

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	

 |

Python Documentation contents

	What’s New in Python
	What’s New In Python 3.7
	Summary – Release Highlights

	New Features
	PEP 563: Postponed Evaluation of Annotations

	PEP 538: Legacy C Locale Coercion

	PEP 540: Forced UTF-8 Runtime Mode

	PEP 553: Built-in breakpoint()

	PEP 539: New C API for Thread-Local Storage

	PEP 562: Customization of Access to Module Attributes

	PEP 564: New Time Functions With Nanosecond Resolution

	PEP 565: Show DeprecationWarning in __main__

	PEP 560: Core Support for typing module and Generic Types

	PEP 552: Hash-based .pyc Files

	PEP 545: Python Documentation Translations

	Development Runtime Mode: -X dev

	Other Language Changes

	New Modules
	contextvars

	dataclasses

	importlib.resources

	Improved Modules
	argparse

	asyncio

	binascii

	calendar

	collections

	compileall

	concurrent.futures

	contextlib

	cProfile

	crypt

	datetime

	dbm

	decimal

	dis

	distutils

	enum

	functools

	gc

	hmac

	http.client

	http.server

	idlelib and IDLE

	importlib

	io

	ipaddress

	itertools

	locale

	logging

	math

	mimetypes

	msilib

	multiprocessing

	os

	pathlib

	pdb

	py_compile

	pydoc

	queue

	re

	signal

	socket

	socketserver

	sqlite3

	ssl

	string

	subprocess

	sys

	time

	tkinter

	tracemalloc

	types

	unicodedata

	unittest

	unittest.mock

	urllib.parse

	uu

	uuid

	warnings

	xml

	xml.etree

	xmlrpc.server

	zipapp

	zipfile

	C API Changes

	Build Changes

	Optimizations

	Other CPython Implementation Changes

	Deprecated Python Behavior

	Deprecated Python modules, functions and methods
	aifc

	asyncio

	collections

	dbm

	enum

	gettext

	importlib

	locale

	macpath

	threading

	socket

	ssl

	sunau

	sys

	wave

	Deprecated functions and types of the C API

	Platform Support Removals

	API and Feature Removals

	Module Removals

	Windows-only Changes

	Porting to Python 3.7
	Changes in Python Behavior

	Changes in the Python API

	Changes in the C API

	CPython bytecode changes

	Windows-only Changes

	Other CPython implementation changes

	Notable changes in Python 3.7.1

	Notable changes in Python 3.7.2

	What’s New In Python 3.6
	Summary – Release highlights

	New Features
	PEP 498: Formatted string literals

	PEP 526: Syntax for variable annotations

	PEP 515: Underscores in Numeric Literals

	PEP 525: Asynchronous Generators

	PEP 530: Asynchronous Comprehensions

	PEP 487: Simpler customization of class creation

	PEP 487: Descriptor Protocol Enhancements

	PEP 519: Adding a file system path protocol

	PEP 495: Local Time Disambiguation

	PEP 529: Change Windows filesystem encoding to UTF-8

	PEP 528: Change Windows console encoding to UTF-8

	PEP 520: Preserving Class Attribute Definition Order

	PEP 468: Preserving Keyword Argument Order

	New dict implementation

	PEP 523: Adding a frame evaluation API to CPython

	PYTHONMALLOC environment variable

	DTrace and SystemTap probing support

	Other Language Changes

	New Modules
	secrets

	Improved Modules
	array

	ast

	asyncio

	binascii

	cmath

	collections

	concurrent.futures

	contextlib

	datetime

	decimal

	distutils

	email

	encodings

	enum

	faulthandler

	fileinput

	hashlib

	http.client

	idlelib and IDLE

	importlib

	inspect

	json

	logging

	math

	multiprocessing

	os

	pathlib

	pdb

	pickle

	pickletools

	pydoc

	random

	re

	readline

	rlcompleter

	shlex

	site

	sqlite3

	socket

	socketserver

	ssl

	statistics

	struct

	subprocess

	sys

	telnetlib

	time

	timeit

	tkinter

	traceback

	tracemalloc

	typing

	unicodedata

	unittest.mock

	urllib.request

	urllib.robotparser

	venv

	warnings

	winreg

	winsound

	xmlrpc.client

	zipfile

	zlib

	Optimizations

	Build and C API Changes

	Other Improvements

	Deprecated
	New Keywords

	Deprecated Python behavior

	Deprecated Python modules, functions and methods
	asynchat

	asyncore

	dbm

	distutils

	grp

	importlib

	os

	re

	ssl

	tkinter

	venv

	Deprecated functions and types of the C API

	Deprecated Build Options

	Removed
	API and Feature Removals

	Porting to Python 3.6
	Changes in ‘python’ Command Behavior

	Changes in the Python API

	Changes in the C API

	CPython bytecode changes

	Notable changes in Python 3.6.2
	New make regen-all build target

	Removal of make touch build target

	Notable changes in Python 3.6.4

	Notable changes in Python 3.6.5

	Notable changes in Python 3.6.7

	What’s New In Python 3.5
	Summary – Release highlights

	New Features
	PEP 492 - Coroutines with async and await syntax

	PEP 465 - A dedicated infix operator for matrix multiplication

	PEP 448 - Additional Unpacking Generalizations

	PEP 461 - percent formatting support for bytes and bytearray

	PEP 484 - Type Hints

	PEP 471 - os.scandir() function – a better and faster directory iterator

	PEP 475: Retry system calls failing with EINTR

	PEP 479: Change StopIteration handling inside generators

	PEP 485: A function for testing approximate equality

	PEP 486: Make the Python Launcher aware of virtual environments

	PEP 488: Elimination of PYO files

	PEP 489: Multi-phase extension module initialization

	Other Language Changes

	New Modules
	typing

	zipapp

	Improved Modules
	argparse

	asyncio

	bz2

	cgi

	cmath

	code

	collections

	collections.abc

	compileall

	concurrent.futures

	configparser

	contextlib

	csv

	curses

	dbm

	difflib

	distutils

	doctest

	email

	enum

	faulthandler

	functools

	glob

	gzip

	heapq

	http

	http.client

	idlelib and IDLE

	imaplib

	imghdr

	importlib

	inspect

	io

	ipaddress

	json

	linecache

	locale

	logging

	lzma

	math

	multiprocessing

	operator

	os

	pathlib

	pickle

	poplib

	re

	readline

	selectors

	shutil

	signal

	smtpd

	smtplib

	sndhdr

	socket

	ssl
	Memory BIO Support

	Application-Layer Protocol Negotiation Support

	Other Changes

	sqlite3

	subprocess

	sys

	sysconfig

	tarfile

	threading

	time

	timeit

	tkinter

	traceback

	types

	unicodedata

	unittest

	unittest.mock

	urllib

	wsgiref

	xmlrpc

	xml.sax

	zipfile

	Other module-level changes

	Optimizations

	Build and C API Changes

	Deprecated
	New Keywords

	Deprecated Python Behavior

	Unsupported Operating Systems

	Deprecated Python modules, functions and methods

	Removed
	API and Feature Removals

	Porting to Python 3.5
	Changes in Python behavior

	Changes in the Python API

	Changes in the C API

	Notable changes in Python 3.5.4
	New make regen-all build target

	Removal of make touch build target

	What’s New In Python 3.4
	Summary – Release Highlights

	New Features
	PEP 453: Explicit Bootstrapping of PIP in Python Installations
	Bootstrapping pip By Default

	Documentation Changes

	PEP 446: Newly Created File Descriptors Are Non-Inheritable

	Improvements to Codec Handling

	PEP 451: A ModuleSpec Type for the Import System

	Other Language Changes

	New Modules
	asyncio

	ensurepip

	enum

	pathlib

	selectors

	statistics

	tracemalloc

	Improved Modules
	abc

	aifc

	argparse

	audioop

	base64

	collections

	colorsys

	contextlib

	dbm

	dis

	doctest

	email

	filecmp

	functools

	gc

	glob

	hashlib

	hmac

	html

	http

	idlelib and IDLE

	importlib

	inspect

	ipaddress

	logging

	marshal

	mmap

	multiprocessing

	operator

	os

	pdb

	pickle

	plistlib

	poplib

	pprint

	pty

	pydoc

	re

	resource

	select

	shelve

	shutil

	smtpd

	smtplib

	socket

	sqlite3

	ssl

	stat

	struct

	subprocess

	sunau

	sys

	tarfile

	textwrap

	threading

	traceback

	types

	urllib

	unittest

	venv

	wave

	weakref

	xml.etree

	zipfile

	CPython Implementation Changes
	PEP 445: Customization of CPython Memory Allocators

	PEP 442: Safe Object Finalization

	PEP 456: Secure and Interchangeable Hash Algorithm

	PEP 436: Argument Clinic

	Other Build and C API Changes

	Other Improvements

	Significant Optimizations

	Deprecated
	Deprecations in the Python API

	Deprecated Features

	Removed
	Operating Systems No Longer Supported

	API and Feature Removals

	Code Cleanups

	Porting to Python 3.4
	Changes in ‘python’ Command Behavior

	Changes in the Python API

	Changes in the C API

	Changed in 3.4.3
	PEP 476: Enabling certificate verification by default for stdlib http clients

	What’s New In Python 3.3
	Summary – Release highlights

	PEP 405: Virtual Environments

	PEP 420: Implicit Namespace Packages

	PEP 3118: New memoryview implementation and buffer protocol documentation
	Features

	API changes

	PEP 393: Flexible String Representation
	Functionality

	Performance and resource usage

	PEP 397: Python Launcher for Windows

	PEP 3151: Reworking the OS and IO exception hierarchy

	PEP 380: Syntax for Delegating to a Subgenerator

	PEP 409: Suppressing exception context

	PEP 414: Explicit Unicode literals

	PEP 3155: Qualified name for classes and functions

	PEP 412: Key-Sharing Dictionary

	PEP 362: Function Signature Object

	PEP 421: Adding sys.implementation
	SimpleNamespace

	Using importlib as the Implementation of Import
	New APIs

	Visible Changes

	Other Language Changes

	A Finer-Grained Import Lock

	Builtin functions and types

	New Modules
	faulthandler

	ipaddress

	lzma

	Improved Modules
	abc

	array

	base64

	binascii

	bz2

	codecs

	collections

	contextlib

	crypt

	curses

	datetime

	decimal
	Features

	API changes

	email
	Policy Framework

	Provisional Policy with New Header API

	Other API Changes

	ftplib

	functools

	gc

	hmac

	http

	html

	imaplib

	inspect

	io

	itertools

	logging

	math

	mmap

	multiprocessing

	nntplib

	os

	pdb

	pickle

	pydoc

	re

	sched

	select

	shlex

	shutil

	signal

	smtpd

	smtplib

	socket

	socketserver

	sqlite3

	ssl

	stat

	struct

	subprocess

	sys

	tarfile

	tempfile

	textwrap

	threading

	time

	types

	unittest

	urllib

	webbrowser

	xml.etree.ElementTree

	zlib

	Optimizations

	Build and C API Changes

	Deprecated
	Unsupported Operating Systems

	Deprecated Python modules, functions and methods

	Deprecated functions and types of the C API

	Deprecated features

	Porting to Python 3.3
	Porting Python code

	Porting C code

	Building C extensions

	Command Line Switch Changes

	What’s New In Python 3.2
	PEP 384: Defining a Stable ABI

	PEP 389: Argparse Command Line Parsing Module

	PEP 391: Dictionary Based Configuration for Logging

	PEP 3148: The concurrent.futures module

	PEP 3147: PYC Repository Directories

	PEP 3149: ABI Version Tagged .so Files

	PEP 3333: Python Web Server Gateway Interface v1.0.1

	Other Language Changes

	New, Improved, and Deprecated Modules
	email

	elementtree

	functools

	itertools

	collections

	threading

	datetime and time

	math

	abc

	io

	reprlib

	logging

	csv

	contextlib

	decimal and fractions

	ftp

	popen

	select

	gzip and zipfile

	tarfile

	hashlib

	ast

	os

	shutil

	sqlite3

	html

	socket

	ssl

	nntp

	certificates

	imaplib

	http.client

	unittest

	random

	poplib

	asyncore

	tempfile

	inspect

	pydoc

	dis

	dbm

	ctypes

	site

	sysconfig

	pdb

	configparser

	urllib.parse

	mailbox

	turtledemo

	Multi-threading

	Optimizations

	Unicode

	Codecs

	Documentation

	IDLE

	Code Repository

	Build and C API Changes

	Porting to Python 3.2

	What’s New In Python 3.1
	PEP 372: Ordered Dictionaries

	PEP 378: Format Specifier for Thousands Separator

	Other Language Changes

	New, Improved, and Deprecated Modules

	Optimizations

	IDLE

	Build and C API Changes

	Porting to Python 3.1

	What’s New In Python 3.0
	Common Stumbling Blocks
	Print Is A Function

	Views And Iterators Instead Of Lists

	Ordering Comparisons

	Integers

	Text Vs. Data Instead Of Unicode Vs. 8-bit

	Overview Of Syntax Changes
	New Syntax

	Changed Syntax

	Removed Syntax

	Changes Already Present In Python 2.6

	Library Changes

	PEP 3101: A New Approach To String Formatting

	Changes To Exceptions

	Miscellaneous Other Changes
	Operators And Special Methods

	Builtins

	Build and C API Changes

	Performance

	Porting To Python 3.0

	What’s New in Python 2.7
	The Future for Python 2.x

	Changes to the Handling of Deprecation Warnings

	Python 3.1 Features

	PEP 372: Adding an Ordered Dictionary to collections

	PEP 378: Format Specifier for Thousands Separator

	PEP 389: The argparse Module for Parsing Command Lines

	PEP 391: Dictionary-Based Configuration For Logging

	PEP 3106: Dictionary Views

	PEP 3137: The memoryview Object

	Other Language Changes
	Interpreter Changes

	Optimizations

	New and Improved Modules
	New module: importlib

	New module: sysconfig

	ttk: Themed Widgets for Tk

	Updated module: unittest

	Updated module: ElementTree 1.3

	Build and C API Changes
	Capsules

	Port-Specific Changes: Windows

	Port-Specific Changes: Mac OS X

	Port-Specific Changes: FreeBSD

	Other Changes and Fixes

	Porting to Python 2.7

	New Features Added to Python 2.7 Maintenance Releases
	Two new environment variables for debug mode

	PEP 434: IDLE Enhancement Exception for All Branches

	PEP 466: Network Security Enhancements for Python 2.7

	PEP 477: Backport ensurepip (PEP 453) to Python 2.7
	Bootstrapping pip By Default

	Documentation Changes

	PEP 476: Enabling certificate verification by default for stdlib http clients

	PEP 493: HTTPS verification migration tools for Python 2.7

	New make regen-all build target

	Removal of make touch build target

	Acknowledgements

	What’s New in Python 2.6
	Python 3.0

	Changes to the Development Process
	New Issue Tracker: Roundup

	New Documentation Format: reStructuredText Using Sphinx

	PEP 343: The ‘with’ statement
	Writing Context Managers

	The contextlib module

	PEP 366: Explicit Relative Imports From a Main Module

	PEP 370: Per-user site-packages Directory

	PEP 371: The multiprocessing Package

	PEP 3101: Advanced String Formatting

	PEP 3105: print As a Function

	PEP 3110: Exception-Handling Changes

	PEP 3112: Byte Literals

	PEP 3116: New I/O Library

	PEP 3118: Revised Buffer Protocol

	PEP 3119: Abstract Base Classes

	PEP 3127: Integer Literal Support and Syntax

	PEP 3129: Class Decorators

	PEP 3141: A Type Hierarchy for Numbers
	The fractions Module

	Other Language Changes
	Optimizations

	Interpreter Changes

	New and Improved Modules
	The ast module

	The future_builtins module

	The json module: JavaScript Object Notation

	The plistlib module: A Property-List Parser

	ctypes Enhancements

	Improved SSL Support

	Deprecations and Removals

	Build and C API Changes
	Port-Specific Changes: Windows

	Port-Specific Changes: Mac OS X

	Port-Specific Changes: IRIX

	Porting to Python 2.6

	Acknowledgements

	What’s New in Python 2.5
	PEP 308: Conditional Expressions

	PEP 309: Partial Function Application

	PEP 314: Metadata for Python Software Packages v1.1

	PEP 328: Absolute and Relative Imports

	PEP 338: Executing Modules as Scripts

	PEP 341: Unified try/except/finally

	PEP 342: New Generator Features

	PEP 343: The ‘with’ statement
	Writing Context Managers

	The contextlib module

	PEP 352: Exceptions as New-Style Classes

	PEP 353: Using ssize_t as the index type

	PEP 357: The ‘__index__’ method

	Other Language Changes
	Interactive Interpreter Changes

	Optimizations

	New, Improved, and Removed Modules
	The ctypes package

	The ElementTree package

	The hashlib package

	The sqlite3 package

	The wsgiref package

	Build and C API Changes
	Port-Specific Changes

	Porting to Python 2.5

	Acknowledgements

	What’s New in Python 2.4
	PEP 218: Built-In Set Objects

	PEP 237: Unifying Long Integers and Integers

	PEP 289: Generator Expressions

	PEP 292: Simpler String Substitutions

	PEP 318: Decorators for Functions and Methods

	PEP 322: Reverse Iteration

	PEP 324: New subprocess Module

	PEP 327: Decimal Data Type
	Why is Decimal needed?

	The Decimal type

	The Context type

	PEP 328: Multi-line Imports

	PEP 331: Locale-Independent Float/String Conversions

	Other Language Changes
	Optimizations

	New, Improved, and Deprecated Modules
	cookielib

	doctest

	Build and C API Changes
	Port-Specific Changes

	Porting to Python 2.4

	Acknowledgements

	What’s New in Python 2.3
	PEP 218: A Standard Set Datatype

	PEP 255: Simple Generators

	PEP 263: Source Code Encodings

	PEP 273: Importing Modules from ZIP Archives

	PEP 277: Unicode file name support for Windows NT

	PEP 278: Universal Newline Support

	PEP 279: enumerate()

	PEP 282: The logging Package

	PEP 285: A Boolean Type

	PEP 293: Codec Error Handling Callbacks

	PEP 301: Package Index and Metadata for Distutils

	PEP 302: New Import Hooks

	PEP 305: Comma-separated Files

	PEP 307: Pickle Enhancements

	Extended Slices

	Other Language Changes
	String Changes

	Optimizations

	New, Improved, and Deprecated Modules
	Date/Time Type

	The optparse Module

	Pymalloc: A Specialized Object Allocator

	Build and C API Changes
	Port-Specific Changes

	Other Changes and Fixes

	Porting to Python 2.3

	Acknowledgements

	What’s New in Python 2.2
	Introduction

	PEPs 252 and 253: Type and Class Changes
	Old and New Classes

	Descriptors

	Multiple Inheritance: The Diamond Rule

	Attribute Access

	Related Links

	PEP 234: Iterators

	PEP 255: Simple Generators

	PEP 237: Unifying Long Integers and Integers

	PEP 238: Changing the Division Operator

	Unicode Changes

	PEP 227: Nested Scopes

	New and Improved Modules

	Interpreter Changes and Fixes

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.1
	Introduction

	PEP 227: Nested Scopes

	PEP 236: __future__ Directives

	PEP 207: Rich Comparisons

	PEP 230: Warning Framework

	PEP 229: New Build System

	PEP 205: Weak References

	PEP 232: Function Attributes

	PEP 235: Importing Modules on Case-Insensitive Platforms

	PEP 217: Interactive Display Hook

	PEP 208: New Coercion Model

	PEP 241: Metadata in Python Packages

	New and Improved Modules

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.0
	Introduction

	What About Python 1.6?

	New Development Process

	Unicode

	List Comprehensions

	Augmented Assignment

	String Methods

	Garbage Collection of Cycles

	Other Core Changes
	Minor Language Changes

	Changes to Built-in Functions

	Porting to 2.0

	Extending/Embedding Changes

	Distutils: Making Modules Easy to Install

	XML Modules
	SAX2 Support

	DOM Support

	Relationship to PyXML

	Module changes

	New modules

	IDLE Improvements

	Deleted and Deprecated Modules

	Acknowledgements

	Changelog
	Python next
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	C API

	Python 3.7.2 final
	Library

	Build

	C API

	Python 3.7.2 release candidate 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.7.1 final
	Library

	Python 3.7.1 release candidate 2
	Core and Builtins

	Library

	Documentation

	Tests

	macOS

	C API

	Python 3.7.1 release candidate 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.7.0 final
	Library

	C API

	Python 3.7.0 release candidate 1
	Core and Builtins

	Library

	Documentation

	Build

	Windows

	IDLE

	Python 3.7.0 beta 5
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	macOS

	IDLE

	Python 3.7.0 beta 4
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	Python 3.7.0 beta 3
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.7.0 beta 2
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	Python 3.7.0 beta 1
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	C API

	Python 3.7.0 alpha 4
	Core and Builtins

	Library

	Documentation

	Tests

	Windows

	Tools/Demos

	C API

	Python 3.7.0 alpha 3
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.7.0 alpha 2
	Core and Builtins

	Library

	Documentation

	Build

	IDLE

	C API

	Python 3.7.0 alpha 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	IDLE

	Tools/Demos

	C API

	Python 3.6.6 final

	Python 3.6.6 release candidate 1
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.6.5 final
	Tests

	Build

	Python 3.6.5 release candidate 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.6.4 final

	Python 3.6.4 release candidate 1
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.6.3 final
	Library

	Build

	Python 3.6.3 release candidate 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	IDLE

	Tools/Demos

	Python 3.6.2 final

	Python 3.6.2 release candidate 2
	Security

	Python 3.6.2 release candidate 1
	Core and Builtins

	Library

	Security

	Library

	IDLE

	C API

	Build

	Documentation

	Tools/Demos

	Tests

	Windows

	Python 3.6.1 final
	Core and Builtins

	Build

	Python 3.6.1 release candidate 1
	Core and Builtins

	Library

	IDLE

	Windows

	C API

	Documentation

	Tests

	Build

	Python 3.6.0 final

	Python 3.6.0 release candidate 2
	Core and Builtins

	Tools/Demos

	Windows

	Build

	Python 3.6.0 release candidate 1
	Core and Builtins

	Library

	C API

	Documentation

	Tools/Demos

	Python 3.6.0 beta 4
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Python 3.6.0 beta 3
	Core and Builtins

	Library

	Windows

	Build

	Tests

	Python 3.6.0 beta 2
	Core and Builtins

	Library

	Windows

	C API

	Build

	Tests

	Python 3.6.0 beta 1
	Core and Builtins

	Library

	IDLE

	C API

	Tests

	Build

	Tools/Demos

	Windows

	Python 3.6.0 alpha 4
	Core and Builtins

	Library

	IDLE

	Tests

	Windows

	Build

	Python 3.6.0 alpha 3
	Core and Builtins

	Library

	Security

	Library

	Security

	Library

	IDLE

	C API

	Build

	Tools/Demos

	Documentation

	Tests

	Python 3.6.0 alpha 2
	Core and Builtins

	Library

	Security

	Library

	Security

	Library

	IDLE

	Documentation

	Tests

	Windows

	Build

	Windows

	C API

	Tools/Demos

	Python 3.6.0 alpha 1
	Core and Builtins

	Library

	Security

	Library

	Security

	Library

	Security

	Library

	IDLE

	Documentation

	Tests

	Build

	Windows

	Tools/Demos

	C API

	Python 3.5.5 final

	Python 3.5.5 release candidate 1
	Security

	Core and Builtins

	Library

	Python 3.5.4 final
	Library

	Python 3.5.4 release candidate 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	C API

	Python 3.5.3 final

	Python 3.5.3 release candidate 1
	Core and Builtins

	Library

	Security

	Library

	Security

	Library

	IDLE

	C API

	Documentation

	Tests

	Tools/Demos

	Windows

	Build

	Python 3.5.2 final
	Core and Builtins

	Tests

	IDLE

	Python 3.5.2 release candidate 1
	Core and Builtins

	Security

	Library

	Security

	Library

	Security

	Library

	Security

	Library

	Security

	Library

	IDLE

	Documentation

	Tests

	Build

	Windows

	Tools/Demos

	Windows

	Python 3.5.1 final
	Core and Builtins

	Windows

	Python 3.5.1 release candidate 1
	Core and Builtins

	Library

	IDLE

	Documentation

	Tests

	Build

	Windows

	Tools/Demos

	Python 3.5.0 final
	Build

	Python 3.5.0 release candidate 4
	Library

	Build

	Python 3.5.0 release candidate 3
	Core and Builtins

	Library

	Python 3.5.0 release candidate 2
	Core and Builtins

	Library

	Python 3.5.0 release candidate 1
	Core and Builtins

	Library

	IDLE

	Documentation

	Tests

	Python 3.5.0 beta 4
	Core and Builtins

	Library

	Build

	Python 3.5.0 beta 3
	Core and Builtins

	Library

	Tests

	Documentation

	Build

	Python 3.5.0 beta 2
	Core and Builtins

	Library

	Python 3.5.0 beta 1
	Core and Builtins

	Library

	IDLE

	Tests

	Documentation

	Tools/Demos

	Python 3.5.0 alpha 4
	Core and Builtins

	Library

	Build

	Tests

	Tools/Demos

	C API

	Python 3.5.0 alpha 3
	Core and Builtins

	Library

	Build

	Tests

	Tools/Demos

	Python 3.5.0 alpha 2
	Core and Builtins

	Library

	Build

	C API

	Windows

	Python 3.5.0 alpha 1
	Core and Builtins

	Library

	IDLE

	Build

	C API

	Documentation

	Tests

	Tools/Demos

	Windows

	The Python Tutorial
	1. Whetting Your Appetite

	2. Using the Python Interpreter
	2.1. Invoking the Interpreter
	2.1.1. Argument Passing

	2.1.2. Interactive Mode

	2.2. The Interpreter and Its Environment
	2.2.1. Source Code Encoding

	3. An Informal Introduction to Python
	3.1. Using Python as a Calculator
	3.1.1. Numbers

	3.1.2. Strings

	3.1.3. Lists

	3.2. First Steps Towards Programming

	4. More Control Flow Tools
	4.1. if Statements

	4.2. for Statements

	4.3. The range() Function

	4.4. break and continue Statements, and else Clauses on Loops

	4.5. pass Statements

	4.6. Defining Functions

	4.7. More on Defining Functions
	4.7.1. Default Argument Values

	4.7.2. Keyword Arguments

	4.7.3. Arbitrary Argument Lists

	4.7.4. Unpacking Argument Lists

	4.7.5. Lambda Expressions

	4.7.6. Documentation Strings

	4.7.7. Function Annotations

	4.8. Intermezzo: Coding Style

	5. Data Structures
	5.1. More on Lists
	5.1.1. Using Lists as Stacks

	5.1.2. Using Lists as Queues

	5.1.3. List Comprehensions

	5.1.4. Nested List Comprehensions

	5.2. The del statement

	5.3. Tuples and Sequences

	5.4. Sets

	5.5. Dictionaries

	5.6. Looping Techniques

	5.7. More on Conditions

	5.8. Comparing Sequences and Other Types

	6. Modules
	6.1. More on Modules
	6.1.1. Executing modules as scripts

	6.1.2. The Module Search Path

	6.1.3. “Compiled” Python files

	6.2. Standard Modules

	6.3. The dir() Function

	6.4. Packages
	6.4.1. Importing * From a Package

	6.4.2. Intra-package References

	6.4.3. Packages in Multiple Directories

	7. Input and Output
	7.1. Fancier Output Formatting
	7.1.1. Formatted String Literals

	7.1.2. The String format() Method

	7.1.3. Manual String Formatting

	7.1.4. Old string formatting

	7.2. Reading and Writing Files
	7.2.1. Methods of File Objects

	7.2.2. Saving structured data with json

	8. Errors and Exceptions
	8.1. Syntax Errors

	8.2. Exceptions

	8.3. Handling Exceptions

	8.4. Raising Exceptions

	8.5. User-defined Exceptions

	8.6. Defining Clean-up Actions

	8.7. Predefined Clean-up Actions

	9. Classes
	9.1. A Word About Names and Objects

	9.2. Python Scopes and Namespaces
	9.2.1. Scopes and Namespaces Example

	9.3. A First Look at Classes
	9.3.1. Class Definition Syntax

	9.3.2. Class Objects

	9.3.3. Instance Objects

	9.3.4. Method Objects

	9.3.5. Class and Instance Variables

	9.4. Random Remarks

	9.5. Inheritance
	9.5.1. Multiple Inheritance

	9.6. Private Variables

	9.7. Odds and Ends

	9.8. Iterators

	9.9. Generators

	9.10. Generator Expressions

	10. Brief Tour of the Standard Library
	10.1. Operating System Interface

	10.2. File Wildcards

	10.3. Command Line Arguments

	10.4. Error Output Redirection and Program Termination

	10.5. String Pattern Matching

	10.6. Mathematics

	10.7. Internet Access

	10.8. Dates and Times

	10.9. Data Compression

	10.10. Performance Measurement

	10.11. Quality Control

	10.12. Batteries Included

	11. Brief Tour of the Standard Library — Part II
	11.1. Output Formatting

	11.2. Templating

	11.3. Working with Binary Data Record Layouts

	11.4. Multi-threading

	11.5. Logging

	11.6. Weak References

	11.7. Tools for Working with Lists

	11.8. Decimal Floating Point Arithmetic

	12. Virtual Environments and Packages
	12.1. Introduction

	12.2. Creating Virtual Environments

	12.3. Managing Packages with pip

	13. What Now?

	14. Interactive Input Editing and History Substitution
	14.1. Tab Completion and History Editing

	14.2. Alternatives to the Interactive Interpreter

	15. Floating Point Arithmetic: Issues and Limitations
	15.1. Representation Error

	16. Appendix
	16.1. Interactive Mode
	16.1.1. Error Handling

	16.1.2. Executable Python Scripts

	16.1.3. The Interactive Startup File

	16.1.4. The Customization Modules

	Python Setup and Usage
	1. Command line and environment
	1.1. Command line
	1.1.1. Interface options

	1.1.2. Generic options

	1.1.3. Miscellaneous options

	1.1.4. Options you shouldn’t use

	1.2. Environment variables
	1.2.1. Debug-mode variables

	2. Using Python on Unix platforms
	2.1. Getting and installing the latest version of Python
	2.1.1. On Linux

	2.1.2. On FreeBSD and OpenBSD

	2.1.3. On OpenSolaris

	2.2. Building Python

	2.3. Python-related paths and files

	2.4. Miscellaneous

	2.5. Editors and IDEs

	3. Using Python on Windows
	3.1. The full installer
	3.1.1. Installation steps

	3.1.2. Removing the MAX_PATH Limitation

	3.1.3. Installing Without UI

	3.1.4. Installing Without Downloading

	3.1.5. Modifying an install

	3.2. The Microsoft Store package
	3.2.1. Known Issues

	3.3. The nuget.org packages

	3.4. The embeddable package
	3.4.1. Python Application

	3.4.2. Embedding Python

	3.5. Alternative bundles

	3.6. Configuring Python
	3.6.1. Excursus: Setting environment variables

	3.6.2. Finding the Python executable

	3.7. Python Launcher for Windows
	3.7.1. Getting started
	3.7.1.1. From the command-line

	3.7.1.2. Virtual environments

	3.7.1.3. From a script

	3.7.1.4. From file associations

	3.7.2. Shebang Lines

	3.7.3. Arguments in shebang lines

	3.7.4. Customization
	3.7.4.1. Customization via INI files

	3.7.4.2. Customizing default Python versions

	3.7.5. Diagnostics

	3.8. Finding modules

	3.9. Additional modules
	3.9.1. PyWin32

	3.9.2. cx_Freeze

	3.9.3. WConio

	3.10. Compiling Python on Windows

	3.11. Other Platforms

	4. Using Python on a Macintosh
	4.1. Getting and Installing MacPython
	4.1.1. How to run a Python script

	4.1.2. Running scripts with a GUI

	4.1.3. Configuration

	4.2. The IDE

	4.3. Installing Additional Python Packages

	4.4. GUI Programming on the Mac

	4.5. Distributing Python Applications on the Mac

	4.6. Other Resources

	The Python Language Reference
	1. Introduction
	1.1. Alternate Implementations

	1.2. Notation

	2. Lexical analysis
	2.1. Line structure
	2.1.1. Logical lines

	2.1.2. Physical lines

	2.1.3. Comments

	2.1.4. Encoding declarations

	2.1.5. Explicit line joining

	2.1.6. Implicit line joining

	2.1.7. Blank lines

	2.1.8. Indentation

	2.1.9. Whitespace between tokens

	2.2. Other tokens

	2.3. Identifiers and keywords
	2.3.1. Keywords

	2.3.2. Reserved classes of identifiers

	2.4. Literals
	2.4.1. String and Bytes literals

	2.4.2. String literal concatenation

	2.4.3. Formatted string literals

	2.4.4. Numeric literals

	2.4.5. Integer literals

	2.4.6. Floating point literals

	2.4.7. Imaginary literals

	2.5. Operators

	2.6. Delimiters

	3. Data model
	3.1. Objects, values and types

	3.2. The standard type hierarchy

	3.3. Special method names
	3.3.1. Basic customization

	3.3.2. Customizing attribute access
	3.3.2.1. Customizing module attribute access

	3.3.2.2. Implementing Descriptors

	3.3.2.3. Invoking Descriptors

	3.3.2.4. __slots__
	3.3.2.4.1. Notes on using __slots__

	3.3.3. Customizing class creation
	3.3.3.1. Metaclasses

	3.3.3.2. Resolving MRO entries

	3.3.3.3. Determining the appropriate metaclass

	3.3.3.4. Preparing the class namespace

	3.3.3.5. Executing the class body

	3.3.3.6. Creating the class object

	3.3.3.7. Uses for metaclasses

	3.3.4. Customizing instance and subclass checks

	3.3.5. Emulating generic types

	3.3.6. Emulating callable objects

	3.3.7. Emulating container types

	3.3.8. Emulating numeric types

	3.3.9. With Statement Context Managers

	3.3.10. Special method lookup

	3.4. Coroutines
	3.4.1. Awaitable Objects

	3.4.2. Coroutine Objects

	3.4.3. Asynchronous Iterators

	3.4.4. Asynchronous Context Managers

	4. Execution model
	4.1. Structure of a program

	4.2. Naming and binding
	4.2.1. Binding of names

	4.2.2. Resolution of names

	4.2.3. Builtins and restricted execution

	4.2.4. Interaction with dynamic features

	4.3. Exceptions

	5. The import system
	5.1. importlib

	5.2. Packages
	5.2.1. Regular packages

	5.2.2. Namespace packages

	5.3. Searching
	5.3.1. The module cache

	5.3.2. Finders and loaders

	5.3.3. Import hooks

	5.3.4. The meta path

	5.4. Loading
	5.4.1. Loaders

	5.4.2. Submodules

	5.4.3. Module spec

	5.4.4. Import-related module attributes

	5.4.5. module.__path__

	5.4.6. Module reprs

	5.4.7. Cached bytecode invalidation

	5.5. The Path Based Finder
	5.5.1. Path entry finders

	5.5.2. Path entry finder protocol

	5.6. Replacing the standard import system

	5.7. Special considerations for __main__
	5.7.1. __main__.__spec__

	5.8. Open issues

	5.9. References

	6. Expressions
	6.1. Arithmetic conversions

	6.2. Atoms
	6.2.1. Identifiers (Names)

	6.2.2. Literals

	6.2.3. Parenthesized forms

	6.2.4. Displays for lists, sets and dictionaries

	6.2.5. List displays

	6.2.6. Set displays

	6.2.7. Dictionary displays

	6.2.8. Generator expressions

	6.2.9. Yield expressions
	6.2.9.1. Generator-iterator methods

	6.2.9.2. Examples

	6.2.9.3. Asynchronous generator functions

	6.2.9.4. Asynchronous generator-iterator methods

	6.3. Primaries
	6.3.1. Attribute references

	6.3.2. Subscriptions

	6.3.3. Slicings

	6.3.4. Calls

	6.4. Await expression

	6.5. The power operator

	6.6. Unary arithmetic and bitwise operations

	6.7. Binary arithmetic operations

	6.8. Shifting operations

	6.9. Binary bitwise operations

	6.10. Comparisons
	6.10.1. Value comparisons

	6.10.2. Membership test operations

	6.10.3. Identity comparisons

	6.11. Boolean operations

	6.12. Conditional expressions

	6.13. Lambdas

	6.14. Expression lists

	6.15. Evaluation order

	6.16. Operator precedence

	7. Simple statements
	7.1. Expression statements

	7.2. Assignment statements
	7.2.1. Augmented assignment statements

	7.2.2. Annotated assignment statements

	7.3. The assert statement

	7.4. The pass statement

	7.5. The del statement

	7.6. The return statement

	7.7. The yield statement

	7.8. The raise statement

	7.9. The break statement

	7.10. The continue statement

	7.11. The import statement
	7.11.1. Future statements

	7.12. The global statement

	7.13. The nonlocal statement

	8. Compound statements
	8.1. The if statement

	8.2. The while statement

	8.3. The for statement

	8.4. The try statement

	8.5. The with statement

	8.6. Function definitions

	8.7. Class definitions

	8.8. Coroutines
	8.8.1. Coroutine function definition

	8.8.2. The async for statement

	8.8.3. The async with statement

	9. Top-level components
	9.1. Complete Python programs

	9.2. File input

	9.3. Interactive input

	9.4. Expression input

	10. Full Grammar specification

	The Python Standard Library
	Introduction
	Notes on availability

	Built-in Functions

	Built-in Constants
	Constants added by the site module

	Built-in Types
	Truth Value Testing

	Boolean Operations — and, or, not

	Comparisons

	Numeric Types — int, float, complex
	Bitwise Operations on Integer Types

	Additional Methods on Integer Types

	Additional Methods on Float

	Hashing of numeric types

	Iterator Types
	Generator Types

	Sequence Types — list, tuple, range
	Common Sequence Operations

	Immutable Sequence Types

	Mutable Sequence Types

	Lists

	Tuples

	Ranges

	Text Sequence Type — str
	String Methods

	printf-style String Formatting

	Binary Sequence Types — bytes, bytearray, memoryview
	Bytes Objects

	Bytearray Objects

	Bytes and Bytearray Operations

	printf-style Bytes Formatting

	Memory Views

	Set Types — set, frozenset

	Mapping Types — dict
	Dictionary view objects

	Context Manager Types

	Other Built-in Types
	Modules

	Classes and Class Instances

	Functions

	Methods

	Code Objects

	Type Objects

	The Null Object

	The Ellipsis Object

	The NotImplemented Object

	Boolean Values

	Internal Objects

	Special Attributes

	Built-in Exceptions
	Base classes

	Concrete exceptions
	OS exceptions

	Warnings

	Exception hierarchy

	Text Processing Services
	string — Common string operations
	String constants

	Custom String Formatting

	Format String Syntax
	Format Specification Mini-Language

	Format examples

	Template strings

	Helper functions

	re — Regular expression operations
	Regular Expression Syntax

	Module Contents

	Regular Expression Objects

	Match Objects

	Regular Expression Examples
	Checking for a Pair

	Simulating scanf()

	search() vs. match()

	Making a Phonebook

	Text Munging

	Finding all Adverbs

	Finding all Adverbs and their Positions

	Raw String Notation

	Writing a Tokenizer

	difflib — Helpers for computing deltas
	SequenceMatcher Objects

	SequenceMatcher Examples

	Differ Objects

	Differ Example

	A command-line interface to difflib

	textwrap — Text wrapping and filling

	unicodedata — Unicode Database

	stringprep — Internet String Preparation

	readline — GNU readline interface
	Init file

	Line buffer

	History file

	History list

	Startup hooks

	Completion

	Example

	rlcompleter — Completion function for GNU readline
	Completer Objects

	Binary Data Services
	struct — Interpret bytes as packed binary data
	Functions and Exceptions

	Format Strings
	Byte Order, Size, and Alignment

	Format Characters

	Examples

	Classes

	codecs — Codec registry and base classes
	Codec Base Classes
	Error Handlers

	Stateless Encoding and Decoding

	Incremental Encoding and Decoding
	IncrementalEncoder Objects

	IncrementalDecoder Objects

	Stream Encoding and Decoding
	StreamWriter Objects

	StreamReader Objects

	StreamReaderWriter Objects

	StreamRecoder Objects

	Encodings and Unicode

	Standard Encodings

	Python Specific Encodings
	Text Encodings

	Binary Transforms

	Text Transforms

	encodings.idna — Internationalized Domain Names in Applications

	encodings.mbcs — Windows ANSI codepage

	encodings.utf_8_sig — UTF-8 codec with BOM signature

	Data Types
	datetime — Basic date and time types
	Available Types

	timedelta Objects

	date Objects

	datetime Objects

	time Objects

	tzinfo Objects

	timezone Objects

	strftime() and strptime() Behavior

	calendar — General calendar-related functions

	collections — Container datatypes
	ChainMap objects
	ChainMap Examples and Recipes

	Counter objects

	deque objects
	deque Recipes

	defaultdict objects
	defaultdict Examples

	namedtuple() Factory Function for Tuples with Named Fields

	OrderedDict objects
	OrderedDict Examples and Recipes

	UserDict objects

	UserList objects

	UserString objects

	collections.abc — Abstract Base Classes for Containers
	Collections Abstract Base Classes

	heapq — Heap queue algorithm
	Basic Examples

	Priority Queue Implementation Notes

	Theory

	bisect — Array bisection algorithm
	Searching Sorted Lists

	Other Examples

	array — Efficient arrays of numeric values

	weakref — Weak references
	Weak Reference Objects

	Example

	Finalizer Objects

	Comparing finalizers with __del__() methods

	types — Dynamic type creation and names for built-in types
	Dynamic Type Creation

	Standard Interpreter Types

	Additional Utility Classes and Functions

	Coroutine Utility Functions

	copy — Shallow and deep copy operations

	pprint — Data pretty printer
	PrettyPrinter Objects

	Example

	reprlib — Alternate repr() implementation
	Repr Objects

	Subclassing Repr Objects

	enum — Support for enumerations
	Module Contents

	Creating an Enum

	Programmatic access to enumeration members and their attributes

	Duplicating enum members and values

	Ensuring unique enumeration values

	Using automatic values

	Iteration

	Comparisons

	Allowed members and attributes of enumerations

	Restricted Enum subclassing

	Pickling

	Functional API

	Derived Enumerations
	IntEnum

	IntFlag

	Flag

	Others

	Interesting examples
	Omitting values
	Using auto

	Using object

	Using a descriptive string

	Using a custom __new__()

	OrderedEnum

	DuplicateFreeEnum

	Planet

	TimePeriod

	How are Enums different?
	Enum Classes

	Enum Members (aka instances)

	Finer Points
	Supported __dunder__ names

	Supported _sunder_ names

	Enum member type

	Boolean value of Enum classes and members

	Enum classes with methods

	Combining members of Flag

	Numeric and Mathematical Modules
	numbers — Numeric abstract base classes
	The numeric tower

	Notes for type implementors
	Adding More Numeric ABCs

	Implementing the arithmetic operations

	math — Mathematical functions
	Number-theoretic and representation functions

	Power and logarithmic functions

	Trigonometric functions

	Angular conversion

	Hyperbolic functions

	Special functions

	Constants

	cmath — Mathematical functions for complex numbers
	Conversions to and from polar coordinates

	Power and logarithmic functions

	Trigonometric functions

	Hyperbolic functions

	Classification functions

	Constants

	decimal — Decimal fixed point and floating point arithmetic
	Quick-start Tutorial

	Decimal objects
	Logical operands

	Context objects

	Constants

	Rounding modes

	Signals

	Floating Point Notes
	Mitigating round-off error with increased precision

	Special values

	Working with threads

	Recipes

	Decimal FAQ

	fractions — Rational numbers

	random — Generate pseudo-random numbers
	Bookkeeping functions

	Functions for integers

	Functions for sequences

	Real-valued distributions

	Alternative Generator

	Notes on Reproducibility

	Examples and Recipes

	statistics — Mathematical statistics functions
	Averages and measures of central location

	Measures of spread

	Function details

	Exceptions

	Functional Programming Modules
	itertools — Functions creating iterators for efficient looping
	Itertool functions

	Itertools Recipes

	functools — Higher-order functions and operations on callable objects
	partial Objects

	operator — Standard operators as functions
	Mapping Operators to Functions

	Inplace Operators

	File and Directory Access
	pathlib — Object-oriented filesystem paths
	Basic use

	Pure paths
	General properties

	Operators

	Accessing individual parts

	Methods and properties

	Concrete paths
	Methods

	Correspondence to tools in the os module

	os.path — Common pathname manipulations

	fileinput — Iterate over lines from multiple input streams

	stat — Interpreting stat() results

	filecmp — File and Directory Comparisons
	The dircmp class

	tempfile — Generate temporary files and directories
	Examples

	Deprecated functions and variables

	glob — Unix style pathname pattern expansion

	fnmatch — Unix filename pattern matching

	linecache — Random access to text lines

	shutil — High-level file operations
	Directory and files operations
	copytree example

	rmtree example

	Archiving operations
	Archiving example

	Querying the size of the output terminal

	macpath — Mac OS 9 path manipulation functions

	Data Persistence
	pickle — Python object serialization
	Relationship to other Python modules
	Comparison with marshal

	Comparison with json

	Data stream format

	Module Interface

	What can be pickled and unpickled?

	Pickling Class Instances
	Persistence of External Objects

	Dispatch Tables

	Handling Stateful Objects

	Restricting Globals

	Performance

	Examples

	copyreg — Register pickle support functions
	Example

	shelve — Python object persistence
	Restrictions

	Example

	marshal — Internal Python object serialization

	dbm — Interfaces to Unix “databases”
	dbm.gnu — GNU’s reinterpretation of dbm

	dbm.ndbm — Interface based on ndbm

	dbm.dumb — Portable DBM implementation

	sqlite3 — DB-API 2.0 interface for SQLite databases
	Module functions and constants

	Connection Objects

	Cursor Objects

	Row Objects

	Exceptions

	SQLite and Python types
	Introduction

	Using adapters to store additional Python types in SQLite databases
	Letting your object adapt itself

	Registering an adapter callable

	Converting SQLite values to custom Python types

	Default adapters and converters

	Controlling Transactions

	Using sqlite3 efficiently
	Using shortcut methods

	Accessing columns by name instead of by index

	Using the connection as a context manager

	Common issues
	Multithreading

	Data Compression and Archiving
	zlib — Compression compatible with gzip

	gzip — Support for gzip files
	Examples of usage

	bz2 — Support for bzip2 compression
	(De)compression of files

	Incremental (de)compression

	One-shot (de)compression

	lzma — Compression using the LZMA algorithm
	Reading and writing compressed files

	Compressing and decompressing data in memory

	Miscellaneous

	Specifying custom filter chains

	Examples

	zipfile — Work with ZIP archives
	ZipFile Objects

	PyZipFile Objects

	ZipInfo Objects

	Command-Line Interface
	Command-line options

	tarfile — Read and write tar archive files
	TarFile Objects

	TarInfo Objects

	Command-Line Interface
	Command-line options

	Examples

	Supported tar formats

	Unicode issues

	File Formats
	csv — CSV File Reading and Writing
	Module Contents

	Dialects and Formatting Parameters

	Reader Objects

	Writer Objects

	Examples

	configparser — Configuration file parser
	Quick Start

	Supported Datatypes

	Fallback Values

	Supported INI File Structure

	Interpolation of values

	Mapping Protocol Access

	Customizing Parser Behaviour

	Legacy API Examples

	ConfigParser Objects

	RawConfigParser Objects

	Exceptions

	netrc — netrc file processing
	netrc Objects

	xdrlib — Encode and decode XDR data
	Packer Objects

	Unpacker Objects

	Exceptions

	plistlib — Generate and parse Mac OS X .plist files
	Examples

	Cryptographic Services
	hashlib — Secure hashes and message digests
	Hash algorithms

	SHAKE variable length digests

	Key derivation

	BLAKE2
	Creating hash objects

	Constants

	Examples
	Simple hashing

	Using different digest sizes

	Keyed hashing

	Randomized hashing

	Personalization

	Tree mode

	Credits

	hmac — Keyed-Hashing for Message Authentication

	secrets — Generate secure random numbers for managing secrets
	Random numbers

	Generating tokens
	How many bytes should tokens use?

	Other functions

	Recipes and best practices

	Generic Operating System Services
	os — Miscellaneous operating system interfaces
	File Names, Command Line Arguments, and Environment Variables

	Process Parameters

	File Object Creation

	File Descriptor Operations
	Querying the size of a terminal

	Inheritance of File Descriptors

	Files and Directories
	Linux extended attributes

	Process Management

	Interface to the scheduler

	Miscellaneous System Information

	Random numbers

	io — Core tools for working with streams
	Overview
	Text I/O

	Binary I/O

	Raw I/O

	High-level Module Interface
	In-memory streams

	Class hierarchy
	I/O Base Classes

	Raw File I/O

	Buffered Streams

	Text I/O

	Performance
	Binary I/O

	Text I/O

	Multi-threading

	Reentrancy

	time — Time access and conversions
	Functions

	Clock ID Constants

	Timezone Constants

	argparse — Parser for command-line options, arguments and sub-commands
	Example
	Creating a parser

	Adding arguments

	Parsing arguments

	ArgumentParser objects
	prog

	usage

	description

	epilog

	parents

	formatter_class

	prefix_chars

	fromfile_prefix_chars

	argument_default

	allow_abbrev

	conflict_handler

	add_help

	The add_argument() method
	name or flags

	action

	nargs

	const

	default

	type

	choices

	required

	help

	metavar

	dest

	Action classes

	The parse_args() method
	Option value syntax

	Invalid arguments

	Arguments containing -

	Argument abbreviations (prefix matching)

	Beyond sys.argv

	The Namespace object

	Other utilities
	Sub-commands

	FileType objects

	Argument groups

	Mutual exclusion

	Parser defaults

	Printing help

	Partial parsing

	Customizing file parsing

	Exiting methods

	Intermixed parsing

	Upgrading optparse code

	getopt — C-style parser for command line options

	logging — Logging facility for Python
	Logger Objects

	Logging Levels

	Handler Objects

	Formatter Objects

	Filter Objects

	LogRecord Objects

	LogRecord attributes

	LoggerAdapter Objects

	Thread Safety

	Module-Level Functions

	Module-Level Attributes

	Integration with the warnings module

	logging.config — Logging configuration
	Configuration functions

	Configuration dictionary schema
	Dictionary Schema Details

	Incremental Configuration

	Object connections

	User-defined objects

	Access to external objects

	Access to internal objects

	Import resolution and custom importers

	Configuration file format

	logging.handlers — Logging handlers
	StreamHandler

	FileHandler

	NullHandler

	WatchedFileHandler

	BaseRotatingHandler

	RotatingFileHandler

	TimedRotatingFileHandler

	SocketHandler

	DatagramHandler

	SysLogHandler

	NTEventLogHandler

	SMTPHandler

	MemoryHandler

	HTTPHandler

	QueueHandler

	QueueListener

	getpass — Portable password input

	curses — Terminal handling for character-cell displays
	Functions

	Window Objects

	Constants

	curses.textpad — Text input widget for curses programs
	Textbox objects

	curses.ascii — Utilities for ASCII characters

	curses.panel — A panel stack extension for curses
	Functions

	Panel Objects

	platform — Access to underlying platform’s identifying data
	Cross Platform

	Java Platform

	Windows Platform
	Win95/98 specific

	Mac OS Platform

	Unix Platforms

	errno — Standard errno system symbols

	ctypes — A foreign function library for Python
	ctypes tutorial
	Loading dynamic link libraries

	Accessing functions from loaded dlls

	Calling functions

	Fundamental data types

	Calling functions, continued

	Calling functions with your own custom data types

	Specifying the required argument types (function prototypes)

	Return types

	Passing pointers (or: passing parameters by reference)

	Structures and unions

	Structure/union alignment and byte order

	Bit fields in structures and unions

	Arrays

	Pointers

	Type conversions

	Incomplete Types

	Callback functions

	Accessing values exported from dlls

	Surprises

	Variable-sized data types

	ctypes reference
	Finding shared libraries

	Loading shared libraries

	Foreign functions

	Function prototypes

	Utility functions

	Data types

	Fundamental data types

	Structured data types

	Arrays and pointers

	Concurrent Execution
	threading — Thread-based parallelism
	Thread-Local Data

	Thread Objects

	Lock Objects

	RLock Objects

	Condition Objects

	Semaphore Objects
	Semaphore Example

	Event Objects

	Timer Objects

	Barrier Objects

	Using locks, conditions, and semaphores in the with statement

	multiprocessing — Process-based parallelism
	Introduction
	The Process class

	Contexts and start methods

	Exchanging objects between processes

	Synchronization between processes

	Sharing state between processes

	Using a pool of workers

	Reference
	Process and exceptions

	Pipes and Queues

	Miscellaneous

	Connection Objects

	Synchronization primitives

	Shared ctypes Objects
	The multiprocessing.sharedctypes module

	Managers
	Customized managers

	Using a remote manager

	Proxy Objects
	Cleanup

	Process Pools

	Listeners and Clients
	Address Formats

	Authentication keys

	Logging

	The multiprocessing.dummy module

	Programming guidelines
	All start methods

	The spawn and forkserver start methods

	Examples

	The concurrent package

	concurrent.futures — Launching parallel tasks
	Executor Objects

	ThreadPoolExecutor
	ThreadPoolExecutor Example

	ProcessPoolExecutor
	ProcessPoolExecutor Example

	Future Objects

	Module Functions

	Exception classes

	subprocess — Subprocess management
	Using the subprocess Module
	Frequently Used Arguments

	Popen Constructor

	Exceptions

	Security Considerations

	Popen Objects

	Windows Popen Helpers
	Windows Constants

	Older high-level API

	Replacing Older Functions with the subprocess Module
	Replacing /bin/sh shell backquote

	Replacing shell pipeline

	Replacing os.system()

	Replacing the os.spawn family

	Replacing os.popen(), os.popen2(), os.popen3()

	Replacing functions from the popen2 module

	Legacy Shell Invocation Functions

	Notes
	Converting an argument sequence to a string on Windows

	sched — Event scheduler
	Scheduler Objects

	queue — A synchronized queue class
	Queue Objects

	SimpleQueue Objects

	_thread — Low-level threading API

	_dummy_thread — Drop-in replacement for the _thread module

	dummy_threading — Drop-in replacement for the threading module

	contextvars — Context Variables
	Context Variables

	Manual Context Management

	asyncio support

	Networking and Interprocess Communication
	asyncio — Asynchronous I/O
	Coroutines and Tasks
	Coroutines

	Awaitables

	Running an asyncio Program

	Creating Tasks

	Sleeping

	Running Tasks Concurrently

	Shielding From Cancellation

	Timeouts

	Waiting Primitives

	Scheduling From Other Threads

	Introspection

	Task Object

	Generator-based Coroutines

	Streams
	StreamReader

	StreamWriter

	Examples
	TCP echo client using streams

	TCP echo server using streams

	Get HTTP headers

	Register an open socket to wait for data using streams

	Synchronization Primitives
	Lock

	Event

	Condition

	Semaphore

	BoundedSemaphore

	Subprocesses
	Creating Subprocesses

	Constants

	Interacting with Subprocesses
	Subprocess and Threads

	Examples

	Queues
	Queue

	Priority Queue

	LIFO Queue

	Exceptions

	Examples

	Exceptions

	Event Loop
	Event Loop Methods
	Running and stopping the loop

	Scheduling callbacks

	Scheduling delayed callbacks

	Creating Futures and Tasks

	Opening network connections

	Creating network servers

	Transferring files

	TLS Upgrade

	Watching file descriptors

	Working with socket objects directly

	DNS

	Working with pipes

	Unix signals

	Executing code in thread or process pools

	Error Handling API

	Enabling debug mode

	Running Subprocesses

	Callback Handles

	Server Objects

	Event Loop Implementations

	Examples
	Hello World with call_soon()

	Display the current date with call_later()

	Watch a file descriptor for read events

	Set signal handlers for SIGINT and SIGTERM

	Futures
	Future Functions

	Future Object

	Transports and Protocols
	Transports
	Transports Hierarchy

	Base Transport

	Read-only Transports

	Write-only Transports

	Datagram Transports

	Subprocess Transports

	Protocols
	Base Protocols

	Base Protocol

	Streaming Protocols

	Buffered Streaming Protocols

	Datagram Protocols

	Subprocess Protocols

	Examples
	TCP Echo Server

	TCP Echo Client

	UDP Echo Server

	UDP Echo Client

	Connecting Existing Sockets

	loop.subprocess_exec() and SubprocessProtocol

	Policies
	Getting and Setting the Policy

	Policy Objects

	Process Watchers

	Custom Policies

	Platform Support
	All Platforms

	Windows
	Subprocess Support on Windows

	macOS

	High-level API Index
	Tasks

	Queues

	Subprocesses

	Streams

	Synchronization

	Exceptions

	Low-level API Index
	Obtaining the Event Loop

	Event Loop Methods

	Transports

	Protocols

	Event Loop Policies

	Developing with asyncio
	Debug Mode

	Concurrency and Multithreading

	Running Blocking Code

	Logging

	Detect never-awaited coroutines

	Detect never-retrieved exceptions

	socket — Low-level networking interface
	Socket families

	Module contents
	Exceptions

	Constants

	Functions
	Creating sockets

	Other functions

	Socket Objects

	Notes on socket timeouts
	Timeouts and the connect method

	Timeouts and the accept method

	Example

	ssl — TLS/SSL wrapper for socket objects
	Functions, Constants, and Exceptions
	Socket creation

	Context creation

	Exceptions

	Random generation

	Certificate handling

	Constants

	SSL Sockets

	SSL Contexts

	Certificates
	Certificate chains

	CA certificates

	Combined key and certificate

	Self-signed certificates

	Examples
	Testing for SSL support

	Client-side operation

	Server-side operation

	Notes on non-blocking sockets

	Memory BIO Support

	SSL session

	Security considerations
	Best defaults

	Manual settings
	Verifying certificates

	Protocol versions

	Cipher selection

	Multi-processing

	TLS 1.3

	LibreSSL support

	select — Waiting for I/O completion
	/dev/poll Polling Objects

	Edge and Level Trigger Polling (epoll) Objects

	Polling Objects

	Kqueue Objects

	Kevent Objects

	selectors — High-level I/O multiplexing
	Introduction

	Classes

	Examples

	asyncore — Asynchronous socket handler
	asyncore Example basic HTTP client

	asyncore Example basic echo server

	asynchat — Asynchronous socket command/response handler
	asynchat Example

	signal — Set handlers for asynchronous events
	General rules
	Execution of Python signal handlers

	Signals and threads

	Module contents

	Example

	Note on SIGPIPE

	mmap — Memory-mapped file support

	Internet Data Handling
	email — An email and MIME handling package
	email.message: Representing an email message

	email.parser: Parsing email messages
	FeedParser API

	Parser API

	Additional notes

	email.generator: Generating MIME documents

	email.policy: Policy Objects

	email.errors: Exception and Defect classes

	email.headerregistry: Custom Header Objects

	email.contentmanager: Managing MIME Content
	Content Manager Instances

	email: Examples

	email.message.Message: Representing an email message using the compat32 API

	email.mime: Creating email and MIME objects from scratch

	email.header: Internationalized headers

	email.charset: Representing character sets

	email.encoders: Encoders

	email.utils: Miscellaneous utilities

	email.iterators: Iterators

	json — JSON encoder and decoder
	Basic Usage

	Encoders and Decoders

	Exceptions

	Standard Compliance and Interoperability
	Character Encodings

	Infinite and NaN Number Values

	Repeated Names Within an Object

	Top-level Non-Object, Non-Array Values

	Implementation Limitations

	Command Line Interface
	Command line options

	mailcap — Mailcap file handling

	mailbox — Manipulate mailboxes in various formats
	Mailbox objects
	Maildir

	mbox

	MH

	Babyl

	MMDF

	Message objects
	MaildirMessage

	mboxMessage

	MHMessage

	BabylMessage

	MMDFMessage

	Exceptions

	Examples

	mimetypes — Map filenames to MIME types
	MimeTypes Objects

	base64 — Base16, Base32, Base64, Base85 Data Encodings

	binhex — Encode and decode binhex4 files
	Notes

	binascii — Convert between binary and ASCII

	quopri — Encode and decode MIME quoted-printable data

	uu — Encode and decode uuencode files

	Structured Markup Processing Tools
	html — HyperText Markup Language support

	html.parser — Simple HTML and XHTML parser
	Example HTML Parser Application

	HTMLParser Methods

	Examples

	html.entities — Definitions of HTML general entities

	XML Processing Modules
	XML vulnerabilities

	The defusedxml and defusedexpat Packages

	xml.etree.ElementTree — The ElementTree XML API
	Tutorial
	XML tree and elements

	Parsing XML

	Pull API for non-blocking parsing

	Finding interesting elements

	Modifying an XML File

	Building XML documents

	Parsing XML with Namespaces

	Additional resources

	XPath support
	Example

	Supported XPath syntax

	Reference
	Functions

	Element Objects

	ElementTree Objects

	QName Objects

	TreeBuilder Objects

	XMLParser Objects

	XMLPullParser Objects

	Exceptions

	xml.dom — The Document Object Model API
	Module Contents

	Objects in the DOM
	DOMImplementation Objects

	Node Objects

	NodeList Objects

	DocumentType Objects

	Document Objects

	Element Objects

	Attr Objects

	NamedNodeMap Objects

	Comment Objects

	Text and CDATASection Objects

	ProcessingInstruction Objects

	Exceptions

	Conformance
	Type Mapping

	Accessor Methods

	xml.dom.minidom — Minimal DOM implementation
	DOM Objects

	DOM Example

	minidom and the DOM standard

	xml.dom.pulldom — Support for building partial DOM trees
	DOMEventStream Objects

	xml.sax — Support for SAX2 parsers
	SAXException Objects

	xml.sax.handler — Base classes for SAX handlers
	ContentHandler Objects

	DTDHandler Objects

	EntityResolver Objects

	ErrorHandler Objects

	xml.sax.saxutils — SAX Utilities

	xml.sax.xmlreader — Interface for XML parsers
	XMLReader Objects

	IncrementalParser Objects

	Locator Objects

	InputSource Objects

	The Attributes Interface

	The AttributesNS Interface

	xml.parsers.expat — Fast XML parsing using Expat
	XMLParser Objects

	ExpatError Exceptions

	Example

	Content Model Descriptions

	Expat error constants

	Internet Protocols and Support
	webbrowser — Convenient Web-browser controller
	Browser Controller Objects

	cgi — Common Gateway Interface support
	Introduction

	Using the cgi module

	Higher Level Interface

	Functions

	Caring about security

	Installing your CGI script on a Unix system

	Testing your CGI script

	Debugging CGI scripts

	Common problems and solutions

	cgitb — Traceback manager for CGI scripts

	wsgiref — WSGI Utilities and Reference Implementation
	wsgiref.util – WSGI environment utilities

	wsgiref.headers – WSGI response header tools

	wsgiref.simple_server – a simple WSGI HTTP server

	wsgiref.validate — WSGI conformance checker

	wsgiref.handlers – server/gateway base classes

	Examples

	urllib — URL handling modules

	urllib.request — Extensible library for opening URLs
	Request Objects

	OpenerDirector Objects

	BaseHandler Objects

	HTTPRedirectHandler Objects

	HTTPCookieProcessor Objects

	ProxyHandler Objects

	HTTPPasswordMgr Objects

	HTTPPasswordMgrWithPriorAuth Objects

	AbstractBasicAuthHandler Objects

	HTTPBasicAuthHandler Objects

	ProxyBasicAuthHandler Objects

	AbstractDigestAuthHandler Objects

	HTTPDigestAuthHandler Objects

	ProxyDigestAuthHandler Objects

	HTTPHandler Objects

	HTTPSHandler Objects

	FileHandler Objects

	DataHandler Objects

	FTPHandler Objects

	CacheFTPHandler Objects

	UnknownHandler Objects

	HTTPErrorProcessor Objects

	Examples

	Legacy interface

	urllib.request Restrictions

	urllib.response — Response classes used by urllib

	urllib.parse — Parse URLs into components
	URL Parsing

	Parsing ASCII Encoded Bytes

	Structured Parse Results

	URL Quoting

	urllib.error — Exception classes raised by urllib.request

	urllib.robotparser — Parser for robots.txt

	http — HTTP modules
	HTTP status codes

	http.client — HTTP protocol client
	HTTPConnection Objects

	HTTPResponse Objects

	Examples

	HTTPMessage Objects

	ftplib — FTP protocol client
	FTP Objects

	FTP_TLS Objects

	poplib — POP3 protocol client
	POP3 Objects

	POP3 Example

	imaplib — IMAP4 protocol client
	IMAP4 Objects

	IMAP4 Example

	nntplib — NNTP protocol client
	NNTP Objects
	Attributes

	Methods

	Utility functions

	smtplib — SMTP protocol client
	SMTP Objects

	SMTP Example

	smtpd — SMTP Server
	SMTPServer Objects

	DebuggingServer Objects

	PureProxy Objects

	MailmanProxy Objects

	SMTPChannel Objects

	telnetlib — Telnet client
	Telnet Objects

	Telnet Example

	uuid — UUID objects according to RFC 4122
	Example

	socketserver — A framework for network servers
	Server Creation Notes

	Server Objects

	Request Handler Objects

	Examples
	socketserver.TCPServer Example

	socketserver.UDPServer Example

	Asynchronous Mixins

	http.server — HTTP servers

	http.cookies — HTTP state management
	Cookie Objects

	Morsel Objects

	Example

	http.cookiejar — Cookie handling for HTTP clients
	CookieJar and FileCookieJar Objects

	FileCookieJar subclasses and co-operation with web browsers

	CookiePolicy Objects

	DefaultCookiePolicy Objects

	Cookie Objects

	Examples

	xmlrpc — XMLRPC server and client modules

	xmlrpc.client — XML-RPC client access
	ServerProxy Objects

	DateTime Objects

	Binary Objects

	Fault Objects

	ProtocolError Objects

	MultiCall Objects

	Convenience Functions

	Example of Client Usage

	Example of Client and Server Usage

	xmlrpc.server — Basic XML-RPC servers
	SimpleXMLRPCServer Objects
	SimpleXMLRPCServer Example

	CGIXMLRPCRequestHandler

	Documenting XMLRPC server

	DocXMLRPCServer Objects

	DocCGIXMLRPCRequestHandler

	ipaddress — IPv4/IPv6 manipulation library
	Convenience factory functions

	IP Addresses
	Address objects

	Conversion to Strings and Integers

	Operators
	Comparison operators

	Arithmetic operators

	IP Network definitions
	Prefix, net mask and host mask

	Network objects

	Operators
	Logical operators

	Iteration

	Networks as containers of addresses

	Interface objects
	Operators
	Logical operators

	Other Module Level Functions

	Custom Exceptions

	Multimedia Services
	audioop — Manipulate raw audio data

	aifc — Read and write AIFF and AIFC files

	sunau — Read and write Sun AU files
	AU_read Objects

	AU_write Objects

	wave — Read and write WAV files
	Wave_read Objects

	Wave_write Objects

	chunk — Read IFF chunked data

	colorsys — Conversions between color systems

	imghdr — Determine the type of an image

	sndhdr — Determine type of sound file

	ossaudiodev — Access to OSS-compatible audio devices
	Audio Device Objects

	Mixer Device Objects

	Internationalization
	gettext — Multilingual internationalization services
	GNU gettext API

	Class-based API
	The NullTranslations class

	The GNUTranslations class

	Solaris message catalog support

	The Catalog constructor

	Internationalizing your programs and modules
	Localizing your module

	Localizing your application

	Changing languages on the fly

	Deferred translations

	Acknowledgements

	locale — Internationalization services
	Background, details, hints, tips and caveats

	For extension writers and programs that embed Python

	Access to message catalogs

	Program Frameworks
	turtle — Turtle graphics
	Introduction

	Overview of available Turtle and Screen methods
	Turtle methods

	Methods of TurtleScreen/Screen

	Methods of RawTurtle/Turtle and corresponding functions
	Turtle motion

	Tell Turtle’s state

	Settings for measurement

	Pen control
	Drawing state

	Color control

	Filling

	More drawing control

	Turtle state
	Visibility

	Appearance

	Using events

	Special Turtle methods

	Compound shapes

	Methods of TurtleScreen/Screen and corresponding functions
	Window control

	Animation control

	Using screen events

	Input methods

	Settings and special methods

	Methods specific to Screen, not inherited from TurtleScreen

	Public classes

	Help and configuration
	How to use help

	Translation of docstrings into different languages

	How to configure Screen and Turtles

	turtledemo — Demo scripts

	Changes since Python 2.6

	Changes since Python 3.0

	cmd — Support for line-oriented command interpreters
	Cmd Objects

	Cmd Example

	shlex — Simple lexical analysis
	shlex Objects

	Parsing Rules

	Improved Compatibility with Shells

	Graphical User Interfaces with Tk
	tkinter — Python interface to Tcl/Tk
	Tkinter Modules

	Tkinter Life Preserver
	How To Use This Section

	A Simple Hello World Program

	A (Very) Quick Look at Tcl/Tk

	Mapping Basic Tk into Tkinter

	How Tk and Tkinter are Related

	Handy Reference
	Setting Options

	The Packer

	Packer Options

	Coupling Widget Variables

	The Window Manager

	Tk Option Data Types

	Bindings and Events

	The index Parameter

	Images

	File Handlers

	tkinter.ttk — Tk themed widgets
	Using Ttk

	Ttk Widgets

	Widget
	Standard Options

	Scrollable Widget Options

	Label Options

	Compatibility Options

	Widget States

	ttk.Widget

	Combobox
	Options

	Virtual events

	ttk.Combobox

	Spinbox
	Options

	Virtual events

	ttk.Spinbox

	Notebook
	Options

	Tab Options

	Tab Identifiers

	Virtual Events

	ttk.Notebook

	Progressbar
	Options

	ttk.Progressbar

	Separator
	Options

	Sizegrip
	Platform-specific notes

	Bugs

	Treeview
	Options

	Item Options

	Tag Options

	Column Identifiers

	Virtual Events

	ttk.Treeview

	Ttk Styling
	Layouts

	tkinter.tix — Extension widgets for Tk
	Using Tix

	Tix Widgets
	Basic Widgets

	File Selectors

	Hierarchical ListBox

	Tabular ListBox

	Manager Widgets

	Image Types

	Miscellaneous Widgets

	Form Geometry Manager

	Tix Commands

	tkinter.scrolledtext — Scrolled Text Widget

	IDLE
	Menus
	File menu (Shell and Editor)

	Edit menu (Shell and Editor)

	Format menu (Editor window only)

	Run menu (Editor window only)

	Shell menu (Shell window only)

	Debug menu (Shell window only)

	Options menu (Shell and Editor)

	Window menu (Shell and Editor)

	Help menu (Shell and Editor)

	Context Menus

	Editing and navigation
	Editor windows

	Key bindings

	Automatic indentation

	Completions

	Calltips

	Code Context

	Python Shell window

	Text colors

	Startup and code execution
	Command line usage

	Startup failure

	Running user code

	User output in Shell

	Developing tkinter applications

	Running without a subprocess

	Help and preferences
	Help sources

	Setting preferences

	IDLE on macOS

	Extensions

	Other Graphical User Interface Packages

	Development Tools
	typing — Support for type hints
	Type aliases

	NewType

	Callable

	Generics

	User-defined generic types

	The Any type

	Classes, functions, and decorators

	pydoc — Documentation generator and online help system

	doctest — Test interactive Python examples
	Simple Usage: Checking Examples in Docstrings

	Simple Usage: Checking Examples in a Text File

	How It Works
	Which Docstrings Are Examined?

	How are Docstring Examples Recognized?

	What’s the Execution Context?

	What About Exceptions?

	Option Flags

	Directives

	Warnings

	Basic API

	Unittest API

	Advanced API
	DocTest Objects

	Example Objects

	DocTestFinder objects

	DocTestParser objects

	DocTestRunner objects

	OutputChecker objects

	Debugging

	Soapbox

	unittest — Unit testing framework
	Basic example

	Command-Line Interface
	Command-line options

	Test Discovery

	Organizing test code

	Re-using old test code

	Skipping tests and expected failures

	Distinguishing test iterations using subtests

	Classes and functions
	Test cases
	Deprecated aliases

	Grouping tests

	Loading and running tests
	load_tests Protocol

	Class and Module Fixtures
	setUpClass and tearDownClass

	setUpModule and tearDownModule

	Signal Handling

	unittest.mock — mock object library
	Quick Guide

	The Mock Class
	Calling

	Deleting Attributes

	Mock names and the name attribute

	Attaching Mocks as Attributes

	The patchers
	patch

	patch.object

	patch.dict

	patch.multiple

	patch methods: start and stop

	patch builtins

	TEST_PREFIX

	Nesting Patch Decorators

	Where to patch

	Patching Descriptors and Proxy Objects

	MagicMock and magic method support
	Mocking Magic Methods

	Magic Mock

	Helpers
	sentinel

	DEFAULT

	call

	create_autospec

	ANY

	FILTER_DIR

	mock_open

	Autospeccing

	Sealing mocks

	unittest.mock — getting started
	Using Mock
	Mock Patching Methods

	Mock for Method Calls on an Object

	Mocking Classes

	Naming your mocks

	Tracking all Calls

	Setting Return Values and Attributes

	Raising exceptions with mocks

	Side effect functions and iterables

	Creating a Mock from an Existing Object

	Patch Decorators

	Further Examples
	Mocking chained calls

	Partial mocking

	Mocking a Generator Method

	Applying the same patch to every test method

	Mocking Unbound Methods

	Checking multiple calls with mock

	Coping with mutable arguments

	Nesting Patches

	Mocking a dictionary with MagicMock

	Mock subclasses and their attributes

	Mocking imports with patch.dict

	Tracking order of calls and less verbose call assertions

	More complex argument matching

	2to3 - Automated Python 2 to 3 code translation
	Using 2to3

	Fixers

	lib2to3 - 2to3’s library

	test — Regression tests package for Python
	Writing Unit Tests for the test package

	Running tests using the command-line interface

	test.support — Utilities for the Python test suite

	test.support.script_helper — Utilities for the Python execution tests

	Debugging and Profiling
	bdb — Debugger framework

	faulthandler — Dump the Python traceback
	Dumping the traceback

	Fault handler state

	Dumping the tracebacks after a timeout

	Dumping the traceback on a user signal

	Issue with file descriptors

	Example

	pdb — The Python Debugger
	Debugger Commands

	The Python Profilers
	Introduction to the profilers

	Instant User’s Manual

	profile and cProfile Module Reference

	The Stats Class

	What Is Deterministic Profiling?

	Limitations

	Calibration

	Using a custom timer

	timeit — Measure execution time of small code snippets
	Basic Examples

	Python Interface

	Command-Line Interface

	Examples

	trace — Trace or track Python statement execution
	Command-Line Usage
	Main options

	Modifiers

	Filters

	Programmatic Interface

	tracemalloc — Trace memory allocations
	Examples
	Display the top 10

	Compute differences

	Get the traceback of a memory block

	Pretty top

	API
	Functions

	DomainFilter

	Filter

	Frame

	Snapshot

	Statistic

	StatisticDiff

	Trace

	Traceback

	Software Packaging and Distribution
	distutils — Building and installing Python modules

	ensurepip — Bootstrapping the pip installer
	Command line interface

	Module API

	venv — Creation of virtual environments
	Creating virtual environments

	API

	An example of extending EnvBuilder

	zipapp — Manage executable Python zip archives
	Basic Example

	Command-Line Interface

	Python API

	Examples

	Specifying the Interpreter

	Creating Standalone Applications with zipapp
	Making a Windows executable

	Caveats

	The Python Zip Application Archive Format

	Python Runtime Services
	sys — System-specific parameters and functions

	sysconfig — Provide access to Python’s configuration information
	Configuration variables

	Installation paths

	Other functions

	Using sysconfig as a script

	builtins — Built-in objects

	__main__ — Top-level script environment

	warnings — Warning control
	Warning Categories

	The Warnings Filter
	Describing Warning Filters

	Default Warning Filter

	Overriding the default filter

	Temporarily Suppressing Warnings

	Testing Warnings

	Updating Code For New Versions of Dependencies

	Available Functions

	Available Context Managers

	dataclasses — Data Classes
	Module-level decorators, classes, and functions

	Post-init processing

	Class variables

	Init-only variables

	Frozen instances

	Inheritance

	Default factory functions

	Mutable default values

	Exceptions

	contextlib — Utilities for with-statement contexts
	Utilities

	Examples and Recipes
	Supporting a variable number of context managers

	Catching exceptions from __enter__ methods

	Cleaning up in an __enter__ implementation

	Replacing any use of try-finally and flag variables

	Using a context manager as a function decorator

	Single use, reusable and reentrant context managers
	Reentrant context managers

	Reusable context managers

	abc — Abstract Base Classes

	atexit — Exit handlers
	atexit Example

	traceback — Print or retrieve a stack traceback
	TracebackException Objects

	StackSummary Objects

	FrameSummary Objects

	Traceback Examples

	__future__ — Future statement definitions

	gc — Garbage Collector interface

	inspect — Inspect live objects
	Types and members

	Retrieving source code

	Introspecting callables with the Signature object

	Classes and functions

	The interpreter stack

	Fetching attributes statically

	Current State of Generators and Coroutines

	Code Objects Bit Flags

	Command Line Interface

	site — Site-specific configuration hook
	Readline configuration

	Module contents

	Custom Python Interpreters
	code — Interpreter base classes
	Interactive Interpreter Objects

	Interactive Console Objects

	codeop — Compile Python code

	Importing Modules
	zipimport — Import modules from Zip archives
	zipimporter Objects

	Examples

	pkgutil — Package extension utility

	modulefinder — Find modules used by a script
	Example usage of ModuleFinder

	runpy — Locating and executing Python modules

	importlib — The implementation of import
	Introduction

	Functions

	importlib.abc – Abstract base classes related to import

	importlib.resources – Resources

	importlib.machinery – Importers and path hooks

	importlib.util – Utility code for importers

	Examples
	Importing programmatically

	Checking if a module can be imported

	Importing a source file directly

	Setting up an importer

	Approximating importlib.import_module()

	Python Language Services
	parser — Access Python parse trees
	Creating ST Objects

	Converting ST Objects

	Queries on ST Objects

	Exceptions and Error Handling

	ST Objects

	Example: Emulation of compile()

	ast — Abstract Syntax Trees
	Node classes

	Abstract Grammar

	ast Helpers

	symtable — Access to the compiler’s symbol tables
	Generating Symbol Tables

	Examining Symbol Tables

	symbol — Constants used with Python parse trees

	token — Constants used with Python parse trees

	keyword — Testing for Python keywords

	tokenize — Tokenizer for Python source
	Tokenizing Input

	Command-Line Usage

	Examples

	tabnanny — Detection of ambiguous indentation

	pyclbr — Python class browser support
	Function Objects

	Class Objects

	py_compile — Compile Python source files

	compileall — Byte-compile Python libraries
	Command-line use

	Public functions

	dis — Disassembler for Python bytecode
	Bytecode analysis

	Analysis functions

	Python Bytecode Instructions

	Opcode collections

	pickletools — Tools for pickle developers
	Command line usage
	Command line options

	Programmatic Interface

	Miscellaneous Services
	formatter — Generic output formatting
	The Formatter Interface

	Formatter Implementations

	The Writer Interface

	Writer Implementations

	MS Windows Specific Services
	msilib — Read and write Microsoft Installer files
	Database Objects

	View Objects

	Summary Information Objects

	Record Objects

	Errors

	CAB Objects

	Directory Objects

	Features

	GUI classes

	Precomputed tables

	msvcrt — Useful routines from the MS VC++ runtime
	File Operations

	Console I/O

	Other Functions

	winreg — Windows registry access
	Functions

	Constants
	HKEY_* Constants

	Access Rights
	64-bit Specific

	Value Types

	Registry Handle Objects

	winsound — Sound-playing interface for Windows

	Unix Specific Services
	posix — The most common POSIX system calls
	Large File Support

	Notable Module Contents

	pwd — The password database

	spwd — The shadow password database

	grp — The group database

	crypt — Function to check Unix passwords
	Hashing Methods

	Module Attributes

	Module Functions

	Examples

	termios — POSIX style tty control
	Example

	tty — Terminal control functions

	pty — Pseudo-terminal utilities
	Example

	fcntl — The fcntl and ioctl system calls

	pipes — Interface to shell pipelines
	Template Objects

	resource — Resource usage information
	Resource Limits

	Resource Usage

	nis — Interface to Sun’s NIS (Yellow Pages)

	syslog — Unix syslog library routines
	Examples
	Simple example

	Superseded Modules
	optparse — Parser for command line options
	Background
	Terminology

	What are options for?

	What are positional arguments for?

	Tutorial
	Understanding option actions

	The store action

	Handling boolean (flag) options

	Other actions

	Default values

	Generating help
	Grouping Options

	Printing a version string

	How optparse handles errors

	Putting it all together

	Reference Guide
	Creating the parser

	Populating the parser

	Defining options

	Option attributes

	Standard option actions

	Standard option types

	Parsing arguments

	Querying and manipulating your option parser

	Conflicts between options

	Cleanup

	Other methods

	Option Callbacks
	Defining a callback option

	How callbacks are called

	Raising errors in a callback

	Callback example 1: trivial callback

	Callback example 2: check option order

	Callback example 3: check option order (generalized)

	Callback example 4: check arbitrary condition

	Callback example 5: fixed arguments

	Callback example 6: variable arguments

	Extending optparse
	Adding new types

	Adding new actions

	imp — Access the import internals
	Examples

	Undocumented Modules
	Platform specific modules

	Extending and Embedding the Python Interpreter
	Recommended third party tools

	Creating extensions without third party tools
	1. Extending Python with C or C++
	1.1. A Simple Example

	1.2. Intermezzo: Errors and Exceptions

	1.3. Back to the Example

	1.4. The Module’s Method Table and Initialization Function

	1.5. Compilation and Linkage

	1.6. Calling Python Functions from C

	1.7. Extracting Parameters in Extension Functions

	1.8. Keyword Parameters for Extension Functions

	1.9. Building Arbitrary Values

	1.10. Reference Counts
	1.10.1. Reference Counting in Python

	1.10.2. Ownership Rules

	1.10.3. Thin Ice

	1.10.4. NULL Pointers

	1.11. Writing Extensions in C++

	1.12. Providing a C API for an Extension Module

	2. Defining Extension Types: Tutorial
	2.1. The Basics

	2.2. Adding data and methods to the Basic example

	2.3. Providing finer control over data attributes

	2.4. Supporting cyclic garbage collection

	2.5. Subclassing other types

	3. Defining Extension Types: Assorted Topics
	3.1. Finalization and De-allocation

	3.2. Object Presentation

	3.3. Attribute Management
	3.3.1. Generic Attribute Management

	3.3.2. Type-specific Attribute Management

	3.4. Object Comparison

	3.5. Abstract Protocol Support

	3.6. Weak Reference Support

	3.7. More Suggestions

	4. Building C and C++ Extensions
	4.1. Building C and C++ Extensions with distutils

	4.2. Distributing your extension modules

	5. Building C and C++ Extensions on Windows
	5.1. A Cookbook Approach

	5.2. Differences Between Unix and Windows

	5.3. Using DLLs in Practice

	Embedding the CPython runtime in a larger application
	1. Embedding Python in Another Application
	1.1. Very High Level Embedding

	1.2. Beyond Very High Level Embedding: An overview

	1.3. Pure Embedding

	1.4. Extending Embedded Python

	1.5. Embedding Python in C++

	1.6. Compiling and Linking under Unix-like systems

	Python/C API Reference Manual
	Introduction
	Coding standards

	Include Files

	Useful macros

	Objects, Types and Reference Counts
	Reference Counts
	Reference Count Details

	Types

	Exceptions

	Embedding Python

	Debugging Builds

	Stable Application Binary Interface

	The Very High Level Layer

	Reference Counting

	Exception Handling
	Printing and clearing

	Raising exceptions

	Issuing warnings

	Querying the error indicator

	Signal Handling

	Exception Classes

	Exception Objects

	Unicode Exception Objects

	Recursion Control

	Standard Exceptions

	Standard Warning Categories

	Utilities
	Operating System Utilities

	System Functions

	Process Control

	Importing Modules

	Data marshalling support

	Parsing arguments and building values
	Parsing arguments
	Strings and buffers

	Numbers

	Other objects

	API Functions

	Building values

	String conversion and formatting

	Reflection

	Codec registry and support functions
	Codec lookup API

	Registry API for Unicode encoding error handlers

	Abstract Objects Layer
	Object Protocol

	Number Protocol

	Sequence Protocol

	Mapping Protocol

	Iterator Protocol

	Buffer Protocol
	Buffer structure

	Buffer request types
	request-independent fields

	readonly, format

	shape, strides, suboffsets

	contiguity requests

	compound requests

	Complex arrays
	NumPy-style: shape and strides

	PIL-style: shape, strides and suboffsets

	Buffer-related functions

	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Type Objects

	The None Object

	Numeric Objects
	Integer Objects

	Boolean Objects

	Floating Point Objects

	Complex Number Objects
	Complex Numbers as C Structures

	Complex Numbers as Python Objects

	Sequence Objects
	Bytes Objects

	Byte Array Objects
	Type check macros

	Direct API functions

	Macros

	Unicode Objects and Codecs
	Unicode Objects
	Unicode Type

	Unicode Character Properties

	Creating and accessing Unicode strings

	Deprecated Py_UNICODE APIs

	Locale Encoding

	File System Encoding

	wchar_t Support

	Built-in Codecs
	Generic Codecs

	UTF-8 Codecs

	UTF-32 Codecs

	UTF-16 Codecs

	UTF-7 Codecs

	Unicode-Escape Codecs

	Raw-Unicode-Escape Codecs

	Latin-1 Codecs

	ASCII Codecs

	Character Map Codecs

	MBCS codecs for Windows

	Methods & Slots

	Methods and Slot Functions

	Tuple Objects

	Struct Sequence Objects

	List Objects

	Container Objects
	Dictionary Objects

	Set Objects

	Function Objects
	Function Objects

	Instance Method Objects

	Method Objects

	Cell Objects

	Code Objects

	Other Objects
	File Objects

	Module Objects
	Initializing C modules
	Single-phase initialization

	Multi-phase initialization

	Low-level module creation functions

	Support functions

	Module lookup

	Iterator Objects

	Descriptor Objects

	Slice Objects

	Ellipsis Object

	MemoryView objects

	Weak Reference Objects

	Capsules

	Generator Objects

	Coroutine Objects

	Context Variables Objects

	DateTime Objects

	Initialization, Finalization, and Threads
	Before Python Initialization

	Global configuration variables

	Initializing and finalizing the interpreter

	Process-wide parameters

	Thread State and the Global Interpreter Lock
	Releasing the GIL from extension code

	Non-Python created threads

	High-level API

	Low-level API

	Sub-interpreter support
	Bugs and caveats

	Asynchronous Notifications

	Profiling and Tracing

	Advanced Debugger Support

	Thread Local Storage Support
	Thread Specific Storage (TSS) API
	Dynamic Allocation

	Methods

	Thread Local Storage (TLS) API

	Memory Management
	Overview

	Raw Memory Interface

	Memory Interface

	Object allocators

	Default Memory Allocators

	Customize Memory Allocators

	The pymalloc allocator
	Customize pymalloc Arena Allocator

	tracemalloc C API

	Examples

	Object Implementation Support
	Allocating Objects on the Heap

	Common Object Structures

	Type Objects

	Number Object Structures

	Mapping Object Structures

	Sequence Object Structures

	Buffer Object Structures

	Async Object Structures

	Supporting Cyclic Garbage Collection

	API and ABI Versioning

	Distributing Python Modules
	Key terms

	Open source licensing and collaboration

	Installing the tools

	Reading the guide

	How do I…?
	… choose a name for my project?

	… create and distribute binary extensions?

	Installing Python Modules
	Key terms

	Basic usage

	How do I …?
	… install pip in versions of Python prior to Python 3.4?

	… install packages just for the current user?

	… install scientific Python packages?

	… work with multiple versions of Python installed in parallel?

	Common installation issues
	Installing into the system Python on Linux

	Pip not installed

	Installing binary extensions

	Python HOWTOs
	Porting Python 2 Code to Python 3
	The Short Explanation

	Details
	Drop support for Python 2.6 and older

	Make sure you specify the proper version support in your setup.py file

	Have good test coverage

	Learn the differences between Python 2 & 3

	Update your code
	Division

	Text versus binary data

	Use feature detection instead of version detection

	Prevent compatibility regressions

	Check which dependencies block your transition

	Update your setup.py file to denote Python 3 compatibility

	Use continuous integration to stay compatible

	Consider using optional static type checking

	Porting Extension Modules to Python 3
	Conditional compilation

	Changes to Object APIs
	str/unicode Unification

	long/int Unification

	Module initialization and state

	CObject replaced with Capsule

	Other options

	Curses Programming with Python
	What is curses?
	The Python curses module

	Starting and ending a curses application

	Windows and Pads

	Displaying Text
	Attributes and Color

	User Input

	For More Information

	Descriptor HowTo Guide
	Abstract

	Definition and Introduction

	Descriptor Protocol

	Invoking Descriptors

	Descriptor Example

	Properties

	Functions and Methods

	Static Methods and Class Methods

	Functional Programming HOWTO
	Introduction
	Formal provability

	Modularity

	Ease of debugging and testing

	Composability

	Iterators
	Data Types That Support Iterators

	Generator expressions and list comprehensions

	Generators
	Passing values into a generator

	Built-in functions

	The itertools module
	Creating new iterators

	Calling functions on elements

	Selecting elements

	Combinatoric functions

	Grouping elements

	The functools module
	The operator module

	Small functions and the lambda expression

	Revision History and Acknowledgements

	References
	General

	Python-specific

	Python documentation

	Logging HOWTO
	Basic Logging Tutorial
	When to use logging

	A simple example

	Logging to a file

	Logging from multiple modules

	Logging variable data

	Changing the format of displayed messages

	Displaying the date/time in messages

	Next Steps

	Advanced Logging Tutorial
	Logging Flow

	Loggers

	Handlers

	Formatters

	Configuring Logging

	What happens if no configuration is provided

	Configuring Logging for a Library

	Logging Levels
	Custom Levels

	Useful Handlers

	Exceptions raised during logging

	Using arbitrary objects as messages

	Optimization

	Logging Cookbook
	Using logging in multiple modules

	Logging from multiple threads

	Multiple handlers and formatters

	Logging to multiple destinations

	Configuration server example

	Dealing with handlers that block

	Sending and receiving logging events across a network

	Adding contextual information to your logging output
	Using LoggerAdapters to impart contextual information
	Using objects other than dicts to pass contextual information

	Using Filters to impart contextual information

	Logging to a single file from multiple processes

	Using file rotation

	Use of alternative formatting styles

	Customizing LogRecord

	Subclassing QueueHandler - a ZeroMQ example

	Subclassing QueueListener - a ZeroMQ example

	An example dictionary-based configuration

	Using a rotator and namer to customize log rotation processing

	A more elaborate multiprocessing example

	Inserting a BOM into messages sent to a SysLogHandler

	Implementing structured logging

	Customizing handlers with dictConfig()

	Using particular formatting styles throughout your application
	Using LogRecord factories

	Using custom message objects

	Configuring filters with dictConfig()

	Customized exception formatting

	Speaking logging messages

	Buffering logging messages and outputting them conditionally

	Formatting times using UTC (GMT) via configuration

	Using a context manager for selective logging

	Regular Expression HOWTO
	Introduction

	Simple Patterns
	Matching Characters

	Repeating Things

	Using Regular Expressions
	Compiling Regular Expressions

	The Backslash Plague

	Performing Matches

	Module-Level Functions

	Compilation Flags

	More Pattern Power
	More Metacharacters

	Grouping

	Non-capturing and Named Groups

	Lookahead Assertions

	Modifying Strings
	Splitting Strings

	Search and Replace

	Common Problems
	Use String Methods

	match() versus search()

	Greedy versus Non-Greedy

	Using re.VERBOSE

	Feedback

	Socket Programming HOWTO
	Sockets
	History

	Creating a Socket
	IPC

	Using a Socket
	Binary Data

	Disconnecting
	When Sockets Die

	Non-blocking Sockets

	Sorting HOW TO
	Sorting Basics

	Key Functions

	Operator Module Functions

	Ascending and Descending

	Sort Stability and Complex Sorts

	The Old Way Using Decorate-Sort-Undecorate

	The Old Way Using the cmp Parameter

	Odd and Ends

	Unicode HOWTO
	Introduction to Unicode
	History of Character Codes

	Definitions

	Encodings

	References

	Python’s Unicode Support
	The String Type

	Converting to Bytes

	Unicode Literals in Python Source Code

	Unicode Properties

	Unicode Regular Expressions

	References

	Reading and Writing Unicode Data
	Unicode filenames

	Tips for Writing Unicode-aware Programs
	Converting Between File Encodings

	Files in an Unknown Encoding

	References

	Acknowledgements

	HOWTO Fetch Internet Resources Using The urllib Package
	Introduction

	Fetching URLs
	Data

	Headers

	Handling Exceptions
	URLError

	HTTPError
	Error Codes

	Wrapping it Up
	Number 1

	Number 2

	info and geturl

	Openers and Handlers

	Basic Authentication

	Proxies

	Sockets and Layers

	Footnotes

	Argparse Tutorial
	Concepts

	The basics

	Introducing Positional arguments

	Introducing Optional arguments
	Short options

	Combining Positional and Optional arguments

	Getting a little more advanced
	Conflicting options

	Conclusion

	An introduction to the ipaddress module
	Creating Address/Network/Interface objects
	A Note on IP Versions

	IP Host Addresses

	Defining Networks

	Host Interfaces

	Inspecting Address/Network/Interface Objects

	Networks as lists of Addresses

	Comparisons

	Using IP Addresses with other modules

	Getting more detail when instance creation fails

	Argument Clinic How-To
	The Goals Of Argument Clinic

	Basic Concepts And Usage

	Converting Your First Function

	Advanced Topics
	Symbolic default values

	Renaming the C functions and variables generated by Argument Clinic

	Converting functions using PyArg_UnpackTuple

	Optional Groups

	Using real Argument Clinic converters, instead of “legacy converters”

	Py_buffer

	Advanced converters

	Parameter default values

	The NULL default value

	Expressions specified as default values

	Using a return converter

	Cloning existing functions

	Calling Python code

	Using a “self converter”

	Writing a custom converter

	Writing a custom return converter

	METH_O and METH_NOARGS

	tp_new and tp_init functions

	Changing and redirecting Clinic’s output

	The #ifdef trick

	Using Argument Clinic in Python files

	Instrumenting CPython with DTrace and SystemTap
	Enabling the static markers

	Static DTrace probes

	Static SystemTap markers

	Available static markers

	SystemTap Tapsets

	Examples

	Python Frequently Asked Questions
	General Python FAQ
	General Information

	Python in the real world

	Programming FAQ
	General Questions

	Core Language

	Numbers and strings

	Performance

	Sequences (Tuples/Lists)

	Dictionaries

	Objects

	Modules

	Design and History FAQ
	Why does Python use indentation for grouping of statements?

	Why am I getting strange results with simple arithmetic operations?

	Why are floating-point calculations so inaccurate?

	Why are Python strings immutable?

	Why must ‘self’ be used explicitly in method definitions and calls?

	Why can’t I use an assignment in an expression?

	Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g. len(list))?

	Why is join() a string method instead of a list or tuple method?

	How fast are exceptions?

	Why isn’t there a switch or case statement in Python?

	Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?

	Why can’t lambda expressions contain statements?

	Can Python be compiled to machine code, C or some other language?

	How does Python manage memory?

	Why doesn’t CPython use a more traditional garbage collection scheme?

	Why isn’t all memory freed when CPython exits?

	Why are there separate tuple and list data types?

	How are lists implemented in CPython?

	How are dictionaries implemented in CPython?

	Why must dictionary keys be immutable?

	Why doesn’t list.sort() return the sorted list?

	How do you specify and enforce an interface spec in Python?

	Why is there no goto?

	Why can’t raw strings (r-strings) end with a backslash?

	Why doesn’t Python have a “with” statement for attribute assignments?

	Why are colons required for the if/while/def/class statements?

	Why does Python allow commas at the end of lists and tuples?

	Library and Extension FAQ
	General Library Questions

	Common tasks

	Threads

	Input and Output

	Network/Internet Programming

	Databases

	Mathematics and Numerics

	Extending/Embedding FAQ
	Can I create my own functions in C?

	Can I create my own functions in C++?

	Writing C is hard; are there any alternatives?

	How can I execute arbitrary Python statements from C?

	How can I evaluate an arbitrary Python expression from C?

	How do I extract C values from a Python object?

	How do I use Py_BuildValue() to create a tuple of arbitrary length?

	How do I call an object’s method from C?

	How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)?

	How do I access a module written in Python from C?

	How do I interface to C++ objects from Python?

	I added a module using the Setup file and the make fails; why?

	How do I debug an extension?

	I want to compile a Python module on my Linux system, but some files are missing. Why?

	How do I tell “incomplete input” from “invalid input”?

	How do I find undefined g++ symbols __builtin_new or __pure_virtual?

	Can I create an object class with some methods implemented in C and others in Python (e.g. through inheritance)?

	Python on Windows FAQ
	How do I run a Python program under Windows?

	How do I make Python scripts executable?

	Why does Python sometimes take so long to start?

	How do I make an executable from a Python script?

	Is a *.pyd file the same as a DLL?

	How can I embed Python into a Windows application?

	How do I keep editors from inserting tabs into my Python source?

	How do I check for a keypress without blocking?

	Graphic User Interface FAQ
	General GUI Questions

	What platform-independent GUI toolkits exist for Python?

	What platform-specific GUI toolkits exist for Python?

	Tkinter questions

	“Why is Python Installed on my Computer?” FAQ
	What is Python?

	Why is Python installed on my machine?

	Can I delete Python?

	Glossary

	About these documents
	Contributors to the Python Documentation

	Dealing with Bugs
	Documentation bugs

	Using the Python issue tracker

	Getting started contributing to Python yourself

	Copyright

	History and License
	History of the software

	Terms and conditions for accessing or otherwise using Python
	PSF LICENSE AGREEMENT FOR PYTHON 3.7.2

	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister

	Sockets

	Asynchronous socket services

	Cookie management

	Execution tracing

	UUencode and UUdecode functions

	XML Remote Procedure Calls

	test_epoll

	Select kqueue

	SipHash24

	strtod and dtoa

	OpenSSL

	expat

	libffi

	zlib

	cfuhash

	libmpdec

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	

 |

 Python/C API Reference Manual

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	

 |

Python/C API Reference Manual

This manual documents the API used by C and C++ programmers who want to write
extension modules or embed Python. It is a companion to Extending and Embedding the Python Interpreter,
which describes the general principles of extension writing but does not
document the API functions in detail.

	Introduction
	Coding standards

	Include Files

	Useful macros

	Objects, Types and Reference Counts

	Exceptions

	Embedding Python

	Debugging Builds

	Stable Application Binary Interface

	The Very High Level Layer

	Reference Counting

	Exception Handling
	Printing and clearing

	Raising exceptions

	Issuing warnings

	Querying the error indicator

	Signal Handling

	Exception Classes

	Exception Objects

	Unicode Exception Objects

	Recursion Control

	Standard Exceptions

	Standard Warning Categories

	Utilities
	Operating System Utilities

	System Functions

	Process Control

	Importing Modules

	Data marshalling support

	Parsing arguments and building values

	String conversion and formatting

	Reflection

	Codec registry and support functions

	Abstract Objects Layer
	Object Protocol

	Number Protocol

	Sequence Protocol

	Mapping Protocol

	Iterator Protocol

	Buffer Protocol

	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects

	Numeric Objects

	Sequence Objects

	Container Objects

	Function Objects

	Other Objects

	Initialization, Finalization, and Threads
	Before Python Initialization

	Global configuration variables

	Initializing and finalizing the interpreter

	Process-wide parameters

	Thread State and the Global Interpreter Lock

	Sub-interpreter support

	Asynchronous Notifications

	Profiling and Tracing

	Advanced Debugger Support

	Thread Local Storage Support

	Memory Management
	Overview

	Raw Memory Interface

	Memory Interface

	Object allocators

	Default Memory Allocators

	Customize Memory Allocators

	The pymalloc allocator

	tracemalloc C API

	Examples

	Object Implementation Support
	Allocating Objects on the Heap

	Common Object Structures

	Type Objects

	Number Object Structures

	Mapping Object Structures

	Sequence Object Structures

	Buffer Object Structures

	Async Object Structures

	Supporting Cyclic Garbage Collection

	API and ABI Versioning

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	

 |

 Introduction

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	

 |

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers
access to the Python interpreter at a variety of levels. The API is equally
usable from C++, but for brevity it is generally referred to as the Python/C
API. There are two fundamentally different reasons for using the Python/C API.
The first reason is to write extension modules for specific purposes; these
are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger
application; this technique is generally referred to as embedding Python
in an application.

Writing an extension module is a relatively well-understood process, where a
“cookbook” approach works well. There are several tools that automate the
process to some extent. While people have embedded Python in other
applications since its early existence, the process of embedding Python is
less straightforward than writing an extension.

Many API functions are useful independent of whether you’re embedding or
extending Python; moreover, most applications that embed Python will need to
provide a custom extension as well, so it’s probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real
application.

Coding standards

If you’re writing C code for inclusion in CPython, you must follow the
guidelines and standards defined in PEP 7 [https://www.python.org/dev/peps/pep-0007]. These guidelines apply
regardless of the version of Python you are contributing to. Following these
conventions is not necessary for your own third party extension modules,
unless you eventually expect to contribute them to Python.

Include Files

All function, type and macro definitions needed to use the Python/C API are
included in your code by the following line:

#include "Python.h"

This implies inclusion of the following standard headers: <stdio.h>,
<string.h>, <errno.h>, <limits.h>, <assert.h> and <stdlib.h>
(if available).

Note

Since Python may define some pre-processor definitions which affect the standard
headers on some systems, you must include Python.h before any standard
headers are included.

All user visible names defined by Python.h (except those defined by the included
standard headers) have one of the prefixes Py or _Py. Names beginning
with _Py are for internal use by the Python implementation and should not be
used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin with Py or
_Py. This confuses the reader, and jeopardizes the portability of the user
code to future Python versions, which may define additional names beginning with
one of these prefixes.

The header files are typically installed with Python. On Unix, these are
located in the directories prefix/include/pythonversion/ and
exec_prefix/include/pythonversion/, where prefix and
exec_prefix are defined by the corresponding parameters to Python’s
configure script and version is
'%d.%d' % sys.version_info[:2]. On Windows, the headers are installed
in prefix/include, where prefix is the installation
directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s
search path for includes. Do not place the parent directories on the search
path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under
prefix include the platform specific headers from
exec_prefix.

C++ users should note that though the API is defined entirely using C, the
header files do properly declare the entry points to be extern "C", so there
is no need to do anything special to use the API from C++.

Useful macros

Several useful macros are defined in the Python header files. Many are
defined closer to where they are useful (e.g. Py_RETURN_NONE).
Others of a more general utility are defined here. This is not necessarily a
complete listing.

	
Py_UNREACHABLE()

	Use this when you have a code path that you do not expect to be reached.
For example, in the default: clause in a switch statement for which
all possible values are covered in case statements. Use this in places
where you might be tempted to put an assert(0) or abort() call.

New in version 3.7.

	
Py_ABS(x)

	Return the absolute value of x.

New in version 3.3.

	
Py_MIN(x, y)

	Return the minimum value between x and y.

New in version 3.3.

	
Py_MAX(x, y)

	Return the maximum value between x and y.

New in version 3.3.

	
Py_STRINGIFY(x)

	Convert x to a C string. E.g. Py_STRINGIFY(123) returns
"123".

New in version 3.4.

	
Py_MEMBER_SIZE(type, member)

	Return the size of a structure (type) member in bytes.

New in version 3.6.

	
Py_CHARMASK(c)

	Argument must be a character or an integer in the range [-128, 127] or [0,
255]. This macro returns c cast to an unsigned char.

	
Py_GETENV(s)

	Like getenv(s), but returns NULL if -E was passed on the
command line (i.e. if Py_IgnoreEnvironmentFlag is set).

	
Py_UNUSED(arg)

	Use this for unused arguments in a function definition to silence compiler
warnings, e.g. PyObject* func(PyObject *Py_UNUSED(ignored)).

New in version 3.4.

Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value
of type PyObject*. This type is a pointer to an opaque data type
representing an arbitrary Python object. Since all Python object types are
treated the same way by the Python language in most situations (e.g.,
assignments, scope rules, and argument passing), it is only fitting that they
should be represented by a single C type. Almost all Python objects live on the
heap: you never declare an automatic or static variable of type
PyObject, only pointer variables of type PyObject* can be
declared. The sole exception are the type objects; since these must never be
deallocated, they are typically static PyTypeObject objects.

All Python objects (even Python integers) have a type and a
reference count. An object’s type determines what kind of object it is
(e.g., an integer, a list, or a user-defined function; there are many more as
explained in The standard type hierarchy). For each of the well-known types there is a macro
to check whether an object is of that type; for instance, PyList_Check(a) is
true if (and only if) the object pointed to by a is a Python list.

Reference Counts

The reference count is important because today’s computers have a finite (and
often severely limited) memory size; it counts how many different places there
are that have a reference to an object. Such a place could be another object,
or a global (or static) C variable, or a local variable in some C function.
When an object’s reference count becomes zero, the object is deallocated. If
it contains references to other objects, their reference count is decremented.
Those other objects may be deallocated in turn, if this decrement makes their
reference count become zero, and so on. (There’s an obvious problem with
objects that reference each other here; for now, the solution is “don’t do
that.”)

Reference counts are always manipulated explicitly. The normal way is to use
the macro Py_INCREF() to increment an object’s reference count by one,
and Py_DECREF() to decrement it by one. The Py_DECREF() macro
is considerably more complex than the incref one, since it must check whether
the reference count becomes zero and then cause the object’s deallocator to be
called. The deallocator is a function pointer contained in the object’s type
structure. The type-specific deallocator takes care of decrementing the
reference counts for other objects contained in the object if this is a compound
object type, such as a list, as well as performing any additional finalization
that’s needed. There’s no chance that the reference count can overflow; at
least as many bits are used to hold the reference count as there are distinct
memory locations in virtual memory (assuming sizeof(Py_ssize_t) >= sizeof(void*)).
Thus, the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local
variable that contains a pointer to an object. In theory, the object’s
reference count goes up by one when the variable is made to point to it and it
goes down by one when the variable goes out of scope. However, these two
cancel each other out, so at the end the reference count hasn’t changed. The
only real reason to use the reference count is to prevent the object from being
deallocated as long as our variable is pointing to it. If we know that there
is at least one other reference to the object that lives at least as long as
our variable, there is no need to increment the reference count temporarily.
An important situation where this arises is in objects that are passed as
arguments to C functions in an extension module that are called from Python;
the call mechanism guarantees to hold a reference to every argument for the
duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it
for a while without incrementing its reference count. Some other operation might
conceivably remove the object from the list, decrementing its reference count
and possible deallocating it. The real danger is that innocent-looking
operations may invoke arbitrary Python code which could do this; there is a code
path which allows control to flow back to the user from a Py_DECREF(), so
almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name
begins with PyObject_, PyNumber_, PySequence_ or PyMapping_).
These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py_DECREF() when
they are done with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained
in terms of ownership of references. Ownership pertains to references, never
to objects (objects are not owned: they are always shared). “Owning a
reference” means being responsible for calling Py_DECREF on it when the
reference is no longer needed. Ownership can also be transferred, meaning that
the code that receives ownership of the reference then becomes responsible for
eventually decref’ing it by calling Py_DECREF() or Py_XDECREF()
when it’s no longer needed—or passing on this responsibility (usually to its
caller). When a function passes ownership of a reference on to its caller, the
caller is said to receive a new reference. When no ownership is transferred,
the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when a calling function passes in a reference to an object, there
are two possibilities: the function steals a reference to the object, or it
does not. Stealing a reference means that when you pass a reference to a
function, that function assumes that it now owns that reference, and you are not
responsible for it any longer.

Few functions steal references; the two notable exceptions are
PyList_SetItem() and PyTuple_SetItem(), which steal a reference
to the item (but not to the tuple or list into which the item is put!). These
functions were designed to steal a reference because of a common idiom for
populating a tuple or list with newly created objects; for example, the code to
create the tuple (1, 2, "three") could look like this (forgetting about
error handling for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyLong_FromLong(1L));
PyTuple_SetItem(t, 1, PyLong_FromLong(2L));
PyTuple_SetItem(t, 2, PyUnicode_FromString("three"));

Here, PyLong_FromLong() returns a new reference which is immediately
stolen by PyTuple_SetItem(). When you want to keep using an object
although the reference to it will be stolen, use Py_INCREF() to grab
another reference before calling the reference-stealing function.

Incidentally, PyTuple_SetItem() is the only way to set tuple items;
PySequence_SetItem() and PyObject_SetItem() refuse to do this
since tuples are an immutable data type. You should only use
PyTuple_SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New()
and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating
a tuple or list. There’s a generic function, Py_BuildValue(), that can
create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following
(which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildValue("(iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem() and friends with items
whose references you are only borrowing, like arguments that were passed in to
the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’t have to increment a reference count so you
can give a reference away (“have it be stolen”). For example, this function
sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all(PyObject *target, PyObject *item)
{
 Py_ssize_t i, n;

 n = PyObject_Length(target);
 if (n < 0)
 return -1;
 for (i = 0; i < n; i++) {
 PyObject *index = PyLong_FromSsize_t(i);
 if (!index)
 return -1;
 if (PyObject_SetItem(target, index, item) < 0) {
 Py_DECREF(index);
 return -1;
 }
 Py_DECREF(index);
 }
 return 0;
}

The situation is slightly different for function return values. While passing
a reference to most functions does not change your ownership responsibilities
for that reference, many functions that return a reference to an object give
you ownership of the reference. The reason is simple: in many cases, the
returned object is created on the fly, and the reference you get is the only
reference to the object. Therefore, the generic functions that return object
references, like PyObject_GetItem() and PySequence_GetItem(),
always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a
function depends on which function you call only — the plumage (the type of
the object passed as an argument to the function) doesn’t enter into it!
Thus, if you extract an item from a list using PyList_GetItem(), you
don’t own the reference — but if you obtain the same item from the same list
using PySequence_GetItem() (which happens to take exactly the same
arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of
the items in a list of integers; once using PyList_GetItem(), and once
using PySequence_GetItem().

long
sum_list(PyObject *list)
{
 Py_ssize_t i, n;
 long total = 0, value;
 PyObject *item;

 n = PyList_Size(list);
 if (n < 0)
 return -1; /* Not a list */
 for (i = 0; i < n; i++) {
 item = PyList_GetItem(list, i); /* Can't fail */
 if (!PyLong_Check(item)) continue; /* Skip non-integers */
 value = PyLong_AsLong(item);
 if (value == -1 && PyErr_Occurred())
 /* Integer too big to fit in a C long, bail out */
 return -1;
 total += value;
 }
 return total;
}

long
sum_sequence(PyObject *sequence)
{
 Py_ssize_t i, n;
 long total = 0, value;
 PyObject *item;
 n = PySequence_Length(sequence);
 if (n < 0)
 return -1; /* Has no length */
 for (i = 0; i < n; i++) {
 item = PySequence_GetItem(sequence, i);
 if (item == NULL)
 return -1; /* Not a sequence, or other failure */
 if (PyLong_Check(item)) {
 value = PyLong_AsLong(item);
 Py_DECREF(item);
 if (value == -1 && PyErr_Occurred())
 /* Integer too big to fit in a C long, bail out */
 return -1;
 total += value;
 }
 else {
 Py_DECREF(item); /* Discard reference ownership */
 }
 }
 return total;
}

Types

There are few other data types that play a significant role in the Python/C
API; most are simple C types such as int, long,
double and char*. A few structure types are used to
describe static tables used to list the functions exported by a module or the
data attributes of a new object type, and another is used to describe the value
of a complex number. These will be discussed together with the functions that
use them.

Exceptions

The Python programmer only needs to deal with exceptions if specific error
handling is required; unhandled exceptions are automatically propagated to the
caller, then to the caller’s caller, and so on, until they reach the top-level
interpreter, where they are reported to the user accompanied by a stack
traceback.

For C programmers, however, error checking always has to be explicit. All
functions in the Python/C API can raise exceptions, unless an explicit claim is
made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that
it owns, and returns an error indicator. If not documented otherwise, this
indicator is either NULL or -1, depending on the function’s return type.
A few functions return a Boolean true/false result, with false indicating an
error. Very few functions return no explicit error indicator or have an
ambiguous return value, and require explicit testing for errors with
PyErr_Occurred(). These exceptions are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to
using global storage in an unthreaded application). A thread can be in one of
two states: an exception has occurred, or not. The function
PyErr_Occurred() can be used to check for this: it returns a borrowed
reference to the exception type object when an exception has occurred, and
NULL otherwise. There are a number of functions to set the exception state:
PyErr_SetString() is the most common (though not the most general)
function to set the exception state, and PyErr_Clear() clears the
exception state.

The full exception state consists of three objects (all of which can be
NULL): the exception type, the corresponding exception value, and the
traceback. These have the same meanings as the Python result of
sys.exc_info(); however, they are not the same: the Python objects represent
the last exception being handled by a Python try …
except statement, while the C level exception state only exists while
an exception is being passed on between C functions until it reaches the Python
bytecode interpreter’s main loop, which takes care of transferring it to
sys.exc_info() and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the
exception state from Python code is to call the function sys.exc_info(),
which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a
function which catches an exception will save and restore its thread’s exception
state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function
overwriting the exception being handled; it also reduces the often unwanted
lifetime extension for objects that are referenced by the stack frames in the
traceback.

As a general principle, a function that calls another function to perform some
task should check whether the called function raised an exception, and if so,
pass the exception state on to its caller. It should discard any object
references that it owns, and return an error indicator, but it should not set
another exception — that would overwrite the exception that was just raised,
and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the
sum_sequence() example above. It so happens that this example doesn’t
need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like
Python, we show the equivalent Python code:

def incr_item(dict, key):
 try:
 item = dict[key]
 except KeyError:
 item = 0
 dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item(PyObject *dict, PyObject *key)
{
 /* Objects all initialized to NULL for Py_XDECREF */
 PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
 int rv = -1; /* Return value initialized to -1 (failure) */

 item = PyObject_GetItem(dict, key);
 if (item == NULL) {
 /* Handle KeyError only: */
 if (!PyErr_ExceptionMatches(PyExc_KeyError))
 goto error;

 /* Clear the error and use zero: */
 PyErr_Clear();
 item = PyLong_FromLong(0L);
 if (item == NULL)
 goto error;
 }
 const_one = PyLong_FromLong(1L);
 if (const_one == NULL)
 goto error;

 incremented_item = PyNumber_Add(item, const_one);
 if (incremented_item == NULL)
 goto error;

 if (PyObject_SetItem(dict, key, incremented_item) < 0)
 goto error;
 rv = 0; /* Success */
 /* Continue with cleanup code */

 error:
 /* Cleanup code, shared by success and failure path */

 /* Use Py_XDECREF() to ignore NULL references */
 Py_XDECREF(item);
 Py_XDECREF(const_one);
 Py_XDECREF(incremented_item);

 return rv; /* -1 for error, 0 for success */
}

This example represents an endorsed use of the goto statement in C!
It illustrates the use of PyErr_ExceptionMatches() and
PyErr_Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that may be NULL (note the
'X' in the name; Py_DECREF() would crash when confronted with a
NULL reference). It is important that the variables used to hold owned
references are initialized to NULL for this to work; likewise, the proposed
return value is initialized to -1 (failure) and only set to success after
the final call made is successful.

Embedding Python

The one important task that only embedders (as opposed to extension writers) of
the Python interpreter have to worry about is the initialization, and possibly
the finalization, of the Python interpreter. Most functionality of the
interpreter can only be used after the interpreter has been initialized.

The basic initialization function is Py_Initialize(). This initializes
the table of loaded modules, and creates the fundamental modules
builtins, __main__, and sys. It also
initializes the module search path (sys.path).

Py_Initialize() does not set the “script argument list” (sys.argv).
If this variable is needed by Python code that will be executed later, it must
be set explicitly with a call to PySys_SetArgvEx(argc, argv, updatepath)
after the call to Py_Initialize().

On most systems (in particular, on Unix and Windows, although the details are
slightly different), Py_Initialize() calculates the module search path
based upon its best guess for the location of the standard Python interpreter
executable, assuming that the Python library is found in a fixed location
relative to the Python interpreter executable. In particular, it looks for a
directory named lib/pythonX.Y relative to the parent directory
where the executable named python is found on the shell command search
path (the environment variable PATH).

For instance, if the Python executable is found in
/usr/local/bin/python, it will assume that the libraries are in
/usr/local/lib/pythonX.Y. (In fact, this particular path is also
the “fallback” location, used when no executable file named python is
found along PATH.) The user can override this behavior by setting the
environment variable PYTHONHOME, or insert additional directories in
front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling
Py_SetProgramName(file) before calling Py_Initialize(). Note that
PYTHONHOME still overrides this and PYTHONPATH is still
inserted in front of the standard path. An application that requires total
control has to provide its own implementation of Py_GetPath(),
Py_GetPrefix(), Py_GetExecPrefix(), and
Py_GetProgramFullPath() (all defined in Modules/getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the
application may want to start over (make another call to
Py_Initialize()) or the application is simply done with its use of
Python and wants to free memory allocated by Python. This can be accomplished
by calling Py_FinalizeEx(). The function Py_IsInitialized() returns
true if Python is currently in the initialized state. More information about
these functions is given in a later chapter. Notice that Py_FinalizeEx()
does not free all memory allocated by the Python interpreter, e.g. memory
allocated by extension modules currently cannot be released.

Debugging Builds

Python can be built with several macros to enable extra checks of the
interpreter and extension modules. These checks tend to add a large amount of
overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file
Misc/SpecialBuilds.txt in the Python source distribution. Builds are
available that support tracing of reference counts, debugging the memory
allocator, or low-level profiling of the main interpreter loop. Only the most
frequently-used builds will be described in the remainder of this section.

Compiling the interpreter with the Py_DEBUG macro defined produces
what is generally meant by “a debug build” of Python. Py_DEBUG is
enabled in the Unix build by adding --with-pydebug to the
./configure command. It is also implied by the presence of the
not-Python-specific _DEBUG macro. When Py_DEBUG is enabled
in the Unix build, compiler optimization is disabled.

In addition to the reference count debugging described below, the following
extra checks are performed:

	Extra checks are added to the object allocator.

	Extra checks are added to the parser and compiler.

	Downcasts from wide types to narrow types are checked for loss of information.

	A number of assertions are added to the dictionary and set implementations.
In addition, the set object acquires a test_c_api() method.

	Sanity checks of the input arguments are added to frame creation.

	The storage for ints is initialized with a known invalid pattern to catch
reference to uninitialized digits.

	Low-level tracing and extra exception checking are added to the runtime
virtual machine.

	Extra checks are added to the memory arena implementation.

	Extra debugging is added to the thread module.

There may be additional checks not mentioned here.

Defining Py_TRACE_REFS enables reference tracing. When defined, a
circular doubly linked list of active objects is maintained by adding two extra
fields to every PyObject. Total allocations are tracked as well. Upon
exit, all existing references are printed. (In interactive mode this happens
after every statement run by the interpreter.) Implied by Py_DEBUG.

Please refer to Misc/SpecialBuilds.txt in the Python source distribution
for more detailed information.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	

 |

 Stable Application Binary Interface

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	

 |

Stable Application Binary Interface

Traditionally, the C API of Python will change with every release. Most changes
will be source-compatible, typically by only adding API, rather than changing
existing API or removing API (although some interfaces do get removed after
being deprecated first).

Unfortunately, the API compatibility does not extend to binary compatibility
(the ABI). The reason is primarily the evolution of struct definitions, where
addition of a new field, or changing the type of a field, might not break the
API, but can break the ABI. As a consequence, extension modules need to be
recompiled for every Python release (although an exception is possible on Unix
when none of the affected interfaces are used). In addition, on Windows,
extension modules link with a specific pythonXY.dll and need to be recompiled to
link with a newer one.

Since Python 3.2, a subset of the API has been declared to guarantee a stable
ABI. Extension modules wishing to use this API (called “limited API”) need to
define Py_LIMITED_API. A number of interpreter details then become hidden
from the extension module; in return, a module is built that works on any 3.x
version (x>=2) without recompilation.

In some cases, the stable ABI needs to be extended with new functions.
Extension modules wishing to use these new APIs need to set Py_LIMITED_API
to the PY_VERSION_HEX value (see API and ABI Versioning) of the minimum Python
version they want to support (e.g. 0x03030000 for Python 3.3). Such modules
will work on all subsequent Python releases, but fail to load (because of
missing symbols) on the older releases.

As of Python 3.2, the set of functions available to the limited API is
documented in PEP 384 [https://www.python.org/dev/peps/pep-0384]. In the C API documentation, API elements that are not
part of the limited API are marked as “Not part of the limited API.”

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	

 |

 Reference Counting

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	

 |

Reference Counting

The macros in this section are used for managing reference counts of Python
objects.

	
void Py_INCREF(PyObject *o)

	Increment the reference count for object o. The object must not be NULL; if
you aren’t sure that it isn’t NULL, use Py_XINCREF().

	
void Py_XINCREF(PyObject *o)

	Increment the reference count for object o. The object may be NULL, in
which case the macro has no effect.

	
void Py_DECREF(PyObject *o)

	Decrement the reference count for object o. The object must not be NULL; if
you aren’t sure that it isn’t NULL, use Py_XDECREF(). If the reference
count reaches zero, the object’s type’s deallocation function (which must not be
NULL) is invoked.

Warning

The deallocation function can cause arbitrary Python code to be invoked (e.g.
when a class instance with a __del__() method is deallocated). While
exceptions in such code are not propagated, the executed code has free access to
all Python global variables. This means that any object that is reachable from
a global variable should be in a consistent state before Py_DECREF() is
invoked. For example, code to delete an object from a list should copy a
reference to the deleted object in a temporary variable, update the list data
structure, and then call Py_DECREF() for the temporary variable.

	
void Py_XDECREF(PyObject *o)

	Decrement the reference count for object o. The object may be NULL, in
which case the macro has no effect; otherwise the effect is the same as for
Py_DECREF(), and the same warning applies.

	
void Py_CLEAR(PyObject *o)

	Decrement the reference count for object o. The object may be NULL, in
which case the macro has no effect; otherwise the effect is the same as for
Py_DECREF(), except that the argument is also set to NULL. The warning
for Py_DECREF() does not apply with respect to the object passed because
the macro carefully uses a temporary variable and sets the argument to NULL
before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the value of a
variable that might be traversed during garbage collection.

The following functions are for runtime dynamic embedding of Python:
Py_IncRef(PyObject *o), Py_DecRef(PyObject *o). They are
simply exported function versions of Py_XINCREF() and
Py_XDECREF(), respectively.

The following functions or macros are only for use within the interpreter core:
_Py_Dealloc(), _Py_ForgetReference(), _Py_NewReference(),
as well as the global variable _Py_RefTotal.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	

 |

 Exception Handling

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	

 |

Exception Handling

The functions described in this chapter will let you handle and raise Python
exceptions. It is important to understand some of the basics of Python
exception handling. It works somewhat like the POSIX errno variable:
there is a global indicator (per thread) of the last error that occurred. Most
C API functions don’t clear this on success, but will set it to indicate the
cause of the error on failure. Most C API functions also return an error
indicator, usually NULL if they are supposed to return a pointer, or -1
if they return an integer (exception: the PyArg_*() functions
return 1 for success and 0 for failure).

Concretely, the error indicator consists of three object pointers: the
exception’s type, the exception’s value, and the traceback object. Any
of those pointers can be NULL if non-set (although some combinations are
forbidden, for example you can’t have a non-NULL traceback if the exception
type is NULL).

When a function must fail because some function it called failed, it generally
doesn’t set the error indicator; the function it called already set it. It is
responsible for either handling the error and clearing the exception or
returning after cleaning up any resources it holds (such as object references or
memory allocations); it should not continue normally if it is not prepared to
handle the error. If returning due to an error, it is important to indicate to
the caller that an error has been set. If the error is not handled or carefully
propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

Note

The error indicator is not the result of sys.exc_info().
The former corresponds to an exception that is not yet caught (and is
therefore still propagating), while the latter returns an exception after
it is caught (and has therefore stopped propagating).

Printing and clearing

	
void PyErr_Clear()

	Clear the error indicator. If the error indicator is not set, there is no
effect.

	
void PyErr_PrintEx(int set_sys_last_vars)

	Print a standard traceback to sys.stderr and clear the error indicator.
Call this function only when the error indicator is set. (Otherwise it will
cause a fatal error!)

If set_sys_last_vars is nonzero, the variables sys.last_type,
sys.last_value and sys.last_traceback will be set to the
type, value and traceback of the printed exception, respectively.

	
void PyErr_Print()

	Alias for PyErr_PrintEx(1).

	
void PyErr_WriteUnraisable(PyObject *obj)

	This utility function prints a warning message to sys.stderr when an
exception has been set but it is impossible for the interpreter to actually
raise the exception. It is used, for example, when an exception occurs in an
__del__() method.

The function is called with a single argument obj that identifies the context
in which the unraisable exception occurred. If possible,
the repr of obj will be printed in the warning message.

Raising exceptions

These functions help you set the current thread’s error indicator.
For convenience, some of these functions will always return a
NULL pointer for use in a return statement.

	
void PyErr_SetString(PyObject *type, const char *message)

	This is the most common way to set the error indicator. The first argument
specifies the exception type; it is normally one of the standard exceptions,
e.g. PyExc_RuntimeError. You need not increment its reference count.
The second argument is an error message; it is decoded from 'utf-8’.

	
void PyErr_SetObject(PyObject *type, PyObject *value)

	This function is similar to PyErr_SetString() but lets you specify an
arbitrary Python object for the “value” of the exception.

	
PyObject* PyErr_Format(PyObject *exception, const char *format, ...)

	Return value: Always NULL.This function sets the error indicator and returns NULL. exception
should be a Python exception class. The format and subsequent
parameters help format the error message; they have the same meaning and
values as in PyUnicode_FromFormat(). format is an ASCII-encoded
string.

	
PyObject* PyErr_FormatV(PyObject *exception, const char *format, va_list vargs)

	Return value: Always NULL.Same as PyErr_Format(), but taking a va_list argument rather
than a variable number of arguments.

New in version 3.5.

	
void PyErr_SetNone(PyObject *type)

	This is a shorthand for PyErr_SetObject(type, Py_None).

	
int PyErr_BadArgument()

	This is a shorthand for PyErr_SetString(PyExc_TypeError, message), where
message indicates that a built-in operation was invoked with an illegal
argument. It is mostly for internal use.

	
PyObject* PyErr_NoMemory()

	Return value: Always NULL.This is a shorthand for PyErr_SetNone(PyExc_MemoryError); it returns NULL
so an object allocation function can write return PyErr_NoMemory(); when it
runs out of memory.

	
PyObject* PyErr_SetFromErrno(PyObject *type)

	Return value: Always NULL.This is a convenience function to raise an exception when a C library function
has returned an error and set the C variable errno. It constructs a
tuple object whose first item is the integer errno value and whose
second item is the corresponding error message (gotten from strerror()),
and then calls PyErr_SetObject(type, object). On Unix, when the
errno value is EINTR, indicating an interrupted system call,
this calls PyErr_CheckSignals(), and if that set the error indicator,
leaves it set to that. The function always returns NULL, so a wrapper
function around a system call can write return PyErr_SetFromErrno(type);
when the system call returns an error.

	
PyObject* PyErr_SetFromErrnoWithFilenameObject(PyObject *type, PyObject *filenameObject)

	Return value: Always NULL.Similar to PyErr_SetFromErrno(), with the additional behavior that if
filenameObject is not NULL, it is passed to the constructor of type as
a third parameter. In the case of OSError exception,
this is used to define the filename attribute of the
exception instance.

	
PyObject* PyErr_SetFromErrnoWithFilenameObjects(PyObject *type, PyObject *filenameObject, PyObject *filenameObject2)

	Return value: Always NULL.Similar to PyErr_SetFromErrnoWithFilenameObject(), but takes a second
filename object, for raising errors when a function that takes two filenames
fails.

New in version 3.4.

	
PyObject* PyErr_SetFromErrnoWithFilename(PyObject *type, const char *filename)

	Return value: Always NULL.Similar to PyErr_SetFromErrnoWithFilenameObject(), but the filename
is given as a C string. filename is decoded from the filesystem encoding
(os.fsdecode()).

	
PyObject* PyErr_SetFromWindowsErr(int ierr)

	Return value: Always NULL.This is a convenience function to raise WindowsError. If called with
ierr of 0, the error code returned by a call to GetLastError()
is used instead. It calls the Win32 function FormatMessage() to retrieve
the Windows description of error code given by ierr or GetLastError(),
then it constructs a tuple object whose first item is the ierr value and whose
second item is the corresponding error message (gotten from
FormatMessage()), and then calls PyErr_SetObject(PyExc_WindowsError,
object). This function always returns NULL.

Availability: Windows.

	
PyObject* PyErr_SetExcFromWindowsErr(PyObject *type, int ierr)

	Return value: Always NULL.Similar to PyErr_SetFromWindowsErr(), with an additional parameter
specifying the exception type to be raised.

Availability: Windows.

	
PyObject* PyErr_SetFromWindowsErrWithFilename(int ierr, const char *filename)

	Return value: Always NULL.Similar to PyErr_SetFromWindowsErrWithFilenameObject(), but the
filename is given as a C string. filename is decoded from the filesystem
encoding (os.fsdecode()).

Availability: Windows.

	
PyObject* PyErr_SetExcFromWindowsErrWithFilenameObject(PyObject *type, int ierr, PyObject *filename)

	Return value: Always NULL.Similar to PyErr_SetFromWindowsErrWithFilenameObject(), with an
additional parameter specifying the exception type to be raised.

Availability: Windows.

	
PyObject* PyErr_SetExcFromWindowsErrWithFilenameObjects(PyObject *type, int ierr, PyObject *filename, PyObject *filename2)

	Return value: Always NULL.Similar to PyErr_SetExcFromWindowsErrWithFilenameObject(),
but accepts a second filename object.

Availability: Windows.

New in version 3.4.

	
PyObject* PyErr_SetExcFromWindowsErrWithFilename(PyObject *type, int ierr, const char *filename)

	Return value: Always NULL.Similar to PyErr_SetFromWindowsErrWithFilename(), with an additional
parameter specifying the exception type to be raised.

Availability: Windows.

	
PyObject* PyErr_SetImportError(PyObject *msg, PyObject *name, PyObject *path)

	Return value: Always NULL.This is a convenience function to raise ImportError. msg will be
set as the exception’s message string. name and path, both of which can
be NULL, will be set as the ImportError’s respective name
and path attributes.

New in version 3.3.

	
void PyErr_SyntaxLocationObject(PyObject *filename, int lineno, int col_offset)

	Set file, line, and offset information for the current exception. If the
current exception is not a SyntaxError, then it sets additional
attributes, which make the exception printing subsystem think the exception
is a SyntaxError.

New in version 3.4.

	
void PyErr_SyntaxLocationEx(const char *filename, int lineno, int col_offset)

	Like PyErr_SyntaxLocationObject(), but filename is a byte string
decoded from the filesystem encoding (os.fsdecode()).

New in version 3.2.

	
void PyErr_SyntaxLocation(const char *filename, int lineno)

	Like PyErr_SyntaxLocationEx(), but the col_offset parameter is
omitted.

	
void PyErr_BadInternalCall()

	This is a shorthand for PyErr_SetString(PyExc_SystemError, message),
where message indicates that an internal operation (e.g. a Python/C API
function) was invoked with an illegal argument. It is mostly for internal
use.

Issuing warnings

Use these functions to issue warnings from C code. They mirror similar
functions exported by the Python warnings module. They normally
print a warning message to sys.stderr; however, it is
also possible that the user has specified that warnings are to be turned into
errors, and in that case they will raise an exception. It is also possible that
the functions raise an exception because of a problem with the warning machinery.
The return value is 0 if no exception is raised, or -1 if an exception
is raised. (It is not possible to determine whether a warning message is
actually printed, nor what the reason is for the exception; this is
intentional.) If an exception is raised, the caller should do its normal
exception handling (for example, Py_DECREF() owned references and return
an error value).

	
int PyErr_WarnEx(PyObject *category, const char *message, Py_ssize_t stack_level)

	Issue a warning message. The category argument is a warning category (see
below) or NULL; the message argument is a UTF-8 encoded string. stack_level is a
positive number giving a number of stack frames; the warning will be issued from
the currently executing line of code in that stack frame. A stack_level of 1
is the function calling PyErr_WarnEx(), 2 is the function above that,
and so forth.

Warning categories must be subclasses of PyExc_Warning;
PyExc_Warning is a subclass of PyExc_Exception;
the default warning category is PyExc_RuntimeWarning. The standard
Python warning categories are available as global variables whose names are
enumerated at Standard Warning Categories.

For information about warning control, see the documentation for the
warnings module and the -W option in the command line
documentation. There is no C API for warning control.

	
PyObject* PyErr_SetImportErrorSubclass(PyObject *msg, PyObject *name, PyObject *path)

	Return value: Always NULL.Much like PyErr_SetImportError() but this function allows for
specifying a subclass of ImportError to raise.

New in version 3.6.

	
int PyErr_WarnExplicitObject(PyObject *category, PyObject *message, PyObject *filename, int lineno, PyObject *module, PyObject *registry)

	Issue a warning message with explicit control over all warning attributes. This
is a straightforward wrapper around the Python function
warnings.warn_explicit(), see there for more information. The module
and registry arguments may be set to NULL to get the default effect
described there.

New in version 3.4.

	
int PyErr_WarnExplicit(PyObject *category, const char *message, const char *filename, int lineno, const char *module, PyObject *registry)

	Similar to PyErr_WarnExplicitObject() except that message and
module are UTF-8 encoded strings, and filename is decoded from the
filesystem encoding (os.fsdecode()).

	
int PyErr_WarnFormat(PyObject *category, Py_ssize_t stack_level, const char *format, ...)

	Function similar to PyErr_WarnEx(), but use
PyUnicode_FromFormat() to format the warning message. format is
an ASCII-encoded string.

New in version 3.2.

	
int PyErr_ResourceWarning(PyObject *source, Py_ssize_t stack_level, const char *format, ...)

	Function similar to PyErr_WarnFormat(), but category is
ResourceWarning and pass source to warnings.WarningMessage().

New in version 3.6.

Querying the error indicator

	
PyObject* PyErr_Occurred()

	Return value: Borrowed reference.Test whether the error indicator is set. If set, return the exception type
(the first argument to the last call to one of the PyErr_Set*()
functions or to PyErr_Restore()). If not set, return NULL. You do not
own a reference to the return value, so you do not need to Py_DECREF()
it.

Note

Do not compare the return value to a specific exception; use
PyErr_ExceptionMatches() instead, shown below. (The comparison could
easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

	
int PyErr_ExceptionMatches(PyObject *exc)

	Equivalent to PyErr_GivenExceptionMatches(PyErr_Occurred(), exc). This
should only be called when an exception is actually set; a memory access
violation will occur if no exception has been raised.

	
int PyErr_GivenExceptionMatches(PyObject *given, PyObject *exc)

	Return true if the given exception matches the exception type in exc. If
exc is a class object, this also returns true when given is an instance
of a subclass. If exc is a tuple, all exception types in the tuple (and
recursively in subtuples) are searched for a match.

	
void PyErr_Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

	Retrieve the error indicator into three variables whose addresses are passed.
If the error indicator is not set, set all three variables to NULL. If it is
set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may be NULL even when the type object is not.

Note

This function is normally only used by code that needs to catch exceptions or
by code that needs to save and restore the error indicator temporarily, e.g.:

{
 PyObject *type, *value, *traceback;
 PyErr_Fetch(&type, &value, &traceback);

 /* ... code that might produce other errors ... */

 PyErr_Restore(type, value, traceback);
}

	
void PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)

	Set the error indicator from the three objects. If the error indicator is
already set, it is cleared first. If the objects are NULL, the error
indicator is cleared. Do not pass a NULL type and non-NULL value or
traceback. The exception type should be a class. Do not pass an invalid
exception type or value. (Violating these rules will cause subtle problems
later.) This call takes away a reference to each object: you must own a
reference to each object before the call and after the call you no longer own
these references. (If you don’t understand this, don’t use this function. I
warned you.)

Note

This function is normally only used by code that needs to save and restore the
error indicator temporarily. Use PyErr_Fetch() to save the current
error indicator.

	
void PyErr_NormalizeException(PyObject**exc, PyObject**val, PyObject**tb)

	Under certain circumstances, the values returned by PyErr_Fetch() below
can be “unnormalized”, meaning that *exc is a class object but *val is
not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens.
The delayed normalization is implemented to improve performance.

Note

This function does not implicitly set the __traceback__
attribute on the exception value. If setting the traceback
appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
 PyException_SetTraceback(val, tb);
}

	
void PyErr_GetExcInfo(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

	Retrieve the exception info, as known from sys.exc_info(). This refers
to an exception that was already caught, not to an exception that was
freshly raised. Returns new references for the three objects, any of which
may be NULL. Does not modify the exception info state.

Note

This function is not normally used by code that wants to handle exceptions.
Rather, it can be used when code needs to save and restore the exception
state temporarily. Use PyErr_SetExcInfo() to restore or clear the
exception state.

New in version 3.3.

	
void PyErr_SetExcInfo(PyObject *type, PyObject *value, PyObject *traceback)

	Set the exception info, as known from sys.exc_info(). This refers
to an exception that was already caught, not to an exception that was
freshly raised. This function steals the references of the arguments.
To clear the exception state, pass NULL for all three arguments.
For general rules about the three arguments, see PyErr_Restore().

Note

This function is not normally used by code that wants to handle exceptions.
Rather, it can be used when code needs to save and restore the exception
state temporarily. Use PyErr_GetExcInfo() to read the exception
state.

New in version 3.3.

Signal Handling

	
int PyErr_CheckSignals()

	This function interacts with Python’s signal handling. It checks whether a
signal has been sent to the processes and if so, invokes the corresponding
signal handler. If the signal module is supported, this can invoke a
signal handler written in Python. In all cases, the default effect for
SIGINT is to raise the KeyboardInterrupt exception. If an
exception is raised the error indicator is set and the function returns -1;
otherwise the function returns 0. The error indicator may or may not be
cleared if it was previously set.

	
void PyErr_SetInterrupt()

	This function simulates the effect of a SIGINT signal arriving — the
next time PyErr_CheckSignals() is called, KeyboardInterrupt will
be raised. It may be called without holding the interpreter lock.

	
int PySignal_SetWakeupFd(int fd)

	This utility function specifies a file descriptor to which the signal number
is written as a single byte whenever a signal is received. fd must be
non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state.
This is equivalent to signal.set_wakeup_fd() in Python, but without any
error checking. fd should be a valid file descriptor. The function should
only be called from the main thread.

Changed in version 3.5: On Windows, the function now also supports socket handles.

Exception Classes

	
PyObject* PyErr_NewException(const char *name, PyObject *base, PyObject *dict)

	Return value: New reference.This utility function creates and returns a new exception class. The name
argument must be the name of the new exception, a C string of the form
module.classname. The base and dict arguments are normally NULL.
This creates a class object derived from Exception (accessible in C as
PyExc_Exception).

The __module__ attribute of the new class is set to the first part (up
to the last dot) of the name argument, and the class name is set to the last
part (after the last dot). The base argument can be used to specify alternate
base classes; it can either be only one class or a tuple of classes. The dict
argument can be used to specify a dictionary of class variables and methods.

	
PyObject* PyErr_NewExceptionWithDoc(const char *name, const char *doc, PyObject *base, PyObject *dict)

	Return value: New reference.Same as PyErr_NewException(), except that the new exception class can
easily be given a docstring: If doc is non-NULL, it will be used as the
docstring for the exception class.

New in version 3.2.

Exception Objects

	
PyObject* PyException_GetTraceback(PyObject *ex)

	Return value: New reference.Return the traceback associated with the exception as a new reference, as
accessible from Python through __traceback__. If there is no
traceback associated, this returns NULL.

	
int PyException_SetTraceback(PyObject *ex, PyObject *tb)

	Set the traceback associated with the exception to tb. Use Py_None to
clear it.

	
PyObject* PyException_GetContext(PyObject *ex)

	Return value: New reference.Return the context (another exception instance during whose handling ex was
raised) associated with the exception as a new reference, as accessible from
Python through __context__. If there is no context associated, this
returns NULL.

	
void PyException_SetContext(PyObject *ex, PyObject *ctx)

	Set the context associated with the exception to ctx. Use NULL to clear
it. There is no type check to make sure that ctx is an exception instance.
This steals a reference to ctx.

	
PyObject* PyException_GetCause(PyObject *ex)

	Return value: New reference.Return the cause (either an exception instance, or None,
set by raise ... from ...) associated with the exception as a new
reference, as accessible from Python through __cause__.

	
void PyException_SetCause(PyObject *ex, PyObject *cause)

	Set the cause associated with the exception to cause. Use NULL to clear
it. There is no type check to make sure that cause is either an exception
instance or None. This steals a reference to cause.

__suppress_context__ is implicitly set to True by this function.

Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.

	
PyObject* PyUnicodeDecodeError_Create(const char *encoding, const char *object, Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const char *reason)

	Return value: New reference.Create a UnicodeDecodeError object with the attributes encoding,
object, length, start, end and reason. encoding and reason are
UTF-8 encoded strings.

	
PyObject* PyUnicodeEncodeError_Create(const char *encoding, const Py_UNICODE *object, Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const char *reason)

	Return value: New reference.Create a UnicodeEncodeError object with the attributes encoding,
object, length, start, end and reason. encoding and reason are
UTF-8 encoded strings.

	
PyObject* PyUnicodeTranslateError_Create(const Py_UNICODE *object, Py_ssize_t length, Py_ssize_t start, Py_ssize_t end, const char *reason)

	Return value: New reference.Create a UnicodeTranslateError object with the attributes object,
length, start, end and reason. reason is a UTF-8 encoded string.

	
PyObject* PyUnicodeDecodeError_GetEncoding(PyObject *exc)

	
PyObject* PyUnicodeEncodeError_GetEncoding(PyObject *exc)

	Return value: New reference.Return the encoding attribute of the given exception object.

	
PyObject* PyUnicodeDecodeError_GetObject(PyObject *exc)

	
PyObject* PyUnicodeEncodeError_GetObject(PyObject *exc)

	
PyObject* PyUnicodeTranslateError_GetObject(PyObject *exc)

	Return value: New reference.Return the object attribute of the given exception object.

	
int PyUnicodeDecodeError_GetStart(PyObject *exc, Py_ssize_t *start)

	
int PyUnicodeEncodeError_GetStart(PyObject *exc, Py_ssize_t *start)

	
int PyUnicodeTranslateError_GetStart(PyObject *exc, Py_ssize_t *start)

	Get the start attribute of the given exception object and place it into
*start. start must not be NULL. Return 0 on success, -1 on
failure.

	
int PyUnicodeDecodeError_SetStart(PyObject *exc, Py_ssize_t start)

	
int PyUnicodeEncodeError_SetStart(PyObject *exc, Py_ssize_t start)

	
int PyUnicodeTranslateError_SetStart(PyObject *exc, Py_ssize_t start)

	Set the start attribute of the given exception object to start. Return
0 on success, -1 on failure.

	
int PyUnicodeDecodeError_GetEnd(PyObject *exc, Py_ssize_t *end)

	
int PyUnicodeEncodeError_GetEnd(PyObject *exc, Py_ssize_t *end)

	
int PyUnicodeTranslateError_GetEnd(PyObject *exc, Py_ssize_t *end)

	Get the end attribute of the given exception object and place it into
*end. end must not be NULL. Return 0 on success, -1 on
failure.

	
int PyUnicodeDecodeError_SetEnd(PyObject *exc, Py_ssize_t end)

	
int PyUnicodeEncodeError_SetEnd(PyObject *exc, Py_ssize_t end)

	
int PyUnicodeTranslateError_SetEnd(PyObject *exc, Py_ssize_t end)

	Set the end attribute of the given exception object to end. Return 0
on success, -1 on failure.

	
PyObject* PyUnicodeDecodeError_GetReason(PyObject *exc)

	
PyObject* PyUnicodeEncodeError_GetReason(PyObject *exc)

	
PyObject* PyUnicodeTranslateError_GetReason(PyObject *exc)

	Return value: New reference.Return the reason attribute of the given exception object.

	
int PyUnicodeDecodeError_SetReason(PyObject *exc, const char *reason)

	
int PyUnicodeEncodeError_SetReason(PyObject *exc, const char *reason)

	
int PyUnicodeTranslateError_SetReason(PyObject *exc, const char *reason)

	Set the reason attribute of the given exception object to reason. Return
0 on success, -1 on failure.

Recursion Control

These two functions provide a way to perform safe recursive calls at the C
level, both in the core and in extension modules. They are needed if the
recursive code does not necessarily invoke Python code (which tracks its
recursion depth automatically).

	
int Py_EnterRecursiveCall(const char *where)

	Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS
stack overflowed using PyOS_CheckStack(). In this is the case, it
sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the
case, a RecursionError is set and a nonzero value is returned.
Otherwise, zero is returned.

where should be a string such as " in instance check" to be
concatenated to the RecursionError message caused by the recursion
depth limit.

	
void Py_LeaveRecursiveCall()

	Ends a Py_EnterRecursiveCall(). Must be called once for each
successful invocation of Py_EnterRecursiveCall().

Properly implementing tp_repr for container types requires
special recursion handling. In addition to protecting the stack,
tp_repr also needs to track objects to prevent cycles. The
following two functions facilitate this functionality. Effectively,
these are the C equivalent to reprlib.recursive_repr().

	
int Py_ReprEnter(PyObject *object)

	Called at the beginning of the tp_repr implementation to
detect cycles.

If the object has already been processed, the function returns a
positive integer. In that case the tp_repr implementation
should return a string object indicating a cycle. As examples,
dict objects return {...} and list objects
return [...].

The function will return a negative integer if the recursion limit
is reached. In that case the tp_repr implementation should
typically return NULL.

Otherwise, the function returns zero and the tp_repr
implementation can continue normally.

	
void Py_ReprLeave(PyObject *object)

	Ends a Py_ReprEnter(). Must be called once for each
invocation of Py_ReprEnter() that returns zero.

Standard Exceptions

All standard Python exceptions are available as global variables whose names are
PyExc_ followed by the Python exception name. These have the type
PyObject*; they are all class objects. For completeness, here are all
the variables:

	C Name

	Python Name

	Notes

	PyExc_BaseException

	BaseException

	(1)

	PyExc_Exception

	Exception

	(1)

	PyExc_ArithmeticError

	ArithmeticError

	(1)

	PyExc_AssertionError

	AssertionError

	

	PyExc_AttributeError

	AttributeError

	

	PyExc_BlockingIOError

	BlockingIOError

	

	PyExc_BrokenPipeError

	BrokenPipeError

	

	PyExc_BufferError

	BufferError

	

	PyExc_ChildProcessError

	ChildProcessError

	

	PyExc_ConnectionAbortedError

	ConnectionAbortedError

	

	PyExc_ConnectionError

	ConnectionError

	

	PyExc_ConnectionRefusedError

	ConnectionRefusedError

	

	PyExc_ConnectionResetError

	ConnectionResetError

	

	PyExc_EOFError

	EOFError

	

	PyExc_FileExistsError

	FileExistsError

	

	PyExc_FileNotFoundError

	FileNotFoundError

	

	PyExc_FloatingPointError

	FloatingPointError

	

	PyExc_GeneratorExit

	GeneratorExit

	

	PyExc_ImportError

	ImportError

	

	PyExc_IndentationError

	IndentationError

	

	PyExc_IndexError

	IndexError

	

	PyExc_InterruptedError

	InterruptedError

	

	PyExc_IsADirectoryError

	IsADirectoryError

	

	PyExc_KeyError

	KeyError

	

	PyExc_KeyboardInterrupt

	KeyboardInterrupt

	

	PyExc_LookupError

	LookupError

	(1)

	PyExc_MemoryError

	MemoryError

	

	PyExc_ModuleNotFoundError

	ModuleNotFoundError

	

	PyExc_NameError

	NameError

	

	PyExc_NotADirectoryError

	NotADirectoryError

	

	PyExc_NotImplementedError

	NotImplementedError

	

	PyExc_OSError

	OSError

	(1)

	PyExc_OverflowError

	OverflowError

	

	PyExc_PermissionError

	PermissionError

	

	PyExc_ProcessLookupError

	ProcessLookupError

	

	PyExc_RecursionError

	RecursionError

	

	PyExc_ReferenceError

	ReferenceError

	(2)

	PyExc_RuntimeError

	RuntimeError

	

	PyExc_StopAsyncIteration

	StopAsyncIteration

	

	PyExc_StopIteration

	StopIteration

	

	PyExc_SyntaxError

	SyntaxError

	

	PyExc_SystemError

	SystemError

	

	PyExc_SystemExit

	SystemExit

	

	PyExc_TabError

	TabError

	

	PyExc_TimeoutError

	TimeoutError

	

	PyExc_TypeError

	TypeError

	

	PyExc_UnboundLocalError

	UnboundLocalError

	

	PyExc_UnicodeDecodeError

	UnicodeDecodeError

	

	PyExc_UnicodeEncodeError

	UnicodeEncodeError

	

	PyExc_UnicodeError

	UnicodeError

	

	PyExc_UnicodeTranslateError

	UnicodeTranslateError

	

	PyExc_ValueError

	ValueError

	

	PyExc_ZeroDivisionError

	ZeroDivisionError

	

New in version 3.3: PyExc_BlockingIOError, PyExc_BrokenPipeError,
PyExc_ChildProcessError, PyExc_ConnectionError,
PyExc_ConnectionAbortedError, PyExc_ConnectionRefusedError,
PyExc_ConnectionResetError, PyExc_FileExistsError,
PyExc_FileNotFoundError, PyExc_InterruptedError,
PyExc_IsADirectoryError, PyExc_NotADirectoryError,
PyExc_PermissionError, PyExc_ProcessLookupError
and PyExc_TimeoutError were introduced following PEP 3151 [https://www.python.org/dev/peps/pep-3151].

New in version 3.5: PyExc_StopAsyncIteration and PyExc_RecursionError.

New in version 3.6: PyExc_ModuleNotFoundError.

These are compatibility aliases to PyExc_OSError:

	C Name

	Notes

	PyExc_EnvironmentError

	

	PyExc_IOError

	

	PyExc_WindowsError

	(3)

Changed in version 3.3: These aliases used to be separate exception types.

Notes:

	This is a base class for other standard exceptions.

	This is the same as weakref.ReferenceError.

	Only defined on Windows; protect code that uses this by testing that the
preprocessor macro MS_WINDOWS is defined.

Standard Warning Categories

All standard Python warning categories are available as global variables whose
names are PyExc_ followed by the Python exception name. These have the type
PyObject*; they are all class objects. For completeness, here are all
the variables:

	C Name

	Python Name

	Notes

	PyExc_Warning

	Warning

	(1)

	PyExc_BytesWarning

	BytesWarning

	

	PyExc_DeprecationWarning

	DeprecationWarning

	

	PyExc_FutureWarning

	FutureWarning

	

	PyExc_ImportWarning

	ImportWarning

	

	PyExc_PendingDeprecationWarning

	PendingDeprecationWarning

	

	PyExc_ResourceWarning

	ResourceWarning

	

	PyExc_RuntimeWarning

	RuntimeWarning

	

	PyExc_SyntaxWarning

	SyntaxWarning

	

	PyExc_UnicodeWarning

	UnicodeWarning

	

	PyExc_UserWarning

	UserWarning

	

New in version 3.2: PyExc_ResourceWarning.

Notes:

	This is a base class for other standard warning categories.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	

 |

 Operating System Utilities

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

Operating System Utilities

	
PyObject* PyOS_FSPath(PyObject *path)

	Return value: New reference.Return the file system representation for path. If the object is a
str or bytes object, then its reference count is
incremented. If the object implements the os.PathLike interface,
then __fspath__() is returned as long as it is a
str or bytes object. Otherwise TypeError is raised
and NULL is returned.

New in version 3.6.

	
int Py_FdIsInteractive(FILE *fp, const char *filename)

	Return true (nonzero) if the standard I/O file fp with name filename is
deemed interactive. This is the case for files for which isatty(fileno(fp))
is true. If the global flag Py_InteractiveFlag is true, this function
also returns true if the filename pointer is NULL or if the name is equal to
one of the strings '<stdin>' or '???'.

	
void PyOS_BeforeFork()

	Function to prepare some internal state before a process fork. This
should be called before calling fork() or any similar function
that clones the current process.
Only available on systems where fork() is defined.

New in version 3.7.

	
void PyOS_AfterFork_Parent()

	Function to update some internal state after a process fork. This
should be called from the parent process after calling fork()
or any similar function that clones the current process, regardless
of whether process cloning was successful.
Only available on systems where fork() is defined.

New in version 3.7.

	
void PyOS_AfterFork_Child()

	Function to update internal interpreter state after a process fork.
This must be called from the child process after calling fork(),
or any similar function that clones the current process, if there is
any chance the process will call back into the Python interpreter.
Only available on systems where fork() is defined.

New in version 3.7.

See also

os.register_at_fork() allows registering custom Python functions
to be called by PyOS_BeforeFork(),
PyOS_AfterFork_Parent() and PyOS_AfterFork_Child().

	
void PyOS_AfterFork()

	Function to update some internal state after a process fork; this should be
called in the new process if the Python interpreter will continue to be used.
If a new executable is loaded into the new process, this function does not need
to be called.

Deprecated since version 3.7: This function is superseded by PyOS_AfterFork_Child().

	
int PyOS_CheckStack()

	Return true when the interpreter runs out of stack space. This is a reliable
check, but is only available when USE_STACKCHECK is defined (currently
on Windows using the Microsoft Visual C++ compiler). USE_STACKCHECK
will be defined automatically; you should never change the definition in your
own code.

	
PyOS_sighandler_t PyOS_getsig(int i)

	Return the current signal handler for signal i. This is a thin wrapper around
either sigaction() or signal(). Do not call those functions
directly! PyOS_sighandler_t is a typedef alias for void
(*)(int).

	
PyOS_sighandler_t PyOS_setsig(int i, PyOS_sighandler_t h)

	Set the signal handler for signal i to be h; return the old signal handler.
This is a thin wrapper around either sigaction() or signal(). Do
not call those functions directly! PyOS_sighandler_t is a typedef
alias for void (*)(int).

	
wchar_t* Py_DecodeLocale(const char* arg, size_t *size)

	Decode a byte string from the locale encoding with the surrogateescape
error handler: undecodable bytes are decoded as
characters in range U+DC80..U+DCFF. If a byte sequence can be decoded as a
surrogate character, escape the bytes using the surrogateescape error
handler instead of decoding them.

Encoding, highest priority to lowest priority:

	UTF-8 on macOS and Android;

	UTF-8 if the Python UTF-8 mode is enabled;

	ASCII if the LC_CTYPE locale is "C",
nl_langinfo(CODESET) returns the ASCII encoding (or an alias),
and mbstowcs() and wcstombs() functions uses the
ISO-8859-1 encoding.

	the current locale encoding.

Return a pointer to a newly allocated wide character string, use
PyMem_RawFree() to free the memory. If size is not NULL, write
the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is
not NULL, *size is set to (size_t)-1 on memory error or set to
(size_t)-2 on decoding error.

Decoding errors should never happen, unless there is a bug in the C
library.

Use the Py_EncodeLocale() function to encode the character string
back to a byte string.

See also

The PyUnicode_DecodeFSDefaultAndSize() and
PyUnicode_DecodeLocaleAndSize() functions.

New in version 3.5.

Changed in version 3.7: The function now uses the UTF-8 encoding in the UTF-8 mode.

	
char* Py_EncodeLocale(const wchar_t *text, size_t *error_pos)

	Encode a wide character string to the locale encoding with the
surrogateescape error handler: surrogate characters
in the range U+DC80..U+DCFF are converted to bytes 0x80..0xFF.

Encoding, highest priority to lowest priority:

	UTF-8 on macOS and Android;

	UTF-8 if the Python UTF-8 mode is enabled;

	ASCII if the LC_CTYPE locale is "C",
nl_langinfo(CODESET) returns the ASCII encoding (or an alias),
and mbstowcs() and wcstombs() functions uses the
ISO-8859-1 encoding.

	the current locale encoding.

The function uses the UTF-8 encoding in the Python UTF-8 mode.

Return a pointer to a newly allocated byte string, use PyMem_Free()
to free the memory. Return NULL on encoding error or memory allocation
error

If error_pos is not NULL, *error_pos is set to (size_t)-1 on
success, or set to the index of the invalid character on encoding error.

Use the Py_DecodeLocale() function to decode the bytes string back
to a wide character string.

Changed in version 3.7: The function now uses the UTF-8 encoding in the UTF-8 mode.

See also

The PyUnicode_EncodeFSDefault() and
PyUnicode_EncodeLocale() functions.

New in version 3.5.

Changed in version 3.7: The function now supports the UTF-8 mode.

System Functions

These are utility functions that make functionality from the sys module
accessible to C code. They all work with the current interpreter thread’s
sys module’s dict, which is contained in the internal thread state structure.

	
PyObject *PySys_GetObject(const char *name)

	Return value: Borrowed reference.Return the object name from the sys module or NULL if it does
not exist, without setting an exception.

	
int PySys_SetObject(const char *name, PyObject *v)

	Set name in the sys module to v unless v is NULL, in which
case name is deleted from the sys module. Returns 0 on success, -1
on error.

	
void PySys_ResetWarnOptions()

	Reset sys.warnoptions to an empty list. This function may be
called prior to Py_Initialize().

	
void PySys_AddWarnOption(const wchar_t *s)

	Append s to sys.warnoptions. This function must be called prior
to Py_Initialize() in order to affect the warnings filter list.

	
void PySys_AddWarnOptionUnicode(PyObject *unicode)

	Append unicode to sys.warnoptions.

Note: this function is not currently usable from outside the CPython
implementation, as it must be called prior to the implicit import of
warnings in Py_Initialize() to be effective, but can’t be
called until enough of the runtime has been initialized to permit the
creation of Unicode objects.

	
void PySys_SetPath(const wchar_t *path)

	Set sys.path to a list object of paths found in path which should
be a list of paths separated with the platform’s search path delimiter
(: on Unix, ; on Windows).

	
void PySys_WriteStdout(const char *format, ...)

	Write the output string described by format to sys.stdout. No
exceptions are raised, even if truncation occurs (see below).

format should limit the total size of the formatted output string to
1000 bytes or less – after 1000 bytes, the output string is truncated.
In particular, this means that no unrestricted “%s” formats should occur;
these should be limited using “%.<N>s” where <N> is a decimal number
calculated so that <N> plus the maximum size of other formatted text does not
exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of
digits for very large numbers.

If a problem occurs, or sys.stdout is unset, the formatted message
is written to the real (C level) stdout.

	
void PySys_WriteStderr(const char *format, ...)

	As PySys_WriteStdout(), but write to sys.stderr or stderr
instead.

	
void PySys_FormatStdout(const char *format, ...)

	Function similar to PySys_WriteStdout() but format the message using
PyUnicode_FromFormatV() and don’t truncate the message to an
arbitrary length.

New in version 3.2.

	
void PySys_FormatStderr(const char *format, ...)

	As PySys_FormatStdout(), but write to sys.stderr or stderr
instead.

New in version 3.2.

	
void PySys_AddXOption(const wchar_t *s)

	Parse s as a set of -X options and add them to the current
options mapping as returned by PySys_GetXOptions(). This function
may be called prior to Py_Initialize().

New in version 3.2.

	
PyObject *PySys_GetXOptions()

	Return value: Borrowed reference.Return the current dictionary of -X options, similarly to
sys._xoptions. On error, NULL is returned and an exception is
set.

New in version 3.2.

Process Control

	
void Py_FatalError(const char *message)

	Print a fatal error message and kill the process. No cleanup is performed.
This function should only be invoked when a condition is detected that would
make it dangerous to continue using the Python interpreter; e.g., when the
object administration appears to be corrupted. On Unix, the standard C library
function abort() is called which will attempt to produce a core
file.

	
void Py_Exit(int status)

	Exit the current process. This calls Py_FinalizeEx() and then calls the
standard C library function exit(status). If Py_FinalizeEx()
indicates an error, the exit status is set to 120.

Changed in version 3.6: Errors from finalization no longer ignored.

	
int Py_AtExit(void (*func)())

	Register a cleanup function to be called by Py_FinalizeEx(). The cleanup
function will be called with no arguments and should return no value. At most
32 cleanup functions can be registered. When the registration is successful,
Py_AtExit() returns 0; on failure, it returns -1. The cleanup
function registered last is called first. Each cleanup function will be called
at most once. Since Python’s internal finalization will have completed before
the cleanup function, no Python APIs should be called by func.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

 Importing Modules

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

Importing Modules

	
PyObject* PyImport_ImportModule(const char *name)

	Return value: New reference.This is a simplified interface to PyImport_ImportModuleEx() below,
leaving the globals and locals arguments set to NULL and level set
to 0. When the name
argument contains a dot (when it specifies a submodule of a package), the
fromlist argument is set to the list ['*'] so that the return value is the
named module rather than the top-level package containing it as would otherwise
be the case. (Unfortunately, this has an additional side effect when name in
fact specifies a subpackage instead of a submodule: the submodules specified in
the package’s __all__ variable are loaded.) Return a new reference to the
imported module, or NULL with an exception set on failure. A failing
import of a module doesn’t leave the module in sys.modules.

This function always uses absolute imports.

	
PyObject* PyImport_ImportModuleNoBlock(const char *name)

	Return value: New reference.This function is a deprecated alias of PyImport_ImportModule().

Changed in version 3.3: This function used to fail immediately when the import lock was held
by another thread. In Python 3.3 though, the locking scheme switched
to per-module locks for most purposes, so this function’s special
behaviour isn’t needed anymore.

	
PyObject* PyImport_ImportModuleEx(const char *name, PyObject *globals, PyObject *locals, PyObject *fromlist)

	Return value: New reference.Import a module. This is best described by referring to the built-in Python
function __import__().

The return value is a new reference to the imported module or top-level
package, or NULL with an exception set on failure. Like for
__import__(), the return value when a submodule of a package was
requested is normally the top-level package, unless a non-empty fromlist
was given.

Failing imports remove incomplete module objects, like with
PyImport_ImportModule().

	
PyObject* PyImport_ImportModuleLevelObject(PyObject *name, PyObject *globals, PyObject *locals, PyObject *fromlist, int level)

	Return value: New reference.Import a module. This is best described by referring to the built-in Python
function __import__(), as the standard __import__() function calls
this function directly.

The return value is a new reference to the imported module or top-level package,
or NULL with an exception set on failure. Like for __import__(),
the return value when a submodule of a package was requested is normally the
top-level package, unless a non-empty fromlist was given.

New in version 3.3.

	
PyObject* PyImport_ImportModuleLevel(const char *name, PyObject *globals, PyObject *locals, PyObject *fromlist, int level)

	Return value: New reference.Similar to PyImport_ImportModuleLevelObject(), but the name is a
UTF-8 encoded string instead of a Unicode object.

Changed in version 3.3: Negative values for level are no longer accepted.

	
PyObject* PyImport_Import(PyObject *name)

	Return value: New reference.This is a higher-level interface that calls the current “import hook
function” (with an explicit level of 0, meaning absolute import). It
invokes the __import__() function from the __builtins__ of the
current globals. This means that the import is done using whatever import
hooks are installed in the current environment.

This function always uses absolute imports.

	
PyObject* PyImport_ReloadModule(PyObject *m)

	Return value: New reference.Reload a module. Return a new reference to the reloaded module, or NULL with
an exception set on failure (the module still exists in this case).

	
PyObject* PyImport_AddModuleObject(PyObject *name)

	Return value: Borrowed reference.Return the module object corresponding to a module name. The name argument
may be of the form package.module. First check the modules dictionary if
there’s one there, and if not, create a new one and insert it in the modules
dictionary. Return NULL with an exception set on failure.

Note

This function does not load or import the module; if the module wasn’t already
loaded, you will get an empty module object. Use PyImport_ImportModule()
or one of its variants to import a module. Package structures implied by a
dotted name for name are not created if not already present.

New in version 3.3.

	
PyObject* PyImport_AddModule(const char *name)

	Return value: Borrowed reference.Similar to PyImport_AddModuleObject(), but the name is a UTF-8
encoded string instead of a Unicode object.

	
PyObject* PyImport_ExecCodeModule(const char *name, PyObject *co)

	Return value: New reference.Given a module name (possibly of the form package.module) and a code object
read from a Python bytecode file or obtained from the built-in function
compile(), load the module. Return a new reference to the module object,
or NULL with an exception set if an error occurred. name
is removed from sys.modules in error cases, even if name was already
in sys.modules on entry to PyImport_ExecCodeModule(). Leaving
incompletely initialized modules in sys.modules is dangerous, as imports of
such modules have no way to know that the module object is an unknown (and
probably damaged with respect to the module author’s intents) state.

The module’s __spec__ and __loader__ will be set, if
not set already, with the appropriate values. The spec’s loader will
be set to the module’s __loader__ (if set) and to an instance of
SourceFileLoader otherwise.

The module’s __file__ attribute will be set to the code object’s
co_filename. If applicable, __cached__ will also
be set.

This function will reload the module if it was already imported. See
PyImport_ReloadModule() for the intended way to reload a module.

If name points to a dotted name of the form package.module, any package
structures not already created will still not be created.

See also PyImport_ExecCodeModuleEx() and
PyImport_ExecCodeModuleWithPathnames().

	
PyObject* PyImport_ExecCodeModuleEx(const char *name, PyObject *co, const char *pathname)

	Return value: New reference.Like PyImport_ExecCodeModule(), but the __file__ attribute of
the module object is set to pathname if it is non-NULL.

See also PyImport_ExecCodeModuleWithPathnames().

	
PyObject* PyImport_ExecCodeModuleObject(PyObject *name, PyObject *co, PyObject *pathname, PyObject *cpathname)

	Return value: New reference.Like PyImport_ExecCodeModuleEx(), but the __cached__
attribute of the module object is set to cpathname if it is
non-NULL. Of the three functions, this is the preferred one to use.

New in version 3.3.

	
PyObject* PyImport_ExecCodeModuleWithPathnames(const char *name, PyObject *co, const char *pathname, const char *cpathname)

	Return value: New reference.Like PyImport_ExecCodeModuleObject(), but name, pathname and
cpathname are UTF-8 encoded strings. Attempts are also made to figure out
what the value for pathname should be from cpathname if the former is
set to NULL.

New in version 3.2.

Changed in version 3.3: Uses imp.source_from_cache() in calculating the source path if
only the bytecode path is provided.

	
long PyImport_GetMagicNumber()

	Return the magic number for Python bytecode files (a.k.a. .pyc file).
The magic number should be present in the first four bytes of the bytecode
file, in little-endian byte order. Returns -1 on error.

Changed in version 3.3: Return value of -1 upon failure.

	
const char * PyImport_GetMagicTag()

	Return the magic tag string for PEP 3147 [https://www.python.org/dev/peps/pep-3147] format Python bytecode file
names. Keep in mind that the value at sys.implementation.cache_tag is
authoritative and should be used instead of this function.

New in version 3.2.

	
PyObject* PyImport_GetModuleDict()

	Return value: Borrowed reference.Return the dictionary used for the module administration (a.k.a.
sys.modules). Note that this is a per-interpreter variable.

	
PyObject* PyImport_GetModule(PyObject *name)

	Return value: New reference.Return the already imported module with the given name. If the
module has not been imported yet then returns NULL but does not set
an error. Returns NULL and sets an error if the lookup failed.

New in version 3.7.

	
PyObject* PyImport_GetImporter(PyObject *path)

	Return value: New reference.Return a finder object for a sys.path/pkg.__path__ item
path, possibly by fetching it from the sys.path_importer_cache
dict. If it wasn’t yet cached, traverse sys.path_hooks until a hook
is found that can handle the path item. Return None if no hook could;
this tells our caller that the path based finder could not find a
finder for this path item. Cache the result in sys.path_importer_cache.
Return a new reference to the finder object.

	
void _PyImport_Init()

	Initialize the import mechanism. For internal use only.

	
void PyImport_Cleanup()

	Empty the module table. For internal use only.

	
void _PyImport_Fini()

	Finalize the import mechanism. For internal use only.

	
int PyImport_ImportFrozenModuleObject(PyObject *name)

	Return value: New reference.Load a frozen module named name. Return 1 for success, 0 if the
module is not found, and -1 with an exception set if the initialization
failed. To access the imported module on a successful load, use
PyImport_ImportModule(). (Note the misnomer — this function would
reload the module if it was already imported.)

New in version 3.3.

Changed in version 3.4: The __file__ attribute is no longer set on the module.

	
int PyImport_ImportFrozenModule(const char *name)

	Similar to PyImport_ImportFrozenModuleObject(), but the name is a
UTF-8 encoded string instead of a Unicode object.

	
struct _frozen

	This is the structure type definition for frozen module descriptors, as
generated by the freeze utility (see Tools/freeze/ in the
Python source distribution). Its definition, found in Include/import.h,
is:

struct _frozen {
 const char *name;
 const unsigned char *code;
 int size;
};

	
const struct _frozen* PyImport_FrozenModules

	This pointer is initialized to point to an array of struct _frozen
records, terminated by one whose members are all NULL or zero. When a frozen
module is imported, it is searched in this table. Third-party code could play
tricks with this to provide a dynamically created collection of frozen modules.

	
int PyImport_AppendInittab(const char *name, PyObject* (*initfunc)(void))

	Add a single module to the existing table of built-in modules. This is a
convenience wrapper around PyImport_ExtendInittab(), returning -1 if
the table could not be extended. The new module can be imported by the name
name, and uses the function initfunc as the initialization function called
on the first attempted import. This should be called before
Py_Initialize().

	
struct _inittab

	Structure describing a single entry in the list of built-in modules. Each of
these structures gives the name and initialization function for a module built
into the interpreter. The name is an ASCII encoded string. Programs which
embed Python may use an array of these structures in conjunction with
PyImport_ExtendInittab() to provide additional built-in modules.
The structure is defined in Include/import.h as:

struct _inittab {
 const char *name; /* ASCII encoded string */
 PyObject* (*initfunc)(void);
};

	
int PyImport_ExtendInittab(struct _inittab *newtab)

	Add a collection of modules to the table of built-in modules. The newtab
array must end with a sentinel entry which contains NULL for the name
field; failure to provide the sentinel value can result in a memory fault.
Returns 0 on success or -1 if insufficient memory could be allocated to
extend the internal table. In the event of failure, no modules are added to the
internal table. This should be called before Py_Initialize().

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

 Data marshalling support

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

Data marshalling support

These routines allow C code to work with serialized objects using the same
data format as the marshal module. There are functions to write data
into the serialization format, and additional functions that can be used to
read the data back. Files used to store marshalled data must be opened in
binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version 0 is the
historical version, version 1 shares interned strings in the file, and upon
unmarshalling. Version 2 uses a binary format for floating point numbers.
Py_MARSHAL_VERSION indicates the current file format (currently 2).

	
void PyMarshal_WriteLongToFile(long value, FILE *file, int version)

	Marshal a long integer, value, to file. This will only write
the least-significant 32 bits of value; regardless of the size of the
native long type. version indicates the file format.

	
void PyMarshal_WriteObjectToFile(PyObject *value, FILE *file, int version)

	Marshal a Python object, value, to file.
version indicates the file format.

	
PyObject* PyMarshal_WriteObjectToString(PyObject *value, int version)

	Return value: New reference.Return a bytes object containing the marshalled representation of value.
version indicates the file format.

The following functions allow marshalled values to be read back in.

	
long PyMarshal_ReadLongFromFile(FILE *file)

	Return a C long from the data stream in a FILE* opened
for reading. Only a 32-bit value can be read in using this function,
regardless of the native size of long.

On error, sets the appropriate exception (EOFError) and returns
-1.

	
int PyMarshal_ReadShortFromFile(FILE *file)

	Return a C short from the data stream in a FILE* opened
for reading. Only a 16-bit value can be read in using this function,
regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns
-1.

	
PyObject* PyMarshal_ReadObjectFromFile(FILE *file)

	Return value: New reference.Return a Python object from the data stream in a FILE* opened for
reading.

On error, sets the appropriate exception (EOFError, ValueError
or TypeError) and returns NULL.

	
PyObject* PyMarshal_ReadLastObjectFromFile(FILE *file)

	Return value: New reference.Return a Python object from the data stream in a FILE* opened for
reading. Unlike PyMarshal_ReadObjectFromFile(), this function
assumes that no further objects will be read from the file, allowing it to
aggressively load file data into memory so that the de-serialization can
operate from data in memory rather than reading a byte at a time from the
file. Only use these variant if you are certain that you won’t be reading
anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError
or TypeError) and returns NULL.

	
PyObject* PyMarshal_ReadObjectFromString(const char *data, Py_ssize_t len)

	Return value: New reference.Return a Python object from the data stream in a byte buffer
containing len bytes pointed to by data.

On error, sets the appropriate exception (EOFError, ValueError
or TypeError) and returns NULL.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

 Parsing arguments and building values

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

Parsing arguments and building values

These functions are useful when creating your own extensions functions and
methods. Additional information and examples are available in
Extending and Embedding the Python Interpreter.

The first three of these functions described, PyArg_ParseTuple(),
PyArg_ParseTupleAndKeywords(), and PyArg_Parse(), all use format
strings which are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

Parsing arguments

A format string consists of zero or more “format units.” A format unit
describes one Python object; it is usually a single character or a parenthesized
sequence of format units. With a few exceptions, a format unit that is not a
parenthesized sequence normally corresponds to a single address argument to
these functions. In the following description, the quoted form is the format
unit; the entry in (round) parentheses is the Python object type that matches
the format unit; and the entry in [square] brackets is the type of the C
variable(s) whose address should be passed.

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory.
You don’t have to provide raw storage for the returned unicode or bytes
area.

In general, when a format sets a pointer to a buffer, the buffer is
managed by the corresponding Python object, and the buffer shares
the lifetime of this object. You won’t have to release any memory yourself.
The only exceptions are es, es#, et and et#.

However, when a Py_buffer structure gets filled, the underlying
buffer is locked so that the caller can subsequently use the buffer even
inside a Py_BEGIN_ALLOW_THREADS block without the risk of mutable data
being resized or destroyed. As a result, you have to call
PyBuffer_Release() after you have finished processing the data (or
in any early abort case).

Unless otherwise stated, buffers are not NUL-terminated.

Some formats require a read-only bytes-like object, and set a
pointer instead of a buffer structure. They work by checking that
the object’s PyBufferProcs.bf_releasebuffer field is NULL,
which disallows mutable objects such as bytearray.

Note

For all # variants of formats (s#, y#, etc.), the type of
the length argument (int or Py_ssize_t) is controlled by
defining the macro PY_SSIZE_T_CLEAN before including
Python.h. If the macro was defined, length is a
Py_ssize_t rather than an int. This behavior will change
in a future Python version to only support Py_ssize_t and
drop int support. It is best to always define PY_SSIZE_T_CLEAN.

	s (str) [const char *]

	Convert a Unicode object to a C pointer to a character string.
A pointer to an existing string is stored in the character pointer
variable whose address you pass. The C string is NUL-terminated.
The Python string must not contain embedded null code points; if it does,
a ValueError exception is raised. Unicode objects are converted
to C strings using 'utf-8' encoding. If this conversion fails, a
UnicodeError is raised.

Note

This format does not accept bytes-like objects. If you want to accept
filesystem paths and convert them to C character strings, it is
preferable to use the O& format with PyUnicode_FSConverter()
as converter.

Changed in version 3.5: Previously, TypeError was raised when embedded null code points
were encountered in the Python string.

	s* (str or bytes-like object) [Py_buffer]

	This format accepts Unicode objects as well as bytes-like objects.
It fills a Py_buffer structure provided by the caller.
In this case the resulting C string may contain embedded NUL bytes.
Unicode objects are converted to C strings using 'utf-8' encoding.

	s# (str, read-only bytes-like object) [const char *, int or Py_ssize_t]

	Like s*, except that it doesn’t accept mutable objects.
The result is stored into two C variables,
the first one a pointer to a C string, the second one its length.
The string may contain embedded null bytes. Unicode objects are converted
to C strings using 'utf-8' encoding.

	z (str or None) [const char *]

	Like s, but the Python object may also be None, in which case the C
pointer is set to NULL.

	z* (str, bytes-like object or None) [Py_buffer]

	Like s*, but the Python object may also be None, in which case the
buf member of the Py_buffer structure is set to NULL.

	z# (str, read-only bytes-like object or None) [const char *, int]

	Like s#, but the Python object may also be None, in which case the C
pointer is set to NULL.

	y (read-only bytes-like object) [const char *]

	This format converts a bytes-like object to a C pointer to a character
string; it does not accept Unicode objects. The bytes buffer must not
contain embedded null bytes; if it does, a ValueError
exception is raised.

Changed in version 3.5: Previously, TypeError was raised when embedded null bytes were
encountered in the bytes buffer.

	y* (bytes-like object) [Py_buffer]

	This variant on s* doesn’t accept Unicode objects, only
bytes-like objects. This is the recommended way to accept
binary data.

	y# (read-only bytes-like object) [const char *, int]

	This variant on s# doesn’t accept Unicode objects, only bytes-like
objects.

	S (bytes) [PyBytesObject *]

	Requires that the Python object is a bytes object, without
attempting any conversion. Raises TypeError if the object is not
a bytes object. The C variable may also be declared as PyObject*.

	Y (bytearray) [PyByteArrayObject *]

	Requires that the Python object is a bytearray object, without
attempting any conversion. Raises TypeError if the object is not
a bytearray object. The C variable may also be declared as PyObject*.

	u (str) [const Py_UNICODE *]

	Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of
Unicode characters. You must pass the address of a Py_UNICODE
pointer variable, which will be filled with the pointer to an existing
Unicode buffer. Please note that the width of a Py_UNICODE
character depends on compilation options (it is either 16 or 32 bits).
The Python string must not contain embedded null code points; if it does,
a ValueError exception is raised.

Changed in version 3.5: Previously, TypeError was raised when embedded null code points
were encountered in the Python string.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please migrate to using
PyUnicode_AsWideCharString().

	u# (str) [const Py_UNICODE *, int]

	This variant on u stores into two C variables, the first one a pointer to a
Unicode data buffer, the second one its length. This variant allows
null code points.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please migrate to using
PyUnicode_AsWideCharString().

	Z (str or None) [const Py_UNICODE *]

	Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please migrate to using
PyUnicode_AsWideCharString().

	Z# (str or None) [const Py_UNICODE *, int]

	Like u#, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please migrate to using
PyUnicode_AsWideCharString().

	U (str) [PyObject *]

	Requires that the Python object is a Unicode object, without attempting
any conversion. Raises TypeError if the object is not a Unicode
object. The C variable may also be declared as PyObject*.

	w* (read-write bytes-like object) [Py_buffer]

	This format accepts any object which implements the read-write buffer
interface. It fills a Py_buffer structure provided by the caller.
The buffer may contain embedded null bytes. The caller have to call
PyBuffer_Release() when it is done with the buffer.

	es (str) [const char *encoding, char **buffer]

	This variant on s is used for encoding Unicode into a character buffer.
It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and
must be a const char* which points to the name of an encoding as a
NUL-terminated string, or NULL, in which case 'utf-8' encoding is used.
An exception is raised if the named encoding is not known to Python. The
second argument must be a char**; the value of the pointer it
references will be set to a buffer with the contents of the argument text.
The text will be encoded in the encoding specified by the first argument.

PyArg_ParseTuple() will allocate a buffer of the needed size, copy the
encoded data into this buffer and adjust *buffer to reference the newly
allocated storage. The caller is responsible for calling PyMem_Free() to
free the allocated buffer after use.

	et (str, bytes or bytearray) [const char *encoding, char **buffer]

	Same as es except that byte string objects are passed through without
recoding them. Instead, the implementation assumes that the byte string object uses
the encoding passed in as parameter.

	es# (str) [const char *encoding, char **buffer, int *buffer_length]

	This variant on s# is used for encoding Unicode into a character buffer.
Unlike the es format, this variant allows input data which contains NUL
characters.

It requires three arguments. The first is only used as input, and must be a
const char* which points to the name of an encoding as a
NUL-terminated string, or NULL, in which case 'utf-8' encoding is used.
An exception is raised if the named encoding is not known to Python. The
second argument must be a char**; the value of the pointer it
references will be set to a buffer with the contents of the argument text.
The text will be encoded in the encoding specified by the first argument.
The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of
the needed size, copy the encoded data into this buffer and set *buffer to
reference the newly allocated storage. The caller is responsible for calling
PyMem_Free() to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer),
PyArg_ParseTuple() will use this location as the buffer and interpret the
initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large
enough, a ValueError will be set.

In both cases, *buffer_length is set to the length of the encoded data
without the trailing NUL byte.

	et# (str, bytes or bytearray) [const char *encoding, char **buffer, int *buffer_length]

	Same as es# except that byte string objects are passed through without recoding
them. Instead, the implementation assumes that the byte string object uses the
encoding passed in as parameter.

Numbers

	b (int) [unsigned char]

	Convert a nonnegative Python integer to an unsigned tiny int, stored in a C
unsigned char.

	B (int) [unsigned char]

	Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char.

	h (int) [short int]

	Convert a Python integer to a C short int.

	H (int) [unsigned short int]

	Convert a Python integer to a C unsigned short int, without overflow
checking.

	i (int) [int]

	Convert a Python integer to a plain C int.

	I (int) [unsigned int]

	Convert a Python integer to a C unsigned int, without overflow
checking.

	l (int) [long int]

	Convert a Python integer to a C long int.

	k (int) [unsigned long]

	Convert a Python integer to a C unsigned long without
overflow checking.

	L (int) [long long]

	Convert a Python integer to a C long long.

	K (int) [unsigned long long]

	Convert a Python integer to a C unsigned long long
without overflow checking.

	n (int) [Py_ssize_t]

	Convert a Python integer to a C Py_ssize_t.

	c (bytes or bytearray of length 1) [char]

	Convert a Python byte, represented as a bytes or
bytearray object of length 1, to a C char.

Changed in version 3.3: Allow bytearray objects.

	C (str of length 1) [int]

	Convert a Python character, represented as a str object of
length 1, to a C int.

	f (float) [float]

	Convert a Python floating point number to a C float.

	d (float) [double]

	Convert a Python floating point number to a C double.

	D (complex) [Py_complex]

	Convert a Python complex number to a C Py_complex structure.

Other objects

	O (object) [PyObject *]

	Store a Python object (without any conversion) in a C object pointer. The C
program thus receives the actual object that was passed. The object’s reference
count is not increased. The pointer stored is not NULL.

	O! (object) [typeobject, PyObject *]

	Store a Python object in a C object pointer. This is similar to O, but
takes two C arguments: the first is the address of a Python type object, the
second is the address of the C variable (of type PyObject*) into which
the object pointer is stored. If the Python object does not have the required
type, TypeError is raised.

	O& (object) [converter, anything]

	Convert a Python object to a C variable through a converter function. This
takes two arguments: the first is a function, the second is the address of a C
variable (of arbitrary type), converted to void *. The converter
function in turn is called as follows:

status = converter(object, address);

where object is the Python object to be converted and address is the
void* argument that was passed to the PyArg_Parse*() function.
The returned status should be 1 for a successful conversion and 0 if
the conversion has failed. When the conversion fails, the converter function
should raise an exception and leave the content of address unmodified.

If the converter returns Py_CLEANUP_SUPPORTED, it may get called a
second time if the argument parsing eventually fails, giving the converter a
chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value
as in the original call.

Changed in version 3.1: Py_CLEANUP_SUPPORTED was added.

	p (bool) [int]

	Tests the value passed in for truth (a boolean predicate) and converts
the result to its equivalent C true/false integer value.
Sets the int to 1 if the expression was true and 0 if it was false.
This accepts any valid Python value. See Truth Value Testing for more
information about how Python tests values for truth.

New in version 3.3.

	(items) (tuple) [matching-items]

	The object must be a Python sequence whose length is the number of format units
in items. The C arguments must correspond to the individual format units in
items. Format units for sequences may be nested.

It is possible to pass “long” integers (integers whose value exceeds the
platform’s LONG_MAX) however no proper range checking is done — the
most significant bits are silently truncated when the receiving field is too
small to receive the value (actually, the semantics are inherited from downcasts
in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur
inside nested parentheses. They are:

	|

	Indicates that the remaining arguments in the Python argument list are optional.
The C variables corresponding to optional arguments should be initialized to
their default value — when an optional argument is not specified,
PyArg_ParseTuple() does not touch the contents of the corresponding C
variable(s).

	$

	PyArg_ParseTupleAndKeywords() only:
Indicates that the remaining arguments in the Python argument list are
keyword-only. Currently, all keyword-only arguments must also be optional
arguments, so | must always be specified before $ in the format
string.

New in version 3.3.

	:

	The list of format units ends here; the string after the colon is used as the
function name in error messages (the “associated value” of the exception that
PyArg_ParseTuple() raises).

	;

	The list of format units ends here; the string after the semicolon is used as
the error message instead of the default error message. : and ;
mutually exclude each other.

Note that any Python object references which are provided to the caller are
borrowed references; do not decrement their reference count!

Additional arguments passed to these functions must be addresses of variables
whose type is determined by the format string; these are used to store values
from the input tuple. There are a few cases, as described in the list of format
units above, where these parameters are used as input values; they should match
what is specified for the corresponding format unit in that case.

For the conversion to succeed, the arg object must match the format
and the format must be exhausted. On success, the
PyArg_Parse*() functions return true, otherwise they return
false and raise an appropriate exception. When the
PyArg_Parse*() functions fail due to conversion failure in one
of the format units, the variables at the addresses corresponding to that
and the following format units are left untouched.

API Functions

	
int PyArg_ParseTuple(PyObject *args, const char *format, ...)

	Parse the parameters of a function that takes only positional parameters into
local variables. Returns true on success; on failure, it returns false and
raises the appropriate exception.

	
int PyArg_VaParse(PyObject *args, const char *format, va_list vargs)

	Identical to PyArg_ParseTuple(), except that it accepts a va_list rather
than a variable number of arguments.

	
int PyArg_ParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *keywords[], ...)

	Parse the parameters of a function that takes both positional and keyword
parameters into local variables. The keywords argument is a
NULL-terminated array of keyword parameter names. Empty names denote
positional-only parameters.
Returns true on success; on failure, it returns false and raises the
appropriate exception.

Changed in version 3.6: Added support for positional-only parameters.

	
int PyArg_VaParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *keywords[], va_list vargs)

	Identical to PyArg_ParseTupleAndKeywords(), except that it accepts a
va_list rather than a variable number of arguments.

	
int PyArg_ValidateKeywordArguments(PyObject *)

	Ensure that the keys in the keywords argument dictionary are strings. This
is only needed if PyArg_ParseTupleAndKeywords() is not used, since the
latter already does this check.

New in version 3.2.

	
int PyArg_Parse(PyObject *args, const char *format, ...)

	Function used to deconstruct the argument lists of “old-style” functions —
these are functions which use the METH_OLDARGS parameter parsing
method, which has been removed in Python 3. This is not recommended for use
in parameter parsing in new code, and most code in the standard interpreter
has been modified to no longer use this for that purpose. It does remain a
convenient way to decompose other tuples, however, and may continue to be
used for that purpose.

	
int PyArg_UnpackTuple(PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

	A simpler form of parameter retrieval which does not use a format string to
specify the types of the arguments. Functions which use this method to retrieve
their parameters should be declared as METH_VARARGS in function or
method tables. The tuple containing the actual parameters should be passed as
args; it must actually be a tuple. The length of the tuple must be at least
min and no more than max; min and max may be equal. Additional
arguments must be passed to the function, each of which should be a pointer to a
PyObject* variable; these will be filled in with the values from
args; they will contain borrowed references. The variables which correspond
to optional parameters not given by args will not be filled in; these should
be initialized by the caller. This function returns true on success and false if
args is not a tuple or contains the wrong number of elements; an exception
will be set if there was a failure.

This is an example of the use of this function, taken from the sources for the
_weakref helper module for weak references:

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{
 PyObject *object;
 PyObject *callback = NULL;
 PyObject *result = NULL;

 if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) {
 result = PyWeakref_NewRef(object, callback);
 }
 return result;
}

The call to PyArg_UnpackTuple() in this example is entirely equivalent to
this call to PyArg_ParseTuple():

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

Building values

	
PyObject* Py_BuildValue(const char *format, ...)

	Return value: New reference.Create a new value based on a format string similar to those accepted by the
PyArg_Parse*() family of functions and a sequence of values. Returns
the value or NULL in the case of an error; an exception will be raised if
NULL is returned.

Py_BuildValue() does not always build a tuple. It builds a tuple only if
its format string contains two or more format units. If the format string is
empty, it returns None; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple
of size 0 or one, parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, as
for the s and s# formats, the required data is copied. Buffers provided
by the caller are never referenced by the objects created by
Py_BuildValue(). In other words, if your code invokes malloc()
and passes the allocated memory to Py_BuildValue(), your code is
responsible for calling free() for that memory once
Py_BuildValue() returns.

In the following description, the quoted form is the format unit; the entry in
(round) parentheses is the Python object type that the format unit will return;
and the entry in [square] brackets is the type of the C value(s) to be passed.

The characters space, tab, colon and comma are ignored in format strings (but
not within format units such as s#). This can be used to make long format
strings a tad more readable.

	s (str or None) [const char *]

	Convert a null-terminated C string to a Python str object using 'utf-8'
encoding. If the C string pointer is NULL, None is used.

	s# (str or None) [const char *, int]

	Convert a C string and its length to a Python str object using 'utf-8'
encoding. If the C string pointer is NULL, the length is ignored and
None is returned.

	y (bytes) [const char *]

	This converts a C string to a Python bytes object. If the C
string pointer is NULL, None is returned.

	y# (bytes) [const char *, int]

	This converts a C string and its lengths to a Python object. If the C
string pointer is NULL, None is returned.

	z (str or None) [const char *]

	Same as s.

	z# (str or None) [const char *, int]

	Same as s#.

	u (str) [const wchar_t *]

	Convert a null-terminated wchar_t buffer of Unicode (UTF-16 or UCS-4)
data to a Python Unicode object. If the Unicode buffer pointer is NULL,
None is returned.

	u# (str) [const wchar_t *, int]

	Convert a Unicode (UTF-16 or UCS-4) data buffer and its length to a Python
Unicode object. If the Unicode buffer pointer is NULL, the length is ignored
and None is returned.

	U (str or None) [const char *]

	Same as s.

	U# (str or None) [const char *, int]

	Same as s#.

	i (int) [int]

	Convert a plain C int to a Python integer object.

	b (int) [char]

	Convert a plain C char to a Python integer object.

	h (int) [short int]

	Convert a plain C short int to a Python integer object.

	l (int) [long int]

	Convert a C long int to a Python integer object.

	B (int) [unsigned char]

	Convert a C unsigned char to a Python integer object.

	H (int) [unsigned short int]

	Convert a C unsigned short int to a Python integer object.

	I (int) [unsigned int]

	Convert a C unsigned int to a Python integer object.

	k (int) [unsigned long]

	Convert a C unsigned long to a Python integer object.

	L (int) [long long]

	Convert a C long long to a Python integer object.

	K (int) [unsigned long long]

	Convert a C unsigned long long to a Python integer object.

	n (int) [Py_ssize_t]

	Convert a C Py_ssize_t to a Python integer.

	c (bytes of length 1) [char]

	Convert a C int representing a byte to a Python bytes object of
length 1.

	C (str of length 1) [int]

	Convert a C int representing a character to Python str
object of length 1.

	d (float) [double]

	Convert a C double to a Python floating point number.

	f (float) [float]

	Convert a C float to a Python floating point number.

	D (complex) [Py_complex *]

	Convert a C Py_complex structure to a Python complex number.

	O (object) [PyObject *]

	Pass a Python object untouched (except for its reference count, which is
incremented by one). If the object passed in is a NULL pointer, it is assumed
that this was caused because the call producing the argument found an error and
set an exception. Therefore, Py_BuildValue() will return NULL but won’t
raise an exception. If no exception has been raised yet, SystemError is
set.

	S (object) [PyObject *]

	Same as O.

	N (object) [PyObject *]

	Same as O, except it doesn’t increment the reference count on the object.
Useful when the object is created by a call to an object constructor in the
argument list.

	O& (object) [converter, anything]

	Convert anything to a Python object through a converter function. The
function is called with anything (which should be compatible with void
*) as its argument and should return a “new” Python object, or NULL if an
error occurred.

	(items) (tuple) [matching-items]

	Convert a sequence of C values to a Python tuple with the same number of items.

	[items] (list) [matching-items]

	Convert a sequence of C values to a Python list with the same number of items.

	{items} (dict) [matching-items]

	Convert a sequence of C values to a Python dictionary. Each pair of consecutive
C values adds one item to the dictionary, serving as key and value,
respectively.

If there is an error in the format string, the SystemError exception is
set and NULL returned.

	
PyObject* Py_VaBuildValue(const char *format, va_list vargs)

	Return value: New reference.Identical to Py_BuildValue(), except that it accepts a va_list
rather than a variable number of arguments.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

 String conversion and formatting

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

String conversion and formatting

Functions for number conversion and formatted string output.

	
int PyOS_snprintf(char *str, size_t size, const char *format, ...)

	Output not more than size bytes to str according to the format string
format and the extra arguments. See the Unix man page snprintf(2).

	
int PyOS_vsnprintf(char *str, size_t size, const char *format, va_list va)

	Output not more than size bytes to str according to the format string
format and the variable argument list va. Unix man page
vsnprintf(2).

PyOS_snprintf() and PyOS_vsnprintf() wrap the Standard C library
functions snprintf() and vsnprintf(). Their purpose is to
guarantee consistent behavior in corner cases, which the Standard C functions do
not.

The wrappers ensure that str*[*size-1] is always '\0' upon return. They
never write more than size bytes (including the trailing '\0') into str.
Both functions require that str != NULL, size > 0 and format !=
NULL.

If the platform doesn’t have vsnprintf() and the buffer size needed to
avoid truncation exceeds size by more than 512 bytes, Python aborts with a
Py_FatalError.

The return value (rv) for these functions should be interpreted as follows:

	When 0 <= rv < size, the output conversion was successful and rv
characters were written to str (excluding the trailing '\0' byte at
str*[*rv]).

	When rv >= size, the output conversion was truncated and a buffer with
rv + 1 bytes would have been needed to succeed. str*[*size-1] is '\0'
in this case.

	When rv < 0, “something bad happened.” str*[*size-1] is '\0' in
this case too, but the rest of str is undefined. The exact cause of the error
depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

	
double PyOS_string_to_double(const char *s, char **endptr, PyObject *overflow_exception)

	Convert a string s to a double, raising a Python
exception on failure. The set of accepted strings corresponds to
the set of strings accepted by Python’s float() constructor,
except that s must not have leading or trailing whitespace.
The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise
ValueError and return -1.0 if the string is not a valid
representation of a floating-point number.

If endptr is not NULL, convert as much of the string as
possible and set *endptr to point to the first unconverted
character. If no initial segment of the string is the valid
representation of a floating-point number, set *endptr to point
to the beginning of the string, raise ValueError, and return
-1.0.

If s represents a value that is too large to store in a float
(for example, "1e500" is such a string on many platforms) then
if overflow_exception is NULL return Py_HUGE_VAL (with
an appropriate sign) and don’t set any exception. Otherwise,
overflow_exception must point to a Python exception object;
raise that exception and return -1.0. In both cases, set
*endptr to point to the first character after the converted value.

If any other error occurs during the conversion (for example an
out-of-memory error), set the appropriate Python exception and
return -1.0.

New in version 3.1.

	
char* PyOS_double_to_string(double val, char format_code, int precision, int flags, int *ptype)

	Convert a double val to a string using supplied
format_code, precision, and flags.

format_code must be one of 'e', 'E', 'f', 'F',
'g', 'G' or 'r'. For 'r', the supplied precision
must be 0 and is ignored. The 'r' format code specifies the
standard repr() format.

flags can be zero or more of the values Py_DTSF_SIGN,
Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed together:

	Py_DTSF_SIGN means to always precede the returned string with a sign
character, even if val is non-negative.

	Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look
like an integer.

	Py_DTSF_ALT means to apply “alternate” formatting rules. See the
documentation for the PyOS_snprintf() '#' specifier for
details.

If ptype is non-NULL, then the value it points to will be set to one of
Py_DTST_FINITE, Py_DTST_INFINITE, or Py_DTST_NAN, signifying that
val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or
NULL if the conversion failed. The caller is responsible for freeing the
returned string by calling PyMem_Free().

New in version 3.1.

	
int PyOS_stricmp(const char *s1, const char *s2)

	Case insensitive comparison of strings. The function works almost
identically to strcmp() except that it ignores the case.

	
int PyOS_strnicmp(const char *s1, const char *s2, Py_ssize_t size)

	Case insensitive comparison of strings. The function works almost
identically to strncmp() except that it ignores the case.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

 Reflection

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

Reflection

	
PyObject* PyEval_GetBuiltins()

	Return value: Borrowed reference.Return a dictionary of the builtins in the current execution frame,
or the interpreter of the thread state if no frame is currently executing.

	
PyObject* PyEval_GetLocals()

	Return value: Borrowed reference.Return a dictionary of the local variables in the current execution frame,
or NULL if no frame is currently executing.

	
PyObject* PyEval_GetGlobals()

	Return value: Borrowed reference.Return a dictionary of the global variables in the current execution frame,
or NULL if no frame is currently executing.

	
PyFrameObject* PyEval_GetFrame()

	Return value: Borrowed reference.Return the current thread state’s frame, which is NULL if no frame is
currently executing.

	
int PyFrame_GetLineNumber(PyFrameObject *frame)

	Return the line number that frame is currently executing.

	
const char* PyEval_GetFuncName(PyObject *func)

	Return the name of func if it is a function, class or instance object, else the
name of funcs type.

	
const char* PyEval_GetFuncDesc(PyObject *func)

	Return a description string, depending on the type of func.
Return values include “()” for functions and methods, ” constructor”,
” instance”, and ” object”. Concatenated with the result of
PyEval_GetFuncName(), the result will be a description of
func.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

 Codec registry and support functions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

Codec registry and support functions

	
int PyCodec_Register(PyObject *search_function)

	Register a new codec search function.

As side effect, this tries to load the encodings package, if not yet
done, to make sure that it is always first in the list of search functions.

	
int PyCodec_KnownEncoding(const char *encoding)

	Return 1 or 0 depending on whether there is a registered codec for
the given encoding. This function always succeeds.

	
PyObject* PyCodec_Encode(PyObject *object, const char *encoding, const char *errors)

	Return value: New reference.Generic codec based encoding API.

object is passed through the encoder function found for the given
encoding using the error handling method defined by errors. errors may
be NULL to use the default method defined for the codec. Raises a
LookupError if no encoder can be found.

	
PyObject* PyCodec_Decode(PyObject *object, const char *encoding, const char *errors)

	Return value: New reference.Generic codec based decoding API.

object is passed through the decoder function found for the given
encoding using the error handling method defined by errors. errors may
be NULL to use the default method defined for the codec. Raises a
LookupError if no encoder can be found.

Codec lookup API

In the following functions, the encoding string is looked up converted to all
lower-case characters, which makes encodings looked up through this mechanism
effectively case-insensitive. If no codec is found, a KeyError is set
and NULL returned.

	
PyObject* PyCodec_Encoder(const char *encoding)

	Return value: New reference.Get an encoder function for the given encoding.

	
PyObject* PyCodec_Decoder(const char *encoding)

	Return value: New reference.Get a decoder function for the given encoding.

	
PyObject* PyCodec_IncrementalEncoder(const char *encoding, const char *errors)

	Return value: New reference.Get an IncrementalEncoder object for the given encoding.

	
PyObject* PyCodec_IncrementalDecoder(const char *encoding, const char *errors)

	Return value: New reference.Get an IncrementalDecoder object for the given encoding.

	
PyObject* PyCodec_StreamReader(const char *encoding, PyObject *stream, const char *errors)

	Return value: New reference.Get a StreamReader factory function for the given encoding.

	
PyObject* PyCodec_StreamWriter(const char *encoding, PyObject *stream, const char *errors)

	Return value: New reference.Get a StreamWriter factory function for the given encoding.

Registry API for Unicode encoding error handlers

	
int PyCodec_RegisterError(const char *name, PyObject *error)

	Register the error handling callback function error under the given name.
This callback function will be called by a codec when it encounters
unencodable characters/undecodable bytes and name is specified as the error
parameter in the call to the encode/decode function.

The callback gets a single argument, an instance of
UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic
sequence of characters or bytes and their offset in the original string (see
Unicode Exception Objects for functions to extract this information). The
callback must either raise the given exception, or return a two-item tuple
containing the replacement for the problematic sequence, and an integer
giving the offset in the original string at which encoding/decoding should be
resumed.

Return 0 on success, -1 on error.

	
PyObject* PyCodec_LookupError(const char *name)

	Return value: New reference.Lookup the error handling callback function registered under name. As a
special case NULL can be passed, in which case the error handling callback
for “strict” will be returned.

	
PyObject* PyCodec_StrictErrors(PyObject *exc)

	Return value: Always NULL.Raise exc as an exception.

	
PyObject* PyCodec_IgnoreErrors(PyObject *exc)

	Return value: New reference.Ignore the unicode error, skipping the faulty input.

	
PyObject* PyCodec_ReplaceErrors(PyObject *exc)

	Return value: New reference.Replace the unicode encode error with ? or U+FFFD.

	
PyObject* PyCodec_XMLCharRefReplaceErrors(PyObject *exc)

	Return value: New reference.Replace the unicode encode error with XML character references.

	
PyObject* PyCodec_BackslashReplaceErrors(PyObject *exc)

	Return value: New reference.Replace the unicode encode error with backslash escapes (\x, \u and
\U).

	
PyObject* PyCodec_NameReplaceErrors(PyObject *exc)

	Return value: New reference.Replace the unicode encode error with \N{...} escapes.

New in version 3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Utilities »

 	

 |

 Abstract Objects Layer

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	

 |

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their
type, or with wide classes of object types (e.g. all numerical types, or all
sequence types). When used on object types for which they do not apply, they
will raise a Python exception.

It is not possible to use these functions on objects that are not properly
initialized, such as a list object that has been created by PyList_New(),
but whose items have not been set to some non-NULL value yet.

	Object Protocol

	Number Protocol

	Sequence Protocol

	Mapping Protocol

	Iterator Protocol

	Buffer Protocol
	Buffer structure

	Buffer request types
	request-independent fields

	readonly, format

	shape, strides, suboffsets

	contiguity requests

	compound requests

	Complex arrays
	NumPy-style: shape and strides

	PIL-style: shape, strides and suboffsets

	Buffer-related functions

	Old Buffer Protocol

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	

 |

 Object Protocol

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

Object Protocol

	
PyObject* Py_NotImplemented

	The NotImplemented singleton, used to signal that an operation is
not implemented for the given type combination.

	
Py_RETURN_NOTIMPLEMENTED

	Properly handle returning Py_NotImplemented from within a C
function (that is, increment the reference count of NotImplemented and
return it).

	
int PyObject_Print(PyObject *o, FILE *fp, int flags)

	Print an object o, on file fp. Returns -1 on error. The flags argument
is used to enable certain printing options. The only option currently supported
is Py_PRINT_RAW; if given, the str() of the object is written
instead of the repr().

	
int PyObject_HasAttr(PyObject *o, PyObject *attr_name)

	Returns 1 if o has the attribute attr_name, and 0 otherwise. This
is equivalent to the Python expression hasattr(o, attr_name). This function
always succeeds.

Note that exceptions which occur while calling __getattr__() and
__getattribute__() methods will get suppressed.
To get error reporting use PyObject_GetAttr() instead.

	
int PyObject_HasAttrString(PyObject *o, const char *attr_name)

	Returns 1 if o has the attribute attr_name, and 0 otherwise. This
is equivalent to the Python expression hasattr(o, attr_name). This function
always succeeds.

Note that exceptions which occur while calling __getattr__() and
__getattribute__() methods and creating a temporary string object
will get suppressed.
To get error reporting use PyObject_GetAttrString() instead.

	
PyObject* PyObject_GetAttr(PyObject *o, PyObject *attr_name)

	Return value: New reference.Retrieve an attribute named attr_name from object o. Returns the attribute
value on success, or NULL on failure. This is the equivalent of the Python
expression o.attr_name.

	
PyObject* PyObject_GetAttrString(PyObject *o, const char *attr_name)

	Return value: New reference.Retrieve an attribute named attr_name from object o. Returns the attribute
value on success, or NULL on failure. This is the equivalent of the Python
expression o.attr_name.

	
PyObject* PyObject_GenericGetAttr(PyObject *o, PyObject *name)

	Return value: New reference.Generic attribute getter function that is meant to be put into a type
object’s tp_getattro slot. It looks for a descriptor in the dictionary
of classes in the object’s MRO as well as an attribute in the object’s
__dict__ (if present). As outlined in Implementing Descriptors,
data descriptors take preference over instance attributes, while non-data
descriptors don’t. Otherwise, an AttributeError is raised.

	
int PyObject_SetAttr(PyObject *o, PyObject *attr_name, PyObject *v)

	Set the value of the attribute named attr_name, for object o, to the value
v. Raise an exception and return -1 on failure;
return 0 on success. This is the equivalent of the Python statement
o.attr_name = v.

If v is NULL, the attribute is deleted, however this feature is
deprecated in favour of using PyObject_DelAttr().

	
int PyObject_SetAttrString(PyObject *o, const char *attr_name, PyObject *v)

	Set the value of the attribute named attr_name, for object o, to the value
v. Raise an exception and return -1 on failure;
return 0 on success. This is the equivalent of the Python statement
o.attr_name = v.

If v is NULL, the attribute is deleted, however this feature is
deprecated in favour of using PyObject_DelAttrString().

	
int PyObject_GenericSetAttr(PyObject *o, PyObject *name, PyObject *value)

	Generic attribute setter and deleter function that is meant
to be put into a type object’s tp_setattro
slot. It looks for a data descriptor in the
dictionary of classes in the object’s MRO, and if found it takes preference
over setting or deleting the attribute in the instance dictionary. Otherwise, the
attribute is set or deleted in the object’s __dict__ (if present).
On success, 0 is returned, otherwise an AttributeError
is raised and -1 is returned.

	
int PyObject_DelAttr(PyObject *o, PyObject *attr_name)

	Delete attribute named attr_name, for object o. Returns -1 on failure.
This is the equivalent of the Python statement del o.attr_name.

	
int PyObject_DelAttrString(PyObject *o, const char *attr_name)

	Delete attribute named attr_name, for object o. Returns -1 on failure.
This is the equivalent of the Python statement del o.attr_name.

	
PyObject* PyObject_GenericGetDict(PyObject *o, void *context)

	Return value: New reference.A generic implementation for the getter of a __dict__ descriptor. It
creates the dictionary if necessary.

New in version 3.3.

	
int PyObject_GenericSetDict(PyObject *o, void *context)

	A generic implementation for the setter of a __dict__ descriptor. This
implementation does not allow the dictionary to be deleted.

New in version 3.3.

	
PyObject* PyObject_RichCompare(PyObject *o1, PyObject *o2, int opid)

	Return value: New reference.Compare the values of o1 and o2 using the operation specified by opid,
which must be one of Py_LT, Py_LE, Py_EQ,
Py_NE, Py_GT, or Py_GE, corresponding to <,
<=, ==, !=, >, or >= respectively. This is the equivalent of
the Python expression o1 op o2, where op is the operator corresponding
to opid. Returns the value of the comparison on success, or NULL on failure.

	
int PyObject_RichCompareBool(PyObject *o1, PyObject *o2, int opid)

	Compare the values of o1 and o2 using the operation specified by opid,
which must be one of Py_LT, Py_LE, Py_EQ,
Py_NE, Py_GT, or Py_GE, corresponding to <,
<=, ==, !=, >, or >= respectively. Returns -1 on error,
0 if the result is false, 1 otherwise. This is the equivalent of the
Python expression o1 op o2, where op is the operator corresponding to
opid.

Note

If o1 and o2 are the same object, PyObject_RichCompareBool()
will always return 1 for Py_EQ and 0 for Py_NE.

	
PyObject* PyObject_Repr(PyObject *o)

	Return value: New reference.Compute a string representation of object o. Returns the string
representation on success, NULL on failure. This is the equivalent of the
Python expression repr(o). Called by the repr() built-in function.

Changed in version 3.4: This function now includes a debug assertion to help ensure that it
does not silently discard an active exception.

	
PyObject* PyObject_ASCII(PyObject *o)

	Return value: New reference.As PyObject_Repr(), compute a string representation of object o, but
escape the non-ASCII characters in the string returned by
PyObject_Repr() with \x, \u or \U escapes. This generates
a string similar to that returned by PyObject_Repr() in Python 2.
Called by the ascii() built-in function.

	
PyObject* PyObject_Str(PyObject *o)

	Return value: New reference.Compute a string representation of object o. Returns the string
representation on success, NULL on failure. This is the equivalent of the
Python expression str(o). Called by the str() built-in function
and, therefore, by the print() function.

Changed in version 3.4: This function now includes a debug assertion to help ensure that it
does not silently discard an active exception.

	
PyObject* PyObject_Bytes(PyObject *o)

	Return value: New reference.Compute a bytes representation of object o. NULL is returned on
failure and a bytes object on success. This is equivalent to the Python
expression bytes(o), when o is not an integer. Unlike bytes(o),
a TypeError is raised when o is an integer instead of a zero-initialized
bytes object.

	
int PyObject_IsSubclass(PyObject *derived, PyObject *cls)

	Return 1 if the class derived is identical to or derived from the class
cls, otherwise return 0. In case of an error, return -1.

If cls is a tuple, the check will be done against every entry in cls.
The result will be 1 when at least one of the checks returns 1,
otherwise it will be 0.

If cls has a __subclasscheck__() method, it will be called to
determine the subclass status as described in PEP 3119 [https://www.python.org/dev/peps/pep-3119]. Otherwise,
derived is a subclass of cls if it is a direct or indirect subclass,
i.e. contained in cls.__mro__.

Normally only class objects, i.e. instances of type or a derived
class, are considered classes. However, objects can override this by having
a __bases__ attribute (which must be a tuple of base classes).

	
int PyObject_IsInstance(PyObject *inst, PyObject *cls)

	Return 1 if inst is an instance of the class cls or a subclass of
cls, or 0 if not. On error, returns -1 and sets an exception.

If cls is a tuple, the check will be done against every entry in cls.
The result will be 1 when at least one of the checks returns 1,
otherwise it will be 0.

If cls has a __instancecheck__() method, it will be called to
determine the subclass status as described in PEP 3119 [https://www.python.org/dev/peps/pep-3119]. Otherwise, inst
is an instance of cls if its class is a subclass of cls.

An instance inst can override what is considered its class by having a
__class__ attribute.

An object cls can override if it is considered a class, and what its base
classes are, by having a __bases__ attribute (which must be a tuple
of base classes).

	
int PyCallable_Check(PyObject *o)

	Determine if the object o is callable. Return 1 if the object is callable
and 0 otherwise. This function always succeeds.

	
PyObject* PyObject_Call(PyObject *callable, PyObject *args, PyObject *kwargs)

	Return value: New reference.Call a callable Python object callable, with arguments given by the
tuple args, and named arguments given by the dictionary kwargs.

args must not be NULL, use an empty tuple if no arguments are needed.
If no named arguments are needed, kwargs can be NULL.

Returns the result of the call on success, or NULL on failure.

This is the equivalent of the Python expression:
callable(*args, **kwargs).

	
PyObject* PyObject_CallObject(PyObject *callable, PyObject *args)

	Return value: New reference.Call a callable Python object callable, with arguments given by the
tuple args. If no arguments are needed, then args can be NULL.

Returns the result of the call on success, or NULL on failure.

This is the equivalent of the Python expression: callable(*args).

	
PyObject* PyObject_CallFunction(PyObject *callable, const char *format, ...)

	Return value: New reference.Call a callable Python object callable, with a variable number of C arguments.
The C arguments are described using a Py_BuildValue() style format
string. The format can be NULL, indicating that no arguments are provided.

Returns the result of the call on success, or NULL on failure.

This is the equivalent of the Python expression: callable(*args).

Note that if you only pass PyObject * args,
PyObject_CallFunctionObjArgs() is a faster alternative.

Changed in version 3.4: The type of format was changed from char *.

	
PyObject* PyObject_CallMethod(PyObject *obj, const char *name, const char *format, ...)

	Return value: New reference.Call the method named name of object obj with a variable number of C
arguments. The C arguments are described by a Py_BuildValue() format
string that should produce a tuple.

The format can be NULL, indicating that no arguments are provided.

Returns the result of the call on success, or NULL on failure.

This is the equivalent of the Python expression:
obj.name(arg1, arg2, ...).

Note that if you only pass PyObject * args,
PyObject_CallMethodObjArgs() is a faster alternative.

Changed in version 3.4: The types of name and format were changed from char *.

	
PyObject* PyObject_CallFunctionObjArgs(PyObject *callable, ..., NULL)

	Return value: New reference.Call a callable Python object callable, with a variable number of
PyObject* arguments. The arguments are provided as a variable number
of parameters followed by NULL.

Returns the result of the call on success, or NULL on failure.

This is the equivalent of the Python expression:
callable(arg1, arg2, ...).

	
PyObject* PyObject_CallMethodObjArgs(PyObject *obj, PyObject *name, ..., NULL)

	Return value: New reference.Calls a method of the Python object obj, where the name of the method is given as a
Python string object in name. It is called with a variable number of
PyObject* arguments. The arguments are provided as a variable number
of parameters followed by NULL. Returns the result of the call on success, or
NULL on failure.

	
Py_hash_t PyObject_Hash(PyObject *o)

	Compute and return the hash value of an object o. On failure, return -1.
This is the equivalent of the Python expression hash(o).

Changed in version 3.2: The return type is now Py_hash_t. This is a signed integer the same size
as Py_ssize_t.

	
Py_hash_t PyObject_HashNotImplemented(PyObject *o)

	Set a TypeError indicating that type(o) is not hashable and return -1.
This function receives special treatment when stored in a tp_hash slot,
allowing a type to explicitly indicate to the interpreter that it is not
hashable.

	
int PyObject_IsTrue(PyObject *o)

	Returns 1 if the object o is considered to be true, and 0 otherwise.
This is equivalent to the Python expression not not o. On failure, return
-1.

	
int PyObject_Not(PyObject *o)

	Returns 0 if the object o is considered to be true, and 1 otherwise.
This is equivalent to the Python expression not o. On failure, return
-1.

	
PyObject* PyObject_Type(PyObject *o)

	Return value: New reference.When o is non-NULL, returns a type object corresponding to the object type
of object o. On failure, raises SystemError and returns NULL. This
is equivalent to the Python expression type(o). This function increments the
reference count of the return value. There’s really no reason to use this
function instead of the common expression o->ob_type, which returns a
pointer of type PyTypeObject*, except when the incremented reference
count is needed.

	
int PyObject_TypeCheck(PyObject *o, PyTypeObject *type)

	Return true if the object o is of type type or a subtype of type. Both
parameters must be non-NULL.

	
Py_ssize_t PyObject_Size(PyObject *o)

	
Py_ssize_t PyObject_Length(PyObject *o)

	Return the length of object o. If the object o provides either the sequence
and mapping protocols, the sequence length is returned. On error, -1 is
returned. This is the equivalent to the Python expression len(o).

	
Py_ssize_t PyObject_LengthHint(PyObject *o, Py_ssize_t default)

	Return an estimated length for the object o. First try to return its
actual length, then an estimate using __length_hint__(), and
finally return the default value. On error return -1. This is the
equivalent to the Python expression operator.length_hint(o, default).

New in version 3.4.

	
PyObject* PyObject_GetItem(PyObject *o, PyObject *key)

	Return value: New reference.Return element of o corresponding to the object key or NULL on failure.
This is the equivalent of the Python expression o[key].

	
int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *v)

	Map the object key to the value v. Raise an exception and
return -1 on failure; return 0 on success. This is the
equivalent of the Python statement o[key] = v.

	
int PyObject_DelItem(PyObject *o, PyObject *key)

	Remove the mapping for the object key from the object o. Return -1
on failure. This is equivalent to the Python statement del o[key].

	
PyObject* PyObject_Dir(PyObject *o)

	Return value: New reference.This is equivalent to the Python expression dir(o), returning a (possibly
empty) list of strings appropriate for the object argument, or NULL if there
was an error. If the argument is NULL, this is like the Python dir(),
returning the names of the current locals; in this case, if no execution frame
is active then NULL is returned but PyErr_Occurred() will return false.

	
PyObject* PyObject_GetIter(PyObject *o)

	Return value: New reference.This is equivalent to the Python expression iter(o). It returns a new
iterator for the object argument, or the object itself if the object is already
an iterator. Raises TypeError and returns NULL if the object cannot be
iterated.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

 Number Protocol

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

Number Protocol

	
int PyNumber_Check(PyObject *o)

	Returns 1 if the object o provides numeric protocols, and false otherwise.
This function always succeeds.

	
PyObject* PyNumber_Add(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the result of adding o1 and o2, or NULL on failure. This is the
equivalent of the Python expression o1 + o2.

	
PyObject* PyNumber_Subtract(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the result of subtracting o2 from o1, or NULL on failure. This is
the equivalent of the Python expression o1 - o2.

	
PyObject* PyNumber_Multiply(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the result of multiplying o1 and o2, or NULL on failure. This is
the equivalent of the Python expression o1 * o2.

	
PyObject* PyNumber_MatrixMultiply(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the result of matrix multiplication on o1 and o2, or NULL on
failure. This is the equivalent of the Python expression o1 @ o2.

New in version 3.5.

	
PyObject* PyNumber_FloorDivide(PyObject *o1, PyObject *o2)

	Return value: New reference.Return the floor of o1 divided by o2, or NULL on failure. This is
equivalent to the “classic” division of integers.

	
PyObject* PyNumber_TrueDivide(PyObject *o1, PyObject *o2)

	Return value: New reference.Return a reasonable approximation for the mathematical value of o1 divided by
o2, or NULL on failure. The return value is “approximate” because binary
floating point numbers are approximate; it is not possible to represent all real
numbers in base two. This function can return a floating point value when
passed two integers.

	
PyObject* PyNumber_Remainder(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the remainder of dividing o1 by o2, or NULL on failure. This is
the equivalent of the Python expression o1 % o2.

	
PyObject* PyNumber_Divmod(PyObject *o1, PyObject *o2)

	Return value: New reference.See the built-in function divmod(). Returns NULL on failure. This is
the equivalent of the Python expression divmod(o1, o2).

	
PyObject* PyNumber_Power(PyObject *o1, PyObject *o2, PyObject *o3)

	Return value: New reference.See the built-in function pow(). Returns NULL on failure. This is the
equivalent of the Python expression pow(o1, o2, o3), where o3 is optional.
If o3 is to be ignored, pass Py_None in its place (passing NULL for
o3 would cause an illegal memory access).

	
PyObject* PyNumber_Negative(PyObject *o)

	Return value: New reference.Returns the negation of o on success, or NULL on failure. This is the
equivalent of the Python expression -o.

	
PyObject* PyNumber_Positive(PyObject *o)

	Return value: New reference.Returns o on success, or NULL on failure. This is the equivalent of the
Python expression +o.

	
PyObject* PyNumber_Absolute(PyObject *o)

	Return value: New reference.Returns the absolute value of o, or NULL on failure. This is the equivalent
of the Python expression abs(o).

	
PyObject* PyNumber_Invert(PyObject *o)

	Return value: New reference.Returns the bitwise negation of o on success, or NULL on failure. This is
the equivalent of the Python expression ~o.

	
PyObject* PyNumber_Lshift(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the result of left shifting o1 by o2 on success, or NULL on
failure. This is the equivalent of the Python expression o1 << o2.

	
PyObject* PyNumber_Rshift(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the result of right shifting o1 by o2 on success, or NULL on
failure. This is the equivalent of the Python expression o1 >> o2.

	
PyObject* PyNumber_And(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the “bitwise and” of o1 and o2 on success and NULL on failure.
This is the equivalent of the Python expression o1 & o2.

	
PyObject* PyNumber_Xor(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the “bitwise exclusive or” of o1 by o2 on success, or NULL on
failure. This is the equivalent of the Python expression o1 ^ o2.

	
PyObject* PyNumber_Or(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the “bitwise or” of o1 and o2 on success, or NULL on failure.
This is the equivalent of the Python expression o1 | o2.

	
PyObject* PyNumber_InPlaceAdd(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the result of adding o1 and o2, or NULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python
statement o1 += o2.

	
PyObject* PyNumber_InPlaceSubtract(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the result of subtracting o2 from o1, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of
the Python statement o1 -= o2.

	
PyObject* PyNumber_InPlaceMultiply(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the result of multiplying o1 and o2, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of
the Python statement o1 *= o2.

	
PyObject* PyNumber_InPlaceMatrixMultiply(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the result of matrix multiplication on o1 and o2, or NULL on
failure. The operation is done in-place when o1 supports it. This is
the equivalent of the Python statement o1 @= o2.

New in version 3.5.

	
PyObject* PyNumber_InPlaceFloorDivide(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the mathematical floor of dividing o1 by o2, or NULL on failure.
The operation is done in-place when o1 supports it. This is the equivalent
of the Python statement o1 //= o2.

	
PyObject* PyNumber_InPlaceTrueDivide(PyObject *o1, PyObject *o2)

	Return value: New reference.Return a reasonable approximation for the mathematical value of o1 divided by
o2, or NULL on failure. The return value is “approximate” because binary
floating point numbers are approximate; it is not possible to represent all real
numbers in base two. This function can return a floating point value when
passed two integers. The operation is done in-place when o1 supports it.

	
PyObject* PyNumber_InPlaceRemainder(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the remainder of dividing o1 by o2, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of
the Python statement o1 %= o2.

	
PyObject* PyNumber_InPlacePower(PyObject *o1, PyObject *o2, PyObject *o3)

	Return value: New reference.See the built-in function pow(). Returns NULL on failure. The operation
is done in-place when o1 supports it. This is the equivalent of the Python
statement o1 **= o2 when o3 is Py_None, or an in-place variant of
pow(o1, o2, o3) otherwise. If o3 is to be ignored, pass Py_None
in its place (passing NULL for o3 would cause an illegal memory access).

	
PyObject* PyNumber_InPlaceLshift(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the result of left shifting o1 by o2 on success, or NULL on
failure. The operation is done in-place when o1 supports it. This is the
equivalent of the Python statement o1 <<= o2.

	
PyObject* PyNumber_InPlaceRshift(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the result of right shifting o1 by o2 on success, or NULL on
failure. The operation is done in-place when o1 supports it. This is the
equivalent of the Python statement o1 >>= o2.

	
PyObject* PyNumber_InPlaceAnd(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the “bitwise and” of o1 and o2 on success and NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of
the Python statement o1 &= o2.

	
PyObject* PyNumber_InPlaceXor(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the “bitwise exclusive or” of o1 by o2 on success, or NULL on
failure. The operation is done in-place when o1 supports it. This is the
equivalent of the Python statement o1 ^= o2.

	
PyObject* PyNumber_InPlaceOr(PyObject *o1, PyObject *o2)

	Return value: New reference.Returns the “bitwise or” of o1 and o2 on success, or NULL on failure. The
operation is done in-place when o1 supports it. This is the equivalent of
the Python statement o1 |= o2.

	
PyObject* PyNumber_Long(PyObject *o)

	Return value: New reference.Returns the o converted to an integer object on success, or NULL on
failure. This is the equivalent of the Python expression int(o).

	
PyObject* PyNumber_Float(PyObject *o)

	Return value: New reference.Returns the o converted to a float object on success, or NULL on failure.
This is the equivalent of the Python expression float(o).

	
PyObject* PyNumber_Index(PyObject *o)

	Return value: New reference.Returns the o converted to a Python int on success or NULL with a
TypeError exception raised on failure.

	
PyObject* PyNumber_ToBase(PyObject *n, int base)

	Return value: New reference.Returns the integer n converted to base base as a string. The base
argument must be one of 2, 8, 10, or 16. For base 2, 8, or 16, the
returned string is prefixed with a base marker of '0b', '0o', or
'0x', respectively. If n is not a Python int, it is converted with
PyNumber_Index() first.

	
Py_ssize_t PyNumber_AsSsize_t(PyObject *o, PyObject *exc)

	Returns o converted to a Py_ssize_t value if o can be interpreted as an
integer. If the call fails, an exception is raised and -1 is returned.

If o can be converted to a Python int but the attempt to
convert to a Py_ssize_t value would raise an OverflowError, then the
exc argument is the type of exception that will be raised (usually
IndexError or OverflowError). If exc is NULL, then the
exception is cleared and the value is clipped to PY_SSIZE_T_MIN for a negative
integer or PY_SSIZE_T_MAX for a positive integer.

	
int PyIndex_Check(PyObject *o)

	Returns 1 if o is an index integer (has the nb_index slot of the
tp_as_number structure filled in), and 0 otherwise.
This function always succeeds.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

 Sequence Protocol

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

Sequence Protocol

	
int PySequence_Check(PyObject *o)

	Return 1 if the object provides sequence protocol, and 0 otherwise.
Note that it returns 1 for Python classes with a __getitem__()
method unless they are dict subclasses since in general case it
is impossible to determine what the type of keys it supports. This
function always succeeds.

	
Py_ssize_t PySequence_Size(PyObject *o)

	
Py_ssize_t PySequence_Length(PyObject *o)

	Returns the number of objects in sequence o on success, and -1 on
failure. This is equivalent to the Python expression len(o).

	
PyObject* PySequence_Concat(PyObject *o1, PyObject *o2)

	Return value: New reference.Return the concatenation of o1 and o2 on success, and NULL on failure.
This is the equivalent of the Python expression o1 + o2.

	
PyObject* PySequence_Repeat(PyObject *o, Py_ssize_t count)

	Return value: New reference.Return the result of repeating sequence object o count times, or NULL on
failure. This is the equivalent of the Python expression o * count.

	
PyObject* PySequence_InPlaceConcat(PyObject *o1, PyObject *o2)

	Return value: New reference.Return the concatenation of o1 and o2 on success, and NULL on failure.
The operation is done in-place when o1 supports it. This is the equivalent
of the Python expression o1 += o2.

	
PyObject* PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count)

	Return value: New reference.Return the result of repeating sequence object o count times, or NULL on
failure. The operation is done in-place when o supports it. This is the
equivalent of the Python expression o *= count.

	
PyObject* PySequence_GetItem(PyObject *o, Py_ssize_t i)

	Return value: New reference.Return the ith element of o, or NULL on failure. This is the equivalent of
the Python expression o[i].

	
PyObject* PySequence_GetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)

	Return value: New reference.Return the slice of sequence object o between i1 and i2, or NULL on
failure. This is the equivalent of the Python expression o[i1:i2].

	
int PySequence_SetItem(PyObject *o, Py_ssize_t i, PyObject *v)

	Assign object v to the ith element of o. Raise an exception
and return -1 on failure; return 0 on success. This
is the equivalent of the Python statement o[i] = v. This function does
not steal a reference to v.

If v is NULL, the element is deleted, however this feature is
deprecated in favour of using PySequence_DelItem().

	
int PySequence_DelItem(PyObject *o, Py_ssize_t i)

	Delete the ith element of object o. Returns -1 on failure. This is the
equivalent of the Python statement del o[i].

	
int PySequence_SetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2, PyObject *v)

	Assign the sequence object v to the slice in sequence object o from i1 to
i2. This is the equivalent of the Python statement o[i1:i2] = v.

	
int PySequence_DelSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)

	Delete the slice in sequence object o from i1 to i2. Returns -1 on
failure. This is the equivalent of the Python statement del o[i1:i2].

	
Py_ssize_t PySequence_Count(PyObject *o, PyObject *value)

	Return the number of occurrences of value in o, that is, return the number
of keys for which o[key] == value. On failure, return -1. This is
equivalent to the Python expression o.count(value).

	
int PySequence_Contains(PyObject *o, PyObject *value)

	Determine if o contains value. If an item in o is equal to value,
return 1, otherwise return 0. On error, return -1. This is
equivalent to the Python expression value in o.

	
Py_ssize_t PySequence_Index(PyObject *o, PyObject *value)

	Return the first index i for which o[i] == value. On error, return
-1. This is equivalent to the Python expression o.index(value).

	
PyObject* PySequence_List(PyObject *o)

	Return value: New reference.Return a list object with the same contents as the sequence or iterable o,
or NULL on failure. The returned list is guaranteed to be new. This is
equivalent to the Python expression list(o).

	
PyObject* PySequence_Tuple(PyObject *o)

	Return value: New reference.Return a tuple object with the same contents as the sequence or iterable o,
or NULL on failure. If o is a tuple, a new reference will be returned,
otherwise a tuple will be constructed with the appropriate contents. This is
equivalent to the Python expression tuple(o).

	
PyObject* PySequence_Fast(PyObject *o, const char *m)

	Return value: New reference.Return the sequence or iterable o as a list, unless it is already a tuple or list, in
which case o is returned. Use PySequence_Fast_GET_ITEM() to access
the members of the result. Returns NULL on failure. If the object is not
a sequence or iterable, raises TypeError with m as the message text.

	
Py_ssize_t PySequence_Fast_GET_SIZE(PyObject *o)

	Returns the length of o, assuming that o was returned by
PySequence_Fast() and that o is not NULL. The size can also be
gotten by calling PySequence_Size() on o, but
PySequence_Fast_GET_SIZE() is faster because it can assume o is a list
or tuple.

	
PyObject* PySequence_Fast_GET_ITEM(PyObject *o, Py_ssize_t i)

	Return value: Borrowed reference.Return the ith element of o, assuming that o was returned by
PySequence_Fast(), o is not NULL, and that i is within bounds.

	
PyObject** PySequence_Fast_ITEMS(PyObject *o)

	Return the underlying array of PyObject pointers. Assumes that o was returned
by PySequence_Fast() and o is not NULL.

Note, if a list gets resized, the reallocation may relocate the items array.
So, only use the underlying array pointer in contexts where the sequence
cannot change.

	
PyObject* PySequence_ITEM(PyObject *o, Py_ssize_t i)

	Return value: New reference.Return the ith element of o or NULL on failure. Macro form of
PySequence_GetItem() but without checking that
PySequence_Check() on o is true and without adjustment for negative
indices.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

 Mapping Protocol

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

Mapping Protocol

See also PyObject_GetItem(), PyObject_SetItem() and
PyObject_DelItem().

	
int PyMapping_Check(PyObject *o)

	Return 1 if the object provides mapping protocol or supports slicing,
and 0 otherwise. Note that it returns 1 for Python classes with
a __getitem__() method since in general case it is impossible to
determine what the type of keys it supports. This function always
succeeds.

	
Py_ssize_t PyMapping_Size(PyObject *o)

	
Py_ssize_t PyMapping_Length(PyObject *o)

	Returns the number of keys in object o on success, and -1 on failure.
This is equivalent to the Python expression len(o).

	
PyObject* PyMapping_GetItemString(PyObject *o, const char *key)

	Return value: New reference.Return element of o corresponding to the string key or NULL on failure.
This is the equivalent of the Python expression o[key].
See also PyObject_GetItem().

	
int PyMapping_SetItemString(PyObject *o, const char *key, PyObject *v)

	Map the string key to the value v in object o. Returns -1 on
failure. This is the equivalent of the Python statement o[key] = v.
See also PyObject_SetItem().

	
int PyMapping_DelItem(PyObject *o, PyObject *key)

	Remove the mapping for the object key from the object o. Return -1
on failure. This is equivalent to the Python statement del o[key].
This is an alias of PyObject_DelItem().

	
int PyMapping_DelItemString(PyObject *o, const char *key)

	Remove the mapping for the string key from the object o. Return -1
on failure. This is equivalent to the Python statement del o[key].

	
int PyMapping_HasKey(PyObject *o, PyObject *key)

	Return 1 if the mapping object has the key key and 0 otherwise.
This is equivalent to the Python expression key in o.
This function always succeeds.

Note that exceptions which occur while calling the __getitem__()
method will get suppressed.
To get error reporting use PyObject_GetItem() instead.

	
int PyMapping_HasKeyString(PyObject *o, const char *key)

	Return 1 if the mapping object has the key key and 0 otherwise.
This is equivalent to the Python expression key in o.
This function always succeeds.

Note that exceptions which occur while calling the __getitem__()
method and creating a temporary string object will get suppressed.
To get error reporting use PyMapping_GetItemString() instead.

	
PyObject* PyMapping_Keys(PyObject *o)

	Return value: New reference.On success, return a list of the keys in object o. On failure, return
NULL.

Changed in version 3.7: Previously, the function returned a list or a tuple.

	
PyObject* PyMapping_Values(PyObject *o)

	Return value: New reference.On success, return a list of the values in object o. On failure, return
NULL.

Changed in version 3.7: Previously, the function returned a list or a tuple.

	
PyObject* PyMapping_Items(PyObject *o)

	Return value: New reference.On success, return a list of the items in object o, where each item is a
tuple containing a key-value pair. On failure, return NULL.

Changed in version 3.7: Previously, the function returned a list or a tuple.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

 Iterator Protocol

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

Iterator Protocol

There are two functions specifically for working with iterators.

	
int PyIter_Check(PyObject *o)

	Return true if the object o supports the iterator protocol.

	
PyObject* PyIter_Next(PyObject *o)

	Return value: New reference.Return the next value from the iteration o. The object must be an iterator
(it is up to the caller to check this). If there are no remaining values,
returns NULL with no exception set. If an error occurs while retrieving
the item, returns NULL and passes along the exception.

To write a loop which iterates over an iterator, the C code should look
something like this:

PyObject *iterator = PyObject_GetIter(obj);
PyObject *item;

if (iterator == NULL) {
 /* propagate error */
}

while (item = PyIter_Next(iterator)) {
 /* do something with item */
 ...
 /* release reference when done */
 Py_DECREF(item);
}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
 /* propagate error */
}
else {
 /* continue doing useful work */
}

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

 Buffer Protocol

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

Buffer Protocol

Certain objects available in Python wrap access to an underlying memory
array or buffer. Such objects include the built-in bytes and
bytearray, and some extension types like array.array.
Third-party libraries may define their own types for special purposes, such
as image processing or numeric analysis.

While each of these types have their own semantics, they share the common
characteristic of being backed by a possibly large memory buffer. It is
then desirable, in some situations, to access that buffer directly and
without intermediate copying.

Python provides such a facility at the C level in the form of the buffer
protocol. This protocol has two sides:

	on the producer side, a type can export a “buffer interface” which allows
objects of that type to expose information about their underlying buffer.
This interface is described in the section Buffer Object Structures;

	on the consumer side, several means are available to obtain a pointer to
the raw underlying data of an object (for example a method parameter).

Simple objects such as bytes and bytearray expose their
underlying buffer in byte-oriented form. Other forms are possible; for example,
the elements exposed by an array.array can be multi-byte values.

An example consumer of the buffer interface is the write()
method of file objects: any object that can export a series of bytes through
the buffer interface can be written to a file. While write() only
needs read-only access to the internal contents of the object passed to it,
other methods such as readinto() need write access
to the contents of their argument. The buffer interface allows objects to
selectively allow or reject exporting of read-write and read-only buffers.

There are two ways for a consumer of the buffer interface to acquire a buffer
over a target object:

	call PyObject_GetBuffer() with the right parameters;

	call PyArg_ParseTuple() (or one of its siblings) with one of the
y*, w* or s* format codes.

In both cases, PyBuffer_Release() must be called when the buffer
isn’t needed anymore. Failure to do so could lead to various issues such as
resource leaks.

Buffer structure

Buffer structures (or simply “buffers”) are useful as a way to expose the
binary data from another object to the Python programmer. They can also be
used as a zero-copy slicing mechanism. Using their ability to reference a
block of memory, it is possible to expose any data to the Python programmer
quite easily. The memory could be a large, constant array in a C extension,
it could be a raw block of memory for manipulation before passing to an
operating system library, or it could be used to pass around structured data
in its native, in-memory format.

Contrary to most data types exposed by the Python interpreter, buffers
are not PyObject pointers but rather simple C structures. This
allows them to be created and copied very simply. When a generic wrapper
around a buffer is needed, a memoryview object
can be created.

For short instructions how to write an exporting object, see
Buffer Object Structures. For obtaining
a buffer, see PyObject_GetBuffer().

	
Py_buffer

	
	
void *buf

	A pointer to the start of the logical structure described by the buffer
fields. This can be any location within the underlying physical memory
block of the exporter. For example, with negative strides
the value may point to the end of the memory block.

For contiguous arrays, the value points to the beginning of
the memory block.

	
void *obj

	A new reference to the exporting object. The reference is owned by
the consumer and automatically decremented and set to NULL by
PyBuffer_Release(). The field is the equivalent of the return
value of any standard C-API function.

As a special case, for temporary buffers that are wrapped by
PyMemoryView_FromBuffer() or PyBuffer_FillInfo()
this field is NULL. In general, exporting objects MUST NOT
use this scheme.

	
Py_ssize_t len

	product(shape) * itemsize. For contiguous arrays, this is the length
of the underlying memory block. For non-contiguous arrays, it is the length
that the logical structure would have if it were copied to a contiguous
representation.

Accessing ((char *)buf)[0] up to ((char *)buf)[len-1] is only valid
if the buffer has been obtained by a request that guarantees contiguity. In
most cases such a request will be PyBUF_SIMPLE or PyBUF_WRITABLE.

	
int readonly

	An indicator of whether the buffer is read-only. This field is controlled
by the PyBUF_WRITABLE flag.

	
Py_ssize_t itemsize

	Item size in bytes of a single element. Same as the value of struct.calcsize()
called on non-NULL format values.

Important exception: If a consumer requests a buffer without the
PyBUF_FORMAT flag, format will
be set to NULL, but itemsize still has
the value for the original format.

If shape is present, the equality
product(shape) * itemsize == len still holds and the consumer
can use itemsize to navigate the buffer.

If shape is NULL as a result of a PyBUF_SIMPLE
or a PyBUF_WRITABLE request, the consumer must disregard
itemsize and assume itemsize == 1.

	
const char *format

	A NUL terminated string in struct module style syntax describing
the contents of a single item. If this is NULL, "B" (unsigned bytes)
is assumed.

This field is controlled by the PyBUF_FORMAT flag.

	
int ndim

	The number of dimensions the memory represents as an n-dimensional array.
If it is 0, buf points to a single item representing
a scalar. In this case, shape, strides
and suboffsets MUST be NULL.

The macro PyBUF_MAX_NDIM limits the maximum number of dimensions
to 64. Exporters MUST respect this limit, consumers of multi-dimensional
buffers SHOULD be able to handle up to PyBUF_MAX_NDIM dimensions.

	
Py_ssize_t *shape

	An array of Py_ssize_t of length ndim
indicating the shape of the memory as an n-dimensional array. Note that
shape[0] * ... * shape[ndim-1] * itemsize MUST be equal to
len.

Shape values are restricted to shape[n] >= 0. The case
shape[n] == 0 requires special attention. See complex arrays
for further information.

The shape array is read-only for the consumer.

	
Py_ssize_t *strides

	An array of Py_ssize_t of length ndim
giving the number of bytes to skip to get to a new element in each
dimension.

Stride values can be any integer. For regular arrays, strides are
usually positive, but a consumer MUST be able to handle the case
strides[n] <= 0. See complex arrays for further information.

The strides array is read-only for the consumer.

	
Py_ssize_t *suboffsets

	An array of Py_ssize_t of length ndim.
If suboffsets[n] >= 0, the values stored along the nth dimension are
pointers and the suboffset value dictates how many bytes to add to each
pointer after de-referencing. A suboffset value that is negative
indicates that no de-referencing should occur (striding in a contiguous
memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then
this field must be NULL (the default value).

This type of array representation is used by the Python Imaging Library
(PIL). See complex arrays for further information how to access elements
of such an array.

The suboffsets array is read-only for the consumer.

	
void *internal

	This is for use internally by the exporting object. For example, this
might be re-cast as an integer by the exporter and used to store flags
about whether or not the shape, strides, and suboffsets arrays must be
freed when the buffer is released. The consumer MUST NOT alter this
value.

Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting
object via PyObject_GetBuffer(). Since the complexity of the logical
structure of the memory can vary drastically, the consumer uses the flags
argument to specify the exact buffer type it can handle.

All Py_buffer fields are unambiguously defined by the request
type.

request-independent fields

The following fields are not influenced by flags and must always be filled in
with the correct values: obj, buf,
len, itemsize, ndim.

readonly, format

	
PyBUF_WRITABLE

	Controls the readonly field. If set, the exporter
MUST provide a writable buffer or else report failure. Otherwise, the
exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

	
PyBUF_FORMAT

	Controls the format field. If set, this field MUST
be filled in correctly. Otherwise, this field MUST be NULL.

PyBUF_WRITABLE can be |’d to any of the flags in the next section.
Since PyBUF_SIMPLE is defined as 0, PyBUF_WRITABLE
can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT can be |’d to any of the flags except PyBUF_SIMPLE.
The latter already implies format B (unsigned bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed
in decreasing order of complexity. Note that each flag contains all bits
of the flags below it.

	Request

	shape

	strides

	suboffsets

	
	
PyBUF_INDIRECT

	

	yes

	yes

	if needed

	
	
PyBUF_STRIDES

	

	yes

	yes

	NULL

	
	
PyBUF_ND

	

	yes

	NULL

	NULL

	
	
PyBUF_SIMPLE

	

	NULL

	NULL

	NULL

contiguity requests

C or Fortran contiguity can be explicitly requested,
with and without stride information. Without stride information, the buffer
must be C-contiguous.

	Request

	shape

	strides

	suboffsets

	contig

	
	
PyBUF_C_CONTIGUOUS

	

	yes

	yes

	NULL

	C

	
	
PyBUF_F_CONTIGUOUS

	

	yes

	yes

	NULL

	F

	
	
PyBUF_ANY_CONTIGUOUS

	

	yes

	yes

	NULL

	C or F

	
	
PyBUF_ND

	

	yes

	NULL

	NULL

	C

compound requests

All possible requests are fully defined by some combination of the flags in
the previous section. For convenience, the buffer protocol provides frequently
used combinations as single flags.

In the following table U stands for undefined contiguity. The consumer would
have to call PyBuffer_IsContiguous() to determine contiguity.

	Request

	shape

	strides

	suboffsets

	contig

	readonly

	format

	
	
PyBUF_FULL

	

	yes

	yes

	if needed

	U

	0

	yes

	
	
PyBUF_FULL_RO

	

	yes

	yes

	if needed

	U

	1 or 0

	yes

	
	
PyBUF_RECORDS

	

	yes

	yes

	NULL

	U

	0

	yes

	
	
PyBUF_RECORDS_RO

	

	yes

	yes

	NULL

	U

	1 or 0

	yes

	
	
PyBUF_STRIDED

	

	yes

	yes

	NULL

	U

	0

	NULL

	
	
PyBUF_STRIDED_RO

	

	yes

	yes

	NULL

	U

	1 or 0

	NULL

	
	
PyBUF_CONTIG

	

	yes

	NULL

	NULL

	C

	0

	NULL

	
	
PyBUF_CONTIG_RO

	

	yes

	NULL

	NULL

	C

	1 or 0

	NULL

Complex arrays

NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by itemsize,
ndim, shape and strides.

If ndim == 0, the memory location pointed to by buf is
interpreted as a scalar of size itemsize. In that case,
both shape and strides are NULL.

If strides is NULL, the array is interpreted as
a standard n-dimensional C-array. Otherwise, the consumer must access an
n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1]
item = *((typeof(item) *)ptr);

As noted above, buf can point to any location within
the actual memory block. An exporter can check the validity of a buffer with
this function:

def verify_structure(memlen, itemsize, ndim, shape, strides, offset):
 """Verify that the parameters represent a valid array within
 the bounds of the allocated memory:
 char *mem: start of the physical memory block
 memlen: length of the physical memory block
 offset: (char *)buf - mem
 """
 if offset % itemsize:
 return False
 if offset < 0 or offset+itemsize > memlen:
 return False
 if any(v % itemsize for v in strides):
 return False

 if ndim <= 0:
 return ndim == 0 and not shape and not strides
 if 0 in shape:
 return True

 imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
 if strides[j] <= 0)
 imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
 if strides[j] > 0)

 return 0 <= offset+imin and offset+imax+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers
that must be followed in order to get to the next element in a dimension.
For example, the regular three-dimensional C-array char v[2][2][3] can
also be viewed as an array of 2 pointers to 2 two-dimensional arrays:
char (*v[2])[2][3]. In suboffsets representation, those two pointers
can be embedded at the start of buf, pointing
to two char x[2][3] arrays that can be located anywhere in memory.

Here is a function that returns a pointer to the element in an N-D array
pointed to by an N-dimensional index when there are both non-NULL strides
and suboffsets:

void *get_item_pointer(int ndim, void *buf, Py_ssize_t *strides,
 Py_ssize_t *suboffsets, Py_ssize_t *indices) {
 char *pointer = (char*)buf;
 int i;
 for (i = 0; i < ndim; i++) {
 pointer += strides[i] * indices[i];
 if (suboffsets[i] >=0) {
 pointer = *((char**)pointer) + suboffsets[i];
 }
 }
 return (void*)pointer;
}

Buffer-related functions

	
int PyObject_CheckBuffer(PyObject *obj)

	Return 1 if obj supports the buffer interface otherwise 0. When 1 is
returned, it doesn’t guarantee that PyObject_GetBuffer() will
succeed. This function always succeeds.

	
int PyObject_GetBuffer(PyObject *exporter, Py_buffer *view, int flags)

	Send a request to exporter to fill in view as specified by flags.
If the exporter cannot provide a buffer of the exact type, it MUST raise
PyExc_BufferError, set view->obj to NULL and
return -1.

On success, fill in view, set view->obj to a new reference
to exporter and return 0. In the case of chained buffer providers
that redirect requests to a single object, view->obj MAY
refer to this object instead of exporter (See Buffer Object Structures).

Successful calls to PyObject_GetBuffer() must be paired with calls
to PyBuffer_Release(), similar to malloc() and free().
Thus, after the consumer is done with the buffer, PyBuffer_Release()
must be called exactly once.

	
void PyBuffer_Release(Py_buffer *view)

	Release the buffer view and decrement the reference count for
view->obj. This function MUST be called when the buffer
is no longer being used, otherwise reference leaks may occur.

It is an error to call this function on a buffer that was not obtained via
PyObject_GetBuffer().

	
Py_ssize_t PyBuffer_SizeFromFormat(const char *)

	Return the implied itemsize from format.
This function is not yet implemented.

	
int PyBuffer_IsContiguous(Py_buffer *view, char order)

	Return 1 if the memory defined by the view is C-style (order is
'C') or Fortran-style (order is 'F') contiguous or either one
(order is 'A'). Return 0 otherwise. This function always succeeds.

	
int PyBuffer_ToContiguous(void *buf, Py_buffer *src, Py_ssize_t len, char order)

	Copy len bytes from src to its contiguous representation in buf.
order can be 'C' or 'F' (for C-style or Fortran-style ordering).
0 is returned on success, -1 on error.

This function fails if len != src->len.

	
void PyBuffer_FillContiguousStrides(int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize, char order)

	Fill the strides array with byte-strides of a contiguous (C-style if
order is 'C' or Fortran-style if order is 'F') array of the
given shape with the given number of bytes per element.

	
int PyBuffer_FillInfo(Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly, int flags)

	Handle buffer requests for an exporter that wants to expose buf of size len
with writability set according to readonly. buf is interpreted as a sequence
of unsigned bytes.

The flags argument indicates the request type. This function always fills in
view as specified by flags, unless buf has been designated as read-only
and PyBUF_WRITABLE is set in flags.

On success, set view->obj to a new reference to exporter and
return 0. Otherwise, raise PyExc_BufferError, set
view->obj to NULL and return -1;

If this function is used as part of a getbufferproc,
exporter MUST be set to the exporting object and flags must be passed
unmodified. Otherwise, exporter MUST be NULL.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

 Old Buffer Protocol

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

Old Buffer Protocol

Deprecated since version 3.0.

These functions were part of the “old buffer protocol” API in Python 2.
In Python 3, this protocol doesn’t exist anymore but the functions are still
exposed to ease porting 2.x code. They act as a compatibility wrapper
around the new buffer protocol, but they don’t give
you control over the lifetime of the resources acquired when a buffer is
exported.

Therefore, it is recommended that you call PyObject_GetBuffer()
(or the y* or w* format codes with the
PyArg_ParseTuple() family of functions) to get a buffer view over
an object, and PyBuffer_Release() when the buffer view can be released.

	
int PyObject_AsCharBuffer(PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)

	Returns a pointer to a read-only memory location usable as character-based
input. The obj argument must support the single-segment character buffer
interface. On success, returns 0, sets buffer to the memory location
and buffer_len to the buffer length. Returns -1 and sets a
TypeError on error.

	
int PyObject_AsReadBuffer(PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)

	Returns a pointer to a read-only memory location containing arbitrary data.
The obj argument must support the single-segment readable buffer
interface. On success, returns 0, sets buffer to the memory location
and buffer_len to the buffer length. Returns -1 and sets a
TypeError on error.

	
int PyObject_CheckReadBuffer(PyObject *o)

	Returns 1 if o supports the single-segment readable buffer interface.
Otherwise returns 0. This function always succeeds.

Note that this function tries to get and release a buffer, and exceptions
which occur while calling correspoding functions will get suppressed.
To get error reporting use PyObject_GetBuffer() instead.

	
int PyObject_AsWriteBuffer(PyObject *obj, void **buffer, Py_ssize_t *buffer_len)

	Returns a pointer to a writable memory location. The obj argument must
support the single-segment, character buffer interface. On success,
returns 0, sets buffer to the memory location and buffer_len to the
buffer length. Returns -1 and sets a TypeError on error.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Abstract Objects Layer »

 	

 |

 Concrete Objects Layer

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	

 |

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types.
Passing them an object of the wrong type is not a good idea; if you receive an
object from a Python program and you are not sure that it has the right type,
you must perform a type check first; for example, to check that an object is a
dictionary, use PyDict_Check(). The chapter is structured like the
“family tree” of Python object types.

Warning

While the functions described in this chapter carefully check the type of the
objects which are passed in, many of them do not check for NULL being passed
instead of a valid object. Allowing NULL to be passed in can cause memory
access violations and immediate termination of the interpreter.

Fundamental Objects

This section describes Python type objects and the singleton object None.

	Type Objects

	The None Object

Numeric Objects

	Integer Objects

	Boolean Objects

	Floating Point Objects

	Complex Number Objects
	Complex Numbers as C Structures

	Complex Numbers as Python Objects

Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter;
this section deals with the specific kinds of sequence objects that are
intrinsic to the Python language.

	Bytes Objects

	Byte Array Objects
	Type check macros

	Direct API functions

	Macros

	Unicode Objects and Codecs
	Unicode Objects
	Unicode Type

	Unicode Character Properties

	Creating and accessing Unicode strings

	Deprecated Py_UNICODE APIs

	Locale Encoding

	File System Encoding

	wchar_t Support

	Built-in Codecs
	Generic Codecs

	UTF-8 Codecs

	UTF-32 Codecs

	UTF-16 Codecs

	UTF-7 Codecs

	Unicode-Escape Codecs

	Raw-Unicode-Escape Codecs

	Latin-1 Codecs

	ASCII Codecs

	Character Map Codecs

	MBCS codecs for Windows

	Methods & Slots

	Methods and Slot Functions

	Tuple Objects

	Struct Sequence Objects

	List Objects

Container Objects

	Dictionary Objects

	Set Objects

Function Objects

	Function Objects

	Instance Method Objects

	Method Objects

	Cell Objects

	Code Objects

Other Objects

	File Objects

	Module Objects
	Initializing C modules
	Single-phase initialization

	Multi-phase initialization

	Low-level module creation functions

	Support functions

	Module lookup

	Iterator Objects

	Descriptor Objects

	Slice Objects

	Ellipsis Object

	MemoryView objects

	Weak Reference Objects

	Capsules

	Generator Objects

	Coroutine Objects

	Context Variables Objects

	DateTime Objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	

 |

 Type Objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

Type Objects

	
PyTypeObject

	The C structure of the objects used to describe built-in types.

	
PyObject* PyType_Type

	This is the type object for type objects; it is the same object as
type in the Python layer.

	
int PyType_Check(PyObject *o)

	Return true if the object o is a type object, including instances of types
derived from the standard type object. Return false in all other cases.

	
int PyType_CheckExact(PyObject *o)

	Return true if the object o is a type object, but not a subtype of the
standard type object. Return false in all other cases.

	
unsigned int PyType_ClearCache()

	Clear the internal lookup cache. Return the current version tag.

	
unsigned long PyType_GetFlags(PyTypeObject* type)

	Return the tp_flags member of type. This function is primarily
meant for use with Py_LIMITED_API; the individual flag bits are
guaranteed to be stable across Python releases, but access to
tp_flags itself is not part of the limited API.

New in version 3.2.

Changed in version 3.4: The return type is now unsigned long rather than long.

	
void PyType_Modified(PyTypeObject *type)

	Invalidate the internal lookup cache for the type and all of its
subtypes. This function must be called after any manual
modification of the attributes or base classes of the type.

	
int PyType_HasFeature(PyTypeObject *o, int feature)

	Return true if the type object o sets the feature feature. Type features
are denoted by single bit flags.

	
int PyType_IS_GC(PyTypeObject *o)

	Return true if the type object includes support for the cycle detector; this
tests the type flag Py_TPFLAGS_HAVE_GC.

	
int PyType_IsSubtype(PyTypeObject *a, PyTypeObject *b)

	Return true if a is a subtype of b.

This function only checks for actual subtypes, which means that
__subclasscheck__() is not called on b. Call
PyObject_IsSubclass() to do the same check that issubclass()
would do.

	
PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)

	Return value: New reference.Generic handler for the tp_alloc slot of a type object. Use
Python’s default memory allocation mechanism to allocate a new instance and
initialize all its contents to NULL.

	
PyObject* PyType_GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds)

	Return value: New reference.Generic handler for the tp_new slot of a type object. Create a
new instance using the type’s tp_alloc slot.

	
int PyType_Ready(PyTypeObject *type)

	Finalize a type object. This should be called on all type objects to finish
their initialization. This function is responsible for adding inherited slots
from a type’s base class. Return 0 on success, or return -1 and sets an
exception on error.

	
PyObject* PyType_FromSpec(PyType_Spec *spec)

	Return value: New reference.Creates and returns a heap type object from the spec passed to the function.

	
PyObject* PyType_FromSpecWithBases(PyType_Spec *spec, PyObject *bases)

	Return value: New reference.Creates and returns a heap type object from the spec. In addition to that,
the created heap type contains all types contained by the bases tuple as base
types. This allows the caller to reference other heap types as base types.

New in version 3.3.

	
void* PyType_GetSlot(PyTypeObject *type, int slot)

	Return the function pointer stored in the given slot. If the
result is NULL, this indicates that either the slot is NULL,
or that the function was called with invalid parameters.
Callers will typically cast the result pointer into the appropriate
function type.

New in version 3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

 The None Object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

The None Object

Note that the PyTypeObject for None is not directly exposed in the
Python/C API. Since None is a singleton, testing for object identity (using
== in C) is sufficient. There is no PyNone_Check() function for the
same reason.

	
PyObject* Py_None

	The Python None object, denoting lack of value. This object has no methods.
It needs to be treated just like any other object with respect to reference
counts.

	
Py_RETURN_NONE

	Properly handle returning Py_None from within a C function (that is,
increment the reference count of None and return it.)

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

 Integer Objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

Integer Objects

All integers are implemented as “long” integer objects of arbitrary size.

On error, most PyLong_As* APIs return (return type)-1 which cannot be
distinguished from a number. Use PyErr_Occurred() to disambiguate.

	
PyLongObject

	This subtype of PyObject represents a Python integer object.

	
PyTypeObject PyLong_Type

	This instance of PyTypeObject represents the Python integer type.
This is the same object as int in the Python layer.

	
int PyLong_Check(PyObject *p)

	Return true if its argument is a PyLongObject or a subtype of
PyLongObject.

	
int PyLong_CheckExact(PyObject *p)

	Return true if its argument is a PyLongObject, but not a subtype of
PyLongObject.

	
PyObject* PyLong_FromLong(long v)

	Return value: New reference.Return a new PyLongObject object from v, or NULL on failure.

The current implementation keeps an array of integer objects for all integers
between -5 and 256, when you create an int in that range you actually
just get back a reference to the existing object. So it should be possible to
change the value of 1. I suspect the behaviour of Python in this case is
undefined. :-)

	
PyObject* PyLong_FromUnsignedLong(unsigned long v)

	Return value: New reference.Return a new PyLongObject object from a C unsigned long, or
NULL on failure.

	
PyObject* PyLong_FromSsize_t(Py_ssize_t v)

	Return value: New reference.Return a new PyLongObject object from a C Py_ssize_t, or
NULL on failure.

	
PyObject* PyLong_FromSize_t(size_t v)

	Return value: New reference.Return a new PyLongObject object from a C size_t, or
NULL on failure.

	
PyObject* PyLong_FromLongLong(long long v)

	Return value: New reference.Return a new PyLongObject object from a C long long, or NULL
on failure.

	
PyObject* PyLong_FromUnsignedLongLong(unsigned long long v)

	Return value: New reference.Return a new PyLongObject object from a C unsigned long long,
or NULL on failure.

	
PyObject* PyLong_FromDouble(double v)

	Return value: New reference.Return a new PyLongObject object from the integer part of v, or
NULL on failure.

	
PyObject* PyLong_FromString(const char *str, char **pend, int base)

	Return value: New reference.Return a new PyLongObject based on the string value in str, which
is interpreted according to the radix in base. If pend is non-NULL,
*pend will point to the first character in str which follows the
representation of the number. If base is 0, str is interpreted using
the Integer literals definition; in this case, leading zeros in a
non-zero decimal number raises a ValueError. If base is not 0,
it must be between 2 and 36, inclusive. Leading spaces and single
underscores after a base specifier and between digits are ignored. If there
are no digits, ValueError will be raised.

	
PyObject* PyLong_FromUnicode(Py_UNICODE *u, Py_ssize_t length, int base)

	Return value: New reference.Convert a sequence of Unicode digits to a Python integer value. The Unicode
string is first encoded to a byte string using PyUnicode_EncodeDecimal()
and then converted using PyLong_FromString().

Deprecated since version 3.3, will be removed in version 4.0: Part of the old-style Py_UNICODE API; please migrate to using
PyLong_FromUnicodeObject().

	
PyObject* PyLong_FromUnicodeObject(PyObject *u, int base)

	Return value: New reference.Convert a sequence of Unicode digits in the string u to a Python integer
value. The Unicode string is first encoded to a byte string using
PyUnicode_EncodeDecimal() and then converted using
PyLong_FromString().

New in version 3.3.

	
PyObject* PyLong_FromVoidPtr(void *p)

	Return value: New reference.Create a Python integer from the pointer p. The pointer value can be
retrieved from the resulting value using PyLong_AsVoidPtr().

	
long PyLong_AsLong(PyObject *obj)

	Return a C long representation of obj. If obj is not an
instance of PyLongObject, first call its __int__() method
(if present) to convert it to a PyLongObject.

Raise OverflowError if the value of obj is out of range for a
long.

Returns -1 on error. Use PyErr_Occurred() to disambiguate.

	
long PyLong_AsLongAndOverflow(PyObject *obj, int *overflow)

	Return a C long representation of obj. If obj is not an
instance of PyLongObject, first call its __int__() method
(if present) to convert it to a PyLongObject.

If the value of obj is greater than LONG_MAX or less than
LONG_MIN, set *overflow to 1 or -1, respectively, and
return -1; otherwise, set *overflow to 0. If any other exception
occurs set *overflow to 0 and return -1 as usual.

Returns -1 on error. Use PyErr_Occurred() to disambiguate.

	
long long PyLong_AsLongLong(PyObject *obj)

	Return a C long long representation of obj. If obj is not an
instance of PyLongObject, first call its __int__() method
(if present) to convert it to a PyLongObject.

Raise OverflowError if the value of obj is out of range for a
long.

Returns -1 on error. Use PyErr_Occurred() to disambiguate.

	
long long PyLong_AsLongLongAndOverflow(PyObject *obj, int *overflow)

	Return a C long long representation of obj. If obj is not an
instance of PyLongObject, first call its __int__() method
(if present) to convert it to a PyLongObject.

If the value of obj is greater than PY_LLONG_MAX or less than
PY_LLONG_MIN, set *overflow to 1 or -1, respectively,
and return -1; otherwise, set *overflow to 0. If any other
exception occurs set *overflow to 0 and return -1 as usual.

Returns -1 on error. Use PyErr_Occurred() to disambiguate.

New in version 3.2.

	
Py_ssize_t PyLong_AsSsize_t(PyObject *pylong)

	Return a C Py_ssize_t representation of pylong. pylong must
be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a
Py_ssize_t.

Returns -1 on error. Use PyErr_Occurred() to disambiguate.

	
unsigned long PyLong_AsUnsignedLong(PyObject *pylong)

	Return a C unsigned long representation of pylong. pylong
must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a
unsigned long.

Returns (unsigned long)-1 on error.
Use PyErr_Occurred() to disambiguate.

	
size_t PyLong_AsSize_t(PyObject *pylong)

	Return a C size_t representation of pylong. pylong must be
an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a
size_t.

Returns (size_t)-1 on error.
Use PyErr_Occurred() to disambiguate.

	
unsigned long long PyLong_AsUnsignedLongLong(PyObject *pylong)

	Return a C unsigned long long representation of pylong. pylong
must be an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for an
unsigned long long.

Returns (unsigned long long)-1 on error.
Use PyErr_Occurred() to disambiguate.

Changed in version 3.1: A negative pylong now raises OverflowError, not TypeError.

	
unsigned long PyLong_AsUnsignedLongMask(PyObject *obj)

	Return a C unsigned long representation of obj. If obj
is not an instance of PyLongObject, first call its __int__()
method (if present) to convert it to a PyLongObject.

If the value of obj is out of range for an unsigned long,
return the reduction of that value modulo ULONG_MAX + 1.

Returns -1 on error. Use PyErr_Occurred() to disambiguate.

	
unsigned long long PyLong_AsUnsignedLongLongMask(PyObject *obj)

	Return a C unsigned long long representation of obj. If obj
is not an instance of PyLongObject, first call its __int__()
method (if present) to convert it to a PyLongObject.

If the value of obj is out of range for an unsigned long long,
return the reduction of that value modulo PY_ULLONG_MAX + 1.

Returns -1 on error. Use PyErr_Occurred() to disambiguate.

	
double PyLong_AsDouble(PyObject *pylong)

	Return a C double representation of pylong. pylong must be
an instance of PyLongObject.

Raise OverflowError if the value of pylong is out of range for a
double.

Returns -1.0 on error. Use PyErr_Occurred() to disambiguate.

	
void* PyLong_AsVoidPtr(PyObject *pylong)

	Convert a Python integer pylong to a C void pointer.
If pylong cannot be converted, an OverflowError will be raised. This
is only assured to produce a usable void pointer for values created
with PyLong_FromVoidPtr().

Returns NULL on error. Use PyErr_Occurred() to disambiguate.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

 Boolean Objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only
two booleans, Py_False and Py_True. As such, the normal
creation and deletion functions don’t apply to booleans. The following macros
are available, however.

	
int PyBool_Check(PyObject *o)

	Return true if o is of type PyBool_Type.

	
PyObject* Py_False

	The Python False object. This object has no methods. It needs to be
treated just like any other object with respect to reference counts.

	
PyObject* Py_True

	The Python True object. This object has no methods. It needs to be treated
just like any other object with respect to reference counts.

	
Py_RETURN_FALSE

	Return Py_False from a function, properly incrementing its reference
count.

	
Py_RETURN_TRUE

	Return Py_True from a function, properly incrementing its reference
count.

	
PyObject* PyBool_FromLong(long v)

	Return value: New reference.Return a new reference to Py_True or Py_False depending on the
truth value of v.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

 Floating Point Objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

Floating Point Objects

	
PyFloatObject

	This subtype of PyObject represents a Python floating point object.

	
PyTypeObject PyFloat_Type

	This instance of PyTypeObject represents the Python floating point
type. This is the same object as float in the Python layer.

	
int PyFloat_Check(PyObject *p)

	Return true if its argument is a PyFloatObject or a subtype of
PyFloatObject.

	
int PyFloat_CheckExact(PyObject *p)

	Return true if its argument is a PyFloatObject, but not a subtype of
PyFloatObject.

	
PyObject* PyFloat_FromString(PyObject *str)

	Return value: New reference.Create a PyFloatObject object based on the string value in str, or
NULL on failure.

	
PyObject* PyFloat_FromDouble(double v)

	Return value: New reference.Create a PyFloatObject object from v, or NULL on failure.

	
double PyFloat_AsDouble(PyObject *pyfloat)

	Return a C double representation of the contents of pyfloat. If
pyfloat is not a Python floating point object but has a __float__()
method, this method will first be called to convert pyfloat into a float.
This method returns -1.0 upon failure, so one should call
PyErr_Occurred() to check for errors.

	
double PyFloat_AS_DOUBLE(PyObject *pyfloat)

	Return a C double representation of the contents of pyfloat, but
without error checking.

	
PyObject* PyFloat_GetInfo(void)

	Return value: New reference.Return a structseq instance which contains information about the
precision, minimum and maximum values of a float. It’s a thin wrapper
around the header file float.h.

	
double PyFloat_GetMax()

	Return the maximum representable finite float DBL_MAX as C double.

	
double PyFloat_GetMin()

	Return the minimum normalized positive float DBL_MIN as C double.

	
int PyFloat_ClearFreeList()

	Clear the float free list. Return the number of items that could not
be freed.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

 Complex Number Objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

Complex Number Objects

Python’s complex number objects are implemented as two distinct types when
viewed from the C API: one is the Python object exposed to Python programs, and
the other is a C structure which represents the actual complex number value.
The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return
them as results do so by value rather than dereferencing them through
pointers. This is consistent throughout the API.

	
Py_complex

	The C structure which corresponds to the value portion of a Python complex
number object. Most of the functions for dealing with complex number objects
use structures of this type as input or output values, as appropriate. It is
defined as:

typedef struct {
 double real;
 double imag;
} Py_complex;

	
Py_complex _Py_c_sum(Py_complex left, Py_complex right)

	Return the sum of two complex numbers, using the C Py_complex
representation.

	
Py_complex _Py_c_diff(Py_complex left, Py_complex right)

	Return the difference between two complex numbers, using the C
Py_complex representation.

	
Py_complex _Py_c_neg(Py_complex complex)

	Return the negation of the complex number complex, using the C
Py_complex representation.

	
Py_complex _Py_c_prod(Py_complex left, Py_complex right)

	Return the product of two complex numbers, using the C Py_complex
representation.

	
Py_complex _Py_c_quot(Py_complex dividend, Py_complex divisor)

	Return the quotient of two complex numbers, using the C Py_complex
representation.

If divisor is null, this method returns zero and sets
errno to EDOM.

	
Py_complex _Py_c_pow(Py_complex num, Py_complex exp)

	Return the exponentiation of num by exp, using the C Py_complex
representation.

If num is null and exp is not a positive real number,
this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

	
PyComplexObject

	This subtype of PyObject represents a Python complex number object.

	
PyTypeObject PyComplex_Type

	This instance of PyTypeObject represents the Python complex number
type. It is the same object as complex in the Python layer.

	
int PyComplex_Check(PyObject *p)

	Return true if its argument is a PyComplexObject or a subtype of
PyComplexObject.

	
int PyComplex_CheckExact(PyObject *p)

	Return true if its argument is a PyComplexObject, but not a subtype of
PyComplexObject.

	
PyObject* PyComplex_FromCComplex(Py_complex v)

	Return value: New reference.Create a new Python complex number object from a C Py_complex value.

	
PyObject* PyComplex_FromDoubles(double real, double imag)

	Return value: New reference.Return a new PyComplexObject object from real and imag.

	
double PyComplex_RealAsDouble(PyObject *op)

	Return the real part of op as a C double.

	
double PyComplex_ImagAsDouble(PyObject *op)

	Return the imaginary part of op as a C double.

	
Py_complex PyComplex_AsCComplex(PyObject *op)

	Return the Py_complex value of the complex number op.

If op is not a Python complex number object but has a __complex__()
method, this method will first be called to convert op to a Python complex
number object. Upon failure, this method returns -1.0 as a real value.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

 Bytes Objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	[image:]

 	Python »

 	
 en
 3.7.2
 Documentation »

 	Python/C API Reference Manual »

 	Concrete Objects Layer »

 	

 |

Bytes Objects

These functions raise TypeError when expecting a bytes parameter and are
called with a non-bytes parameter.

	
PyBytesObject

	This subtype of PyObject represents a Python bytes object.

	
PyTypeObject PyBytes_Type

	This instance of PyTypeObject represents the Python bytes type; it
is the same object as bytes in the Python layer.

	
int PyBytes_Check(PyObject *o)

	Return true if the object o is a bytes object or an instance of a subtype
of the bytes type.

	
int PyBytes_CheckExact(PyObject *o)

	Return true if the object o is a bytes object, but not an instance of a
subtype of the bytes type.

	
PyObject* PyBytes_FromString(const char *v)

	Return value: New reference.Return a new bytes object with a copy of the string v as value on success,
and NULL on failure. The parameter v must not be NULL; it will not be
checked.

	
PyObject* PyBytes_FromStringAndSize(const char *v, Py_ssize_t len)

	Return value: New reference.Return a new bytes object with a copy of the string v as value and length
len on success, and NULL on failure. If v is NULL, the contents of
the bytes object are uninitialized.

	
PyObject* PyBytes_FromFormat(const char *format, ...)

	Return value: New reference.Take a C printf()-style format string and a variable number of
arguments, calculate the size of the resulting Python bytes object and return
a bytes object with the values formatted into it. The variable arguments
must be C types and must correspond exactly to the format characters in the
format string. The following format characters are allowed:

	Format Characters

	Type

	Comment

	%%

	n/a

	The liter