
What’s New in Python
Release 3.12.0a4

A. M. Kuchling

February 07, 2023
Python Software Foundation

Email: docs@python.org

Contents

1 Summary – Release highlights 2

2 Improved Error Messages 2

3 New Features 3

4 Other Language Changes 4

5 New Modules 4

6 Improved Modules 4
6.1 array . 4
6.2 asyncio . 5
6.3 inspect . 5
6.4 pathlib . 5
6.5 dis . 5
6.6 fractions . 6
6.7 math . 6
6.8 os . 6
6.9 os.path . 6
6.10 shutil . 6
6.11 sqlite3 . 6
6.12 threading . 6
6.13 unicodedata . 7
6.14 uuid . 7
6.15 tempfile . 7
6.16 sys . 7

7 Optimizations 7

8 CPython bytecode changes 7

9 Demos and Tools 7

1

10 Deprecated 8
10.1 Pending Removal in Python 3.13 . 8

11 Pending Removal in Python 3.14 9
11.1 Pending Removal in Future Versions . 10

12 Removed 10

13 Porting to Python 3.12 12
13.1 Changes in the Python API . 12

14 Build Changes 13

15 C API Changes 13
15.1 New Features . 13
15.2 Porting to Python 3.12 . 14
15.3 Deprecated . 15
15.4 Removed . 16

Index 17

Release 3.12.0a4
Date February 07, 2023

This article explains the new features in Python 3.12, compared to 3.11.
For full details, see the changelog.

Note: Prerelease users should be aware that this document is currently in draft form. It will be updated substantially as
Python 3.12 moves towards release, so it’s worth checking back even after reading earlier versions.

1 Summary – Release highlights

Important deprecations, removals or restrictions:
• PEP 623, Remove wstr from Unicode
• PEP 632, Remove the distutils package.

2 Improved Error Messages

• Modules from the standard library are now potentially suggested as part of the error messages displayed by the
interpreter when a NameError is raised to the top level. Contributed by Pablo Galindo in gh-98254.

>>> sys.version_info
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'sys' is not defined. Did you forget to import 'sys'?

2

https://peps.python.org/pep-0623/
https://peps.python.org/pep-0632/
https://github.com/python/cpython/issues/98254

• Improve the error suggestion for NameError exceptions for instances. Now if a NameError is raised in a
method and the instance has an attribute that’s exactly equal to the name in the exception, the suggestion will include
self.<NAME> instead of the closest match in the method scope. Contributed by Pablo Galindo in gh-99139.

>>> class A:
... def __init__(self):
... self.blech = 1
...
... def foo(self):
... somethin = blech

>>> A().foo()
File "<stdin>", line 1
somethin = blech

^^^^^
NameError: name 'blech' is not defined. Did you mean: 'self.blech'?

• Improve the SyntaxError error message when the user types import x from y instead of from y
import x. Contributed by Pablo Galindo in gh-98931.

>>> import a.y.z from b.y.z
File "<stdin>", line 1
import a.y.z from b.y.z
^^^^^^^^^^^^^^^^^^^^^^^

SyntaxError: Did you mean to use 'from ... import ...' instead?

• ImportError exceptions raised from failed from <module> import <name> statements now include
suggestions for the value of <name> based on the available names in <module>. Contributed by Pablo Galindo
in gh-91058.

>>> from collections import chainmap
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: cannot import name 'chainmap' from 'collections'. Did you mean:
↪→'ChainMap'?

3 New Features

• Add perf_profiling through the new environment variable PYTHONPERFSUPPORT, the new command-
line option -X perf, as well as the new sys.activate_stack_trampoline(), sys.
deactivate_stack_trampoline(), and sys.is_stack_trampoline_active() APIs.
(Design by Pablo Galindo. Contributed by Pablo Galindo and Christian Heimes with contributions from Gregory
P. Smith [Google] and Mark Shannon in gh-96123.)

3

https://github.com/python/cpython/issues/99139
https://github.com/python/cpython/issues/98931
https://github.com/python/cpython/issues/91058
https://github.com/python/cpython/issues/96123

4 Other Language Changes

• types.MappingProxyType instances are now hashable if the underlying mapping is hashable. (Contributed
by Serhiy Storchaka in gh-87995.)

• memoryview now supports the half-float type (the “e” format code). (Contributed by Dong-hee Na and Antoine
Pitrou in gh-90751.)

• The parser now raises SyntaxError when parsing source code containing null bytes. (Contributed by Pablo
Galindo in gh-96670.)

• ast.parse() now raises SyntaxError instead of ValueError when parsing source code containing null
bytes. (Contributed by Pablo Galindo in gh-96670.)

• The Garbage Collector now runs only on the eval breaker mechanism of the Python bytecode evaluation loop instead
of object allocations. The GC can also run when PyErr_CheckSignals() is called so C extensions that need
to run for a long time without executing any Python code also have a chance to execute the GC periodically.
(Contributed by Pablo Galindo in gh-97922.)

• A backslash-character pair that is not a valid escape sequence now generates a SyntaxWarning, instead of
DeprecationWarning. For example, re.compile("\d+\.\d+") now emits a SyntaxWarning ("\
d" is an invalid escape sequence), use raw strings for regular expression: re.compile(r"\d+\.\d+"). In a
future Python version, SyntaxError will eventually be raised, instead of SyntaxWarning. (Contributed by
Victor Stinner in gh-98401.)

• Octal escapes with value larger than 0o377 (ex: "\477"), deprecated in Python 3.11, now produce a
SyntaxWarning, instead of DeprecationWarning. In a future Python version they will be eventually
a SyntaxError. (Contributed by Victor Stinner in gh-98401.)

• All builtin and extension callables expecting boolean parameters now accept arguments of any type instead of just
bool and int. (Contributed by Serhiy Storchaka in gh-60203.)

• Variables used in the target part of comprehensions that are not stored to can now be used in assignment expres-
sions (:=). For example, in [(b := 1) for a, b.prop in some_iter], the assignment to b is now
allowed. Note that assigning to variables stored to in the target part of comprehensions (like a) is still disallowed,
as per PEP 572. (Contributed by Nikita Sobolev in gh-100581.)

5 New Modules

• None yet.

6 Improved Modules

6.1 array

• The array.array class now supports subscripting, making it a generic type. (Contributed by Jelle Zijlstra in
gh-98658.)

4

https://github.com/python/cpython/issues/87995
https://github.com/python/cpython/issues/90751
https://github.com/python/cpython/issues/96670
https://github.com/python/cpython/issues/96670
https://github.com/python/cpython/issues/97922
https://github.com/python/cpython/issues/98401
https://github.com/python/cpython/issues/98401
https://github.com/python/cpython/issues/60203
https://peps.python.org/pep-0572/
https://github.com/python/cpython/issues/100581
https://github.com/python/cpython/issues/98658

6.2 asyncio

• On Linux, asyncio uses PidfdChildWatcher by default if os.pidfd_open() is available and func-
tional instead of ThreadedChildWatcher. (Contributed by Kumar Aditya in gh-98024.)

• The child watcher classes MultiLoopChildWatcher, FastChildWatcher,
AbstractChildWatcher and SafeChildWatcher are deprecated and will be removed in Python
3.14. It is recommended to not manually configure a child watcher as the event loop now uses the best available
child watcher for each platform (PidfdChildWatcher if supported and ThreadedChildWatcher
otherwise). (Contributed by Kumar Aditya in gh-94597.)

• asyncio.set_child_watcher(), asyncio.get_child_watcher(),
asyncio.AbstractEventLoopPolicy.set_child_watcher() and asyncio.
AbstractEventLoopPolicy.get_child_watcher() are deprecated and will be removed in
Python 3.14. (Contributed by Kumar Aditya in gh-94597.)

• Add loop_factory parameter to asyncio.run() to allow specifying a custom event loop factory. (Contributed
by Kumar Aditya in gh-99388.)

• Add C implementation of asyncio.current_task() for 4x-6x speedup. (Contributed by Itamar Ostricher
and Pranav Thulasiram Bhat in gh-100344.)

6.3 inspect

• Add inspect.markcoroutinefunction() to mark sync functions that return a coroutine for use with
iscoroutinefunction(). (Contributed Carlton Gibson in gh-99247.)

6.4 pathlib

• Add walk() for walking the directory trees and generating all file or directory names within them, similar to
os.walk(). (Contributed by Stanislav Zmiev in gh-90385.)

• Add walk_up optional parameter to pathlib.PurePath.relative_to() to allow the insertion of ..
entries in the result; this behavior is more consistent with os.path.relpath(). (Contributed by Domenico
Ragusa in bpo-40358.)

• Addpathlib.Path.is_junction() as a proxy toos.path.isjunction(). (Contributed byCharles
Machalow in gh-99547.)

6.5 dis

• Pseudo instruction opcodes (which are used by the compiler but do not appear in executable bytecode) are now
exposed in the dis module. HAVE_ARGUMENT is still relevant to real opcodes, but it is not useful for pseudo
instructions. Use the new hasarg collection instead. (Contributed by Irit Katriel in gh-94216.)

5

https://github.com/python/cpython/issues/98024
https://github.com/python/cpython/issues/94597
https://github.com/python/cpython/issues/94597
https://github.com/python/cpython/issues/99388
https://github.com/python/cpython/issues/100344
https://github.com/python/cpython/issues/99247
https://github.com/python/cpython/issues/90385
https://bugs.python.org/issue?@action=redirect&bpo=40358
https://github.com/python/cpython/issues/99547
https://github.com/python/cpython/issues/94216

6.6 fractions

• Objects of type fractions.Fraction now support float-style formatting. (Contributed by Mark Dickinson
in gh-100161.)

6.7 math

• Added math.sumprod() for computing a sum of products. (Contributed by RaymondHettinger in gh-100485.)

6.8 os

• Add os.PIDFD_NONBLOCK to open a file descriptor for a process with os.pidfd_open() in non-blocking
mode. (Contributed by Kumar Aditya in gh-93312.)

• os.DirEntry now includes an os.DirEntry.is_junction()method to check if the entry is a junction.
(Contributed by Charles Machalow in gh-99547.)

6.9 os.path

• Add os.path.isjunction() to check if a given path is a junction. (Contributed by Charles Machalow in
gh-99547.)

• Add os.path.splitroot() to split a path into a triad (drive, root, tail). (Contributed by Barney
Gale in gh-101000.)

6.10 shutil

• shutil.make_archive() now passes the root_dir argument to custom archivers which support it. In this
case it no longer temporarily changes the current working directory of the process to root_dir to perform archiving.
(Contributed by Serhiy Storchaka in gh-74696.)

6.11 sqlite3

• Add a command-line interface. (Contributed by Erlend E. Aasland in gh-77617.)
• Add the autocommit attribute to Connection and the autocommit parameter to connect() to controlPEP
249-compliant transaction handling. (Contributed by Erlend E. Aasland in gh-83638.)

6.12 threading

• Add threading.settrace_all_threads() and threading.setprofile_all_threads()
that allow to set tracing and profiling functions in all running threads in addition to the calling one. (Contributed
by Pablo Galindo in gh-93503.)

6

https://github.com/python/cpython/issues/100161
https://github.com/python/cpython/issues/100485
https://github.com/python/cpython/issues/93312
https://github.com/python/cpython/issues/99547
https://github.com/python/cpython/issues/99547
https://github.com/python/cpython/issues/101000
https://github.com/python/cpython/issues/74696
https://github.com/python/cpython/issues/77617
https://peps.python.org/pep-0249/
https://peps.python.org/pep-0249/
https://github.com/python/cpython/issues/83638
https://github.com/python/cpython/issues/93503

6.13 unicodedata

• The Unicode database has been updated to version 15.0.0. (Contributed by Benjamin Peterson in gh-96734).

6.14 uuid

• Add a command-line interface. (Contributed by Adam Chhina in gh-88597.)

6.15 tempfile

The tempfile.NamedTemporaryFile function has a new optional parameter delete_on_close (Contributed by
Evgeny Zorin in gh-58451.)

6.16 sys

• Add sys.activate_stack_trampoline() and sys.deactivate_stack_trampoline() for
activating and deactivating stack profiler trampolines, and sys.is_stack_trampoline_active() for
querying if stack profiler trampolines are active. (Contributed by Pablo Galindo and Christian Heimes with con-
tributions from Gregory P. Smith [Google] and Mark Shannon in gh-96123.)

7 Optimizations

• Removed wstr and wstr_length members from Unicode objects. It reduces object size by 8 or 16 bytes on
64bit platform. (PEP 623) (Contributed by Inada Naoki in gh-92536.)

• Added experimental support for using the BOLT binary optimizer in the build process, which improves performance
by 1-5%. (Contributed by Kevin Modzelewski in gh-90536.)

• Speed up the regular expression substitution (functions re.sub() and re.subn() and corresponding re.
Pattern methods) for replacement strings containing group references by 2–3 times. (Contributed by Serhiy
Storchaka in gh-91524.)

8 CPython bytecode changes

• Removed the LOAD_METHOD instruction. It has been merged into LOAD_ATTR. LOAD_ATTR will now behave
like the old LOAD_METHOD instruction if the low bit of its oparg is set. (Contributed by Ken Jin in gh-93429.)

9 Demos and Tools

• Remove the Tools/demo/ directory which contained old demo scripts. A copy can be found in the old-demos
project. (Contributed by Victor Stinner in gh-97681.)

• Remove outdated example scripts of the Tools/scripts/ directory. A copy can be found in the old-demos
project. (Contributed by Victor Stinner in gh-97669.)

7

https://github.com/python/cpython/issues/96734
https://github.com/python/cpython/issues/88597
https://github.com/python/cpython/issues/58451
https://github.com/python/cpython/issues/96123
https://peps.python.org/pep-0623/
https://github.com/python/cpython/issues/92536
https://github.com/python/cpython/issues/90536
https://github.com/python/cpython/issues/91524
https://github.com/python/cpython/issues/93429
https://github.com/gvanrossum/old-demos
https://github.com/gvanrossum/old-demos
https://github.com/python/cpython/issues/97681
https://github.com/gvanrossum/old-demos
https://github.com/gvanrossum/old-demos
https://github.com/python/cpython/issues/97669

10 Deprecated

• typing.Hashable and typing.Sized aliases for collections.abc.Hashable and
collections.abc.Sized. (gh-94309.)

• The sqlite3 default adapters and converters are now deprecated. Instead, use the sqlite3-adapter-converter-
recipes and tailor them to your needs. (Contributed by Erlend E. Aasland in gh-90016.)

• The 3-arg signatures (type, value, traceback) of throw(), throw() and athrow() are deprecated and may
be removed in a future version of Python. Use the single-arg versions of these functions instead. (Contributed by
Ofey Chan in gh-89874.)

• DeprecationWarning is now raised when __package__ on a module differs from __spec__.parent
(previously it was ImportWarning). (Contributed by Brett Cannon in gh-65961.)

• The get_event_loop() method of the default event loop policy now emits a DeprecationWarning if
there is no current event loop set and it decides to create one. (Contributed by Serhiy Storchaka and Guido van
Rossum in gh-100160.)

• The xml.etree.ElementTreemodule now emits DeprecationWarningwhen testing the truth value of
an xml.etree.ElementTree.Element. Before, the Python implementation emitted FutureWarning,
and the C implementation emitted nothing.

• In accordance with PEP 699, the ma_version_tag field in PyDictObject is deprecated for extension
modules. Accessing this field will generate a compiler warning at compile time. This field will be removed in
Python 3.14. (Contributed by Ramvikrams and Kumar Aditya in gh-101193. PEP by Ken Jin.)

10.1 Pending Removal in Python 3.13

The following modules and APIs have been deprecated in earlier Python releases, and will be removed in Python 3.13.
Modules (see PEP 594):

• aifc

• audioop

• cgi

• cgitb

• chunk

• crypt

• imghdr

• mailcap

• msilib

• nis

• nntplib

• ossaudiodev

• pipes

• sndhdr

• spwd

• sunau

8

https://github.com/python/cpython/issues/94309
https://github.com/python/cpython/issues/90016
https://github.com/python/cpython/issues/89874
https://github.com/python/cpython/issues/65961
https://github.com/python/cpython/issues/100160
https://peps.python.org/pep-0699/
https://github.com/python/cpython/issues/101193
https://peps.python.org/pep-0594/

• telnetlib

• uu

• xdrlib

APIs:
• configparser.LegacyInterpolation (gh-90765)
• locale.getdefaultlocale() (gh-90817)
• turtle.RawTurtle.settiltangle() (gh-50096)
• unittest.findTestCases() (gh-50096)
• unittest.makeSuite() (gh-50096)
• unittest.getTestCaseNames() (gh-50096)
• webbrowser.MacOSX (gh-86421)

11 Pending Removal in Python 3.14

• Deprecated the following importlib.abc classes, scheduled for removal in Python 3.14:
– importlib.abc.ResourceReader

– importlib.abc.Traversable

– importlib.abc.TraversableResources

Use importlib.resources.abc classes instead:
– importlib.resources.abc.Traversable

– importlib.resources.abc.TraversableResources

(Contributed by Jason R. Coombs and Hugo van Kemenade in gh-93963.)
• Creating immutable types with mutable bases using the C API.
• __package__ and __cached__ will cease to be set or taken into consideration by the import system (gh-
97879).

• Testing the truth value of an xml.etree.ElementTree.Element is deprecated and will raise an exception
in Python 3.14.

• The default multiprocessing start method will change to a safer one on Linux, BSDs, and other non-
macOS POSIX platforms where 'fork' is currently the default (gh-84559). Adding a runtime warning about
this was deemed too disruptive as the majority of code is not expected to care. Use the get_context() or
set_start_method() APIs to explicitly specify when your code requires 'fork'. See multiprocessing-
start-methods.

9

https://github.com/python/cpython/issues/90765
https://github.com/python/cpython/issues/90817
https://github.com/python/cpython/issues/50096
https://github.com/python/cpython/issues/50096
https://github.com/python/cpython/issues/50096
https://github.com/python/cpython/issues/50096
https://github.com/python/cpython/issues/86421
https://github.com/python/cpython/issues/93963
https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/97879
https://github.com/python/cpython/issues/84559

11.1 Pending Removal in Future Versions

The following APIs were deprecated in earlier Python versions and will be removed, although there is currently no date
scheduled for their removal.

• typing.Text (gh-92332)
• Currently Python accepts numeric literals immediately followed by keywords, for example 0in x, 1or x, 0if
1else 2. It allows confusing and ambiguous expressions like [0x1for x in y] (which can be interpreted
as [0x1 for x in y] or [0x1f or x in y]). A syntax warning is raised if the numeric literal is imme-
diately followed by one of keywords and, else, for, if, in, is and or. In a future release it will be changed
to a syntax error. (gh-87999)

12 Removed

• Remove the distutils package. It was deprecated in Python 3.10 by PEP 632 “Deprecate distutils module”.
For projects still using distutils and cannot be updated to something else, the setuptools project can be
installed: it still provides distutils. (Contributed by Victor Stinner in gh-92584.)

• Removed many old deprecated unittest features:
– A number of TestCase method aliases:

Deprecated alias Method Name Deprecated in
failUnless assertTrue() 3.1
failIf assertFalse() 3.1
failUnlessEqual assertEqual() 3.1
failIfEqual assertNotEqual() 3.1
failUnlessAlmostEqual assertAlmostEqual() 3.1
failIfAlmostEqual assertNotAlmostEqual() 3.1
failUnlessRaises assertRaises() 3.1
assert_ assertTrue() 3.2
assertEquals assertEqual() 3.2
assertNotEquals assertNotEqual() 3.2
assertAlmostEquals assertAlmostEqual() 3.2
assertNotAlmostEquals assertNotAlmostEqual() 3.2
assertRegexpMatches assertRegex() 3.2
assertRaisesRegexp assertRaisesRegex() 3.2
assertNotRegexpMatches assertNotRegex() 3.5

You can use https://github.com/isidentical/teyit to automatically modernise your unit tests.
– Undocumented and broken TestCasemethod assertDictContainsSubset (deprecated in Python
3.2).

– Undocumented TestLoader.loadTestsFromModule parameter use_load_tests (deprecated and ig-
nored since Python 3.2).

– An alias of the TextTestResult class: _TextTestResult (deprecated in Python 3.2).
(Contributed by Serhiy Storchaka in bpo-45162.)

• Several names deprecated in the configparser way back in 3.2 have been removed per gh-89336:
– configparser.ParsingError no longer has a filename attribute or argument. Use the source
attribute and argument instead.

10

https://github.com/python/cpython/issues/92332
https://github.com/python/cpython/issues/87999
https://peps.python.org/pep-0632/
https://github.com/python/cpython/issues/92584
https://github.com/isidentical/teyit
https://bugs.python.org/issue?@action=redirect&bpo=45162
https://github.com/python/cpython/issues/89336

– configparser no longer has a SafeConfigParser class. Use the shorter ConfigParser name
instead.

– configparser.ConfigParser no longer has a readfp method. Use read_file() instead.
• The following undocumented sqlite3 features, deprecated in Python 3.10, are now removed:

– sqlite3.enable_shared_cache()

– sqlite3.OptimizedUnicode

If a shared cache must be used, open the database in URI mode using the cache=shared query parameter.
The sqlite3.OptimizedUnicode text factory has been an alias for str since Python 3.3. Code that pre-
viously set the text factory to OptimizedUnicode can either use str explicitly, or rely on the default value
which is also str.
(Contributed by Erlend E. Aasland in gh-92548.)

• smtpd has been removed according to the schedule in PEP 594, having been deprecated in Python 3.4.7 and
3.5.4. Use aiosmtpd PyPI module or any other asyncio-based server instead. (Contributed by Oleg Iarygin in
gh-93243.)

• asynchat and asyncore have been removed according to the schedule in PEP 594, having been deprecated
in Python 3.6. Use asyncio instead. (Contributed by Nikita Sobolev in gh-96580.)

• Remove io.OpenWrapper and _pyio.OpenWrapper, deprecated in Python 3.10: just use open() in-
stead. The open() (io.open()) function is a built-in function. Since Python 3.10, _pyio.open() is also
a static method. (Contributed by Victor Stinner in gh-94169.)

• Remove the ssl.RAND_pseudo_bytes() function, deprecated in Python 3.6: use os.urandom() or
ssl.RAND_bytes() instead. (Contributed by Victor Stinner in gh-94199.)

• gzip: Remove the filename attribute of gzip.GzipFile, deprecated since Python 2.6, use the name
attribute instead. In write mode, the filename attribute added '.gz' file extension if it was not present. (Con-
tributed by Victor Stinner in gh-94196.)

• Remove the ssl.match_hostname() function. The ssl.match_hostname() was deprecated in
Python 3.7. OpenSSL performs hostname matching since Python 3.7, Python no longer uses the ssl.
match_hostname() function. (Contributed by Victor Stinner in gh-94199.)

• Remove the locale.format() function, deprecated in Python 3.7: use locale.format_string() in-
stead. (Contributed by Victor Stinner in gh-94226.)

• hashlib: Remove the pure Python implementation of hashlib.pbkdf2_hmac(), deprecated in Python
3.10. Python 3.10 and newer requires OpenSSL 1.1.1 (PEP 644): this OpenSSL version provides a C implemen-
tation of pbkdf2_hmac() which is faster. (Contributed by Victor Stinner in gh-94199.)

• xml.etree: Remove the ElementTree.Element.copy() method of the pure Python implementation,
deprecated in Python 3.10, use the copy.copy() function instead. The C implementation of xml.etree has
no copy() method, only a __copy__() method. (Contributed by Victor Stinner in gh-94383.)

• zipimport: Remove find_loader() and find_module()methods, deprecated in Python 3.10: use the
find_spec() method instead. See PEP 451 for the rationale. (Contributed by Victor Stinner in gh-94379.)

• Remove the ssl.wrap_socket() function, deprecated in Python 3.7: instead, create a ssl.SSLContext
object and call its ssl.SSLContext.wrap_socket method. Any package that still uses ssl.
wrap_socket() is broken and insecure. The function neither sends a SNI TLS extension nor validates server
hostname. Code is subject to CWE-295: Improper Certificate Validation. (Contributed by Victor Stinner in gh-
94199.)

• Many previously deprecated cleanups in importlib have now been completed:
– References to, and support for module_repr() has been eradicated.

11

https://github.com/python/cpython/issues/92548
https://peps.python.org/pep-0594/
https://pypi.org/project/aiosmtpd/
https://github.com/python/cpython/issues/93243
https://peps.python.org/pep-0594/
https://github.com/python/cpython/issues/96580
https://github.com/python/cpython/issues/94169
https://github.com/python/cpython/issues/94199
https://github.com/python/cpython/issues/94196
https://github.com/python/cpython/issues/94199
https://github.com/python/cpython/issues/94226
https://peps.python.org/pep-0644/
https://github.com/python/cpython/issues/94199
https://github.com/python/cpython/issues/94383
https://peps.python.org/pep-0451/
https://github.com/python/cpython/issues/94379
https://cwe.mitre.org/data/definitions/295.html
https://github.com/python/cpython/issues/94199
https://github.com/python/cpython/issues/94199

• importlib.util.set_package has been removed. (Contributed by Brett Cannon in gh-65961.)
• Removed the suspicious rule from the documentation Makefile, and removed Doc/tools/rstlint.py,
both in favor of sphinx-lint. (Contributed by Julien Palard in gh-98179.)

• Remove the keyfile and certfile parameters from the ftplib, imaplib, poplib and smtplib modules,
and the key_file, cert_file and check_hostname parameters from the http.client module, all deprecated since
Python 3.6. Use the context parameter (ssl_context in imaplib) instead. (Contributed by Victor Stinner in gh-
94172.)

• ftplib: Remove the FTP_TLS.ssl_version class attribute: use the context parameter instead. (Con-
tributed by Victor Stinner in gh-94172.)

13 Porting to Python 3.12

This section lists previously described changes and other bugfixes that may require changes to your code.

13.1 Changes in the Python API

• More strict rules are now applied for numerical group references and group names in regular expressions. Only
sequence of ASCII digits is now accepted as a numerical reference. The group name in bytes patterns and replace-
ment strings can now only contain ASCII letters and digits and underscore. (Contributed by Serhiy Storchaka in
gh-91760.)

• Removed randrange() functionality deprecated since Python 3.10. Formerly, randrange(10.0) loss-
lessly converted to randrange(10). Now, it raises a TypeError. Also, the exception raised for non-
integral values such as randrange(10.5) or randrange('10') has been changed from ValueError to
TypeError. This also prevents bugs where randrange(1e25) would silently select from a larger range than
randrange(10**25). (Originally suggested by Serhiy Storchaka gh-86388.)

• argparse.ArgumentParser changed encoding and error handler for reading arguments from
file (e.g. fromfile_prefix_chars option) from default text encoding (e.g. locale.
getpreferredencoding(False)) to filesystem encoding and error handler. Argument files should
be encoded in UTF-8 instead of ANSI Codepage on Windows.

• Removed the asyncore-based smtpd module deprecated in Python 3.4.7 and 3.5.4. A recommended replace-
ment is the asyncio-based aiosmtpd PyPI module.

• shlex.split(): Passing None for s argument now raises an exception, rather than reading sys.stdin. The
feature was deprecated in Python 3.9. (Contributed by Victor Stinner in gh-94352.)

• The os module no longer accepts bytes-like paths, like bytearray and memoryview types: only the exact
bytes type is accepted for bytes strings. (Contributed by Victor Stinner in gh-98393.)

• syslog.openlog() and syslog.closelog() now fail if used in subinterpreters. syslog.syslog()
may still be used in subinterpreters, but now only if syslog.openlog() has already been called in the main
interpreter. These new restrictions do not apply to the main interpreter, so only a very small set of users might be
affected. This change helps with interpreter isolation. Furthermore, syslog is a wrapper around process-global
resources, which are best managed from the main interpreter. (Contributed by Dong-hee Na in gh-99127.)

12

https://github.com/python/cpython/issues/65961
https://github.com/sphinx-contrib/sphinx-lint
https://github.com/python/cpython/issues/98179
https://github.com/python/cpython/issues/94172
https://github.com/python/cpython/issues/94172
https://github.com/python/cpython/issues/94172
https://github.com/python/cpython/issues/91760
https://github.com/python/cpython/issues/86388
https://pypi.org/project/aiosmtpd/
https://github.com/python/cpython/issues/94352
https://github.com/python/cpython/issues/98393
https://github.com/python/cpython/issues/99127

14 Build Changes

• Python no longer uses setup.py to build shared C extension modules. Build parameters like headers and libraries
are detected in configure script. Extensions are built by Makefile. Most extensions use pkg-config and
fall back to manual detection. (Contributed by Christian Heimes in gh-93939.)

• va_start() with two parameters, like va_start(args, format), is now required to build Python.
va_start() is no longer called with a single parameter. (Contributed by Kumar Aditya in gh-93207.)

• CPython now uses the ThinLTO option as the default link time optimization policy if the Clang compiler accepts
the flag. (Contributed by Dong-hee Na in gh-89536.)

• Add COMPILEALL_OPTS variable in Makefile to override compileall options (default: -j0) in make
install. Also merged the 3 compileall commands into a single command to build .pyc files for all op-
timization levels (0, 1, 2) at once. (Contributed by Victor Stinner in gh-99289.)

15 C API Changes

15.1 New Features

• Added the new limited C API function PyType_FromMetaclass(), which generalizes the existing
PyType_FromModuleAndSpec() using an additional metaclass argument. (Contributed by Wenzel Jakob
in gh-93012.)

• API for creating objects that can be called using the vectorcall protocol was added to the Limited API:
– Py_TPFLAGS_HAVE_VECTORCALL

– PyVectorcall_NARGS()

– PyVectorcall_Call()

– vectorcallfunc

The Py_TPFLAGS_HAVE_VECTORCALL flag is now removed from a class when the class’s __call__()
method is reassigned. This makes vectorcall safe to use with mutable types (i.e. heap types
without the immutable flag). Mutable types that do not override tp_call now inherit the
Py_TPFLAGS_HAVE_VECTORCALL flag. (Contributed by Petr Viktorin in gh-93274.)
The Py_TPFLAGS_MANAGED_DICT and Py_TPFLAGS_MANAGED_WEAKREF flags have been added. This
allows extensions classes to support object __dict__ and weakrefs with less bookkeeping, using less memory
and with faster access.

• API for performing calls using the vectorcall protocol was added to the Limited API:
– PyObject_Vectorcall()

– PyObject_VectorcallMethod()

– PY_VECTORCALL_ARGUMENTS_OFFSET

This means that both the incoming and outgoing ends of the vector call protocol are now available in the Limited
API. (Contributed by Wenzel Jakob in gh-98586.)

• Added two new public functions, PyEval_SetProfileAllThreads() and
PyEval_SetTraceAllThreads(), that allow to set tracing and profiling functions in all running
threads in addition to the calling one. (Contributed by Pablo Galindo in gh-93503.)

• Added new function PyFunction_SetVectorcall() to the C API which sets the vectorcall field of a given
PyFunctionObject. (Contributed by Andrew Frost in gh-92257.)

13

https://github.com/python/cpython/issues/93939
https://github.com/python/cpython/issues/93207
https://github.com/python/cpython/issues/89536
https://github.com/python/cpython/issues/99289
https://github.com/python/cpython/issues/93012
https://github.com/python/cpython/issues/93274
https://github.com/python/cpython/issues/98586
https://github.com/python/cpython/issues/93503
https://github.com/python/cpython/issues/92257

• The C API now permits registering callbacks via PyDict_AddWatcher(), PyDict_AddWatch() and re-
lated APIs to be called whenever a dictionary is modified. This is intended for use by optimizing interpreters, JIT
compilers, or debuggers. (Contributed by Carl Meyer in gh-91052.)

• Added PyType_AddWatcher() and PyType_Watch() API to register callbacks to receive notification on
changes to a type. (Contributed by Carl Meyer in gh-91051.)

• Added PyCode_AddWatcher() and PyCode_ClearWatcher() APIs to register callbacks to receive no-
tification on creation and destruction of code objects. (Contributed by Itamar Ostricher in gh-91054.)

• Add PyFrame_GetVar() and PyFrame_GetVarString() functions to get a frame variable by its name.
(Contributed by Victor Stinner in gh-91248.)

15.2 Porting to Python 3.12

• Legacy Unicode APIs based on Py_UNICODE* representation has been removed. Please migrate to APIs based
on UTF-8 or wchar_t*.

• Argument parsing functions like PyArg_ParseTuple() doesn’t support Py_UNICODE* based format (e.g.
u, Z) anymore. Please migrate to other formats for Unicode like s, z, es, and U.

• tp_weaklist for all static builtin types is always NULL. This is an internal-only field on PyTypeObject
but we’re pointing out the change in case someone happens to be accessing the field directly anyway.
To avoid breakage, consider using the existing public C-API instead, or, if necessary, the (internal-only)
_PyObject_GET_WEAKREFS_LISTPTR() macro.

• This internal-only PyTypeObject.tp_subclasses may now not be a valid object pointer. Its type was
changed to void* to reflect this. We mention this in case someone happens to be accessing the internal-only field
directly.
To get a list of subclasses, call the Python method __subclasses__() (using PyObject_CallMethod(),
for example).

• An unrecognized format character in PyUnicode_FromFormat() and PyUnicode_FromFormatV()
now sets a SystemError. In previous versions it caused all the rest of the format string to be copied as-is to the
result string, and any extra arguments discarded. (Contributed by Serhiy Storchaka in gh-95781.)

• Fixed wrong sign placement in PyUnicode_FromFormat() and PyUnicode_FromFormatV(). (Con-
tributed by Philip Georgi in gh-95504.)

• Extension classes wanting to add a __dict__ or weak reference slot should use
Py_TPFLAGS_MANAGED_DICT and Py_TPFLAGS_MANAGED_WEAKREF instead of tp_dictoffset
and tp_weaklistoffset, respectively. The use of tp_dictoffset and tp_weaklistoffset is
still supported, but does not fully support multiple inheritance (gh-95589), and performance may be worse.
Classes declaring Py_TPFLAGS_MANAGED_DICT should call _PyObject_VisitManagedDict() and
_PyObject_ClearManagedDict() to traverse and clear their instance’s dictionaries. To clear weakrefs,
call PyObject_ClearWeakRefs(), as before.

• The PyUnicode_FSDecoder() function no longer accepts bytes-like paths, like bytearray and
memoryview types: only the exact bytes type is accepted for bytes strings. (Contributed by Victor Stinner
in gh-98393.)

• ThePy_CLEAR,Py_SETREF andPy_XSETREFmacros now only evaluate their arguments once. If an argument
has side effects, these side effects are no longer duplicated. (Contributed by Victor Stinner in gh-98724.)

14

https://github.com/python/cpython/issues/91052
https://github.com/python/cpython/issues/91051
https://github.com/python/cpython/issues/91054
https://github.com/python/cpython/issues/91248
https://github.com/python/cpython/issues/95781
https://github.com/python/cpython/issues/95504
https://github.com/python/cpython/issues/95589
https://github.com/python/cpython/issues/98393
https://github.com/python/cpython/issues/98724

15.3 Deprecated

• Deprecate global configuration variable:
– Py_DebugFlag: use PyConfig.parser_debug
– Py_VerboseFlag: use PyConfig.verbose
– Py_QuietFlag: use PyConfig.quiet
– Py_InteractiveFlag: use PyConfig.interactive
– Py_InspectFlag: use PyConfig.inspect
– Py_OptimizeFlag: use PyConfig.optimization_level
– Py_NoSiteFlag: use PyConfig.site_import
– Py_BytesWarningFlag: use PyConfig.bytes_warning
– Py_FrozenFlag: use PyConfig.pathconfig_warnings
– Py_IgnoreEnvironmentFlag: use PyConfig.use_environment
– Py_DontWriteBytecodeFlag: use PyConfig.write_bytecode
– Py_NoUserSiteDirectory: use PyConfig.user_site_directory
– Py_UnbufferedStdioFlag: use PyConfig.buffered_stdio
– Py_HashRandomizationFlag: use PyConfig.use_hash_seed and PyConfig.hash_seed
– Py_IsolatedFlag: use PyConfig.isolated
– Py_LegacyWindowsFSEncodingFlag: use PyConfig.legacy_windows_fs_encoding
– Py_LegacyWindowsStdioFlag: use PyConfig.legacy_windows_stdio
– Py_FileSystemDefaultEncoding: use PyConfig.filesystem_encoding
– Py_FileSystemDefaultEncodeErrors: use PyConfig.filesystem_errors
– Py_UTF8Mode: use PyPreConfig.utf8_mode (see Py_PreInitialize())

The Py_InitializeFromConfig() API should be used with PyConfig instead. (Contributed by Victor
Stinner in gh-77782.)

• Creating immutable types with mutable bases is deprecated and will be disabled in Python 3.14.
• The structmember.h header is deprecated, though it continues to be available and there are no plans to remove
it.
Its contents are now available just by including Python.h, with a Py prefix added if it was missing:

– PyMemberDef, PyMember_GetOne() and PyMember_SetOne()
– Type macros like Py_T_INT, Py_T_DOUBLE, etc. (previously T_INT, T_DOUBLE, etc.)
– The flags Py_READONLY (previously READONLY) and Py_AUDIT_READ (previously all uppercase)

Several items are not exposed from Python.h:
– T_OBJECT (use Py_T_OBJECT_EX)
– T_NONE (previously undocumented, and pretty quirky)
– The macro WRITE_RESTRICTED which does nothing.
– The macros RESTRICTED and READ_RESTRICTED, equivalents of Py_AUDIT_READ.

15

https://github.com/python/cpython/issues/77782

– In some configurations, <stddef.h> is not included from Python.h. It should be included manually
when using offsetof().

The deprecated header continues to provide its original contents under the original names. Your old code can stay
unchanged, unless the extra include and non-namespaced macros bother you greatly.
(Contributed in gh-47146 by Petr Viktorin, based on earlier work by Alexander Belopolsky and Matthias Braun.)

15.4 Removed

• Remove the token.h header file. There was never any public tokenizer C API. The token.h header file was
only designed to be used by Python internals. (Contributed by Victor Stinner in gh-92651.)

• Legacy Unicode APIs have been removed. See PEP 623 for detail.
– PyUnicode_WCHAR_KIND

– PyUnicode_AS_UNICODE()

– PyUnicode_AsUnicode()

– PyUnicode_AsUnicodeAndSize()

– PyUnicode_AS_DATA()

– PyUnicode_FromUnicode()

– PyUnicode_GET_SIZE()

– PyUnicode_GetSize()

– PyUnicode_GET_DATA_SIZE()

• Remove the PyUnicode_InternImmortal() function and the SSTATE_INTERNED_IMMORTALmacro.
(Contributed by Victor Stinner in gh-85858.)

• Remove Jython compatibility hacks from several stdlib modules and tests. (Contributed by Nikita Sobolev in
gh-99482.)

• Remove _use_broken_old_ctypes_structure_semantics_ flag from ctypes module. (Con-
tributed by Nikita Sobolev in gh-99285.)

16

https://github.com/python/cpython/issues/47146
https://github.com/python/cpython/issues/92651
https://peps.python.org/pep-0623/
https://github.com/python/cpython/issues/85858
https://github.com/python/cpython/issues/99482
https://github.com/python/cpython/issues/99285

Index
E
environment variable

PYTHONPERFSUPPORT, 3

P
Python Enhancement Proposals

PEP 249, 6
PEP 451, 11
PEP 572, 4
PEP 594, 8, 11
PEP 623, 2, 7, 16
PEP 632, 2, 10
PEP 644, 11
PEP 699, 8

PYTHONPERFSUPPORT, 3

17

	Summary – Release highlights
	Improved Error Messages
	New Features
	Other Language Changes
	New Modules
	Improved Modules
	array
	asyncio
	inspect
	pathlib
	dis
	fractions
	math
	os
	os.path
	shutil
	sqlite3
	threading
	unicodedata
	uuid
	tempfile
	sys

	Optimizations
	CPython bytecode changes
	Demos and Tools
	Deprecated
	Pending Removal in Python 3.13

	Pending Removal in Python 3.14
	Pending Removal in Future Versions

	Removed
	Porting to Python 3.12
	Changes in the Python API

	Build Changes
	C API Changes
	New Features
	Porting to Python 3.12
	Deprecated
	Removed

	Index

