
What’s New in Python
Release 3.13.0a4

A. M. Kuchling

March 13, 2024
Python Software Foundation

Email: docs@python.org

Contents

1 Summary – Release highlights 3

2 New Features 3
2.1 Improved Error Messages . 3

3 Other Language Changes 4

4 New Modules 5

5 Improved Modules 5
5.1 argparse . 5
5.2 array . 5
5.3 ast . 5
5.4 asyncio . 6
5.5 copy . 6
5.6 dbm . 6
5.7 dis . 6
5.8 dbm . 6
5.9 doctest . 6
5.10 email . 7
5.11 fractions . 7
5.12 glob . 7
5.13 io . 7
5.14 ipaddress . 7
5.15 itertools . 7
5.16 marshal . 7
5.17 mmap . 8
5.18 opcode . 8
5.19 os . 8
5.20 os.path . 9
5.21 pathlib . 9
5.22 pdb . 9
5.23 queue . 9
5.24 re . 9

1

5.25 sqlite3 . 10
5.26 statistics . 10
5.27 subprocess . 10
5.28 sys . 10
5.29 tkinter . 10
5.30 traceback . 11
5.31 typing . 11
5.32 unicodedata . 11
5.33 venv . 11
5.34 warnings . 11
5.35 xml.etree.ElementTree . 11

6 Optimizations 11

7 Experimental JIT Compiler 12

8 Deprecated 12
8.1 Pending Removal in Python 3.14 . 14
8.2 Pending Removal in Python 3.15 . 15
8.3 Pending Removal in Python 3.16 . 16
8.4 Pending Removal in Future Versions . 16

9 Removed 18
9.1 PEP 594: dead batteries . 18
9.2 2to3 . 20
9.3 configparser . 20
9.4 importlib . 20
9.5 locale . 20
9.6 logging . 20
9.7 pathlib . 21
9.8 re . 21
9.9 tkinter . 21
9.10 turtle . 21
9.11 typing . 21
9.12 unittest . 21
9.13 urllib . 22
9.14 webbrowser . 22
9.15 Others . 22

10 CPython bytecode changes 22

11 Porting to Python 3.13 22
11.1 Changes in the Python API . 22

12 Build Changes 23

13 C API Changes 23
13.1 New Features . 23
13.2 Porting to Python 3.13 . 25
13.3 Deprecated . 26
13.4 Removed . 27
13.5 Pending Removal in Python 3.14 . 29
13.6 Pending Removal in Python 3.15 . 29
13.7 Pending Removal in Future Versions . 30

2

14 Regression Test Changes 31

Index 32

Editor
TBD

This article explains the new features in Python 3.13, compared to 3.12.
For full details, see the changelog.

Note: Prerelease users should be aware that this document is currently in draft form. It will be updated substantially as
Python 3.13 moves towards release, so it’s worth checking back even after reading earlier versions.

1 Summary – Release highlights

Important deprecations, removals or restrictions:
• PEP 594: The remaining 19 “dead batteries” have been removed from the standard library: aifc, audioop, cgi,
cgitb, chunk, crypt, imghdr, mailcap, msilib, nis, nntplib, ossaudiodev, pipes, sndhdr,
spwd, sunau, telnetlib, uu and xdrlib.

• PEP 602 (“Annual Release Cycle for Python”) has been updated:
– Python 3.9 - 3.12 have one and a half years of full support, followed by three and a half years of security
fixes.

– Python 3.13 and later have two years of full support, followed by three years of security fixes.
Interpreter improvements:

• A basic JIT compiler was added. It is currently disabled by default (though we may turn it on later). Performance
improvements are modest – we expect to be improving this over the next few releases.

2 New Features

2.1 Improved Error Messages

• The interpreter now colorizes error messages when displaying tracebacks by default. This feature can be controlled
via the new PYTHON_COLORS environment variable as well as the canonical NO_COLOR and FORCE_COLOR
environment variables. See also using-on-controlling-color. (Contributed by Pablo Galindo Salgado in gh-112730.)

• When an incorrect keyword argument is passed to a function, the error message now potentially suggests the correct
keyword argument. (Contributed by Pablo Galindo Salgado and Shantanu Jain in gh-107944.)

>>> "better error messages!".split(max_split=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
"better error messages!".split(max_split=1)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^

TypeError: split() got an unexpected keyword argument 'max_split'. Did you mean
↪→'maxsplit'?

3

https://peps.python.org/pep-0602/
https://github.com/python/cpython/issues/112730
https://github.com/python/cpython/issues/107944


3 Other Language Changes

• Allow the count argument of str.replace() to be a keyword. (Contributed by Hugo van Kemenade in gh-
106487.)

• Compiler now strip indents from docstrings. This will reduce the size of bytecode cache (e.g. .pyc file). For
example, cache file size for sqlalchemy.orm.session in SQLAlchemy 2.0 is reduced by about 5%. This
change will affect tools using docstrings, like doctest. (Contributed by Inada Naoki in gh-81283.)

• The compile() built-in can now accept a new flag, ast.PyCF_OPTIMIZED_AST, which is similar to ast.
PyCF_ONLY_AST except that the returned AST is optimized according to the value of the optimize argument.
(Contributed by Irit Katriel in gh-108113).

• multiprocessing, concurrent.futures, compileall: Replace os.cpu_count() with os.
process_cpu_count() to select the default number of worker threads and processes. Get the CPU affinity
if supported. (Contributed by Victor Stinner in gh-109649.)

• os.path.realpath() now resolves MS-DOS style file names even if the file is not accessible. (Contributed
by Moonsik Park in gh-82367.)

• Fixed a bug where a global declaration in an except block is rejected when the global is used in the else
block. (Contributed by Irit Katriel in gh-111123.)

• Many functions now emit a warning if a boolean value is passed as a file descriptor argument. This can help catch
some errors earlier. (Contributed by Serhiy Storchaka in gh-82626.)

• Added a new environment variable PYTHON_FROZEN_MODULES. It determines whether or not frozen modules
are ignored by the import machinery, equivalent of the -X frozen_modules command-line option. (Con-
tributed by Yilei Yang in gh-111374.)

• The new PYTHON_HISTORY environment variable can be used to change the location of a .python_history
file. (Contributed by Levi Sabah, Zackery Spytz and Hugo van Kemenade in gh-73965.)

• Add PythonFinalizationError exception. This exception derived from RuntimeError is raised when
an operation is blocked during the Python finalization.
The following functions now raise PythonFinalizationError, instead of RuntimeError:
– _thread.start_new_thread().
– subprocess.Popen.
– os.fork().
– os.forkpty().

(Contributed by Victor Stinner in gh-114570.)
• Allow controlling Expat >=2.6.0 reparse deferral (CVE-2023-52425) by adding five new methods:

– xml.etree.ElementTree.XMLParser.flush()

– xml.etree.ElementTree.XMLPullParser.flush()

– xml.parsers.expat.xmlparser.GetReparseDeferralEnabled()

– xml.parsers.expat.xmlparser.SetReparseDeferralEnabled()

– xml.sax.expatreader.ExpatParser.flush()

(Contributed by Sebastian Pipping in gh-115623.)
• When asyncio.TaskGroup.create_task() is called on an inactive asyncio.TaskGroup, the given
coroutine will be closed (which prevents a RuntimeWarning about the given coroutine being never awaited).

4

https://github.com/python/cpython/issues/106487
https://github.com/python/cpython/issues/106487
https://github.com/python/cpython/issues/81283
https://github.com/python/cpython/issues/108113
https://github.com/python/cpython/issues/109649
https://github.com/python/cpython/issues/82367
https://github.com/python/cpython/issues/111123
https://github.com/python/cpython/issues/82626
https://github.com/python/cpython/issues/111374
https://github.com/python/cpython/issues/73965
https://github.com/python/cpython/issues/114570
https://github.com/python/cpython/issues/115623


(Contributed by Arthur Tacca and Jason Zhang in gh-115957.)
• The ssl.create_default_context() API now includes ssl.VERIFY_X509_PARTIAL_CHAIN
and ssl.VERIFY_X509_STRICT in its default flags.

Note: ssl.VERIFY_X509_STRICT may reject pre-RFC 5280 or malformed certificates that the underlying
OpenSSL implementation otherwise would accept. While disabling this is not recommended, you can do so using:

ctx = ssl.create_default_context()
ctx.verify_flags &= ~ssl.VERIFY_X509_STRICT

(Contributed by William Woodruff in gh-112389.)

4 New Modules

• None yet.

5 Improved Modules

5.1 argparse

• Add parameter deprecated in methods add_argument() and add_parser() which allows to deprecate
command-line options, positional arguments and subcommands. (Contributed by Serhiy Storchaka in gh-83648).

5.2 array

• Add 'w' type code (Py_UCS4) that can be used for Unicode strings. It can be used instead of 'u' type code,
which is deprecated. (Contributed by Inada Naoki in gh-80480.)

• Addclear()method in order to implementMutableSequence. (Contributed byMike Zimin in gh-114894.)

5.3 ast

• The constructors of node types in the ast module are now stricter in the arguments they accept, and have more
intuitive behaviour when arguments are omitted.
If an optional field on an AST node is not included as an argument when constructing an instance, the field will now
be set to None. Similarly, if a list field is omitted, that field will now be set to an empty list. (Previously, in both
cases, the attribute would be missing on the newly constructed AST node instance.)
If other arguments are omitted, a DeprecationWarning is emitted. This will cause an exception in Python
3.15. Similarly, passing a keyword argument that does not map to a field on the AST node is now deprecated, and
will raise an exception in Python 3.15.

• ast.parse() now accepts an optional argument optimize which is passed on to the compile() built-in.
This makes it possible to obtain an optimized AST. (Contributed by Irit Katriel in gh-108113.)

5

https://github.com/python/cpython/issues/115957
https://datatracker.ietf.org/doc/html/rfc5280.html
https://github.com/python/cpython/issues/112389
https://github.com/python/cpython/issues/83648
https://github.com/python/cpython/issues/80480
https://github.com/python/cpython/issues/114894
https://github.com/python/cpython/issues/108113


5.4 asyncio

• asyncio.loop.create_unix_server() will now automatically remove the Unix socket when the server
is closed. (Contributed by Pierre Ossman in gh-111246.)

• asyncio.DatagramTransport.sendto() will now send zero-length datagrams if called with an empty
bytes object. The transport flow control also now accounts for the datagram header when calculating the buffer size.
(Contributed by Jamie Phan in gh-115199.)

base64 —
• Addbase64.z85encode() andbase64.z85decode() functions which allow encoding and decoding z85
data. See Z85 specification for more information. (Contributed by Matan Perelman in gh-75299.)

5.5 copy

• Add copy.replace() function which allows to create a modified copy of an object, which is especially
useful for immutable objects. It supports named tuples created with the factory function collections.
namedtuple(), dataclass instances, various datetime objects, Signature objects, Parameter
objects, code object, and any user classes which define the __replace__() method. (Contributed by Serhiy
Storchaka in gh-108751.)

5.6 dbm

• Add dbm.gnu.gdbm.clear() and dbm.ndbm.ndbm.clear() methods that remove all items from the
database. (Contributed by Donghee Na in gh-107122.)

5.7 dis

• Change the output of dis module functions to show logical labels for jump targets and exception handlers, rather
than offsets. The offsets can be added with the new -O command line option or the show_offsets parameter.
(Contributed by Irit Katriel in gh-112137.)

5.8 dbm

• Add dbm.gnu.gdbm.clear() and dbm.ndbm.ndbm.clear() methods that remove all items from the
database. (Contributed by Donghee Na in gh-107122.)

• Add new dbm.sqlite3 backend, and make it the default dbm backend. (Contributed by Raymond Hettinger
and Erlend E. Aasland in gh-100414.)

5.9 doctest

• The doctest.DocTestRunner.run() method now counts the number of skipped tests. Add doctest.
DocTestRunner.skips and doctest.TestResults.skipped attributes. (Contributed by Victor
Stinner in gh-108794.)

6

https://github.com/python/cpython/issues/111246
https://github.com/python/cpython/issues/115199
https://rfc.zeromq.org/spec/32/
https://github.com/python/cpython/issues/75299
https://github.com/python/cpython/issues/108751
https://github.com/python/cpython/issues/107122
https://github.com/python/cpython/issues/112137
https://github.com/python/cpython/issues/107122
https://github.com/python/cpython/issues/100414
https://github.com/python/cpython/issues/108794


5.10 email

• email.utils.getaddresses() and email.utils.parseaddr() now return ('', '') 2-tuples
in more situations where invalid email addresses are encountered instead of potentially inaccurate values. Add
optional strict parameter to these two functions: use strict=False to get the old behavior, accept malformed
inputs. getattr(email.utils, 'supports_strict_parsing', False) can be use to check if
the strict parameter is available. (Contributed by Thomas Dwyer and Victor Stinner for gh-102988 to improve the
CVE-2023-27043 fix.)

5.11 fractions

• Formatting for objects of type fractions.Fraction now supports the standard format specification mini-
language rules for fill, alignment, sign handling, minimum width and grouping. (Contributed by Mark Dickinson
in gh-111320.)

5.12 glob

• Add glob.translate() function that converts a path specification with shell-style wildcards to a regular ex-
pression. (Contributed by Barney Gale in gh-72904.)

5.13 io

The io.IOBase finalizer now logs the close() method errors with sys.unraisablehook. Previously, errors
were ignored silently by default, and only logged in Python Development Mode or on Python built on debug mode.
(Contributed by Victor Stinner in gh-62948.)

5.14 ipaddress

• Add the ipaddress.IPv4Address.ipv6_mapped property, which returns the IPv4-mapped IPv6 ad-
dress. (Contributed by Charles Machalow in gh-109466.)

5.15 itertools

• Added a strict option to itertools.batched(). This raises a ValueError if the final batch is shorter
than the specified batch size. (Contributed by Raymond Hettinger in gh-113202.)

5.16 marshal

• Add the allow_code parameter in module functions. Passing allow_code=False prevents serialization and de-
serialization of code objects which are incompatible between Python versions. (Contributed by Serhiy Storchaka
in gh-113626.)

7

https://github.com/python/cpython/issues/102988
https://github.com/python/cpython/issues/111320
https://github.com/python/cpython/issues/72904
https://github.com/python/cpython/issues/62948
https://github.com/python/cpython/issues/109466
https://github.com/python/cpython/issues/113202
https://github.com/python/cpython/issues/113626


5.17 mmap

• The mmap.mmap class now has an seekable() method that can be used when a seekable file-like object is
required. The seek() method now returns the new absolute position. (Contributed by Donghee Na and Sylvie
Liberman in gh-111835.)

• mmap.mmap now has a trackfd parameter on Unix; if it is False, the file descriptor specified by fileno will not
be duplicated. (Contributed by Zackery Spytz and Petr Viktorin in gh-78502.)

5.18 opcode

• Move opcode.ENABLE_SPECIALIZATION to _opcode.ENABLE_SPECIALIZATION. This field was
added in 3.12, it was never documented and is not intended for external usage. (Contributed by Irit Katriel in
gh-105481.)

• Removed opcode.is_pseudo, opcode.MIN_PSEUDO_OPCODE and opcode.
MAX_PSEUDO_OPCODE, which were added in 3.12, were never documented or exposed through dis,
and were not intended to be used externally.

5.19 os

• Add os.process_cpu_count() function to get the number of logical CPUs usable by the calling thread of
the current process. (Contributed by Victor Stinner in gh-109649.)

• Add a low level interface for Linux’s timer notification file descriptors via os.timerfd_create(),
os.timerfd_settime(), os.timerfd_settime_ns(), os.timerfd_gettime(), and os.
timerfd_gettime_ns(), os.TFD_NONBLOCK, os.TFD_CLOEXEC, os.TFD_TIMER_ABSTIME,
and os.TFD_TIMER_CANCEL_ON_SET (Contributed by Masaru Tsuchiyama in gh-108277.)

• os.cpu_count() and os.process_cpu_count() can be overridden through the new environment vari-
able PYTHON_CPU_COUNT or the new command-line option -X cpu_count. This option is useful for users
who need to limit CPU resources of a container system without having to modify the container (application code).
(Contributed by Donghee Na in gh-109595.)

• Add support of os.lchmod() and the follow_symlinks argument in os.chmod() on Windows. Note that the
default value of follow_symlinks in os.lchmod() is False on Windows. (Contributed by Serhiy Storchaka in
gh-59616.)

• Add support of os.fchmod() and a file descriptor in os.chmod() on Windows. (Contributed by Serhiy
Storchaka in gh-113191.)

• os.posix_spawn() now accepts env=None, which makes the newly spawned process use the current process
environment. (Contributed by Jakub Kulik in gh-113119.)

• os.posix_spawn() gains an os.POSIX_SPAWN_CLOSEFROM attribute for use in file_actions= on
platforms that support posix_spawn_file_actions_addclosefrom_np(). (Contributed by Jakub
Kulik in gh-113117.)

8

https://github.com/python/cpython/issues/111835
https://github.com/python/cpython/issues/78502
https://github.com/python/cpython/issues/105481
https://github.com/python/cpython/issues/109649
https://github.com/python/cpython/issues/108277
https://github.com/python/cpython/issues/109595
https://github.com/python/cpython/issues/59616
https://github.com/python/cpython/issues/113191
https://github.com/python/cpython/issues/113119
https://github.com/python/cpython/issues/113117


5.20 os.path

• Add os.path.isreserved() to check if a path is reserved on the current system. This function is only
available on Windows. (Contributed by Barney Gale in gh-88569.)

• OnWindows, os.path.isabs() no longer considers paths starting with exactly one (back)slash to be absolute.
(Contributed by Barney Gale and Jon Foster in gh-44626.)

5.21 pathlib

• Add pathlib.UnsupportedOperation, which is raised instead of NotImplementedError when a
path operation isn’t supported. (Contributed by Barney Gale in gh-89812.)

• Add pathlib.Path.from_uri(), a new constructor to create a pathlib.Path object from a ‘file’ URI
(file://). (Contributed by Barney Gale in gh-107465.)

• Add pathlib.PurePath.full_match() for matching paths with shell-style wildcards, including the re-
cursive wildcard “**”. (Contributed by Barney Gale in gh-73435.)

• Add follow_symlinks keyword-only argument to pathlib.Path.glob(), rglob(), is_file(),
is_dir(), owner(), group(). (Contributed by Barney Gale in gh-77609 and gh-105793, and Kamil Turek
in gh-107962).

• Return files and directories from pathlib.Path.glob() and rglob() when given a pattern that ends with
“**”. In earlier versions, only directories were returned. (Contributed by Barney Gale in gh-70303).

5.22 pdb

• Add ability to move between chained exceptions during post mortem debugging in pm() using the new
exceptions [exc_number] command for Pdb. (Contributed by Matthias Bussonnier in gh-106676.)

• Expressions/statements whose prefix is a pdb command are now correctly identified and executed. (Contributed by
Tian Gao in gh-108464.)

• sys.path[0] will no longer be replaced by the directory of the script being debugged when sys.flags.
safe_path is set (via the -P command line option or PYTHONSAFEPATH environment variable). (Contributed
by Tian Gao and Christian Walther in gh-111762.)

5.23 queue

• Add queue.Queue.shutdown() (along with queue.ShutDown) for queue termination. (Contributed by
Laurie Opperman and Yves Duprat in gh-104750.)

5.24 re

• Rename re.error to re.PatternError for improved clarity. re.error is kept for backward compati-
bility.

9

https://github.com/python/cpython/issues/88569
https://github.com/python/cpython/issues/44626
https://github.com/python/cpython/issues/89812
https://github.com/python/cpython/issues/107465
https://github.com/python/cpython/issues/73435
https://github.com/python/cpython/issues/77609
https://github.com/python/cpython/issues/105793
https://github.com/python/cpython/issues/107962
https://github.com/python/cpython/issues/70303
https://github.com/python/cpython/issues/106676
https://github.com/python/cpython/issues/108464
https://github.com/python/cpython/issues/111762
https://github.com/python/cpython/issues/104750


5.25 sqlite3

• A ResourceWarning is now emitted if a sqlite3.Connection object is not closed explicitly. (Con-
tributed by Erlend E. Aasland in gh-105539.)

• Add filter keyword-only parameter to sqlite3.Connection.iterdump() for filtering database objects to
dump. (Contributed by Mariusz Felisiak in gh-91602.)

5.26 statistics

• Add statistics.kde() for kernel density estimation. This makes it possible to estimate a continuous proba-
bility density function from a fixed number of discrete samples. (Contributed by RaymondHettinger in gh-115863.)

5.27 subprocess

• The subprocess module now uses the os.posix_spawn() function in more situations. Notably in the
default case of close_fds=True on more recent versions of platforms including Linux, FreeBSD, and So-
laris where the C library provides posix_spawn_file_actions_addclosefrom_np(). On Linux this
should perform similar to our existing Linux vfork() based code. A private control knob subprocess.
_USE_POSIX_SPAWN can be set to False if you need to force subprocess not to ever use os.
posix_spawn(). Please report your reason and platform details in the CPython issue tracker if you set this
so that we can improve our API selection logic for everyone. (Contributed by Jakub Kulik in gh-113117.)

5.28 sys

• Add the sys._is_interned() function to test if the string was interned. This function is not guaranteed to
exist in all implementations of Python. (Contributed by Serhiy Storchaka in gh-78573.)

5.29 tkinter

• Add tkinter widget methods: tk_busy_hold(), tk_busy_configure(), tk_busy_cget(),
tk_busy_forget(), tk_busy_current(), andtk_busy_status(). (Contributed byMiguel, klapp-
nase and Serhiy Storchaka in gh-72684.)

• The tkinter widget method wm_attributes() now accepts the attribute name without the minus prefix to
get window attributes, e.g. w.wm_attributes('alpha') and allows to specify attributes and values to set
as keyword arguments, e.g. w.wm_attributes(alpha=0.5). Add new optional keyword-only parameter
return_python_dict: calling w.wm_attributes(return_python_dict=True) returns the attributes as
a dict instead of a tuple. (Contributed by Serhiy Storchaka in gh-43457.)

• Add new optional keyword-only parameter return_ints in the Text.count() method. Passing
return_ints=True makes it always returning the single count as an integer instead of a 1-tuple or
None. (Contributed by Serhiy Storchaka in gh-97928.)

• Add support of the “vsapi” element type in the element_create() method of tkinter.ttk.Style.
(Contributed by Serhiy Storchaka in gh-68166.)

10

https://github.com/python/cpython/issues/105539
https://github.com/python/cpython/issues/91602
https://github.com/python/cpython/issues/115863
https://github.com/python/cpython/issues/113117
https://github.com/python/cpython/issues/78573
https://github.com/python/cpython/issues/72684
https://github.com/python/cpython/issues/43457
https://github.com/python/cpython/issues/97928
https://github.com/python/cpython/issues/68166


5.30 traceback

• Add show_group parameter to traceback.TracebackException.format_exception_only() to
format the nested exceptions of a BaseExceptionGroup instance, recursively. (Contributed by Irit Katriel in
gh-105292.)

• Add the field exc_type_str to TracebackException, which holds a string display of the exc_type. Deprecate
the field exc_type which holds the type object itself. Add parameter save_exc_type (default True) to indicate
whether exc_type should be saved. (Contributed by Irit Katriel in gh-112332.)

5.31 typing

• Add typing.get_protocol_members() to return the set of members defining a typing.Protocol.
Add typing.is_protocol() to check whether a class is a typing.Protocol. (Contributed by Jelle
Zijlstra in gh-104873.)

5.32 unicodedata

• The Unicode database has been updated to version 15.1.0. (Contributed by James Gerity in gh-109559.)

5.33 venv

• Add support for adding source control management (SCM) ignore files to a virtual environment’s direc-
tory. By default, Git is supported. This is implemented as opt-in via the API which can be extended
to support other SCMs (venv.EnvBuilder and venv.create()), and opt-out via the CLI (using
--without-scm-ignore-files). (Contributed by Brett Cannon in gh-108125.)

5.34 warnings

• The new warnings.deprecated() decorator provides a way to communicate deprecations to static type
checkers and to warn on usage of deprecated classes and functions. A runtime deprecation warning may also be
emitted when a decorated function or class is used at runtime. See PEP 702. (Contributed by Jelle Zijlstra in
gh-104003.)

5.35 xml.etree.ElementTree

• Add the close() method for the iterator returned by iterparse() for explicit cleaning up. (Contributed by
Serhiy Storchaka in gh-69893.)

6 Optimizations

• textwrap.indent() is now ~30% faster than before for large input. (Contributed by Inada Naoki in gh-
107369.)

• The subprocess module uses os.posix_spawn() in more situations including the default where
close_fds=True on many modern platforms. This should provide a noteworthy performance increase launch-
ing processes on FreeBSD and Solaris. See the subprocess section above for details. (Contributed by Jakub
Kulik in gh-113117.)

11

https://github.com/python/cpython/issues/105292
https://github.com/python/cpython/issues/112332
https://github.com/python/cpython/issues/104873
https://github.com/python/cpython/issues/109559
https://github.com/python/cpython/issues/108125
https://peps.python.org/pep-0702/
https://github.com/python/cpython/issues/104003
https://github.com/python/cpython/issues/69893
https://github.com/python/cpython/issues/107369
https://github.com/python/cpython/issues/107369
https://github.com/python/cpython/issues/113117


7 Experimental JIT Compiler

When CPython is configured using the --enable-experimental-jit option, a just-in-time compiler is added
which can speed up some Python programs.
The internal architecture is roughly as follows.

• We start with specialized Tier 1 bytecode. See What’s new in 3.11 for details.
• When the Tier 1 bytecode gets hot enough, it gets translated to a new, purely internal Tier 2 IR, a.k.a. micro-ops
(“uops”).

• The Tier 2 IR uses the same stack-based VM as Tier 1, but the instruction format is better suited to translation to
machine code.

• We have several optimization passes for Tier 2 IR, which are applied before it is interpreted or translated to machine
code.

• There is a Tier 2 interpreter, but it is mostly intended for debugging the earlier stages of the optimization pipeline.
If the JIT is not enabled, the Tier 2 interpreter can be invoked by passing Python the -X uops option or by setting
the PYTHON_UOPS environment variable to 1.

• When the --enable-experimental-jit option is used, the optimized Tier 2 IR is translated to machine
code, which is then executed. This does not require additional runtime options.

• The machine code translation process uses an architecture called copy-and-patch. It has no runtime dependencies,
but there is a new build-time dependency on LLVM.

(JIT by Brandt Bucher, inspired by a paper by Haoran Xu and Fredrik Kjolstad. Tier 2 IR by Mark Shannon and Guido
van Rossum. Tier 2 optimizer by Ken Jin.)

8 Deprecated

• array: array’s 'u' format code, deprecated in docs since Python 3.3, emits DeprecationWarning since
3.13 and will be removed in Python 3.16. Use the 'w' format code instead. (contributed by Hugo van Kemenade
in gh-80480)

• ctypes: Deprecate undocumented ctypes.SetPointerType() and ctypes.ARRAY() functions. Re-
place ctypes.ARRAY(item_type, size) with item_type * size. (Contributed by Victor Stinner
in gh-105733.)

• decimal: Deprecate non-standard format specifier “N” for decimal.Decimal. It was not documented and
only supported in the C implementation. (Contributed by Serhiy Storchaka in gh-89902.)

• dis: The dis.HAVE_ARGUMENT separator is deprecated. Check membership in hasarg instead. (Con-
tributed by Irit Katriel in gh-109319.)

• getopt and optparse modules: They are now soft deprecated: the argparse module should be used for
new projects. Previously, the optparse module was already deprecated, its removal was not scheduled, and no
warnings was emitted: so there is no change in practice. (Contributed by Victor Stinner in gh-106535.)

• gettext: Emit deprecation warning for non-integer numbers in gettext functions and methods that consider
plural forms even if the translation was not found. (Contributed by Serhiy Storchaka in gh-88434.)

• http.server: http.server.CGIHTTPRequestHandler now emits a DeprecationWarning as
it will be removed in 3.15. Process-based CGI HTTP servers have been out of favor for a very long time. This
code was outdated, unmaintained, and rarely used. It has a high potential for both security and functionality bugs.
This includes removal of the --cgi flag to the python -m http.server command line in 3.15.

12

https://github.com/python/cpython/issues/80480
https://github.com/python/cpython/issues/105733
https://github.com/python/cpython/issues/89902
https://github.com/python/cpython/issues/109319
https://github.com/python/cpython/issues/106535
https://github.com/python/cpython/issues/88434


• pathlib: pathlib.PurePath.is_reserved() is deprecated and scheduled for removal in Python 3.15.
Use os.path.isreserved() to detect reserved paths on Windows.

• pydoc: Deprecate undocumented pydoc.ispackage() function. (Contributed by Zackery Spytz in gh-
64020.)

• sqlite3: Passing more than one positional argument to sqlite3.connect() and the sqlite3.
Connection constructor is deprecated. The remaining parameters will become keyword-only in Python 3.15.
Deprecate passing name, number of arguments, and the callable as keyword arguments for the following
sqlite3.Connection APIs:

– create_function()

– create_aggregate()

Deprecate passing the callback callable by keyword for the following sqlite3.Connection APIs:
– set_authorizer()

– set_progress_handler()

– set_trace_callback()

The affected parameters will become positional-only in Python 3.15.
(Contributed by Erlend E. Aasland in gh-107948 and gh-108278.)

• sys: sys._enablelegacywindowsfsencoding() function. Replace it with the
PYTHONLEGACYWINDOWSFSENCODING environment variable. (Contributed by Inada Naoki in gh-73427.)

• traceback: The field exc_type of traceback.TracebackException is deprecated. Use exc_type_str
instead.

• typing:
– Creating a typing.NamedTuple class using keyword arguments to denote the fields (NT =
NamedTuple("NT", x=int, y=int)) is deprecated, and will be disallowed in Python 3.15. Use
the class-based syntax or the functional syntax instead. (Contributed by Alex Waygood in gh-105566.)

– When using the functional syntax to create a typing.NamedTuple class or a typing.
TypedDict class, failing to pass a value to the ‘fields’ parameter (NT = NamedTuple("NT")
or TD = TypedDict("TD")) is deprecated. Passing None to the ‘fields’ parameter (NT =
NamedTuple("NT", None) or TD = TypedDict("TD", None)) is also deprecated. Both
will be disallowed in Python 3.15. To create a NamedTuple class with 0 fields, use class
NT(NamedTuple): pass or NT = NamedTuple("NT", []). To create a TypedDict class with
0 fields, use class TD(TypedDict): pass or TD = TypedDict("TD", {}). (Contributed by
Alex Waygood in gh-105566 and gh-105570.)

– typing.no_type_check_decorator() is deprecated, and scheduled for removal in Python 3.15.
After eight years in the typingmodule, it has yet to be supported by any major type checkers. (Contributed
by Alex Waygood in gh-106309.)

– typing.AnyStr is deprecated. In Python 3.16, it will be removed from typing.__all__, and a
DeprecationWarning will be emitted when it is imported or accessed. It will be removed entirely in
Python 3.18. Use the new type parameter syntax instead. (Contributed by Michael The in gh-107116.)

• wave: Deprecate the getmark(), setmark() and getmarkers() methods of the wave.Wave_read
and wave.Wave_write classes. They will be removed in Python 3.15. (Contributed by Victor Stinner in gh-
105096.)

• Calling frame.clear() on a suspended frame raises RuntimeError (as has always been the case for an
executing frame). (Contributed by Irit Katriel in gh-79932.)

13

https://github.com/python/cpython/issues/64020
https://github.com/python/cpython/issues/64020
https://github.com/python/cpython/issues/107948
https://github.com/python/cpython/issues/108278
https://github.com/python/cpython/issues/73427
https://github.com/python/cpython/issues/105566
https://github.com/python/cpython/issues/105566
https://github.com/python/cpython/issues/105570
https://github.com/python/cpython/issues/106309
https://github.com/python/cpython/issues/107116
https://github.com/python/cpython/issues/105096
https://github.com/python/cpython/issues/105096
https://github.com/python/cpython/issues/79932


• Assignment to a function’s __code__ attribute where the new code object’s type does not match the function’s
type, is deprecated. The different types are: plain function, generator, async generator and coroutine. (Contributed
by Irit Katriel in gh-81137.)

• The undocumented and unused tarfile attribute of tarfile.TarFile is deprecated and scheduled for
removal in Python 3.16.

• platform.java_ver() is deprecated and will be removed in 3.15. It was largely untested, had a confusing
API, and was only useful for Jython support. (Contributed by Nikita Sobolev in gh-116349.)

8.1 Pending Removal in Python 3.14

• argparse: The type, choices, andmetavar parameters of argparse.BooleanOptionalAction are dep-
recated and will be removed in 3.14. (Contributed by Nikita Sobolev in gh-92248.)

• ast: The following features have been deprecated in documentation since Python 3.8, now cause a
DeprecationWarning to be emitted at runtime when they are accessed or used, and will be removed in
Python 3.14:

– ast.Num

– ast.Str

– ast.Bytes

– ast.NameConstant

– ast.Ellipsis

Use ast.Constant instead. (Contributed by Serhiy Storchaka in gh-90953.)
• collections.abc: Deprecated ByteString. Prefer Sequence or Buffer. For use in typing, prefer
a union, like bytes | bytearray, or collections.abc.Buffer. (Contributed by Shantanu Jain in
gh-91896.)

• email: Deprecated the isdst parameter in email.utils.localtime(). (Contributed by Alan Williams in
gh-72346.)

• importlib: __package__ and __cached__ will cease to be set or taken into consideration by the import
system (gh-97879).

• importlib.abc deprecated classes:
– importlib.abc.ResourceReader

– importlib.abc.Traversable

– importlib.abc.TraversableResources

Use importlib.resources.abc classes instead:
– importlib.resources.abc.Traversable

– importlib.resources.abc.TraversableResources

(Contributed by Jason R. Coombs and Hugo van Kemenade in gh-93963.)
• itertools had undocumented, inefficient, historically buggy, and inconsistent support for copy, deepcopy, and
pickle operations. This will be removed in 3.14 for a significant reduction in code volume and maintenance burden.
(Contributed by Raymond Hettinger in gh-101588.)

• multiprocessing: The default start method will change to a safer one on Linux, BSDs, and other non-
macOS POSIX platforms where 'fork' is currently the default (gh-84559). Adding a runtime warning about
this was deemed too disruptive as the majority of code is not expected to care. Use the get_context() or

14

https://github.com/python/cpython/issues/81137
https://github.com/python/cpython/issues/116349
https://github.com/python/cpython/issues/92248
https://github.com/python/cpython/issues/90953
https://github.com/python/cpython/issues/91896
https://github.com/python/cpython/issues/72346
https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/93963
https://github.com/python/cpython/issues/101588
https://github.com/python/cpython/issues/84559


set_start_method() APIs to explicitly specify when your code requires 'fork'. See multiprocessing-
start-methods.

• pathlib: is_relative_to() and relative_to(): passing additional arguments is deprecated.
• pkgutil: find_loader() and get_loader() now raise DeprecationWarning; use importlib.
util.find_spec() instead. (Contributed by Nikita Sobolev in gh-97850.)

• pty:
– master_open(): use pty.openpty().
– slave_open(): use pty.openpty().

• shutil.rmtree() onerror parameter is deprecated in 3.12, and will be removed in 3.14: use the onexc pa-
rameter instead.

• sqlite3:
– version and version_info.
– execute() and executemany() if named placeholders are used and parameters is a sequence instead
of a dict.

– date and datetime adapter, date and timestamp converter: see the sqlite3 documentation for suggested
replacement recipes.

• types.CodeType: Accessing co_lnotab was deprecated in PEP 626 since 3.10 and was planned to be re-
moved in 3.12, but it only got a proper DeprecationWarning in 3.12. May be removed in 3.14. (Contributed
by Nikita Sobolev in gh-101866.)

• typing: ByteString, deprecated since Python 3.9, now causes a DeprecationWarning to be emitted
when it is used.

• urllib.parse.Quoter is deprecated: it was not intended to be a public API. (Contributed by Gregory P.
Smith in gh-88168.)

• xml.etree.ElementTree: Testing the truth value of an Element is deprecated and will raise an exception
in Python 3.14.

8.2 Pending Removal in Python 3.15

• http.server.CGIHTTPRequestHandler will be removed along with its related --cgi flag to python
-m http.server. It was obsolete and rarely used. No direct replacement exists. Anything is better than CGI
to interface a web server with a request handler.

• locale: locale.getdefaultlocale()was deprecated in Python 3.11 and originally planned for removal
in Python 3.13 (gh-90817), but removal has been postponed to Python 3.15. Use locale.setlocale(),
locale.getencoding() and locale.getlocale() instead. (Contributed by Hugo van Kemenade in
gh-111187.)

• pathlib: pathlib.PurePath.is_reserved() is deprecated and scheduled for removal in Python 3.15.
Use os.path.isreserved() to detect reserved paths on Windows.

• threading: Passing any arguments to threading.RLock() is now deprecated. C version allows any num-
bers of args and kwargs, but they are just ignored. Python version does not allow any arguments. All arguments
will be removed from threading.RLock() in Python 3.15. (Contributed by Nikita Sobolev in gh-102029.)

• typing.NamedTuple:

15

https://github.com/python/cpython/issues/97850
https://peps.python.org/pep-0626/
https://github.com/python/cpython/issues/101866
https://github.com/python/cpython/issues/88168
https://github.com/python/cpython/issues/90817
https://github.com/python/cpython/issues/111187
https://github.com/python/cpython/issues/102029


– The undocumented keyword argument syntax for creating NamedTuple classes (NT =
NamedTuple("NT", x=int)) is deprecated, and will be disallowed in 3.15. Use the class-based
syntax or the functional syntax instead.

– When using the functional syntax to create a NamedTuple class, failing to pass a value to the
‘fields’ parameter (NT = NamedTuple("NT")) is deprecated. Passing None to the ‘fields’ param-
eter (NT = NamedTuple("NT", None)) is also deprecated. Both will be disallowed in Python
3.15. To create a NamedTuple class with 0 fields, use class NT(NamedTuple): pass or NT =
NamedTuple("NT", []).

• typing.TypedDict: When using the functional syntax to create a TypedDict class, failing to pass a value to
the ‘fields’ parameter (TD = TypedDict("TD")) is deprecated. Passing None to the ‘fields’ parameter (TD =
TypedDict("TD", None)) is also deprecated. Both will be disallowed in Python 3.15. To create a TypedDict
class with 0 fields, use class TD(TypedDict): pass or TD = TypedDict("TD", {}).

• wave: Deprecate the getmark(), setmark() and getmarkers() methods of the wave.Wave_read
and wave.Wave_write classes. They will be removed in Python 3.15. (Contributed by Victor Stinner in gh-
105096.)

• platform.java_ver() is deprecated and will be removed in 3.15. It was largely untested, had a confusing
API, and was only useful for Jython support. (Contributed by Nikita Sobolev in gh-116349.)

8.3 Pending Removal in Python 3.16

• array.array 'u' type (wchar_t): use the 'w' type instead (Py_UCS4).

8.4 Pending Removal in Future Versions

The following APIs were deprecated in earlier Python versions and will be removed, although there is currently no date
scheduled for their removal.

• argparse: Nesting argument groups and nesting mutually exclusive groups are deprecated.
• builtins:

– ~bool, bitwise inversion on bool.
– bool(NotImplemented).
– Generators: throw(type, exc, tb) and athrow(type, exc, tb) signature is deprecated: use
throw(exc) and athrow(exc) instead, the single argument signature.

– Currently Python accepts numeric literals immediately followed by keywords, for example 0in x, 1or
x, 0if 1else 2. It allows confusing and ambiguous expressions like [0x1for x in y] (which can
be interpreted as [0x1 for x in y] or [0x1f or x in y]). A syntax warning is raised if the
numeric literal is immediately followed by one of keywords and, else, for, if, in, is and or. In a
future release it will be changed to a syntax error. (gh-87999)

– Support for __index__() and __int__() method returning non-int type: these methods will be re-
quired to return an instance of a strict subclass of int.

– Support for __float__() method returning a strict subclass of float: these methods will be required
to return an instance of float.

– Support for __complex__() method returning a strict subclass of complex: these methods will be
required to return an instance of complex.

– Delegation of int() to __trunc__() method.

16

https://github.com/python/cpython/issues/105096
https://github.com/python/cpython/issues/105096
https://github.com/python/cpython/issues/116349
https://github.com/python/cpython/issues/87999


• calendar: calendar.January and calendar.February constants are deprecated and replaced by
calendar.JANUARY and calendar.FEBRUARY. (Contributed by Prince Roshan in gh-103636.)

• codeobject.co_lnotab: use the codeobject.co_lines() method instead.
• datetime:

– utcnow(): use datetime.datetime.now(tz=datetime.UTC).
– utcfromtimestamp(): use datetime.datetime.fromtimestamp(timestamp,
tz=datetime.UTC).

• gettext: Plural value must be an integer.
• importlib:

– load_module() method: use exec_module() instead.
– cache_from_source() debug_override parameter is deprecated: use the optimization parameter in-
stead.

• importlib.metadata:
– EntryPoints tuple interface.
– Implicit None on return values.

• mailbox: Use of StringIO input and text mode is deprecated, use BytesIO and binary mode instead.
• os: Calling os.register_at_fork() in multi-threaded process.
• pydoc.ErrorDuringImport: A tuple value for exc_info parameter is deprecated, use an exception instance.
• re: More strict rules are now applied for numerical group references and group names in regular expressions.
Only sequence of ASCII digits is now accepted as a numerical reference. The group name in bytes patterns and
replacement strings can now only contain ASCII letters and digits and underscore. (Contributed by Serhiy Storchaka
in gh-91760.)

• sre_compile, sre_constants and sre_parse modules.
• ssl options and protocols:

– ssl.SSLContext without protocol argument is deprecated.
– ssl.SSLContext: set_npn_protocols() and selected_npn_protocol() are deprecated:
use ALPN instead.

– ssl.OP_NO_SSL* options
– ssl.OP_NO_TLS* options
– ssl.PROTOCOL_SSLv3

– ssl.PROTOCOL_TLS

– ssl.PROTOCOL_TLSv1

– ssl.PROTOCOL_TLSv1_1

– ssl.PROTOCOL_TLSv1_2

– ssl.TLSVersion.SSLv3

– ssl.TLSVersion.TLSv1

– ssl.TLSVersion.TLSv1_1

• sysconfig.is_python_build() check_home parameter is deprecated and ignored.

17

https://github.com/python/cpython/issues/103636
https://github.com/python/cpython/issues/91760


• threading methods:
– threading.Condition.notifyAll(): use notify_all().
– threading.Event.isSet(): use is_set().
– threading.Thread.isDaemon(), threading.Thread.setDaemon(): use threading.
Thread.daemon attribute.

– threading.Thread.getName(), threading.Thread.setName(): use threading.
Thread.name attribute.

– threading.currentThread(): use threading.current_thread().
– threading.activeCount(): use threading.active_count().

• typing.Text (gh-92332).
• unittest.IsolatedAsyncioTestCase: it is deprecated to return a value that is not None from a test
case.

• urllib.parse deprecated functions: urlparse() instead
– splitattr()

– splithost()

– splitnport()

– splitpasswd()

– splitport()

– splitquery()

– splittag()

– splittype()

– splituser()

– splitvalue()

– to_bytes()

• urllib.request: URLopener and FancyURLopener style of invoking requests is deprecated. Use newer
urlopen() functions and methods.

• wsgiref: SimpleHandler.stdout.write() should not do partial writes.
• zipimport.zipimporter.load_module() is deprecated: use exec_module() instead.

9 Removed

9.1 PEP 594: dead batteries

• PEP 594 removed 19 modules from the standard library, deprecated in Python 3.11:
– aifc. (Contributed by Victor Stinner in gh-104773.)
– audioop. (Contributed by Victor Stinner in gh-104773.)
– chunk. (Contributed by Victor Stinner in gh-104773.)
– cgi and cgitb.

18

https://github.com/python/cpython/issues/92332
https://peps.python.org/pep-0594/
https://github.com/python/cpython/issues/104773
https://github.com/python/cpython/issues/104773
https://github.com/python/cpython/issues/104773


∗ cgi.FieldStorage can typically be replaced with urllib.parse.parse_qsl() for GET
and HEAD requests, and the email.message module or multipart PyPI project for POST and PUT.

∗ cgi.parse() can be replaced by calling urllib.parse.parse_qs() directly on the desired
query string, except for multipart/form-data input, which can be handled as described for cgi.
parse_multipart().

∗ cgi.parse_header() can be replaced with the functionality in the email package, which imple-
ments the same MIME RFCs. For example, with email.message.EmailMessage:

from email.message import EmailMessage
msg = EmailMessage()
msg['content-type'] = 'application/json; charset="utf8"'
main, params = msg.get_content_type(), msg['content-type'].params

∗ cgi.parse_multipart() can be replaced with the functionality in the email package (e.g.
email.message.EmailMessage and email.message.Message) which implements the
same MIME RFCs, or with the multipart PyPI project.

(Contributed by Victor Stinner in gh-104773.)
– crypt module and its private _crypt extension. The hashlib module is a potential replacement for
certain use cases. Otherwise, the following PyPI projects can be used:
∗ bcrypt: Modern password hashing for your software and your servers.
∗ passlib: Comprehensive password hashing framework supporting over 30 schemes.
∗ argon2-cffi: The secure Argon2 password hashing algorithm.
∗ legacycrypt: Wrapper to the POSIX crypt library call and associated functionality.

(Contributed by Victor Stinner in gh-104773.)
– imghdr: use the projects filetype, puremagic, or python-magic instead. (Contributed by Victor Stinner in
gh-104773.)

– mailcap. The mimetypesmodule provides an alternative. (Contributed by Victor Stinner in gh-104773.)
– msilib. (Contributed by Zachary Ware in gh-104773.)
– nis. (Contributed by Victor Stinner in gh-104773.)
– nntplib: the PyPI nntplib project can be used instead. (Contributed by Victor Stinner in gh-104773.)
– ossaudiodev: use the pygame project for audio playback. (Contributed by Victor Stinner in gh-104780.)
– pipes: use the subprocess module instead. (Contributed by Victor Stinner in gh-104773.)
– sndhdr: use the projects filetype, puremagic, or python-magic instead. (Contributed by Victor Stinner in
gh-104773.)

– spwd: the python-pam project can be used instead. (Contributed by Victor Stinner in gh-104773.)
– sunau. (Contributed by Victor Stinner in gh-104773.)
– telnetlib, use the projects telnetlib3 or Exscript instead. (Contributed by Victor Stinner in gh-104773.)
– uu: the base64 module is a modern alternative. (Contributed by Victor Stinner in gh-104773.)
– xdrlib. (Contributed by Victor Stinner in gh-104773.)

19

https://pypi.org/project/multipart/
https://pypi.org/project/multipart/
https://github.com/python/cpython/issues/104773
https://pypi.org/project/bcrypt/
https://pypi.org/project/passlib/
https://pypi.org/project/argon2-cffi/
https://pypi.org/project/legacycrypt/
https://github.com/python/cpython/issues/104773
https://pypi.org/project/filetype/
https://pypi.org/project/puremagic/
https://pypi.org/project/python-magic/
https://github.com/python/cpython/issues/104773
https://github.com/python/cpython/issues/104773
https://github.com/python/cpython/issues/104773
https://github.com/python/cpython/issues/104773
https://pypi.org/project/nntplib/
https://github.com/python/cpython/issues/104773
https://www.pygame.org/
https://github.com/python/cpython/issues/104780
https://github.com/python/cpython/issues/104773
https://pypi.org/project/filetype/
https://pypi.org/project/puremagic/
https://pypi.org/project/python-magic/
https://github.com/python/cpython/issues/104773
https://pypi.org/project/python-pam/
https://github.com/python/cpython/issues/104773
https://github.com/python/cpython/issues/104773
https://pypi.org/project/telnetlib3/
https://pypi.org/project/Exscript/
https://github.com/python/cpython/issues/104773
https://github.com/python/cpython/issues/104773
https://github.com/python/cpython/issues/104773


9.2 2to3

• Remove the 2to3 program and the lib2to3module, deprecated in Python 3.11. (Contributed by Victor Stinner
in gh-104780.)

9.3 configparser

• Remove the undocumented configparser.LegacyInterpolation class, deprecated in the docstring
since Python 3.2, and with a deprecation warning since Python 3.11. (Contributed by Hugo van Kemenade in
gh-104886.)

9.4 importlib

• Remove importlib.resources deprecated methods:
– contents()

– is_resource()

– open_binary()

– open_text()

– path()

– read_binary()

– read_text()

Use importlib.resources.files() instead. Refer to importlib-resources: Migrating from Legacy for
migration advice. (Contributed by Jason R. Coombs in gh-106532.)

• Remove deprecated __getitem__() access for importlib.metadata.EntryPoint objects. (Con-
tributed by Jason R. Coombs in gh-113175.)

9.5 locale

• Remove locale.resetlocale() function deprecated in Python 3.11: use locale.
setlocale(locale.LC_ALL, "") instead. (Contributed by Victor Stinner in gh-104783.)

9.6 logging

• logging: Remove undocumented and untested Logger.warn() and LoggerAdapter.warn()methods
and logging.warn() function. Deprecated since Python 3.3, they were aliases to the logging.Logger.
warning() method, logging.LoggerAdapter.warning() method and logging.warning()
function. (Contributed by Victor Stinner in gh-105376.)

20

https://github.com/python/cpython/issues/104780
https://github.com/python/cpython/issues/104886
https://importlib-resources.readthedocs.io/en/latest/using.html#migrating-from-legacy
https://github.com/python/cpython/issues/106532
https://github.com/python/cpython/issues/113175
https://github.com/python/cpython/issues/104783
https://github.com/python/cpython/issues/105376


9.7 pathlib

• Remove support for using pathlib.Path objects as context managers. This functionality was deprecated and
made a no-op in Python 3.9.

9.8 re

• Remove undocumented, never working, and deprecated re.template function and re.TEMPLATE flag (and
re.T alias). (Contributed by Serhiy Storchaka and Nikita Sobolev in gh-105687.)

9.9 tkinter

• Remove the tkinter.tix module, deprecated in Python 3.6. The third-party Tix library which the module
wrapped is unmaintained. (Contributed by Zachary Ware in gh-75552.)

9.10 turtle

• Remove the turtle.RawTurtle.settiltangle()method, deprecated in docs since Python 3.1 and with
a deprecation warning since Python 3.11. (Contributed by Hugo van Kemenade in gh-104876.)

9.11 typing

• Namespaces typing.io and typing.re, deprecated in Python 3.8, are now removed. The items in those
namespaces can be imported directly from typing. (Contributed by Sebastian Rittau in gh-92871.)

• Remove support for the keyword-argument method of creating typing.TypedDict types, deprecated in
Python 3.11. (Contributed by Tomas Roun in gh-104786.)

9.12 unittest

• Removed the following unittest functions, deprecated in Python 3.11:
– unittest.findTestCases()

– unittest.makeSuite()

– unittest.getTestCaseNames()

Use TestLoader methods instead:
– unittest.TestLoader.loadTestsFromModule()

– unittest.TestLoader.loadTestsFromTestCase()

– unittest.TestLoader.getTestCaseNames()

(Contributed by Hugo van Kemenade in gh-104835.)
• Remove the untested and undocumented unittest.TestProgram.usageExit() method, deprecated in
Python 3.11. (Contributed by Hugo van Kemenade in gh-104992.)

21

https://github.com/python/cpython/issues/105687
https://github.com/python/cpython/issues/75552
https://github.com/python/cpython/issues/104876
https://github.com/python/cpython/issues/92871
https://github.com/python/cpython/issues/104786
https://github.com/python/cpython/issues/104835
https://github.com/python/cpython/issues/104992


9.13 urllib

• Remove cafile, capath and cadefault parameters of theurllib.request.urlopen() function, deprecated in
Python 3.6: use the context parameter instead. Please usessl.SSLContext.load_cert_chain() instead,
or let ssl.create_default_context() select the system’s trusted CA certificates for you. (Contributed
by Victor Stinner in gh-105382.)

9.14 webbrowser

• Remove the untested and undocumented webbrowser MacOSX class, deprecated in Python 3.11. Use the
MacOSXOSAScript class (introduced in Python 3.2) instead. (Contributed by Hugo van Kemenade in gh-
104804.)

• Remove deprecated webbrowser.MacOSXOSAScript._name attribute. Use webbrowser.
MacOSXOSAScript.name attribute instead. (Contributed by Nikita Sobolev in gh-105546.)

9.15 Others

• None yet

10 CPython bytecode changes

• The oparg of YIELD_VALUE is now 1 if the yield is part of a yield-from or await, and 0 otherwise. The oparg of
RESUME was changed to add a bit indicating whether the except-depth is 1, which is needed to optimize closing
of generators. (Contributed by Irit Katriel in gh-111354.)

11 Porting to Python 3.13

This section lists previously described changes and other bugfixes that may require changes to your code.

11.1 Changes in the Python API

• Functions PyDict_GetItem(), PyDict_GetItemString(), PyMapping_HasKey(),
PyMapping_HasKeyString(), PyObject_HasAttr(), PyObject_HasAttrString(), and
PySys_GetObject(), which clear all errors which occurred when calling them, now report them using sys.
unraisablehook(). You may replace them with other functions as recommended in the documentation.
(Contributed by Serhiy Storchaka in gh-106672.)

• An OSError is now raised by getpass.getuser() for any failure to retrieve a username, instead of
ImportError on non-Unix platforms or KeyError on Unix platforms where the password database is empty.

• The threadingmodule now expects the _threadmodule to have an _is_main_interpreter attribute.
It is a function with no arguments that return True if the current interpreter is the main interpreter.
Any library or application that provides a custom _thread module must provide
_is_main_interpreter(), just like the module’s other “private” attributes. (See gh-112826.)

• mailbox.Maildir now ignores files with a leading dot. (Contributed by Zackery Spytz in gh-65559.)
• pathlib.Path.glob() and rglob() now return both files and directories if a pattern that ends with “**”
is given, rather than directories only. Users may add a trailing slash to match only directories.

22

https://github.com/python/cpython/issues/105382
https://github.com/python/cpython/issues/104804
https://github.com/python/cpython/issues/104804
https://github.com/python/cpython/issues/105546
https://github.com/python/cpython/issues/111354
https://github.com/python/cpython/issues/106672
https://github.com/python/cpython/issues/112826
https://github.com/python/cpython/issues/65559


12 Build Changes

• Autoconf 2.71 and aclocal 1.16.4 is now required to regenerate the configure script. (Contributed by Christian
Heimes in gh-89886.)

• SQLite 3.15.2 or newer is required to build the sqlite3 extension module. (Contributed by Erlend Aasland in
gh-105875.)

• Python built with configure --with-trace-refs (tracing references) is now ABI compatible with the
Python release build and debug build. (Contributed by Victor Stinner in gh-108634.)

• Building CPython now requires a compiler with support for the C11 atomic library, GCC built-in atomic functions,
or MSVC interlocked intrinsics.

• The errno, md5, resource, winsound, _ctypes_test, _multiprocessing.posixshmem,
_scproxy, _stat, _testimportmultiple and _uuid C extensions are now built with the limited C
API. (Contributed by Victor Stinner in gh-85283.)

• wasm32-wasi is now a tier 2 platform. (Contributed by Brett Cannon in gh-115192.)
• wasm32-emscripten is no longer a supported platform. (Contributed by Brett Cannon in gh-115192.)

13 C API Changes

13.1 New Features

• You no longer have to define thePY_SSIZE_T_CLEANmacro before includingPython.hwhen using# formats
in format codes. APIs accepting the format codes always use Py_ssize_t for # formats. (Contributed by Inada
Naoki in gh-104922.)

• The keywords parameter of PyArg_ParseTupleAndKeywords() and
PyArg_VaParseTupleAndKeywords() now has type char *const* in C and const char
*const* in C++, instead of char**. It makes these functions compatible with arguments of type const
char *const*, const char** or char *const* in C++ and char *const* in C without an
explicit type cast. This can be overridden with the PY_CXX_CONST macro. (Contributed by Serhiy Storchaka in
gh-65210.)

• Add PyImport_AddModuleRef(): similar to PyImport_AddModule(), but return a strong reference
instead of a borrowed reference. (Contributed by Victor Stinner in gh-105922.)

• Add PyWeakref_GetRef() function: similar to PyWeakref_GetObject() but returns a strong refer-
ence, or NULL if the referent is no longer live. (Contributed by Victor Stinner in gh-105927.)

• Add PyObject_GetOptionalAttr() and PyObject_GetOptionalAttrString(), variants of
PyObject_GetAttr() and PyObject_GetAttrString()which don’t raise AttributeError if the
attribute is not found. These variants are more convenient and faster if the missing attribute should not be treated
as a failure. (Contributed by Serhiy Storchaka in gh-106521.)

• Add PyMapping_GetOptionalItem() and PyMapping_GetOptionalItemString(): variants of
PyObject_GetItem() and PyMapping_GetItemString() which don’t raise KeyError if the key is
not found. These variants are more convenient and faster if the missing key should not be treated as a failure.
(Contributed by Serhiy Storchaka in gh-106307.)

• Add fixed variants of functions which silently ignore errors:
– PyObject_HasAttrWithError() replaces PyObject_HasAttr().
– PyObject_HasAttrStringWithError() replaces PyObject_HasAttrString().

23

https://github.com/python/cpython/issues/89886
https://github.com/python/cpython/issues/105875
https://github.com/python/cpython/issues/108634
https://github.com/python/cpython/issues/85283
https://github.com/python/cpython/issues/115192
https://github.com/python/cpython/issues/115192
https://github.com/python/cpython/issues/104922
https://github.com/python/cpython/issues/65210
https://github.com/python/cpython/issues/105922
https://github.com/python/cpython/issues/105927
https://github.com/python/cpython/issues/106521
https://github.com/python/cpython/issues/106307


– PyMapping_HasKeyWithError() replaces PyMapping_HasKey().
– PyMapping_HasKeyStringWithError() replaces PyMapping_HasKeyString().

New functions return not only 1 for true and 0 for false, but also -1 for error.
(Contributed by Serhiy Storchaka in gh-108511.)

• If Python is built in debug mode or with assertions, PyTuple_SET_ITEM() and
PyList_SET_ITEM() now check the index argument with an assertion. (Contributed by Victor Stinner
in gh-106168.)

• Add PyModule_Add() function: similar to PyModule_AddObjectRef() and
PyModule_AddObject() but always steals a reference to the value. (Contributed by Serhiy Storchaka
in gh-86493.)

• Add PyDict_GetItemRef() and PyDict_GetItemStringRef() functions: similar to
PyDict_GetItemWithError() but returning a strong reference instead of a borrowed reference.
Moreover, these functions return -1 on error and so checking PyErr_Occurred() is not needed. (Contributed
by Victor Stinner in gh-106004.)

• Added PyDict_SetDefaultRef(), which is similar to PyDict_SetDefault() but returns a strong
reference instead of a borrowed reference. This function returns -1 on error, 0 on insertion, and 1 if the key was
already present in the dictionary. (Contributed by Sam Gross in gh-112066.)

• Add PyDict_ContainsString() function: same as PyDict_Contains(), but key is specified as a
const char* UTF-8 encoded bytes string, rather than a PyObject*. (Contributed by Victor Stinner in gh-
108314.)

• Added PyList_GetItemRef() function: similar to PyList_GetItem() but returns a strong reference
instead of a borrowed reference.

• Add Py_IsFinalizing() function: check if the main Python interpreter is shutting down. (Contributed by
Victor Stinner in gh-108014.)

• Add PyLong_AsInt() function: similar to PyLong_AsLong(), but store the result in a C int instead of
a C long. Previously, it was known as the private function _PyLong_AsInt() (with an underscore prefix).
(Contributed by Victor Stinner in gh-108014.)

• Python built with configure --with-trace-refs (tracing references) now supports the Limited API.
(Contributed by Victor Stinner in gh-108634.)

• Add PyObject_VisitManagedDict() and PyObject_ClearManagedDict() functions which must
be called by the traverse and clear functions of a type using Py_TPFLAGS_MANAGED_DICT flag. The
pythoncapi-compat project can be used to get these functions on Python 3.11 and 3.12. (Contributed by Victor
Stinner in gh-107073.)

• Add PyUnicode_EqualToUTF8AndSize() and PyUnicode_EqualToUTF8() functions: compare
Unicode object with a const char* UTF-8 encoded string and return true (1) if they are equal, or false (0)
otherwise. These functions do not raise exceptions. (Contributed by Serhiy Storchaka in gh-110289.)

• Add PyThreadState_GetUnchecked() function: similar to PyThreadState_Get(), but don’t kill
the process with a fatal error if it is NULL. The caller is responsible to check if the result is NULL. Previously, the
function was private and known as _PyThreadState_UncheckedGet(). (Contributed by Victor Stinner in
gh-108867.)

• Add PySys_AuditTuple() function: similar to PySys_Audit(), but pass event arguments as a Python
tuple object. (Contributed by Victor Stinner in gh-85283.)

• PyArg_ParseTupleAndKeywords() now supports non-ASCII keyword parameter names. (Contributed by
Serhiy Storchaka in gh-110815.)

24

https://github.com/python/cpython/issues/108511
https://github.com/python/cpython/issues/106168
https://github.com/python/cpython/issues/86493
https://github.com/python/cpython/issues/106004
https://github.com/python/cpython/issues/112066
https://github.com/python/cpython/issues/108314
https://github.com/python/cpython/issues/108314
https://github.com/python/cpython/issues/108014
https://github.com/python/cpython/issues/108014
https://github.com/python/cpython/issues/108634
https://github.com/python/pythoncapi-compat/
https://github.com/python/cpython/issues/107073
https://github.com/python/cpython/issues/110289
https://github.com/python/cpython/issues/108867
https://github.com/python/cpython/issues/85283
https://github.com/python/cpython/issues/110815


• Add PyMem_RawMalloc(), PyMem_RawCalloc(), PyMem_RawRealloc() and
PyMem_RawFree() to the limited C API (version 3.13). (Contributed by Victor Stinner in gh-85283.)

• Add PySys_Audit() and PySys_AuditTuple() functions to the limited C API. (Contributed by Victor
Stinner in gh-85283.)

• Add PyErr_FormatUnraisable() function: similar to PyErr_WriteUnraisable(), but allow cus-
tomizing the warning message. (Contributed by Serhiy Storchaka in gh-108082.)

• Add PyList_Extend() and PyList_Clear() functions: similar to Python list.extend() and
list.clear() methods. (Contributed by Victor Stinner in gh-111138.)

• Add PyDict_Pop() and PyDict_PopString() functions: remove a key from a dictionary and option-
ally return the removed value. This is similar to dict.pop(), but without the default value and not raising
KeyError if the key is missing. (Contributed by Stefan Behnel and Victor Stinner in gh-111262.)

• Add Py_HashPointer() function to hash a pointer. (Contributed by Victor Stinner in gh-111545.)
• Add PyTime C API:

– PyTime_t type.
– PyTime_MIN and PyTime_MAX constants.
– PyTime_AsSecondsDouble() PyTime_Monotonic(), PyTime_PerfCounter(), and
PyTime_Time() functions.

(Contributed by Victor Stinner and Petr Viktorin in gh-110850.)
• Add PyLong_AsNativeBytes(), PyLong_FromNativeBytes() and
PyLong_FromUnsignedNativeBytes() functions to simplify converting between native integer
types and Python int objects. (Contributed by Steve Dower in gh-111140.)

13.2 Porting to Python 3.13

• Python.h no longer includes the <ieeefp.h> standard header. It was included for the finite() function
which is now provided by the <math.h> header. It should now be included explicitly if needed. Remove also the
HAVE_IEEEFP_H macro. (Contributed by Victor Stinner in gh-108765.)

• Python.h no longer includes these standard header files: <time.h>, <sys/select.h> and <sys/time.
h>. If needed, they should now be included explicitly. For example, <time.h> provides the clock() and
gmtime() functions, <sys/select.h> provides the select() function, and <sys/time.h> provides
the futimes(), gettimeofday() and setitimer() functions. (Contributed by Victor Stinner in gh-
108765.)

• If the Py_LIMITED_API macro is defined, Py_BUILD_CORE, Py_BUILD_CORE_BUILTIN and
Py_BUILD_CORE_MODULE macros are now undefined by <Python.h>. (Contributed by Victor Stinner in
gh-85283.)

• The old trashcan macros Py_TRASHCAN_SAFE_BEGIN and Py_TRASHCAN_SAFE_END were removed.
They should be replaced by the new macros Py_TRASHCAN_BEGIN and Py_TRASHCAN_END.
A tp_dealloc function that has the old macros, such as:

static void
mytype_dealloc(mytype *p)
{

PyObject_GC_UnTrack(p);
Py_TRASHCAN_SAFE_BEGIN(p);
...

(continues on next page)

25

https://github.com/python/cpython/issues/85283
https://github.com/python/cpython/issues/85283
https://github.com/python/cpython/issues/108082
https://github.com/python/cpython/issues/111138
https://github.com/python/cpython/issues/111262
https://github.com/python/cpython/issues/111545
https://github.com/python/cpython/issues/110850
https://github.com/python/cpython/issues/111140
https://github.com/python/cpython/issues/108765
https://github.com/python/cpython/issues/108765
https://github.com/python/cpython/issues/108765
https://github.com/python/cpython/issues/85283


(continued from previous page)
Py_TRASHCAN_SAFE_END

}

should migrate to the new macros as follows:

static void
mytype_dealloc(mytype *p)
{

PyObject_GC_UnTrack(p);
Py_TRASHCAN_BEGIN(p, mytype_dealloc)
...
Py_TRASHCAN_END

}

Note that Py_TRASHCAN_BEGIN has a second argument which should be the deallocation function it is in.
• On Windows, Python.h no longer includes the <stddef.h> standard header file. If needed, it should now
be included explicitly. For example, it provides offsetof() function, and size_t and ptrdiff_t types.
Including <stddef.h> explicitly was already needed by all other platforms, the HAVE_STDDEF_H macro is
only defined on Windows. (Contributed by Victor Stinner in gh-108765.)

13.3 Deprecated

• Passing optional arguments maxsplit, count and flags in module-level functions re.split(), re.sub() and
re.subn() as positional arguments is now deprecated. In future Python versions these parameters will be
keyword-only. (Contributed by Serhiy Storchaka in gh-56166.)

• Deprecate the old Py_UNICODE and PY_UNICODE_TYPE types: use directly the wchar_t type instead. Since
Python 3.3, Py_UNICODE and PY_UNICODE_TYPE are just aliases to wchar_t. (Contributed by Victor
Stinner in gh-105156.)

• Deprecate old Python initialization functions:
– PySys_ResetWarnOptions(): clear sys.warnoptions and warnings.filters instead.
– Py_GetExecPrefix(): get sys.exec_prefix instead.
– Py_GetPath(): get sys.path instead.
– Py_GetPrefix(): get sys.prefix instead.
– Py_GetProgramFullPath(): get sys.executable instead.
– Py_GetProgramName(): get sys.executable instead.
– Py_GetPythonHome(): get PyConfig.home or PYTHONHOME environment variable instead.

Functions scheduled for removal in Python 3.15. (Contributed by Victor Stinner in gh-105145.)
• Deprecate the PyImport_ImportModuleNoBlock() function which is just an alias to
PyImport_ImportModule() since Python 3.3. Scheduled for removal in Python 3.15. (Contributed
by Victor Stinner in gh-105396.)

• Deprecate the PyWeakref_GetObject() and PyWeakref_GET_OBJECT() functions, which return a
borrowed reference: use the new PyWeakref_GetRef() function instead, it returns a strong reference. The
pythoncapi-compat project can be used to get PyWeakref_GetRef() on Python 3.12 and older. (Contributed
by Victor Stinner in gh-105927.)

26

https://github.com/python/cpython/issues/108765
https://github.com/python/cpython/issues/56166
https://github.com/python/cpython/issues/105156
https://github.com/python/cpython/issues/105145
https://github.com/python/cpython/issues/105396
https://github.com/python/pythoncapi-compat/
https://github.com/python/cpython/issues/105927


13.4 Removed

• Removed chained classmethod descriptors (introduced in gh-63272). This can no longer be used to wrap other
descriptors such as property. The core design of this feature was flawed and caused a number of downstream
problems. To “pass-through” a classmethod, consider using the __wrapped__ attribute that was added in
Python 3.10. (Contributed by Raymond Hettinger in gh-89519.)

• Remove many APIs (functions, macros, variables) with names prefixed by _Py or _PY (considered as private API).
If your project is affected by one of these removals and you consider that the removed API should remain available,
please open a new issue to request a public C API and add cc @vstinner to the issue to notify Victor Stinner.
(Contributed by Victor Stinner in gh-106320.)

• Remove functions deprecated in Python 3.9:
– PyEval_CallObject(), PyEval_CallObjectWithKeywords(): use
PyObject_CallNoArgs() or PyObject_Call() instead. Warning: PyObject_Call()
positional arguments must be a tuple and must not be NULL, keyword arguments must be a dict or
NULL, whereas removed functions checked arguments type and accepted NULL positional and keyword
arguments. To replace PyEval_CallObjectWithKeywords(func, NULL, kwargs) with
PyObject_Call(), pass an empty tuple as positional arguments using PyTuple_New(0).

– PyEval_CallFunction(): use PyObject_CallFunction() instead.
– PyEval_CallMethod(): use PyObject_CallMethod() instead.
– PyCFunction_Call(): use PyObject_Call() instead.

(Contributed by Victor Stinner in gh-105107.)
• Remove old buffer protocols deprecated in Python 3.0. Use bufferobjects instead.

– PyObject_CheckReadBuffer(): Use PyObject_CheckBuffer() to test if the object
supports the buffer protocol. Note that PyObject_CheckBuffer() doesn’t guarantee that
PyObject_GetBuffer() will succeed. To test if the object is actually readable, see the next exam-
ple of PyObject_GetBuffer().

– PyObject_AsCharBuffer(), PyObject_AsReadBuffer(): PyObject_GetBuffer() and
PyBuffer_Release() instead:

Py_buffer view;
if (PyObject_GetBuffer(obj, &view, PyBUF_SIMPLE) < 0) {

return NULL;
}
// Use `view.buf` and `view.len` to read from the buffer.
// You may need to cast buf as `(const char*)view.buf`.
PyBuffer_Release(&view);

– PyObject_AsWriteBuffer(): Use PyObject_GetBuffer() and PyBuffer_Release()
instead:

Py_buffer view;
if (PyObject_GetBuffer(obj, &view, PyBUF_WRITABLE) < 0) {

return NULL;
}
// Use `view.buf` and `view.len` to write to the buffer.
PyBuffer_Release(&view);

(Contributed by Inada Naoki in gh-85275.)
• Remove the following old functions to configure the Python initialization, deprecated in Python 3.11:

27

https://github.com/python/cpython/issues/63272
https://github.com/python/cpython/issues/89519
https://github.com/python/cpython/issues/106320
https://github.com/python/cpython/issues/105107
https://github.com/python/cpython/issues/85275


– PySys_AddWarnOptionUnicode(): use PyConfig.warnoptions instead.
– PySys_AddWarnOption(): use PyConfig.warnoptions instead.
– PySys_AddXOption(): use PyConfig.xoptions instead.
– PySys_HasWarnOptions(): use PyConfig.xoptions instead.
– PySys_SetArgvEx(): set PyConfig.argv instead.
– PySys_SetArgv(): set PyConfig.argv instead.
– PySys_SetPath(): set PyConfig.module_search_paths instead.
– Py_SetPath(): set PyConfig.module_search_paths instead.
– Py_SetProgramName(): set PyConfig.program_name instead.
– Py_SetPythonHome(): set PyConfig.home instead.
– Py_SetStandardStreamEncoding(): set PyConfig.stdio_encoding instead, and set also
maybe PyConfig.legacy_windows_stdio (on Windows).

– _Py_SetProgramFullPath(): set PyConfig.executable instead.
Use the new PyConfig API of the Python Initialization Configuration instead (PEP 587), added to Python 3.8.
(Contributed by Victor Stinner in gh-105145.)

• Remove the old trashcan macros Py_TRASHCAN_SAFE_BEGIN and Py_TRASHCAN_SAFE_END. They
should be replaced by the new macros Py_TRASHCAN_BEGIN and Py_TRASHCAN_END. The new macros
were added in Python 3.8 and the old macros were deprecated in Python 3.11. (Contributed by Irit Katriel in
gh-105111.)

• Remove PyEval_InitThreads() and PyEval_ThreadsInitialized() functions, dep-
recated in Python 3.9. Since Python 3.7, Py_Initialize() always creates the GIL: calling
PyEval_InitThreads() did nothing and PyEval_ThreadsInitialized() always returned
non-zero. (Contributed by Victor Stinner in gh-105182.)

• Remove PyEval_AcquireLock() and PyEval_ReleaseLock() functions, deprecated in Python 3.2.
They didn’t update the current thread state. They can be replaced with:
– PyEval_SaveThread() and PyEval_RestoreThread();
– low-level PyEval_AcquireThread() and PyEval_RestoreThread();
– or PyGILState_Ensure() and PyGILState_Release().

(Contributed by Victor Stinner in gh-105182.)
• Remove private _PyObject_FastCall() function: use PyObject_Vectorcall() which is available
since Python 3.8 (PEP 590). (Contributed by Victor Stinner in gh-106023.)

• Remove cpython/pytime.h header file: it only contained private functions. (Contributed by Victor Stinner
in gh-106316.)

• Remove _PyInterpreterState_Get() alias to PyInterpreterState_Get() which was kept
for backward compatibility with Python 3.8. The pythoncapi-compat project can be used to get
PyInterpreterState_Get() on Python 3.8 and older. (Contributed by Victor Stinner in gh-106320.)

• The PyModule_AddObject() function is now soft deprecated: PyModule_Add() or
PyModule_AddObjectRef() functions should be used instead. (Contributed by Serhiy Storchaka in
gh-86493.)

28

https://peps.python.org/pep-0587/
https://github.com/python/cpython/issues/105145
https://github.com/python/cpython/issues/105111
https://github.com/python/cpython/issues/105182
https://github.com/python/cpython/issues/105182
https://peps.python.org/pep-0590/
https://github.com/python/cpython/issues/106023
https://github.com/python/cpython/issues/106316
https://github.com/python/pythoncapi-compat/
https://github.com/python/cpython/issues/106320
https://github.com/python/cpython/issues/86493


13.5 Pending Removal in Python 3.14

• Creating immutable types (Py_TPFLAGS_IMMUTABLETYPE) with mutable bases using the C API.
• Global configuration variables:

– Py_DebugFlag: use PyConfig.parser_debug
– Py_VerboseFlag: use PyConfig.verbose
– Py_QuietFlag: use PyConfig.quiet
– Py_InteractiveFlag: use PyConfig.interactive
– Py_InspectFlag: use PyConfig.inspect
– Py_OptimizeFlag: use PyConfig.optimization_level
– Py_NoSiteFlag: use PyConfig.site_import
– Py_BytesWarningFlag: use PyConfig.bytes_warning
– Py_FrozenFlag: use PyConfig.pathconfig_warnings
– Py_IgnoreEnvironmentFlag: use PyConfig.use_environment
– Py_DontWriteBytecodeFlag: use PyConfig.write_bytecode
– Py_NoUserSiteDirectory: use PyConfig.user_site_directory
– Py_UnbufferedStdioFlag: use PyConfig.buffered_stdio
– Py_HashRandomizationFlag: use PyConfig.use_hash_seed and PyConfig.hash_seed
– Py_IsolatedFlag: use PyConfig.isolated
– Py_LegacyWindowsFSEncodingFlag: usePyPreConfig.legacy_windows_fs_encoding
– Py_LegacyWindowsStdioFlag: use PyConfig.legacy_windows_stdio
– Py_FileSystemDefaultEncoding: use PyConfig.filesystem_encoding
– Py_HasFileSystemDefaultEncoding: use PyConfig.filesystem_encoding
– Py_FileSystemDefaultEncodeErrors: use PyConfig.filesystem_errors
– Py_UTF8Mode: use PyPreConfig.utf8_mode (see Py_PreInitialize())

The Py_InitializeFromConfig() API should be used with PyConfig instead.

13.6 Pending Removal in Python 3.15

• PyImport_ImportModuleNoBlock(): use PyImport_ImportModule().
• PyWeakref_GET_OBJECT(): use PyWeakref_GetRef() instead.
• PyWeakref_GetObject(): use PyWeakref_GetRef() instead.
• Py_UNICODE_WIDE type: use wchar_t instead.
• Py_UNICODE type: use wchar_t instead.
• Python initialization functions:

– PySys_ResetWarnOptions(): clear sys.warnoptions and warnings.filters instead.
– Py_GetExecPrefix(): get sys.exec_prefix instead.

29



– Py_GetPath(): get sys.path instead.
– Py_GetPrefix(): get sys.prefix instead.
– Py_GetProgramFullPath(): get sys.executable instead.
– Py_GetProgramName(): get sys.executable instead.
– Py_GetPythonHome(): get PyConfig.home or PYTHONHOME environment variable instead.

13.7 Pending Removal in Future Versions

The following APIs were deprecated in earlier Python versions and will be removed, although there is currently no date
scheduled for their removal.

• Py_TPFLAGS_HAVE_FINALIZE: no needed since Python 3.8.
• PyErr_Fetch(): use PyErr_GetRaisedException().
• PyErr_NormalizeException(): use PyErr_GetRaisedException().
• PyErr_Restore(): use PyErr_SetRaisedException().
• PyModule_GetFilename(): use PyModule_GetFilenameObject().
• PyOS_AfterFork(): use PyOS_AfterFork_Child().
• PySlice_GetIndicesEx().
• PyUnicode_AsDecodedObject().
• PyUnicode_AsDecodedUnicode().
• PyUnicode_AsEncodedObject().
• PyUnicode_AsEncodedUnicode().
• PyUnicode_READY(): not needed since Python 3.12.
• _PyErr_ChainExceptions().
• PyBytesObject.ob_shash member: call PyObject_Hash() instead.
• PyDictObject.ma_version_tag member.
• TLS API:

– PyThread_create_key(): use PyThread_tss_alloc().
– PyThread_delete_key(): use PyThread_tss_free().
– PyThread_set_key_value(): use PyThread_tss_set().
– PyThread_get_key_value(): use PyThread_tss_get().
– PyThread_delete_key_value(): use PyThread_tss_delete().
– PyThread_ReInitTLS(): no longer needed.

• Remove undocumented PY_TIMEOUT_MAX constant from the limited C API. (Contributed by Victor Stinner in
gh-110014.)

30

https://github.com/python/cpython/issues/110014


14 Regression Test Changes

• Python built with configure --with-pydebug now supports a -X presite=package.module
command-line option. If used, it specifies a module that should be imported early in the lifecycle of the inter-
preter, before site.py is executed. (Contributed by Łukasz Langa in gh-110769.)

31

https://github.com/python/cpython/issues/110769


Index
E
environment variable

PYTHON_COLORS, 3
PYTHON_CPU_COUNT, 8
PYTHON_FROZEN_MODULES, 4
PYTHON_HISTORY, 4
PYTHONHOME, 26, 30
PYTHONLEGACYWINDOWSFSENCODING, 13
PYTHONSAFEPATH, 9

P
Python Enhancement Proposals

PEP 587, 28
PEP 590, 28
PEP 594, 18
PEP 602, 3
PEP 626, 15
PEP 702, 11

PYTHON_COLORS, 3
PYTHON_CPU_COUNT, 8
PYTHON_FROZEN_MODULES, 4
PYTHON_HISTORY, 4
PYTHONHOME, 26, 30
PYTHONLEGACYWINDOWSFSENCODING, 13
PYTHONSAFEPATH, 9

R
RFC

RFC 5280, 5

32


	Summary – Release highlights
	New Features
	Improved Error Messages

	Other Language Changes
	New Modules
	Improved Modules
	argparse
	array
	ast
	asyncio
	copy
	dbm
	dis
	dbm
	doctest
	email
	fractions
	glob
	io
	ipaddress
	itertools
	marshal
	mmap
	opcode
	os
	os.path
	pathlib
	pdb
	queue
	re
	sqlite3
	statistics
	subprocess
	sys
	tkinter
	traceback
	typing
	unicodedata
	venv
	warnings
	xml.etree.ElementTree

	Optimizations
	Experimental JIT Compiler
	Deprecated
	Pending Removal in Python 3.14
	Pending Removal in Python 3.15
	Pending Removal in Python 3.16
	Pending Removal in Future Versions

	Removed
	PEP 594: dead batteries
	2to3
	configparser
	importlib
	locale
	logging
	pathlib
	re
	tkinter
	turtle
	typing
	unittest
	urllib
	webbrowser
	Others

	CPython bytecode changes
	Porting to Python 3.13
	Changes in the Python API

	Build Changes
	C API Changes
	New Features
	Porting to Python 3.13
	Deprecated
	Removed
	Pending Removal in Python 3.14
	Pending Removal in Python 3.15
	Pending Removal in Future Versions

	Regression Test Changes
	Index

