
Python support for the Linux perf
profiler

Release 3.12.0a0

Guido van Rossum and the Python development team

October 24, 2022
Python Software Foundation

Email: docs@python.org

Contents

1 Enabling perf profiling mode 4

2 How to obtain the best results 4

Index 5

author Pablo Galindo
The Linux perf profiler is a very powerful tool that allows you to profile and obtain information about the performance
of your application. perf also has a very vibrant ecosystem of tools that aid with the analysis of the data that it produces.
The main problem with using the perf profiler with Python applications is that perf only allows to get information
about native symbols, this is, the names of the functions and procedures written in C. This means that the names and file
names of the Python functions in your code will not appear in the output of the perf.
Since Python 3.12, the interpreter can run in a special mode that allows Python functions to appear in the output of
the perf profiler. When this mode is enabled, the interpreter will interpose a small piece of code compiled on the fly
before the execution of every Python function and it will teach perf the relationship between this piece of code and the
associated Python function using perf map files.

Warning: Support for the perf profiler is only currently available for Linux on selected architectures.
Check the output of the configure build step or check the output of python -m sysconfig | grep
HAVE_PERF_TRAMPOLINE to see if your system is supported.

For example, consider the following script:

def foo(n):
result = 0
for _ in range(n):

result += 1
(continues on next page)

1

https://github.com/torvalds/linux/blob/0513e464f9007b70b96740271a948ca5ab6e7dd7/tools/perf/Documentation/jit-interface.txt

(continued from previous page)
return result

def bar(n):
foo(n)

def baz(n):
bar(n)

if __name__ == "__main__":
baz(1000000)

We can run perf to sample CPU stack traces at 9999 Hertz:
$ perf record -F 9999 -g -o perf.data python my_script.py

Then we can use perf report to analyze the data:

$ perf report --stdio -n -g

Children Self Samples Command Shared Object Symbol
........
↪→........................
#

91.08% 0.00% 0 python.exe python.exe [.] _start
|
---_start
|

--90.71%--__libc_start_main
Py_BytesMain
|
|--56.88%--pymain_run_python.constprop.0
| |
| |--56.13%--_PyRun_AnyFileObject
| | _PyRun_SimpleFileObject
| | |
| | |--55.02%--run_mod
| | | |
| | | --54.65%--PyEval_EvalCode
| | | _PyEval_

↪→EvalFrameDefault
| | | PyObject_

↪→Vectorcall
| | | _PyEval_Vector
| | | _PyEval_

↪→EvalFrameDefault
| | | PyObject_

↪→Vectorcall
| | | _PyEval_Vector
| | | _PyEval_

↪→EvalFrameDefault
| | | PyObject_

↪→Vectorcall
| | | _PyEval_Vector
| | | |
| | | |--51.67%--_

↪→PyEval_EvalFrameDefault
| | | | |

(continues on next page)

2

(continued from previous page)
| | | | |--11.

↪→52%--_PyLong_Add
| | | | | ␣

↪→ |
| | | | | ␣

↪→ |--2.97%--_PyObject_Malloc
...

As you can see here, the Python functions are not shown in the output, only _Py_Eval_EvalFrameDefault appears
(the function that evaluates the Python bytecode) shows up. Unfortunately that’s not very useful because all Python
functions use the same C function to evaluate bytecode so we cannot know which Python function corresponds to which
bytecode-evaluating function.
Instead, if we run the same experiment with perf support activated we get:

$ perf report --stdio -n -g

Children Self Samples Command Shared Object Symbol
........
↪→...
#

90.58% 0.36% 1 python.exe python.exe [.] _start
|
---_start
|

--89.86%--__libc_start_main
Py_BytesMain
|
|--55.43%--pymain_run_python.constprop.0
| |
| |--54.71%--_PyRun_AnyFileObject
| | _PyRun_SimpleFileObject
| | |
| | |--53.62%--run_mod
| | | |
| | | --53.26%--PyEval_EvalCode
| | | py::<module>:/src/

↪→script.py
| | | _PyEval_

↪→EvalFrameDefault
| | | PyObject_

↪→Vectorcall
| | | _PyEval_Vector
| | | py::baz:/src/

↪→script.py
| | | _PyEval_

↪→EvalFrameDefault
| | | PyObject_

↪→Vectorcall
| | | _PyEval_Vector
| | | py::bar:/src/

↪→script.py
| | | _PyEval_

↪→EvalFrameDefault
| | | PyObject_

↪→Vectorcall
| | | _PyEval_Vector

(continues on next page)

3

(continued from previous page)
| | | py::foo:/src/

↪→script.py
| | | |
| | | |--51.81%--_

↪→PyEval_EvalFrameDefault
| | | | |
| | | | |--13.

↪→77%--_PyLong_Add
| | | | | ␣

↪→ |
| | | | | ␣

↪→ |--3.26%--_PyObject_Malloc

1 Enabling perf profiling mode

There are two main ways to activate the perf profiling mode. If you want it to be active since the start of the Python
interpreter, you can use the -Xperf option:

$ python -Xperf my_script.py
You can also set the PYTHONPERFSUPPORT to a nonzero value to actiavate perf profiling mode globally.
There is also support for dynamically activating and deactivating the perf profiling mode by using the APIs in the sys
module:

import sys
sys.activate_stack_trampoline("perf")

Run some code with Perf profiling active

sys.deactivate_stack_trampoline()

Perf profiling is not active anymore

These APIs can be handy if you want to activate/deactivate profiling mode in response to a signal or other communication
mechanism with your process.
Now we can analyze the data with perf report:

$ perf report -g -i perf.data

2 How to obtain the best results

For the best results, Python should be compiled with CFLAGS="-fno-omit-frame-pointer
-mno-omit-leaf-frame-pointer" as this allows profilers to unwind using only the frame pointer and
not on DWARF debug information. This is because as the code that is interposed to allow perf support is dynamically
generated it doesn’t have any DWARF debugging information available.
You can check if you system has been compiled with this flag by running:

$ python -m sysconfig | grep ‘no-omit-frame-pointer’
If you don’t see any output it means that your interpreter has not been compiled with frame pointers and therefore it may
not be able to show Python functions in the output of perf.

4

Index
E
environment variable

PYTHONPERFSUPPORT, 4

P
PYTHONPERFSUPPORT, 4

5

	Enabling perf profiling mode
	How to obtain the best results
	Index

