Extending and Embedding Python
Release 3.12.0a0

Guido van Rossum and the Python development team

May 09, 2022

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Recommended third party tools 3
2 Creating extensions without third party tools 5
2.1 Extending Python with Cor C++ o e e e e e 5
2.1.1 ASimple Example e e e e 5

2.1.2 Intermezzo: Errors and Exceptionso Lo 7

2.1.3 Backtothe Example 9

2.1.4 The Module’s Method Table and Initialization Function 9

2.1.5 Compilationand Linkage i e e e e e e e e 11

2.1.6 Calling Python Functions from C 12

2.1.7 Extracting Parameters in Extension Functions, 14

2.1.8 Keyword Parameters for Extension Functions 15

2.1.9 Building Arbitrary Valueso 16
2.1.10 Reference Counts e 17
2.1.11 Writing Extensions in C++ L e 20
2.1.12 Providinga C API for an Extension Module 20

2.2 Defining Extension Types: Tutorial o e 24
221 TheBasics i e e e 24

2.2.2 Adding data and methods to the Basicexample 28

2.2.3 Providing finer control over data attributeso o e 35

2.2.4 Supporting cyclic garbage collection L e 40

225 Subclassingother types L 46

2.3 Defining Extension Types: Assorted Topics o e 48
2.3.1 Finalization and De-allocation 50

2.3.2 Object Presentation o . i e e e e e e e e e e e 52

2.3.3 Attribute Management L. e e e e e e e e e e e e e e e e e e e 52

234 Object CompariSOn vt v vt e e e e e e e e e e 55

2.3.5 Abstract Protocol Supporto e 55

2.3.6 Weak Reference Support 57

2377 More Suggestionso i u i e e e e e e e e e e e e e e e e e 58

2.4 Building Cand C++ EXtensions o v v i v v v i e e e e e e e e e e e 58
2.4.1 Building C and C++ Extensions with distutils 59

2.4.2 Distributing your extensionmodules Lo oL oL 60

2.5 Building C and C++ Extensions on Windowso 61
2.5.1 A Cookbook Approach 61

2.5.2 Differences Between Unix and Windows 61

253 UsingDLLsinPractice i i e e e e e 62

3 Embedding the CPython runtime in a larger application 63
3.1 Embedding Python in Another Application. 63

3.1.1 VeryHigh Level Embedding 64
3.1.2 Beyond Very High Level Embedding: Anoverview 64
3.1.3 PureEmbedding e e e e 65
3.14 Extending Embedded Python o 67
3.1.5 Embedding Pythonin C++ 68
3.1.6 Compiling and Linking under Unix-like systems 68
A Glossary 69
B About these documents 83
B.1 Contributors to the Python Documentation 83
C History and License 85
C.1 Historyof thesoftware 0 e e e e e e e e 85
C.2 Terms and conditions for accessing or otherwise using Python 86
C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.12.0a0 86
C.2.2 BEOPEN.COM LICENSE AGREEMENT FORPYTHON20 87
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 88
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 89
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.12.0a0 DOCUMENTA-
TION . . 89
C.3 Licenses and Acknowledgements for Incorporated Software 90
C3.1 Mersenne TWISter Lo oot 90
C3.2 Sockets 91
C.3.3 Asynchronous SOCKEt SETVICES v v v v v v it e e e e e e e e e 91
C34 Cookiemanagement 92
C3.5 Execution tracing o ittt e e e e e e e e e e e e e e e 92
C.3.6 UUencode and UUdecode functions 93
C3.7 XML Remote Procedure Calls 93
C.3.8 test_epoll L e e e e e 94
C.3.9 Selectkqueue e e e e e e e e e 94
C3.10 SipHash24 95
C3.11 strtodanddtoa. L e e 95
C3.12 OpenSSL 96
C3U13 exXpat. . v o o v e e e e e e e e e e e e e e e e 98
C3.14 Lbfli 99
C3.15 zlib . . o e e 99
C3.16 cfuhash e 100
C3.17 Hbmpdec e e e e 100
C3.18 W3CCIANTest SUIE o v vttt e e e e e e e e e e e e e e e 101
D Copyright 103
Index 105

Extending and Embedding Python, Release 3.12.0a0

This document describes how to write modules in C or C++ to extend the Python interpreter with new modules. Those
modules can not only define new functions but also new object types and their methods. The document also describes how
to embed the Python interpreter in another application, for use as an extension language. Finally, it shows how to compile
and link extension modules so that they can be loaded dynamically (at run time) into the interpreter, if the underlying
operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the language, see tutorial-index.
reference-index gives a more formal definition of the language. library-index documents the existing object types, func-
tions and modules (both built-in and written in Python) that give the language its wide application range.

For a detailed description of the whole Python/C API, see the separate c-api-index.

CONTENTS 1

Extending and Embedding Python, Release 3.12.0a0

2 CONTENTS

CHAPTER
ONE

RECOMMENDED THIRD PARTY TOOLS

This guide only covers the basic tools for creating extensions provided as part of this version of CPython. Third party
tools like Cython, cffi, SWIG and Numba offer both simpler and more sophisticated approaches to creating C and C++
extensions for Python.

See also:

Python Packaging User Guide: Binary Extensions The Python Packaging User Guide not only covers several avail-
able tools that simplify the creation of binary extensions, but also discusses the various reasons why creating an
extension module may be desirable in the first place.

http://cython.org/
https://cffi.readthedocs.io
http://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/guides/packaging-binary-extensions/

Extending and Embedding Python, Release 3.12.0a0

4 Chapter 1. Recommended third party tools

CHAPTER
TWO

CREATING EXTENSIONS WITHOUT THIRD PARTY TOOLS

This section of the guide covers creating C and C++ extensions without assistance from third party tools. It is intended
primarily for creators of those tools, rather than being a recommended way to create your own C extensions.

2.1 Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension modules can do
two things that can’t be done directly in Python: they can implement new built-in object types, and they can call C library
functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and vari-
ables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C source
file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on your system setup; details are given in
later chapters.

Note: The C extension interface is specific to CPython, and extension modules do not work on other Python implemen-
tations. In many cases, it is possible to avoid writing C extensions and preserve portability to other implementations. For
example, if your use case is calling C library functions or system calls, you should consider using the ctypes module
or the cffi library rather than writing custom C code. These modules let you write Python code to interface with C code
and are more portable between implementations of Python than writing and compiling a C extension module.

2.1.1 A Simple Example

Let’s create an extension module called spam (the favorite food of Monty Python fans...) and let’s say we want to create a
Python interface to the C library function system () '. This function takes a null-terminated character string as argument
and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls —-1")

Begin by creating a file spammodule.c. (Historically, if a module is called spam, the C file containing its imple-
mentation is called spammodule. c; if the module name is very long, like spammi fy, the module name can be just
spammify.c.)

The first two lines of our file can be:

! An interface for this function already exists in the standard module os — it was chosen as a simple and straightforward example.

https://cffi.readthedocs.io/

Extending and Embedding Python, Release 3.12.0a0

#define PY_SSIZE_T CLEAN
#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice if
you like).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python . h before any standard headers are included.

It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See Extracting Parameters in
Extension Functions for a description of this macro.

All user-visible symbols defined by Python . h have a prefix of Py or PY, except those defined in standard header files.
For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few standard
header files: <stdio.h>, <string.h>, <errno.h>,and <stdlib.h>. If the latter header file does not exist on
your system, it declares the functions malloc (), free () and realloc () directly.

The next thing we add to our module file is the C function that will be called when the Python expression spam.
system (string) is evaluated (we’ll see shortly how it ends up being called):

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

return PyLong_FromLong(sts);

There is a straightforward translation from the argument list in Python (for example, the single expression "1s -1") to
the arguments passed to the C function. The C function always has two arguments, conventionally named self and args.

The self argument points to the module object for module-level functions; for a method it would point to the object
instance.

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple corresponds
to an argument in the call’s argument list. The arguments are Python objects — in order to do anything with them in our
C function we have to convert them to C values. The function PyArg_ParseTuple () in the Python API checks the
argument types and converts them to C values. It uses a template string to determine the required types of the arguments
as well as the types of the C variables into which to store the converted values. More about this later.

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw in the
example).

6 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.12.0a0

2.1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an ex-
ception condition and return an error value (usually —1 or a NULL pointer). Exception information is stored in three
members of the interpreter’s thread state. These are NULL if there is no exception. Otherwise they are the C equivalents
of the members of the Python tuple returned by sys.exc_info (). These are the exception type, exception instance,
and a traceback object. It is important to know about them to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one is PyErr_SetString (). Its arguments are an exception object and a C string. The exception
object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the cause of the error
and is converted to a Python string object and stored as the “associated value” of the exception.

Another useful function is PyErr_SetFromErrno (), which only takes an exception argument and constructs the
associated value by inspection of the global variable errno. The most general function is PyErr_SetObject (),
which takes two object arguments, the exception and its associated value. You don’t need to Py_INCREF () the objects
passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_Occurred (). This returns the current
exception object, or NULL if no exception has occurred. You normally don’t need to call PyErr_Occurred () to see
whether an error occurred in a function call, since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or —1). It should not call one of the PyErr_* functions — one has already been called by g. f’s caller is then
supposed to also return an error indication to its caller, again without calling PyErr_*, and so on — the most detailed cause
of the error was already reported by the function that first detected it. Once the error reaches the Python interpreter’s
main loop, this aborts the currently executing Python code and tries to find an exception handler specified by the Python
programmer.

(There are situations where a module can actually give a more detailed error message by calling another PyErr_* function,
and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause information about the
cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear (). The only time C code should call PyErr_Clear () is if it doesn’t want to pass the error on to
the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing went
wrong).

Every failing malloc () call must be turned into an exception — the direct caller of malloc () (or realloc ())
must call PyErr_NoMemory () and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong ()) already do this, so this note is only relevant to those who call malloc () directly.

Also note that, with the important exception of PyArg_ParseTuple () and friends, functions that return an integer
status usually return a positive value or zero for success and —1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (by making Py_XDECREF () or Py_DECREF () calls for objects you have already
created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-
in Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you should
choose exceptions wisely — don’t use PyExc_TypeError to mean that a file couldn’t be opened (that should probably
be PyExc_IOError). If something’s wrong with the argument list, the PyArg_ParseTuple () function usually
raises PyExc_TypeError. If you have an argument whose value must be in a particular range or must satisfy other
conditions, PyExc_ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable at
the beginning of your file:

2.1. Extending Python with C or C++ 7

Extending and Embedding Python, Release 3.12.0a0

static PyObject *SpamError;

and initialize it in your module’s initialization function (PyInit_spam ()) with an exception object:

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

SpamError = PyErr_NewException ("spam.error", NULL, NULL);
Py_XINCREF (SpamError) ;
if (PyModule_AddObject (m, "error", SpamError) < 0) {
Py_XDECREF (SpamError) ;
Py_CLEAR (SpamError) ;
Py_DECREF (m) ;
return NULL;

return m;

Note that the Python name for the exception object is spam.error. The PyErr_NewException () function may
create a class with the base class being Exception (unless another class is passed in instead of NULL), described in
bltin-exceptions.

Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional! Since
the exception could be removed from the module by external code, an owned reference to the class is needed to ensure
that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling pointer,
C code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

The spam.error exception can be raised in your extension module using a call to PyErr_SetString () as shown
below:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

if (sts < 0) {
PyErr_SetString (SpamError, "System command failed");
return NULL;

}

return PylLong_FromLong (sts);

8 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.12.0a0

2.1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has been copied
to the local variable command. This is a pointer assignment and you are not supposed to modify the string to which it
points (so in Standard C, the variable command should properly be declared as const char *command).

The next statement is a call to the Unix function system(), passing it the string we just got from
PyArg_ParseTuple():

’sts = system(command) ;

Our spam.system () function must return the value of sts as a Python object. This is done using the function
PyLong_FromLong ().

’return PyLong_FromLong (sts) ;

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returning void), the corresponding Python function
must return None. You need this idiom to do so (which is implemented by the Py_ RETURN_NONE macro):

Py_INCREF (Py_None) ;
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL pointer,
which means “error” in most contexts, as we have seen.

2.1.4 The Module’s Method Table and Initialization Function

I promised to show how spam_system () is called from Python programs. First, we need to list its name and address
in a “method table”:

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, 0, NULL} /* Sentinel */
bi

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value of 0
means that an obsolete variant of PyArg_ParseTuple () is used.

When using only METH_VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple () ; more information on this function is provided below.

The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords () to parse the arguments to such a function.

The method table must be referenced in the module definition structure:

2.1. Extending Python with C or C++ 9

Extending and Embedding Python, Release 3.12.0a0

static struct PyModuleDef spammodule = {
PyModuleDef_HEAD_INIT,

"spam", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,

or -1 if the module keeps state in global variables. */
SpamMethods
Hi

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization function
must be named PyInit_name (), where name is the name of the module, and should be the only non-static item
defined in the module file:

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spammodule) ;

Note that PyMODINIT_FUNC declares the function as PyObject * return type, declares any special linkage decla-
rations required by the platform, and for C++ declares the function as extern "C".

When the Python program imports module spam for the first time, PyInit_spam () is called. (See below for com-
ments about embedding Python.) It calls PyModule_Create (), which returns a module object, and inserts built-in
function objects into the newly created module based upon the table (an array of PyMethodDef structures) found in
the module definition. PyModule_Create () returns a pointer to the module object that it creates. It may abort with
a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily. The init function must
return the module object to its caller, so that it then gets inserted into sys .modules.

When embedding Python, the PyInit_spam () function is not called automatically unless there’s an entry in the
PyImport_Inittab table. To add the module to the initialization table, use PyImport_AppendInittab (),
optionally followed by an import of the module:

int
main (int argc, char *argv([])
{
wchar_t *program = Py_DecodelLocale(argv[0], NULL);

if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1);

/* Add a built-in module, before Py_Initialize */

if (PyImport_AppendInittab ("spam", PyInit_spam) == -1) {
fprintf (stderr, "Error: could not extend in-built modules table\n");
exit (1);

/* Pass argv/[0] to the Python interpreter */
Py_SetProgramName (program) ;

/* Initialize the Python interpreter. Required.
If this step fails, it will be a fatal error. */
Py_Initialize();

/* Optionally import the module; alternatively,
import can be deferred until the embedded script

(continues on next page)

10 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.12.0a0

(continued from previous page)

imports it. */
PyObject *pmodule = PyImport_ImportModule ("spam");
if (!pmodule) {
PyErr_Print ();
fprintf (stderr, "Error: could not import module 'spam'\n");

PyMem_RawFree (program) ;
return 0O;

Note: Removing entries from sy s .modules or importing compiled modules into multiple interpreters within a process
(or following a fork () without an intervening exec ()) can create problems for some extension modules. Extension
module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as Modules/xxmodule. c. This file
may be used as a template or simply read as an example.

Note: Unlike our spam example, xxmodule uses multi-phase initialization (new in Python 3.5), where a PyModuleDef
structure is returned from PyInit_spam, and creation of the module is left to the import machinery. For details on
multi-phase initialization, see PEP 489.

2.1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python system.
If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see the chapters
about building extension modules (chapter Building C and C++ Extensions) and additional information that pertains only
to building on Windows (chapter Building C and C++ Extensions on Windows) for more information about this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter, you
will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just place
your file (spammodule. ¢ for example) in the Modules/ directory of an unpacked source distribution, add a line to
the file Modules/Setup. local describing your file:

spam spammodule.o

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the Modules/ subdi-
rectory, but then you must first rebuild Makefile there by running ‘make Makefile’. (This is necessary each time you
change the Setup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well, for
instance:

spam spammodule.o —-1X11

2.1. Extending Python with C or C++ 11

https://peps.python.org/pep-0489/

Extending and Embedding Python, Release 3.12.0a0

2.1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called “callback” functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python programmer;
the implementation will require calling the Python callback functions from a C callback. Other uses are also imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python function.
(I won’t dwell on how to call the Python parser with a particular string as input — if you're interested, have a look at the
implementation of the —c command line option in Modules/main. ¢ from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object. You
should provide a function (or some other interface) to do this. When this function is called, save a pointer to the Python
function object (be careful to Py__INCREF () it!) in a global variable — or wherever you see fit. For example, the
following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback (PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;

PyObject *temp;

if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check (temp)) {
PyErr_SetString (PyExc_TypeError, "parameter must be callable");
return NULL;
}

Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */
Py_INCREF (Py_None) ;
result = Py_None;

}

return result;

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section 7he
Module’s Method Table and Initialization Function. The PyArg_ParseTuple () function and its arguments are doc-
umented in section Extracting Parameters in Extension Functions.

The macros Py_XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are safe
in the presence of NULL pointers (but note that femp will not be NULL in this context). More info on them in section
Reference Counts.

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function has two
arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument list must
always be a tuple object, whose length is the number of arguments. To call the Python function with no arguments, pass
in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildValue () returns a tuple
when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

(continues on next page)

12 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.12.0a0

(continued from previous page)

/* Time to call the callback */

arglist = Py_BuildvValue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);

PyObject_CallObject () returns a Python object pointer: this is the return value of the Python function.
PyObject_CallObject () is “reference-count-neutral” with respect to its arguments. In the example a new tuple was
created to serve as the argument list, which is Py_DECREF () -ed immediately after the PyObject_CallObject ()

call.

The return value of PyObject_CallObject () is “new”: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py_DECREF () the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’t NULL. If it is, the Python function
terminated by raising an exception. If the C code that called PyObject_CallObject () is called from Python,
it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear (). For example:

if (result == NULL)

return NULL; /* Pass error back */
...use result...
Py_DECREF (result) ;

Depending on the desired interface to the Python callback function, you may also have to provide an argument list to
PyObject_CallObject (). In some cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this is
tocall Py_BuildvValue (). For example, if you want to pass an integral event code, you might use the following code:

PyObject *arglist;

arglist = Py_BuildValue (" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result);

Note the placement of Py_DECREF (arglist) immediately after the call, before the error check! Also note that
strictly speaking this code is not complete: Py_Buildvalue () may run out of memory, and this should be checked.

You may also call a function with keyword arguments by using PyObject_Call (), which supports arguments and
keyword arguments. As in the above example, we use Py_BuildValue () to construct the dictionary.

PyObject *dict;

dict = Py_BuildvValue("{s:i}", "name", wval);
result = PyObject_Call (my_callback, NULL, dict);
Py_DECREF (dict);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

2.1. Extending Python with C or C++ 13

Extending and Embedding Python, Release 3.12.0a0

2.1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple () function is declared as follows:

int PyArg_ParseTuple (PyObject *arg, const char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format
argument must be a format string, whose syntax is explained in arg-parsing in the Python/C API Reference Manual. The
remaining arguments must be addresses of variables whose type is determined by the format string.

Note that while PyArg_ParseTuple () checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably crash
or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller are borrowed references; do not decrement their
reference count!

Some example calls:

#define PY_SSIZE_T_CLEAN /* Make "s#" use Py_ssize_t rather than int. */
#include <Python.h>

int ok;

int i, 3;

long k, 1;

const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple(args, "1l1ls", ¢k, &1, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

ok = PyArg_ParseTuple (args, " (ii)s#", &i, &3j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */

const char *file;

const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple (args, "s|si", &file, &mode, &bufsize);

/* A string, and optionally another string and an integer */
/* Possible Python calls:

f('spam")

f('spam', 'w')

f('spam', 'wb', 100000) */

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, " ((ii) (ii)) (ii)",

(continues on next page)

14 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.12.0a0

(continued from previous page)

&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
£(((0, 0), (400, 300)), (10, 10)) */

Py_complex c;

ok = PyArg_ParseTuple (args, "D:myfunction", &c);

/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction (1+27) */

2.1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords () function is declared as follows:

int PyArg_ParseTupleAndKeywords (PyObject *arg, PyObject *kwdict,
const char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict parameter
is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is a NULL-
terminated list of strings which identify the parameters; the names are matched with the type information from format
from left to right. On success, PyArg_ParseTupleAndKeywords () returns true, otherwise it returns false and
raises an appropriate exception.

Note: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are not
present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick @hks.com):

#define PY _SSIZE_T CLEAN /* Make "s#'" use Py_ssize_t rather than int. */
#include <Python.h>

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

const char *state = "a stiff";

const char *action = "voom";

const char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

printf ("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf ("-- Lovely plumage, the %s —- It's %s!\n", type, state);

(continues on next page)

2.1. Extending Python with C or C++ 15

mailto:philbrick@hks.com

Extending and Embedding Python, Release 3.12.0a0

(continued from previous page)

Py_RETURN_NONE;

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg parrot () takes
* three.
*/
{"parrot", (PyCFunction) (void (*) (void))keywdarg_parrot, METH_VARARGS | METH_
< KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0O, NULL} /* sentinel */
bi

static struct PyModuleDef keywdargmodule = {
PyModuleDef_ HEAD_INIT,
"keywdarg",
NULL,
-1,
keywdarg_methods
bi

PyMODINIT_FUNC
PyInit_keywdarg (void)
{
return PyModule_Create (&keywdargmodule) ;

2.1.9 Building Arbitrary Values

This function is the counterpart to PyArg_ParseTuple (). Itis declared as follows:

PyObject *Py_BuildValue (const char *format, ...);

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple (), but the arguments (which
are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable for returning
from a C function called from Python.

One difference with PyArg_ParseTuple (): while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_BuildValue () does not always build a tuple. It builds
a tuple only if its format string contains two or more format units. If the format string is empty, it returns None; if it
contains exactly one format unit, it returns whatever object is described by that format unit. To force it to return a tuple
of size 0 or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

Py_Buildvalue ("") None
Py_Buildvalue ("i", 123) 123

Py_Buildvalue ("iii", 123, 456, 789) (123, 456, 789)
Py_BuildvValue ("s", "hello") 'hello'
Py_Buildvalue ("y", "hello") b'hello'
Py_Buildvalue ("ss", "hello", "world") ('"hello', 'world')
Py_Buildvalue ("s#", "hello", 4) 'hell'
Py_BuildvValue ("y#", "hello", 4) b'hell'

Py_BuildValue (" () ") 0

(continues on next page)

16 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.12.0a0

(continued from previous page)

Py_Buildvalue (" (i)", 123) (123,)
Py_BuildvValue (" (ii)", 123, 456) (123, 4506)
Py_Buildvalue (" (i,1i)", 123, 4506) (123, 456)
Py_Buildvalue ("[1i,1i]", 123, 456) [123, 456]
Py_Buildvalue ("{s:i,s:i}",

"abc", 123, "def", 4506) {'abc': 123, 'def': 456}
Py_Buildvalue (" ((ii) (ii)) (ii)",

1, 2, 3, 4, 5, 6) (((1, 2), (3, 4)), (5, 6))

2.1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on the
heap. In C, this is done using the functions malloc () and free (). In C++, the operators new and delete are used
with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated with malloc () should eventually be returned to the pool of available memory by
exactly one call to free (). It is important to call free () at the right time. If a block’s address is forgotten but
free () is not called for it, the memory it occupies cannot be reused until the program terminates. This is called a
memory leak. On the other hand, if a program calls free () for a block and then continues to use the block, it creates
a conflict with re-use of the block through another malloc () call. This is called using freed memory. It has the same
bad consequences as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block of
memory, do some calculation, and then free the block again. Now a change in the requirements for the function may add
a test to the calculation that detects an error condition and can return prematurely from the function. It’s easy to forget
to free the allocated memory block when taking this premature exit, especially when it is added later to the code. Such
leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small fraction of all calls,
and most modern machines have plenty of virtual memory, so the leak only becomes apparent in a long-running process
that uses the leaking function frequently. Therefore, it’s important to prevent leaks from happening by having a coding
convention or strategy that minimizes this kind of errors.

Since Python makes heavy use of malloc () and free (), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object contains
a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when a
reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the object
is freed.

An alternative strategy is called automatic garbage collection. (Sometimes, reference counting is also referred to as a
garbage collection strategy, hence my use of “automatic” to distinguish the two.) The big advantage of automatic garbage
collection is that the user doesn’t need to call free () explicitly. (Another claimed advantage is an improvement in
speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is no truly portable
automatic garbage collector, while reference counting can be implemented portably (as long as the functions malloc ()
and free () are available — which the C Standard guarantees). Maybe some day a sufficiently portable automatic
garbage collector will be available for C. Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to detect
reference cycles. This allows applications to not worry about creating direct or indirect circular references; these are the
weakness of garbage collection implemented using only reference counting. Reference cycles consist of objects which
contain (possibly indirect) references to themselves, so that each object in the cycle has a reference count which is non-zero.
Typical reference counting implementations are not able to reclaim the memory belonging to any objects in a reference
cycle, or referenced from the objects in the cycle, even though there are no further references to the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them. The gc module exposes a way to run the detector
(the collect () function), as well as configuration interfaces and the ability to disable the detector at runtime.

2.1. Extending Python with C or C++ 17

Extending and Embedding Python, Release 3.12.0a0

Reference Counting in Python

There are two macros, Py_ INCREF (x) and Py_DECREF (x), which handle the incrementing and decrementing of
the reference count. Py_DECREF () also frees the object when the count reaches zero. For flexibility, it doesn’t call
free () directly — rather, it makes a call through a function pointer in the object’s type object. For this purpose (and
others), every object also contains a pointer to its type object.

The big question now remains: when to use Py_ INCREF (x) and Py_DECREF (x) ? Let’s first introduce some terms.
Nobody “owns” an object; however, you can own a reference to an object. An object’s reference count is now defined
as the number of owned references to it. The owner of a reference is responsible for calling Py_DECREF () when the
reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose of an owned
reference: pass it on, store it, or call Py_DECREF (). Forgetting to dispose of an owned reference creates a memory
leak.

It is also possible to borrow” a reference to an object. The borrower of a reference should not call Py_DECREF () . The
borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed reference
after the owner has disposed of it risks using freed memory and should be avoided completely”.

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference on
all possible paths through the code — in other words, with a borrowed reference you don’t run the risk of leaking when
a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations where in
seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in fact disposed
of it.

A borrowed reference can be changed into an owned reference by calling Py_ INCREF (). This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification whether
ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions whose
function it is to create a new object, such as PyLong_FromLong () and Py_BuildValue (), pass ownership to the
receiver. Even if the object is not actually new, you still receive ownership of a new reference to that object. For instance,
PyLong_FromLong () maintains a cache of popular values and can return a reference to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for in-
stance PyObject_GetAttrString(). The picture is less clear, here, however, since a few com-
mon routines are exceptions: PyTuple_GetItem (), PyList_GetItem(), PyDict_GetItem(), and
PyDict_GetItemString () all return references that you borrow from the tuple, list or dictionary.

The function Py Import_AddModule () also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored in sy s .modules.

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will use Py_INCREF () to become an independent owner. There are exactly two important
exceptions to this rule: PyTuple_SetItem() and PyList_SetItem (). These functions take over ownership of
the item passed to them — even if they fail! (Note that PyDict_SetItem () and friends don’t take over ownership
— they are “normal.”)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference by calling Py_ INCREF () .

2 The metaphor of “borrowing” a reference is not completely correct: the owner still has a copy of the reference.
3 Checking that the reference count is at least 1 does not work — the reference count itself could be in freed memory and may thus be reused for
another object!

18 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.12.0a0

The object reference returned from a C function that is called from Python must be an owned reference — ownership is
transferred from the function to its caller.

Thin Ice
There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have to
do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is using Py_DECREF () on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_FromLong (0L));
PyObject_Print (item, stdout, 0); /* BUG! */

This function first borrows a reference to 1ist [0], then replaces 1ist [1] with the value O, and finally prints the
borrowed reference. Looks harmless, right? But it’s not!

Let’s follow the control flow into PyList_SetItem (). The list owns references to all its items, so when item 1 is
replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a user-defined
class, and let’s further suppose that the class defined a __del__ () method. If this class instance has a reference count
of 1, disposing of it will callits __del__ () method.

Since it is written in Python, the __del__ () method can execute arbitrary Python code. Could it perhaps do something
to invalidate the reference to item in bug () ? You bet! Assuming that the list passed into bug () is accessible to
the __del__ () method, it could execute a statement to the effect of del 1ist [0], and assuming this was the last
reference to that object, it would free the memory associated with it, thereby invalidating item.

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The correct
version of the function reads:

void
no_bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

Py_INCREF (item) ;

PyList_SetItem(list, 1, PyLong_FromLong (0L)) ;
PyObject_Print (item, stdout, 0);

Py_DECREF (item) ;

This is a true story. An older version of Python contained variants of this bug and someone spent a considerable amount
of time in a C debugger to figure out why his __del__ () methods would fail...

The second case of problems with a borrowed reference is a variant involving threads. Normally, multiple threads in the
Python interpreter can’t get in each other’s way, because there is a global lock protecting Python’s entire object space.
However, it is possible to temporarily release this lock using the macro Py_BEGIN_ALLOW_THREADS, and to re-
acquire it using Py_END_ALLOW_THREADS. This is common around blocking I/O calls, to let other threads use the
processor while waiting for the I/O to complete. Obviously, the following function has the same problem as the previous
one:

2.1. Extending Python with C or C++ 19

Extending and Embedding Python, Release 3.12.0a0

void

bug (PyObject *1list)

{
PyObject *item = PyList_GetItem(list, 0);
Py _BEGIN_ALLOW_THREADS
...some blocking I/O call...
Py_END_ALLOW_THREADS
PyObject_Print (item, stdout, 0); /* BUG! */

NULL Pointers

In general, functions that take object references as arguments do not expect you to pass them NULL pointers, and will
dump core (or cause later core dumps) if you do so. Functions that return object references generally return NULL only
to indicate that an exception occurred. The reason for not testing for NULL arguments is that functions often pass the
objects they receive on to other function — if each function were to test for NULL, there would be a lot of redundant tests
and the code would run more slowly.

It is better to test for NULL only at the “source:” when a pointer that may be NULL is received, for example, from
malloc () or from a function that may raise an exception.

The macros Py_INCREF () and Py_DECREF () do not check for NULL pointers — however, their variants
Py_XINCREF () and Py_XDECREF () do.

The macros for checking for a particular object type (Pytype_Check ()) don’t check for NULL pointers — again,
there is much code that calls several of these in a row to test an object against various different expected types, and this
would generate redundant tests. There are no variants with NULL checking.

The C function calling mechanism guarantees that the argument list passed to C functions (args in the examples) is
never NULL — in fact it guarantees that it is always a tuple*.

It is a severe error to ever let a NULL pointer “escape” to the Python user.

2.1.11 Writing Extensions in C++

It is possible to write extension modules in C++. Some restrictions apply. If the main program (the Python interpreter) is
compiled and linked by the C compiler, global or static objects with constructors cannot be used. This is not a problem
if the main program is linked by the C++ compiler. Functions that will be called by the Python interpreter (in particular,
module initialization functions) have to be declared using extern "C". It is unnecessary to enclose the Python header
files in extern "C" {...} — they use this form already if the symbol __cplusplus is defined (all recent C++
compilers define this symbol).

2.1.12 Providing a C API for an Extension Module

Many extension modules just provide new functions and types to be used from Python, but sometimes the code in an
extension module can be useful for other extension modules. For example, an extension module could implement a type
“collection” which works like lists without order. Just like the standard Python list type has a C API which permits
extension modules to create and manipulate lists, this new collection type should have a set of C functions for direct
manipulation from other extension modules.

At first sight this seems easy: just write the functions (without declaring them stat ic, of course), provide an appropriate
header file, and document the C API. And in fact this would work if all extension modules were always linked statically

4 These guarantees don’t hold when you use the “old” style calling convention — this is still found in much existing code.

20 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.12.0a0

with the Python interpreter. When modules are used as shared libraries, however, the symbols defined in one module
may not be visible to another module. The details of visibility depend on the operating system; some systems use one
global namespace for the Python interpreter and all extension modules (Windows, for example), whereas others require
an explicit list of imported symbols at module link time (AIX is one example), or offer a choice of different strategies
(most Unices). And even if symbols are globally visible, the module whose functions one wishes to call might not have
been loaded yet!

Portability therefore requires not to make any assumptions about symbol visibility. This means that all symbols in extension
modules should be declared static, except for the module’s initialization function, in order to avoid name clashes with
other extension modules (as discussed in section 7he Module’s Method Table and Initialization Function). And it means
that symbols that should be accessible from other extension modules must be exported in a different way.

Python provides a special mechanism to pass C-level information (pointers) from one extension module to another one:
Capsules. A Capsule is a Python data type which stores a pointer (void*). Capsules can only be created and accessed via
their C API, but they can be passed around like any other Python object. In particular, they can be assigned to a name in
an extension module’s namespace. Other extension modules can then import this module, retrieve the value of this name,
and then retrieve the pointer from the Capsule.

There are many ways in which Capsules can be used to export the C API of an extension module. Each function could
get its own Capsule, or all C API pointers could be stored in an array whose address is published in a Capsule. And the
various tasks of storing and retrieving the pointers can be distributed in different ways between the module providing the
code and the client modules.

Whichever method you choose, it’s important to name your Capsules properly. The function PyCapsule_New () takes
a name parameter (const char*); you're permitted to pass in a NULL name, but we strongly encourage you to specify a
name. Properly named Capsules provide a degree of runtime type-safety; there is no feasible way to tell one unnamed
Capsule from another.

In particular, Capsules used to expose C APIs should be given a name following this convention:

modulename.attributename

The convenience function PyCapsule_Import () makes it easy to load a C API provided via a Capsule, but only if
the Capsule’s name matches this convention. This behavior gives C API users a high degree of certainty that the Capsule
they load contains the correct C API.

The following example demonstrates an approach that puts most of the burden on the writer of the exporting module,
which is appropriate for commonly used library modules. It stores all C API pointers (just one in the example!) in an
array of void pointers which becomes the value of a Capsule. The header file corresponding to the module provides a
macro that takes care of importing the module and retrieving its C API pointers; client modules only have to call this
macro before accessing the C API.

The exporting module is a modification of the spam module from section A Simple Example. The function spam.
system () does not call the C library function system () directly, but a function PySpam_System (), which
would of course do something more complicated in reality (such as adding “spam” to every command). This function
PySpam_System () is also exported to other extension modules.

The function Py Spam_System () is a plain C function, declared stat ic like everything else:

static int
PySpam_System (const char *command)
{

return system(command) ;

}

The function spam_system () is modified in a trivial way:

2.1. Extending Python with C or C++ 21

Extending and Embedding Python, Release 3.12.0a0

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple (args, "s", &command))
return NULL;

sts = PySpam_System (command) ;

return PyLong_FromLong (sts);

In the beginning of the module, right after the line

#include <Python.h>

two more lines must be added:

#define SPAM_MODULE
#include "spammodule.h"

The #define is used to tell the header file that it is being included in the exporting module, not a client module. Finally,
the module’s initialization function must take care of initializing the C API pointer array:

PyMODINIT_FUNC

PyInit_spam(void)

{
PyObject *m;
static void *PySpam_API[PySpam_API_pointers];
PyObject *c_api_object;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

/* Initialize the C API pointer array */
PySpam_API [PySpam_System NUM] = (void *)PySpam_System;

/* Create a Capsule containing the API pointer array's address */
c_api_object = PyCapsule_New ((void *)PySpam_API, "spam._ C_API", NULL);

if (PyModule_AddObject (m, "_C_API", c_api_object) < 0) {
Py_XDECREF (c_api_object);
Py_DECREF (m) ;
return NULL;

return m;

Note that PySpam_APT is declared static; otherwise the pointer array would disappear when PyInit_spam ()
terminates!

The bulk of the work is in the header file spammodule . h, which looks like this:

#ifndef Py SPAMMODULE_H
#define Py_SPAMMODULE_H

(continues on next page)

22 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.12.0a0

(continued from previous page)

#ifdef __cplusplus
extern "C" {
#endif

/* Header file for spammodule */

/* C API functions */

#define PySpam System NUM 0

#define PySpam_System RETURN int

#define PySpam_System PROTO (const char *command)

/* Total number of C API pointers */
#define PySpam API_pointers 1

#ifdef SPAM _MODULE
/* This section is used when compiling spammodule.c */

static PySpam_System_ RETURN PySpam_System PySpam_System_ PROTO;

#else
/* This section is used in modules that use spammodule's API */

static void **PySpam_ API;

#define PySpam System \
(* (PySpam_System RETURN (*)PySpam_System_ PROTO) PySpam_ API[PySpam_System NUM])

/* Return -1 on error, 0 on success.
* PyCapsule_Import will set an exception if there's an error.
*/

static int

import_spam(void)

{

PySpam_API = (void **)PyCapsule_Import ("spam._C_API", 0);
return (PySpam_API != NULL) 2 0 : -1;

3

#endif

#ifdef __cplusplus

i
#endif

#endif /* !defined(Py_SPAMMODULE_H) */

All that a client module must do in order to have access to the function PySpam_System () is to call the function (or
rather macro) import_spam () in its initialization function:

PyMODINIT_FUNC
PyInit_client (void)
{

PyObject *m;

m = PyModule_Create (&clientmodule) ;
if (m == NULL)

(continues on next page)

2.1. Extending Python with C or C++ 23

Extending and Embedding Python, Release 3.12.0a0

(continued from previous page)

return NULL;
if (import_spam() < 0)

return NULL;
/* additional initialization can happen here */
return m;

The main disadvantage of this approach is that the file spammodule.h is rather complicated. However, the basic
structure is the same for each function that is exported, so it has to be learned only once.

Finally it should be mentioned that Capsules offer additional functionality, which is especially useful for memory al-
location and deallocation of the pointer stored in a Capsule. The details are described in the Python/C API Reference
Manual in the section capsules and in the implementation of Capsules (files Include/pycapsule.hand Objects/
pycapsule. c in the Python source code distribution).

2.2 Defining Extension Types: Tutorial

Python allows the writer of a C extension module to define new types that can be manipulated from Python code, much
like the built-in str and 1ist types. The code for all extension types follows a pattern, but there are some details that
you need to understand before you can get started. This document is a gentle introduction to the topic.

2.2.1 The Basics

The CPython runtime sees all Python objects as variables of type PyObject*, which serves as a “base type” for all Python
objects. The PyObject structure itself only contains the object’s reference count and a pointer to the object’s “type
object”. This is where the action is; the type object determines which (C) functions get called by the interpreter when, for
instance, an attribute gets looked up on an object, a method called, or it is multiplied by another object. These C functions

are called “type methods”.
So, if you want to define a new extension type, you need to create a new type object.

This sort of thing can only be explained by example, so here’s a minimal, but complete, module that defines a new type
named Custom inside a C extension module custom:

Note: What we're showing here is the traditional way of defining static extension types. It should be adequate for most
uses. The C API also allows defining heap-allocated extension types using the PyType_FromSpec () function, which
isn’t covered in this tutorial.

#define PY_SSIZE_T_ CLEAN
#include <Python.h>

typedef struct {

PyObject_HEAD

/* Type-specific fields go here. */
} CustomObject;

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, O)

.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),

(continues on next page)

24 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.12.0a0

(continued from previous page)

.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

static PyModuleDef custommodule = {
PyModuleDef_ HEAD_INIT,

.m_name = "custom",
.m_doc = "Example module that creates an extension type.",
.m_size = -1,

bi

PyMODINIT_FUNC
PyInit_custom(void)
{
PyObject *m;
if (PyType_Ready (&CustomType) < 0)
return NULL;

m = PyModule_Create (&custommodule) ;
if (m == NULL)
return NULL;

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0)
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

return m;

Now that’s quite a bit to take in at once, but hopefully bits will seem familiar from the previous chapter. This file defines
three things:

1. What a Custom object contains: this is the CustomObject struct, which is allocated once for each Custom
instance.

2. How the Custom type behaves: this is the Cust omType struct, which defines a set of flags and function pointers
that the interpreter inspects when specific operations are requested.

3. How to initialize the custom module: this is the PyInit_custom function and the associated
custommodule struct.

The first bit is:

typedef struct {
PyObject_HEAD
} CustomObject;

This is what a Custom object will contain. PyObject_HEAD is mandatory at the start of each object struct and defines
a field called ob_base of type PyObject, containing a pointer to a type object and a reference count (these can be
accessed using the macros Py_TYPE and Py_REFCNT respectively). The reason for the macro is to abstract away the
layout and to enable additional fields in debug builds.

Note: There is no semicolon above after the PyObject_HEAD macro. Be wary of adding one by accident: some

2.2. Defining Extension Types: Tutorial 25

Extending and Embedding Python, Release 3.12.0a0

compilers will complain.

Of course, objects generally store additional data besides the standard PyOb ject_HEAD boilerplate; for example, here
is the definition for standard Python floats:

typedef struct {
PyObject_HEAD
double ob_fval;
} PyFloatObiject;

The second bit is the definition of the type object.

static PyTypeObject CustomType = {
PyVarObject_HEAD_INIT (NULL, 0)
.tp_name = "custom.Custom",
.tp_doc = PyDoc_STR("Custom objects"),
.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_new = PyType_GenericNew,

bi

Note: We recommend using C99-style designated initializers as above, to avoid listing all the Py TypeObject fields
that you don’t care about and also to avoid caring about the fields’ declaration order.

The actual definition of PyTypeObject in object . h has many more fields than the definition above. The remaining
fields will be filled with zeros by the C compiler, and it’s common practice to not specify them explicitly unless you need
them.

We’re going to pick it apart, one field at a time:

’ PyVarObject_ HEAD_INIT (NULL, 0)

This line is mandatory boilerplate to initialize the ob_base field mentioned above.

’.tp_name = "custom.Custom",

The name of our type. This will appear in the default textual representation of our objects and in some error messages,
for example:

>>> "" 4+ custom.Custom()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "custom.Custom") to str

Note that the name is a dotted name that includes both the module name and the name of the type within the module.
The module in this case is custom and the type is Custom, so we set the type name to custom.Custom. Using the
real dotted import path is important to make your type compatible with the pydoc and pickle modules.

.tp_basicsize = sizeof (CustomObject),
.tp_itemsize = 0,

This is so that Python knows how much memory to allocate when creating new Custom instances. tp_itemsize is
only used for variable-sized objects and should otherwise be zero.

26 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.12.0a0

Note: If you want your type to be subclassable from Python, and your type has the same tp_basicsize as its base
type, you may have problems with multiple inheritance. A Python subclass of your type will have to list your type first
inits __bases__, or else it will not be able to call your type’s __new___ () method without getting an error. You can
avoid this problem by ensuring that your type has a larger value for tp_basicsize than its base type does. Most of the
time, this will be true anyway, because either your base type will be object, or else you will be adding data members
to your base type, and therefore increasing its size.

We set the class flags to Py_ TPFLAGS_DEFAULT.

.tp_flags = Py_TPFLAGS_DEFAULT,

All types should include this constant in their flags. It enables all of the members defined until at least Python 3.3. If you
need further members, you will need to OR the corresponding flags.

We provide a doc string for the type in tp_doc.

.tp_doc = PyDoc_STR("Custom objects"),

To enable object creation, we have to provide a tp_new handler. This is the equivalent of the Python method
__new___(), but has to be specified explicitly. In this case, we can just use the default implementation provided by
the API function PyType_GenericNew ().

.tp_new = PyType_GenericNew,

Everything else in the file should be familiar, except for some code in PyInit_custom():

if (PyType_Ready (&CustomType) < 0)
return;

This initializes the Cust om type, filling in a number of members to the appropriate default values, including ob_type
that we initially set to NULL.

Py_INCREF (&CustomType) ;

if (PyModule_AddObject (m, "Custom", (PyObject *) &CustomType) < 0) {
Py_DECREF (&CustomType) ;
Py_DECREF (m) ;
return NULL;

This adds the type to the module dictionary. This allows us to create Cust om instances by calling the Custom class:

>>> import custom
>>> mycustom = custom.Custom/()

That’s it! All that remains is to build it; put the above code in a file called custom. c and:

from distutils.core import setup, Extension
setup (name="custom", version="1.0",
ext_modules=[Extension ("custom", ["custom.c"])])

in a file called setup . py; then typing

$ python setup.py build

at a shell should produce a file custom. so in a subdirectory; move to that directory and fire up Python — you should
be able to import custom and play around with Custom objects.

2.2. Defining Extension Types: Tutorial 27

Extending and Embedding Python, Release 3.12.0a0

That wasn’t so hard, was it?

Of course, the current Custom type is pretty uninteresting. It has no data and doe