Python Setup and Usage
Release 3.12.0rc2

Guido van Rossum and the Python development team

September 18, 2023

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Command line and environment 3
1.1 Commandline e e 3
1.1.1 Imnterface options e 3

1.1.2 0 Generic Options o v v v v e e e e e e e e e e e e e e e e 5

1.1.3 Miscellaneous Options v v v v v v i e e e e e e e e e e e e e e e e e e 6

1.1.4 Options you shouldn’t use 0 i i i e e e e e e e 10

1.2 Environment variables oL 10
1.2.1 Debug-mode variables L e e e 15

2 Using Python on Unix platforms 17
2.1 Getting and installing the latest versionof Python 0oL, 17
211 OnLinuxo e e e e e e 17

2.1.2 OnFreeBSDand OpenBSD e 17

2.2 Building Python L e e e e e e e e 18
2.3 Python-related paths and files L e e 18
24 Miscellaneous e e e e e e 18
25 CustomOpenSSL e 19
3 Configure Python 21
3.1 BuildRequirements L e e 21
3.2 Generated files L e e e e e e e e 21
3.3 Configure Options o i vt e e e e e e e 22
33,0 General OptionS v v v i e 22

3.3.2 WebAssembly Options o o o i e e e e e e e e e e e e e 24

333 Install Options o . e e e e e 24

334 Performance optionsol e 25

33,5 PythonDebugBuild 26

33.6 Debugoptions e e e e e e 27

337 LANKer OptonsS v v v v o e 28

3.3.8 LibrarieS Optionso . e e e e e e e e e e e e e e e e e e 28

3.3.9 Security Options oL e e e e e e e e e e e e e 29
3310 macOSOPLions e 29
3.3.11 Cross Compiling Options o ot v vt e e e e e e 30

34 Python Build System e e e e e e e 31
34.1 Mainfilesof the build system e 31

342 MainbuildSteps e e 31

343 Main Makefile targets L e 31

344 CexXenSIONS . . . v v v v vttt e 31

3.5 Compilerand linkerflags e e e e 32
3.5.1 Preprocessor flags e e e e e 32

3.5.2 Compiler

flags e e e e

3,53 Linkerflags oL e e e e e e e e e

4 Using Python on Windows

4.1 Thefullinstaller e
4.1.1 Installation StEPS . .« . v v o i e e e e e e e e e e e e e e e e e e
4.1.2 Removing the MAX_PATH Limitation
4.1.3 Installing Without UT 0 o e
4.1.4 Installing Without Downloading
4.1.5 Modifyinganinstallo
4.2 The Microsoft Store package e e e e e e e e
421 Knownissues e
4.3 Thenuget.org packages L
4.4 Theembeddable package L e e e e e
4.4.1 Python Application e e e
442 Embedding Python e e e
45 Alternativebundles e
4.6 Configuring Python L o e e e e e
4.6.1 Excursus: Setting environment variables oL oL oL
4.6.2 Finding the Python executable
47 UTF-8mode
4.8 Python Launcher for Windows e e e
4.8.1 Gettingstarted L. L e e e e
482 Shebang Lines e e e e
4.8.3 Argumentsinshebanglines
4.8.4 Customization v vttt e e e e e e e e e e e e e e e e
4.8.5 DIagnostiCS . . . v v i i e
486 DryRun e e e e
4.8.7 Installondemand e
48.8 Returncodes e e e e e
4.9 Findingmodules L e e
4.10 Additional modules L
4.10.1 PyWIn32 e e e
4102 cox_Freeze e
4.11 Compiling Pythonon Windows L o e e
4.12 Other Platforms L e e e
Using Python on a Mac
5.1 Getting and Installing MacPython
5.1.1 HowtorunaPythonscript
5.1.2 Runmningscriptswitha GUL e
5.1.3 0 Configuration L. e e e e e e e e e e e e e e e
52 ThelDE . . . e e
5.3 Installing Additional Python Packages
54 GUIProgrammingonthe Mac e
5.5 Distributing Python Applicationsonthe Mac.
5.6 OtherResources e
Editors and IDEs
Glossary

About these documents
Contributors to the Python Documentation

B.1

37
37
37
39
39
41
41
42
42
43
44
44
45
45
45
45
46
46
47
47
49
50
50
51
52
52
52
52
54
54
54
54
55

57
57
58
58
58
58
58
59
59
59

61

63

77

C History and License 79

C.1
C2

C3

D Copyright

Index

History of the software e e e e e 79
Terms and conditions for accessing or otherwise using Python 80
C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.12.0rc2 80
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 81
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 82
C.24 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 83
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.12.0rc2 DOCUMENTA-
TION . . e e 83
Licenses and Acknowledgements for Incorporated Software 84
C.3.1 Mersenne TWISIET o v v v v e 84
C32 Sockets o o e 85
C.3.3 Asynchronous SOCKEt SEIVICES v v v v v v e et e e e e e e e e e e 85
C.3.4 Cookie management v v vt i e e e e e e e e e e e e e e e e e e 86
C3.5 Executiontracing i e e e e 86
C.3.6 UUencode and UUdecode functions o v v v v i v it e it e i e e e e 87
C3.7 XML Remote Procedure Calls 87
C.3.8 test_epoll e e e e e e e 88
C.3.9 Selectkqueue e e e e e e e 88
C3.10 SipHash24 o e 89
C3.11 strtodand dtoa. o . o e e e e e e e e e e e e e 89
C3.12 OpenSSL . . . o o e 90
C3U13 eXPat. . v o v v e e e e e e e e e e e e e e e e e 93
C3.014 Hbfi . . . e 94
C3.05 zlib . . o o e e 94
C.3.16 cfuhash e e e e 95
C3.17 libmpdec 95
C3.18 WI3CCIANTeSt SUIte . . . v v v vt e e e e e e e e e e e e e e e e e e e 96
C3.19 Audioop o o o e e e 97
99
101

Python Setup and Usage, Release 3.12.0rc2

This part of the documentation is devoted to general information on the setup of the Python environment on different
platforms, the invocation of the interpreter and things that make working with Python easier.

CONTENTS 1

Python Setup and Usage, Release 3.12.0rc2

2 CONTENTS

CHAPTER
ONE

COMMAND LINE AND ENVIRONMENT

The CPython interpreter scans the command line and the environment for various settings.

CPython implementation detail: Other implementations’ command line schemes may differ. See implementations for
further resources.

1.1 Command line

When invoking Python, you may specify any of these options:

’python [-bBdEhiIOgsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

’python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:

¢ When called with standard input connected to a tty device, it prompts for commands and executes them until an
EOF (an end-of-file character, you can produce that with Ct r1-D on UNIX or Ctr1-Z, Enter on Windows)
is read.

* When called with a file name argument or with a file as standard input, it reads and executes a script from that file.

¢ When called with a directory name argument, it reads and executes an appropriately named script from that direc-
tory.

¢ When called with —c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

* When called with -m module-name, the given module is located on the Python module path and executed as a
script.

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end up in
sys.argv — note that the first element, subscript zero (sys.argv [01]), is a string reflecting the program’s source.

Python Setup and Usage, Release 3.12.0rc2

—-c¢ <command>
Execute the Python code in command. command can be one or more statements separated by newlines, with
significant leading whitespace as in normal module code.

If this option is given, the first element of sys.argv will be "—c" and the current directory will be added to the
start of sys.path (allowing modules in that directory to be imported as top level modules).

Raises an auditing event cpython . run_command with argument command.
-m <module—name>
Search sys.path for the named module and execute its contents as the __main___ module.

Since the argument is a module name, you must not give a file extension (. py). The module name should be a valid
absolute Python module name, but the implementation may not always enforce this (e.g. it may allow you to use a
name that includes a hyphen).

Package names (including namespace packages) are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main___ as the main module. This behaviour is
deliberately similar to the handling of directories and zipfiles that are passed to the interpreter as the script argument.

Note: This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source file is
not available.

If this option is given, the first element of sys.argv will be the full path to the module file (while the module file
is being located, the first element will be set to "-m"). As with the —c option, the current directory will be added
to the start of sys.path.

—TI option can be used to run the script in isolated mode where sys . path contains neither the current directory
nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -m timeit -s "setup here" "benchmarked code here"
python -m timeit -h # for details

Raises an auditing event cpython . run_module with argument module—name.

See also:
runpy.run_module () Equivalent functionality directly available to Python code

PEP 338 — Executing modules as scripts
Changed in version 3.1: Supply the package name toruna __main___ submodule.

Changed in version 3.4: namespace packages are also supported

Read commands from standard input (sys . stdin). If standard input is a terminal, -1 is implied.

If this option is given, the first element of sys.argv will be "—" and the current directory will be added to the
start of sys.path.

Raises an auditing event cpython. run_stdin with no arguments.

4 Chapter 1. Command line and environment

https://peps.python.org/pep-0338/

Python Setup and Usage, Release 3.12.0rc2

<script>

Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring to
either a Python file, a directory containinga __main__ .py file, or a zipfile containinga __main__ .py file.

If this option is given, the first element of sys . argv will be the script name as given on the command line.

If the script name refers directly to a Python file, the directory containing that file is added to the start of sys.
path, and the file is executed as the __main___ module.

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
__main__ .py file in that location is executed as the __main__ module.

—TI option can be used to run the script in isolated mode where sys . path contains neither the script’s directory
nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Raises an auditing event cpython . run_file with argument £ilename.

See also:
runpy . run_path () Equivalent functionality directly available to Python code

If no interface option is given, —1 is implied, sys.argv[0] is an empty string (" ") and the current directory will be
added to the start of sys.path. Also, tab-completion and history editing is automatically enabled, if available on your
platform (see rlcompleter-config).

See also:
tut-invoking

Changed in version 3.4: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-2
-h
--help
Print a short description of all command line options and corresponding environment variables and exit.
—--help-env
Print a short description of Python-specific environment variables and exit.
New in version 3.11.
——help—-xoptions
Print a description of implementation-specific —X options and exit.
New in version 3.11.
—-help-all
Print complete usage information and exit.
New in version 3.11.
-V
—--version

Print the Python version number and exit. Example output could be:

Python 3.8.0b2+

1.1. Command line 5

Python Setup and Usage, Release 3.12.0rc2

When given twice, print more information about the build, like:

Python 3.8.0b2+ (3.8:0c076caaa8, Apr 20 2019, 21:55:00)
[GCC 6.2.0 20161005]

New in version 3.6: The —VV option.

1.1.3 Miscellaneous options

-b

Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error when the
option is given twice (—bb).

Changed in version 3.5: Affects comparisons of bytes with int.

If given, Python wont try to write .pyc files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE.

——check-hash-based-pycs default|always|never

Control the validation behavior of hash-based . pyc files. See pyc-invalidation. When set to default, checked
and unchecked hash-based bytecode cache files are validated according to their default semantics. When set to
always, all hash-based .pyc files, whether checked or unchecked, are validated against their corresponding
source file. When set to never, hash-based . pyc files are not validated against their corresponding source files.

The semantics of timestamp-based . pyc files are unaffected by this option.

-d
Turn on parser debugging output (for expert only). See also the PY THONDEBUG environment variable.
This option requires a debug build of Python, otherwise it’s ignored.

-E
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.
See also the —P and - T (isolated) options.

-i
When a script is passed as first argument or the —c option is used, enter interactive mode after executing the script
or the command, even when sys.stdin does not appear to be a terminal. The PYTHONSTARTUP file is not
read.
This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

-I
Run Python in isolated mode. This also implies —£, —P and —s options.
In isolated mode sys.path contains neither the script’s directory nor the user’s site-packages directory. All
PYTHON* environment variables are ignored, too. Further restrictions may be imposed to prevent the user from
injecting malicious code.
New in version 3.4.

-0
Remove assert statements and any code conditional on the value of __debug___. Augment the filename for com-
piled (bytecode) files by adding . opt —1 before the . pyc extension (see PEP 488). See also PYTHONOPTIMI ZE.
Changed in version 3.5: Modify . pyc filenames according to PEP 488.

6 Chapter 1. Command line and environment

https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/

Python Setup and Usage, Release 3.12.0rc2

-00
Do -0 and also discard docstrings. Augment the filename for compiled (bytecode) files by adding . opt -2 before
the . pyc extension (see PEP 488).
Changed in version 3.5: Modify . pyc filenames according to PEP 488.
-p
Don’t prepend a potentially unsafe path to sys.path:
* python -m module command line: Don’t prepend the current working directory.
e python script.py command line: Don’t prepend the script’s directory. If it’s a symbolic link, resolve
symbolic links.
e python —-c code and python (REPL) command lines: Don’t prepend an empty string, which means
the current working directory.
See also the PYTHONSAFEPATH environment variable, and —E and - T (isolated) options.
New in version 3.11.
-q
Don’t display the copyright and version messages even in interactive mode.
New in version 3.2.
-R
Turn on hash randomization. This option only has an effect if the PYTHONHASHSEED environment variable is set
to 0, since hash randomization is enabled by default.
On previous versions of Python, this option turns on hash randomization, so that the __hash__ () values of
str and bytes objects are “salted” with an unpredictable random value. Although they remain constant within an
individual Python process, they are not predictable between repeated invocations of Python.
Hash randomization is intended to provide protection against a denial-of-service caused by carefully chosen inputs
that exploit the worst case performance of a dict construction, O(n?) complexity. See http://ocert.org/advisories/
ocert-2011-003.html for details.
PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.
Changed in version 3.7: The option is no longer ignored.
New in version 3.2.3.
-s
Don’t add the user site-packages directorytosys.path.
See also:
PEP 370 — Per user site-packages directory
-S
Disable the import of the module site and the site-dependent manipulations of sys .path that it entails. Also
disable these manipulations if site is explicitly imported later (call site.main () if you want them to be
triggered).
-u
Force the stdout and stderr streams to be unbuffered. This option has no effect on the stdin stream.
See also PYTHONUNBUFFERED.
Changed in version 3.7: The text layer of the stdout and stderr streams now is unbuffered.
1.1. Command line 7

https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/
http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html
https://peps.python.org/pep-0370/

Python Setup and Usage, Release 3.12.0rc2

-v
Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is
loaded. When given twice (—vv), print a message for each file that is checked for when searching for a module.
Also provides information on module cleanup at exit.

Changed in version 3.10: The site module reports the site-specific paths and . pth files being processed.
See also PYTHONVERBOSE.

-W arg
Warning control. Python’s warning machinery by default prints warning messages to sys.stderr.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those that
are otherwise ignored by default):

-Wdefault # Warn once per call location

-Werror # Convert to exceptions

-Walways # Warn every time

—Wmodule # Warn once per calling module

—-Wonce # Warn once per Python process

-Wignore # Never warn

The action names can be abbreviated as desired and the interpreter will resolve them to the appropriate action name.
For example, —W1i is the same as ~-Wignore.

The full form of argument is:

action:message:category:module:lineno

Empty fields match all values; trailing empty fields may be omitted. For example -W
ignore: :DeprecationWarning ignores all DeprecationWarning warnings.

The action field is as explained above but only applies to warnings that match the remaining fields.

The message field must match the whole warning message; this match is case-insensitive.

The category field matches the warning category (ex: DeprecationWarning). This must be a class name; the
match test whether the actual warning category of the message is a subclass of the specified warning category.
The module field matches the (fully qualified) module name; this match is case-sensitive.

The lineno field matches the line number, where zero matches all line numbers and is thus equivalent to an omitted
line number.

Multiple -7 options can be given; when a warning matches more than one option, the action for the last matching
option is performed. Invalid —7 options are ignored (though, a warning message is printed about invalid options
when the first warning is issued).

Warnings can also be controlled using the PYTHONWARNINGS environment variable and from within a Python
program using the warnings module. For example, the warnings.filterwarnings () function can be
used to use a regular expression on the warning message.

See warning-filter and describing-warning-filters for more details.

-x
Skip the first line of the source, allowing use of non-Unix forms of # ! cmd. This is intended for a DOS specific
hack only.

-X
Reserved for various implementation-specific options. CPython currently defines the following possible values:

e —X faulthandler toenable faulthandler. See also PYTHONFAULTHANDLER.
8 Chapter 1. Command line and environment

Python Setup and Usage, Release 3.12.0rc2

* —-X showrefcount to output the total reference count and number of used memory blocks when the
program finishes or after each statement in the interactive interpreter. This only works on debug builds.

* —-X tracemalloc to start tracing Python memory allocations using the t racemalloc module. By de-
fault, only the most recent frame is stored in a traceback of a trace. Use -X tracemalloc=NFRAME
to start tracing with a traceback limit of NFRAME frames. See tracemalloc.start () and
PYTHONTRACEMALLOC for more information.

e -X int_max_str_digits configures the integer string conversion length limitation. See also
PYTHONINTMAXSTRDIGITS.

e —-X importtime to show how long each import takes. It shows module name, cumulative time (including
nested imports) and self time (excluding nested imports). Note that its output may be broken in multi-
threaded application. Typical usage is python3 -X importtime -c 'import asyncio'. See
also PYTHONPROFILETMPORTTIME.

e —X dev: enable Python Development Mode, introducing additional runtime checks that are too expensive
to be enabled by default.

e —X utf8 enables the Python UTF-8 Mode. —X ut£8=0 explicitly disables Python UTF-8 Mode (even
when it would otherwise activate automatically). See also PYTHONUTF 8.

e —X pycache_prefix=PATH enables writing .pyc files to a parallel tree rooted at the given directory
instead of to the code tree. See also PYTHONPYCACHEPREFIX.

e -X warn_default_encoding issues a EncodingWarning when the locale-specific default encod-
ing is used for opening files. See also PYTHONWARNDEFAULTENCODING.

* -X no_debug_ranges disables the inclusion of the tables mapping extra location information (end line,
start column offset and end column offset) to every instruction in code objects. This is useful when smaller
code objects and pyc files are desired as well as suppressing the extra visual location indicators when the
interpreter displays tracebacks. See also PYTHONNODEBUGRANGES.

e -X frozen_modules determines whether or not frozen modules are ignored by the import machinery.
A value of “on” means they get imported and “off” means they are ignored. The default is “on” if this is an
installed Python (the normal case). If it’s under development (running from the source tree) then the default
is “off”. Note that the “importlib_bootstrap” and “importlib_bootstrap_external” frozen modules are always
used, even if this flag is set to “off”.

e —X perf enables support for the Linux perf profiler. When this option is provided, the perf profiler
will be able to report Python calls. This option is only available on some platforms and will do nothing if
is not supported on the current system. The default value is “off”. See also PYTHONPERFSUPPORT and
perf_profiling.

It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.
Changed in version 3.2: The —X option was added.

New in version 3.3: The -X faulthandler option.

New in version 3.4: The -X showrefcount and -X tracemalloc options.

New in version 3.6: The -X showalloccount option.

New in version 3.7: The -X importtime, -X devand -X ut£8 options.

New in version 3.8: The -X pycache_prefix option. The -X dev option now logs close () exceptions
in io.IO0Base destructor.

Changed in version 3.9: Using —X dev option, check encoding and errors arguments on string encoding and
decoding operations.

The -X showalloccount option has been removed.

1.1. Command line 9

Python Setup and Usage, Release 3.12.0rc2

New in version 3.10: The -X warn_default_encoding option.

Deprecated since version 3.9, removed in version 3.10: The -X oldparser option.
New in version 3.11: The -X no_debug_ranges option.

New in version 3.11: The -X frozen_modules option.

New in version 3.11: The -X int_max_str_digits option.

New in version 3.12: The -X perf option.

1.1.4 Options you shouldn’t use

-J

Reserved for use by Jython.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E or -I. It is customary that command-line switches override environmental variables where there is a conflict.

PYTHONHOME

Change the location of the standard Python libraries. By default, the libraries are searched in prefix/1ib/
pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix are
installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefixand exec_prefix. To specify
different values for these, set PYTHONHOME to prefix: exec_prefix.

PYTHONPATH

Augment the default search path for module files. The format is the same as the shell’s PATH: one or more directory
pathnames separated by os . pathsep (e.g. colons on Unix or semicolons on Windows). Non-existent directories
are silently ignored.

In addition to normal directories, individual PYTHONPATH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.

The default search path is installation dependent, but generally begins with prefix/lib/pythonversion
(see PYTHONHOME above). It is always appended to PYTHONPATH.

An additional directory will be inserted in the search path in front of PYTHONPATH as described above under
Interface options. The search path can be manipulated from within a Python program as the variable sys . path.

PYTHONSAFEPATH

If this is set to a non-empty string, don’t prepend a potentially unsafe path to sys.path: see the —P option for
details.

New in version 3.11.

PYTHONPLATLIBDIR

If this is set to a non-empty string, it overrides the sys.platlibdir value.

New in version 3.9.

10

Chapter 1. Command line and environment

https://www.jython.org/

Python Setup and Usage, Release 3.12.0rc2

PYTHONSTARTUP

If this is the name of a readable file, the Python commands in that file are executed before the first prompt is
displayed in interactive mode. The file is executed in the same namespace where interactive commands are executed
so that objects defined or imported in it can be used without qualification in the interactive session. You can also
change the prompts sys.psl and sys.ps2 and the hook sys.__interactivehook___in this file.

Raises an auditing event cpython . run_startup with the filename as the argument when called on startup.

PYTHONOPTIMIZE

If this is set to a non-empty string it is equivalent to specifying the —O option. If set to an integer, it is equivalent
to specifying —O multiple times.

PYTHONBREAKPOINT

If this is set, it names a callable using dotted-path notation. The module containing the callable will be imported and
then the callable will be run by the default implementation of sys.breakpointhook () which itself is called
by built-in breakpoint (). If not set, or set to the empty string, it is equivalent to the value “pdb.set_trace”.
Setting this to the string “0” causes the default implementation of sys.breakpointhook () to do nothing but
return immediately.

New in version 3.7.

PYTHONDEBUG

If this is set to a non-empty string it is equivalent to specifying the —d option. If set to an integer, it is equivalent
to specifying —d multiple times.

This environment variable requires a debug build of Python, otherwise it’s ignored.
PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the -1 option.

This variable can also be modified by Python code using os . environ to force inspect mode on program termi-
nation.

PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the —u option.
PYTHONVERBOSE

If this is set to a non-empty string it is equivalent to specifying the —v option. If set to an integer, it is equivalent
to specifying —v multiple times.

PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows and macOS.

PYTHONDONTWRITEBYTECODE

If this is set to a non-empty string, Python won’t try to write . pyc files on the import of source modules. This is
equivalent to specifying the —B option.

PYTHONPYCACHEPREFIX

If this is set, Python will write . pyc files in a mirror directory tree at this path, instead of in __pycache___
directories within the source tree. This is equivalent to specifying the —X pycache_prefix=PATH option.

New in version 3.8.

PYTHONHASHSEED

If this variable is not set or set to random, a random value is used to seed the hashes of str and bytes objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the types
covered by the hash randomization.

1.2. Environment variables 11

Python Setup and Usage, Release 3.12.0rc2

Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.

The integer must be a decimal number in the range [0,4294967295]. Specifying the value O will disable hash
randomization.

New in version 3.2.3.

PYTHONINTMAXSTRDIGITS

If this variable is set to an integer, it is used to configure the interpreter’s global integer string conversion length
limitation.

New in version 3.11.

PYTHONIOENCODING

If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in the syntax
encodingname:errorhandler. Both the encodingname and the : errorhandler parts are optional
and have the same meaning as in str.encode ().

For stderr, the : errorhandler part is ignored; the handler will always be 'backslashreplace’.
Changed in version 3.4: The encodingname part is now optional.

Changed in version 3.6: On Windows, the encoding specified by this variable is ignored for interactive console
buffers unless PYTHONLEGACYWINDOWSSTDIOis also specified. Files and pipes redirected through the standard
streams are not affected.

PYTHONNOUSERSITE

If this is set, Python won’t add the user site-packages directorytosys.path.
See also:

PEP 370 — Per user site-packages directory

PYTHONUSERBASE

Defines the user base directory, which is used to compute the path of the user site-packages
directory and installation paths for python -m pip install --user.

See also:

PEP 370 — Per user site-packages directory

PYTHONEXECUTABLE

If this environment variable is set, sys.argv [0] will be set to its value instead of the value got through the C
runtime. Only works on macOS.

PYTHONWARNINGS

This is equivalent to the —w option. If set to a comma separated string, it is equivalent to specifying —» multiple
times, with filters later in the list taking precedence over those earlier in the list.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those that
are otherwise ignored by default):

Warn once per call location
Convert to exceptions

Warn every time

Warn once per calling module
Warn once per Python process
Never warn

See warning-filter and describing-warning-filters for more details.

12

Chapter 1. Command line and environment

https://peps.python.org/pep-0370/
https://peps.python.org/pep-0370/

Python Setup and Usage, Release 3.12.0rc2

PYTHONFAULTHANDLER

If this environment variable is set to a non-empty string, faulthandler.enable () is called at startup: install
a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python traceback. This
is equivalent to —X faulthandler option.

New in version 3.3.

PYTHONTRACEMALLOC

If this environment variable is set to a non-empty string, start tracing Python memory allocations using the
tracemalloc module. The value of the variable is the maximum number of frames stored in a traceback of
a trace. For example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See the t racemalloc.
start () function for more information. This is equivalent to setting the —X tracemalloc option.

New in version 3.4.

PYTHONPROFILEIMPORTTIME

If this environment variable is set to a non-empty string, Python will show how long each import takes. This is
equivalent to setting the —X importtime option.

New in version 3.7.

PYTHONASYNCIODEBUG

If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.
New in version 3.4.

PYTHONMALLOC
Set the Python memory allocators and/or install debug hooks.

Set the family of memory allocators used by Python:
* default: use the default memory allocators.

e malloc: use the malloc () function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

e pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_ORJ domains
and use the malloc () function for the PYMEM_DOMAIN_RAW domain.

Install debug hooks:

* debug: install debug hooks on top of the default memory allocators.

* malloc_debug: same as malloc but also install debug hooks.

* pymalloc_debug: same as pymalloc but also install debug hooks.
Changed in version 3.7: Added the "default" allocator.
New in version 3.6.

PYTHONMALLOCSTATS
If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time a new pymalloc
object arena is created, and on shutdown.

This variable is ignored if the PYTHONMALLOC environment variable is used to force the malloc () allocator
of the C library, or if Python is configured without pymalloc support.

Changed in version 3.6: This variable can now also be used on Python compiled in release mode. It now has no
effect if set to an empty string.

1.2. Environment variables 13

Python Setup and Usage, Release 3.12.0rc2

PYTHONLEGACYWINDOWSFSENCODING

If set to a non-empty string, the default filesystem encoding and error handler mode will revert to their pre-3.6
values of ‘mbcs’ and ‘replace’, respectively. Otherwise, the new defaults ‘utf-8” and ‘surrogatepass’ are used.

This may also be enabled at runtime with sys._enablelegacywindowsfsencoding ().
Availability: Windows.

New in version 3.6: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO

If set to a non-empty string, does not use the new console reader and writer. This means that Unicode characters
will be encoded according to the active console code page, rather than using utf-8.

This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring to console
buffers.

Availability: Windows.

New in version 3.6.

PYTHONCOERCECLOCALE

If set to the value 0, causes the main Python command line application to skip coercing the legacy ASCII-based C
and POSIX locales to a more capable UTF-8 based alternative.

If this variable is not set (or is set to a value other than 0), the LC_ALL locale override environment variable is
also not set, and the current locale reported for the LC_CTYPE category is either the default C locale, or else the
explicitly ASCII-based POSIX locale, then the Python CLI will attempt to configure the following locales for the
LC_CTYPE category in the order listed before loading the interpreter runtime:

e C.UTF-8
e C.utf8
e UTF-8

If setting one of these locale categories succeeds, then the LC_CTYPE environment variable will also be set ac-
cordingly in the current process environment before the Python runtime is initialized. This ensures that in addition
to being seen by both the interpreter itself and other locale-aware components running in the same process (such
as the GNU readline library), the updated setting is also seen in subprocesses (regardless of whether or not
those processes are running a Python interpreter), as well as in operations that query the environment rather than
the current C locale (such as Python’s own locale.getdefaultlocale ()).

Configuring one of these locales (either explicitly or via the above implicit locale coercion) automatically enables
the surrogateescape error handler for sys.stdin and sys.stdout (sys.stderr continues to use
backslashreplace as it does in any other locale). This stream handling behavior can be overridden using
PYTHONIOENCODING as usual.

For debugging purposes, setting PYTHONCOERCECLOCALE=warn will cause Python to emit warning messages
on stderr if either the locale coercion activates, or else if a locale that would have triggered coercion is still active
when the Python runtime is initialized.

Also note that even when locale coercion is disabled, or when it fails to find a suitable target locale, PY THONUTF 8
will still activate by default in legacy ASCII-based locales. Both features must be disabled in order to force the
interpreter to use ASCIT instead of UTF -8 for system interfaces.

Auvailability: Unix.

New in version 3.7: See PEP 538 for more details.

14

Chapter 1. Command line and environment

https://peps.python.org/pep-0529/
https://peps.python.org/pep-0538/

Python Setup and Usage, Release 3.12.0rc2

PYTHONDEVMODE

If this environment variable is set to a non-empty string, enable Python Development Mode, introducing additional
runtime checks that are too expensive to be enabled by default. This is equivalent to setting the —X dev option.

New in version 3.7.

PYTHONUTFS8
If set to 1, enable the Python UTF-8 Mode.

If set to 0, disable the Python UTF-8 Mode.
Setting any other non-empty string causes an error during interpreter initialisation.
New in version 3.7.

PYTHONWARNDEFAULTENCODING

If this environment variable is set to a non-empty string, issue a EncodingWarning when the locale-specific
default encoding is used.

See i0-encoding-warning for details.
New in version 3.10.

PYTHONNODEBUGRANGES

If this variable is set, it disables the inclusion of the tables mapping extra location information (end line, start column
offset and end column offset) to every instruction in code objects. This is useful when smaller code objects and pyc
files are desired as well as suppressing the extra visual location indicators when the interpreter displays tracebacks.

New in version 3.11.

PYTHONPERF SUPPORT

If this variable is set to a nonzero value, it enables support for the Linux perf profiler so Python calls can be
detected by it.

If set to 0, disable Linux perf profiler support.
See also the —~X perf command-line option and perf_profiling.

New in version 3.12.

1.2.1 Debug-mode variables

PYTHONDUMPREF'S

If set, Python will dump objects and reference counts still alive after shutting down the interpreter.
Need Python configured with the ——with-trace-refs build option.
PYTHONDUMPREF SFILE=FILENAME

If set, Python will dump objects and reference counts still alive after shutting down the interpreter into a file called
FILENAME.

Need Python configured with the ——with-trace-refs build option.

New in version 3.11.

1.2. Environment variables 15

Python Setup and Usage, Release 3.12.0rc2

16 Chapter 1. Command line and environment

CHAPTER
TWO

USING PYTHON ON UNIX PLATFORMS

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there are
certain features you might want to use that are not available on your distro’s package. You can easily compile the latest
version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages for
your own distro. Have a look at the following links:

See also:

https://www.debian.org/doc/manuals/maint-guide/first.en.html for Debian users
https://en.opensuse.org/Portal:Packaging for OpenSuse users
https://docs.fedoraproject.org/en-US/package-maintainers/Packaging Tutorial_GNU_Hello/ for Fedora users

https://slackbook.org/html/package-management-making-packages.html for Slackware users

2.1.2 On FreeBSD and OpenBSD

» FreeBSD users, to add the package use:

pkg install python3

* OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your architecture.
—here>/python-<version>.tgz

For example 1386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

17

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs.fedoraproject.org/en-US/package-maintainers/Packaging_Tutorial_GNU_Hello/
https://slackbook.org/html/package-management-making-packages.html

Python Setup and Usage, Release 3.12.0rc2

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the latest
release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)

The build process consists of the usual commands:

./configure
make
make install

Configuration options and caveats for specific Unix platforms are extensively documented in the README.rst file in the
root of the Python source tree.

Warning: make install can overwrite or masquerade the python3 binary. make altinstall is there-
fore recommended instead of make install since it only installs exec_prefix/bin/pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefixand exec_prefix are installation-
dependent and should be interpreted as for GNU software; they may be the same.

For example, on most Linux systems, the default for both is /usr.

File/directory Meaning

exec_prefix/bin/python3 Recommended location of the interpreter.
prefix/lib/pythonversion, Recommended locations of the directories containing the standard
exec_prefix/lib/pythonversion | modules.

prefix/include/pythonversion, Recommended locations of the directories containing the include
exec_prefix/include/ files needed for developing Python extensions and embedding the in-
pythonversion terpreter.

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

’$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is usually

’#]/usr/bin/env python3

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python3 as the interpreter path.

To use shell commands in your Python scripts, look at the subprocess module.

18 Chapter 2. Using Python on Unix platforms

https://www.python.org/downloads/source/
https://devguide.python.org/setup/#get-the-source-code
https://github.com/python/cpython/tree/3.12/README.rst

Python Setup and Usage, Release 3.12.0rc2

2.5

Custom OpenSSL

1. To use your vendor’s OpenSSL configuration and system trust store, locate the directory with openssl.cnf file
or symlink in /etc. On most distribution the file is either in /etc/ssl or /etc/pki/tls. The directory
should also contain a cert . pem file and/or a cert s directory.
$ find /etc/ —name openssl.cnf —-printf "$h\n"

/etc/ssl
2. Download, build, and install OpenSSL. Make sure youuse install_swandnotinstall. The install_sw
target does not override openssl.cnf.
$ curl -O https://www.openssl.org/source/openssl-VERSION.tar.gz
$ tar xzf openssl-VERSION
$ pushd openssl-VERSION
$./config \
——prefix=/usr/local/custom-openssl \
—-libdir=1ib \
—-openssldir=/etc/ssl

$ make -j1 depend

$ make -78

$ make install_sw

$ popd

3. Build Python with custom OpenSSL (see the configure ——with-openssl and ——with-openssl-rpath
options)
$ pushd python-3.x.x
$./configure -C \

——with-openssl=/usr/local/custom-openssl \
—-—with-openssl-rpath=auto \
—-prefix=/usr/local/python-3.x.x
$ make -78
$ make altinstall
Note: Patch releases of OpenSSL have a backwards compatible ABI. You don’t need to recompile Python to update

OpenSSL. It’s sufficient to replace the custom OpenSSL installation with a newer version.

2.5. Custom OpenSSL 19

Python Setup and Usage, Release 3.12.0rc2

20

Chapter 2. Using Python on Unix platforms

CHAPTER
THREE

CONFIGURE PYTHON

3.1 Build Requirements

Features required to build CPython:
* A C11 compiler. Optional C11 features are not required.
* Support for IEEE 754 floating point numbers and floating point Not-a-Number (NaN).
* Support for threads.
e OpenSSL 1.1.1 or newer for the ss1 and hashlib modules.
¢ On Windows, Microsoft Visual Studio 2017 or later is required.

Changed in version 3.11: C11 compiler, IEEE 754 and NaN support are now required. On Windows, Visual Studio 2017
or later is required.

Changed in version 3.10: OpenSSL 1.1.1 is now required.

Changed in version 3.7: Thread support and OpenSSL 1.0.2 are now required.

Changed in version 3.6: Selected C99 features are now required, like <stdint .h>and static inline functions.
Changed in version 3.5: On Windows, Visual Studio 2015 or later is required.

See also PEP 7 “Style Guide for C Code” and PEP 11 “CPython platform support”.

3.2 Generated files

To reduce build dependencies, Python source code contains multiple generated files. Commands to regenerate all gener-
ated files:

make regen-all

make regen-stdlib-module—names
make regen-limited-abi

make regen-configure

The Makefile.pre.in file documents generated files, their inputs, and tools used to regenerate them. Search for
regen-* make targets.

Themake regen-configurecommand runs tiran/cpython_autoconf container for reproducible build; see container
entry.sh script. The container is optional, the following command can be run locally, the generated files depend on
autoconf and aclocal versions:

21

https://en.cppreference.com/w/c/11
https://en.wikipedia.org/wiki/C11_(C_standard_revision)#Optional_features
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/NaN#Floating_point
https://peps.python.org/pep-0007/
https://peps.python.org/pep-0011/
https://github.com/tiran/cpython_autoconf

Python Setup and Usage, Release 3.12.0rc2

’autoreconf -ivf -Werror

3.3 Configure Options

Listall . /configure script options using:

’ ./configure --help

See also the Misc/SpecialBuilds. txt in the Python source distribution.

3.3.1 General Options

——enable-loadable-sqglite—-extensions

Support loadable extensions in the _sglite extension module (default is no).
See the sglite3.Connection.enable_load_extension () method of the sqlite3 module.
New in version 3.6.
——-disable-ipvé6
Disable IPv6 support (enabled by default if supported), see the socket module.

——enable-big-digits=[15]|30]
Define the size in bits of Python int digits: 15 or 30 bits.

By default, the digit size is 30.
Define the PYLONG_BITS_IN_DIGIT to 15 or 30.
See sys.int_info.bits_per_digit.

——with-suffix=SUFFIX
Set the Python executable suffix to SUFFIX.

The default suffix is . exe on Windows and macOS (python . exe executable), . js on Emscripten node, . html
on Emscripten browser, . wasm on WASI, and an empty string on other platforms (python executable).

Changed in version 3.11: The default suffix on WASM platform is one of . js, .html or .wasm.

—--with-tzpath=<1list of absolute paths separated by pathsep>

Select the default time zone search path for zoneinfo.TZPATH. See the Compile-time configuration of the
zoneinfo module.

Default: /usr/share/zoneinfo:/usr/lib/zoneinfo:/usr/share/lib/zoneinfo:/etc/
zoneinfo.

See os.pathsep path separator.
New in version 3.9.

——without-decimal-contextvar

Build the _decimal extension module using a thread-local context rather than a coroutine-local context (default),
see the decimal module.

See decimal.HAVE_CONTEXTVAR and the contextvars module.

New in version 3.9.

22 Chapter 3. Configure Python

Python Setup and Usage, Release 3.12.0rc2

——with-dbmliborder=<list of backend names>
Override order to check db backends for the dbm module

A valid value is a colon (:) separated string with the backend names:
* ndbm;
¢ gdbm;
* bdb.

——without—-c-locale—-coercion
Disable C locale coercion to a UTF-8 based locale (enabled by default).

Don’t define the PY_COERCE_ C_ LOCALE macro.
See PYTHONCOERCECLOCALE and the PEP 538.

——without-freelists

Disable all freelists except the empty tuple singleton.
New in version 3.11.

——with-platlibdir=DIRNAME
Python library directory name (default is 1ib).

Fedora and SuSE use 11b64 on 64-bit platforms.
See sys.platlibdir.
New in version 3.9.
——with-wheel-pkg-dir=PATH
Directory of wheel packages used by the ensurepip module (none by default).

Some Linux distribution packaging policies recommend against bundling dependencies. For example, Fedora
installs wheel packages in the /usr/share/python-wheels/ directory and don’t install the ensurepip.
_bundled package.

New in version 3.10.

——with-pkg—config=[check|yes|no]
Whether configure should use pkg—config to detect build dependencies.

¢ check (default): pkg—config is optional

* yes: pkg—config is mandatory

e no: configure does not use pkg—config even when present
New in version 3.11.

——enable-pystats

Turn on internal statistics gathering.

The statistics will be dumped to a arbitrary (probably unique) file in /tmp/py_stats/, or C:\temp\
py_stats\ on Windows. If that directory does not exist, results will be printed on stdout.

Use Tools/scripts/summarize_stats.py to read the stats.

New in version 3.11.

3.3. Configure Options 23

https://peps.python.org/pep-0538/

Python Setup and Usage, Release 3.12.0rc2

3.3.2 WebAssembly Options

—--with-emscripten-target=[browser|node]

Set build flavor for wasm32-emscripten.
¢ browser (default): preload minimal stdlib, default MEMFS.
* node: NODERAWES and pthread support.

New in version 3.11.

——enable-wasm—-dynamic-linking

Turn on dynamic linking support for WASM.

Dynamic linking enables d1open. File size of the executable increases due to limited dead code elimination and
additional features.

New in version 3.11.

——enable-wasm—-pthreads

Turn on pthreads support for WASM.

New in version 3.11.

3.3.3 Install Options

——prefix=PREFIX
Install architecture-independent files in PREFIX. On Unix, it defaults to /usr/local.

This value can be retrieved at runtime using sys .prefix.
As an example, one can use ——prefix="$HOME/.local/" to install a Python in its home directory.

——exec-prefix=EPREFIX
Install architecture-dependent files in EPREFIX, defaults to ——prefix.

This value can be retrieved at runtime using sys .exec_prefix.

——disable-test—-modules

Don’t build nor install test modules, like the test package or the _testcapi extension module (built and
installed by default).

New in version 3.10.

——with-ensurepip=[upgrade|install|no]

Select the ensurepip command run on Python installation:
e upgrade (default): run python -m ensurepip --altinstall --upgrade command.
e install:run python -m ensurepip —--altinstall command;
* no: don’t run ensurepip;

New in version 3.6.

24 Chapter 3. Configure Python

Python Setup and Usage, Release 3.12.0rc2

3.3.4 Performance options

Configuring Python using ——enable-optimizations —--with-1to (PGO + LTO) is recommended for best

performance. The experimental -—enable-bolt flag can also be used to improve performance.

——enable-optimizations
Enable Profile Guided Optimization (PGO) using PROFILE_TASK (disabled by default).

The C compiler Clang requires 1 lvm-profdata program for PGO. On macOS, GCC also requires it: GCC is

just an alias to Clang on macOS.

Disable also semantic interposition in libpython if —--enable-shared and GCC is used:
—-fno-semantic-interposition to the compiler and linker flags.

New in version 3.6.
Changed in version 3.10: Use —~fno-semantic-interposition on GCC.

PROFILE_TASK

Environment variable used in the Makefile: Python command line arguments for the PGO generation task.
Default: -m test --pgo ——-timeout=$ (TESTTIMEOUT).
New in version 3.8.

——with-1lto=[full|thin|no|yes]
Enable Link Time Optimization (LTO) in any build (disabled by default).

add

The C compiler Clang requires 1 1vm-ar for LTO (ar on macOS), as well as an LTO-aware linker (1d.gold

or 11d).
New in version 3.6.

New in version 3.11: To use ThinLTO feature, use ——with-1to=thin on Clang.

Changed in version 3.12: Use ThinLTO as the default optimization policy on Clang if the compiler accepts the

flag.
—-—enable-bolt
Enable usage of the BOLT post-link binary optimizer (disabled by default).

BOLT is part of the LLVM project but is not always included in their binary distributions. This flag requires that
llvm-bolt and merge-fdata are available.

BOLT is still a fairly new project so this flag should be considered experimental for now. Because this tool operates
on machine code its success is dependent on a combination of the build environment + the other optimization
configure args + the CPU architecture, and not all combinations are supported. BOLT versions before LLVM 16
are known to crash BOLT under some scenarios. Use of LLVM 16 or newer for BOLT optimization is strongly
encouraged.

The BOLT_INSTRUMENT_FLAGS and BOLT_APPLY_FLAGS configure variables can be defined to over-
ride the default set of arguments for 11vm-bolt to instrument and apply BOLT data to binaries, respectively.

New in version 3.12.

——with-computed—-gotos

Enable computed gotos in evaluation loop (enabled by default on supported compilers).

——without-pymalloc

Disable the specialized Python memory allocator pymalloc (enabled by default).

See also PYTHONMALLOC environment variable.

3.3. Configure Options 25

https://github.com/llvm/llvm-project/tree/main/bolt

Python Setup and Usage, Release 3.12.0rc2

——without-doc-strings

Disable static documentation strings to reduce the memory footprint (enabled by default). Documentation strings
defined in Python are not affected.

Don’t define the WITH_DOC_STRINGS macro.
See the PyDoc_STRVAR () macro.

——enable-profiling

Enable C-level code profiling with gprof (disabled by default).

——with-strict-overflow

Add -fstrict-overflow tothe C compiler flags (by default we add ~fno-strict-overflow instead).

3.3.5 Python Debug Build

A debug build is Python built with the ——with-pydebug configure option.
Effects of a debug build:
* Display all warnings by default: the list of default warning filters is empty in the warnings module.
e Adddto sys.abiflags.
* Add sys.gettotalrefcount () function.
* Add -X showrefcount command line option.
¢ Add —d command line option and PYTHONDEBUG environment variable to debug the parser.

e Add support for the __11ltrace__ variable: enable low-level tracing in the bytecode evaluation loop if the
variable is defined.

* Install debug hooks on memory allocators to detect buffer overflow and other memory errors.
¢ Define Py_DEBUG and Py_REF_DEBUG macros.

¢ Add runtime checks: code surrounded by #ifdef Py_DEBUG and #endif. Enable assert (...) and
_PyObject_ASSERT (...) assertions: don’t set the NDEBUG macro (see also the ——with-assertions
configure option). Main runtime checks:

— Add sanity checks on the function arguments.

— Unicode and int objects are created with their memory filled with a pattern to detect usage of uninitialized
objects.

— Ensure that functions which can clear or replace the current exception are not called with an exception raised.
— Check that deallocator functions don’t change the current exception.
— The garbage collector (gc.collect () function) runs some basic checks on objects consistency.

— The Py_SAFE_DOWNCAST () macro checks for integer underflow and overflow when downcasting from
wide types to narrow types.

See also the Python Development Mode and the ——with-trace—-refs configure option.

Changed in version 3.8: Release builds and debug builds are now ABI compatible: defining the Py_DEBUG macro no
longer implies the Py_ TRACE_REF S macro (see the ——with—-trace—refs option), which introduces the only ABI
incompatibility.

26 Chapter 3. Configure Python

Python Setup and Usage, Release 3.12.0rc2

3.3.6 Debug options

—--with-pydebug
Build Python in debug mode: define the Py_DEBUG macro (disabled by default).

—--with-trace-refs
Enable tracing references for debugging purpose (disabled by default).

Effects:
¢ Define the Py_TRACE_REF'S macro.
¢ Add sys.getobjects () function.
e Add PYTHONDUMPREF S environment variable.

This build is not ABI compatible with release build (default build) or debug build (Py_DEBUG and
Py_REF_DEBUG macros).

New in version 3.8.

——with-assertions
Build with C assertions enabled (default is no): assert (...); and _PyObject_ASSERT (...) ;.

If set, the NDEBUG macro is not defined in the OP T compiler variable.
See also the ——with-pydebug option (debug build) which also enables assertions.
New in version 3.6.
—-with-valgrind
Enable Valgrind support (default is no).

—--with-dtrace
Enable DTrace support (default is no).

See Instrumenting CPython with DTrace and SystemTap.
New in version 3.6.

——with—-address—sanitizer

Enable AddressSanitizer memory error detector, asan (default is no).
New in version 3.6.

—-with-memory-sanitizer

Enable MemorySanitizer allocation error detector, msan (default is no).
New in version 3.6.

——with-undefined-behavior-sanitizer

Enable UndefinedBehaviorSanitizer undefined behaviour detector, ubsan (default is no).

New in version 3.6.

3.3. Configure Options 27

Python Setup and Usage, Release 3.12.0rc2

3.3.7 Linker options

——enable-shared
Enable building a shared Python library: 1ibpython (default is no).

——without-static-libpython
Do not build 1 ibpythonMAJOR.MINOR. a and do not install python . o (built and enabled by default).

New in version 3.10.

3.3.8 Libraries options

——with-1libs="1ibl ...'
Link against additional libraries (default is no).

--with-system—-expat
Build the pyexpat module using an installed expat library (default is no).

--with-system-libmpdec
Build the _decimal extension module using an installed mpdec library, see the decimal module (default is
no).

New in version 3.3.

——with-readline=editline

Use editline library for backend of the readline module.
Define the WITH_EDITLINE macro.
New in version 3.10.

——without-readline
Don’t build the readline module (built by default).

Don’t define the HAVE_LIBREADLINE macro.
New in version 3.10.

—--with-1ibm=STRING
Override 11ibm math library to STRING (default is system-dependent).

—--with-1ibc=STRING

Override 1ibc C library to STRING (default is system-dependent).
—-with-openssl=DIR

Root of the OpenSSL directory.

New in version 3.7.

——with-openssl-rpath=[no|auto|DIR]
Set runtime library directory (rpath) for OpenSSL libraries:

* no (default): don’t set rpath;
e auto: auto-detect rpath from ——with-openssl and pkg-config;
e DIR: set an explicit rpath.

New in version 3.10.

28 Chapter 3. Configure Python

Python Setup and Usage, Release 3.12.0rc2

3.3.9 Security Options

——with-hash—-algorithm=[fnv|siphashl3|siphash24]
Select hash algorithm for use in Python/pyhash.c:

¢ siphash13 (default);
* siphash24;
e fnv.
New in version 3.4.
New in version 3.11: siphash13 is added and it is the new default.

——with-builtin-hashlib-hashes=md5, shal, sha256, sha512, sha3,blake2

Built-in hash modules:
e md>5;
e shal;
* sha256;
e shab512;
e sha3 (with shake);
* blake2.
New in version 3.9.

——with-ssl-default-suites=[python|openssl|STRING]
Override the OpenSSL default cipher suites string:

* python (default): use Python’s preferred selection;
e openssl: leave OpenSSL’s defaults untouched;
* STRING: use a custom string

See the ss1 module.

New in version 3.7.

Changed in version 3.10: The settings python and STRING also set TLS 1.2 as minimum protocol version.

3.3.10 macOS Options

See Mac/README . rst.
——enable-universalsdk

——enable—universalsdk=SDKDIR

Create a universal binary build. SDKDIR specifies which macOS SDK should be used to perform the build (default
is no).

——enable-framework

——enable—-framework=INSTALLDIR

Create a Python.framework rather than a traditional Unix install. Optional INSTALLDIR specifies the installation
path (default is no).

3.3. Configure Options 29

Python Setup and Usage, Release 3.12.0rc2

——with—universal—-archs=ARCH

Specify the kind of universal binary that should be created. This option
——enable-universalsdk is set.

Options:
e universal?2;
e 32-bit;
* 64-bit;
* 3-way;
e intel;
e intel-32;
e intel-64;
e all.

——with-framework—name=FRAMEWORK

is only valid when

Specify the name for the python framework on macOS only valid when —-enable-framework is set (default:

Python).

3.3.11 Cross Compiling Options

Cross compiling, also known as cross building, can be used to build Python for another CPU architecture or platform.

Cross compiling requires a Python interpreter for the build platform. The version of the build
version of the cross compiled host Python.

——build=BUILD

configure for building on BUILD, usually guessed by config.guess.
——host=HOST

cross-compile to build programs to run on HOST (target platform)
——with-build-python=path/to/python

path to build python binary for cross compiling

New in version 3.11.
CONFIG_SITE=file

An environment variable that points to a file with configure overrides.

Example config.site file:

Python must match the

config.site—aarché64
ac_cv_buggy_getaddrinfo=no
ac_cv_file__dev_ptmx=yes
ac_cv_file__dev_ptc=no

Cross compiling example:

CONFIG_SITE=config.site-aarch64 ../configure \
--build=x86_64-pc-linux—gnu \
——host=aarch64-unknown-linux—gnu \
——with-build-python=../x86_64/python

30 Chapter 3

. Configure Python

Python Setup and Usage, Release 3.12.0rc2

3.4 Python Build System

3.4.1 Main files of the build system

e configure.ac=>configure;
* Makefile.pre.in=>Makefile (created by configure);
e pyconfig.h (created by configure);

* Modules/Setup: C extensions built by the Makefile using Module/makesetup shell script;

3.4.2 Main build steps

¢ Cfiles (. c) are built as object files (. 0).
e Astatic libpython library (. a) is created from objects files.
e python.o and the static 1 ibpython library are linked into the final python program.

» C extensions are built by the Makefile (see Modules/Setup).

3.4.3 Main Makefile targets

* make: Build Python with the standard library.
* make platform:: build the python program, but don’t build the standard library extension modules.

* make profile-opt: build Python using Profile Guided Optimization (PGO). You can use the configure
——enable-optimizations option to make this the default target of the make command (make all or
just make).

* make buildbottest: Build Python and run the Python test suite, the same way than buildbots test Python.
Set TESTTIMEOUT variable (in seconds) to change the test timeout (1200 by default: 20 minutes).

e make install: Build and install Python.

* make regen-all: Regenerate (almost) all generated files; make regen-stdlib-module-names and
autoconf must be run separately for the remaining generated files.

e make clean: Remove built files.

* make distclean: Same than make clean, but remove also files created by the configure script.

3.4.4 C extensions

Some C extensions are built as built-in modules, like the sys module. They are built with the
Py_BUILD_CORE_BUILTIN macro defined. Built-in modules have no __file_ attribute:

>>> import sys

>>> sys
<module 'sys' (built-in)>
>>> sys.__ _file
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'sys' has no attribute '__ _file_ '

3.4. Python Build System 31

Python Setup and Usage, Release 3.12.0rc2

Other C extensions are built as dynamic libraries, like the _asyncio module. They are built with the
Py_BUILD_CORE_MODULE macro defined. Example on Linux x86-64:

>>> import _asyncio

>>> _asyncio

<module '_asyncio' from '/usr/lib64/python3.9/1lib-dynload/_asyncio.cpython-39-x86_64—
—linux—-gnu.so'>

>>> _asyncio. file
'/usr/lib64/python3.9/1ib-dynload/_asyncio.cpython-39-x86_64-1inux—-gnu.so'

Modules/Setup is used to generate Makefile targets to build C extensions. At the beginning of the files, C extensions
are built as built-in modules. Extensions defined after the * shared* marker are built as dynamic libraries.

The PyAPI_FUNC (),PyAPI_DATA () and PyMODINIT_FUNC macros of Include/pyport .h are defined dif-
ferently depending if the Py_ BUILD_CORE_MODULE macro is defined:

e Use Py_EXPORTED_SYMBOL if the Py_BUILD_CORE_MODULE is defined
e Use Py_IMPORTED_SYMBOL otherwise.

If the Py_BUILD_CORE_BUILTIN macro is used by mistake on a C extension built as a shared library, its
PyInit_xxx () function is not exported, causing an ImportError on import.

3.5 Compiler and linker flags

Options set by the . /configure script and environment variables and used by Makefile.

3.5.1 Preprocessor flags

CONFIGURE_CPPFLAGS
Value of CPPFLAGS variable passed to the . /configure script.
New in version 3.6.

CPPFLAGS

(Objective) C/C++ preprocessor flags, e.g. ~-I<include dir> if you have headers in a nonstandard directory
<include dir>.

Both CPPFLAGS and LDFLAGS need to contain the shell’s value to be able to build extension modules using the
directories specified in the environment variables.

BASECPPFLAGS
New in version 3.4.
PY_CPPFLAGS
Extra preprocessor flags added for building the interpreter object files.

Default: $ (BASECPPFLAGS) -I. —-IS$(srcdir)/Include $(CONFIGURE_CPPFLAGS)
S (CPPFLAGS).

New in version 3.2.

32 Chapter 3. Configure Python

Python Setup and Usage, Release 3.12.0rc2

3.5.2 Compiler flags

cC

C compiler command.
Example: gcc -pthread.
CXX

C++ compiler command.
Example: g++ —-pthread.

CFLAGS
C compiler flags.

CFLAGS_NODIST

CFLAGS_NODIST is used for building the interpreter and stdlib C extensions. Use it when a compiler flag should
not be part of CFLAGS once Python is installed (gh-65320).

In particular, CFLAGS should not contain:

 the compiler flag —I (for setting the search path for include files). The —TI flags are processed from left to
right, and any flags in CFLAGS would take precedence over user- and package-supplied —T flags.

* hardening flags such as ~-Werror because distributions cannot control whether packages installed by users
conform to such heightened standards.

New in version 3.5.

COMPILEALL_OPTS
Options passed to the compileall command line when building PYC files inmake install. Default: —70.

New in version 3.12.

EXTRA_CFLAGS
Extra C compiler flags.

CONFIGURE_CFLAGS
Value of CFLAGS variable passed to the . /configure script.

New in version 3.2.

CONFIGURE_CFLAGS_NODIST
Value of CFLAGS_NODIST variable passed to the . /configure script.

New in version 3.5.

BASECFLAGS

Base compiler flags.
OPT
Optimization flags.
CFLAGS_ALIASING
Strict or non-strict aliasing flags used to compile Python/dtoa.c.

New in version 3.7.

CCSHARED
Compiler flags used to build a shared library.

For example, —~£PIC is used on Linux and on BSD.

3.5. Compiler and linker flags 33

https://github.com/python/cpython/issues/65320

Python Setup and Usage, Release 3.12.0rc2

CFLAGSFORSHARED
Extra C flags added for building the interpreter object files.

Default: $ (CCSHARED) when ——enable-shared is used, or an empty string otherwise.

PY_CFLAGS
Default: $ (BASECFLAGS) $ (OPT) $(CONFIGURE_CFLAGS) $(CFLAGS) $ (EXTRA_CFLAGS).

PY_CFLAGS_NODIST

Default: S (CONFIGURE_CFLAGS_NODIST) $(CFLAGS_NODIST) -IS$(srcdir)/Include/
internal.

New in version 3.5.

PY_STDMODULE_CFLAGS
C flags used for building the interpreter object files.

Default: $ (PY_CFLAGS) $(PY_CFLAGS_NODIST) $(PY_CPPFLAGS) $ (CFLAGSFORSHARED).
New in version 3.7.

PY_CORE_CFLAGS
Default: $ (PY_STDMODULE_CFLAGS) -DPy_BUILD_CORE.

New in version 3.2.

PY_BUILTIN MODULE_CFLAGS
Compiler flags to build a standard library extension module as a built-in module, like the posix module.

Default: $ (PY_STDMODULE_CFLAGS) -DPy_BUILD_CORE_BUILTIN.
New in version 3.8.

PURIFY

Purify command. Purify is a memory debugger program.

Default: empty string (not used).

3.5.3 Linker flags

LINKCC
Linker command used to build programs like python and _testembed.

Default: $ (PURIFY) $(CC).

CONFIGURE_LDFLAGS
Value of LDFLAGS variable passed to the . /configure script.

Avoid assigning CFLAGS, LDFLAGS, etc. so users can use them on the command line to append to these values
without stomping the pre-set values.

New in version 3.2.

LDFLAGS_NODIST

LDFLAGS_NODIST is used in the same manner as CFFLAGS_NODIST. Use it when a linker flag should not be
part of LDFLAGS once Python is installed (gh-65320).

In particular, ZLDF'LAGS should not contain:

¢ the compiler flag —L (for setting the search path for libraries). The —L flags are processed from left to right,
and any flags in LDFLAGS would take precedence over user- and package-supplied —L flags.

34 Chapter 3. Configure Python

https://github.com/python/cpython/issues/65320

Python Setup and Usage, Release 3.12.0rc2

CONFIGURE_LDFLAGS_NODIST
Value of LDFLAGS_NODIST variable passed to the . /configure script.

New in version 3.8.

LDFLAGS

Linker flags, e.g. ~-L<1ib dir> if you have libraries in a nonstandard directory <1ib dir>.

Both CPPFLAGS and LDFLAGS need to contain the shell’s value to be able to build extension modules using the
directories specified in the environment variables.

LIBS

Linker flags to pass libraries to the linker when linking the Python executable.
Example: -1rt.

LDSHARED
Command to build a shared library.

Default: RLDSHAREDQ@ $ (PY_LDFLAGS).

BLDSHARED
Command to build 1ibpython shared library.

Default: @BLDSHAREDQ@ $ (PY_CORE_LDFLAGS).

PY_LDFLAGS
Default: $ (CONFIGURE_LDFLAGS) $ (LDFLAGS).

PY_LDFLAGS_NODIST
Default: $ (CONFIGURE_LDFLAGS_NODIST) $ (LDFLAGS_NODIST).

New in version 3.8.

PY_CORE_LDFLAGS
Linker flags used for building the interpreter object files.

New in version 3.8.

3.5. Compiler and linker flags 35

Python Setup and Usage, Release 3.12.0rc2

36

Chapter 3. Configure Python

CHAPTER
FOUR

USING PYTHON ON WINDOWS

This document aims to give an overview of Windows-specific behaviour you should know about when using Python on
Microsoft Windows.

Unlike most Unix systems and services, Windows does not include a system supported installation of Python. To make
Python available, the CPython team has compiled Windows installers (MSI packages) with every release for many years.
These installers are primarily intended to add a per-user installation of Python, with the core interpreter and library being
used by a single user. The installer is also able to install for all users of a single machine, and a separate ZIP file is available
for application-local distributions.

As specified in PEP 11, a Python release only supports a Windows platform while Microsoft considers the platform under
extended support. This means that Python 3.12 supports Windows 8.1 and newer. If you require Windows 7 support,
please install Python 3.8.

There are a number of different installers available for Windows, each with certain benefits and downsides.
The full installer contains all components and is the best option for developers using Python for any kind of project.

The Microsoft Store package is a simple installation of Python that is suitable for running scripts and packages, and
using IDLE or other development environments. It requires Windows 10 and above, but can be safely installed without
corrupting other programs. It also provides many convenient commands for launching Python and its tools.

The nuget.org packages are lightweight installations intended for continuous integration systems. It can be used to build
Python packages or run scripts, but is not updateable and has no user interface tools.

The embeddable package is a minimal package of Python suitable for embedding into a larger application.

4.1 The full installer

4.1.1 Installation steps

Four Python 3.12 installers are available for download - two each for the 32-bit and 64-bit versions of the interpreter.
The web installer is a small initial download, and it will automatically download the required components as necessary.
The offline installer includes the components necessary for a default installation and only requires an internet connection
for optional features. See Installing Without Downloading for other ways to avoid downloading during installation.

After starting the installer, one of two options may be selected:

37

https://www.python.org/download/releases/
https://peps.python.org/pep-0011/

Python Setup and Usage, Release 3.12.0rc2

B3 Python 3.8.0 (64-bit) Setup — X

Install Python 3.8.0 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

¥ Install Now
ChUsers\ 4l AppDatatLocal\Programs' Python'\ Python38

Includes IDLE, pip and documentation
Creates shortcuts and file associations

= Customize installation
Chooze location and features

python
for Install launcher for all users (recommended)

Wiﬂd()WS (] Add Python 3.8 to PATH Cancel

If you select “Install Now”:

You will not need to be an administrator (unless a system update for the C Runtime Library is required or you
install the Python Launcher for Windows for all users)

Python will be installed into your user directory

The Python Launcher for Windows will be installed according to the option at the bottom of the first page
The standard library, test suite, launcher and pip will be installed

If selected, the install directory will be added to your PATH

Shortcuts will only be visible for the current user

Selecting “Customize installation” will allow you to select the features to install, the installation location and other options
or post-install actions. To install debugging symbols or binaries, you will need to use this option.

To perform an all-users installation, you should select “Customize installation”. In this case:

You may be required to provide administrative credentials or approval

Python will be installed into the Program Files directory

The Python Launcher for Windows will be installed into the Windows directory
Optional features may be selected during installation

The standard library can be pre-compiled to bytecode

If selected, the install directory will be added to the system PATH

Shortcuts are available for all users

38

Chapter 4. Using Python on Windows

Python Setup and Usage, Release 3.12.0rc2

4.1.2 Removing the MAX_PATH Limitation

Windows historically has limited path lengths to 260 characters. This meant that paths longer than this would not resolve

and errors would result.

In the latest versions of Windows, this limitation can be expanded to approximately 32,000 characters. Your administrator
will need to activate the “Enable Win32 long paths” group policy, or set LongPathsEnabled to 1 in the registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem.

This allows the open () function, the os module and most other path functionality to accept and return paths longer

than 260 characters.

After changing the above option, no further configuration is required.

Changed in version 3.6: Support for long paths was enabled in Python.

4.1.3 Installing Without Ul

All of the options available in the installer U can also be specified from the command line, allowing scripted installers to
replicate an installation on many machines without user interaction. These options may also be set without suppressing
the Ul in order to change some of the defaults.

The following options (found by executing the installer with / ?) can be passed into the installer:

Name

Description

/passive

to display progress without requiring user interaction

/quiet

to install/uninstall without displaying any UI

/simple

to prevent user customization

/uninstall

to remove Python (without confirmation)

/layout [directory]

to pre-download all components

/log [filename]

to specify log files location

All other options are passed as name=value, where the value is usually 0 to disable a feature, 1 to enable a feature, or
a path. The full list of available options is shown below.

4.1. The full installer

39

Python Setup and Usage, Release 3.12.0rc2

chhide toold

Name Description Default
InstallAl- | Perform a system-wide installa- | O
1Users tion.
Target- The installation directory Selected based on InstallAllUsers
Dir
Default- The default installation directory | $ProgramFiles%\Python X.Y or
AllUser- | for all-user installs $ProgramFiles (x86) $\Python X.Y
sTarget-
Dir
De- The default install directory for | $LocalAppData%\Programs\Python\PythonXY or
faultJust- | just-for-me installs $LocalAppData%\Programs\Python\PythonXY-32 or
ForMeTar- $LocalAppData%$\Programs\Python\PythonXY-64
getDir
Default- The default custom install direc- | (empty)
Custom- | tory displayed in the Ul
Target-
Dir
Associ- Create file associations if the | 1
ateFiles launcher is also installed.
Com- Compile all . py files to . pyc. 0
pileAll
Prepend- | Prepend install and Scripts direc- | O
Path tories to PATH and add .PY to
PATHEXT
Append- | Append install and Scripts direc- | 0
Path tories to PATH and add .PY to
PATHEXT
Shortcuts | Create shortcuts for the inter- | 1
preter, documentation and IDLE
if installed.
In- Install Python manual 1
clude_doc
In- Install debug binaries 0
clude_debug
In- Install developer headers and li- | 1
clude_dev | braries. Omitting this may lead to
an unusable installation.
In- Install python . exe and related | 1
clude_exe | files. Omitting this may lead to an
unusable installation.
In- Install Python Launcher for Win- | 1
clude_launchéows.
Install- Installs the launcher for | 1
Launcher- | all users. Also requires
AllUsers Include_launcher to
be set to 1
In- Install standard library and exten- | 1
clude_lib | sion modules. Omitting this may
lead to an unusable installation.
In- Install bundled pip and setuptools | 1
clude_pip
In- Install debugging symbols (*. | O
clude_symbaotsdb)
In- Install Tcl/Tk support and IDLE | 1
Aﬁlude_tcltk Chapt 1. Usi Pyl Wind
" In- Install standard library test suite 1 b)
clude_test
In- Install utility scripts 1

Python Setup and Usage, Release 3.12.0rc2

For example, to silently install a default, system-wide Python installation, you could use the following command (from an
elevated command prompt):

python-3.9.0.exe /quiet InstallAllUsers=1 PrependPath=1 Include_test=0

To allow users to easily install a personal copy of Python without the test suite, you could provide a shortcut with the
following command. This will display a simplified initial page and disallow customization:

python-3.9.0.exe InstallAllUsers=0 Include_launcher=0 Include_test=0
SimpleInstall=1 SimplelInstallDescription="Just for me, no test suite."

(Note that omitting the launcher also omits file associations, and is only recommended for per-user installs when there is
also a system-wide installation that included the launcher.)

The options listed above can also be provided in a file named unattend.xml alongside the executable. This file
specifies a list of options and values. When a value is provided as an attribute, it will be converted to a number if possible.
Values provided as element text are always left as strings. This example file sets the same options as the previous example:

<Options>

<Option Name="InstallAllUsers" Value="no" />

<Option Name="Include_launcher" Value="0" />

<Option Name="Include_test" Value="no" />

<Option Name="SimpleInstall" Value="yes" />

<Option Name="SimplelInstallDescription">Just for me, no test suite</Option>
</Options>

4.1.4 Installing Without Downloading

As some features of Python are not included in the initial installer download, selecting those features may require an
internet connection. To avoid this need, all possible components may be downloaded on-demand to create a complete
layout that will no longer require an internet connection regardless of the selected features. Note that this download may
be bigger than required, but where a large number of installations are going to be performed it is very useful to have a
locally cached copy.

Execute the following command from Command Prompt to download all possible required files. Remember to substitute
python—-3.9.0.exe for the actual name of your installer, and to create layouts in their own directories to avoid
collisions between files with the same name.

python-3.9.0.exe /layout [optional target directory]

You may also specify the /quiet option to hide the progress display.

4.1.5 Modifying an install

Once Python has been installed, you can add or remove features through the Programs and Features tool that is part of
Windows. Select the Python entry and choose “Uninstall/Change” to open the installer in maintenance mode.

“Modify” allows you to add or remove features by modifying the checkboxes - unchanged checkboxes will not install or
remove anything. Some options cannot be changed in this mode, such as the install directory; to modify these, you will
need to remove and then reinstall Python completely.

“Repair” will verify all the files that should be installed using the current settings and replace any that have been removed
or modified.

“Uninstall” will remove Python entirely, with the exception of the Python Launcher for Windows, which has its own entry
in Programs and Features.

4.1. The full installer 41

Python Setup and Usage, Release 3.12.0rc2

4.2 The Microsoft Store package

New in version 3.7.2.

The Microsoft Store package is an easily installable Python interpreter that is intended mainly for interactive use, for
example, by students.

To install the package, ensure you have the latest Windows 10 updates and search the Microsoft Store app for “Python
3.12”. Ensure that the app you select is published by the Python Software Foundation, and install it.

Warning: Python will always be available for free on the Microsoft Store. If you are asked to pay for it, you have
not selected the correct package.

After installation, Python may be launched by finding it in Start. Alternatively, it will be available from any Command
Prompt or PowerShell session by typing python. Further, pip and IDLE may be used by typing pip or idle. IDLE
can also be found in Start.

All three commands are also available with version number suffixes, for example, as python3.exe and python3.x.
exe as well as python.exe (where 3. x is the specific version you want to launch, such as 3.12). Open “Manage App
Execution Aliases” through Start to select which version of Python is associated with each command. It is recommended
to make sure that pip and idle are consistent with whichever version of python is selected.

Virtual environments can be created with python -m venv and activated and used as normal.

If you have installed another version of Python and added it to your PATH variable, it will be available as python.exe
rather than the one from the Microsoft Store. To access the new installation, use python3.exe orpython3.x.exe.

The py . exe launcher will detect this Python installation, but will prefer installations from the traditional installer.

To remove Python, open Settings and use Apps and Features, or else find Python in Start and right-click to select Uninstall.
Uninstalling will remove all packages you installed directly into this Python installation, but will not remove any virtual
environments

4.2.1 Known issues
Redirection of local data, registry, and temporary paths

Because of restrictions on Microsoft Store apps, Python scripts may not have full write access to shared locations such as
TEMP and the registry. Instead, it will write to a private copy. If your scripts must modify the shared locations, you will
need to install the full installer.

At runtime, Python will use a private copy of well-known Windows folders and the registry. For ex-
ample, if the environment variable $APPDATA% is c:\Users\<user>\AppData\, then when writing to
C:\Users\<user>\AppData\Local will write to C:\Users\<user>\AppData\Local\Packages\
PythonSoftwareFoundation.Python.3.8_gbz5n2kfra8p0\LocalCache\Local\.

When reading files, Windows will return the file from the private folder, or if that does not exist, the real Windows
directory. For example reading C: \Windows\System32 returns the contents of C: \Windows\System32 plus
the contents of C: \Program Files\WindowsApps\package_name\VFS\SystemX86.

You can find the real path of any existing file using os .path.realpath ():

>>> import os
>>> test_file = 'C:\\Users\\example\\AppData\\Local\\test.txt"

(continues on next page)

42 Chapter 4. Using Python on Windows

Python Setup and Usage, Release 3.12.0rc2

(continued from previous page)

>>> os.path.realpath(test_file)
'C:\\Users\\example\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.8_
—qgbzbn2kfra8p0\\LocalCache\\Local\\test.txt"

When writing to the Windows Registry, the following behaviors exist:

* Reading from HKLM\ \Software is allowed and results are merged with the registry.dat file in the pack-
age.

e Writing to HKLM\ \Software is not allowed if the corresponding key/value exists, i.e. modifying existing keys.

* Writing to HKLM\ \Software is allowed as long as a corresponding key/value does not exist in the package and
the user has the correct access permissions.

For more detail on the technical basis for these limitations, please consult Microsoft’s documentation on packaged full-
trust apps, currently available at docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes

4.3 The nuget.org packages

New in version 3.5.2.

The nuget.org package is a reduced size Python environment intended for use on continuous integration and build systems
that do not have a system-wide install of Python. While nuget is “the package manager for .NET”, it also works perfectly
fine for packages containing build-time tools.

Visit nuget.org for the most up-to-date information on using nuget. What follows is a summary that is sufficient for Python
developers.

The nuget . exe command line tool may be downloaded directly from https://aka.ms/nugetclidl, for ex-
ample, using curl or PowerShell. With the tool, the latest version of Python for 64-bit or 32-bit machines is installed
using:

nuget.exe install python -ExcludeVersion -OutputDirectory
nuget .exe install pythonx86 -ExcludeVersion -OutputDirectory

To select a particular version, add a -Version 3.x.y. The output directory may be changed from ., and the package
will be installed into a subdirectory. By default, the subdirectory is named the same as the package, and without the
-ExcludeVersion option this name will include the specific version installed. Inside the subdirectory is a tools
directory that contains the Python installation:

Without -ExcludeVersion
> .\python.3.5.2\tools\python.exe -V
Python 3.5.2

With -ExcludeVersion
> .\python\tools\python.exe -V
Python 3.5.2

In general, nuget packages are not upgradeable, and newer versions should be installed side-by-side and referenced using
the full path. Alternatively, delete the package directory manually and install it again. Many CI systems will do this
automatically if they do not preserve files between builds.

Alongside the tools directory is a build\native directory. This contains a MSBuild properties file python.
props that can be used in a C++ project to reference the Python install. Including the settings will automatically use the
headers and import libraries in your build.

4.3. The nuget.org packages 43

https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://www.nuget.org/

Python Setup and Usage, Release 3.12.0rc2

The package information pages on nuget.org are www.nuget.org/packages/python for the 64-bit version and
www.nuget.org/packages/pythonx86 for the 32-bit version.

4.4 The embeddable package

New in version 3.5.

The embedded distribution is a ZIP file containing a minimal Python environment. It is intended for acting as part of
another application, rather than being directly accessed by end-users.

When extracted, the embedded distribution is (almost) fully isolated from the user’s system, including environment vari-
ables, system registry settings, and installed packages. The standard library is included as pre-compiled and optimized
.pyc files in a ZIP, and python3.d11, python37.d1l1, python.exe and pythonw.exe are all provided.
Tecl/tk (including all dependents, such as Idle), pip and the Python documentation are not included.

Note: The embedded distribution does not include the Microsoft C Runtime and it is the responsibility of the application
installer to provide this. The runtime may have already been installed on a user’s system previously or automatically via
Windows Update, and can be detected by finding ucrtbase.dl1 in the system directory.

Third-party packages should be installed by the application installer alongside the embedded distribution. Using pip to
manage dependencies as for a regular Python installation is not supported with this distribution, though with some care
it may be possible to include and use pip for automatic updates. In general, third-party packages should be treated as
part of the application (“vendoring”) so that the developer can ensure compatibility with newer versions before providing
updates to users.

The two recommended use cases for this distribution are described below.

4.4.1 Python Application

An application written in Python does not necessarily require users to be aware of that fact. The embedded distribution
may be used in this case to include a private version of Python in an install package. Depending on how transparent it
should be (or conversely, how professional it should appear), there are two options.

Using a specialized executable as a launcher requires some coding, but provides the most transparent experience for
users. With a customized launcher, there are no obvious indications that the program is running on Python: icons can be
customized, company and version information can be specified, and file associations behave properly. In most cases, a
custom launcher should simply be able to call Py_Main with a hard-coded command line.

The simpler approach is to provide a batch file or generated shortcut that directly calls the python.exe or pythonw.
exe with the required command-line arguments. In this case, the application will appear to be Python and not its actual
name, and users may have trouble distinguishing it from other running Python processes or file associations.

With the latter approach, packages should be installed as directories alongside the Python executable to ensure they are
available on the path. With the specialized launcher, packages can be located in other locations as there is an opportunity
to specify the search path before launching the application.

44 Chapter 4. Using Python on Windows

https://www.nuget.org/packages/python
https://www.nuget.org/packages/pythonx86
https://docs.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist#visual-studio-2015-2017-2019-and-2022

Python Setup and Usage, Release 3.12.0rc2

4.4.2 Embedding Python

Applications written in native code often require some form of scripting language, and the embedded Python distribution
can be used for this purpose. In general, the majority of the application is in native code, and some part will either invoke
python.exe or directly use python3.d11. For either case, extracting the embedded distribution to a subdirectory
of the application installation is sufficient to provide a loadable Python interpreter.

As with the application use, packages can be installed to any location as there is an opportunity to specify search paths
before initializing the interpreter. Otherwise, there is no fundamental differences between using the embedded distribution
and a regular installation.

4.5 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The following
is a list of popular versions and their key features:

ActivePython Installer with multi-platform compatibility, documentation, PyWin32

Anaconda Popular scientific modules (such as numpy, scipy and pandas) and the conda package manager.

Enthought Deployment Manager “The Next Generation Python Environment and Package Manager”.
Previously Enthought provided Canopy, but it reached end of life in 2016.

WinPython Windows-specific distribution with prebuilt scientific packages and tools for building packages.

Note that these packages may not include the latest versions of Python or other libraries, and are not maintained or
supported by the core Python team.

4.6 Configuring Python

To run Python conveniently from a command prompt, you might consider changing some default environment variables
in Windows. While the installer provides an option to configure the PATH and PATHEXT variables for you, this is only
reliable for a single, system-wide installation. If you regularly use multiple versions of Python, consider using the Python
Launcher for Windows.

4.6.1 Excursus: Setting environment variables

Windows allows environment variables to be configured permanently at both the User level and the System level, or
temporarily in a command prompt.

To temporarily set environment variables, open Command Prompt and use the set command:

C:\>set PATH=C:\Program Files\Python 3.9;%PATH%
C:\>set PYTHONPATH=%PYTHONPATHS;C:\My_python_1lib
C:\>python

These changes will apply to any further commands executed in that console, and will be inherited by any applications
started from the console.

Including the variable name within percent signs will expand to the existing value, allowing you to add your new value at
either the start or the end. Modifying PATH by adding the directory containing python . exe to the start is a common
way to ensure the correct version of Python is launched.

4.5. Alternative bundles 45

https://www.activestate.com/products/python/
https://www.anaconda.com/download/
https://www.enthought.com/edm/
https://support.enthought.com/hc/en-us/articles/360038600051-Canopy-GUI-end-of-life-transition-to-the-Enthought-Deployment-Manager-EDM-and-Visual-Studio-Code
https://winpython.github.io/

Python Setup and Usage, Release 3.12.0rc2

To permanently modify the default environment variables, click Start and search for ‘edit environment variables’, or open
System properties, Advanced system settings and click the Environment Variables button. In this dialog, you can add or
modify User and System variables. To change System variables, you need non-restricted access to your machine (i.e.
Administrator rights).

Note: Windows will concatenate User variables after System variables, which may cause unexpected results when
modifying PATH.

The PYTHONPATH variable is used by all versions of Python, so you should not permanently configure it unless the listed
paths only include code that is compatible with all of your installed Python versions.

See also:

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables Overview of environment
variables on Windows

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1 The set com-
mand, for temporarily modifying environment variables

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx The setx com-
mand, for permanently modifying environment variables

4.6.2 Finding the Python executable

Changed in version 3.5.

Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python in the
command prompt. The installer has an option to set that up for you.

On the first page of the installer, an option labelled “Add Python to PATH” may be selected to have the installer add the
install location into the PATH. The location of the Scripts\ folder is also added. This allows you to type python to
run the interpreter, and pip for the package installer. Thus, you can also execute your scripts with command line options,
see Command line documentation.

If you don’t enable this option at install time, you can always re-run the installer, select Modify, and enable it. Alternatively,
you can manually modify the PATH using the directions in Excursus: Setting environment variables. You need to set your
PATH environment variable to include the directory of your Python installation, delimited by a semicolon from other
entries. An example variable could look like this (assuming the first two entries already existed):

’ C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Python 3.9

4.7 UTF-8 mode

New in version 3.7.

Windows still uses legacy encodings for the system encoding (the ANSI Code Page). Python uses it for the default
encoding of text files (e.g. locale.getencoding()).

This may cause issues because UTF-8 is widely used on the internet and most Unix systems, including WSL (Windows
Subsystem for Linux).

You can use the Python UTF-8 Mode to change the default text encoding to UTF-8. You can enable the Python UTF-8
Mode via the -X ut £8 command line option, or the PYTHONUTF 8=1 environment variable. See PYTHONUTEF'8 for
enabling UTF-8 mode, and Excursus: Setting environment variables for how to modify environment variables.

46 Chapter 4. Using Python on Windows

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx

Python Setup and Usage, Release 3.12.0rc2

When the Python UTF-8 Mode is enabled, you can still use the system encoding (the ANSI Code Page) via the “mbcs”
codec.

Note that adding PYTHONUTF 8=1 to the default environment variables will affect all Python 3.7+ applications on your
system. If you have any Python 3.7+ applications which rely on the legacy system encoding, it is recommended to set the
environment variable temporarily or use the -X ut £8 command line option.

Note: Even when UTF-8 mode is disabled, Python uses UTF-8 by default on Windows for:
* Console I/0 including standard I/O (see PEP 528 for details).
¢ The filesystem encoding (see PEP 529 for details).

4.8 Python Launcher for Windows

New in version 3.3.

The Python launcher for Windows is a utility which aids in locating and executing of different Python versions. It allows
scripts (or the command-line) to indicate a preference for a specific Python version, and will locate and execute that
version.

Unlike the PATH variable, the launcher will correctly select the most appropriate version of Python. It will prefer per-user
installations over system-wide ones, and orders by language version rather than using the most recently installed version.

The launcher was originally specified in PEP 397.

4.8.1 Getting started

From the command-line

Changed in version 3.6.

System-wide installations of Python 3.3 and later will put the launcher on your PATH. The launcher is compatible with
all available versions of Python, so it does not matter which version is installed. To check that the launcher is available,
execute the following command in Command Prompt:

Py

You should find that th