

Python Documentation contents

	What’s New in Python
	What’s New In Python 3.12
	Summary – Release highlights

	Improved Error Messages

	New Features
	PEP 701: Syntactic formalization of f-strings

	PEP 709: Comprehension inlining

	PEP 688: Making the buffer protocol accessible in Python

	New Features Related to Type Hints
	PEP 692: Using TypedDict for more precise **kwargs typing

	PEP 698: Override Decorator for Static Typing

	PEP 695: Type Parameter Syntax

	Other Language Changes

	New Modules

	Improved Modules
	array

	asyncio

	calendar

	csv

	dis

	fractions

	inspect

	itertools

	json

	math

	os

	os.path

	pathlib

	pdb

	random

	shutil

	sqlite3

	statistics

	sys

	tempfile

	threading

	tkinter

	tokenize

	types

	typing

	unicodedata

	unittest

	uuid

	Optimizations

	CPython bytecode changes

	Demos and Tools

	Deprecated
	Pending Removal in Python 3.13

	Pending Removal in Python 3.14

	Pending Removal in Future Versions

	Removed

	Porting to Python 3.12
	Changes in the Python API

	Build Changes

	C API Changes
	New Features

	Porting to Python 3.12

	Deprecated

	Removed

	What’s New In Python 3.11
	Summary – Release highlights

	New Features
	PEP 657: Fine-grained error locations in tracebacks

	PEP 654: Exception Groups and except*

	PEP 678: Exceptions can be enriched with notes

	Windows py.exe launcher improvements

	New Features Related to Type Hints
	PEP 646: Variadic generics

	PEP 655: Marking individual TypedDict items as required or not-required

	PEP 673: Self type

	PEP 675: Arbitrary literal string type

	PEP 681: Data class transforms

	PEP 563 may not be the future

	Other Language Changes

	Other CPython Implementation Changes

	New Modules

	Improved Modules
	asyncio

	contextlib

	dataclasses

	datetime

	enum

	fcntl

	fractions

	functools

	hashlib

	IDLE and idlelib

	inspect

	locale

	logging

	math

	operator

	os

	pathlib

	re

	shutil

	socket

	sqlite3

	string

	sys

	sysconfig

	tempfile

	threading

	time

	tkinter

	traceback

	typing

	unicodedata

	unittest

	venv

	warnings

	zipfile

	Optimizations

	Faster CPython
	Faster Startup
	Frozen imports / Static code objects

	Faster Runtime
	Cheaper, lazy Python frames

	Inlined Python function calls

	PEP 659: Specializing Adaptive Interpreter

	Misc

	FAQ
	How should I write my code to utilize these speedups?

	Will CPython 3.11 use more memory?

	I don’t see any speedups in my workload. Why?

	Is there a JIT compiler?

	About

	CPython bytecode changes
	New opcodes

	Replaced opcodes

	Changed/removed opcodes

	Deprecated
	Language/Builtins

	Modules

	Standard Library

	Pending Removal in Python 3.12

	Removed

	Porting to Python 3.11

	Build Changes

	C API Changes
	New Features

	Porting to Python 3.11

	Deprecated

	Pending Removal in Python 3.12

	Removed

	What’s New In Python 3.10
	Summary – Release highlights

	New Features
	Parenthesized context managers

	Better error messages
	SyntaxErrors

	IndentationErrors

	AttributeErrors

	NameErrors

	PEP 626: Precise line numbers for debugging and other tools

	PEP 634: Structural Pattern Matching
	Syntax and operations

	Declarative approach

	Simple pattern: match to a literal
	Behavior without the wildcard

	Patterns with a literal and variable

	Patterns and classes
	Patterns with positional parameters

	Nested patterns

	Complex patterns and the wildcard

	Guard

	Other Key Features

	Optional EncodingWarning and encoding="locale" option

	New Features Related to Type Hints
	PEP 604: New Type Union Operator

	PEP 612: Parameter Specification Variables

	PEP 613: TypeAlias

	PEP 647: User-Defined Type Guards

	Other Language Changes

	New Modules

	Improved Modules
	asyncio

	argparse

	array

	asynchat, asyncore, smtpd

	base64

	bdb

	bisect

	codecs

	collections.abc

	contextlib

	curses

	dataclasses
	__slots__

	Keyword-only fields

	distutils

	doctest

	encodings

	enum

	fileinput

	faulthandler

	gc

	glob

	hashlib

	hmac

	IDLE and idlelib

	importlib.metadata

	inspect

	itertools

	linecache

	os

	os.path

	pathlib

	platform

	pprint

	py_compile

	pyclbr

	shelve

	statistics

	site

	socket

	ssl

	sqlite3

	sys

	_thread

	threading

	traceback

	types

	typing

	unittest

	urllib.parse

	xml

	zipimport

	Optimizations

	Deprecated

	Removed

	Porting to Python 3.10
	Changes in the Python syntax

	Changes in the Python API

	Changes in the C API

	CPython bytecode changes

	Build Changes

	C API Changes
	PEP 652: Maintaining the Stable ABI

	New Features

	Porting to Python 3.10

	Deprecated

	Removed

	What’s New In Python 3.9
	Summary – Release highlights

	You should check for DeprecationWarning in your code

	New Features
	Dictionary Merge & Update Operators

	New String Methods to Remove Prefixes and Suffixes

	Type Hinting Generics in Standard Collections

	New Parser

	Other Language Changes

	New Modules
	zoneinfo

	graphlib

	Improved Modules
	ast

	asyncio

	compileall

	concurrent.futures

	curses

	datetime

	distutils

	fcntl

	ftplib

	gc

	hashlib

	http

	IDLE and idlelib

	imaplib

	importlib

	inspect

	ipaddress

	math

	multiprocessing

	nntplib

	os

	pathlib

	pdb

	poplib

	pprint

	pydoc

	random

	signal

	smtplib

	socket

	time

	sys

	tracemalloc

	typing

	unicodedata

	venv

	xml

	Optimizations

	Deprecated

	Removed

	Porting to Python 3.9
	Changes in the Python API

	Changes in the C API

	CPython bytecode changes

	Build Changes

	C API Changes
	New Features

	Porting to Python 3.9

	Removed

	Notable changes in Python 3.9.1
	typing

	macOS 11.0 (Big Sur) and Apple Silicon Mac support

	Notable changes in Python 3.9.2
	collections.abc

	urllib.parse

	What’s New In Python 3.8
	Summary – Release highlights

	New Features
	Assignment expressions

	Positional-only parameters

	Parallel filesystem cache for compiled bytecode files

	Debug build uses the same ABI as release build

	f-strings support = for self-documenting expressions and debugging

	PEP 578: Python Runtime Audit Hooks

	PEP 587: Python Initialization Configuration

	PEP 590: Vectorcall: a fast calling protocol for CPython

	Pickle protocol 5 with out-of-band data buffers

	Other Language Changes

	New Modules

	Improved Modules
	ast

	asyncio

	builtins

	collections

	cProfile

	csv

	curses

	ctypes

	datetime

	functools

	gc

	gettext

	gzip

	IDLE and idlelib

	inspect

	io

	itertools

	json.tool

	logging

	math

	mmap

	multiprocessing

	os

	os.path

	pathlib

	pickle

	plistlib

	pprint

	py_compile

	shlex

	shutil

	socket

	ssl

	statistics

	sys

	tarfile

	threading

	tokenize

	tkinter

	time

	typing

	unicodedata

	unittest

	venv

	weakref

	xml

	xmlrpc

	Optimizations

	Build and C API Changes

	Deprecated

	API and Feature Removals

	Porting to Python 3.8
	Changes in Python behavior

	Changes in the Python API

	Changes in the C API

	CPython bytecode changes

	Demos and Tools

	Notable changes in Python 3.8.1

	Notable changes in Python 3.8.8

	Notable changes in Python 3.8.12

	What’s New In Python 3.7
	Summary – Release Highlights

	New Features
	PEP 563: Postponed Evaluation of Annotations

	PEP 538: Legacy C Locale Coercion

	PEP 540: Forced UTF-8 Runtime Mode

	PEP 553: Built-in breakpoint()

	PEP 539: New C API for Thread-Local Storage

	PEP 562: Customization of Access to Module Attributes

	PEP 564: New Time Functions With Nanosecond Resolution

	PEP 565: Show DeprecationWarning in __main__

	PEP 560: Core Support for typing module and Generic Types

	PEP 552: Hash-based .pyc Files

	PEP 545: Python Documentation Translations

	Python Development Mode (-X dev)

	Other Language Changes

	New Modules
	contextvars

	dataclasses

	importlib.resources

	Improved Modules
	argparse

	asyncio

	binascii

	calendar

	collections

	compileall

	concurrent.futures

	contextlib

	cProfile

	crypt

	datetime

	dbm

	decimal

	dis

	distutils

	enum

	functools

	gc

	hmac

	http.client

	http.server

	idlelib and IDLE

	importlib

	io

	ipaddress

	itertools

	locale

	logging

	math

	mimetypes

	msilib

	multiprocessing

	os

	pathlib

	pdb

	py_compile

	pydoc

	queue

	re

	signal

	socket

	socketserver

	sqlite3

	ssl

	string

	subprocess

	sys

	time

	tkinter

	tracemalloc

	types

	unicodedata

	unittest

	unittest.mock

	urllib.parse

	uu

	uuid

	warnings

	xml.etree

	xmlrpc.server

	zipapp

	zipfile

	C API Changes

	Build Changes

	Optimizations

	Other CPython Implementation Changes

	Deprecated Python Behavior

	Deprecated Python modules, functions and methods
	aifc

	asyncio

	collections

	dbm

	enum

	gettext

	importlib

	locale

	macpath

	threading

	socket

	ssl

	sunau

	sys

	wave

	Deprecated functions and types of the C API

	Platform Support Removals

	API and Feature Removals

	Module Removals

	Windows-only Changes

	Porting to Python 3.7
	Changes in Python Behavior

	Changes in the Python API

	Changes in the C API

	CPython bytecode changes

	Windows-only Changes

	Other CPython implementation changes

	Notable changes in Python 3.7.1

	Notable changes in Python 3.7.2

	Notable changes in Python 3.7.6

	Notable changes in Python 3.7.10

	What’s New In Python 3.6
	Summary – Release highlights

	New Features
	PEP 498: Formatted string literals

	PEP 526: Syntax for variable annotations

	PEP 515: Underscores in Numeric Literals

	PEP 525: Asynchronous Generators

	PEP 530: Asynchronous Comprehensions

	PEP 487: Simpler customization of class creation

	PEP 487: Descriptor Protocol Enhancements

	PEP 519: Adding a file system path protocol

	PEP 495: Local Time Disambiguation

	PEP 529: Change Windows filesystem encoding to UTF-8

	PEP 528: Change Windows console encoding to UTF-8

	PEP 520: Preserving Class Attribute Definition Order

	PEP 468: Preserving Keyword Argument Order

	New dict implementation

	PEP 523: Adding a frame evaluation API to CPython

	PYTHONMALLOC environment variable

	DTrace and SystemTap probing support

	Other Language Changes

	New Modules
	secrets

	Improved Modules
	array

	ast

	asyncio

	binascii

	cmath

	collections

	concurrent.futures

	contextlib

	datetime

	decimal

	distutils

	email

	encodings

	enum

	faulthandler

	fileinput

	hashlib

	http.client

	idlelib and IDLE

	importlib

	inspect

	json

	logging

	math

	multiprocessing

	os

	pathlib

	pdb

	pickle

	pickletools

	pydoc

	random

	re

	readline

	rlcompleter

	shlex

	site

	sqlite3

	socket

	socketserver

	ssl

	statistics

	struct

	subprocess

	sys

	telnetlib

	time

	timeit

	tkinter

	traceback

	tracemalloc

	typing

	unicodedata

	unittest.mock

	urllib.request

	urllib.robotparser

	venv

	warnings

	winreg

	winsound

	xmlrpc.client

	zipfile

	zlib

	Optimizations

	Build and C API Changes

	Other Improvements

	Deprecated
	New Keywords

	Deprecated Python behavior

	Deprecated Python modules, functions and methods
	asynchat

	asyncore

	dbm

	distutils

	grp

	importlib

	os

	re

	ssl

	tkinter

	venv

	Deprecated functions and types of the C API

	Deprecated Build Options

	Removed
	API and Feature Removals

	Porting to Python 3.6
	Changes in ‘python’ Command Behavior

	Changes in the Python API

	Changes in the C API

	CPython bytecode changes

	Notable changes in Python 3.6.2
	New make regen-all build target

	Removal of make touch build target

	Notable changes in Python 3.6.4

	Notable changes in Python 3.6.5

	Notable changes in Python 3.6.7

	Notable changes in Python 3.6.10

	Notable changes in Python 3.6.13

	What’s New In Python 3.5
	Summary – Release highlights

	New Features
	PEP 492 - Coroutines with async and await syntax

	PEP 465 - A dedicated infix operator for matrix multiplication

	PEP 448 - Additional Unpacking Generalizations

	PEP 461 - percent formatting support for bytes and bytearray

	PEP 484 - Type Hints

	PEP 471 - os.scandir() function – a better and faster directory iterator

	PEP 475: Retry system calls failing with EINTR

	PEP 479: Change StopIteration handling inside generators

	PEP 485: A function for testing approximate equality

	PEP 486: Make the Python Launcher aware of virtual environments

	PEP 488: Elimination of PYO files

	PEP 489: Multi-phase extension module initialization

	Other Language Changes

	New Modules
	typing

	zipapp

	Improved Modules
	argparse

	asyncio

	bz2

	cgi

	cmath

	code

	collections

	collections.abc

	compileall

	concurrent.futures

	configparser

	contextlib

	csv

	curses

	dbm

	difflib

	distutils

	doctest

	email

	enum

	faulthandler

	functools

	glob

	gzip

	heapq

	http

	http.client

	idlelib and IDLE

	imaplib

	imghdr

	importlib

	inspect

	io

	ipaddress

	json

	linecache

	locale

	logging

	lzma

	math

	multiprocessing

	operator

	os

	pathlib

	pickle

	poplib

	re

	readline

	selectors

	shutil

	signal

	smtpd

	smtplib

	sndhdr

	socket

	ssl
	Memory BIO Support

	Application-Layer Protocol Negotiation Support

	Other Changes

	sqlite3

	subprocess

	sys

	sysconfig

	tarfile

	threading

	time

	timeit

	tkinter

	traceback

	types

	unicodedata

	unittest

	unittest.mock

	urllib

	wsgiref

	xmlrpc

	xml.sax

	zipfile

	Other module-level changes

	Optimizations

	Build and C API Changes

	Deprecated
	New Keywords

	Deprecated Python Behavior

	Unsupported Operating Systems

	Deprecated Python modules, functions and methods

	Removed
	API and Feature Removals

	Porting to Python 3.5
	Changes in Python behavior

	Changes in the Python API

	Changes in the C API

	Notable changes in Python 3.5.4
	New make regen-all build target

	Removal of make touch build target

	What’s New In Python 3.4
	Summary – Release Highlights

	New Features
	PEP 453: Explicit Bootstrapping of PIP in Python Installations
	Bootstrapping pip By Default

	Documentation Changes

	PEP 446: Newly Created File Descriptors Are Non-Inheritable

	Improvements to Codec Handling

	PEP 451: A ModuleSpec Type for the Import System

	Other Language Changes

	New Modules
	asyncio

	ensurepip

	enum

	pathlib

	selectors

	statistics

	tracemalloc

	Improved Modules
	abc

	aifc

	argparse

	audioop

	base64

	collections

	colorsys

	contextlib

	dbm

	dis

	doctest

	email

	filecmp

	functools

	gc

	glob

	hashlib

	hmac

	html

	http

	idlelib and IDLE

	importlib

	inspect

	ipaddress

	logging

	marshal

	mmap

	multiprocessing

	operator

	os

	pdb

	pickle

	plistlib

	poplib

	pprint

	pty

	pydoc

	re

	resource

	select

	shelve

	shutil

	smtpd

	smtplib

	socket

	sqlite3

	ssl

	stat

	struct

	subprocess

	sunau

	sys

	tarfile

	textwrap

	threading

	traceback

	types

	urllib

	unittest

	venv

	wave

	weakref

	xml.etree

	zipfile

	CPython Implementation Changes
	PEP 445: Customization of CPython Memory Allocators

	PEP 442: Safe Object Finalization

	PEP 456: Secure and Interchangeable Hash Algorithm

	PEP 436: Argument Clinic

	Other Build and C API Changes

	Other Improvements

	Significant Optimizations

	Deprecated
	Deprecations in the Python API

	Deprecated Features

	Removed
	Operating Systems No Longer Supported

	API and Feature Removals

	Code Cleanups

	Porting to Python 3.4
	Changes in ‘python’ Command Behavior

	Changes in the Python API

	Changes in the C API

	Changed in 3.4.3
	PEP 476: Enabling certificate verification by default for stdlib http clients

	What’s New In Python 3.3
	Summary – Release highlights

	PEP 405: Virtual Environments

	PEP 420: Implicit Namespace Packages

	PEP 3118: New memoryview implementation and buffer protocol documentation
	Features

	API changes

	PEP 393: Flexible String Representation
	Functionality

	Performance and resource usage

	PEP 397: Python Launcher for Windows

	PEP 3151: Reworking the OS and IO exception hierarchy

	PEP 380: Syntax for Delegating to a Subgenerator

	PEP 409: Suppressing exception context

	PEP 414: Explicit Unicode literals

	PEP 3155: Qualified name for classes and functions

	PEP 412: Key-Sharing Dictionary

	PEP 362: Function Signature Object

	PEP 421: Adding sys.implementation
	SimpleNamespace

	Using importlib as the Implementation of Import
	New APIs

	Visible Changes

	Other Language Changes

	A Finer-Grained Import Lock

	Builtin functions and types

	New Modules
	faulthandler

	ipaddress

	lzma

	Improved Modules
	abc

	array

	base64

	binascii

	bz2

	codecs

	collections

	contextlib

	crypt

	curses

	datetime

	decimal
	Features

	API changes

	email
	Policy Framework

	Provisional Policy with New Header API

	Other API Changes

	ftplib

	functools

	gc

	hmac

	http

	html

	imaplib

	inspect

	io

	itertools

	logging

	math

	mmap

	multiprocessing

	nntplib

	os

	pdb

	pickle

	pydoc

	re

	sched

	select

	shlex

	shutil

	signal

	smtpd

	smtplib

	socket

	socketserver

	sqlite3

	ssl

	stat

	struct

	subprocess

	sys

	tarfile

	tempfile

	textwrap

	threading

	time

	types

	unittest

	urllib

	webbrowser

	xml.etree.ElementTree

	zlib

	Optimizations

	Build and C API Changes

	Deprecated
	Unsupported Operating Systems

	Deprecated Python modules, functions and methods

	Deprecated functions and types of the C API

	Deprecated features

	Porting to Python 3.3
	Porting Python code

	Porting C code

	Building C extensions

	Command Line Switch Changes

	What’s New In Python 3.2
	PEP 384: Defining a Stable ABI

	PEP 389: Argparse Command Line Parsing Module

	PEP 391: Dictionary Based Configuration for Logging

	PEP 3148: The concurrent.futures module

	PEP 3147: PYC Repository Directories

	PEP 3149: ABI Version Tagged .so Files

	PEP 3333: Python Web Server Gateway Interface v1.0.1

	Other Language Changes

	New, Improved, and Deprecated Modules
	email

	elementtree

	functools

	itertools

	collections

	threading

	datetime and time

	math

	abc

	io

	reprlib

	logging

	csv

	contextlib

	decimal and fractions

	ftp

	popen

	select

	gzip and zipfile

	tarfile

	hashlib

	ast

	os

	shutil

	sqlite3

	html

	socket

	ssl

	nntp

	certificates

	imaplib

	http.client

	unittest

	random

	poplib

	asyncore

	tempfile

	inspect

	pydoc

	dis

	dbm

	ctypes

	site

	sysconfig

	pdb

	configparser

	urllib.parse

	mailbox

	turtledemo

	Multi-threading

	Optimizations

	Unicode

	Codecs

	Documentation

	IDLE

	Code Repository

	Build and C API Changes

	Porting to Python 3.2

	What’s New In Python 3.1
	PEP 372: Ordered Dictionaries

	PEP 378: Format Specifier for Thousands Separator

	Other Language Changes

	New, Improved, and Deprecated Modules

	Optimizations

	IDLE

	Build and C API Changes

	Porting to Python 3.1

	What’s New In Python 3.0
	Common Stumbling Blocks
	Print Is A Function

	Views And Iterators Instead Of Lists

	Ordering Comparisons

	Integers

	Text Vs. Data Instead Of Unicode Vs. 8-bit

	Overview Of Syntax Changes
	New Syntax

	Changed Syntax

	Removed Syntax

	Changes Already Present In Python 2.6

	Library Changes

	PEP 3101: A New Approach To String Formatting

	Changes To Exceptions

	Miscellaneous Other Changes
	Operators And Special Methods

	Builtins

	Build and C API Changes

	Performance

	Porting To Python 3.0

	What’s New in Python 2.7
	The Future for Python 2.x

	Changes to the Handling of Deprecation Warnings

	Python 3.1 Features

	PEP 372: Adding an Ordered Dictionary to collections

	PEP 378: Format Specifier for Thousands Separator

	PEP 389: The argparse Module for Parsing Command Lines

	PEP 391: Dictionary-Based Configuration For Logging

	PEP 3106: Dictionary Views

	PEP 3137: The memoryview Object

	Other Language Changes
	Interpreter Changes

	Optimizations

	New and Improved Modules
	New module: importlib

	New module: sysconfig

	ttk: Themed Widgets for Tk

	Updated module: unittest

	Updated module: ElementTree 1.3

	Build and C API Changes
	Capsules

	Port-Specific Changes: Windows

	Port-Specific Changes: Mac OS X

	Port-Specific Changes: FreeBSD

	Other Changes and Fixes

	Porting to Python 2.7

	New Features Added to Python 2.7 Maintenance Releases
	Two new environment variables for debug mode

	PEP 434: IDLE Enhancement Exception for All Branches

	PEP 466: Network Security Enhancements for Python 2.7

	PEP 477: Backport ensurepip (PEP 453) to Python 2.7
	Bootstrapping pip By Default

	Documentation Changes

	PEP 476: Enabling certificate verification by default for stdlib http clients

	PEP 493: HTTPS verification migration tools for Python 2.7

	New make regen-all build target

	Removal of make touch build target

	Acknowledgements

	What’s New in Python 2.6
	Python 3.0

	Changes to the Development Process
	New Issue Tracker: Roundup

	New Documentation Format: reStructuredText Using Sphinx

	PEP 343: The ‘with’ statement
	Writing Context Managers

	The contextlib module

	PEP 366: Explicit Relative Imports From a Main Module

	PEP 370: Per-user site-packages Directory

	PEP 371: The multiprocessing Package

	PEP 3101: Advanced String Formatting

	PEP 3105: print As a Function

	PEP 3110: Exception-Handling Changes

	PEP 3112: Byte Literals

	PEP 3116: New I/O Library

	PEP 3118: Revised Buffer Protocol

	PEP 3119: Abstract Base Classes

	PEP 3127: Integer Literal Support and Syntax

	PEP 3129: Class Decorators

	PEP 3141: A Type Hierarchy for Numbers
	The fractions Module

	Other Language Changes
	Optimizations

	Interpreter Changes

	New and Improved Modules
	The ast module

	The future_builtins module

	The json module: JavaScript Object Notation

	The plistlib module: A Property-List Parser

	ctypes Enhancements

	Improved SSL Support

	Deprecations and Removals

	Build and C API Changes
	Port-Specific Changes: Windows

	Port-Specific Changes: Mac OS X

	Port-Specific Changes: IRIX

	Porting to Python 2.6

	Acknowledgements

	What’s New in Python 2.5
	PEP 308: Conditional Expressions

	PEP 309: Partial Function Application

	PEP 314: Metadata for Python Software Packages v1.1

	PEP 328: Absolute and Relative Imports

	PEP 338: Executing Modules as Scripts

	PEP 341: Unified try/except/finally

	PEP 342: New Generator Features

	PEP 343: The ‘with’ statement
	Writing Context Managers

	The contextlib module

	PEP 352: Exceptions as New-Style Classes

	PEP 353: Using ssize_t as the index type

	PEP 357: The ‘__index__’ method

	Other Language Changes
	Interactive Interpreter Changes

	Optimizations

	New, Improved, and Removed Modules
	The ctypes package

	The ElementTree package

	The hashlib package

	The sqlite3 package

	The wsgiref package

	Build and C API Changes
	Port-Specific Changes

	Porting to Python 2.5

	Acknowledgements

	What’s New in Python 2.4
	PEP 218: Built-In Set Objects

	PEP 237: Unifying Long Integers and Integers

	PEP 289: Generator Expressions

	PEP 292: Simpler String Substitutions

	PEP 318: Decorators for Functions and Methods

	PEP 322: Reverse Iteration

	PEP 324: New subprocess Module

	PEP 327: Decimal Data Type
	Why is Decimal needed?

	The Decimal type

	The Context type

	PEP 328: Multi-line Imports

	PEP 331: Locale-Independent Float/String Conversions

	Other Language Changes
	Optimizations

	New, Improved, and Deprecated Modules
	cookielib

	doctest

	Build and C API Changes
	Port-Specific Changes

	Porting to Python 2.4

	Acknowledgements

	What’s New in Python 2.3
	PEP 218: A Standard Set Datatype

	PEP 255: Simple Generators

	PEP 263: Source Code Encodings

	PEP 273: Importing Modules from ZIP Archives

	PEP 277: Unicode file name support for Windows NT

	PEP 278: Universal Newline Support

	PEP 279: enumerate()

	PEP 282: The logging Package

	PEP 285: A Boolean Type

	PEP 293: Codec Error Handling Callbacks

	PEP 301: Package Index and Metadata for Distutils

	PEP 302: New Import Hooks

	PEP 305: Comma-separated Files

	PEP 307: Pickle Enhancements

	Extended Slices

	Other Language Changes
	String Changes

	Optimizations

	New, Improved, and Deprecated Modules
	Date/Time Type

	The optparse Module

	Pymalloc: A Specialized Object Allocator

	Build and C API Changes
	Port-Specific Changes

	Other Changes and Fixes

	Porting to Python 2.3

	Acknowledgements

	What’s New in Python 2.2
	Introduction

	PEPs 252 and 253: Type and Class Changes
	Old and New Classes

	Descriptors

	Multiple Inheritance: The Diamond Rule

	Attribute Access

	Related Links

	PEP 234: Iterators

	PEP 255: Simple Generators

	PEP 237: Unifying Long Integers and Integers

	PEP 238: Changing the Division Operator

	Unicode Changes

	PEP 227: Nested Scopes

	New and Improved Modules

	Interpreter Changes and Fixes

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.1
	Introduction

	PEP 227: Nested Scopes

	PEP 236: __future__ Directives

	PEP 207: Rich Comparisons

	PEP 230: Warning Framework

	PEP 229: New Build System

	PEP 205: Weak References

	PEP 232: Function Attributes

	PEP 235: Importing Modules on Case-Insensitive Platforms

	PEP 217: Interactive Display Hook

	PEP 208: New Coercion Model

	PEP 241: Metadata in Python Packages

	New and Improved Modules

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.0
	Introduction

	What About Python 1.6?

	New Development Process

	Unicode

	List Comprehensions

	Augmented Assignment

	String Methods

	Garbage Collection of Cycles

	Other Core Changes
	Minor Language Changes

	Changes to Built-in Functions

	Porting to 2.0

	Extending/Embedding Changes

	Distutils: Making Modules Easy to Install

	XML Modules
	SAX2 Support

	DOM Support

	Relationship to PyXML

	Module changes

	New modules

	IDLE Improvements

	Deleted and Deprecated Modules

	Acknowledgements

	Changelog
	Python next
	Security

	Core and Builtins

	Library

	Documentation

	Build

	Windows

	macOS

	IDLE

	C API

	Python 3.12.0 beta 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.12.0 alpha 7
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	Tools/Demos

	C API

	Python 3.12.0 alpha 6
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	C API

	Python 3.12.0 alpha 5
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	Python 3.12.0 alpha 4
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	Tools/Demos

	C API

	Python 3.12.0 alpha 3
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	Tools/Demos

	C API

	Python 3.12.0 alpha 2
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	C API

	Python 3.12.0 alpha 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.11.0 beta 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	Tools/Demos

	C API

	Python 3.11.0 alpha 7
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	Tools/Demos

	C API

	Python 3.11.0 alpha 6
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	IDLE

	C API

	Python 3.11.0 alpha 5
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	C API

	Python 3.11.0 alpha 4
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	C API

	Python 3.11.0 alpha 3
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	C API

	Python 3.11.0 alpha 2
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	C API

	Python 3.11.0 alpha 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.10.0 beta 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	C API

	Python 3.10.0 alpha 7
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	IDLE

	C API

	Python 3.10.0 alpha 6
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	C API

	Python 3.10.0 alpha 5
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	C API

	Python 3.10.0 alpha 4
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	macOS

	Tools/Demos

	C API

	Python 3.10.0 alpha 3
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.10.0 alpha 2
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	C API

	Python 3.10.0 alpha 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	C API

	Python 3.9.0 beta 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	Tools/Demos

	C API

	Python 3.9.0 alpha 6
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.9.0 alpha 5
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.9.0 alpha 4
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	IDLE

	C API

	Python 3.9.0 alpha 3
	Core and Builtins

	Library

	Documentation

	Build

	IDLE

	C API

	Python 3.9.0 alpha 2
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	C API

	Python 3.9.0 alpha 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.8.0 beta 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.8.0 alpha 4
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.8.0 alpha 3
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	IDLE

	Tools/Demos

	C API

	Python 3.8.0 alpha 2
	Core and Builtins

	Library

	Documentation

	Tests

	Windows

	IDLE

	Python 3.8.0 alpha 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.7.0 final
	Library

	C API

	Python 3.7.0 release candidate 1
	Core and Builtins

	Library

	Documentation

	Build

	Windows

	IDLE

	Python 3.7.0 beta 5
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	macOS

	IDLE

	Python 3.7.0 beta 4
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	Python 3.7.0 beta 3
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.7.0 beta 2
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	Python 3.7.0 beta 1
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	C API

	Python 3.7.0 alpha 4
	Core and Builtins

	Library

	Documentation

	Tests

	Windows

	Tools/Demos

	C API

	Python 3.7.0 alpha 3
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.7.0 alpha 2
	Core and Builtins

	Library

	Documentation

	Build

	IDLE

	C API

	Python 3.7.0 alpha 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	IDLE

	Tools/Demos

	C API

	Python 3.6.6 final

	Python 3.6.6 release candidate 1
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.6.5 final
	Tests

	Build

	Python 3.6.5 release candidate 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.6.4 final

	Python 3.6.4 release candidate 1
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	macOS

	IDLE

	Tools/Demos

	C API

	Python 3.6.3 final
	Library

	Build

	Python 3.6.3 release candidate 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	IDLE

	Tools/Demos

	Python 3.6.2 final

	Python 3.6.2 release candidate 2
	Security

	Python 3.6.2 release candidate 1
	Security

	Core and Builtins

	Library

	IDLE

	C API

	Build

	Documentation

	Tools/Demos

	Tests

	Windows

	Python 3.6.1 final
	Core and Builtins

	Build

	Python 3.6.1 release candidate 1
	Core and Builtins

	Library

	IDLE

	Windows

	C API

	Documentation

	Tests

	Build

	Python 3.6.0 final

	Python 3.6.0 release candidate 2
	Core and Builtins

	Tools/Demos

	Windows

	Build

	Python 3.6.0 release candidate 1
	Core and Builtins

	Library

	C API

	Documentation

	Tools/Demos

	Python 3.6.0 beta 4
	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Python 3.6.0 beta 3
	Core and Builtins

	Library

	Windows

	Build

	Tests

	Python 3.6.0 beta 2
	Core and Builtins

	Library

	Windows

	C API

	Build

	Tests

	Python 3.6.0 beta 1
	Core and Builtins

	Library

	IDLE

	C API

	Tests

	Build

	Tools/Demos

	Windows

	Python 3.6.0 alpha 4
	Core and Builtins

	Library

	IDLE

	Tests

	Windows

	Build

	Python 3.6.0 alpha 3
	Security

	Core and Builtins

	Library

	IDLE

	C API

	Build

	Tools/Demos

	Documentation

	Tests

	Python 3.6.0 alpha 2
	Security

	Core and Builtins

	Library

	IDLE

	Documentation

	Tests

	Windows

	Build

	C API

	Tools/Demos

	Python 3.6.0 alpha 1
	Security

	Core and Builtins

	Library

	IDLE

	Documentation

	Tests

	Build

	Windows

	Tools/Demos

	C API

	Python 3.5.5 final

	Python 3.5.5 release candidate 1
	Security

	Core and Builtins

	Library

	Python 3.5.4 final
	Library

	Python 3.5.4 release candidate 1
	Security

	Core and Builtins

	Library

	Documentation

	Tests

	Build

	Windows

	C API

	Python 3.5.3 final

	Python 3.5.3 release candidate 1
	Security

	Core and Builtins

	Library

	IDLE

	C API

	Documentation

	Tests

	Tools/Demos

	Windows

	Build

	Python 3.5.2 final
	Core and Builtins

	Tests

	IDLE

	Python 3.5.2 release candidate 1
	Security

	Core and Builtins

	Library

	IDLE

	Documentation

	Tests

	Build

	Windows

	Tools/Demos

	Python 3.5.1 final
	Core and Builtins

	Windows

	Python 3.5.1 release candidate 1
	Core and Builtins

	Library

	IDLE

	Documentation

	Tests

	Build

	Windows

	Tools/Demos

	Python 3.5.0 final
	Build

	Python 3.5.0 release candidate 4
	Library

	Build

	Python 3.5.0 release candidate 3
	Core and Builtins

	Library

	Python 3.5.0 release candidate 2
	Core and Builtins

	Library

	Python 3.5.0 release candidate 1
	Core and Builtins

	Library

	IDLE

	Documentation

	Tests

	Python 3.5.0 beta 4
	Core and Builtins

	Library

	Build

	Python 3.5.0 beta 3
	Core and Builtins

	Library

	Tests

	Documentation

	Build

	Python 3.5.0 beta 2
	Core and Builtins

	Library

	Python 3.5.0 beta 1
	Core and Builtins

	Library

	IDLE

	Tests

	Documentation

	Tools/Demos

	Python 3.5.0 alpha 4
	Core and Builtins

	Library

	Build

	Tests

	Tools/Demos

	C API

	Python 3.5.0 alpha 3
	Core and Builtins

	Library

	Build

	Tests

	Tools/Demos

	Python 3.5.0 alpha 2
	Core and Builtins

	Library

	Build

	C API

	Windows

	Python 3.5.0 alpha 1
	Core and Builtins

	Library

	IDLE

	Build

	C API

	Documentation

	Tests

	Tools/Demos

	Windows

	The Python Tutorial
	1. Whetting Your Appetite

	2. Using the Python Interpreter
	2.1. Invoking the Interpreter
	2.1.1. Argument Passing

	2.1.2. Interactive Mode

	2.2. The Interpreter and Its Environment
	2.2.1. Source Code Encoding

	3. An Informal Introduction to Python
	3.1. Using Python as a Calculator
	3.1.1. Numbers

	3.1.2. Strings

	3.1.3. Lists

	3.2. First Steps Towards Programming

	4. More Control Flow Tools
	4.1. if Statements

	4.2. for Statements

	4.3. The range() Function

	4.4. break and continue Statements, and else Clauses on Loops

	4.5. pass Statements

	4.6. match Statements

	4.7. Defining Functions

	4.8. More on Defining Functions
	4.8.1. Default Argument Values

	4.8.2. Keyword Arguments

	4.8.3. Special parameters
	4.8.3.1. Positional-or-Keyword Arguments

	4.8.3.2. Positional-Only Parameters

	4.8.3.3. Keyword-Only Arguments

	4.8.3.4. Function Examples

	4.8.3.5. Recap

	4.8.4. Arbitrary Argument Lists

	4.8.5. Unpacking Argument Lists

	4.8.6. Lambda Expressions

	4.8.7. Documentation Strings

	4.8.8. Function Annotations

	4.9. Intermezzo: Coding Style

	5. Data Structures
	5.1. More on Lists
	5.1.1. Using Lists as Stacks

	5.1.2. Using Lists as Queues

	5.1.3. List Comprehensions

	5.1.4. Nested List Comprehensions

	5.2. The del statement

	5.3. Tuples and Sequences

	5.4. Sets

	5.5. Dictionaries

	5.6. Looping Techniques

	5.7. More on Conditions

	5.8. Comparing Sequences and Other Types

	6. Modules
	6.1. More on Modules
	6.1.1. Executing modules as scripts

	6.1.2. The Module Search Path

	6.1.3. “Compiled” Python files

	6.2. Standard Modules

	6.3. The dir() Function

	6.4. Packages
	6.4.1. Importing * From a Package

	6.4.2. Intra-package References

	6.4.3. Packages in Multiple Directories

	7. Input and Output
	7.1. Fancier Output Formatting
	7.1.1. Formatted String Literals

	7.1.2. The String format() Method

	7.1.3. Manual String Formatting

	7.1.4. Old string formatting

	7.2. Reading and Writing Files
	7.2.1. Methods of File Objects

	7.2.2. Saving structured data with json

	8. Errors and Exceptions
	8.1. Syntax Errors

	8.2. Exceptions

	8.3. Handling Exceptions

	8.4. Raising Exceptions

	8.5. Exception Chaining

	8.6. User-defined Exceptions

	8.7. Defining Clean-up Actions

	8.8. Predefined Clean-up Actions

	8.9. Raising and Handling Multiple Unrelated Exceptions

	8.10. Enriching Exceptions with Notes

	9. Classes
	9.1. A Word About Names and Objects

	9.2. Python Scopes and Namespaces
	9.2.1. Scopes and Namespaces Example

	9.3. A First Look at Classes
	9.3.1. Class Definition Syntax

	9.3.2. Class Objects

	9.3.3. Instance Objects

	9.3.4. Method Objects

	9.3.5. Class and Instance Variables

	9.4. Random Remarks

	9.5. Inheritance
	9.5.1. Multiple Inheritance

	9.6. Private Variables

	9.7. Odds and Ends

	9.8. Iterators

	9.9. Generators

	9.10. Generator Expressions

	10. Brief Tour of the Standard Library
	10.1. Operating System Interface

	10.2. File Wildcards

	10.3. Command Line Arguments

	10.4. Error Output Redirection and Program Termination

	10.5. String Pattern Matching

	10.6. Mathematics

	10.7. Internet Access

	10.8. Dates and Times

	10.9. Data Compression

	10.10. Performance Measurement

	10.11. Quality Control

	10.12. Batteries Included

	11. Brief Tour of the Standard Library — Part II
	11.1. Output Formatting

	11.2. Templating

	11.3. Working with Binary Data Record Layouts

	11.4. Multi-threading

	11.5. Logging

	11.6. Weak References

	11.7. Tools for Working with Lists

	11.8. Decimal Floating Point Arithmetic

	12. Virtual Environments and Packages
	12.1. Introduction

	12.2. Creating Virtual Environments

	12.3. Managing Packages with pip

	13. What Now?

	14. Interactive Input Editing and History Substitution
	14.1. Tab Completion and History Editing

	14.2. Alternatives to the Interactive Interpreter

	15. Floating Point Arithmetic: Issues and Limitations
	15.1. Representation Error

	16. Appendix
	16.1. Interactive Mode
	16.1.1. Error Handling

	16.1.2. Executable Python Scripts

	16.1.3. The Interactive Startup File

	16.1.4. The Customization Modules

	Python Setup and Usage
	1. Command line and environment
	1.1. Command line
	1.1.1. Interface options

	1.1.2. Generic options

	1.1.3. Miscellaneous options

	1.1.4. Options you shouldn’t use

	1.2. Environment variables
	1.2.1. Debug-mode variables

	2. Using Python on Unix platforms
	2.1. Getting and installing the latest version of Python
	2.1.1. On Linux

	2.1.2. On FreeBSD and OpenBSD

	2.2. Building Python

	2.3. Python-related paths and files

	2.4. Miscellaneous

	2.5. Custom OpenSSL

	3. Configure Python
	3.1. Build Requirements

	3.2. Configure Options
	3.2.1. General Options

	3.2.2. WebAssembly Options

	3.2.3. Install Options

	3.2.4. Performance options

	3.2.5. Python Debug Build

	3.2.6. Debug options

	3.2.7. Linker options

	3.2.8. Libraries options

	3.2.9. Security Options

	3.2.10. macOS Options

	3.2.11. Cross Compiling Options

	3.3. Python Build System
	3.3.1. Main files of the build system

	3.3.2. Main build steps

	3.3.3. Main Makefile targets

	3.3.4. C extensions

	3.4. Compiler and linker flags
	3.4.1. Preprocessor flags

	3.4.2. Compiler flags

	3.4.3. Linker flags

	4. Using Python on Windows
	4.1. The full installer
	4.1.1. Installation steps

	4.1.2. Removing the MAX_PATH Limitation

	4.1.3. Installing Without UI

	4.1.4. Installing Without Downloading

	4.1.5. Modifying an install

	4.2. The Microsoft Store package
	4.2.1. Known issues
	4.2.1.1. Redirection of local data, registry, and temporary paths

	4.3. The nuget.org packages

	4.4. The embeddable package
	4.4.1. Python Application

	4.4.2. Embedding Python

	4.5. Alternative bundles

	4.6. Configuring Python
	4.6.1. Excursus: Setting environment variables

	4.6.2. Finding the Python executable

	4.7. UTF-8 mode

	4.8. Python Launcher for Windows
	4.8.1. Getting started
	4.8.1.1. From the command-line

	4.8.1.2. Virtual environments

	4.8.1.3. From a script

	4.8.1.4. From file associations

	4.8.2. Shebang Lines

	4.8.3. Arguments in shebang lines

	4.8.4. Customization
	4.8.4.1. Customization via INI files

	4.8.4.2. Customizing default Python versions

	4.8.5. Diagnostics

	4.8.6. Dry Run

	4.8.7. Install on demand

	4.8.8. Return codes

	4.9. Finding modules

	4.10. Additional modules
	4.10.1. PyWin32

	4.10.2. cx_Freeze

	4.11. Compiling Python on Windows

	4.12. Other Platforms

	5. Using Python on a Mac
	5.1. Getting and Installing MacPython
	5.1.1. How to run a Python script

	5.1.2. Running scripts with a GUI

	5.1.3. Configuration

	5.2. The IDE

	5.3. Installing Additional Python Packages

	5.4. GUI Programming on the Mac

	5.5. Distributing Python Applications on the Mac

	5.6. Other Resources

	6. Editors and IDEs

	The Python Language Reference
	1. Introduction
	1.1. Alternate Implementations

	1.2. Notation

	2. Lexical analysis
	2.1. Line structure
	2.1.1. Logical lines

	2.1.2. Physical lines

	2.1.3. Comments

	2.1.4. Encoding declarations

	2.1.5. Explicit line joining

	2.1.6. Implicit line joining

	2.1.7. Blank lines

	2.1.8. Indentation

	2.1.9. Whitespace between tokens

	2.2. Other tokens

	2.3. Identifiers and keywords
	2.3.1. Keywords

	2.3.2. Soft Keywords

	2.3.3. Reserved classes of identifiers

	2.4. Literals
	2.4.1. String and Bytes literals

	2.4.2. String literal concatenation

	2.4.3. Formatted string literals

	2.4.4. Numeric literals

	2.4.5. Integer literals

	2.4.6. Floating point literals

	2.4.7. Imaginary literals

	2.5. Operators

	2.6. Delimiters

	3. Data model
	3.1. Objects, values and types

	3.2. The standard type hierarchy

	3.3. Special method names
	3.3.1. Basic customization

	3.3.2. Customizing attribute access
	3.3.2.1. Customizing module attribute access

	3.3.2.2. Implementing Descriptors

	3.3.2.3. Invoking Descriptors

	3.3.2.4. __slots__
	3.3.2.4.1. Notes on using __slots__

	3.3.3. Customizing class creation
	3.3.3.1. Metaclasses

	3.3.3.2. Resolving MRO entries

	3.3.3.3. Determining the appropriate metaclass

	3.3.3.4. Preparing the class namespace

	3.3.3.5. Executing the class body

	3.3.3.6. Creating the class object

	3.3.3.7. Uses for metaclasses

	3.3.4. Customizing instance and subclass checks

	3.3.5. Emulating generic types
	3.3.5.1. The purpose of __class_getitem__

	3.3.5.2. __class_getitem__ versus __getitem__

	3.3.6. Emulating callable objects

	3.3.7. Emulating container types

	3.3.8. Emulating numeric types

	3.3.9. With Statement Context Managers

	3.3.10. Customizing positional arguments in class pattern matching

	3.3.11. Emulating buffer types

	3.3.12. Special method lookup

	3.4. Coroutines
	3.4.1. Awaitable Objects

	3.4.2. Coroutine Objects

	3.4.3. Asynchronous Iterators

	3.4.4. Asynchronous Context Managers

	4. Execution model
	4.1. Structure of a program

	4.2. Naming and binding
	4.2.1. Binding of names

	4.2.2. Resolution of names

	4.2.3. Annotation scopes

	4.2.4. Lazy evaluation

	4.2.5. Builtins and restricted execution

	4.2.6. Interaction with dynamic features

	4.3. Exceptions

	5. The import system
	5.1. importlib

	5.2. Packages
	5.2.1. Regular packages

	5.2.2. Namespace packages

	5.3. Searching
	5.3.1. The module cache

	5.3.2. Finders and loaders

	5.3.3. Import hooks

	5.3.4. The meta path

	5.4. Loading
	5.4.1. Loaders

	5.4.2. Submodules

	5.4.3. Module spec

	5.4.4. Import-related module attributes

	5.4.5. module.__path__

	5.4.6. Module reprs

	5.4.7. Cached bytecode invalidation

	5.5. The Path Based Finder
	5.5.1. Path entry finders

	5.5.2. Path entry finder protocol

	5.6. Replacing the standard import system

	5.7. Package Relative Imports

	5.8. Special considerations for __main__
	5.8.1. __main__.__spec__

	5.9. References

	6. Expressions
	6.1. Arithmetic conversions

	6.2. Atoms
	6.2.1. Identifiers (Names)

	6.2.2. Literals

	6.2.3. Parenthesized forms

	6.2.4. Displays for lists, sets and dictionaries

	6.2.5. List displays

	6.2.6. Set displays

	6.2.7. Dictionary displays

	6.2.8. Generator expressions

	6.2.9. Yield expressions
	6.2.9.1. Generator-iterator methods

	6.2.9.2. Examples

	6.2.9.3. Asynchronous generator functions

	6.2.9.4. Asynchronous generator-iterator methods

	6.3. Primaries
	6.3.1. Attribute references

	6.3.2. Subscriptions

	6.3.3. Slicings

	6.3.4. Calls

	6.4. Await expression

	6.5. The power operator

	6.6. Unary arithmetic and bitwise operations

	6.7. Binary arithmetic operations

	6.8. Shifting operations

	6.9. Binary bitwise operations

	6.10. Comparisons
	6.10.1. Value comparisons

	6.10.2. Membership test operations

	6.10.3. Identity comparisons

	6.11. Boolean operations

	6.12. Assignment expressions

	6.13. Conditional expressions

	6.14. Lambdas

	6.15. Expression lists

	6.16. Evaluation order

	6.17. Operator precedence

	7. Simple statements
	7.1. Expression statements

	7.2. Assignment statements
	7.2.1. Augmented assignment statements

	7.2.2. Annotated assignment statements

	7.3. The assert statement

	7.4. The pass statement

	7.5. The del statement

	7.6. The return statement

	7.7. The yield statement

	7.8. The raise statement

	7.9. The break statement

	7.10. The continue statement

	7.11. The import statement
	7.11.1. Future statements

	7.12. The global statement

	7.13. The nonlocal statement

	7.14. The type statement

	8. Compound statements
	8.1. The if statement

	8.2. The while statement

	8.3. The for statement

	8.4. The try statement
	8.4.1. except clause

	8.4.2. except* clause

	8.4.3. else clause

	8.4.4. finally clause

	8.5. The with statement

	8.6. The match statement
	8.6.1. Overview

	8.6.2. Guards

	8.6.3. Irrefutable Case Blocks

	8.6.4. Patterns
	8.6.4.1. OR Patterns

	8.6.4.2. AS Patterns

	8.6.4.3. Literal Patterns

	8.6.4.4. Capture Patterns

	8.6.4.5. Wildcard Patterns

	8.6.4.6. Value Patterns

	8.6.4.7. Group Patterns

	8.6.4.8. Sequence Patterns

	8.6.4.9. Mapping Patterns

	8.6.4.10. Class Patterns

	8.7. Function definitions

	8.8. Class definitions

	8.9. Coroutines
	8.9.1. Coroutine function definition

	8.9.2. The async for statement

	8.9.3. The async with statement

	8.10. Type parameter lists
	8.10.1. Generic functions

	8.10.2. Generic classes

	8.10.3. Generic type aliases

	9. Top-level components
	9.1. Complete Python programs

	9.2. File input

	9.3. Interactive input

	9.4. Expression input

	10. Full Grammar specification

	The Python Standard Library
	Introduction
	Notes on availability
	WebAssembly platforms

	Built-in Functions

	Built-in Constants
	Constants added by the site module

	Built-in Types
	Truth Value Testing

	Boolean Operations — and, or, not

	Comparisons

	Numeric Types — int, float, complex
	Bitwise Operations on Integer Types

	Additional Methods on Integer Types

	Additional Methods on Float

	Hashing of numeric types

	Boolean Type - bool

	Iterator Types
	Generator Types

	Sequence Types — list, tuple, range
	Common Sequence Operations

	Immutable Sequence Types

	Mutable Sequence Types

	Lists

	Tuples

	Ranges

	Text Sequence Type — str
	String Methods

	printf-style String Formatting

	Binary Sequence Types — bytes, bytearray, memoryview
	Bytes Objects

	Bytearray Objects

	Bytes and Bytearray Operations

	printf-style Bytes Formatting

	Memory Views

	Set Types — set, frozenset

	Mapping Types — dict
	Dictionary view objects

	Context Manager Types

	Type Annotation Types — Generic Alias, Union
	Generic Alias Type
	Standard Generic Classes

	Special Attributes of GenericAlias objects

	Union Type

	Other Built-in Types
	Modules

	Classes and Class Instances

	Functions

	Methods

	Code Objects

	Type Objects

	The Null Object

	The Ellipsis Object

	The NotImplemented Object

	Internal Objects

	Special Attributes

	Integer string conversion length limitation
	Affected APIs

	Configuring the limit

	Recommended configuration

	Built-in Exceptions
	Exception context

	Inheriting from built-in exceptions

	Base classes

	Concrete exceptions
	OS exceptions

	Warnings

	Exception groups

	Exception hierarchy

	Text Processing Services
	string — Common string operations
	String constants

	Custom String Formatting

	Format String Syntax
	Format Specification Mini-Language

	Format examples

	Template strings

	Helper functions

	re — Regular expression operations
	Regular Expression Syntax

	Module Contents
	Flags

	Functions

	Exceptions

	Regular Expression Objects

	Match Objects

	Regular Expression Examples
	Checking for a Pair

	Simulating scanf()

	search() vs. match()

	Making a Phonebook

	Text Munging

	Finding all Adverbs

	Finding all Adverbs and their Positions

	Raw String Notation

	Writing a Tokenizer

	difflib — Helpers for computing deltas
	SequenceMatcher Objects

	SequenceMatcher Examples

	Differ Objects

	Differ Example

	A command-line interface to difflib

	ndiff example

	textwrap — Text wrapping and filling

	unicodedata — Unicode Database

	stringprep — Internet String Preparation

	readline — GNU readline interface
	Init file

	Line buffer

	History file

	History list

	Startup hooks

	Completion

	Example

	rlcompleter — Completion function for GNU readline
	Completer Objects

	Binary Data Services
	struct — Interpret bytes as packed binary data
	Functions and Exceptions

	Format Strings
	Byte Order, Size, and Alignment

	Format Characters

	Examples

	Applications
	Native Formats

	Standard Formats

	Classes

	codecs — Codec registry and base classes
	Codec Base Classes
	Error Handlers

	Stateless Encoding and Decoding

	Incremental Encoding and Decoding
	IncrementalEncoder Objects

	IncrementalDecoder Objects

	Stream Encoding and Decoding
	StreamWriter Objects

	StreamReader Objects

	StreamReaderWriter Objects

	StreamRecoder Objects

	Encodings and Unicode

	Standard Encodings

	Python Specific Encodings
	Text Encodings

	Binary Transforms

	Text Transforms

	encodings.idna — Internationalized Domain Names in Applications

	encodings.mbcs — Windows ANSI codepage

	encodings.utf_8_sig — UTF-8 codec with BOM signature

	Data Types
	datetime — Basic date and time types
	Aware and Naive Objects

	Constants

	Available Types
	Common Properties

	Determining if an Object is Aware or Naive

	timedelta Objects
	Examples of usage: timedelta

	date Objects
	Examples of Usage: date

	datetime Objects
	Examples of Usage: datetime

	time Objects
	Examples of Usage: time

	tzinfo Objects

	timezone Objects

	strftime() and strptime() Behavior
	strftime() and strptime() Format Codes

	Technical Detail

	zoneinfo — IANA time zone support
	Using ZoneInfo

	Data sources
	Configuring the data sources
	Compile-time configuration

	Environment configuration

	Runtime configuration

	The ZoneInfo class
	String representations

	Pickle serialization

	Functions

	Globals

	Exceptions and warnings

	calendar — General calendar-related functions

	collections — Container datatypes
	ChainMap objects
	ChainMap Examples and Recipes

	Counter objects

	deque objects
	deque Recipes

	defaultdict objects
	defaultdict Examples

	namedtuple() Factory Function for Tuples with Named Fields

	OrderedDict objects
	OrderedDict Examples and Recipes

	UserDict objects

	UserList objects

	UserString objects

	collections.abc — Abstract Base Classes for Containers
	Collections Abstract Base Classes

	Collections Abstract Base Classes – Detailed Descriptions

	Examples and Recipes

	heapq — Heap queue algorithm
	Basic Examples

	Priority Queue Implementation Notes

	Theory

	bisect — Array bisection algorithm
	Performance Notes

	Searching Sorted Lists

	Examples

	array — Efficient arrays of numeric values

	weakref — Weak references
	Weak Reference Objects

	Example

	Finalizer Objects

	Comparing finalizers with __del__() methods

	types — Dynamic type creation and names for built-in types
	Dynamic Type Creation

	Standard Interpreter Types

	Additional Utility Classes and Functions

	Coroutine Utility Functions

	copy — Shallow and deep copy operations

	pprint — Data pretty printer
	PrettyPrinter Objects

	Example

	reprlib — Alternate repr() implementation
	Repr Objects

	Subclassing Repr Objects

	enum — Support for enumerations
	Module Contents

	Data Types
	Supported __dunder__ names

	Supported _sunder_ names

	Utilities and Decorators

	Notes

	graphlib — Functionality to operate with graph-like structures
	Exceptions

	Numeric and Mathematical Modules
	numbers — Numeric abstract base classes
	The numeric tower

	Notes for type implementors
	Adding More Numeric ABCs

	Implementing the arithmetic operations

	math — Mathematical functions
	Number-theoretic and representation functions

	Power and logarithmic functions

	Trigonometric functions

	Angular conversion

	Hyperbolic functions

	Special functions

	Constants

	cmath — Mathematical functions for complex numbers
	Conversions to and from polar coordinates

	Power and logarithmic functions

	Trigonometric functions

	Hyperbolic functions

	Classification functions

	Constants

	decimal — Decimal fixed point and floating point arithmetic
	Quick-start Tutorial

	Decimal objects
	Logical operands

	Context objects

	Constants

	Rounding modes

	Signals

	Floating Point Notes
	Mitigating round-off error with increased precision

	Special values

	Working with threads

	Recipes

	Decimal FAQ

	fractions — Rational numbers

	random — Generate pseudo-random numbers
	Bookkeeping functions

	Functions for bytes

	Functions for integers

	Functions for sequences

	Discrete distributions

	Real-valued distributions

	Alternative Generator

	Notes on Reproducibility

	Examples

	Recipes

	statistics — Mathematical statistics functions
	Averages and measures of central location

	Measures of spread

	Statistics for relations between two inputs

	Function details

	Exceptions

	NormalDist objects
	NormalDist Examples and Recipes

	Functional Programming Modules
	itertools — Functions creating iterators for efficient looping
	Itertool functions

	Itertools Recipes

	functools — Higher-order functions and operations on callable objects
	partial Objects

	operator — Standard operators as functions
	Mapping Operators to Functions

	In-place Operators

	File and Directory Access
	pathlib — Object-oriented filesystem paths
	Basic use

	Pure paths
	General properties

	Operators

	Accessing individual parts

	Methods and properties

	Concrete paths
	Methods

	Correspondence to tools in the os module

	os.path — Common pathname manipulations

	fileinput — Iterate over lines from multiple input streams

	stat — Interpreting stat() results

	filecmp — File and Directory Comparisons
	The dircmp class

	tempfile — Generate temporary files and directories
	Examples

	Deprecated functions and variables

	glob — Unix style pathname pattern expansion

	fnmatch — Unix filename pattern matching

	linecache — Random access to text lines

	shutil — High-level file operations
	Directory and files operations
	Platform-dependent efficient copy operations

	copytree example

	rmtree example

	Archiving operations
	Archiving example

	Archiving example with base_dir

	Querying the size of the output terminal

	Data Persistence
	pickle — Python object serialization
	Relationship to other Python modules
	Comparison with marshal

	Comparison with json

	Data stream format

	Module Interface

	What can be pickled and unpickled?

	Pickling Class Instances
	Persistence of External Objects

	Dispatch Tables

	Handling Stateful Objects

	Custom Reduction for Types, Functions, and Other Objects

	Out-of-band Buffers
	Provider API

	Consumer API

	Example

	Restricting Globals

	Performance

	Examples

	copyreg — Register pickle support functions
	Example

	shelve — Python object persistence
	Restrictions

	Example

	marshal — Internal Python object serialization

	dbm — Interfaces to Unix “databases”
	dbm.gnu — GNU’s reinterpretation of dbm

	dbm.ndbm — Interface based on ndbm

	dbm.dumb — Portable DBM implementation

	sqlite3 — DB-API 2.0 interface for SQLite databases
	Tutorial

	Reference
	Module functions

	Module constants

	Connection objects

	Cursor objects

	Row objects

	Blob objects

	PrepareProtocol objects

	Exceptions

	SQLite and Python types

	Default adapters and converters (deprecated)

	Command-line interface

	How-to guides
	How to use placeholders to bind values in SQL queries

	How to adapt custom Python types to SQLite values
	How to write adaptable objects

	How to register adapter callables

	How to convert SQLite values to custom Python types

	Adapter and converter recipes

	How to use connection shortcut methods

	How to use the connection context manager

	How to work with SQLite URIs

	How to create and use row factories

	Explanation
	Transaction control
	Transaction control via the autocommit attribute

	Transaction control via the isolation_level attribute

	Data Compression and Archiving
	zlib — Compression compatible with gzip

	gzip — Support for gzip files
	Examples of usage

	Command Line Interface
	Command line options

	bz2 — Support for bzip2 compression
	(De)compression of files

	Incremental (de)compression

	One-shot (de)compression

	Examples of usage

	lzma — Compression using the LZMA algorithm
	Reading and writing compressed files

	Compressing and decompressing data in memory

	Miscellaneous

	Specifying custom filter chains

	Examples

	zipfile — Work with ZIP archives
	ZipFile Objects

	Path Objects

	PyZipFile Objects

	ZipInfo Objects

	Command-Line Interface
	Command-line options

	Decompression pitfalls
	From file itself

	File System limitations

	Resources limitations

	Interruption

	Default behaviors of extraction

	tarfile — Read and write tar archive files
	TarFile Objects

	TarInfo Objects

	Extraction filters
	Default named filters

	Filter errors

	Hints for further verification

	Supporting older Python versions

	Stateful extraction filter example

	Command-Line Interface
	Command-line options

	Examples

	Supported tar formats

	Unicode issues

	File Formats
	csv — CSV File Reading and Writing
	Module Contents

	Dialects and Formatting Parameters

	Reader Objects

	Writer Objects

	Examples

	configparser — Configuration file parser
	Quick Start

	Supported Datatypes

	Fallback Values

	Supported INI File Structure

	Interpolation of values

	Mapping Protocol Access

	Customizing Parser Behaviour

	Legacy API Examples

	ConfigParser Objects

	RawConfigParser Objects

	Exceptions

	tomllib — Parse TOML files
	Examples

	Conversion Table

	netrc — netrc file processing
	netrc Objects

	plistlib — Generate and parse Apple .plist files
	Examples

	Cryptographic Services
	hashlib — Secure hashes and message digests
	Hash algorithms

	SHAKE variable length digests

	File hashing

	Key derivation

	BLAKE2
	Creating hash objects

	Constants

	Examples
	Simple hashing

	Using different digest sizes

	Keyed hashing

	Randomized hashing

	Personalization

	Tree mode

	Credits

	hmac — Keyed-Hashing for Message Authentication

	secrets — Generate secure random numbers for managing secrets
	Random numbers

	Generating tokens
	How many bytes should tokens use?

	Other functions

	Recipes and best practices

	Generic Operating System Services
	os — Miscellaneous operating system interfaces
	File Names, Command Line Arguments, and Environment Variables

	Python UTF-8 Mode

	Process Parameters

	File Object Creation

	File Descriptor Operations
	Querying the size of a terminal

	Inheritance of File Descriptors

	Files and Directories
	Linux extended attributes

	Process Management

	Interface to the scheduler

	Miscellaneous System Information

	Random numbers

	io — Core tools for working with streams
	Overview
	Text I/O

	Binary I/O

	Raw I/O

	Text Encoding
	Opt-in EncodingWarning

	High-level Module Interface

	Class hierarchy
	I/O Base Classes

	Raw File I/O

	Buffered Streams

	Text I/O

	Performance
	Binary I/O

	Text I/O

	Multi-threading

	Reentrancy

	time — Time access and conversions
	Functions

	Clock ID Constants

	Timezone Constants

	argparse — Parser for command-line options, arguments and sub-commands
	Core Functionality

	Quick Links for add_argument()

	Example
	Creating a parser

	Adding arguments

	Parsing arguments

	ArgumentParser objects
	prog

	usage

	description

	epilog

	parents

	formatter_class

	prefix_chars

	fromfile_prefix_chars

	argument_default

	allow_abbrev

	conflict_handler

	add_help

	exit_on_error

	The add_argument() method
	name or flags

	action

	nargs

	const

	default

	type

	choices

	required

	help

	metavar

	dest

	Action classes

	The parse_args() method
	Option value syntax

	Invalid arguments

	Arguments containing -

	Argument abbreviations (prefix matching)

	Beyond sys.argv

	The Namespace object

	Other utilities
	Sub-commands

	FileType objects

	Argument groups

	Mutual exclusion

	Parser defaults

	Printing help

	Partial parsing

	Customizing file parsing

	Exiting methods

	Intermixed parsing

	Upgrading optparse code

	Exceptions

	getopt — C-style parser for command line options

	logging — Logging facility for Python
	Logger Objects

	Logging Levels

	Handler Objects

	Formatter Objects

	Filter Objects

	LogRecord Objects

	LogRecord attributes

	LoggerAdapter Objects

	Thread Safety

	Module-Level Functions

	Module-Level Attributes

	Integration with the warnings module

	logging.config — Logging configuration
	Configuration functions

	Security considerations

	Configuration dictionary schema
	Dictionary Schema Details

	Incremental Configuration

	Object connections

	User-defined objects

	Handler configuration order

	Access to external objects

	Access to internal objects

	Import resolution and custom importers

	Configuring QueueHandler and QueueListener

	Configuration file format

	logging.handlers — Logging handlers
	StreamHandler

	FileHandler

	NullHandler

	WatchedFileHandler

	BaseRotatingHandler

	RotatingFileHandler

	TimedRotatingFileHandler

	SocketHandler

	DatagramHandler

	SysLogHandler

	NTEventLogHandler

	SMTPHandler

	MemoryHandler

	HTTPHandler

	QueueHandler

	QueueListener

	getpass — Portable password input

	curses — Terminal handling for character-cell displays
	Functions

	Window Objects

	Constants

	curses.textpad — Text input widget for curses programs
	Textbox objects

	curses.ascii — Utilities for ASCII characters

	curses.panel — A panel stack extension for curses
	Functions

	Panel Objects

	platform — Access to underlying platform’s identifying data
	Cross Platform

	Java Platform

	Windows Platform

	macOS Platform

	Unix Platforms

	Linux Platforms

	errno — Standard errno system symbols

	ctypes — A foreign function library for Python
	ctypes tutorial
	Loading dynamic link libraries

	Accessing functions from loaded dlls

	Calling functions

	Fundamental data types

	Calling functions, continued

	Calling variadic functions

	Calling functions with your own custom data types

	Specifying the required argument types (function prototypes)

	Return types

	Passing pointers (or: passing parameters by reference)

	Structures and unions

	Structure/union alignment and byte order

	Bit fields in structures and unions

	Arrays

	Pointers

	Type conversions

	Incomplete Types

	Callback functions

	Accessing values exported from dlls

	Surprises

	Variable-sized data types

	ctypes reference
	Finding shared libraries

	Loading shared libraries

	Foreign functions

	Function prototypes

	Utility functions

	Data types

	Fundamental data types

	Structured data types

	Arrays and pointers

	Concurrent Execution
	threading — Thread-based parallelism
	Thread-Local Data

	Thread Objects

	Lock Objects

	RLock Objects

	Condition Objects

	Semaphore Objects
	Semaphore Example

	Event Objects

	Timer Objects

	Barrier Objects

	Using locks, conditions, and semaphores in the with statement

	multiprocessing — Process-based parallelism
	Introduction
	The Process class

	Contexts and start methods

	Exchanging objects between processes

	Synchronization between processes

	Sharing state between processes

	Using a pool of workers

	Reference
	Process and exceptions

	Pipes and Queues

	Miscellaneous

	Connection Objects

	Synchronization primitives

	Shared ctypes Objects
	The multiprocessing.sharedctypes module

	Managers
	Customized managers

	Using a remote manager

	Proxy Objects
	Cleanup

	Process Pools

	Listeners and Clients
	Address Formats

	Authentication keys

	Logging

	The multiprocessing.dummy module

	Programming guidelines
	All start methods

	The spawn and forkserver start methods

	Examples

	multiprocessing.shared_memory — Shared memory for direct access across processes

	The concurrent package

	concurrent.futures — Launching parallel tasks
	Executor Objects

	ThreadPoolExecutor
	ThreadPoolExecutor Example

	ProcessPoolExecutor
	ProcessPoolExecutor Example

	Future Objects

	Module Functions

	Exception classes

	subprocess — Subprocess management
	Using the subprocess Module
	Frequently Used Arguments

	Popen Constructor

	Exceptions

	Security Considerations

	Popen Objects

	Windows Popen Helpers
	Windows Constants

	Older high-level API

	Replacing Older Functions with the subprocess Module
	Replacing /bin/sh shell command substitution

	Replacing shell pipeline

	Replacing os.system()

	Replacing the os.spawn family

	Replacing os.popen(), os.popen2(), os.popen3()

	Replacing functions from the popen2 module

	Legacy Shell Invocation Functions

	Notes
	Converting an argument sequence to a string on Windows

	Disabling use of vfork() or posix_spawn()

	sched — Event scheduler
	Scheduler Objects

	queue — A synchronized queue class
	Queue Objects

	SimpleQueue Objects

	contextvars — Context Variables
	Context Variables

	Manual Context Management

	asyncio support

	_thread — Low-level threading API

	Networking and Interprocess Communication
	asyncio — Asynchronous I/O
	Runners
	Running an asyncio Program

	Runner context manager

	Handling Keyboard Interruption

	Coroutines and Tasks
	Coroutines

	Awaitables

	Creating Tasks

	Task Cancellation

	Task Groups

	Sleeping

	Running Tasks Concurrently

	Eager Task Factory

	Shielding From Cancellation

	Timeouts

	Waiting Primitives

	Running in Threads

	Scheduling From Other Threads

	Introspection

	Task Object

	Streams
	StreamReader

	StreamWriter

	Examples
	TCP echo client using streams

	TCP echo server using streams

	Get HTTP headers

	Register an open socket to wait for data using streams

	Synchronization Primitives
	Lock

	Event

	Condition

	Semaphore

	BoundedSemaphore

	Barrier

	Subprocesses
	Creating Subprocesses

	Constants

	Interacting with Subprocesses
	Subprocess and Threads

	Examples

	Queues
	Queue

	Priority Queue

	LIFO Queue

	Exceptions

	Examples

	Exceptions

	Event Loop
	Event Loop Methods
	Running and stopping the loop

	Scheduling callbacks

	Scheduling delayed callbacks

	Creating Futures and Tasks

	Opening network connections

	Creating network servers

	Transferring files

	TLS Upgrade

	Watching file descriptors

	Working with socket objects directly

	DNS

	Working with pipes

	Unix signals

	Executing code in thread or process pools

	Error Handling API

	Enabling debug mode

	Running Subprocesses

	Callback Handles

	Server Objects

	Event Loop Implementations

	Examples
	Hello World with call_soon()

	Display the current date with call_later()

	Watch a file descriptor for read events

	Set signal handlers for SIGINT and SIGTERM

	Futures
	Future Functions

	Future Object

	Transports and Protocols
	Transports
	Transports Hierarchy

	Base Transport

	Read-only Transports

	Write-only Transports

	Datagram Transports

	Subprocess Transports

	Protocols
	Base Protocols

	Base Protocol

	Streaming Protocols

	Buffered Streaming Protocols

	Datagram Protocols

	Subprocess Protocols

	Examples
	TCP Echo Server

	TCP Echo Client

	UDP Echo Server

	UDP Echo Client

	Connecting Existing Sockets

	loop.subprocess_exec() and SubprocessProtocol

	Policies
	Getting and Setting the Policy

	Policy Objects

	Process Watchers

	Custom Policies

	Platform Support
	All Platforms

	Windows
	Subprocess Support on Windows

	macOS

	Extending
	Writing a Custom Event Loop

	Future and Task private constructors

	Task lifetime support

	High-level API Index
	Tasks

	Queues

	Subprocesses

	Streams

	Synchronization

	Exceptions

	Low-level API Index
	Obtaining the Event Loop

	Event Loop Methods

	Transports

	Protocols

	Event Loop Policies

	Developing with asyncio
	Debug Mode

	Concurrency and Multithreading

	Running Blocking Code

	Logging

	Detect never-awaited coroutines

	Detect never-retrieved exceptions

	socket — Low-level networking interface
	Socket families

	Module contents
	Exceptions

	Constants

	Functions
	Creating sockets

	Other functions

	Socket Objects

	Notes on socket timeouts
	Timeouts and the connect method

	Timeouts and the accept method

	Example

	ssl — TLS/SSL wrapper for socket objects
	Functions, Constants, and Exceptions
	Socket creation

	Context creation

	Exceptions

	Random generation

	Certificate handling

	Constants

	SSL Sockets

	SSL Contexts

	Certificates
	Certificate chains

	CA certificates

	Combined key and certificate

	Self-signed certificates

	Examples
	Testing for SSL support

	Client-side operation

	Server-side operation

	Notes on non-blocking sockets

	Memory BIO Support

	SSL session

	Security considerations
	Best defaults

	Manual settings
	Verifying certificates

	Protocol versions

	Cipher selection

	Multi-processing

	TLS 1.3

	select — Waiting for I/O completion
	/dev/poll Polling Objects

	Edge and Level Trigger Polling (epoll) Objects

	Polling Objects

	Kqueue Objects

	Kevent Objects

	selectors — High-level I/O multiplexing
	Introduction

	Classes

	Examples

	signal — Set handlers for asynchronous events
	General rules
	Execution of Python signal handlers

	Signals and threads

	Module contents

	Examples

	Note on SIGPIPE

	Note on Signal Handlers and Exceptions

	mmap — Memory-mapped file support
	MADV_* Constants

	MAP_* Constants

	Internet Data Handling
	email — An email and MIME handling package
	email.message: Representing an email message

	email.parser: Parsing email messages
	FeedParser API

	Parser API

	Additional notes

	email.generator: Generating MIME documents

	email.policy: Policy Objects

	email.errors: Exception and Defect classes

	email.headerregistry: Custom Header Objects

	email.contentmanager: Managing MIME Content
	Content Manager Instances

	email: Examples

	email.message.Message: Representing an email message using the compat32 API

	email.mime: Creating email and MIME objects from scratch

	email.header: Internationalized headers

	email.charset: Representing character sets

	email.encoders: Encoders

	email.utils: Miscellaneous utilities

	email.iterators: Iterators

	json — JSON encoder and decoder
	Basic Usage

	Encoders and Decoders

	Exceptions

	Standard Compliance and Interoperability
	Character Encodings

	Infinite and NaN Number Values

	Repeated Names Within an Object

	Top-level Non-Object, Non-Array Values

	Implementation Limitations

	Command Line Interface
	Command line options

	mailbox — Manipulate mailboxes in various formats
	Mailbox objects
	Maildir

	mbox

	MH

	Babyl

	MMDF

	Message objects
	MaildirMessage

	mboxMessage

	MHMessage

	BabylMessage

	MMDFMessage

	Exceptions

	Examples

	mimetypes — Map filenames to MIME types
	MimeTypes Objects

	base64 — Base16, Base32, Base64, Base85 Data Encodings
	Security Considerations

	binascii — Convert between binary and ASCII

	quopri — Encode and decode MIME quoted-printable data

	Structured Markup Processing Tools
	html — HyperText Markup Language support

	html.parser — Simple HTML and XHTML parser
	Example HTML Parser Application

	HTMLParser Methods

	Examples

	html.entities — Definitions of HTML general entities

	XML Processing Modules
	XML vulnerabilities

	The defusedxml Package

	xml.etree.ElementTree — The ElementTree XML API
	Tutorial
	XML tree and elements

	Parsing XML

	Pull API for non-blocking parsing

	Finding interesting elements

	Modifying an XML File

	Building XML documents

	Parsing XML with Namespaces

	XPath support
	Example

	Supported XPath syntax

	Reference
	Functions

	XInclude support
	Example

	Reference
	Functions

	Element Objects

	ElementTree Objects

	QName Objects

	TreeBuilder Objects

	XMLParser Objects

	XMLPullParser Objects

	Exceptions

	xml.dom — The Document Object Model API
	Module Contents

	Objects in the DOM
	DOMImplementation Objects

	Node Objects

	NodeList Objects

	DocumentType Objects

	Document Objects

	Element Objects

	Attr Objects

	NamedNodeMap Objects

	Comment Objects

	Text and CDATASection Objects

	ProcessingInstruction Objects

	Exceptions

	Conformance
	Type Mapping

	Accessor Methods

	xml.dom.minidom — Minimal DOM implementation
	DOM Objects

	DOM Example

	minidom and the DOM standard

	xml.dom.pulldom — Support for building partial DOM trees
	DOMEventStream Objects

	xml.sax — Support for SAX2 parsers
	SAXException Objects

	xml.sax.handler — Base classes for SAX handlers
	ContentHandler Objects

	DTDHandler Objects

	EntityResolver Objects

	ErrorHandler Objects

	LexicalHandler Objects

	xml.sax.saxutils — SAX Utilities

	xml.sax.xmlreader — Interface for XML parsers
	XMLReader Objects

	IncrementalParser Objects

	Locator Objects

	InputSource Objects

	The Attributes Interface

	The AttributesNS Interface

	xml.parsers.expat — Fast XML parsing using Expat
	XMLParser Objects

	ExpatError Exceptions

	Example

	Content Model Descriptions

	Expat error constants

	Internet Protocols and Support
	webbrowser — Convenient web-browser controller
	Browser Controller Objects

	wsgiref — WSGI Utilities and Reference Implementation
	wsgiref.util – WSGI environment utilities

	wsgiref.headers – WSGI response header tools

	wsgiref.simple_server – a simple WSGI HTTP server

	wsgiref.validate — WSGI conformance checker

	wsgiref.handlers – server/gateway base classes

	wsgiref.types – WSGI types for static type checking

	Examples

	urllib — URL handling modules

	urllib.request — Extensible library for opening URLs
	Request Objects

	OpenerDirector Objects

	BaseHandler Objects

	HTTPRedirectHandler Objects

	HTTPCookieProcessor Objects

	ProxyHandler Objects

	HTTPPasswordMgr Objects

	HTTPPasswordMgrWithPriorAuth Objects

	AbstractBasicAuthHandler Objects

	HTTPBasicAuthHandler Objects

	ProxyBasicAuthHandler Objects

	AbstractDigestAuthHandler Objects

	HTTPDigestAuthHandler Objects

	ProxyDigestAuthHandler Objects

	HTTPHandler Objects

	HTTPSHandler Objects

	FileHandler Objects

	DataHandler Objects

	FTPHandler Objects

	CacheFTPHandler Objects

	UnknownHandler Objects

	HTTPErrorProcessor Objects

	Examples

	Legacy interface

	urllib.request Restrictions

	urllib.response — Response classes used by urllib

	urllib.parse — Parse URLs into components
	URL Parsing

	URL parsing security

	Parsing ASCII Encoded Bytes

	Structured Parse Results

	URL Quoting

	urllib.error — Exception classes raised by urllib.request

	urllib.robotparser — Parser for robots.txt

	http — HTTP modules
	HTTP status codes

	HTTP status category

	HTTP methods

	http.client — HTTP protocol client
	HTTPConnection Objects

	HTTPResponse Objects

	Examples

	HTTPMessage Objects

	ftplib — FTP protocol client
	FTP Objects

	FTP_TLS Objects

	poplib — POP3 protocol client
	POP3 Objects

	POP3 Example

	imaplib — IMAP4 protocol client
	IMAP4 Objects

	IMAP4 Example

	smtplib — SMTP protocol client
	SMTP Objects

	SMTP Example

	uuid — UUID objects according to RFC 4122
	Command-Line Usage

	Example

	Command-Line Example

	socketserver — A framework for network servers
	Server Creation Notes

	Server Objects

	Request Handler Objects

	Examples
	socketserver.TCPServer Example

	socketserver.UDPServer Example

	Asynchronous Mixins

	http.server — HTTP servers
	Security Considerations

	http.cookies — HTTP state management
	Cookie Objects

	Morsel Objects

	Example

	http.cookiejar — Cookie handling for HTTP clients
	CookieJar and FileCookieJar Objects

	FileCookieJar subclasses and co-operation with web browsers

	CookiePolicy Objects

	DefaultCookiePolicy Objects

	Cookie Objects

	Examples

	xmlrpc — XMLRPC server and client modules

	xmlrpc.client — XML-RPC client access
	ServerProxy Objects

	DateTime Objects

	Binary Objects

	Fault Objects

	ProtocolError Objects

	MultiCall Objects

	Convenience Functions

	Example of Client Usage

	Example of Client and Server Usage

	xmlrpc.server — Basic XML-RPC servers
	SimpleXMLRPCServer Objects
	SimpleXMLRPCServer Example

	CGIXMLRPCRequestHandler

	Documenting XMLRPC server

	DocXMLRPCServer Objects

	DocCGIXMLRPCRequestHandler

	ipaddress — IPv4/IPv6 manipulation library
	Convenience factory functions

	IP Addresses
	Address objects

	Conversion to Strings and Integers

	Operators
	Comparison operators

	Arithmetic operators

	IP Network definitions
	Prefix, net mask and host mask

	Network objects

	Operators
	Logical operators

	Iteration

	Networks as containers of addresses

	Interface objects
	Operators
	Logical operators

	Other Module Level Functions

	Custom Exceptions

	Multimedia Services
	wave — Read and write WAV files
	Wave_read Objects

	Wave_write Objects

	colorsys — Conversions between color systems

	Internationalization
	gettext — Multilingual internationalization services
	GNU gettext API

	Class-based API
	The NullTranslations class

	The GNUTranslations class

	Solaris message catalog support

	The Catalog constructor

	Internationalizing your programs and modules
	Localizing your module

	Localizing your application

	Changing languages on the fly

	Deferred translations

	Acknowledgements

	locale — Internationalization services
	Background, details, hints, tips and caveats

	For extension writers and programs that embed Python

	Access to message catalogs

	Program Frameworks
	turtle — Turtle graphics
	Introduction

	Overview of available Turtle and Screen methods
	Turtle methods

	Methods of TurtleScreen/Screen

	Methods of RawTurtle/Turtle and corresponding functions
	Turtle motion

	Tell Turtle’s state

	Settings for measurement

	Pen control
	Drawing state

	Color control

	Filling

	More drawing control

	Turtle state
	Visibility

	Appearance

	Using events

	Special Turtle methods

	Compound shapes

	Methods of TurtleScreen/Screen and corresponding functions
	Window control

	Animation control

	Using screen events

	Input methods

	Settings and special methods

	Methods specific to Screen, not inherited from TurtleScreen

	Public classes

	Help and configuration
	How to use help

	Translation of docstrings into different languages

	How to configure Screen and Turtles

	turtledemo — Demo scripts

	Changes since Python 2.6

	Changes since Python 3.0

	cmd — Support for line-oriented command interpreters
	Cmd Objects

	Cmd Example

	shlex — Simple lexical analysis
	shlex Objects

	Parsing Rules

	Improved Compatibility with Shells

	Graphical User Interfaces with Tk
	tkinter — Python interface to Tcl/Tk
	Architecture

	Tkinter Modules

	Tkinter Life Preserver
	A Hello World Program

	Important Tk Concepts

	Understanding How Tkinter Wraps Tcl/Tk

	How do I…? What option does…?

	Navigating the Tcl/Tk Reference Manual

	Threading model

	Handy Reference
	Setting Options

	The Packer

	Packer Options

	Coupling Widget Variables

	The Window Manager

	Tk Option Data Types

	Bindings and Events

	The index Parameter

	Images

	File Handlers

	tkinter.colorchooser — Color choosing dialog

	tkinter.font — Tkinter font wrapper

	Tkinter Dialogs
	tkinter.simpledialog — Standard Tkinter input dialogs

	tkinter.filedialog — File selection dialogs
	Native Load/Save Dialogs

	tkinter.commondialog — Dialog window templates

	tkinter.messagebox — Tkinter message prompts

	tkinter.scrolledtext — Scrolled Text Widget

	tkinter.dnd — Drag and drop support

	tkinter.ttk — Tk themed widgets
	Using Ttk

	Ttk Widgets

	Widget
	Standard Options

	Scrollable Widget Options

	Label Options

	Compatibility Options

	Widget States

	ttk.Widget

	Combobox
	Options

	Virtual events

	ttk.Combobox

	Spinbox
	Options

	Virtual events

	ttk.Spinbox

	Notebook
	Options

	Tab Options

	Tab Identifiers

	Virtual Events

	ttk.Notebook

	Progressbar
	Options

	ttk.Progressbar

	Separator
	Options

	Sizegrip
	Platform-specific notes

	Bugs

	Treeview
	Options

	Item Options

	Tag Options

	Column Identifiers

	Virtual Events

	ttk.Treeview

	Ttk Styling
	Layouts

	tkinter.tix — Extension widgets for Tk
	Using Tix

	Tix Widgets
	Basic Widgets

	File Selectors

	Hierarchical ListBox

	Tabular ListBox

	Manager Widgets

	Image Types

	Miscellaneous Widgets

	Form Geometry Manager

	Tix Commands

	IDLE
	Menus
	File menu (Shell and Editor)

	Edit menu (Shell and Editor)

	Format menu (Editor window only)

	Run menu (Editor window only)

	Shell menu (Shell window only)

	Debug menu (Shell window only)

	Options menu (Shell and Editor)

	Window menu (Shell and Editor)

	Help menu (Shell and Editor)

	Context menus

	Editing and Navigation
	Editor windows

	Key bindings

	Automatic indentation

	Search and Replace

	Completions

	Calltips

	Code Context

	Shell window

	Text colors

	Startup and Code Execution
	Command line usage

	Startup failure

	Running user code

	User output in Shell

	Developing tkinter applications

	Running without a subprocess

	Help and Preferences
	Help sources

	Setting preferences

	IDLE on macOS

	Extensions

	idlelib

	Development Tools
	typing — Support for type hints
	Relevant PEPs

	Type aliases

	NewType

	Callable

	Generics

	User-defined generic types

	The Any type

	Nominal vs structural subtyping

	Module contents
	Special typing primitives
	Special types

	Special forms

	Building generic types and type aliases

	Other special directives

	Generic concrete collections
	Corresponding to built-in types

	Corresponding to types in collections

	Other concrete types

	Abstract Base Classes
	Corresponding to collections in collections.abc

	Corresponding to other types in collections.abc

	Asynchronous programming

	Context manager types

	Protocols

	Functions and decorators

	Introspection helpers

	Constant

	Deprecation Timeline of Major Features

	pydoc — Documentation generator and online help system

	Python Development Mode

	Effects of the Python Development Mode

	ResourceWarning Example

	Bad file descriptor error example

	doctest — Test interactive Python examples
	Simple Usage: Checking Examples in Docstrings

	Simple Usage: Checking Examples in a Text File

	How It Works
	Which Docstrings Are Examined?

	How are Docstring Examples Recognized?

	What’s the Execution Context?

	What About Exceptions?

	Option Flags

	Directives

	Warnings

	Basic API

	Unittest API

	Advanced API
	DocTest Objects

	Example Objects

	DocTestFinder objects

	DocTestParser objects

	DocTestRunner objects

	OutputChecker objects

	Debugging

	Soapbox

	unittest — Unit testing framework
	Basic example

	Command-Line Interface
	Command-line options

	Test Discovery

	Organizing test code

	Re-using old test code

	Skipping tests and expected failures

	Distinguishing test iterations using subtests

	Classes and functions
	Test cases

	Grouping tests

	Loading and running tests
	load_tests Protocol

	Class and Module Fixtures
	setUpClass and tearDownClass

	setUpModule and tearDownModule

	Signal Handling

	unittest.mock — mock object library
	Quick Guide

	The Mock Class
	Calling

	Deleting Attributes

	Mock names and the name attribute

	Attaching Mocks as Attributes

	The patchers
	patch

	patch.object

	patch.dict

	patch.multiple

	patch methods: start and stop

	patch builtins

	TEST_PREFIX

	Nesting Patch Decorators

	Where to patch

	Patching Descriptors and Proxy Objects

	MagicMock and magic method support
	Mocking Magic Methods

	Magic Mock

	Helpers
	sentinel

	DEFAULT

	call

	create_autospec

	ANY

	FILTER_DIR

	mock_open

	Autospeccing

	Sealing mocks

	unittest.mock — getting started
	Using Mock
	Mock Patching Methods

	Mock for Method Calls on an Object

	Mocking Classes

	Naming your mocks

	Tracking all Calls

	Setting Return Values and Attributes

	Raising exceptions with mocks

	Side effect functions and iterables

	Mocking asynchronous iterators

	Mocking asynchronous context manager

	Creating a Mock from an Existing Object

	Patch Decorators

	Further Examples
	Mocking chained calls

	Partial mocking

	Mocking a Generator Method

	Applying the same patch to every test method

	Mocking Unbound Methods

	Checking multiple calls with mock

	Coping with mutable arguments

	Nesting Patches

	Mocking a dictionary with MagicMock

	Mock subclasses and their attributes

	Mocking imports with patch.dict

	Tracking order of calls and less verbose call assertions

	More complex argument matching

	2to3 — Automated Python 2 to 3 code translation
	Using 2to3

	Fixers

	lib2to3 — 2to3’s library

	test — Regression tests package for Python
	Writing Unit Tests for the test package

	Running tests using the command-line interface

	test.support — Utilities for the Python test suite

	test.support.socket_helper — Utilities for socket tests

	test.support.script_helper — Utilities for the Python execution tests

	test.support.bytecode_helper — Support tools for testing correct bytecode generation

	test.support.threading_helper — Utilities for threading tests

	test.support.os_helper — Utilities for os tests

	test.support.import_helper — Utilities for import tests

	test.support.warnings_helper — Utilities for warnings tests

	Debugging and Profiling
	Audit events table

	bdb — Debugger framework

	faulthandler — Dump the Python traceback
	Dumping the traceback

	Fault handler state

	Dumping the tracebacks after a timeout

	Dumping the traceback on a user signal

	Issue with file descriptors

	Example

	pdb — The Python Debugger
	Debugger Commands

	The Python Profilers
	Introduction to the profilers

	Instant User’s Manual

	profile and cProfile Module Reference

	The Stats Class

	What Is Deterministic Profiling?

	Limitations

	Calibration

	Using a custom timer

	timeit — Measure execution time of small code snippets
	Basic Examples

	Python Interface

	Command-Line Interface

	Examples

	trace — Trace or track Python statement execution
	Command-Line Usage
	Main options

	Modifiers

	Filters

	Programmatic Interface

	tracemalloc — Trace memory allocations
	Examples
	Display the top 10

	Compute differences

	Get the traceback of a memory block

	Pretty top
	Record the current and peak size of all traced memory blocks

	API
	Functions

	DomainFilter

	Filter

	Frame

	Snapshot

	Statistic

	StatisticDiff

	Trace

	Traceback

	Software Packaging and Distribution
	ensurepip — Bootstrapping the pip installer
	Command line interface

	Module API

	venv — Creation of virtual environments
	Creating virtual environments

	How venvs work

	API

	An example of extending EnvBuilder

	zipapp — Manage executable Python zip archives
	Basic Example

	Command-Line Interface

	Python API

	Examples

	Specifying the Interpreter

	Creating Standalone Applications with zipapp
	Making a Windows executable

	Caveats

	The Python Zip Application Archive Format

	Python Runtime Services
	sys — System-specific parameters and functions

	sysconfig — Provide access to Python’s configuration information
	Configuration variables

	Installation paths

	Other functions

	Using sysconfig as a script

	builtins — Built-in objects

	__main__ — Top-level code environment
	__name__ == '__main__'
	What is the “top-level code environment”?

	Idiomatic Usage

	Packaging Considerations

	__main__.py in Python Packages
	Idiomatic Usage

	import __main__

	warnings — Warning control
	Warning Categories

	The Warnings Filter
	Describing Warning Filters

	Default Warning Filter

	Overriding the default filter

	Temporarily Suppressing Warnings

	Testing Warnings

	Updating Code For New Versions of Dependencies

	Available Functions

	Available Context Managers

	dataclasses — Data Classes
	Module contents

	Post-init processing

	Class variables

	Init-only variables

	Frozen instances

	Inheritance

	Re-ordering of keyword-only parameters in __init__()

	Default factory functions

	Mutable default values

	Descriptor-typed fields

	contextlib — Utilities for with-statement contexts
	Utilities

	Examples and Recipes
	Supporting a variable number of context managers

	Catching exceptions from __enter__ methods

	Cleaning up in an __enter__ implementation

	Replacing any use of try-finally and flag variables

	Using a context manager as a function decorator

	Single use, reusable and reentrant context managers
	Reentrant context managers

	Reusable context managers

	abc — Abstract Base Classes

	atexit — Exit handlers
	atexit Example

	traceback — Print or retrieve a stack traceback
	TracebackException Objects

	StackSummary Objects

	FrameSummary Objects

	Traceback Examples

	__future__ — Future statement definitions

	gc — Garbage Collector interface

	inspect — Inspect live objects
	Types and members

	Retrieving source code

	Introspecting callables with the Signature object

	Classes and functions

	The interpreter stack

	Fetching attributes statically

	Current State of Generators, Coroutines, and Asynchronous Generators

	Code Objects Bit Flags

	Buffer flags

	Command Line Interface

	site — Site-specific configuration hook
	Readline configuration

	Module contents

	Command Line Interface

	Custom Python Interpreters
	code — Interpreter base classes
	Interactive Interpreter Objects

	Interactive Console Objects

	codeop — Compile Python code

	Importing Modules
	zipimport — Import modules from Zip archives
	zipimporter Objects

	Examples

	pkgutil — Package extension utility

	modulefinder — Find modules used by a script
	Example usage of ModuleFinder

	runpy — Locating and executing Python modules

	importlib — The implementation of import
	Introduction

	Functions

	importlib.abc – Abstract base classes related to import

	importlib.machinery – Importers and path hooks

	importlib.util – Utility code for importers

	Examples
	Importing programmatically

	Checking if a module can be imported

	Importing a source file directly

	Implementing lazy imports

	Setting up an importer

	Approximating importlib.import_module()

	importlib.resources – Package resource reading, opening and access
	Deprecated functions

	importlib.resources.abc – Abstract base classes for resources

	importlib.metadata – Accessing package metadata
	Overview

	Functional API
	Entry points

	Distribution metadata

	Distribution versions

	Distribution files

	Distribution requirements

	Mapping import to distribution packages

	Distributions

	Distribution Discovery

	Extending the search algorithm

	The initialization of the sys.path module search path
	Virtual environments

	_pth files

	Embedded Python

	Python Language Services
	ast — Abstract Syntax Trees
	Abstract Grammar

	Node classes
	Literals

	Variables

	Expressions
	Subscripting

	Comprehensions

	Statements
	Imports

	Control flow

	Pattern matching

	Type parameters

	Function and class definitions

	Async and await

	ast Helpers

	Compiler Flags

	Command-Line Usage

	symtable — Access to the compiler’s symbol tables
	Generating Symbol Tables

	Examining Symbol Tables

	token — Constants used with Python parse trees

	keyword — Testing for Python keywords

	tokenize — Tokenizer for Python source
	Tokenizing Input

	Command-Line Usage

	Examples

	tabnanny — Detection of ambiguous indentation

	pyclbr — Python module browser support
	Function Objects

	Class Objects

	py_compile — Compile Python source files
	Command-Line Interface

	compileall — Byte-compile Python libraries
	Command-line use

	Public functions

	dis — Disassembler for Python bytecode
	Bytecode analysis

	Analysis functions

	Python Bytecode Instructions

	Opcode collections

	pickletools — Tools for pickle developers
	Command line usage
	Command line options

	Programmatic Interface

	MS Windows Specific Services
	msvcrt — Useful routines from the MS VC++ runtime
	File Operations

	Console I/O

	Other Functions

	winreg — Windows registry access
	Functions

	Constants
	HKEY_* Constants

	Access Rights
	64-bit Specific

	Value Types

	Registry Handle Objects

	winsound — Sound-playing interface for Windows

	Unix Specific Services
	posix — The most common POSIX system calls
	Large File Support

	Notable Module Contents

	pwd — The password database

	grp — The group database

	termios — POSIX style tty control
	Example

	tty — Terminal control functions

	pty — Pseudo-terminal utilities
	Example

	fcntl — The fcntl and ioctl system calls

	resource — Resource usage information
	Resource Limits

	Resource Usage

	syslog — Unix syslog library routines
	Examples
	Simple example

	Superseded Modules
	aifc — Read and write AIFF and AIFC files

	audioop — Manipulate raw audio data

	cgi — Common Gateway Interface support
	Introduction

	Using the cgi module

	Higher Level Interface

	Functions

	Caring about security

	Installing your CGI script on a Unix system

	Testing your CGI script

	Debugging CGI scripts

	Common problems and solutions

	cgitb — Traceback manager for CGI scripts

	chunk — Read IFF chunked data

	crypt — Function to check Unix passwords
	Hashing Methods

	Module Attributes

	Module Functions

	Examples

	imghdr — Determine the type of an image

	mailcap — Mailcap file handling

	msilib — Read and write Microsoft Installer files
	Database Objects

	View Objects

	Summary Information Objects

	Record Objects

	Errors

	CAB Objects

	Directory Objects

	Features

	GUI classes

	Precomputed tables

	nis — Interface to Sun’s NIS (Yellow Pages)

	nntplib — NNTP protocol client
	NNTP Objects
	Attributes

	Methods

	Utility functions

	optparse — Parser for command line options
	Background
	Terminology

	What are options for?

	What are positional arguments for?

	Tutorial
	Understanding option actions

	The store action

	Handling boolean (flag) options

	Other actions

	Default values

	Generating help
	Grouping Options

	Printing a version string

	How optparse handles errors

	Putting it all together

	Reference Guide
	Creating the parser

	Populating the parser

	Defining options

	Option attributes

	Standard option actions

	Standard option types

	Parsing arguments

	Querying and manipulating your option parser

	Conflicts between options

	Cleanup

	Other methods

	Option Callbacks
	Defining a callback option

	How callbacks are called

	Raising errors in a callback

	Callback example 1: trivial callback

	Callback example 2: check option order

	Callback example 3: check option order (generalized)

	Callback example 4: check arbitrary condition

	Callback example 5: fixed arguments

	Callback example 6: variable arguments

	Extending optparse
	Adding new types

	Adding new actions

	Exceptions

	ossaudiodev — Access to OSS-compatible audio devices
	Audio Device Objects

	Mixer Device Objects

	pipes — Interface to shell pipelines
	Template Objects

	sndhdr — Determine type of sound file

	spwd — The shadow password database

	sunau — Read and write Sun AU files
	AU_read Objects

	AU_write Objects

	telnetlib — Telnet client
	Telnet Objects

	Telnet Example

	uu — Encode and decode uuencode files

	xdrlib — Encode and decode XDR data
	Packer Objects

	Unpacker Objects

	Exceptions

	Security Considerations

	Extending and Embedding the Python Interpreter
	Recommended third party tools

	Creating extensions without third party tools
	1. Extending Python with C or C++
	1.1. A Simple Example

	1.2. Intermezzo: Errors and Exceptions

	1.3. Back to the Example

	1.4. The Module’s Method Table and Initialization Function

	1.5. Compilation and Linkage

	1.6. Calling Python Functions from C

	1.7. Extracting Parameters in Extension Functions

	1.8. Keyword Parameters for Extension Functions

	1.9. Building Arbitrary Values

	1.10. Reference Counts
	1.10.1. Reference Counting in Python

	1.10.2. Ownership Rules

	1.10.3. Thin Ice

	1.10.4. NULL Pointers

	1.11. Writing Extensions in C++

	1.12. Providing a C API for an Extension Module

	2. Defining Extension Types: Tutorial
	2.1. The Basics

	2.2. Adding data and methods to the Basic example

	2.3. Providing finer control over data attributes

	2.4. Supporting cyclic garbage collection

	2.5. Subclassing other types

	3. Defining Extension Types: Assorted Topics
	3.1. Finalization and De-allocation

	3.2. Object Presentation

	3.3. Attribute Management
	3.3.1. Generic Attribute Management

	3.3.2. Type-specific Attribute Management

	3.4. Object Comparison

	3.5. Abstract Protocol Support

	3.6. Weak Reference Support

	3.7. More Suggestions

	4. Building C and C++ Extensions
	4.1. Building C and C++ Extensions with setuptools

	5. Building C and C++ Extensions on Windows
	5.1. A Cookbook Approach

	5.2. Differences Between Unix and Windows

	5.3. Using DLLs in Practice

	Embedding the CPython runtime in a larger application
	1. Embedding Python in Another Application
	1.1. Very High Level Embedding

	1.2. Beyond Very High Level Embedding: An overview

	1.3. Pure Embedding

	1.4. Extending Embedded Python

	1.5. Embedding Python in C++

	1.6. Compiling and Linking under Unix-like systems

	Python/C API Reference Manual
	Introduction
	Coding standards

	Include Files

	Useful macros

	Objects, Types and Reference Counts
	Reference Counts
	Reference Count Details

	Types

	Exceptions

	Embedding Python

	Debugging Builds

	C API Stability
	Unstable C API

	Stable Application Binary Interface
	Limited API Scope and Performance

	Limited API Caveats

	Platform Considerations

	Contents of Limited API

	The Very High Level Layer

	Reference Counting

	Exception Handling
	Printing and clearing

	Raising exceptions

	Issuing warnings

	Querying the error indicator

	Signal Handling

	Exception Classes

	Exception Objects

	Unicode Exception Objects

	Recursion Control

	Standard Exceptions

	Standard Warning Categories

	Utilities
	Operating System Utilities

	System Functions

	Process Control

	Importing Modules

	Data marshalling support

	Parsing arguments and building values
	Parsing arguments
	Strings and buffers

	Numbers

	Other objects

	API Functions

	Building values

	String conversion and formatting

	Reflection

	Codec registry and support functions
	Codec lookup API

	Registry API for Unicode encoding error handlers

	Support for Perf Maps

	Abstract Objects Layer
	Object Protocol

	Call Protocol
	The tp_call Protocol

	The Vectorcall Protocol
	Recursion Control

	Vectorcall Support API

	Object Calling API

	Call Support API

	Number Protocol

	Sequence Protocol

	Mapping Protocol

	Iterator Protocol

	Buffer Protocol
	Buffer structure

	Buffer request types
	request-independent fields

	readonly, format

	shape, strides, suboffsets

	contiguity requests

	compound requests

	Complex arrays
	NumPy-style: shape and strides

	PIL-style: shape, strides and suboffsets

	Buffer-related functions

	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Type Objects
	Creating Heap-Allocated Types

	The None Object

	Numeric Objects
	Integer Objects

	Boolean Objects

	Floating Point Objects
	Pack and Unpack functions

	Pack functions

	Unpack functions

	Complex Number Objects
	Complex Numbers as C Structures

	Complex Numbers as Python Objects

	Sequence Objects
	Bytes Objects

	Byte Array Objects
	Type check macros

	Direct API functions

	Macros

	Unicode Objects and Codecs
	Unicode Objects
	Unicode Type

	Unicode Character Properties

	Creating and accessing Unicode strings

	Locale Encoding

	File System Encoding

	wchar_t Support

	Built-in Codecs
	Generic Codecs

	UTF-8 Codecs

	UTF-32 Codecs

	UTF-16 Codecs

	UTF-7 Codecs

	Unicode-Escape Codecs

	Raw-Unicode-Escape Codecs

	Latin-1 Codecs

	ASCII Codecs

	Character Map Codecs

	MBCS codecs for Windows

	Methods & Slots

	Methods and Slot Functions

	Tuple Objects

	Struct Sequence Objects

	List Objects

	Container Objects
	Dictionary Objects

	Set Objects

	Function Objects
	Function Objects

	Instance Method Objects

	Method Objects

	Cell Objects

	Code Objects

	Extra information

	Other Objects
	File Objects

	Module Objects
	Initializing C modules
	Single-phase initialization

	Multi-phase initialization

	Low-level module creation functions

	Support functions

	Module lookup

	Iterator Objects

	Descriptor Objects

	Slice Objects

	Ellipsis Object

	MemoryView objects

	Weak Reference Objects

	Capsules

	Frame Objects

	Internal Frames

	Generator Objects

	Coroutine Objects

	Context Variables Objects

	DateTime Objects

	Objects for Type Hinting

	Initialization, Finalization, and Threads
	Before Python Initialization

	Global configuration variables

	Initializing and finalizing the interpreter

	Process-wide parameters

	Thread State and the Global Interpreter Lock
	Releasing the GIL from extension code

	Non-Python created threads

	Cautions about fork()

	High-level API

	Low-level API

	Sub-interpreter support
	Bugs and caveats

	Asynchronous Notifications

	Profiling and Tracing

	Advanced Debugger Support

	Thread Local Storage Support
	Thread Specific Storage (TSS) API
	Dynamic Allocation

	Methods

	Thread Local Storage (TLS) API

	Python Initialization Configuration
	Example

	PyWideStringList

	PyStatus

	PyPreConfig

	Preinitialize Python with PyPreConfig

	PyConfig

	Initialization with PyConfig

	Isolated Configuration

	Python Configuration

	Python Path Configuration

	Py_RunMain()

	Py_GetArgcArgv()

	Multi-Phase Initialization Private Provisional API

	Memory Management
	Overview

	Allocator Domains

	Raw Memory Interface

	Memory Interface

	Object allocators

	Default Memory Allocators

	Customize Memory Allocators

	Debug hooks on the Python memory allocators

	The pymalloc allocator
	Customize pymalloc Arena Allocator

	tracemalloc C API

	Examples

	Object Implementation Support
	Allocating Objects on the Heap

	Common Object Structures
	Base object types and macros

	Implementing functions and methods

	Accessing attributes of extension types
	Member flags

	Member types

	Defining Getters and Setters

	Type Objects
	Quick Reference
	“tp slots”

	sub-slots

	slot typedefs

	PyTypeObject Definition

	PyObject Slots

	PyVarObject Slots

	PyTypeObject Slots

	Static Types

	Heap Types

	Number Object Structures

	Mapping Object Structures

	Sequence Object Structures

	Buffer Object Structures

	Async Object Structures

	Slot Type typedefs

	Examples

	Supporting Cyclic Garbage Collection
	Controlling the Garbage Collector State

	Querying Garbage Collector State

	API and ABI Versioning

	Distributing Python Modules
	Key terms

	Open source licensing and collaboration

	Installing the tools

	Reading the Python Packaging User Guide

	How do I…?
	… choose a name for my project?

	… create and distribute binary extensions?

	Installing Python Modules
	Key terms

	Basic usage

	How do I …?
	… install pip in versions of Python prior to Python 3.4?

	… install packages just for the current user?

	… install scientific Python packages?

	… work with multiple versions of Python installed in parallel?

	Common installation issues
	Installing into the system Python on Linux

	Pip not installed

	Installing binary extensions

	Python HOWTOs
	Porting Python 2 Code to Python 3
	The Short Explanation

	Details
	Drop support for Python 2.6 and older

	Make sure you specify the proper version support in your setup.py file

	Have good test coverage

	Learn the differences between Python 2 & 3

	Update your code
	Division

	Text versus binary data

	Use feature detection instead of version detection

	Prevent compatibility regressions

	Check which dependencies block your transition

	Update your setup.py file to denote Python 3 compatibility

	Use continuous integration to stay compatible

	Consider using optional static type checking

	Porting Extension Modules to Python 3

	Curses Programming with Python
	What is curses?
	The Python curses module

	Starting and ending a curses application

	Windows and Pads

	Displaying Text
	Attributes and Color

	User Input

	For More Information

	Descriptor HowTo Guide
	Primer
	Simple example: A descriptor that returns a constant

	Dynamic lookups

	Managed attributes

	Customized names

	Closing thoughts

	Complete Practical Example
	Validator class

	Custom validators

	Practical application

	Technical Tutorial
	Abstract

	Definition and introduction

	Descriptor protocol

	Overview of descriptor invocation

	Invocation from an instance

	Invocation from a class

	Invocation from super

	Summary of invocation logic

	Automatic name notification

	ORM example

	Pure Python Equivalents
	Properties

	Functions and methods

	Kinds of methods

	Static methods

	Class methods

	Member objects and __slots__

	Enum HOWTO
	Programmatic access to enumeration members and their attributes

	Duplicating enum members and values

	Ensuring unique enumeration values

	Using automatic values

	Iteration

	Comparisons

	Allowed members and attributes of enumerations

	Restricted Enum subclassing

	Dataclass support

	Pickling

	Functional API

	Derived Enumerations
	IntEnum

	StrEnum

	IntFlag

	Flag

	Others

	When to use __new__() vs. __init__()
	Finer Points
	Supported __dunder__ names

	Supported _sunder_ names

	_Private__names

	Enum member type

	Creating members that are mixed with other data types

	Boolean value of Enum classes and members

	Enum classes with methods

	Combining members of Flag

	Flag and IntFlag minutia

	How are Enums and Flags different?
	Enum Classes

	Flag Classes

	Enum Members (aka instances)

	Flag Members

	Enum Cookbook
	Omitting values
	Using auto

	Using object

	Using a descriptive string

	Using a custom __new__()

	OrderedEnum

	DuplicateFreeEnum

	Planet

	TimePeriod

	Subclassing EnumType

	Functional Programming HOWTO
	Introduction
	Formal provability

	Modularity

	Ease of debugging and testing

	Composability

	Iterators
	Data Types That Support Iterators

	Generator expressions and list comprehensions

	Generators
	Passing values into a generator

	Built-in functions

	The itertools module
	Creating new iterators

	Calling functions on elements

	Selecting elements

	Combinatoric functions

	Grouping elements

	The functools module
	The operator module

	Small functions and the lambda expression

	Revision History and Acknowledgements

	References
	General

	Python-specific

	Python documentation

	Logging HOWTO
	Basic Logging Tutorial
	When to use logging

	A simple example

	Logging to a file

	Logging from multiple modules

	Logging variable data

	Changing the format of displayed messages

	Displaying the date/time in messages

	Next Steps

	Advanced Logging Tutorial
	Logging Flow

	Loggers

	Handlers

	Formatters

	Configuring Logging

	What happens if no configuration is provided

	Configuring Logging for a Library

	Logging Levels
	Custom Levels

	Useful Handlers

	Exceptions raised during logging

	Using arbitrary objects as messages

	Optimization

	Other resources

	Logging Cookbook
	Using logging in multiple modules

	Logging from multiple threads

	Multiple handlers and formatters

	Logging to multiple destinations

	Custom handling of levels

	Configuration server example

	Dealing with handlers that block

	Sending and receiving logging events across a network
	Running a logging socket listener in production

	Adding contextual information to your logging output
	Using LoggerAdapters to impart contextual information
	Using objects other than dicts to pass contextual information

	Using Filters to impart contextual information

	Use of contextvars

	Imparting contextual information in handlers

	Logging to a single file from multiple processes
	Using concurrent.futures.ProcessPoolExecutor

	Deploying Web applications using Gunicorn and uWSGI

	Using file rotation

	Use of alternative formatting styles

	Customizing LogRecord

	Subclassing QueueHandler - a ZeroMQ example

	Subclassing QueueListener - a ZeroMQ example

	An example dictionary-based configuration

	Using a rotator and namer to customize log rotation processing

	A more elaborate multiprocessing example

	Inserting a BOM into messages sent to a SysLogHandler

	Implementing structured logging

	Customizing handlers with dictConfig()

	Using particular formatting styles throughout your application
	Using LogRecord factories

	Using custom message objects

	Configuring filters with dictConfig()

	Customized exception formatting

	Speaking logging messages

	Buffering logging messages and outputting them conditionally

	Sending logging messages to email, with buffering

	Formatting times using UTC (GMT) via configuration

	Using a context manager for selective logging

	A CLI application starter template

	A Qt GUI for logging

	Logging to syslog with RFC5424 support

	How to treat a logger like an output stream

	Patterns to avoid
	Opening the same log file multiple times

	Using loggers as attributes in a class or passing them as parameters

	Adding handlers other than NullHandler to a logger in a library

	Creating a lot of loggers

	Other resources

	Regular Expression HOWTO
	Introduction

	Simple Patterns
	Matching Characters

	Repeating Things

	Using Regular Expressions
	Compiling Regular Expressions

	The Backslash Plague

	Performing Matches

	Module-Level Functions

	Compilation Flags

	More Pattern Power
	More Metacharacters

	Grouping

	Non-capturing and Named Groups

	Lookahead Assertions

	Modifying Strings
	Splitting Strings

	Search and Replace

	Common Problems
	Use String Methods

	match() versus search()

	Greedy versus Non-Greedy

	Using re.VERBOSE

	Feedback

	Socket Programming HOWTO
	Sockets
	History

	Creating a Socket
	IPC

	Using a Socket
	Binary Data

	Disconnecting
	When Sockets Die

	Non-blocking Sockets

	Sorting HOW TO
	Sorting Basics

	Key Functions

	Operator Module Functions

	Ascending and Descending

	Sort Stability and Complex Sorts

	Decorate-Sort-Undecorate

	Comparison Functions

	Odds and Ends

	Unicode HOWTO
	Introduction to Unicode
	Definitions

	Encodings

	References

	Python’s Unicode Support
	The String Type

	Converting to Bytes

	Unicode Literals in Python Source Code

	Unicode Properties

	Comparing Strings

	Unicode Regular Expressions

	References

	Reading and Writing Unicode Data
	Unicode filenames

	Tips for Writing Unicode-aware Programs
	Converting Between File Encodings

	Files in an Unknown Encoding

	References

	Acknowledgements

	HOWTO Fetch Internet Resources Using The urllib Package
	Introduction

	Fetching URLs
	Data

	Headers

	Handling Exceptions
	URLError

	HTTPError
	Error Codes

	Wrapping it Up
	Number 1

	Number 2

	info and geturl

	Openers and Handlers

	Basic Authentication

	Proxies

	Sockets and Layers

	Footnotes

	Argparse Tutorial
	Concepts

	The basics

	Introducing Positional arguments

	Introducing Optional arguments
	Short options

	Combining Positional and Optional arguments

	Getting a little more advanced
	Specifying ambiguous arguments

	Conflicting options

	Conclusion

	An introduction to the ipaddress module
	Creating Address/Network/Interface objects
	A Note on IP Versions

	IP Host Addresses

	Defining Networks

	Host Interfaces

	Inspecting Address/Network/Interface Objects

	Networks as lists of Addresses

	Comparisons

	Using IP Addresses with other modules

	Getting more detail when instance creation fails

	Argument Clinic How-To
	The Goals Of Argument Clinic

	Basic Concepts And Usage

	Converting Your First Function

	Advanced Topics
	Symbolic default values

	Renaming the C functions and variables generated by Argument Clinic

	Converting functions using PyArg_UnpackTuple

	Optional Groups

	Using real Argument Clinic converters, instead of “legacy converters”

	Py_buffer

	Advanced converters

	Parameter default values

	The NULL default value

	Expressions specified as default values

	Using a return converter

	Cloning existing functions

	Calling Python code

	Using a “self converter”

	Using a “defining class” converter

	Writing a custom converter

	Writing a custom return converter

	METH_O and METH_NOARGS

	tp_new and tp_init functions

	Changing and redirecting Clinic’s output

	The #ifdef trick

	Using Argument Clinic in Python files

	Instrumenting CPython with DTrace and SystemTap
	Enabling the static markers

	Static DTrace probes

	Static SystemTap markers

	Available static markers

	SystemTap Tapsets

	Examples

	Python support for the Linux perf profiler
	How to enable perf profiling support

	How to obtain the best results

	Annotations Best Practices
	Accessing The Annotations Dict Of An Object In Python 3.10 And Newer

	Accessing The Annotations Dict Of An Object In Python 3.9 And Older

	Manually Un-Stringizing Stringized Annotations

	Best Practices For __annotations__ In Any Python Version

	__annotations__ Quirks

	Isolating Extension Modules
	Who should read this

	Background
	Enter Per-Module State

	Isolated Module Objects

	Surprising Edge Cases

	Making Modules Safe with Multiple Interpreters
	Managing Global State

	Managing Per-Module State

	Opt-Out: Limiting to One Module Object per Process

	Module State Access from Functions

	Heap Types
	Changing Static Types to Heap Types

	Defining Heap Types

	Garbage-Collection Protocol

	Module State Access from Classes

	Module State Access from Regular Methods

	Module State Access from Slot Methods, Getters and Setters

	Lifetime of the Module State

	Open Issues
	Per-Class Scope

	Lossless Conversion to Heap Types

	Python Frequently Asked Questions
	General Python FAQ
	General Information

	Python in the real world

	Programming FAQ
	General Questions

	Core Language

	Numbers and strings

	Performance

	Sequences (Tuples/Lists)

	Objects

	Modules

	Design and History FAQ
	Why does Python use indentation for grouping of statements?

	Why am I getting strange results with simple arithmetic operations?

	Why are floating-point calculations so inaccurate?

	Why are Python strings immutable?

	Why must ‘self’ be used explicitly in method definitions and calls?

	Why can’t I use an assignment in an expression?

	Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g. len(list))?

	Why is join() a string method instead of a list or tuple method?

	How fast are exceptions?

	Why isn’t there a switch or case statement in Python?

	Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?

	Why can’t lambda expressions contain statements?

	Can Python be compiled to machine code, C or some other language?

	How does Python manage memory?

	Why doesn’t CPython use a more traditional garbage collection scheme?

	Why isn’t all memory freed when CPython exits?

	Why are there separate tuple and list data types?

	How are lists implemented in CPython?

	How are dictionaries implemented in CPython?

	Why must dictionary keys be immutable?

	Why doesn’t list.sort() return the sorted list?

	How do you specify and enforce an interface spec in Python?

	Why is there no goto?

	Why can’t raw strings (r-strings) end with a backslash?

	Why doesn’t Python have a “with” statement for attribute assignments?

	Why don’t generators support the with statement?

	Why are colons required for the if/while/def/class statements?

	Why does Python allow commas at the end of lists and tuples?

	Library and Extension FAQ
	General Library Questions

	Common tasks

	Threads

	Input and Output

	Network/Internet Programming

	Databases

	Mathematics and Numerics

	Extending/Embedding FAQ
	Can I create my own functions in C?

	Can I create my own functions in C++?

	Writing C is hard; are there any alternatives?

	How can I execute arbitrary Python statements from C?

	How can I evaluate an arbitrary Python expression from C?

	How do I extract C values from a Python object?

	How do I use Py_BuildValue() to create a tuple of arbitrary length?

	How do I call an object’s method from C?

	How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)?

	How do I access a module written in Python from C?

	How do I interface to C++ objects from Python?

	I added a module using the Setup file and the make fails; why?

	How do I debug an extension?

	I want to compile a Python module on my Linux system, but some files are missing. Why?

	How do I tell “incomplete input” from “invalid input”?

	How do I find undefined g++ symbols __builtin_new or __pure_virtual?

	Can I create an object class with some methods implemented in C and others in Python (e.g. through inheritance)?

	Python on Windows FAQ
	How do I run a Python program under Windows?

	How do I make Python scripts executable?

	Why does Python sometimes take so long to start?

	How do I make an executable from a Python script?

	Is a *.pyd file the same as a DLL?

	How can I embed Python into a Windows application?

	How do I keep editors from inserting tabs into my Python source?

	How do I check for a keypress without blocking?

	How do I solve the missing api-ms-win-crt-runtime-l1-1-0.dll error?

	Graphic User Interface FAQ
	General GUI Questions

	What GUI toolkits exist for Python?

	Tkinter questions

	“Why is Python Installed on my Computer?” FAQ
	What is Python?

	Why is Python installed on my machine?

	Can I delete Python?

	Glossary

	About these documents
	Contributors to the Python Documentation

	Dealing with Bugs
	Documentation bugs

	Using the Python issue tracker

	Getting started contributing to Python yourself

	Copyright

	History and License
	History of the software

	Terms and conditions for accessing or otherwise using Python
	PSF LICENSE AGREEMENT FOR PYTHON 3.12.0b1

	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.12.0b1 DOCUMENTATION

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister

	Sockets

	Asynchronous socket services

	Cookie management

	Execution tracing

	UUencode and UUdecode functions

	XML Remote Procedure Calls

	test_epoll

	Select kqueue

	SipHash24

	strtod and dtoa

	OpenSSL

	expat

	libffi

	zlib

	cfuhash

	libmpdec

	W3C C14N test suite

	Audioop

What’s New in Python

The “What’s New in Python” series of essays takes tours through the most
important changes between major Python versions. They are a “must read” for
anyone wishing to stay up-to-date after a new release.

	What’s New In Python 3.12
	Summary – Release highlights

	Improved Error Messages

	New Features

	New Features Related to Type Hints

	Other Language Changes

	New Modules

	Improved Modules

	Optimizations

	CPython bytecode changes

	Demos and Tools

	Deprecated

	Removed

	Porting to Python 3.12

	Build Changes

	C API Changes

	What’s New In Python 3.11
	Summary – Release highlights

	New Features

	New Features Related to Type Hints

	Other Language Changes

	Other CPython Implementation Changes

	New Modules

	Improved Modules

	Optimizations

	Faster CPython

	CPython bytecode changes

	Deprecated

	Pending Removal in Python 3.12

	Removed

	Porting to Python 3.11

	Build Changes

	C API Changes

	What’s New In Python 3.10
	Summary – Release highlights

	New Features

	New Features Related to Type Hints

	Other Language Changes

	New Modules

	Improved Modules

	Optimizations

	Deprecated

	Removed

	Porting to Python 3.10

	CPython bytecode changes

	Build Changes

	C API Changes

	What’s New In Python 3.9
	Summary – Release highlights

	You should check for DeprecationWarning in your code

	New Features

	Other Language Changes

	New Modules

	Improved Modules

	Optimizations

	Deprecated

	Removed

	Porting to Python 3.9

	Build Changes

	C API Changes

	Notable changes in Python 3.9.1

	Notable changes in Python 3.9.2

	What’s New In Python 3.8
	Summary – Release highlights

	New Features

	Other Language Changes

	New Modules

	Improved Modules

	Optimizations

	Build and C API Changes

	Deprecated

	API and Feature Removals

	Porting to Python 3.8

	Notable changes in Python 3.8.1

	Notable changes in Python 3.8.8

	Notable changes in Python 3.8.12

	What’s New In Python 3.7
	Summary – Release Highlights

	New Features

	Other Language Changes

	New Modules

	Improved Modules

	C API Changes

	Build Changes

	Optimizations

	Other CPython Implementation Changes

	Deprecated Python Behavior

	Deprecated Python modules, functions and methods

	Deprecated functions and types of the C API

	Platform Support Removals

	API and Feature Removals

	Module Removals

	Windows-only Changes

	Porting to Python 3.7

	Notable changes in Python 3.7.1

	Notable changes in Python 3.7.2

	Notable changes in Python 3.7.6

	Notable changes in Python 3.7.10

	What’s New In Python 3.6
	Summary – Release highlights

	New Features

	Other Language Changes

	New Modules

	Improved Modules

	Optimizations

	Build and C API Changes

	Other Improvements

	Deprecated

	Removed

	Porting to Python 3.6

	Notable changes in Python 3.6.2

	Notable changes in Python 3.6.4

	Notable changes in Python 3.6.5

	Notable changes in Python 3.6.7

	Notable changes in Python 3.6.10

	Notable changes in Python 3.6.13

	What’s New In Python 3.5
	Summary – Release highlights

	New Features

	Other Language Changes

	New Modules

	Improved Modules

	Other module-level changes

	Optimizations

	Build and C API Changes

	Deprecated

	Removed

	Porting to Python 3.5

	Notable changes in Python 3.5.4

	What’s New In Python 3.4
	Summary – Release Highlights

	New Features

	New Modules

	Improved Modules

	CPython Implementation Changes

	Deprecated

	Removed

	Porting to Python 3.4

	Changed in 3.4.3

	What’s New In Python 3.3
	Summary – Release highlights

	PEP 405: Virtual Environments

	PEP 420: Implicit Namespace Packages

	PEP 3118: New memoryview implementation and buffer protocol documentation

	PEP 393: Flexible String Representation

	PEP 397: Python Launcher for Windows

	PEP 3151: Reworking the OS and IO exception hierarchy

	PEP 380: Syntax for Delegating to a Subgenerator

	PEP 409: Suppressing exception context

	PEP 414: Explicit Unicode literals

	PEP 3155: Qualified name for classes and functions

	PEP 412: Key-Sharing Dictionary

	PEP 362: Function Signature Object

	PEP 421: Adding sys.implementation

	Using importlib as the Implementation of Import

	Other Language Changes

	A Finer-Grained Import Lock

	Builtin functions and types

	New Modules

	Improved Modules

	Optimizations

	Build and C API Changes

	Deprecated

	Porting to Python 3.3

	What’s New In Python 3.2
	PEP 384: Defining a Stable ABI

	PEP 389: Argparse Command Line Parsing Module

	PEP 391: Dictionary Based Configuration for Logging

	PEP 3148: The concurrent.futures module

	PEP 3147: PYC Repository Directories

	PEP 3149: ABI Version Tagged .so Files

	PEP 3333: Python Web Server Gateway Interface v1.0.1

	Other Language Changes

	New, Improved, and Deprecated Modules

	Multi-threading

	Optimizations

	Unicode

	Codecs

	Documentation

	IDLE

	Code Repository

	Build and C API Changes

	Porting to Python 3.2

	What’s New In Python 3.1
	PEP 372: Ordered Dictionaries

	PEP 378: Format Specifier for Thousands Separator

	Other Language Changes

	New, Improved, and Deprecated Modules

	Optimizations

	IDLE

	Build and C API Changes

	Porting to Python 3.1

	What’s New In Python 3.0
	Common Stumbling Blocks

	Overview Of Syntax Changes

	Changes Already Present In Python 2.6

	Library Changes

	PEP 3101: A New Approach To String Formatting

	Changes To Exceptions

	Miscellaneous Other Changes

	Build and C API Changes

	Performance

	Porting To Python 3.0

	What’s New in Python 2.7
	The Future for Python 2.x

	Changes to the Handling of Deprecation Warnings

	Python 3.1 Features

	PEP 372: Adding an Ordered Dictionary to collections

	PEP 378: Format Specifier for Thousands Separator

	PEP 389: The argparse Module for Parsing Command Lines

	PEP 391: Dictionary-Based Configuration For Logging

	PEP 3106: Dictionary Views

	PEP 3137: The memoryview Object

	Other Language Changes

	New and Improved Modules

	Build and C API Changes

	Other Changes and Fixes

	Porting to Python 2.7

	New Features Added to Python 2.7 Maintenance Releases

	Acknowledgements

	What’s New in Python 2.6
	Python 3.0

	Changes to the Development Process

	PEP 343: The ‘with’ statement

	PEP 366: Explicit Relative Imports From a Main Module

	PEP 370: Per-user site-packages Directory

	PEP 371: The multiprocessing Package

	PEP 3101: Advanced String Formatting

	PEP 3105: print As a Function

	PEP 3110: Exception-Handling Changes

	PEP 3112: Byte Literals

	PEP 3116: New I/O Library

	PEP 3118: Revised Buffer Protocol

	PEP 3119: Abstract Base Classes

	PEP 3127: Integer Literal Support and Syntax

	PEP 3129: Class Decorators

	PEP 3141: A Type Hierarchy for Numbers

	Other Language Changes

	New and Improved Modules

	Deprecations and Removals

	Build and C API Changes

	Porting to Python 2.6

	Acknowledgements

	What’s New in Python 2.5
	PEP 308: Conditional Expressions

	PEP 309: Partial Function Application

	PEP 314: Metadata for Python Software Packages v1.1

	PEP 328: Absolute and Relative Imports

	PEP 338: Executing Modules as Scripts

	PEP 341: Unified try/except/finally

	PEP 342: New Generator Features

	PEP 343: The ‘with’ statement

	PEP 352: Exceptions as New-Style Classes

	PEP 353: Using ssize_t as the index type

	PEP 357: The ‘__index__’ method

	Other Language Changes

	New, Improved, and Removed Modules

	Build and C API Changes

	Porting to Python 2.5

	Acknowledgements

	What’s New in Python 2.4
	PEP 218: Built-In Set Objects

	PEP 237: Unifying Long Integers and Integers

	PEP 289: Generator Expressions

	PEP 292: Simpler String Substitutions

	PEP 318: Decorators for Functions and Methods

	PEP 322: Reverse Iteration

	PEP 324: New subprocess Module

	PEP 327: Decimal Data Type

	PEP 328: Multi-line Imports

	PEP 331: Locale-Independent Float/String Conversions

	Other Language Changes

	New, Improved, and Deprecated Modules

	Build and C API Changes

	Porting to Python 2.4

	Acknowledgements

	What’s New in Python 2.3
	PEP 218: A Standard Set Datatype

	PEP 255: Simple Generators

	PEP 263: Source Code Encodings

	PEP 273: Importing Modules from ZIP Archives

	PEP 277: Unicode file name support for Windows NT

	PEP 278: Universal Newline Support

	PEP 279: enumerate()

	PEP 282: The logging Package

	PEP 285: A Boolean Type

	PEP 293: Codec Error Handling Callbacks

	PEP 301: Package Index and Metadata for Distutils

	PEP 302: New Import Hooks

	PEP 305: Comma-separated Files

	PEP 307: Pickle Enhancements

	Extended Slices

	Other Language Changes

	New, Improved, and Deprecated Modules

	Pymalloc: A Specialized Object Allocator

	Build and C API Changes

	Other Changes and Fixes

	Porting to Python 2.3

	Acknowledgements

	What’s New in Python 2.2
	Introduction

	PEPs 252 and 253: Type and Class Changes

	PEP 234: Iterators

	PEP 255: Simple Generators

	PEP 237: Unifying Long Integers and Integers

	PEP 238: Changing the Division Operator

	Unicode Changes

	PEP 227: Nested Scopes

	New and Improved Modules

	Interpreter Changes and Fixes

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.1
	Introduction

	PEP 227: Nested Scopes

	PEP 236: __future__ Directives

	PEP 207: Rich Comparisons

	PEP 230: Warning Framework

	PEP 229: New Build System

	PEP 205: Weak References

	PEP 232: Function Attributes

	PEP 235: Importing Modules on Case-Insensitive Platforms

	PEP 217: Interactive Display Hook

	PEP 208: New Coercion Model

	PEP 241: Metadata in Python Packages

	New and Improved Modules

	Other Changes and Fixes

	Acknowledgements

	What’s New in Python 2.0
	Introduction

	What About Python 1.6?

	New Development Process

	Unicode

	List Comprehensions

	Augmented Assignment

	String Methods

	Garbage Collection of Cycles

	Other Core Changes

	Porting to 2.0

	Extending/Embedding Changes

	Distutils: Making Modules Easy to Install

	XML Modules

	Module changes

	New modules

	IDLE Improvements

	Deleted and Deprecated Modules

	Acknowledgements

The “Changelog” is an HTML version of the file built [https://pypi.org/project/blurb] from the contents of the
Misc/NEWS.d [https://github.com/python/cpython/tree/3.12/Misc/NEWS.d] directory tree, which contains all nontrivial changes
to Python for the current version.

	Changelog
	Python next

	Python 3.12.0 beta 1

	Python 3.12.0 alpha 7

	Python 3.12.0 alpha 6

	Python 3.12.0 alpha 5

	Python 3.12.0 alpha 4

	Python 3.12.0 alpha 3

	Python 3.12.0 alpha 2

	Python 3.12.0 alpha 1

	Python 3.11.0 beta 1

	Python 3.11.0 alpha 7

	Python 3.11.0 alpha 6

	Python 3.11.0 alpha 5

	Python 3.11.0 alpha 4

	Python 3.11.0 alpha 3

	Python 3.11.0 alpha 2

	Python 3.11.0 alpha 1

	Python 3.10.0 beta 1

	Python 3.10.0 alpha 7

	Python 3.10.0 alpha 6

	Python 3.10.0 alpha 5

	Python 3.10.0 alpha 4

	Python 3.10.0 alpha 3

	Python 3.10.0 alpha 2

	Python 3.10.0 alpha 1

	Python 3.9.0 beta 1

	Python 3.9.0 alpha 6

	Python 3.9.0 alpha 5

	Python 3.9.0 alpha 4

	Python 3.9.0 alpha 3

	Python 3.9.0 alpha 2

	Python 3.9.0 alpha 1

	Python 3.8.0 beta 1

	Python 3.8.0 alpha 4

	Python 3.8.0 alpha 3

	Python 3.8.0 alpha 2

	Python 3.8.0 alpha 1

	Python 3.7.0 final

	Python 3.7.0 release candidate 1

	Python 3.7.0 beta 5

	Python 3.7.0 beta 4

	Python 3.7.0 beta 3

	Python 3.7.0 beta 2

	Python 3.7.0 beta 1

	Python 3.7.0 alpha 4

	Python 3.7.0 alpha 3

	Python 3.7.0 alpha 2

	Python 3.7.0 alpha 1

	Python 3.6.6 final

	Python 3.6.6 release candidate 1

	Python 3.6.5 final

	Python 3.6.5 release candidate 1

	Python 3.6.4 final

	Python 3.6.4 release candidate 1

	Python 3.6.3 final

	Python 3.6.3 release candidate 1

	Python 3.6.2 final

	Python 3.6.2 release candidate 2

	Python 3.6.2 release candidate 1

	Python 3.6.1 final

	Python 3.6.1 release candidate 1

	Python 3.6.0 final

	Python 3.6.0 release candidate 2

	Python 3.6.0 release candidate 1

	Python 3.6.0 beta 4

	Python 3.6.0 beta 3

	Python 3.6.0 beta 2

	Python 3.6.0 beta 1

	Python 3.6.0 alpha 4

	Python 3.6.0 alpha 3

	Python 3.6.0 alpha 2

	Python 3.6.0 alpha 1

	Python 3.5.5 final

	Python 3.5.5 release candidate 1

	Python 3.5.4 final

	Python 3.5.4 release candidate 1

	Python 3.5.3 final

	Python 3.5.3 release candidate 1

	Python 3.5.2 final

	Python 3.5.2 release candidate 1

	Python 3.5.1 final

	Python 3.5.1 release candidate 1

	Python 3.5.0 final

	Python 3.5.0 release candidate 4

	Python 3.5.0 release candidate 3

	Python 3.5.0 release candidate 2

	Python 3.5.0 release candidate 1

	Python 3.5.0 beta 4

	Python 3.5.0 beta 3

	Python 3.5.0 beta 2

	Python 3.5.0 beta 1

	Python 3.5.0 alpha 4

	Python 3.5.0 alpha 3

	Python 3.5.0 alpha 2

	Python 3.5.0 alpha 1

What’s New In Python 3.12

	Release

	3.12.0b1

	Date

	June 05, 2023

This article explains the new features in Python 3.12, compared to 3.11.

For full details, see the changelog.

Note

Prerelease users should be aware that this document is currently in draft
form. It will be updated substantially as Python 3.12 moves towards release,
so it’s worth checking back even after reading earlier versions.

Summary – Release highlights

New grammar features:

	PEP 701 [https://peps.python.org/pep-0701/]: Syntactic formalization of f-strings

New typing features:

	PEP 688 [https://peps.python.org/pep-0688/]: Making the buffer protocol accessible in Python

	PEP 692: Using TypedDict for more precise **kwargs typing

	PEP 695: Type Parameter Syntax

	PEP 698 [https://peps.python.org/pep-0698/]: Override Decorator for Static Typing

Important deprecations, removals or restrictions:

	PEP 623 [https://peps.python.org/pep-0623/]: Remove wstr from Unicode

	PEP 632 [https://peps.python.org/pep-0632/]: Remove the distutils package

Improved Error Messages

	Modules from the standard library are now potentially suggested as part of
the error messages displayed by the interpreter when a NameError is
raised to the top level. Contributed by Pablo Galindo in gh-98254 [https://github.com/python/cpython/issues/98254].

>>> sys.version_info
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'sys' is not defined. Did you forget to import 'sys'?

	Improve the error suggestion for NameError exceptions for instances.
Now if a NameError is raised in a method and the instance has an
attribute that’s exactly equal to the name in the exception, the suggestion
will include self.<NAME> instead of the closest match in the method
scope. Contributed by Pablo Galindo in gh-99139 [https://github.com/python/cpython/issues/99139].

>>> class A:
... def __init__(self):
... self.blech = 1
...
... def foo(self):
... somethin = blech

>>> A().foo()
 File "<stdin>", line 1
 somethin = blech
 ^^^^^
NameError: name 'blech' is not defined. Did you mean: 'self.blech'?

	Improve the SyntaxError error message when the user types import x
from y instead of from y import x. Contributed by Pablo Galindo in gh-98931 [https://github.com/python/cpython/issues/98931].

>>> import a.y.z from b.y.z
 File "<stdin>", line 1
 import a.y.z from b.y.z
 ^^^^^^^^^^^^^^^^^^^^^^^
SyntaxError: Did you mean to use 'from ... import ...' instead?

	ImportError exceptions raised from failed from <module> import
<name> statements now include suggestions for the value of <name> based on the
available names in <module>. Contributed by Pablo Galindo in gh-91058 [https://github.com/python/cpython/issues/91058].

>>> from collections import chainmap
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: cannot import name 'chainmap' from 'collections'. Did you mean: 'ChainMap'?

New Features

PEP 701: Syntactic formalization of f-strings

PEP 701 [https://peps.python.org/pep-0701/] lifts some restrictions on the usage of f-strings. Expression components
inside f-strings can now be any valid Python expression including backslashes,
unicode escaped sequences, multi-line expressions, comments and strings reusing the
same quote as the containing f-string. Let’s cover these in detail:

	Quote reuse: in Python 3.11, reusing the same quotes as the containing f-string
raises a SyntaxError, forcing the user to either use other available
quotes (like using double quotes or triple quotes if the f-string uses single
quotes). In Python 3.12, you can now do things like this:

>>> songs = ['Take me back to Eden', 'Alkaline', 'Ascensionism']
>>> f"This is the playlist: {", ".join(songs)}"
'This is the playlist: Take me back to Eden, Alkaline, Ascensionism'

Note that before this change there was no explicit limit in how f-strings can
be nested, but the fact that string quotes cannot be reused inside the
expression component of f-strings made it impossible to nest f-strings
arbitrarily. In fact, this is the most nested f-string that could be written:

>>> f"""{f'''{f'{f"{1+1}"}'}'''}"""
'2'

As now f-strings can contain any valid Python expression inside expression
components, it is now possible to nest f-strings arbitrarily:

>>> f"{f"{f"{f"{f"{f"{1+1}"}"}"}"}"}"
'2'

	Multi-line expressions and comments: In Python 3.11, f-strings expressions
must be defined in a single line even if outside f-strings expressions could
span multiple lines (like literal lists being defined over multiple lines),
making them harder to read. In Python 3.12 you can now define expressions
spanning multiple lines and include comments on them:

>>> f"This is the playlist: {", ".join([
... 'Take me back to Eden', # My, my, those eyes like fire
... 'Alkaline', # Not acid nor alkaline
... 'Ascensionism' # Take to the broken skies at last
...])}"
'This is the playlist: Take me back to Eden, Alkaline, Ascensionism'

	Backslashes and unicode characters: before Python 3.12 f-string expressions
couldn’t contain any \ character. This also affected unicode escaped
sequences (such as \N{snowman}) as these contain the \N part that
previously could not be part of expression components of f-strings. Now, you
can define expressions like this:

>>> print(f"This is the playlist: {"\n".join(songs)}")
This is the playlist: Take me back to Eden
Alkaline
Ascensionism
>>> print(f"This is the playlist: {"\N{BLACK HEART SUIT}".join(songs)}")
This is the playlist: Take me back to Eden♥Alkaline♥Ascensionism

See PEP 701 [https://peps.python.org/pep-0701/] for more details.

As a positive side-effect of how this feature has been implemented (by parsing f-strings
with the PEG parser (see PEP 617 [https://peps.python.org/pep-0617/]), now error messages for f-strings are more precise
and include the exact location of the error. For example, in Python 3.11, the following
f-string raises a SyntaxError:

>>> my_string = f"{x z y}" + f"{1 + 1}"
 File "<stdin>", line 1
 (x z y)
 ^^^
SyntaxError: f-string: invalid syntax. Perhaps you forgot a comma?

but the error message doesn’t include the exact location of the error within the line and
also has the expression artificially surrounded by parentheses. In Python 3.12, as f-strings
are parsed with the PEG parser, error messages can be more precise and show the entire line:

>>> my_string = f"{x z y}" + f"{1 + 1}"
 File "<stdin>", line 1
 my_string = f"{x z y}" + f"{1 + 1}"
 ^^^
SyntaxError: invalid syntax. Perhaps you forgot a comma?

(Contributed by Pablo Galindo, Batuhan Taskaya, Lysandros Nikolaou, Cristián
Maureira-Fredes and Marta Gómez in gh-102856 [https://github.com/python/cpython/issues/102856]. PEP written by Pablo Galindo,
Batuhan Taskaya, Lysandros Nikolaou and Marta Gómez).

PEP 709: Comprehension inlining

Dictionary, list, and set comprehensions are now inlined, rather than creating a
new single-use function object for each execution of the comprehension. This
speeds up execution of a comprehension by up to 2x.

Comprehension iteration variables remain isolated; they don’t overwrite a
variable of the same name in the outer scope, nor are they visible after the
comprehension. This isolation is now maintained via stack/locals manipulation,
not via separate function scope.

Inlining does result in a few visible behavior changes:

	There is no longer a separate frame for the comprehension in tracebacks,
and tracing/profiling no longer shows the comprehension as a function call.

	Calling locals() inside a comprehension now includes variables
from outside the comprehension, and no longer includes the synthetic .0
variable for the comprehension “argument”.

Contributed by Carl Meyer and Vladimir Matveev in PEP 709 [https://peps.python.org/pep-0709/].

PEP 688: Making the buffer protocol accessible in Python

PEP 688 [https://peps.python.org/pep-0688/] introduces a way to use the buffer protocol
from Python code. Classes that implement the __buffer__() method
are now usable as buffer types.

The new collections.abc.Buffer ABC provides a standard
way to represent buffer objects, for example in type annotations.
The new inspect.BufferFlags enum represents the flags that
can be used to customize buffer creation.
(Contributed by Jelle Zijlstra in gh-102500 [https://github.com/python/cpython/issues/102500].)

New Features Related to Type Hints

This section covers major changes affecting PEP 484 [https://peps.python.org/pep-0484/] type hints and
the typing module.

PEP 692: Using TypedDict for more precise **kwargs typing

Typing **kwargs in a function signature as introduced by PEP 484 [https://peps.python.org/pep-0484/] allowed
for valid annotations only in cases where all of the **kwargs were of the
same type.

This PEP specifies a more precise way of typing **kwargs by relying on
typed dictionaries:

from typing import TypedDict, Unpack

class Movie(TypedDict):
 name: str
 year: int

def foo(**kwargs: Unpack[Movie]): ...

See PEP 692 [https://peps.python.org/pep-0692/] for more details.

(Contributed by Franek Magiera in gh-103629 [https://github.com/python/cpython/issues/103629].)

PEP 698: Override Decorator for Static Typing

A new decorator typing.override() has been added to the typing
module. It indicates to type checkers that the method is intended to override
a method in a superclass. This allows type checkers to catch mistakes where
a method that is intended to override something in a base class
does not in fact do so.

Example:

from typing import override

class Base:
 def get_color(self) -> str:
 return "blue"

class GoodChild(Base):
 @override # ok: overrides Base.get_color
 def get_color(self) -> str:
 return "yellow"

class BadChild(Base):
 @override # type checker error: does not override Base.get_color
 def get_colour(self) -> str:
 return "red"

(Contributed by Steven Troxler in gh-101561 [https://github.com/python/cpython/issues/101561].)

PEP 695: Type Parameter Syntax

Generic classes and functions under PEP 484 [https://peps.python.org/pep-0484/] were declared using a verbose syntax
that left the scope of type parameters unclear and required explicit declarations of
variance.

PEP 695 [https://peps.python.org/pep-0695/] introduces a new, more compact and explicit way to create
generic classes and functions:

def max[T](args: Iterable[T]) -> T:
 ...

class list[T]:
 def __getitem__(self, index: int, /) -> T:
 ...

 def append(self, element: T) -> None:
 ...

In addition, the PEP introduces a new way to declare type aliases
using the type statement, which creates an instance of
TypeAliasType:

type Point = tuple[float, float]

Type aliases can also be generic:

type Point[T] = tuple[T, T]

The new syntax allows declaring TypeVarTuple
and ParamSpec parameters, as well as TypeVar
parameters with bounds or constraints:

type IntFunc[**P] = Callable[P, int] # ParamSpec
type LabeledTuple[*Ts] = tuple[str, *Ts] # TypeVarTuple
type HashableSequence[T: Hashable] = Sequence[T] # TypeVar with bound
type IntOrStrSequence[T: (int, str)] = Sequence[T] # TypeVar with constraints

The value of type aliases and the bound and constraints of type variables
created through this syntax are evaluated only on demand (see
Lazy evaluation). This means type aliases are able to refer to other
types defined later in the file.

Type parameters declared through a type parameter list are visible within the
scope of the declaration and any nested scopes, but not in the outer scope. For
example, they can be used in the type annotations for the methods of a generic
class or in the class body. However, they cannot be used in the module scope after
the class is defined. See Type parameter lists for a detailed description of the
runtime semantics of type parameters.

In order to support these scoping semantics, a new kind of scope is introduced,
the annotation scope. Annotation scopes behave for the
most part like function scopes, but interact differently with enclosing class scopes.
In Python 3.13, annotations will also be evaluated in
annotation scopes.

See PEP 695 [https://peps.python.org/pep-0695/] for more details.

(PEP written by Eric Traut. Implementation by Jelle Zijlstra, Eric Traut,
and others in gh-103764 [https://github.com/python/cpython/issues/103764].)

Other Language Changes

	Add Python support for the Linux perf profiler through the new
environment variable PYTHONPERFSUPPORT,
the new command-line option -X perf,
as well as the new sys.activate_stack_trampoline(),
sys.deactivate_stack_trampoline(),
and sys.is_stack_trampoline_active() APIs.
(Design by Pablo Galindo. Contributed by Pablo Galindo and Christian Heimes
with contributions from Gregory P. Smith [Google] and Mark Shannon
in gh-96123 [https://github.com/python/cpython/issues/96123].)

	The extraction methods in tarfile, and shutil.unpack_archive(),
have a new a filter argument that allows limiting tar features than may be
surprising or dangerous, such as creating files outside the destination
directory.
See Extraction filters for details.
In Python 3.14, the default will switch to 'data'.
(Contributed by Petr Viktorin in PEP 706 [https://peps.python.org/pep-0706/].)

	types.MappingProxyType instances are now hashable if the underlying
mapping is hashable.
(Contributed by Serhiy Storchaka in gh-87995 [https://github.com/python/cpython/issues/87995].)

	memoryview now supports the half-float type (the “e” format code).
(Contributed by Dong-hee Na and Antoine Pitrou in gh-90751 [https://github.com/python/cpython/issues/90751].)

	The parser now raises SyntaxError when parsing source code containing
null bytes. (Contributed by Pablo Galindo in gh-96670 [https://github.com/python/cpython/issues/96670].)

	ast.parse() now raises SyntaxError instead of ValueError
when parsing source code containing null bytes. (Contributed by Pablo Galindo
in gh-96670 [https://github.com/python/cpython/issues/96670].)

	The Garbage Collector now runs only on the eval breaker mechanism of the
Python bytecode evaluation loop instead of object allocations. The GC can
also run when PyErr_CheckSignals() is called so C extensions that
need to run for a long time without executing any Python code also have a
chance to execute the GC periodically. (Contributed by Pablo Galindo in
gh-97922 [https://github.com/python/cpython/issues/97922].)

	A backslash-character pair that is not a valid escape sequence now generates
a SyntaxWarning, instead of DeprecationWarning.
For example, re.compile("\d+\.\d+") now emits a SyntaxWarning
("\d" is an invalid escape sequence), use raw strings for regular
expression: re.compile(r"\d+\.\d+").
In a future Python version, SyntaxError will eventually be raised,
instead of SyntaxWarning.
(Contributed by Victor Stinner in gh-98401 [https://github.com/python/cpython/issues/98401].)

	Octal escapes with value larger than 0o377 (ex: "\477"), deprecated
in Python 3.11, now produce a SyntaxWarning, instead of
DeprecationWarning.
In a future Python version they will be eventually a SyntaxError.
(Contributed by Victor Stinner in gh-98401 [https://github.com/python/cpython/issues/98401].)

	All builtin and extension callables expecting boolean parameters now accept
arguments of any type instead of just bool and int.
(Contributed by Serhiy Storchaka in gh-60203 [https://github.com/python/cpython/issues/60203].)

	Variables used in the target part of comprehensions that are not stored to
can now be used in assignment expressions (:=).
For example, in [(b := 1) for a, b.prop in some_iter], the assignment to
b is now allowed. Note that assigning to variables stored to in the target
part of comprehensions (like a) is still disallowed, as per PEP 572 [https://peps.python.org/pep-0572/].
(Contributed by Nikita Sobolev in gh-100581 [https://github.com/python/cpython/issues/100581].)

	slice objects are now hashable, allowing them to be used as dict keys and
set items. (Contributed by Will Bradshaw, Furkan Onder, and Raymond Hettinger in gh-101264 [https://github.com/python/cpython/issues/101264].)

	sum() now uses Neumaier summation to improve accuracy when summing
floats or mixed ints and floats.
(Contributed by Raymond Hettinger in gh-100425 [https://github.com/python/cpython/issues/100425].)

	Exceptions raised in a typeobject’s __set_name__ method are no longer
wrapped by a RuntimeError. Context information is added to the
exception as a PEP 678 [https://peps.python.org/pep-0678/] note. (Contributed by Irit Katriel in gh-77757 [https://github.com/python/cpython/issues/77757].)

	When a try-except* construct handles the entire ExceptionGroup
and raises one other exception, that exception is no longer wrapped in an
ExceptionGroup. Also changed in version 3.11.4. (Contributed by Irit
Katriel in gh-103590 [https://github.com/python/cpython/issues/103590].)

New Modules

	None yet.

Improved Modules

array

	The array.array class now supports subscripting, making it a
generic type. (Contributed by Jelle Zijlstra in gh-98658 [https://github.com/python/cpython/issues/98658].)

asyncio

	The performance of writing to sockets in asyncio has been
significantly improved. asyncio now avoids unnecessary copying when
writing to sockets and uses sendmsg() if the platform
supports it. (Contributed by Kumar Aditya in gh-91166 [https://github.com/python/cpython/issues/91166].)

	Added asyncio.eager_task_factory() and asyncio.create_eager_task_factory()
functions to allow opting an event loop in to eager task execution,
making some use-cases 2x to 5x faster.
(Contributed by Jacob Bower & Itamar O in gh-102853 [https://github.com/python/cpython/issues/102853], gh-104140 [https://github.com/python/cpython/issues/104140], and gh-104138 [https://github.com/python/cpython/issues/104138])

	On Linux, asyncio uses PidfdChildWatcher by default
if os.pidfd_open() is available and functional instead of
ThreadedChildWatcher.
(Contributed by Kumar Aditya in gh-98024 [https://github.com/python/cpython/issues/98024].)

	The child watcher classes MultiLoopChildWatcher,
FastChildWatcher, AbstractChildWatcher
and SafeChildWatcher are deprecated and
will be removed in Python 3.14. It is recommended to not manually
configure a child watcher as the event loop now uses the best available
child watcher for each platform (PidfdChildWatcher
if supported and ThreadedChildWatcher otherwise).
(Contributed by Kumar Aditya in gh-94597 [https://github.com/python/cpython/issues/94597].)

	asyncio.set_child_watcher(), asyncio.get_child_watcher(),
asyncio.AbstractEventLoopPolicy.set_child_watcher() and
asyncio.AbstractEventLoopPolicy.get_child_watcher() are deprecated
and will be removed in Python 3.14.
(Contributed by Kumar Aditya in gh-94597 [https://github.com/python/cpython/issues/94597].)

	Add loop_factory parameter to asyncio.run() to allow specifying
a custom event loop factory.
(Contributed by Kumar Aditya in gh-99388 [https://github.com/python/cpython/issues/99388].)

	Add C implementation of asyncio.current_task() for 4x-6x speedup.
(Contributed by Itamar Ostricher and Pranav Thulasiram Bhat in gh-100344 [https://github.com/python/cpython/issues/100344].)

	asyncio.iscoroutine() now returns False for generators as
asyncio does not support legacy generator-based coroutines.
(Contributed by Kumar Aditya in gh-102748 [https://github.com/python/cpython/issues/102748].)

	asyncio.wait() and asyncio.as_completed() now accepts generators
yielding tasks.
(Contributed by Kumar Aditya in gh-78530 [https://github.com/python/cpython/issues/78530].)

calendar

	Add enums Month and Day.
(Contributed by Prince Roshan in gh-103636 [https://github.com/python/cpython/issues/103636].)

csv

	Add QUOTE_NOTNULL and QUOTE_STRINGS flags to
provide finer grained control of None and empty strings by
writer objects.

dis

	Pseudo instruction opcodes (which are used by the compiler but
do not appear in executable bytecode) are now exposed in the
dis module.
HAVE_ARGUMENT is still relevant to real opcodes,
but it is not useful for pseudo instructions. Use the new
hasarg collection instead.
(Contributed by Irit Katriel in gh-94216 [https://github.com/python/cpython/issues/94216].)

fractions

	Objects of type fractions.Fraction now support float-style
formatting. (Contributed by Mark Dickinson in gh-100161 [https://github.com/python/cpython/issues/100161].)

inspect

	Add inspect.markcoroutinefunction() to mark sync functions that return
a coroutine for use with inspect.iscoroutinefunction().
(Contributed Carlton Gibson in gh-99247 [https://github.com/python/cpython/issues/99247].)

	Add inspect.getasyncgenstate() and inspect.getasyncgenlocals()
for determining the current state of asynchronous generators.
(Contributed by Thomas Krennwallner in bpo-35759 [https://bugs.python.org/issue?@action=redirect&bpo=35759].)

	The performance of inspect.getattr_static() has been considerably
improved. Most calls to the function should be at least 2x faster than they
were in Python 3.11, and some may be 6x faster or more. (Contributed by Alex
Waygood in gh-103193 [https://github.com/python/cpython/issues/103193].)

itertools

	Added itertools.batched() for collecting into even-sized
tuples where the last batch may be shorter than the rest.
(Contributed by Raymond Hettinger in gh-98363 [https://github.com/python/cpython/issues/98363].)

json

	Added json.AttrDict for use with object_hook in json.load()
or json.loads(). This is a subclass of dict that also supports
attribute style dotted access.
(Contributed by Raymond Hettinger in gh-96145 [https://github.com/python/cpython/issues/96145].)

math

	Added math.sumprod() for computing a sum of products.
(Contributed by Raymond Hettinger in gh-100485 [https://github.com/python/cpython/issues/100485].)

	Extended math.nextafter() to include a steps argument
for moving up or down multiple steps at a time.
(By Matthias Goergens, Mark Dickinson, and Raymond Hettinger in gh-94906 [https://github.com/python/cpython/issues/94906].)

os

	Add os.PIDFD_NONBLOCK to open a file descriptor
for a process with os.pidfd_open() in non-blocking mode.
(Contributed by Kumar Aditya in gh-93312 [https://github.com/python/cpython/issues/93312].)

	os.DirEntry now includes an os.DirEntry.is_junction()
method to check if the entry is a junction.
(Contributed by Charles Machalow in gh-99547 [https://github.com/python/cpython/issues/99547].)

	Add os.listdrives(), os.listvolumes() and os.listmounts()
functions on Windows for enumerating drives, volumes and mount points.
(Contributed by Steve Dower in gh-102519 [https://github.com/python/cpython/issues/102519].)

	os.stat() and os.lstat() are now more accurate on Windows.
The st_birthtime field will now be filled with the creation time
of the file, and st_ctime is deprecated but still contains the
creation time (but in the future will return the last metadata change,
for consistency with other platforms). st_dev may be up to 64 bits
and st_ino up to 128 bits depending on your file system, and
st_rdev is always set to zero rather than incorrect values.
Both functions may be significantly faster on newer releases of
Windows. (Contributed by Steve Dower in gh-99726 [https://github.com/python/cpython/issues/99726].)

os.path

	Add os.path.isjunction() to check if a given path is a junction.
(Contributed by Charles Machalow in gh-99547 [https://github.com/python/cpython/issues/99547].)

	Add os.path.splitroot() to split a path into a triad
(drive, root, tail). (Contributed by Barney Gale in gh-101000 [https://github.com/python/cpython/issues/101000].)

pathlib

	Add support for subclassing pathlib.PurePath and
Path, plus their Posix- and Windows-specific variants.
Subclasses may override the with_segments() method
to pass information between path instances.

	Add walk() for walking the directory trees and generating
all file or directory names within them, similar to os.walk().
(Contributed by Stanislav Zmiev in gh-90385 [https://github.com/python/cpython/issues/90385].)

	Add walk_up optional parameter to pathlib.PurePath.relative_to()
to allow the insertion of .. entries in the result; this behavior is
more consistent with os.path.relpath().
(Contributed by Domenico Ragusa in bpo-40358 [https://bugs.python.org/issue?@action=redirect&bpo=40358].)

	Add pathlib.Path.is_junction() as a proxy to os.path.isjunction().
(Contributed by Charles Machalow in gh-99547 [https://github.com/python/cpython/issues/99547].)

	Add case_sensitive optional parameter to pathlib.Path.glob(),
pathlib.Path.rglob() and pathlib.PurePath.match() for matching
the path’s case sensitivity, allowing for more precise control over the matching process.

pdb

	Add convenience variables to hold values temporarily for debug session
and provide quick access to values like the current frame or the return
value.
(Contributed by Tian Gao in gh-103693 [https://github.com/python/cpython/issues/103693].)

random

	Added random.binomialvariate().
(Contributed by Raymond Hettinger in gh-81620 [https://github.com/python/cpython/issues/81620].)

	Added a default of lamb=1.0 to random.expovariate().
(Contributed by Raymond Hettinger in gh-100234 [https://github.com/python/cpython/issues/100234].)

shutil

	shutil.make_archive() now passes the root_dir argument to custom
archivers which support it.
In this case it no longer temporarily changes the current working directory
of the process to root_dir to perform archiving.
(Contributed by Serhiy Storchaka in gh-74696 [https://github.com/python/cpython/issues/74696].)

	shutil.rmtree() now accepts a new argument onexc which is an
error handler like onerror but which expects an exception instance
rather than a (typ, val, tb) triplet. onerror is deprecated and
will be removed in Python 3.14.
(Contributed by Irit Katriel in gh-102828 [https://github.com/python/cpython/issues/102828].)

	shutil.which() now consults the PATHEXT environment variable to
find matches within PATH on Windows even when the given cmd includes
a directory component.
(Contributed by Charles Machalow in gh-103179 [https://github.com/python/cpython/issues/103179].)

shutil.which() will call NeedCurrentDirectoryForExePathW when
querying for executables on Windows to determine if the current working
directory should be prepended to the search path.
(Contributed by Charles Machalow in gh-103179 [https://github.com/python/cpython/issues/103179].)

shutil.which() will return a path matching the cmd with a component
from PATHEXT prior to a direct match elsewhere in the search path on
Windows.
(Contributed by Charles Machalow in gh-103179 [https://github.com/python/cpython/issues/103179].)

sqlite3

	Add a command-line interface.
(Contributed by Erlend E. Aasland in gh-77617 [https://github.com/python/cpython/issues/77617].)

	Add the autocommit attribute
to Connection
and the autocommit parameter to connect()
to control PEP 249 [https://peps.python.org/pep-0249/]-compliant
transaction handling.
(Contributed by Erlend E. Aasland in gh-83638 [https://github.com/python/cpython/issues/83638].)

	Add entrypoint keyword-only parameter to
load_extension(),
for overriding the SQLite extension entry point.
(Contributed by Erlend E. Aasland in gh-103015 [https://github.com/python/cpython/issues/103015].)

	Add getconfig() and
setconfig() to Connection
to make configuration changes to a database connection.
(Contributed by Erlend E. Aasland in gh-103489 [https://github.com/python/cpython/issues/103489].)

statistics

	Extended statistics.correlation() to include as a ranked method
for computing the Spearman correlation of ranked data.
(Contributed by Raymond Hettinger in gh-95861 [https://github.com/python/cpython/issues/95861].)

sys

	Add sys.activate_stack_trampoline() and
sys.deactivate_stack_trampoline() for activating and deactivating
stack profiler trampolines,
and sys.is_stack_trampoline_active() for querying if stack profiler
trampolines are active.
(Contributed by Pablo Galindo and Christian Heimes
with contributions from Gregory P. Smith [Google] and Mark Shannon
in gh-96123 [https://github.com/python/cpython/issues/96123].)

	Add sys.last_exc which holds the last unhandled exception that
was raised (for post-mortem debugging use cases). Deprecate the
three fields that have the same information in its legacy form:
sys.last_type, sys.last_value and sys.last_traceback.
(Contributed by Irit Katriel in gh-102778 [https://github.com/python/cpython/issues/102778].)

	sys._current_exceptions() now returns a mapping from thread-id to an
exception instance, rather than to a (typ, exc, tb) tuple.
(Contributed by Irit Katriel in gh-103176 [https://github.com/python/cpython/issues/103176].)

tempfile

	The tempfile.NamedTemporaryFile function has a new optional parameter
delete_on_close (Contributed by Evgeny Zorin in gh-58451 [https://github.com/python/cpython/issues/58451].)

	tempfile.mkdtemp() now always returns an absolute path, even if the
argument provided to the dir parameter is a relative path.

threading

	Add threading.settrace_all_threads() and
threading.setprofile_all_threads() that allow to set tracing and
profiling functions in all running threads in addition to the calling one.
(Contributed by Pablo Galindo in gh-93503 [https://github.com/python/cpython/issues/93503].)

tkinter

	tkinter.Canvas.coords() now flattens its arguments.
It now accepts not only coordinates as separate arguments
(x1, y1, x2, y2, ...) and a sequence of coordinates
([x1, y1, x2, y2, ...]), but also coordinates grouped in pairs
((x1, y1), (x2, y2), ... and [(x1, y1), (x2, y2), ...]),
like create_*() methods.
(Contributed by Serhiy Storchaka in gh-94473 [https://github.com/python/cpython/issues/94473].)

tokenize

	The tokenize module includes the changes introduced in PEP 701 [https://peps.python.org/pep-0701/]. (
Contributed by Marta Gómez Macías and Pablo Galindo in gh-102856 [https://github.com/python/cpython/issues/102856].)
See Porting to Python 3.12 for more information on the
changes to the tokenize module.

types

	Add types.get_original_bases() to allow for further introspection of
User-defined generic types when subclassed. (Contributed by
James Hilton-Balfe and Alex Waygood in gh-101827 [https://github.com/python/cpython/issues/101827].)

typing

	isinstance() checks against
runtime-checkable protocols now use
inspect.getattr_static() rather than hasattr() to lookup whether
attributes exist. This means that descriptors and __getattr__()
methods are no longer unexpectedly evaluated during isinstance() checks
against runtime-checkable protocols. However, it may also mean that some
objects which used to be considered instances of a runtime-checkable protocol
may no longer be considered instances of that protocol on Python 3.12+, and
vice versa. Most users are unlikely to be affected by this change.
(Contributed by Alex Waygood in gh-102433 [https://github.com/python/cpython/issues/102433].)

	The members of a runtime-checkable protocol are now considered “frozen” at
runtime as soon as the class has been created. Monkey-patching attributes
onto a runtime-checkable protocol will still work, but will have no impact on
isinstance() checks comparing objects to the protocol. For example:

>>> from typing import Protocol, runtime_checkable
>>> @runtime_checkable
... class HasX(Protocol):
... x = 1
...
>>> class Foo: ...
...
>>> f = Foo()
>>> isinstance(f, HasX)
False
>>> f.x = 1
>>> isinstance(f, HasX)
True
>>> HasX.y = 2
>>> isinstance(f, HasX) # unchanged, even though HasX now also has a "y" attribute
True

This change was made in order to speed up isinstance() checks against
runtime-checkable protocols.

	The performance profile of isinstance() checks against
runtime-checkable protocols has changed
significantly. Most isinstance() checks against protocols with only a few
members should be at least 2x faster than in 3.11, and some may be 20x
faster or more. However, isinstance() checks against protocols with fourteen
or more members may be slower than in Python 3.11. (Contributed by Alex
Waygood in gh-74690 [https://github.com/python/cpython/issues/74690] and gh-103193 [https://github.com/python/cpython/issues/103193].)

	All typing.TypedDict and typing.NamedTuple classes now have the
__orig_bases__ attribute. (Contributed by Adrian Garcia Badaracco in
gh-103699 [https://github.com/python/cpython/issues/103699].)

	Add frozen_default parameter to typing.dataclass_transform().
(Contributed by Erik De Bonte in gh-99957 [https://github.com/python/cpython/issues/99957].)

unicodedata

	The Unicode database has been updated to version 15.0.0. (Contributed by
Benjamin Peterson in gh-96734 [https://github.com/python/cpython/issues/96734]).

unittest

Added --durations command line option, showing the N slowest test cases:

python3 -m unittest --durations=3 lib.tests.test_threading
.....
Slowest test durations
--
1.210s test_timeout (Lib.test.test_threading.BarrierTests)
1.003s test_default_timeout (Lib.test.test_threading.BarrierTests)
0.518s test_timeout (Lib.test.test_threading.EventTests)

(0.000 durations hidden. Use -v to show these durations.)
--
Ran 158 tests in 9.869s

OK (skipped=3)

(Contributed by Giampaolo Rodola in bpo-4080 [https://bugs.python.org/issue?@action=redirect&bpo=4080])

uuid

	Add a command-line interface.
(Contributed by Adam Chhina in gh-88597 [https://github.com/python/cpython/issues/88597].)

Optimizations

	Removed wstr and wstr_length members from Unicode objects.
It reduces object size by 8 or 16 bytes on 64bit platform. (PEP 623 [https://peps.python.org/pep-0623/])
(Contributed by Inada Naoki in gh-92536 [https://github.com/python/cpython/issues/92536].)

	Added experimental support for using the BOLT binary optimizer in the build
process, which improves performance by 1-5%.
(Contributed by Kevin Modzelewski in gh-90536 [https://github.com/python/cpython/issues/90536] and tuned by Dong-hee Na in gh-101525 [https://github.com/python/cpython/issues/101525])

	Speed up the regular expression substitution (functions re.sub() and
re.subn() and corresponding re.Pattern methods) for
replacement strings containing group references by 2–3 times.
(Contributed by Serhiy Storchaka in gh-91524 [https://github.com/python/cpython/issues/91524].)

	Speed up asyncio.Task creation by deferring expensive string formatting.
(Contributed by Itamar O in gh-103793 [https://github.com/python/cpython/issues/103793].)

	The tokenize.tokenize() and tokenize.generate_tokens() functions are
up to 64% faster as a side effect of the changes required to cover PEP 701 [https://peps.python.org/pep-0701/] in
the tokenize module. (Contributed by Marta Gómez Macías and Pablo Galindo
in gh-102856 [https://github.com/python/cpython/issues/102856].)

	Speed up super() method calls and attribute loads via the
new LOAD_SUPER_ATTR instruction. (Contributed by Carl Meyer and
Vladimir Matveev in gh-103497 [https://github.com/python/cpython/issues/103497].)

CPython bytecode changes

	Remove the LOAD_METHOD instruction. It has been merged into
LOAD_ATTR. LOAD_ATTR will now behave like the old
LOAD_METHOD instruction if the low bit of its oparg is set.
(Contributed by Ken Jin in gh-93429 [https://github.com/python/cpython/issues/93429].)

	Remove the JUMP_IF_FALSE_OR_POP and JUMP_IF_TRUE_OR_POP
instructions. (Contributed by Irit Katriel in gh-102859 [https://github.com/python/cpython/issues/102859].)

	Add the LOAD_FAST_AND_CLEAR instruction as part of the
implementation of PEP 709 [https://peps.python.org/pep-0709/]. (Contributed by Carl Meyer in gh-101441 [https://github.com/python/cpython/issues/101441].)

	Add the LOAD_FROM_DICT_OR_DEREF, LOAD_FROM_DICT_OR_GLOBALS,
and LOAD_LOCALS opcodes as part of the implementation of PEP 695 [https://peps.python.org/pep-0695/].
Remove the LOAD_CLASSDEREF opcode, which can be replaced with
LOAD_LOCALS plus LOAD_FROM_DICT_OR_DEREF. (Contributed
by Jelle Zijlstra in gh-103764 [https://github.com/python/cpython/issues/103764].)

	Add the LOAD_SUPER_ATTR instruction. (Contributed by Carl Meyer and
Vladimir Matveev in gh-103497 [https://github.com/python/cpython/issues/103497].)

Demos and Tools

	Remove the Tools/demo/ directory which contained old demo scripts. A copy
can be found in the old-demos project [https://github.com/gvanrossum/old-demos].
(Contributed by Victor Stinner in gh-97681 [https://github.com/python/cpython/issues/97681].)

	Remove outdated example scripts of the Tools/scripts/ directory.
A copy can be found in the old-demos project [https://github.com/gvanrossum/old-demos].
(Contributed by Victor Stinner in gh-97669 [https://github.com/python/cpython/issues/97669].)

Deprecated

	typing.Hashable and typing.Sized aliases for collections.abc.Hashable
and collections.abc.Sized. (gh-94309 [https://github.com/python/cpython/issues/94309].)

	The sqlite3 default adapters and converters are now deprecated.
Instead, use the Adapter and converter recipes
and tailor them to your needs.
(Contributed by Erlend E. Aasland in gh-90016 [https://github.com/python/cpython/issues/90016].)

	In execute(), DeprecationWarning is now emitted
when named placeholders are used together with
parameters supplied as a sequence instead of as a dict.
Starting from Python 3.14, using named placeholders with parameters supplied
as a sequence will raise a ProgrammingError.
(Contributed by Erlend E. Aasland in gh-101698 [https://github.com/python/cpython/issues/101698].)

	The 3-arg signatures (type, value, traceback) of throw(),
throw() and athrow() are deprecated and
may be removed in a future version of Python. Use the single-arg versions
of these functions instead. (Contributed by Ofey Chan in gh-89874 [https://github.com/python/cpython/issues/89874].)

	DeprecationWarning is now raised when __package__ on a
module differs from __spec__.parent (previously it was
ImportWarning).
(Contributed by Brett Cannon in gh-65961 [https://github.com/python/cpython/issues/65961].)

	The get_event_loop() method of the
default event loop policy now emits a DeprecationWarning if there
is no current event loop set and it decides to create one.
(Contributed by Serhiy Storchaka and Guido van Rossum in gh-100160 [https://github.com/python/cpython/issues/100160].)

	The xml.etree.ElementTree module now emits DeprecationWarning
when testing the truth value of an xml.etree.ElementTree.Element.
Before, the Python implementation emitted FutureWarning, and the C
implementation emitted nothing.

	In accordance with PEP 699 [https://peps.python.org/pep-0699/], the ma_version_tag field in PyDictObject
is deprecated for extension modules. Accessing this field will generate a compiler
warning at compile time. This field will be removed in Python 3.14.
(Contributed by Ramvikrams and Kumar Aditya in gh-101193 [https://github.com/python/cpython/issues/101193]. PEP by Ken Jin.)

	The st_ctime fields return by os.stat() and os.lstat() on
Windows are deprecated. In a future release, they will contain the last
metadata change time, consistent with other platforms. For now, they still
contain the creation time, which is also available in the new st_birthtime
field. (Contributed by Steve Dower in gh-99726 [https://github.com/python/cpython/issues/99726].)

	The sys.last_type, sys.last_value and sys.last_traceback
fields are deprecated. Use sys.last_exc instead.
(Contributed by Irit Katriel in gh-102778 [https://github.com/python/cpython/issues/102778].)

	The onerror argument of shutil.rmtree() is deprecated as will be removed
in Python 3.14. Use onexc instead. (Contributed by Irit Katriel in gh-102828 [https://github.com/python/cpython/issues/102828].)

	Extracting tar archives without specifying filter is deprecated until
Python 3.14, when 'data' filter will become the default.
See Extraction filters for details.

	calendar.January and calendar.February constants are deprecated and
replaced by calendar.Month.JANUARY and calendar.Month.FEBRUARY.
(Contributed by Prince Roshan in gh-103636 [https://github.com/python/cpython/issues/103636].)

	The bitwise inversion operator (~) on bool is deprecated. It will throw an
error in Python 3.14. Use not for logical negation of bools instead.
In the rare case that you really need the bitwise inversion of the underlying
int, convert to int explicitly with ~int(x). (Contributed by Tim Hoffmann
in gh-103487 [https://github.com/python/cpython/issues/103487].)

	datetime.datetime’s
utcnow() and
utcfromtimestamp() are deprecated and will be
removed in a future version. Instead, use timezone-aware objects to represent
datetimes in UTC: respectively, call
now() and
fromtimestamp() with the tz parameter set to
datetime.UTC.
(Contributed by Paul Ganssle in gh-103857 [https://github.com/python/cpython/issues/103857].)

Pending Removal in Python 3.13

The following modules and APIs have been deprecated in earlier Python releases,
and will be removed in Python 3.13.

Modules (see PEP 594 [https://peps.python.org/pep-0594/]):

	aifc

	audioop

	cgi

	cgitb

	chunk

	crypt

	imghdr

	mailcap

	msilib

	nis

	nntplib

	ossaudiodev

	pipes

	sndhdr

	spwd

	sunau

	telnetlib

	uu

	xdrlib

APIs:

	configparser.LegacyInterpolation (gh-90765 [https://github.com/python/cpython/issues/90765])

	locale.getdefaultlocale() (gh-90817 [https://github.com/python/cpython/issues/90817])

	turtle.RawTurtle.settiltangle() (gh-50096 [https://github.com/python/cpython/issues/50096])

	unittest.findTestCases() (gh-50096 [https://github.com/python/cpython/issues/50096])

	unittest.getTestCaseNames() (gh-50096 [https://github.com/python/cpython/issues/50096])

	unittest.makeSuite() (gh-50096 [https://github.com/python/cpython/issues/50096])

	unittest.TestProgram.usageExit() (gh-67048 [https://github.com/python/cpython/issues/67048])

	webbrowser.MacOSX (gh-86421 [https://github.com/python/cpython/issues/86421])

	classmethod descriptor chaining (gh-89519 [https://github.com/python/cpython/issues/89519])

Pending Removal in Python 3.14

	Deprecated the following importlib.abc classes, scheduled for removal in
Python 3.14:

	importlib.abc.ResourceReader

	importlib.abc.Traversable

	importlib.abc.TraversableResources

Use importlib.resources.abc classes instead:

	importlib.resources.abc.Traversable

	importlib.resources.abc.TraversableResources

(Contributed by Jason R. Coombs and Hugo van Kemenade in gh-93963 [https://github.com/python/cpython/issues/93963].)

	Deprecated collections.abc.ByteString.
Prefer Sequence or collections.abc.Buffer.
For use in typing, prefer a union, like bytes | bytearray, or collections.abc.Buffer.
(Contributed by Shantanu Jain in gh-91896 [https://github.com/python/cpython/issues/91896].)

	typing.ByteString, deprecated since Python 3.9, now causes a
DeprecationWarning to be emitted when it is used.

	Creating immutable types (Py_TPFLAGS_IMMUTABLETYPE) with mutable
bases using the C API.

	Deprecated the isdst parameter in email.utils.localtime().
(Contributed by Alan Williams in gh-72346 [https://github.com/python/cpython/issues/72346].)

	__package__ and __cached__ will cease to be set or taken
into consideration by the import system (gh-97879 [https://github.com/python/cpython/issues/97879]).

	Testing the truth value of an xml.etree.ElementTree.Element
is deprecated and will raise an exception in Python 3.14.

	The default multiprocessing start method will change to a safer one on
Linux, BSDs, and other non-macOS POSIX platforms where 'fork' is currently
the default (gh-84559 [https://github.com/python/cpython/issues/84559]). Adding a runtime warning about this was deemed too
disruptive as the majority of code is not expected to care. Use the
get_context() or
set_start_method() APIs to explicitly specify when
your code requires 'fork'. See Contexts and start methods.

	pty has two undocumented master_open() and slave_open()
functions that have been deprecated since Python 2 but only gained a
proper DeprecationWarning in 3.12. Remove them in 3.14.

	itertools had undocumented, inefficient, historically buggy,
and inconsistent support for copy, deepcopy, and pickle operations.
This will be removed in 3.14 for a significant reduction in code
volume and maintenance burden.
(Contributed by Raymond Hettinger in gh-101588 [https://github.com/python/cpython/issues/101588].)

	Accessing co_lnotab was deprecated in PEP 626 [https://peps.python.org/pep-0626/] since 3.10
and was planned to be removed in 3.12
but it only got a proper DeprecationWarning in 3.12.
May be removed in 3.14.
(Contributed by Nikita Sobolev in gh-101866 [https://github.com/python/cpython/issues/101866].)

	The onerror argument of shutil.rmtree() is deprecated in 3.12,
and will be removed in 3.14.

	The type, choices, and metavar parameters
of argparse.BooleanOptionalAction are deprecated
and will be removed in 3.14.
(Contributed by Nikita Sobolev in gh-92248 [https://github.com/python/cpython/issues/92248].)

	pkgutil.find_loader() and pkgutil.get_loader()
now raise DeprecationWarning;
use importlib.util.find_spec() instead.
(Contributed by Nikita Sobolev in gh-97850 [https://github.com/python/cpython/issues/97850].)

	The following ast features have been deprecated in documentation since
Python 3.8, now cause a DeprecationWarning to be emitted at runtime
when they are accessed or used, and will be removed in Python 3.14:

	ast.Num

	ast.Str

	ast.Bytes

	ast.NameConstant

	ast.Ellipsis

Use ast.Constant instead.
(Contributed by Serhiy Storchaka in gh-90953 [https://github.com/python/cpython/issues/90953].)

Pending Removal in Future Versions

The following APIs were deprecated in earlier Python versions and will be removed,
although there is currently no date scheduled for their removal.

	typing.Text (gh-92332 [https://github.com/python/cpython/issues/92332])

	Currently Python accepts numeric literals immediately followed by keywords,
for example 0in x, 1or x, 0if 1else 2. It allows confusing
and ambiguous expressions like [0x1for x in y] (which can be
interpreted as [0x1 for x in y] or [0x1f or x in y]).
A syntax warning is raised if the numeric literal is
immediately followed by one of keywords and, else,
for, if, in, is and or.
In a future release it will be changed to a syntax error. (gh-87999 [https://github.com/python/cpython/issues/87999])

Removed

	Remove the distutils package. It was deprecated in Python 3.10 by
PEP 632 [https://peps.python.org/pep-0632/] “Deprecate distutils module”. For projects still using
distutils and cannot be updated to something else, the setuptools
project can be installed: it still provides distutils.
(Contributed by Victor Stinner in gh-92584 [https://github.com/python/cpython/issues/92584].)

	Remove the bundled setuptools wheel from ensurepip,
and stop installing setuptools in environments created by venv.

pip (>= 22.1) does not require setuptools to be installed in the
environment. setuptools-based (and distutils-based) packages
can still be used with pip install, since pip will provide
setuptools in the build environment it uses for building a
package.

easy_install, pkg_resources, setuptools and distutils
are no longer provided by default in environments created with
venv or bootstrapped with ensurepip, since they are part of
the setuptools package. For projects relying on these at runtime,
the setuptools project should be declared as a dependency and
installed separately (typically, using pip).

(Contributed by Pradyun Gedam in gh-95299 [https://github.com/python/cpython/issues/95299].)

	Removed many old deprecated unittest features:

	A number of TestCase method aliases:

	Deprecated alias

	Method Name

	Deprecated in

	failUnless

	assertTrue()

	3.1

	failIf

	assertFalse()

	3.1

	failUnlessEqual

	assertEqual()

	3.1

	failIfEqual

	assertNotEqual()

	3.1

	failUnlessAlmostEqual

	assertAlmostEqual()

	3.1

	failIfAlmostEqual

	assertNotAlmostEqual()

	3.1

	failUnlessRaises

	assertRaises()

	3.1

	assert_

	assertTrue()

	3.2

	assertEquals

	assertEqual()

	3.2

	assertNotEquals

	assertNotEqual()

	3.2

	assertAlmostEquals

	assertAlmostEqual()

	3.2

	assertNotAlmostEquals

	assertNotAlmostEqual()

	3.2

	assertRegexpMatches

	assertRegex()

	3.2

	assertRaisesRegexp

	assertRaisesRegex()

	3.2

	assertNotRegexpMatches

	assertNotRegex()

	3.5

You can use https://github.com/isidentical/teyit to automatically modernise
your unit tests.

	Undocumented and broken TestCase method
assertDictContainsSubset (deprecated in Python 3.2).

	Undocumented TestLoader.loadTestsFromModule parameter use_load_tests
(deprecated and ignored since Python 3.2).

	An alias of the TextTestResult class:
_TextTestResult (deprecated in Python 3.2).

(Contributed by Serhiy Storchaka in bpo-45162 [https://bugs.python.org/issue?@action=redirect&bpo=45162].)

	Several names deprecated in the configparser way back in 3.2 have
been removed per gh-89336 [https://github.com/python/cpython/issues/89336]:

	configparser.ParsingError no longer has a filename attribute
or argument. Use the source attribute and argument instead.

	configparser no longer has a SafeConfigParser class. Use the
shorter ConfigParser name instead.

	configparser.ConfigParser no longer has a readfp method.
Use read_file() instead.

	The following undocumented sqlite3 features, deprecated in Python
3.10, are now removed:

	sqlite3.enable_shared_cache()

	sqlite3.OptimizedUnicode

If a shared cache must be used, open the database in URI mode using the
cache=shared query parameter.

The sqlite3.OptimizedUnicode text factory has been an alias for
str since Python 3.3. Code that previously set the text factory to
OptimizedUnicode can either use str explicitly, or rely on the
default value which is also str.

(Contributed by Erlend E. Aasland in gh-92548 [https://github.com/python/cpython/issues/92548].)

	smtpd has been removed according to the schedule in PEP 594 [https://peps.python.org/pep-0594/],
having been deprecated in Python 3.4.7 and 3.5.4.
Use aiosmtpd [https://pypi.org/project/aiosmtpd/] PyPI module or any other
asyncio-based server instead.
(Contributed by Oleg Iarygin in gh-93243 [https://github.com/python/cpython/issues/93243].)

	asynchat and asyncore have been removed
according to the schedule in PEP 594 [https://peps.python.org/pep-0594/],
having been deprecated in Python 3.6.
Use asyncio instead.
(Contributed by Nikita Sobolev in gh-96580 [https://github.com/python/cpython/issues/96580].)

	Remove io.OpenWrapper and _pyio.OpenWrapper, deprecated in Python
3.10: just use open() instead. The open() (io.open())
function is a built-in function. Since Python 3.10, _pyio.open() is
also a static method.
(Contributed by Victor Stinner in gh-94169 [https://github.com/python/cpython/issues/94169].)

	Remove the ssl.RAND_pseudo_bytes() function, deprecated in Python 3.6:
use os.urandom() or ssl.RAND_bytes() instead.
(Contributed by Victor Stinner in gh-94199 [https://github.com/python/cpython/issues/94199].)

	gzip: Remove the filename attribute of gzip.GzipFile,
deprecated since Python 2.6, use the name attribute
instead. In write mode, the filename attribute added '.gz' file
extension if it was not present.
(Contributed by Victor Stinner in gh-94196 [https://github.com/python/cpython/issues/94196].)

	Remove the ssl.match_hostname() function.
It was deprecated in Python 3.7. OpenSSL performs
hostname matching since Python 3.7, Python no longer uses the
ssl.match_hostname() function.
(Contributed by Victor Stinner in gh-94199 [https://github.com/python/cpython/issues/94199].)

	Remove the locale.format() function, deprecated in Python 3.7:
use locale.format_string() instead.
(Contributed by Victor Stinner in gh-94226 [https://github.com/python/cpython/issues/94226].)

	hashlib: Remove the pure Python implementation of
hashlib.pbkdf2_hmac(), deprecated in Python 3.10. Python 3.10 and
newer requires OpenSSL 1.1.1 (PEP 644 [https://peps.python.org/pep-0644/]): this OpenSSL version provides
a C implementation of pbkdf2_hmac() which is faster.
(Contributed by Victor Stinner in gh-94199 [https://github.com/python/cpython/issues/94199].)

	xml.etree.ElementTree: Remove the ElementTree.Element.copy() method of the
pure Python implementation, deprecated in Python 3.10, use the
copy.copy() function instead. The C implementation of xml.etree.ElementTree
has no copy() method, only a __copy__() method.
(Contributed by Victor Stinner in gh-94383 [https://github.com/python/cpython/issues/94383].)

	zipimport: Remove find_loader() and find_module() methods,
deprecated in Python 3.10: use the find_spec() method instead. See
PEP 451 [https://peps.python.org/pep-0451/] for the rationale.
(Contributed by Victor Stinner in gh-94379 [https://github.com/python/cpython/issues/94379].)

	Remove the ssl.wrap_socket() function, deprecated in Python 3.7:
instead, create a ssl.SSLContext object and call its
ssl.SSLContext.wrap_socket method. Any package that still uses
ssl.wrap_socket() is broken and insecure. The function neither sends a
SNI TLS extension nor validates server hostname. Code is subject to CWE-295 [https://cwe.mitre.org/data/definitions/295.html]: Improper Certificate
Validation.
(Contributed by Victor Stinner in gh-94199 [https://github.com/python/cpython/issues/94199].)

	Many previously deprecated cleanups in importlib have now been
completed:

	References to, and support for module_repr() has been removed.
(Contributed by Barry Warsaw in gh-97850 [https://github.com/python/cpython/issues/97850].)

	importlib.util.set_package has been removed. (Contributed by Brett
Cannon in gh-65961 [https://github.com/python/cpython/issues/65961].)

	Support for find_loader() and find_module() APIs have been
removed. (Contributed by Barry Warsaw in gh-98040 [https://github.com/python/cpython/issues/98040].)

	importlib.abc.Finder, pkgutil.ImpImporter, and pkgutil.ImpLoader
have been removed. (Contributed by Barry Warsaw in gh-98040 [https://github.com/python/cpython/issues/98040].)

	The imp module has been removed. (Contributed by Barry Warsaw in
gh-98040 [https://github.com/python/cpython/issues/98040].)

	Removed the suspicious rule from the documentation Makefile, and
removed Doc/tools/rstlint.py, both in favor of sphinx-lint [https://github.com/sphinx-contrib/sphinx-lint].
(Contributed by Julien Palard in gh-98179 [https://github.com/python/cpython/issues/98179].)

	Remove the keyfile and certfile parameters from the
ftplib, imaplib, poplib and smtplib modules,
and the key_file, cert_file and check_hostname parameters from the
http.client module,
all deprecated since Python 3.6. Use the context parameter
(ssl_context in imaplib) instead.
(Contributed by Victor Stinner in gh-94172 [https://github.com/python/cpython/issues/94172].)

	ftplib: Remove the FTP_TLS.ssl_version class attribute: use the
context parameter instead.
(Contributed by Victor Stinner in gh-94172 [https://github.com/python/cpython/issues/94172].)

	Remove support for obsolete browsers from webbrowser.
Removed browsers include: Grail, Mosaic, Netscape, Galeon, Skipstone,
Iceape, Firebird, and Firefox versions 35 and below (gh-102871 [https://github.com/python/cpython/issues/102871]).

Porting to Python 3.12

This section lists previously described changes and other bugfixes
that may require changes to your code.

Changes in the Python API

	More strict rules are now applied for numerical group references and
group names in regular expressions.
Only sequence of ASCII digits is now accepted as a numerical reference.
The group name in bytes patterns and replacement strings can now only
contain ASCII letters and digits and underscore.
(Contributed by Serhiy Storchaka in gh-91760 [https://github.com/python/cpython/issues/91760].)

	Removed randrange() functionality deprecated since Python 3.10. Formerly,
randrange(10.0) losslessly converted to randrange(10). Now, it raises a
TypeError. Also, the exception raised for non-integral values such as
randrange(10.5) or randrange('10') has been changed from ValueError to
TypeError. This also prevents bugs where randrange(1e25) would silently
select from a larger range than randrange(10**25).
(Originally suggested by Serhiy Storchaka gh-86388 [https://github.com/python/cpython/issues/86388].)

	argparse.ArgumentParser changed encoding and error handler
for reading arguments from file (e.g. fromfile_prefix_chars option)
from default text encoding (e.g. locale.getpreferredencoding(False))
to filesystem encoding and error handler.
Argument files should be encoded in UTF-8 instead of ANSI Codepage on Windows.

	Removed the asyncore-based smtpd module deprecated in Python 3.4.7
and 3.5.4. A recommended replacement is the
asyncio-based aiosmtpd [https://pypi.org/project/aiosmtpd/] PyPI module.

	shlex.split(): Passing None for s argument now raises an
exception, rather than reading sys.stdin. The feature was deprecated
in Python 3.9.
(Contributed by Victor Stinner in gh-94352 [https://github.com/python/cpython/issues/94352].)

	The os module no longer accepts bytes-like paths, like
bytearray and memoryview types: only the exact
bytes type is accepted for bytes strings.
(Contributed by Victor Stinner in gh-98393 [https://github.com/python/cpython/issues/98393].)

	syslog.openlog() and syslog.closelog() now fail if used in subinterpreters.
syslog.syslog() may still be used in subinterpreters,
but now only if syslog.openlog() has already been called in the main interpreter.
These new restrictions do not apply to the main interpreter,
so only a very small set of users might be affected.
This change helps with interpreter isolation. Furthermore, syslog is a wrapper
around process-global resources, which are best managed from the main interpreter.
(Contributed by Dong-hee Na in gh-99127 [https://github.com/python/cpython/issues/99127].)

	The undocumented locking behavior of cached_property()
is removed, because it locked across all instances of the class, leading to high
lock contention. This means that a cached property getter function could now run
more than once for a single instance, if two threads race. For most simple
cached properties (e.g. those that are idempotent and simply calculate a value
based on other attributes of the instance) this will be fine. If
synchronization is needed, implement locking within the cached property getter
function or around multi-threaded access points.

	sys._current_exceptions() now returns a mapping from thread-id to an
exception instance, rather than to a (typ, exc, tb) tuple.
(Contributed by Irit Katriel in gh-103176 [https://github.com/python/cpython/issues/103176].)

	When extracting tar files using tarfile or
shutil.unpack_archive(), pass the filter argument to limit features
that may be surprising or dangerous.
See Extraction filters for details.

	The output of the tokenize.tokenize() and tokenize.generate_tokens()
functions is now changed due to the changes introduced in PEP 701 [https://peps.python.org/pep-0701/]. This
means that STRING tokens are not emitted any more for f-strings and the
tokens described in PEP 701 [https://peps.python.org/pep-0701/] are now produced instead: FSTRING_START,
FSRING_MIDDLE and FSTRING_END are now emitted for f-string “string”
parts in addition to the appropriate tokens for the tokenization in the
expression components. For example for the f-string f"start {1+1} end"
the old version of the tokenizer emitted:

1,0-1,18: STRING 'f"start {1+1} end"'

while the new version emits:

1,0-1,2: FSTRING_START 'f"'
1,2-1,8: FSTRING_MIDDLE 'start '
1,8-1,9: OP '{'
1,9-1,10: NUMBER '1'
1,10-1,11: OP '+'
1,11-1,12: NUMBER '1'
1,12-1,13: OP '}'
1,13-1,17: FSTRING_MIDDLE ' end'
1,17-1,18: FSTRING_END '"'

Additionally, there may be some minor behavioral changes as a consecuence of the
changes required to support PEP 701 [https://peps.python.org/pep-0701/]. Some of these changes include:

	Some final DEDENT tokens are now emitted within the bounds of the
input. This means that for a file containing 3 lines, the old version of the
tokenizer returned a DEDENT token in line 4 whilst the new version returns
the token in line 3.

	The type attribute of the tokens emitted when tokenizing some invalid Python
characters such as ! has changed from ERRORTOKEN to OP.

Build Changes

	Python no longer uses setup.py to build shared C extension modules.
Build parameters like headers and libraries are detected in configure
script. Extensions are built by Makefile. Most extensions use
pkg-config and fall back to manual detection.
(Contributed by Christian Heimes in gh-93939 [https://github.com/python/cpython/issues/93939].)

	va_start() with two parameters, like va_start(args, format),
is now required to build Python.
va_start() is no longer called with a single parameter.
(Contributed by Kumar Aditya in gh-93207 [https://github.com/python/cpython/issues/93207].)

	CPython now uses the ThinLTO option as the default link time optimization policy
if the Clang compiler accepts the flag.
(Contributed by Dong-hee Na in gh-89536 [https://github.com/python/cpython/issues/89536].)

	Add COMPILEALL_OPTS variable in Makefile to override compileall
options (default: -j0) in make install. Also merged the 3
compileall commands into a single command to build .pyc files for all
optimization levels (0, 1, 2) at once.
(Contributed by Victor Stinner in gh-99289 [https://github.com/python/cpython/issues/99289].)

	Add platform triplets for 64-bit LoongArch:

	loongarch64-linux-gnusf

	loongarch64-linux-gnuf32

	loongarch64-linux-gnu

(Contributed by Zhang Na in gh-90656 [https://github.com/python/cpython/issues/90656].)

	PYTHON_FOR_REGEN now require Python 3.10 or newer.

	Autoconf 2.71 and aclocal 1.16.4 is now required to regenerate
!configure.
(Contributed by Christian Heimes in gh-89886 [https://github.com/python/cpython/issues/89886].)

C API Changes

New Features

	PEP 697 [https://peps.python.org/pep-0697/]: Introduced the Unstable C API tier,
intended for low-level tools like debuggers and JIT compilers.
This API may change in each minor release of CPython without deprecation
warnings.
Its contents are marked by the PyUnstable_ prefix in names.

Code object constructors:

	PyUnstable_Code_New() (renamed from PyCode_New)

	PyUnstable_Code_NewWithPosOnlyArgs() (renamed from PyCode_NewWithPosOnlyArgs)

Extra storage for code objects (PEP 523 [https://peps.python.org/pep-0523/]):

	PyUnstable_Eval_RequestCodeExtraIndex() (renamed from _PyEval_RequestCodeExtraIndex)

	PyUnstable_Code_GetExtra() (renamed from _PyCode_GetExtra)

	PyUnstable_Code_SetExtra() (renamed from _PyCode_SetExtra)

The original names will continue to be available until the respective
API changes.

(Contributed by Petr Viktorin in gh-101101 [https://github.com/python/cpython/issues/101101].)

	PEP 697 [https://peps.python.org/pep-0697/]: Added API for extending types whose instance memory layout is
opaque:

	PyType_Spec.basicsize can be zero or negative to specify
inheriting or extending the base class size.

	PyObject_GetTypeData() and PyType_GetTypeDataSize()
added to allow access to subclass-specific instance data.

	Py_TPFLAGS_ITEMS_AT_END and PyObject_GetItemData()
added to allow safely extending certain variable-sized types, including
PyType_Type.

	Py_RELATIVE_OFFSET added to allow defining
members in terms of a subclass-specific struct.

(Contributed by Petr Viktorin in gh-103509 [https://github.com/python/cpython/issues/103509].)

	Added the new limited C API function PyType_FromMetaclass(),
which generalizes the existing PyType_FromModuleAndSpec() using
an additional metaclass argument.
(Contributed by Wenzel Jakob in gh-93012 [https://github.com/python/cpython/issues/93012].)

	API for creating objects that can be called using
the vectorcall protocol was added to the
Limited API:

	Py_TPFLAGS_HAVE_VECTORCALL

	PyVectorcall_NARGS()

	PyVectorcall_Call()

	vectorcallfunc

The Py_TPFLAGS_HAVE_VECTORCALL flag is now removed from a class
when the class’s __call__() method is reassigned.
This makes vectorcall safe to use with mutable types (i.e. heap types
without the immutable flag, Py_TPFLAGS_IMMUTABLETYPE).
Mutable types that do not override tp_call now
inherit the Py_TPFLAGS_HAVE_VECTORCALL flag.
(Contributed by Petr Viktorin in gh-93274 [https://github.com/python/cpython/issues/93274].)

The Py_TPFLAGS_MANAGED_DICT and Py_TPFLAGS_MANAGED_WEAKREF
flags have been added. This allows extensions classes to support object
__dict__ and weakrefs with less bookkeeping,
using less memory and with faster access.

	API for performing calls using
the vectorcall protocol was added to the
Limited API:

	PyObject_Vectorcall()

	PyObject_VectorcallMethod()

	PY_VECTORCALL_ARGUMENTS_OFFSET

This means that both the incoming and outgoing ends of the vector call
protocol are now available in the Limited API. (Contributed
by Wenzel Jakob in gh-98586 [https://github.com/python/cpython/issues/98586].)

	Added two new public functions,
PyEval_SetProfileAllThreads() and
PyEval_SetTraceAllThreads(), that allow to set tracing and profiling
functions in all running threads in addition to the calling one. (Contributed
by Pablo Galindo in gh-93503 [https://github.com/python/cpython/issues/93503].)

	Added new function PyFunction_SetVectorcall() to the C API
which sets the vectorcall field of a given PyFunctionObject.
(Contributed by Andrew Frost in gh-92257 [https://github.com/python/cpython/issues/92257].)

	The C API now permits registering callbacks via PyDict_AddWatcher(),
PyDict_Watch() and related APIs to be called whenever a dictionary
is modified. This is intended for use by optimizing interpreters, JIT
compilers, or debuggers.
(Contributed by Carl Meyer in gh-91052 [https://github.com/python/cpython/issues/91052].)

	Added PyType_AddWatcher() and PyType_Watch() API to register
callbacks to receive notification on changes to a type.
(Contributed by Carl Meyer in gh-91051 [https://github.com/python/cpython/issues/91051].)

	Added PyCode_AddWatcher() and PyCode_ClearWatcher()
APIs to register callbacks to receive notification on creation and
destruction of code objects.
(Contributed by Itamar Ostricher in gh-91054 [https://github.com/python/cpython/issues/91054].)

	Add PyFrame_GetVar() and PyFrame_GetVarString() functions to
get a frame variable by its name.
(Contributed by Victor Stinner in gh-91248 [https://github.com/python/cpython/issues/91248].)

	Add PyErr_GetRaisedException() and PyErr_SetRaisedException()
for saving and restoring the current exception.
These functions return and accept a single exception object,
rather than the triple arguments of the now-deprecated
PyErr_Fetch() and PyErr_Restore().
This is less error prone and a bit more efficient.
(Contributed by Mark Shannon in gh-101578 [https://github.com/python/cpython/issues/101578].)

	Add _PyErr_ChainExceptions1, which takes an exception instance,
to replace the legacy-API _PyErr_ChainExceptions, which is now
deprecated. (Contributed by Mark Shannon in gh-101578 [https://github.com/python/cpython/issues/101578].)

	Add PyException_GetArgs() and PyException_SetArgs()
as convenience functions for retrieving and modifying
the args passed to the exception’s constructor.
(Contributed by Mark Shannon in gh-101578 [https://github.com/python/cpython/issues/101578].)

	Add PyErr_DisplayException(), which takes an exception instance,
to replace the legacy-api PyErr_Display(). (Contributed by
Irit Katriel in gh-102755 [https://github.com/python/cpython/issues/102755]).

	PEP 683 [https://peps.python.org/pep-0683/]: Introduced Immortal Objects to Python which allows objects
to bypass reference counts and introduced changes to the C-API:

	
	_Py_IMMORTAL_REFCNT: The reference count that defines an object
	as immortal.

	_Py_IsImmortal Checks if an object has the immortal reference count.

	
	PyObject_HEAD_INIT This will now initialize reference count to
	_Py_IMMORTAL_REFCNT when used with Py_BUILD_CORE.

	
	SSTATE_INTERNED_IMMORTAL An identifier for interned unicode objects
	that are immortal.

	
	SSTATE_INTERNED_IMMORTAL_STATIC An identifier for interned unicode
	objects that are immortal and static

	
	sys.getunicodeinternedsize This returns the total number of unicode
	objects that have been interned. This is now needed for refleak.py to
correctly track reference counts and allocated blocks

(Contributed by Eddie Elizondo in gh-84436 [https://github.com/python/cpython/issues/84436].)

Porting to Python 3.12

	Legacy Unicode APIs based on Py_UNICODE* representation has been removed.
Please migrate to APIs based on UTF-8 or wchar_t*.

	Argument parsing functions like PyArg_ParseTuple() doesn’t support
Py_UNICODE* based format (e.g. u, Z) anymore. Please migrate
to other formats for Unicode like s, z, es, and U.

	tp_weaklist for all static builtin types is always NULL.
This is an internal-only field on PyTypeObject
but we’re pointing out the change in case someone happens to be
accessing the field directly anyway. To avoid breakage, consider
using the existing public C-API instead, or, if necessary, the
(internal-only) _PyObject_GET_WEAKREFS_LISTPTR() macro.

	This internal-only PyTypeObject.tp_subclasses may now not be
a valid object pointer. Its type was changed to void* to
reflect this. We mention this in case someone happens to be accessing the
internal-only field directly.

To get a list of subclasses, call the Python method
__subclasses__() (using PyObject_CallMethod(),
for example).

	Add support of more formatting options (left aligning, octals, uppercase
hexadecimals, intmax_t, ptrdiff_t, wchar_t C
strings, variable width and precision) in PyUnicode_FromFormat() and
PyUnicode_FromFormatV().
(Contributed by Serhiy Storchaka in gh-98836 [https://github.com/python/cpython/issues/98836].)

	An unrecognized format character in PyUnicode_FromFormat() and
PyUnicode_FromFormatV() now sets a SystemError.
In previous versions it caused all the rest of the format string to be
copied as-is to the result string, and any extra arguments discarded.
(Contributed by Serhiy Storchaka in gh-95781 [https://github.com/python/cpython/issues/95781].)

	Fixed wrong sign placement in PyUnicode_FromFormat() and
PyUnicode_FromFormatV().
(Contributed by Philip Georgi in gh-95504 [https://github.com/python/cpython/issues/95504].)

	Extension classes wanting to add a __dict__ or weak reference slot
should use Py_TPFLAGS_MANAGED_DICT and
Py_TPFLAGS_MANAGED_WEAKREF instead of tp_dictoffset and
tp_weaklistoffset, respectively.
The use of tp_dictoffset and tp_weaklistoffset is still
supported, but does not fully support multiple inheritance
(gh-95589 [https://github.com/python/cpython/issues/95589]), and performance may be worse.
Classes declaring Py_TPFLAGS_MANAGED_DICT should call
_PyObject_VisitManagedDict() and _PyObject_ClearManagedDict()
to traverse and clear their instance’s dictionaries.
To clear weakrefs, call PyObject_ClearWeakRefs(), as before.

	The PyUnicode_FSDecoder() function no longer accepts bytes-like
paths, like bytearray and memoryview types: only the exact
bytes type is accepted for bytes strings.
(Contributed by Victor Stinner in gh-98393 [https://github.com/python/cpython/issues/98393].)

	The Py_CLEAR, Py_SETREF and Py_XSETREF
macros now only evaluate their arguments once. If an argument has side
effects, these side effects are no longer duplicated.
(Contributed by Victor Stinner in gh-98724 [https://github.com/python/cpython/issues/98724].)

	The interpreter’s error indicator is now always normalized. This means
that PyErr_SetObject(), PyErr_SetString() and the other
functions that set the error indicator now normalize the exception
before storing it. (Contributed by Mark Shannon in gh-101578 [https://github.com/python/cpython/issues/101578].)

	_Py_RefTotal is no longer authoritative and only kept around
for ABI compatibility. Note that it is an internal global and only
available on debug builds. If you happen to be using it then you’ll
need to start using _Py_GetGlobalRefTotal().

	The following functions now select an appropriate metaclass for the newly
created type:

	PyType_FromSpec()

	PyType_FromSpecWithBases()

	PyType_FromModuleAndSpec()

Creating classes whose metaclass overrides tp_new
is deprecated, and in Python 3.14+ it will be disallowed.
Note that these functions ignore tp_new of the metaclass, possibly
allowing incomplete initialization.

Note that PyType_FromMetaclass() (added in Python 3.12)
already disallows creating classes whose metaclass overrides tp_new.

	PyOS_InputHook and PyOS_ReadlineFunctionPointer are no
longer called in subinterpreters. This is
because clients generally rely on process-wide global state (since these
callbacks have no way of recovering extension module state).

This also avoids situations where extensions may find themselves running in a
subinterpreter that they don’t support (or haven’t yet been loaded in). See
gh-104668 [https://github.com/python/cpython/issues/104668] for more info.

Deprecated

	Deprecate global configuration variable:

	Py_DebugFlag: use PyConfig.parser_debug

	Py_VerboseFlag: use PyConfig.verbose

	Py_QuietFlag: use PyConfig.quiet

	Py_InteractiveFlag: use PyConfig.interactive

	Py_InspectFlag: use PyConfig.inspect

	Py_OptimizeFlag: use PyConfig.optimization_level

	Py_NoSiteFlag: use PyConfig.site_import

	Py_BytesWarningFlag: use PyConfig.bytes_warning

	Py_FrozenFlag: use PyConfig.pathconfig_warnings

	Py_IgnoreEnvironmentFlag: use PyConfig.use_environment

	Py_DontWriteBytecodeFlag: use PyConfig.write_bytecode

	Py_NoUserSiteDirectory: use PyConfig.user_site_directory

	Py_UnbufferedStdioFlag: use PyConfig.buffered_stdio

	Py_HashRandomizationFlag: use PyConfig.use_hash_seed
and PyConfig.hash_seed

	Py_IsolatedFlag: use PyConfig.isolated

	Py_LegacyWindowsFSEncodingFlag: use PyPreConfig.legacy_windows_fs_encoding

	Py_LegacyWindowsStdioFlag: use PyConfig.legacy_windows_stdio

	Py_FileSystemDefaultEncoding: use PyConfig.filesystem_encoding

	Py_FileSystemDefaultEncodeErrors: use PyConfig.filesystem_errors

	Py_UTF8Mode: use PyPreConfig.utf8_mode (see Py_PreInitialize())

The Py_InitializeFromConfig() API should be used with
PyConfig instead.
(Contributed by Victor Stinner in gh-77782 [https://github.com/python/cpython/issues/77782].)

	Creating immutable types (Py_TPFLAGS_IMMUTABLETYPE) with mutable
bases is deprecated and will be disabled in Python 3.14.

	The structmember.h header is deprecated, though it continues to be
available and there are no plans to remove it.

Its contents are now available just by including Python.h,
with a Py prefix added if it was missing:

	PyMemberDef, PyMember_GetOne() and
PyMember_SetOne()

	Type macros like Py_T_INT, Py_T_DOUBLE, etc.
(previously T_INT, T_DOUBLE, etc.)

	The flags Py_READONLY (previously READONLY) and
Py_AUDIT_READ (previously all uppercase)

Several items are not exposed from Python.h:

	T_OBJECT (use Py_T_OBJECT_EX)

	T_NONE (previously undocumented, and pretty quirky)

	The macro WRITE_RESTRICTED which does nothing.

	The macros RESTRICTED and READ_RESTRICTED, equivalents of
Py_AUDIT_READ.

	In some configurations, <stddef.h> is not included from Python.h.
It should be included manually when using offsetof().

The deprecated header continues to provide its original
contents under the original names.
Your old code can stay unchanged, unless the extra include and non-namespaced
macros bother you greatly.

(Contributed in gh-47146 [https://github.com/python/cpython/issues/47146] by Petr Viktorin, based on
earlier work by Alexander Belopolsky and Matthias Braun.)

	PyErr_Fetch() and PyErr_Restore() are deprecated.
Use PyErr_GetRaisedException() and
PyErr_SetRaisedException() instead.
(Contributed by Mark Shannon in gh-101578 [https://github.com/python/cpython/issues/101578].)

	PyErr_Display() is deprecated. Use PyErr_DisplayException()
instead. (Contributed by Irit Katriel in gh-102755 [https://github.com/python/cpython/issues/102755]).

	_PyErr_ChainExceptions is deprecated. Use _PyErr_ChainExceptions1
instead. (Contributed by Irit Katriel in gh-102192 [https://github.com/python/cpython/issues/102192].)

	Using PyType_FromSpec(), PyType_FromSpecWithBases()
or PyType_FromModuleAndSpec() to create a class whose metaclass
overrides tp_new is deprecated.
Call the metaclass instead.

Removed

	Remove the token.h header file. There was never any public tokenizer C
API. The token.h header file was only designed to be used by Python
internals.
(Contributed by Victor Stinner in gh-92651 [https://github.com/python/cpython/issues/92651].)

	Legacy Unicode APIs have been removed. See PEP 623 [https://peps.python.org/pep-0623/] for detail.

	PyUnicode_WCHAR_KIND

	PyUnicode_AS_UNICODE()

	PyUnicode_AsUnicode()

	PyUnicode_AsUnicodeAndSize()

	PyUnicode_AS_DATA()

	PyUnicode_FromUnicode()

	PyUnicode_GET_SIZE()

	PyUnicode_GetSize()

	PyUnicode_GET_DATA_SIZE()

	Remove the PyUnicode_InternImmortal() function macro.
(Contributed by Victor Stinner in gh-85858 [https://github.com/python/cpython/issues/85858].)

	Remove Jython compatibility hacks from several stdlib modules and tests.
(Contributed by Nikita Sobolev in gh-99482 [https://github.com/python/cpython/issues/99482].)

	Remove _use_broken_old_ctypes_structure_semantics_ flag
from ctypes module.
(Contributed by Nikita Sobolev in gh-99285 [https://github.com/python/cpython/issues/99285].)

What’s New In Python 3.11

	Editor

	Pablo Galindo Salgado

This article explains the new features in Python 3.11, compared to 3.10.

For full details, see the changelog.

Summary – Release highlights

	Python 3.11 is between 10-60% faster than Python 3.10.
On average, we measured a 1.25x speedup on the standard benchmark suite.
See Faster CPython for details.

New syntax features:

	PEP 654: Exception Groups and except*

New built-in features:

	PEP 678: Exceptions can be enriched with notes

New standard library modules:

	PEP 680 [https://peps.python.org/pep-0680/]: tomllib —
Support for parsing TOML [https://toml.io/] in the Standard Library

Interpreter improvements:

	PEP 657: Fine-grained error locations in tracebacks

	New -P command line option and PYTHONSAFEPATH environment
variable to disable automatically prepending potentially unsafe paths to sys.path

New typing features:

	PEP 646: Variadic generics

	PEP 655: Marking individual TypedDict items as required or not-required

	PEP 673: Self type

	PEP 675: Arbitrary literal string type

	PEP 681: Data class transforms

Important deprecations, removals and restrictions:

	PEP 594 [https://peps.python.org/pep-0594/]:
Many legacy standard library modules have been deprecated and will be removed in Python 3.13

	PEP 624 [https://peps.python.org/pep-0624/]:
Py_UNICODE encoder APIs have been removed

	PEP 670 [https://peps.python.org/pep-0670/]:
Macros converted to static inline functions

New Features

PEP 657: Fine-grained error locations in tracebacks

When printing tracebacks, the interpreter will now point to the exact expression
that caused the error, instead of just the line. For example:

Traceback (most recent call last):
 File "distance.py", line 11, in <module>
 print(manhattan_distance(p1, p2))
 ^^^^^^^^^^^^^^^^^^^^^^^^^^
 File "distance.py", line 6, in manhattan_distance
 return abs(point_1.x - point_2.x) + abs(point_1.y - point_2.y)
 ^^^^^^^^^
AttributeError: 'NoneType' object has no attribute 'x'

Previous versions of the interpreter would point to just the line, making it
ambiguous which object was None. These enhanced errors can also be helpful
when dealing with deeply nested dict objects and multiple function calls:

Traceback (most recent call last):
 File "query.py", line 37, in <module>
 magic_arithmetic('foo')
 File "query.py", line 18, in magic_arithmetic
 return add_counts(x) / 25
 ^^^^^^^^^^^^^
 File "query.py", line 24, in add_counts
 return 25 + query_user(user1) + query_user(user2)
 ^^^^^^^^^^^^^^^^^
 File "query.py", line 32, in query_user
 return 1 + query_count(db, response['a']['b']['c']['user'], retry=True)
                               ~~~~~~~~~~~~~~~~~~^^^^^
TypeError: 'NoneType' object is not subscriptable





As well as complex arithmetic expressions:

Traceback (most recent call last):
  File "calculation.py", line 54, in <module>
    result = (x / y / z) * (a / b / c)
              ~~~~~~^~~
ZeroDivisionError: division by zero

Additionally, the information used by the enhanced traceback feature
is made available via a general API, that can be used to correlate
bytecode instructions with source code location.
This information can be retrieved using:

	The codeobject.co_positions() method in Python.

	The PyCode_Addr2Location() function in the C API.

See PEP 657 [https://peps.python.org/pep-0657/] for more details. (Contributed by Pablo Galindo, Batuhan Taskaya
and Ammar Askar in bpo-43950 [https://bugs.python.org/issue?@action=redirect&bpo=43950].)

Note

This feature requires storing column positions in Code Objects,
which may result in a small increase in interpreter memory usage
and disk usage for compiled Python files.
To avoid storing the extra information
and deactivate printing the extra traceback information,
use the -X no_debug_ranges command line option
or the PYTHONNODEBUGRANGES environment variable.

PEP 654: Exception Groups and except*

PEP 654 [https://peps.python.org/pep-0654/] introduces language features that enable a program
to raise and handle multiple unrelated exceptions simultaneously.
The builtin types ExceptionGroup and BaseExceptionGroup
make it possible to group exceptions and raise them together,
and the new except* syntax generalizes
except to match subgroups of exception groups.

See PEP 654 [https://peps.python.org/pep-0654/] for more details.

(Contributed by Irit Katriel in bpo-45292 [https://bugs.python.org/issue?@action=redirect&bpo=45292]. PEP written by
Irit Katriel, Yury Selivanov and Guido van Rossum.)

PEP 678: Exceptions can be enriched with notes

The add_note() method is added to BaseException.
It can be used to enrich exceptions with context information
that is not available at the time when the exception is raised.
The added notes appear in the default traceback.

See PEP 678 [https://peps.python.org/pep-0678/] for more details.

(Contributed by Irit Katriel in bpo-45607 [https://bugs.python.org/issue?@action=redirect&bpo=45607].
PEP written by Zac Hatfield-Dodds.)

Windows py.exe launcher improvements

The copy of the Python Launcher for Windows included with Python 3.11 has been significantly
updated. It now supports company/tag syntax as defined in PEP 514 [https://peps.python.org/pep-0514/] using the
-V:<company>/<tag> argument instead of the limited -<major>.<minor>.
This allows launching distributions other than PythonCore,
the one hosted on python.org [https://www.python.org].

When using -V: selectors, either company or tag can be omitted, but all
installs will be searched. For example, -V:OtherPython/ will select the
“best” tag registered for OtherPython, while -V:3.11 or -V:/3.11
will select the “best” distribution with tag 3.11.

When using the legacy -<major>, -<major>.<minor>,
-<major>-<bitness> or -<major>.<minor>-<bitness> arguments,
all existing behaviour should be preserved from past versions,
and only releases from PythonCore will be selected.
However, the -64 suffix now implies “not 32-bit” (not necessarily x86-64),
as there are multiple supported 64-bit platforms.
32-bit runtimes are detected by checking the runtime’s tag for a -32 suffix.
All releases of Python since 3.5 have included this in their 32-bit builds.

New Features Related to Type Hints

This section covers major changes affecting PEP 484 [https://peps.python.org/pep-0484/] type hints and
the typing module.

PEP 646: Variadic generics

PEP 484 [https://peps.python.org/pep-0484/] previously introduced TypeVar, enabling creation
of generics parameterised with a single type. PEP 646 [https://peps.python.org/pep-0646/] adds
TypeVarTuple, enabling parameterisation
with an arbitrary number of types. In other words,
a TypeVarTuple is a variadic type variable,
enabling variadic generics.

This enables a wide variety of use cases.
In particular, it allows the type of array-like structures
in numerical computing libraries such as NumPy and TensorFlow to be
parameterised with the array shape. Static type checkers will now
be able to catch shape-related bugs in code that uses these libraries.

See PEP 646 [https://peps.python.org/pep-0646/] for more details.

(Contributed by Matthew Rahtz in bpo-43224 [https://bugs.python.org/issue?@action=redirect&bpo=43224], with contributions by
Serhiy Storchaka and Jelle Zijlstra. PEP written by Mark Mendoza, Matthew
Rahtz, Pradeep Kumar Srinivasan, and Vincent Siles.)

PEP 655: Marking individual TypedDict items as required or not-required

Required and NotRequired provide a
straightforward way to mark whether individual items in a
TypedDict must be present. Previously, this was only possible
using inheritance.

All fields are still required by default,
unless the total parameter is set to False,
in which case all fields are still not-required by default.
For example, the following specifies a TypedDict
with one required and one not-required key:

class Movie(TypedDict):
 title: str
 year: NotRequired[int]

m1: Movie = {"title": "Black Panther", "year": 2018} # OK
m2: Movie = {"title": "Star Wars"} # OK (year is not required)
m3: Movie = {"year": 2022} # ERROR (missing required field title)

The following definition is equivalent:

class Movie(TypedDict, total=False):
 title: Required[str]
 year: int

See PEP 655 [https://peps.python.org/pep-0655/] for more details.

(Contributed by David Foster and Jelle Zijlstra in bpo-47087 [https://bugs.python.org/issue?@action=redirect&bpo=47087]. PEP
written by David Foster.)

PEP 673: Self type

The new Self annotation provides a simple and intuitive
way to annotate methods that return an instance of their class. This
behaves the same as the TypeVar-based approach
specified in PEP 484 [https://peps.python.org/pep-0484/#annotating-instance-and-class-methods],
but is more concise and easier to follow.

Common use cases include alternative constructors provided as
classmethods,
and __enter__() methods that return self:

class MyLock:
 def __enter__(self) -> Self:
 self.lock()
 return self

 ...

class MyInt:
 @classmethod
 def fromhex(cls, s: str) -> Self:
 return cls(int(s, 16))

 ...

Self can also be used to annotate method parameters
or attributes of the same type as their enclosing class.

See PEP 673 [https://peps.python.org/pep-0673/] for more details.

(Contributed by James Hilton-Balfe in bpo-46534 [https://bugs.python.org/issue?@action=redirect&bpo=46534]. PEP written by
Pradeep Kumar Srinivasan and James Hilton-Balfe.)

PEP 675: Arbitrary literal string type

The new LiteralString annotation may be used to indicate
that a function parameter can be of any literal string type. This allows
a function to accept arbitrary literal string types, as well as strings
created from other literal strings. Type checkers can then
enforce that sensitive functions, such as those that execute SQL
statements or shell commands, are called only with static arguments,
providing protection against injection attacks.

For example, a SQL query function could be annotated as follows:

def run_query(sql: LiteralString) -> ...
 ...

def caller(
 arbitrary_string: str,
 query_string: LiteralString,
 table_name: LiteralString,
) -> None:
 run_query("SELECT * FROM students") # ok
 run_query(query_string) # ok
 run_query("SELECT * FROM " + table_name) # ok
 run_query(arbitrary_string) # type checker error
 run_query(# type checker error
 f"SELECT * FROM students WHERE name = {arbitrary_string}"
)

See PEP 675 [https://peps.python.org/pep-0675/] for more details.

(Contributed by Jelle Zijlstra in bpo-47088 [https://bugs.python.org/issue?@action=redirect&bpo=47088]. PEP written by Pradeep
Kumar Srinivasan and Graham Bleaney.)

PEP 681: Data class transforms

dataclass_transform may be used to
decorate a class, metaclass, or a function that is itself a decorator.
The presence of @dataclass_transform() tells a static type checker that the
decorated object performs runtime “magic” that transforms a class,
giving it dataclass-like behaviors.

For example:

The create_model decorator is defined by a library.
@typing.dataclass_transform()
def create_model(cls: Type[T]) -> Type[T]:
 cls.__init__ = ...
 cls.__eq__ = ...
 cls.__ne__ = ...
 return cls

The create_model decorator can now be used to create new model classes:
@create_model
class CustomerModel:
 id: int
 name: str

c = CustomerModel(id=327, name="Eric Idle")

See PEP 681 [https://peps.python.org/pep-0681/] for more details.

(Contributed by Jelle Zijlstra in gh-91860 [https://github.com/python/cpython/issues/91860]. PEP written by
Erik De Bonte and Eric Traut.)

PEP 563 may not be the future

PEP 563 [https://peps.python.org/pep-0563/] Postponed Evaluation of Annotations
(the from __future__ import annotations future statement)
that was originally planned for release in Python 3.10
has been put on hold indefinitely.
See this message from the Steering Council [https://mail.python.org/archives/list/python-dev@python.org/message/VIZEBX5EYMSYIJNDBF6DMUMZOCWHARSO/]
for more information.

Other Language Changes

	Starred unpacking expressions can now be used in for statements.
(See bpo-46725 [https://bugs.python.org/issue?@action=redirect&bpo=46725] for more details.)

	Asynchronous comprehensions are now allowed
inside comprehensions in asynchronous functions.
Outer comprehensions implicitly become asynchronous in this case.
(Contributed by Serhiy Storchaka in bpo-33346 [https://bugs.python.org/issue?@action=redirect&bpo=33346].)

	A TypeError is now raised instead of an AttributeError in
with statements and contextlib.ExitStack.enter_context()
for objects that do not support the context manager protocol,
and in async with statements and
contextlib.AsyncExitStack.enter_async_context()
for objects not supporting the asynchronous context manager protocol.
(Contributed by Serhiy Storchaka in bpo-12022 [https://bugs.python.org/issue?@action=redirect&bpo=12022] and bpo-44471 [https://bugs.python.org/issue?@action=redirect&bpo=44471].)

	Added object.__getstate__(), which provides the default
implementation of the __getstate__() method. copying
and pickleing instances of subclasses of builtin types
bytearray, set, frozenset,
collections.OrderedDict, collections.deque,
weakref.WeakSet, and datetime.tzinfo now copies and
pickles instance attributes implemented as slots.
(Contributed by Serhiy Storchaka in bpo-26579 [https://bugs.python.org/issue?@action=redirect&bpo=26579].)

	Added a -P command line option
and a PYTHONSAFEPATH environment variable,
which disable the automatic prepending to sys.path
of the script’s directory when running a script,
or the current directory when using -c and -m.
This ensures only stdlib and installed modules
are picked up by import,
and avoids unintentionally or maliciously shadowing modules
with those in a local (and typically user-writable) directory.
(Contributed by Victor Stinner in gh-57684 [https://github.com/python/cpython/issues/57684].)

	A "z" option was added to the Format Specification Mini-Language that
coerces negative to positive zero after rounding to the format precision.
See PEP 682 [https://peps.python.org/pep-0682/] for more details.
(Contributed by John Belmonte in gh-90153 [https://github.com/python/cpython/issues/90153].)

	Bytes are no longer accepted on sys.path. Support broke sometime
between Python 3.2 and 3.6, with no one noticing until after Python 3.10.0
was released. In addition, bringing back support would be problematic due to
interactions between -b and sys.path_importer_cache when
there is a mixture of str and bytes keys.
(Contributed by Thomas Grainger in gh-91181 [https://github.com/python/cpython/issues/91181].)

Other CPython Implementation Changes

	The special methods __complex__() for complex
and __bytes__() for bytes are implemented to support
the typing.SupportsComplex and typing.SupportsBytes protocols.
(Contributed by Mark Dickinson and Dong-hee Na in bpo-24234 [https://bugs.python.org/issue?@action=redirect&bpo=24234].)

	siphash13 is added as a new internal hashing algorithm.
It has similar security properties as siphash24,
but it is slightly faster for long inputs.
str, bytes, and some other types
now use it as the default algorithm for hash().
PEP 552 [https://peps.python.org/pep-0552/] hash-based .pyc files
now use siphash13 too.
(Contributed by Inada Naoki in bpo-29410 [https://bugs.python.org/issue?@action=redirect&bpo=29410].)

	When an active exception is re-raised by a raise statement with no parameters,
the traceback attached to this exception is now always sys.exc_info()[1].__traceback__.
This means that changes made to the traceback in the current except clause are
reflected in the re-raised exception.
(Contributed by Irit Katriel in bpo-45711 [https://bugs.python.org/issue?@action=redirect&bpo=45711].)

	The interpreter state’s representation of handled exceptions
(aka exc_info or _PyErr_StackItem)
now only has the exc_value field; exc_type and exc_traceback
have been removed, as they can be derived from exc_value.
(Contributed by Irit Katriel in bpo-45711 [https://bugs.python.org/issue?@action=redirect&bpo=45711].)

	A new command line option, AppendPath,
has been added for the Windows installer.
It behaves similarly to PrependPath,
but appends the install and scripts directories instead of prepending them.
(Contributed by Bastian Neuburger in bpo-44934 [https://bugs.python.org/issue?@action=redirect&bpo=44934].)

	The PyConfig.module_search_paths_set field must now be set to 1 for
initialization to use PyConfig.module_search_paths to initialize
sys.path. Otherwise, initialization will recalculate the path and replace
any values added to module_search_paths.

	The output of the --help option now fits in 50 lines/80 columns.
Information about Python environment variables
and -X options is now available using the respective
--help-env and --help-xoptions flags,
and with the new --help-all.
(Contributed by Éric Araujo in bpo-46142 [https://bugs.python.org/issue?@action=redirect&bpo=46142].)

	Converting between int and str in bases other than 2
(binary), 4, 8 (octal), 16 (hexadecimal), or 32 such as base 10 (decimal)
now raises a ValueError if the number of digits in string form is
above a limit to avoid potential denial of service attacks due to the
algorithmic complexity. This is a mitigation for CVE-2020-10735 [https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10735].
This limit can be configured or disabled by environment variable, command
line flag, or sys APIs. See the integer string conversion
length limitation documentation. The default limit
is 4300 digits in string form.

New Modules

	tomllib: For parsing TOML [https://toml.io/].
See PEP 680 [https://peps.python.org/pep-0680/] for more details.
(Contributed by Taneli Hukkinen in bpo-40059 [https://bugs.python.org/issue?@action=redirect&bpo=40059].)

	wsgiref.types:
WSGI [https://peps.python.org/pep-3333/]-specific types for static type checking.
(Contributed by Sebastian Rittau in bpo-42012 [https://bugs.python.org/issue?@action=redirect&bpo=42012].)

Improved Modules

asyncio

	Added the TaskGroup class,
an asynchronous context manager
holding a group of tasks that will wait for all of them upon exit.
For new code this is recommended over using
create_task() and gather() directly.
(Contributed by Yury Selivanov and others in gh-90908 [https://github.com/python/cpython/issues/90908].)

	Added timeout(), an asynchronous context manager for
setting a timeout on asynchronous operations. For new code this is
recommended over using wait_for() directly.
(Contributed by Andrew Svetlov in gh-90927 [https://github.com/python/cpython/issues/90927].)

	Added the Runner class, which exposes the machinery
used by run().
(Contributed by Andrew Svetlov in gh-91218 [https://github.com/python/cpython/issues/91218].)

	Added the Barrier class to the synchronization
primitives in the asyncio library, and the related
BrokenBarrierError exception.
(Contributed by Yves Duprat and Andrew Svetlov in gh-87518 [https://github.com/python/cpython/issues/87518].)

	Added keyword argument all_errors to asyncio.loop.create_connection()
so that multiple connection errors can be raised as an ExceptionGroup.

	Added the asyncio.StreamWriter.start_tls() method for
upgrading existing stream-based connections to TLS.
(Contributed by Ian Good in bpo-34975 [https://bugs.python.org/issue?@action=redirect&bpo=34975].)

	Added raw datagram socket functions to the event loop:
sock_sendto(),
sock_recvfrom() and
sock_recvfrom_into().
These have implementations in SelectorEventLoop and
ProactorEventLoop.
(Contributed by Alex Grönholm in bpo-46805 [https://bugs.python.org/issue?@action=redirect&bpo=46805].)

	Added cancelling() and
uncancel() methods to Task.
These are primarily intended for internal use,
notably by TaskGroup.

contextlib

	Added non parallel-safe chdir() context manager to change
the current working directory and then restore it on exit. Simple wrapper
around chdir(). (Contributed by Filipe Laíns in bpo-25625 [https://bugs.python.org/issue?@action=redirect&bpo=25625])

dataclasses

	Change field default mutability check, allowing only defaults which are
hashable instead of any object which is not an instance of
dict, list or set. (Contributed by Eric V. Smith in
bpo-44674 [https://bugs.python.org/issue?@action=redirect&bpo=44674].)

datetime

	Add datetime.UTC, a convenience alias for
datetime.timezone.utc. (Contributed by Kabir Kwatra in gh-91973 [https://github.com/python/cpython/issues/91973].)

	datetime.date.fromisoformat(), datetime.time.fromisoformat() and
datetime.datetime.fromisoformat() can now be used to parse most ISO 8601
formats (barring only those that support fractional hours and minutes).
(Contributed by Paul Ganssle in gh-80010 [https://github.com/python/cpython/issues/80010].)

enum

	Renamed EnumMeta to EnumType
(EnumMeta kept as an alias).

	Added StrEnum,
with members that can be used as (and must be) strings.

	Added ReprEnum,
which only modifies the __repr__() of members
while returning their literal values (rather than names)
for __str__() and __format__()
(used by str(), format() and f-strings).

	Changed Enum.__format__() (the default for
format(), str.format() and f-strings) to always produce
the same result as Enum.__str__(): for enums inheriting from
ReprEnum it will be the member’s value; for all other enums
it will be the enum and member name (e.g. Color.RED).

	Added a new boundary class parameter to Flag enums
and the FlagBoundary enum with its options,
to control how to handle out-of-range flag values.

	Added the verify() enum decorator
and the EnumCheck enum with its options,
to check enum classes against several specific constraints.

	Added the member() and nonmember() decorators,
to ensure the decorated object is/is not converted to an enum member.

	Added the property() decorator,
which works like property() except for enums.
Use this instead of types.DynamicClassAttribute().

	Added the global_enum() enum decorator,
which adjusts __repr__() and __str__()
to show values as members of their module rather than the enum class.
For example, 're.ASCII' for the ASCII member
of re.RegexFlag rather than 'RegexFlag.ASCII'.

	Enhanced Flag to support
len(), iteration and in/not in on its members.
For example, the following now works:
len(AFlag(3)) == 2 and list(AFlag(3)) == (AFlag.ONE, AFlag.TWO)

	Changed Enum and Flag
so that members are now defined
before __init_subclass__() is called;
dir() now includes methods, etc., from mixed-in data types.

	Changed Flag
to only consider primary values (power of two) canonical
while composite values (3, 6, 10, etc.) are considered aliases;
inverted flags are coerced to their positive equivalent.

fcntl

	On FreeBSD, the F_DUP2FD and F_DUP2FD_CLOEXEC flags respectively
are supported, the former equals to dup2 usage while the latter set
the FD_CLOEXEC flag in addition.

fractions

	Support PEP 515 [https://peps.python.org/pep-0515/]-style initialization of Fraction from
string. (Contributed by Sergey B Kirpichev in bpo-44258 [https://bugs.python.org/issue?@action=redirect&bpo=44258].)

	Fraction now implements an __int__ method, so
that an isinstance(some_fraction, typing.SupportsInt) check passes.
(Contributed by Mark Dickinson in bpo-44547 [https://bugs.python.org/issue?@action=redirect&bpo=44547].)

functools

	functools.singledispatch() now supports types.UnionType
and typing.Union as annotations to the dispatch argument.:

>>> from functools import singledispatch
>>> @singledispatch
... def fun(arg, verbose=False):
... if verbose:
... print("Let me just say,", end=" ")
... print(arg)
...
>>> @fun.register
... def _(arg: int | float, verbose=False):
... if verbose:
... print("Strength in numbers, eh?", end=" ")
... print(arg)
...
>>> from typing import Union
>>> @fun.register
... def _(arg: Union[list, set], verbose=False):
... if verbose:
... print("Enumerate this:")
... for i, elem in enumerate(arg):
... print(i, elem)
...

(Contributed by Yurii Karabas in bpo-46014 [https://bugs.python.org/issue?@action=redirect&bpo=46014].)

hashlib

	hashlib.blake2b() and hashlib.blake2s() now prefer libb2 [https://www.blake2.net/]
over Python’s vendored copy.
(Contributed by Christian Heimes in bpo-47095 [https://bugs.python.org/issue?@action=redirect&bpo=47095].)

	The internal _sha3 module with SHA3 and SHAKE algorithms now uses
tiny_sha3 instead of the Keccak Code Package to reduce code and binary
size. The hashlib module prefers optimized SHA3 and SHAKE
implementations from OpenSSL. The change affects only installations without
OpenSSL support.
(Contributed by Christian Heimes in bpo-47098 [https://bugs.python.org/issue?@action=redirect&bpo=47098].)

	Add hashlib.file_digest(), a helper function for efficient hashing
of files or file-like objects.
(Contributed by Christian Heimes in gh-89313 [https://github.com/python/cpython/issues/89313].)

IDLE and idlelib

	Apply syntax highlighting to .pyi files. (Contributed by Alex
Waygood and Terry Jan Reedy in bpo-45447 [https://bugs.python.org/issue?@action=redirect&bpo=45447].)

	Include prompts when saving Shell with inputs and outputs.
(Contributed by Terry Jan Reedy in gh-95191 [https://github.com/python/cpython/issues/95191].)

inspect

	Add getmembers_static() to return all members without
triggering dynamic lookup via the descriptor protocol. (Contributed by
Weipeng Hong in bpo-30533 [https://bugs.python.org/issue?@action=redirect&bpo=30533].)

	Add ismethodwrapper()
for checking if the type of an object is a MethodWrapperType.
(Contributed by Hakan Çelik in bpo-29418 [https://bugs.python.org/issue?@action=redirect&bpo=29418].)

	Change the frame-related functions in the inspect module to return new
FrameInfo and Traceback class instances
(backwards compatible with the previous named tuple-like interfaces)
that includes the extended PEP 657 [https://peps.python.org/pep-0657/] position information (end
line number, column and end column). The affected functions are:

	inspect.getframeinfo()

	inspect.getouterframes()

	inspect.getinnerframes(),

	inspect.stack()

	inspect.trace()

(Contributed by Pablo Galindo in gh-88116 [https://github.com/python/cpython/issues/88116].)

locale

	Add locale.getencoding() to get the current locale encoding. It is similar to
locale.getpreferredencoding(False) but ignores the
Python UTF-8 Mode.

logging

	Added getLevelNamesMapping()
to return a mapping from logging level names (e.g. 'CRITICAL')
to the values of their corresponding Logging Levels (e.g. 50, by default).
(Contributed by Andrei Kulakovin in gh-88024 [https://github.com/python/cpython/issues/88024].)

	Added a createSocket() method
to SysLogHandler, to match
SocketHandler.createSocket().
It is called automatically during handler initialization
and when emitting an event, if there is no active socket.
(Contributed by Kirill Pinchuk in gh-88457 [https://github.com/python/cpython/issues/88457].)

math

	Add math.exp2(): return 2 raised to the power of x.
(Contributed by Gideon Mitchell in bpo-45917 [https://bugs.python.org/issue?@action=redirect&bpo=45917].)

	Add math.cbrt(): return the cube root of x.
(Contributed by Ajith Ramachandran in bpo-44357 [https://bugs.python.org/issue?@action=redirect&bpo=44357].)

	The behaviour of two math.pow() corner cases was changed, for
consistency with the IEEE 754 specification. The operations
math.pow(0.0, -math.inf) and math.pow(-0.0, -math.inf) now return
inf. Previously they raised ValueError. (Contributed by Mark
Dickinson in bpo-44339 [https://bugs.python.org/issue?@action=redirect&bpo=44339].)

	The math.nan value is now always available.
(Contributed by Victor Stinner in bpo-46917 [https://bugs.python.org/issue?@action=redirect&bpo=46917].)

operator

	A new function operator.call has been added, such that
operator.call(obj, *args, **kwargs) == obj(*args, **kwargs).
(Contributed by Antony Lee in bpo-44019 [https://bugs.python.org/issue?@action=redirect&bpo=44019].)

os

	On Windows, os.urandom() now uses BCryptGenRandom(),
instead of CryptGenRandom() which is deprecated.
(Contributed by Dong-hee Na in bpo-44611 [https://bugs.python.org/issue?@action=redirect&bpo=44611].)

pathlib

	glob() and rglob() return only
directories if pattern ends with a pathname components separator:
sep or altsep.
(Contributed by Eisuke Kawasima in bpo-22276 [https://bugs.python.org/issue?@action=redirect&bpo=22276] and bpo-33392 [https://bugs.python.org/issue?@action=redirect&bpo=33392].)

re

	Atomic grouping ((?>...)) and possessive quantifiers (*+, ++,
?+, {m,n}+) are now supported in regular expressions.
(Contributed by Jeffrey C. Jacobs and Serhiy Storchaka in bpo-433030 [https://bugs.python.org/issue?@action=redirect&bpo=433030].)

shutil

	Add optional parameter dir_fd in shutil.rmtree().
(Contributed by Serhiy Storchaka in bpo-46245 [https://bugs.python.org/issue?@action=redirect&bpo=46245].)

socket

	Add CAN Socket support for NetBSD.
(Contributed by Thomas Klausner in bpo-30512 [https://bugs.python.org/issue?@action=redirect&bpo=30512].)

	create_connection() has an option to raise, in case of
failure to connect, an ExceptionGroup containing all errors
instead of only raising the last error.
(Contributed by Irit Katriel in bpo-29980 [https://bugs.python.org/issue?@action=redirect&bpo=29980].)

sqlite3

	You can now disable the authorizer by passing None to
set_authorizer().
(Contributed by Erlend E. Aasland in bpo-44491 [https://bugs.python.org/issue?@action=redirect&bpo=44491].)

	Collation name create_collation() can now
contain any Unicode character. Collation names with invalid characters
now raise UnicodeEncodeError instead of sqlite3.ProgrammingError.
(Contributed by Erlend E. Aasland in bpo-44688 [https://bugs.python.org/issue?@action=redirect&bpo=44688].)

	sqlite3 exceptions now include the SQLite extended error code as
sqlite_errorcode and the SQLite error name as
sqlite_errorname.
(Contributed by Aviv Palivoda, Daniel Shahaf, and Erlend E. Aasland in
bpo-16379 [https://bugs.python.org/issue?@action=redirect&bpo=16379] and bpo-24139 [https://bugs.python.org/issue?@action=redirect&bpo=24139].)

	Add setlimit() and
getlimit() to sqlite3.Connection for
setting and getting SQLite limits by connection basis.
(Contributed by Erlend E. Aasland in bpo-45243 [https://bugs.python.org/issue?@action=redirect&bpo=45243].)

	sqlite3 now sets sqlite3.threadsafety based on the default
threading mode the underlying SQLite library has been compiled with.
(Contributed by Erlend E. Aasland in bpo-45613 [https://bugs.python.org/issue?@action=redirect&bpo=45613].)

	sqlite3 C callbacks now use unraisable exceptions if callback
tracebacks are enabled. Users can now register an
unraisable hook handler to improve their debug
experience.
(Contributed by Erlend E. Aasland in bpo-45828 [https://bugs.python.org/issue?@action=redirect&bpo=45828].)

	Fetch across rollback no longer raises InterfaceError.
Instead we leave it to the SQLite library to handle these cases.
(Contributed by Erlend E. Aasland in bpo-44092 [https://bugs.python.org/issue?@action=redirect&bpo=44092].)

	Add serialize() and
deserialize() to sqlite3.Connection for
serializing and deserializing databases.
(Contributed by Erlend E. Aasland in bpo-41930 [https://bugs.python.org/issue?@action=redirect&bpo=41930].)

	Add create_window_function() to
sqlite3.Connection for creating aggregate window functions.
(Contributed by Erlend E. Aasland in bpo-34916 [https://bugs.python.org/issue?@action=redirect&bpo=34916].)

	Add blobopen() to sqlite3.Connection.
sqlite3.Blob allows incremental I/O operations on blobs.
(Contributed by Aviv Palivoda and Erlend E. Aasland in bpo-24905 [https://bugs.python.org/issue?@action=redirect&bpo=24905].)

string

	Add get_identifiers()
and is_valid() to string.Template,
which respectively return all valid placeholders,
and whether any invalid placeholders are present.
(Contributed by Ben Kehoe in gh-90465 [https://github.com/python/cpython/issues/90465].)

sys

	sys.exc_info() now derives the type and traceback fields
from the value (the exception instance), so when an exception is
modified while it is being handled, the changes are reflected in
the results of subsequent calls to exc_info().
(Contributed by Irit Katriel in bpo-45711 [https://bugs.python.org/issue?@action=redirect&bpo=45711].)

	Add sys.exception() which returns the active exception instance
(equivalent to sys.exc_info()[1]).
(Contributed by Irit Katriel in bpo-46328 [https://bugs.python.org/issue?@action=redirect&bpo=46328].)

	Add the sys.flags.safe_path flag.
(Contributed by Victor Stinner in gh-57684 [https://github.com/python/cpython/issues/57684].)

sysconfig

	Three new installation schemes
(posix_venv, nt_venv and venv) were added and are used when Python
creates new virtual environments or when it is running from a virtual
environment.
The first two schemes (posix_venv and nt_venv) are OS-specific
for non-Windows and Windows, the venv is essentially an alias to one of
them according to the OS Python runs on.
This is useful for downstream distributors who modify
sysconfig.get_preferred_scheme().
Third party code that creates new virtual environments should use the new
venv installation scheme to determine the paths, as does venv.
(Contributed by Miro Hrončok in bpo-45413 [https://bugs.python.org/issue?@action=redirect&bpo=45413].)

tempfile

	SpooledTemporaryFile objects now fully implement the methods
of io.BufferedIOBase or io.TextIOBase
(depending on file mode).
This lets them work correctly with APIs that expect file-like objects,
such as compression modules.
(Contributed by Carey Metcalfe in gh-70363 [https://github.com/python/cpython/issues/70363].)

threading

	On Unix, if the sem_clockwait() function is available in the C library
(glibc 2.30 and newer), the threading.Lock.acquire() method now uses
the monotonic clock (time.CLOCK_MONOTONIC) for the timeout, rather
than using the system clock (time.CLOCK_REALTIME), to not be affected
by system clock changes.
(Contributed by Victor Stinner in bpo-41710 [https://bugs.python.org/issue?@action=redirect&bpo=41710].)

time

	On Unix, time.sleep() now uses the clock_nanosleep() or
nanosleep() function, if available, which has a resolution of 1 nanosecond
(10-9 seconds), rather than using select() which has a resolution
of 1 microsecond (10-6 seconds).
(Contributed by Benjamin Szőke and Victor Stinner in bpo-21302 [https://bugs.python.org/issue?@action=redirect&bpo=21302].)

	On Windows 8.1 and newer, time.sleep() now uses a waitable timer based
on high-resolution timers [https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/high-resolution-timers]
which has a resolution of 100 nanoseconds (10-7 seconds). Previously,
it had a resolution of 1 millisecond (10-3 seconds).
(Contributed by Benjamin Szőke, Dong-hee Na, Eryk Sun and Victor Stinner in bpo-21302 [https://bugs.python.org/issue?@action=redirect&bpo=21302] and bpo-45429 [https://bugs.python.org/issue?@action=redirect&bpo=45429].)

tkinter

	Added method info_patchlevel() which returns the exact version of
the Tcl library as a named tuple similar to sys.version_info.
(Contributed by Serhiy Storchaka in gh-91827 [https://github.com/python/cpython/issues/91827].)

traceback

	Add traceback.StackSummary.format_frame_summary() to allow users
to override which frames appear in the traceback, and how they are
formatted.
(Contributed by Ammar Askar in bpo-44569 [https://bugs.python.org/issue?@action=redirect&bpo=44569].)

	Add traceback.TracebackException.print(), which prints the
formatted TracebackException instance to a file.
(Contributed by Irit Katriel in bpo-33809 [https://bugs.python.org/issue?@action=redirect&bpo=33809].)

typing

For major changes, see New Features Related to Type Hints.

	Add typing.assert_never() and typing.Never.
typing.assert_never() is useful for asking a type checker to confirm
that a line of code is not reachable. At runtime, it raises an
AssertionError.
(Contributed by Jelle Zijlstra in gh-90633 [https://github.com/python/cpython/issues/90633].)

	Add typing.reveal_type(). This is useful for asking a type checker
what type it has inferred for a given expression. At runtime it prints
the type of the received value.
(Contributed by Jelle Zijlstra in gh-90572 [https://github.com/python/cpython/issues/90572].)

	Add typing.assert_type(). This is useful for asking a type checker
to confirm that the type it has inferred for a given expression matches
the given type. At runtime it simply returns the received value.
(Contributed by Jelle Zijlstra in gh-90638 [https://github.com/python/cpython/issues/90638].)

	typing.TypedDict types can now be generic. (Contributed by
Samodya Abeysiriwardane in gh-89026 [https://github.com/python/cpython/issues/89026].)

	NamedTuple types can now be generic.
(Contributed by Serhiy Storchaka in bpo-43923 [https://bugs.python.org/issue?@action=redirect&bpo=43923].)

	Allow subclassing of typing.Any. This is useful for avoiding
type checker errors related to highly dynamic class, such as mocks.
(Contributed by Shantanu Jain in gh-91154 [https://github.com/python/cpython/issues/91154].)

	The typing.final() decorator now sets the __final__ attributed on
the decorated object.
(Contributed by Jelle Zijlstra in gh-90500 [https://github.com/python/cpython/issues/90500].)

	The typing.get_overloads() function can be used for introspecting
the overloads of a function. typing.clear_overloads() can be used
to clear all registered overloads of a function.
(Contributed by Jelle Zijlstra in gh-89263 [https://github.com/python/cpython/issues/89263].)

	The __init__() method of Protocol subclasses
is now preserved. (Contributed by Adrian Garcia Badarasco in gh-88970 [https://github.com/python/cpython/issues/88970].)

	The representation of empty tuple types (Tuple[()]) is simplified.
This affects introspection, e.g. get_args(Tuple[()]) now evaluates
to () instead of ((),).
(Contributed by Serhiy Storchaka in gh-91137 [https://github.com/python/cpython/issues/91137].)

	Loosen runtime requirements for type annotations by removing the callable
check in the private typing._type_check function. (Contributed by
Gregory Beauregard in gh-90802 [https://github.com/python/cpython/issues/90802].)

	typing.get_type_hints() now supports evaluating strings as forward
references in PEP 585 generic aliases.
(Contributed by Niklas Rosenstein in gh-85542 [https://github.com/python/cpython/issues/85542].)

	typing.get_type_hints() no longer adds Optional
to parameters with None as a default. (Contributed by Nikita Sobolev
in gh-90353 [https://github.com/python/cpython/issues/90353].)

	typing.get_type_hints() now supports evaluating bare stringified
ClassVar annotations. (Contributed by Gregory Beauregard
in gh-90711 [https://github.com/python/cpython/issues/90711].)

	typing.no_type_check() no longer modifies external classes and functions.
It also now correctly marks classmethods as not to be type checked. (Contributed
by Nikita Sobolev in gh-90729 [https://github.com/python/cpython/issues/90729].)

unicodedata

	The Unicode database has been updated to version 14.0.0.
(Contributed by Benjamin Peterson in bpo-45190 [https://bugs.python.org/issue?@action=redirect&bpo=45190]).

unittest

	Added methods enterContext() and
enterClassContext() of class
TestCase, method
enterAsyncContext() of
class IsolatedAsyncioTestCase and function
unittest.enterModuleContext().
(Contributed by Serhiy Storchaka in bpo-45046 [https://bugs.python.org/issue?@action=redirect&bpo=45046].)

venv

	When new Python virtual environments are created, the venv
sysconfig installation scheme is used
to determine the paths inside the environment.
When Python runs in a virtual environment, the same installation scheme
is the default.
That means that downstream distributors can change the default sysconfig install
scheme without changing behavior of virtual environments.
Third party code that also creates new virtual environments should do the same.
(Contributed by Miro Hrončok in bpo-45413 [https://bugs.python.org/issue?@action=redirect&bpo=45413].)

warnings

	warnings.catch_warnings() now accepts arguments for warnings.simplefilter(),
providing a more concise way to locally ignore warnings or convert them to errors.
(Contributed by Zac Hatfield-Dodds in bpo-47074 [https://bugs.python.org/issue?@action=redirect&bpo=47074].)

zipfile

	Added support for specifying member name encoding for reading metadata
in a ZipFile’s directory and file headers.
(Contributed by Stephen J. Turnbull and Serhiy Storchaka in bpo-28080 [https://bugs.python.org/issue?@action=redirect&bpo=28080].)

	Added ZipFile.mkdir()
for creating new directories inside ZIP archives.
(Contributed by Sam Ezeh in gh-49083 [https://github.com/python/cpython/issues/49083].)

	Added stem, suffix
and suffixes to zipfile.Path.
(Contributed by Miguel Brito in gh-88261 [https://github.com/python/cpython/issues/88261].)

Optimizations

This section covers specific optimizations independent of the
Faster CPython project, which is covered in its own section.

	The compiler now optimizes simple
printf-style % formatting on string literals
containing only the format codes %s, %r and %a and makes it as
fast as a corresponding f-string expression.
(Contributed by Serhiy Storchaka in bpo-28307 [https://bugs.python.org/issue?@action=redirect&bpo=28307].)

	Integer division (//) is better tuned for optimization by compilers.
It is now around 20% faster on x86-64 when dividing an int
by a value smaller than 2**30.
(Contributed by Gregory P. Smith and Tim Peters in gh-90564 [https://github.com/python/cpython/issues/90564].)

	sum() is now nearly 30% faster for integers smaller than 2**30.
(Contributed by Stefan Behnel in gh-68264 [https://github.com/python/cpython/issues/68264].)

	Resizing lists is streamlined for the common case,
speeding up list.append() by ≈15%
and simple list comprehensions by up to 20-30%
(Contributed by Dennis Sweeney in gh-91165 [https://github.com/python/cpython/issues/91165].)

	Dictionaries don’t store hash values when all keys are Unicode objects,
decreasing dict size.
For example, sys.getsizeof(dict.fromkeys("abcdefg"))
is reduced from 352 bytes to 272 bytes (23% smaller) on 64-bit platforms.
(Contributed by Inada Naoki in bpo-46845 [https://bugs.python.org/issue?@action=redirect&bpo=46845].)

	Using asyncio.DatagramProtocol is now orders of magnitude faster
when transferring large files over UDP,
with speeds over 100 times higher for a ≈60 MiB file.
(Contributed by msoxzw in gh-91487 [https://github.com/python/cpython/issues/91487].)

	math functions comb() and perm() are now
≈10 times faster for large arguments (with a larger speedup for larger k).
(Contributed by Serhiy Storchaka in bpo-37295 [https://bugs.python.org/issue?@action=redirect&bpo=37295].)

	The statistics functions mean(),
variance() and stdev() now consume
iterators in one pass rather than converting them to a list first.
This is twice as fast and can save substantial memory.
(Contributed by Raymond Hettinger in gh-90415 [https://github.com/python/cpython/issues/90415].)

	unicodedata.normalize()
now normalizes pure-ASCII strings in constant time.
(Contributed by Dong-hee Na in bpo-44987 [https://bugs.python.org/issue?@action=redirect&bpo=44987].)

Faster CPython

CPython 3.11 is an average of
25% faster [https://github.com/faster-cpython/ideas#published-results]
than CPython 3.10 as measured with the
pyperformance [https://github.com/python/pyperformance] benchmark suite,
when compiled with GCC on Ubuntu Linux.
Depending on your workload, the overall speedup could be 10-60%.

This project focuses on two major areas in Python:
Faster Startup and Faster Runtime.
Optimizations not covered by this project are listed separately under
Optimizations.

Faster Startup

Frozen imports / Static code objects

Python caches bytecode in the __pycache__
directory to speed up module loading.

Previously in 3.10, Python module execution looked like this:

Read __pycache__ -> Unmarshal -> Heap allocated code object -> Evaluate

In Python 3.11, the core modules essential for Python startup are “frozen”.
This means that their Code Objects (and bytecode)
are statically allocated by the interpreter.
This reduces the steps in module execution process to:

Statically allocated code object -> Evaluate

Interpreter startup is now 10-15% faster in Python 3.11. This has a big
impact for short-running programs using Python.

(Contributed by Eric Snow, Guido van Rossum and Kumar Aditya in many issues.)

Faster Runtime

Cheaper, lazy Python frames

Python frames, holding execution information,
are created whenever Python calls a Python function.
The following are new frame optimizations:

	Streamlined the frame creation process.

	Avoided memory allocation by generously re-using frame space on the C stack.

	Streamlined the internal frame struct to contain only essential information.
Frames previously held extra debugging and memory management information.

Old-style frame objects
are now created only when requested by debuggers
or by Python introspection functions such as sys._getframe() and
inspect.currentframe(). For most user code, no frame objects are
created at all. As a result, nearly all Python functions calls have sped
up significantly. We measured a 3-7% speedup in pyperformance.

(Contributed by Mark Shannon in bpo-44590 [https://bugs.python.org/issue?@action=redirect&bpo=44590].)

Inlined Python function calls

During a Python function call, Python will call an evaluating C function to
interpret that function’s code. This effectively limits pure Python recursion to
what’s safe for the C stack.

In 3.11, when CPython detects Python code calling another Python function,
it sets up a new frame, and “jumps” to the new code inside the new frame. This
avoids calling the C interpreting function altogether.

Most Python function calls now consume no C stack space, speeding them up.
In simple recursive functions like fibonacci or
factorial, we observed a 1.7x speedup. This also means recursive functions
can recurse significantly deeper
(if the user increases the recursion limit with sys.setrecursionlimit()).
We measured a 1-3% improvement in pyperformance.

(Contributed by Pablo Galindo and Mark Shannon in bpo-45256 [https://bugs.python.org/issue?@action=redirect&bpo=45256].)

PEP 659: Specializing Adaptive Interpreter

PEP 659 [https://peps.python.org/pep-0659/] is one of the key parts of the Faster CPython project. The general
idea is that while Python is a dynamic language, most code has regions where
objects and types rarely change. This concept is known as type stability.

At runtime, Python will try to look for common patterns and type stability
in the executing code. Python will then replace the current operation with a
more specialized one. This specialized operation uses fast paths available only
to those use cases/types, which generally outperform their generic
counterparts. This also brings in another concept called inline caching, where
Python caches the results of expensive operations directly in the
bytecode.

The specializer will also combine certain common instruction pairs into one
superinstruction, reducing the overhead during execution.

Python will only specialize
when it sees code that is “hot” (executed multiple times). This prevents Python
from wasting time on run-once code. Python can also de-specialize when code is
too dynamic or when the use changes. Specialization is attempted periodically,
and specialization attempts are not too expensive,
allowing specialization to adapt to new circumstances.

(PEP written by Mark Shannon, with ideas inspired by Stefan Brunthaler.
See PEP 659 [https://peps.python.org/pep-0659/] for more information. Implementation by Mark Shannon and Brandt
Bucher, with additional help from Irit Katriel and Dennis Sweeney.)

	Operation

	Form

	Specialization

	Operation speedup
(up to)

	Contributor(s)

	Binary
operations

	x + x

x - x

x * x

	Binary add, multiply and subtract for common types
such as int, float and str
take custom fast paths for their underlying types.

	10%

	Mark Shannon,
Dong-hee Na,
Brandt Bucher,
Dennis Sweeney

	Subscript

	a[i]

	Subscripting container types such as list,
tuple and dict directly index
the underlying data structures.

Subscripting custom __getitem__()
is also inlined similar to Inlined Python function calls.

	10-25%

	Irit Katriel,
Mark Shannon

	Store
subscript

	a[i] = z

	Similar to subscripting specialization above.

	10-25%

	Dennis Sweeney

	Calls

	f(arg)

C(arg)

	Calls to common builtin (C) functions and types such
as len() and str directly call their
underlying C version. This avoids going through the
internal calling convention.

	20%

	Mark Shannon,
Ken Jin

	Load
global
variable

	print

len

	The object’s index in the globals/builtins namespace
is cached. Loading globals and builtins require
zero namespace lookups.

	1

	Mark Shannon

	Load
attribute

	o.attr

	Similar to loading global variables. The attribute’s
index inside the class/object’s namespace is cached.
In most cases, attribute loading will require zero
namespace lookups.

	2

	Mark Shannon

	Load
methods for
call

	o.meth()

	The actual address of the method is cached. Method
loading now has no namespace lookups – even for
classes with long inheritance chains.

	10-20%

	Ken Jin,
Mark Shannon

	Store
attribute

	o.attr = z

	Similar to load attribute optimization.

	2%
in pyperformance

	Mark Shannon

	Unpack
Sequence

	*seq

	Specialized for common containers such as
list and tuple.
Avoids internal calling convention.

	8%

	Brandt Bucher

	1

	A similar optimization already existed since Python 3.8.
3.11 specializes for more forms and reduces some overhead.

	2

	A similar optimization already existed since Python 3.10.
3.11 specializes for more forms. Furthermore, all attribute loads should
be sped up by bpo-45947 [https://bugs.python.org/issue?@action=redirect&bpo=45947].

Misc

	Objects now require less memory due to lazily created object namespaces.
Their namespace dictionaries now also share keys more freely.
(Contributed Mark Shannon in bpo-45340 [https://bugs.python.org/issue?@action=redirect&bpo=45340] and bpo-40116 [https://bugs.python.org/issue?@action=redirect&bpo=40116].)

	“Zero-cost” exceptions are implemented, eliminating the cost
of try statements when no exception is raised.
(Contributed by Mark Shannon in bpo-40222 [https://bugs.python.org/issue?@action=redirect&bpo=40222].)

	A more concise representation of exceptions in the interpreter reduced the
time required for catching an exception by about 10%.
(Contributed by Irit Katriel in bpo-45711 [https://bugs.python.org/issue?@action=redirect&bpo=45711].)

	re’s regular expression matching engine has been partially refactored,
and now uses computed gotos (or “threaded code”) on supported platforms. As a
result, Python 3.11 executes the pyperformance regular expression benchmarks [https://pyperformance.readthedocs.io/benchmarks.html#regex-dna] up to 10%
faster than Python 3.10.
(Contributed by Brandt Bucher in gh-91404 [https://github.com/python/cpython/issues/91404].)

FAQ

How should I write my code to utilize these speedups?

Write Pythonic code that follows common best practices;
you don’t have to change your code.
The Faster CPython project optimizes for common code patterns we observe.

Will CPython 3.11 use more memory?

Maybe not; we don’t expect memory use to exceed 20% higher than 3.10.
This is offset by memory optimizations for frame objects and object
dictionaries as mentioned above.

I don’t see any speedups in my workload. Why?

Certain code won’t have noticeable benefits. If your code spends most of
its time on I/O operations, or already does most of its
computation in a C extension library like NumPy, there won’t be significant
speedups. This project currently benefits pure-Python workloads the most.

Furthermore, the pyperformance figures are a geometric mean. Even within the
pyperformance benchmarks, certain benchmarks have slowed down slightly, while
others have sped up by nearly 2x!

Is there a JIT compiler?

No. We’re still exploring other optimizations.

About

Faster CPython explores optimizations for CPython. The main team is
funded by Microsoft to work on this full-time. Pablo Galindo Salgado is also
funded by Bloomberg LP to work on the project part-time. Finally, many
contributors are volunteers from the community.

CPython bytecode changes

The bytecode now contains inline cache entries,
which take the form of the newly-added CACHE instructions.
Many opcodes expect to be followed by an exact number of caches,
and instruct the interpreter to skip over them at runtime.
Populated caches can look like arbitrary instructions,
so great care should be taken when reading or modifying
raw, adaptive bytecode containing quickened data.

New opcodes

	ASYNC_GEN_WRAP, RETURN_GENERATOR and SEND,
used in generators and co-routines.

	COPY_FREE_VARS,
which avoids needing special caller-side code for closures.

	JUMP_BACKWARD_NO_INTERRUPT,
for use in certain loops where handling interrupts is undesirable.

	MAKE_CELL, to create Cell Objects.

	CHECK_EG_MATCH and PREP_RERAISE_STAR,
to handle the new exception groups and except*
added in PEP 654 [https://peps.python.org/pep-0654/].

	PUSH_EXC_INFO, for use in exception handlers.

	RESUME, a no-op,
for internal tracing, debugging and optimization checks.

Replaced opcodes

	Replaced Opcode(s)

	New Opcode(s)

	Notes

	
BINARY_*

INPLACE_*

	BINARY_OP

	Replaced all numeric binary/in-place
opcodes with a single opcode

	
CALL_FUNCTION

CALL_FUNCTION_KW

CALL_METHOD

	
CALL

KW_NAMES

PRECALL

PUSH_NULL

	Decouples argument shifting for methods
from handling of keyword arguments;
allows better specialization of calls

	
DUP_TOP

DUP_TOP_TWO

ROT_TWO

ROT_THREE

ROT_FOUR

ROT_N

	
COPY

SWAP

	Stack manipulation instructions

	
JUMP_IF_NOT_EXC_MATCH

	
CHECK_EXC_MATCH

	Now performs check but doesn’t jump

	
JUMP_ABSOLUTE

POP_JUMP_IF_FALSE

POP_JUMP_IF_TRUE

	
JUMP_BACKWARD

POP_JUMP_BACKWARD_IF_*

POP_JUMP_FORWARD_IF_*

	See 3;
TRUE, FALSE,
NONE and NOT_NONE variants
for each direction

	
SETUP_WITH

SETUP_ASYNC_WITH

	BEFORE_WITH

	with block setup

	3

	All jump opcodes are now relative, including the
existing JUMP_IF_TRUE_OR_POP and JUMP_IF_FALSE_OR_POP.
The argument is now an offset from the current instruction
rather than an absolute location.

Changed/removed opcodes

	Changed MATCH_CLASS and MATCH_KEYS
to no longer push an additional boolean value to indicate success/failure.
Instead, None is pushed on failure
in place of the tuple of extracted values.

	Changed opcodes that work with exceptions to reflect them
now being represented as one item on the stack instead of three
(see gh-89874 [https://github.com/python/cpython/issues/89874]).

	Removed COPY_DICT_WITHOUT_KEYS, GEN_START,
POP_BLOCK, SETUP_FINALLY and YIELD_FROM.

Deprecated

This section lists Python APIs that have been deprecated in Python 3.11.

Deprecated C APIs are listed separately.

Language/Builtins

	Chaining classmethod descriptors (introduced in bpo-19072 [https://bugs.python.org/issue?@action=redirect&bpo=19072])
is now deprecated. It can no longer be used to wrap other descriptors
such as property. The core design of this feature was flawed
and caused a number of downstream problems. To “pass-through” a
classmethod, consider using the __wrapped__ attribute
that was added in Python 3.10.
(Contributed by Raymond Hettinger in gh-89519 [https://github.com/python/cpython/issues/89519].)

	Octal escapes in string and bytes literals with values larger than 0o377
(255 in decimal) now produce a DeprecationWarning.
In a future Python version, they will raise a SyntaxWarning and
eventually a SyntaxError.
(Contributed by Serhiy Storchaka in gh-81548 [https://github.com/python/cpython/issues/81548].)

	The delegation of int() to __trunc__() is now deprecated.
Calling int(a) when type(a) implements __trunc__() but not
__int__() or __index__() now raises
a DeprecationWarning.
(Contributed by Zackery Spytz in bpo-44977 [https://bugs.python.org/issue?@action=redirect&bpo=44977].)

Modules

	PEP 594 [https://peps.python.org/pep-0594/] led to the deprecations of the following modules
slated for removal in Python 3.13:

	aifc

	chunk

	msilib

	pipes

	telnetlib

	audioop

	crypt

	nis

	sndhdr

	uu

	cgi

	imghdr

	nntplib

	spwd

	xdrlib

	cgitb

	mailcap

	ossaudiodev

	sunau

	

(Contributed by Brett Cannon in bpo-47061 [https://bugs.python.org/issue?@action=redirect&bpo=47061] and Victor Stinner in
gh-68966 [https://github.com/python/cpython/issues/68966].)

	The asynchat, asyncore and smtpd modules have been
deprecated since at least Python 3.6. Their documentation and deprecation
warnings have now been updated to note they will be removed in Python 3.12.
(Contributed by Hugo van Kemenade in bpo-47022 [https://bugs.python.org/issue?@action=redirect&bpo=47022].)

	The lib2to3 package and 2to3 tool
are now deprecated and may not be able to parse Python 3.10 or newer.
See PEP 617 [https://peps.python.org/pep-0617/], introducing the new PEG parser, for details.
(Contributed by Victor Stinner in bpo-40360 [https://bugs.python.org/issue?@action=redirect&bpo=40360].)

	Undocumented modules sre_compile, sre_constants
and sre_parse are now deprecated.
(Contributed by Serhiy Storchaka in bpo-47152 [https://bugs.python.org/issue?@action=redirect&bpo=47152].)

Standard Library

	The following have been deprecated in configparser since Python 3.2.
Their deprecation warnings have now been updated to note they will be removed
in Python 3.12:

	the configparser.SafeConfigParser class

	the configparser.ParsingError.filename property

	the configparser.RawConfigParser.readfp() method

(Contributed by Hugo van Kemenade in bpo-45173 [https://bugs.python.org/issue?@action=redirect&bpo=45173].)

	configparser.LegacyInterpolation has been deprecated in the docstring
since Python 3.2, and is not listed in the configparser documentation.
It now emits a DeprecationWarning and will be removed
in Python 3.13. Use configparser.BasicInterpolation or
configparser.ExtendedInterpolation instead.
(Contributed by Hugo van Kemenade in bpo-46607 [https://bugs.python.org/issue?@action=redirect&bpo=46607].)

	The older set of importlib.resources functions were deprecated
in favor of the replacements added in Python 3.9
and will be removed in a future Python version,
due to not supporting resources located within package subdirectories:

	importlib.resources.contents()

	importlib.resources.is_resource()

	importlib.resources.open_binary()

	importlib.resources.open_text()

	importlib.resources.read_binary()

	importlib.resources.read_text()

	importlib.resources.path()

	The locale.getdefaultlocale() function is deprecated and will be
removed in Python 3.13. Use locale.setlocale(),
locale.getpreferredencoding(False) and
locale.getlocale() functions instead.
(Contributed by Victor Stinner in gh-90817 [https://github.com/python/cpython/issues/90817].)

	The locale.resetlocale() function is deprecated and will be
removed in Python 3.13. Use locale.setlocale(locale.LC_ALL, "") instead.
(Contributed by Victor Stinner in gh-90817 [https://github.com/python/cpython/issues/90817].)

	Stricter rules will now be applied for numerical group references
and group names in regular expressions.
Only sequences of ASCII digits will now be accepted as a numerical reference,
and the group name in bytes patterns and replacement strings
can only contain ASCII letters, digits and underscores.
For now, a deprecation warning is raised for syntax violating these rules.
(Contributed by Serhiy Storchaka in gh-91760 [https://github.com/python/cpython/issues/91760].)

	In the re module, the re.template() function
and the corresponding re.TEMPLATE and re.T flags
are deprecated, as they were undocumented and lacked an obvious purpose.
They will be removed in Python 3.13.
(Contributed by Serhiy Storchaka and Miro Hrončok in gh-92728 [https://github.com/python/cpython/issues/92728].)

	turtle.settiltangle() has been deprecated since Python 3.1;
it now emits a deprecation warning and will be removed in Python 3.13. Use
turtle.tiltangle() instead (it was earlier incorrectly marked
as deprecated, and its docstring is now corrected).
(Contributed by Hugo van Kemenade in bpo-45837 [https://bugs.python.org/issue?@action=redirect&bpo=45837].)

	typing.Text, which exists solely to provide compatibility support
between Python 2 and Python 3 code, is now deprecated. Its removal is
currently unplanned, but users are encouraged to use str instead
wherever possible.
(Contributed by Alex Waygood in gh-92332 [https://github.com/python/cpython/issues/92332].)

	The keyword argument syntax for constructing typing.TypedDict types
is now deprecated. Support will be removed in Python 3.13. (Contributed by
Jingchen Ye in gh-90224 [https://github.com/python/cpython/issues/90224].)

	webbrowser.MacOSX is deprecated and will be removed in Python 3.13.
It is untested, undocumented, and not used by webbrowser itself.
(Contributed by Dong-hee Na in bpo-42255 [https://bugs.python.org/issue?@action=redirect&bpo=42255].)

	The behavior of returning a value from a TestCase and
IsolatedAsyncioTestCase test methods (other than the
default None value) is now deprecated.

	Deprecated the following not-formally-documented unittest functions,
scheduled for removal in Python 3.13:

	unittest.findTestCases()

	unittest.makeSuite()

	unittest.getTestCaseNames()

Use TestLoader methods instead:

	unittest.TestLoader.loadTestsFromModule()

	unittest.TestLoader.loadTestsFromTestCase()

	unittest.TestLoader.getTestCaseNames()

(Contributed by Erlend E. Aasland in bpo-5846 [https://bugs.python.org/issue?@action=redirect&bpo=5846].)

	usageExit() is marked deprecated, to be removed
in 3.13.
(Contributed by Carlos Damázio in gh-67048 [https://github.com/python/cpython/issues/67048].)

Pending Removal in Python 3.12

The following Python APIs have been deprecated in earlier Python releases,
and will be removed in Python 3.12.

C APIs pending removal are
listed separately.

	The asynchat module

	The asyncore module

	The entire distutils package

	The imp module

	The typing.io namespace

	The typing.re namespace

	cgi.log()

	importlib.find_loader()

	importlib.abc.Loader.module_repr()

	importlib.abc.MetaPathFinder.find_module()

	importlib.abc.PathEntryFinder.find_loader()

	importlib.abc.PathEntryFinder.find_module()

	importlib.machinery.BuiltinImporter.find_module()

	importlib.machinery.BuiltinLoader.module_repr()

	importlib.machinery.FileFinder.find_loader()

	importlib.machinery.FileFinder.find_module()

	importlib.machinery.FrozenImporter.find_module()

	importlib.machinery.FrozenLoader.module_repr()

	importlib.machinery.PathFinder.find_module()

	importlib.machinery.WindowsRegistryFinder.find_module()

	importlib.util.module_for_loader()

	importlib.util.set_loader_wrapper()

	importlib.util.set_package_wrapper()

	pkgutil.ImpImporter

	pkgutil.ImpLoader

	pathlib.Path.link_to()

	sqlite3.enable_shared_cache()

	sqlite3.OptimizedUnicode()

	PYTHONTHREADDEBUG environment variable

	The following deprecated aliases in unittest:

	Deprecated alias

	Method Name

	Deprecated in

	failUnless

	assertTrue()

	3.1

	failIf

	assertFalse()

	3.1

	failUnlessEqual

	assertEqual()

	3.1

	failIfEqual

	assertNotEqual()

	3.1

	failUnlessAlmostEqual

	assertAlmostEqual()

	3.1

	failIfAlmostEqual

	assertNotAlmostEqual()

	3.1

	failUnlessRaises

	assertRaises()

	3.1

	assert_

	assertTrue()

	3.2

	assertEquals

	assertEqual()

	3.2

	assertNotEquals

	assertNotEqual()

	3.2

	assertAlmostEquals

	assertAlmostEqual()

	3.2

	assertNotAlmostEquals

	assertNotAlmostEqual()

	3.2

	assertRegexpMatches

	assertRegex()

	3.2

	assertRaisesRegexp

	assertRaisesRegex()

	3.2

	assertNotRegexpMatches

	assertNotRegex()

	3.5

Removed

This section lists Python APIs that have been removed in Python 3.11.

Removed C APIs are listed separately.

	Removed the @asyncio.coroutine() decorator
enabling legacy generator-based coroutines to be compatible with
async / await code.
The function has been deprecated since Python 3.8 and the removal was
initially scheduled for Python 3.10. Use async def instead.
(Contributed by Illia Volochii in bpo-43216 [https://bugs.python.org/issue?@action=redirect&bpo=43216].)

	Removed asyncio.coroutines.CoroWrapper used for wrapping legacy
generator-based coroutine objects in the debug mode.
(Contributed by Illia Volochii in bpo-43216 [https://bugs.python.org/issue?@action=redirect&bpo=43216].)

	Due to significant security concerns, the reuse_address parameter of
asyncio.loop.create_datagram_endpoint(), disabled in Python 3.9, is
now entirely removed. This is because of the behavior of the socket option
SO_REUSEADDR in UDP.
(Contributed by Hugo van Kemenade in bpo-45129 [https://bugs.python.org/issue?@action=redirect&bpo=45129].)

	Removed the binhex module, deprecated in Python 3.9.
Also removed the related, similarly-deprecated binascii functions:

	binascii.a2b_hqx()

	binascii.b2a_hqx()

	binascii.rlecode_hqx()

	binascii.rldecode_hqx()

The binascii.crc_hqx() function remains available.

(Contributed by Victor Stinner in bpo-45085 [https://bugs.python.org/issue?@action=redirect&bpo=45085].)

	Removed the distutils bdist_msi command deprecated in Python 3.9.
Use bdist_wheel (wheel packages) instead.
(Contributed by Hugo van Kemenade in bpo-45124 [https://bugs.python.org/issue?@action=redirect&bpo=45124].)

	Removed the __getitem__() methods of
xml.dom.pulldom.DOMEventStream, wsgiref.util.FileWrapper
and fileinput.FileInput, deprecated since Python 3.9.
(Contributed by Hugo van Kemenade in bpo-45132 [https://bugs.python.org/issue?@action=redirect&bpo=45132].)

	Removed the deprecated gettext functions
lgettext(), ldgettext(),
lngettext() and ldngettext().
Also removed the bind_textdomain_codeset() function,
the NullTranslations.output_charset() and
NullTranslations.set_output_charset() methods,
and the codeset parameter of translation() and install(),
since they are only used for the l*gettext() functions.
(Contributed by Dong-hee Na and Serhiy Storchaka in bpo-44235 [https://bugs.python.org/issue?@action=redirect&bpo=44235].)

	Removed from the inspect module:

	The getargspec() function, deprecated since Python 3.0;
use inspect.signature() or inspect.getfullargspec() instead.

	The formatargspec() function, deprecated since Python 3.5;
use the inspect.signature() function
or the inspect.Signature object directly.

	The undocumented Signature.from_builtin()
and Signature.from_function() methods, deprecated since Python 3.5;
use the Signature.from_callable()
method instead.

(Contributed by Hugo van Kemenade in bpo-45320 [https://bugs.python.org/issue?@action=redirect&bpo=45320].)

	Removed the __class_getitem__() method
from pathlib.PurePath,
because it was not used and added by mistake in previous versions.
(Contributed by Nikita Sobolev in bpo-46483 [https://bugs.python.org/issue?@action=redirect&bpo=46483].)

	Removed the MailmanProxy class in the smtpd module,
as it is unusable without the external mailman package.
(Contributed by Dong-hee Na in bpo-35800 [https://bugs.python.org/issue?@action=redirect&bpo=35800].)

	Removed the deprecated split() method of _tkinter.TkappType.
(Contributed by Erlend E. Aasland in bpo-38371 [https://bugs.python.org/issue?@action=redirect&bpo=38371].)

	Removed namespace package support from unittest discovery.
It was introduced in Python 3.4 but has been broken since Python 3.7.
(Contributed by Inada Naoki in bpo-23882 [https://bugs.python.org/issue?@action=redirect&bpo=23882].)

	Removed the undocumented private float.__set_format__() method,
previously known as float.__setformat__() in Python 3.7.
Its docstring said: “You probably don’t want to use this function.
It exists mainly to be used in Python’s test suite.”
(Contributed by Victor Stinner in bpo-46852 [https://bugs.python.org/issue?@action=redirect&bpo=46852].)

	The --experimental-isolated-subinterpreters configure flag
(and corresponding EXPERIMENTAL_ISOLATED_SUBINTERPRETERS macro)
have been removed.

	Pynche [https://pypi.org/project/pynche/]
— The Pythonically Natural Color and Hue Editor — has been moved out
of Tools/scripts and is being developed independently [https://gitlab.com/warsaw/pynche/-/tree/main] from the Python source tree.

Porting to Python 3.11

This section lists previously described changes and other bugfixes
in the Python API that may require changes to your Python code.

Porting notes for the C API are
listed separately.

	open(), io.open(), codecs.open() and
fileinput.FileInput no longer accept 'U' (“universal newline”)
in the file mode. In Python 3, “universal newline” mode is used by default
whenever a file is opened in text mode,
and the 'U' flag has been deprecated since Python 3.3.
The newline parameter
to these functions controls how universal newlines work.
(Contributed by Victor Stinner in bpo-37330 [https://bugs.python.org/issue?@action=redirect&bpo=37330].)

	ast.AST node positions are now validated when provided to
compile() and other related functions. If invalid positions are detected,
a ValueError will be raised. (Contributed by Pablo Galindo in gh-93351 [https://github.com/python/cpython/issues/93351])

	Prohibited passing non-concurrent.futures.ThreadPoolExecutor
executors to asyncio.loop.set_default_executor()
following a deprecation in Python 3.8.
(Contributed by Illia Volochii in bpo-43234 [https://bugs.python.org/issue?@action=redirect&bpo=43234].)

	calendar: The calendar.LocaleTextCalendar and
calendar.LocaleHTMLCalendar classes now use
locale.getlocale(), instead of using locale.getdefaultlocale(),
if no locale is specified.
(Contributed by Victor Stinner in bpo-46659 [https://bugs.python.org/issue?@action=redirect&bpo=46659].)

	The pdb module now reads the .pdbrc configuration file with
the 'UTF-8' encoding.
(Contributed by Srinivas Reddy Thatiparthy (శ్రీనివాస్ రెడ్డి తాటిపర్తి) in bpo-41137 [https://bugs.python.org/issue?@action=redirect&bpo=41137].)

	The population parameter of random.sample() must be a sequence,
and automatic conversion of sets to lists
is no longer supported. Also, if the sample size
is larger than the population size, a ValueError is raised.
(Contributed by Raymond Hettinger in bpo-40465 [https://bugs.python.org/issue?@action=redirect&bpo=40465].)

	The random optional parameter of random.shuffle() was removed.
It was previously an arbitrary random function to use for the shuffle;
now, random.random() (its previous default) will always be used.

	In re Regular Expression Syntax, global inline flags (e.g. (?i))
can now only be used at the start of regular expressions.
Using them elsewhere has been deprecated since Python 3.6.
(Contributed by Serhiy Storchaka in bpo-47066 [https://bugs.python.org/issue?@action=redirect&bpo=47066].)

	In the re module, several long-standing bugs where fixed that,
in rare cases, could cause capture groups to get the wrong result.
Therefore, this could change the captured output in these cases.
(Contributed by Ma Lin in bpo-35859 [https://bugs.python.org/issue?@action=redirect&bpo=35859].)

Build Changes

	CPython now has PEP 11 [https://peps.python.org/pep-0011/] Tier 3 support [https://peps.python.org/pep-0011/#tier-3] for
cross compiling to the WebAssembly [https://webassembly.org/] platforms
Emscripten [https://emscripten.org/]
(wasm32-unknown-emscripten, i.e. Python in the browser)
and WebAssembly System Interface (WASI) [https://wasi.dev/]
(wasm32-unknown-wasi).
The effort is inspired by previous work like Pyodide [https://pyodide.org/].
These platforms provide a limited subset of POSIX APIs; Python standard
libraries features and modules related to networking, processes, threading,
signals, mmap, and users/groups are not available or don’t work.
(Emscripten contributed by Christian Heimes and Ethan Smith in gh-84461 [https://github.com/python/cpython/issues/84461]
and WASI contributed by Christian Heimes in gh-90473 [https://github.com/python/cpython/issues/90473];
platforms promoted in gh-95085 [https://github.com/python/cpython/issues/95085])

	Building CPython now requires:

	A C11 [https://en.cppreference.com/w/c/11] compiler and standard library.
Optional C11 features [https://en.wikipedia.org/wiki/C11_(C_standard_revision)#Optional_features]
are not required.
(Contributed by Victor Stinner in bpo-46656 [https://bugs.python.org/issue?@action=redirect&bpo=46656],
bpo-45440 [https://bugs.python.org/issue?@action=redirect&bpo=45440] and bpo-46640 [https://bugs.python.org/issue?@action=redirect&bpo=46640].)

	Support for IEEE 754 [https://en.wikipedia.org/wiki/IEEE_754]
floating point numbers.
(Contributed by Victor Stinner in bpo-46917 [https://bugs.python.org/issue?@action=redirect&bpo=46917].)

	The Py_NO_NAN macro has been removed.
Since CPython now requires IEEE 754 floats, NaN values are always available.
(Contributed by Victor Stinner in bpo-46656 [https://bugs.python.org/issue?@action=redirect&bpo=46656].)

	The tkinter package now requires Tcl/Tk [https://www.tcl.tk]
version 8.5.12 or newer.
(Contributed by Serhiy Storchaka in bpo-46996 [https://bugs.python.org/issue?@action=redirect&bpo=46996].)

	Build dependencies, compiler flags, and linker flags for most stdlib
extension modules are now detected by configure. libffi, libnsl,
libsqlite3, zlib, bzip2, liblzma, libcrypt, Tcl/Tk, and uuid flags
are detected by pkg-config [https://www.freedesktop.org/wiki/Software/pkg-config/] (when available).
tkinter now requires a pkg-config command
to detect development settings for Tcl/Tk [https://www.tcl.tk] headers and libraries.
(Contributed by Christian Heimes and Erlend Egeberg Aasland in
bpo-45847 [https://bugs.python.org/issue?@action=redirect&bpo=45847], bpo-45747 [https://bugs.python.org/issue?@action=redirect&bpo=45747], and bpo-45763 [https://bugs.python.org/issue?@action=redirect&bpo=45763].)

	libpython is no longer linked against libcrypt.
(Contributed by Mike Gilbert in bpo-45433 [https://bugs.python.org/issue?@action=redirect&bpo=45433].)

	CPython can now be built with the
ThinLTO [https://clang.llvm.org/docs/ThinLTO.html] option
via passing thin to --with-lto, i.e. --with-lto=thin.
(Contributed by Dong-hee Na and Brett Holman in bpo-44340 [https://bugs.python.org/issue?@action=redirect&bpo=44340].)

	Freelists for object structs can now be disabled. A new configure
option --without-freelists can be used to disable all freelists
except empty tuple singleton.
(Contributed by Christian Heimes in bpo-45522 [https://bugs.python.org/issue?@action=redirect&bpo=45522].)

	Modules/Setup and Modules/makesetup have been improved and tied up.
Extension modules can now be built through makesetup. All except some
test modules can be linked statically into a main binary or library.
(Contributed by Brett Cannon and Christian Heimes in bpo-45548 [https://bugs.python.org/issue?@action=redirect&bpo=45548],
bpo-45570 [https://bugs.python.org/issue?@action=redirect&bpo=45570], bpo-45571 [https://bugs.python.org/issue?@action=redirect&bpo=45571], and bpo-43974 [https://bugs.python.org/issue?@action=redirect&bpo=43974].)

Note

Use the environment variables TCLTK_CFLAGS and
TCLTK_LIBS to manually specify the location of Tcl/Tk headers
and libraries. The configure options
--with-tcltk-includes and --with-tcltk-libs
have been removed.

On RHEL 7 and CentOS 7 the development packages do not provide tcl.pc
and tk.pc; use TCLTK_LIBS="-ltk8.5 -ltkstub8.5 -ltcl8.5".
The directory Misc/rhel7 contains .pc files and instructions
on how to build Python with RHEL 7’s and CentOS 7’s Tcl/Tk and OpenSSL.

	CPython will now use 30-bit digits by default for the Python int
implementation. Previously, the default was to use 30-bit digits on platforms
with SIZEOF_VOID_P >= 8, and 15-bit digits otherwise. It’s still possible
to explicitly request use of 15-bit digits via either the
--enable-big-digits option to the configure script
or (for Windows) the PYLONG_BITS_IN_DIGIT variable in PC/pyconfig.h,
but this option may be removed at some point in the future.
(Contributed by Mark Dickinson in bpo-45569 [https://bugs.python.org/issue?@action=redirect&bpo=45569].)

C API Changes

New Features

	Add a new PyType_GetName() function to get type’s short name.
(Contributed by Hai Shi in bpo-42035 [https://bugs.python.org/issue?@action=redirect&bpo=42035].)

	Add a new PyType_GetQualName() function to get type’s qualified name.
(Contributed by Hai Shi in bpo-42035 [https://bugs.python.org/issue?@action=redirect&bpo=42035].)

	Add new PyThreadState_EnterTracing() and
PyThreadState_LeaveTracing() functions to the limited C API to
suspend and resume tracing and profiling.
(Contributed by Victor Stinner in bpo-43760 [https://bugs.python.org/issue?@action=redirect&bpo=43760].)

	Added the Py_Version constant which bears the same value as
PY_VERSION_HEX.
(Contributed by Gabriele N. Tornetta in bpo-43931 [https://bugs.python.org/issue?@action=redirect&bpo=43931].)

	Py_buffer and APIs are now part of the limited API and the stable
ABI:

	PyObject_CheckBuffer()

	PyObject_GetBuffer()

	PyBuffer_GetPointer()

	PyBuffer_SizeFromFormat()

	PyBuffer_ToContiguous()

	PyBuffer_FromContiguous()

	PyBuffer_CopyData()

	PyBuffer_IsContiguous()

	PyBuffer_FillContiguousStrides()

	PyBuffer_FillInfo()

	PyBuffer_Release()

	PyMemoryView_FromBuffer()

	bf_getbuffer and
bf_releasebuffer type slots

(Contributed by Christian Heimes in bpo-45459 [https://bugs.python.org/issue?@action=redirect&bpo=45459].)

	Added the PyType_GetModuleByDef function, used to get the module
in which a method was defined, in cases where this information is not
available directly (via PyCMethod).
(Contributed by Petr Viktorin in bpo-46613 [https://bugs.python.org/issue?@action=redirect&bpo=46613].)

	Add new functions to pack and unpack C double (serialize and deserialize):
PyFloat_Pack2(), PyFloat_Pack4(), PyFloat_Pack8(),
PyFloat_Unpack2(), PyFloat_Unpack4() and
PyFloat_Unpack8().
(Contributed by Victor Stinner in bpo-46906 [https://bugs.python.org/issue?@action=redirect&bpo=46906].)

	Add new functions to get frame object attributes:
PyFrame_GetBuiltins(), PyFrame_GetGenerator(),
PyFrame_GetGlobals(), PyFrame_GetLasti().

	Added two new functions to get and set the active exception instance:
PyErr_GetHandledException() and PyErr_SetHandledException().
These are alternatives to PyErr_SetExcInfo() and
PyErr_GetExcInfo() which work with the legacy 3-tuple
representation of exceptions.
(Contributed by Irit Katriel in bpo-46343 [https://bugs.python.org/issue?@action=redirect&bpo=46343].)

	Added the PyConfig.safe_path member.
(Contributed by Victor Stinner in gh-57684 [https://github.com/python/cpython/issues/57684].)

Porting to Python 3.11

	Some macros have been converted to static inline functions to avoid
macro pitfalls [https://gcc.gnu.org/onlinedocs/cpp/Macro-Pitfalls.html].
The change should be mostly transparent to users,
as the replacement functions will cast their arguments to the expected types
to avoid compiler warnings due to static type checks.
However, when the limited C API is set to >=3.11,
these casts are not done,
and callers will need to cast arguments to their expected types.
See PEP 670 [https://peps.python.org/pep-0670/] for more details.
(Contributed by Victor Stinner and Erlend E. Aasland in gh-89653 [https://github.com/python/cpython/issues/89653].)

	PyErr_SetExcInfo() no longer uses the type and traceback
arguments, the interpreter now derives those values from the exception
instance (the value argument). The function still steals references
of all three arguments.
(Contributed by Irit Katriel in bpo-45711 [https://bugs.python.org/issue?@action=redirect&bpo=45711].)

	PyErr_GetExcInfo() now derives the type and traceback
fields of the result from the exception instance (the value field).
(Contributed by Irit Katriel in bpo-45711 [https://bugs.python.org/issue?@action=redirect&bpo=45711].)

	_frozen has a new is_package field to indicate whether
or not the frozen module is a package. Previously, a negative value
in the size field was the indicator. Now only non-negative values
be used for size.
(Contributed by Kumar Aditya in bpo-46608 [https://bugs.python.org/issue?@action=redirect&bpo=46608].)

	_PyFrameEvalFunction() now takes _PyInterpreterFrame*
as its second parameter, instead of PyFrameObject*.
See PEP 523 [https://peps.python.org/pep-0523/] for more details of how to use this function pointer type.

	PyCode_New() and PyCode_NewWithPosOnlyArgs() now take
an additional exception_table argument.
Using these functions should be avoided, if at all possible.
To get a custom code object: create a code object using the compiler,
then get a modified version with the replace method.

	PyCodeObject no longer has the co_code, co_varnames,
co_cellvars and co_freevars fields. Instead, use
PyCode_GetCode(), PyCode_GetVarnames(),
PyCode_GetCellvars() and PyCode_GetFreevars() respectively
to access them via the C API.
(Contributed by Brandt Bucher in bpo-46841 [https://bugs.python.org/issue?@action=redirect&bpo=46841] and Ken Jin in gh-92154 [https://github.com/python/cpython/issues/92154]
and gh-94936 [https://github.com/python/cpython/issues/94936].)

	The old trashcan macros (Py_TRASHCAN_SAFE_BEGIN/Py_TRASHCAN_SAFE_END)
are now deprecated. They should be replaced by the new macros
Py_TRASHCAN_BEGIN and Py_TRASHCAN_END.

A tp_dealloc function that has the old macros, such as:

static void
mytype_dealloc(mytype *p)
{
 PyObject_GC_UnTrack(p);
 Py_TRASHCAN_SAFE_BEGIN(p);
 ...
 Py_TRASHCAN_SAFE_END
}

should migrate to the new macros as follows:

static void
mytype_dealloc(mytype *p)
{
 PyObject_GC_UnTrack(p);
 Py_TRASHCAN_BEGIN(p, mytype_dealloc)
 ...
 Py_TRASHCAN_END
}

Note that Py_TRASHCAN_BEGIN has a second argument which
should be the deallocation function it is in.

To support older Python versions in the same codebase, you
can define the following macros and use them throughout
the code (credit: these were copied from the mypy codebase):

#if PY_VERSION_HEX >= 0x03080000
define CPy_TRASHCAN_BEGIN(op, dealloc) Py_TRASHCAN_BEGIN(op, dealloc)
define CPy_TRASHCAN_END(op) Py_TRASHCAN_END
#else
define CPy_TRASHCAN_BEGIN(op, dealloc) Py_TRASHCAN_SAFE_BEGIN(op)
define CPy_TRASHCAN_END(op) Py_TRASHCAN_SAFE_END(op)
#endif

	The PyType_Ready() function now raises an error if a type is defined
with the Py_TPFLAGS_HAVE_GC flag set but has no traverse function
(PyTypeObject.tp_traverse).
(Contributed by Victor Stinner in bpo-44263 [https://bugs.python.org/issue?@action=redirect&bpo=44263].)

	Heap types with the Py_TPFLAGS_IMMUTABLETYPE flag can now inherit
the PEP 590 [https://peps.python.org/pep-0590/] vectorcall protocol. Previously, this was only possible for
static types.
(Contributed by Erlend E. Aasland in bpo-43908 [https://bugs.python.org/issue?@action=redirect&bpo=43908])

	Since Py_TYPE() is changed to a inline static function,
Py_TYPE(obj) = new_type must be replaced with
Py_SET_TYPE(obj, new_type): see the Py_SET_TYPE() function
(available since Python 3.9). For backward compatibility, this macro can be
used:

#if PY_VERSION_HEX < 0x030900A4 && !defined(Py_SET_TYPE)
static inline void _Py_SET_TYPE(PyObject *ob, PyTypeObject *type)
{ ob->ob_type = type; }
#define Py_SET_TYPE(ob, type) _Py_SET_TYPE((PyObject*)(ob), type)
#endif

(Contributed by Victor Stinner in bpo-39573 [https://bugs.python.org/issue?@action=redirect&bpo=39573].)

	Since Py_SIZE() is changed to a inline static function,
Py_SIZE(obj) = new_size must be replaced with
Py_SET_SIZE(obj, new_size): see the Py_SET_SIZE() function
(available since Python 3.9). For backward compatibility, this macro can be
used:

#if PY_VERSION_HEX < 0x030900A4 && !defined(Py_SET_SIZE)
static inline void _Py_SET_SIZE(PyVarObject *ob, Py_ssize_t size)
{ ob->ob_size = size; }
#define Py_SET_SIZE(ob, size) _Py_SET_SIZE((PyVarObject*)(ob), size)
#endif

(Contributed by Victor Stinner in bpo-39573 [https://bugs.python.org/issue?@action=redirect&bpo=39573].)

	<Python.h> no longer includes the header files <stdlib.h>,
<stdio.h>, <errno.h> and <string.h> when the Py_LIMITED_API
macro is set to 0x030b0000 (Python 3.11) or higher. C extensions should
explicitly include the header files after #include <Python.h>.
(Contributed by Victor Stinner in bpo-45434 [https://bugs.python.org/issue?@action=redirect&bpo=45434].)

	The non-limited API files cellobject.h, classobject.h, code.h, context.h,
funcobject.h, genobject.h and longintrepr.h have been moved to
the Include/cpython directory. Moreover, the eval.h header file was
removed. These files must not be included directly, as they are already
included in Python.h: Include Files. If they have
been included directly, consider including Python.h instead.
(Contributed by Victor Stinner in bpo-35134 [https://bugs.python.org/issue?@action=redirect&bpo=35134].)

	The PyUnicode_CHECK_INTERNED() macro has been excluded from the
limited C API. It was never usable there, because it used internal structures
which are not available in the limited C API.
(Contributed by Victor Stinner in bpo-46007 [https://bugs.python.org/issue?@action=redirect&bpo=46007].)

	The following frame functions and type are now directly available with
#include <Python.h>, it’s no longer needed to add
#include <frameobject.h>:

	PyFrame_Check()

	PyFrame_GetBack()

	PyFrame_GetBuiltins()

	PyFrame_GetGenerator()

	PyFrame_GetGlobals()

	PyFrame_GetLasti()

	PyFrame_GetLocals()

	PyFrame_Type

(Contributed by Victor Stinner in gh-93937 [https://github.com/python/cpython/issues/93937].)

	The PyFrameObject structure members have been removed from the
public C API.

While the documentation notes that the PyFrameObject fields are
subject to change at any time, they have been stable for a long time and were
used in several popular extensions.

In Python 3.11, the frame struct was reorganized to allow performance
optimizations. Some fields were removed entirely, as they were details of the
old implementation.

PyFrameObject fields:

	f_back: use PyFrame_GetBack().

	f_blockstack: removed.

	f_builtins: use PyFrame_GetBuiltins().

	f_code: use PyFrame_GetCode().

	f_gen: use PyFrame_GetGenerator().

	f_globals: use PyFrame_GetGlobals().

	f_iblock: removed.

	f_lasti: use PyFrame_GetLasti().
Code using f_lasti with PyCode_Addr2Line() should use
PyFrame_GetLineNumber() instead; it may be faster.

	f_lineno: use PyFrame_GetLineNumber()

	f_locals: use PyFrame_GetLocals().

	f_stackdepth: removed.

	f_state: no public API (renamed to f_frame.f_state).

	f_trace: no public API.

	f_trace_lines: use PyObject_GetAttrString((PyObject*)frame, "f_trace_lines").

	f_trace_opcodes: use PyObject_GetAttrString((PyObject*)frame, "f_trace_opcodes").

	f_localsplus: no public API (renamed to f_frame.localsplus).

	f_valuestack: removed.

The Python frame object is now created lazily. A side effect is that the
f_back member must not be accessed directly, since its value is now also
computed lazily. The PyFrame_GetBack() function must be called
instead.

Debuggers that accessed the f_locals directly must call
PyFrame_GetLocals() instead. They no longer need to call
PyFrame_FastToLocalsWithError() or PyFrame_LocalsToFast(),
in fact they should not call those functions. The necessary updating of the
frame is now managed by the virtual machine.

Code defining PyFrame_GetCode() on Python 3.8 and older:

#if PY_VERSION_HEX < 0x030900B1
static inline PyCodeObject* PyFrame_GetCode(PyFrameObject *frame)
{
 Py_INCREF(frame->f_code);
 return frame->f_code;
}
#endif

Code defining PyFrame_GetBack() on Python 3.8 and older:

#if PY_VERSION_HEX < 0x030900B1
static inline PyFrameObject* PyFrame_GetBack(PyFrameObject *frame)
{
 Py_XINCREF(frame->f_back);
 return frame->f_back;
}
#endif

Or use the pythoncapi_compat project [https://github.com/python/pythoncapi-compat] to get these two
functions on older Python versions.

	Changes of the PyThreadState structure members:

	frame: removed, use PyThreadState_GetFrame() (function added
to Python 3.9 by bpo-40429 [https://bugs.python.org/issue?@action=redirect&bpo=40429]).
Warning: the function returns a strong reference, need to call
Py_XDECREF().

	tracing: changed, use PyThreadState_EnterTracing()
and PyThreadState_LeaveTracing()
(functions added to Python 3.11 by bpo-43760 [https://bugs.python.org/issue?@action=redirect&bpo=43760]).

	recursion_depth: removed,
use (tstate->recursion_limit - tstate->recursion_remaining) instead.

	stackcheck_counter: removed.

Code defining PyThreadState_GetFrame() on Python 3.8 and older:

#if PY_VERSION_HEX < 0x030900B1
static inline PyFrameObject* PyThreadState_GetFrame(PyThreadState *tstate)
{
 Py_XINCREF(tstate->frame);
 return tstate->frame;
}
#endif

Code defining PyThreadState_EnterTracing() and
PyThreadState_LeaveTracing() on Python 3.10 and older:

#if PY_VERSION_HEX < 0x030B00A2
static inline void PyThreadState_EnterTracing(PyThreadState *tstate)
{
 tstate->tracing++;
#if PY_VERSION_HEX >= 0x030A00A1
 tstate->cframe->use_tracing = 0;
#else
 tstate->use_tracing = 0;
#endif
}

static inline void PyThreadState_LeaveTracing(PyThreadState *tstate)
{
 int use_tracing = (tstate->c_tracefunc != NULL || tstate->c_profilefunc != NULL);
 tstate->tracing--;
#if PY_VERSION_HEX >= 0x030A00A1
 tstate->cframe->use_tracing = use_tracing;
#else
 tstate->use_tracing = use_tracing;
#endif
}
#endif

Or use the pythoncapi-compat project [https://github.com/python/pythoncapi-compat] to get these functions
on old Python functions.

	Distributors are encouraged to build Python with the optimized Blake2
library libb2 [https://www.blake2.net/].

	The PyConfig.module_search_paths_set field must now be set to 1 for
initialization to use PyConfig.module_search_paths to initialize
sys.path. Otherwise, initialization will recalculate the path and replace
any values added to module_search_paths.

	PyConfig_Read() no longer calculates the initial search path, and will not
fill any values into PyConfig.module_search_paths. To calculate default
paths and then modify them, finish initialization and use PySys_GetObject()
to retrieve sys.path as a Python list object and modify it directly.

Deprecated

	Deprecate the following functions to configure the Python initialization:

	PySys_AddWarnOptionUnicode()

	PySys_AddWarnOption()

	PySys_AddXOption()

	PySys_HasWarnOptions()

	PySys_SetArgvEx()

	PySys_SetArgv()

	PySys_SetPath()

	Py_SetPath()

	Py_SetProgramName()

	Py_SetPythonHome()

	Py_SetStandardStreamEncoding()

	_Py_SetProgramFullPath()

Use the new PyConfig API of the Python Initialization Configuration instead (PEP 587 [https://peps.python.org/pep-0587/]).
(Contributed by Victor Stinner in gh-88279 [https://github.com/python/cpython/issues/88279].)

	Deprecate the ob_shash member of the PyBytesObject. Use PyObject_Hash() instead.
(Contributed by Inada Naoki in bpo-46864 [https://bugs.python.org/issue?@action=redirect&bpo=46864].)

Pending Removal in Python 3.12

The following C APIs have been deprecated in earlier Python releases,
and will be removed in Python 3.12.

	PyUnicode_AS_DATA()

	PyUnicode_AS_UNICODE()

	PyUnicode_AsUnicodeAndSize()

	PyUnicode_AsUnicode()

	PyUnicode_FromUnicode()

	PyUnicode_GET_DATA_SIZE()

	PyUnicode_GET_SIZE()

	PyUnicode_GetSize()

	PyUnicode_IS_COMPACT()

	PyUnicode_IS_READY()

	PyUnicode_READY()

	Py_UNICODE_WSTR_LENGTH()

	_PyUnicode_AsUnicode()

	PyUnicode_WCHAR_KIND

	PyUnicodeObject

	PyUnicode_InternImmortal()

Removed

	PyFrame_BlockSetup() and PyFrame_BlockPop() have been
removed.
(Contributed by Mark Shannon in bpo-40222 [https://bugs.python.org/issue?@action=redirect&bpo=40222].)

	Remove the following math macros using the errno variable:

	Py_ADJUST_ERANGE1()

	Py_ADJUST_ERANGE2()

	Py_OVERFLOWED()

	Py_SET_ERANGE_IF_OVERFLOW()

	Py_SET_ERRNO_ON_MATH_ERROR()

(Contributed by Victor Stinner in bpo-45412 [https://bugs.python.org/issue?@action=redirect&bpo=45412].)

	Remove Py_UNICODE_COPY() and Py_UNICODE_FILL() macros, deprecated
since Python 3.3. Use PyUnicode_CopyCharacters() or memcpy()
(wchar_t* string), and PyUnicode_Fill() functions instead.
(Contributed by Victor Stinner in bpo-41123 [https://bugs.python.org/issue?@action=redirect&bpo=41123].)

	Remove the pystrhex.h header file. It only contains private functions.
C extensions should only include the main <Python.h> header file.
(Contributed by Victor Stinner in bpo-45434 [https://bugs.python.org/issue?@action=redirect&bpo=45434].)

	Remove the Py_FORCE_DOUBLE() macro. It was used by the
Py_IS_INFINITY() macro.
(Contributed by Victor Stinner in bpo-45440 [https://bugs.python.org/issue?@action=redirect&bpo=45440].)

	The following items are no longer available when Py_LIMITED_API
is defined:

	PyMarshal_WriteLongToFile()

	PyMarshal_WriteObjectToFile()

	PyMarshal_ReadObjectFromString()

	PyMarshal_WriteObjectToString()

	the Py_MARSHAL_VERSION macro

These are not part of the limited API.

(Contributed by Victor Stinner in bpo-45474 [https://bugs.python.org/issue?@action=redirect&bpo=45474].)

	Exclude PyWeakref_GET_OBJECT() from the limited C API. It never
worked since the PyWeakReference structure is opaque in the
limited C API.
(Contributed by Victor Stinner in bpo-35134 [https://bugs.python.org/issue?@action=redirect&bpo=35134].)

	Remove the PyHeapType_GET_MEMBERS() macro. It was exposed in the
public C API by mistake, it must only be used by Python internally.
Use the PyTypeObject.tp_members member instead.
(Contributed by Victor Stinner in bpo-40170 [https://bugs.python.org/issue?@action=redirect&bpo=40170].)

	Remove the HAVE_PY_SET_53BIT_PRECISION macro (moved to the internal C
API).
(Contributed by Victor Stinner in bpo-45412 [https://bugs.python.org/issue?@action=redirect&bpo=45412].)

	Remove the Py_UNICODE encoder APIs,
as they have been deprecated since Python 3.3,
are little used
and are inefficient relative to the recommended alternatives.

The removed functions are:

	PyUnicode_Encode()

	PyUnicode_EncodeASCII()

	PyUnicode_EncodeLatin1()

	PyUnicode_EncodeUTF7()

	PyUnicode_EncodeUTF8()

	PyUnicode_EncodeUTF16()

	PyUnicode_EncodeUTF32()

	PyUnicode_EncodeUnicodeEscape()

	PyUnicode_EncodeRawUnicodeEscape()

	PyUnicode_EncodeCharmap()

	PyUnicode_TranslateCharmap()

	PyUnicode_EncodeDecimal()

	PyUnicode_TransformDecimalToASCII()

See PEP 624 [https://peps.python.org/pep-0624/] for details and
migration guidance [https://peps.python.org/pep-0624/#alternative-apis].
(Contributed by Inada Naoki in bpo-44029 [https://bugs.python.org/issue?@action=redirect&bpo=44029].)

What’s New In Python 3.10

	Editor

	Pablo Galindo Salgado

This article explains the new features in Python 3.10, compared to 3.9.
Python 3.10 was released on October 4, 2021.
For full details, see the changelog.

Summary – Release highlights

New syntax features:

	PEP 634 [https://peps.python.org/pep-0634/], Structural Pattern Matching: Specification

	PEP 635 [https://peps.python.org/pep-0635/], Structural Pattern Matching: Motivation and Rationale

	PEP 636 [https://peps.python.org/pep-0636/], Structural Pattern Matching: Tutorial

	bpo-12782 [https://bugs.python.org/issue?@action=redirect&bpo=12782], Parenthesized context managers are now officially allowed.

New features in the standard library:

	PEP 618 [https://peps.python.org/pep-0618/], Add Optional Length-Checking To zip.

Interpreter improvements:

	PEP 626 [https://peps.python.org/pep-0626/], Precise line numbers for debugging and other tools.

New typing features:

	PEP 604 [https://peps.python.org/pep-0604/], Allow writing union types as X | Y

	PEP 612 [https://peps.python.org/pep-0612/], Parameter Specification Variables

	PEP 613 [https://peps.python.org/pep-0613/], Explicit Type Aliases

	PEP 647 [https://peps.python.org/pep-0647/], User-Defined Type Guards

Important deprecations, removals or restrictions:

	PEP 644 [https://peps.python.org/pep-0644/], Require OpenSSL 1.1.1 or newer

	PEP 632 [https://peps.python.org/pep-0632/], Deprecate distutils module.

	PEP 623 [https://peps.python.org/pep-0623/], Deprecate and prepare for the removal of the wstr member in PyUnicodeObject.

	PEP 624 [https://peps.python.org/pep-0624/], Remove Py_UNICODE encoder APIs

	PEP 597 [https://peps.python.org/pep-0597/], Add optional EncodingWarning

New Features

Parenthesized context managers

Using enclosing parentheses for continuation across multiple lines
in context managers is now supported. This allows formatting a long
collection of context managers in multiple lines in a similar way
as it was previously possible with import statements. For instance,
all these examples are now valid:

with (CtxManager() as example):
 ...

with (
 CtxManager1(),
 CtxManager2()
):
 ...

with (CtxManager1() as example,
 CtxManager2()):
 ...

with (CtxManager1(),
 CtxManager2() as example):
 ...

with (
 CtxManager1() as example1,
 CtxManager2() as example2
):
 ...

it is also possible to use a trailing comma at the end of the
enclosed group:

with (
 CtxManager1() as example1,
 CtxManager2() as example2,
 CtxManager3() as example3,
):
 ...

This new syntax uses the non LL(1) capacities of the new parser.
Check PEP 617 [https://peps.python.org/pep-0617/] for more details.

(Contributed by Guido van Rossum, Pablo Galindo and Lysandros Nikolaou
in bpo-12782 [https://bugs.python.org/issue?@action=redirect&bpo=12782] and bpo-40334 [https://bugs.python.org/issue?@action=redirect&bpo=40334].)

Better error messages

SyntaxErrors

When parsing code that contains unclosed parentheses or brackets the interpreter
now includes the location of the unclosed bracket of parentheses instead of displaying
SyntaxError: unexpected EOF while parsing or pointing to some incorrect location.
For instance, consider the following code (notice the unclosed ‘{‘):

expected = {9: 1, 18: 2, 19: 2, 27: 3, 28: 3, 29: 3, 36: 4, 37: 4,
 38: 4, 39: 4, 45: 5, 46: 5, 47: 5, 48: 5, 49: 5, 54: 6,
some_other_code = foo()

Previous versions of the interpreter reported confusing places as the location of
the syntax error:

File "example.py", line 3
 some_other_code = foo()
 ^
SyntaxError: invalid syntax

but in Python 3.10 a more informative error is emitted:

File "example.py", line 1
 expected = {9: 1, 18: 2, 19: 2, 27: 3, 28: 3, 29: 3, 36: 4, 37: 4,
 ^
SyntaxError: '{' was never closed

In a similar way, errors involving unclosed string literals (single and triple
quoted) now point to the start of the string instead of reporting EOF/EOL.

These improvements are inspired by previous work in the PyPy interpreter.

(Contributed by Pablo Galindo in bpo-42864 [https://bugs.python.org/issue?@action=redirect&bpo=42864] and Batuhan Taskaya in
bpo-40176 [https://bugs.python.org/issue?@action=redirect&bpo=40176].)

SyntaxError exceptions raised by the interpreter will now highlight the
full error range of the expression that constitutes the syntax error itself,
instead of just where the problem is detected. In this way, instead of displaying
(before Python 3.10):

>>> foo(x, z for z in range(10), t, w)
 File "<stdin>", line 1
 foo(x, z for z in range(10), t, w)
 ^
SyntaxError: Generator expression must be parenthesized

now Python 3.10 will display the exception as:

>>> foo(x, z for z in range(10), t, w)
 File "<stdin>", line 1
 foo(x, z for z in range(10), t, w)
 ^^^^^^^^^^^^^^^^^^^^
SyntaxError: Generator expression must be parenthesized

This improvement was contributed by Pablo Galindo in bpo-43914 [https://bugs.python.org/issue?@action=redirect&bpo=43914].

A considerable amount of new specialized messages for SyntaxError exceptions
have been incorporated. Some of the most notable ones are as follows:

	Missing : before blocks:

>>> if rocket.position > event_horizon
 File "<stdin>", line 1
 if rocket.position > event_horizon
 ^
SyntaxError: expected ':'

(Contributed by Pablo Galindo in bpo-42997 [https://bugs.python.org/issue?@action=redirect&bpo=42997].)

	Unparenthesised tuples in comprehensions targets:

>>> {x,y for x,y in zip('abcd', '1234')}
 File "<stdin>", line 1
 {x,y for x,y in zip('abcd', '1234')}
 ^
SyntaxError: did you forget parentheses around the comprehension target?

(Contributed by Pablo Galindo in bpo-43017 [https://bugs.python.org/issue?@action=redirect&bpo=43017].)

	Missing commas in collection literals and between expressions:

>>> items = {
... x: 1,
... y: 2
... z: 3,
 File "<stdin>", line 3
 y: 2
 ^
SyntaxError: invalid syntax. Perhaps you forgot a comma?

(Contributed by Pablo Galindo in bpo-43822 [https://bugs.python.org/issue?@action=redirect&bpo=43822].)

	Multiple Exception types without parentheses:

>>> try:
... build_dyson_sphere()
... except NotEnoughScienceError, NotEnoughResourcesError:
 File "<stdin>", line 3
 except NotEnoughScienceError, NotEnoughResourcesError:
 ^
SyntaxError: multiple exception types must be parenthesized

(Contributed by Pablo Galindo in bpo-43149 [https://bugs.python.org/issue?@action=redirect&bpo=43149].)

	Missing : and values in dictionary literals:

>>> values = {
... x: 1,
... y: 2,
... z:
... }
 File "<stdin>", line 4
 z:
 ^
SyntaxError: expression expected after dictionary key and ':'

>>> values = {x:1, y:2, z w:3}
 File "<stdin>", line 1
 values = {x:1, y:2, z w:3}
 ^
SyntaxError: ':' expected after dictionary key

(Contributed by Pablo Galindo in bpo-43823 [https://bugs.python.org/issue?@action=redirect&bpo=43823].)

	try blocks without except or finally blocks:

>>> try:
... x = 2
... something = 3
 File "<stdin>", line 3
 something = 3
 ^^^^^^^^^
SyntaxError: expected 'except' or 'finally' block

(Contributed by Pablo Galindo in bpo-44305 [https://bugs.python.org/issue?@action=redirect&bpo=44305].)

	Usage of = instead of == in comparisons:

>>> if rocket.position = event_horizon:
 File "<stdin>", line 1
 if rocket.position = event_horizon:
 ^
SyntaxError: cannot assign to attribute here. Maybe you meant '==' instead of '='?

(Contributed by Pablo Galindo in bpo-43797 [https://bugs.python.org/issue?@action=redirect&bpo=43797].)

	Usage of * in f-strings:

>>> f"Black holes {*all_black_holes} and revelations"
 File "<stdin>", line 1
 (*all_black_holes)
 ^
SyntaxError: f-string: cannot use starred expression here

(Contributed by Pablo Galindo in bpo-41064 [https://bugs.python.org/issue?@action=redirect&bpo=41064].)

IndentationErrors

Many IndentationError exceptions now have more context regarding what kind of block
was expecting an indentation, including the location of the statement:

>>> def foo():
... if lel:
... x = 2
 File "<stdin>", line 3
 x = 2
 ^
IndentationError: expected an indented block after 'if' statement in line 2

AttributeErrors

When printing AttributeError, PyErr_Display() will offer
suggestions of similar attribute names in the object that the exception was
raised from:

>>> collections.namedtoplo
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: module 'collections' has no attribute 'namedtoplo'. Did you mean: namedtuple?

(Contributed by Pablo Galindo in bpo-38530 [https://bugs.python.org/issue?@action=redirect&bpo=38530].)

Warning

Notice this won’t work if PyErr_Display() is not called to display the error
which can happen if some other custom error display function is used. This is a common
scenario in some REPLs like IPython.

NameErrors

When printing NameError raised by the interpreter, PyErr_Display()
will offer suggestions of similar variable names in the function that the exception
was raised from:

>>> schwarzschild_black_hole = None
>>> schwarschild_black_hole
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'schwarschild_black_hole' is not defined. Did you mean: schwarzschild_black_hole?

(Contributed by Pablo Galindo in bpo-38530 [https://bugs.python.org/issue?@action=redirect&bpo=38530].)

Warning

Notice this won’t work if PyErr_Display() is not called to display the error,
which can happen if some other custom error display function is used. This is a common
scenario in some REPLs like IPython.

PEP 626: Precise line numbers for debugging and other tools

PEP 626 brings more precise and reliable line numbers for debugging, profiling and coverage tools.
Tracing events, with the correct line number, are generated for all lines of code executed and only for lines of code that are executed.

The f_lineno attribute of frame objects will always contain the expected line number.

The co_lnotab attribute of code objects is deprecated and will be removed in 3.12.
Code that needs to convert from offset to line number should use the new co_lines() method instead.

PEP 634: Structural Pattern Matching

Structural pattern matching has been added in the form of a match statement
and case statements of patterns with associated actions. Patterns
consist of sequences, mappings, primitive data types as well as class instances.
Pattern matching enables programs to extract information from complex data types,
branch on the structure of data, and apply specific actions based on different
forms of data.

Syntax and operations

The generic syntax of pattern matching is:

match subject:
 case <pattern_1>:
 <action_1>
 case <pattern_2>:
 <action_2>
 case <pattern_3>:
 <action_3>
 case _:
 <action_wildcard>

A match statement takes an expression and compares its value to successive
patterns given as one or more case blocks. Specifically, pattern matching
operates by:

	using data with type and shape (the subject)

	evaluating the subject in the match statement

	comparing the subject with each pattern in a case statement
from top to bottom until a match is confirmed.

	executing the action associated with the pattern of the confirmed
match

	If an exact match is not confirmed, the last case, a wildcard _,
if provided, will be used as the matching case. If an exact match is
not confirmed and a wildcard case does not exist, the entire match
block is a no-op.

Declarative approach

Readers may be aware of pattern matching through the simple example of matching
a subject (data object) to a literal (pattern) with the switch statement found
in C, Java or JavaScript (and many other languages). Often the switch statement
is used for comparison of an object/expression with case statements containing
literals.

More powerful examples of pattern matching can be found in languages such as
Scala and Elixir. With structural pattern matching, the approach is “declarative” and
explicitly states the conditions (the patterns) for data to match.

While an “imperative” series of instructions using nested “if” statements
could be used to accomplish something similar to structural pattern matching,
it is less clear than the “declarative” approach. Instead the “declarative”
approach states the conditions to meet for a match and is more readable through
its explicit patterns. While structural pattern matching can be used in its
simplest form comparing a variable to a literal in a case statement, its
true value for Python lies in its handling of the subject’s type and shape.

Simple pattern: match to a literal

Let’s look at this example as pattern matching in its simplest form: a value,
the subject, being matched to several literals, the patterns. In the example
below, status is the subject of the match statement. The patterns are
each of the case statements, where literals represent request status codes.
The associated action to the case is executed after a match:

def http_error(status):
 match status:
 case 400:
 return "Bad request"
 case 404:
 return "Not found"
 case 418:
 return "I'm a teapot"
 case _:
 return "Something's wrong with the internet"

If the above function is passed a status of 418, “I’m a teapot” is returned.
If the above function is passed a status of 500, the case statement with
_ will match as a wildcard, and “Something’s wrong with the internet” is
returned.
Note the last block: the variable name, _, acts as a wildcard and insures
the subject will always match. The use of _ is optional.

You can combine several literals in a single pattern using | (“or”):

case 401 | 403 | 404:
 return "Not allowed"

Behavior without the wildcard

If we modify the above example by removing the last case block, the example
becomes:

def http_error(status):
 match status:
 case 400:
 return "Bad request"
 case 404:
 return "Not found"
 case 418:
 return "I'm a teapot"

Without the use of _ in a case statement, a match may not exist. If no
match exists, the behavior is a no-op. For example, if status of 500 is
passed, a no-op occurs.

Patterns with a literal and variable

Patterns can look like unpacking assignments, and a pattern may be used to bind
variables. In this example, a data point can be unpacked to its x-coordinate
and y-coordinate:

point is an (x, y) tuple
match point:
 case (0, 0):
 print("Origin")
 case (0, y):
 print(f"Y={y}")
 case (x, 0):
 print(f"X={x}")
 case (x, y):
 print(f"X={x}, Y={y}")
 case _:
 raise ValueError("Not a point")

The first pattern has two literals, (0, 0), and may be thought of as an
extension of the literal pattern shown above. The next two patterns combine a
literal and a variable, and the variable binds a value from the subject
(point). The fourth pattern captures two values, which makes it
conceptually similar to the unpacking assignment (x, y) = point.

Patterns and classes

If you are using classes to structure your data, you can use as a pattern
the class name followed by an argument list resembling a constructor. This
pattern has the ability to capture class attributes into variables:

class Point:
 x: int
 y: int

def location(point):
 match point:
 case Point(x=0, y=0):
 print("Origin is the point's location.")
 case Point(x=0, y=y):
 print(f"Y={y} and the point is on the y-axis.")
 case Point(x=x, y=0):
 print(f"X={x} and the point is on the x-axis.")
 case Point():
 print("The point is located somewhere else on the plane.")
 case _:
 print("Not a point")

Patterns with positional parameters

You can use positional parameters with some builtin classes that provide an
ordering for their attributes (e.g. dataclasses). You can also define a specific
position for attributes in patterns by setting the __match_args__ special
attribute in your classes. If it’s set to (“x”, “y”), the following patterns
are all equivalent (and all bind the y attribute to the var variable):

Point(1, var)
Point(1, y=var)
Point(x=1, y=var)
Point(y=var, x=1)

Nested patterns

Patterns can be arbitrarily nested. For example, if our data is a short
list of points, it could be matched like this:

match points:
 case []:
 print("No points in the list.")
 case [Point(0, 0)]:
 print("The origin is the only point in the list.")
 case [Point(x, y)]:
 print(f"A single point {x}, {y} is in the list.")
 case [Point(0, y1), Point(0, y2)]:
 print(f"Two points on the Y axis at {y1}, {y2} are in the list.")
 case _:
 print("Something else is found in the list.")

Complex patterns and the wildcard

To this point, the examples have used _ alone in the last case statement.
A wildcard can be used in more complex patterns, such as ('error', code, _).
For example:

match test_variable:
 case ('warning', code, 40):
 print("A warning has been received.")
 case ('error', code, _):
 print(f"An error {code} occurred.")

In the above case, test_variable will match for (‘error’, code, 100) and
(‘error’, code, 800).

Guard

We can add an if clause to a pattern, known as a “guard”. If the
guard is false, match goes on to try the next case block. Note
that value capture happens before the guard is evaluated:

match point:
 case Point(x, y) if x == y:
 print(f"The point is located on the diagonal Y=X at {x}.")
 case Point(x, y):
 print(f"Point is not on the diagonal.")

Other Key Features

Several other key features:

	Like unpacking assignments, tuple and list patterns have exactly the
same meaning and actually match arbitrary sequences. Technically,
the subject must be a sequence.
Therefore, an important exception is that patterns don’t match iterators.
Also, to prevent a common mistake, sequence patterns don’t match strings.

	Sequence patterns support wildcards: [x, y, *rest] and (x, y,
*rest) work similar to wildcards in unpacking assignments. The
name after * may also be _, so (x, y, *_) matches a sequence
of at least two items without binding the remaining items.

	Mapping patterns: {"bandwidth": b, "latency": l} captures the
"bandwidth" and "latency" values from a dict. Unlike sequence
patterns, extra keys are ignored. A wildcard **rest is also
supported. (But **_ would be redundant, so is not allowed.)

	Subpatterns may be captured using the as keyword:

case (Point(x1, y1), Point(x2, y2) as p2): ...

This binds x1, y1, x2, y2 like you would expect without the as clause,
and p2 to the entire second item of the subject.

	Most literals are compared by equality. However, the singletons True,
False and None are compared by identity.

	Named constants may be used in patterns. These named constants must be
dotted names to prevent the constant from being interpreted as a capture
variable:

from enum import Enum
class Color(Enum):
 RED = 0
 GREEN = 1
 BLUE = 2

color = Color.GREEN
match color:
 case Color.RED:
 print("I see red!")
 case Color.GREEN:
 print("Grass is green")
 case Color.BLUE:
 print("I'm feeling the blues :(")

For the full specification see PEP 634 [https://peps.python.org/pep-0634/]. Motivation and rationale
are in PEP 635 [https://peps.python.org/pep-0635/], and a longer tutorial is in PEP 636 [https://peps.python.org/pep-0636/].

Optional EncodingWarning and encoding="locale" option

The default encoding of TextIOWrapper and open() is
platform and locale dependent. Since UTF-8 is used on most Unix
platforms, omitting encoding option when opening UTF-8 files
(e.g. JSON, YAML, TOML, Markdown) is a very common bug. For example:

BUG: "rb" mode or encoding="utf-8" should be used.
with open("data.json") as f:
 data = json.load(f)

To find this type of bug, an optional EncodingWarning is added.
It is emitted when sys.flags.warn_default_encoding
is true and locale-specific default encoding is used.

-X warn_default_encoding option and PYTHONWARNDEFAULTENCODING
are added to enable the warning.

See Text Encoding for more information.

New Features Related to Type Hints

This section covers major changes affecting PEP 484 [https://peps.python.org/pep-0484/] type hints and
the typing module.

PEP 604: New Type Union Operator

A new type union operator was introduced which enables the syntax X | Y.
This provides a cleaner way of expressing ‘either type X or type Y’ instead of
using typing.Union, especially in type hints.

In previous versions of Python, to apply a type hint for functions accepting
arguments of multiple types, typing.Union was used:

def square(number: Union[int, float]) -> Union[int, float]:
 return number ** 2

Type hints can now be written in a more succinct manner:

def square(number: int | float) -> int | float:
 return number ** 2

This new syntax is also accepted as the second argument to isinstance()
and issubclass():

>>> isinstance(1, int | str)
True

See Union Type and PEP 604 [https://peps.python.org/pep-0604/] for more details.

(Contributed by Maggie Moss and Philippe Prados in bpo-41428 [https://bugs.python.org/issue?@action=redirect&bpo=41428],
with additions by Yurii Karabas and Serhiy Storchaka in bpo-44490 [https://bugs.python.org/issue?@action=redirect&bpo=44490].)

PEP 612: Parameter Specification Variables

Two new options to improve the information provided to static type checkers for
PEP 484 [https://peps.python.org/pep-0484/]‘s Callable have been added to the typing module.

The first is the parameter specification variable. They are used to forward the
parameter types of one callable to another callable – a pattern commonly
found in higher order functions and decorators. Examples of usage can be found
in typing.ParamSpec. Previously, there was no easy way to type annotate
dependency of parameter types in such a precise manner.

The second option is the new Concatenate operator. It’s used in conjunction
with parameter specification variables to type annotate a higher order callable
which adds or removes parameters of another callable. Examples of usage can
be found in typing.Concatenate.

See typing.Callable, typing.ParamSpec,
typing.Concatenate, typing.ParamSpecArgs,
typing.ParamSpecKwargs, and PEP 612 [https://peps.python.org/pep-0612/] for more details.

(Contributed by Ken Jin in bpo-41559 [https://bugs.python.org/issue?@action=redirect&bpo=41559], with minor enhancements by Jelle
Zijlstra in bpo-43783 [https://bugs.python.org/issue?@action=redirect&bpo=43783]. PEP written by Mark Mendoza.)

PEP 613: TypeAlias

PEP 484 [https://peps.python.org/pep-0484/] introduced the concept of type aliases, only requiring them to be
top-level unannotated assignments. This simplicity sometimes made it difficult
for type checkers to distinguish between type aliases and ordinary assignments,
especially when forward references or invalid types were involved. Compare:

StrCache = 'Cache[str]' # a type alias
LOG_PREFIX = 'LOG[DEBUG]' # a module constant

Now the typing module has a special value TypeAlias
which lets you declare type aliases more explicitly:

StrCache: TypeAlias = 'Cache[str]' # a type alias
LOG_PREFIX = 'LOG[DEBUG]' # a module constant

See PEP 613 [https://peps.python.org/pep-0613/] for more details.

(Contributed by Mikhail Golubev in bpo-41923 [https://bugs.python.org/issue?@action=redirect&bpo=41923].)

PEP 647: User-Defined Type Guards

TypeGuard has been added to the typing module to annotate
type guard functions and improve information provided to static type checkers
during type narrowing. For more information, please see TypeGuard‘s
documentation, and PEP 647 [https://peps.python.org/pep-0647/].

(Contributed by Ken Jin and Guido van Rossum in bpo-43766 [https://bugs.python.org/issue?@action=redirect&bpo=43766].
PEP written by Eric Traut.)

Other Language Changes

	The int type has a new method int.bit_count(), returning the
number of ones in the binary expansion of a given integer, also known
as the population count. (Contributed by Niklas Fiekas in bpo-29882 [https://bugs.python.org/issue?@action=redirect&bpo=29882].)

	The views returned by dict.keys(), dict.values() and
dict.items() now all have a mapping attribute that gives a
types.MappingProxyType object wrapping the original
dictionary. (Contributed by Dennis Sweeney in bpo-40890 [https://bugs.python.org/issue?@action=redirect&bpo=40890].)

	PEP 618 [https://peps.python.org/pep-0618/]: The zip() function now has an optional strict flag, used
to require that all the iterables have an equal length.

	Builtin and extension functions that take integer arguments no longer accept
Decimals, Fractions and other
objects that can be converted to integers only with a loss (e.g. that have
the __int__() method but do not have the
__index__() method).
(Contributed by Serhiy Storchaka in bpo-37999 [https://bugs.python.org/issue?@action=redirect&bpo=37999].)

	If object.__ipow__() returns NotImplemented, the operator will
correctly fall back to object.__pow__() and object.__rpow__() as expected.
(Contributed by Alex Shkop in bpo-38302 [https://bugs.python.org/issue?@action=redirect&bpo=38302].)

	Assignment expressions can now be used unparenthesized within set literals
and set comprehensions, as well as in sequence indexes (but not slices).

	Functions have a new __builtins__ attribute which is used to look for
builtin symbols when a function is executed, instead of looking into
__globals__['__builtins__']. The attribute is initialized from
__globals__["__builtins__"] if it exists, else from the current builtins.
(Contributed by Mark Shannon in bpo-42990 [https://bugs.python.org/issue?@action=redirect&bpo=42990].)

	Two new builtin functions – aiter() and anext() have been added
to provide asynchronous counterparts to iter() and next(),
respectively.
(Contributed by Joshua Bronson, Daniel Pope, and Justin Wang in bpo-31861 [https://bugs.python.org/issue?@action=redirect&bpo=31861].)

	Static methods (@staticmethod) and class methods
(@classmethod) now inherit the method attributes
(__module__, __name__, __qualname__, __doc__,
__annotations__) and have a new __wrapped__ attribute.
Moreover, static methods are now callable as regular functions.
(Contributed by Victor Stinner in bpo-43682 [https://bugs.python.org/issue?@action=redirect&bpo=43682].)

	Annotations for complex targets (everything beside simple name targets
defined by PEP 526 [https://peps.python.org/pep-0526/]) no longer cause any runtime effects with from __future__ import annotations.
(Contributed by Batuhan Taskaya in bpo-42737 [https://bugs.python.org/issue?@action=redirect&bpo=42737].)

	Class and module objects now lazy-create empty annotations dicts on demand.
The annotations dicts are stored in the object’s __dict__ for
backwards compatibility. This improves the best practices for working
with __annotations__; for more information, please see
Annotations Best Practices.
(Contributed by Larry Hastings in bpo-43901 [https://bugs.python.org/issue?@action=redirect&bpo=43901].)

	Annotations consist of yield, yield from, await or named expressions
are now forbidden under from __future__ import annotations due to their side
effects.
(Contributed by Batuhan Taskaya in bpo-42725 [https://bugs.python.org/issue?@action=redirect&bpo=42725].)

	Usage of unbound variables, super() and other expressions that might
alter the processing of symbol table as annotations are now rendered
effectless under from __future__ import annotations.
(Contributed by Batuhan Taskaya in bpo-42725 [https://bugs.python.org/issue?@action=redirect&bpo=42725].)

	Hashes of NaN values of both float type and
decimal.Decimal type now depend on object identity. Formerly, they
always hashed to 0 even though NaN values are not equal to one another.
This caused potentially quadratic runtime behavior due to excessive hash
collisions when creating dictionaries and sets containing multiple NaNs.
(Contributed by Raymond Hettinger in bpo-43475 [https://bugs.python.org/issue?@action=redirect&bpo=43475].)

	A SyntaxError (instead of a NameError) will be raised when deleting
the __debug__ constant. (Contributed by Dong-hee Na in bpo-45000 [https://bugs.python.org/issue?@action=redirect&bpo=45000].)

	SyntaxError exceptions now have end_lineno and
end_offset attributes. They will be None if not determined.
(Contributed by Pablo Galindo in bpo-43914 [https://bugs.python.org/issue?@action=redirect&bpo=43914].)

New Modules

	None yet.

Improved Modules

asyncio

Add missing connect_accepted_socket()
method.
(Contributed by Alex Grönholm in bpo-41332 [https://bugs.python.org/issue?@action=redirect&bpo=41332].)

argparse

Misleading phrase “optional arguments” was replaced with “options” in argparse help. Some tests might require adaptation if they rely on exact output match.
(Contributed by Raymond Hettinger in bpo-9694 [https://bugs.python.org/issue?@action=redirect&bpo=9694].)

array

The index() method of array.array now has
optional start and stop parameters.
(Contributed by Anders Lorentsen and Zackery Spytz in bpo-31956 [https://bugs.python.org/issue?@action=redirect&bpo=31956].)

asynchat, asyncore, smtpd

These modules have been marked as deprecated in their module documentation
since Python 3.6. An import-time DeprecationWarning has now been
added to all three of these modules.

base64

Add base64.b32hexencode() and base64.b32hexdecode() to support the
Base32 Encoding with Extended Hex Alphabet.

bdb

Add clearBreakpoints() to reset all set breakpoints.
(Contributed by Irit Katriel in bpo-24160 [https://bugs.python.org/issue?@action=redirect&bpo=24160].)

bisect

Added the possibility of providing a key function to the APIs in the bisect
module. (Contributed by Raymond Hettinger in bpo-4356 [https://bugs.python.org/issue?@action=redirect&bpo=4356].)

codecs

Add a codecs.unregister() function to unregister a codec search function.
(Contributed by Hai Shi in bpo-41842 [https://bugs.python.org/issue?@action=redirect&bpo=41842].)

collections.abc

The __args__ of the parameterized generic for
collections.abc.Callable are now consistent with typing.Callable.
collections.abc.Callable generic now flattens type parameters, similar
to what typing.Callable currently does. This means that
collections.abc.Callable[[int, str], str] will have __args__ of
(int, str, str); previously this was ([int, str], str). To allow this
change, types.GenericAlias can now be subclassed, and a subclass will
be returned when subscripting the collections.abc.Callable type. Note
that a TypeError may be raised for invalid forms of parameterizing
collections.abc.Callable which may have passed silently in Python 3.9.
(Contributed by Ken Jin in bpo-42195 [https://bugs.python.org/issue?@action=redirect&bpo=42195].)

contextlib

Add a contextlib.aclosing() context manager to safely close async generators
and objects representing asynchronously released resources.
(Contributed by Joongi Kim and John Belmonte in bpo-41229 [https://bugs.python.org/issue?@action=redirect&bpo=41229].)

Add asynchronous context manager support to contextlib.nullcontext().
(Contributed by Tom Gringauz in bpo-41543 [https://bugs.python.org/issue?@action=redirect&bpo=41543].)

Add AsyncContextDecorator, for supporting usage of async context managers
as decorators.

curses

The extended color functions added in ncurses 6.1 will be used transparently
by curses.color_content(), curses.init_color(),
curses.init_pair(), and curses.pair_content(). A new function,
curses.has_extended_color_support(), indicates whether extended color
support is provided by the underlying ncurses library.
(Contributed by Jeffrey Kintscher and Hans Petter Jansson in bpo-36982 [https://bugs.python.org/issue?@action=redirect&bpo=36982].)

The BUTTON5_* constants are now exposed in the curses module if
they are provided by the underlying curses library.
(Contributed by Zackery Spytz in bpo-39273 [https://bugs.python.org/issue?@action=redirect&bpo=39273].)

dataclasses

__slots__

Added slots parameter in dataclasses.dataclass() decorator.
(Contributed by Yurii Karabas in bpo-42269 [https://bugs.python.org/issue?@action=redirect&bpo=42269])

Keyword-only fields

dataclasses now supports fields that are keyword-only in the
generated __init__ method. There are a number of ways of specifying
keyword-only fields.

You can say that every field is keyword-only:

from dataclasses import dataclass

@dataclass(kw_only=True)
class Birthday:
 name: str
 birthday: datetime.date

Both name and birthday are keyword-only parameters to the
generated __init__ method.

You can specify keyword-only on a per-field basis:

from dataclasses import dataclass, field

@dataclass
class Birthday:
 name: str
 birthday: datetime.date = field(kw_only=True)

Here only birthday is keyword-only. If you set kw_only on
individual fields, be aware that there are rules about re-ordering
fields due to keyword-only fields needing to follow non-keyword-only
fields. See the full dataclasses documentation for details.

You can also specify that all fields following a KW_ONLY marker are
keyword-only. This will probably be the most common usage:

from dataclasses import dataclass, KW_ONLY

@dataclass
class Point:
 x: float
 y: float
 _: KW_ONLY
 z: float = 0.0
 t: float = 0.0

Here, z and t are keyword-only parameters, while x and
y are not.
(Contributed by Eric V. Smith in bpo-43532 [https://bugs.python.org/issue?@action=redirect&bpo=43532].)

distutils

The entire distutils package is deprecated, to be removed in Python
3.12. Its functionality for specifying package builds has already been
completely replaced by third-party packages setuptools and
packaging, and most other commonly used APIs are available elsewhere
in the standard library (such as platform, shutil,
subprocess or sysconfig). There are no plans to migrate
any other functionality from distutils, and applications that are
using other functions should plan to make private copies of the code.
Refer to PEP 632 [https://peps.python.org/pep-0632/] for discussion.

The bdist_wininst command deprecated in Python 3.8 has been removed.
The bdist_wheel command is now recommended to distribute binary packages
on Windows.
(Contributed by Victor Stinner in bpo-42802 [https://bugs.python.org/issue?@action=redirect&bpo=42802].)

doctest

When a module does not define __loader__, fall back to __spec__.loader.
(Contributed by Brett Cannon in bpo-42133 [https://bugs.python.org/issue?@action=redirect&bpo=42133].)

encodings

encodings.normalize_encoding() now ignores non-ASCII characters.
(Contributed by Hai Shi in bpo-39337 [https://bugs.python.org/issue?@action=redirect&bpo=39337].)

enum

Enum __repr__() now returns enum_name.member_name and
__str__() now returns member_name. Stdlib enums available as
module constants have a repr() of module_name.member_name.
(Contributed by Ethan Furman in bpo-40066 [https://bugs.python.org/issue?@action=redirect&bpo=40066].)

Add enum.StrEnum for enums where all members are strings.
(Contributed by Ethan Furman in bpo-41816 [https://bugs.python.org/issue?@action=redirect&bpo=41816].)

fileinput

Add encoding and errors parameters in fileinput.input() and
fileinput.FileInput.
(Contributed by Inada Naoki in bpo-43712 [https://bugs.python.org/issue?@action=redirect&bpo=43712].)

fileinput.hook_compressed() now returns TextIOWrapper object
when mode is “r” and file is compressed, like uncompressed files.
(Contributed by Inada Naoki in bpo-5758 [https://bugs.python.org/issue?@action=redirect&bpo=5758].)

faulthandler

The faulthandler module now detects if a fatal error occurs during a
garbage collector collection.
(Contributed by Victor Stinner in bpo-44466 [https://bugs.python.org/issue?@action=redirect&bpo=44466].)

gc

Add audit hooks for gc.get_objects(), gc.get_referrers() and
gc.get_referents(). (Contributed by Pablo Galindo in bpo-43439 [https://bugs.python.org/issue?@action=redirect&bpo=43439].)

glob

Add the root_dir and dir_fd parameters in glob() and
iglob() which allow to specify the root directory for searching.
(Contributed by Serhiy Storchaka in bpo-38144 [https://bugs.python.org/issue?@action=redirect&bpo=38144].)

hashlib

The hashlib module requires OpenSSL 1.1.1 or newer.
(Contributed by Christian Heimes in PEP 644 [https://peps.python.org/pep-0644/] and bpo-43669 [https://bugs.python.org/issue?@action=redirect&bpo=43669].)

The hashlib module has preliminary support for OpenSSL 3.0.0.
(Contributed by Christian Heimes in bpo-38820 [https://bugs.python.org/issue?@action=redirect&bpo=38820] and other issues.)

The pure-Python fallback of pbkdf2_hmac() is deprecated. In
the future PBKDF2-HMAC will only be available when Python has been built with
OpenSSL support.
(Contributed by Christian Heimes in bpo-43880 [https://bugs.python.org/issue?@action=redirect&bpo=43880].)

hmac

The hmac module now uses OpenSSL’s HMAC implementation internally.
(Contributed by Christian Heimes in bpo-40645 [https://bugs.python.org/issue?@action=redirect&bpo=40645].)

IDLE and idlelib

Make IDLE invoke sys.excepthook() (when started without ‘-n’).
User hooks were previously ignored. (Contributed by Ken Hilton in
bpo-43008 [https://bugs.python.org/issue?@action=redirect&bpo=43008].)

Rearrange the settings dialog. Split the General tab into Windows
and Shell/Ed tabs. Move help sources, which extend the Help menu, to the
Extensions tab. Make space for new options and shorten the dialog. The
latter makes the dialog better fit small screens. (Contributed by Terry Jan
Reedy in bpo-40468 [https://bugs.python.org/issue?@action=redirect&bpo=40468].) Move the indent space setting from the Font tab to
the new Windows tab. (Contributed by Mark Roseman and Terry Jan Reedy in
bpo-33962 [https://bugs.python.org/issue?@action=redirect&bpo=33962].)

The changes above were backported to a 3.9 maintenance release.

Add a Shell sidebar. Move the primary prompt (‘>>>’) to the sidebar.
Add secondary prompts (’…’) to the sidebar. Left click and optional
drag selects one or more lines of text, as with the editor
line number sidebar. Right click after selecting text lines displays
a context menu with ‘copy with prompts’. This zips together prompts
from the sidebar with lines from the selected text. This option also
appears on the context menu for the text. (Contributed by Tal Einat
in bpo-37903 [https://bugs.python.org/issue?@action=redirect&bpo=37903].)

Use spaces instead of tabs to indent interactive code. This makes
interactive code entries ‘look right’. Making this feasible was a
major motivation for adding the shell sidebar. (Contributed by
Terry Jan Reedy in bpo-37892 [https://bugs.python.org/issue?@action=redirect&bpo=37892].)

Highlight the new soft keywords match,
case, and _ in
pattern-matching statements. However, this highlighting is not perfect
and will be incorrect in some rare cases, including some _-s in
case patterns. (Contributed by Tal Einat in bpo-44010 [https://bugs.python.org/issue?@action=redirect&bpo=44010].)

New in 3.10 maintenance releases.

Apply syntax highlighting to .pyi files. (Contributed by Alex
Waygood and Terry Jan Reedy in bpo-45447 [https://bugs.python.org/issue?@action=redirect&bpo=45447].)

Include prompts when saving Shell with inputs and outputs.
(Contributed by Terry Jan Reedy in gh-95191 [https://github.com/python/cpython/issues/95191].)

importlib.metadata

Feature parity with importlib_metadata 4.6
(history [https://importlib-metadata.readthedocs.io/en/latest/history.html]).

importlib.metadata entry points
now provide a nicer experience
for selecting entry points by group and name through a new
importlib.metadata.EntryPoints class. See the Compatibility
Note in the docs for more info on the deprecation and usage.

Added importlib.metadata.packages_distributions() for resolving
top-level Python modules and packages to their
importlib.metadata.Distribution.

inspect

When a module does not define __loader__, fall back to __spec__.loader.
(Contributed by Brett Cannon in bpo-42133 [https://bugs.python.org/issue?@action=redirect&bpo=42133].)

Add inspect.get_annotations(), which safely computes the annotations
defined on an object. It works around the quirks of accessing the annotations
on various types of objects, and makes very few assumptions about the object
it examines. inspect.get_annotations() can also correctly un-stringize
stringized annotations. inspect.get_annotations() is now considered
best practice for accessing the annotations dict defined on any Python object;
for more information on best practices for working with annotations, please see
Annotations Best Practices.
Relatedly, inspect.signature(),
inspect.Signature.from_callable(), and inspect.Signature.from_function()
now call inspect.get_annotations() to retrieve annotations. This means
inspect.signature() and inspect.Signature.from_callable() can
also now un-stringize stringized annotations.
(Contributed by Larry Hastings in bpo-43817 [https://bugs.python.org/issue?@action=redirect&bpo=43817].)

itertools

Add itertools.pairwise().
(Contributed by Raymond Hettinger in bpo-38200 [https://bugs.python.org/issue?@action=redirect&bpo=38200].)

linecache

When a module does not define __loader__, fall back to __spec__.loader.
(Contributed by Brett Cannon in bpo-42133 [https://bugs.python.org/issue?@action=redirect&bpo=42133].)

os

Add os.cpu_count() support for VxWorks RTOS.
(Contributed by Peixing Xin in bpo-41440 [https://bugs.python.org/issue?@action=redirect&bpo=41440].)

Add a new function os.eventfd() and related helpers to wrap the
eventfd2 syscall on Linux.
(Contributed by Christian Heimes in bpo-41001 [https://bugs.python.org/issue?@action=redirect&bpo=41001].)

Add os.splice() that allows to move data between two file
descriptors without copying between kernel address space and user
address space, where one of the file descriptors must refer to a
pipe. (Contributed by Pablo Galindo in bpo-41625 [https://bugs.python.org/issue?@action=redirect&bpo=41625].)

Add O_EVTONLY, O_FSYNC, O_SYMLINK
and O_NOFOLLOW_ANY for macOS.
(Contributed by Dong-hee Na in bpo-43106 [https://bugs.python.org/issue?@action=redirect&bpo=43106].)

os.path

os.path.realpath() now accepts a strict keyword-only argument. When set
to True, OSError is raised if a path doesn’t exist or a symlink loop
is encountered.
(Contributed by Barney Gale in bpo-43757 [https://bugs.python.org/issue?@action=redirect&bpo=43757].)

pathlib

Add slice support to PurePath.parents.
(Contributed by Joshua Cannon in bpo-35498 [https://bugs.python.org/issue?@action=redirect&bpo=35498].)

Add negative indexing support to PurePath.parents.
(Contributed by Yaroslav Pankovych in bpo-21041 [https://bugs.python.org/issue?@action=redirect&bpo=21041].)

Add Path.hardlink_to method that
supersedes link_to(). The new method has the same argument
order as symlink_to().
(Contributed by Barney Gale in bpo-39950 [https://bugs.python.org/issue?@action=redirect&bpo=39950].)

pathlib.Path.stat() and chmod() now accept a
follow_symlinks keyword-only argument for consistency with corresponding
functions in the os module.
(Contributed by Barney Gale in bpo-39906 [https://bugs.python.org/issue?@action=redirect&bpo=39906].)

platform

Add platform.freedesktop_os_release() to retrieve operation system
identification from freedesktop.org os-release [https://www.freedesktop.org/software/systemd/man/os-release.html] standard file.
(Contributed by Christian Heimes in bpo-28468 [https://bugs.python.org/issue?@action=redirect&bpo=28468].)

pprint

pprint.pprint() now accepts a new underscore_numbers keyword argument.
(Contributed by sblondon in bpo-42914 [https://bugs.python.org/issue?@action=redirect&bpo=42914].)

pprint can now pretty-print dataclasses.dataclass instances.
(Contributed by Lewis Gaul in bpo-43080 [https://bugs.python.org/issue?@action=redirect&bpo=43080].)

py_compile

Add --quiet option to command-line interface of py_compile.
(Contributed by Gregory Schevchenko in bpo-38731 [https://bugs.python.org/issue?@action=redirect&bpo=38731].)

pyclbr

Add an end_lineno attribute to the Function and Class
objects in the tree returned by pyclbr.readline() and
pyclbr.readline_ex(). It matches the existing (start) lineno.
(Contributed by Aviral Srivastava in bpo-38307 [https://bugs.python.org/issue?@action=redirect&bpo=38307].)

shelve

The shelve module now uses pickle.DEFAULT_PROTOCOL by default
instead of pickle protocol 3 when creating shelves.
(Contributed by Zackery Spytz in bpo-34204 [https://bugs.python.org/issue?@action=redirect&bpo=34204].)

statistics

Add covariance(), Pearson’s
correlation(), and simple
linear_regression() functions.
(Contributed by Tymoteusz Wołodźko in bpo-38490 [https://bugs.python.org/issue?@action=redirect&bpo=38490].)

site

When a module does not define __loader__, fall back to __spec__.loader.
(Contributed by Brett Cannon in bpo-42133 [https://bugs.python.org/issue?@action=redirect&bpo=42133].)

socket

The exception socket.timeout is now an alias of TimeoutError.
(Contributed by Christian Heimes in bpo-42413 [https://bugs.python.org/issue?@action=redirect&bpo=42413].)

Add option to create MPTCP sockets with IPPROTO_MPTCP
(Contributed by Rui Cunha in bpo-43571 [https://bugs.python.org/issue?@action=redirect&bpo=43571].)

Add IP_RECVTOS option to receive the type of service (ToS) or DSCP/ECN fields
(Contributed by Georg Sauthoff in bpo-44077 [https://bugs.python.org/issue?@action=redirect&bpo=44077].)

ssl

The ssl module requires OpenSSL 1.1.1 or newer.
(Contributed by Christian Heimes in PEP 644 [https://peps.python.org/pep-0644/] and bpo-43669 [https://bugs.python.org/issue?@action=redirect&bpo=43669].)

The ssl module has preliminary support for OpenSSL 3.0.0 and new option
OP_IGNORE_UNEXPECTED_EOF.
(Contributed by Christian Heimes in bpo-38820 [https://bugs.python.org/issue?@action=redirect&bpo=38820], bpo-43794 [https://bugs.python.org/issue?@action=redirect&bpo=43794],
bpo-43788 [https://bugs.python.org/issue?@action=redirect&bpo=43788], bpo-43791 [https://bugs.python.org/issue?@action=redirect&bpo=43791], bpo-43799 [https://bugs.python.org/issue?@action=redirect&bpo=43799], bpo-43920 [https://bugs.python.org/issue?@action=redirect&bpo=43920],
bpo-43789 [https://bugs.python.org/issue?@action=redirect&bpo=43789], and bpo-43811 [https://bugs.python.org/issue?@action=redirect&bpo=43811].)

Deprecated function and use of deprecated constants now result in
a DeprecationWarning. ssl.SSLContext.options has
OP_NO_SSLv2 and OP_NO_SSLv3 set by default and
therefore cannot warn about setting the flag again. The
deprecation section has a list of deprecated
features.
(Contributed by Christian Heimes in bpo-43880 [https://bugs.python.org/issue?@action=redirect&bpo=43880].)

The ssl module now has more secure default settings. Ciphers without forward
secrecy or SHA-1 MAC are disabled by default. Security level 2 prohibits
weak RSA, DH, and ECC keys with less than 112 bits of security.
SSLContext defaults to minimum protocol version TLS 1.2.
Settings are based on Hynek Schlawack’s research.
(Contributed by Christian Heimes in bpo-43998 [https://bugs.python.org/issue?@action=redirect&bpo=43998].)

The deprecated protocols SSL 3.0, TLS 1.0, and TLS 1.1 are no longer
officially supported. Python does not block them actively. However
OpenSSL build options, distro configurations, vendor patches, and cipher
suites may prevent a successful handshake.

Add a timeout parameter to the ssl.get_server_certificate() function.
(Contributed by Zackery Spytz in bpo-31870 [https://bugs.python.org/issue?@action=redirect&bpo=31870].)

The ssl module uses heap-types and multi-phase initialization.
(Contributed by Christian Heimes in bpo-42333 [https://bugs.python.org/issue?@action=redirect&bpo=42333].)

A new verify flag VERIFY_X509_PARTIAL_CHAIN has been added.
(Contributed by l0x in bpo-40849 [https://bugs.python.org/issue?@action=redirect&bpo=40849].)

sqlite3

Add audit events for connect/handle(),
enable_load_extension(), and
load_extension().
(Contributed by Erlend E. Aasland in bpo-43762 [https://bugs.python.org/issue?@action=redirect&bpo=43762].)

sys

Add sys.orig_argv attribute: the list of the original command line
arguments passed to the Python executable.
(Contributed by Victor Stinner in bpo-23427 [https://bugs.python.org/issue?@action=redirect&bpo=23427].)

Add sys.stdlib_module_names, containing the list of the standard library
module names.
(Contributed by Victor Stinner in bpo-42955 [https://bugs.python.org/issue?@action=redirect&bpo=42955].)

_thread

_thread.interrupt_main() now takes an optional signal number to
simulate (the default is still signal.SIGINT).
(Contributed by Antoine Pitrou in bpo-43356 [https://bugs.python.org/issue?@action=redirect&bpo=43356].)

threading

Add threading.gettrace() and threading.getprofile() to
retrieve the functions set by threading.settrace() and
threading.setprofile() respectively.
(Contributed by Mario Corchero in bpo-42251 [https://bugs.python.org/issue?@action=redirect&bpo=42251].)

Add threading.__excepthook__ to allow retrieving the original value
of threading.excepthook() in case it is set to a broken or a different
value.
(Contributed by Mario Corchero in bpo-42308 [https://bugs.python.org/issue?@action=redirect&bpo=42308].)

traceback

The format_exception(),
format_exception_only(), and
print_exception() functions can now take an exception object
as a positional-only argument.
(Contributed by Zackery Spytz and Matthias Bussonnier in bpo-26389 [https://bugs.python.org/issue?@action=redirect&bpo=26389].)

types

Reintroduce the types.EllipsisType, types.NoneType
and types.NotImplementedType classes, providing a new set
of types readily interpretable by type checkers.
(Contributed by Bas van Beek in bpo-41810 [https://bugs.python.org/issue?@action=redirect&bpo=41810].)

typing

For major changes, see New Features Related to Type Hints.

The behavior of typing.Literal was changed to conform with PEP 586 [https://peps.python.org/pep-0586/]
and to match the behavior of static type checkers specified in the PEP.

	Literal now de-duplicates parameters.

	Equality comparisons between Literal objects are now order independent.

	Literal comparisons now respect types. For example,
Literal[0] == Literal[False] previously evaluated to True. It is
now False. To support this change, the internally used type cache now
supports differentiating types.

	Literal objects will now raise a TypeError exception during
equality comparisons if any of their parameters are not hashable.
Note that declaring Literal with unhashable parameters will not throw
an error:

>>> from typing import Literal
>>> Literal[{0}]
>>> Literal[{0}] == Literal[{False}]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'set'

(Contributed by Yurii Karabas in bpo-42345 [https://bugs.python.org/issue?@action=redirect&bpo=42345].)

Add new function typing.is_typeddict() to introspect if an annotation
is a typing.TypedDict.
(Contributed by Patrick Reader in bpo-41792 [https://bugs.python.org/issue?@action=redirect&bpo=41792].)

Subclasses of typing.Protocol which only have data variables declared
will now raise a TypeError when checked with isinstance unless they
are decorated with runtime_checkable(). Previously, these checks
passed silently. Users should decorate their
subclasses with the runtime_checkable() decorator
if they want runtime protocols.
(Contributed by Yurii Karabas in bpo-38908 [https://bugs.python.org/issue?@action=redirect&bpo=38908].)

Importing from the typing.io and typing.re submodules will now emit
DeprecationWarning. These submodules have been deprecated since
Python 3.8 and will be removed in a future version of Python. Anything
belonging to those submodules should be imported directly from
typing instead.
(Contributed by Sebastian Rittau in bpo-38291 [https://bugs.python.org/issue?@action=redirect&bpo=38291].)

unittest

Add new method assertNoLogs() to complement the
existing assertLogs(). (Contributed by Kit Yan Choi
in bpo-39385 [https://bugs.python.org/issue?@action=redirect&bpo=39385].)

urllib.parse

Python versions earlier than Python 3.10 allowed using both ; and & as
query parameter separators in urllib.parse.parse_qs() and
urllib.parse.parse_qsl(). Due to security concerns, and to conform with
newer W3C recommendations, this has been changed to allow only a single
separator key, with & as the default. This change also affects
cgi.parse() and cgi.parse_multipart() as they use the affected
functions internally. For more details, please see their respective
documentation.
(Contributed by Adam Goldschmidt, Senthil Kumaran and Ken Jin in bpo-42967 [https://bugs.python.org/issue?@action=redirect&bpo=42967].)

xml

Add a LexicalHandler class to the
xml.sax.handler module.
(Contributed by Jonathan Gossage and Zackery Spytz in bpo-35018 [https://bugs.python.org/issue?@action=redirect&bpo=35018].)

zipimport

Add methods related to PEP 451 [https://peps.python.org/pep-0451/]: find_spec(),
zipimport.zipimporter.create_module(), and
zipimport.zipimporter.exec_module().
(Contributed by Brett Cannon in bpo-42131 [https://bugs.python.org/issue?@action=redirect&bpo=42131].)

Add invalidate_caches() method.
(Contributed by Desmond Cheong in bpo-14678 [https://bugs.python.org/issue?@action=redirect&bpo=14678].)

Optimizations

	Constructors str(), bytes() and bytearray() are now faster
(around 30–40% for small objects).
(Contributed by Serhiy Storchaka in bpo-41334 [https://bugs.python.org/issue?@action=redirect&bpo=41334].)

	The runpy module now imports fewer modules.
The python3 -m module-name command startup time is 1.4x faster in
average. On Linux, python3 -I -m module-name imports 69 modules on Python
3.9, whereas it only imports 51 modules (-18) on Python 3.10.
(Contributed by Victor Stinner in bpo-41006 [https://bugs.python.org/issue?@action=redirect&bpo=41006] and bpo-41718 [https://bugs.python.org/issue?@action=redirect&bpo=41718].)

	The LOAD_ATTR instruction now uses new “per opcode cache” mechanism. It
is about 36% faster now for regular attributes and 44% faster for slots.
(Contributed by Pablo Galindo and Yury Selivanov in bpo-42093 [https://bugs.python.org/issue?@action=redirect&bpo=42093] and Guido
van Rossum in bpo-42927 [https://bugs.python.org/issue?@action=redirect&bpo=42927], based on ideas implemented originally in PyPy
and MicroPython.)

	When building Python with --enable-optimizations now
-fno-semantic-interposition is added to both the compile and link line.
This speeds builds of the Python interpreter created with --enable-shared
with gcc by up to 30%. See this article [https://developers.redhat.com/blog/2020/06/25/red-hat-enterprise-linux-8-2-brings-faster-python-3-8-run-speeds/]
for more details. (Contributed by Victor Stinner and Pablo Galindo in
bpo-38980 [https://bugs.python.org/issue?@action=redirect&bpo=38980].)

	Use a new output buffer management code for bz2 / lzma /
zlib modules, and add .readall() function to
_compression.DecompressReader class. bz2 decompression is now 1.09x ~ 1.17x
faster, lzma decompression 1.20x ~ 1.32x faster, GzipFile.read(-1) 1.11x
~ 1.18x faster. (Contributed by Ma Lin, reviewed by Gregory P. Smith, in bpo-41486 [https://bugs.python.org/issue?@action=redirect&bpo=41486])

	When using stringized annotations, annotations dicts for functions are no longer
created when the function is created. Instead, they are stored as a tuple of
strings, and the function object lazily converts this into the annotations dict
on demand. This optimization cuts the CPU time needed to define an annotated
function by half.
(Contributed by Yurii Karabas and Inada Naoki in bpo-42202 [https://bugs.python.org/issue?@action=redirect&bpo=42202].)

	Substring search functions such as str1 in str2 and str2.find(str1)
now sometimes use Crochemore & Perrin’s “Two-Way” string searching
algorithm to avoid quadratic behavior on long strings. (Contributed
by Dennis Sweeney in bpo-41972 [https://bugs.python.org/issue?@action=redirect&bpo=41972])

	Add micro-optimizations to _PyType_Lookup() to improve type attribute cache lookup
performance in the common case of cache hits. This makes the interpreter 1.04 times faster
on average. (Contributed by Dino Viehland in bpo-43452 [https://bugs.python.org/issue?@action=redirect&bpo=43452].)

	The following built-in functions now support the faster PEP 590 [https://peps.python.org/pep-0590/] vectorcall calling convention:
map(), filter(), reversed(), bool() and float().
(Contributed by Dong-hee Na and Jeroen Demeyer in bpo-43575 [https://bugs.python.org/issue?@action=redirect&bpo=43575], bpo-43287 [https://bugs.python.org/issue?@action=redirect&bpo=43287], bpo-41922 [https://bugs.python.org/issue?@action=redirect&bpo=41922], bpo-41873 [https://bugs.python.org/issue?@action=redirect&bpo=41873] and bpo-41870 [https://bugs.python.org/issue?@action=redirect&bpo=41870].)

	BZ2File performance is improved by removing internal RLock.
This makes BZ2File thread unsafe in the face of multiple simultaneous
readers or writers, just like its equivalent classes in gzip and
lzma have always been. (Contributed by Inada Naoki in bpo-43785 [https://bugs.python.org/issue?@action=redirect&bpo=43785].)

Deprecated

	Currently Python accepts numeric literals immediately followed by keywords,
for example 0in x, 1or x, 0if 1else 2. It allows confusing
and ambiguous expressions like [0x1for x in y] (which can be
interpreted as [0x1 for x in y] or [0x1f or x in y]). Starting in
this release, a deprecation warning is raised if the numeric literal is
immediately followed by one of keywords and, else,
for, if, in, is and or.
In future releases it will be changed to syntax warning, and finally to
syntax error.
(Contributed by Serhiy Storchaka in bpo-43833 [https://bugs.python.org/issue?@action=redirect&bpo=43833].)

	Starting in this release, there will be a concerted effort to begin
cleaning up old import semantics that were kept for Python 2.7
compatibility. Specifically,
find_loader()/find_module()
(superseded by find_spec()),
load_module()
(superseded by exec_module()),
module_repr() (which the import system
takes care of for you), the __package__ attribute
(superseded by __spec__.parent), the __loader__ attribute
(superseded by __spec__.loader), and the __cached__ attribute
(superseded by __spec__.cached) will slowly be removed (as well
as other classes and methods in importlib).
ImportWarning and/or DeprecationWarning will be raised
as appropriate to help identify code which needs updating during
this transition.

	The entire distutils namespace is deprecated, to be removed in
Python 3.12. Refer to the module changes
section for more information.

	Non-integer arguments to random.randrange() are deprecated.
The ValueError is deprecated in favor of a TypeError.
(Contributed by Serhiy Storchaka and Raymond Hettinger in bpo-37319 [https://bugs.python.org/issue?@action=redirect&bpo=37319].)

	The various load_module() methods of importlib have been
documented as deprecated since Python 3.6, but will now also trigger
a DeprecationWarning. Use
exec_module() instead.
(Contributed by Brett Cannon in bpo-26131 [https://bugs.python.org/issue?@action=redirect&bpo=26131].)

	zimport.zipimporter.load_module() has been deprecated in
preference for exec_module().
(Contributed by Brett Cannon in bpo-26131 [https://bugs.python.org/issue?@action=redirect&bpo=26131].)

	The use of load_module() by the import
system now triggers an ImportWarning as
exec_module() is preferred.
(Contributed by Brett Cannon in bpo-26131 [https://bugs.python.org/issue?@action=redirect&bpo=26131].)

	The use of importlib.abc.MetaPathFinder.find_module() and
importlib.abc.PathEntryFinder.find_module() by the import system now
trigger an ImportWarning as
importlib.abc.MetaPathFinder.find_spec() and
importlib.abc.PathEntryFinder.find_spec()
are preferred, respectively. You can use
importlib.util.spec_from_loader() to help in porting.
(Contributed by Brett Cannon in bpo-42134 [https://bugs.python.org/issue?@action=redirect&bpo=42134].)

	The use of importlib.abc.PathEntryFinder.find_loader() by the import
system now triggers an ImportWarning as
importlib.abc.PathEntryFinder.find_spec() is preferred. You can use
importlib.util.spec_from_loader() to help in porting.
(Contributed by Brett Cannon in bpo-43672 [https://bugs.python.org/issue?@action=redirect&bpo=43672].)

	The various implementations of
importlib.abc.MetaPathFinder.find_module() (
importlib.machinery.BuiltinImporter.find_module(),
importlib.machinery.FrozenImporter.find_module(),
importlib.machinery.WindowsRegistryFinder.find_module(),
importlib.machinery.PathFinder.find_module(),
importlib.abc.MetaPathFinder.find_module()),
importlib.abc.PathEntryFinder.find_module() (
importlib.machinery.FileFinder.find_module()), and
importlib.abc.PathEntryFinder.find_loader() (
importlib.machinery.FileFinder.find_loader())
now raise DeprecationWarning and are slated for removal in
Python 3.12 (previously they were documented as deprecated in Python 3.4).
(Contributed by Brett Cannon in bpo-42135 [https://bugs.python.org/issue?@action=redirect&bpo=42135].)

	importlib.abc.Finder is deprecated (including its sole method,
find_module()). Both
importlib.abc.MetaPathFinder and importlib.abc.PathEntryFinder
no longer inherit from the class. Users should inherit from one of these two
classes as appropriate instead.
(Contributed by Brett Cannon in bpo-42135 [https://bugs.python.org/issue?@action=redirect&bpo=42135].)

	The deprecations of imp, importlib.find_loader(),
importlib.util.set_package_wrapper(),
importlib.util.set_loader_wrapper(),
importlib.util.module_for_loader(),
pkgutil.ImpImporter, and
pkgutil.ImpLoader have all been updated to list Python 3.12 as the
slated version of removal (they began raising DeprecationWarning in
previous versions of Python).
(Contributed by Brett Cannon in bpo-43720 [https://bugs.python.org/issue?@action=redirect&bpo=43720].)

	The import system now uses the __spec__ attribute on modules before
falling back on module_repr() for a module’s
__repr__() method. Removal of the use of module_repr() is scheduled
for Python 3.12.
(Contributed by Brett Cannon in bpo-42137 [https://bugs.python.org/issue?@action=redirect&bpo=42137].)

	importlib.abc.Loader.module_repr(),
importlib.machinery.FrozenLoader.module_repr(), and
importlib.machinery.BuiltinLoader.module_repr() are deprecated and
slated for removal in Python 3.12.
(Contributed by Brett Cannon in bpo-42136 [https://bugs.python.org/issue?@action=redirect&bpo=42136].)

	sqlite3.OptimizedUnicode has been undocumented and obsolete since Python
3.3, when it was made an alias to str. It is now deprecated,
scheduled for removal in Python 3.12.
(Contributed by Erlend E. Aasland in bpo-42264 [https://bugs.python.org/issue?@action=redirect&bpo=42264].)

	The undocumented built-in function sqlite3.enable_shared_cache is now
deprecated, scheduled for removal in Python 3.12. Its use is strongly
discouraged by the SQLite3 documentation. See the SQLite3 docs [https://sqlite.org/c3ref/enable_shared_cache.html] for more details.
If a shared cache must be used, open the database in URI mode using the
cache=shared query parameter.
(Contributed by Erlend E. Aasland in bpo-24464 [https://bugs.python.org/issue?@action=redirect&bpo=24464].)

	The following threading methods are now deprecated:

	threading.currentThread => threading.current_thread()

	threading.activeCount => threading.active_count()

	threading.Condition.notifyAll =>
threading.Condition.notify_all()

	threading.Event.isSet => threading.Event.is_set()

	threading.Thread.setName => threading.Thread.name

	threading.thread.getName => threading.Thread.name

	threading.Thread.isDaemon => threading.Thread.daemon

	threading.Thread.setDaemon => threading.Thread.daemon

(Contributed by Jelle Zijlstra in gh-87889 [https://github.com/python/cpython/issues/87889].)

	pathlib.Path.link_to() is deprecated and slated for removal in
Python 3.12. Use pathlib.Path.hardlink_to() instead.
(Contributed by Barney Gale in bpo-39950 [https://bugs.python.org/issue?@action=redirect&bpo=39950].)

	cgi.log() is deprecated and slated for removal in Python 3.12.
(Contributed by Inada Naoki in bpo-41139 [https://bugs.python.org/issue?@action=redirect&bpo=41139].)

	The following ssl features have been deprecated since Python 3.6,
Python 3.7, or OpenSSL 1.1.0 and will be removed in 3.11:

	OP_NO_SSLv2, OP_NO_SSLv3, OP_NO_TLSv1,
OP_NO_TLSv1_1, OP_NO_TLSv1_2, and
OP_NO_TLSv1_3 are replaced by
sslSSLContext.minimum_version and
sslSSLContext.maximum_version.

	PROTOCOL_SSLv2, PROTOCOL_SSLv3,
PROTOCOL_SSLv23, PROTOCOL_TLSv1,
PROTOCOL_TLSv1_1, PROTOCOL_TLSv1_2, and
PROTOCOL_TLS are deprecated in favor of
PROTOCOL_TLS_CLIENT and PROTOCOL_TLS_SERVER

	wrap_socket() is replaced by ssl.SSLContext.wrap_socket()

	match_hostname()

	RAND_pseudo_bytes(), RAND_egd()

	NPN features like ssl.SSLSocket.selected_npn_protocol() and
ssl.SSLContext.set_npn_protocols() are replaced by ALPN.

	The threading debug (PYTHONTHREADDEBUG environment variable) is
deprecated in Python 3.10 and will be removed in Python 3.12. This feature
requires a debug build of Python.
(Contributed by Victor Stinner in bpo-44584 [https://bugs.python.org/issue?@action=redirect&bpo=44584].)

	Importing from the typing.io and typing.re submodules will now emit
DeprecationWarning. These submodules will be removed in a future version
of Python. Anything belonging to these submodules should be imported directly
from typing instead.
(Contributed by Sebastian Rittau in bpo-38291 [https://bugs.python.org/issue?@action=redirect&bpo=38291].)

Removed

	Removed special methods __int__, __float__, __floordiv__,
__mod__, __divmod__, __rfloordiv__, __rmod__ and
__rdivmod__ of the complex class. They always raised
a TypeError.
(Contributed by Serhiy Storchaka in bpo-41974 [https://bugs.python.org/issue?@action=redirect&bpo=41974].)

	The ParserBase.error() method from the private and undocumented _markupbase
module has been removed. html.parser.HTMLParser is the only subclass of
ParserBase and its error() implementation was already removed in
Python 3.5.
(Contributed by Berker Peksag in bpo-31844 [https://bugs.python.org/issue?@action=redirect&bpo=31844].)

	Removed the unicodedata.ucnhash_CAPI attribute which was an internal
PyCapsule object. The related private _PyUnicode_Name_CAPI structure was
moved to the internal C API.
(Contributed by Victor Stinner in bpo-42157 [https://bugs.python.org/issue?@action=redirect&bpo=42157].)

	Removed the parser module, which was deprecated in 3.9 due to the
switch to the new PEG parser, as well as all the C source and header files
that were only being used by the old parser, including node.h, parser.h,
graminit.h and grammar.h.

	Removed the Public C API functions PyParser_SimpleParseStringFlags,
PyParser_SimpleParseStringFlagsFilename,
PyParser_SimpleParseFileFlags and PyNode_Compile
that were deprecated in 3.9 due to the switch to the new PEG parser.

	Removed the formatter module, which was deprecated in Python 3.4.
It is somewhat obsolete, little used, and not tested. It was originally
scheduled to be removed in Python 3.6, but such removals were delayed until
after Python 2.7 EOL. Existing users should copy whatever classes they use
into their code.
(Contributed by Dong-hee Na and Terry J. Reedy in bpo-42299 [https://bugs.python.org/issue?@action=redirect&bpo=42299].)

	Removed the PyModule_GetWarningsModule() function that was useless
now due to the _warnings module was converted to a builtin module in 2.6.
(Contributed by Hai Shi in bpo-42599 [https://bugs.python.org/issue?@action=redirect&bpo=42599].)

	Remove deprecated aliases to Collections Abstract Base Classes from
the collections module.
(Contributed by Victor Stinner in bpo-37324 [https://bugs.python.org/issue?@action=redirect&bpo=37324].)

	The loop parameter has been removed from most of asyncio‘s
high-level API following deprecation
in Python 3.8. The motivation behind this change is multifold:

	This simplifies the high-level API.

	The functions in the high-level API have been implicitly getting the
current thread’s running event loop since Python 3.7. There isn’t a need to
pass the event loop to the API in most normal use cases.

	Event loop passing is error-prone especially when dealing with loops
running in different threads.

Note that the low-level API will still accept loop.
See Changes in the Python API for examples of how to replace existing code.

(Contributed by Yurii Karabas, Andrew Svetlov, Yury Selivanov and Kyle Stanley
in bpo-42392 [https://bugs.python.org/issue?@action=redirect&bpo=42392].)

Porting to Python 3.10

This section lists previously described changes and other bugfixes
that may require changes to your code.

Changes in the Python syntax

	Deprecation warning is now emitted when compiling previously valid syntax
if the numeric literal is immediately followed by a keyword (like in 0in x).
In future releases it will be changed to syntax warning, and finally to a
syntax error. To get rid of the warning and make the code compatible with
future releases just add a space between the numeric literal and the
following keyword.
(Contributed by Serhiy Storchaka in bpo-43833 [https://bugs.python.org/issue?@action=redirect&bpo=43833].)

Changes in the Python API

	The etype parameters of the format_exception(),
format_exception_only(), and
print_exception() functions in the traceback module
have been renamed to exc.
(Contributed by Zackery Spytz and Matthias Bussonnier in bpo-26389 [https://bugs.python.org/issue?@action=redirect&bpo=26389].)

	atexit: At Python exit, if a callback registered with
atexit.register() fails, its exception is now logged. Previously, only
some exceptions were logged, and the last exception was always silently
ignored.
(Contributed by Victor Stinner in bpo-42639 [https://bugs.python.org/issue?@action=redirect&bpo=42639].)

	collections.abc.Callable generic now flattens type parameters, similar
to what typing.Callable currently does. This means that
collections.abc.Callable[[int, str], str] will have __args__ of
(int, str, str); previously this was ([int, str], str). Code which
accesses the arguments via typing.get_args() or __args__ need to account
for this change. Furthermore, TypeError may be raised for invalid forms
of parameterizing collections.abc.Callable which may have passed
silently in Python 3.9.
(Contributed by Ken Jin in bpo-42195 [https://bugs.python.org/issue?@action=redirect&bpo=42195].)

	socket.htons() and socket.ntohs() now raise OverflowError
instead of DeprecationWarning if the given parameter will not fit in
a 16-bit unsigned integer.
(Contributed by Erlend E. Aasland in bpo-42393 [https://bugs.python.org/issue?@action=redirect&bpo=42393].)

	The loop parameter has been removed from most of asyncio‘s
high-level API following deprecation
in Python 3.8.

A coroutine that currently looks like this:

async def foo(loop):
 await asyncio.sleep(1, loop=loop)

Should be replaced with this:

async def foo():
 await asyncio.sleep(1)

If foo() was specifically designed not to run in the current thread’s
running event loop (e.g. running in another thread’s event loop), consider
using asyncio.run_coroutine_threadsafe() instead.

(Contributed by Yurii Karabas, Andrew Svetlov, Yury Selivanov and Kyle Stanley
in bpo-42392 [https://bugs.python.org/issue?@action=redirect&bpo=42392].)

	The types.FunctionType constructor now inherits the current builtins
if the globals dictionary has no "__builtins__" key, rather than using
{"None": None} as builtins: same behavior as eval() and
exec() functions. Defining a function with def function(...): ...
in Python is not affected, globals cannot be overridden with this syntax: it
also inherits the current builtins.
(Contributed by Victor Stinner in bpo-42990 [https://bugs.python.org/issue?@action=redirect&bpo=42990].)

Changes in the C API

	The C API functions PyParser_SimpleParseStringFlags,
PyParser_SimpleParseStringFlagsFilename,
PyParser_SimpleParseFileFlags, PyNode_Compile and the type
used by these functions, struct _node, were removed due to the switch
to the new PEG parser.

Source should be now be compiled directly to a code object using, for
example, Py_CompileString(). The resulting code object can then be
evaluated using, for example, PyEval_EvalCode().

Specifically:

	A call to PyParser_SimpleParseStringFlags followed by
PyNode_Compile can be replaced by calling Py_CompileString().

	There is no direct replacement for PyParser_SimpleParseFileFlags.
To compile code from a FILE * argument, you will need to read
the file in C and pass the resulting buffer to Py_CompileString().

	To compile a file given a char * filename, explicitly open the file, read
it and compile the result. One way to do this is using the io
module with PyImport_ImportModule(), PyObject_CallMethod(),
PyBytes_AsString() and Py_CompileString(),
as sketched below. (Declarations and error handling are omitted.)

io_module = Import_ImportModule("io");
fileobject = PyObject_CallMethod(io_module, "open", "ss", filename, "rb");
source_bytes_object = PyObject_CallMethod(fileobject, "read", "");
result = PyObject_CallMethod(fileobject, "close", "");
source_buf = PyBytes_AsString(source_bytes_object);
code = Py_CompileString(source_buf, filename, Py_file_input);

	For FrameObject objects, the f_lasti member now represents a wordcode
offset instead of a simple offset into the bytecode string. This means that this
number needs to be multiplied by 2 to be used with APIs that expect a byte offset
instead (like PyCode_Addr2Line() for example). Notice as well that the
f_lasti member of FrameObject objects is not considered stable: please
use PyFrame_GetLineNumber() instead.

CPython bytecode changes

	The MAKE_FUNCTION instruction now accepts either a dict or a tuple of
strings as the function’s annotations.
(Contributed by Yurii Karabas and Inada Naoki in bpo-42202 [https://bugs.python.org/issue?@action=redirect&bpo=42202].)

Build Changes

	PEP 644 [https://peps.python.org/pep-0644/]: Python now requires OpenSSL 1.1.1 or newer. OpenSSL 1.0.2 is no
longer supported.
(Contributed by Christian Heimes in bpo-43669 [https://bugs.python.org/issue?@action=redirect&bpo=43669].)

	The C99 functions snprintf() and vsnprintf() are now required
to build Python.
(Contributed by Victor Stinner in bpo-36020 [https://bugs.python.org/issue?@action=redirect&bpo=36020].)

	sqlite3 requires SQLite 3.7.15 or higher. (Contributed by Sergey Fedoseev
and Erlend E. Aasland in bpo-40744 [https://bugs.python.org/issue?@action=redirect&bpo=40744] and bpo-40810 [https://bugs.python.org/issue?@action=redirect&bpo=40810].)

	The atexit module must now always be built as a built-in module.
(Contributed by Victor Stinner in bpo-42639 [https://bugs.python.org/issue?@action=redirect&bpo=42639].)

	Add --disable-test-modules option to the configure script:
don’t build nor install test modules.
(Contributed by Xavier de Gaye, Thomas Petazzoni and Peixing Xin in bpo-27640 [https://bugs.python.org/issue?@action=redirect&bpo=27640].)

	Add --with-wheel-pkg-dir=PATH option
to the ./configure script. If
specified, the ensurepip module looks for setuptools and pip
wheel packages in this directory: if both are present, these wheel packages
are used instead of ensurepip bundled wheel packages.

Some Linux distribution packaging policies recommend against bundling
dependencies. For example, Fedora installs wheel packages in the
/usr/share/python-wheels/ directory and don’t install the
ensurepip._bundled package.

(Contributed by Victor Stinner in bpo-42856 [https://bugs.python.org/issue?@action=redirect&bpo=42856].)

	Add a new configure --without-static-libpython option to not build the libpythonMAJOR.MINOR.a
static library and not install the python.o object file.

(Contributed by Victor Stinner in bpo-43103 [https://bugs.python.org/issue?@action=redirect&bpo=43103].)

	The configure script now uses the pkg-config utility, if available,
to detect the location of Tcl/Tk headers and libraries. As before, those
locations can be explicitly specified with the --with-tcltk-includes
and --with-tcltk-libs configuration options.
(Contributed by Manolis Stamatogiannakis in bpo-42603 [https://bugs.python.org/issue?@action=redirect&bpo=42603].)

	Add --with-openssl-rpath option to configure script. The option
simplifies building Python with a custom OpenSSL installation, e.g.
./configure --with-openssl=/path/to/openssl --with-openssl-rpath=auto.
(Contributed by Christian Heimes in bpo-43466 [https://bugs.python.org/issue?@action=redirect&bpo=43466].)

C API Changes

PEP 652: Maintaining the Stable ABI

The Stable ABI (Application Binary Interface) for extension modules or
embedding Python is now explicitly defined.
C API Stability describes C API and ABI stability guarantees along with best
practices for using the Stable ABI.

(Contributed by Petr Viktorin in PEP 652 [https://peps.python.org/pep-0652/] and bpo-43795 [https://bugs.python.org/issue?@action=redirect&bpo=43795].)

New Features

	The result of PyNumber_Index() now always has exact type int.
Previously, the result could have been an instance of a subclass of int.
(Contributed by Serhiy Storchaka in bpo-40792 [https://bugs.python.org/issue?@action=redirect&bpo=40792].)

	Add a new orig_argv member to the PyConfig
structure: the list of the original command line arguments passed to the
Python executable.
(Contributed by Victor Stinner in bpo-23427 [https://bugs.python.org/issue?@action=redirect&bpo=23427].)

	The PyDateTime_DATE_GET_TZINFO() and
PyDateTime_TIME_GET_TZINFO() macros have been added for accessing
the tzinfo attributes of datetime.datetime and
datetime.time objects.
(Contributed by Zackery Spytz in bpo-30155 [https://bugs.python.org/issue?@action=redirect&bpo=30155].)

	Add a PyCodec_Unregister() function to unregister a codec
search function.
(Contributed by Hai Shi in bpo-41842 [https://bugs.python.org/issue?@action=redirect&bpo=41842].)

	The PyIter_Send() function was added to allow
sending value into iterator without raising StopIteration exception.
(Contributed by Vladimir Matveev in bpo-41756 [https://bugs.python.org/issue?@action=redirect&bpo=41756].)

	Add PyUnicode_AsUTF8AndSize() to the limited C API.
(Contributed by Alex Gaynor in bpo-41784 [https://bugs.python.org/issue?@action=redirect&bpo=41784].)

	Add PyModule_AddObjectRef() function: similar to
PyModule_AddObject() but don’t steal a reference to the value on
success.
(Contributed by Victor Stinner in bpo-1635741 [https://bugs.python.org/issue?@action=redirect&bpo=1635741].)

	Add Py_NewRef() and Py_XNewRef() functions to increment the
reference count of an object and return the object.
(Contributed by Victor Stinner in bpo-42262 [https://bugs.python.org/issue?@action=redirect&bpo=42262].)

	The PyType_FromSpecWithBases() and PyType_FromModuleAndSpec()
functions now accept a single class as the bases argument.
(Contributed by Serhiy Storchaka in bpo-42423 [https://bugs.python.org/issue?@action=redirect&bpo=42423].)

	The PyType_FromModuleAndSpec() function now accepts NULL tp_doc
slot.
(Contributed by Hai Shi in bpo-41832 [https://bugs.python.org/issue?@action=redirect&bpo=41832].)

	The PyType_GetSlot() function can accept
static types.
(Contributed by Hai Shi and Petr Viktorin in bpo-41073 [https://bugs.python.org/issue?@action=redirect&bpo=41073].)

	Add a new PySet_CheckExact() function to the C-API to check if an
object is an instance of set but not an instance of a subtype.
(Contributed by Pablo Galindo in bpo-43277 [https://bugs.python.org/issue?@action=redirect&bpo=43277].)

	Add PyErr_SetInterruptEx() which allows passing a signal number
to simulate.
(Contributed by Antoine Pitrou in bpo-43356 [https://bugs.python.org/issue?@action=redirect&bpo=43356].)

	The limited C API is now supported if Python is built in debug mode (if the Py_DEBUG macro is defined). In the limited C API,
the Py_INCREF() and Py_DECREF() functions are now implemented
as opaque function
calls, rather than accessing directly the PyObject.ob_refcnt
member, if Python is built in debug mode and the Py_LIMITED_API macro
targets Python 3.10 or newer. It became possible to support the limited C API
in debug mode because the PyObject structure is the same in release
and debug mode since Python 3.8 (see bpo-36465 [https://bugs.python.org/issue?@action=redirect&bpo=36465]).

The limited C API is still not supported in the --with-trace-refs
special build (Py_TRACE_REFS macro).
(Contributed by Victor Stinner in bpo-43688 [https://bugs.python.org/issue?@action=redirect&bpo=43688].)

	Add the Py_Is(x, y) function to test if the x object is
the y object, the same as x is y in Python. Add also the
Py_IsNone(), Py_IsTrue(), Py_IsFalse() functions to
test if an object is, respectively, the None singleton, the True
singleton or the False singleton.
(Contributed by Victor Stinner in bpo-43753 [https://bugs.python.org/issue?@action=redirect&bpo=43753].)

	Add new functions to control the garbage collector from C code:
PyGC_Enable(),
PyGC_Disable(),
PyGC_IsEnabled().
These functions allow to activate, deactivate and query the state of the garbage collector from C code without
having to import the gc module.

	Add a new Py_TPFLAGS_DISALLOW_INSTANTIATION type flag to disallow
creating type instances.
(Contributed by Victor Stinner in bpo-43916 [https://bugs.python.org/issue?@action=redirect&bpo=43916].)

	Add a new Py_TPFLAGS_IMMUTABLETYPE type flag for creating immutable
type objects: type attributes cannot be set nor deleted.
(Contributed by Victor Stinner and Erlend E. Aasland in bpo-43908 [https://bugs.python.org/issue?@action=redirect&bpo=43908].)

Porting to Python 3.10

	The PY_SSIZE_T_CLEAN macro must now be defined to use
PyArg_ParseTuple() and Py_BuildValue() formats which use
#: es#, et#, s#, u#, y#, z#, U# and Z#.
See Parsing arguments and building values and PEP 353 [https://peps.python.org/pep-0353/].
(Contributed by Victor Stinner in bpo-40943 [https://bugs.python.org/issue?@action=redirect&bpo=40943].)

	Since Py_REFCNT() is changed to the inline static function,
Py_REFCNT(obj) = new_refcnt must be replaced with Py_SET_REFCNT(obj, new_refcnt):
see Py_SET_REFCNT() (available since Python 3.9). For backward
compatibility, this macro can be used:

#if PY_VERSION_HEX < 0x030900A4
define Py_SET_REFCNT(obj, refcnt) ((Py_REFCNT(obj) = (refcnt)), (void)0)
#endif

(Contributed by Victor Stinner in bpo-39573 [https://bugs.python.org/issue?@action=redirect&bpo=39573].)

	Calling PyDict_GetItem() without GIL held had been allowed
for historical reason. It is no longer allowed.
(Contributed by Victor Stinner in bpo-40839 [https://bugs.python.org/issue?@action=redirect&bpo=40839].)

	PyUnicode_FromUnicode(NULL, size) and PyUnicode_FromStringAndSize(NULL, size)
raise DeprecationWarning now. Use PyUnicode_New() to allocate
Unicode object without initial data.
(Contributed by Inada Naoki in bpo-36346 [https://bugs.python.org/issue?@action=redirect&bpo=36346].)

	The private _PyUnicode_Name_CAPI structure of the PyCapsule API
unicodedata.ucnhash_CAPI has been moved to the internal C API.
(Contributed by Victor Stinner in bpo-42157 [https://bugs.python.org/issue?@action=redirect&bpo=42157].)

	Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(),
Py_GetProgramFullPath(), Py_GetPythonHome() and
Py_GetProgramName() functions now return NULL if called before
Py_Initialize() (before Python is initialized). Use the new
Python Initialization Configuration API to get the Python Path Configuration.
(Contributed by Victor Stinner in bpo-42260 [https://bugs.python.org/issue?@action=redirect&bpo=42260].)

	PyList_SET_ITEM(), PyTuple_SET_ITEM() and
PyCell_SET() macros can no longer be used as l-value or r-value.
For example, x = PyList_SET_ITEM(a, b, c) and
PyList_SET_ITEM(a, b, c) = x now fail with a compiler error. It prevents
bugs like if (PyList_SET_ITEM (a, b, c) < 0) ... test.
(Contributed by Zackery Spytz and Victor Stinner in bpo-30459 [https://bugs.python.org/issue?@action=redirect&bpo=30459].)

	The non-limited API files odictobject.h, parser_interface.h,
picklebufobject.h, pyarena.h, pyctype.h, pydebug.h,
pyfpe.h, and pytime.h have been moved to the Include/cpython
directory. These files must not be included directly, as they are already
included in Python.h; see Include Files. If they have
been included directly, consider including Python.h instead.
(Contributed by Nicholas Sim in bpo-35134 [https://bugs.python.org/issue?@action=redirect&bpo=35134].)

	Use the Py_TPFLAGS_IMMUTABLETYPE type flag to create immutable type
objects. Do not rely on Py_TPFLAGS_HEAPTYPE to decide if a type
object is mutable or not; check if Py_TPFLAGS_IMMUTABLETYPE is set
instead.
(Contributed by Victor Stinner and Erlend E. Aasland in bpo-43908 [https://bugs.python.org/issue?@action=redirect&bpo=43908].)

	The undocumented function Py_FrozenMain has been removed from the
limited API. The function is mainly useful for custom builds of Python.
(Contributed by Petr Viktorin in bpo-26241 [https://bugs.python.org/issue?@action=redirect&bpo=26241].)

Deprecated

	The PyUnicode_InternImmortal() function is now deprecated
and will be removed in Python 3.12: use PyUnicode_InternInPlace()
instead.
(Contributed by Victor Stinner in bpo-41692 [https://bugs.python.org/issue?@action=redirect&bpo=41692].)

Removed

	Removed Py_UNICODE_str* functions manipulating Py_UNICODE* strings.
(Contributed by Inada Naoki in bpo-41123 [https://bugs.python.org/issue?@action=redirect&bpo=41123].)

	Py_UNICODE_strlen: use PyUnicode_GetLength() or
PyUnicode_GET_LENGTH

	Py_UNICODE_strcat: use PyUnicode_CopyCharacters() or
PyUnicode_FromFormat()

	Py_UNICODE_strcpy, Py_UNICODE_strncpy: use
PyUnicode_CopyCharacters() or PyUnicode_Substring()

	Py_UNICODE_strcmp: use PyUnicode_Compare()

	Py_UNICODE_strncmp: use PyUnicode_Tailmatch()

	Py_UNICODE_strchr, Py_UNICODE_strrchr: use
PyUnicode_FindChar()

	Removed PyUnicode_GetMax(). Please migrate to new (PEP 393 [https://peps.python.org/pep-0393/]) APIs.
(Contributed by Inada Naoki in bpo-41103 [https://bugs.python.org/issue?@action=redirect&bpo=41103].)

	Removed PyLong_FromUnicode(). Please migrate to PyLong_FromUnicodeObject().
(Contributed by Inada Naoki in bpo-41103 [https://bugs.python.org/issue?@action=redirect&bpo=41103].)

	Removed PyUnicode_AsUnicodeCopy(). Please use PyUnicode_AsUCS4Copy() or
PyUnicode_AsWideCharString()
(Contributed by Inada Naoki in bpo-41103 [https://bugs.python.org/issue?@action=redirect&bpo=41103].)

	Removed _Py_CheckRecursionLimit variable: it has been replaced by
ceval.recursion_limit of the PyInterpreterState structure.
(Contributed by Victor Stinner in bpo-41834 [https://bugs.python.org/issue?@action=redirect&bpo=41834].)

	Removed undocumented macros Py_ALLOW_RECURSION and
Py_END_ALLOW_RECURSION and the recursion_critical field of the
PyInterpreterState structure.
(Contributed by Serhiy Storchaka in bpo-41936 [https://bugs.python.org/issue?@action=redirect&bpo=41936].)

	Removed the undocumented PyOS_InitInterrupts() function. Initializing
Python already implicitly installs signal handlers: see
PyConfig.install_signal_handlers.
(Contributed by Victor Stinner in bpo-41713 [https://bugs.python.org/issue?@action=redirect&bpo=41713].)

	Remove the PyAST_Validate() function. It is no longer possible to build a
AST object (mod_ty type) with the public C API. The function was already
excluded from the limited C API (PEP 384 [https://peps.python.org/pep-0384/]).
(Contributed by Victor Stinner in bpo-43244 [https://bugs.python.org/issue?@action=redirect&bpo=43244].)

	Remove the symtable.h header file and the undocumented functions:

	PyST_GetScope()

	PySymtable_Build()

	PySymtable_BuildObject()

	PySymtable_Free()

	Py_SymtableString()

	Py_SymtableStringObject()

The Py_SymtableString() function was part the stable ABI by mistake but
it could not be used, because the symtable.h header file was excluded
from the limited C API.

Use Python symtable module instead.
(Contributed by Victor Stinner in bpo-43244 [https://bugs.python.org/issue?@action=redirect&bpo=43244].)

	Remove PyOS_ReadlineFunctionPointer() from the limited C API headers
and from python3.dll, the library that provides the stable ABI on
Windows. Since the function takes a FILE* argument, its ABI stability
cannot be guaranteed.
(Contributed by Petr Viktorin in bpo-43868 [https://bugs.python.org/issue?@action=redirect&bpo=43868].)

	Remove ast.h, asdl.h, and Python-ast.h header files.
These functions were undocumented and excluded from the limited C API.
Most names defined by these header files were not prefixed by Py and so
could create names conflicts. For example, Python-ast.h defined a
Yield macro which was conflict with the Yield name used by the
Windows <winbase.h> header. Use the Python ast module instead.
(Contributed by Victor Stinner in bpo-43244 [https://bugs.python.org/issue?@action=redirect&bpo=43244].)

	Remove the compiler and parser functions using struct _mod type, because
the public AST C API was removed:

	PyAST_Compile()

	PyAST_CompileEx()

	PyAST_CompileObject()

	PyFuture_FromAST()

	PyFuture_FromASTObject()

	PyParser_ASTFromFile()

	PyParser_ASTFromFileObject()

	PyParser_ASTFromFilename()

	PyParser_ASTFromString()

	PyParser_ASTFromStringObject()

These functions were undocumented and excluded from the limited C API.
(Contributed by Victor Stinner in bpo-43244 [https://bugs.python.org/issue?@action=redirect&bpo=43244].)

	Remove the pyarena.h header file with functions:

	PyArena_New()

	PyArena_Free()

	PyArena_Malloc()

	PyArena_AddPyObject()

These functions were undocumented, excluded from the limited C API, and were
only used internally by the compiler.
(Contributed by Victor Stinner in bpo-43244 [https://bugs.python.org/issue?@action=redirect&bpo=43244].)

	The PyThreadState.use_tracing member has been removed to optimize Python.
(Contributed by Mark Shannon in bpo-43760 [https://bugs.python.org/issue?@action=redirect&bpo=43760].)

What’s New In Python 3.9

	Editor

	Łukasz Langa

This article explains the new features in Python 3.9, compared to 3.8.
Python 3.9 was released on October 5, 2020.

For full details, see the changelog.

See also

PEP 596 [https://peps.python.org/pep-0596/] - Python 3.9 Release Schedule

Summary – Release highlights

New syntax features:

	PEP 584 [https://peps.python.org/pep-0584/], union operators added to dict;

	PEP 585 [https://peps.python.org/pep-0585/], type hinting generics in standard collections;

	PEP 614 [https://peps.python.org/pep-0614/], relaxed grammar restrictions on decorators.

New built-in features:

	PEP 616 [https://peps.python.org/pep-0616/], string methods to remove prefixes and suffixes.

New features in the standard library:

	PEP 593 [https://peps.python.org/pep-0593/], flexible function and variable annotations;

	os.pidfd_open() added that allows process management without races
and signals.

Interpreter improvements:

	PEP 573 [https://peps.python.org/pep-0573/], fast access to module state from methods of C extension
types;

	PEP 617 [https://peps.python.org/pep-0617/], CPython now uses a new parser based on PEG;

	a number of Python builtins (range, tuple, set, frozenset, list, dict) are
now sped up using PEP 590 [https://peps.python.org/pep-0590/] vectorcall;

	garbage collection does not block on resurrected objects;

	a number of Python modules (_abc, audioop, _bz2,
_codecs, _contextvars, _crypt, _functools,
_json, _locale, math, operator, resource,
time, _weakref) now use multiphase initialization as defined
by PEP 489;

	a number of standard library modules (audioop, ast, grp,
_hashlib, pwd, _posixsubprocess, random,
select, struct, termios, zlib) are now using
the stable ABI defined by PEP 384.

New library modules:

	PEP 615 [https://peps.python.org/pep-0615/], the IANA Time Zone Database is now present in the standard
library in the zoneinfo module;

	an implementation of a topological sort of a graph is now provided in
the new graphlib module.

Release process changes:

	PEP 602 [https://peps.python.org/pep-0602/], CPython adopts an annual release cycle.

You should check for DeprecationWarning in your code

When Python 2.7 was still supported, a lot of functionality in Python 3
was kept for backward compatibility with Python 2.7. With the end of Python
2 support, these backward compatibility layers have been removed, or will
be removed soon. Most of them emitted a DeprecationWarning warning for
several years. For example, using collections.Mapping instead of
collections.abc.Mapping emits a DeprecationWarning since Python
3.3, released in 2012.

Test your application with the -W default command-line option to see
DeprecationWarning and PendingDeprecationWarning, or even with
-W error to treat them as errors. Warnings Filter can be used to ignore warnings from third-party code.

Python 3.9 is the last version providing those Python 2 backward compatibility
layers, to give more time to Python projects maintainers to organize the
removal of the Python 2 support and add support for Python 3.9.

Aliases to Abstract Base Classes in
the collections module, like collections.Mapping alias to
collections.abc.Mapping, are kept for one last release for backward
compatibility. They will be removed from Python 3.10.

More generally, try to run your tests in the Python Development Mode which helps to prepare your code to make it compatible with the
next Python version.

Note: a number of pre-existing deprecations were removed in this version of
Python as well. Consult the Removed section.

New Features

Dictionary Merge & Update Operators

Merge (|) and update (|=) operators have been added to the built-in
dict class. Those complement the existing dict.update and
{**d1, **d2} methods of merging dictionaries.

Example:

>>> x = {"key1": "value1 from x", "key2": "value2 from x"}
>>> y = {"key2": "value2 from y", "key3": "value3 from y"}
>>> x | y
{'key1': 'value1 from x', 'key2': 'value2 from y', 'key3': 'value3 from y'}
>>> y | x
{'key2': 'value2 from x', 'key3': 'value3 from y', 'key1': 'value1 from x'}

See PEP 584 [https://peps.python.org/pep-0584/] for a full description.
(Contributed by Brandt Bucher in bpo-36144 [https://bugs.python.org/issue?@action=redirect&bpo=36144].)

New String Methods to Remove Prefixes and Suffixes

str.removeprefix(prefix) and
str.removesuffix(suffix) have been added
to easily remove an unneeded prefix or a suffix from a string. Corresponding
bytes, bytearray, and collections.UserString methods have also been
added. See PEP 616 [https://peps.python.org/pep-0616/] for a full description. (Contributed by Dennis Sweeney in
bpo-39939 [https://bugs.python.org/issue?@action=redirect&bpo=39939].)

Type Hinting Generics in Standard Collections

In type annotations you can now use built-in collection types such as
list and dict as generic types instead of importing the
corresponding capitalized types (e.g. List or Dict) from
typing. Some other types in the standard library are also now generic,
for example queue.Queue.

Example:

def greet_all(names: list[str]) -> None:
 for name in names:
 print("Hello", name)

See PEP 585 [https://peps.python.org/pep-0585/] for more details. (Contributed by Guido van Rossum,
Ethan Smith, and Batuhan Taşkaya in bpo-39481 [https://bugs.python.org/issue?@action=redirect&bpo=39481].)

New Parser

Python 3.9 uses a new parser, based on PEG [https://en.wikipedia.org/wiki/Parsing_expression_grammar] instead
of LL(1) [https://en.wikipedia.org/wiki/LL_parser]. The new
parser’s performance is roughly comparable to that of the old parser,
but the PEG formalism is more flexible than LL(1) when it comes to
designing new language features. We’ll start using this flexibility
in Python 3.10 and later.

The ast module uses the new parser and produces the same AST as
the old parser.

In Python 3.10, the old parser will be deleted and so will all
functionality that depends on it (primarily the parser module,
which has long been deprecated). In Python 3.9 only, you can switch
back to the LL(1) parser using a command line switch (-X
oldparser) or an environment variable (PYTHONOLDPARSER=1).

See PEP 617 [https://peps.python.org/pep-0617/] for more details. (Contributed by Guido van Rossum,
Pablo Galindo and Lysandros Nikolaou in bpo-40334 [https://bugs.python.org/issue?@action=redirect&bpo=40334].)

Other Language Changes

	__import__() now raises ImportError instead of
ValueError, which used to occur when a relative import went past
its top-level package.
(Contributed by Ngalim Siregar in bpo-37444 [https://bugs.python.org/issue?@action=redirect&bpo=37444].)

	Python now gets the absolute path of the script filename specified on
the command line (ex: python3 script.py): the __file__ attribute of
the __main__ module became an absolute path, rather than a relative
path. These paths now remain valid after the current directory is changed
by os.chdir(). As a side effect, the traceback also displays the
absolute path for __main__ module frames in this case.
(Contributed by Victor Stinner in bpo-20443 [https://bugs.python.org/issue?@action=redirect&bpo=20443].)

	In the Python Development Mode and in debug build, the
encoding and errors arguments are now checked for string encoding and
decoding operations. Examples: open(), str.encode() and
bytes.decode().

By default, for best performance, the errors argument is only checked at
the first encoding/decoding error and the encoding argument is sometimes
ignored for empty strings.
(Contributed by Victor Stinner in bpo-37388 [https://bugs.python.org/issue?@action=redirect&bpo=37388].)

	"".replace("", s, n) now returns s instead of an empty string for
all non-zero n. It is now consistent with "".replace("", s).
There are similar changes for bytes and bytearray objects.
(Contributed by Serhiy Storchaka in bpo-28029 [https://bugs.python.org/issue?@action=redirect&bpo=28029].)

	Any valid expression can now be used as a decorator. Previously, the
grammar was much more restrictive. See PEP 614 [https://peps.python.org/pep-0614/] for details.
(Contributed by Brandt Bucher in bpo-39702 [https://bugs.python.org/issue?@action=redirect&bpo=39702].)

	Improved help for the typing module. Docstrings are now shown for
all special forms and special generic aliases (like Union and List).
Using help() with generic alias like List[int] will show the help
for the correspondent concrete type (list in this case).
(Contributed by Serhiy Storchaka in bpo-40257 [https://bugs.python.org/issue?@action=redirect&bpo=40257].)

	Parallel running of aclose() / asend() /
athrow() is now prohibited, and ag_running now reflects
the actual running status of the async generator.
(Contributed by Yury Selivanov in bpo-30773 [https://bugs.python.org/issue?@action=redirect&bpo=30773].)

	Unexpected errors in calling the __iter__ method are no longer masked by
TypeError in the in operator and functions
contains(), indexOf() and
countOf() of the operator module.
(Contributed by Serhiy Storchaka in bpo-40824 [https://bugs.python.org/issue?@action=redirect&bpo=40824].)

	Unparenthesized lambda expressions can no longer be the expression part in an
if clause in comprehensions and generator expressions. See bpo-41848 [https://bugs.python.org/issue?@action=redirect&bpo=41848]
and bpo-43755 [https://bugs.python.org/issue?@action=redirect&bpo=43755] for details.

New Modules

zoneinfo

The zoneinfo module brings support for the IANA time zone database to
the standard library. It adds zoneinfo.ZoneInfo, a concrete
datetime.tzinfo implementation backed by the system’s time zone data.

Example:

>>> from zoneinfo import ZoneInfo
>>> from datetime import datetime, timedelta

>>> # Daylight saving time
>>> dt = datetime(2020, 10, 31, 12, tzinfo=ZoneInfo("America/Los_Angeles"))
>>> print(dt)
2020-10-31 12:00:00-07:00
>>> dt.tzname()
'PDT'

>>> # Standard time
>>> dt += timedelta(days=7)
>>> print(dt)
2020-11-07 12:00:00-08:00
>>> print(dt.tzname())
PST

As a fall-back source of data for platforms that don’t ship the IANA database,
the tzdata [https://pypi.org/project/tzdata/] module was released as a first-party package – distributed via
PyPI and maintained by the CPython core team.

See also

	PEP 615 [https://peps.python.org/pep-0615/] – Support for the IANA Time Zone Database in the Standard Library
	PEP written and implemented by Paul Ganssle

graphlib

A new module, graphlib, was added that contains the
graphlib.TopologicalSorter class to offer functionality to perform
topological sorting of graphs. (Contributed by Pablo Galindo, Tim Peters and
Larry Hastings in bpo-17005 [https://bugs.python.org/issue?@action=redirect&bpo=17005].)

Improved Modules

ast

Added the indent option to dump() which allows it to produce a
multiline indented output.
(Contributed by Serhiy Storchaka in bpo-37995 [https://bugs.python.org/issue?@action=redirect&bpo=37995].)

Added ast.unparse() as a function in the ast module that can
be used to unparse an ast.AST object and produce a string with code
that would produce an equivalent ast.AST object when parsed.
(Contributed by Pablo Galindo and Batuhan Taskaya in bpo-38870 [https://bugs.python.org/issue?@action=redirect&bpo=38870].)

Added docstrings to AST nodes that contains the ASDL signature used to
construct that node. (Contributed by Batuhan Taskaya in bpo-39638 [https://bugs.python.org/issue?@action=redirect&bpo=39638].)

asyncio

Due to significant security concerns, the reuse_address parameter of
asyncio.loop.create_datagram_endpoint() is no longer supported. This is
because of the behavior of the socket option SO_REUSEADDR in UDP. For more
details, see the documentation for loop.create_datagram_endpoint().
(Contributed by Kyle Stanley, Antoine Pitrou, and Yury Selivanov in
bpo-37228 [https://bugs.python.org/issue?@action=redirect&bpo=37228].)

Added a new coroutine shutdown_default_executor()
that schedules a shutdown for the default executor that waits on the
ThreadPoolExecutor to finish closing. Also,
asyncio.run() has been updated to use the new coroutine.
(Contributed by Kyle Stanley in bpo-34037 [https://bugs.python.org/issue?@action=redirect&bpo=34037].)

Added asyncio.PidfdChildWatcher, a Linux-specific child watcher
implementation that polls process file descriptors. (bpo-38692 [https://bugs.python.org/issue?@action=redirect&bpo=38692])

Added a new coroutine asyncio.to_thread(). It is mainly used for
running IO-bound functions in a separate thread to avoid blocking the event
loop, and essentially works as a high-level version of
run_in_executor() that can directly take keyword arguments.
(Contributed by Kyle Stanley and Yury Selivanov in bpo-32309 [https://bugs.python.org/issue?@action=redirect&bpo=32309].)

When cancelling the task due to a timeout, asyncio.wait_for() will now
wait until the cancellation is complete also in the case when timeout is
<= 0, like it does with positive timeouts.
(Contributed by Elvis Pranskevichus in bpo-32751 [https://bugs.python.org/issue?@action=redirect&bpo=32751].)

asyncio now raises TyperError when calling incompatible
methods with an ssl.SSLSocket socket.
(Contributed by Ido Michael in bpo-37404 [https://bugs.python.org/issue?@action=redirect&bpo=37404].)

compileall

Added new possibility to use hardlinks for duplicated .pyc files: hardlink_dupes parameter and –hardlink-dupes command line option.
(Contributed by Lumír ‘Frenzy’ Balhar in bpo-40495 [https://bugs.python.org/issue?@action=redirect&bpo=40495].)

Added new options for path manipulation in resulting .pyc files: stripdir, prependdir, limit_sl_dest parameters and -s, -p, -e command line options.
Added the possibility to specify the option for an optimization level multiple times.
(Contributed by Lumír ‘Frenzy’ Balhar in bpo-38112 [https://bugs.python.org/issue?@action=redirect&bpo=38112].)

concurrent.futures

Added a new cancel_futures parameter to
concurrent.futures.Executor.shutdown() that cancels all pending futures
which have not started running, instead of waiting for them to complete before
shutting down the executor.
(Contributed by Kyle Stanley in bpo-39349 [https://bugs.python.org/issue?@action=redirect&bpo=39349].)

Removed daemon threads from ThreadPoolExecutor
and ProcessPoolExecutor. This improves
compatibility with subinterpreters and predictability in their shutdown
processes. (Contributed by Kyle Stanley in bpo-39812 [https://bugs.python.org/issue?@action=redirect&bpo=39812].)

Workers in ProcessPoolExecutor are now spawned on
demand, only when there are no available idle workers to reuse. This optimizes
startup overhead and reduces the amount of lost CPU time to idle workers.
(Contributed by Kyle Stanley in bpo-39207 [https://bugs.python.org/issue?@action=redirect&bpo=39207].)

curses

Added curses.get_escdelay(), curses.set_escdelay(),
curses.get_tabsize(), and curses.set_tabsize() functions.
(Contributed by Anthony Sottile in bpo-38312 [https://bugs.python.org/issue?@action=redirect&bpo=38312].)

datetime

The isocalendar() of datetime.date
and isocalendar() of datetime.datetime
methods now returns a namedtuple() instead of a tuple.
(Contributed by Dong-hee Na in bpo-24416 [https://bugs.python.org/issue?@action=redirect&bpo=24416].)

distutils

The upload command now creates SHA2-256 and Blake2b-256 hash
digests. It skips MD5 on platforms that block MD5 digest.
(Contributed by Christian Heimes in bpo-40698 [https://bugs.python.org/issue?@action=redirect&bpo=40698].)

fcntl

Added constants F_OFD_GETLK, F_OFD_SETLK
and F_OFD_SETLKW.
(Contributed by Dong-hee Na in bpo-38602 [https://bugs.python.org/issue?@action=redirect&bpo=38602].)

ftplib

FTP and FTP_TLS now raise a ValueError
if the given timeout for their constructor is zero to prevent the creation of
a non-blocking socket. (Contributed by Dong-hee Na in bpo-39259 [https://bugs.python.org/issue?@action=redirect&bpo=39259].)

gc

When the garbage collector makes a collection in which some objects resurrect
(they are reachable from outside the isolated cycles after the finalizers have
been executed), do not block the collection of all objects that are still
unreachable. (Contributed by Pablo Galindo and Tim Peters in bpo-38379 [https://bugs.python.org/issue?@action=redirect&bpo=38379].)

Added a new function gc.is_finalized() to check if an object has been
finalized by the garbage collector. (Contributed by Pablo Galindo in
bpo-39322 [https://bugs.python.org/issue?@action=redirect&bpo=39322].)

hashlib

The hashlib module can now use SHA3 hashes and SHAKE XOF from OpenSSL
when available.
(Contributed by Christian Heimes in bpo-37630 [https://bugs.python.org/issue?@action=redirect&bpo=37630].)

Builtin hash modules can now be disabled with
./configure --without-builtin-hashlib-hashes or selectively enabled with
e.g. ./configure --with-builtin-hashlib-hashes=sha3,blake2 to force use
of OpenSSL based implementation.
(Contributed by Christian Heimes in bpo-40479 [https://bugs.python.org/issue?@action=redirect&bpo=40479])

http

HTTP status codes 103 EARLY_HINTS, 418 IM_A_TEAPOT and 425 TOO_EARLY are added to
http.HTTPStatus. (Contributed by Dong-hee Na in bpo-39509 [https://bugs.python.org/issue?@action=redirect&bpo=39509] and Ross Rhodes in bpo-39507 [https://bugs.python.org/issue?@action=redirect&bpo=39507].)

IDLE and idlelib

Added option to toggle cursor blink off. (Contributed by Zackery Spytz
in bpo-4603 [https://bugs.python.org/issue?@action=redirect&bpo=4603].)

Escape key now closes IDLE completion windows. (Contributed by Johnny
Najera in bpo-38944 [https://bugs.python.org/issue?@action=redirect&bpo=38944].)

Added keywords to module name completion list. (Contributed by Terry J.
Reedy in bpo-37765 [https://bugs.python.org/issue?@action=redirect&bpo=37765].)

New in 3.9 maintenance releases

Make IDLE invoke sys.excepthook() (when started without ‘-n’).
User hooks were previously ignored. (Contributed by Ken Hilton in
bpo-43008 [https://bugs.python.org/issue?@action=redirect&bpo=43008].)

The changes above have been backported to 3.8 maintenance releases.

Rearrange the settings dialog. Split the General tab into Windows
and Shell/Ed tabs. Move help sources, which extend the Help menu, to the
Extensions tab. Make space for new options and shorten the dialog. The
latter makes the dialog better fit small screens. (Contributed by Terry Jan
Reedy in bpo-40468 [https://bugs.python.org/issue?@action=redirect&bpo=40468].) Move the indent space setting from the Font tab to
the new Windows tab. (Contributed by Mark Roseman and Terry Jan Reedy in
bpo-33962 [https://bugs.python.org/issue?@action=redirect&bpo=33962].)

Apply syntax highlighting to .pyi files. (Contributed by Alex
Waygood and Terry Jan Reedy in bpo-45447 [https://bugs.python.org/issue?@action=redirect&bpo=45447].)

imaplib

IMAP4 and IMAP4_SSL now have
an optional timeout parameter for their constructors.
Also, the open() method now has an optional timeout parameter
with this change. The overridden methods of IMAP4_SSL and
IMAP4_stream were applied to this change.
(Contributed by Dong-hee Na in bpo-38615 [https://bugs.python.org/issue?@action=redirect&bpo=38615].)

imaplib.IMAP4.unselect() is added.
imaplib.IMAP4.unselect() frees server’s resources associated with the
selected mailbox and returns the server to the authenticated
state. This command performs the same actions as imaplib.IMAP4.close(), except
that no messages are permanently removed from the currently
selected mailbox. (Contributed by Dong-hee Na in bpo-40375 [https://bugs.python.org/issue?@action=redirect&bpo=40375].)

importlib

To improve consistency with import statements, importlib.util.resolve_name()
now raises ImportError instead of ValueError for invalid relative
import attempts.
(Contributed by Ngalim Siregar in bpo-37444 [https://bugs.python.org/issue?@action=redirect&bpo=37444].)

Import loaders which publish immutable module objects can now publish
immutable packages in addition to individual modules.
(Contributed by Dino Viehland in bpo-39336 [https://bugs.python.org/issue?@action=redirect&bpo=39336].)

Added importlib.resources.files() function with support for
subdirectories in package data, matching backport in importlib_resources
version 1.5.
(Contributed by Jason R. Coombs in bpo-39791 [https://bugs.python.org/issue?@action=redirect&bpo=39791].)

Refreshed importlib.metadata from importlib_metadata version 1.6.1.

inspect

inspect.BoundArguments.arguments is changed from OrderedDict to regular
dict. (Contributed by Inada Naoki in bpo-36350 [https://bugs.python.org/issue?@action=redirect&bpo=36350] and bpo-39775 [https://bugs.python.org/issue?@action=redirect&bpo=39775].)

ipaddress

ipaddress now supports IPv6 Scoped Addresses (IPv6 address with suffix %<scope_id>).

Scoped IPv6 addresses can be parsed using ipaddress.IPv6Address.
If present, scope zone ID is available through the scope_id attribute.
(Contributed by Oleksandr Pavliuk in bpo-34788 [https://bugs.python.org/issue?@action=redirect&bpo=34788].)

Starting with Python 3.9.5 the ipaddress module no longer
accepts any leading zeros in IPv4 address strings.
(Contributed by Christian Heimes in bpo-36384 [https://bugs.python.org/issue?@action=redirect&bpo=36384]).

math

Expanded the math.gcd() function to handle multiple arguments.
Formerly, it only supported two arguments.
(Contributed by Serhiy Storchaka in bpo-39648 [https://bugs.python.org/issue?@action=redirect&bpo=39648].)

Added math.lcm(): return the least common multiple of specified arguments.
(Contributed by Mark Dickinson, Ananthakrishnan and Serhiy Storchaka in
bpo-39479 [https://bugs.python.org/issue?@action=redirect&bpo=39479] and bpo-39648 [https://bugs.python.org/issue?@action=redirect&bpo=39648].)

Added math.nextafter(): return the next floating-point value after x
towards y.
(Contributed by Victor Stinner in bpo-39288 [https://bugs.python.org/issue?@action=redirect&bpo=39288].)

Added math.ulp(): return the value of the least significant bit
of a float.
(Contributed by Victor Stinner in bpo-39310 [https://bugs.python.org/issue?@action=redirect&bpo=39310].)

multiprocessing

The multiprocessing.SimpleQueue class has a new
close() method to explicitly close the
queue.
(Contributed by Victor Stinner in bpo-30966 [https://bugs.python.org/issue?@action=redirect&bpo=30966].)

nntplib

NNTP and NNTP_SSL now raise a ValueError
if the given timeout for their constructor is zero to prevent the creation of
a non-blocking socket. (Contributed by Dong-hee Na in bpo-39259 [https://bugs.python.org/issue?@action=redirect&bpo=39259].)

os

Added CLD_KILLED and CLD_STOPPED for si_code.
(Contributed by Dong-hee Na in bpo-38493 [https://bugs.python.org/issue?@action=redirect&bpo=38493].)

Exposed the Linux-specific os.pidfd_open() (bpo-38692 [https://bugs.python.org/issue?@action=redirect&bpo=38692]) and
os.P_PIDFD (bpo-38713 [https://bugs.python.org/issue?@action=redirect&bpo=38713]) for process management with file
descriptors.

The os.unsetenv() function is now also available on Windows.
(Contributed by Victor Stinner in bpo-39413 [https://bugs.python.org/issue?@action=redirect&bpo=39413].)

The os.putenv() and os.unsetenv() functions are now always
available.
(Contributed by Victor Stinner in bpo-39395 [https://bugs.python.org/issue?@action=redirect&bpo=39395].)

Added os.waitstatus_to_exitcode() function:
convert a wait status to an exit code.
(Contributed by Victor Stinner in bpo-40094 [https://bugs.python.org/issue?@action=redirect&bpo=40094].)

pathlib

Added pathlib.Path.readlink() which acts similarly to
os.readlink().
(Contributed by Girts Folkmanis in bpo-30618 [https://bugs.python.org/issue?@action=redirect&bpo=30618])

pdb

On Windows now Pdb supports ~/.pdbrc.
(Contributed by Tim Hopper and Dan Lidral-Porter in bpo-20523 [https://bugs.python.org/issue?@action=redirect&bpo=20523].)

poplib

POP3 and POP3_SSL now raise a ValueError
if the given timeout for their constructor is zero to prevent the creation of
a non-blocking socket. (Contributed by Dong-hee Na in bpo-39259 [https://bugs.python.org/issue?@action=redirect&bpo=39259].)

pprint

pprint can now pretty-print types.SimpleNamespace.
(Contributed by Carl Bordum Hansen in bpo-37376 [https://bugs.python.org/issue?@action=redirect&bpo=37376].)

pydoc

The documentation string is now shown not only for class, function,
method etc, but for any object that has its own __doc__ attribute.
(Contributed by Serhiy Storchaka in bpo-40257 [https://bugs.python.org/issue?@action=redirect&bpo=40257].)

random

Added a new random.Random.randbytes method: generate random bytes.
(Contributed by Victor Stinner in bpo-40286 [https://bugs.python.org/issue?@action=redirect&bpo=40286].)

signal

Exposed the Linux-specific signal.pidfd_send_signal() for sending to
signals to a process using a file descriptor instead of a pid. (bpo-38712 [https://bugs.python.org/issue?@action=redirect&bpo=38712])

smtplib

SMTP and SMTP_SSL now raise a ValueError
if the given timeout for their constructor is zero to prevent the creation of
a non-blocking socket. (Contributed by Dong-hee Na in bpo-39259 [https://bugs.python.org/issue?@action=redirect&bpo=39259].)

LMTP constructor now has an optional timeout parameter.
(Contributed by Dong-hee Na in bpo-39329 [https://bugs.python.org/issue?@action=redirect&bpo=39329].)

socket

The socket module now exports the CAN_RAW_JOIN_FILTERS
constant on Linux 4.1 and greater.
(Contributed by Stefan Tatschner and Zackery Spytz in bpo-25780 [https://bugs.python.org/issue?@action=redirect&bpo=25780].)

The socket module now supports the CAN_J1939 protocol on
platforms that support it. (Contributed by Karl Ding in bpo-40291 [https://bugs.python.org/issue?@action=redirect&bpo=40291].)

The socket module now has the socket.send_fds() and
socket.recv_fds() functions. (Contributed by Joannah Nanjekye, Shinya
Okano and Victor Stinner in bpo-28724 [https://bugs.python.org/issue?@action=redirect&bpo=28724].)

time

On AIX, thread_time() is now implemented with thread_cputime()
which has nanosecond resolution, rather than
clock_gettime(CLOCK_THREAD_CPUTIME_ID) which has a resolution of 10 milliseconds.
(Contributed by Batuhan Taskaya in bpo-40192 [https://bugs.python.org/issue?@action=redirect&bpo=40192])

sys

Added a new sys.platlibdir attribute: name of the platform-specific
library directory. It is used to build the path of standard library and the
paths of installed extension modules. It is equal to "lib" on most
platforms. On Fedora and SuSE, it is equal to "lib64" on 64-bit platforms.
(Contributed by Jan Matějek, Matěj Cepl, Charalampos Stratakis and Victor Stinner in bpo-1294959 [https://bugs.python.org/issue?@action=redirect&bpo=1294959].)

Previously, sys.stderr was block-buffered when non-interactive. Now
stderr defaults to always being line-buffered.
(Contributed by Jendrik Seipp in bpo-13601 [https://bugs.python.org/issue?@action=redirect&bpo=13601].)

tracemalloc

Added tracemalloc.reset_peak() to set the peak size of traced memory
blocks to the current size, to measure the peak of specific pieces of code.
(Contributed by Huon Wilson in bpo-40630 [https://bugs.python.org/issue?@action=redirect&bpo=40630].)

typing

PEP 593 [https://peps.python.org/pep-0593/] introduced an typing.Annotated type to decorate existing
types with context-specific metadata and new include_extras parameter to
typing.get_type_hints() to access the metadata at runtime. (Contributed
by Till Varoquaux and Konstantin Kashin.)

unicodedata

The Unicode database has been updated to version 13.0.0. (bpo-39926 [https://bugs.python.org/issue?@action=redirect&bpo=39926]).

venv

The activation scripts provided by venv now all specify their prompt
customization consistently by always using the value specified by
__VENV_PROMPT__. Previously some scripts unconditionally used
__VENV_PROMPT__, others only if it happened to be set (which was the default
case), and one used __VENV_NAME__ instead.
(Contributed by Brett Cannon in bpo-37663 [https://bugs.python.org/issue?@action=redirect&bpo=37663].)

xml

White space characters within attributes are now preserved when serializing
xml.etree.ElementTree to XML file. EOLNs are no longer normalized
to “n”. This is the result of discussion about how to interpret
section 2.11 of XML spec.
(Contributed by Mefistotelis in bpo-39011 [https://bugs.python.org/issue?@action=redirect&bpo=39011].)

Optimizations

	Optimized the idiom for assignment a temporary variable in comprehensions.
Now for y in [expr] in comprehensions is as fast as a simple assignment
y = expr. For example:

sums = [s for s in [0] for x in data for s in [s + x]]

Unlike the := operator this idiom does not leak a variable to the
outer scope.

(Contributed by Serhiy Storchaka in bpo-32856 [https://bugs.python.org/issue?@action=redirect&bpo=32856].)

	Optimized signal handling in multithreaded applications. If a thread different
than the main thread gets a signal, the bytecode evaluation loop is no longer
interrupted at each bytecode instruction to check for pending signals which
cannot be handled. Only the main thread of the main interpreter can handle
signals.

Previously, the bytecode evaluation loop was interrupted at each instruction
until the main thread handles signals.
(Contributed by Victor Stinner in bpo-40010 [https://bugs.python.org/issue?@action=redirect&bpo=40010].)

	Optimized the subprocess module on FreeBSD using closefrom().
(Contributed by Ed Maste, Conrad Meyer, Kyle Evans, Kubilay Kocak and Victor
Stinner in bpo-38061 [https://bugs.python.org/issue?@action=redirect&bpo=38061].)

	PyLong_FromDouble() is now up to 1.87x faster for values that
fit into long.
(Contributed by Sergey Fedoseev in bpo-37986 [https://bugs.python.org/issue?@action=redirect&bpo=37986].)

	A number of Python builtins (range, tuple, set,
frozenset, list, dict) are now sped up by using
PEP 590 [https://peps.python.org/pep-0590/] vectorcall protocol.
(Contributed by Dong-hee Na, Mark Shannon, Jeroen Demeyer and Petr Viktorin in bpo-37207 [https://bugs.python.org/issue?@action=redirect&bpo=37207].)

	Optimized difference_update() for the case when the other set
is much larger than the base set.
(Suggested by Evgeny Kapun with code contributed by Michele Orrù in bpo-8425 [https://bugs.python.org/issue?@action=redirect&bpo=8425].)

	Python’s small object allocator (obmalloc.c) now allows (no more than)
one empty arena to remain available for immediate reuse, without returning
it to the OS. This prevents thrashing in simple loops where an arena could
be created and destroyed anew on each iteration.
(Contributed by Tim Peters in bpo-37257 [https://bugs.python.org/issue?@action=redirect&bpo=37257].)

	floor division of float operation now has a better performance. Also
the message of ZeroDivisionError for this operation is updated.
(Contributed by Dong-hee Na in bpo-39434 [https://bugs.python.org/issue?@action=redirect&bpo=39434].)

	Decoding short ASCII strings with UTF-8 and ascii codecs is now about
15% faster. (Contributed by Inada Naoki in bpo-37348 [https://bugs.python.org/issue?@action=redirect&bpo=37348].)

Here’s a summary of performance improvements from Python 3.4 through Python 3.9:

Python version 3.4 3.5 3.6 3.7 3.8 3.9
-------------- --- --- --- --- --- ---

Variable and attribute read access:
 read_local 7.1 7.1 5.4 5.1 3.9 3.9
 read_nonlocal 7.1 8.1 5.8 5.4 4.4 4.5
 read_global 15.5 19.0 14.3 13.6 7.6 7.8
 read_builtin 21.1 21.6 18.5 19.0 7.5 7.8
 read_classvar_from_class 25.6 26.5 20.7 19.5 18.4 17.9
 read_classvar_from_instance 22.8 23.5 18.8 17.1 16.4 16.9
 read_instancevar 32.4 33.1 28.0 26.3 25.4 25.3
 read_instancevar_slots 27.8 31.3 20.8 20.8 20.2 20.5
 read_namedtuple 73.8 57.5 45.0 46.8 18.4 18.7
 read_boundmethod 37.6 37.9 29.6 26.9 27.7 41.1

Variable and attribute write access:
 write_local 8.7 9.3 5.5 5.3 4.3 4.3
 write_nonlocal 10.5 11.1 5.6 5.5 4.7 4.8
 write_global 19.7 21.2 18.0 18.0 15.8 16.7
 write_classvar 92.9 96.0 104.6 102.1 39.2 39.8
 write_instancevar 44.6 45.8 40.0 38.9 35.5 37.4
 write_instancevar_slots 35.6 36.1 27.3 26.6 25.7 25.8

Data structure read access:
 read_list 24.2 24.5 20.8 20.8 19.0 19.5
 read_deque 24.7 25.5 20.2 20.6 19.8 20.2
 read_dict 24.3 25.7 22.3 23.0 21.0 22.4
 read_strdict 22.6 24.3 19.5 21.2 18.9 21.5

Data structure write access:
 write_list 27.1 28.5 22.5 21.6 20.0 20.0
 write_deque 28.7 30.1 22.7 21.8 23.5 21.7
 write_dict 31.4 33.3 29.3 29.2 24.7 25.4
 write_strdict 28.4 29.9 27.5 25.2 23.1 24.5

Stack (or queue) operations:
 list_append_pop 93.4 112.7 75.4 74.2 50.8 50.6
 deque_append_pop 43.5 57.0 49.4 49.2 42.5 44.2
 deque_append_popleft 43.7 57.3 49.7 49.7 42.8 46.4

Timing loop:
 loop_overhead 0.5 0.6 0.4 0.3 0.3 0.3

These results were generated from the variable access benchmark script at:
Tools/scripts/var_access_benchmark.py. The benchmark script displays timings
in nanoseconds. The benchmarks were measured on an
Intel® Core™ i7-4960HQ processor [https://ark.intel.com/content/www/us/en/ark/products/76088/intel-core-i7-4960hq-processor-6m-cache-up-to-3-80-ghz.html]
running the macOS 64-bit builds found at
python.org [https://www.python.org/downloads/macos/].

Deprecated

	The distutils bdist_msi command is now deprecated, use
bdist_wheel (wheel packages) instead.
(Contributed by Hugo van Kemenade in bpo-39586 [https://bugs.python.org/issue?@action=redirect&bpo=39586].)

	Currently math.factorial() accepts float instances with
non-negative integer values (like 5.0). It raises a ValueError
for non-integral and negative floats. It is now deprecated. In future
Python versions it will raise a TypeError for all floats.
(Contributed by Serhiy Storchaka in bpo-37315 [https://bugs.python.org/issue?@action=redirect&bpo=37315].)

	The parser and symbol modules are deprecated and will be
removed in future versions of Python. For the majority of use cases,
users can leverage the Abstract Syntax Tree (AST) generation and compilation
stage, using the ast module.

	The Public C API functions PyParser_SimpleParseStringFlags(),
PyParser_SimpleParseStringFlagsFilename(),
PyParser_SimpleParseFileFlags() and PyNode_Compile()
are deprecated and will be removed in Python 3.10 together with the old parser.

	Using NotImplemented in a boolean context has been deprecated,
as it is almost exclusively the result of incorrect rich comparator
implementations. It will be made a TypeError in a future version
of Python.
(Contributed by Josh Rosenberg in bpo-35712 [https://bugs.python.org/issue?@action=redirect&bpo=35712].)

	The random module currently accepts any hashable type as a
possible seed value. Unfortunately, some of those types are not
guaranteed to have a deterministic hash value. After Python 3.9,
the module will restrict its seeds to None, int,
float, str, bytes, and bytearray.

	Opening the GzipFile file for writing without specifying
the mode argument is deprecated. In future Python versions it will always
be opened for reading by default. Specify the mode argument for opening
it for writing and silencing a warning.
(Contributed by Serhiy Storchaka in bpo-28286 [https://bugs.python.org/issue?@action=redirect&bpo=28286].)

	Deprecated the split() method of _tkinter.TkappType in
favour of the splitlist() method which has more consistent and
predicable behavior.
(Contributed by Serhiy Storchaka in bpo-38371 [https://bugs.python.org/issue?@action=redirect&bpo=38371].)

	The explicit passing of coroutine objects to asyncio.wait() has been
deprecated and will be removed in version 3.11.
(Contributed by Yury Selivanov and Kyle Stanley in bpo-34790 [https://bugs.python.org/issue?@action=redirect&bpo=34790].)

	binhex4 and hexbin4 standards are now deprecated. The binhex module
and the following binascii functions are now deprecated:

	b2a_hqx(), a2b_hqx()

	rlecode_hqx(), rledecode_hqx()

(Contributed by Victor Stinner in bpo-39353 [https://bugs.python.org/issue?@action=redirect&bpo=39353].)

	ast classes slice, Index and ExtSlice are considered deprecated
and will be removed in future Python versions. value itself should be
used instead of Index(value). Tuple(slices, Load()) should be
used instead of ExtSlice(slices).
(Contributed by Serhiy Storchaka in bpo-34822 [https://bugs.python.org/issue?@action=redirect&bpo=34822].)

	ast classes Suite, Param, AugLoad and AugStore
are considered deprecated and will be removed in future Python versions.
They were not generated by the parser and not accepted by the code
generator in Python 3.
(Contributed by Batuhan Taskaya in bpo-39639 [https://bugs.python.org/issue?@action=redirect&bpo=39639] and bpo-39969 [https://bugs.python.org/issue?@action=redirect&bpo=39969]
and Serhiy Storchaka in bpo-39988 [https://bugs.python.org/issue?@action=redirect&bpo=39988].)

	The PyEval_InitThreads() and PyEval_ThreadsInitialized()
functions are now deprecated and will be removed in Python 3.11. Calling
PyEval_InitThreads() now does nothing. The GIL is initialized
by Py_Initialize() since Python 3.7.
(Contributed by Victor Stinner in bpo-39877 [https://bugs.python.org/issue?@action=redirect&bpo=39877].)

	Passing None as the first argument to the shlex.split() function
has been deprecated. (Contributed by Zackery Spytz in bpo-33262 [https://bugs.python.org/issue?@action=redirect&bpo=33262].)

	smtpd.MailmanProxy() is now deprecated as it is unusable without
an external module, mailman. (Contributed by Samuel Colvin in bpo-35800 [https://bugs.python.org/issue?@action=redirect&bpo=35800].)

	The lib2to3 module now emits a PendingDeprecationWarning.
Python 3.9 switched to a PEG parser (see PEP 617 [https://peps.python.org/pep-0617/]), and Python 3.10 may
include new language syntax that is not parsable by lib2to3’s LL(1) parser.
The lib2to3 module may be removed from the standard library in a future
Python version. Consider third-party alternatives such as LibCST [https://libcst.readthedocs.io/] or
parso [https://parso.readthedocs.io/].
(Contributed by Carl Meyer in bpo-40360 [https://bugs.python.org/issue?@action=redirect&bpo=40360].)

	The random parameter of random.shuffle() has been deprecated.
(Contributed by Raymond Hettinger in bpo-40465 [https://bugs.python.org/issue?@action=redirect&bpo=40465])

Removed

	The erroneous version at unittest.mock.__version__ has been removed.

	nntplib.NNTP: xpath() and xgtitle() methods have been removed.
These methods are deprecated since Python 3.3. Generally, these extensions
are not supported or not enabled by NNTP server administrators.
For xgtitle(), please use nntplib.NNTP.descriptions() or
nntplib.NNTP.description() instead.
(Contributed by Dong-hee Na in bpo-39366 [https://bugs.python.org/issue?@action=redirect&bpo=39366].)

	array.array: tostring() and fromstring() methods have been
removed. They were aliases to tobytes() and frombytes(), deprecated
since Python 3.2.
(Contributed by Victor Stinner in bpo-38916 [https://bugs.python.org/issue?@action=redirect&bpo=38916].)

	The undocumented sys.callstats() function has been removed. Since Python
3.7, it was deprecated and always returned None. It required a special
build option CALL_PROFILE which was already removed in Python 3.7.
(Contributed by Victor Stinner in bpo-37414 [https://bugs.python.org/issue?@action=redirect&bpo=37414].)

	The sys.getcheckinterval() and sys.setcheckinterval() functions have
been removed. They were deprecated since Python 3.2. Use
sys.getswitchinterval() and sys.setswitchinterval() instead.
(Contributed by Victor Stinner in bpo-37392 [https://bugs.python.org/issue?@action=redirect&bpo=37392].)

	The C function PyImport_Cleanup() has been removed. It was documented as:
“Empty the module table. For internal use only.”
(Contributed by Victor Stinner in bpo-36710 [https://bugs.python.org/issue?@action=redirect&bpo=36710].)

	_dummy_thread and dummy_threading modules have been removed. These
modules were deprecated since Python 3.7 which requires threading support.
(Contributed by Victor Stinner in bpo-37312 [https://bugs.python.org/issue?@action=redirect&bpo=37312].)

	aifc.openfp() alias to aifc.open(), sunau.openfp() alias to
sunau.open(), and wave.openfp() alias to wave.open() have been
removed. They were deprecated since Python 3.7.
(Contributed by Victor Stinner in bpo-37320 [https://bugs.python.org/issue?@action=redirect&bpo=37320].)

	The isAlive() method of threading.Thread
has been removed. It was deprecated since Python 3.8.
Use is_alive() instead.
(Contributed by Dong-hee Na in bpo-37804 [https://bugs.python.org/issue?@action=redirect&bpo=37804].)

	Methods getchildren() and getiterator() of classes
ElementTree and
Element in the ElementTree
module have been removed. They were deprecated in Python 3.2.
Use iter(x) or list(x) instead of x.getchildren() and
x.iter() or list(x.iter()) instead of x.getiterator().
(Contributed by Serhiy Storchaka in bpo-36543 [https://bugs.python.org/issue?@action=redirect&bpo=36543].)

	The old plistlib API has been removed, it was deprecated since Python
3.4. Use the load(), loads(), dump(), and
dumps() functions. Additionally, the use_builtin_types parameter was
removed, standard bytes objects are always used instead.
(Contributed by Jon Janzen in bpo-36409 [https://bugs.python.org/issue?@action=redirect&bpo=36409].)

	The C function PyGen_NeedsFinalizing has been removed. It was not
documented, tested, or used anywhere within CPython after the implementation
of PEP 442 [https://peps.python.org/pep-0442/]. Patch by Joannah Nanjekye.
(Contributed by Joannah Nanjekye in bpo-15088 [https://bugs.python.org/issue?@action=redirect&bpo=15088])

	base64.encodestring() and base64.decodestring(), aliases deprecated
since Python 3.1, have been removed: use base64.encodebytes() and
base64.decodebytes() instead.
(Contributed by Victor Stinner in bpo-39351 [https://bugs.python.org/issue?@action=redirect&bpo=39351].)

	fractions.gcd() function has been removed, it was deprecated since Python
3.5 (bpo-22486 [https://bugs.python.org/issue?@action=redirect&bpo=22486]): use math.gcd() instead.
(Contributed by Victor Stinner in bpo-39350 [https://bugs.python.org/issue?@action=redirect&bpo=39350].)

	The buffering parameter of bz2.BZ2File has been removed. Since
Python 3.0, it was ignored and using it emitted a DeprecationWarning.
Pass an open file object to control how the file is opened.
(Contributed by Victor Stinner in bpo-39357 [https://bugs.python.org/issue?@action=redirect&bpo=39357].)

	The encoding parameter of json.loads() has been removed.
As of Python 3.1, it was deprecated and ignored; using it has emitted a
DeprecationWarning since Python 3.8.
(Contributed by Inada Naoki in bpo-39377 [https://bugs.python.org/issue?@action=redirect&bpo=39377])

	with (await asyncio.lock): and with (yield from asyncio.lock): statements are
not longer supported, use async with lock instead. The same is correct for
asyncio.Condition and asyncio.Semaphore.
(Contributed by Andrew Svetlov in bpo-34793 [https://bugs.python.org/issue?@action=redirect&bpo=34793].)

	The sys.getcounts() function, the -X showalloccount command line
option and the show_alloc_count field of the C structure
PyConfig have been removed. They required a special Python build by
defining COUNT_ALLOCS macro.
(Contributed by Victor Stinner in bpo-39489 [https://bugs.python.org/issue?@action=redirect&bpo=39489].)

	The _field_types attribute of the typing.NamedTuple class
has been removed. It was deprecated since Python 3.8. Use
the __annotations__ attribute instead.
(Contributed by Serhiy Storchaka in bpo-40182 [https://bugs.python.org/issue?@action=redirect&bpo=40182].)

	The symtable.SymbolTable.has_exec() method has been removed. It was
deprecated since 2006, and only returning False when it’s called.
(Contributed by Batuhan Taskaya in bpo-40208 [https://bugs.python.org/issue?@action=redirect&bpo=40208])

	The asyncio.Task.current_task() and asyncio.Task.all_tasks()
have been removed. They were deprecated since Python 3.7 and you can use
asyncio.current_task() and asyncio.all_tasks() instead.
(Contributed by Rémi Lapeyre in bpo-40967 [https://bugs.python.org/issue?@action=redirect&bpo=40967])

	The unescape() method in the html.parser.HTMLParser class
has been removed (it was deprecated since Python 3.4). html.unescape()
should be used for converting character references to the corresponding
unicode characters.

Porting to Python 3.9

This section lists previously described changes and other bugfixes
that may require changes to your code.

Changes in the Python API

	__import__() and importlib.util.resolve_name() now raise
ImportError where it previously raised ValueError. Callers
catching the specific exception type and supporting both Python 3.9 and
earlier versions will need to catch both using except (ImportError, ValueError):.

	The venv activation scripts no longer special-case when
__VENV_PROMPT__ is set to "".

	The select.epoll.unregister() method no longer ignores the
EBADF error.
(Contributed by Victor Stinner in bpo-39239 [https://bugs.python.org/issue?@action=redirect&bpo=39239].)

	The compresslevel parameter of bz2.BZ2File became keyword-only,
since the buffering parameter has been removed.
(Contributed by Victor Stinner in bpo-39357 [https://bugs.python.org/issue?@action=redirect&bpo=39357].)

	Simplified AST for subscription. Simple indices will be represented by
their value, extended slices will be represented as tuples.
Index(value) will return a value itself, ExtSlice(slices)
will return Tuple(slices, Load()).
(Contributed by Serhiy Storchaka in bpo-34822 [https://bugs.python.org/issue?@action=redirect&bpo=34822].)

	The importlib module now ignores the PYTHONCASEOK
environment variable when the -E or -I command line
options are being used.

	The encoding parameter has been added to the classes ftplib.FTP and
ftplib.FTP_TLS as a keyword-only parameter, and the default encoding
is changed from Latin-1 to UTF-8 to follow RFC 2640 [https://datatracker.ietf.org/doc/html/rfc2640.html].

	asyncio.loop.shutdown_default_executor() has been added to
AbstractEventLoop, meaning alternative event loops that
inherit from it should have this method defined.
(Contributed by Kyle Stanley in bpo-34037 [https://bugs.python.org/issue?@action=redirect&bpo=34037].)

	The constant values of future flags in the __future__ module
is updated in order to prevent collision with compiler flags. Previously
PyCF_ALLOW_TOP_LEVEL_AWAIT was clashing with CO_FUTURE_DIVISION.
(Contributed by Batuhan Taskaya in bpo-39562 [https://bugs.python.org/issue?@action=redirect&bpo=39562])

	array('u') now uses wchar_t as C type instead of Py_UNICODE.
This change doesn’t affect to its behavior because Py_UNICODE is alias
of wchar_t since Python 3.3.
(Contributed by Inada Naoki in bpo-34538 [https://bugs.python.org/issue?@action=redirect&bpo=34538].)

	The logging.getLogger() API now returns the root logger when passed
the name 'root', whereas previously it returned a non-root logger named
'root'. This could affect cases where user code explicitly wants a
non-root logger named 'root', or instantiates a logger using
logging.getLogger(__name__) in some top-level module called 'root.py'.
(Contributed by Vinay Sajip in bpo-37742 [https://bugs.python.org/issue?@action=redirect&bpo=37742].)

	Division handling of PurePath now returns NotImplemented
instead of raising a TypeError when passed something other than an
instance of str or PurePath. This allows creating
compatible classes that don’t inherit from those mentioned types.
(Contributed by Roger Aiudi in bpo-34775 [https://bugs.python.org/issue?@action=redirect&bpo=34775]).

	Starting with Python 3.9.5 the ipaddress module no longer
accepts any leading zeros in IPv4 address strings. Leading zeros are
ambiguous and interpreted as octal notation by some libraries. For example
the legacy function socket.inet_aton() treats leading zeros as octal
notatation. glibc implementation of modern inet_pton() does
not accept any leading zeros.
(Contributed by Christian Heimes in bpo-36384 [https://bugs.python.org/issue?@action=redirect&bpo=36384]).

	codecs.lookup() now normalizes the encoding name the same way as
encodings.normalize_encoding(), except that codecs.lookup() also
converts the name to lower case. For example, "latex+latin1" encoding
name is now normalized to "latex_latin1".
(Contributed by Jordon Xu in bpo-37751 [https://bugs.python.org/issue?@action=redirect&bpo=37751].)

Changes in the C API

	Instances of heap-allocated types (such as those created with
PyType_FromSpec() and similar APIs) hold a reference to their type
object since Python 3.8. As indicated in the “Changes in the C API” of Python
3.8, for the vast majority of cases, there should be no side effect but for
types that have a custom tp_traverse function,
ensure that all custom tp_traverse functions of heap-allocated types
visit the object’s type.

Example:

int
foo_traverse(foo_struct *self, visitproc visit, void *arg) {
// Rest of the traverse function
#if PY_VERSION_HEX >= 0x03090000
 // This was not needed before Python 3.9 (Python issue 35810 and 40217)
 Py_VISIT(Py_TYPE(self));
#endif
}

If your traverse function delegates to tp_traverse of its base class
(or another type), ensure that Py_TYPE(self) is visited only once.
Note that only heap type are expected to visit the type
in tp_traverse.

For example, if your tp_traverse function includes:

base->tp_traverse(self, visit, arg)

then add:

#if PY_VERSION_HEX >= 0x03090000
 // This was not needed before Python 3.9 (bpo-35810 and bpo-40217)
 if (base->tp_flags & Py_TPFLAGS_HEAPTYPE) {
 // a heap type's tp_traverse already visited Py_TYPE(self)
 } else {
 Py_VISIT(Py_TYPE(self));
 }
#else

(See bpo-35810 [https://bugs.python.org/issue?@action=redirect&bpo=35810] and bpo-40217 [https://bugs.python.org/issue?@action=redirect&bpo=40217] for more information.)

	The functions PyEval_CallObject, PyEval_CallFunction,
PyEval_CallMethod and PyEval_CallObjectWithKeywords are deprecated.
Use PyObject_Call() and its variants instead.
(See more details in bpo-29548 [https://bugs.python.org/issue?@action=redirect&bpo=29548].)

CPython bytecode changes

	The LOAD_ASSERTION_ERROR opcode was added for handling the
assert statement. Previously, the assert statement would not work
correctly if the AssertionError exception was being shadowed.
(Contributed by Zackery Spytz in bpo-34880 [https://bugs.python.org/issue?@action=redirect&bpo=34880].)

	The COMPARE_OP opcode was split into four distinct instructions:

	COMPARE_OP for rich comparisons

	IS_OP for ‘is’ and ‘is not’ tests

	CONTAINS_OP for ‘in’ and ‘not in’ tests

	JUMP_IF_NOT_EXC_MATCH for checking exceptions in ‘try-except’
statements.

(Contributed by Mark Shannon in bpo-39156 [https://bugs.python.org/issue?@action=redirect&bpo=39156].)

Build Changes

	Added --with-platlibdir option to the configure script: name of the
platform-specific library directory, stored in the new sys.platlibdir
attribute. See sys.platlibdir attribute for more information.
(Contributed by Jan Matějek, Matěj Cepl, Charalampos Stratakis
and Victor Stinner in bpo-1294959 [https://bugs.python.org/issue?@action=redirect&bpo=1294959].)

	The COUNT_ALLOCS special build macro has been removed.
(Contributed by Victor Stinner in bpo-39489 [https://bugs.python.org/issue?@action=redirect&bpo=39489].)

	On non-Windows platforms, the setenv() and unsetenv()
functions are now required to build Python.
(Contributed by Victor Stinner in bpo-39395 [https://bugs.python.org/issue?@action=redirect&bpo=39395].)

	On non-Windows platforms, creating bdist_wininst installers is now
officially unsupported. (See bpo-10945 [https://bugs.python.org/issue?@action=redirect&bpo=10945] for more details.)

	When building Python on macOS from source, _tkinter now links with
non-system Tcl and Tk frameworks if they are installed in
/Library/Frameworks, as had been the case on older releases
of macOS. If a macOS SDK is explicitly configured, by using
--enable-universalsdk or -isysroot, only the SDK itself is
searched. The default behavior can still be overridden with
--with-tcltk-includes and --with-tcltk-libs.
(Contributed by Ned Deily in bpo-34956 [https://bugs.python.org/issue?@action=redirect&bpo=34956].)

	Python can now be built for Windows 10 ARM64.
(Contributed by Steve Dower in bpo-33125 [https://bugs.python.org/issue?@action=redirect&bpo=33125].)

	Some individual tests are now skipped when --pgo is used. The tests
in question increased the PGO task time significantly and likely
didn’t help improve optimization of the final executable. This
speeds up the task by a factor of about 15x. Running the full unit test
suite is slow. This change may result in a slightly less optimized build
since not as many code branches will be executed. If you are willing to
wait for the much slower build, the old behavior can be restored using
./configure [..] PROFILE_TASK="-m test --pgo-extended". We make no
guarantees as to which PGO task set produces a faster build. Users who care
should run their own relevant benchmarks as results can depend on the
environment, workload, and compiler tool chain.
(See bpo-36044 [https://bugs.python.org/issue?@action=redirect&bpo=36044] and bpo-37707 [https://bugs.python.org/issue?@action=redirect&bpo=37707] for more details.)

C API Changes

New Features

	PEP 573 [https://peps.python.org/pep-0573/]: Added PyType_FromModuleAndSpec() to associate
a module with a class; PyType_GetModule() and
PyType_GetModuleState() to retrieve the module and its state; and
PyCMethod and METH_METHOD to allow a method to
access the class it was defined in.
(Contributed by Marcel Plch and Petr Viktorin in bpo-38787 [https://bugs.python.org/issue?@action=redirect&bpo=38787].)

	Added PyFrame_GetCode() function: get a frame code.
Added PyFrame_GetBack() function: get the frame next outer frame.
(Contributed by Victor Stinner in bpo-40421 [https://bugs.python.org/issue?@action=redirect&bpo=40421].)

	Added PyFrame_GetLineNumber() to the limited C API.
(Contributed by Victor Stinner in bpo-40421 [https://bugs.python.org/issue?@action=redirect&bpo=40421].)

	Added PyThreadState_GetInterpreter() and
PyInterpreterState_Get() functions to get the interpreter.
Added PyThreadState_GetFrame() function to get the current frame of a
Python thread state.
Added PyThreadState_GetID() function: get the unique identifier of a
Python thread state.
(Contributed by Victor Stinner in bpo-39947 [https://bugs.python.org/issue?@action=redirect&bpo=39947].)

	Added a new public PyObject_CallNoArgs() function to the C API, which
calls a callable Python object without any arguments. It is the most efficient
way to call a callable Python object without any argument.
(Contributed by Victor Stinner in bpo-37194 [https://bugs.python.org/issue?@action=redirect&bpo=37194].)

	Changes in the limited C API (if Py_LIMITED_API macro is defined):

	Provide Py_EnterRecursiveCall() and Py_LeaveRecursiveCall()
as regular functions for the limited API. Previously, there were defined as
macros, but these macros didn’t compile with the limited C API which cannot
access PyThreadState.recursion_depth field (the structure is opaque in
the limited C API).

	PyObject_INIT() and PyObject_INIT_VAR() become regular “opaque”
function to hide implementation details.

(Contributed by Victor Stinner in bpo-38644 [https://bugs.python.org/issue?@action=redirect&bpo=38644] and bpo-39542 [https://bugs.python.org/issue?@action=redirect&bpo=39542].)

	The PyModule_AddType() function is added to help adding a type
to a module.
(Contributed by Dong-hee Na in bpo-40024 [https://bugs.python.org/issue?@action=redirect&bpo=40024].)

	Added the functions PyObject_GC_IsTracked() and
PyObject_GC_IsFinalized() to the public API to allow to query if
Python objects are being currently tracked or have been already finalized by
the garbage collector respectively.
(Contributed by Pablo Galindo Salgado in bpo-40241 [https://bugs.python.org/issue?@action=redirect&bpo=40241].)

	Added _PyObject_FunctionStr() to get a user-friendly string
representation of a function-like object.
(Patch by Jeroen Demeyer in bpo-37645 [https://bugs.python.org/issue?@action=redirect&bpo=37645].)

	Added PyObject_CallOneArg() for calling an object with one
positional argument
(Patch by Jeroen Demeyer in bpo-37483 [https://bugs.python.org/issue?@action=redirect&bpo=37483].)

Porting to Python 3.9

	PyInterpreterState.eval_frame (PEP 523 [https://peps.python.org/pep-0523/]) now requires a new mandatory
tstate parameter (PyThreadState*).
(Contributed by Victor Stinner in bpo-38500 [https://bugs.python.org/issue?@action=redirect&bpo=38500].)

	Extension modules: m_traverse,
m_clear and m_free
functions of PyModuleDef are no longer called if the module state
was requested but is not allocated yet. This is the case immediately after
the module is created and before the module is executed
(Py_mod_exec function). More precisely, these functions are not called
if m_size is greater than 0 and the module state (as
returned by PyModule_GetState()) is NULL.

Extension modules without module state (m_size <= 0) are not affected.

	If Py_AddPendingCall() is called in a subinterpreter, the function is
now scheduled to be called from the subinterpreter, rather than being called
from the main interpreter. Each subinterpreter now has its own list of
scheduled calls.
(Contributed by Victor Stinner in bpo-39984 [https://bugs.python.org/issue?@action=redirect&bpo=39984].)

	The Windows registry is no longer used to initialize sys.path when
the -E option is used (if PyConfig.use_environment is set to
0). This is significant when embedding Python on Windows.
(Contributed by Zackery Spytz in bpo-8901 [https://bugs.python.org/issue?@action=redirect&bpo=8901].)

	The global variable PyStructSequence_UnnamedField is now a constant
and refers to a constant string.
(Contributed by Serhiy Storchaka in bpo-38650 [https://bugs.python.org/issue?@action=redirect&bpo=38650].)

	The PyGC_Head structure is now opaque. It is only defined in the
internal C API (pycore_gc.h).
(Contributed by Victor Stinner in bpo-40241 [https://bugs.python.org/issue?@action=redirect&bpo=40241].)

	The Py_UNICODE_COPY, Py_UNICODE_FILL, PyUnicode_WSTR_LENGTH,
PyUnicode_FromUnicode(), PyUnicode_AsUnicode(),
_PyUnicode_AsUnicode, and PyUnicode_AsUnicodeAndSize() are
marked as deprecated in C. They have been deprecated by PEP 393 [https://peps.python.org/pep-0393/] since
Python 3.3.
(Contributed by Inada Naoki in bpo-36346 [https://bugs.python.org/issue?@action=redirect&bpo=36346].)

	The Py_FatalError() function is replaced with a macro which logs
automatically the name of the current function, unless the
Py_LIMITED_API macro is defined.
(Contributed by Victor Stinner in bpo-39882 [https://bugs.python.org/issue?@action=redirect&bpo=39882].)

	The vectorcall protocol now requires that the caller passes only strings as
keyword names. (See bpo-37540 [https://bugs.python.org/issue?@action=redirect&bpo=37540] for more information.)

	Implementation details of a number of macros and functions are now hidden:

	PyObject_IS_GC() macro was converted to a function.

	The PyObject_NEW() macro becomes an alias to the
PyObject_New() macro, and the PyObject_NEW_VAR() macro
becomes an alias to the PyObject_NewVar() macro. They no longer
access directly the PyTypeObject.tp_basicsize member.

	PyObject_GET_WEAKREFS_LISTPTR() macro was converted to a function:
the macro accessed directly the PyTypeObject.tp_weaklistoffset
member.

	PyObject_CheckBuffer() macro was converted to a function: the macro
accessed directly the PyTypeObject.tp_as_buffer member.

	PyIndex_Check() is now always declared as an opaque function to hide
implementation details: removed the PyIndex_Check() macro. The macro accessed
directly the PyTypeObject.tp_as_number member.

(See bpo-40170 [https://bugs.python.org/issue?@action=redirect&bpo=40170] for more details.)

Removed

	Excluded PyFPE_START_PROTECT() and PyFPE_END_PROTECT() macros of
pyfpe.h from the limited C API.
(Contributed by Victor Stinner in bpo-38835 [https://bugs.python.org/issue?@action=redirect&bpo=38835].)

	The tp_print slot of PyTypeObject has been removed.
It was used for printing objects to files in Python 2.7 and before. Since
Python 3.0, it has been ignored and unused.
(Contributed by Jeroen Demeyer in bpo-36974 [https://bugs.python.org/issue?@action=redirect&bpo=36974].)

	Changes in the limited C API (if Py_LIMITED_API macro is defined):

	Excluded the following functions from the limited C API:

	PyThreadState_DeleteCurrent()
(Contributed by Joannah Nanjekye in bpo-37878 [https://bugs.python.org/issue?@action=redirect&bpo=37878].)

	_Py_CheckRecursionLimit

	_Py_NewReference()

	_Py_ForgetReference()

	_PyTraceMalloc_NewReference()

	_Py_GetRefTotal()

	The trashcan mechanism which never worked in the limited C API.

	PyTrash_UNWIND_LEVEL

	Py_TRASHCAN_BEGIN_CONDITION

	Py_TRASHCAN_BEGIN

	Py_TRASHCAN_END

	Py_TRASHCAN_SAFE_BEGIN

	Py_TRASHCAN_SAFE_END

	Moved following functions and definitions to the internal C API:

	_PyDebug_PrintTotalRefs()

	_Py_PrintReferences()

	_Py_PrintReferenceAddresses()

	_Py_tracemalloc_config

	_Py_AddToAllObjects() (specific to Py_TRACE_REFS build)

(Contributed by Victor Stinner in bpo-38644 [https://bugs.python.org/issue?@action=redirect&bpo=38644] and bpo-39542 [https://bugs.python.org/issue?@action=redirect&bpo=39542].)

	Removed _PyRuntime.getframe hook and removed _PyThreadState_GetFrame
macro which was an alias to _PyRuntime.getframe. They were only exposed
by the internal C API. Removed also PyThreadFrameGetter type.
(Contributed by Victor Stinner in bpo-39946 [https://bugs.python.org/issue?@action=redirect&bpo=39946].)

	Removed the following functions from the C API. Call PyGC_Collect()
explicitly to clear all free lists.
(Contributed by Inada Naoki and Victor Stinner in bpo-37340 [https://bugs.python.org/issue?@action=redirect&bpo=37340],
bpo-38896 [https://bugs.python.org/issue?@action=redirect&bpo=38896] and bpo-40428 [https://bugs.python.org/issue?@action=redirect&bpo=40428].)

	PyAsyncGen_ClearFreeLists()

	PyContext_ClearFreeList()

	PyDict_ClearFreeList()

	PyFloat_ClearFreeList()

	PyFrame_ClearFreeList()

	PyList_ClearFreeList()

	PyMethod_ClearFreeList() and PyCFunction_ClearFreeList():
the free lists of bound method objects have been removed.

	PySet_ClearFreeList(): the set free list has been removed
in Python 3.4.

	PyTuple_ClearFreeList()

	PyUnicode_ClearFreeList(): the Unicode free list has been removed in
Python 3.3.

	Removed _PyUnicode_ClearStaticStrings() function.
(Contributed by Victor Stinner in bpo-39465 [https://bugs.python.org/issue?@action=redirect&bpo=39465].)

	Removed Py_UNICODE_MATCH. It has been deprecated by PEP 393 [https://peps.python.org/pep-0393/], and
broken since Python 3.3. The PyUnicode_Tailmatch() function can be
used instead.
(Contributed by Inada Naoki in bpo-36346 [https://bugs.python.org/issue?@action=redirect&bpo=36346].)

	Cleaned header files of interfaces defined but with no implementation.
The public API symbols being removed are:
_PyBytes_InsertThousandsGroupingLocale,
_PyBytes_InsertThousandsGrouping, _Py_InitializeFromArgs,
_Py_InitializeFromWideArgs, _PyFloat_Repr, _PyFloat_Digits,
_PyFloat_DigitsInit, PyFrame_ExtendStack, _PyAIterWrapper_Type,
PyNullImporter_Type, PyCmpWrapper_Type, PySortWrapper_Type,
PyNoArgsFunction.
(Contributed by Pablo Galindo Salgado in bpo-39372 [https://bugs.python.org/issue?@action=redirect&bpo=39372].)

Notable changes in Python 3.9.1

typing

The behavior of typing.Literal was changed to conform with PEP 586 [https://peps.python.org/pep-0586/]
and to match the behavior of static type checkers specified in the PEP.

	Literal now de-duplicates parameters.

	Equality comparisons between Literal objects are now order independent.

	Literal comparisons now respect types. For example,
Literal[0] == Literal[False] previously evaluated to True. It is
now False. To support this change, the internally used type cache now
supports differentiating types.

	Literal objects will now raise a TypeError exception during
equality comparisons if any of their parameters are not hashable.
Note that declaring Literal with mutable parameters will not throw
an error:

>>> from typing import Literal
>>> Literal[{0}]
>>> Literal[{0}] == Literal[{False}]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'set'

(Contributed by Yurii Karabas in bpo-42345 [https://bugs.python.org/issue?@action=redirect&bpo=42345].)

macOS 11.0 (Big Sur) and Apple Silicon Mac support

As of 3.9.1, Python now fully supports building and running on macOS 11.0
(Big Sur) and on Apple Silicon Macs (based on the ARM64 architecture).
A new universal build variant, universal2, is now available to natively
support both ARM64 and Intel 64 in one set of executables. Binaries
can also now be built on current versions of macOS to be deployed on a range
of older macOS versions (tested to 10.9) while making some newer OS
functions and options conditionally available based on the operating system
version in use at runtime (“weaklinking”).

(Contributed by Ronald Oussoren and Lawrence D’Anna in bpo-41100 [https://bugs.python.org/issue?@action=redirect&bpo=41100].)

Notable changes in Python 3.9.2

collections.abc

collections.abc.Callable generic now flattens type parameters, similar
to what typing.Callable currently does. This means that
collections.abc.Callable[[int, str], str] will have __args__ of
(int, str, str); previously this was ([int, str], str). To allow this
change, types.GenericAlias can now be subclassed, and a subclass will
be returned when subscripting the collections.abc.Callable type.
Code which accesses the arguments via typing.get_args() or __args__
need to account for this change. A DeprecationWarning may be emitted for
invalid forms of parameterizing collections.abc.Callable which may have
passed silently in Python 3.9.1. This DeprecationWarning will
become a TypeError in Python 3.10.
(Contributed by Ken Jin in bpo-42195 [https://bugs.python.org/issue?@action=redirect&bpo=42195].)

urllib.parse

Earlier Python versions allowed using both ; and & as
query parameter separators in urllib.parse.parse_qs() and
urllib.parse.parse_qsl(). Due to security concerns, and to conform with
newer W3C recommendations, this has been changed to allow only a single
separator key, with & as the default. This change also affects
cgi.parse() and cgi.parse_multipart() as they use the affected
functions internally. For more details, please see their respective
documentation.
(Contributed by Adam Goldschmidt, Senthil Kumaran and Ken Jin in bpo-42967 [https://bugs.python.org/issue?@action=redirect&bpo=42967].)

What’s New In Python 3.8

	Editor

	Raymond Hettinger

This article explains the new features in Python 3.8, compared to 3.7.
Python 3.8 was released on October 14, 2019.
For full details, see the changelog.

Summary – Release highlights

New Features

Assignment expressions

There is new syntax := that assigns values to variables as part of a larger
expression. It is affectionately known as “the walrus operator” due to
its resemblance to the eyes and tusks of a walrus [https://en.wikipedia.org/wiki/Walrus#/media/File:Pacific_Walrus_-_Bull_(8247646168).jpg].

In this example, the assignment expression helps avoid calling
len() twice:

if (n := len(a)) > 10:
 print(f"List is too long ({n} elements, expected <= 10)")

A similar benefit arises during regular expression matching where
match objects are needed twice, once to test whether a match
occurred and another to extract a subgroup:

discount = 0.0
if (mo := re.search(r'(\d+)% discount', advertisement)):
 discount = float(mo.group(1)) / 100.0

The operator is also useful with while-loops that compute
a value to test loop termination and then need that same
value again in the body of the loop:

Loop over fixed length blocks
while (block := f.read(256)) != '':
 process(block)

Another motivating use case arises in list comprehensions where
a value computed in a filtering condition is also needed in
the expression body:

[clean_name.title() for name in names
 if (clean_name := normalize('NFC', name)) in allowed_names]

Try to limit use of the walrus operator to clean cases that reduce
complexity and improve readability.

See PEP 572 [https://peps.python.org/pep-0572/] for a full description.

(Contributed by Emily Morehouse in bpo-35224 [https://bugs.python.org/issue?@action=redirect&bpo=35224].)

Positional-only parameters

There is a new function parameter syntax / to indicate that some
function parameters must be specified positionally and cannot be used as
keyword arguments. This is the same notation shown by help() for C
functions annotated with Larry Hastings’
Argument Clinic tool.

In the following example, parameters a and b are positional-only,
while c or d can be positional or keyword, and e or f are
required to be keywords:

def f(a, b, /, c, d, *, e, f):
 print(a, b, c, d, e, f)

The following is a valid call:

f(10, 20, 30, d=40, e=50, f=60)

However, these are invalid calls:

f(10, b=20, c=30, d=40, e=50, f=60) # b cannot be a keyword argument
f(10, 20, 30, 40, 50, f=60) # e must be a keyword argument

One use case for this notation is that it allows pure Python functions
to fully emulate behaviors of existing C coded functions. For example,
the built-in divmod() function does not accept keyword arguments:

def divmod(a, b, /):
 "Emulate the built in divmod() function"
 return (a // b, a % b)

Another use case is to preclude keyword arguments when the parameter
name is not helpful. For example, the builtin len() function has
the signature len(obj, /). This precludes awkward calls such as:

len(obj='hello') # The "obj" keyword argument impairs readability

A further benefit of marking a parameter as positional-only is that it
allows the parameter name to be changed in the future without risk of
breaking client code. For example, in the statistics module, the
parameter name dist may be changed in the future. This was made
possible with the following function specification:

def quantiles(dist, /, *, n=4, method='exclusive')
 ...

Since the parameters to the left of / are not exposed as possible
keywords, the parameters names remain available for use in **kwargs:

>>> def f(a, b, /, **kwargs):
... print(a, b, kwargs)
...
>>> f(10, 20, a=1, b=2, c=3) # a and b are used in two ways
10 20 {'a': 1, 'b': 2, 'c': 3}

This greatly simplifies the implementation of functions and methods
that need to accept arbitrary keyword arguments. For example, here
is an excerpt from code in the collections module:

class Counter(dict):

 def __init__(self, iterable=None, /, **kwds):
 # Note "iterable" is a possible keyword argument

See PEP 570 [https://peps.python.org/pep-0570/] for a full description.

(Contributed by Pablo Galindo in bpo-36540 [https://bugs.python.org/issue?@action=redirect&bpo=36540].)

Parallel filesystem cache for compiled bytecode files

The new PYTHONPYCACHEPREFIX setting (also available as
-X pycache_prefix) configures the implicit bytecode
cache to use a separate parallel filesystem tree, rather than
the default __pycache__ subdirectories within each source
directory.

The location of the cache is reported in sys.pycache_prefix
(None indicates the default location in __pycache__
subdirectories).

(Contributed by Carl Meyer in bpo-33499 [https://bugs.python.org/issue?@action=redirect&bpo=33499].)

Debug build uses the same ABI as release build

Python now uses the same ABI whether it’s built in release or debug mode. On
Unix, when Python is built in debug mode, it is now possible to load C
extensions built in release mode and C extensions built using the stable ABI.

Release builds and debug builds are now ABI compatible: defining the
Py_DEBUG macro no longer implies the Py_TRACE_REFS macro, which
introduces the only ABI incompatibility. The Py_TRACE_REFS macro, which
adds the sys.getobjects() function and the PYTHONDUMPREFS
environment variable, can be set using the new ./configure
--with-trace-refs build option.
(Contributed by Victor Stinner in bpo-36465 [https://bugs.python.org/issue?@action=redirect&bpo=36465].)

On Unix, C extensions are no longer linked to libpython except on Android
and Cygwin.
It is now possible
for a statically linked Python to load a C extension built using a shared
library Python.
(Contributed by Victor Stinner in bpo-21536 [https://bugs.python.org/issue?@action=redirect&bpo=21536].)

On Unix, when Python is built in debug mode, import now also looks for C
extensions compiled in release mode and for C extensions compiled with the
stable ABI.
(Contributed by Victor Stinner in bpo-36722 [https://bugs.python.org/issue?@action=redirect&bpo=36722].)

To embed Python into an application, a new --embed option must be passed to
python3-config --libs --embed to get -lpython3.8 (link the application
to libpython). To support both 3.8 and older, try python3-config --libs
--embed first and fallback to python3-config --libs (without --embed)
if the previous command fails.

Add a pkg-config python-3.8-embed module to embed Python into an
application: pkg-config python-3.8-embed --libs includes -lpython3.8.
To support both 3.8 and older, try pkg-config python-X.Y-embed --libs first
and fallback to pkg-config python-X.Y --libs (without --embed) if the
previous command fails (replace X.Y with the Python version).

On the other hand, pkg-config python3.8 --libs no longer contains
-lpython3.8. C extensions must not be linked to libpython (except on
Android and Cygwin, whose cases are handled by the script);
this change is backward incompatible on purpose.
(Contributed by Victor Stinner in bpo-36721 [https://bugs.python.org/issue?@action=redirect&bpo=36721].)

f-strings support = for self-documenting expressions and debugging

Added an = specifier to f-strings. An f-string such as
f'{expr=}' will expand to the text of the expression, an equal sign,
then the representation of the evaluated expression. For example:

>>> user = 'eric_idle'
>>> member_since = date(1975, 7, 31)
>>> f'{user=} {member_since=}'
"user='eric_idle' member_since=datetime.date(1975, 7, 31)"

The usual f-string format specifiers allow more
control over how the result of the expression is displayed:

>>> delta = date.today() - member_since
>>> f'{user=!s} {delta.days=:,d}'
'user=eric_idle delta.days=16,075'

The = specifier will display the whole expression so that
calculations can be shown:

>>> print(f'{theta=} {cos(radians(theta))=:.3f}')
theta=30 cos(radians(theta))=0.866

(Contributed by Eric V. Smith and Larry Hastings in bpo-36817 [https://bugs.python.org/issue?@action=redirect&bpo=36817].)

PEP 578: Python Runtime Audit Hooks

The PEP adds an Audit Hook and Verified Open Hook. Both are available from
Python and native code, allowing applications and frameworks written in pure
Python code to take advantage of extra notifications, while also allowing
embedders or system administrators to deploy builds of Python where auditing is
always enabled.

See PEP 578 [https://peps.python.org/pep-0578/] for full details.

PEP 587: Python Initialization Configuration

The PEP 587 [https://peps.python.org/pep-0587/] adds a new C API to configure the Python Initialization
providing finer control on the whole configuration and better error reporting.

New structures:

	PyConfig

	PyPreConfig

	PyStatus

	PyWideStringList

New functions:

	PyConfig_Clear()

	PyConfig_InitIsolatedConfig()

	PyConfig_InitPythonConfig()

	PyConfig_Read()

	PyConfig_SetArgv()

	PyConfig_SetBytesArgv()

	PyConfig_SetBytesString()

	PyConfig_SetString()

	PyPreConfig_InitIsolatedConfig()

	PyPreConfig_InitPythonConfig()

	PyStatus_Error()

	PyStatus_Exception()

	PyStatus_Exit()

	PyStatus_IsError()

	PyStatus_IsExit()

	PyStatus_NoMemory()

	PyStatus_Ok()

	PyWideStringList_Append()

	PyWideStringList_Insert()

	Py_BytesMain()

	Py_ExitStatusException()

	Py_InitializeFromConfig()

	Py_PreInitialize()

	Py_PreInitializeFromArgs()

	Py_PreInitializeFromBytesArgs()

	Py_RunMain()

This PEP also adds _PyRuntimeState.preconfig (PyPreConfig type)
and PyInterpreterState.config (PyConfig type) fields to these
internal structures. PyInterpreterState.config becomes the new
reference configuration, replacing global configuration variables and
other private variables.

See Python Initialization Configuration for the
documentation.

See PEP 587 [https://peps.python.org/pep-0587/] for a full description.

(Contributed by Victor Stinner in bpo-36763 [https://bugs.python.org/issue?@action=redirect&bpo=36763].)

PEP 590: Vectorcall: a fast calling protocol for CPython

The Vectorcall Protocol is added to the Python/C API.
It is meant to formalize existing optimizations which were already done
for various classes.
Any static type implementing a callable can use this
protocol.

This is currently provisional.
The aim is to make it fully public in Python 3.9.

See PEP 590 [https://peps.python.org/pep-0590/] for a full description.

(Contributed by Jeroen Demeyer, Mark Shannon and Petr Viktorin in bpo-36974 [https://bugs.python.org/issue?@action=redirect&bpo=36974].)

Pickle protocol 5 with out-of-band data buffers

When pickle is used to transfer large data between Python processes
in order to take advantage of multi-core or multi-machine processing,
it is important to optimize the transfer by reducing memory copies, and
possibly by applying custom techniques such as data-dependent compression.

The pickle protocol 5 introduces support for out-of-band buffers
where PEP 3118 [https://peps.python.org/pep-3118/]-compatible data can be transmitted separately from the
main pickle stream, at the discretion of the communication layer.

See PEP 574 [https://peps.python.org/pep-0574/] for a full description.

(Contributed by Antoine Pitrou in bpo-36785 [https://bugs.python.org/issue?@action=redirect&bpo=36785].)

Other Language Changes

	A continue statement was illegal in the finally clause
due to a problem with the implementation. In Python 3.8 this restriction
was lifted.
(Contributed by Serhiy Storchaka in bpo-32489 [https://bugs.python.org/issue?@action=redirect&bpo=32489].)

	The bool, int, and fractions.Fraction types
now have an as_integer_ratio() method like that found in
float and decimal.Decimal. This minor API extension
makes it possible to write numerator, denominator =
x.as_integer_ratio() and have it work across multiple numeric types.
(Contributed by Lisa Roach in bpo-33073 [https://bugs.python.org/issue?@action=redirect&bpo=33073] and Raymond Hettinger in
bpo-37819 [https://bugs.python.org/issue?@action=redirect&bpo=37819].)

	Constructors of int, float and complex will now
use the __index__() special method, if available and the
corresponding method __int__(), __float__()
or __complex__() is not available.
(Contributed by Serhiy Storchaka in bpo-20092 [https://bugs.python.org/issue?@action=redirect&bpo=20092].)

	Added support of \N{name} escapes in regular expressions:

>>> notice = 'Copyright © 2019'
>>> copyright_year_pattern = re.compile(r'\N{copyright sign}\s*(\d{4})')
>>> int(copyright_year_pattern.search(notice).group(1))
2019

(Contributed by Jonathan Eunice and Serhiy Storchaka in bpo-30688 [https://bugs.python.org/issue?@action=redirect&bpo=30688].)

	Dict and dictviews are now iterable in reversed insertion order using
reversed(). (Contributed by Rémi Lapeyre in bpo-33462 [https://bugs.python.org/issue?@action=redirect&bpo=33462].)

	The syntax allowed for keyword names in function calls was further
restricted. In particular, f((keyword)=arg) is no longer allowed. It was
never intended to permit more than a bare name on the left-hand side of a
keyword argument assignment term.
(Contributed by Benjamin Peterson in bpo-34641 [https://bugs.python.org/issue?@action=redirect&bpo=34641].)

	Generalized iterable unpacking in yield and
return statements no longer requires enclosing parentheses.
This brings the yield and return syntax into better agreement with
normal assignment syntax:

>>> def parse(family):
 lastname, *members = family.split()
 return lastname.upper(), *members

>>> parse('simpsons homer marge bart lisa maggie')
('SIMPSONS', 'homer', 'marge', 'bart', 'lisa', 'maggie')

(Contributed by David Cuthbert and Jordan Chapman in bpo-32117 [https://bugs.python.org/issue?@action=redirect&bpo=32117].)

	When a comma is missed in code such as [(10, 20) (30, 40)], the
compiler displays a SyntaxWarning with a helpful suggestion.
This improves on just having a TypeError indicating that the
first tuple was not callable. (Contributed by Serhiy Storchaka in
bpo-15248 [https://bugs.python.org/issue?@action=redirect&bpo=15248].)

	Arithmetic operations between subclasses of datetime.date or
datetime.datetime and datetime.timedelta objects now return
an instance of the subclass, rather than the base class. This also affects
the return type of operations whose implementation (directly or indirectly)
uses datetime.timedelta arithmetic, such as
astimezone().
(Contributed by Paul Ganssle in bpo-32417 [https://bugs.python.org/issue?@action=redirect&bpo=32417].)

	When the Python interpreter is interrupted by Ctrl-C (SIGINT) and the
resulting KeyboardInterrupt exception is not caught, the Python process
now exits via a SIGINT signal or with the correct exit code such that the
calling process can detect that it died due to a Ctrl-C. Shells on POSIX
and Windows use this to properly terminate scripts in interactive sessions.
(Contributed by Google via Gregory P. Smith in bpo-1054041 [https://bugs.python.org/issue?@action=redirect&bpo=1054041].)

	Some advanced styles of programming require updating the
types.CodeType object for an existing function. Since code
objects are immutable, a new code object needs to be created, one
that is modeled on the existing code object. With 19 parameters,
this was somewhat tedious. Now, the new replace() method makes
it possible to create a clone with a few altered parameters.

Here’s an example that alters the statistics.mean() function to
prevent the data parameter from being used as a keyword argument:

>>> from statistics import mean
>>> mean(data=[10, 20, 90])
40
>>> mean.__code__ = mean.__code__.replace(co_posonlyargcount=1)
>>> mean(data=[10, 20, 90])
Traceback (most recent call last):
 ...
TypeError: mean() got some positional-only arguments passed as keyword arguments: 'data'

(Contributed by Victor Stinner in bpo-37032 [https://bugs.python.org/issue?@action=redirect&bpo=37032].)

	For integers, the three-argument form of the pow() function now
permits the exponent to be negative in the case where the base is
relatively prime to the modulus. It then computes a modular inverse to
the base when the exponent is -1, and a suitable power of that
inverse for other negative exponents. For example, to compute the
modular multiplicative inverse [https://en.wikipedia.org/wiki/Modular_multiplicative_inverse] of 38
modulo 137, write:

>>> pow(38, -1, 137)
119
>>> 119 * 38 % 137
1

Modular inverses arise in the solution of linear Diophantine
equations [https://en.wikipedia.org/wiki/Diophantine_equation].
For example, to find integer solutions for 4258𝑥 + 147𝑦 = 369,
first rewrite as 4258𝑥 ≡ 369 (mod 147) then solve:

>>> x = 369 * pow(4258, -1, 147) % 147
>>> y = (4258 * x - 369) // -147
>>> 4258 * x + 147 * y
369

(Contributed by Mark Dickinson in bpo-36027 [https://bugs.python.org/issue?@action=redirect&bpo=36027].)

	Dict comprehensions have been synced-up with dict literals so that the
key is computed first and the value second:

>>> # Dict comprehension
>>> cast = {input('role? '): input('actor? ') for i in range(2)}
role? King Arthur
actor? Chapman
role? Black Knight
actor? Cleese

>>> # Dict literal
>>> cast = {input('role? '): input('actor? ')}
role? Sir Robin
actor? Eric Idle

The guaranteed execution order is helpful with assignment expressions
because variables assigned in the key expression will be available in
the value expression:

>>> names = ['Martin von Löwis', 'Łukasz Langa', 'Walter Dörwald']
>>> {(n := normalize('NFC', name)).casefold() : n for name in names}
{'martin von löwis': 'Martin von Löwis',
 'łukasz langa': 'Łukasz Langa',
 'walter dörwald': 'Walter Dörwald'}

(Contributed by Jörn Heissler in bpo-35224 [https://bugs.python.org/issue?@action=redirect&bpo=35224].)

	The object.__reduce__() method can now return a tuple from two to
six elements long. Formerly, five was the limit. The new, optional sixth
element is a callable with a (obj, state) signature. This allows the
direct control over the state-updating behavior of a specific object. If
not None, this callable will have priority over the object’s
__setstate__() method.
(Contributed by Pierre Glaser and Olivier Grisel in bpo-35900 [https://bugs.python.org/issue?@action=redirect&bpo=35900].)

New Modules

	The new importlib.metadata module provides (provisional) support for
reading metadata from third-party packages. For example, it can extract an
installed package’s version number, list of entry points, and more:

>>> # Note following example requires that the popular "requests"
>>> # package has been installed.
>>>
>>> from importlib.metadata import version, requires, files
>>> version('requests')
'2.22.0'
>>> list(requires('requests'))
['chardet (<3.1.0,>=3.0.2)']
>>> list(files('requests'))[:5]
[PackagePath('requests-2.22.0.dist-info/INSTALLER'),
 PackagePath('requests-2.22.0.dist-info/LICENSE'),
 PackagePath('requests-2.22.0.dist-info/METADATA'),
 PackagePath('requests-2.22.0.dist-info/RECORD'),
 PackagePath('requests-2.22.0.dist-info/WHEEL')]

(Contributed by Barry Warsaw and Jason R. Coombs in bpo-34632 [https://bugs.python.org/issue?@action=redirect&bpo=34632].)

Improved Modules

ast

AST nodes now have end_lineno and end_col_offset attributes,
which give the precise location of the end of the node. (This only
applies to nodes that have lineno and col_offset attributes.)

New function ast.get_source_segment() returns the source code
for a specific AST node.

(Contributed by Ivan Levkivskyi in bpo-33416 [https://bugs.python.org/issue?@action=redirect&bpo=33416].)

The ast.parse() function has some new flags:

	type_comments=True causes it to return the text of PEP 484 [https://peps.python.org/pep-0484/] and
PEP 526 [https://peps.python.org/pep-0526/] type comments associated with certain AST nodes;

	mode='func_type' can be used to parse PEP 484 [https://peps.python.org/pep-0484/] “signature type
comments” (returned for function definition AST nodes);

	feature_version=(3, N) allows specifying an earlier Python 3
version. For example, feature_version=(3, 4) will treat
async and await as non-reserved words.

(Contributed by Guido van Rossum in bpo-35766 [https://bugs.python.org/issue?@action=redirect&bpo=35766].)

asyncio

asyncio.run() has graduated from the provisional to stable API. This
function can be used to execute a coroutine and return the result while
automatically managing the event loop. For example:

import asyncio

async def main():
 await asyncio.sleep(0)
 return 42

asyncio.run(main())

This is roughly equivalent to:

import asyncio

async def main():
 await asyncio.sleep(0)
 return 42

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
try:
 loop.run_until_complete(main())
finally:
 asyncio.set_event_loop(None)
 loop.close()

The actual implementation is significantly more complex. Thus,
asyncio.run() should be the preferred way of running asyncio programs.

(Contributed by Yury Selivanov in bpo-32314 [https://bugs.python.org/issue?@action=redirect&bpo=32314].)

Running python -m asyncio launches a natively async REPL. This allows rapid
experimentation with code that has a top-level await. There is no
longer a need to directly call asyncio.run() which would spawn a new event
loop on every invocation:

$ python -m asyncio
asyncio REPL 3.8.0
Use "await" directly instead of "asyncio.run()".
Type "help", "copyright", "credits" or "license" for more information.
>>> import asyncio
>>> await asyncio.sleep(10, result='hello')
hello

(Contributed by Yury Selivanov in bpo-37028 [https://bugs.python.org/issue?@action=redirect&bpo=37028].)

The exception asyncio.CancelledError now inherits from
BaseException rather than Exception and no longer inherits
from concurrent.futures.CancelledError.
(Contributed by Yury Selivanov in bpo-32528 [https://bugs.python.org/issue?@action=redirect&bpo=32528].)

On Windows, the default event loop is now ProactorEventLoop.
(Contributed by Victor Stinner in bpo-34687 [https://bugs.python.org/issue?@action=redirect&bpo=34687].)

ProactorEventLoop now also supports UDP.
(Contributed by Adam Meily and Andrew Svetlov in bpo-29883 [https://bugs.python.org/issue?@action=redirect&bpo=29883].)

ProactorEventLoop can now be interrupted by
KeyboardInterrupt (“CTRL+C”).
(Contributed by Vladimir Matveev in bpo-23057 [https://bugs.python.org/issue?@action=redirect&bpo=23057].)

Added asyncio.Task.get_coro() for getting the wrapped coroutine
within an asyncio.Task.
(Contributed by Alex Grönholm in bpo-36999 [https://bugs.python.org/issue?@action=redirect&bpo=36999].)

Asyncio tasks can now be named, either by passing the name keyword
argument to asyncio.create_task() or
the create_task() event loop method, or by
calling the set_name() method on the task object. The
task name is visible in the repr() output of asyncio.Task and
can also be retrieved using the get_name() method.
(Contributed by Alex Grönholm in bpo-34270 [https://bugs.python.org/issue?@action=redirect&bpo=34270].)

Added support for
Happy Eyeballs [https://en.wikipedia.org/wiki/Happy_Eyeballs] to
asyncio.loop.create_connection(). To specify the behavior, two new
parameters have been added: happy_eyeballs_delay and interleave. The Happy
Eyeballs algorithm improves responsiveness in applications that support IPv4
and IPv6 by attempting to simultaneously connect using both.
(Contributed by twisteroid ambassador in bpo-33530 [https://bugs.python.org/issue?@action=redirect&bpo=33530].)

builtins

The compile() built-in has been improved to accept the
ast.PyCF_ALLOW_TOP_LEVEL_AWAIT flag. With this new flag passed,
compile() will allow top-level await, async for and async with
constructs that are usually considered invalid syntax. Asynchronous code object
marked with the CO_COROUTINE flag may then be returned.
(Contributed by Matthias Bussonnier in bpo-34616 [https://bugs.python.org/issue?@action=redirect&bpo=34616])

collections

The _asdict() method for
collections.namedtuple() now returns a dict instead of a
collections.OrderedDict. This works because regular dicts have
guaranteed ordering since Python 3.7. If the extra features of
OrderedDict are required, the suggested remediation is to cast the
result to the desired type: OrderedDict(nt._asdict()).
(Contributed by Raymond Hettinger in bpo-35864 [https://bugs.python.org/issue?@action=redirect&bpo=35864].)

cProfile

The cProfile.Profile class can now be used as a context manager.
Profile a block of code by running:

import cProfile

with cProfile.Profile() as profiler:
 # code to be profiled
 ...

(Contributed by Scott Sanderson in bpo-29235 [https://bugs.python.org/issue?@action=redirect&bpo=29235].)

csv

The csv.DictReader now returns instances of dict instead of
a collections.OrderedDict. The tool is now faster and uses less
memory while still preserving the field order.
(Contributed by Michael Selik in bpo-34003 [https://bugs.python.org/issue?@action=redirect&bpo=34003].)

curses

Added a new variable holding structured version information for the
underlying ncurses library: ncurses_version.
(Contributed by Serhiy Storchaka in bpo-31680 [https://bugs.python.org/issue?@action=redirect&bpo=31680].)

ctypes

On Windows, CDLL and subclasses now accept a winmode parameter
to specify flags for the underlying LoadLibraryEx call. The default flags are
set to only load DLL dependencies from trusted locations, including the path
where the DLL is stored (if a full or partial path is used to load the initial
DLL) and paths added by add_dll_directory().
(Contributed by Steve Dower in bpo-36085 [https://bugs.python.org/issue?@action=redirect&bpo=36085].)

datetime

Added new alternate constructors datetime.date.fromisocalendar() and
datetime.datetime.fromisocalendar(), which construct date and
datetime objects respectively from ISO year, week number, and weekday;
these are the inverse of each class’s isocalendar method.
(Contributed by Paul Ganssle in bpo-36004 [https://bugs.python.org/issue?@action=redirect&bpo=36004].)

functools

functools.lru_cache() can now be used as a straight decorator rather
than as a function returning a decorator. So both of these are now supported:

@lru_cache
def f(x):
 ...

@lru_cache(maxsize=256)
def f(x):
 ...

(Contributed by Raymond Hettinger in bpo-36772 [https://bugs.python.org/issue?@action=redirect&bpo=36772].)

Added a new functools.cached_property() decorator, for computed properties
cached for the life of the instance.

import functools
import statistics

class Dataset:
 def __init__(self, sequence_of_numbers):
 self.data = sequence_of_numbers

 @functools.cached_property
 def variance(self):
 return statistics.variance(self.data)

(Contributed by Carl Meyer in bpo-21145 [https://bugs.python.org/issue?@action=redirect&bpo=21145])

Added a new functools.singledispatchmethod() decorator that converts
methods into generic functions using
single dispatch:

from functools import singledispatchmethod
from contextlib import suppress

class TaskManager:

 def __init__(self, tasks):
 self.tasks = list(tasks)

 @singledispatchmethod
 def discard(self, value):
 with suppress(ValueError):
 self.tasks.remove(value)

 @discard.register(list)
 def _(self, tasks):
 targets = set(tasks)
 self.tasks = [x for x in self.tasks if x not in targets]

(Contributed by Ethan Smith in bpo-32380 [https://bugs.python.org/issue?@action=redirect&bpo=32380])

gc

get_objects() can now receive an optional generation parameter
indicating a generation to get objects from.
(Contributed by Pablo Galindo in bpo-36016 [https://bugs.python.org/issue?@action=redirect&bpo=36016].)

gettext

Added pgettext() and its variants.
(Contributed by Franz Glasner, Éric Araujo, and Cheryl Sabella in bpo-2504 [https://bugs.python.org/issue?@action=redirect&bpo=2504].)

gzip

Added the mtime parameter to gzip.compress() for reproducible output.
(Contributed by Guo Ci Teo in bpo-34898 [https://bugs.python.org/issue?@action=redirect&bpo=34898].)

A BadGzipFile exception is now raised instead of OSError
for certain types of invalid or corrupt gzip files.
(Contributed by Filip Gruszczyński, Michele Orrù, and Zackery Spytz in
bpo-6584 [https://bugs.python.org/issue?@action=redirect&bpo=6584].)

IDLE and idlelib

Output over N lines (50 by default) is squeezed down to a button.
N can be changed in the PyShell section of the General page of the
Settings dialog. Fewer, but possibly extra long, lines can be squeezed by
right clicking on the output. Squeezed output can be expanded in place
by double-clicking the button or into the clipboard or a separate window
by right-clicking the button. (Contributed by Tal Einat in bpo-1529353 [https://bugs.python.org/issue?@action=redirect&bpo=1529353].)

Add “Run Customized” to the Run menu to run a module with customized
settings. Any command line arguments entered are added to sys.argv.
They also re-appear in the box for the next customized run. One can also
suppress the normal Shell main module restart. (Contributed by Cheryl
Sabella, Terry Jan Reedy, and others in bpo-5680 [https://bugs.python.org/issue?@action=redirect&bpo=5680] and bpo-37627 [https://bugs.python.org/issue?@action=redirect&bpo=37627].)

Added optional line numbers for IDLE editor windows. Windows
open without line numbers unless set otherwise in the General
tab of the configuration dialog. Line numbers for an existing
window are shown and hidden in the Options menu.
(Contributed by Tal Einat and Saimadhav Heblikar in bpo-17535 [https://bugs.python.org/issue?@action=redirect&bpo=17535].)

OS native encoding is now used for converting between Python strings and Tcl
objects. This allows IDLE to work with emoji and other non-BMP characters.
These characters can be displayed or copied and pasted to or from the
clipboard. Converting strings from Tcl to Python and back now never fails.
(Many people worked on this for eight years but the problem was finally
solved by Serhiy Storchaka in bpo-13153 [https://bugs.python.org/issue?@action=redirect&bpo=13153].)

New in 3.8.1:

Add option to toggle cursor blink off. (Contributed by Zackery Spytz
in bpo-4603 [https://bugs.python.org/issue?@action=redirect&bpo=4603].)

Escape key now closes IDLE completion windows. (Contributed by Johnny
Najera in bpo-38944 [https://bugs.python.org/issue?@action=redirect&bpo=38944].)

The changes above have been backported to 3.7 maintenance releases.

Add keywords to module name completion list. (Contributed by Terry J.
Reedy in bpo-37765 [https://bugs.python.org/issue?@action=redirect&bpo=37765].)

inspect

The inspect.getdoc() function can now find docstrings for __slots__
if that attribute is a dict where the values are docstrings.
This provides documentation options similar to what we already have
for property(), classmethod(), and staticmethod():

class AudioClip:
 __slots__ = {'bit_rate': 'expressed in kilohertz to one decimal place',
 'duration': 'in seconds, rounded up to an integer'}
 def __init__(self, bit_rate, duration):
 self.bit_rate = round(bit_rate / 1000.0, 1)
 self.duration = ceil(duration)

(Contributed by Raymond Hettinger in bpo-36326 [https://bugs.python.org/issue?@action=redirect&bpo=36326].)

io

In development mode (-X env) and in debug build, the
io.IOBase finalizer now logs the exception if the close() method
fails. The exception is ignored silently by default in release build.
(Contributed by Victor Stinner in bpo-18748 [https://bugs.python.org/issue?@action=redirect&bpo=18748].)

itertools

The itertools.accumulate() function added an option initial keyword
argument to specify an initial value:

>>> from itertools import accumulate
>>> list(accumulate([10, 5, 30, 15], initial=1000))
[1000, 1010, 1015, 1045, 1060]

(Contributed by Lisa Roach in bpo-34659 [https://bugs.python.org/issue?@action=redirect&bpo=34659].)

json.tool

Add option --json-lines to parse every input line as a separate JSON object.
(Contributed by Weipeng Hong in bpo-31553 [https://bugs.python.org/issue?@action=redirect&bpo=31553].)

logging

Added a force keyword argument to logging.basicConfig()
When set to true, any existing handlers attached
to the root logger are removed and closed before carrying out the
configuration specified by the other arguments.

This solves a long-standing problem. Once a logger or basicConfig() had
been called, subsequent calls to basicConfig() were silently ignored.
This made it difficult to update, experiment with, or teach the various
logging configuration options using the interactive prompt or a Jupyter
notebook.

(Suggested by Raymond Hettinger, implemented by Dong-hee Na, and
reviewed by Vinay Sajip in bpo-33897 [https://bugs.python.org/issue?@action=redirect&bpo=33897].)

math

Added new function math.dist() for computing Euclidean distance
between two points. (Contributed by Raymond Hettinger in bpo-33089 [https://bugs.python.org/issue?@action=redirect&bpo=33089].)

Expanded the math.hypot() function to handle multiple dimensions.
Formerly, it only supported the 2-D case.
(Contributed by Raymond Hettinger in bpo-33089 [https://bugs.python.org/issue?@action=redirect&bpo=33089].)

Added new function, math.prod(), as analogous function to sum()
that returns the product of a ‘start’ value (default: 1) times an iterable of
numbers:

>>> prior = 0.8
>>> likelihoods = [0.625, 0.84, 0.30]
>>> math.prod(likelihoods, start=prior)
0.126

(Contributed by Pablo Galindo in bpo-35606 [https://bugs.python.org/issue?@action=redirect&bpo=35606].)

Added two new combinatoric functions math.perm() and math.comb():

>>> math.perm(10, 3) # Permutations of 10 things taken 3 at a time
720
>>> math.comb(10, 3) # Combinations of 10 things taken 3 at a time
120

(Contributed by Yash Aggarwal, Keller Fuchs, Serhiy Storchaka, and Raymond
Hettinger in bpo-37128 [https://bugs.python.org/issue?@action=redirect&bpo=37128], bpo-37178 [https://bugs.python.org/issue?@action=redirect&bpo=37178], and bpo-35431 [https://bugs.python.org/issue?@action=redirect&bpo=35431].)

Added a new function math.isqrt() for computing accurate integer square
roots without conversion to floating point. The new function supports
arbitrarily large integers. It is faster than floor(sqrt(n)) but slower
than math.sqrt():

>>> r = 650320427
>>> s = r ** 2
>>> isqrt(s - 1) # correct
650320426
>>> floor(sqrt(s - 1)) # incorrect
650320427

(Contributed by Mark Dickinson in bpo-36887 [https://bugs.python.org/issue?@action=redirect&bpo=36887].)

The function math.factorial() no longer accepts arguments that are not
int-like. (Contributed by Pablo Galindo in bpo-33083 [https://bugs.python.org/issue?@action=redirect&bpo=33083].)

mmap

The mmap.mmap class now has an madvise() method to
access the madvise() system call.
(Contributed by Zackery Spytz in bpo-32941 [https://bugs.python.org/issue?@action=redirect&bpo=32941].)

multiprocessing

Added new multiprocessing.shared_memory module.
(Contributed by Davin Potts in bpo-35813 [https://bugs.python.org/issue?@action=redirect&bpo=35813].)

On macOS, the spawn start method is now used by default.
(Contributed by Victor Stinner in bpo-33725 [https://bugs.python.org/issue?@action=redirect&bpo=33725].)

os

Added new function add_dll_directory() on Windows for providing
additional search paths for native dependencies when importing extension
modules or loading DLLs using ctypes.
(Contributed by Steve Dower in bpo-36085 [https://bugs.python.org/issue?@action=redirect&bpo=36085].)

A new os.memfd_create() function was added to wrap the
memfd_create() syscall.
(Contributed by Zackery Spytz and Christian Heimes in bpo-26836 [https://bugs.python.org/issue?@action=redirect&bpo=26836].)

On Windows, much of the manual logic for handling reparse points (including
symlinks and directory junctions) has been delegated to the operating system.
Specifically, os.stat() will now traverse anything supported by the
operating system, while os.lstat() will only open reparse points that
identify as “name surrogates” while others are opened as for os.stat().
In all cases, stat_result.st_mode will only have S_IFLNK set for
symbolic links and not other kinds of reparse points. To identify other kinds
of reparse point, check the new stat_result.st_reparse_tag attribute.

On Windows, os.readlink() is now able to read directory junctions. Note
that islink() will return False for directory junctions,
and so code that checks islink first will continue to treat junctions as
directories, while code that handles errors from os.readlink() may now
treat junctions as links.

(Contributed by Steve Dower in bpo-37834 [https://bugs.python.org/issue?@action=redirect&bpo=37834].)

os.path

os.path functions that return a boolean result like
exists(), lexists(), isdir(),
isfile(), islink(), and ismount()
now return False instead of raising ValueError or its subclasses
UnicodeEncodeError and UnicodeDecodeError for paths that contain
characters or bytes unrepresentable at the OS level.
(Contributed by Serhiy Storchaka in bpo-33721 [https://bugs.python.org/issue?@action=redirect&bpo=33721].)

expanduser() on Windows now prefers the USERPROFILE
environment variable and does not use HOME, which is not normally set
for regular user accounts.
(Contributed by Anthony Sottile in bpo-36264 [https://bugs.python.org/issue?@action=redirect&bpo=36264].)

isdir() on Windows no longer returns True for a link to a
non-existent directory.

realpath() on Windows now resolves reparse points, including
symlinks and directory junctions.

(Contributed by Steve Dower in bpo-37834 [https://bugs.python.org/issue?@action=redirect&bpo=37834].)

pathlib

pathlib.Path methods that return a boolean result like
exists(), is_dir(),
is_file(), is_mount(),
is_symlink(), is_block_device(),
is_char_device(), is_fifo(),
is_socket() now return False instead of raising
ValueError or its subclass UnicodeEncodeError for paths that
contain characters unrepresentable at the OS level.
(Contributed by Serhiy Storchaka in bpo-33721 [https://bugs.python.org/issue?@action=redirect&bpo=33721].)

Added pathlib.Path.link_to() which creates a hard link pointing
to a path.
(Contributed by Joannah Nanjekye in bpo-26978 [https://bugs.python.org/issue?@action=redirect&bpo=26978])
Note that link_to was deprecated in 3.10 and removed in 3.12 in
favor of a hardlink_to method added in 3.10 which matches the
semantics of the existing symlink_to method.

pickle

pickle extensions subclassing the C-optimized Pickler
can now override the pickling logic of functions and classes by defining the
special reducer_override() method.
(Contributed by Pierre Glaser and Olivier Grisel in bpo-35900 [https://bugs.python.org/issue?@action=redirect&bpo=35900].)

plistlib

Added new plistlib.UID and enabled support for reading and writing
NSKeyedArchiver-encoded binary plists.
(Contributed by Jon Janzen in bpo-26707 [https://bugs.python.org/issue?@action=redirect&bpo=26707].)

pprint

The pprint module added a sort_dicts parameter to several functions.
By default, those functions continue to sort dictionaries before rendering or
printing. However, if sort_dicts is set to false, the dictionaries retain
the order that keys were inserted. This can be useful for comparison to JSON
inputs during debugging.

In addition, there is a convenience new function, pprint.pp() that is
like pprint.pprint() but with sort_dicts defaulting to False:

>>> from pprint import pprint, pp
>>> d = dict(source='input.txt', operation='filter', destination='output.txt')
>>> pp(d, width=40) # Original order
{'source': 'input.txt',
 'operation': 'filter',
 'destination': 'output.txt'}
>>> pprint(d, width=40) # Keys sorted alphabetically
{'destination': 'output.txt',
 'operation': 'filter',
 'source': 'input.txt'}

(Contributed by Rémi Lapeyre in bpo-30670 [https://bugs.python.org/issue?@action=redirect&bpo=30670].)

py_compile

py_compile.compile() now supports silent mode.
(Contributed by Joannah Nanjekye in bpo-22640 [https://bugs.python.org/issue?@action=redirect&bpo=22640].)

shlex

The new shlex.join() function acts as the inverse of shlex.split().
(Contributed by Bo Bayles in bpo-32102 [https://bugs.python.org/issue?@action=redirect&bpo=32102].)

shutil

shutil.copytree() now accepts a new dirs_exist_ok keyword argument.
(Contributed by Josh Bronson in bpo-20849 [https://bugs.python.org/issue?@action=redirect&bpo=20849].)

shutil.make_archive() now defaults to the modern pax (POSIX.1-2001)
format for new archives to improve portability and standards conformance,
inherited from the corresponding change to the tarfile module.
(Contributed by C.A.M. Gerlach in bpo-30661 [https://bugs.python.org/issue?@action=redirect&bpo=30661].)

shutil.rmtree() on Windows now removes directory junctions without
recursively removing their contents first.
(Contributed by Steve Dower in bpo-37834 [https://bugs.python.org/issue?@action=redirect&bpo=37834].)

socket

Added create_server() and has_dualstack_ipv6()
convenience functions to automate the necessary tasks usually involved when
creating a server socket, including accepting both IPv4 and IPv6 connections
on the same socket. (Contributed by Giampaolo Rodolà in bpo-17561 [https://bugs.python.org/issue?@action=redirect&bpo=17561].)

The socket.if_nameindex(), socket.if_nametoindex(), and
socket.if_indextoname() functions have been implemented on Windows.
(Contributed by Zackery Spytz in bpo-37007 [https://bugs.python.org/issue?@action=redirect&bpo=37007].)

ssl

Added post_handshake_auth to enable and
verify_client_post_handshake() to initiate TLS 1.3
post-handshake authentication.
(Contributed by Christian Heimes in bpo-34670 [https://bugs.python.org/issue?@action=redirect&bpo=34670].)

statistics

Added statistics.fmean() as a faster, floating point variant of
statistics.mean(). (Contributed by Raymond Hettinger and
Steven D’Aprano in bpo-35904 [https://bugs.python.org/issue?@action=redirect&bpo=35904].)

Added statistics.geometric_mean()
(Contributed by Raymond Hettinger in bpo-27181 [https://bugs.python.org/issue?@action=redirect&bpo=27181].)

Added statistics.multimode() that returns a list of the most
common values. (Contributed by Raymond Hettinger in bpo-35892 [https://bugs.python.org/issue?@action=redirect&bpo=35892].)

Added statistics.quantiles() that divides data or a distribution
in to equiprobable intervals (e.g. quartiles, deciles, or percentiles).
(Contributed by Raymond Hettinger in bpo-36546 [https://bugs.python.org/issue?@action=redirect&bpo=36546].)

Added statistics.NormalDist, a tool for creating
and manipulating normal distributions of a random variable.
(Contributed by Raymond Hettinger in bpo-36018 [https://bugs.python.org/issue?@action=redirect&bpo=36018].)

>>> temperature_feb = NormalDist.from_samples([4, 12, -3, 2, 7, 14])
>>> temperature_feb.mean
6.0
>>> temperature_feb.stdev
6.356099432828281

>>> temperature_feb.cdf(3) # Chance of being under 3 degrees
0.3184678262814532
>>> # Relative chance of being 7 degrees versus 10 degrees
>>> temperature_feb.pdf(7) / temperature_feb.pdf(10)
1.2039930378537762

>>> el_niño = NormalDist(4, 2.5)
>>> temperature_feb += el_niño # Add in a climate effect
>>> temperature_feb
NormalDist(mu=10.0, sigma=6.830080526611674)

>>> temperature_feb * (9/5) + 32 # Convert to Fahrenheit
NormalDist(mu=50.0, sigma=12.294144947901014)
>>> temperature_feb.samples(3) # Generate random samples
[7.672102882379219, 12.000027119750287, 4.647488369766392]

sys

Add new sys.unraisablehook() function which can be overridden to control
how “unraisable exceptions” are handled. It is called when an exception has
occurred but there is no way for Python to handle it. For example, when a
destructor raises an exception or during garbage collection
(gc.collect()).
(Contributed by Victor Stinner in bpo-36829 [https://bugs.python.org/issue?@action=redirect&bpo=36829].)

tarfile

The tarfile module now defaults to the modern pax (POSIX.1-2001)
format for new archives, instead of the previous GNU-specific one.
This improves cross-platform portability with a consistent encoding (UTF-8)
in a standardized and extensible format, and offers several other benefits.
(Contributed by C.A.M. Gerlach in bpo-36268 [https://bugs.python.org/issue?@action=redirect&bpo=36268].)

threading

Add a new threading.excepthook() function which handles uncaught
threading.Thread.run() exception. It can be overridden to control how
uncaught threading.Thread.run() exceptions are handled.
(Contributed by Victor Stinner in bpo-1230540 [https://bugs.python.org/issue?@action=redirect&bpo=1230540].)

Add a new threading.get_native_id() function and
a native_id
attribute to the threading.Thread class. These return the native
integral Thread ID of the current thread assigned by the kernel.
This feature is only available on certain platforms, see
get_native_id for more information.
(Contributed by Jake Tesler in bpo-36084 [https://bugs.python.org/issue?@action=redirect&bpo=36084].)

tokenize

The tokenize module now implicitly emits a NEWLINE token when
provided with input that does not have a trailing new line. This behavior
now matches what the C tokenizer does internally.
(Contributed by Ammar Askar in bpo-33899 [https://bugs.python.org/issue?@action=redirect&bpo=33899].)

tkinter

Added methods selection_from(),
selection_present(),
selection_range() and
selection_to()
in the tkinter.Spinbox class.
(Contributed by Juliette Monsel in bpo-34829 [https://bugs.python.org/issue?@action=redirect&bpo=34829].)

Added method moveto()
in the tkinter.Canvas class.
(Contributed by Juliette Monsel in bpo-23831 [https://bugs.python.org/issue?@action=redirect&bpo=23831].)

The tkinter.PhotoImage class now has
transparency_get() and
transparency_set() methods. (Contributed by
Zackery Spytz in bpo-25451 [https://bugs.python.org/issue?@action=redirect&bpo=25451].)

time

Added new clock CLOCK_UPTIME_RAW for macOS 10.12.
(Contributed by Joannah Nanjekye in bpo-35702 [https://bugs.python.org/issue?@action=redirect&bpo=35702].)

typing

The typing module incorporates several new features:

	A dictionary type with per-key types. See PEP 589 [https://peps.python.org/pep-0589/] and
typing.TypedDict.
TypedDict uses only string keys. By default, every key is required
to be present. Specify “total=False” to allow keys to be optional:

class Location(TypedDict, total=False):
 lat_long: tuple
 grid_square: str
 xy_coordinate: tuple

	Literal types. See PEP 586 [https://peps.python.org/pep-0586/] and typing.Literal.
Literal types indicate that a parameter or return value
is constrained to one or more specific literal values:

def get_status(port: int) -> Literal['connected', 'disconnected']:
 ...

	“Final” variables, functions, methods and classes. See PEP 591 [https://peps.python.org/pep-0591/],
typing.Final and typing.final().
The final qualifier instructs a static type checker to restrict
subclassing, overriding, or reassignment:

pi: Final[float] = 3.1415926536

	Protocol definitions. See PEP 544 [https://peps.python.org/pep-0544/], typing.Protocol and
typing.runtime_checkable(). Simple ABCs like
typing.SupportsInt are now Protocol subclasses.

	New protocol class typing.SupportsIndex.

	New functions typing.get_origin() and typing.get_args().

unicodedata

The unicodedata module has been upgraded to use the Unicode 12.1.0 [https://blog.unicode.org/2019/05/unicode-12-1-en.html] release.

New function is_normalized() can be used to verify a string
is in a specific normal form, often much faster than by actually normalizing
the string. (Contributed by Max Belanger, David Euresti, and Greg Price in
bpo-32285 [https://bugs.python.org/issue?@action=redirect&bpo=32285] and bpo-37966 [https://bugs.python.org/issue?@action=redirect&bpo=37966]).

unittest

Added AsyncMock to support an asynchronous version of
Mock. Appropriate new assert functions for testing
have been added as well.
(Contributed by Lisa Roach in bpo-26467 [https://bugs.python.org/issue?@action=redirect&bpo=26467]).

Added addModuleCleanup() and
addClassCleanup() to unittest to support
cleanups for setUpModule() and
setUpClass().
(Contributed by Lisa Roach in bpo-24412 [https://bugs.python.org/issue?@action=redirect&bpo=24412].)

Several mock assert functions now also print a list of actual calls upon
failure. (Contributed by Petter Strandmark in bpo-35047 [https://bugs.python.org/issue?@action=redirect&bpo=35047].)

unittest module gained support for coroutines to be used as test cases
with unittest.IsolatedAsyncioTestCase.
(Contributed by Andrew Svetlov in bpo-32972 [https://bugs.python.org/issue?@action=redirect&bpo=32972].)

Example:

import unittest

class TestRequest(unittest.IsolatedAsyncioTestCase):

 async def asyncSetUp(self):
 self.connection = await AsyncConnection()

 async def test_get(self):
 response = await self.connection.get("https://example.com")
 self.assertEqual(response.status_code, 200)

 async def asyncTearDown(self):
 await self.connection.close()

if __name__ == "__main__":
 unittest.main()

venv

venv now includes an Activate.ps1 script on all platforms for
activating virtual environments under PowerShell Core 6.1.
(Contributed by Brett Cannon in bpo-32718 [https://bugs.python.org/issue?@action=redirect&bpo=32718].)

weakref

The proxy objects returned by weakref.proxy() now support the matrix
multiplication operators @ and @= in addition to the other
numeric operators. (Contributed by Mark Dickinson in bpo-36669 [https://bugs.python.org/issue?@action=redirect&bpo=36669].)

xml

As mitigation against DTD and external entity retrieval, the
xml.dom.minidom and xml.sax modules no longer process
external entities by default.
(Contributed by Christian Heimes in bpo-17239 [https://bugs.python.org/issue?@action=redirect&bpo=17239].)

The .find*() methods in the xml.etree.ElementTree module
support wildcard searches like {*}tag which ignores the namespace
and {namespace}* which returns all tags in the given namespace.
(Contributed by Stefan Behnel in bpo-28238 [https://bugs.python.org/issue?@action=redirect&bpo=28238].)

The xml.etree.ElementTree module provides a new function
–xml.etree.ElementTree.canonicalize() that implements C14N 2.0.
(Contributed by Stefan Behnel in bpo-13611 [https://bugs.python.org/issue?@action=redirect&bpo=13611].)

The target object of xml.etree.ElementTree.XMLParser can
receive namespace declaration events through the new callback methods
start_ns() and end_ns(). Additionally, the
xml.etree.ElementTree.TreeBuilder target can be configured
to process events about comments and processing instructions to include
them in the generated tree.
(Contributed by Stefan Behnel in bpo-36676 [https://bugs.python.org/issue?@action=redirect&bpo=36676] and bpo-36673 [https://bugs.python.org/issue?@action=redirect&bpo=36673].)

xmlrpc

xmlrpc.client.ServerProxy now supports an optional headers keyword
argument for a sequence of HTTP headers to be sent with each request. Among
other things, this makes it possible to upgrade from default basic
authentication to faster session authentication.
(Contributed by Cédric Krier in bpo-35153 [https://bugs.python.org/issue?@action=redirect&bpo=35153].)

Optimizations

	The subprocess module can now use the os.posix_spawn() function
in some cases for better performance. Currently, it is only used on macOS
and Linux (using glibc 2.24 or newer) if all these conditions are met:

	close_fds is false;

	preexec_fn, pass_fds, cwd and start_new_session parameters
are not set;

	the executable path contains a directory.

(Contributed by Joannah Nanjekye and Victor Stinner in bpo-35537 [https://bugs.python.org/issue?@action=redirect&bpo=35537].)

	shutil.copyfile(), shutil.copy(), shutil.copy2(),
shutil.copytree() and shutil.move() use platform-specific
“fast-copy” syscalls on Linux and macOS in order to copy the file
more efficiently.
“fast-copy” means that the copying operation occurs within the kernel,
avoiding the use of userspace buffers in Python as in
“outfd.write(infd.read())”.
On Windows shutil.copyfile() uses a bigger default buffer size (1 MiB
instead of 16 KiB) and a memoryview()-based variant of
shutil.copyfileobj() is used.
The speedup for copying a 512 MiB file within the same partition is about
+26% on Linux, +50% on macOS and +40% on Windows. Also, much less CPU cycles
are consumed.
See Platform-dependent efficient copy operations section.
(Contributed by Giampaolo Rodolà in bpo-33671 [https://bugs.python.org/issue?@action=redirect&bpo=33671].)

	shutil.copytree() uses os.scandir() function and all copy
functions depending from it use cached os.stat() values. The speedup
for copying a directory with 8000 files is around +9% on Linux, +20% on
Windows and +30% on a Windows SMB share. Also the number of os.stat()
syscalls is reduced by 38% making shutil.copytree() especially faster
on network filesystems. (Contributed by Giampaolo Rodolà in bpo-33695 [https://bugs.python.org/issue?@action=redirect&bpo=33695].)

	The default protocol in the pickle module is now Protocol 4,
first introduced in Python 3.4. It offers better performance and smaller
size compared to Protocol 3 available since Python 3.0.

	Removed one Py_ssize_t member from PyGC_Head. All GC tracked
objects (e.g. tuple, list, dict) size is reduced 4 or 8 bytes.
(Contributed by Inada Naoki in bpo-33597 [https://bugs.python.org/issue?@action=redirect&bpo=33597].)

	uuid.UUID now uses __slots__ to reduce its memory footprint.
(Contributed by Wouter Bolsterlee and Tal Einat in bpo-30977 [https://bugs.python.org/issue?@action=redirect&bpo=30977])

	Improved performance of operator.itemgetter() by 33%. Optimized
argument handling and added a fast path for the common case of a single
non-negative integer index into a tuple (which is the typical use case in
the standard library). (Contributed by Raymond Hettinger in
bpo-35664 [https://bugs.python.org/issue?@action=redirect&bpo=35664].)

	Sped-up field lookups in collections.namedtuple(). They are now more
than two times faster, making them the fastest form of instance variable
lookup in Python. (Contributed by Raymond Hettinger, Pablo Galindo, and
Joe Jevnik, Serhiy Storchaka in bpo-32492 [https://bugs.python.org/issue?@action=redirect&bpo=32492].)

	The list constructor does not overallocate the internal item buffer
if the input iterable has a known length (the input implements __len__).
This makes the created list 12% smaller on average. (Contributed by
Raymond Hettinger and Pablo Galindo in bpo-33234 [https://bugs.python.org/issue?@action=redirect&bpo=33234].)

	Doubled the speed of class variable writes. When a non-dunder attribute
was updated, there was an unnecessary call to update slots.
(Contributed by Stefan Behnel, Pablo Galindo Salgado, Raymond Hettinger,
Neil Schemenauer, and Serhiy Storchaka in bpo-36012 [https://bugs.python.org/issue?@action=redirect&bpo=36012].)

	Reduced an overhead of converting arguments passed to many builtin functions
and methods. This sped up calling some simple builtin functions and
methods up to 20–50%. (Contributed by Serhiy Storchaka in bpo-23867 [https://bugs.python.org/issue?@action=redirect&bpo=23867],
bpo-35582 [https://bugs.python.org/issue?@action=redirect&bpo=35582] and bpo-36127 [https://bugs.python.org/issue?@action=redirect&bpo=36127].)

	LOAD_GLOBAL instruction now uses new “per opcode cache” mechanism.
It is about 40% faster now. (Contributed by Yury Selivanov and Inada Naoki in
bpo-26219 [https://bugs.python.org/issue?@action=redirect&bpo=26219].)

Build and C API Changes

	Default sys.abiflags became an empty string: the m flag for
pymalloc became useless (builds with and without pymalloc are ABI compatible)
and so has been removed. (Contributed by Victor Stinner in bpo-36707 [https://bugs.python.org/issue?@action=redirect&bpo=36707].)

Example of changes:

	Only python3.8 program is installed, python3.8m program is gone.

	Only python3.8-config script is installed, python3.8m-config script
is gone.

	The m flag has been removed from the suffix of dynamic library
filenames: extension modules in the standard library as well as those
produced and installed by third-party packages, like those downloaded from
PyPI. On Linux, for example, the Python 3.7 suffix
.cpython-37m-x86_64-linux-gnu.so became
.cpython-38-x86_64-linux-gnu.so in Python 3.8.

	The header files have been reorganized to better separate the different kinds
of APIs:

	Include/*.h should be the portable public stable C API.

	Include/cpython/*.h should be the unstable C API specific to CPython;
public API, with some private API prefixed by _Py or _PY.

	Include/internal/*.h is the private internal C API very specific to
CPython. This API comes with no backward compatibility warranty and should
not be used outside CPython. It is only exposed for very specific needs
like debuggers and profiles which has to access to CPython internals
without calling functions. This API is now installed by make install.

(Contributed by Victor Stinner in bpo-35134 [https://bugs.python.org/issue?@action=redirect&bpo=35134] and bpo-35081 [https://bugs.python.org/issue?@action=redirect&bpo=35081],
work initiated by Eric Snow in Python 3.7.)

	Some macros have been converted to static inline functions: parameter types
and return type are well defined, they don’t have issues specific to macros,
variables have a local scopes. Examples:

	Py_INCREF(), Py_DECREF()

	Py_XINCREF(), Py_XDECREF()

	PyObject_INIT(), PyObject_INIT_VAR()

	Private functions: _PyObject_GC_TRACK(),
_PyObject_GC_UNTRACK(), _Py_Dealloc()

(Contributed by Victor Stinner in bpo-35059 [https://bugs.python.org/issue?@action=redirect&bpo=35059].)

	The PyByteArray_Init() and PyByteArray_Fini() functions have
been removed. They did nothing since Python 2.7.4 and Python 3.2.0, were
excluded from the limited API (stable ABI), and were not documented.
(Contributed by Victor Stinner in bpo-35713 [https://bugs.python.org/issue?@action=redirect&bpo=35713].)

	The result of PyExceptionClass_Name() is now of type
const char * rather of char *.
(Contributed by Serhiy Storchaka in bpo-33818 [https://bugs.python.org/issue?@action=redirect&bpo=33818].)

	The duality of Modules/Setup.dist and Modules/Setup has been
removed. Previously, when updating the CPython source tree, one had
to manually copy Modules/Setup.dist (inside the source tree) to
Modules/Setup (inside the build tree) in order to reflect any changes
upstream. This was of a small benefit to packagers at the expense of
a frequent annoyance to developers following CPython development, as
forgetting to copy the file could produce build failures.

Now the build system always reads from Modules/Setup inside the source
tree. People who want to customize that file are encouraged to maintain
their changes in a git fork of CPython or as patch files, as they would do
for any other change to the source tree.

(Contributed by Antoine Pitrou in bpo-32430 [https://bugs.python.org/issue?@action=redirect&bpo=32430].)

	Functions that convert Python number to C integer like
PyLong_AsLong() and argument parsing functions like
PyArg_ParseTuple() with integer converting format units like 'i'
will now use the __index__() special method instead of
__int__(), if available. The deprecation warning will be
emitted for objects with the __int__() method but without the
__index__() method (like Decimal and
Fraction). PyNumber_Check() will now return
1 for objects implementing __index__().
PyNumber_Long(), PyNumber_Float() and
PyFloat_AsDouble() also now use the __index__() method if
available.
(Contributed by Serhiy Storchaka in bpo-36048 [https://bugs.python.org/issue?@action=redirect&bpo=36048] and bpo-20092 [https://bugs.python.org/issue?@action=redirect&bpo=20092].)

	Heap-allocated type objects will now increase their reference count
in PyObject_Init() (and its parallel macro PyObject_INIT)
instead of in PyType_GenericAlloc(). Types that modify instance
allocation or deallocation may need to be adjusted.
(Contributed by Eddie Elizondo in bpo-35810 [https://bugs.python.org/issue?@action=redirect&bpo=35810].)

	The new function PyCode_NewWithPosOnlyArgs() allows to create
code objects like PyCode_New(), but with an extra posonlyargcount
parameter for indicating the number of positional-only arguments.
(Contributed by Pablo Galindo in bpo-37221 [https://bugs.python.org/issue?@action=redirect&bpo=37221].)

	Py_SetPath() now sets sys.executable to the program full
path (Py_GetProgramFullPath()) rather than to the program name
(Py_GetProgramName()).
(Contributed by Victor Stinner in bpo-38234 [https://bugs.python.org/issue?@action=redirect&bpo=38234].)

Deprecated

	The distutils bdist_wininst command is now deprecated, use
bdist_wheel (wheel packages) instead.
(Contributed by Victor Stinner in bpo-37481 [https://bugs.python.org/issue?@action=redirect&bpo=37481].)

	Deprecated methods getchildren() and getiterator() in
the ElementTree module now emit a
DeprecationWarning instead of PendingDeprecationWarning.
They will be removed in Python 3.9.
(Contributed by Serhiy Storchaka in bpo-29209 [https://bugs.python.org/issue?@action=redirect&bpo=29209].)

	Passing an object that is not an instance of
concurrent.futures.ThreadPoolExecutor to
loop.set_default_executor() is
deprecated and will be prohibited in Python 3.9.
(Contributed by Elvis Pranskevichus in bpo-34075 [https://bugs.python.org/issue?@action=redirect&bpo=34075].)

	The __getitem__() methods of xml.dom.pulldom.DOMEventStream,
wsgiref.util.FileWrapper and fileinput.FileInput have been
deprecated.

Implementations of these methods have been ignoring their index parameter,
and returning the next item instead.
(Contributed by Berker Peksag in bpo-9372 [https://bugs.python.org/issue?@action=redirect&bpo=9372].)

	The typing.NamedTuple class has deprecated the _field_types
attribute in favor of the __annotations__ attribute which has the same
information. (Contributed by Raymond Hettinger in bpo-36320 [https://bugs.python.org/issue?@action=redirect&bpo=36320].)

	ast classes Num, Str, Bytes, NameConstant and
Ellipsis are considered deprecated and will be removed in future Python
versions. Constant should be used instead.
(Contributed by Serhiy Storchaka in bpo-32892 [https://bugs.python.org/issue?@action=redirect&bpo=32892].)

	ast.NodeVisitor methods visit_Num(), visit_Str(),
visit_Bytes(), visit_NameConstant() and visit_Ellipsis() are
deprecated now and will not be called in future Python versions.
Add the visit_Constant() method to handle all
constant nodes.
(Contributed by Serhiy Storchaka in bpo-36917 [https://bugs.python.org/issue?@action=redirect&bpo=36917].)

	The asyncio.coroutine() decorator is deprecated and will be
removed in version 3.10. Instead of @asyncio.coroutine, use
async def instead.
(Contributed by Andrew Svetlov in bpo-36921 [https://bugs.python.org/issue?@action=redirect&bpo=36921].)

	In asyncio, the explicit passing of a loop argument has been
deprecated and will be removed in version 3.10 for the following:
asyncio.sleep(), asyncio.gather(), asyncio.shield(),
asyncio.wait_for(), asyncio.wait(), asyncio.as_completed(),
asyncio.Task, asyncio.Lock, asyncio.Event,
asyncio.Condition, asyncio.Semaphore,
asyncio.BoundedSemaphore, asyncio.Queue,
asyncio.create_subprocess_exec(), and
asyncio.create_subprocess_shell().

	The explicit passing of coroutine objects to asyncio.wait() has been
deprecated and will be removed in version 3.11.
(Contributed by Yury Selivanov in bpo-34790 [https://bugs.python.org/issue?@action=redirect&bpo=34790].)

	The following functions and methods are deprecated in the gettext
module: lgettext(), ldgettext(),
lngettext() and ldngettext().
They return encoded bytes, and it’s possible that you will get unexpected
Unicode-related exceptions if there are encoding problems with the
translated strings. It’s much better to use alternatives which return
Unicode strings in Python 3. These functions have been broken for a long time.

Function bind_textdomain_codeset(), methods
output_charset() and
set_output_charset(), and the codeset
parameter of functions translation() and
install() are also deprecated, since they are only used for
the l*gettext() functions.
(Contributed by Serhiy Storchaka in bpo-33710 [https://bugs.python.org/issue?@action=redirect&bpo=33710].)

	The isAlive() method of threading.Thread
has been deprecated.
(Contributed by Dong-hee Na in bpo-35283 [https://bugs.python.org/issue?@action=redirect&bpo=35283].)

	Many builtin and extension functions that take integer arguments will
now emit a deprecation warning for Decimals,
Fractions and any other objects that can be converted
to integers only with a loss (e.g. that have the __int__()
method but do not have the __index__() method). In future
version they will be errors.
(Contributed by Serhiy Storchaka in bpo-36048 [https://bugs.python.org/issue?@action=redirect&bpo=36048].)

	Deprecated passing the following arguments as keyword arguments:

	func in functools.partialmethod(), weakref.finalize(),
profile.Profile.runcall(), cProfile.Profile.runcall(),
bdb.Bdb.runcall(), trace.Trace.runfunc() and
curses.wrapper().

	function in unittest.TestCase.addCleanup().

	fn in the submit() method of
concurrent.futures.ThreadPoolExecutor and
concurrent.futures.ProcessPoolExecutor.

	callback in contextlib.ExitStack.callback(),
contextlib.AsyncExitStack.callback() and
contextlib.AsyncExitStack.push_async_callback().

	c and typeid in the create()
method of multiprocessing.managers.Server and
multiprocessing.managers.SharedMemoryServer.

	obj in weakref.finalize().

In future releases of Python, they will be positional-only.
(Contributed by Serhiy Storchaka in bpo-36492 [https://bugs.python.org/issue?@action=redirect&bpo=36492].)

API and Feature Removals

The following features and APIs have been removed from Python 3.8:

	Starting with Python 3.3, importing ABCs from collections was
deprecated, and importing should be done from collections.abc. Being
able to import from collections was marked for removal in 3.8, but has been
delayed to 3.9. (See bpo-36952 [https://bugs.python.org/issue?@action=redirect&bpo=36952].)

	The macpath module, deprecated in Python 3.7, has been removed.
(Contributed by Victor Stinner in bpo-35471 [https://bugs.python.org/issue?@action=redirect&bpo=35471].)

	The function platform.popen() has been removed, after having been
deprecated since Python 3.3: use os.popen() instead.
(Contributed by Victor Stinner in bpo-35345 [https://bugs.python.org/issue?@action=redirect&bpo=35345].)

	The function time.clock() has been removed, after having been
deprecated since Python 3.3: use time.perf_counter() or
time.process_time() instead, depending
on your requirements, to have well-defined behavior.
(Contributed by Matthias Bussonnier in bpo-36895 [https://bugs.python.org/issue?@action=redirect&bpo=36895].)

	The pyvenv script has been removed in favor of python3.8 -m venv
to help eliminate confusion as to what Python interpreter the pyvenv
script is tied to. (Contributed by Brett Cannon in bpo-25427 [https://bugs.python.org/issue?@action=redirect&bpo=25427].)

	parse_qs, parse_qsl, and escape are removed from the cgi
module. They are deprecated in Python 3.2 or older. They should be imported
from the urllib.parse and html modules instead.

	filemode function is removed from the tarfile module.
It is not documented and deprecated since Python 3.3.

	The XMLParser constructor no longer accepts
the html argument. It never had an effect and was deprecated in Python 3.4.
All other parameters are now keyword-only.
(Contributed by Serhiy Storchaka in bpo-29209 [https://bugs.python.org/issue?@action=redirect&bpo=29209].)

	Removed the doctype() method of XMLParser.
(Contributed by Serhiy Storchaka in bpo-29209 [https://bugs.python.org/issue?@action=redirect&bpo=29209].)

	“unicode_internal” codec is removed.
(Contributed by Inada Naoki in bpo-36297 [https://bugs.python.org/issue?@action=redirect&bpo=36297].)

	The Cache and Statement objects of the sqlite3 module are not
exposed to the user.
(Contributed by Aviv Palivoda in bpo-30262 [https://bugs.python.org/issue?@action=redirect&bpo=30262].)

	The bufsize keyword argument of fileinput.input() and
fileinput.FileInput() which was ignored and deprecated since Python 3.6
has been removed. bpo-36952 [https://bugs.python.org/issue?@action=redirect&bpo=36952] (Contributed by Matthias Bussonnier.)

	The functions sys.set_coroutine_wrapper() and
sys.get_coroutine_wrapper() deprecated in Python 3.7 have been removed;
bpo-36933 [https://bugs.python.org/issue?@action=redirect&bpo=36933] (Contributed by Matthias Bussonnier.)

Porting to Python 3.8

This section lists previously described changes and other bugfixes
that may require changes to your code.

Changes in Python behavior

	Yield expressions (both yield and yield from clauses) are now disallowed
in comprehensions and generator expressions (aside from the iterable expression
in the leftmost for clause).
(Contributed by Serhiy Storchaka in bpo-10544 [https://bugs.python.org/issue?@action=redirect&bpo=10544].)

	The compiler now produces a SyntaxWarning when identity checks
(is and is not) are used with certain types of literals
(e.g. strings, numbers). These can often work by accident in CPython,
but are not guaranteed by the language spec. The warning advises users
to use equality tests (== and !=) instead.
(Contributed by Serhiy Storchaka in bpo-34850 [https://bugs.python.org/issue?@action=redirect&bpo=34850].)

	The CPython interpreter can swallow exceptions in some circumstances.
In Python 3.8 this happens in fewer cases. In particular, exceptions
raised when getting the attribute from the type dictionary are no longer
ignored. (Contributed by Serhiy Storchaka in bpo-35459 [https://bugs.python.org/issue?@action=redirect&bpo=35459].)

	Removed __str__ implementations from builtin types bool,
int, float, complex and few classes from
the standard library. They now inherit __str__() from object.
As result, defining the __repr__() method in the subclass of these
classes will affect their string representation.
(Contributed by Serhiy Storchaka in bpo-36793 [https://bugs.python.org/issue?@action=redirect&bpo=36793].)

	On AIX, sys.platform doesn’t contain the major version anymore.
It is always 'aix', instead of 'aix3' .. 'aix7'. Since
older Python versions include the version number, so it is recommended to
always use sys.platform.startswith('aix').
(Contributed by M. Felt in bpo-36588 [https://bugs.python.org/issue?@action=redirect&bpo=36588].)

	PyEval_AcquireLock() and PyEval_AcquireThread() now
terminate the current thread if called while the interpreter is
finalizing, making them consistent with PyEval_RestoreThread(),
Py_END_ALLOW_THREADS(), and PyGILState_Ensure(). If this
behavior is not desired, guard the call by checking _Py_IsFinalizing()
or sys.is_finalizing().
(Contributed by Joannah Nanjekye in bpo-36475 [https://bugs.python.org/issue?@action=redirect&bpo=36475].)

Changes in the Python API

	The os.getcwdb() function now uses the UTF-8 encoding on Windows,
rather than the ANSI code page: see PEP 529 [https://peps.python.org/pep-0529/] for the rationale. The
function is no longer deprecated on Windows.
(Contributed by Victor Stinner in bpo-37412 [https://bugs.python.org/issue?@action=redirect&bpo=37412].)

	subprocess.Popen can now use os.posix_spawn() in some cases
for better performance. On Windows Subsystem for Linux and QEMU User
Emulation, the Popen constructor using os.posix_spawn() no longer raises an
exception on errors like “missing program”. Instead the child process fails with a
non-zero returncode.
(Contributed by Joannah Nanjekye and Victor Stinner in bpo-35537 [https://bugs.python.org/issue?@action=redirect&bpo=35537].)

	The preexec_fn argument of * subprocess.Popen is no longer
compatible with subinterpreters. The use of the parameter in a
subinterpreter now raises RuntimeError.
(Contributed by Eric Snow in bpo-34651 [https://bugs.python.org/issue?@action=redirect&bpo=34651], modified by Christian Heimes
in bpo-37951 [https://bugs.python.org/issue?@action=redirect&bpo=37951].)

	The imap.IMAP4.logout() method no longer silently ignores arbitrary
exceptions.
(Contributed by Victor Stinner in bpo-36348 [https://bugs.python.org/issue?@action=redirect&bpo=36348].)

	The function platform.popen() has been removed, after having been deprecated since
Python 3.3: use os.popen() instead.
(Contributed by Victor Stinner in bpo-35345 [https://bugs.python.org/issue?@action=redirect&bpo=35345].)

	The statistics.mode() function no longer raises an exception
when given multimodal data. Instead, it returns the first mode
encountered in the input data. (Contributed by Raymond Hettinger
in bpo-35892 [https://bugs.python.org/issue?@action=redirect&bpo=35892].)

	The selection() method of the
tkinter.ttk.Treeview class no longer takes arguments. Using it with
arguments for changing the selection was deprecated in Python 3.6. Use
specialized methods like selection_set() for
changing the selection. (Contributed by Serhiy Storchaka in bpo-31508 [https://bugs.python.org/issue?@action=redirect&bpo=31508].)

	The writexml(), toxml() and toprettyxml() methods of
xml.dom.minidom, and the write() method of xml.etree,
now preserve the attribute order specified by the user.
(Contributed by Diego Rojas and Raymond Hettinger in bpo-34160 [https://bugs.python.org/issue?@action=redirect&bpo=34160].)

	A dbm.dumb database opened with flags 'r' is now read-only.
dbm.dumb.open() with flags 'r' and 'w' no longer creates
a database if it does not exist.
(Contributed by Serhiy Storchaka in bpo-32749 [https://bugs.python.org/issue?@action=redirect&bpo=32749].)

	The doctype() method defined in a subclass of
XMLParser will no longer be called and will
emit a RuntimeWarning instead of a DeprecationWarning.
Define the doctype()
method on a target for handling an XML doctype declaration.
(Contributed by Serhiy Storchaka in bpo-29209 [https://bugs.python.org/issue?@action=redirect&bpo=29209].)

	A RuntimeError is now raised when the custom metaclass doesn’t
provide the __classcell__ entry in the namespace passed to
type.__new__. A DeprecationWarning was emitted in Python
3.6–3.7. (Contributed by Serhiy Storchaka in bpo-23722 [https://bugs.python.org/issue?@action=redirect&bpo=23722].)

	The cProfile.Profile class can now be used as a context
manager. (Contributed by Scott Sanderson in bpo-29235 [https://bugs.python.org/issue?@action=redirect&bpo=29235].)

	shutil.copyfile(), shutil.copy(), shutil.copy2(),
shutil.copytree() and shutil.move() use platform-specific
“fast-copy” syscalls (see
Platform-dependent efficient copy operations section).

	shutil.copyfile() default buffer size on Windows was changed from
16 KiB to 1 MiB.

	The PyGC_Head struct has changed completely. All code that touched the
struct member should be rewritten. (See bpo-33597 [https://bugs.python.org/issue?@action=redirect&bpo=33597].)

	The PyInterpreterState struct has been moved into the “internal”
header files (specifically Include/internal/pycore_pystate.h). An
opaque PyInterpreterState is still available as part of the public
API (and stable ABI). The docs indicate that none of the struct’s
fields are public, so we hope no one has been using them. However,
if you do rely on one or more of those private fields and have no
alternative then please open a BPO issue. We’ll work on helping
you adjust (possibly including adding accessor functions to the
public API). (See bpo-35886 [https://bugs.python.org/issue?@action=redirect&bpo=35886].)

	The mmap.flush() method now returns None on
success and raises an exception on error under all platforms. Previously,
its behavior was platform-dependent: a nonzero value was returned on success;
zero was returned on error under Windows. A zero value was returned on
success; an exception was raised on error under Unix.
(Contributed by Berker Peksag in bpo-2122 [https://bugs.python.org/issue?@action=redirect&bpo=2122].)

	xml.dom.minidom and xml.sax modules no longer process
external entities by default.
(Contributed by Christian Heimes in bpo-17239 [https://bugs.python.org/issue?@action=redirect&bpo=17239].)

	Deleting a key from a read-only dbm database (dbm.dumb,
dbm.gnu or dbm.ndbm) raises error (dbm.dumb.error,
dbm.gnu.error or dbm.ndbm.error) instead of KeyError.
(Contributed by Xiang Zhang in bpo-33106 [https://bugs.python.org/issue?@action=redirect&bpo=33106].)

	Simplified AST for literals. All constants will be represented as
ast.Constant instances. Instantiating old classes Num,
Str, Bytes, NameConstant and Ellipsis will return
an instance of Constant.
(Contributed by Serhiy Storchaka in bpo-32892 [https://bugs.python.org/issue?@action=redirect&bpo=32892].)

	expanduser() on Windows now prefers the USERPROFILE
environment variable and does not use HOME, which is not normally
set for regular user accounts.
(Contributed by Anthony Sottile in bpo-36264 [https://bugs.python.org/issue?@action=redirect&bpo=36264].)

	The exception asyncio.CancelledError now inherits from
BaseException rather than Exception and no longer inherits
from concurrent.futures.CancelledError.
(Contributed by Yury Selivanov in bpo-32528 [https://bugs.python.org/issue?@action=redirect&bpo=32528].)

	The function asyncio.wait_for() now correctly waits for cancellation
when using an instance of asyncio.Task. Previously, upon reaching
timeout, it was cancelled and immediately returned.
(Contributed by Elvis Pranskevichus in bpo-32751 [https://bugs.python.org/issue?@action=redirect&bpo=32751].)

	The function asyncio.BaseTransport.get_extra_info() now returns a safe
to use socket object when ‘socket’ is passed to the name parameter.
(Contributed by Yury Selivanov in bpo-37027 [https://bugs.python.org/issue?@action=redirect&bpo=37027].)

	asyncio.BufferedProtocol has graduated to the stable API.

	DLL dependencies for extension modules and DLLs loaded with ctypes on
Windows are now resolved more securely. Only the system paths, the directory
containing the DLL or PYD file, and directories added with
add_dll_directory() are searched for load-time dependencies.
Specifically, PATH and the current working directory are no longer
used, and modifications to these will no longer have any effect on normal DLL
resolution. If your application relies on these mechanisms, you should check
for add_dll_directory() and if it exists, use it to add your DLLs
directory while loading your library. Note that Windows 7 users will need to
ensure that Windows Update KB2533623 has been installed (this is also verified
by the installer).
(Contributed by Steve Dower in bpo-36085 [https://bugs.python.org/issue?@action=redirect&bpo=36085].)

	The header files and functions related to pgen have been removed after its
replacement by a pure Python implementation. (Contributed by Pablo Galindo
in bpo-36623 [https://bugs.python.org/issue?@action=redirect&bpo=36623].)

	types.CodeType has a new parameter in the second position of the
constructor (posonlyargcount) to support positional-only arguments defined
in PEP 570 [https://peps.python.org/pep-0570/]. The first argument (argcount) now represents the total
number of positional arguments (including positional-only arguments). The new
replace() method of types.CodeType can be used to make the code
future-proof.

	The parameter digestmod for hmac.new() no longer uses the MD5 digest
by default.

Changes in the C API

	The PyCompilerFlags structure got a new cf_feature_version
field. It should be initialized to PY_MINOR_VERSION. The field is ignored
by default, and is used if and only if PyCF_ONLY_AST flag is set in
cf_flags.
(Contributed by Guido van Rossum in bpo-35766 [https://bugs.python.org/issue?@action=redirect&bpo=35766].)

	The PyEval_ReInitThreads() function has been removed from the C API.
It should not be called explicitly: use PyOS_AfterFork_Child()
instead.
(Contributed by Victor Stinner in bpo-36728 [https://bugs.python.org/issue?@action=redirect&bpo=36728].)

	On Unix, C extensions are no longer linked to libpython except on Android
and Cygwin. When Python is embedded, libpython must not be loaded with
RTLD_LOCAL, but RTLD_GLOBAL instead. Previously, using
RTLD_LOCAL, it was already not possible to load C extensions which
were not linked to libpython, like C extensions of the standard
library built by the *shared* section of Modules/Setup.
(Contributed by Victor Stinner in bpo-21536 [https://bugs.python.org/issue?@action=redirect&bpo=21536].)

	Use of # variants of formats in parsing or building value (e.g.
PyArg_ParseTuple(), Py_BuildValue(), PyObject_CallFunction(),
etc.) without PY_SSIZE_T_CLEAN defined raises DeprecationWarning now.
It will be removed in 3.10 or 4.0. Read Parsing arguments and building values for detail.
(Contributed by Inada Naoki in bpo-36381 [https://bugs.python.org/issue?@action=redirect&bpo=36381].)

	Instances of heap-allocated types (such as those created with
PyType_FromSpec()) hold a reference to their type object.
Increasing the reference count of these type objects has been moved from
PyType_GenericAlloc() to the more low-level functions,
PyObject_Init() and PyObject_INIT().
This makes types created through PyType_FromSpec() behave like
other classes in managed code.

Statically allocated types are not affected.

For the vast majority of cases, there should be no side effect.
However, types that manually increase the reference count after allocating
an instance (perhaps to work around the bug) may now become immortal.
To avoid this, these classes need to call Py_DECREF on the type object
during instance deallocation.

To correctly port these types into 3.8, please apply the following
changes:

	Remove Py_INCREF on the type object after allocating an
instance - if any.
This may happen after calling PyObject_New(),
PyObject_NewVar(), PyObject_GC_New(),
PyObject_GC_NewVar(), or any other custom allocator that uses
PyObject_Init() or PyObject_INIT().

Example:

static foo_struct *
foo_new(PyObject *type) {
 foo_struct *foo = PyObject_GC_New(foo_struct, (PyTypeObject *) type);
 if (foo == NULL)
 return NULL;
#if PY_VERSION_HEX < 0x03080000
 // Workaround for Python issue 35810; no longer necessary in Python 3.8
 PY_INCREF(type)
#endif
 return foo;
}

	Ensure that all custom tp_dealloc functions of heap-allocated types
decrease the type’s reference count.

Example:

static void
foo_dealloc(foo_struct *instance) {
 PyObject *type = Py_TYPE(instance);
 PyObject_GC_Del(instance);
#if PY_VERSION_HEX >= 0x03080000
 // This was not needed before Python 3.8 (Python issue 35810)
 Py_DECREF(type);
#endif
}

(Contributed by Eddie Elizondo in bpo-35810 [https://bugs.python.org/issue?@action=redirect&bpo=35810].)

	The Py_DEPRECATED() macro has been implemented for MSVC.
The macro now must be placed before the symbol name.

Example:

Py_DEPRECATED(3.8) PyAPI_FUNC(int) Py_OldFunction(void);

(Contributed by Zackery Spytz in bpo-33407 [https://bugs.python.org/issue?@action=redirect&bpo=33407].)

	The interpreter does not pretend to support binary compatibility of
extension types across feature releases, anymore. A PyTypeObject
exported by a third-party extension module is supposed to have all the
slots expected in the current Python version, including
tp_finalize (Py_TPFLAGS_HAVE_FINALIZE
is not checked anymore before reading tp_finalize).

(Contributed by Antoine Pitrou in bpo-32388 [https://bugs.python.org/issue?@action=redirect&bpo=32388].)

	The functions PyNode_AddChild() and PyParser_AddToken() now accept
two additional int arguments end_lineno and end_col_offset.

	The libpython38.a file to allow MinGW tools to link directly against
python38.dll is no longer included in the regular Windows distribution.
If you require this file, it may be generated with the gendef and
dlltool tools, which are part of the MinGW binutils package:

gendef - python38.dll > tmp.def
dlltool --dllname python38.dll --def tmp.def --output-lib libpython38.a

The location of an installed pythonXY.dll will depend on the
installation options and the version and language of Windows. See
Using Python on Windows for more information. The resulting library should be
placed in the same directory as pythonXY.lib, which is generally the
libs directory under your Python installation.

(Contributed by Steve Dower in bpo-37351 [https://bugs.python.org/issue?@action=redirect&bpo=37351].)

CPython bytecode changes

	The interpreter loop has been simplified by moving the logic of unrolling
the stack of blocks into the compiler. The compiler emits now explicit
instructions for adjusting the stack of values and calling the
cleaning-up code for break, continue and
return.

Removed opcodes BREAK_LOOP, CONTINUE_LOOP,
SETUP_LOOP and SETUP_EXCEPT. Added new opcodes
ROT_FOUR, BEGIN_FINALLY, CALL_FINALLY and
POP_FINALLY. Changed the behavior of END_FINALLY
and WITH_CLEANUP_START.

(Contributed by Mark Shannon, Antoine Pitrou and Serhiy Storchaka in
bpo-17611 [https://bugs.python.org/issue?@action=redirect&bpo=17611].)

	Added new opcode END_ASYNC_FOR for handling exceptions raised
when awaiting a next item in an async for loop.
(Contributed by Serhiy Storchaka in bpo-33041 [https://bugs.python.org/issue?@action=redirect&bpo=33041].)

	The MAP_ADD now expects the value as the first element in the
stack and the key as the second element. This change was made so the key
is always evaluated before the value in dictionary comprehensions, as
proposed by PEP 572 [https://peps.python.org/pep-0572/]. (Contributed by Jörn Heissler in bpo-35224 [https://bugs.python.org/issue?@action=redirect&bpo=35224].)

Demos and Tools

Added a benchmark script for timing various ways to access variables:
Tools/scripts/var_access_benchmark.py.
(Contributed by Raymond Hettinger in bpo-35884 [https://bugs.python.org/issue?@action=redirect&bpo=35884].)

Here’s a summary of performance improvements since Python 3.3:

Python version 3.3 3.4 3.5 3.6 3.7 3.8
-------------- --- --- --- --- --- ---

Variable and attribute read access:
 read_local 4.0 7.1 7.1 5.4 5.1 3.9
 read_nonlocal 5.3 7.1 8.1 5.8 5.4 4.4
 read_global 13.3 15.5 19.0 14.3 13.6 7.6
 read_builtin 20.0 21.1 21.6 18.5 19.0 7.5
 read_classvar_from_class 20.5 25.6 26.5 20.7 19.5 18.4
 read_classvar_from_instance 18.5 22.8 23.5 18.8 17.1 16.4
 read_instancevar 26.8 32.4 33.1 28.0 26.3 25.4
 read_instancevar_slots 23.7 27.8 31.3 20.8 20.8 20.2
 read_namedtuple 68.5 73.8 57.5 45.0 46.8 18.4
 read_boundmethod 29.8 37.6 37.9 29.6 26.9 27.7

Variable and attribute write access:
 write_local 4.6 8.7 9.3 5.5 5.3 4.3
 write_nonlocal 7.3 10.5 11.1 5.6 5.5 4.7
 write_global 15.9 19.7 21.2 18.0 18.0 15.8
 write_classvar 81.9 92.9 96.0 104.6 102.1 39.2
 write_instancevar 36.4 44.6 45.8 40.0 38.9 35.5
 write_instancevar_slots 28.7 35.6 36.1 27.3 26.6 25.7

Data structure read access:
 read_list 19.2 24.2 24.5 20.8 20.8 19.0
 read_deque 19.9 24.7 25.5 20.2 20.6 19.8
 read_dict 19.7 24.3 25.7 22.3 23.0 21.0
 read_strdict 17.9 22.6 24.3 19.5 21.2 18.9

Data structure write access:
 write_list 21.2 27.1 28.5 22.5 21.6 20.0
 write_deque 23.8 28.7 30.1 22.7 21.8 23.5
 write_dict 25.9 31.4 33.3 29.3 29.2 24.7
 write_strdict 22.9 28.4 29.9 27.5 25.2 23.1

Stack (or queue) operations:
 list_append_pop 144.2 93.4 112.7 75.4 74.2 50.8
 deque_append_pop 30.4 43.5 57.0 49.4 49.2 42.5
 deque_append_popleft 30.8 43.7 57.3 49.7 49.7 42.8

Timing loop:
 loop_overhead 0.3 0.5 0.6 0.4 0.3 0.3

The benchmarks were measured on an
Intel® Core™ i7-4960HQ processor [https://ark.intel.com/content/www/us/en/ark/products/76088/intel-core-i7-4960hq-processor-6m-cache-up-to-3-80-ghz.html]
running the macOS 64-bit builds found at
python.org [https://www.python.org/downloads/macos/].
The benchmark script displays timings in nanoseconds.

Notable changes in Python 3.8.1

Due to significant security concerns, the reuse_address parameter of
asyncio.loop.create_datagram_endpoint() is no longer supported. This is
because of the behavior of the socket option SO_REUSEADDR in UDP. For more
details, see the documentation for loop.create_datagram_endpoint().
(Contributed by Kyle Stanley, Antoine Pitrou, and Yury Selivanov in
bpo-37228 [https://bugs.python.org/issue?@action=redirect&bpo=37228].)

Notable changes in Python 3.8.8

Earlier Python versions allowed using both ; and & as
query parameter separators in urllib.parse.parse_qs() and
urllib.parse.parse_qsl(). Due to security concerns, and to conform with
newer W3C recommendations, this has been changed to allow only a single
separator key, with & as the default. This change also affects
cgi.parse() and cgi.parse_multipart() as they use the affected
functions internally. For more details, please see their respective
documentation.
(Contributed by Adam Goldschmidt, Senthil Kumaran and Ken Jin in bpo-42967 [https://bugs.python.org/issue?@action=redirect&bpo=42967].)

Notable changes in Python 3.8.12

Starting with Python 3.8.12 the ipaddress module no longer accepts
any leading zeros in IPv4 address strings. Leading zeros are ambiguous and
interpreted as octal notation by some libraries. For example the legacy
function socket.inet_aton() treats leading zeros as octal notation.
glibc implementation of modern inet_pton() does not accept
any leading zeros.

(Originally contributed by Christian Heimes in bpo-36384 [https://bugs.python.org/issue?@action=redirect&bpo=36384], and backported
to 3.8 by Achraf Merzouki.)

 _static/plus.png

nav.xhtml

 Table of Contents

 		
 Python Documentation contents

 		
 What’s New in Python

 		
 What’s New In Python 3.12

 		
 Summary – Release highlights

 		
 Improved Error Messages

 		
 New Features

 		
 New Features Related to Type Hints

 		
 Other Language Changes

 		
 New Modules

 		
 Improved Modules

 		
 Optimizations

 		
 CPython bytecode changes

 		
 Demos and Tools

 		
 Deprecated

 		
 Removed

 		
 Porting to Python 3.12

 		
 Build Changes

 		
 C API Changes

 		
 What’s New In Python 3.11

 		
 Summary – Release highlights

 		
 New Features

 		
 New Features Related to Type Hints

 		
 Other Language Changes

 		
 Other CPython Implementation Changes

 		
 New Modules

 		
 Improved Modules

 		
 Optimizations

 		
 Faster CPython

 		
 CPython bytecode changes

 		
 Deprecated

 		
 Pending Removal in Python 3.12

 		
 Removed

 		
 Porting to Python 3.11

 		
 Build Changes

 		
 C API Changes

 		
 What’s New In Python 3.10

 		
 Summary – Release highlights

 		
 New Features

 		
 New Features Related to Type Hints

 		
 Other Language Changes

 		
 New Modules

 		
 Improved Modules

 		
 Optimizations

 		
 Deprecated

 		
 Removed

 		
 Porting to Python 3.10

 		
 CPython bytecode changes

 		
 Build Changes

 		
 C API Changes

 		
 What’s New In Python 3.9

 		
 Summary – Release highlights

 		
 You should check for DeprecationWarning in your code

 		
 New Features

 		
 Other Language Changes

 		
 New Modules

 		
 Improved Modules

 		
 Optimizations

 		
 Deprecated

 		
 Removed

 		
 Porting to Python 3.9

 		
 Build Changes

 		
 C API Changes

 		
 Notable changes in Python 3.9.1

 		
 Notable changes in Python 3.9.2

 		
 What’s New In Python 3.8

 		
 Summary – Release highlights

 		
 New Features

 		
 Other Language Changes

 		
 New Modules

 		
 Improved Modules

 		
 Optimizations

 		
 Build and C API Changes

 		
 Deprecated

 		
 API and Feature Removals

 		
 Porting to Python 3.8

 		
 Notable changes in Python 3.8.1

 		
 Notable changes in Python 3.8.8

 		
 Notable changes in Python 3.8.12

 		
 What’s New In Python 3.7

 		
 Summary – Release Highlights

 		
 New Features

 		
 Other Language Changes

 		
 New Modules

 		
 Improved Modules

 		
 C API Changes

 		
 Build Changes

 		
 Optimizations

 		
 Other CPython Implementation Changes

 		
 Deprecated Python Behavior

 		
 Deprecated Python modules, functions and methods

 		
 Deprecated functions and types of the C API

 		
 Platform Support Removals

 		
 API and Feature Removals

 		
 Module Removals

 		
 Windows-only Changes

 		
 Porting to Python 3.7

 		
 Notable changes in Python 3.7.1

 		
 Notable changes in Python 3.7.2

 		
 Notable changes in Python 3.7.6

 		
 Notable changes in Python 3.7.10

 		
 What’s New In Python 3.6

 		
 Summary – Release highlights

 		
 New Features

 		
 Other Language Changes

 		
 New Modules

 		
 Improved Modules

 		
 Optimizations

 		
 Build and C API Changes

 		
 Other Improvements

 		
 Deprecated

 		
 Removed

 		
 Porting to Python 3.6

 		
 Notable changes in Python 3.6.2

 		
 Notable changes in Python 3.6.4

 		
 Notable changes in Python 3.6.5

 		
 Notable changes in Python 3.6.7

 		
 Notable changes in Python 3.6.10

 		
 Notable changes in Python 3.6.13

 		
 What’s New In Python 3.5

 		
 Summary – Release highlights

 		
 New Features

 		
 Other Language Changes

 		
 New Modules

 		
 Improved Modules

 		
 Other module-level changes

 		
 Optimizations

 		
 Build and C API Changes

 		
 Deprecated

 		
 Removed

 		
 Porting to Python 3.5

 		
 Notable changes in Python 3.5.4

 		
 What’s New In Python 3.4

 		
 Summary – Release Highlights

 		
 New Features

 		
 New Modules

 		
 Improved Modules

 		
 CPython Implementation Changes

 		
 Deprecated

 		
 Removed

 		
 Porting to Python 3.4

 		
 Changed in 3.4.3

 		
 What’s New In Python 3.3

 		
 Summary – Release highlights

 		
 PEP 405: Virtual Environments

 		
 PEP 420: Implicit Namespace Packages

 		
 PEP 3118: New memoryview implementation and buffer protocol documentation

 		
 PEP 393: Flexible String Representation

 		
 PEP 397: Python Launcher for Windows

 		
 PEP 3151: Reworking the OS and IO exception hierarchy

 		
 PEP 380: Syntax for Delegating to a Subgenerator

 		
 PEP 409: Suppressing exception context

 		
 PEP 414: Explicit Unicode literals

 		
 PEP 3155: Qualified name for classes and functions

 		
 PEP 412: Key-Sharing Dictionary

 		
 PEP 362: Function Signature Object

 		
 PEP 421: Adding sys.implementation

 		
 Using importlib as the Implementation of Import

 		
 Other Language Changes

 		
 A Finer-Grained Import Lock

 		
 Builtin functions and types

 		
 New Modules

 		
 Improved Modules

 		
 Optimizations

 		
 Build and C API Changes

 		
 Deprecated

 		
 Porting to Python 3.3

 		
 What’s New In Python 3.2

 		
 PEP 384: Defining a Stable ABI

 		
 PEP 389: Argparse Command Line Parsing Module

 		
 PEP 391: Dictionary Based Configuration for Logging

 		
 PEP 3148: The concurrent.futures module

 		
 PEP 3147: PYC Repository Directories

 		
 PEP 3149: ABI Version Tagged .so Files

 		
 PEP 3333: Python Web Server Gateway Interface v1.0.1

 		
 Other Language Changes

 		
 New, Improved, and Deprecated Modules

 		
 Multi-threading

 		
 Optimizations

 		
 Unicode

 		
 Codecs

 		
 Documentation

 		
 IDLE

 		
 Code Repository

 		
 Build and C API Changes

 		
 Porting to Python 3.2

 		
 What’s New In Python 3.1

 		
 PEP 372: Ordered Dictionaries

 		
 PEP 378: Format Specifier for Thousands Separator

 		
 Other Language Changes

 		
 New, Improved, and Deprecated Modules

 		
 Optimizations

 		
 IDLE

 		
 Build and C API Changes

 		
 Porting to Python 3.1

 		
 What’s New In Python 3.0

 		
 Common Stumbling Blocks

 		
 Overview Of Syntax Changes

 		
 Changes Already Present In Python 2.6

 		
 Library Changes

 		
 PEP 3101: A New Approach To String Formatting

 		
 Changes To Exceptions

 		
 Miscellaneous Other Changes

 		
 Build and C API Changes

 		
 Performance

 		
 Porting To Python 3.0

 		
 What’s New in Python 2.7

 		
 The Future for Python 2.x

 		
 Changes to the Handling of Deprecation Warnings

 		
 Python 3.1 Features

 		
 PEP 372: Adding an Ordered Dictionary to collections

 		
 PEP 378: Format Specifier for Thousands Separator

 		
 PEP 389: The argparse Module for Parsing Command Lines

 		
 PEP 391: Dictionary-Based Configuration For Logging

 		
 PEP 3106: Dictionary Views

 		
 PEP 3137: The memoryview Object

 		
 Other Language Changes

 		
 New and Improved Modules

 		
 Build and C API Changes

 		
 Other Changes and Fixes

 		
 Porting to Python 2.7

 		
 New Features Added to Python 2.7 Maintenance Releases

 		
 Acknowledgements

 		
 What’s New in Python 2.6

 		
 Python 3.0

 		
 Changes to the Development Process

 		
 PEP 343: The ‘with’ statement

 		
 PEP 366: Explicit Relative Imports From a Main Module

 		
 PEP 370: Per-user site-packages Directory

 		
 PEP 371: The multiprocessing Package

 		
 PEP 3101: Advanced String Formatting

 		
 PEP 3105: print As a Function

 		
 PEP 3110: Exception-Handling Changes

 		
 PEP 3112: Byte Literals

 		
 PEP 3116: New I/O Library

 		
 PEP 3118: Revised Buffer Protocol

 		
 PEP 3119: Abstract Base Classes

 		
 PEP 3127: Integer Literal Support and Syntax

 		
 PEP 3129: Class Decorators

 		
 PEP 3141: A Type Hierarchy for Numbers

 		
 Other Language Changes

 		
 New and Improved Modules

 		
 Deprecations and Removals

 		
 Build and C API Changes

 		
 Porting to Python 2.6

 		
 Acknowledgements

 		
 What’s New in Python 2.5

 		
 PEP 308: Conditional Expressions

 		
 PEP 309: Partial Function Application

 		
 PEP 314: Metadata for Python Software Packages v1.1

 		
 PEP 328: Absolute and Relative Imports

 		
 PEP 338: Executing Modules as Scripts

 		
 PEP 341: Unified try/except/finally

 		
 PEP 342: New Generator Features

 		
 PEP 343: The ‘with’ statement

 		
 PEP 352: Exceptions as New-Style Classes

 		
 PEP 353: Using ssize_t as the index type

 		
 PEP 357: The ‘__index__’ method

 		
 Other Language Changes

 		
 New, Improved, and Removed Modules

 		
 Build and C API Changes

 		
 Porting to Python 2.5

 		
 Acknowledgements

 		
 What’s New in Python 2.4

 		
 PEP 218: Built-In Set Objects

 		
 PEP 237: Unifying Long Integers and Integers

 		
 PEP 289: Generator Expressions

 		
 PEP 292: Simpler String Substitutions

 		
 PEP 318: Decorators for Functions and Methods

 		
 PEP 322: Reverse Iteration

 		
 PEP 324: New subprocess Module

 		
 PEP 327: Decimal Data Type

 		
 PEP 328: Multi-line Imports

 		
 PEP 331: Locale-Independent Float/String Conversions

 		
 Other Language Changes

 		
 New, Improved, and Deprecated Modules

 		
 Build and C API Changes

 		
 Porting to Python 2.4

 		
 Acknowledgements

 		
 What’s New in Python 2.3

 		
 PEP 218: A Standard Set Datatype

 		
 PEP 255: Simple Generators

 		
 PEP 263: Source Code Encodings

 		
 PEP 273: Importing Modules from ZIP Archives

 		
 PEP 277: Unicode file name support for Windows NT

 		
 PEP 278: Universal Newline Support

 		
 PEP 279: enumerate()

 		
 PEP 282: The logging Package

 		
 PEP 285: A Boolean Type

 		
 PEP 293: Codec Error Handling Callbacks

 		
 PEP 301: Package Index and Metadata for Distutils

 		
 PEP 302: New Import Hooks

 		
 PEP 305: Comma-separated Files

 		
 PEP 307: Pickle Enhancements

 		
 Extended Slices

 		
 Other Language Changes

 		
 New, Improved, and Deprecated Modules

 		
 Pymalloc: A Specialized Object Allocator

 		
 Build and C API Changes

 		
 Other Changes and Fixes

 		
 Porting to Python 2.3

 		
 Acknowledgements

 		
 What’s New in Python 2.2

 		
 Introduction

 		
 PEPs 252 and 253: Type and Class Changes

 		
 PEP 234: Iterators

 		
 PEP 255: Simple Generators

 		
 PEP 237: Unifying Long Integers and Integers

 		
 PEP 238: Changing the Division Operator

 		
 Unicode Changes

 		
 PEP 227: Nested Scopes

 		
 New and Improved Modules

 		
 Interpreter Changes and Fixes

 		
 Other Changes and Fixes

 		
 Acknowledgements

 		
 What’s New in Python 2.1

 		
 Introduction

 		
 PEP 227: Nested Scopes

 		
 PEP 236: __future__ Directives

 		
 PEP 207: Rich Comparisons

 		
 PEP 230: Warning Framework

 		
 PEP 229: New Build System

 		
 PEP 205: Weak References

 		
 PEP 232: Function Attributes

 		
 PEP 235: Importing Modules on Case-Insensitive Platforms

 		
 PEP 217: Interactive Display Hook

 		
 PEP 208: New Coercion Model

 		
 PEP 241: Metadata in Python Packages

 		
 New and Improved Modules

 		
 Other Changes and Fixes

 		
 Acknowledgements

 		
 What’s New in Python 2.0

 		
 Introduction

 		
 What About Python 1.6?

 		
 New Development Process

 		
 Unicode

 		
 List Comprehensions

 		
 Augmented Assignment

 		
 String Methods

 		
 Garbage Collection of Cycles

 		
 Other Core Changes

 		
 Porting to 2.0

 		
 Extending/Embedding Changes

 		
 Distutils: Making Modules Easy to Install

 		
 XML Modules

 		
 Module changes

 		
 New modules

 		
 IDLE Improvements

 		
 Deleted and Deprecated Modules

 		
 Acknowledgements

 		
 Changelog

 		
 Python next

 		
 Python 3.12.0 beta 1

 		
 Python 3.12.0 alpha 7

 		
 Python 3.12.0 alpha 6

 		
 Python 3.12.0 alpha 5

 		
 Python 3.12.0 alpha 4

 		
 Python 3.12.0 alpha 3

 		
 Python 3.12.0 alpha 2

 		
 Python 3.12.0 alpha 1

 		
 Python 3.11.0 beta 1

 		
 Python 3.11.0 alpha 7

 		
 Python 3.11.0 alpha 6

 		
 Python 3.11.0 alpha 5

 		
 Python 3.11.0 alpha 4

 		
 Python 3.11.0 alpha 3

 		
 Python 3.11.0 alpha 2

 		
 Python 3.11.0 alpha 1

 		
 Python 3.10.0 beta 1

 		
 Python 3.10.0 alpha 7

 		
 Python 3.10.0 alpha 6

 		
 Python 3.10.0 alpha 5

 		
 Python 3.10.0 alpha 4

 		
 Python 3.10.0 alpha 3

 		
 Python 3.10.0 alpha 2

 		
 Python 3.10.0 alpha 1

 		
 Python 3.9.0 beta 1

 		
 Python 3.9.0 alpha 6

 		
 Python 3.9.0 alpha 5

 		
 Python 3.9.0 alpha 4

 		
 Python 3.9.0 alpha 3

 		
 Python 3.9.0 alpha 2

 		
 Python 3.9.0 alpha 1

 		
 Python 3.8.0 beta 1

 		
 Python 3.8.0 alpha 4

 		
 Python 3.8.0 alpha 3

 		
 Python 3.8.0 alpha 2

 		
 Python 3.8.0 alpha 1

 		
 Python 3.7.0 final

 		
 Python 3.7.0 release candidate 1

 		
 Python 3.7.0 beta 5

 		
 Python 3.7.0 beta 4

 		
 Python 3.7.0 beta 3

 		
 Python 3.7.0 beta 2

 		
 Python 3.7.0 beta 1

 		
 Python 3.7.0 alpha 4

 		
 Python 3.7.0 alpha 3

 		
 Python 3.7.0 alpha 2

 		
 Python 3.7.0 alpha 1

 		
 Python 3.6.6 final

 		
 Python 3.6.6 release candidate 1

 		
 Python 3.6.5 final

 		
 Python 3.6.5 release candidate 1

 		
 Python 3.6.4 final

 		
 Python 3.6.4 release candidate 1

 		
 Python 3.6.3 final

 		
 Python 3.6.3 release candidate 1

 		
 Python 3.6.2 final

 		
 Python 3.6.2 release candidate 2

 		
 Python 3.6.2 release candidate 1

 		
 Python 3.6.1 final

 		
 Python 3.6.1 release candidate 1

 		
 Python 3.6.0 final

 		
 Python 3.6.0 release candidate 2

 		
 Python 3.6.0 release candidate 1

 		
 Python 3.6.0 beta 4

 		
 Python 3.6.0 beta 3

 		
 Python 3.6.0 beta 2

 		
 Python 3.6.0 beta 1

 		
 Python 3.6.0 alpha 4

 		
 Python 3.6.0 alpha 3

 		
 Python 3.6.0 alpha 2

 		
 Python 3.6.0 alpha 1

 		
 Python 3.5.5 final

 		
 Python 3.5.5 release candidate 1

 		
 Python 3.5.4 final

 		
 Python 3.5.4 release candidate 1

 		
 Python 3.5.3 final

 		
 Python 3.5.3 release candidate 1

 		
 Python 3.5.2 final

 		
 Python 3.5.2 release candidate 1

 		
 Python 3.5.1 final

 		
 Python 3.5.1 release candidate 1

 		
 Python 3.5.0 final

 		
 Python 3.5.0 release candidate 4

 		
 Python 3.5.0 release candidate 3

 		
 Python 3.5.0 release candidate 2

 		
 Python 3.5.0 release candidate 1

 		
 Python 3.5.0 beta 4

 		
 Python 3.5.0 beta 3

 		
 Python 3.5.0 beta 2

 		
 Python 3.5.0 beta 1

 		
 Python 3.5.0 alpha 4

 		
 Python 3.5.0 alpha 3

 		
 Python 3.5.0 alpha 2

 		
 Python 3.5.0 alpha 1

 		
 The Python Tutorial

 		
 Whetting Your Appetite

 		
 Using the Python Interpreter

 		
 Invoking the Interpreter

 		
 The Interpreter and Its Environment

 		
 An Informal Introduction to Python

 		
 Using Python as a Calculator

 		
 First Steps Towards Programming

 		
 More Control Flow Tools

 		
 if Statements

 		
 for Statements

 		
 The range() Function

 		
 break and continue Statements, and else Clauses on Loops

 		
 pass Statements

 		
 match Statements

 		
 Defining Functions

 		
 More on Defining Functions

 		
 Intermezzo: Coding Style

 		
 Data Structures

 		
 More on Lists

 		
 The del statement

 		
 Tuples and Sequences

 		
 Sets

 		
 Dictionaries

 		
 Looping Techniques

 		
 More on Conditions

 		
 Comparing Sequences and Other Types

 		
 Modules

 		
 More on Modules

 		
 Standard Modules

 		
 The dir() Function

 		
 Packages

 		
 Input and Output

 		
 Fancier Output Formatting

 		
 Reading and Writing Files

 		
 Errors and Exceptions

 		
 Syntax Errors

 		
 Exceptions

 		
 Handling Exceptions

 		
 Raising Exceptions

 		
 Exception Chaining

 		
 User-defined Exceptions

 		
 Defining Clean-up Actions

 		
 Predefined Clean-up Actions

 		
 Raising and Handling Multiple Unrelated Exceptions

 		
 Enriching Exceptions with Notes

 		
 Classes

 		
 A Word About Names and Objects

 		
 Python Scopes and Namespaces

 		
 A First Look at Classes

 		
 Random Remarks

 		
 Inheritance

 		
 Private Variables

 		
 Odds and Ends

 		
 Iterators

 		
 Generators

 		
 Generator Expressions

 		
 Brief Tour of the Standard Library

 		
 Operating System Interface

 		
 File Wildcards

 		
 Command Line Arguments

 		
 Error Output Redirection and Program Termination

 		
 String Pattern Matching

 		
 Mathematics

 		
 Internet Access

 		
 Dates and Times

 		
 Data Compression

 		
 Performance Measurement

 		
 Quality Control

 		
 Batteries Included

 		
 Brief Tour of the Standard Library — Part II

 		
 Output Formatting

 		
 Templating

 		
 Working with Binary Data Record Layouts

 		
 Multi-threading

 		
 Logging

 		
 Weak References

 		
 Tools for Working with Lists

 		
 Decimal Floating Point Arithmetic

 		
 Virtual Environments and Packages

 		
 Introduction

 		
 Creating Virtual Environments

 		
 Managing Packages with pip

 		
 What Now?

 		
 Interactive Input Editing and History Substitution

 		
 Tab Completion and History Editing

 		
 Alternatives to the Interactive Interpreter

 		
 Floating Point Arithmetic: Issues and Limitations

 		
 Representation Error

 		
 Appendix

 		
 Interactive Mode

 		
 Python Setup and Usage

 		
 Command line and environment

 		
 Command line

 		
 Environment variables

 		
 Using Python on Unix platforms

 		
 Getting and installing the latest version of Python

 		
 Building Python

 		
 Python-related paths and files

 		
 Miscellaneous

 		
 Custom OpenSSL

 		
 Configure Python

 		
 Build Requirements

 		
 Configure Options

 		
 Python Build System

 		
 Compiler and linker flags

 		
 Using Python on Windows

 		
 The full installer

 		
 The Microsoft Store package

 		
 The nuget.org packages

 		
 The embeddable package

 		
 Alternative bundles

 		
 Configuring Python

 		
 UTF-8 mode

 		
 Python Launcher for Windows

 		
 Finding modules

 		
 Additional modules

 		
 Compiling Python on Windows

 		
 Other Platforms

 		
 Using Python on a Mac

 		
 Getting and Installing MacPython

 		
 The IDE

 		
 Installing Additional Python Packages

 		
 GUI Programming on the Mac

 		
 Distributing Python Applications on the Mac

 		
 Other Resources

 		
 Editors and IDEs

 		
 The Python Language Reference

 		
 Introduction

 		
 Alternate Implementations

 		
 Notation

 		
 Lexical analysis

 		
 Line structure

 		
 Other tokens

 		
 Identifiers and keywords

 		
 Literals

 		
 Operators

 		
 Delimiters

 		
 Data model

 		
 Objects, values and types

 		
 The standard type hierarchy

 		
 Special method names

 		
 Coroutines

 		
 Execution model

 		
 Structure of a program

 		
 Naming and binding

 		
 Exceptions

 		
 The import system

 		
 importlib

 		
 Packages

 		
 Searching

 		
 Loading

 		
 The Path Based Finder

 		
 Replacing the standard import system

 		
 Package Relative Imports

 		
 Special considerations for __main__

 		
 References

 		
 Expressions

 		
 Arithmetic conversions

 		
 Atoms

 		
 Primaries

 		
 Await expression

 		
 The power operator

 		
 Unary arithmetic and bitwise operations

 		
 Binary arithmetic operations

 		
 Shifting operations

 		
 Binary bitwise operations

 		
 Comparisons

 		
 Boolean operations

 		
 Assignment expressions

 		
 Conditional expressions

 		
 Lambdas

 		
 Expression lists

 		
 Evaluation order

 		
 Operator precedence

 		
 Simple statements

 		
 Expression statements

 		
 Assignment statements

 		
 The assert statement

 		
 The pass statement

 		
 The del statement

 		
 The return statement

 		
 The yield statement

 		
 The raise statement

 		
 The break statement

 		
 The continue statement

 		
 The import statement

 		
 The global statement

 		
 The nonlocal statement

 		
 The type statement

 		
 Compound statements

 		
 The if statement

 		
 The while statement

 		
 The for statement

 		
 The try statement

 		
 The with statement

 		
 The match statement

 		
 Function definitions

 		
 Class definitions

 		
 Coroutines

 		
 Type parameter lists

 		
 Top-level components

 		
 Complete Python programs

 		
 File input

 		
 Interactive input

 		
 Expression input

 		
 Full Grammar specification

 		
 The Python Standard Library

 		
 Introduction

 		
 Notes on availability

 		
 Built-in Functions

 		
 Built-in Constants

 		
 Constants added by the site module

 		
 Built-in Types

 		
 Truth Value Testing

 		
 Boolean Operations — and, or, not

 		
 Comparisons

 		
 Numeric Types — int, float, complex

 		
 Boolean Type - bool

 		
 Iterator Types

 		
 Sequence Types — list, tuple, range

 		
 Text Sequence Type — str

 		
 Binary Sequence Types — bytes, bytearray, memoryview

 		
 Set Types — set, frozenset

 		
 Mapping Types — dict

 		
 Context Manager Types

 		
 Type Annotation Types — Generic Alias, Union

 		
 Other Built-in Types

 		
 Special Attributes

 		
 Integer string conversion length limitation

 		
 Built-in Exceptions

 		
 Exception context

 		
 Inheriting from built-in exceptions

 		
 Base classes

 		
 Concrete exceptions

 		
 Warnings

 		
 Exception groups

 		
 Exception hierarchy

 		
 Text Processing Services

 		
 string — Common string operations

 		
 re — Regular expression operations

 		
 difflib — Helpers for computing deltas

 		
 textwrap — Text wrapping and filling

 		
 unicodedata — Unicode Database

 		
 stringprep — Internet String Preparation

 		
 readline — GNU readline interface

 		
 rlcompleter — Completion function for GNU readline

 		
 Binary Data Services

 		
 struct — Interpret bytes as packed binary data

 		
 codecs — Codec registry and base classes

 		
 Data Types

 		
 datetime — Basic date and time types

 		
 zoneinfo — IANA time zone support

 		
 calendar — General calendar-related functions

 		
 collections — Container datatypes

 		
 collections.abc — Abstract Base Classes for Containers

 		
 heapq — Heap queue algorithm

 		
 bisect — Array bisection algorithm

 		
 array — Efficient arrays of numeric values

 		
 weakref — Weak references

 		
 types — Dynamic type creation and names for built-in types

 		
 copy — Shallow and deep copy operations

 		
 pprint — Data pretty printer

 		
 reprlib — Alternate repr() implementation

 		
 enum — Support for enumerations

 		
 graphlib — Functionality to operate with graph-like structures

 		
 Numeric and Mathematical Modules

 		
 numbers — Numeric abstract base classes

 		
 math — Mathematical functions

 		
 cmath — Mathematical functions for complex numbers

 		
 decimal — Decimal fixed point and floating point arithmetic

 		
 fractions — Rational numbers

 		
 random — Generate pseudo-random numbers

 		
 statistics — Mathematical statistics functions

 		
 Functional Programming Modules

 		
 itertools — Functions creating iterators for efficient looping

 		
 functools — Higher-order functions and operations on callable objects

 		
 operator — Standard operators as functions

 		
 File and Directory Access

 		
 pathlib — Object-oriented filesystem paths

 		
 os.path — Common pathname manipulations

 		
 fileinput — Iterate over lines from multiple input streams

 		
 stat — Interpreting stat() results

 		
 filecmp — File and Directory Comparisons

 		
 tempfile — Generate temporary files and directories

 		
 glob — Unix style pathname pattern expansion

 		
 fnmatch — Unix filename pattern matching

 		
 linecache — Random access to text lines

 		
 shutil — High-level file operations

 		
 Data Persistence

 		
 pickle — Python object serialization

 		
 copyreg — Register pickle support functions

 		
 shelve — Python object persistence

 		
 marshal — Internal Python object serialization

 		
 dbm — Interfaces to Unix “databases”

 		
 sqlite3 — DB-API 2.0 interface for SQLite databases

 		
 Data Compression and Archiving

 		
 zlib — Compression compatible with gzip

 		
 gzip — Support for gzip files

 		
 bz2 — Support for bzip2 compression

 		
 lzma — Compression using the LZMA algorithm

 		
 zipfile — Work with ZIP archives

 		
 tarfile — Read and write tar archive files

 		
 File Formats

 		
 csv — CSV File Reading and Writing

 		
 configparser — Configuration file parser

 		
 tomllib — Parse TOML files

 		
 netrc — netrc file processing

 		
 plistlib — Generate and parse Apple .plist files

 		
 Cryptographic Services

 		
 hashlib — Secure hashes and message digests

 		
 hmac — Keyed-Hashing for Message Authentication

 		
 secrets — Generate secure random numbers for managing secrets

 		
 Generic Operating System Services

 		
 os — Miscellaneous operating system interfaces

 		
 io — Core tools for working with streams

 		
 time — Time access and conversions

 		
 argparse — Parser for command-line options, arguments and sub-commands

 		
 getopt — C-style parser for command line options

 		
 logging — Logging facility for Python

 		
 logging.config — Logging configuration

 		
 logging.handlers — Logging handlers

 		
 getpass — Portable password input

 		
 curses — Terminal handling for character-cell displays

 		
 curses.textpad — Text input widget for curses programs

 		
 curses.ascii — Utilities for ASCII characters

 		
 curses.panel — A panel stack extension for curses

 		
 platform — Access to underlying platform’s identifying data

 		
 errno — Standard errno system symbols

 		
 ctypes — A foreign function library for Python

 		
 Concurrent Execution

 		
 threading — Thread-based parallelism

 		
 multiprocessing — Process-based parallelism

 		
 multiprocessing.shared_memory — Shared memory for direct access across processes

 		
 The concurrent package

 		
 concurrent.futures — Launching parallel tasks

 		
 subprocess — Subprocess management

 		
 sched — Event scheduler

 		
 queue — A synchronized queue class

 		
 contextvars — Context Variables

 		
 _thread — Low-level threading API

 		
 Networking and Interprocess Communication

 		
 asyncio — Asynchronous I/O

 		
 socket — Low-level networking interface

 		
 ssl — TLS/SSL wrapper for socket objects

 		
 select — Waiting for I/O completion

 		
 selectors — High-level I/O multiplexing

 		
 signal — Set handlers for asynchronous events

 		
 mmap — Memory-mapped file support

 		
 Internet Data Handling

 		
 email — An email and MIME handling package

 		
 json — JSON encoder and decoder

 		
 mailbox — Manipulate mailboxes in various formats

 		
 mimetypes — Map filenames to MIME types

 		
 base64 — Base16, Base32, Base64, Base85 Data Encodings

 		
 binascii — Convert between binary and ASCII

 		
 quopri — Encode and decode MIME quoted-printable data

 		
 Structured Markup Processing Tools

 		
 html — HyperText Markup Language support

 		
 html.parser — Simple HTML and XHTML parser

 		
 html.entities — Definitions of HTML general entities

 		
 XML Processing Modules

 		
 xml.etree.ElementTree — The ElementTree XML API

 		
 xml.dom — The Document Object Model API

 		
 xml.dom.minidom — Minimal DOM implementation

 		
 xml.dom.pulldom — Support for building partial DOM trees

 		
 xml.sax — Support for SAX2 parsers

 		
 xml.sax.handler — Base classes for SAX handlers

 		
 xml.sax.saxutils — SAX Utilities

 		
 xml.sax.xmlreader — Interface for XML parsers

 		
 xml.parsers.expat — Fast XML parsing using Expat

 		
 Internet Protocols and Support

 		
 webbrowser — Convenient web-browser controller

 		
 wsgiref — WSGI Utilities and Reference Implementation

 		
 urllib — URL handling modules

 		
 urllib.request — Extensible library for opening URLs

 		
 urllib.response — Response classes used by urllib

 		
 urllib.parse — Parse URLs into components

 		
 urllib.error — Exception classes raised by urllib.request

 		
 urllib.robotparser — Parser for robots.txt

 		
 http — HTTP modules

 		
 http.client — HTTP protocol client

 		
 ftplib — FTP protocol client

 		
 poplib — POP3 protocol client

 		
 imaplib — IMAP4 protocol client

 		
 smtplib — SMTP protocol client

 		
 uuid — UUID objects according to RFC 4122

 		
 socketserver — A framework for network servers

 		
 http.server — HTTP servers

 		
 http.cookies — HTTP state management

 		
 http.cookiejar — Cookie handling for HTTP clients

 		
 xmlrpc — XMLRPC server and client modules

 		
 xmlrpc.client — XML-RPC client access

 		
 xmlrpc.server — Basic XML-RPC servers

 		
 ipaddress — IPv4/IPv6 manipulation library

 		
 Multimedia Services

 		
 wave — Read and write WAV files

 		
 colorsys — Conversions between color systems

 		
 Internationalization

 		
 gettext — Multilingual internationalization services

 		
 locale — Internationalization services

 		
 Program Frameworks

 		
 turtle — Turtle graphics

 		
 cmd — Support for line-oriented command interpreters

 		
 shlex — Simple lexical analysis

 		
 Graphical User Interfaces with Tk

 		
 tkinter — Python interface to Tcl/Tk

 		
 tkinter.colorchooser — Color choosing dialog

 		
 tkinter.font — Tkinter font wrapper

 		
 Tkinter Dialogs

 		
 tkinter.messagebox — Tkinter message prompts

 		
 tkinter.scrolledtext — Scrolled Text Widget

 		
 tkinter.dnd — Drag and drop support

 		
 tkinter.ttk — Tk themed widgets

 		
 tkinter.tix — Extension widgets for Tk

 		
 IDLE

 		
 Development Tools

 		
 typing — Support for type hints

 		
 pydoc — Documentation generator and online help system

 		
 Python Development Mode

 		
 Effects of the Python Development Mode

 		
 ResourceWarning Example

 		
 Bad file descriptor error example

 		
 doctest — Test interactive Python examples

 		
 unittest — Unit testing framework

 		
 unittest.mock — mock object library

 		
 unittest.mock — getting started

 		
 2to3 — Automated Python 2 to 3 code translation

 		
 test — Regression tests package for Python

 		
 test.support — Utilities for the Python test suite

 		
 test.support.socket_helper — Utilities for socket tests

 		
 test.support.script_helper — Utilities for the Python execution tests

 		
 test.support.bytecode_helper — Support tools for testing correct bytecode generation

 		
 test.support.threading_helper — Utilities for threading tests

 		
 test.support.os_helper — Utilities for os tests

 		
 test.support.import_helper — Utilities for import tests

 		
 test.support.warnings_helper — Utilities for warnings tests

 		
 Debugging and Profiling

 		
 Audit events table

 		
 bdb — Debugger framework

 		
 faulthandler — Dump the Python traceback

 		
 pdb — The Python Debugger

 		
 The Python Profilers

 		
 timeit — Measure execution time of small code snippets

 		
 trace — Trace or track Python statement execution

 		
 tracemalloc — Trace memory allocations

 		
 Software Packaging and Distribution

 		
 ensurepip — Bootstrapping the pip installer

 		
 venv — Creation of virtual environments

 		
 zipapp — Manage executable Python zip archives

 		
 Python Runtime Services

 		
 sys — System-specific parameters and functions

 		
 sysconfig — Provide access to Python’s configuration information

 		
 builtins — Built-in objects

 		
 __main__ — Top-level code environment

 		
 warnings — Warning control

 		
 dataclasses — Data Classes

 		
 contextlib — Utilities for with-statement contexts

 		
 abc — Abstract Base Classes

 		
 atexit — Exit handlers

 		
 traceback — Print or retrieve a stack traceback

 		
 __future__ — Future statement definitions

 		
 gc — Garbage Collector interface

 		
 inspect — Inspect live objects

 		
 site — Site-specific configuration hook

 		
 Custom Python Interpreters

 		
 code — Interpreter base classes

 		
 codeop — Compile Python code

 		
 Importing Modules

 		
 zipimport — Import modules from Zip archives

 		
 pkgutil — Package extension utility

 		
 modulefinder — Find modules used by a script

 		
 runpy — Locating and executing Python modules

 		
 importlib — The implementation of import

 		
 importlib.resources – Package resource reading, opening and access

 		
 importlib.resources.abc – Abstract base classes for resources

 		
 importlib.metadata – Accessing package metadata

 		
 The initialization of the sys.path module search path

 		
 Python Language Services

 		
 ast — Abstract Syntax Trees

 		
 symtable — Access to the compiler’s symbol tables

 		
 token — Constants used with Python parse trees

 		
 keyword — Testing for Python keywords

 		
 tokenize — Tokenizer for Python source

 		
 tabnanny — Detection of ambiguous indentation

 		
 pyclbr — Python module browser support

 		
 py_compile — Compile Python source files

 		
 compileall — Byte-compile Python libraries

 		
 dis — Disassembler for Python bytecode

 		
 pickletools — Tools for pickle developers

 		
 MS Windows Specific Services

 		
 msvcrt — Useful routines from the MS VC++ runtime

 		
 winreg — Windows registry access

 		
 winsound — Sound-playing interface for Windows

 		
 Unix Specific Services

 		
 posix — The most common POSIX system calls

 		
 pwd — The password database

 		
 grp — The group database

 		
 termios — POSIX style tty control

 		
 tty — Terminal control functions

 		
 pty — Pseudo-terminal utilities

 		
 fcntl — The fcntl and ioctl system calls

 		
 resource — Resource usage information

 		
 syslog — Unix syslog library routines

 		
 Superseded Modules

 		
 aifc — Read and write AIFF and AIFC files

 		
 audioop — Manipulate raw audio data

 		
 cgi — Common Gateway Interface support

 		
 cgitb — Traceback manager for CGI scripts

 		
 chunk — Read IFF chunked data

 		
 crypt — Function to check Unix passwords

 		
 imghdr — Determine the type of an image

 		
 mailcap — Mailcap file handling

 		
 msilib — Read and write Microsoft Installer files

 		
 nis — Interface to Sun’s NIS (Yellow Pages)

 		
 nntplib — NNTP protocol client

 		
 optparse — Parser for command line options

 		
 ossaudiodev — Access to OSS-compatible audio devices

 		
 pipes — Interface to shell pipelines

 		
 sndhdr — Determine type of sound file

 		
 spwd — The shadow password database

 		
 sunau — Read and write Sun AU files

 		
 telnetlib — Telnet client

 		
 uu — Encode and decode uuencode files

 		
 xdrlib — Encode and decode XDR data

 		
 Security Considerations

 		
 Extending and Embedding the Python Interpreter

 		
 Recommended third party tools

 		
 Creating extensions without third party tools

 		
 Extending Python with C or C++

 		
 Defining Extension Types: Tutorial

 		
 Defining Extension Types: Assorted Topics

 		
 Building C and C++ Extensions

 		
 Building C and C++ Extensions on Windows

 		
 Embedding the CPython runtime in a larger application

 		
 Embedding Python in Another Application

 		
 Python/C API Reference Manual

 		
 Introduction

 		
 Coding standards

 		
 Include Files

 		
 Useful macros

 		
 Objects, Types and Reference Counts

 		
 Exceptions

 		
 Embedding Python

 		
 Debugging Builds

 		
 C API Stability

 		
 Unstable C API

 		
 Stable Application Binary Interface

 		
 Platform Considerations

 		
 Contents of Limited API

 		
 The Very High Level Layer

 		
 Reference Counting

 		
 Exception Handling

 		
 Printing and clearing

 		
 Raising exceptions

 		
 Issuing warnings

 		
 Querying the error indicator

 		
 Signal Handling

 		
 Exception Classes

 		
 Exception Objects

 		
 Unicode Exception Objects

 		
 Recursion Control

 		
 Standard Exceptions

 		
 Standard Warning Categories

 		
 Utilities

 		
 Operating System Utilities

 		
 System Functions

 		
 Process Control

 		
 Importing Modules

 		
 Data marshalling support

 		
 Parsing arguments and building values

 		
 String conversion and formatting

 		
 Reflection

 		
 Codec registry and support functions

 		
 Support for Perf Maps

 		
 Abstract Objects Layer

 		
 Object Protocol

 		
 Call Protocol

 		
 Number Protocol

 		
 Sequence Protocol

 		
 Mapping Protocol

 		
 Iterator Protocol

 		
 Buffer Protocol

 		
 Old Buffer Protocol

 		
 Concrete Objects Layer

 		
 Fundamental Objects

 		
 Numeric Objects

 		
 Sequence Objects

 		
 Container Objects

 		
 Function Objects

 		
 Other Objects

 		
 Initialization, Finalization, and Threads

 		
 Before Python Initialization

 		
 Global configuration variables

 		
 Initializing and finalizing the interpreter

 		
 Process-wide parameters

 		
 Thread State and the Global Interpreter Lock

 		
 Sub-interpreter support

 		
 Asynchronous Notifications

 		
 Profiling and Tracing

 		
 Advanced Debugger Support

 		
 Thread Local Storage Support

 		
 Python Initialization Configuration

 		
 Example

 		
 PyWideStringList

 		
 PyStatus

 		
 PyPreConfig

 		
 Preinitialize Python with PyPreConfig

 		
 PyConfig

 		
 Initialization with PyConfig

 		
 Isolated Configuration

 		
 Python Configuration

 		
 Python Path Configuration

 		
 Py_RunMain()

 		
 Py_GetArgcArgv()

 		
 Multi-Phase Initialization Private Provisional API

 		
 Memory Management

 		
 Overview

 		
 Allocator Domains

 		
 Raw Memory Interface

 		
 Memory Interface

 		
 Object allocators

 		
 Default Memory Allocators

 		
 Customize Memory Allocators

 		
 Debug hooks on the Python memory allocators

 		
 The pymalloc allocator

 		
 tracemalloc C API

 		
 Examples

 		
 Object Implementation Support

 		
 Allocating Objects on the Heap

 		
 Common Object Structures

 		
 Type Objects

 		
 Number Object Structures

 		
 Mapping Object Structures

 		
 Sequence Object Structures

 		
 Buffer Object Structures

 		
 Async Object Structures

 		
 Slot Type typedefs

 		
 Examples

 		
 Supporting Cyclic Garbage Collection

 		
 API and ABI Versioning

 		
 Distributing Python Modules

 		
 Key terms

 		
 Open source licensing and collaboration

 		
 Installing the tools

 		
 Reading the Python Packaging User Guide

 		
 How do I…?

 		
 … choose a name for my project?

 		
 … create and distribute binary extensions?

 		
 Installing Python Modules

 		
 Key terms

 		
 Basic usage

 		
 How do I …?

 		
 … install pip in versions of Python prior to Python 3.4?

 		
 … install packages just for the current user?

 		
 … install scientific Python packages?

 		
 … work with multiple versions of Python installed in parallel?

 		
 Common installation issues

 		
 Installing into the system Python on Linux

 		
 Pip not installed

 		
 Installing binary extensions

 		
 Python HOWTOs

 		
 Porting Python 2 Code to Python 3

 		
 The Short Explanation

 		
 Details

 		
 Porting Extension Modules to Python 3

 		
 Curses Programming with Python

 		
 What is curses?

 		
 Starting and ending a curses application

 		
 Windows and Pads

 		
 Displaying Text

 		
 User Input

 		
 For More Information

 		
 Descriptor HowTo Guide

 		
 Primer

 		
 Complete Practical Example

 		
 Technical Tutorial

 		
 Pure Python Equivalents

 		
 Enum HOWTO

 		
 Programmatic access to enumeration members and their attributes

 		
 Duplicating enum members and values

 		
 Ensuring unique enumeration values

 		
 Using automatic values

 		
 Iteration

 		
 Comparisons

 		
 Allowed members and attributes of enumerations

 		
 Restricted Enum subclassing

 		
 Dataclass support

 		
 Pickling

 		
 Functional API

 		
 Derived Enumerations

 		
 When to use __new__() vs. __init__()

 		
 How are Enums and Flags different?

 		
 Enum Cookbook

 		
 Subclassing EnumType

 		
 Functional Programming HOWTO

 		
 Introduction

 		
 Iterators

 		
 Generator expressions and list comprehensions

 		
 Generators

 		
 Built-in functions

 		
 The itertools module

 		
 The functools module

 		
 Small functions and the lambda expression

 		
 Revision History and Acknowledgements

 		
 References

 		
 Logging HOWTO

 		
 Basic Logging Tutorial

 		
 Advanced Logging Tutorial

 		
 Logging Levels

 		
 Useful Handlers

 		
 Exceptions raised during logging

 		
 Using arbitrary objects as messages

 		
 Optimization

 		
 Other resources

 		
 Logging Cookbook

 		
 Using logging in multiple modules

 		
 Logging from multiple threads

 		
 Multiple handlers and formatters

 		
 Logging to multiple destinations

 		
 Custom handling of levels

 		
 Configuration server example

 		
 Dealing with handlers that block

 		
 Sending and receiving logging events across a network

 		
 Adding contextual information to your logging output

 		
 Use of contextvars

 		
 Imparting contextual information in handlers

 		
 Logging to a single file from multiple processes

 		
 Using file rotation

 		
 Use of alternative formatting styles

 		
 Customizing LogRecord

 		
 Subclassing QueueHandler - a ZeroMQ example

 		
 Subclassing QueueListener - a ZeroMQ example

 		
 An example dictionary-based configuration

 		
 Using a rotator and namer to customize log rotation processing

 		
 A more elaborate multiprocessing example

 		
 Inserting a BOM into messages sent to a SysLogHandler

 		
 Implementing structured logging

 		
 Customizing handlers with dictConfig()

 		
 Using particular formatting styles throughout your application

 		
 Configuring filters with dictConfig()

 		
 Customized exception formatting

 		
 Speaking logging messages

 		
 Buffering logging messages and outputting them conditionally

 		
 Sending logging messages to email, with buffering

 		
 Formatting times using UTC (GMT) via configuration

 		
 Using a context manager for selective logging

 		
 A CLI application starter template

 		
 A Qt GUI for logging

 		
 Logging to syslog with RFC5424 support

 		
 How to treat a logger like an output stream

 		
 Patterns to avoid

 		
 Other resources

 		
 Regular Expression HOWTO

 		
 Introduction

 		
 Simple Patterns

 		
 Using Regular Expressions

 		
 More Pattern Power

 		
 Modifying Strings

 		
 Common Problems

 		
 Feedback

 		
 Socket Programming HOWTO

 		
 Sockets

 		
 Creating a Socket

 		
 Using a Socket

 		
 Disconnecting

 		
 Non-blocking Sockets

 		
 Sorting HOW TO

 		
 Sorting Basics

 		
 Key Functions

 		
 Operator Module Functions

 		
 Ascending and Descending

 		
 Sort Stability and Complex Sorts

 		
 Decorate-Sort-Undecorate

 		
 Comparison Functions

 		
 Odds and Ends

 		
 Unicode HOWTO

 		
 Introduction to Unicode

 		
 Python’s Unicode Support

 		
 Reading and Writing Unicode Data

 		
 Acknowledgements

 		
 HOWTO Fetch Internet Resources Using The urllib Package

 		
 Introduction

 		
 Fetching URLs

 		
 Handling Exceptions

 		
 info and geturl

 		
 Openers and Handlers

 		
 Basic Authentication

 		
 Proxies

 		
 Sockets and Layers

 		
 Footnotes

 		
 Argparse Tutorial

 		
 Concepts

 		
 The basics

 		
 Introducing Positional arguments

 		
 Introducing Optional arguments

 		
 Combining Positional and Optional arguments

 		
 Getting a little more advanced

 		
 Conclusion

 		
 An introduction to the ipaddress module

 		
 Creating Address/Network/Interface objects

 		
 Inspecting Address/Network/Interface Objects

 		
 Networks as lists of Addresses

 		
 Comparisons

 		
 Using IP Addresses with other modules

 		
 Getting more detail when instance creation fails

 		
 Argument Clinic How-To

 		
 The Goals Of Argument Clinic

 		
 Basic Concepts And Usage

 		
 Converting Your First Function

 		
 Advanced Topics

 		
 Instrumenting CPython with DTrace and SystemTap

 		
 Enabling the static markers

 		
 Static DTrace probes

 		
 Static SystemTap markers

 		
 Available static markers

 		
 SystemTap Tapsets

 		
 Examples

 		
 Python support for the Linux perf profiler

 		
 How to enable perf profiling support

 		
 How to obtain the best results

 		
 Annotations Best Practices

 		
 Accessing The Annotations Dict Of An Object In Python 3.10 And Newer

 		
 Accessing The Annotations Dict Of An Object In Python 3.9 And Older

 		
 Manually Un-Stringizing Stringized Annotations

 		
 Best Practices For __annotations__ In Any Python Version

 		
 __annotations__ Quirks

 		
 Isolating Extension Modules

 		
 Who should read this

 		
 Background

 		
 Making Modules Safe with Multiple Interpreters

 		
 Heap Types

 		
 Open Issues

 		
 Python Frequently Asked Questions

 		
 General Python FAQ

 		
 General Information

 		
 Python in the real world

 		
 Programming FAQ

 		
 General Questions

 		
 Core Language

 		
 Numbers and strings

 		
 Performance

 		
 Sequences (Tuples/Lists)

 		
 Objects

 		
 Modules

 		
 Design and History FAQ

 		
 Why does Python use indentation for grouping of statements?

 		
 Why am I getting strange results with simple arithmetic operations?

 		
 Why are floating-point calculations so inaccurate?

 		
 Why are Python strings immutable?

 		
 Why must ‘self’ be used explicitly in method definitions and calls?

 		
 Why can’t I use an assignment in an expression?

 		
 Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g. len(list))?

 		
 Why is join() a string method instead of a list or tuple method?

 		
 How fast are exceptions?

 		
 Why isn’t there a switch or case statement in Python?

 		
 Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread implementation?

 		
 Why can’t lambda expressions contain statements?

 		
 Can Python be compiled to machine code, C or some other language?

 		
 How does Python manage memory?

 		
 Why doesn’t CPython use a more traditional garbage collection scheme?

 		
 Why isn’t all memory freed when CPython exits?

 		
 Why are there separate tuple and list data types?

 		
 How are lists implemented in CPython?

 		
 How are dictionaries implemented in CPython?

 		
 Why must dictionary keys be immutable?

 		
 Why doesn’t list.sort() return the sorted list?

 		
 How do you specify and enforce an interface spec in Python?

 		
 Why is there no goto?

 		
 Why can’t raw strings (r-strings) end with a backslash?

 		
 Why doesn’t Python have a “with” statement for attribute assignments?

 		
 Why don’t generators support the with statement?

 		
 Why are colons required for the if/while/def/class statements?

 		
 Why does Python allow commas at the end of lists and tuples?

 		
 Library and Extension FAQ

 		
 General Library Questions

 		
 Common tasks

 		
 Threads

 		
 Input and Output

 		
 Network/Internet Programming

 		
 Databases

 		
 Mathematics and Numerics

 		
 Extending/Embedding FAQ

 		
 Can I create my own functions in C?

 		
 Can I create my own functions in C++?

 		
 Writing C is hard; are there any alternatives?

 		
 How can I execute arbitrary Python statements from C?

 		
 How can I evaluate an arbitrary Python expression from C?

 		
 How do I extract C values from a Python object?

 		
 How do I use Py_BuildValue() to create a tuple of arbitrary length?

 		
 How do I call an object’s method from C?

 		
 How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)?

 		
 How do I access a module written in Python from C?

 		
 How do I interface to C++ objects from Python?

 		
 I added a module using the Setup file and the make fails; why?

 		
 How do I debug an extension?

 		
 I want to compile a Python module on my Linux system, but some files are missing. Why?

 		
 How do I tell “incomplete input” from “invalid input”?

 		
 How do I find undefined g++ symbols __builtin_new or __pure_virtual?

 		
 Can I create an object class with some methods implemented in C and others in Python (e.g. through inheritance)?

 		
 Python on Windows FAQ

 		
 How do I run a Python program under Windows?

 		
 How do I make Python scripts executable?

 		
 Why does Python sometimes take so long to start?

 		
 How do I make an executable from a Python script?

 		
 Is a *.pyd file the same as a DLL?

 		
 How can I embed Python into a Windows application?

 		
 How do I keep editors from inserting tabs into my Python source?

 		
 How do I check for a keypress without blocking?

 		
 How do I solve the missing api-ms-win-crt-runtime-l1-1-0.dll error?

 		
 Graphic User Interface FAQ

 		
 General GUI Questions

 		
 What GUI toolkits exist for Python?

 		
 Tkinter questions

 		
 “Why is Python Installed on my Computer?” FAQ

 		
 What is Python?

 		
 Why is Python installed on my machine?

 		
 Can I delete Python?

 		
 Glossary

 		
 About these documents

 		
 Contributors to the Python Documentation

 		
 Dealing with Bugs

 		
 Documentation bugs

 		
 Using the Python issue tracker

 		
 Getting started contributing to Python yourself

 		
 Copyright

 		
 History and License

 		
 History of the software

 		
 Terms and conditions for accessing or otherwise using Python

 		
 PSF LICENSE AGREEMENT FOR PYTHON 3.12.0b1

 		
 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

 		
 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

 		
 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

 		
 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.12.0b1 DOCUMENTATION

 		
 Licenses and Acknowledgements for Incorporated Software

 		
 Mersenne Twister

 		
 Sockets

 		
 Asynchronous socket services

 		
 Cookie management

 		
 Execution tracing

 		
 UUencode and UUdecode functions

 		
 XML Remote Procedure Calls

 		
 test_epoll

 		
 Select kqueue

 		
 SipHash24

 		
 strtod and dtoa

 		
 OpenSSL

 		
 expat

 		
 libffi

 		
 zlib

 		
 cfuhash

 		
 libmpdec

 		
 W3C C14N test suite

 		
 Audioop

_images/hashlib-blake2-tree.png

_images/pathlib-inheritance.png
PurePath

PurePosixPath

PureWindowsPath

Path

PosixPath

WindowsPath

_images/tk_msg.png
Bample

A Do youwant to continue?

_images/logging_flow.png
Logging callin user
code
eg.

Logger. info(

LogRecord passed fo
handler

Togger enabled for

level of call? gRecord?

ves

Create

LogRecord Soes a fier attached

to handier reject the
record?

No

(Emit (inctudes formatting)

oes a fiter atiacher
reject the
record?

current logger

Set current
logger to parent|

T

ves

Yes Is there a parent No
logger

_images/turtle-star.png

_images/win_installer.png
