
What’s New in Python
Release 3.9.0a3

A. M. Kuchling

February 25, 2020
Python Software Foundation

Email: docs@python.org

Contents

1 Summary – Release highlights 2

2 New Features 2

3 Other Language Changes 2

4 New Modules 2

5 Improved Modules 3
5.1 ast . 3
5.2 asyncio . 3
5.3 concurrent.futures . 3
5.4 curses . 3
5.5 fcntl . 3
5.6 ftplib . 3
5.7 functools . 4
5.8 gc . 4
5.9 imaplib . 4
5.10 importlib . 4
5.11 math . 4
5.12 nntplib . 4
5.13 os . 5
5.14 pathlib . 5
5.15 poplib . 5
5.16 pprint . 5
5.17 signal . 5
5.18 smtplib . 5
5.19 threading . 5
5.20 typing . 6
5.21 venv . 6

6 Optimizations 6

7 Build and C API Changes 6

8 Deprecated 7

9 Removed 8

1

10 Porting to Python 3.9 9
10.1 Changes in the Python API . 9
10.2 CPython bytecode changes . 9

Index 10

Release 3.9.0a3
Date February 25, 2020

This article explains the new features in Python 3.9, compared to 3.8.
For full details, see the changelog.

Note: Prerelease users should be aware that this document is currently in draft form. It will be updated substantially
as Python 3.9 moves towards release, so it’s worth checking back even after reading earlier versions.

1 Summary – Release highlights

2 New Features

3 Other Language Changes

• __import__() now raises ImportError instead of ValueError, which used to occur when a relative
import went past its top-level package. (Contributed by Ngalim Siregar in bpo-37444.)

• Python now gets the absolute path of the script filename specified on the command line (ex: python3
script.py): the __file__ attribute of the __main__ module and sys.path[0] become an ab-
solute path, rather than a relative path. These paths now remain valid after the current directory is changed by
os.chdir(). As a side effect, a traceback also displays the absolute path for __main__ module frames
in this case. (Contributed by Victor Stinner in bpo-20443.)

• In the Python Development Mode and in debug build, the encoding and errors arguments are now checked for
string encoding and decoding operations. Examples: open(), str.encode() and bytes.decode().
By default, for best performance, the errors argument is only checked at the first encoding/decoding error and
the encoding argument is sometimes ignored for empty strings. (Contributed by Victor Stinner in bpo-37388.)

• "".replace("", s, n) now returns s instead of an empty string for all non-zero n. It is now consistent
with "".replace("", s). There are similar changes for bytes and bytearray objects. (Contributed
by Serhiy Storchaka in bpo-28029.)

4 New Modules

• None yet.

2

https://bugs.python.org/issue37444
https://bugs.python.org/issue20443
https://bugs.python.org/issue37388
https://bugs.python.org/issue28029

5 Improved Modules

5.1 ast

Added the indent option to dump() which allows it to produce a multiline indented output. (Contributed by Serhiy
Storchaka in bpo-37995.)
Added ast.unparse() as a function in the ast module that can be used to unparse an ast.AST object and
produce a string with code that would produce an equivalent ast.AST object when parsed. (Contributed by Pablo
Galindo and Batuhan Taskaya in bpo-38870.)

5.2 asyncio

Due to significant security concerns, the reuse_address parameter of asyncio.loop.
create_datagram_endpoint() is no longer supported. This is because of the behavior of
the socket option SO_REUSEADDR in UDP. For more details, see the documentation for loop.
create_datagram_endpoint(). (Contributed by Kyle Stanley, Antoine Pitrou, and Yury Selivanov
in bpo-37228.)
Added a new coroutine shutdown_default_executor() that schedules a shutdown for the default executor
that waits on the ThreadPoolExecutor to finish closing. Also, asyncio.run() has been updated to use the
new coroutine. (Contributed by Kyle Stanley in bpo-34037.)
Added asyncio.PidfdChildWatcher, a Linux-specific child watcher implementation that polls process file
descriptors. (bpo-38692)

5.3 concurrent.futures

Added a new cancel_futures parameter to concurrent.futures.Executor.shutdown() that cancels all
pending futures which have not started running, instead of waiting for them to complete before shutting down the
executor. (Contributed by Kyle Stanley in bpo-39349.)

5.4 curses

Add curses.get_escdelay(), curses.set_escdelay(), curses.get_tabsize(), and
curses.set_tabsize() functions. (Contributed by Anthony Sottile in bpo-38312.)

5.5 fcntl

Added constants F_OFD_GETLK, F_OFD_SETLK and F_OFD_SETLKW. (Contributed by Dong-hee Na in bpo-
38602.)

5.6 ftplib

FTP and FTP_TLS now raise a ValueError if the given timeout for their constructor is zero to prevent the
creation of a non-blocking socket. (Contributed by Dong-hee Na in bpo-39259.)

3

https://bugs.python.org/issue37995
https://bugs.python.org/issue38870
https://bugs.python.org/issue37228
https://bugs.python.org/issue34037
https://bugs.python.org/issue38692
https://bugs.python.org/issue39349
https://bugs.python.org/issue38312
https://bugs.python.org/issue38602
https://bugs.python.org/issue38602
https://bugs.python.org/issue39259

5.7 functools

Add thefunctools.TopologicalSorter class to offer functionality to perform topological sorting of graphs.
(Contributed by Pablo Galindo, Tim Peters and Larry Hastings in bpo-17005.)

5.8 gc

When the garbage collector makes a collection in which some objects resurrect (they are reachable from outside
the isolated cycles after the finalizers have been executed), do not block the collection of all objects that are still
unreachable. (Contributed by Pablo Galindo and Tim Peters in bpo-38379.)
Added a new function gc.is_finalized() to check if an object has been finalized by the garbage collector.
(Contributed by Pablo Galindo in bpo-39322.)

5.9 imaplib

IMAP4 and IMAP4_SSL now have an optional timeout parameter for their constructors. Also, the open()
method now has an optional timeout parameter with this change. The overridden methods of IMAP4_SSL and
IMAP4_stream were applied to this change. (Contributed by Dong-hee Na in bpo-38615.)

5.10 importlib

To improve consistency with import statements, importlib.util.resolve_name() now raises
ImportError instead of ValueError for invalid relative import attempts. (Contributed by Ngalim
Siregar in bpo-37444.)

5.11 math

Expanded the math.gcd() function to handle multiple arguments. Formerly, it only supported two arguments.
(Contributed by Serhiy Storchaka in bpo-39648.)
Add math.lcm(): return the least common multiple of specified arguments. (Contributed by Mark Dickinson,
Ananthakrishnan and Serhiy Storchaka in bpo-39479 and bpo-39648.)
Add math.nextafter(): return the next floating-point value after x towards y. (Contributed by Victor Stinner
in bpo-39288.)
Add math.ulp(): return the value of the least significant bit of a float. (Contributed by Victor Stinner in bpo-
39310.)

5.12 nntplib

NNTP and NNTP_SSL now raise a ValueError if the given timeout for their constructor is zero to prevent the
creation of a non-blocking socket. (Contributed by Dong-hee Na in bpo-39259.)

4

https://bugs.python.org/issue17005
https://bugs.python.org/issue38379
https://bugs.python.org/issue39322
https://bugs.python.org/issue38615
https://bugs.python.org/issue37444
https://bugs.python.org/issue39648
https://bugs.python.org/issue39479
https://bugs.python.org/issue39648
https://bugs.python.org/issue39288
https://bugs.python.org/issue39310
https://bugs.python.org/issue39310
https://bugs.python.org/issue39259

5.13 os

Added CLD_KILLED and CLD_STOPPED for si_code. (Contributed by Dong-hee Na in bpo-38493.)
Exposed the Linux-specific os.pidfd_open() (bpo-38692) and os.P_PIDFD (bpo-38713) for process man-
agement with file descriptors.
The os.unsetenv() function is now also available on Windows. (Contributed by Victor Stinner in bpo-39413.)
The os.putenv() and os.unsetenv() functions are now always available. (Contributed by Victor Stinner in
bpo-39395.)

5.14 pathlib

Added pathlib.Path.readlink() which acts similarly to os.readlink(). (Contributed by Girts Folk-
manis in bpo-30618)

5.15 poplib

POP3 and POP3_SSL now raise a ValueError if the given timeout for their constructor is zero to prevent the
creation of a non-blocking socket. (Contributed by Dong-hee Na in bpo-39259.)

5.16 pprint

pprint can now pretty-print types.SimpleNamespace. (Contributed by Carl Bordum Hansen in bpo-
37376.)

5.17 signal

Exposed the Linux-specific signal.pidfd_send_signal() for sending to signals to a process using a file
descriptor instead of a pid. (bpo-38712)

5.18 smtplib

SMTP and SMTP_SSL now raise a ValueError if the given timeout for their constructor is zero to prevent the
creation of a non-blocking socket. (Contributed by Dong-hee Na in bpo-39259.)
LMTP constructor now has an optional timeout parameter. (Contributed by Dong-hee Na in bpo-39329.)

5.19 threading

In a subinterpreter, spawning a daemon thread now raises a RuntimeError. Daemon threads were never supported
in subinterpreters. Previously, the subinterpreter finalization crashed with a Python fatal error if a daemon thread was
still running. (Contributed by Victor Stinner in bpo-37266.)

5

https://bugs.python.org/issue38493
https://bugs.python.org/issue38692
https://bugs.python.org/issue38713
https://bugs.python.org/issue39413
https://bugs.python.org/issue39395
https://bugs.python.org/issue30618
https://bugs.python.org/issue39259
https://bugs.python.org/issue37376
https://bugs.python.org/issue37376
https://bugs.python.org/issue38712
https://bugs.python.org/issue39259
https://bugs.python.org/issue39329
https://bugs.python.org/issue37266

5.20 typing

PEP 593 introduced an typing.Annotated type to decorate existing types with context-specific metadata and
new include_extras parameter to typing.get_type_hints() to access the metadata at runtime. (Con-
tributed by Till Varoquaux and Konstantin Kashin.)

5.21 venv

The activation scripts provided by venv now all specify their prompt customization consistently by always using the
value specified by __VENV_PROMPT__. Previously some scripts unconditionally used __VENV_PROMPT__, oth-
ers only if it happened to be set (which was the default case), and one used __VENV_NAME__ instead. (Contributed
by Brett Cannon in bpo-37663.)

6 Optimizations

• Optimized the idiom for assignment a temporary variable in comprehensions. Now for y in [expr] in
comprehensions is as fast as a simple assignment y = expr. For example:

sums = [s for s in [0] for x in data for s in [s + x]]
Unlike to the := operator this idiom does not leak a variable to the outer scope.
(Contributed by Serhiy Storchaka in bpo-32856.)

7 Build and C API Changes

• Add a new public PyObject_CallNoArgs() function to the C API, which calls a callable Python object
without any arguments. It is the most efficient way to call a callable Python object without any argument.
(Contributed by Victor Stinner in bpo-37194.)

• The global variable PyStructSequence_UnnamedField is now a constant and refers to a constant
string. (Contributed by Serhiy Storchaka in bpo-38650.)

• Exclude PyFPE_START_PROTECT() and PyFPE_END_PROTECT() macros of pyfpe.h from
Py_LIMITED_API (stable API). (Contributed by Victor Stinner in bpo-38835.)

• Remove PyMethod_ClearFreeList() and PyCFunction_ClearFreeList() functions: the
free lists of bound method objects have been removed. (Contributed by Inada Naoki and Victor Stinner in
bpo-37340.)

• Remove PyUnicode_ClearFreeList() function: the Unicode free list has been removed in Python
3.3. (Contributed by Victor Stinner in bpo-38896.)

• The tp_print slot of PyTypeObject has been removed. It was used for printing objects to files in Python 2.7
and before. Since Python 3.0, it has been ignored and unused. (Contributed by Jeroen Demeyer in bpo-36974.)

• On non-Windows platforms, the setenv() and unsetenv() functions are now required to build Python.
(Contributed by Victor Stinner in bpo-39395.)

• The COUNT_ALLOCS special build macro has been removed. (Contributed by Victor Stinner in bpo-39489.)
• Changes in the limited C API (if Py_LIMITED_API macro is defined):

– Provide Py_EnterRecursiveCall() and Py_LeaveRecursiveCall() as regular functions
for the limited API. Previously, there were defined as macros, but these macros didn’t compile with the
limited C API which cannot access PyThreadState.recursion_depth field (the structure is
opaque in the limited C API).

– Exclude the following functions from the limited C API:
∗ _Py_CheckRecursionLimit

6

https://www.python.org/dev/peps/pep-0593
https://bugs.python.org/issue37663
https://bugs.python.org/issue32856
https://bugs.python.org/issue37194
https://bugs.python.org/issue38650
https://bugs.python.org/issue38835
https://bugs.python.org/issue37340
https://bugs.python.org/issue38896
https://bugs.python.org/issue36974
https://bugs.python.org/issue39395
https://bugs.python.org/issue39489

∗ _Py_NewReference()
∗ _Py_ForgetReference()
∗ _PyTraceMalloc_NewReference()
∗ _Py_GetRefTotal()
∗ The trashcan mechanism which never worked in the limited C API.
∗ PyTrash_UNWIND_LEVEL
∗ Py_TRASHCAN_BEGIN_CONDITION
∗ Py_TRASHCAN_BEGIN
∗ Py_TRASHCAN_END
∗ Py_TRASHCAN_SAFE_BEGIN
∗ Py_TRASHCAN_SAFE_END

– The following static inline functions or macros become regular “opaque” function to hide implementation
details:
∗ _Py_NewReference()
∗ PyObject_INIT() and PyObject_INIT_VAR() become aliases to PyObject_Init()
and PyObject_InitVar() in the limited C API, but are overriden with static inline function
otherwise. Thanks to that, it was possible to exclude _Py_NewReference() from the limited
C API.

– Move following functions and definitions to the internal C API:
∗ _PyDebug_PrintTotalRefs()
∗ _Py_PrintReferences()
∗ _Py_PrintReferenceAddresses()
∗ _Py_tracemalloc_config
∗ _Py_AddToAllObjects() (specific to Py_TRACE_REFS build)

(Contributed by Victor Stinner in bpo-38644 and bpo-39542.)

8 Deprecated

• The distutils bdist_msi command is now deprecated, use bdist_wheel (wheel packages) instead. (Con-
tributed by Hugo van Kemenade in bpo-39586.)

• Currently math.factorial() accepts float instances with non-negative integer values (like 5.0). It
raises a ValueError for non-integral and negative floats. It is now deprecated. In future Python versions it
will raise a TypeError for all floats. (Contributed by Serhiy Storchaka in bpo-37315.)

• The parser module is deprecated and will be removed in future versions of Python. For the majority of
use cases, users can leverage the Abstract Syntax Tree (AST) generation and compilation stage, using the ast
module.

• The random module currently accepts any hashable type as a possible seed value. Unfortunately, some of
those types are not guaranteed to have a deterministic hash value. After Python 3.9, the module will restrict
its seeds to None, int, float, str, bytes, and bytearray.

• Opening the GzipFile file for writing without specifying themode argument is deprecated. In future Python
versions it will always be opened for reading by default. Specify the mode argument for opening it for writing
and silencing a warning. (Contributed by Serhiy Storchaka in bpo-28286.)

• Deprecated the split() method of _tkinter.TkappType in favour of the splitlist() method
which has more consistent and predicable behavior. (Contributed by Serhiy Storchaka in bpo-38371.)

7

https://bugs.python.org/issue38644
https://bugs.python.org/issue39542
https://bugs.python.org/issue39586
https://bugs.python.org/issue37315
https://bugs.python.org/issue28286
https://bugs.python.org/issue38371

• The explicit passing of coroutine objects to asyncio.wait() has been deprecated and will be removed in
version 3.11. (Contributed by Yury Selivanov and Kyle Stanley in bpo-34790.)

• binhex4 and hexbin4 standards are now deprecated. The :binhex module and the following binascii func-
tions are now deprecated:
– b2a_hqx(), a2b_hqx()
– rlecode_hqx(), rledecode_hqx()

(Contributed by Victor Stinner in bpo-39353.)

9 Removed

• The erroneous version at unittest.mock.__version__ has been removed.
• nntplib.NNTP: xpath() and xgtitle() methods have been removed. These methods are depre-
cated since Python 3.3. Generally, these extensions are not supported or not enabled by NNTP server ad-
ministrators. For xgtitle(), please use nntplib.NNTP.descriptions() or nntplib.NNTP.
description() instead. (Contributed by Dong-hee Na in bpo-39366.)

• array.array: tostring() and fromstring() methods have been removed. They were aliases to
tobytes() and frombytes(), deprecated since Python 3.2. (Contributed by Victor Stinner in bpo-
38916.)

• The undocumented sys.callstats() function has been removed. Since Python 3.7, it was deprecated
and always returned None. It required a special build option CALL_PROFILE which was already removed
in Python 3.7. (Contributed by Victor Stinner in bpo-37414.)

• The sys.getcheckinterval() and sys.setcheckinterval() functions have been re-
moved. They were deprecated since Python 3.2. Use sys.getswitchinterval() and sys.
setswitchinterval() instead. (Contributed by Victor Stinner in bpo-37392.)

• The C function PyImport_Cleanup() has been removed. It was documented as: “Empty the module
table. For internal use only.” (Contributed by Victor Stinner in bpo-36710.)

• _dummy_thread and dummy_threadingmodules have been removed. These modules were deprecated
since Python 3.7 which requires threading support. (Contributed by Victor Stinner in bpo-37312.)

• aifc.openfp() alias to aifc.open(), sunau.openfp() alias to sunau.open(), and wave.
openfp() alias to wave.open() have been removed. They were deprecated since Python 3.7. (Con-
tributed by Victor Stinner in bpo-37320.)

• The isAlive()method of threading.Thread has been removed. It was deprecated since Python 3.8.
Use is_alive() instead. (Contributed by Dong-hee Na in bpo-37804.)

• Methods getchildren() and getiterator() in the ElementTree module have been removed.
They were deprecated in Python 3.2. Use functions list() and iter() instead. The xml.etree.
cElementTree module has been removed. (Contributed by Serhiy Storchaka in bpo-36543.)

• The old plistlibAPI has been removed, it was deprecated since Python 3.4. Use the load(), loads(),
dump(), and dumps() functions. Additionally, the use_builtin_types parameter was removed, standard
bytes objects are always used instead. (Contributed by Jon Janzen in bpo-36409.)

• The C function PyThreadState_DeleteCurrent() has been removed. It was not documented. (Con-
tributed by Joannah Nanjekye in bpo-37878.)

• The C function PyGen_NeedsFinalizing has been removed. It was not documented, tested, or used
anywhere within CPython after the implementation of PEP 442. Patch by Joannah Nanjekye. (Contributed
by Joannah Nanjekye in bpo-15088)

• base64.encodestring() and base64.decodestring(), aliases deprecated since Python 3.1,
have been removed: use base64.encodebytes() and base64.decodebytes() instead. (Con-
tributed by Victor Stinner in bpo-39351.)

8

https://bugs.python.org/issue34790
https://bugs.python.org/issue39353
https://bugs.python.org/issue39366
https://bugs.python.org/issue38916
https://bugs.python.org/issue38916
https://bugs.python.org/issue37414
https://bugs.python.org/issue37392
https://bugs.python.org/issue36710
https://bugs.python.org/issue37312
https://bugs.python.org/issue37320
https://bugs.python.org/issue37804
https://bugs.python.org/issue36543
https://bugs.python.org/issue36409
https://bugs.python.org/issue37878
https://www.python.org/dev/peps/pep-0442
https://bugs.python.org/issue15088
https://bugs.python.org/issue39351

• fractions.gcd() function has been removed, it was deprecated since Python 3.5 (bpo-22486): use
math.gcd() instead. (Contributed by Victor Stinner in bpo-39350.)

• The buffering parameter of bz2.BZ2File has been removed. Since Python 3.0, it was ignored and using it
emitted a DeprecationWarning. Pass an open file object to control how the file is opened. (Contributed
by Victor Stinner in bpo-39357.)

• The encoding parameter of json.loads() has been removed. As of Python 3.1, it was deprecated and
ignored; using it has emitted a DeprecationWarning since Python 3.8. (Contributed by Inada Naoki in
bpo-39377)

• with (await asyncio.lock): and with (yield from asyncio.lock): statements are
not longer supported, use async with lock instead. The same is correct for asyncio.Condition
and asyncio.Semaphore. (Contributed by Andrew Svetlov in bpo-34793.)

• The sys.getcounts() function, the -X showalloccount command line option and the
show_alloc_count field of the C structure PyConfig have been removed. They required a special
Python build by defining COUNT_ALLOCS macro. (Contributed by Victor Stinner in bpo-39489.)

10 Porting to Python 3.9

This section lists previously described changes and other bugfixes that may require changes to your code.

10.1 Changes in the Python API

• open(), io.open(), codecs.open() and fileinput.FileInput no longer accept 'U' (“uni-
versal newline”) in the file mode. This flag was deprecated since Python 3.3. In Python 3, the “universal
newline” is used by default when a file is open in text mode. The newline parameter of open() controls how
universal newlines works. (Contributed by Victor Stinner in bpo-37330.)

• __import__() and importlib.util.resolve_name() now raise ImportError where it pre-
viously raised ValueError. Callers catching the specific exception type and supporting both Python 3.9
and earlier versions will need to catch both using except (ImportError, ValueError):.

• The venv activation scripts no longer special-case when __VENV_PROMPT__ is set to "".
• The select.epoll.unregister()method no longer ignores the EBADF error. (Contributed by Victor
Stinner in bpo-39239.)

• The compresslevel parameter ofbz2.BZ2File became keyword-only, since the buffering parameter has been
removed. (Contributed by Victor Stinner in bpo-39357.)

10.2 CPython bytecode changes

• The LOAD_ASSERTION_ERROR opcode was added for handling the assert statement. Previously, the
assert statement would not work correctly if the AssertionError exception was being shadowed. (Con-
tributed by Zackery Spytz in bpo-34880.)

9

https://bugs.python.org/issue22486
https://bugs.python.org/issue39350
https://bugs.python.org/issue39357
https://bugs.python.org/issue39377
https://bugs.python.org/issue34793
https://bugs.python.org/issue39489
https://bugs.python.org/issue37330
https://bugs.python.org/issue39239
https://bugs.python.org/issue39357
https://bugs.python.org/issue34880

Index
P
Python Enhancement Proposals

PEP 442, 8
PEP 593, 6

10

	Summary – Release highlights
	New Features
	Other Language Changes
	New Modules
	Improved Modules
	ast
	asyncio
	concurrent.futures
	curses
	fcntl
	ftplib
	functools
	gc
	imaplib
	importlib
	math
	nntplib
	os
	pathlib
	poplib
	pprint
	signal
	smtplib
	threading
	typing
	venv

	Optimizations
	Build and C API Changes
	Deprecated
	Removed
	Porting to Python 3.9
	Changes in the Python API
	CPython bytecode changes

	Index

