotopia kat Adsla

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

% ok X ok X % X %

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

L T T T I S S S S N S S S S S S N S N S N N S S T S e . N S N S S S S S S S S S S S

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eaylcryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(ouvéyela 0TV emOpEVY 0edL)

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 293

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

* QUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
".3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured ——with-
system—expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

r.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured ——with-
system—-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘'Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

(ouvéyela 0TV TOUEVY 0EMD)

294 Mapaptnua I'. lotopia kat Adsla

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

r.3.15 zlib

H eméxtaon z1ib dnuovpyeital Yp1oLUoTOLmVTAS VO CUUTEPIAAUBAVOUEVOL avTiypapo Tmv Tnydv zlib,
eqv 1 £xdoom Tov zlib tov BpiokeTol 0To GVOTNUO ELVOL TTOA) TTOME YLOL VAL X PN OLULOTTOLNOEL YL TNV KATOOKEVT):

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

M.3.16 cfuhash

H vhomoinon tov mivaKa KoTaKepUATIONOU OV xpnotiomoteital amd 10 tracemalloc Baociletol oto €pyo
cfuhash:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its

(ouvéyela 0TV TOUEVY 0EMD)

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 295

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

M.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured ——
with-system-libmpdec

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

M.3.18 W3C C14N ocouita SoKLHuNiQ

H oovita doxiurig C14N 2.0 oto mwokéto test (Lib/test/xmltestdata/cl14n-20/) avaktiOnke amd
tov totdtomo tov W3C https://www.w3.org/TR/xml-c14n2-testcases/ Kau dravépetar pue v ddewa 3 phtpov
BSD:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

(ouvéyela 0TV nOUEVY 0EMDL)

296 Mapaptnua I'. lotopia kat Adsla

https://www.w3.org/TR/xml-c14n2-testcases/

The Python/C API, Anpooicuon 3.10.18

(ovveyiletal 0md TNV TPONYOUUEVT 0eMd)

are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

M.3.19 Audioop

To module audioop ypnowormoiel wg Baon kmdika tov apyeiov g771.c Tov épyov Sox. https://sourceforge.net/
projects/sox/files/sox/12.17.7/sox-12.17.7 .tar.gz

Avto o yaiog KOdkag eival poidv g Sun Microsystems, Inc. Ko Tap€yETOL VL0 ATEPLOPLOTY
xpNo1n. Ou %pf|oTEG UTOPOVV VO AVTLYPAPOUV 1] VO TPOTOTTOL)OOUV OUTOV TOV TNYoio KMOLKA
x0plg xpEwon.

O IMTHI'AIOZ KQAIKAZ TOY SUN ITAPEXETAI OINOQZ EXEI XQPIZ KANENOZ EIAOYZ EI'-
I'YHZEIZ ZYMIIEPIAAMBANOMENQN EITYHZEQN ZXEAIAZMOY, EMITIOPEYZIMOTH-

TAZ KAT KATAAAHAOTHTAZX I'TA 2YTKEKPIMENO 2KOIIO ‘H TIOY ITPOKYTITEI AITO
KAIIOIA TIOPEIA ZYNAAAAT'HZ, XPHXHX 'H EMIIOPIKHZ ITPAKTIKHZ.

O niyaiog KOdIKAG Tov Sun Tap€yeTol Xmpig TNV VITooTHPLEN Kot wpig Kauio voypémon) ek ué-
poug ¢ Sun Microsystems, Inc. vo. fonOnoeL oty xp1omn, otn dLdpOwaom, tpomomoinom 1 fertiwon
TOU.

SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS
SOFTWARE OR ANY PART THEREOF.

Ze xopia mepimrwon 1 Sun Microsystems, Inc. dev @éper evbivn Yoo OV ammielo €cOdWV 1)
KepdwV 1N dAheg e1dIKEG, Eupeoeg Kat emokOhovbeg Tnuiec, akoun ko av 1 Sun €yl evnuepwoet
yLoL TV TOOVOTNTO TETOLWY TNULDV.

Sun Microsystems, Inc. 2550 Garcia Avenue Mountain View, Kalugpdpvio 94043

M.3. Adeleg kal Euxaplotieg yia Evowpatwpevo AOYLOULKO 297

https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz
https://sourceforge.net/projects/sox/files/sox/12.17.7/sox-12.17.7.tar.gz

The Python/C API, Anpooicuon 3.10.18

298 Mapaptnua I'. lotopia kat Adsla

nAPAPTHMA £\’

Copyright

H Python ko vt 1) Tekunpiwon eivod:

Copyright © 2001-2023 Python Software Foundation. ‘Ol To. StkodUoTo SLOTPOUVTAL.

Copyright © 2000 BeOpen.com. OLa T SUKOLMOUOTA SLATNPOVVTOL.

Copyright © 1995-2000 Corporation for National Research Initiatives. Olo. To. StKaLOUATO SLATNPOVVTAL.

Copyright © 1991-1995 Stichting Mathematisch Centrum. ‘Ola Tal SLKOLOUOTA SLATPOVVTOL.

AvatpéEte 010 lotopla kar Adea Yo TPNG TANPOQOPNON OYETIKE te TNV AdeLa YpNoNG Ko Tig eE0V010d0-
THOELS.

299

The Python/C API, Anpooicuon 3.10.18

300 Mapaptnua A'. Copyright

Eupetriplo

MN-aAQAPLTIKA
...,263
2t 03,263
>>> 263
BDFL, 265
CO_FUTURE_DIVISION (C var), 43
CPython, 266
Capsule

avtiketilpevo, 159
C-contiguous, 99, 266
EAFP, 267
EOFError (built-in exception), 147
Fortran contiguous, 99, 266
GIL, 269
IDLE, 270
KeyboardInterrupt (built-in exception), 53
LBYL, 271
LONG_MAX, 110
METH_CLASS (evowuatwuévn uetafintn), 221
METH_COEXIST (evowuatwuévn uetafint), 222
METH_FASTCALL (evowuatwuévy uetafintn), 221
METH_NOARGS (evowuatwuévny uetafintn), 221
METH_O (evowuatwuévn uetofAntn), 221
METH_STATIC (evowuatwuévn uetafAntn), 222
METH_VARARGS (evowuatwuévn uetafinty), 221
MRO, 272
MethodType (in module types), 144, 145
ModuleType (in module types), 148
None

avtiketipevo, 108
OverflowError (built-in exception), 110, 111
PATH, 11
PEP, 274
PYTHON*, 168
PYTHONCOERCECLOCALE, 203
PYTHONDEBUG, 168, 198
PYTHONDONTWRITEBYTECODE, 168, 201
PYTHONDUMPREF'S, 195, 230
PYTHONEXECUTABLE, 199
PYTHONFAULTHANDLER, 195
PYTHONHASHSEED, 168, 196
PYTHONHOME, 11, 168, 174, 196
PYTHONINSPECT, 169, 196

PYTHONIOENCODING, 171, 200
PYTHONLEGACYWINDOWSFSENCODING, 169, 191
PYTHONLEGACYWINDOWSSTDIO, 169, 197
PYTHONMALLOC, 208, 211, 213, 214
PYTHONMALLOCSTATS, 197, 208
PYTHONNOUSERSITE, 169, 200
PYTHONOPTIMIZE, 169, 198
PYTHONPATH, 11, 168, 197
PYTHONPLATLIBDIR, 197
PYTHONPROFILEIMPORTTIME, 196
PYTHONPYCACHEPREFIX, 199
PYTHONTRACEMALLOC, 200
PYTHONUNBUFFERED, 169, 194
PYTHONUTFS, 191, 203
PYTHONVERBOSE, 169, 201
PYTHONWARNINGS, 201
PY_MAJOR_VERSION (C macro), 261
PY_MICRO_VERSION (C macro), 261
PY_MINOR_VERSION (C macro), 261
PY_RELEASE_LEVEL (C macro), 261
PY_RELEASE_SERIAL (C macro), 261
PY_SSIZE_T_MAX, 111
PY_VECTORCALL_ARGUMENTS_OFFSET (&
macro), 86
PY_VERSION_HEX (C macro), 261
PyAIter_Check (C function), 95
PyASCIIObject (Ctype), 118
PyAnySet_Check (C function), 142
PyAnySet_CheckExact (C function), 143
PyArg_Parse (C function), 73
PyArg_ParseTuple (C function), 73
PyArg_ParseTupleAndKeywords (C function),
73
PyArg_UnpackTuple (C function), 73
PyArg_VaParse (C function), 73

PyArg_VaParseTupleAndKeywords (e
function), 73
PyArg_ValidateKeywordArguments c

function), 73
PyAsyncMethods (C type), 252
PyAsyncMethods.am_aiter (C member), 252
PyAsyncMethods.am_anext (C member), 252
PyAsyncMethods.am_await (C member), 252
PyAsyncMethods.am_send (C member), 252

301

The Python/C API, Anpooicuon 3.10.18

PyBUF_ANY_CONTIGUOUS (C macro), 99 PyBytes_FromString (C function), 115
PyBUF_CONTIG (C macro), 100 PyBytes_FromStringAndSize (C function), 115
PyBUF_CONTIG_RO (C macro), 100 PyBytes_GET_SIZE (C function), 115
PyBUF_C_CONTIGUOUS (C macro), 99 PyBytes_Size (C function), 115
PyBUF_FORMAT (C macro), 99 PyBytes_Type (Cvar), 114
PyBUF_FULL (C macro), 100 PyCFunction (C type), 220
PyBUF_FULL_RO (C macro), 100 PyCFunctionWithKeywords (C type), 220
PyBUF_F_CONTIGUOUS (C macro), 99 PyCMethod (C type), 220
PyBUF_INDIRECT (C macro), 99 PyCallIter_Check (C function), 155
PyBUF_ND (C macro), 99 PyCallIter_New (C function), 155
PyBUF_RECORDS (C macro), 100 PyCallIter_Type (Cvar), 155
PyBUF_RECORDS_RO (C macro), 100 PyCallable_Check (C function), 89
PyBUF_SIMPLE (C macro), 99 PyCapsule (C type), 159
PyBUF_STRIDED (C macro), 100 PyCapsule_CheckExact (C function), 159
PyBUF_STRIDED_RO (C macro), 100 PyCapsule_Destructor (C type), 159
PyBUF_STRIDES (C macro), 99 PyCapsule_GetContext (C function), 160
PyBUF_WRITABLE (C macro), 99 PyCapsule_GetDestructor (C function), 160
PyBool_Check (C function), 112 PyCapsule_GetName (C function), 160
PyBool_FromLong (C function), 112 PyCapsule_GetPointer (C function), 159
PyBufferProcs, 96 PyCapsule_Import (C function), 160
PyBufferProcs (Ctype), 251 PyCapsule_IsValid (C function), 160
PyBufferProcs.bf_getbuffer (C member), PyCapsule_New (C function), 159

251 PyCapsule_SetContext (C function), 160
PyBufferProcs.bf_releasebuffer (C PyCapsule_SetDestructor (C function), 160

member), 251 PyCapsule_SetName (C function), 160
PyBuffer_FillContiguousStrides (C PyCapsule_SetPointer (C function), 160

function), 102 PyCellObject (Ctype), 146
PyBuffer_FillInfo (C function), 102 PyCell_Check (C function), 146
PyBuffer_FromContiguous (C function), 102 PyCell_GET (C function), 146
PyBuffer_GetPointer (C function), 102 PyCell_Get (C function), 146
PyBuffer_ IsContiguous (C function), 102 PyCell_New (C function), 146
PyBuffer_Release (C function), 101 PyCell_SET (C function), 146
PyBuffer_SizeFromFormat (C function), 102 PyCell_Set (C function), 146
PyBuffer_ToContiguous (C function), 102 PyCell_Type (Cvar), 146
PyByteArrayObject (Ctype), 116 PyCodeObject (Ctype), 146
PyByteArray_ AS_STRING (C function), 117 PyCode_Addr2Line (C function), 147
PyByteArray_AsString (C function), 117 PyCode_Check (C function), 146
PyByteArray_Check (C function), 116 PyCode_GetNumFree (C function), 146
PyByteArray_CheckExact (C function), 116 PyCode_New (C function), 146
PyByteArray_Concat (C function), 117 PyCode_NewEmpty (C function), 147
PyByteArray_FromObject (C function), 117 PyCode_NewWithPosOnlyArgs (C function), 146
PyByteArray FromStringAndSize (C PyCode_Type (Cvar), 146

function), 117 PyCodec_BackslashReplaceErrors c
PyByteArray_GET_SIZE (C function), 117 function), 79
PyByteArray_Resize (C function), 117 PyCodec_Decode (C function), 78
PyByteArray_Size (C function), 117 PyCodec_Decoder (C function), 78
PyByteArray_Type (Cvar), 116 PyCodec_Encode (C function), 78
PyBytesObject (Ctype), 114 PyCodec_Encoder (C function), 78
PyBytes_AS_STRING (C function), 115 PyCodec_IgnoreErrors (C function), 79
PyBytes_AsString (C function), 115 PyCodec_IncrementalDecoder (C function), 78
PyBytes_AsStringAndSize (C function), 116 PyCodec_IncrementalEncoder (C function), 78
PyBytes_Check (C function), 114 PyCodec_KnownEncoding (C function), 78
PyBytes_CheckExact (C function), 114 PyCodec_LookupError (C function), 79
PyBytes_Concat (C function), 116 PyCodec_NameReplaceErrors (C function), 79
PyBytes_ConcatAndDel (C function), 116 PyCodec_Register (C function), 78
PyBytes_FromFormat (C function), 115 PyCodec_RegisterError (C function), 79
PyBytes_FromFormatV (C function), 115 PyCodec_ReplaceErrors (C function), 79
PyBytes_FromObject (C function), 115 PyCodec_StreamReader (C function), 78

302 Eupetniplo

The Python/C API, Anpooicuon 3.10.18

PyCodec_StreamWriter (C function), 79
PyCodec_StrictErrors (C function), 79
PyCodec_Unregister (C function), 78
PyCodec_XMLCharRefReplaceErrors
function), 79
PyCompactUnicodeObject (Ctype), 118
PyCompilerFlags (C struct), 42
PyCompilerFlags.cf_feature_version (C
member), 42
PyCompilerFlags.cf_flags (C member), 42
PyComplexObject (Ctype), 114
PyComplex_AsCComplex (C function), 114
PyComplex_Check (C function), 114
PyComplex_CheckExact (C function), 114
PyComplex_FromCComplex (C function), 114
PyComplex_FromDoubles (C function), 114
PyComplex_ImagAsDouble (C function), 114
PyComplex_RealAsDouble (C function), 114
PyComplex_Type (Cvar), 114
PyConfig (Ctype), 192
PyConfig.PyConfig Clear (C function), 193
PyConfig.PyConfig InitIsolatedConfig
(C function), 192
PyConfig.PyConfig_InitPythonConfig (C
function), 192
PyConfig.PyConfig_Read (C function), 193
PyConfig.PyConfig_SetArgv (C function), 193

(e

PyConfig.PyConfig_SetBytesArgv (o
function), 193
PyConfig.PyConfig_SetBytesString c

function), 193
PyConfig.PyConfig_SetString (C function),
192
PyConfig.PyConfig_SetWideStringList (C
function), 193
PyConfig.argv (C member), 193
PyConfig.base_exec_prefix (C member), 194
PyConfig.base_executable (C member), 194
PyConfig.base_prefix (C member), 194
PyConfig.buffered_stdio (C member), 194
PyConfig.bytes_warning (C member), 194
PyConfig.check_hash_ pycs_mode
member), 194
PyConfig.configure_c_stdio (C member),
195
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
PyConfig.
195
PyConfig.filesystem errors
196
PyConfig.hash_seed (C member), 196
PyConfig.home (C member), 196
PyConfig.import_time (C member), 196
PyConfig.inspect (C member), 196

(e

dev_mode (C member), 195
dump_refs (C member), 195
exec_prefix (C member), 195
executable (C member), 195
faulthandler (C member), 195
filesystem_encoding (C member),

(C member),

PyConfig.install_signal_handlers
member), 196
PyConfig.interactive (C member), 196
PyConfig.isolated (C member), 197
PyConfig.legacy_windows_stdio (e
member), 197
PyConfig.malloc_stats (C member), 197
PyConfig.module_search_paths (C member),
197
PyConfig.module_search _paths_set (e
member), 197
PyConfig.optimization_level (C member),
198
PyConfig.orig_argv (C member), 198
PyConfig.parse_argv (C member), 198
PyConfig.parser_debug (C member), 198
PyConfig.pathconfig_warnings (C member),
198
PyConfig.platlibdir (C member), 197
PyConfig.prefix (Cmember), 198
PyConfig.program_name (C member), 198
PyConfig.pycache_prefix (C member), 199
PyConfig.pythonpath_env (C member), 197
PyConfig.quiet (C member), 199
PyConfig.run_command (C member), 199
PyConfig.run_filename (C member), 199
PyConfig.run_module (C member), 199
PyConfig.show_ref_count (C member), 199
PyConfig.site_import (C member), 199
PyConfig.skip_source_first_line
member), 200
PyConfig.stdio_encoding (C member), 200
PyConfig.stdio_errors (C member), 200
PyConfig.tracemalloc (C member), 200
PyConfig.use_environment (C member), 200
PyConfig.use_hash_seed (C member), 196
PyConfig.user_site_directory (C member),
200
PyConfig.verbose (C member), 200
PyConfig.warn_default_encoding
member), 194
PyConfig.warnoptions (C member), 201
PyConfig.write_bytecode (C member), 201
PyConfig.xoptions (C member), 201
PyContext (C type), 162
PyContextToken (C type), 162
PyContextToken_CheckExact (C function), 162
PyContextToken_Type (Cvar), 162
PyContextVar (Ctype), 162
PyContextVar_CheckExact (C function), 162
PyContextVar_Get (C function), 162
PyContextVar_New (C function), 162
PyContextVar_Reset (C function), 163
PyContextVar_Set (C function), 163
PyContextVar_Type (C var), 162
PyContext_CheckExact (C function), 162
PyContext_Copy (C function), 162
PyContext_CopyCurrent (C function), 162

(«©

(C

(c

Eupetniplo

303

The Python/C API, Anpooicuon 3.10.18

PyContext_Enter (C function), 162
PyContext_Exit (C function), 162
PyContext_New (C function), 162
PyContext_Type (Cvar), 162
PyCoroObject (Ctype), 161
PyCoro_CheckExact (C function), 161
PyCoro_New (C function), 161
PyCoro_Type (Cvar), 161
PyDateTime_Check (C function), 163
PyDateTime_CheckExact (C function), 163
PyDateTime_DATE_GET_FOLD (C function), 165
PyDateTime_DATE_GET_HOUR (C function), 164
PyDateTime_DATE_GET_MICROSECOND (o
function), 165
PyDateTime_ DATE_GET_MINUTE (C function),
165
PyDateTime_DATE_GET_SECOND (C function),
165
PyDateTime_DATE_GET_TZINFO (C function),
165
PyDateTime_DELTA_GET_DAYS (C function), 165
PyDateTime_ DELTA_GET_MICROSECONDS (o
function), 165
PyDateTime_DELTA_GET_SECONDS (C function),
165
PyDateTime_FromDateAndTime (C function),
164
PyDateTime_FromDateAndTimeAndFold (C
function), 164
PyDateTime_FromTimestamp (C function), 165
PyDateTime_GET_DAY (C function), 164
PyDateTime_GET_MONTH (C function), 164
PyDateTime_GET_YEAR (C function), 164
PyDateTime_TIME_GET_FOLD (C function), 165
PyDateTime_TIME_GET_HOUR (C function), 165
PyDateTime_TIME_GET_MICROSECOND (o
function), 165
PyDateTime_TIME_GET_MINUTE (C function),
165
PyDateTime_TIME_GET_SECOND (C function),
165
PyDateTime_TIME_GET_TZINFO (C function),
165
PyDateTime_TimeZone_UTC (C var), 163
PyDate_Check (C function), 163
PyDate_CheckExact (C function), 163
PyDate_FromDate (C function), 164
PyDate_FromTimestamp (C function), 165
PyDelta_Check (C function), 163
PyDelta_CheckExact (C function), 163
PyDelta_FromDSU (C function), 164
PyDescr_IsData (C function), 156
PyDescr_NewClassMethod (C function), 156
PyDescr_NewGetSet (C function), 156
PyDescr_NewMember (C function), 156
PyDescr_NewMethod (C function), 156
PyDescr_NewWrapper (C function), 156
PyDictObject (Ctype), 139

PyDictProxy_New (C function), 140
PyDict_Check (C function), 139
PyDict_CheckExact (C function), 140
PyDict_Clear (C function), 140
PyDict_Contains (C function), 140
PyDict_Copy (C function), 140
PyDict_DelItem (C function), 140
PyDict_DelItemString (C function), 140
PyDict_GetItem (C function), 140
PyDict_GetItemString (C function), 140
PyDict_GetItemWithError (C function), 140
PyDict_TItems (C function), 141
PyDict_Keys (C function), 141
PyDict_Merge (C function), 142
PyDict_MergeFromSeq2 (C function), 142
PyDict_New (C function), 140
PyDict_Next (C function), 141
PyDict_SetDefault (C function), 141
PyDict_SetItem (C function), 140
PyDict_SetItemString (C function), 140
PyDict_Size (C function), 141
PyDict_Type (Cvar), 139
PyDict_Update (C function), 142
PyDict_Values (C function), 141
PyDoc_STR (C macro), 5
PyDoc_STRVAR (C macro), 5
PyErr_BadArgument (C function), 48
PyErr_BadInternalCall (C function), 50
PyErr_CheckSignals (C function), 53
PyErr_Clear (C function), 47
PyErr_Clear(),9,11
PyErr_ ExceptionMatches (C function), 51
PyErr_ExceptionMatches (), 11
PyErr_Fetch (C function), 51
PyErr_Format (C function), 48
PyErr_FormatV (C function), 48
PyErr_GetExcInfo (C function), 52
PyErr_GivenExceptionMatches (C function),
51
PyErr_NewException (C function), 54
PyErr_NewExceptionWithDoc (C function), 54
PyErr_ NoMemory (C function), 48
PyErr_NormalizeException (C function), 52
PyErr_Occurred (C function), 51
PyErr_Occurred(),9
PyErr_Print (C function), 48
PyErr_PrintEx (C function), 47
PyErr_ ResourceWarning (C function), 51
PyErr_Restore (C function), 52
PyErr_SetExcFromWindowsErr (C function), 49
PyErr_SetExcFromWindowsErrWithFilename
(C function), 49

PyErr_SetExcFromWindowsErrWithFilenameObject

(C function), 49

PyErr_SetExcFromWindowsErrWithFilenameObjects

(C function), 49
PyErr_SetExcInfo (C function), 52
PyErr_SetFromErrno (C function), 48

304

Eupetniplo

The Python/C API, Anpooicuon 3.10.18

PyErr_SetFromErrnoWithFilename c
function), 49
PyErr_SetFromErrnoWithFilenameObject
(C function), 49
PyErr_SetFromErrnoWithFilenameObjects
(C function), 49
PyErr_SetFromWindowsErr (C function), 49
PyErr_SetFromWindowsErrWithFilename (C
function), 49
PyErr_SetImportError (C function), 50
PyErr_SetImportErrorSubclass (C function),
50
PyErr_SetInterrupt (C function), 53
PyErr_SetInterruptEx (C function), 53
PyErr_SetNone (C function), 48
PyErr_SetObject (C function), 48
PyErr_SetString (C function), 48
PyErr_SetString(),9
PyErr_SyntaxLocation (C function), 50
PyErr_SyntaxLocationEx (C function), 50
PyErr_SyntaxLocationObject (C function), 50
PyErr_WarnEx (C function), 50
PyErr_WarnExplicit (C function), 51
PyErr_WarnExplicitObject (C function), 51
PyErr_WarnFormat (C function), 51
PyErr_WriteUnraisable (C function), 48
PyEval_AcquireLock (C function), 180
PyEval_AcquireThread (C function), 180
PyEval_AcquireThread(), 176
PyEval_EvalCode (C function), 42
PyEval_EvalCodeEx (C function), 42
PyEval_EvalFrame (C function), 42
PyEval_EvalFrameEx (C function), 42
PyEval_GetBuiltins (C function), 77
PyEval_GetFrame (C function), 77
PyEval_GetFuncDesc (C function), 78
PyEval_GetFuncName (C function), 77
PyEval_GetGlobals (C function), 77
PyEval_GetLocals (C function), 77
PyEval_InitThreads (C function), 176
PyEval_InitThreads (), 170
PyEval_ MergeCompilerFlags (C function), 42
PyEval_ReleaseLock (C function), 180
PyEval_ReleaseThread (C function), 180
PyEval_ReleaseThread(), 176
PyEval_RestoreThread (C function), 177
PyEval_RestoreThread (), 175,176
PyEval_SaveThread (C function), 176
PyEval_SaveThread(), 175,176
PyEval_SetProfile (C function), 183
PyEval_SetTrace (C function), 184
PyEval_ThreadsInitialized (C function), 176
PyExc_ArithmeticError, 57
PyExc_AssertionError, 57
PyExc_AttributeError, 57
PyExc_BaseException, 57
PyExc_BlockingIOError, 57
PyExc_BrokenPipeError, 57

PyExc_BufferError, 57
PyExc_BytesWarning, 58
PyExc_ChildProcessError, 57
PyExc_ConnectionAbortedError, 57
PyExc_ConnectionError, 57
PyExc_ConnectionRefusedError, 57
PyExc_ConnectionResetError, 57
PyExc_DeprecationWarning, 58
PyExc_EOFError, 57
PyExc_EnvironmentError, 58
PyExc_Exception, 57
PyExc_FileExistsError, 57
PyExc_FileNotFoundError, 57
PyExc_FloatingPointError, 57
PyExc_FutureWarning, 58
PyExc_GeneratorExit, 57
PyExc_IOError, 58
PyExc_ImportError, 57
PyExc_ImportWarning, 58
PyExc_IndentationError, 57
PyExc_IndexError, 57
PyExc_InterruptedError, 57
PyExc_IsADirectoryError, 57
PyExc_KeyError, 57
PyExc_KeyboardInterrupt, 57
PyExc_LookupError, 57
PyExc_MemoryError, 57
PyExc_ModuleNotFoundError, 57
PyExc_NameError, 57
PyExc_NotADirectoryError, 57
PyExc_NotImplementedError, 57
PyExc_OSError, 57
PyExc_OverflowError, 57
PyExc_PendingDeprecationWarning, 58
PyExc_PermissionError, 57
PyExc_ProcessLookupError, 57
PyExc_RecursionError, 57
PyExc_ReferenceError, 57
PyExc_ResourceWarning, 58
PyExc_RuntimeError, 57
PyExc_RuntimeWarning, 58
PyExc_StopAsyncIteration, 57
PyExc_StopIteration, 57
PyExc_SyntaxError, 57
PyExc_SyntaxWarning, 58
PyExc_SystemError, 57
PyExc_SystemExit, 57
PyExc_TabError, 57
PyExc_TimeoutError, 57
PyExc_TypeError, 57
PyExc_UnboundLocalError, 57
PyExc_UnicodeDecodeError, 57
PyExc_UnicodeEncodeError, 57
PyExc_UnicodeError, 57
PyExc_UnicodeTranslateError, 57
PyExc_UnicodeWarning, 58
PyExc_UserWarning, 58
PyExc_ValueError, 57

Eupetniplo

305

The Python/C API, Anpooicuon 3.10.18

PyExc_Warning, 58
PyExc_WindowsError, 58
PyExc_ZeroDivisionError, 57
PyException_GetCause (C function), 54
PyException_GetContext (C function), 54
PyException_GetTraceback (C function), 54
PyException_SetCause (C function), 54
PyException_SetContext (C function), 54
PyException_SetTraceback (C function), 54
PyFile_ FromFd (C function), 147
PyFile_GetLine (C function), 147
PyFile_SetOpenCodeHook (C function), 147
PyFile_WriteObject (C function), 148
PyFile_ WriteString (C function), 148
PyFloatObject (Ctype), 112
PyFloat_AS_DOUBLE (C function), 113
PyFloat_AsDouble (C function), 112
PyFloat_Check (C function), 112
PyFloat_CheckExact (C function), 112
PyFloat_FromDouble (C function), 112
PyFloat_FromString (C function), 112
PyFloat_GetInfo (C function), 113
PyFloat_GetMax (C function), 113
PyFloat_GetMin (C function), 113
PyFloat_Type (Cvar), 112
PyFrameObject (C type), 42
PyFrame_GetBack (C function), 77
PyFrame_GetCode (C function), 77
PyFrame_GetLineNumber (C function), 77
PyFrozenSet_Check (C function), 142
PyFrozenSet_CheckExact (C function), 143
PyFrozenSet_New (C function), 143
PyFrozenSet_Type (Cvar), 142
PyFunctionObject (C type), 144
PyFunction_Check (C function), 144
PyFunction_GetAnnotations (C function), 144
PyFunction_GetClosure (C function), 144
PyFunction_GetCode (C function), 144
PyFunction_GetDefaults (C function), 144
PyFunction_GetGlobals (C function), 144
PyFunction_GetModule (C function), 144
PyFunction_New (C function), 144
PyFunction_NewWithQualName (C function),
144
PyFunction_SetAnnotations (C function), 144
PyFunction_SetClosure (C function), 144
PyFunction_SetDefaults (C function), 144
PyFunction_Type (Cvar), 144
PyGC_Collect (C function), 258
PyGC_Disable (C function), 258
PyGC_Enable (C function), 258
PyGC_IsEnabled (C function), 258
PyGILState_Check (C function), 177
PyGILState_Ensure (C function), 177
PyGILState_GetThisThreadState c
function), 177
PyGILState_Release (C function), 177
PyGenObject (C type), 161

PyGen_Check (C function), 161
PyGen_CheckExact (C function), 161
PyGen_New (C function), 161
PyGen_NewWithQualName (C function), 161
PyGen_Type (Cvar), 161
PyGetSetDef (C type), 223
PyImport_AddModule (C function), 65
PyImport_AddModuleObject (C function), 65
PyImport_AppendInittab (C function), 67
PyImport_ExecCodeModule (C function), 65
PyImport_ExecCodeModuleEx (C function), 65
PyImport_ExecCodeModuleObject c
function), 65
PyImport_ExecCodeModuleWithPathnames
(C function), 66
PyImport_ExtendInittab (C function), 67
PyImport_FrozenModules (Cvar), 67
PyImport_GetImporter (C function), 66
PyImport_GetMagicNumber (C function), 66
PyImport_GetMagicTag (C function), 66
PyImport_GetModule (C function), 66
PyImport_GetModuleDict (C function), 66
PyImport_Import (C function), 65
PyImport_ImportFrozenModule (C function),
66
PyImport_ImportFrozenModuleObject (C
function), 66
PyImport_ImportModule (C function), 64
PyImport_ImportModuleEx (C function), 64
PyImport_ImportModuleLevel (C function), 64
PyImport_ImportModuleLevelObject (e
function), 64
PyImport_ImportModuleNoBlock (C function),
64
PyImport_ReloadModule (C function), 65
PyIndex_Check (C function), 92
PyInstanceMethod_Check (C function), 145
PyInstanceMethod_Function (C function), 145
PyInstanceMethod_ GET_FUNCTION c
function), 145
PyInstanceMethod_New (C function), 145
PyInstanceMethod_Type (C var), 145
PyInterpreterState (Ctype), 176
PyInterpreterState_Clear (C function), 178
PyInterpreterState_Delete (C function), 178
PyInterpreterState_Get (C function), 179
PyInterpreterState_GetDict (C function),
179
PyInterpreterState_GetID (C function), 179
PyInterpreterState_Head (C function), 184
PyInterpreterState_Main (C function), 184
PyInterpreterState_New (C function), 178
PyInterpreterState_Next (C function), 184
PyInterpreterState_ThreadHead c
function), 184
PyIter_Check (C function), 95
PyIter_Next (C function), 95
PyIter_Send (C function), 96

306

Eupetniplo

The Python/C API, Anpooicuon 3.10.18

PyListObject (Ctype), 138
PyList_Append (C function), 139
PyList_AsTuple (C function), 139
PyList_Check (C function), 138
PyList_CheckExact (C function), 138
PyList_GET_ITEM (C function), 138
PyList_GET_SIZE (C function), 138
PyList_GetItem (C function), 138
PyList_GetItem(),8
PyList_GetSlice (C function), 139
PyList_TInsert (C function), 139
PyList_New (C function), 138
PyList_Reverse (C function), 139
PyList_SET_ITEM (C function), 139
PyList_SetItem (C function), 139
PyList_SetItem(),7
PyList_SetSlice (C function), 139
PyList_Size (C function), 138
PyList_Sort (C function), 139
PyList_Type (C var), 138
PyLongObject (Ctype), 109
PyLong_AsDouble (C function), 111
PyLong_AsLong (C function), 110
PyLong_AsLongAndOverflow (C function), 110
PyLong_AsLongLong (C function), 110
PyLong_AsLongLongAndOverflow (C function),
110
PyLong_AsSize_t (C function), 111
PyLong_AsSsize_t (C function), 111
PyLong_AsUnsignedLong (C function), 111
PyLong_AsUnsignedLongLong (C function), 111
PyLong_ AsUnsignedLongLongMask (Cc
function), 111
PyLong_AsUnsignedLongMask (C function), 111
PyLong_AsVoidPtr (C function), 111
PyLong_Check (C function), 109
PyLong_CheckExact (C function), 109
PyLong_FromDouble (C function), 109
PyLong_FromLong (C function), 109
PyLong_FromLongLong (C function), 109
PyLong_FromSize_t (C function), 109
PyLong_FromSsize_t (C function), 109
PyLong_FromString (C function), 109
PyLong_FromUnicodeObject (C function), 110
PyLong_FromUnsignedLong (C function), 109
PyLong_FromUnsignedLongLong (C function),
109
PyLong_FromVoidPtr (C function), 110
PyLong_Type (Cvar), 109
PyMappingMethods (C type), 250
PyMappingMethods.mp_ass_subscript (C
member), 250
PyMappingMethods.mp_length (C member),
250
PyMappingMethods.mp_subscript c
member), 250
PyMapping_Check (C function), 94
PyMapping_DelItem (C function), 94

PyMapping_DelItemString (C function), 94
PyMapping_GetItemString (C function), 94
PyMapping_HasKey (C function), 94
PyMapping_HasKeyString (C function), 94
PyMapping_Items (C function), 95
PyMapping_Keys (C function), 95
PyMapping_Length (C function), 94
PyMapping_SetItemString (C function), 94
PyMapping_Size (C function), 94
PyMapping_Values (C function), 95
PyMarshal_ReadLastObjectFromFile c
function), 68
PyMarshal_ReadLongFromFile (C function), 68
PyMarshal_ReadObjectFromFile (C function),
68
PyMarshal_ReadObjectFromString c
function), 68
PyMarshal_ReadShortFromFile (C function),
68
PyMarshal_ WriteLongToFile (C function), 67
PyMarshal WriteObjectToFile (C function),
67
PyMarshal WriteObjectToString c
function), 68
PyMemAllocatorDomain (C type), 212
PyMemAllocatorDomain.PYMEM DOMAIN_MEM
(C macro), 212
PyMemAllocatorDomain.PYMEM_DOMAIN_OBJ
(C macro), 212
PyMemAllocatorDomain.PYMEM_DOMAIN_RAW
(C macro), 212
PyMemAllocatorEx (Ctype), 212
PyMem_Calloc (C function), 209
PyMem_Del (C function), 210
PyMem_Free (C function), 210
PyMem_GetAllocator (C function), 212
PyMem_Malloc (C function), 209
PyMem_New (C function), 210
PyMem_RawCalloc (C function), 208
PyMem_RawFree (C function), 209
PyMem_RawMalloc (C function), 208
PyMem_RawRealloc (C function), 209
PyMem_Realloc (C function), 209
PyMem_Resize (C function), 210
PyMem_SetAllocator (C function), 212
PyMem_SetupDebugHooks (C function), 213
PyMemberDef (C type), 222
PyMember_GetOne (C function), 223
PyMember_SetOne (C function), 223
PyMemoryView_Check (C function), 158
PyMemoryView_FromBuffer (C function), 158
PyMemoryView_FromMemory (C function), 158
PyMemoryView_FromObject (C function), 158
PyMemoryView_GET_BASE (C function), 158
PyMemoryView_GET_BUFFER (C function), 158
PyMemoryView_GetContiguous (C function),
158
PyMethodDef (C type), 220

Eupetniplo

307

The Python/C API, Anpooicuon 3.10.18

PyMethodDef .ml_doc (C member), 220 PyNumberMethods .nb_add (C member), 248
PyMethodDef .ml_flags (C member), 220 PyNumberMethods.nb_and (C member), 249
PyMethodDef .ml_meth (C member), 220 PyNumberMethods.nb_bool (C member), 249
PyMethodDef .ml_name (C member), 220 PyNumberMethods.nb_divmod (C member), 249
PyMethod_Check (C function), 145 PyNumberMethods.nb_float (C member), 249
PyMethod_Function (C function), 145 PyNumberMethods.nb_floor_divide c

PyMethod_GET_FUNCTION (C function), 145
PyMethod_GET_SELF (C function), 145

member), 249
PyNumberMethods.nb_index (C member), 249

PyMethod_New (C function), 145 PyNumberMethods.nb_inplace_add (e
PyMethod_Self (C function), 145 member), 249
PyMethod_Type (C var), 145 PyNumberMethods.nb_inplace_and c

PyModuleDef (C type), 149
PyModuleDef_Init (C function), 151

member), 249
PyNumberMethods.nb_inplace_floor_divide

PyModuleDef_Slot (Ctype), 151
PyModuleDef_Slot.slot (C member), 151
PyModuleDef_Slot.value (C member), 151

(C member), 249
PyNumberMethods.nb_inplace_1lshift (C
member), 249

PyModuleDef .m_base (C member), 149 PyNumberMethods.nb_inplace_matrix_multiply
PyModuleDef .m_clear (C member), 150 (C member), 249

PyModuleDef .m_doc (C member), 149 PyNumberMethods.nb_inplace_multiply (C
PyModuleDef .m_free (C member), 150 member), 249

PyModuleDef .m_methods (C member), 149 PyNumberMethods.nb_inplace_or c
PyModuleDef .m_name (C member), 149 member), 249

PyModuleDef

.m_size (C member), 149

PyModuleDef .m_slots (C member), 150
PyModuleDef.m_slots.m_reload (C member),
150
PyModuleDef .m_traverse (C member), 150
PyModule_AddFunctions (C function), 152
PyModule_AddIntConstant (C function), 154
PyModule_AddIntMacro (C function), 154
PyModule_AddObject (C function), 153
PyModule_AddObjectRef (C function), 153
PyModule_AddStringConstant (C function),
154
PyModule_AddStringMacro (C function), 154
PyModule_AddType (C function), 154
PyModule_Check (C function), 148
PyModule_CheckExact (C function), 148
PyModule_Create (C function), 150
PyModule_Create? (C function), 150
PyModule_ExecDef (C function), 152
PyModule_FromDefAndSpec (C function), 152
PyModule_FromDefAndSpec?2 (C function), 152
PyModule_GetDef (C function), 149
PyModule_GetDict (C function), 148
PyModule_GetFilename (C function), 149
PyModule_GetFilenameObject (C function),
149
PyModule_GetName (C function), 149
PyModule_GetNameObject (C function), 148
PyModule_GetState (C function), 149
PyModule_New (C function), 148
PyModule_NewObject (C function), 148
PyModule_SetDocString (C function), 152
PyModule_Type (Cvar), 148
PyNumberMethods (C type), 248
PyNumberMethods.nb_absolute (C member),
249

PyNumberMethods.nb_inplace_power c
member), 249
PyNumberMethods.nb_inplace_remainder
(C member), 249
PyNumberMethods.nb_inplace_rshift (C
member), 249
PyNumberMethods.nb_inplace_subtract (C
member), 249
PyNumberMethods.nb_inplace_true_divide
(C member), 249
PyNumberMethods.nb_inplace_xor c
member), 249
PyNumberMethods.nb_int (C member), 249
PyNumberMethods.nb_invert (C member), 249
PyNumberMethods.nb_1lshift (C member), 249
PyNumberMethods.nb_matrix_multiply (C
member), 249
PyNumberMethods.nb_multiply (C member),
249

PyNumberMethods
249

PyNumberMethods.
.nb_positive (C member),

PyNumberMethods
249

PyNumberMethods

PyNumberMethods
249

PyNumberMethods
249

PyNumberMethods

PyNumberMethods
249

PyNumberMethods.
member), 249
PyNumberMethods.

.nb_negative (C member),

nb_or (C member), 249

.nb_power (C member), 249
.nb_remainder (C member),

.nb_reserved (C member),

.nb_rshift (C member), 249
.nb_subtract (C member),

nb_true_divide C

nb_xor (C member), 249

PyNumber_Absolute (C function), 90

308

Eupetniplo

The Python/C API, Anpooicuon 3.10.18

PyNumber_Add (C function), 89
PyNumber_And (C function), 90
PyNumber_AsSsize_t (C function), 92
PyNumber_Check (C function), 89
PyNumber_Divmod (C function), 90
PyNumber_Float (C function), 92
PyNumber_FloorDivide (C function), 90
PyNumber_InPlaceAdd (C function), 90
PyNumber_InPlaceAnd (C function), 91
PyNumber_InPlaceFloorDivide (C function),
91
PyNumber_InPlaceLshift (C function), 91
PyNumber_InPlaceMatrixMultiply
function), 91
PyNumber_ InPlaceMultiply (C function), 91
PyNumber_InPlaceOr (C function), 91
PyNumber_InPlacePower (C function), 91
PyNumber_InPlaceRemainder (C function), 91
PyNumber_InPlaceRshift (C function), 91
PyNumber_InPlaceSubtract (C function), 91
PyNumber_InPlaceTrueDivide (C function), 91
PyNumber_InPlaceXor (C function), 91
PyNumber_Index (C function), 92
PyNumber_Invert (C function), 90
PyNumber_Long (C function), 92
PyNumber_ Lshift (C function), 90
PyNumber_MatrixMultiply (C function), 89
PyNumber_Multiply (C function), 89
PyNumber_Negative (C function), 90
PyNumber_Or (C function), 90
PyNumber_Positive (C function), 90
PyNumber_Power (C function), 90
PyNumber_Remainder (C function), 90
PyNumber_Rshift (C function), 90
PyNumber_Subtract (C function), 89
PyNumber_ToBase (C function), 92
PyNumber_TrueDivide (C function), 90
PyNumber_Xor (C function), 90
PyOS_AfterFork (C function), 60
PyOS_AfterFork_Child (C function), 60
PyOS_AfterFork_Parent (C function), 59
PyOS_BeforeFork (C function), 59
PyOS_CheckStack (C function), 60
PyOS_FSPath (C function), 59
PyOS_InputHook (C var), 40
PyOS_ReadlineFunctionPointer (C var), 40
PyOS_double_to_string (C function), 76
PyOS_getsig (C function), 60
PyOS_setsig (C function), 60
PyOS_snprintf (C function), 76
PyOS_stricmp (C function), 77
PyOS_string_ to_double (C function), 76
PyOS_strnicmp (C function), 77
PyOS_vsnprintf (C function), 76
PyObject (Ctype), 218
PyObjectArenaAllocator (Ctype), 215
PyObject_ASCII (C function), 83
PyObject_AsCharBuffer (C function), 102

(c

PyObject_AsFileDescriptor (C function), 147
PyObject_AsReadBuffer (C function), 103
PyObject_AsWriteBuffer (C function), 103
PyObject_Bytes (C function), 83
PyObject_Call (C function), 87
PyObject_CallFunction (C function), 88
PyObject_CallFunctionObjArgs (C function),
88
PyObject_CallMethod (C function), 88
PyObject_CallMethodNoArgs (C function), 88
PyObject_CallMethodObjArgs (C function), 88
PyObject_CallMethodOneArqg (C function), 88
PyObject_CallNoArgs (C function), 87
PyObject_CallObject (C function), 87
PyObject_CallOneArqg (C function), 87
PyObject_Calloc (C function), 211
PyObject_CheckBuffer (C function), 101
PyObject_CheckReadBuffer (C function), 103
PyObject_ClearWeakRefs (C function), 159
PyObject_Del (C function), 217
PyObject_DelAttr (C function), 82
PyObject_DelAttrString (C function), 82
PyObject_DelItem (C function), 84
PyObject_Dir (C function), 84
PyObject_Format (C function), 83
PyObject_Free (C function), 211
PyObject_GC_Del (C function), 257
PyObject_GC_IsFinalized (C function), 257
PyObject_GC_IsTracked (C function), 257
PyObject_GC_New (C function), 257
PyObject_GC_NewVar (C function), 257
PyObject_GC_Resize (C function), 257
PyObject_GC_Track (C function), 257
PyObject_GC_UnTrack (C function), 257
PyObject_GenericGetAttr (C function), 82
PyObject_GenericGetDict (C function), 82
PyObject_GenericSetAttr (C function), 82
PyObject_GenericSetDict (C function), 82
PyObject_GetAIter (C function), 85
PyObject_GetArenaAllocator (C function),
215
PyObject_GetAttr (C function), 81
PyObject_GetAttrString (C function), 82
PyObject_GetBuffer (C function), 101
PyObject_GetItem (C function), 84
PyObject_GetIter (C function), 85
PyObject_HEAD (C macro), 218
PyObject_HEAD_INIT (C macro), 219
PyObject_HasAttr (C function), 81
PyObject_HasAttrString (C function), 81
PyObject_Hash (C function), 84
PyObject_HashNotImplemented (C function),
84
PyObject_IS_GC (C function), 257
PyObject_Init (C function), 217
PyObject_InitVar (C function), 217
PyObject_IsInstance (C function), 83
PyObject_IsSubclass (C function), 83

Eupetniplo

309

The Python/C API, Anpooicuon 3.10.18

PyObject_IsTrue (C function), 84
PyObject_Length (C function), 84
PyObject_LengthHint (C function), 84
PyObject_Malloc (C function), 210
PyObject_New (C function), 217
PyObject_NewVar (C function), 217
PyObject_Not (C function), 84
PyObject_Print (C function), 81
PyObject_Realloc (C function), 211
PyObject_Repr (C function), 83
PyObject_RichCompare (C function), 82
PyObject_RichCompareBool (C function), 82
PyObject_SetArenaAllocator (C function),
215
PyObject_SetAttr (C function), 82
PyObject_SetAttrString (C function), 82
PyObject_SetItem (C function), 84
PyObject_Size (C function), 84
PyObject_Str (C function), 83
PyObject_Type (C function), 84
PyObject_TypeCheck (C function), 84
PyObject_VAR_HEAD (C macro), 218
PyObject_Vectorcall (C function), 88
PyObject_VectorcallDict (C function), 89
PyObject_VectorcallMethod (C function), 89
PyObject._ob_next (C member), 230
PyObject._ob_prev (C member), 230
PyObject.ob_refecnt (C member), 229
PyObject.ob_type (C member), 229
PyPreConfig (C type), 190

PyPreConfig.PyPreConfig InitIsolatedConfig

(C function), 190

PyRun_InteractiveLoop (C function), 40
PyRun_InteractiveLoopFlags (C function), 40
PyRun_InteractiveOne (C function), 40
PyRun_InteractiveOneFlags (C function), 40
PyRun_SimpleFile (C function), 40
PyRun_SimpleFileEx (C function), 40
PyRun_SimpleFileExFlags (C function), 40
PyRun_SimpleString (C function), 40
PyRun_SimpleStringFlags (C function), 40
PyRun_String (C function), 41
PyRun_StringFlags (C function), 41
PySendResult (C type), 96

PySeqglIter_Check (C function), 155
PySeqglter_New (C function), 155
PySeqglter_Type (Cvar), 155
PySequenceMethods (C type), 250

PySequenceMethods.sqg ass_item c
member), 250

PySequenceMethods.sq concat (C member),
250

PySequenceMethods.sqg contains (e
member), 250

PySequenceMethods.sq _inplace_concat (C
member), 250

PySequenceMethods.sq _inplace_repeat (C
member), 251

PySequenceMethods.sq_ item (C member), 250

PySequenceMethods.sq length (C member),
250

PySequenceMethods.sq repeat (C member),
250

PySequence_Check (C function), 92

PyPreConfig.PyPreConfig_InitPythonConfiRySequence_Concat (C function), 92

(C function), 190
PyPreConfig.allocator (C member), 190
PyPreConfig.coerce_c_locale (C member),

190
PyPreConfig.coerce_c_locale_warn (o

member), 190
PyPreConfig.configure_locale (C member),

190
PyPreConfig.dev_mode (C member), 191
PyPreConfig.isolated (C member), 191

PySequence_Contains (C function), 93
PySequence_Count (C function), 93
PySequence_DelItem (C function), 93
PySequence_DelSlice (C function), 93
PySequence_Fast (C function), 93
PySequence_Fast_GET_ITEM (C function), 94
PySequence_Fast_GET_SIZE (C function), 94
PySequence_Fast_ITEMS (C function), 94
PySequence_GetItem (C function), 93
PySequence_GetItem(), 8

PyPreConfig.legacy_windows_fs_encoding PySequence_GetSlice (C function), 93

(C member), 191
PyPreConfig.parse_argv (C member), 191
PyPreConfig.use_environment (C member),

191
PyPreConfig.utf8_mode (C member), 191
PyProperty_Type (Cvar), 156
PyRun_AnyFile (C function), 39
PyRun_AnyFileEx (C function), 39
PyRun_AnyFileExFlags (C function), 39
PyRun_AnyFileFlags (C function), 39
PyRun_File (C function), 41
PyRun_FileEx (C function), 41
PyRun_FileExFlags (C function), 41
PyRun_FileFlags (C function), 41

PySequence_ITEM (C function), 94
PySequence_InPlaceConcat (C function), 92
PySequence_InPlaceRepeat (C function), 93
PySequence_Index (C function), 93
PySequence_Length (C function), 92
PySequence_List (C function), 93
PySequence_Repeat (C function), 92
PySequence_SetItem (C function), 93
PySequence_SetSlice (C function), 93
PySequence_Size (C function), 92
PySequence_Tuple (C function), 93
PySetObject (C type), 142

PySet_Add (C function), 143

PySet_Check (C function), 142

310

Eupetniplo

The Python/C API, Anpooicuon 3.10.18

PySet_CheckExact (C function), 142
PySet_Clear (C function), 143
PySet_Contains (C function), 143
PySet_Discard (C function), 143
PySet_GET_SIZE (C function), 143
PySet_New (C function), 143
PySet_Pop (C function), 143
PySet_Size (C function), 143
PySet_Type (Cvar), 142
PySignal_SetWakeupFd (C function), 53
PySlice_AdjustIndices (C function), 157
PySlice_Check (C function), 156
PySlice_GetIndices (C function), 156
PySlice_GetIndicesEx (C function), 156
PySlice_New (C function), 156
PySlice_Type (Cvar), 156
PySlice_Unpack (C function), 157
PyState_AddModule (C function), 155
PyState_FindModule (C function), 155
PyState_RemoveModule (C function), 155
PyStatus (C type), 189
PyStatus.PyStatus_Error (C function), 189
PyStatus.PyStatus_Exception (C function),
189
PyStatus.PyStatus_Exit (C function), 189
PyStatus.PyStatus_IsError (C function), 189
PyStatus.PyStatus_IsExit (C function), 189
PyStatus.PyStatus_NoMemory (C function),
189
PyStatus.PyStatus_0Ok (C function), 189
PyStatus.Py_ExitStatusException c
function), 189
PyStatus.err_msg (C member), 189
PyStatus.exitcode (C member), 189
PyStatus. func (C member), 189
PyStructSequence_Desc (Ctype), 137
PyStructSequence_Field (Ctype), 137
PyStructSequence_GET_ITEM (C function), 138
PyStructSequence_GetItem (C function), 138
PyStructSequence_InitType (C function), 137
PyStructSequence_InitType2 (C function),
137
PyStructSequence_New (C function), 138
PyStructSequence_NewType (C function), 137
PyStructSequence_SET_ITEM (C function), 138
PyStructSequence_SetItem (C function), 138
PyStructSequence_UnnamedField (C var),
137
PySys_AddAuditHook (C function), 63
PySys_AddWarnOption (C function), 62
PySys_AddWarnOptionUnicode (C function), 62
PySys_AddXOption (C function), 62
PySys_Audit (C function), 63
PySys_FormatStderr (C function), 62
PySys_FormatStdout (C function), 62
PySys_GetObject (C function), 62
PySys_GetXOptions (C function), 62
PySys_ResetWarnOptions (C function), 62

PySys_SetArgv (C function), 173
PySys_SetArgv (), 170
PySys_SetArgvEx (C function), 173
PySys_SetArgvEx (), 11,170
PySys_SetObject (C function), 62
PySys_SetPath (C function), 62
PySys_WriteStderr (C function), 62
PySys_WriteStdout (C function), 62
PyTzZInfo_Check (C function), 163
PyTZInfo_CheckExact (C function), 164
PyThreadState, 174
PyThreadState (Ctype), 176
PyThreadState_Clear (C function), 178
PyThreadState_Delete (C function), 178
PyThreadState_DeleteCurrent (C function),
178
PyThreadState_Get (C function), 177
PyThreadState_GetDict (C function), 180
PyThreadState_GetFrame (C function), 179
PyThreadState_GetID (C function), 179
PyThreadState_GetInterpreter (C function),
179
PyThreadState_New (C function), 178
PyThreadState_Next (C function), 184
PyThreadState_SetAsyncExc (C function), 180
PyThreadState_Swap (C function), 177
PyThread_ReInitTLS (C function), 186
PyThread_create_key (C function), 186
PyThread_delete_key (C function), 186
PyThread_delete_key_value (C function), 186
PyThread_get_key_value (C function), 186
PyThread_set_key_value (C function), 186
PyThread_tss_alloc (C function), 185
PyThread_tss_create (C function), 185
PyThread_tss_delete (C function), 185
PyThread_tss_free (C function), 185
PyThread_tss_get (C function), 186
PyThread_tss_is_created (C function), 185
PyThread_tss_set (C function), 185
PyTimeZone_FromOffset (C function), 164
PyTimeZone_FromOffsetAndName (C function),
164
PyTime_Check (C function), 163
PyTime_CheckExact (C function), 163
PyTime_FromTime (C function), 164
PyTime_FromTimeAndFold (C function), 164
PyTraceMalloc_Track (C function), 215
PyTraceMalloc_Untrack (C function), 215
PyTrace_CALL (Cvar), 183
PyTrace_C_CALL (Cvar), 183
PyTrace_C_EXCEPTION (C var), 183
PyTrace_C_RETURN (C var), 183
PyTrace_EXCEPTION (C var), 183
PyTrace_LINE (Cvar), 183
PyTrace_OPCODE (C var), 183
PyTrace_RETURN (C var), 183
PyTupleObject (Ctype), 136
PyTuple_Check (C function), 136

Eupetniplo

311

The Python/C API, Anpooicuon 3.10.18

PyTuple_CheckExact (C function), 136
PyTuple_GET_ITEM (C function), 136
PyTuple_GET_SIZE (C function), 136
PyTuple_GetItem (C function), 136
PyTuple_GetSlice (C function), 136
PyTuple_New (C function), 136
PyTuple_Pack (C function), 136
PyTuple_SET_ITEM (C function), 136
PyTuple_SetItem (C function), 136
PyTuple_SetItem(),7
PyTuple_Size (C function), 136
PyTuple_Type (Cvar), 136
PyTypeObject (Ctype), 105
PyTypeObject.tp_alloc (C member), 244
PyTypeObject.tp_as_async (C member), 232
PyTypeObject.tp_as_buffer (C member), 235
PyTypeObject.tp_as_mapping (C member),
233
PyTypeObject.
PyTypeObiject.

tp_as_number (C member), 233
tp_as_sequence (C member),

233

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_call (C member), 234

PyTypeObject

PyTypeObject.
.tp_dealloc (C member), 231

PyTypeObject

PyTypeObject.
.tp_descr_get (C member), 242
tp_descr_set (C member), 243
.tp_dict (C member), 242
tp_dictoffset (C member),

PyTypeObject

PyTypeObject.

PyTypeObject

PyTypeObject.

243
PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
.tp_iter (C member), 241

PyTypeObject

PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.
PyTypeObject.

240

PyTypeObject.

PyTypeObject.

tp_base (C member), 242
tp_bases (C member), 245

tp_basicsize (C member), 230

tp_cache (C member), 246
tp_clear (C member), 239

tp_del (C member), 246

.tp_doc (C member), 238

tp_finalize (C member), 246
tp_flags (C member), 235
tp_free (C member), 245
tp_getattr (C member), 232
tp_getattro (C member), 234
tp_getset (C member), 242
tp_hash (C member), 233
tp_init (C member), 243
tp_is_gc (C member), 245
tp_itemsize (C member), 230

tp_iternext (C member), 241
tp_members (C member), 241
tp_methods (C member), 241
tp_mro (C member), 245
tp_name (C member), 230
tp_new (C member), 244
tp_repr (C member), 233

tp_richcompare (C member),

PyTypeObject.tp_setattro (C member), 234
PyTypeObject.tp_str (C member), 234

PyTypeObject.tp_subclasses

246

(C member),

PyTypeObject.tp_traverse (C member), 238
PyTypeObject.tp_vectorcall (C member),

247

PyTypeObject.tp_vectorcall offset

member), 232

(c

PyTypeObject.tp_version_tag (C member),

246

PyTypeObject.tp_weaklist (C member), 246

PyTypeObject.tp_weaklistoffset

member), 240

(@

PyType_Check (C function), 105
PyType_CheckExact (C function), 105
PyType_ClearCache (C function), 105
PyType_FromModuleAndSpec (C function), 107
PyType_FromSpec (C function), 107
PyType_FromSpecWithBases (C function), 107
PyType_GenericAlloc (C function), 106
PyType_GenericNew (C function), 106
PyType_GetFlags (C function), 105
PyType_GetModule (C function), 106
PyType_GetModuleState (C function), 107

PyType_GetSlot (C function),

106

PyType_HasFeature (C function), 106
PyType_IS_GC (C function), 106
PyType_IsSubtype (C function), 106
PyType_Modified (C function), 106
PyType_Ready (C function), 106

PyType_Slot (Ctype), 108
PyType_Slot.PyType_Slot
member), 108

PyType_Slot.PyType_Slot.

108
PyType_Spec (C type), 107

PyType_Spec.PyType_Spec.

member), 107

PyType_Spec.PyType_Spec.

member), 107

PyType_Spec.PyType_Spec.

member), 107

PyType_Spec.PyType_Spec.

107
PyType_Spec.PyType_Spec
member), 107

PyType_Type (C var), 105

(«©

.pfunc

slot (C member),

basicsize (C
flags (c
itemsize c

name (C member),

.slots c

PyUnicodeDecodeError_Create (C function),

55

PyUnicodeDecodeError_GetEncoding

function), 55

(c

PyUnicodeDecodeError_GetEnd (C function),

55

PyUnicodeDecodeError_GetObject

tp_richcompare.Py_RETURN_RICHCOMF#RHon), 55
(C macro), 240

tp_setattr (C member), 232

PyUnicodeDecodeError_GetReason

function), 56

(e

(C

312

Eupetniplo

The Python/C API, Anpooicuon 3.10.18

PyUnicodeDecodeError_GetStart c
function), 55
PyUnicodeDecodeError_SetEnd (C function),

55

PyUnicodeDecodeError_SetReason c
function), 56
PyUnicodeDecodeError_SetStart c

function), 55
PyUnicodeEncodeError_Create (C function),
55
PyUnicodeEncodeError_GetEncoding
function), 55
PyUnicodeEncodeError_GetEnd (C function),
55

(Cc

PyUnicodeEncodeError_GetObject (c
function), 55

PyUnicodeEncodeError_GetReason (o
function), 56

PyUnicodeEncodeError_GetStart (C

function), 55
PyUnicodeEncodeError_SetEnd (C function),
55

PyUnicodeEncodeError_SetReason c
function), 56
PyUnicodeEncodeError_SetStart (C
function), 55
PyUnicodeObject (Ctype), 118
PyUnicodeTranslateError_Create (o
function), 55
PyUnicodeTranslateError_GetEnd (C
function), 55
PyUnicodeTranslateError_GetObject (C
function), 55
PyUnicodeTranslateError_GetReason (C
function), 56
PyUnicodeTranslateError_GetStart (o
function), 55
PyUnicodeTranslateError_SetEnd (o
function), 55
PyUnicodeTranslateError_SetReason (C
function), 56
PyUnicodeTranslateError_SetStart (o

function), 55
PyUnicode_1BYTE_DATA (C function), 118
PyUnicode_1BYTE_KIND (C macro), 119
PyUnicode_2BYTE_DATA (C function), 118
PyUnicode_2BYTE_KIND (C macro), 119
PyUnicode_4BYTE_DATA (C function), 118
PyUnicode_4BYTE_KIND (C macro), 119
PyUnicode_AS_DATA (C function), 119
PyUnicode_AS_UNICODE (C function), 119
PyUnicode_AsASCIIString (C function), 132
PyUnicode_AsCharmapString (C function), 133
PyUnicode_AsEncodedString (C function), 128
PyUnicode_AsLatinlString (C function), 132
PyUnicode_AsMBCSString (C function), 134
PyUnicode_AsRawUnicodeEscapeString (C

function), 132

PyUnicode_AsUCS4 (C function), 123
PyUnicode_AsUCS4Copy (C function), 123
PyUnicode_AsUTF8 (C function), 129
PyUnicode_AsUTF8AndSize (C function), 128
PyUnicode_AsUTF8String (C function), 128
PyUnicode_AsUTF16String (C function), 130
PyUnicode_AsUTF32String (C function), 129
PyUnicode_AsUnicode (C function), 124
PyUnicode_AsUnicodeAndSize (C function),

124
PyUnicode_AsUnicodeEscapeString c
function), 131

PyUnicode_AsWideChar (C function), 127
PyUnicode_AsWideCharString (C function),
127
PyUnicode_Check (C function), 118
PyUnicode_CheckExact (C function), 118
PyUnicode_Compare (C function), 135
PyUnicode_CompareWithASCIIString
function), 135
PyUnicode_Concat (C function), 134
PyUnicode_Contains (C function), 135
PyUnicode_CopyCharacters (C function), 123
PyUnicode_Count (C function), 135
PyUnicode_DATA (C function), 119
PyUnicode_Decode (C function), 128
PyUnicode_DecodeASCII (C function), 132
PyUnicode_DecodeCharmap (C function), 133
PyUnicode_DecodeFSDefault (C function), 126

(c

PyUnicode_DecodeFSDefaultAndSize (e
function), 126
PyUnicode_DecodeLatinl (C function), 132
PyUnicode_DecodelLocale (C function), 125
PyUnicode_DecodelLocaleAndSize c

function), 125
PyUnicode_DecodeMBCS (C function), 134
PyUnicode_DecodeMBCSStateful (C function),
134
PyUnicode_DecodeRawUnicodeEscape
function), 132
PyUnicode_DecodeUTF7 (C function), 131
PyUnicode_DecodeUTF7Stateful (C function),
131
PyUnicode_DecodeUTF8 (C function), 128
PyUnicode_DecodeUTF8Stateful (C function),
128
PyUnicode_DecodeUTF16 (C function), 130

(e

PyUnicode_DecodeUTFl6Stateful c
function), 130
PyUnicode_DecodeUTF32 (C function), 129
PyUnicode_DecodeUTF32Stateful (o
Sunction), 129
PyUnicode_DecodeUnicodeEscape (c

function), 131
PyUnicode_Encode (C function), 128
PyUnicode_EncodeASCII (C function), 132
PyUnicode_EncodeCharmap (C function), 133
PyUnicode_EncodeCodePage (C function), 134

Eupetniplo

313

The Python/C API, Anpooicuon 3.10.18

PyUnicode_EncodeFSDefault (C function), 126
PyUnicode_EncodeLatinl (C function), 132
PyUnicode_EncodeLocale (C function), 125
PyUnicode_EncodeMBCS (C function), 134
PyUnicode_EncodeRawUnicodeEscape (o
function), 132
PyUnicode_EncodeUTF7 (C function), 131
PyUnicode_EncodeUTF8 (C function), 129
PyUnicode_EncodeUTF16 (C function), 130
PyUnicode_EncodeUTF32 (C function), 129
PyUnicode_EncodeUnicodeEscape c
function), 131
PyUnicode_FSConverter (C function), 126
PyUnicode_FSDecoder (C function), 126
PyUnicode_Fill (C function), 123
PyUnicode_Find (C function), 135
PyUnicode_FindChar (C function), 135
PyUnicode_Format (C function), 135
PyUnicode_FromEncodedObject (C function),
123
PyUnicode_FromFormat (C function), 122
PyUnicode_FromFormatV (C function), 122
PyUnicode_FromKindAndData (C function), 121
PyUnicode_FromObject (C function), 125
PyUnicode_FromString (C function), 122
PyUnicode_FromString (), 140
PyUnicode_FromStringAndSize (C function),
121
PyUnicode_FromUnicode (C function), 124
PyUnicode_FromWideChar (C function), 127
PyUnicode_GET_DATA_SIZE (C function), 119
PyUnicode_GET_LENGTH (C function), 118
PyUnicode_GET_SIZE (C function), 119
PyUnicode_GetLength (C function), 123
PyUnicode_GetSize (C function), 124
PyUnicode_InternFromString (C function),
136
PyUnicode_InternInPlace (C function), 135
PyUnicode_IsIdentifier (C function), 120
PyUnicode_Join (C function), 134
PyUnicode_KIND (C function), 119
PyUnicode_MAX_CHAR_VALUE (C macro), 119
PyUnicode_New (C function), 121
PyUnicode_READ (C function), 119
PyUnicode_READY (C function), 118
PyUnicode_READ_CHAR (C function), 119
PyUnicode_ReadChar (C function), 123
PyUnicode_Replace (C function), 135
PyUnicode_RichCompare (C function), 135
PyUnicode_Split (C function), 134
PyUnicode_Splitlines (C function), 134
PyUnicode_Substring (C function), 123
PyUnicode_Tailmatch (C function), 134
PyUnicode_TransformDecimalToASCII (C
function), 124
PyUnicode_Translate (C function), 133
PyUnicode_TranslateCharmap (C function),
133

PyUnicode_Type (Cvar), 118
PyUnicode_WCHAR_KIND (C macro), 119
PyUnicode_WRITE (C function), 119
PyUnicode_WriteChar (C function), 123
PyVarObject (Ctype), 218
PyVarObject_HEAD_INIT (C macro), 219
PyVarObject .ob_size (C member), 230
PyVectorcall_Call (C function), 87
PyVectorcall_Function (C function), 86
PyVectorcall_NARGS (C function), 86
PyWeakref_Check (C function), 158
PyWeakref_CheckProxy (C function), 158
PyWeakref_CheckRef (C function), 158
PyWeakref_ GET_OBJECT (C function), 159
PyWeakref_GetObject (C function), 159
PyWeakref_NewProxy (C function), 158
PyWeakref_NewRef (C function), 158
PyWideStringList (C type), 188

PyWideStringList.PyWideStringList_Append

(C function), 188

PyWideStringList.PyWideStringList_Insert

(C function), 188
PyWideStringList.items (C member), 188
PyWideStringList.length (C member), 188
PyWrapper_New (C function), 156
Py_ABS (C macro), 4
Py_AddPendingCall (C function), 182
Py_AddPendingCall (), 182
Py_AtExit (C function), 64
Py_BEGIN_ALLOW_THREADS, 174
Py_BEGIN_ALLOW_THREADS (C macro), 178
Py_BLOCK_THREADS (C macro), 178
Py_BuildValue (C function), 74
Py_BytesMain (C function), 39
Py_BytesWarningFlag (C var), 168
Py_CHARMASK (C macro), 5
Py_CLEAR (C function), 46
Py_CompileString (C function), 41
Py_CompileString(),42
Py_CompileStringExFlags (C function), 41
Py_CompileStringFlags (C function), 41
Py_CompileStringObject (C function), 41
Py_DECREF (C function), 46
Py_DECREF (), 6
Py_DEPRECATED (C macro), 5
Py_DebugFlag (Cvar), 168
Py_DecRef (C function), 46
Py_DecodeLocale (C function), 60
Py_DontWriteBytecodeFlag (Cvar), 168
Py_END_ALLOW_THREADS, 174
Py_END_ALLOW_THREADS (C macro), 178
Py_Ellipsis (Cvar), 157
Py_EncodeLocale (C function), 61
Py_EndInterpreter (C function), 181
Py_EnterRecursiveCall (C function), 56
Py_Exit (C function), 63
Py_False (Cvar), 112
Py_FatalError (C function), 63

314

Eupetniplo

The Python/C API, Anpooicuon 3.10.18

Py_FatalError (), 173
Py_FdIsInteractive (C function), 59
Py_Finalize (C function), 170
Py_FinalizeEx (C function), 170
Py_FinalizeEx (), 64,170, 181
Py_FrozenFlag (Cvar), 168
Py_GETENV (C macro), 5
Py_GenericAlias (C function), 166
Py_GenericAliasType (Cvar), 166
Py_GetArgcArgv (C function), 205
Py_GetBuildInfo (C function), 173
Py_GetCompiler (C function), 173
Py_GetCopyright (C function), 173
Py_GetExecPrefix (C function), 171
Py_GetExecPrefix (), 11
Py_GetPath (C function), 172
Py_GetPath (), 11,171,172
Py_GetPlatform (C function), 172
Py_GetPrefix (C function), 171
Py_GetPrefix (), 11
Py_GetProgramFullPath (C function), 172
Py_GetProgramFullPath(), 11
Py_GetProgramName (C function), 171
Py_GetPythonHome (C function), 174
Py_GetVersion (C function), 172
Py_HashRandomizationFlag (C var), 168
Py_INCREF (C function), 45
Py_INCREF (), 6
Py_IS_TYPE (C function), 219
Py_IgnoreEnvironmentFlag (Cvar), 168
Py_IncRef (C function), 46
Py_Initialize (C function), 170
Py_Initialize(), 11,171, 181
Py_InitializeEx (C function), 170
Py_InitializeFromConfig (C function), 201
Py_InspectFlag (Cvar), 168
Py_InteractiveFlag (Cvar), 169
Py_TIs (C function), 218
Py_IsFalse (C function), 219
Py_IsInitialized (C function), 170
Py_IsInitialized(), Il
Py_TIsNone (C function), 218
Py_TIsTrue (C function), 218
Py_IsolatedFlag (Cvar), 169
Py_LIMITED_APTI (C macro), 13
Py_LeaveRecursiveCall (C function), 56
Py_LegacyWindowsFSEncodingFlag (C var),
169
Py_LegacyWindowsStdioFlag (Cvar), 169
Py_MAX (C macro), 4
Py_MEMBER_SIZE (C macro), 5
Py_MIN (C macro), 4
Py_Main (C function), 39
Py_NewInterpreter (C function), 181
Py_NewRef (C function), 45
Py_NoSiteFlag (Cvar), 169
Py_NoUserSiteDirectory (C var), 169
Py_None (C var), 108

Py_NotImplemented (C var), 81

Py_OptimizeFlag (C var), 169

Py_PRINT_RAW, 148

Py_PrelInitialize (C function), 191

Py_PrelInitializeFromArgs (C function), 192

Py_PreInitializeFromBytesArgs c
function), 191

Py_QuietFlag (Cvar), 169

Py_REFCNT (C function), 219

Py_RETURN_FALSE (C macro), 112

Py_RETURN_NONE (C macro), 108

Py_RETURN_NOTIMPLEMENTED (C macro), 81

Py_RETURN_TRUE (C macro), 112

Py_ReprEnter (C function), 56

Py_ReprLeave (C function), 56

Py_RunMain (C function), 204

Py_SET_REFCNT (C function), 219

Py_SET_SIZE (C function), 219

Py_SET_TYPE (C function), 219

Py_SIZE (C function), 219

Py_STRINGIFY (C macro), 5

Py_SetPath (C function), 172

Py_SetPath (), 172

Py_SetProgramName (C function), 171

Py_SetProgramName (), 11, 170172

Py_SetPythonHome (C function), 174

Py_SetStandardStreamEncoding (C function),
171

Py_TPFLAGS_BASETYPE (evowuatwuévny ueta-
PAntn), 235

Py_TPFLAGS_BASE_EXC_SUBCLASS (evowuatw-
uévn uetafintn), 236

Py_TPFLAGS_BYTES_SUBCLASS (evowuotwuévy
uetafinTr), 236

Py_TPFLAGS_DEFAULT
BAntn), 236

Py_TPFLAGS_DICT_SUBCLASS
uetafanti), 236

Py_TPFLAGS_DISALLOW_INSTANTIATION (ev-
owuatwuévn uetafintn), 237

Py_TPFLAGS_HAVE_FINALIZE (svo‘a)yam)uévn
uetafintn), 237

Py_TPFLAGS_HAVE_GC
PAntn), 236

Py_TPFLAGS_HAVE_VECTORCALL
uévn uetafintn), 237

Py _TPFLAGS_HEAPTYPE (svowuoatwuévny ueta-
BAnTn), 235

(evowuatwuévny ueta-

(evowuatwuévy

(evowuatwuévny ueta-

(evowuatw-

Py_TPFLAGS_IMMUTABLETYPE (evowuotwuévy
uetafintn), 237

Py_TPFLAGS_LIST_SUBCLASS (evowuatwuévy
uetafintr), 236

Py_TPFLAGS_LONG_SUBCLASS (svaa)uam)uévn

uetafinTi), 236
Py_TPFLAGS_MAPPING
PAntn), 237
Py_TPFLAGS_METHOD_DESCRIPTOR (evowuatw-
uévn uetafintn), 236

(evowuartwuévy ueto-

Eupetniplo

315

The Python/C API, Anpooicuon 3.10.18

Py_TPFLAGS_READY (svowuatwuévy uetafintn),
235

Py_TPFLAGS_READYING (evowuatwuévny ueta-
PAntn), 236

Py_TPFLAGS_SEQUENCE (evowuatwuévny ueta-
PAntn), 238

Py_TPFLAGS_TUPLE_SUBCLASS (evowuatwuévn
uetafinTi), 236

Py_TPFLAGS_TYPE_SUBCLASS
uetafinTi), 236

Py_TPFLAGS_UNICODE_SUBCLASS
wévn uetafintn), 236

Py_TYPE (C function), 219

Py_True (Cvar), 112

Py_UCS1 (Ctype), 118

Py_UCS2 (Ctype), 118

Py_UCS4 (Ctype), 118

Py_UNBLOCK_THREADS (C macro), 178

Py_UNICODE (Ctype), 118

(evowuatwuévy

(evewuatw-

Py_buffer.ndim (C member), 97

Py_buffer.ob]j (C member), 97

Py_buffer.readonly (C member), 97

Py_buffer.shape (C member), 98

Py_buffer.strides (C member), 98

Py_buffer.suboffsets (C member), 98

Py_complex (Ctype), 113

Py_eval_input (Cvar), 42

Py_file_input (Cvar), 42

Py_mod_create (Cmacro), 151

Py_mod_create.create_module (C function),
151

Py_mod_exec (C macro), 152

Py_mod_exec.exec_module (C function), 152

Py_single_input (Cvar), 42

Py_ssize_t (Ctype), 9

Py_tracefunc (Ctype), 183

Py_tss_NEEDS_INIT (C macro), 185

Py_tss_t (Ctype), 185

Py_UNICODE_ISALNUM (C function), 120 Python 3000, 274
Py_UNICODE_ISALPHA (C function), 120 Python Enhancement Proposals
Py_UNICODE_ISDECIMAL (C function), 120 PEP 1,274
Py_UNICODE_ISDIGIT (C function), 120 PEP 7,3,5
Py_UNICODE_ISLINEBREAK (C function), 120 PEP 238,43,268
Py_UNICODE_ISLOWER (C function), 120 PEP 278,277
Py_UNICODE_ISNUMERIC (C function), 120 PEP 302,268,271
Py_UNICODE_ISPRINTABLE (C function), 120 PEP 343,266
Py_UNICODE_ISSPACE (C function), 120 PEP 353,9
Py_UNICODE_ISTITLE (C function), 120 PEP 362,264,274
Py_UNICODE_ISUPPER (Cfunction), 120 PEP 383, 125,126
Py_UNICODE_IS_HIGH_SURROGATE (C macro), PEP 387,13

121 PEP 393,117,124
Py_UNICODE_IS_LOW_SURROGATE (C macro), PEP 411,274

121 PEP 420, 268,273,274
Py_UNICODE_IS_SURROGATE (C macro), 121 PEP 432,205
Py_UNICODE_JOIN_SURROGATES (C macro), 121 PEP 442,247
Py_UNICODE_TODECIMAL (C function), 121 PEP 443,269
Py_UNICODE_TODIGIT (C function), 121 PEP 451, 151,268
Py_UNICODE_TOLOWER (C function), 120 PEP 483,269
Py_UNICODE_TONUMERIC (C function), 121 PEP 484,263, 268, 269, 277
Py_UNICODE_TOTITLE (Cfunction), 121 PEP 489, 152
Py_UNICODE_TOUPPER (C function), 121 PEP 492, 264, 266
Py_UNREACHABLE (C macro), 4 PEP 498,267
Py_UNUSED (C macro), 5 PEP 519,274
Py_UnbufferedStdioFlag (C var), 169 PEP 523,179, 180
Py_VISIT (C function), 258 PEP 525, 264
Py_VaBuildvalue (C function), 75 PEP 526, 263,277
Py_VerboseFlag (Cvar), 169 PEP 528, 169, 197
Py_XDECREF (C function), 46 PEP 529, 126, 169
Py_XDECREF (), 11 PEP 538,203
Py_XINCREF (C function), 45 PEP 539, 185
Py_XNewRef (C function), 45 PEP 540, 203
Py_buffer (Ctype), 97 PEP 552,195
Py_buffer.buf (C member), 97 PEP 578,63
Py_buffer. format (C member), 97 PEP 585,269
Py_buffer.internal (C member), 98 PEP 587, 187
Py_buffer.itemsize (C member), 97 PEP 590, 85
Py_buffer.len (C member), 97 PEP 623,117
316 Eupetniplo

The Python/C API, Anpooicuon 3.10.18

PEP
PEP
PEP
PEP
PEP

634,238
3116,277
3119, 83,84
3121, 149
3147, 66

PEP 3151,58

PEP 3155,275
Pythonic, 274
SIGINT, 53
SIZE_MAX, 111
SystemError (built-in exception), 148, 149
ULONG_MAX, 111
Zen tng¢ Python, 277
_PyBytes_Resize (C function), 116
_PyCFunctionFast (Ctype), 220
_PyCFunctionFastWithKeywords (C type), 220
_PyFrameEvalFunction (Ctype), 179
_PyInterpreterState_GetEvalFrameFunc

(C function), 179
_PyInterpreterState_SetEvalFrameFunc
(C function), 179

_PyObject_New (C function), 217
_PyObject_NewVar (C function), 217
_PyTuple_Resize (C function), 137
_Py_InitializeMain (C function), 205
_Py_NoneStruct (Cvar), 218
_Py_c_diff (C function), 113
_Py_c_neqg (C function), 113
_Py_c_pow (C function), 113
_Py_c_prod (C function), 113
_Py_c_quot (C function), 113
_Py_c_sum (C function), 113
_ _PYVENV_LAUNCHER_ , 194, 199
__all__ (package variable), 64
__dict__ (module attribute), 148
__doc__ (module attribute), 148
_ file_ (module attribute), 148, 149
_ future_ , 268
__import___

evowpatwpévn ouvdptnorn, 64
_ loader__ (module attribute), 148
__main_

povdada, 11, 170, 181
__name___ (module attribute), 148
__package__ (module attribute), 148
__slots_ ,275
_frozen (C struct), 66
_inittab (C struct), 67
_thread

povdada, 176
abort (), 63
abs

evowpatTwpévn ouvdptnon, 90
allocfunc (C type), 253
annotation, 263
annotation petafAntnig, 277
argv (in module sys), 173
ascii

evowpatwpévn ouvaptnon, 83
awaitable, 264
binaryfunc (C type), 254
buffer interface

(see buffer protocol), 96
buffer object

(see buffer protocol), 96
buffer protocol, 96
builtins

povdda, 11, 170, 181
bytearray

avtikelpevo, 116
bytecode, 265
bytes

avtikelpevo, 114

evowpatwpévn ouvaptnon, 83
bytes-like avtikeipeva, 265
callable, 265
callback, 265
calloc (), 207
classmethod

evowpatwpévn ouvdaptnon, 222
cleanup functions, 64
close () (in module os), 181
code object, 146
coercion, 265
compile

evowpatwpévn ouvaptnon, 65
complex number

avtikeilupevo, 113
context petaBAntn, 266
contiguous, 99, 266
copyright (in module sys), 173
coroutine, 266
coroutine ouvdptnon, 266
decorator, 266
descrget func (C type), 253
descriptor, 266
descrsetfunc (Ctype), 253
destructor (Ctype), 253
dictionary

avtikelilpevo, 139
divmod

evowpatwpévn ouvdaptnon, 90
docstring, 267
duck-typing, 267
exc_info () (in module sys), 9
executable (in module sys), 172
exit (), 64
f-string, 267
file

avtikelpevo, 147
finder, 268
float

evowpatwpévn ouvdptnorn, 92
floating point

avtikelilpevo, 112
free (), 207

Eupetniplo

317

The Python/C API, Anpooicuon 3.10.18

freefunc (C type), 253 special, 276
freeze utility, 67 avtikeilpevo, 145
frozenset module, 272
avtiketipevo, 142 search path, 11, 170, 172
function avtikelpevo, 148
avtikeipevo, 144 module eméxtaoncg, 267
generator, 268 modules (in module sys), 64, 170
generator expression, 269 mutable, 272
generator iterator, 269 named tuple, 272
generator éxuppaon, 269 namespace, 272
getattrfunc (Ctype), 253 nested scope, 273
getattrofunc (C type), 253 newfunc (C type), 253
getbufferproc (Ctype), 253 numeric
getiterfunc (Ctype), 253 avtikeilpevo, 109
global interpreter lock, 174,269 object
hash code, 146
evowpatwpévn ouvdaptnon, 84, 233 objobjargproc (C type), 254
hash-based pyc, 269 objobjproc (C type), 254
hashable, 269 package variable
hashfunc (C type), 253 _all_ .64
immutable, 270 path
incr_item(), 10, 11 module search, 11, 170, 172
initproc (Ctype), 253 path (in module sys), 11, 170, 172
inquiry (C type), 258 path based finder, 274
instancemethod path entry, 274
avtikeilpevo, 145 path entry finder, 274
int path entry hook, 274
evowpatwpévn ouvdptnorn, 92 path-like avtixkeipevo, 274
integer platform (in module sys), 173
avtiketipevo, 109 pow
interpreted, 270 evowpatwpévn ouvdptnon, 90, 91
interpreter lock, 174 provisional APIT, 274
iterable, 270 provisional mnaxéTo, 274
iterator, 270 realloc (), 207
iternextfunc (Ctype), 253 releasebufferproc (Ctype), 254
lambda, 271 repr
len evowpatwpévn ouvdptnon, 83, 233
evowpatwpévn ouvaptnon, 84, 92,94, 138, reprfunc (C type), 253
141, 143 richcmpfunc (C type), 253
lenfunc (C type), 253 sdterr
list stdin stdout, 171
avtikeipevo, 138 search
list comprehension, 271 path, module, 11, 170, 172
loader, 271 sendfunc (C type), 254
lock, interpreter, 174 sequence
long integer avtikelpevo, 114
avtiketipevo, 109 set
magic avtikelpevo, 142
method, 271 set comprehension, 276
main (), 171,173 set_all(),8
malloc (), 207 setattrfunc (Ctype), 253
mapping, 271 setattrofunc (Ctype), 253
avtiketipevo, 139 setswitchinterval () (in module sys), 174
memoryview signal
avtikeipevo, 157 povdé8a, 53
meta path finder, 272 slice, 276
method special
magic, 271 method, 276

318 Eupetniplo

The Python/C API, Anpooicuon 3.10.18

ssizeargfunc (C type), 254
ssizeobjargproc (C type), 254
staticmethod

evowpatwpévn ouvdptnon, 222
stderr (in module sys), 181
stdin

stdout sdterr, 171
stdin (in module sys), 181
stdout

sdterr, stdin, 171
stdout (in module sys), 181
strerror (), 48
string

PyObject_Str (C function), 83
strong reference, 276

sum_list(),8
sum_sequence (), 9, 10
sys

povdd8a, 11, 170, 181
ternaryfunc (C type), 254
traverseproc (Ctype), 258
tuple

avtikeipevo, 136

evowpatwpévn ouvdptnon, 93, 139
type

avtikeilpevo, 6, 105

evowpatwpévn ocuvaptnon, 84
type alias, 276
type hint, 277
unaryfunc (C type), 254
vectorcallfunc (Ctype), 85
version (in module sys), 172, 173
virtual environment, 277
virtual machine, 277
visitproc (C type), 258

A

aképalra Srailpeon, 268
akxoAoubia, 275
avayvwplopévo ovoua, 275
avtikeipevo, 273
Capsule, 159
None, 108
bytearray, 116
bytes, 114
complex number, 113
dictionary, 139
file, 147
floating point, 112
frozenset, 142
function, 144
instancemethod, 145
integer, 109
list, 138
long integer, 109
mapping, 139
memoryview, 157
method, 145

module, 148

numeric, 109

sequence, 114

set, 142

tuple, 136

type, 6, 105
avtikelpevo apyeiou, 267
avtikelpevo mou poirdlel pe apyetlo, 267
apyelo xelpévou, 276
acUyxpovog generator, 264
aocUyxpovog generator iterator, 264
acuyypovog iterable, 264
acuyyxpovog iterator, 264
acuyyxpovoc SirayxyeilploTng context, 264
apnenuévn Pacikn kidon, 263

r

yevikn ouvdptnorn, 269
yevikdg tunog, 269

A

Saveilkn avawpopd, 265
8rAwon, 276
Sra8pactikdg, 270
Sirayeilplotig context, 266
SuaBixkd apyeto, 265

E

e18ikn pébodog, 276
eltoaydépevo path, 270
eloaywyéag, 270
eltoaywyn, 270
éxyppaon, 267
evowpatTwpévn ouvdptnon

_ _import_ ,64

abs, 90

ascii, 83

bytes, 83

classmethod, 222

compile, 65

divmod, 90

float, 92

hash, 84, 233

int, 92

len, 84, 92,94, 138, 141, 143

pow, 90, 91

repr, 83,233

staticmethod, 222

tuple, 93, 139

type, 84

K

xaboAlxég véeg ypappég, 277
kxavovikd mnaxéto, 275
xatavonon Ae&ikou, 267
kAdon, 265

kAdon véou OTUA, 273
xwdixomnoinon xeilpévou, 276

Eupetniplo

319

The Python/C API, Anpooicuon 3.10.18

xwdlkomoinon ouvotnuatoc apyelwv
xeilplrotTng owpaipdtwv, 267

Xxatu

A

AeZrxd, 267
AlozTa, 271

M

payikn pébodocg, 271

névodog, 272

peta-xAdon, 272

petaBAntrh xAdong, 265

peTaBAnT) neplBAAAOVTOC
PATH, 11
PYTHON*, 168
PYTHONCOERCECLOCALE, 203
PYTHONDEBRUG, 168, 198
PYTHONDONTWRITEBYTECODE, 168, 201
PYTHONDUMPREF'S, 195, 230
PYTHONEXECUTABLE, 199
PYTHONFAULTHANDLER, 195
PYTHONHASHSEED, 168, 196
PYTHONHOME, 11, 168, 174, 196
PYTHONINSPECT, 169, 196
PYTHONIOENCODING, 171, 200
PYTHONLEGACYWINDOWSFSENCODING,

191

PYTHONLEGACYWINDOWSSTDIO, 169, 197
PYTHONMALLOC, 208, 211, 213, 214
PYTHONMALLOCSTATS, 197, 208
PYTHONNOUSERSITE, 169, 200
PYTHONOPTIMIZE, 169, 198
PYTHONPATH, 11, 168, 197
PYTHONPLATLIBDIR, 197
PYTHONPROFILEIMPORTTIME, 196
PYTHONPYCACHEPREFIX, 199
PYTHONTRACEMALLOC, 200
PYTHONUNBUFFERED, 169, 194
PYTHONUTFS, 191, 203
PYTHONVERBOSE, 169, 201
PYTHONWARNINGS, 201
__PYVENV_LAUNCHER

piya8ikde apirbpdc, 266

169,

, 194, 199

povada
__main_ , 11,170, 181
_thread, 176
builtins, 11,170, 181
signal, 53

sys, 11, 170, 181
pova8ikd dispatch, 276

O

bplona, 263

oplopa keyword, 271
6propa Béong, 274
oun Aefikoy, 267

M

nakéto, 273

naxéTo namespace, 273
napduetpog, 273
nAnfoc avaypopdg, 275

>

oelpd avdiuong peboédwv, 272

ouAAoyry amopplpdtwv, 268

oupBolocelpd TPLOAWV €l10aywyLlkwv, 276
ouvdptnon, 268

ouvdptnon annotation, 268

ouvdptnon key, 271

T

Teppatiopdc Aeittoupylag Sirepunvéa, 270
Texvikéc npodiraypapéc module, 272
Tuipa, 274

Tomikn xwdikxomoinon, 271

TUnocg, 276

X

XapaktTneloTiko, 264

320

Eupetniplo

	Introduction
	Coding standards
	Include Files
	Useful macros
	Objects, Types and Reference Counts
	Reference Counts
	Types

	Exceptions
	Embedding Python
	Debugging Builds

	C API Stability
	Stable Application Binary Interface
	Limited API Scope and Performance
	Limited API Caveats

	Platform Considerations
	Contents of Limited API

	The Very High Level Layer
	Reference Counting
	Exception Handling
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Exception Objects
	Unicode Exception Objects
	Recursion Control
	Standard Exceptions
	Standard Warning Categories

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	Parsing arguments
	Building values

	String conversion and formatting
	Reflection
	Codec registry and support functions
	Codec lookup API
	Registry API for Unicode encoding error handlers

	Abstract Objects Layer
	Object Protocol
	Call Protocol
	The tp_call Protocol
	The Vectorcall Protocol
	Object Calling API
	Call Support API

	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol
	Buffer structure
	Buffer request types
	Complex arrays
	Buffer-related functions

	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Type Objects
	The None Object

	Numeric Objects
	Integer Objects
	Boolean Objects
	Floating Point Objects
	Complex Number Objects

	Sequence Objects
	Bytes Objects
	Byte Array Objects
	Unicode Objects and Codecs
	Tuple Objects
	Struct Sequence Objects
	List Objects

	Container Objects
	Dictionary Objects
	Set Objects

	Function Objects
	Function Objects
	Instance Method Objects
	Method Objects
	Cell Objects
	Code Objects

	Other Objects
	File Objects
	Module Objects
	Iterator Objects
	Descriptor Objects
	Slice Objects
	Ellipsis Object
	MemoryView objects
	Weak Reference Objects
	Capsules
	Generator Objects
	Coroutine Objects
	Context Variables Objects
	DateTime Objects
	Objects for Type Hinting

	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Releasing the GIL from extension code
	Non-Python created threads
	Cautions about fork()
	High-level API
	Low-level API

	Sub-interpreter support
	Bugs and caveats

	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support
	Thread Local Storage Support
	Thread Specific Storage (TSS) API
	Thread Local Storage (TLS) API

	Python Initialization Configuration
	Example
	PyWideStringList
	PyStatus
	PyPreConfig
	Preinitialize Python with PyPreConfig
	PyConfig
	Initialization with PyConfig
	Isolated Configuration
	Python Configuration
	Python Path Configuration
	Py_RunMain()
	Py_GetArgcArgv()
	Multi-Phase Initialization Private Provisional API

	Memory Management
	Overview
	Allocator Domains
	Raw Memory Interface
	Memory Interface
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	Debug hooks on the Python memory allocators
	The pymalloc allocator
	Customize pymalloc Arena Allocator

	tracemalloc C API
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Base object types and macros
	Implementing functions and methods
	Accessing attributes of extension types

	Type Objects
	Quick Reference
	PyTypeObject Definition
	PyObject Slots
	PyVarObject Slots
	PyTypeObject Slots
	Static Types
	Heap Types

	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	Slot Type typedefs
	Examples
	Supporting Cyclic Garbage Collection
	Controlling the Garbage Collector State

	API and ABI Versioning
	Γλωσσάρι
	About these documents
	Contributors to the Python Documentation

	Ιστορία και Άδεια
	Η ιστορία του λογισμικού
	Όροι και προϋποθέσεις για την πρόσβαση ή την χρήση της Python με άλλους τρόπους
	PSF LICENSE AGREEMENT FOR PYTHON 3.10.18
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ BEOPEN.COM ΓΙΑ PYTHON 2.0
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CNRI ΓΙΑ PYTHON 1.6.1
	ΣΥΜΦΩΝΙΑ ΑΔΕΙΑΣ CWI ΓΙΑ PYTHON 0.9.0 ΕΩΣ 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.10.18 DOCUMENTATION

	Άδειες και Ευχαριστίες για Ενσωματωμένο Λογισμικό
	Mersenne Twister
	Sockets
	Ασύγχρονες socket υπηρεσίες
	Διαχείριση Cookie
	Ανίχνευση εκτέλεσης
	Συναρτήσεις UUencode και UUdecode
	Κλήσεις Απομακρυσμένης Διαδικασίας XML
	test_epoll
	Επιλογή kqueue
	SipHash24
	strtod και dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N σουίτα δοκιμής
	Audioop

	Copyright
	Ευρετήριο

