26.1. typing — Support for type hints

New in version 3.5.

Source code: Lib/typing.py


This module supports type hints as specified by PEP 484. The most fundamental support consists of the types Any, Union, Tuple, Callable, TypeVar, and Generic. For full specification please see PEP 484. For a simplified introduction to type hints see PEP 483.

The function below takes and returns a string and is annotated as follows:

def greeting(name: str) -> str:
    return 'Hello ' + name

In the function greeting, the argument name is expected to be of type str and the return type str. Subtypes are accepted as arguments.

26.1.1. Type aliases

A type alias is defined by assigning the type to the alias. In this example, Vector and List[float] will be treated as interchangeable synonyms:

from typing import List
Vector = List[float]

def scale(scalar: float, vector: Vector) -> Vector:
    return [scalar * num for num in vector]

# typechecks; a list of floats qualifies as a Vector.
new_vector = scale(2.0, [1.0, -4.2, 5.4])

Type aliases are useful for simplifying complex type signatures. For example:

from typing import Dict, Tuple, List

ConnectionOptions = Dict[str, str]
Address = Tuple[str, int]
Server = Tuple[Address, ConnectionOptions]

def broadcast_message(message: str, servers: List[Server]) -> None:
    ...

# The static type checker will treat the previous type signature as
# being exactly equivalent to this one.
def broadcast_message(
        message: str,
        servers: List[Tuple[Tuple[str, int], Dict[str, str]]]) -> None:
    ...

Note that None as a type hint is a special case and is replaced by type(None).

26.1.2. NewType

Use the NewType() helper function to create distinct types:

from typing import NewType

UserId = NewType('UserId', int)
some_id = UserId(524313)

The static type checker will treat the new type as if it were a subclass of the original type. This is useful in helping catch logical errors:

def get_user_name(user_id: UserId) -> str:
    ...

# typechecks
user_a = get_user_name(UserId(42351))

# does not typecheck; an int is not a UserId
user_b = get_user_name(-1)

You may still perform all int operations on a variable of type UserId, but the result will always be of type int. This lets you pass in a UserId wherever an int might be expected, but will prevent you from accidentally creating a UserId in an invalid way:

# 'output' is of type 'int', not 'UserId'
output = UserId(23413) + UserId(54341)

Note that these checks are enforced only by the static type checker. At runtime the statement Derived = NewType('Derived', Base) will make Derived a function that immediately returns whatever parameter you pass it. That means the expression Derived(some_value) does not create a new class or introduce any overhead beyond that of a regular function call.

More precisely, the expression some_value is Derived(some_value) is always true at runtime.

This also means that it is not possible to create a subtype of Derived since it is an identity function at runtime, not an actual type. Similarly, it is not possible to create another NewType() based on a Derived type:

from typing import NewType

UserId = NewType('UserId', int)

# Fails at runtime and does not typecheck
class AdminUserId(UserId): pass

# Also does not typecheck
ProUserId = NewType('ProUserId', UserId)

See PEP 484 for more details.

Note

Recall that the use of a type alias declares two types to be equivalent to one another. Doing Alias = Original will make the static type checker treat Alias as being exactly equivalent to Original in all cases. This is useful when you want to simplify complex type signatures.

In contrast, NewType declares one type to be a subtype of another. Doing Derived = NewType('Derived', Original) will make the static type checker treat Derived as a subclass of Original, which means a value of type Original cannot be used in places where a value of type Derived is expected. This is useful when you want to prevent logic errors with minimal runtime cost.

26.1.3. Callable

Frameworks expecting callback functions of specific signatures might be type hinted using Callable[[Arg1Type, Arg2Type], ReturnType].

For example:

from typing import Callable

def feeder(get_next_item: Callable[[], str]) -> None:
    # Body

def async_query(on_success: Callable[[int], None],
                on_error: Callable[[int, Exception], None]) -> None:
    # Body

It is possible to declare the return type of a callable without specifying the call signature by substituting a literal ellipsis for the list of arguments in the type hint: Callable[..., ReturnType].

26.1.4. Generics

Since type information about objects kept in containers cannot be statically inferred in a generic way, abstract base classes have been extended to support subscription to denote expected types for container elements.

from typing import Mapping, Sequence

def notify_by_email(employees: Sequence[Employee],
                    overrides: Mapping[str, str]) -> None: ...

Generics can be parametrized by using a new factory available in typing called TypeVar.

from typing import Sequence, TypeVar

T = TypeVar('T')      # Declare type variable

def first(l: Sequence[T]) -> T:   # Generic function
    return l[0]

26.1.5. User-defined generic types

A user-defined class can be defined as a generic class.

from typing import TypeVar, Generic
from logging import Logger

T = TypeVar('T')

class LoggedVar(Generic[T]):
    def __init__(self, value: T, name: str, logger: Logger) -> None:
        self.name = name
        self.logger = logger
        self.value = value

    def set(self, new: T) -> None:
        self.log('Set ' + repr(self.value))
        self.value = new

    def get(self) -> T:
        self.log('Get ' + repr(self.value))
        return self.value

    def log(self, message: str) -> None:
        self.logger.info('%s: %s', self.name, message)

Generic[T] as a base class defines that the class LoggedVar takes a single type parameter T . This also makes T valid as a type within the class body.

The Generic base class uses a metaclass that defines __getitem__() so that LoggedVar[t] is valid as a type:

from typing import Iterable

def zero_all_vars(vars: Iterable[LoggedVar[int]]) -> None:
    for var in vars:
        var.set(0)

A generic type can have any number of type variables, and type variables may be constrained:

from typing import TypeVar, Generic
...

T = TypeVar('T')
S = TypeVar('S', int, str)

class StrangePair(Generic[T, S]):
    ...

Each type variable argument to Generic must be distinct. This is thus invalid:

from typing import TypeVar, Generic
...

T = TypeVar('T')

class Pair(Generic[T, T]):   # INVALID
    ...

You can use multiple inheritance with Generic:

from typing import TypeVar, Generic, Sized

T = TypeVar('T')

class LinkedList(Sized, Generic[T]):
    ...

When inheriting from generic classes, some type variables could be fixed:

from typing import TypeVar, Mapping

T = TypeVar('T')

class MyDict(Mapping[str, T]):
    ...

In this case MyDict has a single parameter, T.

Using a generic class without specifying type parameters assumes Any for each position. In the following example, MyIterable is not generic but implicitly inherits from Iterable[Any]:

from typing import Iterable

class MyIterable(Iterable): # Same as Iterable[Any]

User defined generic type aliases are also supported. Examples:

from typing import TypeVar, Iterable, Tuple, Union
S = TypeVar('S')
Response = Union[Iterable[S], int]

# Return type here is same as Union[Iterable[str], int]
def response(query: str) -> Response[str]:
    ...

T = TypeVar('T', int, float, complex)
Vec = Iterable[Tuple[T, T]]

def inproduct(v: Vec[T]) -> T: # Same as Iterable[Tuple[T, T]]
    return sum(x*y for x, y in v)

The metaclass used by Generic is a subclass of abc.ABCMeta. A generic class can be an ABC by including abstract methods or properties, and generic classes can also have ABCs as base classes without a metaclass conflict. Generic metaclasses are not supported. The outcome of parameterizing generics is cached, and most types in the typing module are hashable and comparable for equality.

26.1.6. The Any type

A special kind of type is Any. A static type checker will treat every type as being compatible with Any and Any as being compatible with every type.

This means that it is possible to perform any operation or method call on a value of type on Any and assign it to any variable:

from typing import Any

a = None    # type: Any
a = []      # OK
a = 2       # OK

s = ''      # type: str
s = a       # OK

def foo(item: Any) -> int:
    # Typechecks; 'item' could be any type,
    # and that type might have a 'bar' method
    item.bar()
    ...

Notice that no typechecking is performed when assigning a value of type Any to a more precise type. For example, the static type checker did not report an error when assigning a to s even though s was declared to be of type str and receives an int value at runtime!

Furthermore, all functions without a return type or parameter types will implicitly default to using Any:

def legacy_parser(text):
    ...
    return data

# A static type checker will treat the above
# as having the same signature as:
def legacy_parser(text: Any) -> Any:
    ...
    return data

This behavior allows Any to be used as an escape hatch when you need to mix dynamically and statically typed code.

Contrast the behavior of Any with the behavior of object. Similar to Any, every type is a subtype of object. However, unlike Any, the reverse is not true: object is not a subtype of every other type.

That means when the type of a value is object, a type checker will reject almost all operations on it, and assigning it to a variable (or using it as a return value) of a more specialized type is a type error. For example:

def hash_a(item: object) -> int:
    # Fails; an object does not have a 'magic' method.
    item.magic()
    ...

def hash_b(item: Any) -> int:
    # Typechecks
    item.magic()
    ...

# Typechecks, since ints and strs are subclasses of object
hash_a(42)
hash_a("foo")

# Typechecks, since Any is compatible with all types
hash_b(42)
hash_b("foo")

Use object to indicate that a value could be any type in a typesafe manner. Use Any to indicate that a value is dynamically typed.

26.1.7. Classes, functions, and decorators

The module defines the following classes, functions and decorators:

class typing.TypeVar

Type variable.

Usage:

T = TypeVar('T')  # Can be anything
A = TypeVar('A', str, bytes)  # Must be str or bytes

Type variables exist primarily for the benefit of static type checkers. They serve as the parameters for generic types as well as for generic function definitions. See class Generic for more information on generic types. Generic functions work as follows:

def repeat(x: T, n: int) -> Sequence[T]:
    """Return a list containing n references to x."""
    return [x]*n

def longest(x: A, y: A) -> A:
    """Return the longest of two strings."""
    return x if len(x) >= len(y) else y

The latter example’s signature is essentially the overloading of (str, str) -> str and (bytes, bytes) -> bytes. Also note that if the arguments are instances of some subclass of str, the return type is still plain str.

At runtime, isinstance(x, T) will raise TypeError. In general, isinstance() and issubclass() should not be used with types.

Type variables may be marked covariant or contravariant by passing covariant=True or contravariant=True. See PEP 484 for more details. By default type variables are invariant. Alternatively, a type variable may specify an upper bound using bound=<type>. This means that an actual type substituted (explicitly or implicitly) for the type variable must be a subclass of the boundary type, see PEP 484.

class typing.Generic

Abstract base class for generic types.

A generic type is typically declared by inheriting from an instantiation of this class with one or more type variables. For example, a generic mapping type might be defined as:

class Mapping(Generic[KT, VT]):
    def __getitem__(self, key: KT) -> VT:
        ...
        # Etc.

This class can then be used as follows:

X = TypeVar('X')
Y = TypeVar('Y')

def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
    try:
        return mapping[key]
    except KeyError:
        return default
class typing.Type(Generic[CT_co])

A variable annotated with C may accept a value of type C. In contrast, a variable annotated with Type[C] may accept values that are classes themselves – specifically, it will accept the class object of C. For example:

a = 3         # Has type 'int'
b = int       # Has type 'Type[int]'
c = type(a)   # Also has type 'Type[int]'

Note that Type[C] is covariant:

class User: ...
class BasicUser(User): ...
class ProUser(User): ...
class TeamUser(User): ...

# Accepts User, BasicUser, ProUser, TeamUser, ...
def make_new_user(user_class: Type[User]) -> User:
    # ...
    return user_class()

The fact that Type[C] is covariant implies that all subclasses of C should implement the same constructor signature and class method signatures as C. The type checker should flag violations of this, but should also allow constructor calls in subclasses that match the constructor calls in the indicated base class. How the type checker is required to handle this particular case may change in future revisions of PEP 484.

The only legal parameters for Type are classes, unions of classes, and Any. For example:

def new_non_team_user(user_class: Type[Union[BaseUser, ProUser]]): ...

Type[Any] is equivalent to Type which in turn is equivalent to type, which is the root of Python’s metaclass hierarchy.

class typing.Iterable(Generic[T_co])

A generic version of collections.abc.Iterable.

class typing.Iterator(Iterable[T_co])

A generic version of collections.abc.Iterator.

class typing.Reversible(Iterable[T_co])

A generic version of collections.abc.Reversible.

class typing.SupportsInt

An ABC with one abstract method __int__.

class typing.SupportsFloat

An ABC with one abstract method __float__.

class typing.SupportsAbs

An ABC with one abstract method __abs__ that is covariant in its return type.

class typing.SupportsRound

An ABC with one abstract method __round__ that is covariant in its return type.

class typing.Container(Generic[T_co])

A generic version of collections.abc.Container.

class typing.Hashable

An alias to collections.abc.Hashable

class typing.Sized

An alias to collections.abc.Sized

class typing.AbstractSet(Sized, Iterable[T_co], Container[T_co])

A generic version of collections.abc.Set.

class typing.MutableSet(AbstractSet[T])

A generic version of collections.abc.MutableSet.

class typing.Mapping(Sized, Iterable[KT], Container[KT], Generic[VT_co])

A generic version of collections.abc.Mapping.

class typing.MutableMapping(Mapping[KT, VT])

A generic version of collections.abc.MutableMapping.

class typing.Sequence(Sized, Iterable[T_co], Container[T_co])

A generic version of collections.abc.Sequence.

class typing.MutableSequence(Sequence[T])

A generic version of collections.abc.MutableSequence.

class typing.ByteString(Sequence[int])

A generic version of collections.abc.ByteString.

This type represents the types bytes, bytearray, and memoryview.

As a shorthand for this type, bytes can be used to annotate arguments of any of the types mentioned above.

class typing.Deque(deque, MutableSequence[T])

A generic version of collections.deque.

New in version 3.5.4.

class typing.List(list, MutableSequence[T])

Generic version of list. Useful for annotating return types. To annotate arguments it is preferred to use abstract collection types such as Mapping, Sequence, or AbstractSet.

This type may be used as follows:

T = TypeVar('T', int, float)

def vec2(x: T, y: T) -> List[T]:
    return [x, y]

def keep_positives(vector: Sequence[T]) -> List[T]:
    return [item for item in vector if item > 0]
class typing.Set(set, MutableSet[T])

A generic version of builtins.set.

class typing.FrozenSet(frozenset, AbstractSet[T_co])

A generic version of builtins.frozenset.

class typing.MappingView(Sized, Iterable[T_co])

A generic version of collections.abc.MappingView.

class typing.KeysView(MappingView[KT_co], AbstractSet[KT_co])

A generic version of collections.abc.KeysView.

class typing.ItemsView(MappingView, Generic[KT_co, VT_co])

A generic version of collections.abc.ItemsView.

class typing.ValuesView(MappingView[VT_co])

A generic version of collections.abc.ValuesView.

class typing.Awaitable(Generic[T_co])

A generic version of collections.abc.Awaitable.

class typing.Coroutine(Awaitable[V_co], Generic[T_co T_contra, V_co])

A generic version of collections.abc.Coroutine. The variance and order of type variables correspond to those of Generator, for example:

from typing import List, Coroutine
c = None # type: Coroutine[List[str], str, int]
...
x = c.send('hi') # type: List[str]
async def bar() -> None:
    x = await c # type: int
class typing.AsyncIterable(Generic[T_co])

A generic version of collections.abc.AsyncIterable.

class typing.AsyncIterator(AsyncIterable[T_co])

A generic version of collections.abc.AsyncIterator.

class typing.Dict(dict, MutableMapping[KT, VT])

A generic version of dict. The usage of this type is as follows:

def get_position_in_index(word_list: Dict[str, int], word: str) -> int:
    return word_list[word]
class typing.DefaultDict(collections.defaultdict, MutableMapping[KT, VT])

A generic version of collections.defaultdict

class typing.Generator(Iterator[T_co], Generic[T_co, T_contra, V_co])

A generator can be annotated by the generic type Generator[YieldType, SendType, ReturnType]. For example:

def echo_round() -> Generator[int, float, str]:
    sent = yield 0
    while sent >= 0:
        sent = yield round(sent)
    return 'Done'

Note that unlike many other generics in the typing module, the SendType of Generator behaves contravariantly, not covariantly or invariantly.

If your generator will only yield values, set the SendType and ReturnType to None:

def infinite_stream(start: int) -> Generator[int, None, None]:
    while True:
        yield start
        start += 1

Alternatively, annotate your generator as having a return type of either Iterable[YieldType] or Iterator[YieldType]:

def infinite_stream(start: int) -> Iterator[int]:
    while True:
        yield start
        start += 1
class typing.AsyncGenerator(AsyncIterator[T_co], Generic[T_co, T_contra])

An async generator can be annotated by the generic type AsyncGenerator[YieldType, SendType]. For example:

async def echo_round() -> AsyncGenerator[int, float]:
    sent = yield 0
    while sent >= 0.0:
        rounded = await round(sent)
        sent = yield rounded

Unlike normal generators, async generators cannot return a value, so there is no ReturnType type parameter. As with Generator, the SendType behaves contravariantly.

If your generator will only yield values, set the SendType to None:

async def infinite_stream(start: int) -> AsyncGenerator[int, None]:
    while True:
        yield start
        start = await increment(start)

Alternatively, annotate your generator as having a return type of either AsyncIterable[YieldType] or AsyncIterator[YieldType]:

async def infinite_stream(start: int) -> AsyncIterator[int]:
    while True:
        yield start
        start = await increment(start)

New in version 3.5.4.

class typing.Text

Text is an alias for str. It is provided to supply a forward compatible path for Python 2 code: in Python 2, Text is an alias for unicode.

Use Text to indicate that a value must contain a unicode string in a manner that is compatible with both Python 2 and Python 3:

def add_unicode_checkmark(text: Text) -> Text:
    return text + u' \u2713'
class typing.io

Wrapper namespace for I/O stream types.

This defines the generic type IO[AnyStr] and aliases TextIO and BinaryIO for respectively IO[str] and IO[bytes]. These representing the types of I/O streams such as returned by open().

class typing.re

Wrapper namespace for regular expression matching types.

This defines the type aliases Pattern and Match which correspond to the return types from re.compile() and re.match(). These types (and the corresponding functions) are generic in AnyStr and can be made specific by writing Pattern[str], Pattern[bytes], Match[str], or Match[bytes].

typing.NamedTuple(typename, fields)

Typed version of namedtuple.

Usage:

Employee = typing.NamedTuple('Employee', [('name', str), ('id', int)])

This is equivalent to:

Employee = collections.namedtuple('Employee', ['name', 'id'])

The resulting class has one extra attribute: _field_types, giving a dict mapping field names to types. (The field names are in the _fields attribute, which is part of the namedtuple API.)

typing.NewType(typ)

A helper function to indicate a distinct types to a typechecker, see NewType. At runtime it returns a function that returns its argument. Usage:

UserId = NewType('UserId', int)
first_user = UserId(1)
typing.cast(typ, val)

Cast a value to a type.

This returns the value unchanged. To the type checker this signals that the return value has the designated type, but at runtime we intentionally don’t check anything (we want this to be as fast as possible).

typing.get_type_hints(obj[, globals[, locals]])

Return a dictionary containing type hints for a function, method, module or class object.

This is often the same as obj.__annotations__. In addition, forward references encoded as string literals are handled by evaluating them in globals and locals namespaces. If necessary, Optional[t] is added for function and method annotations if a default value equal to None is set. For a class C, return a dictionary constructed by merging all the __annotations__ along C.__mro__ in reverse order.

@typing.overload

The @overload decorator allows describing functions and methods that support multiple different combinations of argument types. A series of @overload-decorated definitions must be followed by exactly one non-@overload-decorated definition (for the same function/method). The @overload-decorated definitions are for the benefit of the type checker only, since they will be overwritten by the non-@overload-decorated definition, while the latter is used at runtime but should be ignored by a type checker. At runtime, calling a @overload-decorated function directly will raise NotImplementedError. An example of overload that gives a more precise type than can be expressed using a union or a type variable:

@overload
def process(response: None) -> None:
    ...
@overload
def process(response: int) -> Tuple[int, str]:
    ...
@overload
def process(response: bytes) -> str:
    ...
def process(response):
    <actual implementation>

See PEP 484 for details and comparison with other typing semantics.

@typing.no_type_check(arg)

Decorator to indicate that annotations are not type hints.

The argument must be a class or function; if it is a class, it applies recursively to all methods defined in that class (but not to methods defined in its superclasses or subclasses).

This mutates the function(s) in place.

@typing.no_type_check_decorator(decorator)

Decorator to give another decorator the no_type_check() effect.

This wraps the decorator with something that wraps the decorated function in no_type_check().

typing.Any

Special type indicating an unconstrained type.

  • Every type is compatible with Any.
  • Any is compatible with every type.
typing.Union

Union type; Union[X, Y] means either X or Y.

To define a union, use e.g. Union[int, str]. Details:

  • The arguments must be types and there must be at least one.

  • Unions of unions are flattened, e.g.:

    Union[Union[int, str], float] == Union[int, str, float]
    
  • Unions of a single argument vanish, e.g.:

    Union[int] == int  # The constructor actually returns int
    
  • Redundant arguments are skipped, e.g.:

    Union[int, str, int] == Union[int, str]
    
  • When comparing unions, the argument order is ignored, e.g.:

    Union[int, str] == Union[str, int]
    
  • When a class and its subclass are present, the latter is skipped, e.g.:

    Union[int, object] == object
    
  • You cannot subclass or instantiate a union.

  • You cannot write Union[X][Y].

  • You can use Optional[X] as a shorthand for Union[X, None].

typing.Optional

Optional type.

Optional[X] is equivalent to Union[X, None].

Note that this is not the same concept as an optional argument, which is one that has a default. An optional argument with a default needn’t use the Optional qualifier on its type annotation (although it is inferred if the default is None). A mandatory argument may still have an Optional type if an explicit value of None is allowed.

typing.Tuple

Tuple type; Tuple[X, Y] is the type of a tuple of two items with the first item of type X and the second of type Y.

Example: Tuple[T1, T2] is a tuple of two elements corresponding to type variables T1 and T2. Tuple[int, float, str] is a tuple of an int, a float and a string.

To specify a variable-length tuple of homogeneous type, use literal ellipsis, e.g. Tuple[int, ...]. A plain Tuple is equivalent to Tuple[Any, ...], and in turn to tuple.

typing.Callable

Callable type; Callable[[int], str] is a function of (int) -> str.

The subscription syntax must always be used with exactly two values: the argument list and the return type. The argument list must be a list of types or an ellipsis; the return type must be a single type.

There is no syntax to indicate optional or keyword arguments; such function types are rarely used as callback types. Callable[..., ReturnType] (literal ellipsis) can be used to type hint a callable taking any number of arguments and returning ReturnType. A plain Callable is equivalent to Callable[..., Any], and in turn to collections.abc.Callable.

typing.ClassVar

Special type construct to mark class variables.

As introduced in PEP 526, a variable annotation wrapped in ClassVar indicates that a given attribute is intended to be used as a class variable and should not be set on instances of that class. Usage:

class Starship:
    stats = {}  # type: ClassVar[Dict[str, int]] # class variable
    damage = 10 # type: int                      # instance variable

ClassVar accepts only types and cannot be further subscribed.

ClassVar is not a class itself, and should not be used with isinstance() or issubclass(). Note that ClassVar does not change Python runtime behavior; it can be used by 3rd party type checkers, so that the following code might flagged as an error by those:

enterprise_d = Starship(3000)
enterprise_d.stats = {} # Error, setting class variable on instance
Starship.stats = {}     # This is OK

New in version 3.5.3.

typing.AnyStr

AnyStr is a type variable defined as AnyStr = TypeVar('AnyStr', str, bytes).

It is meant to be used for functions that may accept any kind of string without allowing different kinds of strings to mix. For example:

def concat(a: AnyStr, b: AnyStr) -> AnyStr:
    return a + b

concat(u"foo", u"bar")  # Ok, output has type 'unicode'
concat(b"foo", b"bar")  # Ok, output has type 'bytes'
concat(u"foo", b"bar")  # Error, cannot mix unicode and bytes
typing.TYPE_CHECKING

A special constant that is assumed to be True by 3rd party static type checkers. It is False at runtime. Usage:

if TYPE_CHECKING:
    import expensive_mod

def fun(arg: 'expensive_mod.SomeType') -> None:
    local_var: expensive_mod.AnotherType = other_fun()

Note that the first type annotation must be enclosed in quotes, making it a “forward reference”, to hide the expensive_mod reference from the interpreter runtime. Type annotations for local variables are not evaluated, so the second annotation does not need to be enclosed in quotes.