The Python/C API
Release 3.12.0b3

Guido van Rossum and the Python development team

July 11, 2023

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Codingstandards e e 3
1.2 Include Files L e e e e e e 3
1.3 Useful macros o i v it e e e e e 4
1.4 Objects, Types and Reference Counts i it i ittt et 6

1.4.1 Reference Counts o o i i i i e e e e e 7

142 TYPES . o o o e e e e e e e e e e e e 10
1.5 EXCeptions e e 10
1.6 Embedding Python 12
1.7 Debugging Builds 12
C API Stability 15
2.1 Unstable CAPIL e 15
2.2 Stable Application Binary Interface L. e 15

22.1 Limited CAPL e 16

222 Stable ABL. e 16

2.2.3 Limited API Scope and Performance oL 16

224 Limited APTCaveats e 17
2.3 Platform Considerations o e e e e e e e e e 17
2.4 Contents of Limited APT e 17
The Very High Level Layer 43
Reference Counting 49
Exception Handling 53
5.1 Printingandclearing e e e 53
5.2 Raising exceptions e e e e 54
5.3 Issuing Warnings i e e e e e e e e e e e e e e e e e e e 57
54 Querying the error indicator e 58
5.5 SignalHandling e e e e e e e 61
5.6 Exception Classes v v i i i e e e e e e e e e e e e e 62
5.7 Exception Objects e e 62
5.8 Unicode Exception Objects e 63
5.9 Recursion Control e e e e 64
5.10 Standard EXCeptions e e e e e e e e e e e e e e e 65
5.11 Standard Warning Categories« o v v v v i e e e e e e e e e e e e e e e e e e e 66
Utilities 69
6.1 Operating System UtIlities 0 0 e e e e e e e e e e e 69
6.2 System Functions L e e e e e e e e e 72

6.3 Process Control e e e e e e 74

6.4 Importing Modules L e e e e e e e e e e 74
6.5 Datamarshalling SUpport L. e e e e e e e e e e e e 78
6.6 Parsing arguments and building values 0oL Lo 79
6.6.1 Parsing argumentso e e e e e e e e e e e e 80

6.6.2 Buildingvalues 85

6.7 String conversion and formatting L. L L e e e e e e e e e 87
6.8 Reflection e 88
6.9 Codec registry and support functions oL &9
6.9.1 Codeclookup API. 89

6.9.2 Registry API for Unicode encoding error handlers 90

6.10 Supportfor Perf Maps e e e e e e e e e 91
7 Abstract Objects Layer 93
7.1 Object Protocol 93
7.2 Call Protocol e e e e e 98
7.2.1 Thetp_call Protocol o o e e e e e e 98

7.2.2 The Vectorcall Protocol e e 98

7.23 Object Calling APT e 100

7.2.4 Call Support APT e 103

7.3 Number Protocol e e e e e e 103
7.4 Sequence Protocol e e e e e e 107
7.5 Mapping Protocol e e e e e e e 109
7.6 Iterator Protocol e e e e 110
7.7 Buffer Protocol e e 111
7.7.1 Bufferstructure e e e e e e e e e 111

7.7.2 Bufferrequesttypes o e e e e e e e e e e e e 113

773 ComPIEX AITAYS . .« « v v v e 115

7.7.4 Buffer-related functions e e e e e e e 117

7.8 Old Buffer Protocol e e e e 118
8 Concrete Objects Layer 119
8.1 Fundamental Objects o e e e e e e e e e e 119
8.1.1 Type ObJects v v i it e e e e e e e e 119

8.1.2 TheNone Object o i e e e 125

8.2 Numeric ODJECES o v o ot e e e e e e e e e e e e e e e e 125
8.2.1 Integer ObJeCts ot i e e e e e e e e e e e e 125

8.2.2 Boolean ObjJeCts i i e e e e e e e e e e e e e 129

8.2.3 Floating Point Objects e e e e e e 130

824 Complex Number Objects o oo e 132

8.3 Sequence ODJECES v v v v i e e e e e e e e e e e e e e e 133
8.3.1 Bytes Objects o e e e e e e e e e e e 133

8.3.2 Byte Array ObJects o v e e e e e e e e e e e e e 135

8.3.3 Unicode Objects and Codecs o v i i ittt e e e e 136

834 Tuple Objects o i i e e e e 153

8.3.5 StructSequence Objects e e e e e e e e e e 155

8.3.6 ListODbJeCtS o v i e e e e e e e e e e e e e e e 156

84 Container ObJECtS v v v v i e e e e e e e e e e e e e e e e e e 158
8.4.1 Dictionary Objects o i e e e e e e e e e e e 158

8.42 SetObjects e e 162

8.5 Function Objects i e e e e e e e e e 163
8.5.1 Function ObJeCts o v i v i e e e e e e e e e e e e e 163

8.5.2 Imstance Method Objects o i e e e e e 166

8.5.3 Method Objects o o e e e e e e e 166

854 CellODbJectS . . v v v v e e e e e e e e e e e e e e 167

8.5.5 Code ObJects v v i i e e e e e e e e e e 167

8.5.6 Extrainformation e 170

8.6 OtherObjects i e e 171
8.6.1 FileObjects e e 171

8.6.2 Module ObJects o i it e e e e e e e 172

8.6.3 Tterator ODJECtS o v it e e e e e e e e e e e e e e e 180

8.6.4 Descriptor Objects o o e e e e e e e e e 180

8.6.5 Slice Objects o L e e e e e e e e e e 181

8.6.6 MemoryViewobjects 182

8.6.7 Weak Reference Objects e 183

8.6.8 Capsules e e e e e e e e e e e 184

8.6.9 Frame ODbjects o i i e e e e e e e e e e e 186
8.6.10 Generator ObJects L e e e e e e e 188

8.6.11 Coroutine Objects e e 188
8.6.12 Context Variables Objects e 189
8.6.13 DateTime ObJects o o v v i i et e e e e e e e e e 190
8.6.14 Objects for Type Hinting 0 e e e e 194

9 Initialization, Finalization, and Threads 195
9.1 Before Python Initialization e e e e e e 195
9.2 Global configuration variables L e e e e e e e e e e 196
9.3 Initializing and finalizing the interpreter L. o e 199
9.4 Process-wide parameterso Lo e e e e e e e e 200
9.5 Thread State and the Global Interpreter Lock 00 0oL, 204
9.5.1 Releasing the GIL from extensioncode 205

9.5.2 Non-Pythoncreated threads e 205

9.5.3 Cautionsabout fork() e e e e 206

9.5.4 High-level APT e 206

955 Low-level APL e 209

0.6 Sub-interpreter SUPPOrt L i i e e e e e e e e e e e e e e e e e 212
9.6.1 BugsandcaveatS. e e e e e e e e e e e e e e e e e e e 213

9.7 Asynchronous Notifications o o v i i e e e e e e e e e 213
9.8 Profilingand Tracing oL e e e e e e e e e 214
9.9 Advanced Debugger Support e 216
9.10 Thread Local Storage Support e e e 216
9.10.1 Thread Specific Storage (TSS) APT e 216
9.10.2 Thread Local Storage (TLS) APT e 218

10 Python Initialization Configuration 219
10.1 Example o e e e e e e 219
10.2 PyWideStringList oL e e e e 220
103 PyStatus L e e e e 221
10.4 PyPreConfig L e e e e e e e 222
10.5 Preinitialize Python with PyPreConfig L 224
10.6 PyConfig e e e 225
10.7 Inmitialization with PyConfig e 236
10.8 Isolated Configuration o o v i i e e e e e e e e e e e e 238
10.9 Python Configuration i i e e e e e e e e e e 238
10.10 Python Path Configuration e 238
10.11 Py_RunMain() o oo e e e e 240
10.12 Py_GetArgcArgv() . . v v o o e e e e e e e e e e e e e e e e e e e 240
10.13 Multi-Phase Initialization Private Provisional APT 240

11 Memory Management

TILL OVEIVIEW . . o o o o e e
11.2 Allocator Domains o e e e e e
11.3 Raw Memory Interface L
11.4 Memory Interface L e e
11.5 Objectallocators o v vt e e e e e e
11.6 Default Memory AIlOCators o v v i i et e e e e e e e e e e e e e e e e
11.7 Customize Memory AIlOCAtors v v v i i e e e e e e e e e e e
11.8 Debug hooks on the Python memory allocators
11.9 The pymalloc allocator e

12

13

11.9.1

Customize pymalloc Arena Allocator e

11.10 tracemalloc C APL e e
TT.11T Examples o o o e e e e e e e e e e e e e e e

Object Implementation Support
12.1 Allocating Objectsonthe Heap o i i i e e e e e e e e
12.2 Common ObJect STrUCIUTES & v v v v e i e e e e e e e e e e e e e e e e e e

12.2.1

Base object typesand macrosl o

12.2.2 Implementing functions and methods Lo o oL
12.2.3 Accessing attributes of extension types oo e e e
123 Type ObJects . . . o v v v e e e e e e e e e e e e e e

12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7

Quick Reference e

PyTypeObject Definition o e
PyObject Slots e e

PyVarObject SIots o o e e
PyTypeObject SIots o o o e e e e e
Static TYPES .« v v v o e e e e e e e e e e e e e e e e e e
Heap Types o o e e e e e e e e e e

12.4 Number Object StrUCtUIeS ottt e ettt e e e e e e e
12.5 Mapping Object StIUCTUIES o v v v o it et e e e e e e e e e e e e e
12.6 Sequence Object StrUCtUIes o v v vt e e e e e e e e e
12.7 Buffer Object Structures o v i e e e e e e e e e e e e e
12.8 Async Object Structures o v i v v e e e e e e e e e e e e e e e e e e
12.9 Slot Type typedefs o e e e e e e e e e e
12.10 Examples o o e e e e e e e e e e e e e
12.11 Supporting Cyclic Garbage Collection ittt

12.11.1 Controlling the Garbage Collector State

12.11.2 Querying Garbage Collector State o v v i i et e e e

API and ABI Versioning

Glossary

About these documents
B.1 Contributors to the Python Documentation,

History and License
C.1 Historyof thesoftware o e e e e e e e
C.2 Terms and conditions for accessing or otherwise using Python

C2.1
C22
C23
C24
C25

PSF LICENSE AGREEMENT FOR PYTHON 3.12.0b3
BEOPEN.COM LICENSE AGREEMENT FOR PYTHON20
CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.12.0b3 DOCUMENTA-

TION . . e

243
243
244
244
245
247
248
248
250
251
251
252
252

255
255
256
256
258
260
265
265
270
271
272
272
292
292
292
294
295
296
297
298
299
302
304
305

307

309

323
323

C.3 Licenses and Acknowledgements for Incorporated Software 330

C3.1 Mersenne TWISIEI v v vt i it et e e e e e e e e e 330
C3.2 Sockets L e e 331
C.3.3 Asynchronous socket ServiCes e 331
C34 Cookie managementt e e e e e e e e e 332
C3.5 Execution traCing v v v v v vt i e e e e e e e e e e e e e e 332
C.3.6 UUencode and UUdecode functions oo v v v v v it ivin oo 333
C3.7 XML Remote Procedure Calls 333
C.3.8 test_epoll L e e e e e e e e 334
C39 Selectkqueue 334
C3.10 SipHash24 e e 335
C3.11 strtodanddtoa. L e e e 335
C3.12 OpenSSL o e 336
C3U03 expat. . . . v v e e e e e e e e e e e 338
C3.14 Lbfli o e 339
C3.05 zlib . . . o e 339
C3.16 cfuhash e 340
C3.017 Hbmpdec e e e e e e e e e e 340
C3.18 W3C CIANLESt SUILE . . o v v v v o e 341
C3.19 Audioop L 342
D Copyright 343
Index 345

Vi

The Python/C API, Release 3.12.0b3

This manual documents the API used by C and C++ programmers who want to write extension modules or embed Python.
It is a companion to extending-index, which describes the general principles of extension writing but does not document
the API functions in detail.

CONTENTS 1

The Python/C API, Release 3.12.0b3

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at a
variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C API.
There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension modules
for specific purposes; these are C modules that extend the Python interpreter. This is probably the most common use. The
second reason is to use Python as a component in a larger application; this technique is generally referred to as embedding
Python in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There are
several tools that automate the process to some extent. While people have embedded Python in other applications since
its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you're embedding or extending Python; moreover, most applica-
tions that embed Python will need to provide a custom extension as well, so it’s probably a good idea to become familiar
with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards

If you’re writing C code for inclusion in CPython, you must follow the guidelines and standards defined in PEP 7. These
guidelines apply regardless of the version of Python you are contributing to. Following these conventions is not necessary
for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following line:

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>,<limits.h>,
<assert.h>and <stdlib.h> (if available).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See Parsing arguments and
building values for a description of this macro.

https://peps.python.org/pep-0007/

The Python/C API, Release 3.12.0b3

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the prefixes
Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be used by
extension writers. Structure member names do not have a reserved prefix.

Note: User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes the
portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix
are defined by the corresponding parameters to Python’s configure script and version is '$d.%d' % sys.
version_info[:2]. On Windows, the headers are installed in prefix/include, where prefix is the in-
stallation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under pre £ ix include the platform specific headers from
exec_prefix.

C++ users should note that although the API is defined entirely using C, the header files properly declare the entry points
tobe extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.

Py_ABS (x)
Return the absolute value of x.
New in version 3.3.

Py_ALWAYS_INLINE

Ask the compiler to always inline a static inline function. The compiler can ignore it and decides to not inline the
function.

It can be used to inline performance critical static inline functions when building Python in debug mode with
function inlining disabled. For example, MSC disables function inlining when building in debug mode.

Marking blindly a static inline function with Py_ ALWAYS_INLINE can result in worse performances (due to
increased code size for example). The compiler is usually smarter than the developer for the cost/benefit analysis.

If Python is built in debug mode (if the Py_DEBUG macro is defined), the Py_ALWAYS_TNLINE macro does
nothing.

It must be specified before the function return type. Usage:

static inline Py_ALWAYS_INLINE int random(wvoid) { return 4; }

New in version 3.11.

Py_CHARMASK (c)

Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to an
unsigned char.

4 Chapter 1. Introduction

The Python/C API, Release 3.12.0b3

Py_DEPRECATED (version)

Use this for deprecated declarations. The macro must be placed before the symbol name.

Example:

Py_DEPRECATED (3.8) PyAPI_FUNC (int) Py_OldFunction (void);

Changed in version 3.8: MSVC support was added.
Py_GETENV (s)

Like getenv(s), but returns NULL if -E was passed on the command line (see PyConfig.
use_environment).

Py_MAX (X,y)
Return the maximum value between x and y.
New in version 3.3.

Py_MEMBER_SIZE (type, member)

Return the size of a structure (t ype) member in bytes.
New in version 3.6.
Py_MIN (X, y)
Return the minimum value between x and y.
New in version 3.3.

Py_NO_INLINE

Disable inlining on a function. For example, it reduces the C stack consumption: useful on LTO+PGO builds which
heavily inline code (see bpo-33720).

Usage:

Py_NO_INLINE static int random(void) { return 4; }

New in version 3.11.

Py_STRINGIFY (x)
Convert x to a C string. E.g. Py_STRINGIFY (123) returns "123".

New in version 3.4.

Py_UNREACHABLE ()

Use this when you have a code path that cannot be reached by design. For example, in the default: clause in
a switch statement for which all possible values are covered in case statements. Use this in places where you
might be tempted to put an assert (0) or abort () call.

In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable code.
For example, the macro is implemented with __builtin_unreachable () on GCC in release mode.

A use for Py_ UNREACHABLE () is following a call a function that never returns but that is not declared
_Py_NO_RETURN.

If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used. For
example, under low memory condition or if a system call returns a value out of the expected range. In this case,
it’s better to report the error to the caller. If the error cannot be reported to caller, Py_FatalError () can be
used.

New in version 3.7.

1.3. Useful macros 5

https://bugs.python.org/issue?@action=redirect&bpo=33720

The Python/C API, Release 3.12.0b3

Py_UNUSED (arg)

Use this for unused arguments in a function definition to silence compiler warnings. Example: int func (int
a, int Py_UNUSED (b)) { return a; }.

New in version 3.4.

PyDoc_STRVAR (name, Str)

Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the value
will be empty.

Use PyDoc_STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

PyDoc_STRVAR (pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
/S
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
VY2

PyDoc_STR (str)

Creates a docstring for the given input string or an empty string if docstrings are disabled.
Use PyDoc_STR in specifying docstrings to support building Python without docstrings, as specified in PEP 7.

Example:

static PyMethodDef pysglite_row_methods[] = {
{"keys", (PyCFunction)pysqglite_row_keys, METH_NOARGS,
PyDoc_STR("Returns the keys of the row.")},
{NULL, NULL}

bi

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyOb ject*. This type is a
pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the same
way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only fitting that
they should be represented by a single C type. Almost all Python objects live on the heap: you never declare an automatic
or static variable of type PyOb ject, only pointer variables of type PyObject* can be declared. The sole exception
are the type objects; since these must never be deallocated, they are typically static Py TypeOb ject objects.

All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of the
well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check (a) is true
if (and only if) the object pointed to by a is a Python list.

6 Chapter 1. Introduction

https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/

The Python/C API, Release 3.12.0b3

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or a
global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero, the
object is deallocated. If it contains references to other objects, their reference count is decremented. Those other objects
may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an obvious
problem with objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use the macro Py_ INCREF () to increment an
object’s reference count by one, and Py_ DECREF () to decrement it by one. The Py_DECREF () macro is considerably
more complex than the incref one, since it must check whether the reference count becomes zero and then cause the
object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure. The type-
specific deallocator takes care of decrementing the reference counts for other objects contained in the object if this is a
compound object type, such as a list, as well as performing any additional finalization that’s needed. There’s no chance that
the reference count can overflow; at least as many bits are used to hold the reference count as there are distinct memory
locations in virtual memory (assuming sizeof (Py_ssize_t) >= sizeof (void*)). Thus, the reference count
increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object. In
theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by one when
the variable goes out of scope. However, these two cancel each other out, so at the end the reference count hasn’t changed.
The only real reason to use the reference count is to prevent the object from being deallocated as long as our variable is
pointing to it. If we know that there is at least one other reference to the object that lives at least as long as our variable,
there is no need to increment the reference count temporarily. An important situation where this arises is in objects that
are passed as arguments to C functions in an extension module that are called from Python; the call mechanism guarantees
to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possibly deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python code
which could do this; there is a code path which allows control to flow back to the user from a Py_ DECREF (), so almost
any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always increment the reference count of the object they return.
This leaves the caller with the responsibility to call Py DECREF () when they are done with the result; this soon becomes
second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a reference”
means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership can also
be transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually
decref’ing it by calling Py_ DECREF () or Py_XDECREF () when it’s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed

1.4. Objects, Types and Reference Counts 7

The Python/C API, Release 3.12.0b3

to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

t = PyTuple_New
PyTuple_SetItem
PyTuple_SetItem
PyTuple_SetItem

3)

t, 0, PyLong_FromLong(lL));
t, 1, PyLong_FromLong(2L));
t

(
(
(
(t, 2, PyUnicode_FromString("three"));

Here, PyLong FromLong () returns a new reference which is immediately stolen by Py Tuple_SetItem (). When
you want to keep using an object although the reference to it will be stolen, use Py_ TNCREF () to grab another reference
before calling the reference-stealing function.

Incidentally, PyTuple SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written using PyList_New () and PyList_SetItem().

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py_BuildValue (), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_Buildvalue(" (iis)", 1, 2, "three");
list = Py_Buildvalue("[iis]", 1, 2, "three");

It is much more common to use PyObject_Set Item () and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don’t have to increment a reference count so you can give a reference away (“have it be
stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all (PyObject *target, PyObject *item)
{

Py_ssize_t i, nj;

n = PyObject_Length (target);
if (n < 0)
return -1;

for (i = 0; 1 < n; 1i++) {
PyObject *index = PyLong_FromSsize_t (i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF (index) ;
return -1;
}
Py_DECREF (index) ;
3

return 0;

The situation is slightly different for function return values. While passing a reference to most functions does not change
your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the

8 Chapter 1. Introduction

The Python/C API, Release 3.12.0b3

only reference to the object. Therefore, the generic functions that return object references, like PyObject_GetItem ()
and PySequence_GetItem (), always return a new reference (the caller becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call only
— the plumage (the type of the object passed as an argument to the function) doesnt enter into it! Thus, if you extract
an item from a list using PyList_GetItem (), you don’t own the reference — but if you obtain the same item from
the same list using PySequence_GetItem () (which happens to take exactly the same arguments), you do own a
reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem/(),and once using PySequence_GetItem().

long

sum_list (PyObject *1list)

{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; 1 < n; 1i++) {
item = PyList_GetItem(list, i); /* Can't fail */
if (!PyLong_Check (item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
;

return total;

long
sum_sequence (PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length (sequence);
if (n < 0)
return -1; /* Has no length */

for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, 1i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check (item)) {
value = PyLong_AsLong(item);
Py_DECREF (item) ;
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF (item); /* Discard reference ownership */

(continues on next page)

1.4. Objects, Types and Reference Counts 9

The Python/C API, Release 3.12.0b3

(continued from previous page)

}

return total;

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

type Py_ssize_t
Part of the Stable ABI. A signed integral type such that sizeof (Py_ssize_t) == sizeof (size_t).

C99 doesn’t define such a thing directly (size_t is an unsigned integral type). See PEP 353 for details.
PY_SSIZE_T_MAX is the largest positive value of type Py_ssize_t.

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function en-
counters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr Occurred (). These exceptions
are always explicitly documented.

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred () canbe used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr_SetString () is the most common
(though not the most general) function to set the exception state, and PyErr_Clear () clears the exception state.

The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the same meanings as the Python result of sys.exc_info () ; however,
they are not the same: the Python objects represent the last exception being handled by a Python try ... except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info () and
friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info (), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,

10 Chapter 1. Introduction

https://peps.python.org/pep-0353/

The Python/C API, Release 3.12.0b3

and return an error indicator, but it should nor set another exception — that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shown in the sum_sequence () example above. It so
happens that this example doesn’t need to clean up any owned references when it detects an error. The following example
function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches (PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong (0L) ;
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong (1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF () to ignore NULL references */
Py_XDECREF (item) ;

Py_XDECREF (const_one) ;

Py_XDECREF (incremented_item) ;

return rv; /* -1 for error, 0 for success */

1.5. Exceptions 11

The Python/C API, Release 3.12.0b3

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches () and PyErr_Clear () to handle specific exceptions, and the use of
Py_XDECREF () to dispose of owned references that may be NULL (note the 'X' in the name; Py _DECREF ()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to —1 (failure) and only set to
success after the final call made is successful.

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function is Py Tnitialize (). This initializes the table of loaded modules, and creates the
fundamental modules builtins, __main__,and sys. It also initializes the module search path (sys .path).

Py _Initialize () doesnotsetthe “script argumentlist” (sys.argv). If this variable is needed by Python code that
will be executed later, setting PyConfig.argvand PyConfig.parse_argv mustbe set: see Python Initialization
Configuration.

On most systems (in particular, on Unix and Windows, although the details are slightly different), Py_Tnitialize ()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named 1ib/pythonX. Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX. Y. (In fact, this particular path is also the “fallback” location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calling Py_SetProgramName (file) before calling
Py_TInitialize (). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath (),
Py_GetPrefix (), Py_GetExecPrefix (), and Py _GetProgramFullPath () (all defined in Modules/
getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another call
to Py_Tnitialize ())or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py FinalizeEx (). The function Py _TsInitialized () returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py FinalizeEx () does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently used builds will be described in the remainder of this
section.

12 Chapter 1. Introduction

The Python/C API, Release 3.12.0b3

Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by a debug build of
Python. Py_DEBUG is enabled in the Unix build by adding ——with-pydebugtothe . /configure command. Itis
also implied by the presence of the not-Python-specific _ DEBUG macro. When Py_DERUG is enabled in the Unix build,
compiler optimization is disabled.

In addition to the reference count debugging described below, extra checks are performed, see Python Debug Build.

Defining Py_TRACE_REFS enables reference tracing (see the configure —-with-trace-refs option).
When defined, a circular doubly linked list of active objects is maintained by adding two extra fields to every PyObject.
Total allocations are tracked as well. Upon exit, all existing references are printed. (In interactive mode this happens
after every statement run by the interpreter.)

Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

1.7. Debugging Builds 13

The Python/C API, Release 3.12.0b3

14 Chapter 1. Introduction

CHAPTER
TWO

C API STABILITY

Unless documented otherwise, Python’s C API is covered by the Backwards Compatibility Policy, PEP 387. Most
changes to it are source-compatible (typically by only adding new API). Changing existing API or removing API is only
done after a deprecation period or to fix serious issues.

CPython’s Application Binary Interface (ABI) is forward- and backwards-compatible across a minor release (if these are
compiled the same way; see Platform Considerations below). So, code compiled for Python 3.10.0 will work on 3.10.8
and vice versa, but will need to be compiled separately for 3.9.x and 3.10.x.

There are two tiers of C API with different stability exepectations:

e Unstable API, may change in minor versions without a deprecation period. It is marked by the PyUnstable
prefix in names.

e Limited API, is compatible across several minor releases. When Py_ L. TMITED_APT is defined, only this subset
is exposed from Python. h.

These are discussed in more detail below.

Names prefixed by an underscore, suchas _Py_InternalState, are private API that can change without notice even
in patch releases. If you need to use this API, consider reaching out to CPython developers to discuss adding public API
for your use case.

2.1 Unstable C API

Any API named with the PyUnstable prefix exposes CPython implementation details, and may change in every minor
release (e.g. from 3.9 to 3.10) without any deprecation warnings. However, it will not change in a bugfix release (e.g.
from 3.10.0 to 3.10.1).

It is generally intended for specialized, low-level tools like debuggers.

Projects that use this API are expected to follow CPython development and spend extra effort adjusting to changes.

2.2 Stable Application Binary Interface

For simplicity, this document talks about extensions, but the Limited API and Stable ABI work the same way for all uses
of the API - for example, embedding Python.

15

https://peps.python.org/pep-0387/
https://discuss.python.org/c/core-dev/c-api/30

The Python/C API, Release 3.12.0b3

2.2.1 Limited C API

Python 3.2 introduced the Limited API, a subset of Python’s C API. Extensions that only use the Limited API can be
compiled once and work with multiple versions of Python. Contents of the Limited API are listed below.

Py_LIMITED_API

Define this macro before including Python.h to opt in to only use the Limited API, and to select the Limited
API version.

Define Py_LIMITED_APT to the value of PY_VERSTON_HEX corresponding to the lowest Python version your
extension supports. The extension will work without recompilation with all Python 3 releases from the specified
one onward, and can use Limited API introduced up to that version.

Rather than using the PY_VERSION_HEX macro directly, hardcode a minimum minor version (e.g.
0x030A0000 for Python 3.10) for stability when compiling with future Python versions.

You can also define Py_LIMITED_APTI to 3. This works the same as 0x03020000 (Python 3.2, the version
that introduced Limited API).

2.2.2 Stable ABI

To enable this, Python provides a Stable ABI: a set of symbols that will remain compatible across Python 3.x versions.

The Stable ABI contains symbols exposed in the Limited API, but also other ones — for example, functions necessary to
support older versions of the Limited APL

On Windows, extensions that use the Stable ABI should be linked against python3.d11 rather than a version-specific
library such as python39.d11.

On some platforms, Python will look for and load shared library files named with the abi3 tag (e.g. mymodule.
abi3.so). It does not check if such extensions conform to a Stable ABI. The user (or their packaging tools) need to
ensure that, for example, extensions built with the 3.10+ Limited API are not installed for lower versions of Python.

All functions in the Stable ABI are present as functions in Python’s shared library, not solely as macros. This makes them
usable from languages that don’t use the C preprocessor.

2.2.3 Limited API Scope and Performance

The goal for the Limited API is to allow everything that is possible with the full C API, but possibly with a performance
penalty.

For example, while PyList_GetItem () is available, its “unsafe” macro variant PyList_GET_ITEM () isnot. The
macro can be faster because it can rely on version-specific implementation details of the list object.

Without Py_LIMITED_API defined, some C API functions are inlined or replaced by macros. Defining
Py_LIMITED_APT disables this inlining, allowing stability as Python’s data structures are improved, but possibly re-
ducing performance.

By leaving out the Py_LIMITED_APT definition, it is possible to compile a Limited API extension with a version-
specific ABIL. This can improve performance for that Python version, but will limit compatibility. Compiling with
Py_LIMITED_APTI will then yield an extension that can be distributed where a version-specific one is not available
— for example, for prereleases of an upcoming Python version.

16 Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

2.2.4 Limited API Caveats

Note that compiling with Py_LIMITED_APT is not a complete guarantee that code conforms to the Limited API or
the Stable ABI. Py_LIMITED_APT only covers definitions, but an API also includes other issues, such as expected
semantics.

One issue that Py_ LIMITED_APT does not guard against is calling a function with arguments that are invalid in a lower
Python version. For example, consider a function that starts accepting NULL for an argument. In Python 3.9, NULL now
selects a default behavior, but in Python 3.8, the argument will be used directly, causing a NULL dereference and crash.
A similar argument works for fields of structs.

Another issue is that some struct fields are currently not hidden when Py_LIMITED_APT is defined, even though they’re
part of the Limited APIL.

For these reasons, we recommend testing an extension with a/l minor Python versions it supports, and preferably to build
with the lowest such version.

We also recommend reviewing documentation of all used API to check if it is explicitly part of the Limited API. Even
with Py_ LIMITED_APT defined, a few private declarations are exposed for technical reasons (or even unintentionally,
as bugs).

Also note that the Limited API is not necessarily stable: compiling with Py_LIMITED_APTI with Python 3.8 means
that the extension will run with Python 3.12, but it will not necessarily compile with Python 3.12. In particular, parts of
the Limited API may be deprecated and removed, provided that the Stable ABI stays stable.

2.3 Platform Considerations

ABI stability depends not only on Python, but also on the compiler used, lower-level libraries and compiler options. For
the purposes of the Stable ABI, these details define a “platform”. They usually depend on the OS type and processor
architecture

It is the responsibility of each particular distributor of Python to ensure that all Python versions on a particular platform are
built in a way that does not break the Stable ABI. This is the case with Windows and macOS releases from python.org
and many third-party distributors.

2.4 Contents of Limited API

Currently, the Limited API includes the following items:

PY_ VECTORCALL_ARGUMENTS_OFFSET

PyAlter_Check ()

PyArg_Parse ()

PyArg ParseTuple ()

PyArg_ParseTupleAndKeywords ()

PyArg_UnpackTuple ()

PyArg_VaParse ()

PyArg VaParseTupleAndKeywords ()

PyArg_ValidateKeywordArguments ()

2.3. Platform Considerations 17

The Python/C API, Release 3.12.0b3

* PyBaseObject_Type

e PyBool_FromLong()

* PyBool_Type

e PyBuffer FillContiguousStrides ()
e PyBuffer FillInfo()

* PyBuffer FromContiguous ()
e PyBuffer GetPointer ()

* PyBuffer._IsContiguous ()

* PyBuffer_ Release ()

* PyBuffer SizeFromFormat ()
e PyBuffer ToContiguous ()

e PyByteArrayIter_Type

* PyByteArray_ AsString()

* PyByteArray_Concat ()

e PyByteArray_ FromObject ()
* PyByteArray_ FromStringAndSize ()
* PyByteArray_ Resize ()

* PyByteArray_Size ()

¢ PyByteArray_ Type

e PyBytesIter_Type

* PyBytes_AsString/()

e PyBytes_AsStringAndSize ()
e PyBytes_Concat ()

* PyBytes_ConcatAndDel ()

* PyBytes_DecodeEscape ()

* PyBytes_FromFormat ()

e PyBytes_FromFormatV ()

* PyBytes_FromObject ()

* PyBytes_FromString/()

* PyBytes_FromStringAndSize ()
* PyBytes_Repr ()

e PyBytes_Size ()

e PyBytes_Type

* PyCFunction

¢ PyCFunctionWithKeywords

e PyCFunction_Call ()

18 Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

e PyCFunction_GetFlags ()

e PyCFunction_GetFunction ()

e PyCFunction_GetSelf ()

* PyCFunction_New ()

* PyCFunction_NewEx ()

e PyCFunction_Type

* PyCMethod_New ()

* PyCallIlter_New/()

e PyCalllter_Type

* PyCallable_Check ()

* PyCapsule Destructor

e PyCapsule_GetContext ()

e PyCapsule_GetDestructor ()

* PyCapsule_GetName ()

e PyCapsule_GetPointer ()

* PyCapsule_Import ()

* PyCapsule_IsValid()

* PyCapsule_ New()

e PyCapsule_SetContext ()

e PyCapsule_SetDestructor ()

* PyCapsule_SetName ()

e PyCapsule_SetPointer ()

e PyCapsule_Type

* PyClassMethodDescr_Type

* PyCodec_BackslashReplaceErrors ()
e PyCodec_Decode ()

e PyCodec_Decoder ()

* PyCodec_Encode ()

* PyCodec_Encoder ()

* PyCodec_IgnoreErrors ()

* PyCodec_IncrementalDecoder ()
* PyCodec_IncrementalEncoder ()
e PyCodec_KnownEncoding ()

e PyCodec_LookupError ()

* PyCodec_NameReplaceErrors ()

e PyCodec_Register ()

2.4. Contents of Limited API 19

The Python/C API, Release 3.12.0b3

e PyCodec_RegisterError ()
e PyCodec_ReplaceErrors ()
* PyCodec_StreamReader ()

e PyCodec_StreamWriter ()

e PyCodec_StrictErrors ()

e PyCodec_Unregister ()

* PyCodec_XMLCharRefReplaceErrors ()
* PyComplex_ FromDoubles ()
* PyComplex_ImagAsDouble ()
* PyComplex_RealAsDouble ()
* PyComplex_Type

* PyDescr_NewClassMethod()
* PyDescr_NewGetSet ()

* PyDescr_NewMember ()

* PyDescr_NewMethod ()

* PyDictItems_Type

e PyDictIterItem_ Type

e PyDictIterKey_Type

e PyDictIterValue_Type

e PyDictKeys_Type

* PyDictProxy_New ()

* PyDictProxy_Type

* PyDictRevIterItem_Type

e PyDictRevIterKey_Type

e PyDictRevIterValue_Type
e PyDictValues_Type

* PyDict_Clear ()

e PyDict_Contains ()

e PyDict_Copy ()

e PyDict_DelItem()

e PyDict_DelItemString()

e PyDict_GetItem()

e PyDict_GetItemString/()

e PyDict_GetItemWithError ()
* PyDict_Items ()

e PyDict_Keys ()

20 Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

e PyDict_Merge ()

e PyDict_MergeFromSeqZ ()

e PyDict_New ()

e PyDict_Next ()

e PyDict_SetItem()

e PyDict_SetItemString()

e PyDict_Size()

e PyDict_Type

* PyDict_Update ()

* PyDict_Values ()

* PyEllipsis_Type

e PyEnum_Type

* PyErr BadArgument ()

* PyErr BadInternalCall ()

e PyErr CheckSignals ()

e PyErr Clear()

e PyErr_Display ()

e PyErr DisplayException()

* PyErr ExceptionMatches ()

e PyErr Fetch()

* PyErr Format ()

* PyErr_ FormatV()

* PyErr GetExcInfo ()

s PyErr GetHandledException ()
e PyErr GetRaisedException ()
* PyErr GivenExceptionMatches ()
e PyErr NewException ()

* PyErr NewExceptionWithDoc ()
* PyErr. NoMemory ()

* PyErr NormalizeException ()
* PyErr Occurred()

e PyErr Print ()

* PyErr PrintEx ()

* PyErr_ProgramText ()

* PyErr ResourceWarning ()

* PyErr Restore ()

2.4. Contents of Limited API 21

The Python/C API, Release 3.12.0b3

e PyErr SetExcFromWindowsErr ()

e PyErr_ SetExcFromWindowsErrWithFilename ()
* PyErr SetExcFromWindowsErrWithFilenameObject ()
* PyErr SetExcFromWindowsErrWithFilenameObjects ()
* PyErr SetExcInfo()

* PyErr SetFromErrno ()

e PyErr SetFromErrnoWithFilename ()

* PyErr SetFromErrnoWithFilenameObject ()
* PyErr SetFromErrnoWithFilenameObjects ()
e PyErr SetFromWindowsErr ()

* PyErr SetFromWindowsErrWithFilename ()

e PyErr SetHandledException ()

* PyErr SetImportError ()

* PyErr SetImportErrorSubclass ()

* PyErr_ SetInterrupt ()

* PyErr SetInterruptEx()

* PyErr SetNone ()

* PyErr SetObject ()

e PyErr SetRaisedException ()

* PyErr_SetString()

e PyErr SyntaxLocation ()

e PyErr SyntaxLocationEx ()

* PyErr WarnEx ()

* PyErr WarnExplicit ()

* PyErr WarnFormat ()

e PyErr WriteUnraisable()

e PyEval_AcquireLock ()

* PyEval AcquireThread()

e PyEval_CallFunction ()

e PyEval_CallMethod()

e PyEval_CallObjectWithKeywords ()

* PyEval_EvalCode ()

e PyEval_FEvalCodeEx ()

* PyEval_ EvalFrame ()

* PyEval_ EvalFrameEx ()

e PyEval_GetBuiltins()

22 Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

* PyEval_GetFrame ()

* PyEval_ GetFuncDesc ()

* PyEval GetFuncName ()

* PyEval_GetGlobals ()

e PyEval_GetLocals ()

* PyEval InitThreads ()

* PyEval ReleaseLock ()

* PyEval_ReleaseThread()

* PyEval RestoreThread/()

* PyEval SaveThread /()

* PyEval_ThreadsInitialized()
e PyExc_ArithmeticError

* PyExc_AssertionError

e PyExc_AttributeError

e PyExc_BaseException

* PyExc_BaseExceptionGroup

* PyExc_BlockingIOError

* PyExc_BrokenPipeError

e PyExc_BufferError

* PyExc_BytesWarning

* PyExc_ChildProcessError

e PyExc_ConnectionAbortedError
* PyExc_ConnectionError

* PyExc_ConnectionRefusedError
* PyExc_ConnectionResetError
e PyExc_DeprecationWarning

e PyExc_EOFError

* PyExc_EncodingWarning

e PyExc_EnvironmentError

* PyExc_Exception

e PyExc_FileExistsError

* PyExc_FileNotFoundError

e PyExc_FloatingPointError

* PyExc_FutureWarning

* PyExc_GeneratorExit

e PyExc_TIOError

2.4. Contents of Limited API 23

The Python/C API, Release 3.12.0b3

PyExc_ImportError
PyExc_ImportWarning
PyExc_IndentationError
PyExc_IndexError
PyExc_InterruptedError
PyExc_IsADirectoryError
PyExc_KeyError
PyExc_KeyboardInterrupt
PyExc_LookupError
PyExc_MemoryError
PyExc_ModuleNotFoundError
PyExc_NameError
PyExc_NotADirectoryError
PyExc_NotImplementedError
PyExc_OSError

PyExc_OverflowError

PyExc_PendingDeprecationWarning

PyExc_PermissionError
PyExc_ProcessLookupError
PyExc_RecursionError
PyExc_ReferenceError
PyExc_ResourceWarning
PyExc_RuntimeError
PyExc_RuntimeWarning
PyExc_StopAsynclteration
PyExc_StopIteration
PyExc_SyntaxError
PyExc_SyntaxWarning
PyExc_SystemError
PyExc_SystemExit
PyExc_TabError
PyExc_TimeoutError
PyExc_TypeError
PyExc_UnboundLocalError
PyExc_UnicodeDecodeError

PyExc_UnicodeEncodeError

24

Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

e PyExc_UnicodeError

* PyExc_UnicodeTranslateError
* PyExc_UnicodeWarning

* PyExc_UserWarning

e PyExc_ValueError

* PyExc_Warning

* PyExc_WindowsError

e PyExc_ZeroDivisionError
* PyExceptionClass_Name ()
* PyException_GetArgs ()

e PyException_GetCause ()

e PyException_GetContext ()
* PyException_GetTraceback ()
* PyException_SetArgs ()

e PyException_SetCause ()

* PyException_SetContext ()
* PyException_SetTraceback ()
e PyFile FromFd()

e PyFile GetLine()

e PyFile WriteObject ()

e PyFile WriteString/()

e PyFilter_Type

e PyFloat_AsDouble ()

e PyFloat_FromDouble ()

e PyFloat_FromString()

e PyFloat_GetInfo()

e PyFloat_GetMax ()

e PyFloat_GetMin ()

e PyFloat_Type

* PyFrameObject

* PyFrame_GetCode ()

* PyFrame_GetLineNumber ()
* PyFrozenSet_New ()

* PyFrozenSet_Type

* PyGC_Collect ()

* PyGC_Disable ()

2.4. Contents of Limited API 25

The Python/C API, Release 3.12.0b3

PyGC_Enable ()

PyGC_IsEnabled()

PyGILState Ensure()
PyGILState_GetThisThreadState ()
PyGILState_Release ()
PyGILState_STATE

PyGetSetDef

PyGetSetDescr_Type
PyImport_AddModule ()
PyImport_AddModuleObject ()
PyImport_AppendInittab ()
PyImport_ExecCodeModule ()
PyImport_ExecCodeModuleEx ()
PyImport_ExecCodeModuleObject ()
PyImport_ExecCodeModuleWithPathnames ()
PyImport_GetImporter ()
PyImport_GetMagicNumber ()
PyImport_GetMagicTag ()
PyImport_GetModule ()
PyImport_GetModuleDict ()
PyImport_Import ()
PyImport_ImportFrozenModule ()
PyImport_ImportFrozenModuleObject ()
PyImport_ImportModule ()
PyImport_ImportModuleLevel ()
PyImport_ImportModuleLevelObject ()
PyImport__ImportModuleNoBlock ()
PyImport_ReloadModule ()
PyIndex_Check ()
PyInterpreterState
PyInterpreterState_Clear ()
PyInterpreterState_Delete()
PyInterpreterState_Get ()
PyInterpreterState_GetDict ()
PyInterpreterState_GetID()

PyInterpreterState_New ()

26

Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

e Pylter Check()

e PyIter_ Next ()

e PyIter_Send()

* PyListIter_Type

* PyListRevIter_Type

e PyList_Append()

e PyList_AsTuple ()

e PyList_GetItem()

e PyList_GetSlice()

* PyList_Insert ()

e PyList_New/()

e PyList_Reverse()

e PyList_SetItem()

e PyList_SetSlice()

* PyList_Size()

e PyList_Sort ()

e PyList_Type

e PyLongObject

e PyLongRangeIter_Type

* PyLong_AsDouble ()

* PyLong_AsLong()

* PyLong AsLongAndOverflow /()
e PyLong_AsLongLong ()

* PyLong_AsLongLongAndOverflow ()
* PyLong_AsSize_t ()

* PyLong_AsSsize_t ()

* PyLong_AsUnsignedLong ()

* PyLong AsUnsignedLongLong ()
* PyLong_AsUnsignedLongLongMask ()
* PyLong_AsUnsignedLongMask ()
e PyLong_AsVoidPtr ()

e PyLong FromDouble ()

* PyLong_FromLong()

* PyLong_FromLongLong ()

* PyLong FromSize_ t ()

e PyLong_FromSsize_ t ()

2.4. Contents of Limited API 27

The Python/C API, Release 3.12.0b3

PyLong_FromString ()

PyLong_FromUnsignedLong ()

PyLong_ FromUnsignedLongLong ()

PyLong_FromVoidPtr ()
PyLong_GetInfo ()
PyLong_Type

PyMap_Type
PyMapping_Check ()
PyMapping GetItemString ()
PyMapping_ HasKey ()
PyMapping_HasKeyString/()
PyMapping_Items ()
PyMapping_ Keys ()
PyMapping_ Length ()
PyMapping_SetItemString()
PyMapping_Size ()
PyMapping_Values ()
PyMem_Calloc ()

PyMem Free /()
PyMem_Malloc ()

PyMem Realloc ()
PyMemberDef
PyMemberDescr_Type
PyMember_GetOne ()
PyMember_SetOne ()
PyMemoryView_FromBuffer ()
PyMemoryView_FromMemory ()

PyMemoryView_ FromObject ()

PyMemoryView_ GetContiguous ()

PyMemoryView_Type
PyMethodDef
PyMethodDescr_Type
PyModuleDef
PyModuleDef_BRase
PyModuleDef Init ()

PyModuleDef_ Type

28

Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

e PyModule_ AddFunctions ()

* PyModule AddIntConstant ()

* PyModule_ AddObject ()

e PyModule_AddObjectRef ()

* PyModule_AddStringConstant ()
e PyModule_ AddType ()

e PyModule_Createl ()

e PyModule_ ExecDef ()

e PyModule FromDefAndSpecZ ()

* PyModule_GetDef ()

e PyModule_ GetDict ()

e PyModule_GetFilename ()

* PyModule_GetFilenameObject ()
* PyModule_GetName ()

e PyModule_ GetNameObject ()

e PyModule_GetState()

* PyModule_ New ()

s PyModule_ NewObject ()

e PyModule_SetDocString/()

e PyModule_Type

e PyNumber_Absolute ()

* PyNumber_Add /()

* PyNumber_And ()

* PyNumber AsSsize_t ()

* PyNumber_Check ()

e PyNumber_Divmod ()

e PyNumber_ Float ()

e PyNumber_ FloorDivide ()

* PyNumber_InPlaceAdd()

* PyNumber_InPlaceAnd/()

* PyNumber_InPlaceFloorDivide ()
* PyNumber_ InPlaceLshift ()

e PyNumber_InPlaceMatrixMultiply ()
e PyNumber_InPlaceMultiply ()

* PyNumber_InPlaceOr ()

* PyNumber_InPlacePower ()

2.4. Contents of Limited API 29

The Python/C API, Release 3.12.0b3

PyNumber_InPlaceRemainder ()

PyNumber_InPlaceRshift ()

PyNumber_ InPlaceSubtract ()

PyNumber_InPlaceTrueDivide ()

PyNumber_InPlaceXor ()
PyNumber_Index ()
PyNumber_Invert ()
PyNumber_Long ()
PyNumber_Lshift ()
PyNumber_ MatrixMultiply ()
PyNumber Multiply ()
PyNumber_Negative ()
PyNumber_Or ()

PyNumber_ Positive()
PyNumber_Power ()
PyNumber_Remainder ()
PyNumber_ Rshift ()
PyNumber_Subtract ()
PyNumber__ToBase ()
PyNumber_TrueDivide ()
PyNumber_Xor ()
PyOS_AfterFork ()
PyOS_AfterFork_Child()
PyOS_AfterFork_Parent ()
PyOS_BeforeFork ()
PyOS_CheckStack ()
PyOS_FSPath ()
PyOS_InputHook
PyOS_InterruptOccurred/()
PyOS_double_to_string()
PyOS_getsig()
PyOS_mystricmp ()
PyOS_mystrnicmp ()
PyOS_setsig()
PyOS_sighandler_t

PyOS_snprintf ()

30

Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

e PyOS_string to_double()

e PyOS_strtol ()

* PyOS_strtoul ()

* PyOS_vsnprintf ()

e PyObject

e PyObject.ob_refcnt

* PyObject.ob_type

e PyObject_ASCII()

* PyObject_AsCharBuffer ()

e PyObject_AsFileDescriptor ()
* PyObject_AsReadBuffer()

e PyObject_AsWriteBuffer ()

s PyObject_Bytes ()

e PyObject_Call()

e PyObject_CallFunction/()

* PyObject_CallFunctionObjArgs ()
* PyObject_CallMethod/()

* PyObject_CallMethodObjArgs ()
e PyObject_CallNoArgs ()

* PyObject_CallObject ()

* PyObject_Calloc ()

* PyObject_CheckBuffer ()

e PyObject_CheckReadBuffer ()
e PyObject_ClearWeakRefs ()

* PyObject_CopyData ()

* PyObject_DelItem()

* PyObject_DelIltemString()

* PyObject_Dir ()

* PyObject_Format ()

e PyObject_Free()

* PyObject_GC_Del ()

* PyObject_GC_IsFinalized()
* PyObject_GC_IsTracked()

* PyObject_GC_Track ()

* PyObject_GC_UnTrack ()

e PyObject_GenericGetAttr ()

2.4. Contents of Limited API 31

The Python/C API, Release 3.12.0b3

PyObject_GenericGetDict ()
PyObject_GenericSetAttr ()
PyObject_GenericSetDict ()
PyObject_GetAIter()
PyObject_GetAttr ()
PyObject_GetAttrString()
PyObject_GetBuffer()
PyObject_GetItem()
PyObject_GetIter()
PyObject_GetTypeData ()
PyObject_HasAttr ()
PyObject_HasAttrString/()

PyObject_Hash ()

PyObject_HashNotImplemented ()

PyObject_Init ()
PyObject_InitVar()
PyObject_IsInstance()
PyObject_IsSubclass ()
PyObject_IsTrue ()
PyObject_Length ()
PyObject_Malloc ()
PyObject_Not ()
PyObject_Realloc ()
PyObject_Repr ()
PyObject_RichCompare ()
PyObject_RichCompareBool ()
PyObject_SelflIter ()
PyObject_SetAttr()
PyObject_SetAttrString/()
PyObject_SetItem()
PyObject_Size ()
PyObject_Str()
PyObject_Type ()
PyObject_Vectorcall ()
PyObject_VectorcallMethod /()

PyProperty_Type

32

Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

¢ PyRangelIter_Type

* PyRange_Type

* PyReversed_Type

* PySeglter_ New()

* PySeqglter_Type

* PySequence_Check ()

* PySequence_Concat ()

e PySequence_Contains ()
* PySequence_Count ()

* PySequence_DelItem()
e PySequence_DelSlice ()
* PySequence_Fast ()

* PySequence_GetItem()
* PySequence_GetSlice ()
e PySequence_In ()

* PySequence_InPlaceConcat ()
* PySequence_InPlaceRepeat ()
* PySequence_Index ()

e PySequence_Length ()

* PySequence_List ()

* PySequence_Repeat ()

* PySequence_SetItem/()
e PySequence_SetSlice ()
* PySequence_Size ()

* PySequence_Tuple ()

* PySetIter_Type

* PySet_Add()

e PySet_Clear()

e PySet_Contains ()

* PySet_Discard()

e PySet_New ()

e PySet_Pop ()

e PySet_Size()

* PySet_Type

e PySlice_AdjustIndices ()

e PySlice_GetIndices()

2.4. Contents of Limited API 33

The Python/C API, Release 3.12.0b3

PySlice_GetIndicesEx()
PySlice_New()

PySlice_Type
PySlice_Unpack ()
PyState_AddModule ()
PyState_FindModule ()
PyState_RemoveModule ()
PyStructSequence_Desc
PyStructSequence_Field
PyStructSequence_GetItem()
PyStructSequence_New ()
PyStructSequence_NewType ()

PyStructSequence_SetItem()

PyStructSequence_UnnamedField

PySuper_Type
PySys_AddWarnOption ()

PySys_AddWarnOptionUnicode ()

PySys_AddXOption ()
PySys_FormatStderr ()
PySys_FormatStdout ()
PySys_GetObject ()
PySys_GetXOptions ()
PySys_HasWarnOptions ()
PySys_ResetWarnOptions ()
PySys_SetArgv ()
PySys_SetArgvEx ()
PySys_SetObject ()
PySys_SetPath ()
PySys_WriteStderr ()
PySys_WriteStdout ()
PyThreadState
PyThreadState_Clear ()
PyThreadState_Delete ()
PyThreadState_Get ()
PyThreadState_GetDict ()

PyThreadState_GetFrame ()

34

Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

* PyThreadState_GetID()

e PyThreadState_GetInterpreter()
* PyThreadState_New ()

* PyThreadState_SetAsyncExc ()
e PyThreadState_Swap ()

e PyThread_GetInfo()

e PyThread ReInitTLS ()

e PyThread_acquire_lock ()

* PyThread_acquire_lock_timed()
* PyThread_allocate_lock ()

* PyThread create_key ()

e PyThread_delete_key ()

* PyThread delete_key_value ()
* PyThread_exit_thread()

e PyThread_free_lock ()

e PyThread_get_key_value/()

e PyThread_get_stacksize ()

* PyThread_get_thread_ident ()
e PyThread_get_thread_native_id()
e PyThread_init_thread()

* PyThread_release_lock ()

* PyThread_set_key_value ()

e PyThread_set_stacksize ()

¢ PyThread_start_new_thread()
* PyThread tss_alloc/()

e PyThread _tss_create ()

* PyThread_ tss_delete()

* PyThread_ _tss_free ()

* PyThread_tss_get ()

e PyThread_tss_1is_created()

* PyThread tss_set ()

e PyTraceBack_Here ()

e PyTraceBack_Print ()

e PyTraceBack_Type

e PyTuplelIter_Type

* PyTuple GetItem()

2.4. Contents of Limited API 35

The Python/C API, Release 3.12.0b3

PyTuple_GetSlice()

PyTuple_New()

PyTuple_Pack ()

PyTuple SetItem()

PyTuple_Size ()

PyTuple_Type

PyTypeObject

PyType_ClearCache ()
PyType_FromMetaclass ()
PyType_FromModuleAndSpec ()
PyType_FromSpec ()
PyType_FromSpecWithBases ()
PyType_GenericAlloc ()
PyType_GenericNew ()
PyType_GetFlags ()
PyType_GetModule ()
PyType_GetModuleState ()
PyType_GetName ()
PyType_GetQualName ()
PyType_GetSlot ()
PyType_GetTypeDataSize ()
PyType_IsSubtype ()
PyType_Modified()

PyType_Ready ()

PyType_Slot

PyType_Spec

PyType_Type
PyUnicodeDecodeError_Create ()
PyUnicodeDecodeError_GetEncoding ()
PyUnicodeDecodeError_GetEnd/()
PyUnicodeDecodeError_GetObject ()
PyUnicodeDecodeError_GetReason ()
PyUnicodeDecodeError_GetStart ()
PyUnicodeDecodeError_SetEnd()
PyUnicodeDecodeError_SetReason ()

PyUnicodeDecodeError_SetStart ()

36

Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

e PyUnicodeEncodeError_GetEncoding ()
* PyUnicodeEncodeError_GetEnd()

* PyUnicodeEncodeError_GetObject ()

* PyUnicodeEncodeError_GetReason ()

e PyUnicodeEncodeError_GetStart ()

* PyUnicodeEncodeError_SetEnd()

* PyUnicodeEncodeError_SetReason ()

* PyUnicodeEncodeError_SetStart ()

* PyUnicodeIter_Type

* PyUnicodeTranslateError_ GetEnd/()

* PyUnicodeTranslateError_GetObject ()
e PyUnicodeTranslateError_GetReason ()
* PyUnicodeTranslateError_GetStart ()
* PyUnicodeTranslateError_SetEnd()

* PyUnicodeTranslateError_SetReason ()
e PyUnicodeTranslateError_SetStart ()
* PyUnicode_Append()

* PyUnicode_AppendAndDel ()

e PyUnicode AsASCIIString()

* PyUnicode_AsCharmapString/()

* PyUnicode_AsDecodedObject ()

* PyUnicode_AsDecodedUnicode ()

* PyUnicode_AsEncodedObject ()

¢ PyUnicode_AsEncodedString()

* PyUnicode_AsEncodedUnicode ()

e PyUnicode_AsLatinlString()

e PyUnicode_AsMBCSString()

* PyUnicode_AsRawUnicodeEscapeString ()
* PyUnicode_AsUCS4 ()

e PyUnicode_AsUCS4Copy ()

* PyUnicode_AsUTF16String()

e PyUnicode_AsUTF32String()

* PyUnicode AsUTF8AndSize ()

e PyUnicode_AsUTF8String()

e PyUnicode_AsUnicodeEscapeString()

e PyUnicode_AsWideChar ()

2.4. Contents of Limited API 37

The Python/C API, Release 3.12.0b3

PyUnicode_AsWideCharString/()
PyUnicode_BuildEncodingMap ()
PyUnicode_Compare ()
PyUnicode_CompareWithASCIIString()
PyUnicode_Concat ()
PyUnicode_Contains ()
PyUnicode_Count ()
PyUnicode_Decode ()
PyUnicode_DecodeASCITI ()
PyUnicode_DecodeCharmap ()
PyUnicode_DecodeCodePageStateful ()
PyUnicode_DecodeFSDefault ()
PyUnicode_DecodeFSDefaultAndSize ()
PyUnicode_DecodeLatinl ()
PyUnicode_DecodeLocale ()
PyUnicode_DecodeLocaleAndSize ()
PyUnicode_DecodeMBCS ()
PyUnicode_DecodeMBCSStateful ()
PyUnicode_DecodeRawUnicodeEscape ()
PyUnicode_DecodeUTF16 ()
PyUnicode_DecodeUTFl16Stateful ()
PyUnicode_DecodeUTF32 ()
PyUnicode_DecodeUTF32Stateful ()
PyUnicode_DecodeUTF7()
PyUnicode_DecodeUTF7Stateful ()
PyUnicode_DecodeUTFS8 ()
PyUnicode_DecodeUTF8Stateful ()
PyUnicode_DecodeUnicodeEscape ()
PyUnicode_EncodeCodePage ()
PyUnicode_EncodeFSDefault ()
PyUnicode_EncodeLocale ()
PyUnicode_FSConverter()
PyUnicode_FSDecoder ()
PyUnicode_Find/()
PyUnicode_FindChar ()

PyUnicode_Format ()

38

Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

e PyUnicode_FromEncodedObject ()
* PyUnicode_FromFormat ()

¢ PyUnicode_FromFormatV ()

e PyUnicode_FromObject ()

* PyUnicode_FromOrdinal ()

e PyUnicode_FromString()

* PyUnicode_FromStringAndSize ()
e PyUnicode_FromWideChar ()

* PyUnicode_GetDefaultEncoding()
* PyUnicode_GetLength ()

* PyUnicode_InternFromString/()
* PyUnicode_InternInPlace ()

e PyUnicode_IsIdentifier()

e PyUnicode_Join()

e PyUnicode_Partition ()

* PyUnicode_RPartition ()

* PyUnicode_RSplit ()

* PyUnicode_ReadChar ()

e PyUnicode_Replace ()

e PyUnicode_Resize ()

* PyUnicode_RichCompare ()

e PyUnicode_Split ()

* PyUnicode_Splitlines ()

* PyUnicode_Substring()

e PyUnicode_Tailmatch ()

e PyUnicode_Translate ()

e PyUnicode_Type

e PyUnicode_WriteChar ()

e PyVarObject

* PyVarObject.ob_base

* PyVarObject.ob_size

* PyVectorcall_Call/()

e PyVectorcall_ NARGS ()

* PyWeakReference

* PyWeakref_ GetObject ()

* PyWeakref NewProxy ()

2.4. Contents of Limited API

39

The Python/C API, Release 3.12.0b3

PyWeakref_ NewRef ()
PyWrapperDescr_Type
PyWrapper_New ()
PyZip_Type
Py_AddPendingCall ()

Py AtExit ()

Py BEGIN _ALLOW_THREADS
Py _BLOCK_THREADS
Py_BuildValue ()

Py BytesMain ()
Py_CompileString/()
Py_DecRef ()
Py_DecodeLocale ()

Py END_ALLOW_THREADS
Py_EncodeLocale ()
Py_EndInterpreter()

Py EnterRecursiveCall ()
Py _Exit ()
Py_FatalError()
Py_FileSystemDefaultEncodeErrors
Py_FileSystemDefaultEncoding
Py Finalize()

Py _FinalizeEx/()

Py _GenericAlias ()
Py_GenericAliasType

Py _GetBuildInfo()

Py _GetCompiler ()

Py GetCopyright ()
Py_GetExecPrefix()
Py_GetPath()
Py_GetPlatform()

Py GetPrefix()
Py_GetProgramFullPath ()
Py _GetProgramName ()

Py GetPythonHome ()

Py_GetRecursionLimit ()

40

Chapter 2. C API Stability

The Python/C API, Release 3.12.0b3

* Py GetVersion()

* Py_HasFileSystemDefaultEncoding
* Py _IncRef ()

e Py Initialize()

e Py ITnitializeEx()

e Py Is()

e Py IsFalse()

e Py IsInitialized()

e Py _IsNone ()

* Py IsTrue()

e Py LeaveRecursiveCall ()
* Py Main()

* Py_MakePendingCalls ()
* Py NewInterpreter ()

* Py _NewRef ()

* Py_ReprEnter()

* Py ReprLeave ()

* Py SetPath()

* Py SetProgramName ()

* Py _SetPythonHome ()

* Py_SetRecursionLimit ()
s Py _UCS4

* Py UNBLOCK_THREADS

* Py_UTF8Mode

e Py VaBuildValue ()

* Py _Version

* Py _XNewRef ()

* Py buffer

* Py_intptr_t

* Py ssize_t

e Py_uintptr_t

* allocfunc

* binaryfunc

e descrgetfunc

* descrsetfunc

e destructor

2.4. Contents of Limited API 41

The Python/C API, Release 3.12.0b3

getattrfunc
getattrofunc
getbufferproc
getiterfunc
getter
hashfunc
initproc
inquiry
iternextfunc
lenfunc
newfunc
objobjargproc
objobjproc
releasebufferproc
reprfunc
richcmpfunc
setattrfunc
setattrofunc
setter
ssizeargfunc
ssizeobjargproc

ssizessizeargfunc

ssizessizeobjargproc

symtable
ternaryfunc
traverseproc
unaryfunc
vectorcallfunc

visitproc

42

Chapter 2. C API Stability

CHAPTER
THREE

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input,Py_file_input,andPy_single_input. These are described following the functions which
accept them as parameters.

Note also that several of these functions take F ILE * parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.

int Py_Main (int argc, wchar_t **argv)

Fart of the Stable ABIL The main program for the standard interpreter. This is made available for programs which
embed Python. The argc and argv parameters should be prepared exactly as those which are passed to a C program’s
main () function (converted to wchar_t according to the user’s locale). It is important to note that the argument
list may be modified (but the contents of the strings pointed to by the argument list are not). The return value will
be 0 if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or
2 if the parameter list does not represent a valid Python command line.

Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
aslongas PyConfig.inspect is zero.
int Py_BytesMain (int argc, char **argv)

Part of the Stable ABI since version 3.8. Similar to Py_Main () but argv is an array of bytes strings.
New in version 3.8.

int PyRun_AnyFile (FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags () below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)

If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal), re-
turn the value of PyRun_InteractivelLoop (), otherwise return the result of PyRun_SimpleFile ().
filename is decoded from the filesystem encoding (sys.getfilesystemencoding()). If filename
is NULL, this function uses "?27?2?" as the filename. If closeit is true, the file is closed before
PyRun_SimpleFileExFlags () returns.

43

The Python/C API, Release 3.12.0b3

int PyRun_SimpleString (const char *command)

This is a simplified interface to PyRun_SimpleStringFlags () below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags)

Executes the Python source code from command in the __main__ module according to the flags argument. If
__main___does not already exist, it is created. Returns O on success or —1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.

Note that if an otherwise unhandled Sy stemExit is raised, this function will not return —1, but exit the process,
aslongas PyConfig. inspect is zero.

int PyRun_SimpleFile (FILE *fp, const char *filename)

This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closeit)

This is a simplified interface to PyRun_SimpleFileExFlags () below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)

Similar to PyRun_SimpleStringFlags (), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from filesystem encoding and error handler.
If closeit is true, the file is closed before PyRun_SimpleFileExFlags () returns.

Note: On Windows, fp should be opened as binary mode (e.g. fopen (filename, "rb")). Otherwise,
Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne (FILE *fp, const char *filename)

This is a simplified interface to PyRun_InteractiveOneFlags () below, leaving flags set to NULL.

int PyRun_InteractiveOneF1lags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.psl and sys.ps2. filename is decoded from the filesystem encoding and
error handler.

Returns 0 when the input was executed successfully, —1 if there was an exception, or an error code from the
errcode. h include file distributed as part of Python if there was a parse error. (Note that errcode.h is not
included by Python . h, so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filename)

This is a simplified interface to PyRun_InteractiveLoopFlags () below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags)

Read and execute statements from a file associated with an interactive device until EOF is reached. The user will
be prompted using sys .psl and sys .ps2. filename is decoded from the filesystem encoding and error handler.
Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook)(void)

Part of the Stable ABI. Can be set to point to a function with the prototype int func (void). The function
will be called when Python’s interpreter prompt is about to become idle and wait for user input from the terminal.
The return value is ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other event
loops, as done in the Modules/_tkinter. c in the Python source code.

Changed in version 3.12: This function is only called from the main interpreter.

44

Chapter 3. The Very High Level Layer

The Python/C API, Release 3.12.0b3

char *(*PyOS_ReadlineFunctionPointer)(FILE*, FILE*, const char¥)

Can be set to point to a function with the prototype char *func (FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’s prompt.
The function is expected to output the string prompt if it’s not NULL, and then read a line of input from the provided
standard input file, returning the resulting string. For example, The readline module sets this hook to provide
line-editing and tab-completion features.

The result must be a string allocated by PyMem RawMalloc () or PyMem_RawRealloc (), or NULL if an
error occurred.

Changed in version 3.4: The result must be allocated by PyMem RawMalloc () or PyMem_RawRealloc (),
instead of being allocated by PyMem Malloc () or PyMem Realloc ().

Changed in version 3.12: This function is only called from the main interpreter.

PyObject *PyRun_String (const char *str, int start, PyObject *globals, PyObject *1ocals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags () below, leaving flags set
to NULL.
PyObject *PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, PyCompilerFlags
*flags)

Return value: New reference. Execute Python source code from s in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse the
source code.

Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject *PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to 0 and flags set to NULL.

PyObject *PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals, int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving flags set
to NULL.

PyObject *PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *1ocals,

PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags () below, leaving closeit
set to O.
PyObject *PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals, int
closeit, PyCompilerFlags *flags)

Return value: New reference. Similar to PyRun_StringFlags (), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
and error handler. If closeit is true, the file is closed before PyRun_FileExFlags () returns.

PyObject *Py_CompileString (const char *str, const char *filename, int start)

Return value: ~ New reference. Part of the Stable ABIL This is a simplified interface to
Py _CompileStringFlags () below, leaving flags set to NULL.

PyObject *Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to Py_CompileStringExFlags () below, with
optimize set to —1.

PyObject *Py_CompileStringObject (const char *str, PyObject *filename, int start, PyCompilerFlags *flags, int
optimize)

45

The Python/C API, Release 3.12.0b3

Return value: New reference. Parse and compile the Python source code in str, returning the resulting code object.
The start token is given by start; this can be used to constrain the code which can be compiled and should be
Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is used
to construct the code object and may appear in tracebacks or SyntaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.

The integer optimize specifies the optimization level of the compiler; a value of —1 selects the optimization level of
the interpreter as given by —O options. Explicit levels are 0 (no optimization; ___debug___is true), 1 (asserts are
removed, __debug___is false) or 2 (docstrings are removed too).

New in version 3.4.
PyObject *Py_CompileStringExFlags (const char *str, const char *filename, int start, PyCompilerFlags *flags,
int optimize)
Return value: New reference. Like Py_CompileStringObject (), but filename is a byte string decoded from
the filesystem encoding and error handler.

New in version 3.2.

PyObject *PyEval_EvalCode (PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. Part of the Stable ABI. This is a simplified interface to PyEval EvalCodeEx (),
with just the code object, and global and local variables. The other arguments are set to NULL.

PyObject *PyEval_EvalCodeEx (PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args, int
argcount, PyObject *const *kws, int kwcount, PyObject *const *defs, int
defcount, PyObject *kwdefs, PyObject *closure)

Return value: New reference. Part of the Stable ABI. Evaluate a precompiled code object, given a particular envi-
ronment for its evaluation. This environment consists of a dictionary of global variables, a mapping object of local
variables, arrays of arguments, keywords and defaults, a dictionary of default values for keyword-only arguments
and a closure tuple of cells.

PyObject *PyEval_EvalFrame (PyFrameObject *f)
Return value: New reference. Part of the Stable ABI. Evaluate an execution frame. This is a simplified interface to
PyEval_EvalFrameEx (), for backward compatibility.

PyObject *PyEval_EvalFrameEx (PyFrameObject *f, int throwflag)

Return value: New reference. Part of the Stable ABIL This is the main, unvarnished function of Python interpre-
tation. The code object associated with the execution frame f is executed, interpreting bytecode and executing
calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes an exception to
immediately be thrown; this is used for the throw () methods of generator objects.

Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.
int PyEval_MergeCompilerFlags (PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.
int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py CompileString ().
int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString (). This is the symbol to use when compiling arbitrarily long Python source code.
int Py_single_input

The start symbol from the Python grammar for a single statement; for use with Py_CompileString (). This
is the symbol used for the interactive interpreter loop.

46 Chapter 3. The Very High Level Layer

The Python/C API, Release 3.12.0b3

struct PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.

Whenever PyCompilerFlags *flagsis NULL, cf_flags is treated as equal to O, and any modification
dueto from __ future__ import is discarded.

int cf_flags
Compiler flags.
int cf_feature_version
¢f _feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.
The field is ignored by default, it is used if and only if PyCF_ONLY_AST flag is set in ¢f_flags.
Changed in version 3.8: Added cf_feature_version field.
int CO_FUTURE_DIVISION

This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP 238.

47

https://peps.python.org/pep-0238/

The Python/C API, Release 3.12.0b3

48 Chapter 3. The Very High Level Layer

CHAPTER
FOUR

REFERENCE COUNTING

The functions and macros in this section are used for managing reference counts of Python objects.
Py_ssize_t Py_REFCNT (PyObject *0)
Get the reference count of the Python object o.
Use the Py_SET_REFCNT () function to set an object reference count.
Changed in version 3.11: The parameter type is no longer const PyObject*.
Changed in version 3.10: Py_ REFCNT () is changed to the inline static function.
void Py_SET_REFCNT (PyObject *o, Py_ssize_t refcnt)
Set the object o reference counter to refcnt.
New in version 3.9.
void Py__ INCREF (PyObject *0)
Increment the reference count for object o.

This function is usually used to convert a borrowed reference to a strong reference in-place. The Py_NewRef ()
function can be used to create a new strong reference.

The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_ XINCREF ().

void Py_XINCREF (PyObject *0)
Increment the reference count for object o. The object may be NULL, in which case the macro has no effect.
See also Py_ XNewRef ().

PyObject *Py_NewRe£ (PyObject *0)

Part of the Stable ABI since version 3.10. Create a new strong reference to an object: increment the reference count
of the object o and return the object o.

When the strong reference is no longer needed, Py_DECREF () should be called on it to decrement the object
reference count.

The object o0 must not be NULL; use Py_ XNewRef () if o can be NULL.

For example:

Py_INCREF (obj) ;
self->attr obj;

can be written as:

self->attr

Py_NewRef (obj) ;

49

The Python/C API, Release 3.12.0b3

See also Py TNCREF ().
New in version 3.10.
PyObject *Py_XNewRef£ (PyObject *0)
Part of the Stable ABI since version 3.10. Similar to Py_NewRef (), but the object 0 can be NULL.
If the object o is NULL, the function just returns NULL.
New in version 3.10.
void Py_DECREF (PyObject *0)
Decrement the reference count for object o.
If the reference count reaches zero, the object’s type’s deallocation function (which must not be NULL) is invoked.
This function is usually used to delete a strong reference before exiting its scope.

The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_ XDECREF ().

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
witha __del__ () method is deallocated). While exceptions in such code are not propagated, the executed
code has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state before Py DECREF () is invoked. For example, code to delete an object
from a list should copy a reference to the deleted object in a temporary variable, update the list data structure,
and then call Py_DECREF () for the temporary variable.

void Py_XDECREF (PyObject *0)

Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_ DECREF (), and the same warning applies.

void Py_CLEAR (PyObject *0)
Decrement the reference count for object 0. The object may be NULL, in which case the macro has no effect;
otherwise the effect is the same as for Py_ DECREF (), except that the argument is also set to NULL. The warning

for Py_DECREF () does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the reference count of an object that might be traversed
during garbage collection.

Changed in version 3.12: The macro argument is now only evaluated once. If the argument has side effects, these
are no longer duplicated.

void Py_IncRef (PyObject *0)

Part of the Stable ABI. Increment the reference count for object 0. A function version of Py_ XTNCREF (). It can
be used for runtime dynamic embedding of Python.

void Py_DecRef£ (PyObject *0)

Fart of the Stable ABIL Decrement the reference count for object 0. A function version of Py XDECREF (). It
can be used for runtime dynamic embedding of Python.

Py_SETREF (dst, src)

Macro safely decrementing the dst reference count and setting dst to src.

Asin case of Py_CLEAR (), “the obvious” code can be deadly:

Py_DECREF (dst) ;
dst = src;

50 Chapter 4. Reference Counting

The Python/C API, Release 3.12.0b3

The safe way is:

Py_SETREF (dst, src);

That arranges to set dst to src _before_ decrementing reference count of dst old value, so that any code triggered
as a side-effect of dst getting torn down no longer believes dst points to a valid object.

New in version 3.6.

Changed in version 3.12: The macro arguments are now only evaluated once. If an argument has side effects, these
are no longer duplicated.

Py_XSETREF (dst, src)
Variant of Py SETREF macro that uses Py XDECREF () instead of Py DECREF ().

New in version 3.6.

Changed in version 3.12: The macro arguments are now only evaluated once. If an argument has side effects, these
are no longer duplicated.

51

The Python/C API, Release 3.12.0b3

52 Chapter 4. Reference Counting

CHAPTER
FIVE

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set it to
indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are
supposed to return a pointer, or —1 if they return an integer (exception: the PyArg_* functions return 1 for success and
0 for failure).

Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’t have a non-NULL traceback if the exception type is NULL).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

Note: The error indicator is not the result of sys.exc_info (). The former corresponds to an exception that is not
yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

5.1 Printing and clearing

void PyErr_Clear ()
Part of the Stable ABI. Clear the error indicator. If the error indicator is not set, there is no effect.
void PyErr_PrintEx (int set_sys_last_vars)

Part of the Stable ABI. Print a standard traceback to sys.stderr and clear the error indicator. Unless the
error is a SystemEx1it, in that case no traceback is printed and the Python process will exit with the error code
specified by the SystemEx1it instance.

Call this function only when the error indicator is set. Otherwise it will cause a fatal error!

If set_sys_last_vars is nonzero, the variable sys.last_exc is set to the printed exception. For backwards
compatibility, the deprecated variables sys.last_type, sys.last_valueand sys.last_traceback
are also set to the type, value and traceback of this exception, respectively.

Changed in version 3.12: The setting of sys.last_exc was added.

53

The Python/C API, Release 3.12.0b3

void PyErr_Print ()
Fart of the Stable ABI. Alias for PyErr_PrintEx (1).

void PyErr_ WriteUnraisable (PyObject *obj)
Fart of the Stable ABI. Call sys.unraisablehook () using the current exception and obj argument.
This utility function prints a warning message to sys.stderr when an exception has been set but it is impos-

sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
del () method.

The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.

An exception must be set when calling this function.

void PyErr_DisplayException (PyObject *exc)
Part of the Stable ABI since version 3.12. Print the standard traceback display of exc to sys . stderr, including
chained exceptions and notes.

New in version 3.12.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.
void PyErr_SetString (PyObject *type, const char *message)
Part of the Stable ABI. This is the most common way to set the error indicator. The first argument specifies the
exception type; it is normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not
increment its reference count. The second argument is an error message; it is decoded from 'ut £-8"'.
void PyErr_SetObject (PyObject *type, PyObject *value)
Fart of the Stable ABI. This function is similar to PyErr_SetString () butlets you specify an arbitrary Python
object for the “value” of the exception.
PyObject *PyErr_Format (PyObject *exception, const char *format, ...)
Return value: Always NULL. Part of the Stable ABI. This function sets the error indicator and returns NULL.
exception should be a Python exception class. The format and subsequent parameters help format the error message;
they have the same meaning and values asin PyUnicode_FromFormat (). formatis an ASCII-encoded string.
PyObject *PyErr_FormatV (PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Part of the Stable ABI since version 3.5. Same as PyErr_Format (), but taking a
va_list argument rather than a variable number of arguments.

New in version 3.5.

void PyErr_SetNone (PyObject *type)
Part of the Stable ABI. This is a shorthand for PyErr_SetObject (type, Py_None).

int PyErr_BadArgument ()
Part of the Stable ABI. This is a shorthand for PyErr_SetString (PyExc_TypeError, message),
where message indicates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.
PyObject *PyErr_NoMemory ()
Return value: Always NULL. Part of the Stable ABI This is a shorthand for

PyErr_SetNone (PyExc_MemoryError); it returns NULL so an object allocation function can write
return PyErr_NoMemory () ; when it runs out of memory.

54 Chapter 5. Exception Handling

The Python/C API, Release 3.12.0b3

PyObject *PyErr_SetFromErrno (PyObject *type)

Return value: Always NULL. Part of the Stable ABI. This is a convenience function to raise an exception when a C
library function has returned an error and set the C variable errno. It constructs a tuple object whose first item is
the integer errno value and whose second item is the corresponding error message (gotten from strerror ()),
and then calls PyErr_SetObject (type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr CheckSignals (), and if that set the error indicator, leaves it
set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno (type) ; when the system call returns an error.

PyObject *PyErr_SetFromErrnoWithFilenameObject (PyObject *type, PyObject *filenameObject)
Return value: Always NULL. Part of the Stable ABI. Similarto PyErr_SetFromErrno (), with the additional

behavior that if filenameObject is not NULL, it is passed to the constructor of type as a third parameter. In the case
of OSError exception, this is used to define the £ilename attribute of the exception instance.

PyObject *PyErr_SetFromErrnoWithFilenameObjects (PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)

Return value: Always NULL. Part of the Stable ABI since version 3.7. Similar to
PyErr_ SetFromErrnoWithFilenameObject (), but takes a second filename object, for raising
errors when a function that takes two filenames fails.

New in version 3.4.

PyObject *PyErr_SetFromErrnoWithFilename (PyObject *type, const char *filename)
Return value: Always NULL. Part of the Stable ABI. Similarto PyErr_SetFromErrnoWithFilenameObject (),
but the filename is given as a C string. filename is decoded from the filesystem encoding and error handler.

PyObject *PyErr_SetFromWindowsErr (int ierr)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. This is a convenience function
to raise WindowsError. If called with ierr of 0, the error code returned by a call to GetLastError ()
is used instead. It calls the Win32 function FormatMessage () to retrieve the Windows description of error
code given by ierr or GetLastError (), then it constructs a tuple object whose first item is the ierr value
and whose second item is the corresponding error message (gotten from FormatMessage ()), and then calls
PyErr_SetObject (PyExc_WindowsError, object). This function always returns NULL.

Auvailability: Windows.

PyObject *PyErr_SetExcFromWindowsErr (PyObject *type, int ierr)
Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr SetFromWindowsErr (), with an additional parameter specifying the exception type to be raised.

Availability: Windows.

PyObject *PyErr_SetFromWindowsErrWithFilename (int ierr, const char *filename)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetFromWindowsErrWithFilenameObject (), butthe filename is given as a C string. filename
is decoded from the filesystem encoding (os . fsdecode ()).

Availability: Windows.
PyObject *PyErr_SetExcFromWindowsErrWithFilenameObject (PyObject *type, int ierr, PyObject
*filename)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetFromWindowsErrWithFilenameObject (), with an additional parameter specifying the ex-
ception type to be raised.

Auvailability: Windows.

5.2. Raising exceptions 55

The Python/C API, Release 3.12.0b3

PyObject *PyErr_SetExcFromWindowsErrWithFilenameObjects (PyObject *type, int ierr, PyObject
*filename, PyObject *filename?2)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetExcFromWindowsErrWithFilenameObject (), butaccepts a second filename object.
Auvailability: Windows.

New in version 3.4.

PyObject *PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, const char *filename)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetFromWindowsErrWithFilename (), with an additional parameter specifying the exception
type to be raised.

Auvailability: Windows.

PyObject *PyErr_SetImportError (PyObject *msg, PyObject ¥name, PyObject *path)
Return value: Always NULL. Part of the Stable ABI since version 3.7. This is a convenience function to raise

ImportError. msg will be set as the exception’s message string. name and path, both of which can be NULL,
will be set as the ImportError’s respective name and path attributes.

New in version 3.3.
PyObject *PyErr_SetImportErrorSubclass (PyObject *exception, PyObject ¥msg, PyObject *name, PyObject
*path)
Return value: Always NULL. Part of the Stable ABI since version 3.6. Much like PyErr_Set ImportError ()
but this function allows for specifying a subclass of ImportError to raise.

New in version 3.6.

void PyErr_SyntaxLocationObject (PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exceptionisnota SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exceptionis a SyntaxError.

New in version 3.4.

void PyErr_SyntaxLocationEx (const char *filename, int lineno, int col_offset)
Fart of the Stable ABI since version 3.7. Like PyErr_SyntaxLocationObject (), but filename is a byte
string decoded from the filesystem encoding and error handler.
New in version 3.2.

void PyErr_ SyntaxLocation (const char *filename, int lineno)

Part of the Stable ABI. Like PyErr_SyntaxLocationEx (), but the col_offset parameter is omitted.

void PyErr_BadInternalCall ()

Part of the Stable ABIL This is a shorthand for PyErr_SetString (PyExc_SystemError, message),
where message indicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.

56 Chapter 5. Exception Handling

The Python/C API, Release 3.12.0b3

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is 0 if no exception is raised, or
—1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py DECREF () owned references and return an error value).

int PyErr_WarnEx (PyObject *category, const char *message, Py_ssize_t stack_level)

Fart of the Stable ABI. Issue a warning message. The cafegory argument is a warning category (see below) or
NULL; the message argument is a UTF-8 encoded string. stack_level is a positive number giving a number of stack
frames; the warning will be issued from the currently executing line of code in that stack frame. A stack_level of
1 is the function calling PyErr_WarnEx (), 2 is the function above that, and so forth.

Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception;the default warning category is PyExc_Runt imeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at Standard Warning Categories.

For information about warning control, see the documentation for the warnings module and the —W option in
the command line documentation. There is no C API for warning control.

int PyErr_WarnExplicitObject (PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit () ;see there for more information. The module and registry
arguments may be set to NULL to get the default effect described there.

New in version 3.4.

int PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno, const char
*module, PyObject *registry)
Fart of the Stable ABL Similar to PyErr_ WarnExplicitObject () except that message and module are
UTF-8 encoded strings, and filename is decoded from the filesystem encoding and error handler.
int PyErr_WarnFormat (PyObject *category, Py_ssize_t stack_level, const char *format, ...)

Part of the Stable ABI. Function similar to PyErr_WarnEx (), but use PyUnicode_FromFormat () to
format the warning message. format is an ASCII-encoded string.

New in version 3.2.

int PyErr_ResourceWarning (PyObject *source, Py_ssize_t stack_level, const char *format, ...)

Part of the Stable ABI since version 3.6. Function similar to PyErr_ WarnFormat (), but category is
ResourceWarning and it passes source to warnings.WarningMessage ().

New in version 3.6.

5.3. Issuing warnings 57

The Python/C API, Release 3.12.0b3

5.4 Querying the error indicator

PyObject *PyErr_Occurred ()

Return value: Borrowed reference. Part of the Stable ABIL. Test whether the error indicator is set. If set,
return the exception type (the first argument to the last call to one of the PyErr_Set* functions or to
PyErr_Restore ()). If not set, return NULL. You do not own a reference to the return value, so you do
not need to Py_ DECREF () it.

The caller must hold the GIL.

Note: Do not compare the return value to a specific exception; use PyErr_ ExceptionMatches () instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exc)

Fart of the Stable ABI. Equivalentto PyErr_GivenExceptionMatches (PyErr_Occurred(), exc).
This should only be called when an exception is actually set; a memory access violation will occur if no exception
has been raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *exc)

Fart of the Stable ABI. Return true if the given exception matches the exception type in exc. If exc is a class object,
this also returns true when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and
recursively in subtuples) are searched for a match.

PyObject *PyErr_GetRaisedException (void)

Return value: New reference. Part of the Stable ABI since version 3.12. Return the exception currently being raised,
clearing the error indicator at the same time.

This function is used by code that needs to catch exceptions, or code that needs to save and restore the error indicator
temporarily.

For example:

{
PyObject *exc = PyErr_GetRaisedException();

/* ... code that might produce other errors ... */

PyErr_SetRaisedException (exc);

See also:
PyErr GetHandledException (), to save the exception currently being handled.

New in version 3.12.

void PyErr_SetRaisedException (PyObject *exc)

Part of the Stable ABI since version 3.12. Set exc as the exception currently being raised, clearing the existing
exception if one is set.

Warning: This call steals a reference to exc, which must be a valid exception.

New in version 3.12.

58

Chapter 5. Exception Handling

The Python/C API, Release 3.12.0b3

void PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Part of the Stable ABI. Deprecated since version 3.12: Use PyErr_GetRaisedException () instead.
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set all

three variables to NULL. If it is set, it will be cleared and you own a reference to each object retrieved. The value
and traceback object may be NULL even when the type object is not.

Note: This function is normally only used by legacy code that needs to catch exceptions or save and restore the
error indicator temporarily.

For example:

{
PyObject *type, *value, *traceback;
PyErr_Fetch (&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore (type, value, traceback);

void PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback)
Fart of the Stable ABI. Deprecated since version 3.12: Use PyErr_SetRaisedException () instead.

Set the error indicator from the three objects, type, value, and traceback, clearing the existing exception if one is
set. If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value or
traceback. The exception type should be a class. Do not pass an invalid exception type or value. (Violating these
rules will cause subtle problems later.) This call takes away a reference to each object: you must own a reference
to each object before the call and after the call you no longer own these references. (If you don’t understand this,
don’t use this function. I warned you.)

Note: This function is normally only used by legacy code that needs to save and restore the error indicator
temporarily. Use PyErr_Fetch () to save the current error indicator.

void PyErr_NormalizeException (PyObject **exc, PyObject **val, PyObject **tb)

Fart of the Stable ABI. Deprecated since version 3.12: Use PyErr_GetRaisedException () instead, to
avoid any possible de-normalization.

Under certain circumstances, the values returned by PyErr_Fetch () below can be “unnormalized”, meaning
that *exc is a class object but *val is not an instance of the same class. This function can be used to instantiate the
class in that case. If the values are already normalized, nothing happens. The delayed normalization is implemented
to improve performance.

Note: This function does not implicitly set the __traceback___ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback (val, tb);
}

PyObject *PyErr_GetHandledException (void)

Fart of the Stable ABI since version 3.11. Retrieve the active exception instance, as would be returned by sys.

5.4. Querying the error indicator 59

The Python/C API, Release 3.12.0b3

exception (). This refers to an exception that was already caught, not to an exception that was freshly raised.
Returns a new reference to the exception or NULL. Does not modify the interpreter’s exception state.

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr SetHandledException () to
restore or clear the exception state.

New in version 3.11.

void PyErr_SetHandledException (PyObject *exc)

Fart of the Stable ABI since version 3.11. Set the active exception, as known from sys.exception (). This
refers to an exception that was already caught, not to an exception that was freshly raised. To clear the exception
state, pass NULL.

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr GetHandledException () to
get the exception state.

New in version 3.11.

void PyErr_GetExcInfo (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Part of the Stable ABI since version 3.7. Retrieve the old-style representation of the exception info, as known from
sys.exc_info (). This refers to an exception that was already caught, not to an exception that was freshly
raised. Returns new references for the three objects, any of which may be NULL. Does not modify the exception info
state. This function is kept for backwards compatibility. Prefer using PyErr_GetHandledException ().

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr SetExcInfo () to restore or clear
the exception state.

New in version 3.3.

void PyErr_SetExcInfo (PyObject *type, PyObject *value, PyObject *traceback)

Part of the Stable ABI since version 3.7. Set the exception info, as known from sy s .exc_info (). This refers to
an exception that was already caught, not to an exception that was freshly raised. This function steals the references
of the arguments. To clear the exception state, pass NULL for all three arguments. This function is kept for
backwards compatibility. Prefer using PyErr_SetHandledException ().

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr_ GetExcInfo () to read the exception
state.

New in version 3.3.

Changed in version 3.11: The type and traceback arguments are no longer used and can be NULL. The
interpreter now derives them from the exception instance (the value argument). The function still steals references
of all three arguments.

60

Chapter 5. Exception Handling

The Python/C API, Release 3.12.0b3

5.5 Signal Handling

int PyErr_CheckSignals ()
Part of the Stable ABI. This function interacts with Python’s signal handling.

If the function is called from the main thread and under the main Python interpreter, it checks whether a signal has
been sent to the processes and if so, invokes the corresponding signal handler. If the signal module is supported,
this can invoke a signal handler written in Python.

The function attempts to handle all pending signals, and then returns 0. However, if a Python signal handler raises
an exception, the error indicator is set and the function returns —1 immediately (such that other pending signals
may not have been handled yet: they will be on the next PyErr_ CheckSignals () invocation).

If the function is called from a non-main thread, or under a non-main Python interpreter, it does nothing and returns
0.

This function can be called by long-running C code that wants to be interruptible by user requests (such as by
pressing Ctrl-C).

Note: The default Python signal handler for STGINT raises the KeyboardInterrupt exception.

void PyErr_SetInterrupt ()

Part of the Stable ABI. Simulate the effect of a SIGINT signal arriving. This is equivalent to
PyErr_SetInterruptEx (SIGINT).

Note: This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

int PyErr_SetInterruptEx (int signum)

Part of the Stable ABI since version 3.10. Simulate the effect of a signal arriving. The next time
PyErr CheckSignals () is called, the Python signal handler for the given signal number will be called.

This function can be called by C code that sets up its own signal handling and wants Python signal handlers to be
invoked as expected when an interruption is requested (for example when the user presses Ctrl-C to interrupt an
operation).

If the given signal isn’t handled by Python (it was set to signal.SIG_DFL or signal.SIG_IGN), it will be
ignored.

If signum is outside of the allowed range of signal numbers, —1 is returned. Otherwise, O is returned. The error
indicator is never changed by this function.

Note: This function is async-signal-safe. It can be called without the G/L and from a C signal handler.

New in version 3.10.

int PySignal_SetWakeupFd (int fd)

This utility function specifies a file descriptor to which the signal number is written as a single byte whenever a
signal is received. fd must be non-blocking. It returns the previous such file descriptor.

The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_£d ()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.

Changed in version 3.5: On Windows, the function now also supports socket handles.

5.5. Signal Handling 61

The Python/C API, Release 3.12.0b3

5.6 Exception Classes

PyObject *PyErr_NewException (const char *name, PyObject *base, PyObject *dict)
Return value: New reference. Part of the Stable ABI. This utility function creates and returns a new exception class.
The name argument must be the name of the new exception, a C string of the form module.classname. The
base and dict arguments are normally NULL. This creates a class object derived from Except ion (accessible in
CasPyExc_Exception).

The __module___ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base
classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject *PyErr_NewExceptionWithDoc (const char *name, const char *doc, PyObject *base, PyObject *dict)

Return value: New reference. Part of the Stable ABI. Same as PyErr NewException (), except that the new
exception class can easily be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception
class.

New in version 3.2.

5.7 Exception Objects

PyObject *PyException_GetTraceback (PyObject *ex)
Return value: New reference. Part of the Stable ABI. Return the traceback associated with the exception as a new
reference, as accessible from Python through __traceback__. If there is no traceback associated, this returns
NULL.

int PyException_SetTraceback (PyObject *ex, PyObject *tb)
Fart of the Stable ABI. Set the traceback associated with the exception to th. Use Py_None to clear it.

PyObject *PyException_GetContext (PyObject *ex)
Return value: New reference. Part of the Stable ABI. Return the context (another exception instance during whose
handling ex was raised) associated with the exception as a new reference, as accessible from Python through
___context__. If there is no context associated, this returns NULL.

void PyException_SetContext (PyObject *ex, PyObject *ctx)
Fart of the Stable ABI. Set the context associated with the exception to ctx. Use NULL to clear it. There is no type
check to make sure that ctx is an exception instance. This steals a reference to ctx.

PyObject *PyException_GetCause (PyObject *ex)
Return value: New reference. Part of the Stable ABIL Return the cause (either an exception instance, or None,
setby raise ... from ...) associated with the exception as a new reference, as accessible from Python
through __cause__.

void PyException_SetCause (PyObject *ex, PyObject *cause)
Fart of the Stable ABI. Set the cause associated with the exception to cause. Use NULL to clear it. There is no type
check to make sure that cause is either an exception instance or None. This steals a reference to cause.
__suppress_context__ is implicitly set to True by this function.

PyObject *PyException_GetArgs (PyObject *ex)

Return value: New reference. Part of the Stable ABI since version 3.12. Return args of exception ex.

62 Chapter 5. Exception Handling

The Python/C API, Release 3.12.0b3

void PyException_SetArgs (PyObject *ex, PyObject *args)
Part of the Stable ABI since version 3.12. Set args of exception ex to args.

PyObject *PyUnstable_Exc_PrepReraiseStar (PyObject *orig, PyObject *excs)

This is Unstable API. It may change without warning in minor releases.

Implement part of the interpreter’s implementation of except *. orig is the original exception that was caught,
and excs is the list of the exceptions that need to be raised. This list contains the the unhandled part of orig, if any,
as well as the exceptions that were raised from the except * clauses (so they have a different traceback from orig)
and those that were reraised (and have the same traceback as orig). Return the ExceptionGroup that needs to
be reraised in the end, or None if there is nothing to reraise.

New in version 3.12.

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.
PyObject *PyUnicodeDecodeError_Create (const char *encoding, const char *object, Py_ssize_t length,
Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Part of the Stable ABI. Create a UnicodeDecodeError object with the attributes
encoding, object, length, start, end and reason. encoding and reason are UTF-8 encoded strings.
PyObject *PyUnicodeDecodeError_GetEncoding (PyObject *exc)
PyObject *PyUnicodeEncodeError_GetEncoding (PyObject *exc)

Return value: New reference. Part of the Stable ABI. Return the encoding attribute of the given exception object.

PyObject *PyUnicodeDecodeError_GetObject (PyObject *exc)
PyObject *PyUnicodeEncodeError_GetObject (PyObject *exc)
PyObject *PyUnicodeTranslateError_GetObject (PyObject *exc)
Return value: New reference. Part of the Stable ABI. Return the object attribute of the given exception object.

int PyUnicodeDecodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeEncodeError_GetStart (PyObject *exc, Py_ssize_t *start)

int PyUnicodeTranslateError_GetStart (PyObject *exc, Py_ssize_t *start)
Fart of the Stable ABIL. Get the start attribute of the given exception object and place it into *start. start must not
be NULL. Return 0 on success, —1 on failure.

int PyUnicodeDecodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeEncodeError_SetStart (PyObject *exc, Py_ssize_t start)

int PyUnicodeTranslateError_SetStart (PyObject *exc, Py_ssize_t start)
Part of the Stable ABI. Set the start attribute of the given exception object to start. Return 0 on success, —1 on
failure.

int PyUnicodeDecodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeEncodeError_GetEnd (PyObject *exc, Py_ssize_t *end)

int PyUnicodeTranslateError_ GetEnd (PyObject *exc, Py_ssize_t *end)
Fart of the Stable ABI. Get the end attribute of the given exception object and place it into *end. end must not be
NULL. Return O on success, —1 on failure.

int PyUnicodeDecodeError_SetEnd (PyObject *exc, Py_ssize_t end)

5.8. Unicode Exception Objects 63

The Python/C API, Release 3.12.0b3

int PyUnicodeEncodeError_SetEnd (PyObject *exc, Py_ssize_t end)

int PyUnicodeTranslateError_SetEnd (PyObject *exc, Py_ssize_t end)
Fart of the Stable ABI. Set the end attribute of the given exception object to end. Return 0 on success, —1 on
failure.

PyObject *PyUnicodeDecodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeEncodeError_GetReason (PyObject *exc)

PyObject *PyUnicodeTranslateError_GetReason (PyObject *exc)
Return value: New reference. Part of the Stable ABI. Return the reason attribute of the given exception object.

int PyUnicodeDecodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason (PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason (PyObject *exc, const char *reason)

Fart of the Stable ABI. Set the reason attribute of the given exception object to reason. Return O on success, —1
on failure.

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mod-
ules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically). They are also not needed for #p_call implementations because the call protocol takes care of recursion
handling.
int Py_EnterRecursiveCall (const char *where)

Fart of the Stable ABI since version 3.9. Marks a point where a recursive C-level call is about to be performed.

If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack ().
In this is the case, it sets a MemoryError and returns a nonzero value.

The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.

where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the
RecursionError message caused by the recursion depth limit.

Changed in version 3.9: This function is now also available in the limited API.

void Py_LeaveRecursiveCall (void)
Fart of the Stable ABI since version 3.9. Ends a Py_EnterRecursiveCall (). Must be called once for each
successful invocation of Py_EnterRecursiveCall ().

Changed in version 3.9: This function is now also available in the limited API.

Properly implementing tp_ repr for container types requires special recursion handling. In addition to protecting the
stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr ().

int Py_ReprEnter (PyObject *object)
Part of the Stable ABI. Called at the beginning of the tp_ repr implementation to detect cycles.

If the object has already been processed, the function returns a positive integer. In that case the ¢ p_ repr imple-
mentation should return a string object indicating a cycle. As examples, dict objects return { . ..} and 1ist
objects return [...].

The function will return a negative integer if the recursion limit is reached. In that case the tp_ repr implemen-
tation should typically return NULL.

64 Chapter 5. Exception Handling

The Python/C API, Release 3.12.0b3

Otherwise, the function returns zero and the tp_ repr implementation can continue normally.

void Py_ReprLeave (PyObject *object)

Part of the Stable ABIL Ends a Py _ReprEnter (). Must be called once for each invocation of
Py_ReprEnter () that returns zero.

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python ex-
ception name. These have the type PyOb ject*; they are all class objects. For completeness, here are all the variables:

C Name Python Name Notes
PyExc_BaseException BaseException !
PyExc_Exception Exception Page 66, 1
PyExc_ArithmeticError ArithmeticError Page 66, 1
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionAbortedErjr6onnectionAbortedError
PyExc_ConnectionError ConnectionError

PyExc_ConnectionRefusedErfr6onnectionRefusedError
PyExc_ConnectionResetErrorConnectionResetError
PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError | FloatingPointError

PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError Page 66, 1
PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError| ModuleNotFoundError
PyExc_NameError NameError

PyExc_NotADirectoryError | NotADirectoryError
PyExc_NotImplementedError| NotImplementedError

Page 66, T

PyExc_OSError OSError
PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError | ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceEkrror
PyExc_RuntimeError RuntimeError

continues on next page

5.10. Standard Exceptions 65

The Python/C API, Release 3.12

.0b3

Table 1 - continued from previous page

C Name

Python Name

Notes

PyExc_StopAsyncIteration | StopAsyncIteration
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError

PyExc_UnboundLocalError

UnboundLocalError

PyExc_UnicodeDecodeError

UnicodeDecodeError

PyExc_UnicodeEncodeError

UnicodeEncodeError

PyExc_UnicodeError

UnicodeError

PyExc_UnicodeTranslateEr

rocbnicodeTranslateError

PyExc_ValueError

ValueError

PyExc_ZeroDivisionError

ZeroDivisionError

New in version 3.3:
PyExc_ChildProcessError,

PyExc_FileNotFoundError,
PyExc_NotADirectoryError,

PyExc_BlockingIOError,
PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError, PyExc_FileExistsError,
PyExc_InterruptedError,

PyExc_ConnectionError,

PyExc_PermissionError,

PyExc_TimeoutError were introduced following PEP 3151.

PyExc_ProcessLookupError

PyExc_BrokenPipeError,

PyExc_IsADirectoryError,
and

New in version 3.5: PyExc_StopAsyncIteration and PyExc_RecursionError

New in version 3.6: PyExc_ModuleNotFoundError

These are compatibility aliases to PyExc_OSError:

C Name

Notes

PyExc_EnvironmentError

PyExc_IOError

PyExc_WindowsError

Changed in version 3.3: These aliases used to be separate exception types.

Notes:

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc__followed by the Python
exception name. These have the type PyOb ject *; they are all class objects. For completeness, here are all the variables:

! This is a base class for other standard exceptions.
2 Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is defined.

66

Chapter 5. Exception Handling

https://peps.python.org/pep-3151/

The Python/C API, Release 3.12.0b3

C Name Python Name Notes
PyExc_Warning Warning 3
PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning | PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

New in version 3.2: PyExc_ResourceWarning

Notes:

3 This is a base class for other standard warning categories.

5.11. Standard Warning Categories

67

The Python/C API, Release 3.12.0b3

68 Chapter 5. Exception Handling

CHAPTER
SIX

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across platforms,
using Python modules from C, and parsing function arguments and constructing Python values from C values.

6.1 Operating System Utilities

PyObject *PyOS_FSPath (PyObject *path)
Return value: New reference. Part of the Stable ABI since version 3.6. Return the file system representation for
path. If the objectis a st r or bytes object, then its reference count is incremented. If the object implements the
os.PathLike interface, then _ fspath__ () isreturned aslong asitisa str or bytes object. Otherwise
TypeError is raised and NULL is returned.

New in version 3.6.

int Py_FdIsInteractive (FILE *fp, const char *filename)

Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty (fileno (fp)) is true. If the PyConfig. interactive is non-zero, this function also
returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>"'or '2?2?2"'.

This function must not be called before Python is initialized.

void PyOS_BeforeFork ()

Fart of the Stable ABI on platforms with fork() since version 3.7. Function to prepare some internal state before a
process fork. This should be called before calling fork () or any similar function that clones the current process.
Only available on systems where fork () is defined.

Warning: The C fork () call should only be made from the ‘main” thread (of the “main” interpreter). The
same is true for PyOS_BeforeFork ().

New in version 3.7.

void PyOS_AfterFork_Parent ()

Part of the Stable ABI on platforms with fork() since version 3.7. Function to update some internal state after a
process fork. This should be called from the parent process after calling fork () or any similar function that
clones the current process, regardless of whether process cloning was successful. Only available on systems where
fork () is defined.

Warning: The C fork () call should only be made from the ‘main” thread (of the “main” interpreter). The
same is true for PyOS_AfterFork_Parent ().

69

The Python/C API, Release 3.12.0b3

New in version 3.7.

void PyOS_AfterFork_Child ()

Fart of the Stable ABI on platforms with fork() since version 3.7. Function to update internal interpreter state after
a process fork. This must be called from the child process after calling fork (), or any similar function that clones
the current process, if there is any chance the process will call back into the Python interpreter. Only available on
systems where fork () is defined.

Warning: The C fork () call should only be made from the ‘main” thread (of the “main” interpreter). The
same is true for PyOS_AfterFork_Child ().

New in version 3.7.
See also:

os.register_at_fork() allows registering custom Python functions to be called by
PyOS_BeforeFork (), PyOS_AfterFork_Parent () and PyOS_AfterFork_Child().
void PyOS_AfterFork ()

Fart of the Stable ABI on platforms with fork(). Function to update some internal state after a process fork; this
should be called in the new process if the Python interpreter will continue to be used. If a new executable is loaded
into the new process, this function does not need to be called.

Deprecated since version 3.7: This function is superseded by PyOS_AfterFork_Child().

int PyOS_CheckStack ()

Fart of the Stable ABI on platforms with USE_STACKCHECK since version 3.7. Return true when the interpreter
runs out of stack space. This is a reliable check, but is only available when USE__STACKCHECK is defined (currently
on certain versions of Windows using the Microsoft Visual C++ compiler). USE_STACKCHECK will be defined
automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig (inti)
Fart of the Stable ABI. Return the current signal handler for signal i. This is a thin wrapper around either
sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is a typedef
alias for void (*) (int).

PyOS_sighandler_t PyOS_setsig (int i, PyOS_sighandler_t h)
Fart of the Stable ABI. Set the signal handler for signal i to be &; return the old signal handler. This is a thin wrapper
around either sigaction () or signal (). Do not call those functions directly! PyOS_sighandler_t is
a typedef alias for void (*) (int).

wchar_t *Py_DecodeLocale (const char *arg, size_t *size)
Part of the Stable ABI since version 3.7.

Warning: This function should not be called directly: use the PyConfig API with the
PyConfig_SetBytesString () function which ensures that Python is preinitialized.

This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py _PreTInitialize () function.

Decode a byte string from the filesystem encoding and error handler. If the error handler is surrogateescape error
handler, undecodable bytes are decoded as characters in range U+DC80..U+DCFF; and if a byte sequence can be
decoded as a surrogate character, the bytes are escaped using the surrogateescape error handler instead of decoding
them.

70 Chapter 6. Utilities

The Python/C API, Release 3.12.0b3

Return a pointer to a newly allocated wide character string, use PyMem_RawFree () to free the memory. If size
is not NULL, write the number of wide characters excluding the null character into *size

Return NULL on decoding error or memory allocation error. If size is not NULL, *sizeissetto (size_t) -1
Oon memory error or setto (size_t) -2 on decoding error.

The filesystem encoding and error handler are selected by PyConfig_Read ():see filesystem encoding
and filesystem errors members of PyConfig.

Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale () function to encode the character string back to a byte string.
See also:

The PyUnicode_DecodeFSDefaultAndSize () and PyUnicode_DecodeLocaleAndSize ()
functions.

New in version 3.5.
Changed in version 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

Changed in version 3.8: The function now uses the UTF-8 encoding on Windows if PyConfig.
legacy_windows_fs_encoding is zero;
char *Py_EncodeLocale (const wchar_t *text, size_t *error_pos)

Part of the Stable ABI since version 3.7. Encode a wide character string to the filesystem encoding and error handler.
If the error handler is surrogateescape error handler, surrogate characters in the range U+DC80..U+DCFF are
converted to bytes 0x80..0xFF.

Return a pointer to a newly allocated byte string, use PyMem Free () to free the memory. Return NULL on
encoding error or memory allocation error.

If error_pos is not NULL, *error_pos is set to (size_t) -1 on success, or set to the index of the invalid
character on encoding error.

The filesystem encoding and error handler are selected by PyConfig_Read ():see filesystem encoding
and filesystem errors members of PyConfig.

Use the Py_DecodeLocale () function to decode the bytes string back to a wide character string.

Warning: This function must not be called before Python is preinitialized and so that the LC_CTYPE locale
is properly configured: see the Py _PreInitialize () function.

See also:

The PyUnicode_EncodeFSDefault () and PyUnicode_EncodeLocale () functions.
New in version 3.5.

Changed in version 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.

Changed in version 3.8: The function now uses the UTF-8 encoding on Windows if PyConfig.
legacy_windows_fs_encoding is zero.

6.1. Operating System Utilities 71

The Python/C API, Release 3.12.0b3

6.2 System Functions

These are utility functions that make functionality from the sy s module accessible to C code. They all work with the

current interpreter thread’s sy s module’s dict, which is contained in the internal thread state structure.

PyObject *PySys_GetObject (const char *name)
Return value: Borrowed reference. Part of the Stable ABI. Return the object name from the sy s module or NULL
if it does not exist, without setting an exception.

int PySys_SetObject (const char *name, PyObject *v)
Part of the Stable ABI. Set name in the sys module to v unless v is NULL, in which case name is deleted from the
sys module. Returns 0 on success, —1 on error.

void PySys_ResetWarnOptions ()
Fart of the Stable ABI Reset sys.warnoptions to an empty list. This function may be called prior to
Py_Initialize().

void PySys_AddWarnOption (const wchar_t *s)
Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.warnoptions should
be used instead, see Python Initialization Configuration.

Append sto sys.warnoptions. This function must be called prior to Py_Initialize () inorder to affect
the warnings filter list.

Deprecated since version 3.11.

void PySys_AddWarnOptionUnicode (PyObject *unicode)
Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.warnoptions should
be used instead, see Python Initialization Configuration.

Append unicode to sys .warnoptions.

Note: this function is not currently usable from outside the CPython implementation, as it must be called prior to
the implicit import of warningsin Py_Tnitialize () to be effective, but can’t be called until enough of the
runtime has been initialized to permit the creation of Unicode objects.

Deprecated since version 3.11.

void PySys_SetPath (const wchar_t *path)

Part of the Stable ABIL This API is kept for backward compatibility: setting PyConfig.
module_search_paths and PyConfig.module_search_paths_set should be used instead,
see Python Initialization Configuration.

Set sys.path to alist object of paths found in path which should be a list of paths separated with the platform’s
search path delimiter (: on Unix, ; on Windows).

Deprecated since version 3.11.

void PySys_WriteStdout (const char *format, ...)

Part of the Stable ABI. Write the output string described by format to sys . stdout. No exceptions are raised,
even if truncation occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should be limited
using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of other formatted
text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits for very large numbers.

If a problem occurs, or sys . stdout is unset, the formatted message is written to the real (C level) stdout.

72 Chapter 6. Utilities

The Python/C API, Release 3.12.0b3

void PySys_WriteStderr (const char *format, ...)
Part of the Stable ABI. As PySys_WriteStdout (), but write to sys.stderr or stderr instead.

void PySys_FormatStdout (const char *format, ...)

Part of the Stable ABI Function similar to PySys_WriteStdout() but format the message using
PyUnicode_FromFormatV () and don’t truncate the message to an arbitrary length.

New in version 3.2.

void PySys_FormatStderr (const char *format, ...)
Part of the Stable ABIL. As PySys_FormatStdout (), but write to sys . stderr or stderr instead.
New in version 3.2.

void PySys_AddXOption (const wchar_t *s)

Fart of the Stable ABI since version 3.7. This API is kept for backward compatibility: setting PyConfig.
xopt ions should be used instead, see Python Initialization Configuration.

Parse s as a set of —-X options and add them to the current options mapping as returned by
PySys_GetXOptions (). This function may be called prior to Py_Tnitialize ().

New in version 3.2.
Deprecated since version 3.11.

PyObject *PySys_GetXOptions ()
Return value: Borrowed reference. Part of the Stable ABI since version 3.7. Return the current dictionary of —X
options, similarly to sys._xoptions. On error, NULL is returned and an exception is set.

New in version 3.2.

int PySys_Audit (const char *event, const char *format, ...)
Raise an auditing event with any active hooks. Return zero for success and non-zero with an exception set on failure.
If any hooks have been added, format and other arguments will be used to construct a tuple to pass. Apart from
N, the same format characters as used in Py_BuildValue () are available. If the built value is not a tuple, it

will be added into a single-element tuple. (The N format option consumes a reference, but since there is no way to
know whether arguments to this function will be consumed, using it may cause reference leaks.)

Note that # format characters should always be treated as Py ssize_t, regardless of whether
PY_SSIZE_T_ CLEAN was defined.

sys.audit () performs the same function from Python code.
New in version 3.8.

Changed in version 3.8.2: Require Py_ ssize_ t for # format characters. Previously, an unavoidable deprecation
warning was raised.

int PySys_AddAuditHook (Py_AuditHookFunction hook, void *userData)

Append the callable hook to the list of active auditing hooks. Return zero on success and non-zero on failure. If the
runtime has been initialized, also set an error on failure. Hooks added through this API are called for all interpreters
created by the runtime.

The userData pointer is passed into the hook function. Since hook functions may be called from different runtimes,
this pointer should not refer directly to Python state.

This function is safe to call before Py_Tnitialize (). When called after runtime initialization, existing audit
hooks are notified and may silently abort the operation by raising an error subclassed from Except ion (other
errors will not be silenced).

6.2. System Functions 73

The Python/C API, Release 3.12.0b3

The hook function is of type int (*) (const char *event, PyObject *args, void
*userData), where args is guaranteed to be a PyTupleObject. The hook function is always called
with the GIL held by the Python interpreter that raised the event.

See PEP 578 for a detailed description of auditing. Functions in the runtime and standard library that raise events
are listed in the audit events table. Details are in each function’s documentation.

If the interpreter is initialized, this function raises a auditing event sy s . addaudithook with no arguments. If
any existing hooks raise an exception derived from Except ion, the new hook will not be added and the exception
is cleared. As a result, callers cannot assume that their hook has been added unless they control all existing hooks.

New in version 3.8.

6.3 Process Control

void Py_FatalError (const char *message)

Fart of the Stable ABI. Print a fatal error message and kill the process. No cleanup is performed. This function
should only be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be corrupted. On Unix, the standard C library function
abort () is called which will attempt to produce a core file.

The Py_FatalError () function is replaced with a macro which logs automatically the name of the current
function, unless the Py_L.IMITED_AP I macro is defined.

Changed in version 3.9: Log the function name automatically.

void Py_Exit (int status)

Fart of the Stable ABI. Exit the current process. This calls Py_FinalizeEx () and then calls the standard C
library function exit (status). If Py_FinalizeEx () indicates an error, the exit status is set to 120.

Changed in version 3.6: Errors from finalization no longer ignored.

int Py_AtExit (void (*func)())

Fart of the Stable ABI. Register a cleanup function to be called by Py_FinalizeEx (). The cleanup function
will be called with no arguments and should return no value. At most 32 cleanup functions can be registered. When
the registration is successful, Py_AtExit () returns O; on failure, it returns —1. The cleanup function registered
last is called first. Each cleanup function will be called at most once. Since Python’s internal finalization will have
completed before the cleanup function, no Python APIs should be called by func.

6.4 Importing Modules

PyObject *PyImport_ImportModule (const char *name)

Return value: ~ New reference. Part of the Stable ABIL This is a simplified interface to
PyImport_ImportModuleEx () below, leaving the globals and locals arguments set to NULL and
level set to 0. When the name argument contains a dot (when it specifies a submodule of a package), the fromlist
argument is set to the list [' * '] so that the return value is the named module rather than the top-level package
containing it as would otherwise be the case. (Unfortunately, this has an additional side effect when name in fact
specifies a subpackage instead of a submodule: the submodules specified in the package’s __all__ variable are
loaded.) Return a new reference to the imported module, or NULL with an exception set on failure. A failing
import of a module doesn’t leave the module in sys.modules.

This function always uses absolute imports.

74

Chapter 6. Utilities

https://peps.python.org/pep-0578/

The Python/C API, Release 3.12.0b3

PyObject *PyImport_ImportModuleNoBlock (const char *name)

Return value: New reference. Part of the Stable ABI. This function is a deprecated alias of
PyImport_ImportModule ().

Changed in version 3.3: This function used to fail immediately when the import lock was held by another thread. In
Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this function’s special
behaviour isn’t needed anymore.

PyObject *PyImport_ImportModuleEx (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)

Return value: New reference. Import a module. This is best described by referring to the built-in Python function
_ _import_ ().

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

Failing imports remove incomplete module objects, like with Py ITmport_ImportModule ().
PyObject *PyImport_ImportModuleLevelObject (PyObject ¥*name, PyObject *globals, PyObject *locals,
PyObject *fromlist, int level)

Return value: New reference. Part of the Stable ABI since version 3.7. Import a module. This is best described by
referring to the built-in Python function __import__ (), as the standard __import__ () function calls this
function directly.

The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__ (), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.

New in version 3.3.
PyObject *PyImport_ImportModuleLevel (const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist, int level)

Return value: New reference. Part of the Stable ABL Similar to
PyImport_ImportModuleLevelObject (), but the name is a UTF-8 encoded string instead of a
Unicode object.

Changed in version 3.3: Negative values for level are no longer accepted.

PyObject *PyImport_Import (PyObject *name)
Return value: New reference. Part of the Stable ABI. This is a higher-level interface that calls the current “import
hook function” (with an explicit level of 0, meaning absolute import). It invokes the __import__ () function

fromthe __builtins___ of the current globals. This means that the import is done using whatever import hooks
are installed in the current environment.

This function always uses absolute imports.
PyObject *PyImport_ReloadModule (PyObject *m)

Return value: New reference. Part of the Stable ABI. Reload a module. Return a new reference to the reloaded
module, or NULL with an exception set on failure (the module still exists in this case).

PyObject *PyImport_AddModuleObject (PyObject ¥*name)
Return value: Borrowed reference. Part of the Stable ABI since version 3.7. Return the module object correspond-
ing to a module name. The name argument may be of the form package.module. First check the modules

dictionary if there’s one there, and if not, create a new one and insert it in the modules dictionary. Return NULL
with an exception set on failure.

6.4. Importing Modules 75

The Python/C API, Release 3.12.0b3

Note: This function does not load or import the module; if the module wasn’t already loaded, you will get an
empty module object. Use Py Import_ImportModule () or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

New in version 3.3.

PyObject *PyImport_AddModule (const char *name)

Return value: Borrowed reference. Part of the Stable ABI. Similar to Py Import_AddModuleObject (), but
the name is a UTF-8 encoded string instead of a Unicode object.

PyObject *PyImport_ExecCodeModule (const char *name, PyObject *co)

Return value: New reference. Part of the Stable ABIL. Given a module name (possibly of the form package.
module) and a code object read from a Python bytecode file or obtained from the built-in function compile (),
load the module. Return a new reference to the module object, or NULL with an exception set if an error occurred.
name is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule (). Leaving incompletely initialized modules in sy s .modules is dangerous,
as imports of such modules have no way to know that the module object is an unknown (and probably damaged
with respect to the module author’s intents) state.

The module’s ___spec__and __loader__ will be set, if not set already, with the appropriate values. The spec’s
loader will be set to the module’s __1oader_ (if set) and to an instance of SourceFileLoader otherwise.

cached_

The module’s ___file_ attribute will be set to the code object’s co_filename. If applicable,
will also be set.

This function will reload the module if it was already imported. See Py Import_ReloadModule () for the
intended way to reload a module.

If name points to a dotted name of the form package .module, any package structures not already created will
still not be created.

See also Py Import_ExecCodeModuleEx () and PyImport_ExecCodeModuleWithPathnames ().

Changed in version 3.12: The setting of __cached___and __loader__ isdeprecated. See ModuleSpec for
alternatives.

PyObject *PyImport_ExecCodeModuleEx (const char *name, PyObject *co, const char *pathname)

Return value: New reference. Part of the Stable ABI. Like PyImport_ExecCodeModule (), but the
__file__attribute of the module object is set to pathname if it is non-NULL.

See also Py Import_ExecCodeModuleWithPathnames ().

PyObject *PyImport_ExecCodeModuleObject (PyObject ¥*name, PyObject *co, PyObject *pathname, PyObject

*cpathname)

Return value: New reference. Part of the Stable ABI since version 3.7. Like
PyImport_ExecCodeModuleEx (), but the __cached__ attribute of the module object is set to
cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.

New in version 3.3.

Changed in version 3.12: Setting __cached___is deprecated. See ModuleSpec for alternatives.

PyObject *PyImport_ExecCodeModuleWithPathnames (const char *name, PyObject *co, const char

*pathname, const char *cpathname)

Return value: New reference. Part of the Stable ABI. Like PyImport_ExecCodeModuleObject (), but
name, pathname and cpathname are UTF-8 encoded strings. Attempts are also made to figure out what the value
for pathname should be from cpathname if the former is set to NULL.

New in version 3.2.

76

Chapter 6. Utilities

The Python/C API, Release 3.12.0b3

Changed in version 3.3: Uses imp . source_from_cache () in calculating the source path if only the bytecode
path is provided.

Changed in version 3.12: No longer uses the removed imp module.

long PyImport_GetMagicNumber ()
Fart of the Stable ABI. Return the magic number for Python bytecode files (a.k.a. . pyc file). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order. Returns —1 on error.
Changed in version 3.3: Return value of —1 upon failure.

const char *PyImport_GetMagicTag ()

Fart of the Stable ABI. Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in
mind that the value at sys . implementation.cache_tag is authoritative and should be used instead of this
function.

New in version 3.2.

PyObject *PyImport_GetModuleDict ()
Return value: Borrowed reference. Part of the Stable ABI. Return the dictionary used for the module administration
(a.k.a. sys.modules). Note that this is a per-interpreter variable.

PyObject *PyImport_GetModule (PyObject ¥name)
Return value: New reference. Part of the Stable ABI since version 3.8. Return the already imported module with

the given name. If the module has not been imported yet then returns NULL but does not set an error. Returns
NULL and sets an error if the lookup failed.

New in version 3.7.

PyObject *PyImport_GetImporter (PyObject *path)
Return value: New reference. Part of the Stable ABIL Return a finder object for a sys.path/pkg.__path___
item path, possibly by fetching it from the sys.path_importer_cache dict. If it wasn’t yet cached, traverse
sys.path_hooks until a hook is found that can handle the path item. Return None if no hook could; this
tells our caller that the path based finder could not find a finder for this path item. Cache the result in sys.
path_importer_cache. Return a new reference to the finder object.

int PyImport_ImportFrozenModuleObject (PyObject *name)

Part of the Stable ABI since version 3.7. Load a frozen module named name. Return 1 for success, O if the module
is not found, and —1 with an exception set if the initialization failed. To access the imported module on a successful
load, use Py Import_TImportModule (). (Note the misnomer — this function would reload the module if it
was already imported.)

New in version 3.3.
Changed in version 3.4: The __file___attribute is no longer set on the module.

int PyImport_ImportFrozenModule (const char *name)
Part of the Stable ABI. Similar to Py Tmport_ImportFrozenModuleObject (), but the name is a UTF-8
encoded string instead of a Unicode object.

struct _frozen

This is the structure type definition for frozen module descriptors, as generated by the £reeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import.h,is:

struct _frozen {
const char *name;
const unsigned char *code;
int size;
bool is_package;

bi

6.4. Importing Modules 77

https://peps.python.org/pep-3147/

The Python/C API, Release 3.12.0b3

Changed in version 3.11: The new is_package field indicates whether the module is a package or not. This
replaces setting the size field to a negative value.

const struct _frozen *PyImport_FrozenModules

This pointer is initialized to point to an array of _ frozen records, terminated by one whose members are all
NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play tricks
with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab (const char *name, PyObject *(*initfunc)(void))

Part of the Stable ABI. Add a single module to the existing table of built-in modules. This is a convenience wrapper
around Py Tmport_ExtendInittab (), returning —1 if the table could not be extended. The new module can
be imported by the name name, and uses the function initfunc as the initialization function called on the first
attempted import. This should be called before Py_Tnitialize ().

struct _inittab

Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. The name is an ASCII encoded string. Programs
which embed Python may use an array of these structures in conjunction with Py Import_ExtendInittab ()
to provide additional built-in modules. The structure is defined in Include/import .h as:

struct _inittab {
const char *name; /* ASCII encoded string */
PyObject* (*initfunc) (void);

bi

int PyImport_ExtendInittab (struct _inittab *newtab)

Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0
on success or —1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This must be called before Py Tnitialize ().

If Python is initialized multiple times, PyImport_AppendInittab () or
PyImport_ExtendInittab () mustbe called before each Python initialization.

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module. There
are functions to write data into the serialization format, and additional functions that can be used to read the data back.
Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version O is the historical version, version 1 shares interned strings in
the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers. Py_MARSHAL_VERSION
indicates the current file format (currently 2).

void PyMarshal_WriteLongToFile (long value, FILE *file, int version)

Marshal a 1ong integer, value, to file. This will only write the least-significant 32 bits of value; regardless of the
size of the native 1ong type. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr_Occurred () to check for that.

void PyMarshal_WriteObjectToFile (PyObject *value, FILE *file, int version)

Marshal a Python object, value, to file. version indicates the file format.

This function can fail, in which case it sets the error indicator. Use PyErr_ Occurred () to check for that.

78 Chapter 6. Utilities

The Python/C API, Release 3.12.0b3

PyObject *PyMarshal_WriteObjectToString (PyObject *value, int version)

Return value: New reference. Return a bytes object containing the marshalled representation of value. version
indicates the file format.

The following functions allow marshalled values to be read back in.

long PyMarshal_ReadLongFromFile (FILE *file)

Return a C 1ong from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of 1ong.

On error, sets the appropriate exception (EOFError) and returns —1.

int PyMarshal_ReadShortFromFile (FILE *file)

Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in using
this function, regardless of the native size of short.

On error, sets the appropriate exception (EOFError) and returns — 1.

PyObject *PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadLastObjectFromFile (FILE *file)

Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading. Unlike
PyMarshal_ReadObjectFromFile (), this function assumes that no further objects will be read from the
file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data in
memory rather than reading a byte at a time from the file. Only use these variant if you are certain that you won’t
be reading anything else from the file.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadObjectFromString (const char *data, Py_ssize_t len)

Return value: New reference. Return a Python object from the data stream in a byte buffer containing len bytes
pointed to by data.

On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and exam-
ples are available in extending-index.

The first three of these functions described, PyArg ParseTuple (), PyArg ParseTupleAndKeywords (),
and PyArg_Parse (), all use format strings which are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

6.6. Parsing arguments and building values 79

The Python/C API, Release 3.12.0b3

6.6.1 Parsing arguments

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the quoted
form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit; and the
entry in [square] brackets is the type of the C variable(s) whose address should be passed.

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for the
returned unicode or bytes area.

Unless otherwise stated, buffers are not NUL-terminated.
There are three ways strings and buffers can be converted to C:

e Formats such as y* and s* fill a Py_buffer structure. This locks the underlying buffer so that the caller can
subsequently use the buffer even inside a Py BEGIN_ALLOW_THREADS block without the risk of mutable data
being resized or destroyed. As a result, you have to call PyBuffer Release () after you have finished pro-
cessing the data (or in any early abort case).

e The es, es#, et and et # formats allocate the result buffer. You have to call PyMem_Free () after you have
finished processing the data (or in any early abort case).

¢ Other formats take a st r or a read-only bytes-like object, such as bytes, and provide a const char * pointer
to its buffer. In this case the buffer is “borrowed”: it is managed by the corresponding Python object, and shares
the lifetime of this object. You won’t have to release any memory yourself.

To ensure that the underlying buffer may be safely borrowed, the object’s PyBufferProcs.
bf _releasebuffer field must be NULL. This disallows common mutable objects such as bytearray, but
also some read-only objects such as memoryview of bytes.

Besides thisbf__releasebuf fer requirement, there is no check to verify whether the input object is immutable
(e.g. whether it would honor a request for a writable buffer, or whether another thread can mutate the data).

Note: For all # variants of formats (s#, y#, etc.), the macro PY_SSIZE_T_CLEAN must be defined before including
Python.h. On Python 3.9 and older, the type of the length argument is Py_ssize_ tifthe PY_SSIZE_T_CLEAN
macro is defined, or int otherwise.

s (str) [const char *] Convert a Unicode object to a C pointer to a character string. A pointer to an existing string
is stored in the character pointer variable whose address you pass. The C string is NUL-terminated. The Python
string must not contain embedded null code points; if it does, a ValueError exception is raised. Unicode objects
are converted to C strings using 'ut £-8"' encoding. If this conversion fails, a UnicodeError is raised.

Note: This format does not accept byfes-like objects. If you want to accept filesystem paths and convert them to C
character strings, it is preferable to use the O& format with PyUnicode FSConverter () as converter.

Changed in version 3.5: Previously, TypeError was raised when embedded null code points were encountered
in the Python string.

s* (str or bytes-like object) [Py_buffer] This format accepts Unicode objects as well as bytes-like objects. It fills a
Py_buffer structure provided by the caller. In this case the resulting C string may contain embedded NUL
bytes. Unicode objects are converted to C strings using 'ut £-8"' encoding.

80 Chapter 6. Utilities

The Python/C API, Release 3.12.0b3

s# (str, read-only byfes-like object) [const char *, Py_ssize_t] Like s*, except that it provides a borrowed
buffer. The result is stored into two C variables, the first one a pointer to a C string, the second one its length.
The string may contain embedded null bytes. Unicode objects are converted to C strings using 'ut £-8"' encod-
ing.

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is set to
NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case the
buf member of the Py_buf fer structure is set to NULL.

z# (str, read-only byfes-like object or None) [const char *, Py _ssize t] Like s#, but the Python object may
also be None, in which case the C pointer is set to NULL.

y (read-only byfes-like object) [const char *] This format converts a bytes-like object to a C pointer to a borrowed
character string; it does not accept Unicode objects. The bytes buffer must not contain embedded null bytes; if it
does, a ValueError exception is raised.

Changed in version 3.5: Previously, TypeError was raised when embedded null bytes were encountered in the
bytes buffer.

y* (bytes-like object) [Py_buffer] This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This is
the recommended way to accept binary data.

y# (read-only bytes-like object) [const char *, Py_ssize_t] Thisvariant on s# doesn’t accept Unicode objects, only
bytes-like objects.

S (bytes) [PyBytesObject *] Requires that the Python object is a bytes object, without attempting any conversion.
Raises TypeError if the object is not a bytes object. The C variable may also be declared as PyOb ject*.

Y (bytearray) [PyByteArrayObject *] Requires that the Python object is a byt earray object, without attempting
any conversion. Raises TypeError if the objectisnotabytearray object. The C variable may also be declared
as PyObject™.

U (str) [PyObject *] Requires that the Python object is a Unicode object, without attempting any conversion. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared as PyOb ject*.

w* (read-write bytes-like object) [Py_buffer] This format accepts any object which implements the read-write buffer
interface. It fills a Py_buffer structure provided by the caller. The buffer may contain embedded null bytes.
The caller have to call PyBuffer Release () when itis done with the buffer.

es (str) [const char *encoding, char **buffer] This variant on s is used for encoding Unicode into a character
buffer. It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'ut £-8"' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char* *; the
value of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument.

PyArg ParseTuple () will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem Free () to
free the allocated buffer after use.

et (str,bytes or bytearray) [const char *encoding, char **buffer] Same as e s except that byte string objects
are passed through without recoding them. Instead, the implementation assumes that the byte string object uses the
encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, Py_ssize_t *buffer_length] This variant on s# is used for en-
coding Unicode into a character buffer. Unlike the es format, this variant allows input data which contains NUL
characters.

6.6. Parsing arguments and building values 81

The Python/C API, Release 3.12.0b3

It requires three arguments. The first is only used as input, and must be a const char* which points to the name
of an encoding as a NUL-terminated string, or NULL, in which case 'ut £—-8"' encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument must be a char* *; the value of the
pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in the
encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free () to free the allocated buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg ParseTuple () will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be set.

In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str,bytes or bytearray) [const char *encoding, char **buffer, Py_ssize_t *buffer_length] Same
as es# except that byte string objects are passed through without recoding them. Instead, the implementation
assumes that the byte string object uses the encoding passed in as parameter.

Changed in version 3.12: u, u#, 7, and Z# are removed because they used a legacy Py_UNICODE* representation.

Numbers
b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned
char.

B (int) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C unsigned
char.

h (int) [short int] Convert a Python integer to a C short int.

H (int) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow checking.
i (int) [int] Convert a Python integer to a plain C int.

I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.

1 (int) [long int] Convert a Python integer toa C long int.

k (int) [unsigned long] Convert a Python integer to a C unsigned 1long without overflow checking.

L (int) [long long] Convert a Python integer to a C 1ong long.

K (int) [unsigned long long] Convert a Python integer to a C unsigned long long without overflow checking.
n (int) [Py_ssize_ t] Convert a Python integertoa C Py_ssize_t.

c (bytes or bytearray of length 1) [char] Converta Python byte, represented asabytes or bytearray object
of length 1, to a C char.

Changed in version 3.3: Allow bytearray objects.
C (str of length 1) [int] Convert a Python character, represented as a st r object of length 1, to a C int.
f (float) [float] Convert a Python floating point number to a C float.
d (float) [double] Convert a Python floating point number to a C double.

D (complex) [Py_complex] Convert a Python complex number to a C Py_ comp1ex structure.

82 Chapter 6. Utilities

The Python/C API, Release 3.12.0b3

Other objects

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is not
NULL.

0! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject*) into which the object pointer is stored. If the Python object does not have the required type,
TypeError is raised.

0& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes two
arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to void*.
The converter function in turn is called as follows:

status = converter (object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse* function. The returned status should be 1 for a successful conversion and 0 if the conversion has
failed. When the conversion fails, the converter function should raise an exception and leave the content of address
unmodified.

If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call.

Changed in version 3.1: Py_ CLEANUP_SUPPORTED was added.

p (bool) [int] Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C
true/false integer value. Sets the int to 1 if the expression was true and O if it was false. This accepts any valid
Python value. See truth for more information about how Python tests values for truth.

New in version 3.3.

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of format
units in ifems. The C arguments must correspond to the individual format units in ifems. Format units for sequences
may be nested.

It is possible to pass “long” integers (integers whose value exceeds the platform’s LONG_MAX) however no proper range
checking is done — the most significant bits are silently truncated when the receiving field is too small to receive the value
(actually, the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple () does not touch the contents of the corresponding C variable(s).

$ PyArg ParseTupleAndKeywords () only: Indicates that the remaining arguments in the Python argument list
are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must always be
specified before $ in the format string.

New in version 3.3.

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg_ParseTuple () raises).

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not decrement their
reference count!

6.6. Parsing arguments and building values 83

The Python/C API, Release 3.12.0b3

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding format
unit in that case.

For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse* functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse* functions fail due to conversion failure in one of the format units, the variables at the addresses corre-
sponding to that and the following format units are left untouched.

API Functions

int PyArg_ParseTuple (PyObject *args, const char *format, ...)

Fart of the Stable ABI. Parse the parameters of a function that takes only positional parameters into local variables.
Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vargs)

Fart of the Stable ABI. Identical to PyArg ParseTuple (), except thatitaccepts a va_list rather than a variable
number of arguments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *keywords[], ...)

Part of the Stable ABI. Parse the parameters of a function that takes both positional and keyword parameters into
local variables. The keywords argument is a NULL-terminated array of keyword parameter names. Empty names
denote positional-only parameters. Returns true on success; on failure, it returns false and raises the appropriate
exception.

Changed in version 3.6: Added support for positional-only parameters.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *keywords[],
va_list vargs)

Part of the Stable ABIL Identical to PyArg ParseTupleAndKeywords (), except that it accepts a va_list
rather than a variable number of arguments.

int PyArg_ValidateKeywordArguments (PyObject*)

Fart of the Stable ABI. Ensure that the keys in the keywords argument dictionary are strings. This is only needed
if PyArg ParseTupleAndKeywords () is notused, since the latter already does this check.

New in version 3.2.

int PyArg_Parse (PyObject *args, const char *format, ...)

Fart of the Stable ABI. Function used to deconstruct the argument lists of “old-style” functions — these are functions
which use the METH_OLDARGS parameter parsing method, which has been removed in Python 3. This is not
recommended for use in parameter parsing in new code, and most code in the standard interpreter has been modified
to no longer use this for that purpose. It does remain a convenient way to decompose other tuples, however, and
may continue to be used for that purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)

Part of the Stable ABL. A simpler form of parameter retrieval which does not use a format string to specify
the types of the arguments. Functions which use this method to retrieve their parameters should be declared
as METH_VARARGS in function or method tables. The tuple containing the actual parameters should be passed
as args; it must actually be a tuple. The length of the tuple must be at least min and no more than max; min and
max may be equal. Additional arguments must be passed to the function, each of which should be a pointer to a
PyObject* variable; these will be filled in with the values from args; they will contain borrowed references. The
variables which correspond to optional parameters not given by args will not be filled in; these should be initialized
by the caller. This function returns true on success and false if args is not a tuple or contains the wrong number of
elements; an exception will be set if there was a failure.

84 Chapter 6. Utilities

The Python/C API, Release 3.12.0b3

This is an example of the use of this function, taken from the sources for the _weakref helper module for weak
references:

static PyObject *
weakref_ref (PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple (args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef (object, callback);
}

return result;

The call to PyArg UnpackTuple () in this example is entirely equivalent to this call to
PyArg_ParseTuple():

PyArg_ParseTuple (args, "O|O:ref", &object, &callback)

6.6.2 Building values

PyObject *Py_BuildValue (const char *format, ...)

Return value: New reference. Part of the Stable ABI. Create a new value based on a format string similar to those
accepted by the PyArg_Parse* family of functions and a sequence of values. Returns the value or NULL in the
case of an error; an exception will be raised if NULL is returned.

Py_BuildValue () does not always build a tuple. It builds a tuple only if its format string contains two or more
format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns whatever
object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, as for the s and s# formats,
the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_BuildValue (). In other words, if your code invokes malloc () and passes the allocated memory to
Py_BuildValue (), your code is responsible for calling free () for that memory once Py_BuildValue ()
returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as s#).
This can be used to make long format strings a tad more readable.

s (str or None) [const char *] Convert a null-terminated C string to a Python str object using 'utf£-8"'
encoding. If the C string pointer is NULL, None is used.

s# (str or None) [const char *, Py _ssize t] Converta C string and its length to a Python st r object using
'ut £-8" encoding. If the C string pointer is NULL, the length is ignored and None is returned.

y (bytes) [const char *] This converts a C string to a Python bytes object. If the C string pointer is NULL,
None is returned.

y# (bytes) [const char *, Py _ssize t] This converts a C string and its lengths to a Python object. If the C
string pointer is NULL, None is returned.

z (str or None) [const char *] Same as s.

6.6. Parsing arguments and building values 85

The Python/C API, Release 3.12.0b3

z# (str or None) [const char *, Py _ssize_t] Same as s#.

u (str) [const wchar_t *] Convert a null-terminated wchar_t buffer of Unicode (UTF-16 or UCS-4) data to
a Python Unicode object. If the Unicode bufter pointer is NULL, None is returned.

u# (str) [const wehar_t *, Py ssize_ t] Converta Unicode (UTF-16 or UCS-4) data buffer and its length to
a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and None is returned.

U (str or None) [const char *] Same as s.

U# (str or None) [const char *, Py _ssize_ t] Same as s#.

i (int) [int] Convert a plain C int to a Python integer object.

b (int) [char] Convert a plain C char to a Python integer object.

h (int) [short int] Convert a plain C short int to a Python integer object.

1 (int) [long int] Converta C long int to a Python integer object.

B (int) [unsigned char] Converta C unsigned char to a Python integer object.

H (int) [unsigned short int] Converta C unsigned short int toa Python integer object.

I (int) [unsigned int] Converta C unsigned int to a Python integer object.

k (int) [unsigned long] Converta C unsigned long to a Python integer object.

L (int) [long long] Converta C 1long long to a Python integer object.

K (int) [unsigned long long] Convert a C unsigned long long to a Python integer object.

n (int) [Py_ssize t] Converta C Py_ssize_t to a Python integer.

c (bytes of length 1) [char] Converta C int representing a byte to a Python bytes object of length 1.
C (str of length 1) [int] Convert a C int representing a character to Python st r object of length 1.
d (float) [double] Converta C double to a Python floating point number.

£ (float) [float] Converta C f1loat to a Python floating point number.

D (complex) [Py_complex *] Converta C Py_complex structure to a Python complex number.

O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented by
one). If the object passed in is a NULL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. Therefore, Py_BuildValue () will return NULL but
won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] Same as O.

N (object) [PyObject *] Same as O, except it doesn’t increment the reference count on the object. Useful when
the object is created by a call to an object constructor in the argument list.

O& (object) [converter, anything] Convert anything to a Python object through a converter function. The function
is called with anything (which should be compatible with void*) as its argument and should return a “new”
Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same number
of items.

[items] (1ist) [matching-items] Convert a sequence of C values to a Python list with the same number of
items.

{items} (dict) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of con-
secutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.

86

Chapter 6. Utilities

The Python/C API, Release 3.12.0b3

PyObject *Py_VaBuildValue (const char *format, va_list vargs)

Return value: New reference. Part of the Stable ABI. Identical to Py_BuildValue (), except that it accepts a
va_list rather than a variable number of arguments.

6.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprint £ (char *str, size_t size, const char *format, ...)

Part of the Stable ABI. Output not more than size bytes to st according to the format string format and the extra
arguments. See the Unix man page snprintf (3).

int PyOS_vsnprint £ (char *str, size_t size, const char *format, va_list va)

Part of the Stable ABI. Output not more than size bytes to str according to the format string format and the variable
argument list va. Unix man page vsnprintf (3).

PyOS_snprintf () and PyOS_vsnprintf () wrap the Standard C library functions snprintf () and
vsnprintf (). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure that st r [size-1] isalways ' \0' upon return. They never write more than size bytes (including
the trailing '\ 0 ') into str. Both functions require that str != NULL, size > 0, format != NULLand size
< INT_MAX. Note that this means there is no equivalent tothe C99n = snprintf (NULL, 0, ...) whichwould
determine the necessary buffer size.

The return value (7v) for these functions should be interpreted as follows:

* When 0 <= rv < size, the output conversion was successful and rv characters were written to st (excluding
the trailing ' \0 ' byte at str[rv]).

e When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str[size—-1]1is '\0" in this case.

e When rv < 0, “something bad happened.” str[size-1] is '\0' in this case too, but the rest of st is
undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS_string_to_double (const char *s, char **endptr, PyObject *overflow_exception)

Fart of the Stable ABI. Convert a string s to a double, raising a Python exception on failure. The set of accepted
strings corresponds to the set of strings accepted by Python’s f1oat () constructor, except that s must not have
leading or trailing whitespace. The conversion is independent of the current locale.

If endptr is NULL, convert the whole string. Raise ValueError and return —1. 0 if the string is not a valid
representation of a floating-point number.

If endptr is not NULL, convert as much of the string as possible and set *endpt r to point to the first unconverted
character. If no initial segment of the string is the valid representation of a floating-point number, set *endptr
to point to the beginning of the string, raise ValueError, and return -1 . 0.

If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many platforms)
then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and don’t set any
exception. Otherwise, overflow_exception must point to a Python exception object; raise that exception
and return -1 . 0. In both cases, set *endpt r to point to the first character after the converted value.

If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate Python
exception and return -1 . 0.

New in version 3.1.

6.7. String conversion and formatting 87

The Python/C API, Release 3.12.0b3

char *PyOS_double_to_string (double val, char format_code, int precision, int flags, int *ptype)
Fart of the Stable ABI. Convert a double val to a string using supplied format_code, precision, and flags.

format_code mustbe oneof 'e', 'E', '£','F','g', 'G' or 'r'. For 'r"', the supplied precision must be 0
and is ignored. The 'r' format code specifies the standard repr () format.

flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed
together:

e Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

e Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.

e Py DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf () '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set toone of Py_DTST_FINITE,Py_DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.

The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem Free ().

New in version 3.1.

int PyOS_stricmp (const char *s1, const char *s2)
Case insensitive comparison of strings. The function works almost identically to st rcmp () except that it ignores
the case.

int PyOS_strnicmp (const char *s1, const char *s2, Py_ssize_t size)

Case insensitive comparison of strings. The function works almost identically to st rncmp () except that it ignores
the case.

6.8 Reflection

PyObject *PyEval_GetBuiltins (void)
Return value: Borrowed reference. Part of the Stable ABI. Return a dictionary of the builtins in the current execution
frame, or the interpreter of the thread state if no frame is currently executing.

PyObject *PyEval_GetLocals (void)
Return value: Borrowed reference. Part of the Stable ABIL Return a dictionary of the local variables in the current
execution frame, or NULL if no frame is currently executing.

PyObject *PyEval_GetGlobals (void)
Return value: Borrowed reference. Part of the Stable ABI Return a dictionary of the global variables in the current
execution frame, or NULL if no frame is currently executing.

PyFrameObject *PyEval_GetFrame (void)
Return value: Borrowed reference. Part of the Stable ABI Return the current thread state’s frame, which is NULL
if no frame is currently executing.

See also PyThreadState_GetFrame ().

const char *PyEval_GetFuncName (PyObject *func)
Fart of the Stable ABI. Return the name of func if it is a function, class or instance object, else the name of funcs
type.

88 Chapter 6. Utilities

The Python/C API, Release 3.12.0b3

const char *PyEval_GetFuncDesc (PyObject *func)

Part of the Stable ABIL Return a description string, depending on the type of func. Return values include

“()” for functions and methods, ” constructor”, ” instance”, and ” object”. Concatenated with the result of

PyEval_GetFuncName (), the result will be a description of func.

6.9 Codec registry and support functions

int PyCodec_Register (PyObject *search_function)
Fart of the Stable ABI. Register a new codec search function.
As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first in the
list of search functions.

int PyCodec_Unregister (PyObject *search_function)
Fart of the Stable ABI since version 3.10. Unregister a codec search function and clear the registry’s cache. If the
search function is not registered, do nothing. Return 0 on success. Raise an exception and return -1 on error.

New in version 3.10.

int PyCodec_KnownEncoding (const char *encoding)
FPart of the Stable ABI. Return 1 or 0 depending on whether there is a registered codec for the given encoding. This
function always succeeds.

PyObject *PyCodec_Encode (PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Generic codec based encoding API.
object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

PyObject *PyCodec_Decode (PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Generic codec based decoding API.
object is passed through the decoder function found for the given encoding using the error handling method defined

by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

6.9.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.

PyObject *PyCodec_Encoder (const char *encoding)

Return value: New reference. Part of the Stable ABI. Get an encoder function for the given encoding.
PyObject *PyCodec_Decoder (const char *encoding)
Return value: New reference. Part of the Stable ABI. Get a decoder function for the given encoding.

PyObject *PyCodec_IncrementalEncoder (const char *encoding, const char *errors)

Return value: New reference. Part of the Stable ABL. Get an IncrementalEncoder object for the given
encoding.

6.9. Codec registry and support functions 89

The Python/C API, Release 3.12.0b3

PyObject *PyCodec_IncrementalDecoder (const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABL Get an IncrementalDecoder object for the given
encoding.

PyObject *PyCodec_StreamReader (const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. Part of the Stable ABI. Get a St reamReader factory function for the given en-
coding.

PyObject *PyCodec_StreamWriter (const char *encoding, PyObject *stream, const char *errors)

Return value: New reference. Part of the Stable ABIL. Get a StreamWriter factory function for the given en-
coding.

6.9.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError (const char *name, PyObject *error)

Fart of the Stable ABI. Register the error handling callback function error under the given name. This callback
function will be called by a codec when it encounters unencodable characters/undecodable bytes and name is spec-
ified as the error parameter in the call to the encode/decode function.

The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes and
their offset in the original string (see Unicode Exception Objects for functions to extract this information). The call-
back must either raise the given exception, or return a two-item tuple containing the replacement for the problematic
sequence, and an integer giving the offset in the original string at which encoding/decoding should be resumed.

Return 0 on success, —1 on error.

PyObject *PyCodec_LookupError (const char *name)
Return value: New reference. Part of the Stable ABI. Lookup the error handling callback function registered under
name. As a special case NULL can be passed, in which case the error handling callback for “strict” will be returned.
PyObject *PyCodec_StrictErrors (PyObject *exc)
Return value: Always NULL. Part of the Stable ABI. Raise exc as an exception.
PyObject *PyCodec_IgnoreErrors (PyObject *exc)
Return value: New reference. Part of the Stable ABI. Ignore the unicode error, skipping the faulty input.
PyObject *PyCodec_ReplaceErrors (PyObject *exc)
Return value: New reference. Part of the Stable ABI. Replace the unicode encode error with ? or U+FFFD.
PyObject *PyCodec_XMLCharRefReplaceErrors (PyObject *exc)
Return value: New reference. Part of the Stable ABI. Replace the unicode encode error with XML character
references.
PyObject *PyCodec_BackslashReplaceErrors (PyObject *exc)
Return value: New reference. Part of the Stable ABI. Replace the unicode encode error with backslash escapes (\ x,
\u and \U).
PyObject *PyCodec_NameReplaceErrors (PyObject *exc)
Return value: New reference. Part of the Stable ABI since version 3.7. Replace the unicode encode error with

\N{ ...} escapes.

New in version 3.5.

90 Chapter 6. Utilities

The Python/C API, Release 3.12.0b3

6.10 Support for Perf Maps

On supported platforms (as of this writing, only Linux), the runtime can take advantage of perf map files to make Python
functions visible to an external profiling tool (such as perf). A running process may create a file in the /tmp direc-
tory, which contains entries that can map a section of executable code to a name. This interface is described in the
documentation of the Linux Perf tool.

In Python, these helper APIs can be used by libraries and features that rely on generating machine code on the fly.
Note that holding the Global Interpreter Lock (GIL) is not required for these APIs.

int PyUnstable_PerfMapState_Init (void)

This is Unstable API. It may change without warning in minor releases.

Open the /tmp/perf-Spid.map file, unless it’s already opened, and create a lock to ensure thread-safe writes
to the file (provided the writes are done through PyUnstable_WritePerfMapEntry ()). Normally, there’s
no need to call this explicitly; just use PyUnstable_WritePerfMapEntry () and it will initialize the state
on first call.

Returns O on success, —1 on failure to create/open the perf map file, or —2 on failure to create a lock. Check
errno for more information about the cause of a failure.

int PyUnstable_WritePerfMapEntry (const void *code_addr, unsigned int code_size, const char
*entry_name)

This is Unstable API. It may change without warning in minor releases.

Write one single entry to the /tmp/perf-S$pid.map file. This function is thread safe. Here is what an example
entry looks like:

address size name
7£3529fcf759 b py::bar:/run/t.py

Will call PyUnstable_PerfMapState_Init () before writing the entry, if the perf map file is not already
opened. Returns 0 on success, or the same error codes as PyUnstable_PerfMapState_Init () onfailure.

void PyUnstable_PerfMapState_Fini (void)

This is Unstable API. It may change without warning in minor releases.

Close the perf map file opened by PyUnstable_PerfMapState_Init (). This is called by the runtime
itself during interpreter shut-down. In general, there shouldn’t be a reason to explicitly call this, except to handle
specific scenarios such as forking.

6.10. Support for Perf Maps 91

https://perf.wiki.kernel.org/index.php/Main_Page
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/Documentation/jit-interface.txt

The Python/C API, Release 3.12.0b3

92 Chapter 6. Utilities

CHAPTER
SEVEN

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will raise a
Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been created
by PyList_New (), but whose items have not been set to some non-NULL value yet.

7.1 Object Protocol

PyObject *Py_NotImplemented
The Not Implemented singleton, used to signal that an operation is not implemented for the given type combi-
nation.

Py_RETURN_NOTIMPLEMENTED
Properly handle returning Py Not Implemented from within a C function (that is, increment the reference
count of NotImplemented and return it).

int PyObject_Print (PyObject *o, FILE *fp, int flags)

Print an object o, on file fp. Returns —1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_ PRINT_RAW; if given, the str () of the object is written instead of
the repr ().

int PyObject_HasAttr (PyObject *o, PyObject *attr_name)
Part of the Stable ABI. Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python
expression hasattr (o, attr_name). This function always succeeds.

Note: Exceptions that occur when this calls __getattr__ () and __getattribute__ () methods are
silently ignored. For proper error handling, use PyObject_GetAttr () instead.

int PyObject_HasAttrString (PyObject *o, const char *attr_name)

Part of the Stable ABI. Returns 1 if o has the attribute aftr_name, and 0 otherwise. This is equivalent to the Python
expression hasattr (o, attr_name). This function always succeeds.

Note: Exceptions that occur when this calls __getattr__ () and __getattribute__ () meth-
ods or while creating the temporary str object are silently ignored. For proper error handling, use
PyObject_GetAttrString () instead.

93

The Python/C API, Release 3.12.0b3

PyObject *PyObject_GetAttr (PyObject *o, PyObject *attr_name)
Return value: New reference. Part of the Stable ABI. Retrieve an attribute named attr_name from object 0. Returns
the attribute value on success, or NULL on failure. This is the equivalent of the Python expression o . attr_name.
PyObject *PyObject_GetAttrString (PyObject *o, const char *attr_name)
Return value: New reference. Part of the Stable ABI. Retrieve an attribute named attr_name from object 0. Returns
the attribute value on success, or NULL on failure. This is the equivalent of the Python expression o . attr_name.
PyObject *PyObject_GenericGetAttr (PyObject *o, PyObject *name)

Return value: New reference. Part of the Stable ABL. Generic attribute getter function that is meant to be put into a
type object’s tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s MRO as well
as an attribute in the object’s __dict___ (if present). As outlined in descriptors, data descriptors take preference
over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr (PyObject *o, PyObject *attr_name, PyObject *v)
Part of the Stable ABL Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception

and return —1 on failure; return O on success. This is the equivalent of the Python statement o . attr_name =
V.

If vis NULL, the attribute is deleted. This behaviour is deprecated in favour of using PyObject_DelAttr (),
but there are currently no plans to remove it.
int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObject *Vv)

Fart of the Stable ABL Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception
and return —1 on failure; return O on success. This is the equivalent of the Python statement o . attr_name =
V.

If v is NULL, the attribute is deleted, but this feature is deprecated in favour of using
PyObject_DelAttrString/().

int PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *value)
Part of the Stable ABI. Generic attribute setter and deleter function that is meant to be put into a type object’s
tp_setattro slot. It looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found
it takes preference over setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or
deleted in the object’s __dict__ (if present). On success, O is returned, otherwise an AttributeError is
raised and -1 is returned.

int PyObject_DelAttr (PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object 0. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

int PyObject_DelAttrString (PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object o. Returns —1 on failure. This is the equivalent of the Python statement
del o.attr_name.

PyObject *PyObject_GenericGetDict (PyObject *o, void *context)
Return value: New reference. Part of the Stable ABI since version 3.10. A generic implementation for the getter of
a__dict__ descriptor. It creates the dictionary if necessary.

This function may also be called to get the __ _dict__ of the object 0. Pass NULL for context when call-
ing it. Since this function may need to allocate memory for the dictionary, it may be more efficient to call
PyObject_GetAttr () when accessing an attribute on the object.

On failure, returns NULL with an exception set.

New in version 3.3.

94 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.12.0b3

int PyObject_GenericSetDict (PyObject *o, PyObject *value, void *context)
Part of the Stable ABI since version 3.7. A generic implementation for the setter of a ___dict___ descriptor. This
implementation does not allow the dictionary to be deleted.

New in version 3.3.

PyObject **_PyObject_GetDictPtr (PyObject *obj)
Return a pointer to __dict___ of the object obj. If there is no __dict__, return NULL without setting an
exception.

This function may need to allocate memory for the dictionary, so it may be more efficient to call
PyObject_GetAttr () when accessing an attribute on the object.

PyObject *PyObject_RichCompare (PyObject *ol, PyObject *02, int opid)
Return value: New reference. Part of the Stable ABI. Compare the values of o/ and 02 using the operation specified
by opid, which must be one of Py_LT,Py_LE,Py_EQ,Py_NE,Py_GT, or Py_GE, corresponding to <, <=, ==,
=, >, or >= respectively. This is the equivalent of the Python expression o1 op o2, where op is the operator
corresponding to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool (PyObject *ol, PyObject *02, int opid)
Part of the Stable ABL. Compare the values of o/ and 02 using the operation specified by opid, which must be one
of Py_LT,Py_LE,Py_EQ,Py_NE, Py_GT,or Py_GE, corresponding to <, <=, ==, ! =, >, or >= respectively.
Returns -1 on error, O if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op
02, where op is the operator corresponding to opid.

Note: If ol and 02 are the same object, PyObject_RichCompareBool () will always return 1 for Py_EQ and 0
for Py_NE.

PyObject *PyObject_Format (PyObject *obj, PyObject *format_spec)
Part of the Stable ABI. Format obj using format_spec. This is equivalent to the Python expression format (ob7j,
format_spec).

format_spec may be NULL. In this case the call is equivalent to format (ob7j). Returns the formatted string on
success, NULL on failure.

PyObject *PyObject_Repr (PyObject *0)
Return value: New reference. Part of the Stable ABI. Compute a string representation of object 0. Returns the string

representation on success, NULL on failure. This is the equivalent of the Python expression repr (o). Called by
the repr () built-in function.

Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

PyObject *PyObject_ASCII (PyObject *0)
Return value: New reference. Part of the Stable ABL. As PyObject_Repr (), compute a string representation
of object o, but escape the non-ASCII characters in the string returned by PyObject_Repr () with \x, \u or
\U escapes. This generates a string similar to that returned by PyObject_Repr () in Python 2. Called by the
ascii () built-in function.

PyObject *PyObject_Str (PyObject *0)

Return value: New reference. Part of the Stable ABL. Compute a string representation of object 0. Returns the
string representation on success, NULL on failure. This is the equivalent of the Python expression st r (o). Called
by the str () built-in function and, therefore, by the print () function.

Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

7.1. Object Protocol 95

The Python/C API, Release 3.12.0b3

PyObject *PyObject_Bytes (PyObject *0)
Return value: New reference. Part of the Stable ABL. Compute a bytes representation of object 0. NULL is returned
on failure and a bytes object on success. This is equivalent to the Python expression bytes (o), when o is not an
integer. Unlike bytes (o), a TypeError is raised when o is an integer instead of a zero-initialized bytes object.
int PyObject_IsSubclass (PyObject *derived, PyObject *cls)
Part of the Stable ABI. Return 1 if the class derived is identical to or derived from the class cls, otherwise return
0. In case of an error, return —1.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

If cls has a __subclasscheck__ () method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in cls.
mro

Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by havinga __bases___ attribute (which must be a tuple of base classes).

int PyObject_IsInstance (PyObject *inst, PyObject *cls)
Part of the Stable ABI. Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error,
returns —1 and sets an exception.

If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.

If clshasa ___instancecheck__ () method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.

An instance inst can override what is considered its class by havinga __class___ attribute.

An object cls can override if it is considered a class, and what its base classes are, by havinga___bases___ attribute
(which must be a tuple of base classes).

Py_hash_t PyObject_Hash (PyObject *0)
Fart of the Stable ABL. Compute and return the hash value of an object 0. On failure, return —1. This is the
equivalent of the Python expression hash (o).
Changed in version 3.2: The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t PyObject_HashNot Implemented (PyObject *0)

Part of the Stable ABI. Set a TypeError indicating that type (o) is not hashable and return —1. This function
receives special treatment when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter
that it is not hashable.

int PyObject_IsTrue (PyObject ¥0)
Part of the Stable ABI. Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the
Python expression not not o. On failure, return —1.

int PyObject_Not (PyObject *0)
Fart of the Stable ABI. Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the
Python expression not o. On failure, return —1.

PyObject *PyObject_Type (PyObject *0)
Return value: New reference. Part of the Stable ABIL. When o is non-NULL, returns a type object corresponding to
the object type of object 0. On failure, raises SystemError and returns NULL. This is equivalent to the Python
expression t ype (o) . This function increments the reference count of the return value. There’s really no reason to
use this function instead of the Py TYPE () function, which returns a pointer of type Py TypeOb ject*, except
when the incremented reference count is needed.

96 Chapter 7. Abstract Objects Layer

https://peps.python.org/pep-3119/
https://peps.python.org/pep-3119/

The Python/C API, Release 3.12.0b3

int PyObject_TypeCheck (PyObject *o, PyTypeObject *type)
Return non-zero if the object o is of type fype or a subtype of type, and 0 otherwise. Both parameters must be
non-NULL.

Py_ssize_t PyObject_Size (PyObject *0)

Py_ssize_t PyObject_Length (PyObject *0)
Fart of the Stable ABIL. Return the length of object o. If the object o provides either the sequence and mapping
protocols, the sequence length is returned. On error, —1 is returned. This is the equivalent to the Python expression
len (o).

Py_ssize_t PyObject_LengthHint (PyObject *o, Py_ssize_t defaultvalue)

Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__ (), and finally return the default value. On error return —1. This is the equivalent to the
Python expression operator.length_hint (o, defaultvalue).

New in version 3.4.

PyObject *PyObiject_GetItem (PyObject *o, PyObject *key)
Return value: New reference. Part of the Stable ABI Return element of o corresponding to the object key or NULL
on failure. This is the equivalent of the Python expression o [key].

int PyObject_SetItem (PyObject *o, PyObject ¥*key, PyObject *v)
Fart of the Stable ABI. Map the object key to the value v. Raise an exception and return —1 on failure; return 0 on
success. This is the equivalent of the Python statement o [key] = v. This function does not steal a reference to
V.

int PyObject_DelItem (PyObject *o, PyObject *key)
Part of the Stable ABL. Remove the mapping for the object key from the object 0. Return —1 on failure. This is
equivalent to the Python statement del o [key].

PyObject *PyObiject_Dir (PyObject *0)
Return value: New reference. Part of the Stable ABI. This is equivalent to the Python expression dir (o), returning
a (possibly empty) list of strings appropriate for the object argument, or NULL if there was an error. If the argument
is NULL, this is like the Python dir (), returning the names of the current locals; in this case, if no execution frame
is active then NULL is returned but PyErr Occurred () will return false.

PyObject *PyObject_GetIter (PyObject *0)

Return value: New reference. Part of the Stable ABI. This is equivalent to the Python expression iter (o).
It returns a new iterator for the object argument, or the object itself if the object is already an iterator. Raises
TypeError and returns NULL if the object cannot be iterated.

PyObject *PyObiject_GetAIter (PyObject *0)
Return value: New reference. Part of the Stable ABI since version 3.10. This is the equivalent to the Python
expression aiter (o). Takes an AsyncIterable object and returns an AsyncIterator for it. This is

typically a new iterator but if the argument is an AsyncIterator, this returns itself. Raises TypeError and
returns NULL if the object cannot be iterated.

New in version 3.10.
void *PyObject_GetTypeData (PyObject *o, PyTypeObject *cls)
Part of the Stable ABI since version 3.12. Get a pointer to subclass-specific data reserved for cls.

The object 0 must be an instance of cls, and cls must have been created using negative PyType_Spec.
basicsize. Python does not check this.

On error, set an exception and return NULL.

New in version 3.12.

7.1. Object Protocol 97

The Python/C API, Release 3.12.0b3

Py_ssize_t PyType_GetTypeDataSize (PyTypeObject *cls)
Fart of the Stable ABI since version 3.12. Return the size of the instance memory space reserved for cls, i.e. the
size of the memory PyObject_GetTypeData () returns.

This may be larger than requested using —PyType_Spec.basicsize; it is safe to use this larger size (e.g.
with memset ()).

The type cls must have been created using negative Py Type_Spec.basicsize. Python does not check this.
On error, set an exception and return a negative value.
New in version 3.12.

void *PyObject_GetItemData (PyObject *0)
Get a pointer to per-item data for a class with Py TPFLAGS_TTEMS_AT_END.

On error, set an exception and return NULL. TypeError is raised if o does not have
Py TPFLAGS_ITEMS_AT END set.

New in version 3.12.

7.2 Call Protocol

CPython supports two different calling protocols: #p_call and vectorcall.

7.2.1 The ip_call Protocol

Instances of classes that set tp_cal1 are callable. The signature of the slot is:

PyObject *tp_call (PyObject *callable, PyObject *args, PyObject *kwargs);

A call is made using a tuple for the positional arguments and a dict for the keyword arguments, similarly to
callable (*args, **kwargs) in Python code. args must be non-NULL (use an empty tuple if there are no
arguments) but kwargs may be NULL if there are no keyword arguments.

This convention is not only used by #p_call: tp_new and tp_init also pass arguments this way.

To call an object, use PyObject_Call () or another call API.

7.2.2 The Vectorcall Protocol

New in version 3.9.
The vectorcall protocol was introduced in PEP 590 as an additional protocol for making calls more efficient.

As rule of thumb, CPython will prefer the vectorcall for internal calls if the callable supports it. However, this is not a hard
rule. Additionally, some third-party extensions use #p_call directly (rather than using PyObject_Call ()). Therefore,
a class supporting vectorcall must also implement tp_cal 1. Moreover, the callable must behave the same regardless of
which protocol is used. The recommended way to achieve this is by setting tp_callto PyVectorcall Call ().
This bears repeating:

Warning: A class supporting vectorcall must also implement tp_ call with the same semantics.

98 Chapter 7. Abstract Objects Layer

https://peps.python.org/pep-0590/

The Python/C API, Release 3.12.0b3

Changed in version 3.12: The Py TPFLAGS_HAVE_VECTORCALL flag is now removed from a class when the class’s
__call__ () method is reassigned. (This internally sets tp_ca 11 only, and thus may make it behave differently than
the vectorcall function.) In earlier Python versions, vectorcall should only be used with immutable or static types.

A class should not implement vectorcall if that would be slower than #p_call. For example, if the callee needs to convert
the arguments to an args tuple and kwargs dict anyway, then there is no point in implementing vectorcall.

Classes can implement the vectorcall protocol by enabling the Py TPFLAGS_HAVE_VECTORCALL flag and setting
tp_vectorcall_offset to the offset inside the object structure where a vectorcallfunc appears. This is a pointer
to a function with the following signature:

typedef PyObject *(*vectorcallfunc)(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Part of the Stable ABI since version 3.12.
* callable is the object being called.

* args is a C array consisting of the positional arguments followed by the values of the keyword arguments.
This can be NULL if there are no arguments.

* nargsf is the number of positional arguments plus possibly the PY VECTORCALL_ARGUMENTS_OFFSET
flag. To get the actual number of positional arguments from nargsf, use PyVectorcall NARGS ().

* kwnames is a tuple containing the names of the keyword arguments; in other words, the keys of the kwargs
dict. These names must be strings (instances of st r or a subclass) and they must be unique. If there are no
keyword arguments, then kwnames can instead be NULL.

PY_VECTORCALL_ARGUMENTS_OFFSET

If this flag is set in a vectorcall nargsf argument, the callee is allowed to temporarily change args [-1]. In other
words, args points to argument 1 (not 0) in the allocated vector. The callee must restore the value of args [-1]
before returning.

For PyObject_VectorcallMethod (), this flag means instead that args [0] may be changed.

Whenever they can do so cheaply (without additional allocation), callers are encouraged to use
PY VECTORCALL_ARGUMENTS_OFFSET. Doing so will allow callables such as bound methods to make their
onward calls (which include a prepended self argument) very efficiently.

To call an object that implements vectorcall, use a call APl function as with any other callable.
PyObject_Vectorcall () will usually be most efficient.

Note: In CPython 3.8, the vectorcall API and related functions were available provisionally under
names with a leading underscore: _PyObject_Vectorcall, _Py_TPFLAGS_HAVE_VECTORCALL,
_PyObject_VectorcallMethod, _PyVectorcall_Function, _PyObject_CallOneArgq,
_PyObject_CallMethodNoArgs, _PyObject_CallMethodOneArgq. Additionally,

PyObject_VectorcallDict was available as _PyObject_FastCallDict. The old names are still
defined as aliases of the new, non-underscored names.

7.2. Call Protocol 99

The Python/C API, Release 3.12.0b3

Recursion Control

When using #p_call, callees do not need to worry about recursion: CPython uses Py_EnterRecursiveCall () and
Py_LeaveRecursiveCall () for calls made using tp_call.

For efficiency, this is not the case for calls done using vectorcall: the callee should use Py_EnterRecursiveCall and
Py_LeaveRecursiveCall if needed.

Vectorcall Support API

Py_ssize_t PyVectorcall_NARGS (size_t nargsf)

Fart of the Stable ABI since version 3.12. Given a vectorcall nargsf argument, return the actual number of argu-
ments. Currently equivalent to:

(Py_ssize_t) (nargsf & ~PY_VECTORCALL_ARGUMENTS_OFFSET)

However, the function PyVectorcall_NARGS should be used to allow for future extensions.

New in version 3.8.

vectorcallfunc PyVectorcall_Function (PyObject *op)

If op does not support the vectorcall protocol (either because the type does not or because the specific instance
does not), return NULL. Otherwise, return the vectorcall function pointer stored in op. This function never raises
an exception.

This is mostly useful to check whether or not op supports vectorcall, which can be done by checking
PyVectorcall_Function (op) != NULL.

New in version 3.8.

PyObject *PyVectorcall_Call (PyObject *callable, PyObject *tuple, PyObject *dict)

Part of the Stable ABI since version 3.12. Call callable’s vect orcal 1 func with positional and keyword argu-
ments given in a tuple and dict, respectively.

This is a specialized function, intended to be put in the tp_call slot or be used in an implementation of
tp_call. It does not check the Py TPFLAGS HAVE_VECTORCALL flag and it does not fall back to
tp_call.

New in version 3.8.

7.2.3 Object Calling API

Various functions are available for calling a Python object. Each converts its arguments to a convention supported by the
called object — either #p_call or vectorcall. In order to do as little conversion as possible, pick one that best fits the format
of data you have available.

The following table summarizes the available functions; please see individual documentation for details.

100

Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.12.0b3

Function callable args kwargs
PyObject_Call () PyObject * | tuple dict/NULL
PyObject_CallNoArgs () PyObject * | — —
PyObject_CallOneArg() PyObject * | 1 object —
PyObject_CallObject () PyObject * | tuple/NULL | —
PyObject_CallFunction () PyObject * | format —
PyObject_CallMethod/() obj + char* format —
PyObject_CallFunctionObjArgs () | PyObject * | variadic —
PyObject_CallMethodObjArgs () obj + name variadic —
PyObject_CallMethodNoArgs () obj + name — —
PyObject_CallMethodOneArg () obj + name 1 object —
PyObject_Vectorcall () PyObject * | vectorcall vectorcall
PyObject_VectorcallDict () PyObject * | vectorcall dict/NULL
PyObject_VectorcallMethod () arg + name vectorcall vectorcall

PyObject *PyObject_Call (PyObject *callable, PyObject *args, PyObject ¥*kwargs)
Return value: New reference. Part of the Stable ABI. Call a callable Python object callable, with arguments given
by the tuple args, and named arguments given by the dictionary kwargs.

args must not be NULL; use an empty tuple if no arguments are needed. If no named arguments are needed, kwargs
can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args, **kwargs).
PyObject *PyObject_CallNoArgs (PyObject *callable)

Fart of the Stable ABI since version 3.10. Call a callable Python object callable without any arguments. It is the
most efficient way to call a callable Python object without any argument.

Return the result of the call on success, or raise an exception and return NULL on failure.
New in version 3.9.
PyObject *PyObject_CallOneArgqg (PyObject *callable, PyObject *arg)
Call a callable Python object callable with exactly 1 positional argument arg and no keyword arguments.
Return the result of the call on success, or raise an exception and return NULL on failure.
New in version 3.9.
PyObject *PyObject_CallObject (PyObject *callable, PyObject *args)

Return value: New reference. Part of the Stable ABI. Call a callable Python object callable, with arguments given
by the tuple args. If no arguments are needed, then args can be NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).

PyObject *PyObject_CallFunction (PyObject *callable, const char *format, ...)

Return value: New reference. Part of the Stable ABIL Call a callable Python object callable, with a variable number
of C arguments. The C arguments are described using a Py_ BuildValue () style format string. The format
can be NULL, indicating that no arguments are provided.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (*args).

Note that if you only pass PyOb ject* args, PyObject_CallFunctionObjArgs () is a faster alternative.

7.2. Call Protocol 101

The Python/C API, Release 3.12.0b3

Changed in version 3.4: The type of format was changed from char *.

PyObject *PyObject_CallMethod (PyObject *obj, const char *name, const char *format, ...)

Return value: New reference. Part of the Stable ABI. Call the method named name of object obj with a variable
number of C arguments. The C arguments are described by a Py BuildValue () format string that should
produce a tuple.

The format can be NULL, indicating that no arguments are provided.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: obJj.name (argl, arg2, ...).
Note that if you only pass PyOb ject* args, PyObject_CallMethodObjArgs () is a faster alternative.
Changed in version 3.4: The types of name and format were changed from char *.
PyObject *PyObject_CallFunctionObjArgs (PyObject *callable, ...)

Return value: New reference. Part of the Stable ABI Call a callable Python object callable, with a variable number
of PyObject* arguments. The arguments are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable (argl, arg2, ...).
PyObject *PyObject_CallMethodObjArgs (PyObject *obj, PyObject *name, ...)
Return value: New reference. Part of the Stable ABI. Call a method of the Python object obj, where the name of the

method is given as a Python string object in name. It is called with a variable number of PyOb ject* arguments.
The arguments are provided as a variable number of parameters followed by NULL.

Return the result of the call on success, or raise an exception and return NULL on failure.

PyObject *PyObject_CallMethodNoArgs (PyObject *obj, PyObject *name)

Call a method of the Python object obj without arguments, where the name of the method is given as a Python
string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.
New in version 3.9.
PyObject *PyObiject_CallMethodOneArg (PyObject *obj, PyObject *name, PyObject *arg)

Call a method of the Python object obj with a single positional argument arg, where the name of the method is
given as a Python string object in name.

Return the result of the call on success, or raise an exception and return NULL on failure.
New in version 3.9.
PyObject *PyObject_Vectorcall (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject *kwnames)

Fart of the Stable ABI since version 3.12. Call a callable Python object callable. The arguments are the same as for
vectorcallfunc. If callable supports vectorcall, this directly calls the vectorcall function stored in callable.

Return the result of the call on success, or raise an exception and return NULL on failure.
New in version 3.9.

PyObject *PyObject_VectorcallDict (PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwdict)

Call callable with positional arguments passed exactly as in the vectorcall protocol, but with keyword arguments
passed as a dictionary kwdict. The args array contains only the positional arguments.

102 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.12.0b3

Regardless of which protocol is used internally, a conversion of arguments needs to be done. Therefore, this
function should only be used if the caller already has a dictionary ready to use for the keyword arguments, but not
a tuple for the positional arguments.

New in version 3.9.
PyObject *PyObject_VectorcallMethod (PyObject *name, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Fart of the Stable ABI since version 3.12. Call a method using the vectorcall calling convention. The name of
the method is given as a Python string name. The object whose method is called is args/0], and the args ar-
ray starting at args[I] represents the arguments of the call. There must be at least one positional argument.
nargsf is the number of positional arguments including args/0], plus PY_VECTORCALIL_ARGUMENTS_OFFSET
if the value of args[0] may temporarily be changed. Keyword arguments can be passed just like in
PyObject_Vectorcall ().

If the object has the Py TPFLAGS METHOD_DESCRIPTOR feature, this will call the unbound method object
with the full args vector as arguments.

Return the result of the call on success, or raise an exception and return NULL on failure.

New in version 3.9.

7.2.4 Call Support API

int PyCallable_Check (PyObject *0)

Part of the Stable ABI. Determine if the object o is callable. Return 1 if the object is callable and O otherwise.
This function always succeeds.

7.3 Number Protocol

int PyNumber_Check (PyObject *0)

Fart of the Stable ABI. Returns 1 if the object o provides numeric protocols, and false otherwise. This function
always succeeds.

Changed in version 3.8: Returns 1 if o is an index integer.
PyObject *PyNumber_Add (PyObject *ol, PyObject *02)

Return value: New reference. Part of the Stable ABI. Returns the result of adding o/ and 02, or NULL on failure.
This is the equivalent of the Python expression o1 + o2.

PyObject *PyNumber_Subtract (PyObject *ol, PyObject *02)

Return value: New reference. Part of the Stable ABI. Returns the result of subtracting o2 from o, or NULL on
failure. This is the equivalent of the Python expression o1 — o02.

PyObject *PyNumber_Multiply (PyObject *ol, PyObject *02)

Return value: New reference. Part of the Stable ABI. Returns the result of multiplying o/ and 02, or NULL on
failure. This is the equivalent of the Python expression o1 * o02.

PyObject *PyNumber_MatrixMultiply (PyObject *ol, PyObject *02)

Return value: New reference. Part of the Stable ABI since version 3.7. Returns the result of matrix multiplication
on ol and 02, or NULL on failure. This is the equivalent of the Python expression 01 @ 02.

New in version 3.5.

7.3. Number Protocol 103

The Python/C API, Release 3.12.0b3

PyObject *PyNumber_FloorDivide (PyObject *ol, PyObject *02)
Return value: New reference. Part of the Stable ABI. Return the floor of o/ divided by 02, or NULL on failure. This
is the equivalent of the Python expression o1 // o2.

PyObject *PyNumber_TrueDivide (PyObject *ol, PyObject *02)
Return value: New reference. Part of the Stable ABI. Return a reasonable approximation for the mathematical value
of ol divided by 02, or NULL on failure. The return value is “approximate” because binary floating point numbers
are approximate; it is not possible to represent all real numbers in base two. This function can return a floating
point value when passed two integers. This is the equivalent of the Python expression o1 / 02.

PyObject *PyNumber_Remainder (PyObject *ol, PyObject ¥02)
Return value: New reference. Part of the Stable ABL Returns the remainder of dividing o/ by 02, or NULL on
failure. This is the equivalent of the Python expression o1 % o02.

PyObject *PyNumber_Divmod (PyObject *ol, PyObject ¥02)
Return value: New reference. Part of the Stable ABI. See the built-in function divmod (). Returns NULL on
failure. This is the equivalent of the Python expression divmod (01, o02).

PyObject *PyNumber_Power (PyObject *ol, PyObject *02, PyObject ¥03)
Return value: New reference. Part of the Stable ABI. See the built-in function pow () . Returns NULL on failure.
This is the equivalent of the Python expression pow (01, 02, 03), where o3 is optional. If 03 is to be ignored,
pass Py_None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject *PyNumber_Negative (PyObject *0)
Return value: New reference. Part of the Stable ABI. Returns the negation of o on success, or NULL on failure.
This is the equivalent of the Python expression —o.

PyObject *PyNumber_Positive (PyObject *0)
Return value: New reference. Part of the Stable ABI. Returns o on success, or NULL on failure. This is the equivalent
of the Python expression +o.

PyObject *PyNumber_Absolute (PyObject *0)
Return value: New reference. Part of the Stable ABI. Returns the absolute value of o, or NULL on failure. This is
the equivalent of the Python expression abs (o) .

PyObject *PyNumber_Invert (PyObject *0)
Return value: New reference. Part of the Stable ABIL. Returns the bitwise negation of o on success, or NULL on
failure. This is the equivalent of the Python expression ~o.

PyObject *PyNumber_Lshift (PyObject *ol, PyObject ¥02)
Return value: New reference. Part of the Stable ABI. Returns the result of left shifting o/ by 02 on success, or
NULL on failure. This is the equivalent of the Python expression o1 << o2.

PyObject *PyNumber_Rshift (PyObject *ol, PyObject *02)
Return value: New reference. Part of the Stable ABI. Returns the result of right shifting o/ by 02 on success, or
NULL on failure. This is the equivalent of the Python expression o1 >> o2.

PyObject *PyNumber_And (PyObject *ol, PyObject *02)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise and” of o/ and 02 on success and NULL
on failure. This is the equivalent of the Python expression o1 & o02.

PyObject *PyNumber_Xor (PyObject *ol, PyObject ¥02)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise exclusive or” of ol by 02 on success, or
NULL on failure. This is the equivalent of the Python expression 01 ~ o2.

104 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.12.0b3

PyObject *PyNumber_Or (PyObject *ol, PyObject *02)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise or” of o/ and o2 on success, or NULL
on failure. This is the equivalent of the Python expression o1 | o02.

PyObject *PyNumber_InPlaceAdd (PyObject *ol, PyObject *02)
Return value: New reference. Part of the Stable ABIL Returns the result of adding o/ and 02, or NULL on failure.
The operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 += o02.

PyObject *PyNumber_InPlaceSubtract (PyObject ¥ol, PyObject *¥02)
Return value: New reference. Part of the Stable ABI. Returns the result of subtracting 02 from o/, or NULL on

failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 —=
o2.

PyObject *PyNumber_InPlaceMultiply (PyObject *ol, PyObject ¥02)
Return value: New reference. Part of the Stable ABI. Returns the result of multiplying o/ and 02, or NULL on

failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 *=
o2.

PyObject *PyNumber_InPlaceMatrixMultiply (PyObject *ol, PyObject *02)
Return value: New reference. Part of the Stable ABI since version 3.7. Returns the result of matrix multiplication

on o/ and 02, or NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the
Python statement 01 @= o02.

New in version 3.5.

PyObject *PyNumber_InPlaceFloorDivide (PyObject *ol, PyObject ¥02)
Return value: New reference. Part of the Stable ABI. Returns the mathematical floor of dividing o/ by 02, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1

//= o2.

PyObject *PyNumber_InPlaceTrueDivide (PyObject *ol, PyObject ¥02)
Return value: New reference. Part of the Stable ABIL. Return a reasonable approximation for the mathematical value
of ol divided by 02, or NULL on failure. The return value is “approximate” because binary floating point numbers
are approximate; it is not possible to represent all real numbers in base two. This function can return a floating

point value when passed two integers. The operation is done in-place when ol supports it. This is the equivalent of
the Python statement o1 /= o2.

PyObject *PyNumber_InPlaceRemainder (PyObject *ol, PyObject *02)
Return value: New reference. Part of the Stable ABIL Returns the remainder of dividing o/ by 02, or NULL on

failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1 %=
o2.

PyObject *PyNumber_InPlacePower (PyObject *0l, PyObject *02, PyObject *03)
Return value: New reference. Part of the Stable ABI. See the built-in function pow () . Returns NULL on failure.
The operation is done in-place when ol supports it. This is the equivalent of the Python statement 01 **= 02
when 03 is Py_None, or an in-place variant of pow (01, 02, o03) otherwise. If 03 is to be ignored, pass
Py_None in its place (passing NULL for 03 would cause an illegal memory access).

PyObject *PyNumber_InPlaceLshift (PyObject *ol, PyObject *02)
Return value: New reference. Part of the Stable ABI. Returns the result of left shifting o/ by 02 on success, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1
<<= 02.

PyObject *PyNumber_InPlaceRshift (PyObject *ol, PyObject *¥02)
Return value: New reference. Part of the Stable ABIL Returns the result of right shifting o/ by 02 on success, or

NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol >>= o02.

7.3. Number Protocol 105

The Python/C API, Release 3.12.0b3

PyObject *PyNumber_InPlaceAnd (PyObject *ol, PyObject *02)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise and” of o/ and 02 on success and NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1
&= 02.

PyObject *PyNumber_InPlaceXor (PyObject *ol, PyObject ¥02)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise exclusive or” of o/ by 02 on success, or
NULL on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement
ol "= o2.

PyObject *PyNumber_InPlaceOr (PyObject *ol, PyObject ¥02)
Return value: New reference. Part of the Stable ABIL. Returns the “bitwise or” of o/ and o2 on success, or NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python statement o1
|= o2.

PyObject *PyNumber_Long (PyObject *0)
Return value: New reference. Part of the Stable ABI. Returns the o converted to an integer object on success, or
NULL on failure. This is the equivalent of the Python expression int (o).

PyObject *PyNumber_Float (PyObject *0)
Return value: New reference. Part of the Stable ABI. Returns the o converted to a float object on success, or NULL
on failure. This is the equivalent of the Python expression f1oat (o).

PyObject *PyNumber_Index (PyObject *0)
Return value: New reference. Part of the Stable ABI. Returns the o converted to a Python int on success or NULL

with a TypeError exception raised on failure.

Changed in version 3.10: The result always has exact type int. Previously, the result could have been an instance
of a subclass of int.

PyObject *PyNumber_ToBase (PyObject *n, int base)

Return value: New reference. Part of the Stable ABI. Returns the integer n converted to base base as a string. The
base argument must be one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is prefixed with a base marker
of 'Ob"', '0o"',or '0x", respectively. If n is not a Python int, it is converted with PyNumber_Index () first.

Py_ssize_t PyNumber_AsSsize_t (PyObject *o, PyObject *exc)
Part of the Stable ABIL. Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If the

call fails, an exception is raised and -1 is returned.

If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or
OverflowError). If excis NULL, then the exception is cleared and the value is clippedto PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check (PyObject *0)

Fart of the Stable ABI since version 3.8. Returns 1 if o is an index integer (has the nb_index slot of the
tp_as_number structure filled in), and O otherwise. This function always succeeds.

106 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.12.0b3

7.4 Sequence Protocol

int PySequence_Check (PyObject *0)
Fart of the Stable ABI. Return 1 if the object provides the sequence protocol, and 0 otherwise. Note that it returns
1 for Python classes with a __getitem__ () method, unless they are dict subclasses, since in general it is
impossible to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PySequence_Size (PyObject *0)

Py_ssize_t PySequence_Length (PyObject *0)
Fart of the Stable ABI. Returns the number of objects in sequence o on success, and —1 on failure. This is equivalent
to the Python expression 1len (o).

PyObject *PySequence_Concat (PyObject *ol, PyObject *02)
Return value: New reference. Part of the Stable ABI. Return the concatenation of o/ and 02 on success, and NULL
on failure. This is the equivalent of the Python expression o1 + o2.

PyObject *PySequence_Repeat (PyObject *0, Py_ssize_t count)
Return value: New reference. Part of the Stable ABI. Return the result of repeating sequence object o count times,
or NULL on failure. This is the equivalent of the Python expression o * count.

PyObject *PySequence_InPlaceConcat (PyObject ¥ol, PyObject *02)
Return value: New reference. Part of the Stable ABI. Return the concatenation of o/ and 02 on success, and NULL
on failure. The operation is done in-place when ol supports it. This is the equivalent of the Python expression o1
+= 02.

PyObject *PySequence_InPlaceRepeat (PyObject *o, Py_ssize_t count)
Return value: New reference. Part of the Stable ABI. Return the result of repeating sequence object o count times, or
NULL on failure. The operation is done in-place when o supports it. This is the equivalent of the Python expression
o *= count.

PyObject *PySequence_GetItem (PyObject *o, Py_ssize_t 1)
Return value: New reference. Part of the Stable ABI. Return the ith element of o, or NULL on failure. This is the
equivalent of the Python expression o [1].

PyObject *PySequence_GetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t i2)
Return value: New reference. Part of the Stable ABI. Return the slice of sequence object o between i/ and i2, or
NULL on failure. This is the equivalent of the Python expression o [11:12].

int PySequence_SetItem (PyObject *o, Py_ssize_t i, PyObject *Vv)
Fart of the Stable ABI. Assign object v to the ith element of 0. Raise an exception and return —1 on failure; return

0 on success. This is the equivalent of the Python statement o [1] = wv. This function does not steal a reference
tov.

If vis NULL, the element is deleted, but this feature is deprecated in favour of using Py Sequence_DelItem().
int PySequence_DelItem (PyObject *0, Py_ssize_t 1)
Fart of the Stable ABI Delete the ith element of object 0. Returns —1 on failure. This is the equivalent of the
Python statement del of[i].
int PySequence_SetSlice (PyObject *o, Py_ssize_t il, Py_ssize_t 12, PyObject *Vv)
Part of the Stable ABI. Assign the sequence object v to the slice in sequence object o from i/ to i2. This is the
equivalent of the Python statement o [11:12] = wv.
int PySequence_DelSlice (PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Part of the Stable ABIL Delete the slice in sequence object o from i/ to i2. Returns —1 on failure. This is the
equivalent of the Python statement del o[il:i2].

7.4. Sequence Protocol 107

The Python/C API, Release 3.12.0b3

Py_ssize_t PySequence_Count (PyObject *o, PyObject *value)
Part of the Stable ABI. Return the number of occurrences of value in o, that is, return the number of keys for which
o[key] == wvalue. On failure, return —1. This is equivalent to the Python expression o . count (value).

int PySequence_Contains (PyObject *o, PyObject *value)
Fart of the Stable ABI. Determine if o contains value. If an item in o is equal to value, return 1, otherwise return
0. On error, return —1. This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index (PyObject *o, PyObject *value)
Part of the Stable ABI. Return the firstindex i forwhicho [1] == value. Onerror, return —1. This is equivalent
to the Python expression o . index (value).

PyObject *PySequence_List (PyObject *0)
Return value: New reference. Part of the Stable ABI Return a list object with the same contents as the sequence or
iterable o, or NULL on failure. The returned list is guaranteed to be new. This is equivalent to the Python expression
list (o).

PyObject *PySequence_Tuple (PyObject *0)
Return value: New reference. Part of the Stable ABIL Return a tuple object with the same contents as the sequence or
iterable o, or NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed
with the appropriate contents. This is equivalent to the Python expression tuple (o).

PyObject *PySequence_Fast (PyObject *o, const char *m)

Return value: New reference. Part of the Stable ABIL Return the sequence or iterable o as an object usable by the
other PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises TypeError
with m as the message text. Returns NULL on failure.

The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
PyListObject and access the data fields of o directly.

As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE (PyObject *0)
Returns the length of o, assuming that o was returned by PySequence_Fast () and that o is not NULL. The
size can also be retrieved by calling PySequence_Size () ono,but PySequence_Fast_GET_SIZE () is
faster because it can assume o is a list or tuple.

PyObject *PySequence_Fast_GET_ITEM (PyObject *o, Py_ssize_t 1)
Return value: Borrowed reference. ~ Return the ith element of o, assuming that o was returned by
PySequence_Fast (), o0is not NULL, and that i is within bounds.

PyObject **PySequence_Fast_ITEMS (PyObject *0)
Return the underlying array of PyObject pointers. Assumes that o was returned by Py Sequence_Fast () and
0 is not NULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array pointer
in contexts where the sequence cannot change.

PyObject *PySequence_ITEM (PyObject *o, Py_ssize_t 1)
Return value: New reference. ~ Return the ith element of o or NULL on failure. Faster form of

PySequence_GetItem () but without checking that PySequence_Check () on o is true and without ad-
justment for negative indices.

108 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.12.0b3

7.5 Mapping Protocol

See also PyObject_GetItem (), PyObject_SetItem() and PyObject_DelIltem().

int PyMapping_Check (PyObject *0)
Part of the Stable ABI. Return 1 if the object provides the mapping protocol or supports slicing, and 0 otherwise.
Note that it returns 1 for Python classes with a __getitem__ () method, since in general it is impossible to
determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PyMapping_Size (PyObject *0)

Py_ssize_t PyMapping_Length (PyObject *0)
Fart of the Stable ABI. Returns the number of keys in object o on success, and —1 on failure. This is equivalent to
the Python expression len (o).

PyObject *PyMapping_GetItemString (PyObject *o, const char *key)
Return value: New reference. Part of the Stable ABI. Return element of o corresponding to the string key or NULL
on failure. This is the equivalent of the Python expression o [key]. See also PyObject_GetItem().

int PyMapping_SetItemString (PyObject *o, const char *key, PyObject *v)
Fart of the Stable ABI. Map the string key to the value v in object 0. Returns —1 on failure. This is the equivalent of
the Python statement o [key] = wv. Seealso PyObject_SetItem (). Thisfunction does not steal a reference
to v.

int PyMapping_DelItem (PyObject *o, PyObject *key)
Remove the mapping for the object key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del o [key]. Thisis an alias of PyObject_Delltem().

int PyMapping_DelItemString (PyObject *o, const char *key)
Remove the mapping for the string key from the object 0. Return —1 on failure. This is equivalent to the Python
statement del of[key].

int PyMapping_HasKey (PyObject *o, PyObject *key)
Fart of the Stable ABI Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the
Python expression key in o. This function always succeeds.

Note that exceptions which occur while calling the ___getitem__ () method will get suppressed. To get error
reporting use PyObject_GetItem () instead.

int PyMapping_HasKeyString (PyObject *o, const char *key)
Fart of the Stable ABI. Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the
Python expression key in o. This function always succeeds.

Note that exceptions which occur while calling the __getitem__ () method and creating a temporary string
object will get suppressed. To get error reporting use PyMapping GetItemString () instead.

PyObject *PyMapping_Keys (PyObject *0)

Return value: New reference. Part of the Stable ABI. On success, return a list of the keys in object 0. On failure,
return NULL.

Changed in version 3.7: Previously, the function returned a list or a tuple.
PyObject *PyMapping_Values (PyObject *0)

Return value: New reference. Part of the Stable ABIL. On success, return a list of the values in object 0. On failure,
return NULL.

Changed in version 3.7: Previously, the function returned a list or a tuple.

7.5. Mapping Protocol 109

The Python/C API, Release 3.12.0b3

PyObject *PyMapping_Items (PyObject *0)
Return value: New reference. Part of the Stable ABIL. On success, return a list of the items in object o, where each
item is a tuple containing a key-value pair. On failure, return NULL.

Changed in version 3.7: Previously, the function returned a list or a tuple.

7.6 lterator Protocol

There are two functions specifically for working with iterators.

int PyIter_ Check (PyObject *0)
Part of the Stable ABI since version 3.8. Return non-zero if the object o can be safely passed to Py Iter Next (),
and 0 otherwise. This function always succeeds.

int PyAIter_Check (PyObject *0)
Part of the Stable ABI since version 3.10. Return non-zero if the object o provides the AsyncIterator protocol,
and 0 otherwise. This function always succeeds.

New in version 3.10.

PyObject *PyIter_Next (PyObject *0)
Return value: New reference. Part of the Stable ABI. Return the next value from the iterator o. The object must be
an iterator according to PyTter_Check () (itis up to the caller to check this). If there are no remaining values,
returns NULL with no exception set. If an error occurs while retrieving the item, returns NULL and passes along
the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter (obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while ((item = PyIter_Next (iterator))) {
/* do something with item */

/* release reference when done */
Py_DECREF (item) ;
}

Py_DECREF (iterator);

if (PyErr_Occurred()) A
/* propagate error */
}
else {
/* continue doing useful work */

}

type PySendResult

The enum value used to represent different results of PyTter Send ().

New in version 3.10.

110 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.12.0b3

PySendResult PyIter_Send (PyObject *iter, PyObject *arg, PyObject **presult)
Part of the Stable ABI since version 3.10. Sends the arg value into the iterator iter. Returns:
* PYGEN_RETURN if iterator returns. Return value is returned via presult.
e PYGEN_NEXT if iterator yields. Yielded value is returned via presult.
* PYGEN_ERROR if iterator has raised and exception. presult is set to NULL.

New in version 3.10.

7.7 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the built-in
bytes and bytearray, and some extension types like array.array. Third-party libraries may define their own
types for special purposes, such as image processing or numeric analysis.

While each of these types have their own semantics, they share the common characteristic of being backed by a possibly
large memory buffer. It is then desirable, in some situations, to access that buffer directly and without intermediate

copying.
Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

* on the producer side, a type can export a “buffer interface” which allows objects of that type to expose information
about their underlying buffer. This interface is described in the section Buffer Object Structures;

 on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object (for
example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms are
possible; for example, the elements exposed by an array .array can be multi-byte values.

An example consumer of the buffer interface is the write () method of file objects: any object that can export a series
of bytes through the buffer interface can be written to a file. While write () only needs read-only access to the internal
contents of the object passed to it, other methods such as readinto () need write access to the contents of their
argument. The buffer interface allows objects to selectively allow or reject exporting of read-write and read-only buffers.

There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:
e call PyObject_GetBuffer () with the right parameters;
e call PyArg ParseTuple () (or one of its siblings) with one of the yv*, w* or s* format codes.

In both cases, PyBuffer_Release () must be called when the buffer isn’t needed anymore. Failure to do so could
lead to various issues such as resource leaks.

7.7.1 Buffer structure

Buffer structures (or simply “buffers”) are useful as a way to expose the binary data from another object to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory,
it is possible to expose any data to the Python programmer quite easily. The memory could be a large, constant array in
a C extension, it could be a raw block of memory for manipulation before passing to an operating system library, or it
could be used to pass around structured data in its native, in-memory format.

Contrary to most data types exposed by the Python interpreter, buffers are not PyObject pointers but rather simple C
structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is needed, a
memoryview object can be created.

7.7. Buffer Protocol 111

The Python/C API, Release 3.12.0b3

For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer().
type Py_buffer

Part of the Stable ABI (including all members) since version 3.11.

void *buf

A pointer to the start of the logical structure described by the buffer fields. This can be any location within
the underlying physical memory block of the exporter. For example, with negative st rides the value may
point to the end of the memory block.

For contiguous arrays, the value points to the beginning of the memory block.
PyObject *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically decre-

mented and set to NULL by PyBuffer Release (). The field is the equivalent of the return value of any
standard C-API function.

As a special case, for temporary buffers that are wrapped by PyMemoryView FromBuffer () or

PyBuffer_ FillInfo () thisfield is NULL. In general, exporting objects MUST NOT use this scheme.
Py _ssize_t 1len

product (shape) * itemsize. For contiguous arrays, this is the length of the underlying memory

block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied to a
contiguous representation.

Accessing ((char *)buf) [0] up to ((char *)buf) [len-1] is only valid if the buffer has
been obtained by a request that guarantees contiguity. In most cases such a request will be PyBUF_SIMPLE
or PyBUF_WRITABLE.
int readonly
An indicator of whether the buffer is read-only. This field is controlled by the PyBUF_WRITABLE flag.
Py_ssize_t itemsize
Item size in bytes of a single element. Same as the value of struct.calcsize () called on non-NULL

format values.

Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will be
set to NULL, but i tems i ze still has the value for the original format.

If shape is present, the equality product (shape) * itemsize == len still holds and the con-
sumer can use itemsize to navigate the buffer.

If shapeis NULL as aresult of a PyBUF_STIMPLE or a PyBUF_WRITABLE request, the consumer must
disregard i temsize and assume itemsize ==

const char *format
A NUL terminated string in st ruct module style syntax describing the contents of a single item. If this is
NULL, "B" (unsigned bytes) is assumed.
This field is controlled by the PyBUF_FORMAT flag.

int ndim
The number of dimensions the memory represents as an n-dimensional array. If itis O, bu f points to a single

item representing a scalar. In this case, shape, strides and suboffsets MUST be NULL.

The macro PyBUF_MAX_NDIM limits the maximum number of dimensions to 64. Exporters MUST respect
this limit, consumers of multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM
dimensions.

112 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.12.0b3

Py_ssize_t *shape
An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional array.
Note that shape [0] * ... * shape[ndim-1] * itemsize MUST be equalto Ien.

Shape values are restricted to shape [n] >= 0. The case shape [n] == 0 requires special attention.
See complex arrays for further information.

The shape array is read-only for the consumer.
Py_ssize_t *strides

An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in
each dimension.

Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST be
able to handle the case strides[n] <= 0. See complex arrays for further information.

The strides array is read-only for the consumer.

Py_ssize_t *suboffsets

An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the nth
dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-
referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding in a
contiguous memory block).

If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).

This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for further
information how to access elements of such an array.

The suboffsets array is read-only for the consumer.

void *internal

This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer MUST NOT alter this value.

7.7.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer (). Since
the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument to specify
the exact buffer type it can handle.

All Py_buf fer fields are unambiguously defined by the request type.
request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: ob 7, buf, len,
itemsize, ndim.

7.7. Buffer Protocol 113

The Python/C API, Release 3.12.0b3

readonly, format

PyBUF_WRITABLE

Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

PyBUF_FORMAT

Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST
be NULL.

PyBUF_WRITABLE can be I'd to any of the flags in the next section. Since PyBUF_SIMPLE is defined as O,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.

PyBUF_FORMAT can be I'd to any of the flags except PyBUF_SIMPLE. The latter already implies format B (unsigned
bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each flag
contains all bits of the flags below it.

Request shape | strides | suboffsets
yes yes if needed

PyBUF_INDIRECT

yes yes NULL
PyBUF_STRIDES

yes NULL | NULL
PyBUF_ND

NULL | NULL | NULL
PyBUF_SIMPLE

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information, the
buffer must be C-contiguous.

Request shape | strides | suboffsets | contig
yes yes NULL C
PyBUF_C_CONTIGUOUS
yes yes NULL F
PyBUF_F_CONTIGUOUS
yes yes NULL CorF
PyBUF_ANY_CONTIGUOUS
PyBUF_ND yes NULL | NULL C

114 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.12.0b3

compound requests
All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.

In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer IsContiguous () to determine contiguity.

Request shape | strides | suboffsets | contig | readonly | format

yes yes if needed U 0 yes
PyBUF_FULL

yes yes if needed U lor0 yes
PyBUF_FULL_RO

yes yes NULL U 0 yes
PyBUF_RECORDS

yes yes NULL U lor0 yes
PyBUF_RECORDS_RO

yes yes NULL U 0 NULL
PyBUF_STRIDED

yes yes NULL U lor0 NULL
PyBUF_STRIDED_RO

yes NULL | NULL C 0 NULL
PyBUF_CONTIG

yes NULL | NULL C lor0 NULL
PyBUF_CONTIG_RO

7.7.3 Complex arrays

NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by i temsize, ndim, shape and strides.

If ndim == 0, the memory location pointed to by bu £ is interpreted as a scalar of size i temsize. In that case, both
shape and st rides are NULL.

If st ridesis NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must access
an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof (item) *)ptr);

As noted above, bu £ can point to any location within the actual memory block. An exporter can check the validity of a
buffer with this function:

def verify_structure (memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within

(continues on next page)

7.7. Buffer Protocol 115

The Python/C API, Release 3.12.0b3

(continued from previous page)

the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v % itemsize for v in strides):
return False

if ndim <= 0:

return ndim == 0 and not shape and not strides
if 0 in shape:

return True

imin = sum(strides[j]* (shape[j]-1) for j in range (ndim)
if strides[j] <= 0)
imax = sum(strides[j]* (shape[j]l-1) for j in range (ndim)

if strides[j] > 0)

return 0 <= offset+imin and offset+imax+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the next
element in a dimension. For example, the regular three-dimensional C-array char v [2] [2] [3] can also be viewed
as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2]) [2] [3]. Insuboffsets representation, those two
pointers can be embedded at the start of bu £, pointing to two char x[2] [3] arrays that can be located anywhere in
memory.

Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when there
are both non-NULL strides and suboffsets:

void *get_item_pointer (int ndim, wvoid *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; i++) |

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {
pointer = * ((char**)pointer) + suboffsets[i];

}

return (void*)pointer;

116 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.12.0b3

7.7.4 Buffer-related functions

int PyObject_CheckBuffer (PyObject *obj)
Part of the Stable ABI since version 3.11. Return 1 if obj supports the buffer interface otherwise 0. When 1 is
returned, it doesn’t guarantee that PyOb ject_GetBuffer () will succeed. This function always succeeds.

int PyObject_GetBuffer (PyObject *exporter, Py_buffer *view, int flags)

Fart of the Stable ABI since version 3.11. Send a request to exporter to fill in view as specified by flags. If the
exporter cannot provide a buffer of the exact type, it MUST raise PyExc_BufferError, set view—>obj to
NULL and return —1.

On success, fill in view, set view—>ob7j to a new reference to exporter and return 0. In the case of chained buffer
providers that redirect requests to a single object, view—>obj MAY refer to this object instead of exporter (See
Buffer Object Structures).

Successful calls to PyOb ject_GetBuffer () must be paired with calls to PyBuffer_ Release (), similar
tomalloc () and free (). Thus, after the consumer is done with the buffer, PyBuffer Release () must
be called exactly once.

void PyBuffer Release (Py_buffer *view)

Fart of the Stable ABI since version 3.11. Release the buffer view and decrement the reference count for
view->ob7j. This function MUST be called when the buffer is no longer being used, otherwise reference leaks
may occur.

It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer ().

Py_ssize_t PyBuffer_SizeFromFormat (const char *format)
Fart of the Stable ABI since version 3.11. Return the implied itemsize from format. On error, raise an
exception and return -1.

New in version 3.9.

int PyBuffer_ IsContiguous (const Py_buffer *view, char order)
Part of the Stable ABI since version 3.11. Return 1 if the memory defined by the view is C-style (orderis 'C")
or Fortran-style (order is 'F ') contiguous or either one (order is 'A"). Return 0 otherwise. This function always
succeeds.

void *PyBuffer_GetPointer (const Py_buffer *view, const Py_ssize_t *indices)
Part of the Stable ABI since version 3.11. Get the memory area pointed to by the indices inside the given view.
indices must point to an array of view->ndim indices.

int PyBuffer_FromContiguous (const Py_buffer *view, const void *buf, Py_ssize_t len, char fort)
Fart of the Stable ABI since version 3.11. Copy contiguous len bytes from buf to view. fort canbe 'C' or 'F'
(for C-style or Fortran-style ordering). O is returned on success, —1 on error.

int PyBuffer_ ToContiguous (void *buf, const Py_buffer *src, Py_ssize_t len, char order)
Part of the Stable ABI since version 3.11. Copy len bytes from src to its contiguous representation in buf. order can
be 'C'or 'F'or 'A' (for C-style or Fortran-style ordering or either one). 0 is returned on success, —1 on error.
This function fails if len = src->len.

int PyObject_CopyData (PyObject *dest, PyObject *src)
Part of the Stable ABI since version 3.11. Copy data from src to dest buffer. Can convert between C-style and or

Fortran-style buffers.

0 is returned on success, —1 on error.

7.7. Buffer Protocol 117

The Python/C API, Release 3.12.0b3

void PyBuffer_FillContiguousStrides (int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize, char
order)

Fart of the Stable ABI since version 3.11. Fill the strides array with byte-strides of a contiguous (C-style if order is
'C"' or Fortran-style if order is 'F ') array of the given shape with the given number of bytes per element.

int PyBuffer_ FillInfo (Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly, int flags)
Fart of the Stable ABI since version 3.11. Handle buffer requests for an exporter that wants to expose buf of size
len with writability set according to readonly. buf is interpreted as a sequence of unsigned bytes.

The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf has
been designated as read-only and PyBUF_WRITABLE is set in flags.

On success, set view—>obj to a new reference to exporfer and return O. Otherwise, raise
PyExc_BufferError, set view—>0b]j to NULL and return —1;

If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must be
passed unmodified. Otherwise, exporter MUST be NULL.

7.8 Old Buffer Protocol

Deprecated since version 3.0.

These functions were part of the “old buffer protocol” API in Python 2. In Python 3, this protocol doesn’t exist anymore
but the functions are still exposed to ease porting 2.x code. They act as a compatibility wrapper around the new buffer
protocol, but they don’t give you control over the lifetime of the resources acquired when a buffer is exported.

Therefore, it is recommended that you call PyObject_GetBuffer () (or the y* or w* format codes with the
PyArg_ParseTuple () family of functions) to get a buffer view over an object, and PyBuffer Release ()
when the buffer view can be released.

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)

Part of the Stable ABI. Returns a pointer to a read-only memory location usable as character-based input. The
obj argument must support the single-segment character buffer interface. On success, returns 0, sets buffer to the
memory location and buffer_len to the buffer length. Returns —1 and sets a TypeError on error.

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)

Fart of the Stable ABI. Returns a pointer to a read-only memory location containing arbitrary data. The obj argu-
ment must support the single-segment readable buffer interface. On success, returns 0, sets buffer to the memory
location and buffer_len to the buffer length. Returns —1 and sets a TypeError on error.

int PyObject_CheckReadBuffer (PyObject *0)
Fart of the Stable ABI. Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0.
This function always succeeds.

Note that this function tries to get and release a buffer, and exceptions which occur while calling corresponding
functions will get suppressed. To get error reporting use PyOb ject_GetBuffer () instead.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Part of the Stable ABI. Returns a pointer to a writable memory location. The obj argument must support the single-

segment, character buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len to the
buffer length. Returns -1 and sets a TypeError on error.

118 Chapter 7. Abstract Objects Layer

CHAPTER
EIGHT

CONCRETE OBJECTS LAYER

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is not
a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you must
perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check (). The chapter is
structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are passed
in, many of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can
cause memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

type PyTypeObject
Part of the Limited API (as an opaque struct). The C structure of the objects used to describe built-in types.
PyTypeObject PyType_Type
Fart of the Stable ABI. This is the type object for type objects; it is the same object as t ype in the Python layer.
int PyType_Check (PyObject *0)
Return non-zero if the object o is a type object, including instances of types derived from the standard type object.
Return 0 in all other cases. This function always succeeds.
int PyType_CheckExact (PyObject *0)
Return non-zero if the object o is a type object, but not a subtype of the standard type object. Return O in all other
cases. This function always succeeds.
unsigned int PyType_ClearCache ()
Fart of the Stable ABI. Clear the internal lookup cache. Return the current version tag.
unsigned long PyType_GetF1lags (PyTypeObject *type)

Fart of the Stable ABI. Return the tp_f1ags member of fype. This function is primarily meant for use with
Py_LIMITED_APT; the individual flag bits are guaranteed to be stable across Python releases, but access to
tp_flags itself is not part of the /imited API.

New in version 3.2.

119

The Python/C API, Release 3.12.0b3

Changed in version 3.4: The return type is now unsigned long rather than long.

PyObject *PyType_GetDict (PyTypeObject *type)

Return the type object’s internal namespace, which is otherwise only exposed via a read-only proxy (cls.
__dict__). This is a replacement for accessing tp_dict directly. The returned dictionary must be treated
as read-only.

This function is meant for specific embedding and language-binding cases, where direct access to the dict is nec-
essary and indirect access (e.g. via the proxy or PyObject_GetAttr ()) isn’t adequate.

Extension modules should continue to use tp_dict, directly or indirectly, when setting up their own types.

New in version 3.12.

void PyType_Modified (PyTypeObject *type)

Fart of the Stable ABI. Invalidate the internal lookup cache for the type and all of its subtypes. This function must
be called after any manual modification of the attributes or base classes of the type.

int PyType_AddWatcher (PyType_WatchCallback callback)

Register callback as a type watcher. Return a non-negative integer ID which must be passed to future calls to
PyType_Watch (). In case of error (e.g. no more watcher IDs available), return —1 and set an exception.

New in version 3.12.

int PyType_ClearWatcher (int watcher_id)

Clear watcher identified by watcher_id (previously returned from Py Type_AddWatcher ()). Return 0 on suc-
cess, —1 on error (e.g. if watcher_id was never registered.)

An extension should never call PyType_ClearWatcher with a watcher_id that was not returned to it by a
previous call to Py Type_AddwWatcher ().

New in version 3.12.

int PyType_Watch (int watcher_id, PyObject *type)

Mark type as watched. The callback granted watcher_id by Py Type_Addwatcher () will be called whenever
PyType_Modified () reports a change to type. (The callback may be called only once for a series of consec-
utive modifications to type, if PyType_Lookup () is not called on type between the modifications; this is an
implementation detail and subject to change.)

An extension should never call PyType_Wat ch with a watcher_id that was not returned to it by a previous call
to PyType_AddWatcher ().

New in version 3.12.

typedef int (*PyType_WatchCallback)(PyObject *type)

Type of a type-watcher callback function.

The callback must not modify type or cause Py Type_Modified () to be called on type or any type in its MRO;
violating this rule could cause infinite recursion.

New in version 3.12.

int PyType_HasFeature (PyTypeObject *o, int feature)

Return non-zero if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC (PyTypeObject *0)

Return true if the type object includes support for the cycle detector; this tests the type flag
Py _TPFLAGS_HAVE_GC.

120

Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject *b)
Fart of the Stable ABI. Return true if a is a subtype of b.
This function only checks for actual subtypes, which means that __subclasscheck__ () is not called on b.
Call PyObject_TIsSubclass () to do the same check that issubclass () would do.
PyObject *PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Part of the Stable ABI. Generic handler for the tp_a 1 1oc slot of a type object. Use
Python’s default memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.
PyObject *PyType_GenericNew (PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Part of the Stable ABIL. Generic handler for the t p_ new slot of a type object. Create
a new instance using the type’s tp_alloc slot.
int PyType_Ready (PyTypeObject *type)

Fart of the Stable ABI. Finalize a type object. This should be called on all type objects to finish their initialization.
This function is responsible for adding inherited slots from a type’s base class. Return O on success, or return —1
and sets an exception on error.

Note: If some of the base classes implements the GC protocol and the provided type does not include the
Py_TPFLAGS_HAVE_GC in its flags, then the GC protocol will be automatically implemented from its par-
ents. On the contrary, if the type being created does include Py_ TPFLAGS_HAVE_GC in its flags then it must
implement the GC protocol itself by at least implementing the tp_ t raverse handle.

PyObject *PyType_GetName (PyTypeObject *type)

Return value: New reference. Part of the Stable ABI since version 3.11. Return the type’s name. Equivalent to
getting the type’s __name___ attribute.

New in version 3.11.
PyObject *PyType_GetQualName (PyTypeObject *type)

Return value: New reference. Part of the Stable ABI since version 3.11. Return the type’s qualified name. Equivalent
to getting the type’s ___qualname___ attribute.

New in version 3.11.

void *PyType_GetSlot (PyTypeObject *type, int slot)

Part of the Stable ABI since version 3.4. Return the function pointer stored in the given slot. If the result is NULL,
this indicates that either the slot is NULL, or that the function was called with invalid parameters. Callers will
typically cast the result pointer into the appropriate function type.

See PyType_Slot.slot for possible values of the slot argument.
New in version 3.4.

Changed in version 3.10: PyType GetSlot () can now accept all types. Previously, it was limited to reap
types.

PyObject *PyType_GetModule (PyTypeObject *type)
Fart of the Stable ABI since version 3.10. Return the module object associated with the given type when the type
was created using Py Type_FromModuleAndSpec ().
If no module is associated with the given type, sets TypeError and returns NULL.

This function is usually used to get the module in which a method is defined. Note that in such a method,
PyType_GetModule (Py_TYPE (self)) may not return the intended result. Py_TYPE (self) may be
a subclass of the intended class, and subclasses are not necessarily defined in the same module as their superclass.

8.1. Fundamental Objects 121

The Python/C API, Release 3.12.0b3

See PyCMethod to get the class that defines the method. See Py Type GetModuleByDef () for cases when
PyCMethod cannot be used.

New in version 3.9.

void *PyType_GetModuleState (PyTypeObject *type)

Fart of the Stable ABI since version 3.10. Return the state of the module object associated with the given type.
This is a shortcut for calling PyModule_GetState () on the result of Py Type_GetModule ().

If no module is associated with the given type, sets TypeError and returns NULL.
If the #ype has an associated module but its state is NULL, returns NULL without setting an exception.

New in version 3.9.

PyObject *PyType_GetModuleByDef (PyTypeObject *type, struct PyModuleDef *def)

Find the first superclass whose module was created from the given PyModuleDe £ def, and return that module.
If no module is found, raises a TypeError and returns NULL.

This function is intended to be used together with PyModule_GetState () to get module state from slot meth-
ods (such as tp_init or nb_add) and other places where a method’s defining class cannot be passed using the
PyCMethod calling convention.

New in version 3.11.

int PyUnstable_Type_AssignVersionTag (PyTypeObject *type)

This is Unstable API. It may change without warning in minor releases.

Attempt to assign a version tag to the given type.

Returns 1 if the type already had a valid version tag or a new one was assigned, or O if a new tag could not be
assigned.

New in version 3.12.

Creating Heap-Allocated Types

The following functions and structs are used to create heap types.

PyObject *PyType_FromMetaclass (PyTypeObject *metaclass, PyObject *module, PyType_Spec *spec, PyObject

*bases)

Part of the Stable ABI since version 3.12. Create and return a heap type from the spec (see
Py_TPFLAGS_HEAPTYPE).

The metaclass metaclass is used to construct the resulting type object. When metaclass is NULL, the metaclass is
derived from bases (or Py_tp_base[s] slots if bases is NULL, see below).

Metaclasses that override t p_new are not supported, except if tp_new is NULL. (For backwards compatibility,
other PyType_From* functions allow such metaclasses. They ignore t p_new, which may result in incomplete
initialization. This is deprecated and in Python 3.14+ such metaclasses will not be supported.)

The bases argument can be used to specify base classes; it can either be only one class or a tuple of classes. If bases
is NULL, the Py_tp_bases slot is used instead. If that also is NULL, the Py_tp_base slot is used instead. If that also
is NULL, the new type derives from object.

The module argument can be used to record the module in which the new class is defined. It must be a mod-
ule object or NULL. If not NULL, the module is associated with the new type and can later be retrieved with

122

Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

PyType_GetModule (). The associated module is not inherited by subclasses; it must be specified for each
class individually.

This function calls PyType_Ready () on the new type.

Note that this function does not fully match the behavior of calling t ype () or using the class statement. With
user-provided base types or metaclasses, prefer calling t ype (or the metaclass) over PyType_From* functions.
Specifically:

e _ new__ () isnot called on the new class (and it must be set to type.__ _new__).
e _init__ () isnot called on the new class.
e __init_subclass__ () isnot called on any bases.
e __set_name__ () isnot called on new descriptors.
New in version 3.12.
PyObject *PyType_FromModuleAndSpec (PyObject *module, PyType_Spec *spec, PyObject *bases)

Return value: ~ New reference. Part of the Stable ABI since version 3.10. Equivalent to
PyType_FromMetaclass (NULL, module, spec, bases).

New in version 3.9.

Changed in version 3.10: The function now accepts a single class as the bases argument and NULL as the tp_doc
slot.

Changed in version 3.12: The function now finds and uses a metaclass corresponding to the provided base classes.
Previously, only t ype instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

PyObject *PyType_FromSpecWithBases (PyType_Spec *spec, PyObject *bases)
Return value: New reference. Part of the Stable ABI since version 3.3. Equivalent to
PyType_FromMetaclass (NULL, NULL, spec, bases).

New in version 3.3.

Changed in version 3.12: The function now finds and uses a metaclass corresponding to the provided base classes.
Previously, only t ype instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

PyObject *PyType_FromSpec (PyType_Spec *spec)
Return value: New reference. Part of the Stable ABI. Equivalent to PyType_FromMetaclass (NULL,
NULL, spec, NULL).

Changed in version 3.12: The function now finds and uses a metaclass corresponding to the base classes provided
in Py_tp_base[s] slots. Previously, only t ype instances were returned.

The tp_new of the metaclass is ignored. which may result in incomplete initialization. Creating classes whose
metaclass overrides tp_new is deprecated and in Python 3.14+ it will be no longer allowed.

type PyType_Spec
Fart of the Stable ABI (including all members). Structure defining a type’s behavior.

const char *name

Name of the type, used to set Py TypeObject . tp_name.

8.1. Fundamental Objects 123

The Python/C API, Release 3.12.0b3

intbasicsize

If positive, specifies the size of the instance in bytes. It is used to set Py TypeObject.tp_basicsize.
If zero, specifies that tp_basicsize should be inherited.

If negative, the absolute value specifies how much space instances of the class need in addition to the su-
perclass. Use PyObject_GetTypeData () to get a pointer to subclass-specific memory reserved this
way.

Changed in version 3.12: Previously, this field could not be negative.

int itemsize

Size of one element of a variable-size type, in bytes. Used to set PyTypeObject.tp_itemsize. See
tp_itemsize documentation for caveats.

If zero, tp_itemsize is inherited. Extending arbitrary variable-sized classes is dangerous, since some
types use a fixed offset for variable-sized memory, which can then overlap fixed-sized memory used by a
subclass. To help prevent mistakes, inheriting i temsize is only possible in the following situations:

¢ The base is not variable-sized (its tp_itemsize).

* Therequested PyType_Spec.basicsizeispositive, suggesting that the memory layout of the base
class is known.

e The requested PyType_Spec.basicsize is zero, suggesting that the subclass does not access the
instance’s memory directly.

e With the Py TPFLAGS_ITEMS_ AT _ END flag.

unsigned int £lags

Type flags, used to set PyTypeObject.tp_flags.

If the Py_TPFLAGS_HEAPTYPE flag is not set, PyType_FromSpecWithBases () sets it automati-
cally.

PyType_Slot *slots
Array of Py Type_S1ot structures. Terminated by the special slot value {0, NULL}.
Each slot ID should be specified at most once.

type PyType_Slot

Fart of the Stable ABI (including all members). Structure defining optional functionality of a type, containing a slot
ID and a value pointer.

int slot

Aslot ID.

Slot IDs are named like the field names of the structures Py TypeOb ject, PyNumberMet hods,
PySequenceMethods, PyMappingMethods and PyAsyncMethods with an added Py_
prefix. For example, use:

* Py_tp_dealloctoset PyTypeObject.tp _dealloc
* Py_nb_addtoset PyNumberMethods.nb_add
* Py_sqg_lengthtoset PySequenceMethods.sq_length
The following fields cannot be set at all using Py Type_Spec and Py Type_Slot:
s tp _dict
* tp_mro

* tp_cache

124 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

* tp_subclasses

* tp _weaklist

* tp_vectorcall

e tp weaklistoffset (use Py TPFLAGS_MANAGED_ WEAKREF instead)
e tp _dictoffset (use Py TPFLAGS MANAGED_DICT instead)

* tp_vectorcall_ offset (see PyMemberDef)

Setting Py_tp_bases or Py_tp_base may be problematic on some platforms. To avoid issues,
use the bases argument of PyType_FromSpecWithBases () instead.

Changed in version 3.9: Slots in PyBufferProcs may be set in the unlimited API.

Changed in version 3.11: bf_getbufferand bf_releasebuf fer are now available under the limited
API.

void *pfunc

The desired value of the slot. In most cases, this is a pointer to a function.

Slots other than Py_ tp_doc may not be NULL.

8.1.2 The None Object

Note that the Py TypeOb ject for None is not directly exposed in the Python/C API. Since None is a singleton, testing
for object identity (using == in C) is sufficient. There is no PyNone_Check () function for the same reason.

PyObject *Py_None
The Python None object, denoting lack of value. This object has no methods and is immortal.
Changed in version 3.12: Py_ None is immortal.

Py_RETURN_NONE
Return Py_ None from a function.

8.2 Numeric Objects

8.2.1 Integer Objects

All integers are implemented as “long” integer objects of arbitrary size.

On error, most PyLong_As* APIs return (return type) -1 which cannot be distinguished from a number. Use
PyErr_Occurred () to disambiguate.
type PyLongObject
Part of the Limited API (as an opaque struct). This subtype of PyObject represents a Python integer object.
PyTypeObject PyLong_Type
Fart of the Stable ABI. This instance of Py TypeOb ject represents the Python integer type. This is the same
object as int in the Python layer.
int PyLong_Check (PyObject *p)

Return true if its argument isa PyLongObject orasubtype of PyLongObject. This function always succeeds.

8.2. Numeric Objects 125

https://peps.python.org/pep-0683/

The Python/C API, Release 3.12.0b3

int PyLong_CheckExact (PyObject *p)
Return true if its argument is a PyLongOb ject, but not a subtype of PyLongObject. This function always
succeeds.

PyObject *PyLong_FromLong (long v)
Return value: New reference. Part of the Stable ABIL. Return a new PyLongOb ject object from v, or NULL on

failure.

The current implementation keeps an array of integer objects for all integers between —5 and 256. When you
create an int in that range you actually just get back a reference to the existing object.

PyObject *PyLong_FromUnsignedLong (unsigned long v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C unsigned
long, or NULL on failure.

PyObject *PyLong_FromSsize_t (Py_ssize_t V)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C
Py_ssize_ t,or NULL on failure.

PyObject *PyLong_FromSize_t (size_t V)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object froma C size_t,
or NULL on failure.

PyObject *PyLong_FromLongLong (long long v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C long
long, or NULL on failure.

PyObject *PyLong_FromUnsignedLongLong (unsigned long long v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C unsigned
long long, or NULL on failure.

PyObject *PyLong_FromDouble (double v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongOb ject object from the integer part
of v, or NULL on failure.

PyObject *PyLong_FromString (const char *str, char **pend, int base)

Return value: New reference. Part of the Stable ABIL Return a new PyLongOb ject based on the string value in
str, which is interpreted according to the radix in base, or NULL on failure. If pend is non-NULL, *pend will point to
the end of s#r on success or to the first character that could not be processed on error. If base is 0, str is interpreted
using the integers definition; in this case, leading zeros in a non-zero decimal number raises a ValueError. If
base is not 0, it must be between 2 and 36, inclusive. Leading and trailing whitespace and single underscores after
a base specifier and between digits are ignored. If there are no digits or str is not NULL-terminated following the
digits and trailing whitespace, ValueError will be raised.

See also:

Python methods int.to_bytes () and int.from_bytes () to convert a PyLongObject to/from an
array of bytes in base 256. You can call those from C using PyOb ject_CallMethod ().

PyObject *PyLong_FromUnicodeObject (PyObject *u, int base)
Return value: New reference. Convert a sequence of Unicode digits in the string « to a Python integer value.
New in version 3.3.

PyObject *PyLong_FromVoidPtr (void *p)

Return value: New reference. Part of the Stable ABI. Create a Python integer from the pointer p. The pointer value
can be retrieved from the resulting value using PyLong_AsVoidPtr ().

126 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

long PyLong_AsLong (PyObject *obj)

Part of the Stable ABI. Return a C 1ong representation of obj. If obj is not an instance of PyLongOb ject, first
callits __index__ () method (if present) to convert it to a PyLongObject.

Raise OverflowError if the value of obj is out of range for a 1ong.
Returns —1 on error. Use PyErr_Occurred () to disambiguate.
Changed in version 3.8: Use __index__ () if available.

Changed in version 3.10: This function will no longeruse __int__ ().

long PyLong_AsLongAndOverflow (PyObject *obj, int *overflow)

Fart of the Stable ABI. Return a C 1ong representation of obj. If obj is not an instance of PyLongOb ject, first
callits __index___ () method (if present) to convertittoa PyLongObject.

If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or —1, respectively, and
return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return —1 as usual.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

Changed in version 3.8: Use __index__ () if available.

Changed in version 3.10: This function will no longer use __int__ ().
long long PyLong_AsLongLong (PyObject *obj)

Part of the Stable ABI. Return a C long long representation of obj. If obj is not an instance of
PyLongObject,firstcall its __index__ () method (if present) to convert it to a PyLongObject.

Raise OverflowError if the value of obj is out of range for a long long.
Returns -1 on error. Use PyErr_Occurred () to disambiguate.

Changed in version 3.8: Use __index__ () if available.

Changed in version 3.10: This function will no longeruse __int__ ().

long long PyLong_AsLongLongAndOverflow (PyObject *obj, int *overflow)

Part of the Stable ABI. Return a C long long representation of obj. If obj is not an instance of
PyLongObject,firstcallits __index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is greater than LLONG_MAX or less than LLONG_MIN, set *overflow to 1 or —1, respectively,
and return —1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1 as
usual.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

New in version 3.2.

Changed in version 3.8: Use __index__ () if available.

Changed in version 3.10: This function will no longeruse __int__ ().
Py_ssize_t PyLong_AsSsize_t (PyObject *pylong)

Part of the Stable ABI. Return a C Py_ssize_t representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range fora Py_ssize_t.

Returns —1 on error. Use PyErr_Occurred () to disambiguate.

8.2. Numeric Objects 127

The Python/C API, Release 3.12.0b3

unsigned long PyLong_AsUnsignedLong (PyObject *pylong)

Part of the Stable ABI. Return a C unsigned long representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range for a unsigned long.

Returns (unsigned long) -1 onerror. Use PyErr_ Occurred () to disambiguate.

size_t PyLong_AsSize_t (PyObject *pylong)

Part of the Stable ABL Return a C size_t representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range fora size_t.

Returns (size_t)—1 onerror. Use PyErr_Occurred () to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong (PyObject *pylong)

Fart of the Stable ABI. Returna Cunsigned long long representation of pylong. pylong must be an instance
of PyLongObject.

Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long) -1 onerror. Use PyErr_Occurred () to disambiguate.

Changed in version 3.1: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask (PyObject *obj)

Part of the Stable ABI. Return a C unsigned long representation of obj. If obj is not an instance of
PyLongObject,firstcallits __index__ () method (if present) to convert it to a PyLongObject.

If the value of 0bj is out of range for an unsigned long, return the reduction of that value modulo ULONG_MAX
+ 1.

Returns (unsigned long) -1 onerror. Use PyErr_Occurred () to disambiguate.
Changed in version 3.8: Use __index__ () if available.

Changed in version 3.10: This function will no longeruse __int__ ().

unsigned long long PyLong_AsUnsignedLongLongMask (PyObject *obj)

Fart of the Stable ABL Return a C unsigned long long representation of obj. If obj is not an instance of
PyLongObject,firstcallits __index__ () method (if present) to convert it to a PyLongObject.

If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
ULLONG_MAX + 1.

Returns (unsigned long long) -1 onerror. Use PyErr_Occurred () to disambiguate.
Changed in version 3.8: Use __index__ () if available.

Changed in version 3.10: This function will no longeruse __int__ ().

double PyLong_AsDouble (PyObject *pylong)

Part of the Stable ABI. Return a C double representation of pylong. pylong must be an instance of
PyLongObject.

Raise OverflowError if the value of pylong is out of range for a double.

Returns —1. 0 on error. Use PyErr_ Occurred () to disambiguate.

128

Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

void *PyLong_AsVoidPtr (PyObject *pylong)

Fart of the Stable ABI. Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an
OverflowError will be raised. This is only assured to produce a usable void pointer for values created with

PyLong_FromVoidPtr ().
Returns NULL on error. Use PyErr_Occurred () to disambiguate.

int PyUnstable_Long_ IsCompact (const PyLongObject *op)

This is Unstable API. It may change without warning in minor releases.

Return 1 if op is compact, O otherwise.

This function makes it possible for performance-critical code to implement a “fast path” for small integers. For
compact values use PyUnstable_Long CompactValue ();forothersfallbacktoa PyLong As *function

orcalling int.to_bytes ().

The speedup is expected to be negligible for most users.

Exactly what values are considered compact is an implementation detail and is subject to change.

Py_ssize_t PyUnstable_Long_CompactValue (const PyLongObject *op)

This is Unstable API. It may change without warning in minor releases.

If op is compact, as determined by PyUnstable Long_IsCompact (), return its value.

Otherwise, the return value is undefined.

8.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_Falseand Py_True.
As such, the normal creation and deletion functions don’t apply to booleans. The following macros are available, however.

int PyBool_Check (PyObject *0)

Return true if o is of type PyBool_Type. This function always succeeds.
PyObject *Py_False

The Python False object. This object has no methods and is immortal.
Changed in version 3.12: Py_ False is immortal.
PyObject *Py_True

The Python True object. This object has no methods and is immortal.
Changed in version 3.12: Py_ True is immortal.
Py_RETURN_FALSE

Return Py_ False from a function.

Py_RETURN_TRUE
Return Py_ True from a function.

PyObject *PyBool_FromLong (long v)

Return value: New reference. Part of the Stable ABIL. Return Py_ True or Py_False, depending on the truth

value of v.

8.2. Numeric Objects

129

https://peps.python.org/pep-0683/
https://peps.python.org/pep-0683/

The Python/C API, Release 3.12.0b3

8.2.3 Floating Point Objects

type PyFloatObject
This subtype of PyOb ject represents a Python floating point object.

PyTypeObject PyFloat_Type
Fart of the Stable ABI. This instance of PyTypeOb ject represents the Python floating point type. This is the
same object as f1oat in the Python layer.

int PyFloat_Check (PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject. This function always
succeeds.

int PyFloat_CheckExact (PyObject *p)
Return true if its argumentis a PyFloatObject, but nota subtype of PyFloatObject. This function always
succeeds.

PyObject *PyFloat_FromString (PyObject *str)
Return value: New reference. Part of the Stable ABI. Create a PyF1oatObject object based on the string value
in str, or NULL on failure.

PyObject *PyFloat_FromDouble (double v)
Return value: New reference. Part of the Stable ABI. Create a PyFloatObject object from v, or NULL on
failure.

double PyFloat_AsDouble (PyObject *pyfloat)

Fart of the Stable ABIL Return a C double representation of the contents of pyfloat. If pyfloat is not a Python
floating point object but has a ___float__ () method, this method will first be called to convert pyfloat into a
float. If ___float__ () is not defined then it falls back to __index__ (). This method returns —1 . 0 upon
failure, so one should call PyErr_ Occurred () to check for errors.

Changed in version 3.8: Use __index__ () if available.

double PyFloat_AS_DOUBLE (PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject *PyFloat_GetInfo (void)
Return value: New reference. Part of the Stable ABI. Return a structseq instance which contains information about
the precision, minimum and maximum values of a float. It’s a thin wrapper around the header file f1oat . h.
double PyFloat_GetMax ()
Part of the Stable ABI. Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin ()
Fart of the Stable ABI. Return the minimum normalized positive float DBL_MIN as C double.

Pack and Unpack functions

The pack and unpack functions provide an efficient platform-independent way to store floating-point values as byte strings.
The Pack routines produce a bytes string from a C double, and the Unpack routines produce a C double from such
a bytes string. The suffix (2, 4 or 8) specifies the number of bytes in the bytes string.

On platforms that appear to use IEEE 754 formats these functions work by copying bits. On other platforms, the 2-byte
format is identical to the IEEE 754 binary16 half-precision format, the 4-byte format (32-bit) is identical to the IEEE
754 binary32 single precision format, and the 8-byte format to the IEEE 754 binary64 double precision format, although
the packing of INFs and NaNs (if such things exist on the platform) isn’t handled correctly, and attempting to unpack a
bytes string containing an IEEE INF or NaN will raise an exception.

130 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

On non-IEEE platforms with more precision, or larger dynamic range, than IEEE 754 supports, not all values can be
packed; on non-IEEE platforms with less precision, or smaller dynamic range, not all values can be unpacked. What
happens in such cases is partly accidental (alas).

New in version 3.11.

Pack functions

The pack routines write 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if you want the bytes string in
little-endian format (exponent last, at p+1, p+3, or p+6 p+7), zero if you want big-endian format (exponent first, at p).
The PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor, or O on
little endian processor.

Return value: 0 if all is OK, -1 if error (and an exception is set, most likely OverflowError).
There are two problems on non-IEEE platforms:

* What this does is undefined if x is a NaN or infinity.

¢ —0.0 and +0 . 0 produce the same bytes string.

int PyFloat_Pack2 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary16 half-precision format.

int PyFloat_Pack4 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary32 single precision format.

int PyFloat_Pack8 (double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary64 double precision format.

Unpack functions

The unpack routines read 2, 4 or 8 bytes, starting at p. leis an int argument, non-zero if the bytes string is in little-endian
format (exponent last, at p+1, p+3 or p+6 and p+7), zero if big-endian (exponent first, at p). The PY_BIG_ENDIAN
constant can be used to use the native endian: it is equal to 1 on big endian processor, or 0 on little endian processor.

Return value: The unpacked double. On error, thisis =1 .0 and PyErr_Occurred () is true (and an exception is set,
most likely OverflowError).

Note that on a non-IEEE platform this will refuse to unpack a bytes string that represents a NaN or infinity.

double PyFloat_Unpack2 (const unsigned char *p, int le)
Unpack the IEEE 754 binary16 half-precision format as a C double.

double PyFloat_Unpack4 (const unsigned char *p, int le)
Unpack the IEEE 754 binary32 single precision format as a C double.

double PyFloat_Unpack8 (const unsigned char *p, int le)
Unpack the IEEE 754 binary64 double precision format as a C double.

8.2. Numeric Objects 131

The Python/C API, Release 3.12.0b3

8.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the Python
object exposed to Python programs, and the other is a C structure which represents the actual complex number value.
The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by value rather than
dereferencing them through pointers. This is consistent throughout the APIL.

type Py_complex

The C structure which corresponds to the value portion of a Python complex number object. Most of the functions
for dealing with complex number objects use structures of this type as input or output values, as appropriate. It is
defined as:

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum (Py_complex left, Py_complex right)

Return the sum of two complex numbers, using the C Py_ complex representation.

Py_complex _Py_c_dif£ (Py_complex left, Py_complex right)

Return the difference between two complex numbers, using the C Py_ comp 1 ex representation.

Py_complex _Py_c_neg (Py_complex num)

Return the negation of the complex number num, using the C Py_ compex representation.

Py_complex _Py_c_prod (Py_complex left, Py_complex right)

Return the product of two complex numbers, using the C Py_ compex representation.

Py_complex _Py_c_quot (Py_complex dividend, Py_complex divisor)

Return the quotient of two complex numbers, using the C Py_ comp1ex representation.
If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_c_pow (Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_ comp 1 ex representation.

If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

type PyComplexObject
This subtype of PyOb ject represents a Python complex number object.

PyTypeObject PyComplex_Type
Fart of the Stable ABI. This instance of Py TypeObject represents the Python complex number type. It is the
same object as complex in the Python layer.

int PyComplex_Check (PyObject *p)

Return true if its argumentis a PyComp lexObject orasubtype of PyComplexOb ject. This function always
succeeds.

132 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

int PyComplex_CheckExact (PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexOb ject. This function
always succeeds.
PyObject *PyComplex_FromCComplex (Py_complex v)
Return value: New reference. Create a new Python complex number object from a C Py_ compIlex value.
PyObject *PyComplex_FromDoubles (double real, double imag)
Return value: New reference. Part of the Stable ABIL. Return a new PyComplexObject object from real and
imag.
double PyComplex_RealAsDouble (PyObject *op)
Part of the Stable ABI. Return the real part of op as a C double.
double PyComplex_ImagAsDouble (PyObject *op)
Part of the Stable ABI. Return the imaginary part of op as a C double.
Py_complex PyComplex_AsCComplex (PyObject *op)
Return the Py__comp1ex value of the complex number op.

If op is not a Python complex number object but has a __complex__ () method, this method will first be
called to convert op to a Python complex number object. If ___complex__ () is not defined then it falls back
to__float__ (). If __float__ () is not defined then it falls back to __index__ (). Upon failure, this

method returns —1 . O as a real value.

Changed in version 3.8: Use __index__ () if available.

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific kinds
of sequence objects that are intrinsic to the Python language.

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and called with a non-bytes parameter.

type PyBytesObject
This subtype of PyOb ject represents a Python bytes object.

PyTypeObject PyBytes_Type
Part of the Stable ABI. This instance of Py TypeOb ject represents the Python bytes type; it is the same object
as bytes in the Python layer.

int PyBytes_Check (PyObject *0)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type. This function always
succeeds.

int PyBytes_CheckExact (PyObject *0)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type. This function always
succeeds.

PyObject *PyBytes_FromString (const char *v)

Return value: New reference. Part of the Stable ABI. Return a new bytes object with a copy of the string v as value
on success, and NULL on failure. The parameter v must not be NULL; it will not be checked.

8.3. Sequence Objects 133

The Python/C API, Release 3.12.0b3

PyObject *PyBytes_FromStringAndSize (const char *v, Py_ssize_t len)

Return value: New reference. Part of the Stable ABI. Return a new bytes object with a copy of the string v as value
and length len on success, and NULL on failure. If v is NULL, the contents of the bytes object are uninitialized.

PyObject *PyBytes_FromFormat (const char *format, ...)

Return value: New reference. Part of the Stable ABI. Take a C printf () -style format string and a variable
number of arguments, calculate the size of the resulting Python bytes object and return a bytes object with the
values formatted into it. The variable arguments must be C types and must correspond exactly to the format
characters in the format string. The following format characters are allowed:

Format Characters | Type Comment

%% n/a The literal % character.

%c int A single byte, represented as a C int.
$d int Equivalent to print £ ("‘Ld").l
su unsigned int Equivalent to print £ ("su").!
$1d long Equivalent to printf ("% ld") I
%$1lu unsigned long Equivalent to print £ ("$1u").!
$zd Py _ssize_t | Equivalentto printf ("$zd"). I
Szu size_t Equivalent to printf ("$zu").!
%i int Equivalent to print £ ("%$i"). I
%X int Equivalent to printf ("$x"). I
%s const char* A null-terminated C character array.
$p const void* The hex representation of a C pointer. Mostly equivalent to

printf ("$p") except that it is guaranteed to start with the
literal Ox regardless of what the platform’s print £ yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object, and
any extra arguments discarded.

PyObject *PyBytes_FromFormatV (const char *format, va_list vargs)
Return value: New reference. Part of the Stable ABI. Identical to PyBytes_FromFormat () except that it takes
exactly two arguments.

PyObject *PyBytes_FromObject (PyObject *0)
Return value: New reference. Part of the Stable ABI. Return the bytes representation of object o that implements
the buffer protocol.

Py_ssize_t PyBytes_Size (PyObject *0)
Fart of the Stable ABI. Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE (PyObject *0)
Similar to PyBytes_Size (), but without error checking.

char *PyBytes_AsString (PyObject *0)
Fart of the Stable ABIL Return a pointer to the contents of o. The pointer refers to the internal buffer of o,
which consists of 1en (o) + 1 bytes. The last byte in the buffer is always null, regardless of whether there
are any other null bytes. The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It must not be deallocated. If o is not a bytes object at
all, PyBytes_AsString () returns NULL and raises TypeError.

char *PyBytes_AS_STRING (PyObject *string)
Similar to PyBytes_AsString (), but without error checking.

! For integer specifiers (d, u, Id, lu, zd, zu, i, x): the O-conversion flag has effect even when a precision is given.

134 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

int PyBytes_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length)
Fart of the Stable ABI. Return the null-terminated contents of the object obj through the output variables buffer
and length.

If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns —1 and a
ValueError is raised.

The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not
counted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize (NULL, size). It mustnot be deallocated. If obj is not a bytes object at
all, PyBytes_AsStringAndSize () returns —1 and raises TypeError.

Changed in version 3.5: Previously, TypeError was raised when embedded null bytes were encountered in the
bytes object.

void PyBytes_Concat (PyObject **bytes, PyObject *newpart)
Fart of the Stable ABI. Create a new bytes object in *byfes containing the contents of newpart appended to bytes;
the caller will own the new reference. The reference to the old value of bytes will be stolen. If the new object
cannot be created, the old reference to bytes will still be discarded and the value of *bytes will be set to NULL; the
appropriate exception will be set.

void PyBytes_ConcatAndDel (PyObject **bytes, PyObject *newpart)
Part of the Stable ABI. Create a new bytes object in *bytes containing the contents of newpart appended to byfes.
This version decrements the reference count of newpart.

int _PyBytes_Resize (PyObject **bytes, Py_ssize_t newsize)

A way to resize a bytes object even though it is “immutable”. Only use this to build up a brand new bytes object;
don’t use this if the bytes may already be known in other parts of the code. It is an error to call this function if
the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an Ivalue (it may
be written into), and the new size desired. On success, *byfes holds the resized bytes object and O is returned;
the address in *byfes may differ from its input value. If the reallocation fails, the original bytes object at *bytes is
deallocated, *bytes is set to NULL, MemoryError is set, and —1 is returned.

8.3.2 Byte Array Objects

type PyByteArrayObject
This subtype of PyOb ject represents a Python bytearray object.
PyTypeObject PyByteArray_Type

Fart of the Stable ABI. This instance of PyTypeOb ject represents the Python bytearray type; it is the same
object as bytearray in the Python layer.

Type check macros

int PyByteArray_Check (PyObject *0)

Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type. This function
always succeeds.

int PyByteArray_CheckExact (PyObject *0)

Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type. This function
always succeeds.

8.3. Sequence Objects 135

The Python/C API, Release 3.12.0b3

Direct API functions

PyObject *PyByteArray_FromObject (PyObject *0)

Return value: New reference. Part of the Stable ABIL Return a new bytearray object from any object, o, that
implements the buffer protocol.

PyObject *PyByteArray_FromStringAndSize (const char *string, Py_ssize_t len)

Return value: New reference. Part of the Stable ABIL Create a new bytearray object from string and its length, len.
On failure, NULL is returned.

PyObject *PyByteArray_Concat (PyObject *a, PyObject *b)

Return value: New reference. Part of the Stable ABIL. Concat bytearrays a and b and return a new bytearray with
the result.

Py_ssize_t PyByteArray_Size (PyObject *bytearray)
Fart of the Stable ABI. Return the size of bytearray after checking for a NULL pointer.

char *PyByteArray_AsString (PyObject *bytearray)
Fart of the Stable ABI. Return the contents of bytearray as a char array after checking for a NULL pointer. The
returned array always has an extra null byte appended.

int PyByteArray_Resize (PyObject *bytearray, Py_ssize_t len)
Part of the Stable ABI. Resize the internal buffer of bytearray to len.

Macros

These macros trade safety for speed and they don’t check pointers.
char *PyByteArray_AS_STRING (PyObject *bytearray)

Similar to PyByteArray_ AsString (), but without error checking.
Py_ssize_t PyByteArray_GET_SIZE (PyObject *bytearray)

Similar to PyByteArray_Size (), but without error checking.

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in order
to allow handling the complete range of Unicode characters while staying memory efficient. There are special cases for
strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112 (which is the
full Unicode range).

UTF-8 representation is created on demand and cached in the Unicode object.

Note: The Py_UNICODE representation has been removed since Python 3.12 with deprecated APIs. See PEP 623 for
more information.

136 Chapter 8. Concrete Objects Layer

https://peps.python.org/pep-0393/
https://peps.python.org/pep-0623/

The Python/C API, Release 3.12.0b3

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:

type Py_UCS4

type Py_UCS2

type Py_UCS1
Part of the Stable ABI. These types are typedefs for unsigned integer types wide enough to contain characters of
32 bits, 16 bits and 8 bits, respectively. When dealing with single Unicode characters, use Py_ UCS4.

New in version 3.3.

type Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.

Changed in version 3.3: In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a “narrow” or “wide” Unicode version of Python at build time.

type PYASCIIObject

type PyCompactUnicodeObject

type PyUnicodeObject
These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyOb ject pointers.

New in version 3.3.

PyTypeObject PyUnicode_Type
Part of the Stable ABI This instance of PyTypeOb ject represents the Python Unicode type. It is exposed to
Python code as str.

The following APIs are C macros and static inlined functions for fast checks and access to internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject *0)
Return true if the object o is a Unicode object or an instance of a Unicode subtype. This function always succeeds.
int PyUnicode_CheckExact (PyObject *0)
Return true if the object o is a Unicode object, but not an instance of a subtype. This function always succeeds.
int PyUnicode_READY (PyObject *0)
Returns 0. This API is kept only for backward compatibility.
New in version 3.3.
Deprecated since version 3.10: This API does nothing since Python 3.12.
Py_ssize_t PyUnicode_GET_LENGTH (PyObject *0)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the “canonical” represen-
tation (not checked).
New in version 3.3.
Py_UCSI *PyUnicode_1BYTE_DATA (PyObject *0)
Py_UCS2 *PyUnicode_2BYTE_DATA (PyObject *0)
Py_UCS4 *PyUnicode_4BYTE_DATA (PyObject *0)

Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct char-
acter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND () to select the right function.

8.3. Sequence Objects 137

The Python/C API, Release 3.12.0b3

New in version 3.3.

PyUnicode_1BYTE_KIND
PyUnicode_2BYTE_KIND
PyUnicode_4BYTE_KIND

Return values of the PyUnicode KIND () macro.

New in version 3.3.
Changed in version 3.12: PyUnicode_WCHAR_KIND has been removed.

int PyUnicode_KIND (PyObject *0)

Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Unicode
object uses to store its data. o has to be a Unicode object in the “canonical” representation (not checked).

New in version 3.3.

void *PyUnicode_DATA (PyObject *0)

Return a void pointer to the raw Unicode buffer. o has to be a Unicode object in the “canonical” representation
(not checked).

New in version 3.3.

void PyUnicode_WRITE (int kind, void *data, Py_ssize_t index, Py_UCS4 value)

Write into a canonical representation data (as obtained with PyUnicode DATA ()). This function performs
no sanity checks, and is intended for usage in loops. The caller should cache the kind value and data pointer as
obtained from other calls. index is the index in the string (starts at 0) and value is the new code point value which
should be written to that location.

New in version 3.3.

Py_UCS4 PyUnicode_READ (int kind, void *data, Py_ssize_t index)

Read a code point from a canonical representation data (as obtained with PyUnicode_DATA ()). No checks or
ready calls are performed.

New in version 3.3.

Py_UCS4 PyUnicode_READ_CHAR (PyObject *0, Py_ssize_t index)

Read a character from a Unicode object o, which must be in the “canonical” representation. This is less efficient
than PyUnicode_READ () if you do multiple consecutive reads.

New in version 3.3.
Py_UCS4 PyUnicode_MAX_CHAR_VALUE (PyObject *0)

Return the maximum code point that is suitable for creating another string based on o, which must be in the
“canonical” representation. This is always an approximation but more efficient than iterating over the string.

New in version 3.3.

int PyUnicode_IsIdentifier (PyObject *0)

Part of the Stable ABL Return 1 if the string is a valid identifier according to the language definition, section
identifiers. Return O otherwise.

Changed in version 3.9: The function does not call Py_FatalError () anymore if the string is not ready.

138 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE_ISSPACE (Py UCS4 ch)

Return 1 or 0 depending on whether ch is a whitespace character.
int Py_UNICODE_ISLOWER (Py_UCS4 ch)

Return 1 or 0 depending on whether c/ is a lowercase character.
int Py_UNICODE_ISUPPER (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is an uppercase character.
int Py_UNICODE_ISTITLE (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a titlecase character.
int Py_UNICODE_ISLINEBREAK (Py_UCS4 ch)

Return 1 or 0 depending on whether c#h is a linebreak character.
int Py_ UNICODE_ISDECIMAL (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a decimal character.
int Py_UNICODE_ISDIGIT (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a digit character.
int Py_UNICODE_ISNUMERIC (Py_UCS4 ch)

Return 1 or 0 depending on whether c# is a numeric character.
int Py_UNICODE_ISALPHA (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is an alphabetic character.
int Py_ UNICODE_ISALNUM (Py_UCS4 ch)

Return 1 or 0 depending on whether c is an alphanumeric character.

int Py_UNICODE_ISPRINTABLE (Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which is
considered printable. (Note that printable characters in this context are those which should not be escaped when
repr () is invoked on a string. It has no bearing on the handling of strings written to sys.stdout or sys.
stderr.)

These APIs can be used for fast direct character conversions:

Py_UCS4 Py_UNICODE_TOLOWER (Py_UCS4 ch)
Return the character ch converted to lower case.

Deprecated since version 3.3: This function uses simple case mappings.

Py_UCS4 Py_UNICODE_TOUPPER (Py_UCS4 ch)
Return the character ch converted to upper case.

Deprecated since version 3.3: This function uses simple case mappings.

Py_UCS4 Py_UNICODE_TOTITLE (Py UCS4 ch)

Return the character ch converted to title case.

Deprecated since version 3.3: This function uses simple case mappings.

8.3. Sequence Objects 139

The Python/C API, Release 3.12.0b3

int Py_UNICODE_TODECIMAL (Py UCS4 ch)

Return the character ch converted to a decimal positive integer. Return —1 if this is not possible. This function
does not raise exceptions.

int Py_UNICODE_TODIGIT (Py UCS4 ch)
Return the character ch converted to a single digit integer. Return —1 if this is not possible. This function does not
raise exceptions.

double Py _UNICODE_TONUMERIC (Py_UCS4 ch)
Return the character ch converted to a double. Return —1 . O if this is not possible. This function does not raise
exceptions.

These APIs can be used to work with surrogates:

int Py_UNICODE_IS_SURROGATE (Py_UCS4 ch)
Check if ch is a surrogate (0xD800 <= ch <= O0xDFFF).

int Py_UNICODE_IS_HIGH_SURROGATE (Py_U/(CS4 ch)
Check if ch is a high surrogate (0xD800 <= ch <= OxDBFF).

int Py_UNICODE_IS_LOW_SURROGATE (Py_UCS4 ch)
Check if ch is a low surrogate (0xDC0O0 <= ch <= 0xDFFF).

Py_UCS4 Py_UNICODE_JOIN_SURROGATES (Py_UCS4 high, Py_UCS4 low)

Join two surrogate characters and return a single Py_ UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair. high must be in the range [0xD800; OxDBFF] and low must be in the range
[0xDCO00; OxDFFF].

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject *PyUnicode_New (Py_ssize_t size, Py_UCS4 maxchar)

Return value: New reference. Create a new Unicode object. maxchar should be the true maximum code point to
be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127, 255,
65535, 1114111.

This is the recommended way to allocate a new Unicode object. Objects created using this function are not resizable.
New in version 3.3.

PyObject *PyUnicode_FromKindAndData (int kind, const void *buffer, Py_ssize_f size)

Return value: New reference. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc., as returned by PyUnicode KIND ()). The buffer must point to an array
of size units of 1, 2 or 4 bytes per character, as given by the kind.

If necessary, the input buffer is copied and transformed into the canonical representation. For example, if the buffer
is a UCS4 string (PyUnicode_4BYTE_KIND) and it consists only of codepoints in the UCSI range, it will be
transformed into UCS1 (PyUnicode_1BYTE_KIND).

New in version 3.3.

PyObject *PyUnicode_FromStringAndSize (const char *u, Py_ssize_f size)

Return value: New reference. Part of the Stable ABIL Create a Unicode object from the char buffer u. The bytes
will be interpreted as being UTF-8 encoded. The buffer is copied into the new object. The return value might be
a shared object, i.e. modification of the data is not allowed.

This function raises SystemError when:

140 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

o size <0,
* uis NULL and size > 0
Changed in version 3.12: u == NULL with size > 0 is not allowed anymore.
PyObject *PyUnicode_FromString (const char *u)

Return value: New reference. Part of the Stable ABI. Create a Unicode object from a UTF-8 encoded null-
terminated char buffer u.

PyObject *PyUnicode_FromFormat (const char *format, ...)

Return value: New reference. Part of the Stable ABI Take a C printf () -style format string and a variable
number of arguments, calculate the size of the resulting Python Unicode string and return a string with the values
formatted into it. The variable arguments must be C types and must correspond exactly to the format characters in
the format ASCII-encoded string.

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%' character, which marks the start of the specifier.
2. Conversion flags (optional), which affect the result of some conversion types.

3. Minimum field width (optional). If specified as an '*' (asterisk), the actual width is given in the next
argument, which must be of type int, and the object to convert comes after the minimum field width and
optional precision.

4. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the
actual precision is given in the next argument, which must be of type int, and the value to convert comes
after the precision.

5. Length modifier (optional).
6. Conversion type.

The conversion flag characters are:

Flag | Meaning
0 The conversion will be zero padded for numeric values.
- The converted value is left adjusted (overrides the O flag if both are given).

The length modifiers for following integer conversions (d, i, o, u, x, or X) specify the type of the argument (int

by default):
Modifier | Types
1 longorunsigned long
11 long longorunsigned long long
3 intmax_t oruintmax_t
z size_torssize_t
t ptrdiff_t

The length modifier 1 for following conversions s or V specify that the type of the argumentis const wchar_t*.

The conversion specifiers are:

8.3. Sequence Objects 141

The Python/C API, Release 3.12.0b3

Con- Type Comment

version

Speci-

fier

% n/a The literal $ character.

d, i Specified by the length | The decimal representation of a signed C integer.
modifier

u Specified by the length | The decimal representation of an unsigned C integer.
modifier

o Specified by the length | The octal representation of an unsigned C integer.
modifier

X Specified by the length | The hexadecimal representation of an unsigned C integer (lowercase).
modifier

X Specified by the length | The hexadecimal representation of an unsigned C integer (uppercase).
modifier

c int A single character.

s const char* or | A null-terminated C character array.
const wchar_t*

P const void* The hex representation of a C pointer. Mostly equivalent to
printf ("$p") except that it is guaranteed to start with the literal 0x
regardless of what the platform’s print £ yields.

A PyObject* The result of calling ascii ().

U PyObject* A Unicode object.

\Y PyObject™, A Unicode object (which may be NULL) and a null-terminated C charac-
const char* or | terarray as a second parameter (which will be used, if the first parameter
const wchar_t* is NULL).

S PyObject* The result of calling PyObject_Str ().

R PyObject* The result of calling PyOb ject_Repr ().

Note: The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes or wchar_t items (if the length modifier 1 is used) for "$s" and "%$V" (if the PyObject * argument
is NULL), and a number of characters for "$A", "$U", "$S", "$R" and "%V" (if the PyObject* argument
is not NULL).

Note: Unlike to C printf () the 0 flag has effect even when a precision is given for integer conversions (d, 1,
u, 0, X, or X).

Changed in version 3.2: Support for "$11d" and "$11u" added.
Changed in version 3.3: Support for "$1i", "$111i" and "%$z1i" added.

Changed in version 3.4: Support width and precision formatter for "%$s", "$A", "$U", "$V", "$S", "SR"
added.

Changed in version 3.12: Support for conversion specifiers o and X. Support for length modifiers j and t. Length
modifiers are now applied to all integer conversions. Length modifier 1 is now applied to conversion specifiers s
and V. Support for variable width and precision *. Support for flag —.

An unrecognized format character now sets a SystemError. In previous versions it caused all the rest of the
format string to be copied as-is to the result string, and any extra arguments discarded.

142

Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

PyObject *PyUnicode_FromFormatV (const char *format, va_list vargs)

Return value: New reference. Part of the Stable ABI. Identical to PyUnicode_FromFormat () except that it
takes exactly two arguments.

PyObject *PyUnicode_FromObject (PyObject *obj)
Return value: New reference. Part of the Stable ABI. Copy an instance of a Unicode subtype to a new true Unicode

object if necessary. If obj is already a true Unicode object (not a subtype), return the reference with incremented
refcount.

Objects other than Unicode or its subtypes will cause a TypeError.

PyObject *PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Decode an encoded object obj to a Unicode object.

bytes, bytearray and other byfes-like objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in Codecs for
details).

All other objects, including Unicode objects, cause a TypeError to be set.

The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.
Py_ssize_t PyUnicode_GetLength (PyObject *unicode)

Fart of the Stable ABI since version 3.7. Return the length of the Unicode object, in code points.

New in version 3.3.

Py_ssize_t PyUnicode_CopyCharacters (PyObject *to, Py_ssize_t to_start, PyObject *from, Py_ssize_t
from_start, Py_ssize_t how_many)

Copy characters from one Unicode object into another. This function performs character conversion when necessary
and falls back to memcpy () if possible. Returns —1 and sets an exception on error, otherwise returns the number
of copied characters.

New in version 3.3.

Py_ssize_t PyUnicode_Fill (PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode [start:start+length].
Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return —1 and raise an exception on error.
New in version 3.3.

int PyUnicode_WriteChar (PyObject *unicode, Py_ssize_t index, Py_UCS4 character)

Fart of the Stable ABI since version 3.7. Write a character to a string. The string must have been created through
PyUnicode_New (). Since Unicode strings are supposed to be immutable, the string must not be shared, or
have been hashed yet.

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object can
be modified safely (i.e. that it its reference count is one).

New in version 3.3.

Py_UCS4 PyUnicode_ReadChar (PyObject *unicode, Py_ssize_t index)

Part of the Stable ABI since version 3.7. Read a character from a string. This function checks that unicode is a
Unicode object and the index is not out of bounds, in contrast to PyUnicode_ READ_CHAR (), which performs
no error checking.

New in version 3.3.

8.3. Sequence Objects 143

The Python/C API, Release 3.12.0b3

PyObject *PyUnicode_Substring (PyObject *str, Py_ssize_t start, Py_ssize_t end)

Return value: New reference. Part of the Stable ABI since version 3.7. Return a substring of str, from character
index start (included) to character index end (excluded). Negative indices are not supported.

New in version 3.3.

Py_UCS4 *PyUnicode_AsUCS4 (PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)

Part of the Stable ABI since version 3.7. Copy the string u into a UCS4 buffer, including a null character, if copy_null
is set. Returns NULL and sets an exception on error (in particular, a SystemError if buflen is smaller than the
length of u). buffer is returned on success.

New in version 3.3.
Py_UCS4 *PyUnicode_AsUCS4Copy (PyObject *u)

Part of the Stable ABI since version 3.7. Copy the string u into a new UCS4 buffer that is allocated using
PyMem_Malloc (). If this fails, NULL is returned with a MemoryError set. The returned buffer always
has an extra null code point appended.

New in version 3.3.

Locale Encoding

The current locale encoding can be used to decode text from the operating system.

PyObject *PyUnicode_DecodeLocaleAndSize (const char *str, Py_ssize_t len, const char *errors)

Return value: New reference. Part of the Stable ABI since version 3.7. Decode a string from UTF-8 on Android and
VxWorks, or from the current locale encoding on other platforms. The supported error handlers are "strict™"
and "surrogateescape" (PEP 383). The decoder uses "strict" error handler if errors is NULL. st7 must
end with a null character but cannot contain embedded null characters.

Use PyUnicode_DecodeFSDefaultAndSize () todecode a string from the filesystem encoding and error
handler.

This function ignores the Python UTF-8 Mode.
See also:

The Py_DecodeLocale () function.

New in version 3.3.

Changed in version 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py DecodeLocale () was used for the surrogateescape,
and the current locale encoding was used for strict.

PyObject *PyUnicode_DecodeLocale (const char *str, const char *errors)
Return value: ~ New reference. Part of the Stable ABI since version 3.7. Similar to
PyUnicode_DecodeLocaleAndSize (), but compute the string length using strlen ().

New in version 3.3.

PyObject *PyUnicode_EncodeLocale (PyObject *unicode, const char *errors)

Return value: New reference. Part of the Stable ABI since version 3.7. Encode a Unicode object to UTF-8 on
Android and VxWorks, or to the current locale encoding on other platforms. The supported error handlers are
"strict" and "surrogateescape" (PEP 383). The encoder uses "strict" error handler if errors is
NULL. Return a bytes object. unicode cannot contain embedded null characters.

Use PyUnicode EncodeFSDefault () toencode a string to the filesystem encoding and error handler.

This function ignores the Python UTF-8 Mode.

144 Chapter 8. Concrete Objects Layer

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/

The Python/C API, Release 3.12.0b3

See also:
The Py_EncodeLocale () function.
New in version 3.3.

Changed in version 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py_EncodeLocale () was used for the surrogateescape,
and the current locale encoding was used for strict.

File System Encoding

Functions encoding to and decoding from the filesystem encoding and error handler (PEP 383 and PEP 529).

To encode file names to bytes during argument parsing, the "O&" converter should be used, passing
PyUnicode FSConverter () asthe conversion function:

int PyUnicode_FSConverter (PyObject *obj, void *result)

Fart of the Stable ABIL ParseTuple converter: encode str objects — obtained directly or through the os.
PathLike interface — to bytes using PyUnicode_EncodeFSDefault (); bytes objects are output
as-is. result must be a PyBytesObject* which must be released when it is no longer used.

New in version 3.1.
Changed in version 3.6: Accepts a path-like object.

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_ FSDecoder () as the conversion function:

int PyUnicode_FSDecoder (PyObject *obj, void *result)

FPart of the Stable ABI. ParseTuple converter: decode bytes objects — obtained either directly or indirectly through
the os.PathLike interface — to str using PyUnicode_DecodeFSDefaultAndSize (); str objects
are output as-is. result must be a PyUnicodeOb ject* which must be released when it is no longer used.

New in version 3.2.
Changed in version 3.6: Accepts a path-like object.

PyObject *PyUnicode_DecodeFSDefaultAndSize (const char *s, Py_ssize_t size)
Return value: New reference. Part of the Stable ABL Decode a string from the filesystem encoding and error handler.

If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize ().

See also:
The Py_DecodeLocale () function.
Changed in version 3.6: The filesystem error handler is now used.

PyObject *PyUnicode_DecodeFSDefault (const char *s)

Return value: New reference. Part of the Stable ABIL Decode a null-terminated string from the filesystem encoding
and error handler.

If the string length is known, use PyUnicode_DecodeFSDefaultAndSize ().

Changed in version 3.6: The filesystem error handler is now used.

8.3. Sequence Objects 145

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0529/

The Python/C API, Release 3.12.0b3

PyObject *PyUnicode_EncodeFSDefault (PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object to the filesystem encoding and error
handler, and return bytes. Note that the resulting bytes object can contain null bytes.
If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale ().
See also:
The Py_EncodeLocale () function.

New in version 3.2.

Changed in version 3.6: The filesystem error handler is now used.

wchar_t Support

wchar_t support for platforms which support it:

PyObject *PyUnicode_FromWideChar (const wchar_t *w, Py_ssize_t size)

Return value: New reference. Part of the Stable ABIL Create a Unicode object from the wchar_t buffer w of the
given size. Passing —1 as the size indicates that the function must itself compute the length, using weslen. Return
NULL on failure.

Py_ssize_t PyUnicode_AsWideChar (PyObject *unicode, wchar_t *w, Py_ssize_t size)

Fart of the Stable ABI. Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t
characters are copied (excluding a possibly trailing null termination character). Return the number of wchar_t
characters copied or —1 in case of an error. Note that the resulting wchar_t* string may or may not be null-
terminated. It is the responsibility of the caller to make sure that the wchar_t * string is null-terminated in case
this is required by the application. Also, note that the wchar_t * string might contain null characters, which would
cause the string to be truncated when used with most C functions.

wchar_t *PyUnicode_AsWideCharString (PyObject *unicode, Py_ssize_t *size)

Fart of the Stable ABI since version 3.7. Convert the Unicode object to a wide character string. The output string
always ends with a null character. If size is not NULL, write the number of wide characters (excluding the trailing
null termination character) into *size. Note that the resulting wchar_t string might contain null characters, which
would cause the string to be truncated when used with most C functions. If size is NULL and the wchar_t * string
contains null characters a ValueError is raised.

Returns a buffer allocated by PyMem_New () (use PyMem Free () to free it) on success. On error, returns
NULL and *size is undefined. Raises a MemoryError if memory allocation is failed.

New in version 3.2.

Changed in version 3.7: Raises a ValueError if sizeis NULL and the wchar_t * string contains null characters.

Built-in Codecs
Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in str () string object constructor.

Setting encoding to NULL causes the default encoding to be used which is UTF-8. The file system calls should use
PyUnicode_FSConverter () forencoding file names. This uses the filesystem encoding and error handler internally.

Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is “strict” (ValueError is raised).

146 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

The codecs all use a similar interface. Only deviations from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:

PyObject *PyUnicode_Decode (const char *s, Py_ssize_t size, const char *encoding, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the encoded
string s. encoding and errors have the same meaning as the parameters of the same name in the str () built-in
function. The codec to be used is looked up using the Python codec registry. Return NULL if an exception was
raised by the codec.

PyObject *PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *errors)

Return value: New reference. Part of the Stable ABIL. Encode a Unicode object and return the result as Python bytes
object. encoding and errors have the same meaning as the parameters of the same name in the Unicode encode ()
method. The codec to be used is looked up using the Python codec registry. Return NULL if an exception was
raised by the codec.

UTF-8 Codecs

These are the UTF-8 codec APIs:

PyObject *PyUnicode_DecodeUTF8 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the UTF-8
encoded string s. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeUTF8Stateful (const char *s, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Return value: ~ New reference. Part of the Stable ABIL If consumed is NULL, behave like
PyUnicode_DecodeUTF8 (). If consumed is not NULL, trailing incomplete UTF-8 byte sequences
will not be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded
will be stored in consumed.

PyObject *PyUnicode_AsUTF8String (PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using UTF-8 and return the result
as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

const char *PyUnicode_AsUTF8AndSize (PyObject *unicode, Py_ssize_t *size)

Fart of the Stable ABI since version 3.10. Return a pointer to the UTF-8 encoding of the Unicode object, and store
the size of the encoded representation (in bytes) in size. The size argument can be NULL; in this case no size will
be stored. The returned buffer always has an extra null byte appended (not included in size), regardless of whether
there are any other null code points.

In the case of an error, NULL is returned with an exception set and no size is stored.

This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a pointer
to the same buffer. The caller is not responsible for deallocating the buffer. The buffer is deallocated and pointers
to it become invalid when the Unicode object is garbage collected.

New in version 3.3.
Changed in version 3.7: The return type is now const char * rather of char *.

Changed in version 3.10: This function is a part of the limited API.

8.3. Sequence Objects 147

The Python/C API, Release 3.12.0b3

const char *PyUnicode_AsUTF8 (PyObject *unicode)
As PyUnicode_AsUTF8AndSize (), but does not store the size.

New in version 3.3.

Changed in version 3.7: The return type is now const char * rather of char *.

UTF-32 Codecs

These are the UTF-32 codec APIs:

PyObject *PyUnicode_DecodeUTF32 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Part of the Stable ABIL. Decode size bytes from a UTF-32 encoded buffer string and
return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output.

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Return value: ~ New reference. Part of the Stable ABIL If consumed is NULL, behave like

PyUnicode_DecodeUTF32 (). If consumed is not NULL, PyUnicode DecodeUTF32Stateful ()

will not treat trailing incomplete UTF-32 byte sequences (such as a number of bytes not divisible by four) as an

error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in consumed.
PyObject *PyUnicode_AsUTF32String (PyObject *unicode)

Return value: New reference. Part of the Stable ABI. Return a Python byte string using the UTF-32 encoding
in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return NULL if an
exception was raised by the codec.

UTF-16 Codecs

These are the UTF-16 codec APIs:

PyObject *PyUnicode_DecodeUTF16 (const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Part of the Stable ABL Decode size bytes from a UTF-16 encoded buffer string and
return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: Dbig endian

148 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorderis -1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \uf f fe character).

After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeUTF16Stateful (const char *s, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Return value: New reference. Part of the Stable ABIL If consumed is NULL, behave like
PyUnicode_DecodeUTF16 (). If consumed is not NULL, PyUnicode_DecodeUTF16Stateful ()
will not treat trailing incomplete UTF-16 byte sequences (such as an odd number of bytes or a split surrogate pair)
as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in
consumed.

PyObject *PyUnicode_AsUTF16String (PyObject *unicode)

Return value: New reference. Part of the Stable ABIL. Return a Python byte string using the UTF-16 encoding
in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return NULL if an
exception was raised by the codec.

UTF-7 Codecs

These are the UTF-7 codec APIs:

PyObject *PyUnicode_DecodeUTF 7 (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the UTF-7
encoded string s. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeUTF7Stateful (const char *s, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Return value: New reference. Part of the Stable ABIL If consumed is NULL, behave like
PyUnicode_DecodeUTF7 (). If consumed is not NULL, trailing incomplete UTF-7 base-64 sections
will not be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded
will be stored in consumed.

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:

PyObject *PyUnicode_DecodeUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the Unicode-
Escape encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsUnicodeEscapeString (PyObject *unicode)

Return value: New reference. Part of the Stable ABIL. Encode a Unicode object using Unicode-Escape and return
the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

8.3. Sequence Objects 149

The Python/C API, Release 3.12.0b3

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:

PyObject *PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Part of the Stable ABL Create a Unicode object by decoding size bytes of the Raw-
Unicode-Escape encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsRawUnicodeEscapeString (PyObject *unicode)

Return value: New reference. Part of the Stable ABI. Encode a Unicode object using Raw-Unicode-Escape and
return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.
PyObject *PyUnicode_DecodeLatinl (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the Latin-1
encoded string s. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_AsLatinlString (PyObject *unicode)

Return value: New reference. Part of the Stable ABIL. Encode a Unicode object using Latin-1 and return the result
as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject *PyUnicode_DecodeASCII (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the ASCII
encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsASCIIString (PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using ASCII and return the result
as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mappings to encode and
decode characters. The mapping objects provided must support the __getitem__ () mapping interface; dictionaries
and sequences work well.

These are the mapping codec APIs:

PyObject *PyUnicode_DecodeCharmap (const char *data, Py_ssize_t size, PyObject *mapping, const char
*errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the encoded
string s using the given mapping object. Return NULL if an exception was raised by the codec.

If mapping is NULL, Latin-1 decoding will be applied. Else mapping must map bytes ordinals (integers in the range
from O to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None. Unmapped

150 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

data bytes — ones which cause a LookupError, as well as ones which get mapped to None, OXFFFE or '\
ufffe', are treated as undefined mappings and cause an error.

PyObject *PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mapping)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using the given mapping object and
return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from O to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are treated
as “undefined mapping” and cause an error.

The following codec API is special in that maps Unicode to Unicode.

PyObject *PyUnicode_Translate (PyObject *str, PyObject *table, const char *errors)
Return value: New reference. Part of the Stable ABI. Translate a string by applying a character mapping table to it
and return the resulting Unicode object. Return NULL if an exception was raised by the codec.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the ___getitem__ () interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.

PyObject *PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *errors)
Return value: New reference. Part of the Stable ABI on Windows since version 3.7. Create a Unicode object by
decoding size bytes of the MBCS encoded string s. Return NULL if an exception was raised by the codec.
PyObject *PyUnicode_DecodeMBCSStateful (const char *s, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Return value: New reference. Part of the Stable ABI on Windows since version 3.7. If consumed is NULL, behave
like PyUnicode_DecodeMBCS (). If consumed is not NULL, PyUnicode_DecodeMBCSStateful ()
will not decode trailing lead byte and the number of bytes that have been decoded will be stored in consumed.

PyObject *PyUnicode_AsMBCSString (PyObject *unicode)

Return value: New reference. Part of the Stable ABI on Windows since version 3.7. Encode a Unicode object using
MBCS and return the result as Python bytes object. Error handling is “strict”. Return NULL if an exception was
raised by the codec.

PyObject *PyUnicode_EncodeCodePage (int code_page, PyObject *unicode, const char *errors)

Return value: New reference. Part of the Stable ABI on Windows since version 3.7. Encode the Unicode object
using the specified code page and return a Python bytes object. Return NULL if an exception was raised by the
codec. Use CP_ACP code page to get the MBCS encoder.

New in version 3.3.

8.3. Sequence Objects 151

The Python/C API, Release 3.12.0b3

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.

They all return NULL or —1 if an exception occurs.

PyObject *PyUnicode_Concat (PyObject *left, PyObject *right)

Return value: New reference. Part of the Stable ABI. Concat two strings giving a new Unicode string.

PyObject *PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxsplit)

Return value: New reference. Part of the Stable ABI. Split a string giving a list of Unicode strings. If sep is NULL,
splitting will be done at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit
splits will be done. If negative, no limit is set. Separators are not included in the resulting list.

PyObject *PyUnicode_Splitlines (PyObject *s, int keepend)

Return value: New reference. Part of the Stable ABI Split a Unicode string at line breaks, returning a list of Unicode
strings. CRLF is considered to be one line break. If keepend is 0, the line break characters are not included in the
resulting strings.

PyObject *PyUnicode_Join (PyObject *separator, PyObject *seq)

Return value: New reference. Part of the Stable ABI. Join a sequence of strings using the given separator and return
the resulting Unicode string.

Py_ssize_t PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Fart of the Stable ABL Return 1 if substr matches str[start:end] at the given tail end (direction == -1
means to do a prefix match, direction == 1 a suffix match), 0 otherwise. Return —1 if an error occurred.

Py_ssize_t PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)

Fart of the Stable ABI. Return the first position of substr in st r [start : end] using the given direction (direction
== 1 means to do a forward search, direction == —1 a backward search). The return value is the index of the first
match; a value of —1 indicates that no match was found, and -2 indicates that an error occurred and an exception
has been set.

Py_ssize_t PyUnicode_FindChar (PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direction)

Fart of the Stable ABI since version 3.7. Return the first position of the character chin str [start :end] using
the given direction (direction == 1 means to do a forward search, direction == —1 a backward search). The return
value is the index of the first match; a value of —1 indicates that no match was found, and —2 indicates that an error
occurred and an exception has been set.

New in version 3.3.
Changed in version 3.7: start and end are now adjusted to behave like str [start:end].
Py_ssize_t PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Part of the Stable ABI. Return the number of non-overlapping occurrences of substr in str[start:end].
Return -1 if an error occurred.
PyObject *PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference. Part of the Stable ABIL Replace at most maxcount occurrences of substr in str with
replstr and return the resulting Unicode object. maxcount == —1 means replace all occurrences.
int PyUnicode_Compare (PyObject *left, PyObject *right)
Part of the Stable ABI. Compare two strings and return —1, 0, 1 for less than, equal, and greater than, respectively.

This function returns —1 upon failure, so one should call PyErr Occurred () to check for errors.

152 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

int PyUnicode_CompareWithASCIIString (PyObject *uni, const char *string)

Part of the Stable ABL. Compare a Unicode object, uni, with string and return —1, 0, 1 for less than, equal, and
greater than, respectively. It is best to pass only ASCII-encoded strings, but the function interprets the input string
as ISO-8859-1 if it contains non-ASCII characters.

This function does not raise exceptions.
PyObject *PyUnicode_RichCompare (PyObject *left, PyObject *right, int op)

Return value: New reference. Part of the Stable ABIL Rich compare two Unicode strings and return one of the
following:

e NULL in case an exception was raised
e Py_True or Py_False for successful comparisons
e Py_NotImplemented in case the type combination is unknown
Possible values for op are Py_GT, Py_GE, Py_FEQ, Py_NE, Py_LT,and Py_LE.
PyObject *PyUnicode_Format (PyObject *format, PyObject *args)
Return value: New reference. Part of the Stable ABIL Return a new string object from format and args; this is
analogous to format % args.
int PyUnicode_Contains (PyObject *container, PyObject *element)

Fart of the Stable ABI. Check whether element is contained in container and return true or false accordingly.
element has to coerce to a one element Unicode string. —1 is returned if there was an error.

void PyUnicode_InternInPlace (PyObject **string)

Part of the Stable ABI. Intern the argument *string in place. The argument must be the address of a pointer variable
pointing to a Python Unicode string object. If there is an existing interned string that is the same as *string, it
sets *string to it (decrementing the reference count of the old string object and incrementing the reference count
of the interned string object), otherwise it leaves *string alone and interns it (incrementing its reference count).
(Clarification: even though there is a lot of talk about reference counts, think of this function as reference-count-
neutral; you own the object after the call if and only if you owned it before the call.)

PyObject *PyUnicode_InternFromString (const char *v)

Return value: New reference. Part of the Stable ABL. A combination of PyUnicode_FromString () and
PyUnicode_InternInPlace (), returning either a new Unicode string object that has been interned, or a
new (“owned”) reference to an earlier interned string object with the same value.

8.3.4 Tuple Objects

type PyTupleObject
This subtype of PyOb ject represents a Python tuple object.
PyTypeObject PyTuple_Type

Part of the Stable ABI. This instance of Py TypeOb ject represents the Python tuple type; it is the same object
as tuple in the Python layer.

int PyTuple_Check (PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type. This function always succeeds.
int PyTuple_CheckExact (PyObject *p)

Return true if p is a tuple object, but not an instance of a subtype of the tuple type. This function always succeeds.

8.3. Sequence Objects 153

The Python/C API, Release 3.12.0b3

PyObject *PyTuple_New (Py_ssize_t len)
Return value: New reference. Part of the Stable ABI. Return a new tuple object of size len, or NULL on failure.
PyObject *PyTuple_Pack (Py_ssize_tn, ...)
Return value: New reference. Part of the Stable ABI. Return a new tuple object of size n, or NULL on failure. The
tuple values are initialized to the subsequent n C arguments pointing to Python objects. PyTuple_Pack (2,
a, D) isequivalentto Py_Buildvalue (" (00)", a, b).
Py_ssize_t PyTuple_Size (PyObject *p)
Part of the Stable ABI. Take a pointer to a tuple object, and return the size of that tuple.
Py_ssize_t PyTuple_GET_SIZE (PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.

PyObject *PyTuple_GetItem (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Part of the Stable ABIL Return the object at position pos in the tuple pointed to
by p. If pos is negative or out of bounds, return NULL and set an IndexError exception.
PyObject *PyTuple_GET_ITEM (PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_GetItem (), but does no checking of its arguments.
PyObject *PyTuple_GetSlice (PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Part of the Stable ABI. Return the slice of the tuple pointed to by p between low and
high, or NULL on failure. This is the equivalent of the Python expression p [Llow: high]. Indexing from the end
of the tuple is not supported.
int PyTuple_SetItem (PyObject *p, Py_ssize_t pos, PyObject *0)
Fart of the Stable ABI. Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on
success. If pos is out of bounds, return —1 and set an IndexError exception.

Note: This function “steals” a reference to o and discards a reference to an item already in the tuple at the affected
position.

void PyTuple_SET_ITEM (PyObject *p, Py_ssize_t pos, PyObject *0)
Like PyTuple SetItem (), butdoes no error checking, and should only be used to fill in brand new tuples.

Note: This function “steals” a reference to o, and, unlike PyTuple SetItem (), does not discard a reference
to any item that is being replaced; any reference in the tuple at position pos will be leaked.

int _PyTuple_Resize (PyObject **p, Py_ssize_t newsize)

Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of
this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns —1 and sets *p to NULL, and raises
MemoryError or SystemError.

154 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.12.0b3

8.3.5 Struct Sequence Objects
Struct sequence objects are the C equivalent of namedtuple () objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.

PyTypeObject *PyStruct Sequence_NewType (PyStructSequence_Desc *desc)

Return value: New reference. Part of the Stable ABL Create a new struct sequence type from the data in desc,
described below. Instances of the resulting type can be created with Py St ruct Sequence_New ().

void PyStructSequence_InitType (PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type type from desc in place.

int PyStructSequence_InitType2 (PyTypeObject *type, PyStructSequence_Desc *desc)
The same as PyStruct Sequence_InitType, but returns 0 on success and —1 on failure.

New in version 3.4.

type PyStructSequence_Desc

Fart of the Stable ABI (including all members). Contains the meta inform