Python Tutorial
Release 3.9.14

Guido van Rossum
and the Python development team

September 11, 2022

Python Software Foundation
Email: docs@python.org

Whetting Your Appetite

Using the Python Interpreter
Invoking the Interpreter
Argument Passing
Interactive Mode
The Interpreter and Its Environment
Source Code Encoding

An Informal Introduction to Python
Using Python as a Calculator

CONTENTS

ListS . . . o e e e e e e 14

First Steps Towards Programming

More Control Flow Tools
if Statements

for Statements
The range () Function
break and continue Statements, and e 1 se Clauses on Loops
pass Statements

Defining Functions
More on Defining Functions
Default Argument Values
Keyword Arguments
Special parameters

Arbitrary Argument Lists

Unpacking Argument Lists
Lambda Expressions
Documentation Strings
Function Annotations

Intermezzo: Coding Style

Data Structures
More on Lists
Using Lists as Stacks

Using Lists as QUeUes« . oo i e 33

List Comprehensions
Nested List Comprehensions
The del statement

Tuples and SEqUENCES o vt e e e e e e e e e e e e e 36
SEIS « v e e e e e 37

10

57 Moreon ConditionS e e e e e e e e e e e e e

5.8 Comparing Sequences and Other Types v i i v i i v i e et e e e

Modules

6.1 MoreonModules e e e e e
6.1.1 Executing modules as SCTipts i it e e e e e e
6.1.2 The Module Search Path
6.1.3 “Compiled” Pythonfiles

6.2 Standard Modules L e e

6.3 Thedir () Function o e e e e e

6.4 Packages e e e e e e e e
6.4.1 Importing * FromaPackage
6.4.2 Intra-package References oo
6.4.3 Packages in Multiple Directories

Input and Output

7.1 Fancier Output Formatting e e
7.1.1 Formatted String Literals
7.1.2 The String format() Method L
7.1.3 Manual String Formatting e e
7.1.4 Oldstring formatting L e e e e e

7.2 Readingand Writing Files
7.2.1 Methodsof File Objects e
7.2.2 Saving structured datawith json oL Lo

Errors and Exceptions

8.1 Syntax Errors e e e e e e
8.2 EXCePLions e e e e e e e e
8.3 Handling EXceptions o o i i i e e e e e e e e e e e e e e e e
8.4 Raising EXCeptions o o i i e e e e e e e e e e e e e
85 Exception Chaining L. e
8.6 User-defined Exceptions e e e e
8.7 Defining Clean-up ACtiOnS ittt e e e e e e
8.8 Predefined Clean-up ACHONS v v v v i e e e e e e e e e e e e e e e e e
Classes
9.1 A Word About Namesand Objects it
9.2 Python Scopes and NamesSpaces v v v v v vt e e e e e e e e e e e e e e e e e
9.2.1 Scopes and Namespaces Example
9.3 AFirstLook at CIasses o i i i it e e e e e e e e e e
9.3.1 Class Definition Syntax L e
9.32 Class Objects o v v i e e e
933 Instance ODJECES v v v v e e e e e e e e e e e e e e
9.3.4 Method Objects o o v i i e e e e e e e e e e e
9.3.5 Classand Instance Variables e
9.4 RandomRemarks e e
9.5 Inheritance e e e
9.5.1 Multiple Inheritance e e e
9.6 Private Variables e
9.7 OddsandEnds e
0.8 TMeratorS e e e e e e e e
0.9 Generators e
9.10 Generator EXpressions e e e

Brief Tour of the Standard Library

10.1 Operating System Interface e
10.2 File Wildcards o o L e e e
10.3 Command Line ATgUMENts v v v v v it e e e e e e e e e e e e e e e e e
10.4 Error Output Redirection and Program Termination

4
42
43
43
44
44
45
46
47
48
48

49
49
50
51
52
52
53
54
55

57
57
57
58
60
61
61
62
63

65
65
66
67
68
68
68
69
69
70
71
72
73
74
74
75
76
77

11

12

13

14

15

16

10.5 String Pattern Matching L e 80

10.6 MathematiCs v i i e e e e e e e e e e e e e 81
10.7 Internet ACCESS v v v v v i i e e e e e e e e e e e e e e e e 81
10.8 Datesand Times o e e 82
10.9 Data COmpPression v v v v v v vttt e e e e e e e e e e e e e e e e e 82
10.10 Performance Measurementl e e e e e e e e 82
10.11 Quality Control o o e e e e e e e e e e e e e e e e e e e 83
10.12 Batteries Included 83
Brief Tour of the Standard Library — Part II 85
I11.1 Output Formatting ot e e e e e e e e e e e e e e e 85
11.2 Templating o o o e e e e e e e e e e e e e 86
11.3 Working with Binary Data Record Layouts 87
11.4 Multi-threading L L L e e 87
115 Logging o o o o e e e e 88
11.6 Weak References o o i e e 88
11.7 Tools for Working with Lists o e e e e e e e 89
11.8 Decimal Floating Point Arithmetic, 90
Virtual Environments and Packages 91
12.1 Introduction e e e e e e e 91
12.2 Creating Virtual Environments L 91
12.3 Managing Packages withpip L 92
What Now? 95
Interactive Input Editing and History Substitution 97
14.1 Tab Completion and History Editing 97
14.2 Alternatives to the Interactive Interpreter L oo 97
Floating Point Arithmetic: Issues and Limitations 99
15.1 Representation Error L e e e e e e 101
Appendix 105
16.1 Interactive Mode e e e e e e 105
16.1.1 Error Handling e e e 105
16.1.2 Executable Python Scripts L 105
16.1.3 The Interactive Startup File oL oo 106
16.1.4 The Customization Modules e 106
Glossary 107
About these documents 119
B.1 Contributors to the Python Documentation 119
History and License 121
C.1 Historyof the software e e e e e e e 121
C.2 Terms and conditions for accessing or otherwise using Python 122
C.2.1 PSFLICENSE AGREEMENT FOR PYTHON 39.14 122
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 123
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 124
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 125

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.14 DOCUMEN-
TATION e e e e 125
C.3 Licenses and Acknowledgements for Incorporated Software 126
C3.1 Mersenne TWIStEr o o vt ittt e e e e e e 126
C32 Sockets o o e e e 127
C.3.3 Asynchronous SOCKet Services v v v v v v i e e e e e 127
C34 Cookiemanagement e e 128
C.3.5 Execution tracing ittt e e e e e e e e e e 128

C3.6
C3.7
C3.8
C39
C.3.10
C3.11
C3.12
C3.13
C3.14
C3.15
C.3.16
C3.17
C3.18

D Copyright

Index

UUencode and UUdecode functions i v i i i it i i e e e 129
XML Remote Procedure Calls i 129
test_epoll . . . L e e e e e e e 130
Selectkqueue e 130
SipHash24 131
strtodand dtoa L L e e e 131
OpenSSL . . . L . e e e e 132
EXPAL . v e 134
b . . e e e e e e 134
72 o 135
cfuhash e 135
libmpdec e e e e e e e e 136
WI3C CIANteSt SUILE vt o e 136

139

141

Python Tutorial, Release 3.9.14

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together with
its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on
most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python Web site, https://www.python.org/, and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules, programs and tools, and additional
documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system. It
helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the tutorial
can be read off-line as well.

For a description of standard objects and modules, see library-index. reference-index gives a more formal definition
of the language. To write extensions in C or C++, read extending-index and c-api-index. There are also several books
covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs, and
you will be ready to learn more about the various Python library modules described in library-index.

The Glossary is also worth going through.

CONTENTS 1

https://www.python.org/

Python Tutorial, Release 3.9.14

2 CONTENTS

CHAPTER
ONE

WHETTING YOUR APPETITE

If you do much work on computers, eventually you find that there’s some task you’d like to automate. For example,
you may wish to perform a search-and-replace over a large number of text files, or rename and rearrange a bunch
of photo files in a complicated way. Perhaps you’d like to write a small custom database, or a specialized GUI
application, or a simple game.

If you're a professional software developer, you may have to work with several C/C++/Java libraries but find the usual
write/compile/test/re-compile cycle is too slow. Perhaps you're writing a test suite for such a library and find writing
the testing code a tedious task. Or maybe you’ve written a program that could use an extension language, and you
don’t want to design and implement a whole new language for your application.

Python is just the language for you.

You could write a Unix shell script or Windows batch files for some of these tasks, but shell scripts are best at moving
around files and changing text data, not well-suited for GUI applications or games. You could write a C/C++/Java
program, but it can take a lot of development time to get even a first-draft program. Python is simpler to use, available
on Windows, macOS, and Unix operating systems, and will help you get the job done more quickly.

Python is simple to use, but it is a real programming language, offering much more structure and support for large
programs than shell scripts or batch files can offer. On the other hand, Python also offers much more error checking
than C, and, being a very-high-level language, it has high-level data types built in, such as flexible arrays and dictio-
naries. Because of its more general data types Python is applicable to a much larger problem domain than Awk or
even Perl, yet many things are at least as easy in Python as in those languages.

Python allows you to split your program into modules that can be reused in other Python programs. It comes with a
large collection of standard modules that you can use as the basis of your programs — or as examples to start learning
to program in Python. Some of these modules provide things like file I/O, system calls, sockets, and even interfaces
to graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, which makes it easy to experiment with
features of the language, to write throw-away programs, or to test functions during bottom-up program development.
It is also a handy desk calculator.

Python enables programs to be written compactly and readably. Programs written in Python are typically much
shorter than equivalent C, C++, or Java programs, for several reasons:

* the high-level data types allow you to express complex operations in a single statement;
* statement grouping is done by indentation instead of beginning and ending brackets;
* no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that may
only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you can
link the Python interpreter into an application written in C and use it as an extension or command language for that
application.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing to do with
reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

Python Tutorial, Release 3.9.14

Now that you are all excited about Python, you’ll want to examine it in some more detail. Since the best way to learn
a language is to use it, the tutorial invites you to play with the Python interpreter as you read.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system through examples, begin-
ning with simple expressions, statements and data types, through functions and modules, and finally touching upon
advanced concepts like exceptions and user-defined classes.

4 Chapter 1. Whetting Your Appetite

CHAPTER
TWO

USING THE PYTHON INTERPRETER

2.1 Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python3.9 on those machines where it is
available; putting /usr/local/bin in your Unix shell’s search path makes it possible to start it by typing the
command:

python3.9

to the shell.! Since the choice of the directory where the interpreter lives is an installation option, other places are
possible; check with your local Python guru or system administrator. (E.g., /usr/local/python is a popular
alternative location.)

On Windows machines where you have installed Python from the Microsoft Store, the python3. 9 command will
be available. If you have the py.exe launcher installed, you can use the py command. See setting-envvars for other
ways to launch Python.

Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at the primary prompt causes
the interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the following
command: quit ().

The interpreter’s line-editing features include interactive editing, history substitution and code completion on systems
that support the GNU Readline library. Perhaps the quickest check to see whether command line editing is supported
is typing Cont rol1-P to the first Python prompt you get. If it beeps, you have command line editing; see Appendix
Interactive Input Editing and History Substitution for an introduction to the keys. If nothing appears to happen, or if
~P is echoed, command line editing isn’t available; you’ll only be able to use backspace to remove characters from
the current line.

The interpreter operates somewhat like the Unix shell: when called with standard input connected to a tty device, it
reads and executes commands interactively; when called with a file name argument or with a file as standard input, it
reads and executes a script from that file.

A second way of starting the interpreteris python —-c command [arg] ..., whichexecutes the statement(s)
in command, analogous to the shell’s —c option. Since Python statements often contain spaces or other characters
that are special to the shell, it is usually advised to quote command in its entirety with single quotes.

Some Python modules are also useful as scripts. These can be invoked using python -m module [arg] ...,
which executes the source file for module as if you had spelled out its full name on the command line.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passing —1i before the script.

All command line options are described in using-on-general.

! On Unix, the Python 3.x interpreter is by default not installed with the executable named python, so that it does not conflict with a
simultaneously installed Python 2.x executable.

https://tiswww.case.edu/php/chet/readline/rltop.html

Python Tutorial, Release 3.9.14

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are turned into a list of strings
and assigned to the argv variable in the sys module. You can access this list by executing import sys. The
length of the list is at least one; when no script and no arguments are given, sys.argv [0] is an empty string.
When the script name is given as ' —' (meaning standard input), sys.argv[0] issetto '—"'. When —c command
isused, sys.argv[0] issetto '—c'. When —m module is used, sys.argv [0] is set to the full name of the
located module. Options found after —c command or —m module are not consumed by the Python interpreter’s option
processing but left in sys . argv for the command or module to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be in inferactive mode. In this mode it prompts for
the next command with the primary prompt, usually three greater-than signs (>>>); for continuation lines it prompts
with the secondary prompt, by default three dots (. . .). The interpreter prints a welcome message stating its version
number and a copyright notice before printing the first prompt:

$ python3.9

Python 3.9 (default, June 4 2019, 09:25:04)

[GCC 4.8.2] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look at this i f statement:

>>> the_world_is_flat = True
>>> if the_world_is_flat:
print ("Be careful not to fall off!")

Be careful not to fall off!

For more on interactive mode, see Interactive Mode.

2.2 The Interpreter and Its Environment

2.2.1 Source Code Encoding

By default, Python source files are treated as encoded in UTF-8. In that encoding, characters of most languages in
the world can be used simultaneously in string literals, identifiers and comments — although the standard library
only uses ASCII characters for identifiers, a convention that any portable code should follow. To display all these
characters properly, your editor must recognize that the file is UTF-8, and it must use a font that supports all the
characters in the file.

To declare an encoding other than the default one, a special comment line should be added as the first line of the file.
The syntax is as follows:

’# *— coding: encoding —*

where encoding is one of the valid codecs supported by Python.

For example, to declare that Windows-1252 encoding is to be used, the first line of your source code file should be:

’# —-*— coding: cpl252 —*-

One exception to the first line rule is when the source code starts with a UNIX “shebang” line. In this case, the encoding
declaration should be added as the second line of the file. For example:

6 Chapter 2. Using the Python Interpreter

Python Tutorial, Release 3.9.14

#!/usr/bin/env python3
—*- coa cpl252 —*-—

2.2. The Interpreter and Its Environment 7

Python Tutorial, Release 3.9.14

8 Chapter 2. Using the Python Interpreter

CHAPTER
THREE

AN INFORMAL INTRODUCTION TO PYTHON

In the following examples, input and output are distinguished by the presence or absence of prompts (»> and ...):
to repeat the example, you must type everything after the prompt, when the prompt appears; lines that do not begin
with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an example means
you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments
in Python start with the hash character, #, and extend to the end of the physical line. A comment may appear at the
start of a line or following whitespace or code, but not within a string literal. A hash character within a string literal
is just a hash character. Since comments are to clarify code and are not interpreted by Python, they may be omitted
when typing in examples.

Some examples:

this is the first comment

spam = 1 # and this is the second comment
... and now a third!
text = "# This is not a comment because it's inside quotes."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt, >>>. (It shouldn’t
take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operators +, —, * and / work just like in most other languages (for example, Pascal or
C); parentheses (()) can be used for grouping. For example:

>>> 2 + 2

4

>>> 50 - 5*%6

20

>>> (50 — 5*6) / 4

5.0

>>> 8 / 5 # division always returns a floating point number
1.6

The integer numbers (e.g. 2, 4, 20) have type int, the ones with a fractional part (e.g. 5.0, 1.6) have type
float. We will see more about numeric types later in the tutorial.

Division (/) always returns a float. To do floor division and get an integer result (discarding any fractional result) you
can use the // operator; to calculate the remainder you can use %:

Python Tutorial, Release 3.9.14

>>> 17 / 3 # classic division returns a float

5.666666666666667

>>>

>>> 17 // 3 # floor division discards the fractional part

5

>>> 17 % 3 # the % operator returns the remainder of the division
2

>>> 5 * 3 + 2 # floored quotient * divisor + remainder

17

With Python, it is possible to use the * * operator to calculate powers':

>>> 5 ** 2 # 5 squared

25

>>> 2 ** 7 # 2 to the power of 7
128

The equal sign (=) is used to assign a value to a variable. Afterwards, no result is displayed before the next interactive
prompt:

>>> width = 20

>>> height = 5 * 9
>>> width * height
900

If a variable is not “defined” (assigned a value), trying to use it will give you an error:

>>> n # try to access an undefined variable
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'n' is not defined

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 4 * 3,75 - 1
14.0

In interactive mode, the last printed expression is assigned to the variable _. This means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price +
113.0625
>>> round(_, 2)
113.06

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create an
independent local variable with the same name masking the built-in variable with its magic behavior.

In addition to int and £ 1oat, Python supports other types of numbers, suchas Decimal and Fraction. Python
also has built-in support for complex numbers, and uses the j or J suffix to indicate the imaginary part (e.g. 3+57).

! Since ** has higher precedence than —, —3**2 will be interpreted as — (3**2) and thus result in —9. To avoid this and get 9, you can use
(=3) **2.

10 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 3.9.14

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be enclosed

in single quotes (' . . . ') or double quotes (" . . . ") with the same result’. \ can be used to escape quotes:
>>> 'spam eggs' # single quotes

'spam eggs'

>>> 'doesn\'t' # use \' to escape the single quote...

"doesn't"

>>> "doesn't" # ...or use double quotes instead

"doesn't"

>>> '"Yes," they said.'

'"Yes," they said.'

>>> "\"vYes, \" they said."
'"Yes, " they said.’

>>> '""Isn\'t," they said.’
'""Isn\'t," they said.'

In the interactive interpreter, the output string is enclosed in quotes and special characters are escaped with back-
slashes. While this might sometimes look different from the input (the enclosing quotes could change), the two strings
are equivalent. The string is enclosed in double quotes if the string contains a single quote and no double quotes,
otherwise it is enclosed in single quotes. The print () function produces a more readable output, by omitting the
enclosing quotes and by printing escaped and special characters:

>>> '""Isn\'t," they said.’

'""Isn\'t," they said.'

>>> print (""Isn\'t," they said.')

"Isn't," they said.

>>> s = 'First line.\nSecond line.' # \n means newline
>>> s # without print(), \n is included in the output
'First line.\nSecond line.'

>>> print (s) # with print (), \n produces a new line
First line.

Second line.

If you don’t want characters prefaced by \ to be interpreted as special characters, you can use raw strings by adding
an r before the first quote:

>>> print ('C:\some\name') # here \n means newline!
C:\some

ame

>>> print (r'C:\some\name"') # note the r before the quote
C:\some\name

String literals can span multiple lines. One way is using triple-quotes: """ ..."""or '''..."'"'"'. End of lines
are automatically included in the string, but it’s possible to prevent this by adding a \ at the end of the line. The
following example:

print ("""\

Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

nn ")

produces the following output (note that the initial newline is not included):

Usage: thingy [OPTIONS]

-h Display this usage message
—H hostname Hostname to connect to
2 Unlike other languages, special characters such as \n have the same meaning with both single (' . . . ') and double (" . . . ") quotes. The

only difference between the two is that within single quotes you don’t need to escape " (but you have to escape \ ') and vice versa.

3.1. Using Python as a Calculator 11

Python Tutorial, Release 3.9.14

Strings can be concatenated (glued together) with the + operator, and repeated with *:

>>> # 3 times 'un', followed by 'ium'
>>> 3 * 'un' + 'ium'

'unununium’

Two or more string literals (i.e. the ones enclosed between quotes) next to each other are automatically concatenated.

>>> 'Py' 'thon'
'Python'

This feature is particularly useful when you want to break long strings:

>>> text = ('Put several strings within parentheses '
C 'to have them joined together.')

>>> text
'Put several strings within parentheses to have them joined together.'

This only works with two literals though, not with variables or expressions:

>>> prefix = 'Py'
>>> prefix 'thon' # can't concatenate a variable and a string literal
File "<stdin>", line 1
prefix 'thon'

A

SyntaxError: invalid syntax

>>> ('un' * 3) 'ium'
File "<stdin>", line 1
('un' * 3) 'ium'

A

SyntaxError: invalid syntax

If you want to concatenate variables or a variable and a literal, use +:

>>> prefix + 'thon'
'Python'

Strings can be indexed (subscripted), with the first character having index 0. There is no separate character type; a
character is simply a string of size one:

>>> word = 'Python'

>>> word[0] # character in position 0
IPI

>>> word[5] # character in position 5
lnl

Indices may also be negative numbers, to start counting from the right:

>>> word[—1] # last character

lnl

>>> word[-2] # second-last character
'O'

>>> word[-6]

IPI

Note that since -0 is the same as 0, negative indices start from -1.

In addition to indexing, slicing is also supported. While indexing is used to obtain individual characters, slicing allows
you to obtain substring:

>>> word([0:2] # characters from position 0 (included) to 2 (excluded)
le'

(continues on next page)

12 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 3.9.14

(continued from previous page)

>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
'tho'

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the size
of the string being sliced.

>>> word[:2] # character from the beginning to position 2 (excluded)
IPy'

>>> word[4:] # characters from position 4 (included) to the end

lon'

>>> word[—-2:] # characters from the second-last (included) to the end
'OD'

Note how the start is always included, and the end always excluded. This makes sure that s[:1] + s[i:] is
always equal to s:

>>> word[:2] + word[2:]
'Python'
>>> word[:4] + word[4:]
'Python'

One way to remember how slices work is to think of the indices as pointing between characters, with the left edge of
the first character numbered 0. Then the right edge of the last character of a string of n characters has index n, for
example:

A T
[Pl vyl t | h| ol n|
e
0 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...6 in the string; the second row gives the corresponding
negative indices. The slice from i to j consists of all characters between the edges labeled i and j, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For example,
the length of word [1:3] is 2.

Attempting to use an index that is too large will result in an error:

>>> word[42] # the word only has 6 characters
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: string index out of range

However, out of range slice indexes are handled gracefully when used for slicing:

>>> word[4:42]
lon'
>>> word[42:]

T

Python strings cannot be changed — they are immutable. Therefore, assigning to an indexed position in the string
results in an error:

>>> word[0] = 'J'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment
>>> word[2:] = 'py'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

3.1. Using Python as a Calculator 13

Python Tutorial, Release 3.9.14

If you need a different string, you should create a new one:

>>> 'J' + word[l:]
'Jython'’

>>> word[:2] + 'py'
'"Pypy’

The built-in function 1en () returns the length of a string:

>>> 5 = 'supercalifragilisticexpialidocious'
>>> len (s)
34

See also:

textseq Strings are examples of sequence types, and support the common operations supported by such types.
string-methods Strings support a large number of methods for basic transformations and searching.
f-strings String literals that have embedded expressions.

formatstrings Information about string formatting with str. format ().

old-string-formatting The old formatting operations invoked when strings are the left operand of the % operator
are described in more detail here.

3.1.3 Lists

Python knows a number of compound data types, used to group together other values. The most versatile is the /ist,
which can be written as a list of comma-separated values (items) between square brackets. Lists might contain items
of different types, but usually the items all have the same type.

>>> squares = [1, 4, 9, 16, 25]
>>> squares
(1, 4, 9, 16, 25]

Like strings (and all other built-in sequence types), lists can be indexed and sliced:

>>> squares[0] # indexing returns the item

1

>>> squares|[—1]

25

>>> squares[—3:] # slicing returns a new 1ist
[9, 16, 25]

All slice operations return a new list containing the requested elements. This means that the following slice returns a
shallow copy of the list:

>>> squares|:]
(1, 4, 9, 16, 25]

Lists also support operations like concatenation:

>>> squares + [36, 49, 64, 81, 100]
(1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Unlike strings, which are immutable, lists are a mutable type, i.e. it is possible to change their content:

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here
>>> 4 ** 3 # the cube of 4 is 64, not 65!

64

>>> cubes[3] = 64 # replace the wrong value

(continues on next page)

14 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 3.9.14

(continued from previous page)

>>> cubes
(1, 8, 27, 64, 125]

You can also add new items at the end of the list, by using the append () method (we will see more about methods
later):

>>> cubes.append (216) # add the cube of 6
>>> cubes.append (7 ** 3) # and the cube of 7
>>> cubes

[1, 8, 27, 64, 125, 216, 343]

Assignment to slices is also possible, and this can even change the size of the list or clear it entirely:

>>> letters = ['a', 'b', 'c¢c', 'd', 'e', 'f', 'g']
>>> letters

[Val’ Vbl, VCV, YdV, YeV, lfY, lg!}

>>> # replace some values

>>> letters[2:5] = ['C', 'D', 'E']
>>> letters

[la', 'b', lCl, lD‘, 'E', lfl’ lgl:|
>>> # now remove them

>>> letters[2:5] = []

>>> letters

['a', 'B', "f', 'g']

>>> # clear the list by replacing all the elements with an empty 1list
>>> letters[:] = []

>>> letters

L]

The built-in function 1en () also applies to lists:

>>> letters = ['a', 'b', 'c', 'd']
>>> len(letters)
4

It is possible to nest lists (create lists containing other lists), for example:

>>> a = ['a', 'b', 'c'l]
>>>n = [1, 2, 3]

>>> x = [a,]

>>> x

[('a', "', 'c'l, [1, 2, 3]]
>>> x[0]

[Va', Vb', ’CV]
>>> x[0][1]
lbl

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of the Fibonacci series as follows:

>>> # Fibonaccl series:
the sum of two elements defines the next
a, b=20, 1
>>> while a < 10:
print (a)
a, b =D>b, atb

(continues on next page)

3.2. First Steps Towards Programming 15

https://en.wikipedia.org/wiki/Fibonacci_number

Python Tutorial, Release 3.9.14

(continued from previous page)

[coRNC INCVIEN VI i e

This example introduces several new features.

* The first line contains a multiple assignment: the variables a and b simultaneously get the new values 0 and 1.
On the last line this is used again, demonstrating that the expressions on the right-hand side are all evaluated
first before any of the assignments take place. The right-hand side expressions are evaluated from the left to
the right.

* The while loop executes as long as the condition (here: a < 10) remains true. In Python, like in C, any
non-zero integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequences are false. The test used in the example is a simple
comparison. The standard comparison operators are written the same as in C: < (less than), > (greater than),
== (equal to), <= (less than or equal to), >= (greater than or equal to) and ! = (not equal to).

¢ The body of the loop is indented: indentation is Python’s way of grouping statements. At the interactive prompt,
you have to type a tab or space(s) for each indented line. In practice you will prepare more complicated input
for Python with a text editor; all decent text editors have an auto-indent facility. When a compound statement
is entered interactively, it must be followed by a blank line to indicate completion (since the parser cannot
guess when you have typed the last line). Note that each line within a basic block must be indented by the
same amount.

e Theprint () function writes the value of the argument(s) it is given. It differs from just writing the expression

you want to write (as we did earlier in the calculator examples) in the way it handles multiple arguments, floating
point quantities, and strings. Strings are printed without quotes, and a space is inserted between items, so you
can format things nicely, like this:

>>> i = 256*256
>>> print ('The value of i is', 1)
The value of i is 65536

The keyword argument end can be used to avoid the newline after the output, or end the output with a different
string:

>>> a, b =0, 1

>>> while a < 1000:
print(a, end=',")
a, b ="D>b, atb

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,

16

Chapter 3. An Informal Introduction to Python

CHAPTER
FOUR

MORE CONTROL FLOW TOOLS

Besides the while statement just introduced, Python uses the usual flow control statements known from other lan-
guages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is the i f statement. For example:

>>> x = int (input ("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:

x = 0

print ('Negative changed to zero')
elif x ==

print ('Zero'")
elif x ==

print ('Single')
else:

print ('More')

More

There can be zero or more e11 f parts, and the e 1 se part is optional. The keyword ‘e11 £’ is short for ‘else if’, and
is useful to avoid excessive indentation. An 1f ... elif ... elif ... sequence is a substitute for the switch or
case statements found in other languages.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating
over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration
step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a list or a string),
in the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
words = ['cat', 'window', 'defenestrate']
>>> for w in words:
print (w, len(w))
cat 3
window 6
defenestrate 12

Code that modifies a collection while iterating over that same collection can be tricky to get right. Instead, it is usually
more straight-forward to loop over a copy of the collection or to create a new collection:

17

Python Tutorial, Release 3.9.14

Strateqgy: Iterate over a copy
for user, status in users.copy () .items{():
if status == 'inactive':
del users[user]

Strategy: Create a new collection
active_users = {}
for user, status in users.items () :
if status == 'active':
active_users[user] = status

4.3 The range () Function

If you do need to iterate over a sequence of numbers, the built-in function range () comes in handy. It generates
arithmetic progressions:

>>> for i in range(5):
print (i)

s w N e O

The given end point is never part of the generated sequence; range (10) generates 10 values, the legal indices for
items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the ‘step’):

>>> list (range (5, 10))
[5, 6, 7, 8, 9]

>>> list (range (0, 10, 3))
[0, 3, 6, 9]

>>> list (range(-10, -100, -30))
[-10, —-40, -70]

To iterate over the indices of a sequence, you can combine range () and len () as follows:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i1 in range(len(a)):
print (i, alil)

0 Mary

1 had

2 a

3 little
4 lamb

In most such cases, however, it is convenient to use the enumerate () function, see Looping Techniques.

A strange thing happens if you just print a range:

>>> range (10)
range (0, 10)

In many ways the object returned by range () behaves as if it is a list, but in fact it isn’t. It is an object which returns
the successive items of the desired sequence when you iterate over it, but it doesn’t really make the list, thus saving
space.

18 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.9.14

We say such an object is iterable, that is, suitable as a target for functions and constructs that expect something from
which they can obtain successive items until the supply is exhausted. We have seen that the for statement is such a
construct, while an example of a function that takes an iterable is sum () :

>>> sum(range (4)) # 0+ 1 + 2 + 3
6

Later we will see more functions that return iterables and take iterables as arguments. In chapter Data Structures, we
will discuss in more detail about 1ist ().

4.4 break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the innermost enclosing for or while loop.

Loop statements may have an e 1 se clause; it is executed when the loop terminates through exhaustion of the iterable
(with for) or when the condition becomes false (with while), but not when the loop is terminated by a break
statement. This is exemplified by the following loop, which searches for prime numbers:

>>> for n in range (2, 10):
for x in range (2, n):
if n % x ==
print (n, 'equals', x, '*', n//x)
break
else:
loop fell through without finding a factor

print(n, 'is a prime number')

is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

O 00 J o U W N .

(Yes, this is the correct code. Look closely: the e 1 se clause belongs to the for loop, not the i f statement.)

When used with a loop, the e1se clause has more in common with the e1se clause of a t ry statement than it does
with that of i f statements: a t ry statement’s e 1 se clause runs when no exception occurs, and a loop’s e 1 se clause
runs when no break occurs. For more on the t ry statement and exceptions, see Handling Exceptions.

The cont inue statement, also borrowed from C, continues with the next iteration of the loop:

>>> for num in range (2, 10):
if num % 2 ==
print ("Found an even number", num)
continue

print ("Found an odd number", num)

Found an even number 2
Found an odd number 3
Found an even number 4
Found an odd number 5
Found an even number 6
Found an odd number 7
Found an even number 8
Found an odd number 9

4.4. break and continue Statements, and else Clauses on Loops 19

Python Tutorial, Release 3.9.14

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program requires
no action. For example:

>>> while True:
pass # Busy-wait for keyboard interrupt (Ctrl+C)

This is commonly used for creating minimal classes:

>>> class MyEmptyClass:
pass

Another place pass can be used is as a place-holder for a function or conditional body when you are working on
new code, allowing you to keep thinking at a more abstract level. The pass is silently ignored:

>>> def initlog(*args):
pass # Remember to implement this!

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
"""Print a Fibonacci series up to n."""
a, b=20, 1
while a < n:
print (a, end=" ")
a, b =Db, atb
print ()

>>> # Now call the function we just defined:
£ib (2000)
0112358 13 21 34 55 89 144 233 377 610 987 1597

The keyword de f introduces a function definition. It must be followed by the function name and the parenthesized list
of formal parameters. The statements that form the body of the function start at the next line, and must be indented.

The first statement of the function body can optionally be a string literal; this string literal is the function’s documen-
tation string, or docstring. (More about docstrings can be found in the section Documentation Strings.) There are
tools which use docstrings to automatically produce online or printed documentation, or to let the user interactively
browse through code; it’s good practice to include docstrings in code that you write, so make a habit of it.

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely,
all variable assignments in a function store the value in the local symbol table; whereas variable references first look
in the local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and
finally in the table of built-in names. Thus, global variables and variables of enclosing functions cannot be directly
assigned a value within a function (unless, for global variables, named in a global statement, or, for variables of
enclosing functions, named in a nonlocal statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not
the value of the object).! When a function calls another function, or calls itself recursively, a new local symbol table
is created for that call.

! Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee
makes to it (items inserted into a list).

20 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.9.14

A function definition associates the function name with the function object in the current symbol table. The interpreter
recognizes the object pointed to by that name as a user-defined function. Other names can also point to that same
function object and can also be used to access the function:

>>> fib

<function fib at 10042ed0>
>>> f = fib

>>> £(100)

0112358 13 21 34 55 89

Coming from other languages, you might object that £ib is not a function but a procedure since it doesn’t return a
value. In fact, even functions without a ret urn statement do return a value, albeit a rather boring one. This value
is called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be
the only value written. You can see it if you really want to using print () :

>>> fib (0)
>>> print (£ib(0))
None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
"""Return a list containing the Fibonacci series up to n."""
result = []
a, b =20, 1
while a < n:
result.append(a) # see below
a, b =Db, atb
return result

>>> f100 = f£ib2(100) # call it
>>> £100 # write the result
(o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

e The return statement returns with a value from a function. return without an expression argument returns
None. Falling off the end of a function also returns None.

* The statement result .append (a) calls a method of the list object result. A method is a function
that ‘belongs’ to an object and is named obj.methodname, where obj is some object (this may be an
expression), and methodname is the name of a method that is defined by the object’s type. Different types
define different methods. Methods of different types may have the same name without causing ambiguity. (It
is possible to define your own object types and methods, using classes, see Classes) The method append ()
shown in the example is defined for list objects; it adds a new element at the end of the list. In this example it
is equivalent to result = result + [a], but more efficient.

4.6. Defining Functions 21

Python Tutorial, Release 3.9.14

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be
called with fewer arguments than it is defined to allow. For example:

def ask_ok (prompt, retries=4, reminder='Please try again!'):
while True:
ok = input (prompt)
if ok in ('y', 'ye', 'yes'):
return True

if ok in ('n', 'no', 'nop', 'nope'):
return False
retries = retries - 1

if retries < O:
raise ValueError ('invalid user response')
print (reminder)

This function can be called in several ways:
* giving only the mandatory argument: ask_ok ('Do you really want to quit?')
* giving one of the optional arguments: ask_ok ('OK to overwrite the file?', 2)

e or even giving all arguments: ask_ok ('OK to overwrite the file?', 2, 'Come on,
only yes or no!'")

This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.

The default values are evaluated at the point of function definition in the defining scope, so that

i=5

def f(arg=1i):
print (arg)

will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable
object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print (£(1))
print (£(2))
print (£(3))
This will print
[11]

[1, 2]

[1, 2, 3]

22 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.9.14

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f (a, L=None):
if L is None:
L =11
L.append (a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form kwarg=value. For instance, the following
function:

def parrot (voltage, state='a stiff', action='voom', type='Norwegian Blue'):

print ("-- This parrot wouldn't", action, end=' ")
print ("if you put", voltage, "volts through it.")
print ("-- Lovely plumage, the", type)

print ("-— It's", state, "I!")

accepts one required argument (voltage) and three optional arguments (state, action, and type). This
function can be called in any of the following ways:

parrot (1000) # 1 positional argument
parrot (voltage=1000) # 1 keyword argument
parrot (voltage=1000000, action='VOOOOOM") # 2 keyword arguments
parrot (action="'VOOOOOM', voltage=1000000) # 2 keyword arguments
parrot('a million', 'bereft of life', '"jump') # 3 positional arguments
parrot ('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword

but all the following calls would be invalid:

parrot () # required argument missing

parrot (voltage=5.0, 'dead') # non-keyword argument after a keyword argument
parrot (110, voltage=220) # duplicate value for the same argument
#

parrot (actor="John Cleese') unknown keyword argument

In a function call, keyword arguments must follow positional arguments. All the keyword arguments passed must
match one of the arguments accepted by the function (e.g. actor is not a valid argument for the parrot function),
and their order is not important. This also includes non-optional arguments (e.g. parrot (voltage=1000) is
valid too). No argument may receive a value more than once. Here’s an example that fails due to this restriction:

>>> def function(a):
pass

>>> function (0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: function() got multiple values for argument 'a'

When a final formal parameter of the form * * name is present, it receives a dictionary (see typesmapping) containing
all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal
parameter of the form *name (described in the next subsection) which receives a fuple containing the positional
arguments beyond the formal parameter list. (*name must occur before * *name.) For example, if we define a
function like this:

def cheeseshop(kind, *arguments, **keywords):

print ("-- Do you have any", kind, "?")
print ("-- I'm sorry, we're all out of", kind)
for arg in arguments:

print (arg)

(continues on next page)

4.7. More on Defining Functions 23

Python Tutorial, Release 3.9.14

(continued from previous page)

print ("-" * 40)
for kw in keywords:
print (kw, ":", keywords[kw])

It could be called like this:

cheeseshop ("Limburger", "It's very runny, sir.",
"It's really very, VERY runny, sir.",
shopkeeper="Michael Palin",
client="John Cleese",
sketch="Cheese Shop Sketch")

and of course it would print:

—-— Do you have any Limburger ?

-—— I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.
shopkeeper : Michael Palin

client : John Cleese

sketch : Cheese Shop Sketch

Note that the order in which the keyword arguments are printed is guaranteed to match the order in which they were
provided in the function call.

4.7.3 Special parameters

By default, arguments may be passed to a Python function either by position or explicitly by keyword. For readability
and performance, it makes sense to restrict the way arguments can be passed so that a developer need only look at
the function definition to determine if items are passed by position, by position or keyword, or by keyword.

A function definition may look like:

def f(posl, pos2, /, pos_or_kwd, *, kwdl, kwd2):

| Positional or keyword
| - Keyword only
—-— Positional only

where / and * are optional. If used, these symbols indicate the kind of parameter by how the arguments may be passed
to the function: positional-only, positional-or-keyword, and keyword-only. Keyword parameters are also referred to
as named parameters.

Positional-or-Keyword Arguments

If / and * are not present in the function definition, arguments may be passed to a function by position or by keyword.

24 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.9.14

Positional-Only Parameters
Looking at this in a bit more detail, it is possible to mark certain parameters as positional-only. If positional-only, the
parameters’ order matters, and the parameters cannot be passed by keyword. Positional-only parameters are placed

before a / (forward-slash). The / is used to logically separate the positional-only parameters from the rest of the
parameters. If there is no / in the function definition, there are no positional-only parameters.

Parameters following the / may be positional-or-keyword or keyword-only.
Keyword-Only Arguments

To mark parameters as keyword-only, indicating the parameters must be passed by keyword argument, place an * in
the arguments list just before the first keyword-only parameter.

Function Examples

Consider the following example function definitions paying close attention to the markers / and *:

>>> def standard_arg(arg):
print (arg)

>>> def pos_only_arg(arg, /):
print (arg)

>>> def kwd_only_arg(*, argqg):
print (arg)

>>> def combined_example (pos_only, /, standard, *, kwd_only):
print (pos_only, standard, kwd_only)

The first function definition, st andard_ arg, the most familiar form, places no restrictions on the calling convention
and arguments may be passed by position or keyword:

>>> standard_arg(2)
2

>>> standard_arg(arg=2)
2

The second function pos_only_arg is restricted to only use positional parameters as there is a / in the function
definition:

>>> pos_only_arg (1)
1

>>> pos_only_arg(arg=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: pos_only_arg() got some positional-only arguments passed as keyword.
—arguments: 'arg'

The third function kwd_only_args only allows keyword arguments as indicated by a * in the function definition:

>>> kwd_only_arg(3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: kwd_only_arg() takes 0 positional arguments but 1 was given

>>> kwd_only_arg(arg=3)
3

4.7. More on Defining Functions 25

Python Tutorial, Release 3.9.14

And the last uses all three calling conventions in the same function definition:

>>> combined_example (1, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: combined_example () takes 2 positional arguments but 3 were given

>>> combined_example (1, 2, kwd_only=3)
123

>>> combined_example (1, standard=2, kwd_only=3)
123

>>> combined_example (pos_only=1, standard=2, kwd_only=3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: combined_example () got some positional-only arguments passed as keyword.
—arguments: 'pos_only'

Finally, consider this function definition which has a potential collision between the positional argument name and
**kwds which has name as a key:

def foo (name, **kwds):

return 'name' in kwds

There is no possible call that will make it return True as the keyword ' name ' will always bind to the first parameter.
For example:

>>> foo(l, **{'name': 2})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: foo() got multiple values for argument 'name'
>>>

But using / (positional only arguments), it is possible since it allows name as a positional argument and 'name ' as
a key in the keyword arguments:

def foo(name, /, **kwds):

return 'name' in kwds
>>> foo (1, **{'name': 2})
True

In other words, the names of positional-only parameters can be used in * *kwds without ambiguity.

Recap

The use case will determine which parameters to use in the function definition:

def f (posl, pos2, /, pos_or_kwd, *, kwdl, kwd2):

As guidance:

* Use positional-only if you want the name of the parameters to not be available to the user. This is useful when
parameter names have no real meaning, if you want to enforce the order of the arguments when the function
is called or if you need to take some positional parameters and arbitrary keywords.

* Use keyword-only when names have meaning and the function definition is more understandable by being
explicit with names or you want to prevent users relying on the position of the argument being passed.

¢ For an API, use positional-only to prevent breaking API changes if the parameter’s name is modified in the
future.

26 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.9.14

4.7.4 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of argu-
ments. These arguments will be wrapped up in a tuple (see Tuples and Sequences). Before the variable number of
arguments, zero or more normal arguments may occur.

def write_multiple_items (file, separator, *args):
file.write (separator.join(args))

Normally, these variadic arguments will be last in the list of formal parameters, because they scoop up all remaining
input arguments that are passed to the function. Any formal parameters which occur after the *args parameter are
‘keyword-only’ arguments, meaning that they can only be used as keywords rather than positional arguments.

>>> def concat (*args, sep="/"):
return sep.join (args)

>>> concat ("earth", "mars", "venus")
'earth/mars/venus'

>>> concat ("earth", "mars", "venus", sep=".")
'earth.mars.venus'

4.7.5 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the built-in range () function expects separate start
and stop arguments. If they are not available separately, write the function call with the *-operator to unpack the
arguments out of a list or tuple:

>>> list (range (3, 6)) # normal call with separate arguments

[3, 4, 5]

>>> args = [3, 6]

>>> list (range(*args)) # call with arguments unpacked from a list
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the * *-operator:

>>> def parrot (voltage, state='a stiff', action='voom'):

print ("-- This parrot wouldn't", action, end=' ")
print ("if you put", voltage, "volts through it.", end=' ")
print ("E's", state, "I!")
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}

>>> parrot (**d)
—— This parrot wouldn't VOOM if you put four million volts through it. E's bleedin
— ' demised !

4.7.6 Lambda Expressions

Small anonymous functions can be created with the 1ambda keyword. This function returns the sum of its two
arguments: lambda a, b: a+b. Lambda functions can be used wherever function objects are required. They
are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function
definition. Like nested function definitions, lambda functions can reference variables from the containing scope:

>>> def make_incrementor (n) :
return lambda x: x + n

>>> f = make_incrementor (42)
>>> £ (0)

(continues on next page)

4.7. More on Defining Functions 27

Python Tutorial, Release 3.9.14

(continued from previous page)

42
>>> f (1)
43

The above example uses a lambda expression to return a function. Another use is to pass a small function as an
argument:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort (key=lambda pair: pair[1])

>>> pairs

[(4, '"four'), (1, 'one'), (3, 'three'), (2, 'two')]

4.7.7 Documentation Strings

Here are some conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly
state the object’s name or type, since these are available by other means (except if the name happens to be a verb
describing a function’s operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the summary
from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documen-
tation have to strip indentation if desired. This is done using the following convention. The first non-blank line after
the first line of the string determines the amount of indentation for the entire documentation string. (We can’t use
the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string
literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of the string. Lines that
are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of
whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
"""Do nothing, but document it.

No, really, it doesn't do anything.
mrmrn

pass

>>> print (my_function._ doc_)
Do nothing, but document it.

No, really, it doesn't do anything.

4.7.8 Function Annotations

Function annotations are completely optional metadata information about the types used by user-defined functions
(see PEP 3107 and PEP 484 for more information).

Annotations are stored in the __annotations___ attribute of the function as a dictionary and have no effect on
any other part of the function. Parameter annotations are defined by a colon after the parameter name, followed by
an expression evaluating to the value of the annotation. Return annotations are defined by a literal —>, followed by an
expression, between the parameter list and the colon denoting the end of the de f statement. The following example
has a required argument, an optional argument, and the return value annotated:

28 Chapter 4. More Control Flow Tools

https://www.python.org/dev/peps/pep-3107
https://www.python.org/dev/peps/pep-0484

Python Tutorial, Release 3.9.14

>>> def f (ham: str, eggs: str = 'eggs') —-> str:
print ("Annotations:", f.__annotations__)
print ("Arguments:", ham, eggs)
return ham + ' and ' + eggs

>>> f ('spam')

Annotations: {'ham': <class 'str'>, 'return': <class 'str'>, 'eggs': <class 'str'>}
Arguments: spam eggs

'spam and eggs'

4.8 Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style.
Most languages can be written (or more concise, formatted) in different styles; some are more readable than others.
Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously
for that.

For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and
eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points
extracted for you:

» Use 4-space indentation, and no tabs.

4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation
(easier to read). Tabs introduce confusion, and are best left out.

* Wrap lines so that they don’t exceed 79 characters.

This helps users with small displays and makes it possible to have several code files side-by-side on larger
displays.

 Use blank lines to separate functions and classes, and larger blocks of code inside functions.
* When possible, put comments on a line of their own.
* Use docstrings.

 Use spaces around operators and after commas, but not directly inside bracketing constructs: a = £ (1, 2)
+ 9(3, 4).

* Name your classes and functions consistently; the convention is to use UpperCamelCase for classes and
lowercase_with_underscores for functions and methods. Always use se1f as the name for the first
method argument (see A First Look at Classes for more on classes and methods).

* Don’t use fancy encodings if your code is meant to be used in international environments. Python’s default,
UTF-8, or even plain ASCII work best in any case.

 Likewise, don’t use non-ASCII characters in identifiers if there is only the slightest chance people speaking a
different language will read or maintain the code.

4.8. Intermezzo: Coding Style 29

https://www.python.org/dev/peps/pep-0008

Python Tutorial, Release 3.9.14

30

Chapter 4. More Control Flow Tools

CHAPTER
FIVE

DATA STRUCTURES

This chapter describes some things you've learned about already in more detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

list.append (x)
Add an item to the end of the list. Equivalentto a[len (a) :] = [x].

list.extend (iterable)
Extend the list by appending all the items from the iterable. Equivalentto a[len (a) :] = iterable.

list.insert (i, x)
Insert an item at a given position. The first argument is the index of the element before which to insert,
so a.insert (0, x) inserts at the front of the list, and a.insert (len(a), x) isequivalentto a.
append (x).

list.remove (x)
Remove the first item from the list whose value is equal to x. It raises a ValueError if there is no such item.

list.pop([i])
Remove the item at the given position in the list, and return it. If no index is specified, a . pop () removes
and returns the last item in the list. (The square brackets around the i in the method signature denote that
the parameter is optional, not that you should type square brackets at that position. You will see this notation
frequently in the Python Library Reference.)

list.clear ()
Remove all items from the list. Equivalent to del af[:].

list.index (x[, start[, end]])
Return zero-based index in the list of the first item whose value is equal to x. Raises a ValueError if there
is no such item.

The optional arguments start and end are interpreted as in the slice notation and are used to limit the search
to a particular subsequence of the list. The returned index is computed relative to the beginning of the full
sequence rather than the start argument.

list.count (x)
Return the number of times x appears in the list.

list.sort (* key=None, reverse=False)
Sort the items of the list in place (the arguments can be used for sort customization, see sorted () for their
explanation).

list.reverse ()
Reverse the elements of the list in place.

list.copy ()
Return a shallow copy of the list. Equivalenttoa[:].

31

Python Tutorial, Release 3.9.14

An example that uses most of the list methods:

>>> fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
>>> fruits.count ('apple')

2

>>> fruits.count ('tangerine')

0

>>> fruits.index ('banana')

3

>>> fruits.index ('banana', 4) # Find next banana starting a position 4

6

>>> fruits.reverse ()

>>> fruits

['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange']

>>> fruits.append('grape')

>>> fruits

['"banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange', 'grape']
>>> fruits.sort ()

>>> fruits

["apple', 'apple', 'banana', 'banana', 'grape', 'kiwi', 'orange', 'pear']
>>> fruits.pop ()

'pear’

You might have noticed that methods like insert, remove or sort that only modify the list have no return value
printed — they return the default None.! This is a design principle for all mutable data structures in Python.

Another thing you might notice is that not all data can be sorted or compared. For instance, [None, 'hello',
1017 doesn’t sort because integers can’t be compared to strings and None can’t be compared to other types. Also, there
are some types that don’t have a defined ordering relation. For example, 3+4j < 5+77 isn’t a valid comparison.

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stack, use append () . To retrieve an item from the top of the
stack, use pop () without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack

[3, 4, 5, 6, 7]

>>> stack.pop ()

>>> stack
[3, 4, 5, 6]
>>> stack.pop ()

>>> stack.pop ()

>>> stack
[3, 4]

'Oﬂwrhngmgesnmyrmunnhemum&do@ém,whkhaﬂowsnwﬂmdchﬁnhg,mmhasd—>insert("a")—>remove("b")—>sort();

32 Chapter 5. Data Structures

Python Tutorial, Release 3.9.14

5.1.2 Using Lists as Queues

It is also possible to use a list as a queue, where the first element added is the first element retrieved (“first-in, first-
out”); however, lists are not efficient for this purpose. While appends and pops from the end of list are fast, doing
inserts or pops from the beginning of a list is slow (because all of the other elements have to be shifted by one).

To implement a queue, use collections.deque which was designed to have fast appends and pops from both
ends. For example:

>>> from collections import deque

>>> queue = deque (["Eric", "John", "Michael"])

>>> queue.append ("Terry") # Terry arrives

>>> queue.append ("Graham™) # Graham arrives

>>> queue.popleft () # The first to arrive now leaves
'Eric'

>>> queue.popleft () # The second to arrive now leaves
'John'

>>> queue # Remaining queue in order of arrival
deque (['Michael', 'Terry', 'Graham'])

5.1.3 List Comprehensions

List comprehensions provide a concise way to create lists. Common applications are to make new lists where each
element is the result of some operations applied to each member of another sequence or iterable, or to create a
subsequence of those elements that satisfy a certain condition.

For example, assume we want to create a list of squares, like:

>>> squares []
for x in range(10):

squares.append (x**2)

>>>

>>>
[O,

squares

1, 4, 9, 16, 25, 36, 49, 64, 81]

Note that this creates (or overwrites) a variable named x that still exists after the loop completes. We can calculate
the list of squares without any side effects using:

squares list (map(lambda x: x**2, range(10)))

or, equivalently:

squares [x**2 for x in range (10)]

which is more concise and readable.

A list comprehension consists of brackets containing an expression followed by a for clause, then zero or more for
or if clauses. The result will be a new list resulting from evaluating the expression in the context of the for and i f
clauses which follow it. For example, this listcomp combines the elements of two lists if they are not equal:

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[, 3y, (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]
and it’s equivalent to:
>>> combs = []
>>> for x in [1,2,3]:
for y in [3,1,4]:
if x !I=vy:
combs.append ((x, y))

(continues on next page)

5.1. More on Lists 33

Python Tutorial, Release 3.9.14

(continued from previous page)

>>> combs
[, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

Note how the order of the for and if statements is the same in both these snippets.

If the expression is a tuple (e.g. the (x, y) in the previous example), it must be