
The Python/C API
Release 3.11.4

Guido van Rossum and the Python development team

August 24, 2023

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
1.1 Coding standards . 3
1.2 Include Files . 3
1.3 Useful macros . 4
1.4 Objects, Types and Reference Counts . 6

1.4.1 Reference Counts . 7
1.4.2 Types . 10

1.5 Exceptions . 10
1.6 Embedding Python . 12
1.7 Debugging Builds . 13

2 C API Stability 15
2.1 Stable Application Binary Interface . 15

2.1.1 Limited API Scope and Performance . 16
2.1.2 Limited API Caveats . 16

2.2 Platform Considerations . 16
2.3 Contents of Limited API . 17

3 The Very High Level Layer 43

4 Reference Counting 49

5 Exception Handling 51
5.1 Printing and clearing . 51
5.2 Raising exceptions . 52
5.3 Issuing warnings . 54
5.4 Querying the error indicator . 55
5.5 Signal Handling . 58
5.6 Exception Classes . 59
5.7 Exception Objects . 59
5.8 Unicode Exception Objects . 60
5.9 Recursion Control . 61
5.10 Standard Exceptions . 61
5.11 Standard Warning Categories . 63

6 Utilities 65
6.1 Operating System Utilities . 65
6.2 System Functions . 68
6.3 Process Control . 70
6.4 Importing Modules . 70
6.5 Data marshalling support . 74

i

6.6 Parsing arguments and building values . 75
6.6.1 Parsing arguments . 75
6.6.2 Building values . 81

6.7 String conversion and formatting . 83
6.8 Reflection . 85
6.9 Codec registry and support functions . 85

6.9.1 Codec lookup API . 86
6.9.2 Registry API for Unicode encoding error handlers . 86

7 Abstract Objects Layer 89
7.1 Object Protocol . 89
7.2 Call Protocol . 94

7.2.1 The tp_call Protocol . 94
7.2.2 The Vectorcall Protocol . 94
7.2.3 Object Calling API . 96
7.2.4 Call Support API . 98

7.3 Number Protocol . 98
7.4 Sequence Protocol . 102
7.5 Mapping Protocol . 104
7.6 Iterator Protocol . 105
7.7 Buffer Protocol . 106

7.7.1 Buffer structure . 106
7.7.2 Buffer request types . 108
7.7.3 Complex arrays . 111
7.7.4 Buffer-related functions . 112

7.8 Old Buffer Protocol . 113

8 Concrete Objects Layer 115
8.1 Fundamental Objects . 115

8.1.1 Type Objects . 115
8.1.2 The None Object . 119

8.2 Numeric Objects . 119
8.2.1 Integer Objects . 119
8.2.2 Boolean Objects . 123
8.2.3 Floating Point Objects . 123
8.2.4 Complex Number Objects . 125

8.3 Sequence Objects . 127
8.3.1 Bytes Objects . 127
8.3.2 Byte Array Objects . 129
8.3.3 Unicode Objects and Codecs . 130
8.3.4 Tuple Objects . 148
8.3.5 Struct Sequence Objects . 149
8.3.6 List Objects . 150

8.4 Container Objects . 152
8.4.1 Dictionary Objects . 152
8.4.2 Set Objects . 155

8.5 Function Objects . 156
8.5.1 Function Objects . 156
8.5.2 Instance Method Objects . 158
8.5.3 Method Objects . 158
8.5.4 Cell Objects . 159
8.5.5 Code Objects . 159

8.6 Other Objects . 161
8.6.1 File Objects . 161

ii

8.6.2 Module Objects . 162
8.6.3 Iterator Objects . 170
8.6.4 Descriptor Objects . 170
8.6.5 Slice Objects . 171
8.6.6 MemoryView objects . 172
8.6.7 Weak Reference Objects . 173
8.6.8 Capsules . 174
8.6.9 Frame Objects . 176
8.6.10 Generator Objects . 177
8.6.11 Coroutine Objects . 177
8.6.12 Context Variables Objects . 178
8.6.13 DateTime Objects . 179
8.6.14 Objects for Type Hinting . 183

9 Initialization, Finalization, and Threads 185
9.1 Before Python Initialization . 185
9.2 Global configuration variables . 186
9.3 Initializing and finalizing the interpreter . 188
9.4 Process-wide parameters . 189
9.5 Thread State and the Global Interpreter Lock . 193

9.5.1 Releasing the GIL from extension code . 193
9.5.2 Non-Python created threads . 194
9.5.3 Cautions about fork() . 195
9.5.4 High-level API . 195
9.5.5 Low-level API . 197

9.6 Sub-interpreter support . 201
9.6.1 Bugs and caveats . 202

9.7 Asynchronous Notifications . 202
9.8 Profiling and Tracing . 203
9.9 Advanced Debugger Support . 204
9.10 Thread Local Storage Support . 205

9.10.1 Thread Specific Storage (TSS) API . 205
9.10.2 Thread Local Storage (TLS) API . 206

10 Python Initialization Configuration 209
10.1 Example . 209
10.2 PyWideStringList . 210
10.3 PyStatus . 211
10.4 PyPreConfig . 212
10.5 Preinitialize Python with PyPreConfig . 214
10.6 PyConfig . 215
10.7 Initialization with PyConfig . 225
10.8 Isolated Configuration . 227
10.9 Python Configuration . 228
10.10 Python Path Configuration . 228
10.11 Py_RunMain() . 229
10.12 Py_GetArgcArgv() . 230
10.13 Multi-Phase Initialization Private Provisional API . 230

11 Memory Management 233
11.1 Overview . 233
11.2 Allocator Domains . 234
11.3 Raw Memory Interface . 234
11.4 Memory Interface . 235

iii

11.5 Object allocators . 237
11.6 Default Memory Allocators . 238
11.7 Customize Memory Allocators . 238
11.8 Debug hooks on the Python memory allocators . 240
11.9 The pymalloc allocator . 241

11.9.1 Customize pymalloc Arena Allocator . 241
11.10 tracemalloc C API . 242
11.11 Examples . 242

12 Object Implementation Support 245
12.1 Allocating Objects on the Heap . 245
12.2 Common Object Structures . 246

12.2.1 Base object types and macros . 246
12.2.2 Implementing functions and methods . 248
12.2.3 Accessing attributes of extension types . 251

12.3 Type Objects . 252
12.3.1 Quick Reference . 253
12.3.2 PyTypeObject Definition . 258
12.3.3 PyObject Slots . 259
12.3.4 PyVarObject Slots . 260
12.3.5 PyTypeObject Slots . 260
12.3.6 Static Types . 279
12.3.7 Heap Types . 279

12.4 Number Object Structures . 279
12.5 Mapping Object Structures . 282
12.6 Sequence Object Structures . 282
12.7 Buffer Object Structures . 283
12.8 Async Object Structures . 284
12.9 Slot Type typedefs . 285
12.10 Examples . 287
12.11 Supporting Cyclic Garbage Collection . 289

12.11.1 Controlling the Garbage Collector State . 291

13 API and ABI Versioning 293

A Glossary 295

B About these documents 309
B.1 Contributors to the Python Documentation . 309

C History and License 311
C.1 History of the software . 311
C.2 Terms and conditions for accessing or otherwise using Python . 312

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.11.4 . 312
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 313
C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1 . 314
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 315
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.4 DOCUMENTATION315

C.3 Licenses and Acknowledgements for Incorporated Software . 316
C.3.1 Mersenne Twister . 316
C.3.2 Sockets . 317
C.3.3 Asynchronous socket services . 317
C.3.4 Cookie management . 318
C.3.5 Execution tracing . 318
C.3.6 UUencode and UUdecode functions . 319

iv

C.3.7 XML Remote Procedure Calls . 319
C.3.8 test_epoll . 320
C.3.9 Select kqueue . 320
C.3.10 SipHash24 . 321
C.3.11 strtod and dtoa . 321
C.3.12 OpenSSL . 322
C.3.13 expat . 325
C.3.14 libffi . 326
C.3.15 zlib . 326
C.3.16 cfuhash . 327
C.3.17 libmpdec . 327
C.3.18 W3C C14N test suite . 328
C.3.19 Audioop . 329

D Copyright 331

Index 333

v

vi

The Python/C API, Release 3.11.4

This manual documents the API used by C and C++ programmers who want to write extension modules or embed Python.
It is a companion to extending-index, which describes the general principles of extension writing but does not document
the API functions in detail.

CONTENTS 1

The Python/C API, Release 3.11.4

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter at a
variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the Python/C API.
There are two fundamentally different reasons for using the Python/C API. The first reason is to write extension modules
for specific purposes; these are C modules that extend the Python interpreter. This is probably the most common use. The
second reason is to use Python as a component in a larger application; this technique is generally referred to as embedding
Python in an application.
Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There are
several tools that automate the process to some extent. While people have embedded Python in other applications since
its early existence, the process of embedding Python is less straightforward than writing an extension.
Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most applica-
tions that embed Python will need to provide a custom extension as well, so it’s probably a good idea to become familiar
with writing an extension before attempting to embed Python in a real application.

1.1 Coding standards

If you’re writing C code for inclusion in CPython, youmust follow the guidelines and standards defined in PEP 7. These
guidelines apply regardless of the version of Python you are contributing to. Following these conventions is not necessary
for your own third party extension modules, unless you eventually expect to contribute them to Python.

1.2 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following line:

#define PY_SSIZE_T_CLEAN
#include <Python.h>

This implies inclusion of the following standard headers: <stdio.h>, <string.h>, <errno.h>, <limits.h>,
<assert.h> and <stdlib.h> (if available).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some systems, you
must include Python.h before any standard headers are included.
It is recommended to always define PY_SSIZE_T_CLEAN before including Python.h. See Parsing arguments and
building values for a description of this macro.

3

https://peps.python.org/pep-0007/

The Python/C API, Release 3.11.4

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the prefixes
Py or _Py. Names beginning with _Py are for internal use by the Python implementation and should not be used by
extension writers. Structure member names do not have a reserved prefix.

Note: User code should never define names that begin with Py or _Py. This confuses the reader, and jeopardizes the
portability of the user code to future Python versions, which may define additional names beginning with one of these
prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories prefix/include/
pythonversion/ and exec_prefix/include/pythonversion/, where prefix and exec_prefix
are defined by the corresponding parameters to Python’s configure script and version is '%d.%d' % sys.
version_info[:2]. On Windows, the headers are installed in prefix/include, where prefix is the in-
stallation directory specified to the installer.
To include the headers, place both directories (if different) on your compiler’s search path for includes. Do not place
the parent directories on the search path and then use #include <pythonX.Y/Python.h>; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers from
exec_prefix.
C++ users should note that although the API is defined entirely using C, the header files properly declare the entry points
to be extern "C". As a result, there is no need to do anything special to use the API from C++.

1.3 Useful macros

Several useful macros are defined in the Python header files. Many are defined closer to where they are useful (e.g.
Py_RETURN_NONE). Others of a more general utility are defined here. This is not necessarily a complete listing.
Py_ABS(x)

Return the absolute value of x.
New in version 3.3.

Py_ALWAYS_INLINE

Ask the compiler to always inline a static inline function. The compiler can ignore it and decides to not inline the
function.
It can be used to inline performance critical static inline functions when building Python in debug mode with
function inlining disabled. For example, MSC disables function inlining when building in debug mode.
Marking blindly a static inline function with Py_ALWAYS_INLINE can result in worse performances (due to
increased code size for example). The compiler is usually smarter than the developer for the cost/benefit analysis.
If Python is built in debug mode (if the Py_DEBUG macro is defined), the Py_ALWAYS_INLINE macro does
nothing.
It must be specified before the function return type. Usage:

static inline Py_ALWAYS_INLINE int random(void) { return 4; }

New in version 3.11.
Py_CHARMASK(c)

Argument must be a character or an integer in the range [-128, 127] or [0, 255]. This macro returns c cast to an
unsigned char.

4 Chapter 1. Introduction

The Python/C API, Release 3.11.4

Py_DEPRECATED(version)
Use this for deprecated declarations. The macro must be placed before the symbol name.
Example:

Py_DEPRECATED(3.8) PyAPI_FUNC(int) Py_OldFunction(void);

Changed in version 3.8: MSVC support was added.
Py_GETENV(s)

Like getenv(s), but returns NULL if -E was passed on the command line (i.e. if
Py_IgnoreEnvironmentFlag is set).

Py_MAX(x, y)
Return the maximum value between x and y.
New in version 3.3.

Py_MEMBER_SIZE(type, member)
Return the size of a structure (type) member in bytes.
New in version 3.6.

Py_MIN(x, y)
Return the minimum value between x and y.
New in version 3.3.

Py_NO_INLINE

Disable inlining on a function. For example, it reduces the C stack consumption: useful on LTO+PGO builds which
heavily inline code (see bpo-33720).
Usage:

Py_NO_INLINE static int random(void) { return 4; }

New in version 3.11.
Py_STRINGIFY(x)

Convert x to a C string. E.g. Py_STRINGIFY(123) returns "123".
New in version 3.4.

Py_UNREACHABLE()

Use this when you have a code path that cannot be reached by design. For example, in the default: clause in
a switch statement for which all possible values are covered in case statements. Use this in places where you
might be tempted to put an assert(0) or abort() call.
In release mode, the macro helps the compiler to optimize the code, and avoids a warning about unreachable code.
For example, the macro is implemented with __builtin_unreachable() on GCC in release mode.
A use for Py_UNREACHABLE() is following a call a function that never returns but that is not declared
_Py_NO_RETURN.
If a code path is very unlikely code but can be reached under exceptional case, this macro must not be used. For
example, under low memory condition or if a system call returns a value out of the expected range. In this case,
it’s better to report the error to the caller. If the error cannot be reported to caller, Py_FatalError() can be
used.
New in version 3.7.

1.3. Useful macros 5

https://bugs.python.org/issue?@action=redirect&bpo=33720

The Python/C API, Release 3.11.4

Py_UNUSED(arg)
Use this for unused arguments in a function definition to silence compiler warnings. Example: int func(int
a, int Py_UNUSED(b)) { return a; }.
New in version 3.4.

PyDoc_STRVAR(name, str)
Creates a variable with name name that can be used in docstrings. If Python is built without docstrings, the value
will be empty.
Use PyDoc_STRVAR for docstrings to support building Python without docstrings, as specified in PEP 7.
Example:

PyDoc_STRVAR(pop_doc, "Remove and return the rightmost element.");

static PyMethodDef deque_methods[] = {
// ...
{"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc},
// ...

}

PyDoc_STR(str)
Creates a docstring for the given input string or an empty string if docstrings are disabled.
Use PyDoc_STR in specifying docstrings to support building Python without docstrings, as specified in PEP 7.
Example:

static PyMethodDef pysqlite_row_methods[] = {
{"keys", (PyCFunction)pysqlite_row_keys, METH_NOARGS,

PyDoc_STR("Returns the keys of the row.")},
{NULL, NULL}

};

1.4 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value of type PyObject*. This type is a
pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the same
way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only fitting that
they should be represented by a single C type. Almost all Python objects live on the heap: you never declare an automatic
or static variable of type PyObject, only pointer variables of type PyObject* can be declared. The sole exception
are the type objects; since these must never be deallocated, they are typically static PyTypeObject objects.
All Python objects (even Python integers) have a type and a reference count. An object’s type determines what kind of
object it is (e.g., an integer, a list, or a user-defined function; there are many more as explained in types). For each of the
well-known types there is a macro to check whether an object is of that type; for instance, PyList_Check(a) is true
if (and only if) the object pointed to by a is a Python list.

6 Chapter 1. Introduction

https://peps.python.org/pep-0007/
https://peps.python.org/pep-0007/

The Python/C API, Release 3.11.4

1.4.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a strong reference to an object. Such a place could be another object,
or a global (or static) C variable, or a local variable in some C function. When the last strong reference to an object is
released (i.e. its reference count becomes zero), the object is deallocated. If it contains references to other objects, those
references are released. Those other objects may be deallocated in turn, if there are no more references to them, and so
on. (There’s an obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”)
Reference counts are always manipulated explicitly. The normal way is to use the macro Py_INCREF() to take a
new reference to an object (i.e. increment its reference count by one), and Py_DECREF() to release that reference
(i.e. decrement the reference count by one). The Py_DECREF() macro is considerably more complex than the incref
one, since it must check whether the reference count becomes zero and then cause the object’s deallocator to be called.
The deallocator is a function pointer contained in the object’s type structure. The type-specific deallocator takes care of
releasing references for other objects contained in the object if this is a compound object type, such as a list, as well as
performing any additional finalization that’s needed. There’s no chance that the reference count can overflow; at least
as many bits are used to hold the reference count as there are distinct memory locations in virtual memory (assuming
sizeof(Py_ssize_t) >= sizeof(void*)). Thus, the reference count increment is a simple operation.
It is not necessary to hold a strong reference (i.e. increment the reference count) for every local variable that contains
a pointer to an object. In theory, the object’s reference count goes up by one when the variable is made to point to it
and it goes down by one when the variable goes out of scope. However, these two cancel each other out, so at the end
the reference count hasn’t changed. The only real reason to use the reference count is to prevent the object from being
deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the object
that lives at least as long as our variable, there is no need to take a new strong reference (i.e. increment the reference
count) temporarily. An important situation where this arises is in objects that are passed as arguments to C functions in
an extension module that are called from Python; the call mechanism guarantees to hold a reference to every argument
for the duration of the call.
However, a common pitfall is to extract an object from a list and hold on to it for a while without taking a new reference.
Some other operation might conceivably remove the object from the list, releasing that reference, and possibly deallocating
it. The real danger is that innocent-looking operations may invoke arbitrary Python code which could do this; there is a
code path which allows control to flow back to the user from a Py_DECREF(), so almost any operation is potentially
dangerous.
A safe approach is to always use the generic operations (functions whose name begins with PyObject_, PyNumber_,
PySequence_ or PyMapping_). These operations always create a new strong reference (i.e. increment the reference
count) of the object they return. This leaves the caller with the responsibility to call Py_DECREF() when they are done
with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in terms of ownership of references.
Ownership pertains to references, never to objects (objects are not owned: they are always shared). “Owning a reference”
means being responsible for calling Py_DECREF on it when the reference is no longer needed. Ownership can also
be transferred, meaning that the code that receives ownership of the reference then becomes responsible for eventually
releasing it by calling Py_DECREF() or Py_XDECREF() when it’s no longer needed—or passing on this responsibility
(usually to its caller). When a function passes ownership of a reference on to its caller, the caller is said to receive a new
reference. When no ownership is transferred, the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.
Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a
reference to the object, or it does not. Stealing a referencemeans that when you pass a reference to a function, that function
assumes that it now owns that reference, and you are not responsible for it any longer.

1.4. Objects, Types and Reference Counts 7

The Python/C API, Release 3.11.4

Few functions steal references; the two notable exceptions are PyList_SetItem() and PyTuple_SetItem(),
which steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for example,
the code to create the tuple (1, 2, "three") could look like this (forgetting about error handling for the moment;
a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyLong_FromLong(1L));
PyTuple_SetItem(t, 1, PyLong_FromLong(2L));
PyTuple_SetItem(t, 2, PyUnicode_FromString("three"));

Here, PyLong_FromLong() returns a new reference which is immediately stolen by PyTuple_SetItem(). When
you want to keep using an object although the reference to it will be stolen, use Py_INCREF() to grab another reference
before calling the reference-stealing function.
Incidentally, PyTuple_SetItem() is the only way to set tuple items; PySequence_SetItem() and
PyObject_SetItem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple_SetItem() for tuples that you are creating yourself.
Equivalent code for populating a list can be written using PyList_New() and PyList_SetItem().
However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic function,
Py_BuildValue(), that can create most common objects from C values, directed by a format string. For example,
the above two blocks of code could be replaced by the following (which also takes care of the error checking):

PyObject *tuple, *list;

tuple = Py_BuildValue("(iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");

It is much more common to use PyObject_SetItem() and friends with items whose references you are only borrow-
ing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding references
is much saner, since you don’t have to take a new reference just so you can give that reference away (“have it be stolen”).
For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all(PyObject *target, PyObject *item)
{

Py_ssize_t i, n;

n = PyObject_Length(target);
if (n < 0)

return -1;
for (i = 0; i < n; i++) {

PyObject *index = PyLong_FromSsize_t(i);
if (!index)

return -1;
if (PyObject_SetItem(target, index, item) < 0) {

Py_DECREF(index);
return -1;

}
Py_DECREF(index);

}
return 0;

}

The situation is slightly different for function return values. While passing a reference to most functions does not change

8 Chapter 1. Introduction

The Python/C API, Release 3.11.4

your ownership responsibilities for that reference, many functions that return a reference to an object give you ownership of
the reference. The reason is simple: in many cases, the returned object is created on the fly, and the reference you get is the
only reference to the object. Therefore, the generic functions that return object references, likePyObject_GetItem()
and PySequence_GetItem(), always return a new reference (the caller becomes the owner of the reference).
It is important to realize that whether you own a reference returned by a function depends on which function you call only
— the plumage (the type of the object passed as an argument to the function) doesn’t enter into it! Thus, if you extract
an item from a list using PyList_GetItem(), you don’t own the reference — but if you obtain the same item from
the same list using PySequence_GetItem() (which happens to take exactly the same arguments), you do own a
reference to the returned object.
Here is an example of how you could write a function that computes the sum of the items in a list of integers; once using
PyList_GetItem(), and once using PySequence_GetItem().

long
sum_list(PyObject *list)
{

Py_ssize_t i, n;
long total = 0, value;
PyObject *item;

n = PyList_Size(list);
if (n < 0)

return -1; /* Not a list */
for (i = 0; i < n; i++) {

item = PyList_GetItem(list, i); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())

/* Integer too big to fit in a C long, bail out */
return -1;

total += value;
}
return total;

}

long
sum_sequence(PyObject *sequence)
{

Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)

return -1; /* Has no length */
for (i = 0; i < n; i++) {

item = PySequence_GetItem(sequence, i);
if (item == NULL)

return -1; /* Not a sequence, or other failure */
if (PyLong_Check(item)) {

value = PyLong_AsLong(item);
Py_DECREF(item);
if (value == -1 && PyErr_Occurred())

/* Integer too big to fit in a C long, bail out */
return -1;

total += value;
}
else {

(continues on next page)

1.4. Objects, Types and Reference Counts 9

The Python/C API, Release 3.11.4

(continued from previous page)
Py_DECREF(item); /* Discard reference ownership */

}
}
return total;

}

1.4.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as int,
long, double and char*. A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.
type Py_ssize_t

Part of the Stable ABI. A signed integral type such that sizeof(Py_ssize_t) == sizeof(size_t).
C99 doesn’t define such a thing directly (size_t is an unsigned integral type). See PEP 353 for details.
PY_SSIZE_T_MAX is the largest positive value of type Py_ssize_t.

1.5 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.
For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function en-
counters an error, it sets an exception, discards any object references that it owns, and returns an error indicator. If not
documented otherwise, this indicator is either NULL or -1, depending on the function’s return type. A few functions
return a Boolean true/false result, with false indicating an error. Very few functions return no explicit error indicator or
have an ambiguous return value, and require explicit testing for errors with PyErr_Occurred(). These exceptions
are always explicitly documented.
Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded application).
A thread can be in one of two states: an exception has occurred, or not. The function PyErr_Occurred() can be used
to check for this: it returns a borrowed reference to the exception type object when an exception has occurred, and NULL
otherwise. There are a number of functions to set the exception state: PyErr_SetString() is the most common
(though not the most general) function to set the exception state, and PyErr_Clear() clears the exception state.
The full exception state consists of three objects (all of which can be NULL): the exception type, the corresponding
exception value, and the traceback. These have the samemeanings as the Python result of sys.exc_info(); however,
they are not the same: the Python objects represent the last exception being handled by a Python try … except
statement, while the C level exception state only exists while an exception is being passed on between C functions until
it reaches the Python bytecode interpreter’s main loop, which takes care of transferring it to sys.exc_info() and
friends.
Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is to call
the function sys.exc_info(), which returns the per-thread exception state for Python code. Also, the semantics of
both ways to access the exception state have changed so that a function which catches an exception will save and restore
its thread’s exception state so as to preserve the exception state of its caller. This prevents common bugs in exception
handling code caused by an innocent-looking function overwriting the exception being handled; it also reduces the often
unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

10 Chapter 1. Introduction

https://peps.python.org/pep-0353/

The Python/C API, Release 3.11.4

As a general principle, a function that calls another function to perform some task should check whether the called function
raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns,
and return an error indicator, but it should not set another exception — that would overwrite the exception that was just
raised, and lose important information about the exact cause of the error.
A simple example of detecting exceptions and passing them on is shown in the sum_sequence() example above. It so
happens that this example doesn’t need to clean up any owned references when it detects an error. The following example
function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python code:

def incr_item(dict, key):
try:

item = dict[key]
except KeyError:

item = 0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item(PyObject *dict, PyObject *key)
{

/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_GetItem(dict, key);
if (item == NULL) {

/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))

goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong(0L);
if (item == NULL)

goto error;
}
const_one = PyLong_FromLong(1L);
if (const_one == NULL)

goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)

goto error;

if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

(continues on next page)

1.5. Exceptions 11

The Python/C API, Release 3.11.4

(continued from previous page)
return rv; /* -1 for error, 0 for success */

}

This example represents an endorsed use of the goto statement in C! It illustrates the use of
PyErr_ExceptionMatches() and PyErr_Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that may be NULL (note the 'X' in the name; Py_DECREF()
would crash when confronted with a NULL reference). It is important that the variables used to hold owned references
are initialized to NULL for this to work; likewise, the proposed return value is initialized to -1 (failure) and only set to
success after the final call made is successful.

1.6 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.
The basic initialization function is Py_Initialize(). This initializes the table of loaded modules, and creates the
fundamental modules builtins, __main__, and sys. It also initializes the module search path (sys.path).
Py_Initialize() does not set the “script argument list” (sys.argv). If this variable is needed by Python code that
will be executed later, setting PyConfig.argv and PyConfig.parse_argv must be set: see Python Initialization
Configuration.
On most systems (in particular, on Unix and Windows, although the details are slightly different), Py_Initialize()
calculates the module search path based upon its best guess for the location of the standard Python interpreter executable,
assuming that the Python library is found in a fixed location relative to the Python interpreter executable. In particular, it
looks for a directory named lib/pythonX.Y relative to the parent directory where the executable named python is
found on the shell command search path (the environment variable PATH).
For instance, if the Python executable is found in /usr/local/bin/python, it will assume that the libraries are in /
usr/local/lib/pythonX.Y. (In fact, this particular path is also the “fallback” location, used when no executable
file named python is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.
The embedding application can steer the search by calling Py_SetProgramName(file) before calling
Py_Initialize(). Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in front of the
standard path. An application that requires total control has to provide its own implementation of Py_GetPath(),
Py_GetPrefix(), Py_GetExecPrefix(), and Py_GetProgramFullPath() (all defined in Modules/
getpath.c).
Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another call
to Py_Initialize()) or the application is simply done with its use of Python and wants to free memory allocated by
Python. This can be accomplished by calling Py_FinalizeEx(). The function Py_IsInitialized() returns
true if Python is currently in the initialized state. More information about these functions is given in a later chapter.
Notice that Py_FinalizeEx() does not free all memory allocated by the Python interpreter, e.g. memory allocated
by extension modules currently cannot be released.

12 Chapter 1. Introduction

The Python/C API, Release 3.11.4

1.7 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks
tend to add a large amount of overhead to the runtime so they are not enabled by default.
A full list of the various types of debugging builds is in the file Misc/SpecialBuilds.txt in the Python source
distribution. Builds are available that support tracing of reference counts, debugging the memory allocator, or low-level
profiling of the main interpreter loop. Only the most frequently used builds will be described in the remainder of this
section.
Compiling the interpreter with the Py_DEBUG macro defined produces what is generally meant by a debug build of
Python. Py_DEBUG is enabled in the Unix build by adding --with-pydebug to the ./configure command. It is
also implied by the presence of the not-Python-specific _DEBUGmacro. When Py_DEBUG is enabled in the Unix build,
compiler optimization is disabled.
In addition to the reference count debugging described below, extra checks are performed, see Python Debug Build.
Defining Py_TRACE_REFS enables reference tracing (see the configure --with-trace-refs option).
When defined, a circular doubly linked list of active objects is maintained by adding two extra fields to every PyObject.
Total allocations are tracked as well. Upon exit, all existing references are printed. (In interactive mode this happens
after every statement run by the interpreter.)
Please refer to Misc/SpecialBuilds.txt in the Python source distribution for more detailed information.

1.7. Debugging Builds 13

The Python/C API, Release 3.11.4

14 Chapter 1. Introduction

CHAPTER

TWO

C API STABILITY

Python’s C API is covered by the Backwards Compatibility Policy, PEP 387. While the C API will change with every
minor release (e.g. from 3.9 to 3.10), most changes will be source-compatible, typically by only adding newAPI. Changing
existing API or removing API is only done after a deprecation period or to fix serious issues.
CPython’s Application Binary Interface (ABI) is forward- and backwards-compatible across a minor release (if these are
compiled the same way; see Platform Considerations below). So, code compiled for Python 3.10.0 will work on 3.10.8
and vice versa, but will need to be compiled separately for 3.9.x and 3.10.x.
Names prefixed by an underscore, such as _Py_InternalState, are private API that can change without notice even
in patch releases.

2.1 Stable Application Binary Interface

Python 3.2 introduced the Limited API, a subset of Python’s C API. Extensions that only use the Limited API can be
compiled once and work with multiple versions of Python. Contents of the Limited API are listed below.
To enable this, Python provides a Stable ABI: a set of symbols that will remain compatible across Python 3.x versions.
The Stable ABI contains symbols exposed in the Limited API, but also other ones – for example, functions necessary to
support older versions of the Limited API.
(For simplicity, this document talks about extensions, but the Limited API and Stable ABI work the same way for all uses
of the API – for example, embedding Python.)
Py_LIMITED_API

Define this macro before including Python.h to opt in to only use the Limited API, and to select the Limited
API version.
Define Py_LIMITED_API to the value of PY_VERSION_HEX corresponding to the lowest Python version your
extension supports. The extension will work without recompilation with all Python 3 releases from the specified
one onward, and can use Limited API introduced up to that version.
Rather than using the PY_VERSION_HEX macro directly, hardcode a minimum minor version (e.g.
0x030A0000 for Python 3.10) for stability when compiling with future Python versions.
You can also define Py_LIMITED_API to 3. This works the same as 0x03020000 (Python 3.2, the version
that introduced Limited API).

On Windows, extensions that use the Stable ABI should be linked against python3.dll rather than a version-specific
library such as python39.dll.
On some platforms, Python will look for and load shared library files named with the abi3 tag (e.g. mymodule.
abi3.so). It does not check if such extensions conform to a Stable ABI. The user (or their packaging tools) need to
ensure that, for example, extensions built with the 3.10+ Limited API are not installed for lower versions of Python.

15

https://peps.python.org/pep-0387/

The Python/C API, Release 3.11.4

All functions in the Stable ABI are present as functions in Python’s shared library, not solely as macros. This makes them
usable from languages that don’t use the C preprocessor.

2.1.1 Limited API Scope and Performance

The goal for the Limited API is to allow everything that is possible with the full C API, but possibly with a performance
penalty.
For example, while PyList_GetItem() is available, its “unsafe” macro variant PyList_GET_ITEM() is not. The
macro can be faster because it can rely on version-specific implementation details of the list object.
Without Py_LIMITED_API defined, some C API functions are inlined or replaced by macros. Defining
Py_LIMITED_API disables this inlining, allowing stability as Python’s data structures are improved, but possibly re-
ducing performance.
By leaving out the Py_LIMITED_API definition, it is possible to compile a Limited API extension with a version-
specific ABI. This can improve performance for that Python version, but will limit compatibility. Compiling with
Py_LIMITED_API will then yield an extension that can be distributed where a version-specific one is not available
– for example, for prereleases of an upcoming Python version.

2.1.2 Limited API Caveats

Note that compiling with Py_LIMITED_API is not a complete guarantee that code conforms to the Limited API or
the Stable ABI. Py_LIMITED_API only covers definitions, but an API also includes other issues, such as expected
semantics.
One issue that Py_LIMITED_API does not guard against is calling a function with arguments that are invalid in a lower
Python version. For example, consider a function that starts accepting NULL for an argument. In Python 3.9, NULL now
selects a default behavior, but in Python 3.8, the argument will be used directly, causing a NULL dereference and crash.
A similar argument works for fields of structs.
Another issue is that some struct fields are currently not hidden when Py_LIMITED_API is defined, even though they’re
part of the Limited API.
For these reasons, we recommend testing an extension with all minor Python versions it supports, and preferably to build
with the lowest such version.
We also recommend reviewing documentation of all used API to check if it is explicitly part of the Limited API. Even
with Py_LIMITED_API defined, a few private declarations are exposed for technical reasons (or even unintentionally,
as bugs).
Also note that the Limited API is not necessarily stable: compiling with Py_LIMITED_API with Python 3.8 means
that the extension will run with Python 3.12, but it will not necessarily compile with Python 3.12. In particular, parts of
the Limited API may be deprecated and removed, provided that the Stable ABI stays stable.

2.2 Platform Considerations

ABI stability depends not only on Python, but also on the compiler used, lower-level libraries and compiler options. For
the purposes of the Stable ABI, these details define a “platform”. They usually depend on the OS type and processor
architecture
It is the responsibility of each particular distributor of Python to ensure that all Python versions on a particular platform are
built in a way that does not break the Stable ABI. This is the case withWindows and macOS releases from python.org
and many third-party distributors.

16 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

2.3 Contents of Limited API

Currently, the Limited API includes the following items:

• PyAIter_Check()

• PyArg_Parse()

• PyArg_ParseTuple()

• PyArg_ParseTupleAndKeywords()

• PyArg_UnpackTuple()

• PyArg_VaParse()

• PyArg_VaParseTupleAndKeywords()

• PyArg_ValidateKeywordArguments()

• PyBaseObject_Type

• PyBool_FromLong()

• PyBool_Type

• PyBuffer_FillContiguousStrides()

• PyBuffer_FillInfo()

• PyBuffer_FromContiguous()

• PyBuffer_GetPointer()

• PyBuffer_IsContiguous()

• PyBuffer_Release()

• PyBuffer_SizeFromFormat()

• PyBuffer_ToContiguous()

• PyByteArrayIter_Type

• PyByteArray_AsString()

• PyByteArray_Concat()

• PyByteArray_FromObject()

• PyByteArray_FromStringAndSize()

• PyByteArray_Resize()

• PyByteArray_Size()

• PyByteArray_Type

• PyBytesIter_Type

• PyBytes_AsString()

• PyBytes_AsStringAndSize()

• PyBytes_Concat()

• PyBytes_ConcatAndDel()

2.3. Contents of Limited API 17

The Python/C API, Release 3.11.4

• PyBytes_DecodeEscape()

• PyBytes_FromFormat()

• PyBytes_FromFormatV()

• PyBytes_FromObject()

• PyBytes_FromString()

• PyBytes_FromStringAndSize()

• PyBytes_Repr()

• PyBytes_Size()

• PyBytes_Type

• PyCFunction

• PyCFunctionWithKeywords

• PyCFunction_Call()

• PyCFunction_GetFlags()

• PyCFunction_GetFunction()

• PyCFunction_GetSelf()

• PyCFunction_New()

• PyCFunction_NewEx()

• PyCFunction_Type

• PyCMethod_New()

• PyCallIter_New()

• PyCallIter_Type

• PyCallable_Check()

• PyCapsule_Destructor

• PyCapsule_GetContext()

• PyCapsule_GetDestructor()

• PyCapsule_GetName()

• PyCapsule_GetPointer()

• PyCapsule_Import()

• PyCapsule_IsValid()

• PyCapsule_New()

• PyCapsule_SetContext()

• PyCapsule_SetDestructor()

• PyCapsule_SetName()

• PyCapsule_SetPointer()

• PyCapsule_Type

• PyClassMethodDescr_Type

18 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

• PyCodec_BackslashReplaceErrors()

• PyCodec_Decode()

• PyCodec_Decoder()

• PyCodec_Encode()

• PyCodec_Encoder()

• PyCodec_IgnoreErrors()

• PyCodec_IncrementalDecoder()

• PyCodec_IncrementalEncoder()

• PyCodec_KnownEncoding()

• PyCodec_LookupError()

• PyCodec_NameReplaceErrors()

• PyCodec_Register()

• PyCodec_RegisterError()

• PyCodec_ReplaceErrors()

• PyCodec_StreamReader()

• PyCodec_StreamWriter()

• PyCodec_StrictErrors()

• PyCodec_Unregister()

• PyCodec_XMLCharRefReplaceErrors()

• PyComplex_FromDoubles()

• PyComplex_ImagAsDouble()

• PyComplex_RealAsDouble()

• PyComplex_Type

• PyDescr_NewClassMethod()

• PyDescr_NewGetSet()

• PyDescr_NewMember()

• PyDescr_NewMethod()

• PyDictItems_Type

• PyDictIterItem_Type

• PyDictIterKey_Type

• PyDictIterValue_Type

• PyDictKeys_Type

• PyDictProxy_New()

• PyDictProxy_Type

• PyDictRevIterItem_Type

• PyDictRevIterKey_Type

2.3. Contents of Limited API 19

The Python/C API, Release 3.11.4

• PyDictRevIterValue_Type

• PyDictValues_Type

• PyDict_Clear()

• PyDict_Contains()

• PyDict_Copy()

• PyDict_DelItem()

• PyDict_DelItemString()

• PyDict_GetItem()

• PyDict_GetItemString()

• PyDict_GetItemWithError()

• PyDict_Items()

• PyDict_Keys()

• PyDict_Merge()

• PyDict_MergeFromSeq2()

• PyDict_New()

• PyDict_Next()

• PyDict_SetItem()

• PyDict_SetItemString()

• PyDict_Size()

• PyDict_Type

• PyDict_Update()

• PyDict_Values()

• PyEllipsis_Type

• PyEnum_Type

• PyErr_BadArgument()

• PyErr_BadInternalCall()

• PyErr_CheckSignals()

• PyErr_Clear()

• PyErr_Display()

• PyErr_ExceptionMatches()

• PyErr_Fetch()

• PyErr_Format()

• PyErr_FormatV()

• PyErr_GetExcInfo()

• PyErr_GetHandledException()

• PyErr_GivenExceptionMatches()

20 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

• PyErr_NewException()

• PyErr_NewExceptionWithDoc()

• PyErr_NoMemory()

• PyErr_NormalizeException()

• PyErr_Occurred()

• PyErr_Print()

• PyErr_PrintEx()

• PyErr_ProgramText()

• PyErr_ResourceWarning()

• PyErr_Restore()

• PyErr_SetExcFromWindowsErr()

• PyErr_SetExcFromWindowsErrWithFilename()

• PyErr_SetExcFromWindowsErrWithFilenameObject()

• PyErr_SetExcFromWindowsErrWithFilenameObjects()

• PyErr_SetExcInfo()

• PyErr_SetFromErrno()

• PyErr_SetFromErrnoWithFilename()

• PyErr_SetFromErrnoWithFilenameObject()

• PyErr_SetFromErrnoWithFilenameObjects()

• PyErr_SetFromWindowsErr()

• PyErr_SetFromWindowsErrWithFilename()

• PyErr_SetHandledException()

• PyErr_SetImportError()

• PyErr_SetImportErrorSubclass()

• PyErr_SetInterrupt()

• PyErr_SetInterruptEx()

• PyErr_SetNone()

• PyErr_SetObject()

• PyErr_SetString()

• PyErr_SyntaxLocation()

• PyErr_SyntaxLocationEx()

• PyErr_WarnEx()

• PyErr_WarnExplicit()

• PyErr_WarnFormat()

• PyErr_WriteUnraisable()

• PyEval_AcquireLock()

2.3. Contents of Limited API 21

The Python/C API, Release 3.11.4

• PyEval_AcquireThread()

• PyEval_CallFunction()

• PyEval_CallMethod()

• PyEval_CallObjectWithKeywords()

• PyEval_EvalCode()

• PyEval_EvalCodeEx()

• PyEval_EvalFrame()

• PyEval_EvalFrameEx()

• PyEval_GetBuiltins()

• PyEval_GetFrame()

• PyEval_GetFuncDesc()

• PyEval_GetFuncName()

• PyEval_GetGlobals()

• PyEval_GetLocals()

• PyEval_InitThreads()

• PyEval_ReleaseLock()

• PyEval_ReleaseThread()

• PyEval_RestoreThread()

• PyEval_SaveThread()

• PyEval_ThreadsInitialized()

• PyExc_ArithmeticError

• PyExc_AssertionError

• PyExc_AttributeError

• PyExc_BaseException

• PyExc_BaseExceptionGroup

• PyExc_BlockingIOError

• PyExc_BrokenPipeError

• PyExc_BufferError

• PyExc_BytesWarning

• PyExc_ChildProcessError

• PyExc_ConnectionAbortedError

• PyExc_ConnectionError

• PyExc_ConnectionRefusedError

• PyExc_ConnectionResetError

• PyExc_DeprecationWarning

• PyExc_EOFError

22 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

• PyExc_EncodingWarning

• PyExc_EnvironmentError

• PyExc_Exception

• PyExc_FileExistsError

• PyExc_FileNotFoundError

• PyExc_FloatingPointError

• PyExc_FutureWarning

• PyExc_GeneratorExit

• PyExc_IOError

• PyExc_ImportError

• PyExc_ImportWarning

• PyExc_IndentationError

• PyExc_IndexError

• PyExc_InterruptedError

• PyExc_IsADirectoryError

• PyExc_KeyError

• PyExc_KeyboardInterrupt

• PyExc_LookupError

• PyExc_MemoryError

• PyExc_ModuleNotFoundError

• PyExc_NameError

• PyExc_NotADirectoryError

• PyExc_NotImplementedError

• PyExc_OSError

• PyExc_OverflowError

• PyExc_PendingDeprecationWarning

• PyExc_PermissionError

• PyExc_ProcessLookupError

• PyExc_RecursionError

• PyExc_ReferenceError

• PyExc_ResourceWarning

• PyExc_RuntimeError

• PyExc_RuntimeWarning

• PyExc_StopAsyncIteration

• PyExc_StopIteration

• PyExc_SyntaxError

2.3. Contents of Limited API 23

The Python/C API, Release 3.11.4

• PyExc_SyntaxWarning

• PyExc_SystemError

• PyExc_SystemExit

• PyExc_TabError

• PyExc_TimeoutError

• PyExc_TypeError

• PyExc_UnboundLocalError

• PyExc_UnicodeDecodeError

• PyExc_UnicodeEncodeError

• PyExc_UnicodeError

• PyExc_UnicodeTranslateError

• PyExc_UnicodeWarning

• PyExc_UserWarning

• PyExc_ValueError

• PyExc_Warning

• PyExc_WindowsError

• PyExc_ZeroDivisionError

• PyExceptionClass_Name()

• PyException_GetCause()

• PyException_GetContext()

• PyException_GetTraceback()

• PyException_SetCause()

• PyException_SetContext()

• PyException_SetTraceback()

• PyFile_FromFd()

• PyFile_GetLine()

• PyFile_WriteObject()

• PyFile_WriteString()

• PyFilter_Type

• PyFloat_AsDouble()

• PyFloat_FromDouble()

• PyFloat_FromString()

• PyFloat_GetInfo()

• PyFloat_GetMax()

• PyFloat_GetMin()

• PyFloat_Type

24 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

• PyFrameObject

• PyFrame_GetCode()

• PyFrame_GetLineNumber()

• PyFrozenSet_New()

• PyFrozenSet_Type

• PyGC_Collect()

• PyGC_Disable()

• PyGC_Enable()

• PyGC_IsEnabled()

• PyGILState_Ensure()

• PyGILState_GetThisThreadState()

• PyGILState_Release()

• PyGILState_STATE

• PyGetSetDef

• PyGetSetDescr_Type

• PyImport_AddModule()

• PyImport_AddModuleObject()

• PyImport_AppendInittab()

• PyImport_ExecCodeModule()

• PyImport_ExecCodeModuleEx()

• PyImport_ExecCodeModuleObject()

• PyImport_ExecCodeModuleWithPathnames()

• PyImport_GetImporter()

• PyImport_GetMagicNumber()

• PyImport_GetMagicTag()

• PyImport_GetModule()

• PyImport_GetModuleDict()

• PyImport_Import()

• PyImport_ImportFrozenModule()

• PyImport_ImportFrozenModuleObject()

• PyImport_ImportModule()

• PyImport_ImportModuleLevel()

• PyImport_ImportModuleLevelObject()

• PyImport_ImportModuleNoBlock()

• PyImport_ReloadModule()

• PyIndex_Check()

2.3. Contents of Limited API 25

The Python/C API, Release 3.11.4

• PyInterpreterState

• PyInterpreterState_Clear()

• PyInterpreterState_Delete()

• PyInterpreterState_Get()

• PyInterpreterState_GetDict()

• PyInterpreterState_GetID()

• PyInterpreterState_New()

• PyIter_Check()

• PyIter_Next()

• PyIter_Send()

• PyListIter_Type

• PyListRevIter_Type

• PyList_Append()

• PyList_AsTuple()

• PyList_GetItem()

• PyList_GetSlice()

• PyList_Insert()

• PyList_New()

• PyList_Reverse()

• PyList_SetItem()

• PyList_SetSlice()

• PyList_Size()

• PyList_Sort()

• PyList_Type

• PyLongObject

• PyLongRangeIter_Type

• PyLong_AsDouble()

• PyLong_AsLong()

• PyLong_AsLongAndOverflow()

• PyLong_AsLongLong()

• PyLong_AsLongLongAndOverflow()

• PyLong_AsSize_t()

• PyLong_AsSsize_t()

• PyLong_AsUnsignedLong()

• PyLong_AsUnsignedLongLong()

• PyLong_AsUnsignedLongLongMask()

26 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

• PyLong_AsUnsignedLongMask()

• PyLong_AsVoidPtr()

• PyLong_FromDouble()

• PyLong_FromLong()

• PyLong_FromLongLong()

• PyLong_FromSize_t()

• PyLong_FromSsize_t()

• PyLong_FromString()

• PyLong_FromUnsignedLong()

• PyLong_FromUnsignedLongLong()

• PyLong_FromVoidPtr()

• PyLong_GetInfo()

• PyLong_Type

• PyMap_Type

• PyMapping_Check()

• PyMapping_GetItemString()

• PyMapping_HasKey()

• PyMapping_HasKeyString()

• PyMapping_Items()

• PyMapping_Keys()

• PyMapping_Length()

• PyMapping_SetItemString()

• PyMapping_Size()

• PyMapping_Values()

• PyMem_Calloc()

• PyMem_Free()

• PyMem_Malloc()

• PyMem_Realloc()

• PyMemberDef

• PyMemberDescr_Type

• PyMemoryView_FromBuffer()

• PyMemoryView_FromMemory()

• PyMemoryView_FromObject()

• PyMemoryView_GetContiguous()

• PyMemoryView_Type

• PyMethodDef

2.3. Contents of Limited API 27

The Python/C API, Release 3.11.4

• PyMethodDescr_Type

• PyModuleDef

• PyModuleDef_Base

• PyModuleDef_Init()

• PyModuleDef_Type

• PyModule_AddFunctions()

• PyModule_AddIntConstant()

• PyModule_AddObject()

• PyModule_AddObjectRef()

• PyModule_AddStringConstant()

• PyModule_AddType()

• PyModule_Create2()

• PyModule_ExecDef()

• PyModule_FromDefAndSpec2()

• PyModule_GetDef()

• PyModule_GetDict()

• PyModule_GetFilename()

• PyModule_GetFilenameObject()

• PyModule_GetName()

• PyModule_GetNameObject()

• PyModule_GetState()

• PyModule_New()

• PyModule_NewObject()

• PyModule_SetDocString()

• PyModule_Type

• PyNumber_Absolute()

• PyNumber_Add()

• PyNumber_And()

• PyNumber_AsSsize_t()

• PyNumber_Check()

• PyNumber_Divmod()

• PyNumber_Float()

• PyNumber_FloorDivide()

• PyNumber_InPlaceAdd()

• PyNumber_InPlaceAnd()

• PyNumber_InPlaceFloorDivide()

28 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

• PyNumber_InPlaceLshift()

• PyNumber_InPlaceMatrixMultiply()

• PyNumber_InPlaceMultiply()

• PyNumber_InPlaceOr()

• PyNumber_InPlacePower()

• PyNumber_InPlaceRemainder()

• PyNumber_InPlaceRshift()

• PyNumber_InPlaceSubtract()

• PyNumber_InPlaceTrueDivide()

• PyNumber_InPlaceXor()

• PyNumber_Index()

• PyNumber_Invert()

• PyNumber_Long()

• PyNumber_Lshift()

• PyNumber_MatrixMultiply()

• PyNumber_Multiply()

• PyNumber_Negative()

• PyNumber_Or()

• PyNumber_Positive()

• PyNumber_Power()

• PyNumber_Remainder()

• PyNumber_Rshift()

• PyNumber_Subtract()

• PyNumber_ToBase()

• PyNumber_TrueDivide()

• PyNumber_Xor()

• PyOS_AfterFork()

• PyOS_AfterFork_Child()

• PyOS_AfterFork_Parent()

• PyOS_BeforeFork()

• PyOS_CheckStack()

• PyOS_FSPath()

• PyOS_InputHook

• PyOS_InterruptOccurred()

• PyOS_double_to_string()

• PyOS_getsig()

2.3. Contents of Limited API 29

The Python/C API, Release 3.11.4

• PyOS_mystricmp()

• PyOS_mystrnicmp()

• PyOS_setsig()

• PyOS_sighandler_t

• PyOS_snprintf()

• PyOS_string_to_double()

• PyOS_strtol()

• PyOS_strtoul()

• PyOS_vsnprintf()

• PyObject

• PyObject.ob_refcnt

• PyObject.ob_type

• PyObject_ASCII()

• PyObject_AsCharBuffer()

• PyObject_AsFileDescriptor()

• PyObject_AsReadBuffer()

• PyObject_AsWriteBuffer()

• PyObject_Bytes()

• PyObject_Call()

• PyObject_CallFunction()

• PyObject_CallFunctionObjArgs()

• PyObject_CallMethod()

• PyObject_CallMethodObjArgs()

• PyObject_CallNoArgs()

• PyObject_CallObject()

• PyObject_Calloc()

• PyObject_CheckBuffer()

• PyObject_CheckReadBuffer()

• PyObject_ClearWeakRefs()

• PyObject_CopyData()

• PyObject_DelItem()

• PyObject_DelItemString()

• PyObject_Dir()

• PyObject_Format()

• PyObject_Free()

• PyObject_GC_Del()

30 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

• PyObject_GC_IsFinalized()

• PyObject_GC_IsTracked()

• PyObject_GC_Track()

• PyObject_GC_UnTrack()

• PyObject_GenericGetAttr()

• PyObject_GenericGetDict()

• PyObject_GenericSetAttr()

• PyObject_GenericSetDict()

• PyObject_GetAIter()

• PyObject_GetAttr()

• PyObject_GetAttrString()

• PyObject_GetBuffer()

• PyObject_GetItem()

• PyObject_GetIter()

• PyObject_HasAttr()

• PyObject_HasAttrString()

• PyObject_Hash()

• PyObject_HashNotImplemented()

• PyObject_Init()

• PyObject_InitVar()

• PyObject_IsInstance()

• PyObject_IsSubclass()

• PyObject_IsTrue()

• PyObject_Length()

• PyObject_Malloc()

• PyObject_Not()

• PyObject_Realloc()

• PyObject_Repr()

• PyObject_RichCompare()

• PyObject_RichCompareBool()

• PyObject_SelfIter()

• PyObject_SetAttr()

• PyObject_SetAttrString()

• PyObject_SetItem()

• PyObject_Size()

• PyObject_Str()

2.3. Contents of Limited API 31

The Python/C API, Release 3.11.4

• PyObject_Type()

• PyProperty_Type

• PyRangeIter_Type

• PyRange_Type

• PyReversed_Type

• PySeqIter_New()

• PySeqIter_Type

• PySequence_Check()

• PySequence_Concat()

• PySequence_Contains()

• PySequence_Count()

• PySequence_DelItem()

• PySequence_DelSlice()

• PySequence_Fast()

• PySequence_GetItem()

• PySequence_GetSlice()

• PySequence_In()

• PySequence_InPlaceConcat()

• PySequence_InPlaceRepeat()

• PySequence_Index()

• PySequence_Length()

• PySequence_List()

• PySequence_Repeat()

• PySequence_SetItem()

• PySequence_SetSlice()

• PySequence_Size()

• PySequence_Tuple()

• PySetIter_Type

• PySet_Add()

• PySet_Clear()

• PySet_Contains()

• PySet_Discard()

• PySet_New()

• PySet_Pop()

• PySet_Size()

• PySet_Type

32 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

• PySlice_AdjustIndices()

• PySlice_GetIndices()

• PySlice_GetIndicesEx()

• PySlice_New()

• PySlice_Type

• PySlice_Unpack()

• PyState_AddModule()

• PyState_FindModule()

• PyState_RemoveModule()

• PyStructSequence_Desc

• PyStructSequence_Field

• PyStructSequence_GetItem()

• PyStructSequence_New()

• PyStructSequence_NewType()

• PyStructSequence_SetItem()

• PyStructSequence_UnnamedField

• PySuper_Type

• PySys_AddWarnOption()

• PySys_AddWarnOptionUnicode()

• PySys_AddXOption()

• PySys_FormatStderr()

• PySys_FormatStdout()

• PySys_GetObject()

• PySys_GetXOptions()

• PySys_HasWarnOptions()

• PySys_ResetWarnOptions()

• PySys_SetArgv()

• PySys_SetArgvEx()

• PySys_SetObject()

• PySys_SetPath()

• PySys_WriteStderr()

• PySys_WriteStdout()

• PyThreadState

• PyThreadState_Clear()

• PyThreadState_Delete()

• PyThreadState_Get()

2.3. Contents of Limited API 33

The Python/C API, Release 3.11.4

• PyThreadState_GetDict()

• PyThreadState_GetFrame()

• PyThreadState_GetID()

• PyThreadState_GetInterpreter()

• PyThreadState_New()

• PyThreadState_SetAsyncExc()

• PyThreadState_Swap()

• PyThread_GetInfo()

• PyThread_ReInitTLS()

• PyThread_acquire_lock()

• PyThread_acquire_lock_timed()

• PyThread_allocate_lock()

• PyThread_create_key()

• PyThread_delete_key()

• PyThread_delete_key_value()

• PyThread_exit_thread()

• PyThread_free_lock()

• PyThread_get_key_value()

• PyThread_get_stacksize()

• PyThread_get_thread_ident()

• PyThread_get_thread_native_id()

• PyThread_init_thread()

• PyThread_release_lock()

• PyThread_set_key_value()

• PyThread_set_stacksize()

• PyThread_start_new_thread()

• PyThread_tss_alloc()

• PyThread_tss_create()

• PyThread_tss_delete()

• PyThread_tss_free()

• PyThread_tss_get()

• PyThread_tss_is_created()

• PyThread_tss_set()

• PyTraceBack_Here()

• PyTraceBack_Print()

• PyTraceBack_Type

34 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

• PyTupleIter_Type

• PyTuple_GetItem()

• PyTuple_GetSlice()

• PyTuple_New()

• PyTuple_Pack()

• PyTuple_SetItem()

• PyTuple_Size()

• PyTuple_Type

• PyTypeObject

• PyType_ClearCache()

• PyType_FromModuleAndSpec()

• PyType_FromSpec()

• PyType_FromSpecWithBases()

• PyType_GenericAlloc()

• PyType_GenericNew()

• PyType_GetFlags()

• PyType_GetModule()

• PyType_GetModuleState()

• PyType_GetName()

• PyType_GetQualName()

• PyType_GetSlot()

• PyType_IsSubtype()

• PyType_Modified()

• PyType_Ready()

• PyType_Slot

• PyType_Spec

• PyType_Type

• PyUnicodeDecodeError_Create()

• PyUnicodeDecodeError_GetEncoding()

• PyUnicodeDecodeError_GetEnd()

• PyUnicodeDecodeError_GetObject()

• PyUnicodeDecodeError_GetReason()

• PyUnicodeDecodeError_GetStart()

• PyUnicodeDecodeError_SetEnd()

• PyUnicodeDecodeError_SetReason()

• PyUnicodeDecodeError_SetStart()

2.3. Contents of Limited API 35

The Python/C API, Release 3.11.4

• PyUnicodeEncodeError_GetEncoding()

• PyUnicodeEncodeError_GetEnd()

• PyUnicodeEncodeError_GetObject()

• PyUnicodeEncodeError_GetReason()

• PyUnicodeEncodeError_GetStart()

• PyUnicodeEncodeError_SetEnd()

• PyUnicodeEncodeError_SetReason()

• PyUnicodeEncodeError_SetStart()

• PyUnicodeIter_Type

• PyUnicodeTranslateError_GetEnd()

• PyUnicodeTranslateError_GetObject()

• PyUnicodeTranslateError_GetReason()

• PyUnicodeTranslateError_GetStart()

• PyUnicodeTranslateError_SetEnd()

• PyUnicodeTranslateError_SetReason()

• PyUnicodeTranslateError_SetStart()

• PyUnicode_Append()

• PyUnicode_AppendAndDel()

• PyUnicode_AsASCIIString()

• PyUnicode_AsCharmapString()

• PyUnicode_AsDecodedObject()

• PyUnicode_AsDecodedUnicode()

• PyUnicode_AsEncodedObject()

• PyUnicode_AsEncodedString()

• PyUnicode_AsEncodedUnicode()

• PyUnicode_AsLatin1String()

• PyUnicode_AsMBCSString()

• PyUnicode_AsRawUnicodeEscapeString()

• PyUnicode_AsUCS4()

• PyUnicode_AsUCS4Copy()

• PyUnicode_AsUTF16String()

• PyUnicode_AsUTF32String()

• PyUnicode_AsUTF8AndSize()

• PyUnicode_AsUTF8String()

• PyUnicode_AsUnicodeEscapeString()

• PyUnicode_AsWideChar()

36 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

• PyUnicode_AsWideCharString()

• PyUnicode_BuildEncodingMap()

• PyUnicode_Compare()

• PyUnicode_CompareWithASCIIString()

• PyUnicode_Concat()

• PyUnicode_Contains()

• PyUnicode_Count()

• PyUnicode_Decode()

• PyUnicode_DecodeASCII()

• PyUnicode_DecodeCharmap()

• PyUnicode_DecodeCodePageStateful()

• PyUnicode_DecodeFSDefault()

• PyUnicode_DecodeFSDefaultAndSize()

• PyUnicode_DecodeLatin1()

• PyUnicode_DecodeLocale()

• PyUnicode_DecodeLocaleAndSize()

• PyUnicode_DecodeMBCS()

• PyUnicode_DecodeMBCSStateful()

• PyUnicode_DecodeRawUnicodeEscape()

• PyUnicode_DecodeUTF16()

• PyUnicode_DecodeUTF16Stateful()

• PyUnicode_DecodeUTF32()

• PyUnicode_DecodeUTF32Stateful()

• PyUnicode_DecodeUTF7()

• PyUnicode_DecodeUTF7Stateful()

• PyUnicode_DecodeUTF8()

• PyUnicode_DecodeUTF8Stateful()

• PyUnicode_DecodeUnicodeEscape()

• PyUnicode_EncodeCodePage()

• PyUnicode_EncodeFSDefault()

• PyUnicode_EncodeLocale()

• PyUnicode_FSConverter()

• PyUnicode_FSDecoder()

• PyUnicode_Find()

• PyUnicode_FindChar()

• PyUnicode_Format()

2.3. Contents of Limited API 37

The Python/C API, Release 3.11.4

• PyUnicode_FromEncodedObject()

• PyUnicode_FromFormat()

• PyUnicode_FromFormatV()

• PyUnicode_FromObject()

• PyUnicode_FromOrdinal()

• PyUnicode_FromString()

• PyUnicode_FromStringAndSize()

• PyUnicode_FromWideChar()

• PyUnicode_GetDefaultEncoding()

• PyUnicode_GetLength()

• PyUnicode_GetSize()

• PyUnicode_InternFromString()

• PyUnicode_InternImmortal()

• PyUnicode_InternInPlace()

• PyUnicode_IsIdentifier()

• PyUnicode_Join()

• PyUnicode_Partition()

• PyUnicode_RPartition()

• PyUnicode_RSplit()

• PyUnicode_ReadChar()

• PyUnicode_Replace()

• PyUnicode_Resize()

• PyUnicode_RichCompare()

• PyUnicode_Split()

• PyUnicode_Splitlines()

• PyUnicode_Substring()

• PyUnicode_Tailmatch()

• PyUnicode_Translate()

• PyUnicode_Type

• PyUnicode_WriteChar()

• PyVarObject

• PyVarObject.ob_base

• PyVarObject.ob_size

• PyWeakReference

• PyWeakref_GetObject()

• PyWeakref_NewProxy()

38 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

• PyWeakref_NewRef()

• PyWrapperDescr_Type

• PyWrapper_New()

• PyZip_Type

• Py_AddPendingCall()

• Py_AtExit()

• Py_BEGIN_ALLOW_THREADS

• Py_BLOCK_THREADS

• Py_BuildValue()

• Py_BytesMain()

• Py_CompileString()

• Py_DecRef()

• Py_DecodeLocale()

• Py_END_ALLOW_THREADS

• Py_EncodeLocale()

• Py_EndInterpreter()

• Py_EnterRecursiveCall()

• Py_Exit()

• Py_FatalError()

• Py_FileSystemDefaultEncodeErrors

• Py_FileSystemDefaultEncoding

• Py_Finalize()

• Py_FinalizeEx()

• Py_GenericAlias()

• Py_GenericAliasType

• Py_GetBuildInfo()

• Py_GetCompiler()

• Py_GetCopyright()

• Py_GetExecPrefix()

• Py_GetPath()

• Py_GetPlatform()

• Py_GetPrefix()

• Py_GetProgramFullPath()

• Py_GetProgramName()

• Py_GetPythonHome()

• Py_GetRecursionLimit()

2.3. Contents of Limited API 39

The Python/C API, Release 3.11.4

• Py_GetVersion()

• Py_HasFileSystemDefaultEncoding

• Py_IncRef()

• Py_Initialize()

• Py_InitializeEx()

• Py_Is()

• Py_IsFalse()

• Py_IsInitialized()

• Py_IsNone()

• Py_IsTrue()

• Py_LeaveRecursiveCall()

• Py_Main()

• Py_MakePendingCalls()

• Py_NewInterpreter()

• Py_NewRef()

• Py_ReprEnter()

• Py_ReprLeave()

• Py_SetPath()

• Py_SetProgramName()

• Py_SetPythonHome()

• Py_SetRecursionLimit()

• Py_UCS4

• Py_UNBLOCK_THREADS

• Py_UTF8Mode

• Py_VaBuildValue()

• Py_Version

• Py_XNewRef()

• Py_buffer

• Py_intptr_t

• Py_ssize_t

• Py_uintptr_t

• allocfunc

• binaryfunc

• descrgetfunc

• descrsetfunc

• destructor

40 Chapter 2. C API Stability

The Python/C API, Release 3.11.4

• getattrfunc

• getattrofunc

• getiterfunc

• getter

• hashfunc

• initproc

• inquiry

• iternextfunc

• lenfunc

• newfunc

• objobjargproc

• objobjproc

• reprfunc

• richcmpfunc

• setattrfunc

• setattrofunc

• setter

• ssizeargfunc

• ssizeobjargproc

• ssizessizeargfunc

• ssizessizeobjargproc

• symtable

• ternaryfunc

• traverseproc

• unaryfunc

• visitproc

2.3. Contents of Limited API 41

The Python/C API, Release 3.11.4

42 Chapter 2. C API Stability

CHAPTER

THREE

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let you
interact in a more detailed way with the interpreter.
Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval_input, Py_file_input, and Py_single_input. These are described following the functions which
accept them as parameters.
Note also that several of these functions take FILE* parameters. One particular issue which needs to be handled carefully
is that the FILE structure for different C libraries can be different and incompatible. Under Windows (at least), it
is possible for dynamically linked extensions to actually use different libraries, so care should be taken that FILE*
parameters are only passed to these functions if it is certain that they were created by the same library that the Python
runtime is using.
int Py_Main(int argc, wchar_t **argv)

Part of the Stable ABI. The main program for the standard interpreter. This is made available for programs which
embed Python. The argc and argv parameters should be prepared exactly as those which are passed to a C program’s
main() function (converted to wchar_t according to the user’s locale). It is important to note that the argument
list may be modified (but the contents of the strings pointed to by the argument list are not). The return value will
be 0 if the interpreter exits normally (i.e., without an exception), 1 if the interpreter exits due to an exception, or
2 if the parameter list does not represent a valid Python command line.
Note that if an otherwise unhandled SystemExit is raised, this function will not return 1, but exit the process,
as long as Py_InspectFlag is not set.

int Py_BytesMain(int argc, char **argv)
Part of the Stable ABI since version 3.8. Similar to Py_Main() but argv is an array of bytes strings.
New in version 3.8.

int PyRun_AnyFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving closeit set to 0 and flags set to
NULL.

int PyRun_AnyFileFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving the closeit argument set to 0.

int PyRun_AnyFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_AnyFileExFlags() below, leaving the flags argument set to NULL.

int PyRun_AnyFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
If fp refers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal), re-
turn the value of PyRun_InteractiveLoop(), otherwise return the result of PyRun_SimpleFile().
filename is decoded from the filesystem encoding (sys.getfilesystemencoding()). If filename
is NULL, this function uses "???" as the filename. If closeit is true, the file is closed before
PyRun_SimpleFileExFlags() returns.

43

The Python/C API, Release 3.11.4

int PyRun_SimpleString(const char *command)
This is a simplified interface to PyRun_SimpleStringFlags() below, leaving the PyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags(const char *command, PyCompilerFlags *flags)
Executes the Python source code from command in the __main__ module according to the flags argument. If
__main__ does not already exist, it is created. Returns 0 on success or -1 if an exception was raised. If there
was an error, there is no way to get the exception information. For the meaning of flags, see below.
Note that if an otherwise unhandled SystemExit is raised, this function will not return -1, but exit the process,
as long as Py_InspectFlag is not set.

int PyRun_SimpleFile(FILE *fp, const char *filename)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving closeit set to 0 and flags set
to NULL.

int PyRun_SimpleFileEx(FILE *fp, const char *filename, int closeit)
This is a simplified interface to PyRun_SimpleFileExFlags() below, leaving flags set to NULL.

int PyRun_SimpleFileExFlags(FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags)
Similar to PyRun_SimpleStringFlags(), but the Python source code is read from fp instead of an in-
memory string. filename should be the name of the file, it is decoded from filesystem encoding and error handler.
If closeit is true, the file is closed before PyRun_SimpleFileExFlags() returns.

Note: On Windows, fp should be opened as binary mode (e.g. fopen(filename, "rb")). Otherwise,
Python may not handle script file with LF line ending correctly.

int PyRun_InteractiveOne(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveOneFlags() below, leaving flags set to NULL.

int PyRun_InteractiveOneFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute a single statement from a file associated with an interactive device according to the flags argument.
The user will be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem encoding and
error handler.
Returns 0 when the input was executed successfully, -1 if there was an exception, or an error code from the
errcode.h include file distributed as part of Python if there was a parse error. (Note that errcode.h is not
included by Python.h, so must be included specifically if needed.)

int PyRun_InteractiveLoop(FILE *fp, const char *filename)
This is a simplified interface to PyRun_InteractiveLoopFlags() below, leaving flags set to NULL.

int PyRun_InteractiveLoopFlags(FILE *fp, const char *filename, PyCompilerFlags *flags)
Read and execute statements from a file associated with an interactive device until EOF is reached. The user will
be prompted using sys.ps1 and sys.ps2. filename is decoded from the filesystem encoding and error handler.
Returns 0 at EOF or a negative number upon failure.

int (*PyOS_InputHook)(void)
Part of the Stable ABI. Can be set to point to a function with the prototype int func(void). The function
will be called when Python’s interpreter prompt is about to become idle and wait for user input from the terminal.
The return value is ignored. Overriding this hook can be used to integrate the interpreter’s prompt with other event
loops, as done in the Modules/_tkinter.c in the Python source code.

char *(*PyOS_ReadlineFunctionPointer)(FILE*, FILE*, const char*)
Can be set to point to a function with the prototype char *func(FILE *stdin, FILE *stdout,
char *prompt), overriding the default function used to read a single line of input at the interpreter’s prompt.

44 Chapter 3. The Very High Level Layer

The Python/C API, Release 3.11.4

The function is expected to output the string prompt if it’s not NULL, and then read a line of input from the provided
standard input file, returning the resulting string. For example, The readline module sets this hook to provide
line-editing and tab-completion features.
The result must be a string allocated by PyMem_RawMalloc() or PyMem_RawRealloc(), or NULL if an
error occurred.
Changed in version 3.4: The result must be allocated by PyMem_RawMalloc() or PyMem_RawRealloc(),
instead of being allocated by PyMem_Malloc() or PyMem_Realloc().

PyObject *PyRun_String(const char *str, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_StringFlags() below, leaving flags set
to NULL.

PyObject *PyRun_StringFlags(const char *str, int start, PyObject *globals, PyObject *locals, PyCompilerFlags
*flags)

Return value: New reference. Execute Python source code from str in the context specified by the objects globals
and locals with the compiler flags specified by flags. globals must be a dictionary; locals can be any object that
implements the mapping protocol. The parameter start specifies the start token that should be used to parse the
source code.
Returns the result of executing the code as a Python object, or NULL if an exception was raised.

PyObject *PyRun_File(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving closeit
set to 0 and flags set to NULL.

PyObject *PyRun_FileEx(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals, int closeit)
Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving flags set
to NULL.

PyObject *PyRun_FileFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,
PyCompilerFlags *flags)

Return value: New reference. This is a simplified interface to PyRun_FileExFlags() below, leaving closeit
set to 0.

PyObject *PyRun_FileExFlags(FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals, int
closeit, PyCompilerFlags *flags)

Return value: New reference. Similar to PyRun_StringFlags(), but the Python source code is read from fp
instead of an in-memory string. filename should be the name of the file, it is decoded from the filesystem encoding
and error handler. If closeit is true, the file is closed before PyRun_FileExFlags() returns.

PyObject *Py_CompileString(const char *str, const char *filename, int start)
Return value: New reference. Part of the Stable ABI. This is a simplified interface to
Py_CompileStringFlags() below, leaving flags set to NULL.

PyObject *Py_CompileStringFlags(const char *str, const char *filename, int start, PyCompilerFlags *flags)
Return value: New reference. This is a simplified interface to Py_CompileStringExFlags() below, with
optimize set to -1.

PyObject *Py_CompileStringObject(const char *str, PyObject *filename, int start, PyCompilerFlags *flags, int
optimize)

Return value: New reference. Parse and compile the Python source code in str, returning the resulting code object.
The start token is given by start; this can be used to constrain the code which can be compiled and should be
Py_eval_input, Py_file_input, or Py_single_input. The filename specified by filename is used
to construct the code object and may appear in tracebacks or SyntaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.

45

The Python/C API, Release 3.11.4

The integer optimize specifies the optimization level of the compiler; a value of -1 selects the optimization level of
the interpreter as given by -O options. Explicit levels are 0 (no optimization; __debug__ is true), 1 (asserts are
removed, __debug__ is false) or 2 (docstrings are removed too).
New in version 3.4.

PyObject *Py_CompileStringExFlags(const char *str, const char *filename, int start, PyCompilerFlags *flags,
int optimize)

Return value: New reference. Like Py_CompileStringObject(), but filename is a byte string decoded from
the filesystem encoding and error handler.
New in version 3.2.

PyObject *PyEval_EvalCode(PyObject *co, PyObject *globals, PyObject *locals)
Return value: New reference. Part of the Stable ABI. This is a simplified interface to PyEval_EvalCodeEx(),
with just the code object, and global and local variables. The other arguments are set to NULL.

PyObject *PyEval_EvalCodeEx(PyObject *co, PyObject *globals, PyObject *locals, PyObject *const *args, int
argcount, PyObject *const *kws, int kwcount, PyObject *const *defs, int
defcount, PyObject *kwdefs, PyObject *closure)

Return value: New reference. Part of the Stable ABI. Evaluate a precompiled code object, given a particular envi-
ronment for its evaluation. This environment consists of a dictionary of global variables, a mapping object of local
variables, arrays of arguments, keywords and defaults, a dictionary of default values for keyword-only arguments
and a closure tuple of cells.

PyObject *PyEval_EvalFrame(PyFrameObject *f)
Return value: New reference. Part of the Stable ABI. Evaluate an execution frame. This is a simplified interface to
PyEval_EvalFrameEx(), for backward compatibility.

PyObject *PyEval_EvalFrameEx(PyFrameObject *f, int throwflag)
Return value: New reference. Part of the Stable ABI. This is the main, unvarnished function of Python interpre-
tation. The code object associated with the execution frame f is executed, interpreting bytecode and executing
calls as needed. The additional throwflag parameter can mostly be ignored - if true, then it causes an exception to
immediately be thrown; this is used for the throw() methods of generator objects.
Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

int PyEval_MergeCompilerFlags(PyCompilerFlags *cf)
This function changes the flags of the current evaluation frame, and returns true on success, false on failure.

int Py_eval_input
The start symbol from the Python grammar for isolated expressions; for use with Py_CompileString().

int Py_file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for use
with Py_CompileString(). This is the symbol to use when compiling arbitrarily long Python source code.

int Py_single_input
The start symbol from the Python grammar for a single statement; for use with Py_CompileString(). This
is the symbol used for the interactive interpreter loop.

struct PyCompilerFlags
This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as int
flags, and in cases where code is being executed, it is passed as PyCompilerFlags *flags. In this case,
from __future__ import can modify flags.
Whenever PyCompilerFlags *flags is NULL, cf_flags is treated as equal to 0, and any modification
due to from __future__ import is discarded.

46 Chapter 3. The Very High Level Layer

The Python/C API, Release 3.11.4

int cf_flags
Compiler flags.

int cf_feature_version
cf_feature_version is the minor Python version. It should be initialized to PY_MINOR_VERSION.
The field is ignored by default, it is used if and only if PyCF_ONLY_AST flag is set in cf_flags.

Changed in version 3.8: Added cf_feature_version field.
int CO_FUTURE_DIVISION

This bit can be set in flags to cause division operator / to be interpreted as “true division” according to PEP 238.

47

https://peps.python.org/pep-0238/

The Python/C API, Release 3.11.4

48 Chapter 3. The Very High Level Layer

CHAPTER

FOUR

REFERENCE COUNTING

The macros in this section are used for managing reference counts of Python objects.
void Py_INCREF(PyObject *o)

Indicate taking a new strong reference to object o, indicating it is in use and should not be destroyed.
This function is usually used to convert a borrowed reference to a strong reference in-place. The Py_NewRef()
function can be used to create a new strong reference.
When done using the object, release it by calling Py_DECREF().
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_XINCREF().
Do not expect this function to actually modify o in any way.

void Py_XINCREF(PyObject *o)
Similar to Py_INCREF(), but the object o can be NULL, in which case this has no effect.
See also Py_XNewRef().

PyObject *Py_NewRef(PyObject *o)
Part of the Stable ABI since version 3.10. Create a new strong reference to an object: call Py_INCREF() on o
and return the object o.
When the strong reference is no longer needed, Py_DECREF() should be called on it to release the reference.
The object o must not be NULL; use Py_XNewRef() if o can be NULL.
For example:

Py_INCREF(obj);
self->attr = obj;

can be written as:

self->attr = Py_NewRef(obj);

See also Py_INCREF().
New in version 3.10.

PyObject *Py_XNewRef(PyObject *o)
Part of the Stable ABI since version 3.10. Similar to Py_NewRef(), but the object o can be NULL.
If the object o is NULL, the function just returns NULL.
New in version 3.10.

49

The Python/C API, Release 3.11.4

void Py_DECREF(PyObject *o)
Release a strong reference to object o, indicating the reference is no longer used.
Once the last strong reference is released (i.e. the object’s reference count reaches 0), the object’s type’s deallocation
function (which must not be NULL) is invoked.
This function is usually used to delete a strong reference before exiting its scope.
The object must not be NULL; if you aren’t sure that it isn’t NULL, use Py_XDECREF().
Do not expect this function to actually modify o in any way.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
with a __del__() method is deallocated). While exceptions in such code are not propagated, the executed
code has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state before Py_DECREF() is invoked. For example, code to delete an object
from a list should copy a reference to the deleted object in a temporary variable, update the list data structure,
and then call Py_DECREF() for the temporary variable.

void Py_XDECREF(PyObject *o)
Similar to Py_DECREF(), but the object o can be NULL, in which case this has no effect. The same warning
from Py_DECREF() applies here as well.

void Py_CLEAR(PyObject *o)
Release a strong reference for object o. The object may be NULL, in which case the macro has no effect; otherwise
the effect is the same as for Py_DECREF(), except that the argument is also set to NULL. The warning for
Py_DECREF() does not apply with respect to the object passed because the macro carefully uses a temporary
variable and sets the argument to NULL before releasing the reference.
It is a good idea to use this macro whenever releasing a reference to an object that might be traversed during garbage
collection.

void Py_IncRef(PyObject *o)
Part of the Stable ABI. Indicate taking a new strong reference to object o. A function version of Py_XINCREF().
It can be used for runtime dynamic embedding of Python.

void Py_DecRef(PyObject *o)
Part of the Stable ABI. Release a strong reference to object o. A function version of Py_XDECREF(). It can be
used for runtime dynamic embedding of Python.

The following functions or macros are only for use within the interpreter core: _Py_Dealloc(),
_Py_ForgetReference(), _Py_NewReference(), as well as the global variable _Py_RefTotal.

50 Chapter 4. Reference Counting

CHAPTER

FIVE

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat like the POSIX errno variable: there is a global
indicator (per thread) of the last error that occurred. Most C API functions don’t clear this on success, but will set it to
indicate the cause of the error on failure. Most C API functions also return an error indicator, usually NULL if they are
supposed to return a pointer, or -1 if they return an integer (exception: the PyArg_* functions return 1 for success and
0 for failure).
Concretely, the error indicator consists of three object pointers: the exception’s type, the exception’s value, and the
traceback object. Any of those pointers can be NULL if non-set (although some combinations are forbidden, for example
you can’t have a non-NULL traceback if the exception type is NULL).
When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the function
it called already set it. It is responsible for either handling the error and clearing the exception or returning after cleaning
up any resources it holds (such as object references or memory allocations); it should not continue normally if it is not
prepared to handle the error. If returning due to an error, it is important to indicate to the caller that an error has been
set. If the error is not handled or carefully propagated, additional calls into the Python/C API may not behave as intended
and may fail in mysterious ways.

Note: The error indicator is not the result of sys.exc_info(). The former corresponds to an exception that is not
yet caught (and is therefore still propagating), while the latter returns an exception after it is caught (and has therefore
stopped propagating).

5.1 Printing and clearing

void PyErr_Clear()
Part of the Stable ABI. Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr_PrintEx(int set_sys_last_vars)
Part of the Stable ABI. Print a standard traceback to sys.stderr and clear the error indicator. Unless the
error is a SystemExit, in that case no traceback is printed and the Python process will exit with the error code
specified by the SystemExit instance.
Call this function only when the error indicator is set. Otherwise it will cause a fatal error!
If set_sys_last_vars is nonzero, the variables sys.last_type, sys.last_value and sys.
last_traceback will be set to the type, value and traceback of the printed exception, respectively.

void PyErr_Print()
Part of the Stable ABI. Alias for PyErr_PrintEx(1).

51

The Python/C API, Release 3.11.4

void PyErr_WriteUnraisable(PyObject *obj)
Part of the Stable ABI. Call sys.unraisablehook() using the current exception and obj argument.
This utility function prints a warning message to sys.stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del__() method.
The function is called with a single argument obj that identifies the context in which the unraisable exception
occurred. If possible, the repr of obj will be printed in the warning message.
An exception must be set when calling this function.

5.2 Raising exceptions

These functions help you set the current thread’s error indicator. For convenience, some of these functions will always
return a NULL pointer for use in a return statement.
void PyErr_SetString(PyObject *type, const char *message)

Part of the Stable ABI. This is the most common way to set the error indicator. The first argument specifies the
exception type; it is normally one of the standard exceptions, e.g. PyExc_RuntimeError. You need not create
a new strong reference to it (e.g. with Py_INCREF()). The second argument is an error message; it is decoded
from 'utf-8'.

void PyErr_SetObject(PyObject *type, PyObject *value)
Part of the Stable ABI. This function is similar to PyErr_SetString() but lets you specify an arbitrary Python
object for the “value” of the exception.

PyObject *PyErr_Format(PyObject *exception, const char *format, ...)
Return value: Always NULL. Part of the Stable ABI. This function sets the error indicator and returns NULL.
exception should be a Python exception class. The format and subsequent parameters help format the error message;
they have the samemeaning and values as in PyUnicode_FromFormat(). format is an ASCII-encoded string.

PyObject *PyErr_FormatV(PyObject *exception, const char *format, va_list vargs)
Return value: Always NULL. Part of the Stable ABI since version 3.5. Same as PyErr_Format(), but taking a
va_list argument rather than a variable number of arguments.
New in version 3.5.

void PyErr_SetNone(PyObject *type)
Part of the Stable ABI. This is a shorthand for PyErr_SetObject(type, Py_None).

int PyErr_BadArgument()
Part of the Stable ABI. This is a shorthand for PyErr_SetString(PyExc_TypeError, message),
where message indicates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject *PyErr_NoMemory()
Return value: Always NULL. Part of the Stable ABI. This is a shorthand for
PyErr_SetNone(PyExc_MemoryError); it returns NULL so an object allocation function can write
return PyErr_NoMemory(); when it runs out of memory.

PyObject *PyErr_SetFromErrno(PyObject *type)
Return value: Always NULL. Part of the Stable ABI. This is a convenience function to raise an exception when a C
library function has returned an error and set the C variable errno. It constructs a tuple object whose first item is
the integer errno value and whose second item is the corresponding error message (gotten from strerror()),
and then calls PyErr_SetObject(type, object). On Unix, when the errno value is EINTR, indicating
an interrupted system call, this calls PyErr_CheckSignals(), and if that set the error indicator, leaves it

52 Chapter 5. Exception Handling

The Python/C API, Release 3.11.4

set to that. The function always returns NULL, so a wrapper function around a system call can write return
PyErr_SetFromErrno(type); when the system call returns an error.

PyObject *PyErr_SetFromErrnoWithFilenameObject(PyObject *type, PyObject *filenameObject)
Return value: Always NULL. Part of the Stable ABI. Similar to PyErr_SetFromErrno(), with the additional
behavior that if filenameObject is not NULL, it is passed to the constructor of type as a third parameter. In the case
of OSError exception, this is used to define the filename attribute of the exception instance.

PyObject *PyErr_SetFromErrnoWithFilenameObjects(PyObject *type, PyObject *filenameObject,
PyObject *filenameObject2)

Return value: Always NULL. Part of the Stable ABI since version 3.7. Similar to
PyErr_SetFromErrnoWithFilenameObject(), but takes a second filename object, for raising
errors when a function that takes two filenames fails.
New in version 3.4.

PyObject *PyErr_SetFromErrnoWithFilename(PyObject *type, const char *filename)
Return value: Always NULL. Part of the StableABI. Similar toPyErr_SetFromErrnoWithFilenameObject(),
but the filename is given as a C string. filename is decoded from the filesystem encoding and error handler.

PyObject *PyErr_SetFromWindowsErr(int ierr)
Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. This is a convenience function
to raise WindowsError. If called with ierr of 0, the error code returned by a call to GetLastError()
is used instead. It calls the Win32 function FormatMessage() to retrieve the Windows description of error
code given by ierr or GetLastError(), then it constructs a tuple object whose first item is the ierr value
and whose second item is the corresponding error message (gotten from FormatMessage()), and then calls
PyErr_SetObject(PyExc_WindowsError, object). This function always returns NULL.
Availability: Windows.

PyObject *PyErr_SetExcFromWindowsErr(PyObject *type, int ierr)
Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetFromWindowsErr(), with an additional parameter specifying the exception type to be raised.
Availability: Windows.

PyObject *PyErr_SetFromWindowsErrWithFilename(int ierr, const char *filename)
Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetFromWindowsErr(), with the additional behavior that if filename is not NULL, it is decoded
from the filesystem encoding (os.fsdecode()) and passed to the constructor of OSError as a third parame-
ter to be used to define the filename attribute of the exception instance.
Availability: Windows.

PyObject *PyErr_SetExcFromWindowsErrWithFilenameObject(PyObject *type, int ierr, PyObject
*filename)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetExcFromWindowsErr(), with the additional behavior that if filename is not NULL, it is passed
to the constructor of OSError as a third parameter to be used to define the filename attribute of the exception
instance.
Availability: Windows.

PyObject *PyErr_SetExcFromWindowsErrWithFilenameObjects(PyObject *type, int ierr, PyObject
*filename, PyObject *filename2)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetExcFromWindowsErrWithFilenameObject(), but accepts a second filename object.
Availability: Windows.

5.2. Raising exceptions 53

The Python/C API, Release 3.11.4

New in version 3.4.
PyObject *PyErr_SetExcFromWindowsErrWithFilename(PyObject *type, int ierr, const char *filename)

Return value: Always NULL. Part of the Stable ABI on Windows since version 3.7. Similar to
PyErr_SetFromWindowsErrWithFilename(), with an additional parameter specifying the exception
type to be raised.
Availability: Windows.

PyObject *PyErr_SetImportError(PyObject *msg, PyObject *name, PyObject *path)
Return value: Always NULL. Part of the Stable ABI since version 3.7. This is a convenience function to raise
ImportError. msg will be set as the exception’s message string. name and path, both of which can be NULL,
will be set as the ImportError’s respective name and path attributes.
New in version 3.3.

PyObject *PyErr_SetImportErrorSubclass(PyObject *exception, PyObject *msg, PyObject *name, PyObject
*path)

Return value: Always NULL. Part of the Stable ABI since version 3.6. Much like PyErr_SetImportError()
but this function allows for specifying a subclass of ImportError to raise.
New in version 3.6.

void PyErr_SyntaxLocationObject(PyObject *filename, int lineno, int col_offset)
Set file, line, and offset information for the current exception. If the current exception is not a SyntaxError, then
it sets additional attributes, which make the exception printing subsystem think the exception is a SyntaxError.
New in version 3.4.

void PyErr_SyntaxLocationEx(const char *filename, int lineno, int col_offset)
Part of the Stable ABI since version 3.7. Like PyErr_SyntaxLocationObject(), but filename is a byte
string decoded from the filesystem encoding and error handler.
New in version 3.2.

void PyErr_SyntaxLocation(const char *filename, int lineno)
Part of the Stable ABI. Like PyErr_SyntaxLocationEx(), but the col_offset parameter is omitted.

void PyErr_BadInternalCall()
Part of the Stable ABI. This is a shorthand for PyErr_SetString(PyExc_SystemError, message),
where message indicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal
argument. It is mostly for internal use.

5.3 Issuing warnings

Use these functions to issue warnings from C code. They mirror similar functions exported by the Python warnings
module. They normally print a warning message to sys.stderr; however, it is also possible that the user has specified that
warnings are to be turned into errors, and in that case they will raise an exception. It is also possible that the functions
raise an exception because of a problem with the warning machinery. The return value is 0 if no exception is raised, or
-1 if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor what the
reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal exception handling
(for example, Py_DECREF() owned references and return an error value).
int PyErr_WarnEx(PyObject *category, const char *message, Py_ssize_t stack_level)

Part of the Stable ABI. Issue a warning message. The category argument is a warning category (see below) or
NULL; the message argument is a UTF-8 encoded string. stack_level is a positive number giving a number of stack

54 Chapter 5. Exception Handling

The Python/C API, Release 3.11.4

frames; the warning will be issued from the currently executing line of code in that stack frame. A stack_level of
1 is the function calling PyErr_WarnEx(), 2 is the function above that, and so forth.
Warning categories must be subclasses of PyExc_Warning; PyExc_Warning is a subclass of
PyExc_Exception; the default warning category is PyExc_RuntimeWarning. The standard Python warn-
ing categories are available as global variables whose names are enumerated at Standard Warning Categories.
For information about warning control, see the documentation for the warnings module and the -W option in
the command line documentation. There is no C API for warning control.

int PyErr_WarnExplicitObject(PyObject *category, PyObject *message, PyObject *filename, int lineno,
PyObject *module, PyObject *registry)

Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper around
the Python function warnings.warn_explicit(); see there for more information. Themodule and registry
arguments may be set to NULL to get the default effect described there.
New in version 3.4.

int PyErr_WarnExplicit(PyObject *category, const char *message, const char *filename, int lineno, const char
*module, PyObject *registry)

Part of the Stable ABI. Similar to PyErr_WarnExplicitObject() except that message and module are
UTF-8 encoded strings, and filename is decoded from the filesystem encoding and error handler.

int PyErr_WarnFormat(PyObject *category, Py_ssize_t stack_level, const char *format, ...)
Part of the Stable ABI. Function similar to PyErr_WarnEx(), but use PyUnicode_FromFormat() to
format the warning message. format is an ASCII-encoded string.
New in version 3.2.

int PyErr_ResourceWarning(PyObject *source, Py_ssize_t stack_level, const char *format, ...)
Part of the Stable ABI since version 3.6. Function similar to PyErr_WarnFormat(), but category is
ResourceWarning and it passes source to warnings.WarningMessage().
New in version 3.6.

5.4 Querying the error indicator

PyObject *PyErr_Occurred()
Return value: Borrowed reference. Part of the Stable ABI. Test whether the error indicator is set. If set,
return the exception type (the first argument to the last call to one of the PyErr_Set* functions or to
PyErr_Restore()). If not set, return NULL. You do not own a reference to the return value, so you do
not need to Py_DECREF() it.
The caller must hold the GIL.

Note: Do not compare the return value to a specific exception; use PyErr_ExceptionMatches() instead,
shown below. (The comparison could easily fail since the exception may be an instance instead of a class, in the
case of a class exception, or it may be a subclass of the expected exception.)

int PyErr_ExceptionMatches(PyObject *exc)
Part of the Stable ABI. Equivalent to PyErr_GivenExceptionMatches(PyErr_Occurred(), exc).
This should only be called when an exception is actually set; a memory access violation will occur if no exception
has been raised.

5.4. Querying the error indicator 55

The Python/C API, Release 3.11.4

int PyErr_GivenExceptionMatches(PyObject *given, PyObject *exc)
Part of the Stable ABI. Return true if the given exception matches the exception type in exc. If exc is a class object,
this also returns true when given is an instance of a subclass. If exc is a tuple, all exception types in the tuple (and
recursively in subtuples) are searched for a match.

void PyErr_Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)
Part of the Stable ABI. Retrieve the error indicator into three variables whose addresses are passed. If the error
indicator is not set, set all three variables to NULL. If it is set, it will be cleared and you own a reference to each
object retrieved. The value and traceback object may be NULL even when the type object is not.

Note: This function is normally only used by code that needs to catch exceptions or by code that needs to save
and restore the error indicator temporarily, e.g.:

{
PyObject *type, *value, *traceback;
PyErr_Fetch(&type, &value, &traceback);

/* ... code that might produce other errors ... */

PyErr_Restore(type, value, traceback);
}

void PyErr_Restore(PyObject *type, PyObject *value, PyObject *traceback)
Part of the Stable ABI. Set the error indicator from the three objects. If the error indicator is already set, it is
cleared first. If the objects are NULL, the error indicator is cleared. Do not pass a NULL type and non-NULL value
or traceback. The exception type should be a class. Do not pass an invalid exception type or value. (Violating these
rules will cause subtle problems later.) This call takes away a reference to each object: you must own a reference
to each object before the call and after the call you no longer own these references. (If you don’t understand this,
don’t use this function. I warned you.)

Note: This function is normally only used by code that needs to save and restore the error indicator temporarily.
Use PyErr_Fetch() to save the current error indicator.

void PyErr_NormalizeException(PyObject **exc, PyObject **val, PyObject **tb)
Part of the Stable ABI. Under certain circumstances, the values returned by PyErr_Fetch() below can be
“unnormalized”, meaning that *exc is a class object but *val is not an instance of the same class. This function
can be used to instantiate the class in that case. If the values are already normalized, nothing happens. The delayed
normalization is implemented to improve performance.

Note: This function does not implicitly set the __traceback__ attribute on the exception value. If setting the
traceback appropriately is desired, the following additional snippet is needed:

if (tb != NULL) {
PyException_SetTraceback(val, tb);

}

PyObject *PyErr_GetHandledException(void)
Part of the Stable ABI since version 3.11. Retrieve the active exception instance, as would be returned by sys.
exception(). This refers to an exception that was already caught, not to an exception that was freshly raised.
Returns a new reference to the exception or NULL. Does not modify the interpreter’s exception state.

56 Chapter 5. Exception Handling

The Python/C API, Release 3.11.4

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_SetHandledException() to
restore or clear the exception state.

New in version 3.11.
void PyErr_SetHandledException(PyObject *exc)

Part of the Stable ABI since version 3.11. Set the active exception, as known from sys.exception(). This
refers to an exception that was already caught, not to an exception that was freshly raised. To clear the exception
state, pass NULL.

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_GetHandledException() to
get the exception state.

New in version 3.11.
void PyErr_GetExcInfo(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback)

Part of the Stable ABI since version 3.7. Retrieve the old-style representation of the exception info, as known from
sys.exc_info(). This refers to an exception that was already caught, not to an exception that was freshly
raised. Returns new references for the three objects, any of whichmay beNULL. Does notmodify the exception info
state. This function is kept for backwards compatibility. Prefer using PyErr_GetHandledException().

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when
code needs to save and restore the exception state temporarily. Use PyErr_SetExcInfo() to restore or clear
the exception state.

New in version 3.3.
void PyErr_SetExcInfo(PyObject *type, PyObject *value, PyObject *traceback)

Part of the Stable ABI since version 3.7. Set the exception info, as known from sys.exc_info(). This refers to
an exception that was already caught, not to an exception that was freshly raised. This function steals the references
of the arguments. To clear the exception state, pass NULL for all three arguments. This function is kept for
backwards compatibility. Prefer using PyErr_SetHandledException().

Note: This function is not normally used by code that wants to handle exceptions. Rather, it can be used when code
needs to save and restore the exception state temporarily. Use PyErr_GetExcInfo() to read the exception
state.

New in version 3.3.
Changed in version 3.11: The type and traceback arguments are no longer used and can be NULL. The
interpreter now derives them from the exception instance (thevalue argument). The function still steals references
of all three arguments.

5.4. Querying the error indicator 57

The Python/C API, Release 3.11.4

5.5 Signal Handling

int PyErr_CheckSignals()
Part of the Stable ABI. This function interacts with Python’s signal handling.
If the function is called from the main thread and under the main Python interpreter, it checks whether a signal has
been sent to the processes and if so, invokes the corresponding signal handler. If the signalmodule is supported,
this can invoke a signal handler written in Python.
The function attempts to handle all pending signals, and then returns 0. However, if a Python signal handler raises
an exception, the error indicator is set and the function returns -1 immediately (such that other pending signals
may not have been handled yet: they will be on the next PyErr_CheckSignals() invocation).
If the function is called from a non-main thread, or under a non-main Python interpreter, it does nothing and returns
0.
This function can be called by long-running C code that wants to be interruptible by user requests (such as by
pressing Ctrl-C).

Note: The default Python signal handler for SIGINT raises the KeyboardInterrupt exception.

void PyErr_SetInterrupt()
Part of the Stable ABI. Simulate the effect of a SIGINT signal arriving. This is equivalent to
PyErr_SetInterruptEx(SIGINT).

Note: This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

int PyErr_SetInterruptEx(int signum)
Part of the Stable ABI since version 3.10. Simulate the effect of a signal arriving. The next time
PyErr_CheckSignals() is called, the Python signal handler for the given signal number will be called.
This function can be called by C code that sets up its own signal handling and wants Python signal handlers to be
invoked as expected when an interruption is requested (for example when the user presses Ctrl-C to interrupt an
operation).
If the given signal isn’t handled by Python (it was set to signal.SIG_DFL or signal.SIG_IGN), it will be
ignored.
If signum is outside of the allowed range of signal numbers, -1 is returned. Otherwise, 0 is returned. The error
indicator is never changed by this function.

Note: This function is async-signal-safe. It can be called without the GIL and from a C signal handler.

New in version 3.10.
int PySignal_SetWakeupFd(int fd)

This utility function specifies a file descriptor to which the signal number is written as a single byte whenever a
signal is received. fd must be non-blocking. It returns the previous such file descriptor.
The value -1 disables the feature; this is the initial state. This is equivalent to signal.set_wakeup_fd()
in Python, but without any error checking. fd should be a valid file descriptor. The function should only be called
from the main thread.
Changed in version 3.5: On Windows, the function now also supports socket handles.

58 Chapter 5. Exception Handling

The Python/C API, Release 3.11.4

5.6 Exception Classes

PyObject *PyErr_NewException(const char *name, PyObject *base, PyObject *dict)
Return value: New reference. Part of the Stable ABI. This utility function creates and returns a new exception class.
The name argument must be the name of the new exception, a C string of the form module.classname. The
base and dict arguments are normally NULL. This creates a class object derived from Exception (accessible in
C as PyExc_Exception).
The __module__ attribute of the new class is set to the first part (up to the last dot) of the name argument, and
the class name is set to the last part (after the last dot). The base argument can be used to specify alternate base
classes; it can either be only one class or a tuple of classes. The dict argument can be used to specify a dictionary
of class variables and methods.

PyObject *PyErr_NewExceptionWithDoc(const char *name, const char *doc, PyObject *base, PyObject *dict)
Return value: New reference. Part of the Stable ABI. Same as PyErr_NewException(), except that the new
exception class can easily be given a docstring: If doc is non-NULL, it will be used as the docstring for the exception
class.
New in version 3.2.

5.7 Exception Objects

PyObject *PyException_GetTraceback(PyObject *ex)
Return value: New reference. Part of the Stable ABI. Return the traceback associated with the exception as a new
reference, as accessible from Python through __traceback__. If there is no traceback associated, this returns
NULL.

int PyException_SetTraceback(PyObject *ex, PyObject *tb)
Part of the Stable ABI. Set the traceback associated with the exception to tb. Use Py_None to clear it.

PyObject *PyException_GetContext(PyObject *ex)
Return value: New reference. Part of the Stable ABI. Return the context (another exception instance during whose
handling ex was raised) associated with the exception as a new reference, as accessible from Python through
__context__. If there is no context associated, this returns NULL.

void PyException_SetContext(PyObject *ex, PyObject *ctx)
Part of the Stable ABI. Set the context associated with the exception to ctx. Use NULL to clear it. There is no type
check to make sure that ctx is an exception instance. This steals a reference to ctx.

PyObject *PyException_GetCause(PyObject *ex)
Return value: New reference. Part of the Stable ABI. Return the cause (either an exception instance, or None,
set by raise ... from ...) associated with the exception as a new reference, as accessible from Python
through __cause__.

void PyException_SetCause(PyObject *ex, PyObject *cause)
Part of the Stable ABI. Set the cause associated with the exception to cause. Use NULL to clear it. There is no type
check to make sure that cause is either an exception instance or None. This steals a reference to cause.
__suppress_context__ is implicitly set to True by this function.

5.6. Exception Classes 59

The Python/C API, Release 3.11.4

5.8 Unicode Exception Objects

The following functions are used to create and modify Unicode exceptions from C.
PyObject *PyUnicodeDecodeError_Create(const char *encoding, const char *object, Py_ssize_t length,

Py_ssize_t start, Py_ssize_t end, const char *reason)
Return value: New reference. Part of the Stable ABI. Create a UnicodeDecodeError object with the attributes
encoding, object, length, start, end and reason. encoding and reason are UTF-8 encoded strings.

PyObject *PyUnicodeDecodeError_GetEncoding(PyObject *exc)
PyObject *PyUnicodeEncodeError_GetEncoding(PyObject *exc)

Return value: New reference. Part of the Stable ABI. Return the encoding attribute of the given exception object.
PyObject *PyUnicodeDecodeError_GetObject(PyObject *exc)
PyObject *PyUnicodeEncodeError_GetObject(PyObject *exc)
PyObject *PyUnicodeTranslateError_GetObject(PyObject *exc)

Return value: New reference. Part of the Stable ABI. Return the object attribute of the given exception object.
int PyUnicodeDecodeError_GetStart(PyObject *exc, Py_ssize_t *start)
int PyUnicodeEncodeError_GetStart(PyObject *exc, Py_ssize_t *start)
int PyUnicodeTranslateError_GetStart(PyObject *exc, Py_ssize_t *start)

Part of the Stable ABI. Get the start attribute of the given exception object and place it into *start. start must not
be NULL. Return 0 on success, -1 on failure.

int PyUnicodeDecodeError_SetStart(PyObject *exc, Py_ssize_t start)
int PyUnicodeEncodeError_SetStart(PyObject *exc, Py_ssize_t start)
int PyUnicodeTranslateError_SetStart(PyObject *exc, Py_ssize_t start)

Part of the Stable ABI. Set the start attribute of the given exception object to start. Return 0 on success, -1 on
failure.

int PyUnicodeDecodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
int PyUnicodeEncodeError_GetEnd(PyObject *exc, Py_ssize_t *end)
int PyUnicodeTranslateError_GetEnd(PyObject *exc, Py_ssize_t *end)

Part of the Stable ABI. Get the end attribute of the given exception object and place it into *end. end must not be
NULL. Return 0 on success, -1 on failure.

int PyUnicodeDecodeError_SetEnd(PyObject *exc, Py_ssize_t end)
int PyUnicodeEncodeError_SetEnd(PyObject *exc, Py_ssize_t end)
int PyUnicodeTranslateError_SetEnd(PyObject *exc, Py_ssize_t end)

Part of the Stable ABI. Set the end attribute of the given exception object to end. Return 0 on success, -1 on
failure.

PyObject *PyUnicodeDecodeError_GetReason(PyObject *exc)
PyObject *PyUnicodeEncodeError_GetReason(PyObject *exc)
PyObject *PyUnicodeTranslateError_GetReason(PyObject *exc)

Return value: New reference. Part of the Stable ABI. Return the reason attribute of the given exception object.
int PyUnicodeDecodeError_SetReason(PyObject *exc, const char *reason)
int PyUnicodeEncodeError_SetReason(PyObject *exc, const char *reason)
int PyUnicodeTranslateError_SetReason(PyObject *exc, const char *reason)

Part of the Stable ABI. Set the reason attribute of the given exception object to reason. Return 0 on success, -1
on failure.

60 Chapter 5. Exception Handling

The Python/C API, Release 3.11.4

5.9 Recursion Control

These two functions provide a way to perform safe recursive calls at the C level, both in the core and in extension mod-
ules. They are needed if the recursive code does not necessarily invoke Python code (which tracks its recursion depth
automatically). They are also not needed for tp_call implementations because the call protocol takes care of recursion
handling.
int Py_EnterRecursiveCall(const char *where)

Part of the Stable ABI since version 3.9. Marks a point where a recursive C-level call is about to be performed.
If USE_STACKCHECK is defined, this function checks if the OS stack overflowed using PyOS_CheckStack().
In this is the case, it sets a MemoryError and returns a nonzero value.
The function then checks if the recursion limit is reached. If this is the case, a RecursionError is set and a
nonzero value is returned. Otherwise, zero is returned.
where should be a UTF-8 encoded string such as " in instance check" to be concatenated to the
RecursionError message caused by the recursion depth limit.
Changed in version 3.9: This function is now also available in the limited API.

void Py_LeaveRecursiveCall(void)
Part of the Stable ABI since version 3.9. Ends a Py_EnterRecursiveCall(). Must be called once for each
successful invocation of Py_EnterRecursiveCall().
Changed in version 3.9: This function is now also available in the limited API.

Properly implementing tp_repr for container types requires special recursion handling. In addition to protecting the
stack, tp_repr also needs to track objects to prevent cycles. The following two functions facilitate this functionality.
Effectively, these are the C equivalent to reprlib.recursive_repr().
int Py_ReprEnter(PyObject *object)

Part of the Stable ABI. Called at the beginning of the tp_repr implementation to detect cycles.
If the object has already been processed, the function returns a positive integer. In that case the tp_repr imple-
mentation should return a string object indicating a cycle. As examples, dict objects return {...} and list
objects return [...].
The function will return a negative integer if the recursion limit is reached. In that case the tp_repr implemen-
tation should typically return NULL.
Otherwise, the function returns zero and the tp_repr implementation can continue normally.

void Py_ReprLeave(PyObject *object)
Part of the Stable ABI. Ends a Py_ReprEnter(). Must be called once for each invocation of
Py_ReprEnter() that returns zero.

5.10 Standard Exceptions

All standard Python exceptions are available as global variables whose names are PyExc_ followed by the Python ex-
ception name. These have the type PyObject*; they are all class objects. For completeness, here are all the variables:

C Name Python Name Notes
PyExc_BaseException BaseException 1

PyExc_Exception Exception Page 63, 1

PyExc_ArithmeticError ArithmeticError Page 63, 1

continues on next page

5.9. Recursion Control 61

The Python/C API, Release 3.11.4

Table 1 – continued from previous page
C Name Python Name Notes
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_BlockingIOError BlockingIOError
PyExc_BrokenPipeError BrokenPipeError
PyExc_BufferError BufferError
PyExc_ChildProcessError ChildProcessError
PyExc_ConnectionAbortedErrorConnectionAbortedError
PyExc_ConnectionError ConnectionError
PyExc_ConnectionRefusedErrorConnectionRefusedError
PyExc_ConnectionResetErrorConnectionResetError
PyExc_EOFError EOFError
PyExc_FileExistsError FileExistsError
PyExc_FileNotFoundError FileNotFoundError
PyExc_FloatingPointError FloatingPointError
PyExc_GeneratorExit GeneratorExit
PyExc_ImportError ImportError
PyExc_IndentationError IndentationError
PyExc_IndexError IndexError
PyExc_InterruptedError InterruptedError
PyExc_IsADirectoryError IsADirectoryError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_LookupError LookupError Page 63, 1

PyExc_MemoryError MemoryError
PyExc_ModuleNotFoundError ModuleNotFoundError
PyExc_NameError NameError
PyExc_NotADirectoryError NotADirectoryError
PyExc_NotImplementedError NotImplementedError
PyExc_OSError OSError Page 63, 1

PyExc_OverflowError OverflowError
PyExc_PermissionError PermissionError
PyExc_ProcessLookupError ProcessLookupError
PyExc_RecursionError RecursionError
PyExc_ReferenceError ReferenceError
PyExc_RuntimeError RuntimeError
PyExc_StopAsyncIteration StopAsyncIteration
PyExc_StopIteration StopIteration
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemExit
PyExc_TabError TabError
PyExc_TimeoutError TimeoutError
PyExc_TypeError TypeError
PyExc_UnboundLocalError UnboundLocalError
PyExc_UnicodeDecodeError UnicodeDecodeError
PyExc_UnicodeEncodeError UnicodeEncodeError
PyExc_UnicodeError UnicodeError
PyExc_UnicodeTranslateErrorUnicodeTranslateError
PyExc_ValueError ValueError

continues on next page

62 Chapter 5. Exception Handling

The Python/C API, Release 3.11.4

Table 1 – continued from previous page
C Name Python Name Notes
PyExc_ZeroDivisionError ZeroDivisionError

New in version 3.3: PyExc_BlockingIOError, PyExc_BrokenPipeError,
PyExc_ChildProcessError, PyExc_ConnectionError, PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError, PyExc_ConnectionResetError, PyExc_FileExistsError,
PyExc_FileNotFoundError, PyExc_InterruptedError, PyExc_IsADirectoryError,
PyExc_NotADirectoryError, PyExc_PermissionError, PyExc_ProcessLookupError and
PyExc_TimeoutError were introduced following PEP 3151.
New in version 3.5: PyExc_StopAsyncIteration and PyExc_RecursionError.
New in version 3.6: PyExc_ModuleNotFoundError.
These are compatibility aliases to PyExc_OSError:

C Name Notes
PyExc_EnvironmentError
PyExc_IOError
PyExc_WindowsError 2

Changed in version 3.3: These aliases used to be separate exception types.
Notes:

5.11 Standard Warning Categories

All standard Python warning categories are available as global variables whose names are PyExc_ followed by the Python
exception name. These have the type PyObject*; they are all class objects. For completeness, here are all the variables:

C Name Python Name Notes
PyExc_Warning Warning 3

PyExc_BytesWarning BytesWarning
PyExc_DeprecationWarning DeprecationWarning
PyExc_FutureWarning FutureWarning
PyExc_ImportWarning ImportWarning
PyExc_PendingDeprecationWarning PendingDeprecationWarning
PyExc_ResourceWarning ResourceWarning
PyExc_RuntimeWarning RuntimeWarning
PyExc_SyntaxWarning SyntaxWarning
PyExc_UnicodeWarning UnicodeWarning
PyExc_UserWarning UserWarning

New in version 3.2: PyExc_ResourceWarning.
Notes:

1 This is a base class for other standard exceptions.
2 Only defined on Windows; protect code that uses this by testing that the preprocessor macro MS_WINDOWS is defined.
3 This is a base class for other standard warning categories.

5.11. Standard Warning Categories 63

https://peps.python.org/pep-3151/

The Python/C API, Release 3.11.4

64 Chapter 5. Exception Handling

CHAPTER

SIX

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across platforms,
using Python modules from C, and parsing function arguments and constructing Python values from C values.

6.1 Operating System Utilities

PyObject *PyOS_FSPath(PyObject *path)
Return value: New reference. Part of the Stable ABI since version 3.6. Return the file system representation for
path. If the object is a str or bytes object, then a new strong reference is returned. If the object implements the
os.PathLike interface, then __fspath__() is returned as long as it is a str or bytes object. Otherwise
TypeError is raised and NULL is returned.
New in version 3.6.

int Py_FdIsInteractive(FILE *fp, const char *filename)
Return true (nonzero) if the standard I/O file fp with name filename is deemed interactive. This is the case for files
for which isatty(fileno(fp)) is true. If the global flag Py_InteractiveFlag is true, this function
also returns true if the filename pointer is NULL or if the name is equal to one of the strings '<stdin>' or
'???'.

void PyOS_BeforeFork()
Part of the Stable ABI on platforms with fork() since version 3.7. Function to prepare some internal state before a
process fork. This should be called before calling fork() or any similar function that clones the current process.
Only available on systems where fork() is defined.

Warning: The C fork() call should only be made from the “main” thread (of the “main” interpreter). The
same is true for PyOS_BeforeFork().

New in version 3.7.
void PyOS_AfterFork_Parent()

Part of the Stable ABI on platforms with fork() since version 3.7. Function to update some internal state after a
process fork. This should be called from the parent process after calling fork() or any similar function that
clones the current process, regardless of whether process cloning was successful. Only available on systems where
fork() is defined.

Warning: The C fork() call should only be made from the “main” thread (of the “main” interpreter). The
same is true for PyOS_AfterFork_Parent().

65

The Python/C API, Release 3.11.4

New in version 3.7.
void PyOS_AfterFork_Child()

Part of the Stable ABI on platforms with fork() since version 3.7. Function to update internal interpreter state after
a process fork. This must be called from the child process after calling fork(), or any similar function that clones
the current process, if there is any chance the process will call back into the Python interpreter. Only available on
systems where fork() is defined.

Warning: The C fork() call should only be made from the “main” thread (of the “main” interpreter). The
same is true for PyOS_AfterFork_Child().

New in version 3.7.
See also:
os.register_at_fork() allows registering custom Python functions to be called by
PyOS_BeforeFork(), PyOS_AfterFork_Parent() and PyOS_AfterFork_Child().

void PyOS_AfterFork()
Part of the Stable ABI on platforms with fork(). Function to update some internal state after a process fork; this
should be called in the new process if the Python interpreter will continue to be used. If a new executable is loaded
into the new process, this function does not need to be called.
Deprecated since version 3.7: This function is superseded by PyOS_AfterFork_Child().

int PyOS_CheckStack()
Part of the Stable ABI on platforms with USE_STACKCHECK since version 3.7. Return true when the interpreter
runs out of stack space. This is a reliable check, but is only available whenUSE_STACKCHECK is defined (currently
on certain versions of Windows using the Microsoft Visual C++ compiler). USE_STACKCHECK will be defined
automatically; you should never change the definition in your own code.

PyOS_sighandler_t PyOS_getsig(int i)
Part of the Stable ABI. Return the current signal handler for signal i. This is a thin wrapper around either
sigaction() or signal(). Do not call those functions directly! PyOS_sighandler_t is a typedef
alias for void (*)(int).

PyOS_sighandler_t PyOS_setsig(int i, PyOS_sighandler_t h)
Part of the Stable ABI. Set the signal handler for signal i to be h; return the old signal handler. This is a thin wrapper
around either sigaction() or signal(). Do not call those functions directly! PyOS_sighandler_t is
a typedef alias for void (*)(int).

wchar_t *Py_DecodeLocale(const char *arg, size_t *size)
Part of the Stable ABI since version 3.7.

Warning: This function should not be called directly: use the PyConfig API with the
PyConfig_SetBytesString() function which ensures that Python is preinitialized.
This function must not be called before Python is preinitialized and so that the LC_CTYPE locale is properly
configured: see the Py_PreInitialize() function.

Decode a byte string from the filesystem encoding and error handler. If the error handler is surrogateescape error
handler, undecodable bytes are decoded as characters in range U+DC80..U+DCFF; and if a byte sequence can be
decoded as a surrogate character, the bytes are escaped using the surrogateescape error handler instead of decoding
them.

66 Chapter 6. Utilities

The Python/C API, Release 3.11.4

Return a pointer to a newly allocated wide character string, use PyMem_RawFree() to free the memory. If size
is not NULL, write the number of wide characters excluding the null character into *size
Return NULL on decoding error or memory allocation error. If size is not NULL, *size is set to (size_t)-1
on memory error or set to (size_t)-2 on decoding error.
The filesystem encoding and error handler are selected byPyConfig_Read(): seefilesystem_encoding
and filesystem_errors members of PyConfig.
Decoding errors should never happen, unless there is a bug in the C library.
Use the Py_EncodeLocale() function to encode the character string back to a byte string.
See also:
The PyUnicode_DecodeFSDefaultAndSize() and PyUnicode_DecodeLocaleAndSize()
functions.
New in version 3.5.
Changed in version 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.
Changed in version 3.8: The function now uses the UTF-8 encoding on Windows if
Py_LegacyWindowsFSEncodingFlag is zero;

char *Py_EncodeLocale(const wchar_t *text, size_t *error_pos)
Part of the Stable ABI since version 3.7. Encode a wide character string to the filesystem encoding and error handler.
If the error handler is surrogateescape error handler, surrogate characters in the range U+DC80..U+DCFF are
converted to bytes 0x80..0xFF.
Return a pointer to a newly allocated byte string, use PyMem_Free() to free the memory. Return NULL on
encoding error or memory allocation error.
If error_pos is not NULL, *error_pos is set to (size_t)-1 on success, or set to the index of the invalid
character on encoding error.
The filesystem encoding and error handler are selected byPyConfig_Read(): seefilesystem_encoding
and filesystem_errors members of PyConfig.
Use the Py_DecodeLocale() function to decode the bytes string back to a wide character string.

Warning: This function must not be called before Python is preinitialized and so that the LC_CTYPE locale
is properly configured: see the Py_PreInitialize() function.

See also:
The PyUnicode_EncodeFSDefault() and PyUnicode_EncodeLocale() functions.
New in version 3.5.
Changed in version 3.7: The function now uses the UTF-8 encoding in the Python UTF-8 Mode.
Changed in version 3.8: The function now uses the UTF-8 encoding on Windows if
Py_LegacyWindowsFSEncodingFlag is zero.

6.1. Operating System Utilities 67

The Python/C API, Release 3.11.4

6.2 System Functions

These are utility functions that make functionality from the sys module accessible to C code. They all work with the
current interpreter thread’s sys module’s dict, which is contained in the internal thread state structure.
PyObject *PySys_GetObject(const char *name)

Return value: Borrowed reference. Part of the Stable ABI. Return the object name from the sys module or NULL
if it does not exist, without setting an exception.

int PySys_SetObject(const char *name, PyObject *v)
Part of the Stable ABI. Set name in the sysmodule to v unless v is NULL, in which case name is deleted from the
sys module. Returns 0 on success, -1 on error.

void PySys_ResetWarnOptions()
Part of the Stable ABI. Reset sys.warnoptions to an empty list. This function may be called prior to
Py_Initialize().

void PySys_AddWarnOption(const wchar_t *s)
Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.warnoptions should
be used instead, see Python Initialization Configuration.
Append s to sys.warnoptions. This function must be called prior to Py_Initialize() in order to affect
the warnings filter list.
Deprecated since version 3.11.

void PySys_AddWarnOptionUnicode(PyObject *unicode)
Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.warnoptions should
be used instead, see Python Initialization Configuration.
Append unicode to sys.warnoptions.
Note: this function is not currently usable from outside the CPython implementation, as it must be called prior to
the implicit import of warnings in Py_Initialize() to be effective, but can’t be called until enough of the
runtime has been initialized to permit the creation of Unicode objects.
Deprecated since version 3.11.

void PySys_SetPath(const wchar_t *path)
Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.
module_search_paths and PyConfig.module_search_paths_set should be used instead,
see Python Initialization Configuration.
Set sys.path to a list object of paths found in path which should be a list of paths separated with the platform’s
search path delimiter (: on Unix, ; on Windows).
Deprecated since version 3.11.

void PySys_WriteStdout(const char *format, ...)
Part of the Stable ABI.Write the output string described by format to sys.stdout. No exceptions are raised,
even if truncation occurs (see below).
format should limit the total size of the formatted output string to 1000 bytes or less – after 1000 bytes, the output
string is truncated. In particular, this means that no unrestricted “%s” formats should occur; these should be limited
using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the maximum size of other formatted
text does not exceed 1000 bytes. Also watch out for “%f”, which can print hundreds of digits for very large numbers.
If a problem occurs, or sys.stdout is unset, the formatted message is written to the real (C level) stdout.

68 Chapter 6. Utilities

The Python/C API, Release 3.11.4

void PySys_WriteStderr(const char *format, ...)
Part of the Stable ABI. As PySys_WriteStdout(), but write to sys.stderr or stderr instead.

void PySys_FormatStdout(const char *format, ...)
Part of the Stable ABI. Function similar to PySys_WriteStdout() but format the message using
PyUnicode_FromFormatV() and don’t truncate the message to an arbitrary length.
New in version 3.2.

void PySys_FormatStderr(const char *format, ...)
Part of the Stable ABI. As PySys_FormatStdout(), but write to sys.stderr or stderr instead.
New in version 3.2.

void PySys_AddXOption(const wchar_t *s)
Part of the Stable ABI since version 3.7. This API is kept for backward compatibility: setting PyConfig.
xoptions should be used instead, see Python Initialization Configuration.
Parse s as a set of -X options and add them to the current options mapping as returned by
PySys_GetXOptions(). This function may be called prior to Py_Initialize().
New in version 3.2.
Deprecated since version 3.11.

PyObject *PySys_GetXOptions()
Return value: Borrowed reference. Part of the Stable ABI since version 3.7. Return the current dictionary of -X
options, similarly to sys._xoptions. On error, NULL is returned and an exception is set.
New in version 3.2.

int PySys_Audit(const char *event, const char *format, ...)
Raise an auditing event with any active hooks. Return zero for success and non-zero with an exception set on failure.
If any hooks have been added, format and other arguments will be used to construct a tuple to pass. Apart from
N, the same format characters as used in Py_BuildValue() are available. If the built value is not a tuple, it
will be added into a single-element tuple. (The N format option consumes a reference, but since there is no way to
know whether arguments to this function will be consumed, using it may cause reference leaks.)
Note that # format characters should always be treated as Py_ssize_t, regardless of whether
PY_SSIZE_T_CLEAN was defined.
sys.audit() performs the same function from Python code.
New in version 3.8.
Changed in version 3.8.2: Require Py_ssize_t for # format characters. Previously, an unavoidable deprecation
warning was raised.

int PySys_AddAuditHook(Py_AuditHookFunction hook, void *userData)
Append the callable hook to the list of active auditing hooks. Return zero on success and non-zero on failure. If the
runtime has been initialized, also set an error on failure. Hooks added through this API are called for all interpreters
created by the runtime.
The userData pointer is passed into the hook function. Since hook functions may be called from different runtimes,
this pointer should not refer directly to Python state.
This function is safe to call before Py_Initialize(). When called after runtime initialization, existing audit
hooks are notified and may silently abort the operation by raising an error subclassed from Exception (other
errors will not be silenced).

6.2. System Functions 69

The Python/C API, Release 3.11.4

The hook function is of type int (*)(const char *event, PyObject *args, void
*userData), where args is guaranteed to be a PyTupleObject. The hook function is always called
with the GIL held by the Python interpreter that raised the event.
See PEP 578 for a detailed description of auditing. Functions in the runtime and standard library that raise events
are listed in the audit events table. Details are in each function’s documentation.

If the interpreter is initialized, this function raises a auditing event sys.addaudithook with no arguments. If
any existing hooks raise an exception derived from Exception, the new hook will not be added and the exception
is cleared. As a result, callers cannot assume that their hook has been added unless they control all existing hooks.
New in version 3.8.

6.3 Process Control

void Py_FatalError(const char *message)
Part of the Stable ABI. Print a fatal error message and kill the process. No cleanup is performed. This function
should only be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be corrupted. On Unix, the standard C library function
abort() is called which will attempt to produce a core file.
The Py_FatalError() function is replaced with a macro which logs automatically the name of the current
function, unless the Py_LIMITED_API macro is defined.
Changed in version 3.9: Log the function name automatically.

void Py_Exit(int status)
Part of the Stable ABI. Exit the current process. This calls Py_FinalizeEx() and then calls the standard C
library function exit(status). If Py_FinalizeEx() indicates an error, the exit status is set to 120.
Changed in version 3.6: Errors from finalization no longer ignored.

int Py_AtExit(void (*func)())
Part of the Stable ABI. Register a cleanup function to be called by Py_FinalizeEx(). The cleanup function
will be called with no arguments and should return no value. At most 32 cleanup functions can be registered. When
the registration is successful, Py_AtExit() returns 0; on failure, it returns -1. The cleanup function registered
last is called first. Each cleanup function will be called at most once. Since Python’s internal finalization will have
completed before the cleanup function, no Python APIs should be called by func.

6.4 Importing Modules

PyObject *PyImport_ImportModule(const char *name)
Return value: New reference. Part of the Stable ABI. This is a simplified interface to
PyImport_ImportModuleEx() below, leaving the globals and locals arguments set to NULL and
level set to 0. When the name argument contains a dot (when it specifies a submodule of a package), the fromlist
argument is set to the list ['*'] so that the return value is the named module rather than the top-level package
containing it as would otherwise be the case. (Unfortunately, this has an additional side effect when name in fact
specifies a subpackage instead of a submodule: the submodules specified in the package’s __all__ variable are
loaded.) Return a new reference to the imported module, or NULL with an exception set on failure. A failing
import of a module doesn’t leave the module in sys.modules.
This function always uses absolute imports.

70 Chapter 6. Utilities

https://peps.python.org/pep-0578/

The Python/C API, Release 3.11.4

PyObject *PyImport_ImportModuleNoBlock(const char *name)
Return value: New reference. Part of the Stable ABI. This function is a deprecated alias of
PyImport_ImportModule().
Changed in version 3.3: This function used to fail immediately when the import lock was held by another thread. In
Python 3.3 though, the locking scheme switched to per-module locks for most purposes, so this function’s special
behaviour isn’t needed anymore.

PyObject *PyImport_ImportModuleEx(const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)

Return value: New reference. Import a module. This is best described by referring to the built-in Python function
__import__().
The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__(), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.
Failing imports remove incomplete module objects, like with PyImport_ImportModule().

PyObject *PyImport_ImportModuleLevelObject(PyObject *name, PyObject *globals, PyObject *locals,
PyObject *fromlist, int level)

Return value: New reference. Part of the Stable ABI since version 3.7. Import a module. This is best described by
referring to the built-in Python function __import__(), as the standard __import__() function calls this
function directly.
The return value is a new reference to the imported module or top-level package, or NULL with an exception set
on failure. Like for __import__(), the return value when a submodule of a package was requested is normally
the top-level package, unless a non-empty fromlist was given.
New in version 3.3.

PyObject *PyImport_ImportModuleLevel(const char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist, int level)

Return value: New reference. Part of the Stable ABI. Similar to
PyImport_ImportModuleLevelObject(), but the name is a UTF-8 encoded string instead of a
Unicode object.
Changed in version 3.3: Negative values for level are no longer accepted.

PyObject *PyImport_Import(PyObject *name)
Return value: New reference. Part of the Stable ABI. This is a higher-level interface that calls the current “import
hook function” (with an explicit level of 0, meaning absolute import). It invokes the __import__() function
from the __builtins__ of the current globals. This means that the import is done using whatever import hooks
are installed in the current environment.
This function always uses absolute imports.

PyObject *PyImport_ReloadModule(PyObject *m)
Return value: New reference. Part of the Stable ABI. Reload a module. Return a new reference to the reloaded
module, or NULL with an exception set on failure (the module still exists in this case).

PyObject *PyImport_AddModuleObject(PyObject *name)
Return value: Borrowed reference. Part of the Stable ABI since version 3.7. Return the module object correspond-
ing to a module name. The name argument may be of the form package.module. First check the modules
dictionary if there’s one there, and if not, create a new one and insert it in the modules dictionary. Return NULL
with an exception set on failure.

6.4. Importing Modules 71

The Python/C API, Release 3.11.4

Note: This function does not load or import the module; if the module wasn’t already loaded, you will get an
empty module object. Use PyImport_ImportModule() or one of its variants to import a module. Package
structures implied by a dotted name for name are not created if not already present.

New in version 3.3.
PyObject *PyImport_AddModule(const char *name)

Return value: Borrowed reference. Part of the Stable ABI. Similar to PyImport_AddModuleObject(), but
the name is a UTF-8 encoded string instead of a Unicode object.

PyObject *PyImport_ExecCodeModule(const char *name, PyObject *co)
Return value: New reference. Part of the Stable ABI. Given a module name (possibly of the form package.
module) and a code object read from a Python bytecode file or obtained from the built-in function compile(),
load the module. Return a new reference to the module object, or NULL with an exception set if an error occurred.
name is removed from sys.modules in error cases, even if name was already in sys.modules on entry to
PyImport_ExecCodeModule(). Leaving incompletely initialized modules in sys.modules is dangerous,
as imports of such modules have no way to know that the module object is an unknown (and probably damaged
with respect to the module author’s intents) state.
The module’s __spec__ and __loader__will be set, if not set already, with the appropriate values. The spec’s
loader will be set to the module’s __loader__ (if set) and to an instance of SourceFileLoader otherwise.
The module’s __file__ attribute will be set to the code object’s co_filename. If applicable, __cached__
will also be set.
This function will reload the module if it was already imported. See PyImport_ReloadModule() for the
intended way to reload a module.
If name points to a dotted name of the form package.module, any package structures not already created will
still not be created.
See also PyImport_ExecCodeModuleEx() and PyImport_ExecCodeModuleWithPathnames().

PyObject *PyImport_ExecCodeModuleEx(const char *name, PyObject *co, const char *pathname)
Return value: New reference. Part of the Stable ABI. Like PyImport_ExecCodeModule(), but the
__file__ attribute of the module object is set to pathname if it is non-NULL.
See also PyImport_ExecCodeModuleWithPathnames().

PyObject *PyImport_ExecCodeModuleObject(PyObject *name, PyObject *co, PyObject *pathname, PyObject
*cpathname)

Return value: New reference. Part of the Stable ABI since version 3.7. Like
PyImport_ExecCodeModuleEx(), but the __cached__ attribute of the module object is set to
cpathname if it is non-NULL. Of the three functions, this is the preferred one to use.
New in version 3.3.

PyObject *PyImport_ExecCodeModuleWithPathnames(const char *name, PyObject *co, const char
*pathname, const char *cpathname)

Return value: New reference. Part of the Stable ABI. Like PyImport_ExecCodeModuleObject(), but
name, pathname and cpathname are UTF-8 encoded strings. Attempts are also made to figure out what the value
for pathname should be from cpathname if the former is set to NULL.
New in version 3.2.
Changed in version 3.3: Uses imp.source_from_cache() in calculating the source path if only the bytecode
path is provided.

72 Chapter 6. Utilities

The Python/C API, Release 3.11.4

long PyImport_GetMagicNumber()
Part of the Stable ABI. Return the magic number for Python bytecode files (a.k.a. .pyc file). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order. Returns -1 on error.
Changed in version 3.3: Return value of -1 upon failure.

const char *PyImport_GetMagicTag()
Part of the Stable ABI. Return the magic tag string for PEP 3147 format Python bytecode file names. Keep in
mind that the value at sys.implementation.cache_tag is authoritative and should be used instead of this
function.
New in version 3.2.

PyObject *PyImport_GetModuleDict()
Return value: Borrowed reference. Part of the Stable ABI.Return the dictionary used for the module administration
(a.k.a. sys.modules). Note that this is a per-interpreter variable.

PyObject *PyImport_GetModule(PyObject *name)
Return value: New reference. Part of the Stable ABI since version 3.8. Return the already imported module with
the given name. If the module has not been imported yet then returns NULL but does not set an error. Returns
NULL and sets an error if the lookup failed.
New in version 3.7.

PyObject *PyImport_GetImporter(PyObject *path)
Return value: New reference. Part of the Stable ABI. Return a finder object for a sys.path/pkg.__path__
item path, possibly by fetching it from the sys.path_importer_cache dict. If it wasn’t yet cached, traverse
sys.path_hooks until a hook is found that can handle the path item. Return None if no hook could; this
tells our caller that the path based finder could not find a finder for this path item. Cache the result in sys.
path_importer_cache. Return a new reference to the finder object.

int PyImport_ImportFrozenModuleObject(PyObject *name)
Part of the Stable ABI since version 3.7. Load a frozen module named name. Return 1 for success, 0 if the module
is not found, and -1 with an exception set if the initialization failed. To access the imported module on a successful
load, use PyImport_ImportModule(). (Note the misnomer — this function would reload the module if it
was already imported.)
New in version 3.3.
Changed in version 3.4: The __file__ attribute is no longer set on the module.

int PyImport_ImportFrozenModule(const char *name)
Part of the Stable ABI. Similar to PyImport_ImportFrozenModuleObject(), but the name is a UTF-8
encoded string instead of a Unicode object.

struct _frozen
This is the structure type definition for frozenmodule descriptors, as generated by the freeze utility (see Tools/
freeze/ in the Python source distribution). Its definition, found in Include/import.h, is:

struct _frozen {
const char *name;
const unsigned char *code;
int size;
bool is_package;

};

Changed in version 3.11: The new is_package field indicates whether the module is a package or not. This
replaces setting the size field to a negative value.

6.4. Importing Modules 73

https://peps.python.org/pep-3147/

The Python/C API, Release 3.11.4

const struct _frozen *PyImport_FrozenModules
This pointer is initialized to point to an array of _frozen records, terminated by one whose members are all
NULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could play tricks
with this to provide a dynamically created collection of frozen modules.

int PyImport_AppendInittab(const char *name, PyObject *(*initfunc)(void))
Part of the Stable ABI.Add a single module to the existing table of built-in modules. This is a convenience wrapper
around PyImport_ExtendInittab(), returning -1 if the table could not be extended. The new module can
be imported by the name name, and uses the function initfunc as the initialization function called on the first
attempted import. This should be called before Py_Initialize().

struct _inittab
Structure describing a single entry in the list of built-in modules. Programs which embed Python may use an array
of these structures in conjunction with PyImport_ExtendInittab() to provide additional built-in modules.
The structure consists of two members:
const char *name

The module name, as an ASCII encoded string.
int PyImport_ExtendInittab(struct _inittab *newtab)

Add a collection of modules to the table of built-in modules. The newtab array must end with a sentinel entry which
contains NULL for the name field; failure to provide the sentinel value can result in a memory fault. Returns 0
on success or -1 if insufficient memory could be allocated to extend the internal table. In the event of failure, no
modules are added to the internal table. This must be called before Py_Initialize().
If Python is initialized multiple times, PyImport_AppendInittab() or
PyImport_ExtendInittab() must be called before each Python initialization.

6.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data format as the marshal module. There
are functions to write data into the serialization format, and additional functions that can be used to read the data back.
Files used to store marshalled data must be opened in binary mode.
Numeric values are stored with the least significant byte first.
The module supports two versions of the data format: version 0 is the historical version, version 1 shares interned strings in
the file, and upon unmarshalling. Version 2 uses a binary format for floating point numbers. Py_MARSHAL_VERSION
indicates the current file format (currently 2).
void PyMarshal_WriteLongToFile(long value, FILE *file, int version)

Marshal a long integer, value, to file. This will only write the least-significant 32 bits of value; regardless of the
size of the native long type. version indicates the file format.
This function can fail, in which case it sets the error indicator. Use PyErr_Occurred() to check for that.

void PyMarshal_WriteObjectToFile(PyObject *value, FILE *file, int version)
Marshal a Python object, value, to file. version indicates the file format.
This function can fail, in which case it sets the error indicator. Use PyErr_Occurred() to check for that.

PyObject *PyMarshal_WriteObjectToString(PyObject *value, int version)
Return value: New reference. Return a bytes object containing the marshalled representation of value. version
indicates the file format.

The following functions allow marshalled values to be read back in.

74 Chapter 6. Utilities

The Python/C API, Release 3.11.4

long PyMarshal_ReadLongFromFile(FILE *file)
Return a C long from the data stream in a FILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native size of long.
On error, sets the appropriate exception (EOFError) and returns -1.

int PyMarshal_ReadShortFromFile(FILE *file)
Return a C short from the data stream in a FILE* opened for reading. Only a 16-bit value can be read in using
this function, regardless of the native size of short.
On error, sets the appropriate exception (EOFError) and returns -1.

PyObject *PyMarshal_ReadObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadLastObjectFromFile(FILE *file)
Return value: New reference. Return a Python object from the data stream in a FILE* opened for reading. Unlike
PyMarshal_ReadObjectFromFile(), this function assumes that no further objects will be read from the
file, allowing it to aggressively load file data into memory so that the de-serialization can operate from data in
memory rather than reading a byte at a time from the file. Only use these variant if you are certain that you won’t
be reading anything else from the file.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

PyObject *PyMarshal_ReadObjectFromString(const char *data, Py_ssize_t len)
Return value: New reference. Return a Python object from the data stream in a byte buffer containing len bytes
pointed to by data.
On error, sets the appropriate exception (EOFError, ValueError or TypeError) and returns NULL.

6.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and exam-
ples are available in extending-index.
The first three of these functions described, PyArg_ParseTuple(), PyArg_ParseTupleAndKeywords(),
and PyArg_Parse(), all use format strings which are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

6.6.1 Parsing arguments

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the quoted
form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit; and the
entry in [square] brackets is the type of the C variable(s) whose address should be passed.

6.6. Parsing arguments and building values 75

The Python/C API, Release 3.11.4

Strings and buffers

These formats allow accessing an object as a contiguous chunk of memory. You don’t have to provide raw storage for the
returned unicode or bytes area.
Unless otherwise stated, buffers are not NUL-terminated.
There are three ways strings and buffers can be converted to C:

• Formats such as y* and s* fill a Py_buffer structure. This locks the underlying buffer so that the caller can
subsequently use the buffer even inside a Py_BEGIN_ALLOW_THREADS block without the risk of mutable data
being resized or destroyed. As a result, you have to call PyBuffer_Release() after you have finished pro-
cessing the data (or in any early abort case).

• The es, es#, et and et# formats allocate the result buffer. You have to call PyMem_Free() after you have
finished processing the data (or in any early abort case).

• Other formats take a str or a read-only bytes-like object, such as bytes, and provide a const char * pointer
to its buffer. In this case the buffer is “borrowed”: it is managed by the corresponding Python object, and shares
the lifetime of this object. You won’t have to release any memory yourself.
To ensure that the underlying buffer may be safely borrowed, the object’s PyBufferProcs.
bf_releasebuffer field must be NULL. This disallows common mutable objects such as bytearray, but
also some read-only objects such as memoryview of bytes.
Besides this bf_releasebuffer requirement, there is no check to verify whether the input object is immutable
(e.g. whether it would honor a request for a writable buffer, or whether another thread can mutate the data).

Note: For all # variants of formats (s#, y#, etc.), the macro PY_SSIZE_T_CLEAN must be defined before including
Python.h. On Python 3.9 and older, the type of the length argument is Py_ssize_t if the PY_SSIZE_T_CLEAN
macro is defined, or int otherwise.

s (str) [const char *] Convert a Unicode object to a C pointer to a character string. A pointer to an existing string
is stored in the character pointer variable whose address you pass. The C string is NUL-terminated. The Python
string must not contain embedded null code points; if it does, a ValueError exception is raised. Unicode objects
are converted to C strings using 'utf-8' encoding. If this conversion fails, a UnicodeError is raised.

Note: This format does not accept bytes-like objects. If you want to accept filesystem paths and convert them to C
character strings, it is preferable to use the O& format with PyUnicode_FSConverter() as converter.

Changed in version 3.5: Previously, TypeError was raised when embedded null code points were encountered
in the Python string.

s* (str or bytes-like object) [Py_buffer] This format accepts Unicode objects as well as bytes-like objects. It fills a
Py_buffer structure provided by the caller. In this case the resulting C string may contain embedded NUL
bytes. Unicode objects are converted to C strings using 'utf-8' encoding.

s# (str, read-only bytes-like object) [const char *, Py_ssize_t] Like s*, except that it provides a borrowed
buffer. The result is stored into two C variables, the first one a pointer to a C string, the second one its length.
The string may contain embedded null bytes. Unicode objects are converted to C strings using 'utf-8' encod-
ing.

z (str or None) [const char *] Like s, but the Python object may also be None, in which case the C pointer is set to
NULL.

z* (str, bytes-like object or None) [Py_buffer] Like s*, but the Python object may also be None, in which case the
buf member of the Py_buffer structure is set to NULL.

76 Chapter 6. Utilities

The Python/C API, Release 3.11.4

z# (str, read-only bytes-like object or None) [const char *, Py_ssize_t] Like s#, but the Python object may
also be None, in which case the C pointer is set to NULL.

y (read-only bytes-like object) [const char *] This format converts a bytes-like object to a C pointer to a borrowed
character string; it does not accept Unicode objects. The bytes buffer must not contain embedded null bytes; if it
does, a ValueError exception is raised.
Changed in version 3.5: Previously, TypeError was raised when embedded null bytes were encountered in the
bytes buffer.

y* (bytes-like object) [Py_buffer] This variant on s* doesn’t accept Unicode objects, only bytes-like objects. This is
the recommended way to accept binary data.

y# (read-only bytes-like object) [const char *, Py_ssize_t] This variant ons# doesn’t accept Unicode objects, only
bytes-like objects.

S (bytes) [PyBytesObject *] Requires that the Python object is a bytes object, without attempting any conversion.
Raises TypeError if the object is not a bytes object. The C variable may also be declared as PyObject*.

Y (bytearray) [PyByteArrayObject *] Requires that the Python object is a bytearray object, without attempting
any conversion. RaisesTypeError if the object is not abytearray object. The C variablemay also be declared
as PyObject*.

u (str) [const Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer of Uni-
code characters. You must pass the address of a Py_UNICODE pointer variable, which will be filled with the
pointer to an existing Unicode buffer. Please note that the width of a Py_UNICODE character depends on compi-
lation options (it is either 16 or 32 bits). The Python string must not contain embedded null code points; if it does,
a ValueError exception is raised.
Changed in version 3.5: Previously, TypeError was raised when embedded null code points were encountered
in the Python string.
Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

u# (str) [const Py_UNICODE *, Py_ssize_t] This variant on u stores into two C variables, the first one a pointer
to a Unicode data buffer, the second one its length. This variant allows null code points.
Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

Z (str or None) [const Py_UNICODE *] Like u, but the Python object may also be None, in which case the
Py_UNICODE pointer is set to NULL.
Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

Z# (str or None) [const Py_UNICODE *, Py_ssize_t] Like u#, but the Python object may also be None, in
which case the Py_UNICODE pointer is set to NULL.
Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Py_UNICODE API; please
migrate to using PyUnicode_AsWideCharString().

U (str) [PyObject *] Requires that the Python object is a Unicode object, without attempting any conversion. Raises
TypeError if the object is not a Unicode object. The C variable may also be declared as PyObject*.

w* (read-write bytes-like object) [Py_buffer] This format accepts any object which implements the read-write buffer
interface. It fills a Py_buffer structure provided by the caller. The buffer may contain embedded null bytes.
The caller have to call PyBuffer_Release() when it is done with the buffer.

es (str) [const char *encoding, char **buffer] This variant on s is used for encoding Unicode into a character
buffer. It only works for encoded data without embedded NUL bytes.

6.6. Parsing arguments and building values 77

The Python/C API, Release 3.11.4

This format requires two arguments. The first is only used as input, and must be a const char* which points
to the name of an encoding as a NUL-terminated string, or NULL, in which case 'utf-8' encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument must be a char**; the
value of the pointer it references will be set to a buffer with the contents of the argument text. The text will be
encoded in the encoding specified by the first argument.
PyArg_ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust *buffer to reference the newly allocated storage. The caller is responsible for calling PyMem_Free() to
free the allocated buffer after use.

et (str, bytes or bytearray) [const char *encoding, char **buffer] Same as es except that byte string objects
are passed through without recoding them. Instead, the implementation assumes that the byte string object uses the
encoding passed in as parameter.

es# (str) [const char *encoding, char **buffer, Py_ssize_t *buffer_length] This variant on s# is used for en-
coding Unicode into a character buffer. Unlike the es format, this variant allows input data which contains NUL
characters.
It requires three arguments. The first is only used as input, and must be a const char*which points to the name
of an encoding as a NUL-terminated string, or NULL, in which case 'utf-8' encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument must be a char**; the value of the
pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in the
encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced integer
will be set to the number of bytes in the output buffer.
There are two modes of operation:
If *buffer points a NULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and set *buffer to reference the newly allocated storage. The caller is responsible for calling
PyMem_Free() to free the allocated buffer after usage.
If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg_ParseTuple() will use this
location as the buffer and interpret the initial value of *buffer_length as the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enough, a ValueError will be set.
In both cases, *buffer_length is set to the length of the encoded data without the trailing NUL byte.

et# (str, bytes or bytearray) [const char *encoding, char **buffer, Py_ssize_t *buffer_length] Same
as es# except that byte string objects are passed through without recoding them. Instead, the implementation
assumes that the byte string object uses the encoding passed in as parameter.

Numbers

b (int) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C unsigned
char.

B (int) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C unsigned
char.

h (int) [short int] Convert a Python integer to a C short int.
H (int) [unsigned short int] Convert a Python integer to a C unsigned short int, without overflow checking.
i (int) [int] Convert a Python integer to a plain C int.
I (int) [unsigned int] Convert a Python integer to a C unsigned int, without overflow checking.
l (int) [long int] Convert a Python integer to a C long int.
k (int) [unsigned long] Convert a Python integer to a C unsigned long without overflow checking.
L (int) [long long] Convert a Python integer to a C long long.

78 Chapter 6. Utilities

The Python/C API, Release 3.11.4

K (int) [unsigned long long] Convert a Python integer to a C unsigned long long without overflow checking.
n (int) [Py_ssize_t] Convert a Python integer to a C Py_ssize_t.
c (bytes or bytearray of length 1) [char] Convert a Python byte, represented as a bytes or bytearray object

of length 1, to a C char.
Changed in version 3.3: Allow bytearray objects.

C (str of length 1) [int] Convert a Python character, represented as a str object of length 1, to a C int.
f (float) [float] Convert a Python floating point number to a C float.
d (float) [double] Convert a Python floating point number to a C double.
D (complex) [Py_complex] Convert a Python complex number to a C Py_complex structure.

Other objects

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. A new strong reference to the object is not created (i.e. its reference
count is not increased). The pointer stored is not NULL.

O! (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar to O, but takes two
C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject*) into which the object pointer is stored. If the Python object does not have the required type,
TypeError is raised.

O& (object) [converter, anything] Convert a Python object to a C variable through a converter function. This takes two
arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to void*.
The converter function in turn is called as follows:

status = converter(object, address);

where object is the Python object to be converted and address is the void* argument that was passed to the
PyArg_Parse* function. The returned status should be 1 for a successful conversion and 0 if the conversion has
failed. When the conversion fails, the converter function should raise an exception and leave the content of address
unmodified.
If the converter returns Py_CLEANUP_SUPPORTED, it may get called a second time if the argument parsing
eventually fails, giving the converter a chance to release any memory that it had already allocated. In this second
call, the object parameter will be NULL; address will have the same value as in the original call.
Changed in version 3.1: Py_CLEANUP_SUPPORTED was added.

p (bool) [int] Tests the value passed in for truth (a boolean predicate) and converts the result to its equivalent C
true/false integer value. Sets the int to 1 if the expression was true and 0 if it was false. This accepts any valid
Python value. See truth for more information about how Python tests values for truth.
New in version 3.3.

(items) (tuple) [matching-items] The object must be a Python sequence whose length is the number of format
units in items. The C arguments must correspond to the individual format units in items. Format units for sequences
may be nested.

It is possible to pass “long” integers (integers whose value exceeds the platform’s LONG_MAX) however no proper range
checking is done— the most significant bits are silently truncated when the receiving field is too small to receive the value
(actually, the semantics are inherited from downcasts in C — your mileage may vary).
A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

6.6. Parsing arguments and building values 79

The Python/C API, Release 3.11.4

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding to
optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg_ParseTuple() does not touch the contents of the corresponding C variable(s).

$ PyArg_ParseTupleAndKeywords() only: Indicates that the remaining arguments in the Python argument list
are keyword-only. Currently, all keyword-only arguments must also be optional arguments, so | must always be
specified before $ in the format string.
New in version 3.3.

: The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception that PyArg_ParseTuple() raises).

; The list of format units ends here; the string after the semicolon is used as the error message instead of the default
error message. : and ; mutually exclude each other.

Note that any Python object references which are provided to the caller are borrowed references; do not release them (i.e.
do not decrement their reference count)!
Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding format
unit in that case.
For the conversion to succeed, the arg object must match the format and the format must be exhausted. On success,
the PyArg_Parse* functions return true, otherwise they return false and raise an appropriate exception. When the
PyArg_Parse* functions fail due to conversion failure in one of the format units, the variables at the addresses corre-
sponding to that and the following format units are left untouched.

API Functions

int PyArg_ParseTuple(PyObject *args, const char *format, ...)
Part of the Stable ABI. Parse the parameters of a function that takes only positional parameters into local variables.
Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse(PyObject *args, const char *format, va_list vargs)
Part of the Stable ABI. Identical to PyArg_ParseTuple(), except that it accepts a va_list rather than a variable
number of arguments.

int PyArg_ParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *keywords[], ...)
Part of the Stable ABI. Parse the parameters of a function that takes both positional and keyword parameters into
local variables. The keywords argument is a NULL-terminated array of keyword parameter names. Empty names
denote positional-only parameters. Returns true on success; on failure, it returns false and raises the appropriate
exception.
Changed in version 3.6: Added support for positional-only parameters.

int PyArg_VaParseTupleAndKeywords(PyObject *args, PyObject *kw, const char *format, char *keywords[],
va_list vargs)

Part of the Stable ABI. Identical to PyArg_ParseTupleAndKeywords(), except that it accepts a va_list
rather than a variable number of arguments.

int PyArg_ValidateKeywordArguments(PyObject*)
Part of the Stable ABI. Ensure that the keys in the keywords argument dictionary are strings. This is only needed
if PyArg_ParseTupleAndKeywords() is not used, since the latter already does this check.
New in version 3.2.

80 Chapter 6. Utilities

The Python/C API, Release 3.11.4

int PyArg_Parse(PyObject *args, const char *format, ...)
Part of the Stable ABI. Function used to deconstruct the argument lists of “old-style” functions— these are functions
which use the METH_OLDARGS parameter parsing method, which has been removed in Python 3. This is not
recommended for use in parameter parsing in new code, andmost code in the standard interpreter has beenmodified
to no longer use this for that purpose. It does remain a convenient way to decompose other tuples, however, and
may continue to be used for that purpose.

int PyArg_UnpackTuple(PyObject *args, const char *name, Py_ssize_t min, Py_ssize_t max, ...)
Part of the Stable ABI. A simpler form of parameter retrieval which does not use a format string to specify
the types of the arguments. Functions which use this method to retrieve their parameters should be declared
as METH_VARARGS in function or method tables. The tuple containing the actual parameters should be passed
as args; it must actually be a tuple. The length of the tuple must be at least min and no more than max; min and
max may be equal. Additional arguments must be passed to the function, each of which should be a pointer to a
PyObject* variable; these will be filled in with the values from args; they will contain borrowed references. The
variables which correspond to optional parameters not given by args will not be filled in; these should be initialized
by the caller. This function returns true on success and false if args is not a tuple or contains the wrong number of
elements; an exception will be set if there was a failure.
This is an example of the use of this function, taken from the sources for the _weakref helper module for weak
references:

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{

PyObject *object;
PyObject *callback = NULL;
PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref", 1, 2, &object, &callback)) {
result = PyWeakref_NewRef(object, callback);

}
return result;

}

The call to PyArg_UnpackTuple() in this example is entirely equivalent to this call to
PyArg_ParseTuple():

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

6.6.2 Building values

PyObject *Py_BuildValue(const char *format, ...)
Return value: New reference. Part of the Stable ABI. Create a new value based on a format string similar to those
accepted by the PyArg_Parse* family of functions and a sequence of values. Returns the value or NULL in the
case of an error; an exception will be raised if NULL is returned.
Py_BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two or more
format units. If the format string is empty, it returns None; if it contains exactly one format unit, it returns whatever
object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the format string.
When memory buffers are passed as parameters to supply data to build objects, as for the s and s# formats,
the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_BuildValue(). In other words, if your code invokes malloc() and passes the allocated memory to
Py_BuildValue(), your code is responsible for calling free() for that memory once Py_BuildValue()
returns.

6.6. Parsing arguments and building values 81

The Python/C API, Release 3.11.4

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.
The characters space, tab, colon and comma are ignored in format strings (but not within format units such as s#).
This can be used to make long format strings a tad more readable.
s (str or None) [const char *] Convert a null-terminated C string to a Python str object using 'utf-8'

encoding. If the C string pointer is NULL, None is used.
s# (str or None) [const char *, Py_ssize_t] Convert a C string and its length to a Python str object using

'utf-8' encoding. If the C string pointer is NULL, the length is ignored and None is returned.
y (bytes) [const char *] This converts a C string to a Python bytes object. If the C string pointer is NULL,

None is returned.
y# (bytes) [const char *, Py_ssize_t] This converts a C string and its lengths to a Python object. If the C

string pointer is NULL, None is returned.
z (str or None) [const char *] Same as s.
z# (str or None) [const char *, Py_ssize_t] Same as s#.
u (str) [const wchar_t *] Convert a null-terminated wchar_t buffer of Unicode (UTF-16 or UCS-4) data to

a Python Unicode object. If the Unicode buffer pointer is NULL, None is returned.
u# (str) [const wchar_t *, Py_ssize_t] Convert a Unicode (UTF-16 or UCS-4) data buffer and its length to

a Python Unicode object. If the Unicode buffer pointer is NULL, the length is ignored and None is returned.
U (str or None) [const char *] Same as s.
U# (str or None) [const char *, Py_ssize_t] Same as s#.
i (int) [int] Convert a plain C int to a Python integer object.
b (int) [char] Convert a plain C char to a Python integer object.
h (int) [short int] Convert a plain C short int to a Python integer object.
l (int) [long int] Convert a C long int to a Python integer object.
B (int) [unsigned char] Convert a C unsigned char to a Python integer object.
H (int) [unsigned short int] Convert a C unsigned short int to a Python integer object.
I (int) [unsigned int] Convert a C unsigned int to a Python integer object.
k (int) [unsigned long] Convert a C unsigned long to a Python integer object.
L (int) [long long] Convert a C long long to a Python integer object.
K (int) [unsigned long long] Convert a C unsigned long long to a Python integer object.
n (int) [Py_ssize_t] Convert a C Py_ssize_t to a Python integer.
c (bytes of length 1) [char] Convert a C int representing a byte to a Python bytes object of length 1.
C (str of length 1) [int] Convert a C int representing a character to Python str object of length 1.
d (float) [double] Convert a C double to a Python floating point number.
f (float) [float] Convert a C float to a Python floating point number.
D (complex) [Py_complex *] Convert a C Py_complex structure to a Python complex number.

82 Chapter 6. Utilities

The Python/C API, Release 3.11.4

O (object) [PyObject *] Pass a Python object untouched but create a new strong reference to it (i.e. its reference
count is incremented by one). If the object passed in is a NULL pointer, it is assumed that this was caused be-
cause the call producing the argument found an error and set an exception. Therefore, Py_BuildValue()
will return NULL but won’t raise an exception. If no exception has been raised yet, SystemError is set.

S (object) [PyObject *] Same as O.
N (object) [PyObject *] Same as O, except it doesn’t create a new strong reference. Useful when the object is

created by a call to an object constructor in the argument list.
O& (object) [converter, anything] Convert anything to a Python object through a converter function. The function

is called with anything (which should be compatible with void*) as its argument and should return a “new”
Python object, or NULL if an error occurred.

(items) (tuple) [matching-items] Convert a sequence of C values to a Python tuple with the same number
of items.

[items] (list) [matching-items] Convert a sequence of C values to a Python list with the same number of
items.

{items} (dict) [matching-items] Convert a sequence of C values to a Python dictionary. Each pair of con-
secutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, the SystemError exception is set and NULL returned.
PyObject *Py_VaBuildValue(const char *format, va_list vargs)

Return value: New reference. Part of the Stable ABI. Identical to Py_BuildValue(), except that it accepts a
va_list rather than a variable number of arguments.

6.7 String conversion and formatting

Functions for number conversion and formatted string output.
int PyOS_snprintf(char *str, size_t size, const char *format, ...)

Part of the Stable ABI. Output not more than size bytes to str according to the format string format and the extra
arguments. See the Unix man page snprintf(3).

int PyOS_vsnprintf(char *str, size_t size, const char *format, va_list va)
Part of the Stable ABI. Output not more than size bytes to str according to the format string format and the variable
argument list va. Unix man page vsnprintf(3).

PyOS_snprintf() and PyOS_vsnprintf() wrap the Standard C library functions snprintf() and
vsnprintf(). Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.
The wrappers ensure that str[size-1] is always '\0' upon return. They never write more than size bytes (including
the trailing '\0') into str. Both functions require that str != NULL, size > 0, format != NULL and size
< INT_MAX. Note that this means there is no equivalent to the C99n = snprintf(NULL, 0, ...)which would
determine the necessary buffer size.
The return value (rv) for these functions should be interpreted as follows:

• When 0 <= rv < size, the output conversion was successful and rv characters were written to str (excluding
the trailing '\0' byte at str[rv]).

• When rv >= size, the output conversion was truncated and a buffer with rv + 1 bytes would have been
needed to succeed. str[size-1] is '\0' in this case.

• When rv < 0, “something bad happened.” str[size-1] is '\0' in this case too, but the rest of str is
undefined. The exact cause of the error depends on the underlying platform.

6.7. String conversion and formatting 83

The Python/C API, Release 3.11.4

The following functions provide locale-independent string to number conversions.
double PyOS_string_to_double(const char *s, char **endptr, PyObject *overflow_exception)

Part of the Stable ABI. Convert a string s to a double, raising a Python exception on failure. The set of accepted
strings corresponds to the set of strings accepted by Python’s float() constructor, except that s must not have
leading or trailing whitespace. The conversion is independent of the current locale.
If endptr is NULL, convert the whole string. Raise ValueError and return -1.0 if the string is not a valid
representation of a floating-point number.
If endptr is not NULL, convert as much of the string as possible and set *endptr to point to the first unconverted
character. If no initial segment of the string is the valid representation of a floating-point number, set *endptr
to point to the beginning of the string, raise ValueError, and return -1.0.
If s represents a value that is too large to store in a float (for example, "1e500" is such a string on many platforms)
then if overflow_exception is NULL return Py_HUGE_VAL (with an appropriate sign) and don’t set any
exception. Otherwise, overflow_exception must point to a Python exception object; raise that exception
and return -1.0. In both cases, set *endptr to point to the first character after the converted value.
If any other error occurs during the conversion (for example an out-of-memory error), set the appropriate Python
exception and return -1.0.
New in version 3.1.

char *PyOS_double_to_string(double val, char format_code, int precision, int flags, int *ptype)
Part of the Stable ABI. Convert a double val to a string using supplied format_code, precision, and flags.
format_code must be one of 'e', 'E', 'f', 'F', 'g', 'G' or 'r'. For 'r', the supplied precision must be 0
and is ignored. The 'r' format code specifies the standard repr() format.
flags can be zero or more of the values Py_DTSF_SIGN, Py_DTSF_ADD_DOT_0, or Py_DTSF_ALT, or-ed
together:

• Py_DTSF_SIGN means to always precede the returned string with a sign character, even if val is non-
negative.

• Py_DTSF_ADD_DOT_0 means to ensure that the returned string will not look like an integer.
• Py_DTSF_ALT means to apply “alternate” formatting rules. See the documentation for the
PyOS_snprintf() '#' specifier for details.

If ptype is non-NULL, then the value it points to will be set to one ofPy_DTST_FINITE,Py_DTST_INFINITE,
or Py_DTST_NAN, signifying that val is a finite number, an infinite number, or not a number, respectively.
The return value is a pointer to buffer with the converted string or NULL if the conversion failed. The caller is
responsible for freeing the returned string by calling PyMem_Free().
New in version 3.1.

int PyOS_stricmp(const char *s1, const char *s2)
Case insensitive comparison of strings. The function works almost identically to strcmp() except that it ignores
the case.

int PyOS_strnicmp(const char *s1, const char *s2, Py_ssize_t size)
Case insensitive comparison of strings. The function works almost identically to strncmp() except that it ignores
the case.

84 Chapter 6. Utilities

The Python/C API, Release 3.11.4

6.8 Reflection

PyObject *PyEval_GetBuiltins(void)
Return value: Borrowed reference. Part of the Stable ABI.Return a dictionary of the builtins in the current execution
frame, or the interpreter of the thread state if no frame is currently executing.

PyObject *PyEval_GetLocals(void)
Return value: Borrowed reference. Part of the Stable ABI. Return a dictionary of the local variables in the current
execution frame, or NULL if no frame is currently executing.

PyObject *PyEval_GetGlobals(void)
Return value: Borrowed reference. Part of the Stable ABI. Return a dictionary of the global variables in the current
execution frame, or NULL if no frame is currently executing.

PyFrameObject *PyEval_GetFrame(void)
Return value: Borrowed reference. Part of the Stable ABI. Return the current thread state’s frame, which is NULL
if no frame is currently executing.
See also PyThreadState_GetFrame().

const char *PyEval_GetFuncName(PyObject *func)
Part of the Stable ABI. Return the name of func if it is a function, class or instance object, else the name of funcs
type.

const char *PyEval_GetFuncDesc(PyObject *func)
Part of the Stable ABI. Return a description string, depending on the type of func. Return values include
“()” for functions and methods, ” constructor”, ” instance”, and ” object”. Concatenated with the result of
PyEval_GetFuncName(), the result will be a description of func.

6.9 Codec registry and support functions

int PyCodec_Register(PyObject *search_function)
Part of the Stable ABI. Register a new codec search function.
As side effect, this tries to load the encodings package, if not yet done, to make sure that it is always first in the
list of search functions.

int PyCodec_Unregister(PyObject *search_function)
Part of the Stable ABI since version 3.10. Unregister a codec search function and clear the registry’s cache. If the
search function is not registered, do nothing. Return 0 on success. Raise an exception and return -1 on error.
New in version 3.10.

int PyCodec_KnownEncoding(const char *encoding)
Part of the Stable ABI. Return 1 or 0 depending on whether there is a registered codec for the given encoding. This
function always succeeds.

PyObject *PyCodec_Encode(PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Generic codec based encoding API.
object is passed through the encoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

6.8. Reflection 85

The Python/C API, Release 3.11.4

PyObject *PyCodec_Decode(PyObject *object, const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Generic codec based decoding API.
object is passed through the decoder function found for the given encoding using the error handling method defined
by errors. errors may be NULL to use the default method defined for the codec. Raises a LookupError if no
encoder can be found.

6.9.1 Codec lookup API

In the following functions, the encoding string is looked up converted to all lower-case characters, which makes encodings
looked up through this mechanism effectively case-insensitive. If no codec is found, a KeyError is set and NULL
returned.
PyObject *PyCodec_Encoder(const char *encoding)

Return value: New reference. Part of the Stable ABI. Get an encoder function for the given encoding.
PyObject *PyCodec_Decoder(const char *encoding)

Return value: New reference. Part of the Stable ABI. Get a decoder function for the given encoding.
PyObject *PyCodec_IncrementalEncoder(const char *encoding, const char *errors)

Return value: New reference. Part of the Stable ABI. Get an IncrementalEncoder object for the given
encoding.

PyObject *PyCodec_IncrementalDecoder(const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Get an IncrementalDecoder object for the given
encoding.

PyObject *PyCodec_StreamReader(const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. Part of the Stable ABI. Get a StreamReader factory function for the given en-
coding.

PyObject *PyCodec_StreamWriter(const char *encoding, PyObject *stream, const char *errors)
Return value: New reference. Part of the Stable ABI. Get a StreamWriter factory function for the given en-
coding.

6.9.2 Registry API for Unicode encoding error handlers

int PyCodec_RegisterError(const char *name, PyObject *error)
Part of the Stable ABI. Register the error handling callback function error under the given name. This callback
function will be called by a codec when it encounters unencodable characters/undecodable bytes and name is spec-
ified as the error parameter in the call to the encode/decode function.
The callback gets a single argument, an instance of UnicodeEncodeError, UnicodeDecodeError or
UnicodeTranslateError that holds information about the problematic sequence of characters or bytes and
their offset in the original string (see Unicode Exception Objects for functions to extract this information). The call-
backmust either raise the given exception, or return a two-item tuple containing the replacement for the problematic
sequence, and an integer giving the offset in the original string at which encoding/decoding should be resumed.
Return 0 on success, -1 on error.

PyObject *PyCodec_LookupError(const char *name)
Return value: New reference. Part of the Stable ABI. Lookup the error handling callback function registered under
name. As a special case NULL can be passed, in which case the error handling callback for “strict” will be returned.

86 Chapter 6. Utilities

The Python/C API, Release 3.11.4

PyObject *PyCodec_StrictErrors(PyObject *exc)
Return value: Always NULL. Part of the Stable ABI. Raise exc as an exception.

PyObject *PyCodec_IgnoreErrors(PyObject *exc)
Return value: New reference. Part of the Stable ABI. Ignore the unicode error, skipping the faulty input.

PyObject *PyCodec_ReplaceErrors(PyObject *exc)
Return value: New reference. Part of the Stable ABI. Replace the unicode encode error with ? or U+FFFD.

PyObject *PyCodec_XMLCharRefReplaceErrors(PyObject *exc)
Return value: New reference. Part of the Stable ABI. Replace the unicode encode error with XML character
references.

PyObject *PyCodec_BackslashReplaceErrors(PyObject *exc)
Return value: New reference. Part of the Stable ABI. Replace the unicode encode error with backslash escapes (\x,
\u and \U).

PyObject *PyCodec_NameReplaceErrors(PyObject *exc)
Return value: New reference. Part of the Stable ABI since version 3.7. Replace the unicode encode error with
\N{...} escapes.
New in version 3.5.

6.9. Codec registry and support functions 87

The Python/C API, Release 3.11.4

88 Chapter 6. Utilities

CHAPTER

SEVEN

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will raise a
Python exception.
It is not possible to use these functions on objects that are not properly initialized, such as a list object that has been created
by PyList_New(), but whose items have not been set to some non-NULL value yet.

7.1 Object Protocol

PyObject *Py_NotImplemented
The NotImplemented singleton, used to signal that an operation is not implemented for the given type combi-
nation.

Py_RETURN_NOTIMPLEMENTED

Properly handle returning Py_NotImplemented from within a C function (that is, create a new strong reference
to NotImplemented and return it).

int PyObject_Print(PyObject *o, FILE *fp, int flags)
Print an object o, on file fp. Returns -1 on error. The flags argument is used to enable certain printing options.
The only option currently supported is Py_PRINT_RAW; if given, the str() of the object is written instead of
the repr().

int PyObject_HasAttr(PyObject *o, PyObject *attr_name)
Part of the Stable ABI. Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python
expression hasattr(o, attr_name). This function always succeeds.

Note: Exceptions that occur when this calls __getattr__() and __getattribute__() methods are
silently ignored. For proper error handling, use PyObject_GetAttr() instead.

int PyObject_HasAttrString(PyObject *o, const char *attr_name)
Part of the Stable ABI. Returns 1 if o has the attribute attr_name, and 0 otherwise. This is equivalent to the Python
expression hasattr(o, attr_name). This function always succeeds.

Note: Exceptions that occur when this calls __getattr__() and __getattribute__() meth-
ods or while creating the temporary str object are silently ignored. For proper error handling, use
PyObject_GetAttrString() instead.

89

The Python/C API, Release 3.11.4

PyObject *PyObject_GetAttr(PyObject *o, PyObject *attr_name)
Return value: New reference. Part of the Stable ABI. Retrieve an attribute named attr_name from object o. Returns
the attribute value on success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject *PyObject_GetAttrString(PyObject *o, const char *attr_name)
Return value: New reference. Part of the Stable ABI. Retrieve an attribute named attr_name from object o. Returns
the attribute value on success, or NULL on failure. This is the equivalent of the Python expression o.attr_name.

PyObject *PyObject_GenericGetAttr(PyObject *o, PyObject *name)
Return value: New reference. Part of the Stable ABI. Generic attribute getter function that is meant to be put into a
type object’s tp_getattro slot. It looks for a descriptor in the dictionary of classes in the object’s MRO as well
as an attribute in the object’s __dict__ (if present). As outlined in descriptors, data descriptors take preference
over instance attributes, while non-data descriptors don’t. Otherwise, an AttributeError is raised.

int PyObject_SetAttr(PyObject *o, PyObject *attr_name, PyObject *v)
Part of the Stable ABI. Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception
and return -1 on failure; return 0 on success. This is the equivalent of the Python statement o.attr_name =
v.
If v is NULL, the attribute is deleted. This behaviour is deprecated in favour of using PyObject_DelAttr(),
but there are currently no plans to remove it.

int PyObject_SetAttrString(PyObject *o, const char *attr_name, PyObject *v)
Part of the Stable ABI. Set the value of the attribute named attr_name, for object o, to the value v. Raise an exception
and return -1 on failure; return 0 on success. This is the equivalent of the Python statement o.attr_name =
v.
If v is NULL, the attribute is deleted, but this feature is deprecated in favour of using
PyObject_DelAttrString().

int PyObject_GenericSetAttr(PyObject *o, PyObject *name, PyObject *value)
Part of the Stable ABI. Generic attribute setter and deleter function that is meant to be put into a type object’s
tp_setattro slot. It looks for a data descriptor in the dictionary of classes in the object’s MRO, and if found
it takes preference over setting or deleting the attribute in the instance dictionary. Otherwise, the attribute is set or
deleted in the object’s __dict__ (if present). On success, 0 is returned, otherwise an AttributeError is
raised and -1 is returned.

int PyObject_DelAttr(PyObject *o, PyObject *attr_name)
Delete attribute named attr_name, for object o. Returns-1 on failure. This is the equivalent of the Python statement
del o.attr_name.

int PyObject_DelAttrString(PyObject *o, const char *attr_name)
Delete attribute named attr_name, for object o. Returns-1 on failure. This is the equivalent of the Python statement
del o.attr_name.

PyObject *PyObject_GenericGetDict(PyObject *o, void *context)
Return value: New reference. Part of the Stable ABI since version 3.10. A generic implementation for the getter of
a __dict__ descriptor. It creates the dictionary if necessary.
This function may also be called to get the __dict__ of the object o. Pass NULL for context when call-
ing it. Since this function may need to allocate memory for the dictionary, it may be more efficient to call
PyObject_GetAttr() when accessing an attribute on the object.
On failure, returns NULL with an exception set.
New in version 3.3.

90 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.11.4

int PyObject_GenericSetDict(PyObject *o, PyObject *value, void *context)
Part of the Stable ABI since version 3.7. A generic implementation for the setter of a __dict__ descriptor. This
implementation does not allow the dictionary to be deleted.
New in version 3.3.

PyObject **_PyObject_GetDictPtr(PyObject *obj)
Return a pointer to __dict__ of the object obj. If there is no __dict__, return NULL without setting an
exception.
This function may need to allocate memory for the dictionary, so it may be more efficient to call
PyObject_GetAttr() when accessing an attribute on the object.

PyObject *PyObject_RichCompare(PyObject *o1, PyObject *o2, int opid)
Return value: New reference. Part of the Stable ABI. Compare the values of o1 and o2 using the operation specified
by opid, which must be one of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==,
!=, >, or >= respectively. This is the equivalent of the Python expression o1 op o2, where op is the operator
corresponding to opid. Returns the value of the comparison on success, or NULL on failure.

int PyObject_RichCompareBool(PyObject *o1, PyObject *o2, int opid)
Part of the Stable ABI. Compare the values of o1 and o2 using the operation specified by opid, which must be one
of Py_LT, Py_LE, Py_EQ, Py_NE, Py_GT, or Py_GE, corresponding to <, <=, ==, !=, >, or >= respectively.
Returns -1 on error, 0 if the result is false, 1 otherwise. This is the equivalent of the Python expression o1 op
o2, where op is the operator corresponding to opid.

Note: If o1 and o2 are the same object, PyObject_RichCompareBool() will always return 1 for Py_EQ and 0
for Py_NE.

PyObject *PyObject_Format(PyObject *obj, PyObject *format_spec)
Part of the Stable ABI. Format obj using format_spec. This is equivalent to the Python expression format(obj,
format_spec).
format_spec may be NULL. In this case the call is equivalent to format(obj). Returns the formatted string on
success, NULL on failure.

PyObject *PyObject_Repr(PyObject *o)
Return value: New reference. Part of the Stable ABI.Compute a string representation of object o. Returns the string
representation on success, NULL on failure. This is the equivalent of the Python expression repr(o). Called by
the repr() built-in function.
Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

PyObject *PyObject_ASCII(PyObject *o)
Return value: New reference. Part of the Stable ABI. As PyObject_Repr(), compute a string representation
of object o, but escape the non-ASCII characters in the string returned by PyObject_Repr() with \x, \u or
\U escapes. This generates a string similar to that returned by PyObject_Repr() in Python 2. Called by the
ascii() built-in function.

PyObject *PyObject_Str(PyObject *o)
Return value: New reference. Part of the Stable ABI. Compute a string representation of object o. Returns the
string representation on success, NULL on failure. This is the equivalent of the Python expression str(o). Called
by the str() built-in function and, therefore, by the print() function.
Changed in version 3.4: This function now includes a debug assertion to help ensure that it does not silently discard
an active exception.

7.1. Object Protocol 91

The Python/C API, Release 3.11.4

PyObject *PyObject_Bytes(PyObject *o)
Return value: New reference. Part of the Stable ABI. Compute a bytes representation of object o. NULL is returned
on failure and a bytes object on success. This is equivalent to the Python expression bytes(o), when o is not an
integer. Unlike bytes(o), a TypeError is raised when o is an integer instead of a zero-initialized bytes object.

int PyObject_IsSubclass(PyObject *derived, PyObject *cls)
Part of the Stable ABI. Return 1 if the class derived is identical to or derived from the class cls, otherwise return
0. In case of an error, return -1.
If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.
If cls has a __subclasscheck__() method, it will be called to determine the subclass status as described
in PEP 3119. Otherwise, derived is a subclass of cls if it is a direct or indirect subclass, i.e. contained in cls.
__mro__.
Normally only class objects, i.e. instances of type or a derived class, are considered classes. However, objects
can override this by having a __bases__ attribute (which must be a tuple of base classes).

int PyObject_IsInstance(PyObject *inst, PyObject *cls)
Part of the Stable ABI. Return 1 if inst is an instance of the class cls or a subclass of cls, or 0 if not. On error,
returns -1 and sets an exception.
If cls is a tuple, the check will be done against every entry in cls. The result will be 1 when at least one of the checks
returns 1, otherwise it will be 0.
If cls has a __instancecheck__() method, it will be called to determine the subclass status as described in
PEP 3119. Otherwise, inst is an instance of cls if its class is a subclass of cls.
An instance inst can override what is considered its class by having a __class__ attribute.
An object cls can override if it is considered a class, and what its base classes are, by having a __bases__ attribute
(which must be a tuple of base classes).

Py_hash_t PyObject_Hash(PyObject *o)
Part of the Stable ABI. Compute and return the hash value of an object o. On failure, return -1. This is the
equivalent of the Python expression hash(o).
Changed in version 3.2: The return type is now Py_hash_t. This is a signed integer the same size as Py_ssize_t.

Py_hash_t PyObject_HashNotImplemented(PyObject *o)
Part of the Stable ABI. Set a TypeError indicating that type(o) is not hashable and return -1. This function
receives special treatment when stored in a tp_hash slot, allowing a type to explicitly indicate to the interpreter
that it is not hashable.

int PyObject_IsTrue(PyObject *o)
Part of the Stable ABI. Returns 1 if the object o is considered to be true, and 0 otherwise. This is equivalent to the
Python expression not not o. On failure, return -1.

int PyObject_Not(PyObject *o)
Part of the Stable ABI. Returns 0 if the object o is considered to be true, and 1 otherwise. This is equivalent to the
Python expression not o. On failure, return -1.

PyObject *PyObject_Type(PyObject *o)
Return value: New reference. Part of the Stable ABI.When o is non-NULL, returns a type object corresponding to
the object type of object o. On failure, raises SystemError and returns NULL. This is equivalent to the Python
expression type(o). This function creates a new strong reference to the return value. There’s really no reason to
use this function instead of the Py_TYPE() function, which returns a pointer of type PyTypeObject*, except
when a new strong reference is needed.

92 Chapter 7. Abstract Objects Layer

https://peps.python.org/pep-3119/
https://peps.python.org/pep-3119/

The Python/C API, Release 3.11.4

int PyObject_TypeCheck(PyObject *o, PyTypeObject *type)
Return non-zero if the object o is of type type or a subtype of type, and 0 otherwise. Both parameters must be
non-NULL.

Py_ssize_t PyObject_Size(PyObject *o)
Py_ssize_t PyObject_Length(PyObject *o)

Part of the Stable ABI. Return the length of object o. If the object o provides either the sequence and mapping
protocols, the sequence length is returned. On error, -1 is returned. This is the equivalent to the Python expression
len(o).

Py_ssize_t PyObject_LengthHint(PyObject *o, Py_ssize_t defaultvalue)
Return an estimated length for the object o. First try to return its actual length, then an estimate using
__length_hint__(), and finally return the default value. On error return -1. This is the equivalent to the
Python expression operator.length_hint(o, defaultvalue).
New in version 3.4.

PyObject *PyObject_GetItem(PyObject *o, PyObject *key)
Return value: New reference. Part of the Stable ABI. Return element of o corresponding to the object key or NULL
on failure. This is the equivalent of the Python expression o[key].

int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *v)
Part of the Stable ABI.Map the object key to the value v. Raise an exception and return -1 on failure; return 0 on
success. This is the equivalent of the Python statement o[key] = v. This function does not steal a reference to
v.

int PyObject_DelItem(PyObject *o, PyObject *key)
Part of the Stable ABI. Remove the mapping for the object key from the object o. Return -1 on failure. This is
equivalent to the Python statement del o[key].

PyObject *PyObject_Dir(PyObject *o)
Return value: New reference. Part of the Stable ABI. This is equivalent to the Python expression dir(o), returning
a (possibly empty) list of strings appropriate for the object argument, or NULL if there was an error. If the argument
is NULL, this is like the Python dir(), returning the names of the current locals; in this case, if no execution frame
is active then NULL is returned but PyErr_Occurred() will return false.

PyObject *PyObject_GetIter(PyObject *o)
Return value: New reference. Part of the Stable ABI. This is equivalent to the Python expression iter(o).
It returns a new iterator for the object argument, or the object itself if the object is already an iterator. Raises
TypeError and returns NULL if the object cannot be iterated.

PyObject *PyObject_GetAIter(PyObject *o)
Return value: New reference. Part of the Stable ABI since version 3.10. This is the equivalent to the Python
expression aiter(o). Takes an AsyncIterable object and returns an AsyncIterator for it. This is
typically a new iterator but if the argument is an AsyncIterator, this returns itself. Raises TypeError and
returns NULL if the object cannot be iterated.
New in version 3.10.

7.1. Object Protocol 93

The Python/C API, Release 3.11.4

7.2 Call Protocol

CPython supports two different calling protocols: tp_call and vectorcall.

7.2.1 The tp_call Protocol

Instances of classes that set tp_call are callable. The signature of the slot is:

PyObject *tp_call(PyObject *callable, PyObject *args, PyObject *kwargs);

A call is made using a tuple for the positional arguments and a dict for the keyword arguments, similarly to
callable(*args, **kwargs) in Python code. args must be non-NULL (use an empty tuple if there are no
arguments) but kwargs may be NULL if there are no keyword arguments.
This convention is not only used by tp_call: tp_new and tp_init also pass arguments this way.
To call an object, use PyObject_Call() or another call API.

7.2.2 The Vectorcall Protocol

New in version 3.9.
The vectorcall protocol was introduced in PEP 590 as an additional protocol for making calls more efficient.
As rule of thumb, CPython will prefer the vectorcall for internal calls if the callable supports it. However, this is not a hard
rule. Additionally, some third-party extensions use tp_call directly (rather than using PyObject_Call()). Therefore,
a class supporting vectorcall must also implement tp_call. Moreover, the callable must behave the same regardless of
which protocol is used. The recommended way to achieve this is by setting tp_call to PyVectorcall_Call().
This bears repeating:

Warning: A class supporting vectorcallmust also implement tp_call with the same semantics.

A class should not implement vectorcall if that would be slower than tp_call. For example, if the callee needs to convert
the arguments to an args tuple and kwargs dict anyway, then there is no point in implementing vectorcall.
Classes can implement the vectorcall protocol by enabling the Py_TPFLAGS_HAVE_VECTORCALL flag and setting
tp_vectorcall_offset to the offset inside the object structure where a vectorcallfunc appears. This is a pointer
to a function with the following signature:
typedef PyObject *(*vectorcallfunc)(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

• callable is the object being called.
• args is a C array consisting of the positional arguments followed by the values of the keyword arguments.

This can be NULL if there are no arguments.
• nargsf is the number of positional arguments plus possibly the PY_VECTORCALL_ARGUMENTS_OFFSET

flag. To get the actual number of positional arguments from nargsf, use PyVectorcall_NARGS().
• kwnames is a tuple containing the names of the keyword arguments; in other words, the keys of the kwargs

dict. These names must be strings (instances of str or a subclass) and they must be unique. If there are no
keyword arguments, then kwnames can instead be NULL.

94 Chapter 7. Abstract Objects Layer

https://peps.python.org/pep-0590/

The Python/C API, Release 3.11.4

PY_VECTORCALL_ARGUMENTS_OFFSET

If this flag is set in a vectorcall nargsf argument, the callee is allowed to temporarily change args[-1]. In other
words, args points to argument 1 (not 0) in the allocated vector. The callee must restore the value of args[-1]
before returning.
For PyObject_VectorcallMethod(), this flag means instead that args[0] may be changed.
Whenever they can do so cheaply (without additional allocation), callers are encouraged to use
PY_VECTORCALL_ARGUMENTS_OFFSET. Doing so will allow callables such as bound methods to make their
onward calls (which include a prepended self argument) very efficiently.

To call an object that implements vectorcall, use a call API function as with any other callable.
PyObject_Vectorcall() will usually be most efficient.

Note: In CPython 3.8, the vectorcall API and related functions were available provisionally under
names with a leading underscore: _PyObject_Vectorcall, _Py_TPFLAGS_HAVE_VECTORCALL,
_PyObject_VectorcallMethod, _PyVectorcall_Function, _PyObject_CallOneArg,
_PyObject_CallMethodNoArgs, _PyObject_CallMethodOneArg. Additionally,
PyObject_VectorcallDict was available as _PyObject_FastCallDict. The old names are still
defined as aliases of the new, non-underscored names.

Recursion Control

When using tp_call, callees do not need to worry about recursion: CPython uses Py_EnterRecursiveCall() and
Py_LeaveRecursiveCall() for calls made using tp_call.
For efficiency, this is not the case for calls done using vectorcall: the callee should use Py_EnterRecursiveCall and
Py_LeaveRecursiveCall if needed.

Vectorcall Support API

Py_ssize_t PyVectorcall_NARGS(size_t nargsf)
Given a vectorcall nargsf argument, return the actual number of arguments. Currently equivalent to:

(Py_ssize_t)(nargsf & ~PY_VECTORCALL_ARGUMENTS_OFFSET)

However, the function PyVectorcall_NARGS should be used to allow for future extensions.
New in version 3.8.

vectorcallfunc PyVectorcall_Function(PyObject *op)
If op does not support the vectorcall protocol (either because the type does not or because the specific instance
does not), return NULL. Otherwise, return the vectorcall function pointer stored in op. This function never raises
an exception.
This is mostly useful to check whether or not op supports vectorcall, which can be done by checking
PyVectorcall_Function(op) != NULL.
New in version 3.9.

PyObject *PyVectorcall_Call(PyObject *callable, PyObject *tuple, PyObject *dict)
Call callable’s vectorcallfunc with positional and keyword arguments given in a tuple and dict, respectively.
This is a specialized function, intended to be put in the tp_call slot or be used in an implementation of
tp_call. It does not check the Py_TPFLAGS_HAVE_VECTORCALL flag and it does not fall back to
tp_call.

7.2. Call Protocol 95

The Python/C API, Release 3.11.4

New in version 3.8.

7.2.3 Object Calling API

Various functions are available for calling a Python object. Each converts its arguments to a convention supported by the
called object – either tp_call or vectorcall. In order to do as little conversion as possible, pick one that best fits the format
of data you have available.
The following table summarizes the available functions; please see individual documentation for details.

Function callable args kwargs
PyObject_Call() PyObject * tuple dict/NULL
PyObject_CallNoArgs() PyObject * — —
PyObject_CallOneArg() PyObject * 1 object —
PyObject_CallObject() PyObject * tuple/NULL —
PyObject_CallFunction() PyObject * format —
PyObject_CallMethod() obj + char* format —
PyObject_CallFunctionObjArgs() PyObject * variadic —
PyObject_CallMethodObjArgs() obj + name variadic —
PyObject_CallMethodNoArgs() obj + name — —
PyObject_CallMethodOneArg() obj + name 1 object —
PyObject_Vectorcall() PyObject * vectorcall vectorcall
PyObject_VectorcallDict() PyObject * vectorcall dict/NULL
PyObject_VectorcallMethod() arg + name vectorcall vectorcall

PyObject *PyObject_Call(PyObject *callable, PyObject *args, PyObject *kwargs)
Return value: New reference. Part of the Stable ABI. Call a callable Python object callable, with arguments given
by the tuple args, and named arguments given by the dictionary kwargs.
argsmust not beNULL; use an empty tuple if no arguments are needed. If no named arguments are needed, kwargs
can be NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(*args, **kwargs).

PyObject *PyObject_CallNoArgs(PyObject *callable)
Part of the Stable ABI since version 3.10. Call a callable Python object callable without any arguments. It is the
most efficient way to call a callable Python object without any argument.
Return the result of the call on success, or raise an exception and return NULL on failure.
New in version 3.9.

PyObject *PyObject_CallOneArg(PyObject *callable, PyObject *arg)
Call a callable Python object callable with exactly 1 positional argument arg and no keyword arguments.
Return the result of the call on success, or raise an exception and return NULL on failure.
New in version 3.9.

PyObject *PyObject_CallObject(PyObject *callable, PyObject *args)
Return value: New reference. Part of the Stable ABI. Call a callable Python object callable, with arguments given
by the tuple args. If no arguments are needed, then args can be NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(*args).

96 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.11.4

PyObject *PyObject_CallFunction(PyObject *callable, const char *format, ...)
Return value: New reference. Part of the Stable ABI. Call a callable Python object callable, with a variable number
of C arguments. The C arguments are described using a Py_BuildValue() style format string. The format
can be NULL, indicating that no arguments are provided.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(*args).
Note that if you only pass PyObject* args, PyObject_CallFunctionObjArgs() is a faster alternative.
Changed in version 3.4: The type of format was changed from char *.

PyObject *PyObject_CallMethod(PyObject *obj, const char *name, const char *format, ...)
Return value: New reference. Part of the Stable ABI. Call the method named name of object obj with a variable
number of C arguments. The C arguments are described by a Py_BuildValue() format string that should
produce a tuple.
The format can be NULL, indicating that no arguments are provided.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: obj.name(arg1, arg2, ...).
Note that if you only pass PyObject* args, PyObject_CallMethodObjArgs() is a faster alternative.
Changed in version 3.4: The types of name and format were changed from char *.

PyObject *PyObject_CallFunctionObjArgs(PyObject *callable, ...)
Return value: New reference. Part of the Stable ABI. Call a callable Python object callable, with a variable number
of PyObject* arguments. The arguments are provided as a variable number of parameters followed by NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.
This is the equivalent of the Python expression: callable(arg1, arg2, ...).

PyObject *PyObject_CallMethodObjArgs(PyObject *obj, PyObject *name, ...)
Return value: New reference. Part of the Stable ABI. Call a method of the Python object obj, where the name of the
method is given as a Python string object in name. It is called with a variable number of PyObject* arguments.
The arguments are provided as a variable number of parameters followed by NULL.
Return the result of the call on success, or raise an exception and return NULL on failure.

PyObject *PyObject_CallMethodNoArgs(PyObject *obj, PyObject *name)
Call a method of the Python object obj without arguments, where the name of the method is given as a Python
string object in name.
Return the result of the call on success, or raise an exception and return NULL on failure.
New in version 3.9.

PyObject *PyObject_CallMethodOneArg(PyObject *obj, PyObject *name, PyObject *arg)
Call a method of the Python object obj with a single positional argument arg, where the name of the method is
given as a Python string object in name.
Return the result of the call on success, or raise an exception and return NULL on failure.
New in version 3.9.

PyObject *PyObject_Vectorcall(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject *kwnames)
Call a callable Python object callable. The arguments are the same as for vectorcallfunc. If callable supports
vectorcall, this directly calls the vectorcall function stored in callable.
Return the result of the call on success, or raise an exception and return NULL on failure.

7.2. Call Protocol 97

The Python/C API, Release 3.11.4

New in version 3.9.
PyObject *PyObject_VectorcallDict(PyObject *callable, PyObject *const *args, size_t nargsf, PyObject

*kwdict)
Call callable with positional arguments passed exactly as in the vectorcall protocol, but with keyword arguments
passed as a dictionary kwdict. The args array contains only the positional arguments.
Regardless of which protocol is used internally, a conversion of arguments needs to be done. Therefore, this
function should only be used if the caller already has a dictionary ready to use for the keyword arguments, but not
a tuple for the positional arguments.
New in version 3.9.

PyObject *PyObject_VectorcallMethod(PyObject *name, PyObject *const *args, size_t nargsf, PyObject
*kwnames)

Call a method using the vectorcall calling convention. The name of the method is given as a Python string name.
The object whose method is called is args[0], and the args array starting at args[1] represents the arguments of
the call. There must be at least one positional argument. nargsf is the number of positional arguments including
args[0], plus PY_VECTORCALL_ARGUMENTS_OFFSET if the value of args[0]may temporarily be changed.
Keyword arguments can be passed just like in PyObject_Vectorcall().
If the object has the Py_TPFLAGS_METHOD_DESCRIPTOR feature, this will call the unbound method object
with the full args vector as arguments.
Return the result of the call on success, or raise an exception and return NULL on failure.
New in version 3.9.

7.2.4 Call Support API

int PyCallable_Check(PyObject *o)
Part of the Stable ABI. Determine if the object o is callable. Return 1 if the object is callable and 0 otherwise.
This function always succeeds.

7.3 Number Protocol

int PyNumber_Check(PyObject *o)
Part of the Stable ABI. Returns 1 if the object o provides numeric protocols, and false otherwise. This function
always succeeds.
Changed in version 3.8: Returns 1 if o is an index integer.

PyObject *PyNumber_Add(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of adding o1 and o2, or NULL on failure.
This is the equivalent of the Python expression o1 + o2.

PyObject *PyNumber_Subtract(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of subtracting o2 from o1, or NULL on
failure. This is the equivalent of the Python expression o1 - o2.

PyObject *PyNumber_Multiply(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of multiplying o1 and o2, or NULL on
failure. This is the equivalent of the Python expression o1 * o2.

98 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.11.4

PyObject *PyNumber_MatrixMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI since version 3.7. Returns the result of matrix multiplication
on o1 and o2, or NULL on failure. This is the equivalent of the Python expression o1 @ o2.
New in version 3.5.

PyObject *PyNumber_FloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Return the floor of o1 divided by o2, or NULL on failure. This
is the equivalent of the Python expression o1 // o2.

PyObject *PyNumber_TrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Return a reasonable approximation for the mathematical value
of o1 divided by o2, or NULL on failure. The return value is “approximate” because binary floating point numbers
are approximate; it is not possible to represent all real numbers in base two. This function can return a floating
point value when passed two integers. This is the equivalent of the Python expression o1 / o2.

PyObject *PyNumber_Remainder(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the remainder of dividing o1 by o2, or NULL on
failure. This is the equivalent of the Python expression o1 % o2.

PyObject *PyNumber_Divmod(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. See the built-in function divmod(). Returns NULL on
failure. This is the equivalent of the Python expression divmod(o1, o2).

PyObject *PyNumber_Power(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference. Part of the Stable ABI. See the built-in function pow(). Returns NULL on failure.
This is the equivalent of the Python expression pow(o1, o2, o3), where o3 is optional. If o3 is to be ignored,
pass Py_None in its place (passing NULL for o3 would cause an illegal memory access).

PyObject *PyNumber_Negative(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns the negation of o on success, or NULL on failure.
This is the equivalent of the Python expression -o.

PyObject *PyNumber_Positive(PyObject *o)
Return value: New reference. Part of the Stable ABI.Returns o on success, orNULL on failure. This is the equivalent
of the Python expression +o.

PyObject *PyNumber_Absolute(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns the absolute value of o, or NULL on failure. This is
the equivalent of the Python expression abs(o).

PyObject *PyNumber_Invert(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns the bitwise negation of o on success, or NULL on
failure. This is the equivalent of the Python expression ~o.

PyObject *PyNumber_Lshift(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of left shifting o1 by o2 on success, or
NULL on failure. This is the equivalent of the Python expression o1 << o2.

PyObject *PyNumber_Rshift(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of right shifting o1 by o2 on success, or
NULL on failure. This is the equivalent of the Python expression o1 >> o2.

PyObject *PyNumber_And(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise and” of o1 and o2 on success and NULL
on failure. This is the equivalent of the Python expression o1 & o2.

7.3. Number Protocol 99

The Python/C API, Release 3.11.4

PyObject *PyNumber_Xor(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise exclusive or” of o1 by o2 on success, or
NULL on failure. This is the equivalent of the Python expression o1 ^ o2.

PyObject *PyNumber_Or(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise or” of o1 and o2 on success, or NULL
on failure. This is the equivalent of the Python expression o1 | o2.

PyObject *PyNumber_InPlaceAdd(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of adding o1 and o2, or NULL on failure.
The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 += o2.

PyObject *PyNumber_InPlaceSubtract(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of subtracting o2 from o1, or NULL on
failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 -=
o2.

PyObject *PyNumber_InPlaceMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of multiplying o1 and o2, or NULL on
failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 *=
o2.

PyObject *PyNumber_InPlaceMatrixMultiply(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI since version 3.7. Returns the result of matrix multiplication
on o1 and o2, or NULL on failure. The operation is done in-place when o1 supports it. This is the equivalent of the
Python statement o1 @= o2.
New in version 3.5.

PyObject *PyNumber_InPlaceFloorDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the mathematical floor of dividing o1 by o2, or NULL
on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1
//= o2.

PyObject *PyNumber_InPlaceTrueDivide(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Return a reasonable approximation for the mathematical value
of o1 divided by o2, or NULL on failure. The return value is “approximate” because binary floating point numbers
are approximate; it is not possible to represent all real numbers in base two. This function can return a floating
point value when passed two integers. The operation is done in-place when o1 supports it. This is the equivalent of
the Python statement o1 /= o2.

PyObject *PyNumber_InPlaceRemainder(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the remainder of dividing o1 by o2, or NULL on
failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 %=
o2.

PyObject *PyNumber_InPlacePower(PyObject *o1, PyObject *o2, PyObject *o3)
Return value: New reference. Part of the Stable ABI. See the built-in function pow(). Returns NULL on failure.
The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1 **= o2
when o3 is Py_None, or an in-place variant of pow(o1, o2, o3) otherwise. If o3 is to be ignored, pass
Py_None in its place (passing NULL for o3 would cause an illegal memory access).

PyObject *PyNumber_InPlaceLshift(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI.Returns the result of left shifting o1 by o2 on success, or NULL
on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1
<<= o2.

100 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.11.4

PyObject *PyNumber_InPlaceRshift(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the result of right shifting o1 by o2 on success, or
NULL on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement
o1 >>= o2.

PyObject *PyNumber_InPlaceAnd(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise and” of o1 and o2 on success and NULL
on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1
&= o2.

PyObject *PyNumber_InPlaceXor(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise exclusive or” of o1 by o2 on success, or
NULL on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement
o1 ^= o2.

PyObject *PyNumber_InPlaceOr(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Returns the “bitwise or” of o1 and o2 on success, or NULL
on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python statement o1
|= o2.

PyObject *PyNumber_Long(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns the o converted to an integer object on success, or
NULL on failure. This is the equivalent of the Python expression int(o).

PyObject *PyNumber_Float(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns the o converted to a float object on success, or NULL
on failure. This is the equivalent of the Python expression float(o).

PyObject *PyNumber_Index(PyObject *o)
Return value: New reference. Part of the Stable ABI. Returns the o converted to a Python int on success or NULL
with a TypeError exception raised on failure.
Changed in version 3.10: The result always has exact type int. Previously, the result could have been an instance
of a subclass of int.

PyObject *PyNumber_ToBase(PyObject *n, int base)
Return value: New reference. Part of the Stable ABI. Returns the integer n converted to base base as a string. The
base argument must be one of 2, 8, 10, or 16. For base 2, 8, or 16, the returned string is prefixed with a base marker
of '0b', '0o', or '0x', respectively. If n is not a Python int, it is converted with PyNumber_Index() first.

Py_ssize_t PyNumber_AsSsize_t(PyObject *o, PyObject *exc)
Part of the Stable ABI. Returns o converted to a Py_ssize_t value if o can be interpreted as an integer. If the
call fails, an exception is raised and -1 is returned.
If o can be converted to a Python int but the attempt to convert to a Py_ssize_t value would raise an
OverflowError, then the exc argument is the type of exception that will be raised (usually IndexError or
OverflowError). If exc is NULL, then the exception is cleared and the value is clipped to PY_SSIZE_T_MIN
for a negative integer or PY_SSIZE_T_MAX for a positive integer.

int PyIndex_Check(PyObject *o)
Part of the Stable ABI since version 3.8. Returns 1 if o is an index integer (has the nb_index slot of the
tp_as_number structure filled in), and 0 otherwise. This function always succeeds.

7.3. Number Protocol 101

The Python/C API, Release 3.11.4

7.4 Sequence Protocol

int PySequence_Check(PyObject *o)
Part of the Stable ABI. Return 1 if the object provides the sequence protocol, and 0 otherwise. Note that it returns
1 for Python classes with a __getitem__() method, unless they are dict subclasses, since in general it is
impossible to determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PySequence_Size(PyObject *o)
Py_ssize_t PySequence_Length(PyObject *o)

Part of the Stable ABI.Returns the number of objects in sequence o on success, and -1 on failure. This is equivalent
to the Python expression len(o).

PyObject *PySequence_Concat(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Return the concatenation of o1 and o2 on success, and NULL
on failure. This is the equivalent of the Python expression o1 + o2.

PyObject *PySequence_Repeat(PyObject *o, Py_ssize_t count)
Return value: New reference. Part of the Stable ABI. Return the result of repeating sequence object o count times,
or NULL on failure. This is the equivalent of the Python expression o * count.

PyObject *PySequence_InPlaceConcat(PyObject *o1, PyObject *o2)
Return value: New reference. Part of the Stable ABI. Return the concatenation of o1 and o2 on success, and NULL
on failure. The operation is done in-place when o1 supports it. This is the equivalent of the Python expression o1
+= o2.

PyObject *PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count)
Return value: New reference. Part of the Stable ABI.Return the result of repeating sequence object o count times, or
NULL on failure. The operation is done in-place when o supports it. This is the equivalent of the Python expression
o *= count.

PyObject *PySequence_GetItem(PyObject *o, Py_ssize_t i)
Return value: New reference. Part of the Stable ABI. Return the ith element of o, or NULL on failure. This is the
equivalent of the Python expression o[i].

PyObject *PySequence_GetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Return value: New reference. Part of the Stable ABI. Return the slice of sequence object o between i1 and i2, or
NULL on failure. This is the equivalent of the Python expression o[i1:i2].

int PySequence_SetItem(PyObject *o, Py_ssize_t i, PyObject *v)
Part of the Stable ABI. Assign object v to the ith element of o. Raise an exception and return -1 on failure; return
0 on success. This is the equivalent of the Python statement o[i] = v. This function does not steal a reference
to v.
If v is NULL, the element is deleted, but this feature is deprecated in favour of using PySequence_DelItem().

int PySequence_DelItem(PyObject *o, Py_ssize_t i)
Part of the Stable ABI. Delete the ith element of object o. Returns -1 on failure. This is the equivalent of the
Python statement del o[i].

int PySequence_SetSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2, PyObject *v)
Part of the Stable ABI. Assign the sequence object v to the slice in sequence object o from i1 to i2. This is the
equivalent of the Python statement o[i1:i2] = v.

int PySequence_DelSlice(PyObject *o, Py_ssize_t i1, Py_ssize_t i2)
Part of the Stable ABI. Delete the slice in sequence object o from i1 to i2. Returns -1 on failure. This is the
equivalent of the Python statement del o[i1:i2].

102 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.11.4

Py_ssize_t PySequence_Count(PyObject *o, PyObject *value)
Part of the Stable ABI. Return the number of occurrences of value in o, that is, return the number of keys for which
o[key] == value. On failure, return -1. This is equivalent to the Python expression o.count(value).

int PySequence_Contains(PyObject *o, PyObject *value)
Part of the Stable ABI. Determine if o contains value. If an item in o is equal to value, return 1, otherwise return
0. On error, return -1. This is equivalent to the Python expression value in o.

Py_ssize_t PySequence_Index(PyObject *o, PyObject *value)
Part of the Stable ABI.Return the first index i for whicho[i] == value. On error, return-1. This is equivalent
to the Python expression o.index(value).

PyObject *PySequence_List(PyObject *o)
Return value: New reference. Part of the Stable ABI. Return a list object with the same contents as the sequence or
iterable o, or NULL on failure. The returned list is guaranteed to be new. This is equivalent to the Python expression
list(o).

PyObject *PySequence_Tuple(PyObject *o)
Return value: New reference. Part of the Stable ABI.Return a tuple object with the same contents as the sequence or
iterable o, or NULL on failure. If o is a tuple, a new reference will be returned, otherwise a tuple will be constructed
with the appropriate contents. This is equivalent to the Python expression tuple(o).

PyObject *PySequence_Fast(PyObject *o, const char *m)
Return value: New reference. Part of the Stable ABI. Return the sequence or iterable o as an object usable by the
other PySequence_Fast* family of functions. If the object is not a sequence or iterable, raises TypeError
with m as the message text. Returns NULL on failure.
The PySequence_Fast* functions are thus named because they assume o is a PyTupleObject or a
PyListObject and access the data fields of o directly.
As a CPython implementation detail, if o is already a sequence or list, it will be returned.

Py_ssize_t PySequence_Fast_GET_SIZE(PyObject *o)
Returns the length of o, assuming that o was returned by PySequence_Fast() and that o is not NULL. The
size can also be retrieved by calling PySequence_Size() on o, but PySequence_Fast_GET_SIZE() is
faster because it can assume o is a list or tuple.

PyObject *PySequence_Fast_GET_ITEM(PyObject *o, Py_ssize_t i)
Return value: Borrowed reference. Return the ith element of o, assuming that o was returned by
PySequence_Fast(), o is not NULL, and that i is within bounds.

PyObject **PySequence_Fast_ITEMS(PyObject *o)
Return the underlying array of PyObject pointers. Assumes that o was returned by PySequence_Fast() and
o is not NULL.
Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array pointer
in contexts where the sequence cannot change.

PyObject *PySequence_ITEM(PyObject *o, Py_ssize_t i)
Return value: New reference. Return the ith element of o or NULL on failure. Faster form of
PySequence_GetItem() but without checking that PySequence_Check() on o is true and without ad-
justment for negative indices.

7.4. Sequence Protocol 103

The Python/C API, Release 3.11.4

7.5 Mapping Protocol

See also PyObject_GetItem(), PyObject_SetItem() and PyObject_DelItem().
int PyMapping_Check(PyObject *o)

Part of the Stable ABI. Return 1 if the object provides the mapping protocol or supports slicing, and 0 otherwise.
Note that it returns 1 for Python classes with a __getitem__() method, since in general it is impossible to
determine what type of keys the class supports. This function always succeeds.

Py_ssize_t PyMapping_Size(PyObject *o)
Py_ssize_t PyMapping_Length(PyObject *o)

Part of the Stable ABI. Returns the number of keys in object o on success, and -1 on failure. This is equivalent to
the Python expression len(o).

PyObject *PyMapping_GetItemString(PyObject *o, const char *key)
Return value: New reference. Part of the Stable ABI. Return element of o corresponding to the string key or NULL
on failure. This is the equivalent of the Python expression o[key]. See also PyObject_GetItem().

int PyMapping_SetItemString(PyObject *o, const char *key, PyObject *v)
Part of the Stable ABI.Map the string key to the value v in object o. Returns -1 on failure. This is the equivalent of
the Python statement o[key] = v. See also PyObject_SetItem(). This function does not steal a reference
to v.

int PyMapping_DelItem(PyObject *o, PyObject *key)
Remove the mapping for the object key from the object o. Return -1 on failure. This is equivalent to the Python
statement del o[key]. This is an alias of PyObject_DelItem().

int PyMapping_DelItemString(PyObject *o, const char *key)
Remove the mapping for the string key from the object o. Return -1 on failure. This is equivalent to the Python
statement del o[key].

int PyMapping_HasKey(PyObject *o, PyObject *key)
Part of the Stable ABI. Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the
Python expression key in o. This function always succeeds.
Note that exceptions which occur while calling the __getitem__() method will get suppressed. To get error
reporting use PyObject_GetItem() instead.

int PyMapping_HasKeyString(PyObject *o, const char *key)
Part of the Stable ABI. Return 1 if the mapping object has the key key and 0 otherwise. This is equivalent to the
Python expression key in o. This function always succeeds.
Note that exceptions which occur while calling the __getitem__() method and creating a temporary string
object will get suppressed. To get error reporting use PyMapping_GetItemString() instead.

PyObject *PyMapping_Keys(PyObject *o)
Return value: New reference. Part of the Stable ABI. On success, return a list of the keys in object o. On failure,
return NULL.
Changed in version 3.7: Previously, the function returned a list or a tuple.

PyObject *PyMapping_Values(PyObject *o)
Return value: New reference. Part of the Stable ABI. On success, return a list of the values in object o. On failure,
return NULL.
Changed in version 3.7: Previously, the function returned a list or a tuple.

104 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.11.4

PyObject *PyMapping_Items(PyObject *o)
Return value: New reference. Part of the Stable ABI. On success, return a list of the items in object o, where each
item is a tuple containing a key-value pair. On failure, return NULL.
Changed in version 3.7: Previously, the function returned a list or a tuple.

7.6 Iterator Protocol

There are two functions specifically for working with iterators.
int PyIter_Check(PyObject *o)

Part of the Stable ABI since version 3.8. Return non-zero if the object o can be safely passed to PyIter_Next(),
and 0 otherwise. This function always succeeds.

int PyAIter_Check(PyObject *o)
Part of the Stable ABI since version 3.10. Return non-zero if the object o provides the AsyncIterator protocol,
and 0 otherwise. This function always succeeds.
New in version 3.10.

PyObject *PyIter_Next(PyObject *o)
Return value: New reference. Part of the Stable ABI. Return the next value from the iterator o. The object must be
an iterator according to PyIter_Check() (it is up to the caller to check this). If there are no remaining values,
returns NULL with no exception set. If an error occurs while retrieving the item, returns NULL and passes along
the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_GetIter(obj);
PyObject *item;

if (iterator == NULL) {
/* propagate error */

}

while ((item = PyIter_Next(iterator))) {
/* do something with item */
...
/* release reference when done */
Py_DECREF(item);

}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
/* propagate error */

}
else {

/* continue doing useful work */
}

type PySendResult
The enum value used to represent different results of PyIter_Send().
New in version 3.10.

7.6. Iterator Protocol 105

The Python/C API, Release 3.11.4

PySendResult PyIter_Send(PyObject *iter, PyObject *arg, PyObject **presult)
Part of the Stable ABI since version 3.10. Sends the arg value into the iterator iter. Returns:

• PYGEN_RETURN if iterator returns. Return value is returned via presult.
• PYGEN_NEXT if iterator yields. Yielded value is returned via presult.
• PYGEN_ERROR if iterator has raised and exception. presult is set to NULL.

New in version 3.10.

7.7 Buffer Protocol

Certain objects available in Python wrap access to an underlying memory array or buffer. Such objects include the built-in
bytes and bytearray, and some extension types like array.array. Third-party libraries may define their own
types for special purposes, such as image processing or numeric analysis.
While each of these types have their own semantics, they share the common characteristic of being backed by a possibly
large memory buffer. It is then desirable, in some situations, to access that buffer directly and without intermediate
copying.
Python provides such a facility at the C level in the form of the buffer protocol. This protocol has two sides:

• on the producer side, a type can export a “buffer interface” which allows objects of that type to expose information
about their underlying buffer. This interface is described in the section Buffer Object Structures;

• on the consumer side, several means are available to obtain a pointer to the raw underlying data of an object (for
example a method parameter).

Simple objects such as bytes and bytearray expose their underlying buffer in byte-oriented form. Other forms are
possible; for example, the elements exposed by an array.array can be multi-byte values.
An example consumer of the buffer interface is the write() method of file objects: any object that can export a series
of bytes through the buffer interface can be written to a file. While write() only needs read-only access to the internal
contents of the object passed to it, other methods such as readinto() need write access to the contents of their
argument. The buffer interface allows objects to selectively allow or reject exporting of read-write and read-only buffers.
There are two ways for a consumer of the buffer interface to acquire a buffer over a target object:

• call PyObject_GetBuffer() with the right parameters;
• call PyArg_ParseTuple() (or one of its siblings) with one of the y*, w* or s* format codes.

In both cases, PyBuffer_Release() must be called when the buffer isn’t needed anymore. Failure to do so could
lead to various issues such as resource leaks.

7.7.1 Buffer structure

Buffer structures (or simply “buffers”) are useful as a way to expose the binary data from another object to the Python
programmer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory,
it is possible to expose any data to the Python programmer quite easily. The memory could be a large, constant array in
a C extension, it could be a raw block of memory for manipulation before passing to an operating system library, or it
could be used to pass around structured data in its native, in-memory format.
Contrary to most data types exposed by the Python interpreter, buffers are not PyObject pointers but rather simple C
structures. This allows them to be created and copied very simply. When a generic wrapper around a buffer is needed, a
memoryview object can be created.

106 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.11.4

For short instructions how to write an exporting object, see Buffer Object Structures. For obtaining a buffer, see
PyObject_GetBuffer().
type Py_buffer

Part of the Stable ABI (including all members) since version 3.11.
void *buf

A pointer to the start of the logical structure described by the buffer fields. This can be any location within
the underlying physical memory block of the exporter. For example, with negative strides the value may
point to the end of the memory block.
For contiguous arrays, the value points to the beginning of the memory block.

PyObject *obj
A new reference to the exporting object. The reference is owned by the consumer and automatically released
(i.e. reference count decremented) and set to NULL by PyBuffer_Release(). The field is the equivalent
of the return value of any standard C-API function.
As a special case, for temporary buffers that are wrapped by PyMemoryView_FromBuffer() or
PyBuffer_FillInfo() this field is NULL. In general, exporting objects MUST NOT use this scheme.

Py_ssize_t len
product(shape) * itemsize. For contiguous arrays, this is the length of the underlying memory
block. For non-contiguous arrays, it is the length that the logical structure would have if it were copied to a
contiguous representation.
Accessing ((char *)buf)[0] up to ((char *)buf)[len-1] is only valid if the buffer has
been obtained by a request that guarantees contiguity. In most cases such a request will be PyBUF_SIMPLE
or PyBUF_WRITABLE.

int readonly
An indicator of whether the buffer is read-only. This field is controlled by the PyBUF_WRITABLE flag.

Py_ssize_t itemsize
Item size in bytes of a single element. Same as the value of struct.calcsize() called on non-NULL
format values.
Important exception: If a consumer requests a buffer without the PyBUF_FORMAT flag, format will be
set to NULL, but itemsize still has the value for the original format.
If shape is present, the equality product(shape) * itemsize == len still holds and the con-
sumer can use itemsize to navigate the buffer.
If shape is NULL as a result of a PyBUF_SIMPLE or a PyBUF_WRITABLE request, the consumer must
disregard itemsize and assume itemsize == 1.

const char *format
A NUL terminated string in struct module style syntax describing the contents of a single item. If this is
NULL, "B" (unsigned bytes) is assumed.
This field is controlled by the PyBUF_FORMAT flag.

int ndim
The number of dimensions the memory represents as an n-dimensional array. If it is 0, buf points to a
single item representing a scalar. In this case, shape, strides and suboffsetsMUST be NULL. The
maximum number of dimensions is given by PyBUF_MAX_NDIM .

7.7. Buffer Protocol 107

The Python/C API, Release 3.11.4

Py_ssize_t *shape
An array of Py_ssize_t of length ndim indicating the shape of the memory as an n-dimensional array.
Note that shape[0] * ... * shape[ndim-1] * itemsizeMUST be equal to len.
Shape values are restricted to shape[n] >= 0. The case shape[n] == 0 requires special attention.
See complex arrays for further information.
The shape array is read-only for the consumer.

Py_ssize_t *strides
An array of Py_ssize_t of length ndim giving the number of bytes to skip to get to a new element in
each dimension.
Stride values can be any integer. For regular arrays, strides are usually positive, but a consumer MUST be
able to handle the case strides[n] <= 0. See complex arrays for further information.
The strides array is read-only for the consumer.

Py_ssize_t *suboffsets
An array of Py_ssize_t of length ndim. If suboffsets[n] >= 0, the values stored along the nth
dimension are pointers and the suboffset value dictates how many bytes to add to each pointer after de-
referencing. A suboffset value that is negative indicates that no de-referencing should occur (striding in a
contiguous memory block).
If all suboffsets are negative (i.e. no de-referencing is needed), then this field must be NULL (the default
value).
This type of array representation is used by the Python Imaging Library (PIL). See complex arrays for further
information how to access elements of such an array.
The suboffsets array is read-only for the consumer.

void *internal
This is for use internally by the exporting object. For example, this might be re-cast as an integer by the
exporter and used to store flags about whether or not the shape, strides, and suboffsets arrays must be freed
when the buffer is released. The consumer MUST NOT alter this value.

Constants:
PyBUF_MAX_NDIM

The maximum number of dimensions the memory represents. Exporters MUST respect this limit, consumers of
multi-dimensional buffers SHOULD be able to handle up to PyBUF_MAX_NDIM dimensions. Currently set to 64.

7.7.2 Buffer request types

Buffers are usually obtained by sending a buffer request to an exporting object via PyObject_GetBuffer(). Since
the complexity of the logical structure of the memory can vary drastically, the consumer uses the flags argument to specify
the exact buffer type it can handle.
All Py_buffer fields are unambiguously defined by the request type.

108 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.11.4

request-independent fields

The following fields are not influenced by flags and must always be filled in with the correct values: obj, buf, len,
itemsize, ndim.

readonly, format

PyBUF_WRITABLE

Controls the readonly field. If set, the exporter MUST provide a writable buffer or else report
failure. Otherwise, the exporter MAY provide either a read-only or writable buffer, but the choice
MUST be consistent for all consumers.

PyBUF_FORMAT

Controls the format field. If set, this field MUST be filled in correctly. Otherwise, this field MUST
be NULL.

PyBUF_WRITABLE can be |’d to any of the flags in the next section. Since PyBUF_SIMPLE is defined as 0,
PyBUF_WRITABLE can be used as a stand-alone flag to request a simple writable buffer.
PyBUF_FORMAT can be |’d to any of the flags except PyBUF_SIMPLE. The latter already implies format B (unsigned
bytes).

shape, strides, suboffsets

The flags that control the logical structure of the memory are listed in decreasing order of complexity. Note that each flag
contains all bits of the flags below it.

Request shape strides suboffsets

PyBUF_INDIRECT
yes yes if needed

PyBUF_STRIDES
yes yes NULL

PyBUF_ND
yes NULL NULL

PyBUF_SIMPLE
NULL NULL NULL

contiguity requests

C or Fortran contiguity can be explicitly requested, with and without stride information. Without stride information, the
buffer must be C-contiguous.

7.7. Buffer Protocol 109

The Python/C API, Release 3.11.4

Request shape strides suboffsets contig

PyBUF_C_CONTIGUOUS
yes yes NULL C

PyBUF_F_CONTIGUOUS
yes yes NULL F

PyBUF_ANY_CONTIGUOUS
yes yes NULL C or F

PyBUF_ND yes NULL NULL C

compound requests

All possible requests are fully defined by some combination of the flags in the previous section. For convenience, the
buffer protocol provides frequently used combinations as single flags.
In the following table U stands for undefined contiguity. The consumer would have to call
PyBuffer_IsContiguous() to determine contiguity.

Request shape strides suboffsets contig readonly format

PyBUF_FULL
yes yes if needed U 0 yes

PyBUF_FULL_RO
yes yes if needed U 1 or 0 yes

PyBUF_RECORDS
yes yes NULL U 0 yes

PyBUF_RECORDS_RO
yes yes NULL U 1 or 0 yes

PyBUF_STRIDED
yes yes NULL U 0 NULL

PyBUF_STRIDED_RO
yes yes NULL U 1 or 0 NULL

PyBUF_CONTIG
yes NULL NULL C 0 NULL

PyBUF_CONTIG_RO
yes NULL NULL C 1 or 0 NULL

110 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.11.4

7.7.3 Complex arrays

NumPy-style: shape and strides

The logical structure of NumPy-style arrays is defined by itemsize, ndim, shape and strides.
If ndim == 0, the memory location pointed to by buf is interpreted as a scalar of size itemsize. In that case, both
shape and strides are NULL.
If strides is NULL, the array is interpreted as a standard n-dimensional C-array. Otherwise, the consumer must access
an n-dimensional array as follows:

ptr = (char *)buf + indices[0] * strides[0] + ... + indices[n-1] * strides[n-1];
item = *((typeof(item) *)ptr);

As noted above, buf can point to any location within the actual memory block. An exporter can check the validity of a
buffer with this function:

def verify_structure(memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within

the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem

"""
if offset % itemsize:

return False
if offset < 0 or offset+itemsize > memlen:

return False
if any(v % itemsize for v in strides):

return False

if ndim <= 0:
return ndim == 0 and not shape and not strides

if 0 in shape:
return True

imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] <= 0)

imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] > 0)

return 0 <= offset+imin and offset+imax+itemsize <= memlen

PIL-style: shape, strides and suboffsets

In addition to the regular items, PIL-style arrays can contain pointers that must be followed in order to get to the next
element in a dimension. For example, the regular three-dimensional C-array char v[2][2][3] can also be viewed
as an array of 2 pointers to 2 two-dimensional arrays: char (*v[2])[2][3]. In suboffsets representation, those two
pointers can be embedded at the start of buf, pointing to two char x[2][3] arrays that can be located anywhere in
memory.
Here is a function that returns a pointer to the element in an N-D array pointed to by an N-dimensional index when there
are both non-NULL strides and suboffsets:

7.7. Buffer Protocol 111

The Python/C API, Release 3.11.4

void *get_item_pointer(int ndim, void *buf, Py_ssize_t *strides,
Py_ssize_t *suboffsets, Py_ssize_t *indices) {

char *pointer = (char*)buf;
int i;
for (i = 0; i < ndim; i++) {

pointer += strides[i] * indices[i];
if (suboffsets[i] >=0) {

pointer = *((char**)pointer) + suboffsets[i];
}

}
return (void*)pointer;

}

7.7.4 Buffer-related functions

int PyObject_CheckBuffer(PyObject *obj)
Part of the Stable ABI since version 3.11. Return 1 if obj supports the buffer interface otherwise 0. When 1 is
returned, it doesn’t guarantee that PyObject_GetBuffer() will succeed. This function always succeeds.

int PyObject_GetBuffer(PyObject *exporter, Py_buffer *view, int flags)
Part of the Stable ABI since version 3.11. Send a request to exporter to fill in view as specified by flags. If the
exporter cannot provide a buffer of the exact type, it MUST raise BufferError, set view->obj to NULL and
return -1.
On success, fill in view, set view->obj to a new reference to exporter and return 0. In the case of chained buffer
providers that redirect requests to a single object, view->objMAY refer to this object instead of exporter (See
Buffer Object Structures).
Successful calls to PyObject_GetBuffer()must be paired with calls to PyBuffer_Release(), similar
to malloc() and free(). Thus, after the consumer is done with the buffer, PyBuffer_Release() must
be called exactly once.

void PyBuffer_Release(Py_buffer *view)
Part of the Stable ABI since version 3.11. Release the buffer view and release the strong reference (i.e. decrement
the reference count) to the view’s supporting object, view->obj. This function MUST be called when the buffer
is no longer being used, otherwise reference leaks may occur.
It is an error to call this function on a buffer that was not obtained via PyObject_GetBuffer().

Py_ssize_t PyBuffer_SizeFromFormat(const char *format)
Part of the Stable ABI since version 3.11. Return the implied itemsize from format. On error, raise an
exception and return -1.
New in version 3.9.

int PyBuffer_IsContiguous(const Py_buffer *view, char order)
Part of the Stable ABI since version 3.11. Return 1 if the memory defined by the view is C-style (order is 'C')
or Fortran-style (order is 'F') contiguous or either one (order is 'A'). Return 0 otherwise. This function always
succeeds.

void *PyBuffer_GetPointer(const Py_buffer *view, const Py_ssize_t *indices)
Part of the Stable ABI since version 3.11. Get the memory area pointed to by the indices inside the given view.
indices must point to an array of view->ndim indices.

112 Chapter 7. Abstract Objects Layer

The Python/C API, Release 3.11.4

int PyBuffer_FromContiguous(const Py_buffer *view, const void *buf, Py_ssize_t len, char fort)
Part of the Stable ABI since version 3.11. Copy contiguous len bytes from buf to view. fort can be 'C' or 'F'
(for C-style or Fortran-style ordering). 0 is returned on success, -1 on error.

int PyBuffer_ToContiguous(void *buf, const Py_buffer *src, Py_ssize_t len, char order)
Part of the Stable ABI since version 3.11. Copy len bytes from src to its contiguous representation in buf. order can
be 'C' or 'F' or 'A' (for C-style or Fortran-style ordering or either one). 0 is returned on success, -1 on error.
This function fails if len != src->len.

int PyObject_CopyData(PyObject *dest, PyObject *src)
Part of the Stable ABI since version 3.11. Copy data from src to dest buffer. Can convert between C-style and or
Fortran-style buffers.
0 is returned on success, -1 on error.

void PyBuffer_FillContiguousStrides(int ndims, Py_ssize_t *shape, Py_ssize_t *strides, int itemsize, char
order)

Part of the Stable ABI since version 3.11. Fill the strides array with byte-strides of a contiguous (C-style if order is
'C' or Fortran-style if order is 'F') array of the given shape with the given number of bytes per element.

int PyBuffer_FillInfo(Py_buffer *view, PyObject *exporter, void *buf, Py_ssize_t len, int readonly, int flags)
Part of the Stable ABI since version 3.11. Handle buffer requests for an exporter that wants to expose buf of size
len with writability set according to readonly. buf is interpreted as a sequence of unsigned bytes.
The flags argument indicates the request type. This function always fills in view as specified by flags, unless buf has
been designated as read-only and PyBUF_WRITABLE is set in flags.
On success, set view->obj to a new reference to exporter and return 0. Otherwise, raise BufferError, set
view->obj to NULL and return -1;
If this function is used as part of a getbufferproc, exporter MUST be set to the exporting object and flags must be
passed unmodified. Otherwise, exporter MUST be NULL.

7.8 Old Buffer Protocol

Deprecated since version 3.0.
These functions were part of the “old buffer protocol” API in Python 2. In Python 3, this protocol doesn’t exist anymore
but the functions are still exposed to ease porting 2.x code. They act as a compatibility wrapper around the new buffer
protocol, but they don’t give you control over the lifetime of the resources acquired when a buffer is exported.
Therefore, it is recommended that you call PyObject_GetBuffer() (or the y* or w* format codes with the
PyArg_ParseTuple() family of functions) to get a buffer view over an object, and PyBuffer_Release()
when the buffer view can be released.
int PyObject_AsCharBuffer(PyObject *obj, const char **buffer, Py_ssize_t *buffer_len)

Part of the Stable ABI. Returns a pointer to a read-only memory location usable as character-based input. The
obj argument must support the single-segment character buffer interface. On success, returns 0, sets buffer to the
memory location and buffer_len to the buffer length. Returns -1 and sets a TypeError on error.

int PyObject_AsReadBuffer(PyObject *obj, const void **buffer, Py_ssize_t *buffer_len)
Part of the Stable ABI. Returns a pointer to a read-only memory location containing arbitrary data. The obj argu-
ment must support the single-segment readable buffer interface. On success, returns 0, sets buffer to the memory
location and buffer_len to the buffer length. Returns -1 and sets a TypeError on error.

7.8. Old Buffer Protocol 113

The Python/C API, Release 3.11.4

int PyObject_CheckReadBuffer(PyObject *o)
Part of the Stable ABI. Returns 1 if o supports the single-segment readable buffer interface. Otherwise returns 0.
This function always succeeds.
Note that this function tries to get and release a buffer, and exceptions which occur while calling corresponding
functions will get suppressed. To get error reporting use PyObject_GetBuffer() instead.

int PyObject_AsWriteBuffer(PyObject *obj, void **buffer, Py_ssize_t *buffer_len)
Part of the Stable ABI. Returns a pointer to a writable memory location. The obj argument must support the single-
segment, character buffer interface. On success, returns 0, sets buffer to the memory location and buffer_len to the
buffer length. Returns -1 and sets a TypeError on error.

114 Chapter 7. Abstract Objects Layer

CHAPTER

EIGHT

CONCRETE OBJECTS LAYER

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is not
a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you must
perform a type check first; for example, to check that an object is a dictionary, use PyDict_Check(). The chapter is
structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are passed
in, many of them do not check for NULL being passed instead of a valid object. Allowing NULL to be passed in can
cause memory access violations and immediate termination of the interpreter.

8.1 Fundamental Objects

This section describes Python type objects and the singleton object None.

8.1.1 Type Objects

type PyTypeObject
Part of the Limited API (as an opaque struct). The C structure of the objects used to describe built-in types.

PyTypeObject PyType_Type
Part of the Stable ABI. This is the type object for type objects; it is the same object as type in the Python layer.

int PyType_Check(PyObject *o)
Return non-zero if the object o is a type object, including instances of types derived from the standard type object.
Return 0 in all other cases. This function always succeeds.

int PyType_CheckExact(PyObject *o)
Return non-zero if the object o is a type object, but not a subtype of the standard type object. Return 0 in all other
cases. This function always succeeds.

unsigned int PyType_ClearCache()
Part of the Stable ABI. Clear the internal lookup cache. Return the current version tag.

unsigned long PyType_GetFlags(PyTypeObject *type)
Part of the Stable ABI. Return the tp_flags member of type. This function is primarily meant for use with
Py_LIMITED_API; the individual flag bits are guaranteed to be stable across Python releases, but access to
tp_flags itself is not part of the limited API.
New in version 3.2.

115

The Python/C API, Release 3.11.4

Changed in version 3.4: The return type is now unsigned long rather than long.
void PyType_Modified(PyTypeObject *type)

Part of the Stable ABI. Invalidate the internal lookup cache for the type and all of its subtypes. This function must
be called after any manual modification of the attributes or base classes of the type.

int PyType_HasFeature(PyTypeObject *o, int feature)
Return non-zero if the type object o sets the feature feature. Type features are denoted by single bit flags.

int PyType_IS_GC(PyTypeObject *o)
Return true if the type object includes support for the cycle detector; this tests the type flag
Py_TPFLAGS_HAVE_GC.

int PyType_IsSubtype(PyTypeObject *a, PyTypeObject *b)
Part of the Stable ABI. Return true if a is a subtype of b.
This function only checks for actual subtypes, which means that __subclasscheck__() is not called on b.
Call PyObject_IsSubclass() to do the same check that issubclass() would do.

PyObject *PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)
Return value: New reference. Part of the Stable ABI.Generic handler for the tp_alloc slot of a type object. Use
Python’s default memory allocation mechanism to allocate a new instance and initialize all its contents to NULL.

PyObject *PyType_GenericNew(PyTypeObject *type, PyObject *args, PyObject *kwds)
Return value: New reference. Part of the Stable ABI. Generic handler for the tp_new slot of a type object. Create
a new instance using the type’s tp_alloc slot.

int PyType_Ready(PyTypeObject *type)
Part of the Stable ABI. Finalize a type object. This should be called on all type objects to finish their initialization.
This function is responsible for adding inherited slots from a type’s base class. Return 0 on success, or return -1
and sets an exception on error.

Note: If some of the base classes implements the GC protocol and the provided type does not include the
Py_TPFLAGS_HAVE_GC in its flags, then the GC protocol will be automatically implemented from its par-
ents. On the contrary, if the type being created does include Py_TPFLAGS_HAVE_GC in its flags then it must
implement the GC protocol itself by at least implementing the tp_traverse handle.

PyObject *PyType_GetName(PyTypeObject *type)
Return value: New reference. Part of the Stable ABI since version 3.11. Return the type’s name. Equivalent to
getting the type’s __name__ attribute.
New in version 3.11.

PyObject *PyType_GetQualName(PyTypeObject *type)
Return value: New reference. Part of the Stable ABI since version 3.11. Return the type’s qualified name. Equivalent
to getting the type’s __qualname__ attribute.
New in version 3.11.

void *PyType_GetSlot(PyTypeObject *type, int slot)
Part of the Stable ABI since version 3.4. Return the function pointer stored in the given slot. If the result is NULL,
this indicates that either the slot is NULL, or that the function was called with invalid parameters. Callers will
typically cast the result pointer into the appropriate function type.
See PyType_Slot.slot for possible values of the slot argument.
New in version 3.4.

116 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

Changed in version 3.10: PyType_GetSlot() can now accept all types. Previously, it was limited to heap
types.

PyObject *PyType_GetModule(PyTypeObject *type)
Part of the Stable ABI since version 3.10. Return the module object associated with the given type when the type
was created using PyType_FromModuleAndSpec().
If no module is associated with the given type, sets TypeError and returns NULL.
This function is usually used to get the module in which a method is defined. Note that in such a method,
PyType_GetModule(Py_TYPE(self)) may not return the intended result. Py_TYPE(self) may be
a subclass of the intended class, and subclasses are not necessarily defined in the same module as their superclass.
See PyCMethod to get the class that defines the method. See PyType_GetModuleByDef() for cases when
PyCMethod cannot be used.
New in version 3.9.

void *PyType_GetModuleState(PyTypeObject *type)
Part of the Stable ABI since version 3.10. Return the state of the module object associated with the given type.
This is a shortcut for calling PyModule_GetState() on the result of PyType_GetModule().
If no module is associated with the given type, sets TypeError and returns NULL.
If the type has an associated module but its state is NULL, returns NULL without setting an exception.
New in version 3.9.

PyObject *PyType_GetModuleByDef(PyTypeObject *type, struct PyModuleDef *def)
Find the first superclass whose module was created from the given PyModuleDef def, and return that module.
If no module is found, raises a TypeError and returns NULL.
This function is intended to be used together with PyModule_GetState() to get module state from slot meth-
ods (such as tp_init or nb_add) and other places where a method’s defining class cannot be passed using the
PyCMethod calling convention.
New in version 3.11.

Creating Heap-Allocated Types

The following functions and structs are used to create heap types.
PyObject *PyType_FromModuleAndSpec(PyObject *module, PyType_Spec *spec, PyObject *bases)

Return value: New reference. Part of the Stable ABI since version 3.10. Creates and returns a heap type from the
spec (Py_TPFLAGS_HEAPTYPE).
The bases argument can be used to specify base classes; it can either be only one class or a tuple of classes. If bases
is NULL, the Py_tp_bases slot is used instead. If that also is NULL, the Py_tp_base slot is used instead. If that also
is NULL, the new type derives from object.
The module argument can be used to record the module in which the new class is defined. It must be a mod-
ule object or NULL. If not NULL, the module is associated with the new type and can later be retrieved with
PyType_GetModule(). The associated module is not inherited by subclasses; it must be specified for each
class individually.
This function calls PyType_Ready() on the new type.
New in version 3.9.
Changed in version 3.10: The function now accepts a single class as the bases argument and NULL as the tp_doc
slot.

8.1. Fundamental Objects 117

The Python/C API, Release 3.11.4

PyObject *PyType_FromSpecWithBases(PyType_Spec *spec, PyObject *bases)
Return value: New reference. Part of the Stable ABI since version 3.3. Equivalent to
PyType_FromModuleAndSpec(NULL, spec, bases).
New in version 3.3.

PyObject *PyType_FromSpec(PyType_Spec *spec)
Return value: New reference. Part of the Stable ABI. Equivalent to PyType_FromSpecWithBases(spec,
NULL).

type PyType_Spec
Part of the Stable ABI (including all members). Structure defining a type’s behavior.
const char *PyType_Spec.name

Name of the type, used to set PyTypeObject.tp_name.
int PyType_Spec.basicsize

int PyType_Spec.itemsize
Size of the instance in bytes, used to set PyTypeObject.tp_basicsize and PyTypeObject.
tp_itemsize.

int PyType_Spec.flags
Type flags, used to set PyTypeObject.tp_flags.
If the Py_TPFLAGS_HEAPTYPE flag is not set, PyType_FromSpecWithBases() sets it automati-
cally.

PyType_Slot *PyType_Spec.slots
Array of PyType_Slot structures. Terminated by the special slot value {0, NULL}.

type PyType_Slot
Part of the Stable ABI (including all members). Structure defining optional functionality of a type, containing a slot
ID and a value pointer.
int PyType_Slot.slot

A slot ID.
Slot IDs are named like the field names of the structures PyTypeObject, PyNumberMethods,
PySequenceMethods, PyMappingMethods and PyAsyncMethods with an added Py_
prefix. For example, use:
• Py_tp_dealloc to set PyTypeObject.tp_dealloc
• Py_nb_add to set PyNumberMethods.nb_add
• Py_sq_length to set PySequenceMethods.sq_length

The following fields cannot be set at all using PyType_Spec and PyType_Slot:
• tp_dict

• tp_mro

• tp_cache

• tp_subclasses

• tp_weaklist

• tp_vectorcall

• tp_weaklistoffset (see PyMemberDef)

118 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

• tp_dictoffset (see PyMemberDef)
• tp_vectorcall_offset (see PyMemberDef)

Setting Py_tp_bases or Py_tp_basemay be problematic on some platforms. To avoid issues,
use the bases argument of PyType_FromSpecWithBases() instead.

Changed in version 3.9: Slots in PyBufferProcs may be set in the unlimited API.
Changed in version 3.11: bf_getbuffer and bf_releasebuffer are now available under the limited
API.

void *PyType_Slot.pfunc
The desired value of the slot. In most cases, this is a pointer to a function.
Slots other than Py_tp_doc may not be NULL.

8.1.2 The None Object

Note that the PyTypeObject for None is not directly exposed in the Python/C API. Since None is a singleton, testing
for object identity (using == in C) is sufficient. There is no PyNone_Check() function for the same reason.
PyObject *Py_None

The Python None object, denoting lack of value. This object has no methods. It needs to be treated just like any
other object with respect to reference counts.

Py_RETURN_NONE

Properly handle returning Py_None from within a C function (that is, increment the reference count of None and
return it.)

8.2 Numeric Objects

8.2.1 Integer Objects

All integers are implemented as “long” integer objects of arbitrary size.
On error, most PyLong_As* APIs return (return type)-1 which cannot be distinguished from a number. Use
PyErr_Occurred() to disambiguate.
type PyLongObject

Part of the Limited API (as an opaque struct). This subtype of PyObject represents a Python integer object.
PyTypeObject PyLong_Type

Part of the Stable ABI. This instance of PyTypeObject represents the Python integer type. This is the same
object as int in the Python layer.

int PyLong_Check(PyObject *p)
Return true if its argument is aPyLongObject or a subtype ofPyLongObject. This function always succeeds.

int PyLong_CheckExact(PyObject *p)
Return true if its argument is a PyLongObject, but not a subtype of PyLongObject. This function always
succeeds.

8.2. Numeric Objects 119

The Python/C API, Release 3.11.4

PyObject *PyLong_FromLong(long v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from v, or NULL on
failure.
The current implementation keeps an array of integer objects for all integers between -5 and 256. When you
create an int in that range you actually just get back a reference to the existing object.

PyObject *PyLong_FromUnsignedLong(unsigned long v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C unsigned
long, or NULL on failure.

PyObject *PyLong_FromSsize_t(Py_ssize_t v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C
Py_ssize_t, or NULL on failure.

PyObject *PyLong_FromSize_t(size_t v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C size_t,
or NULL on failure.

PyObject *PyLong_FromLongLong(long long v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C long
long, or NULL on failure.

PyObject *PyLong_FromUnsignedLongLong(unsigned long long v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from a C unsigned
long long, or NULL on failure.

PyObject *PyLong_FromDouble(double v)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject object from the integer part
of v, or NULL on failure.

PyObject *PyLong_FromString(const char *str, char **pend, int base)
Return value: New reference. Part of the Stable ABI. Return a new PyLongObject based on the string value in
str, which is interpreted according to the radix in base. If pend is non-NULL, *pend will point to the first character
in str which follows the representation of the number. If base is 0, str is interpreted using the integers definition; in
this case, leading zeros in a non-zero decimal number raises a ValueError. If base is not 0, it must be between
2 and 36, inclusive. Leading spaces and single underscores after a base specifier and between digits are ignored.
If there are no digits, ValueError will be raised.
See also:
Python methods int.to_bytes() and int.from_bytes() to convert a PyLongObject to/from an
array of bytes in base 256. You can call those from C using PyObject_CallMethod().

PyObject *PyLong_FromUnicodeObject(PyObject *u, int base)
Return value: New reference. Convert a sequence of Unicode digits in the string u to a Python integer value.
New in version 3.3.

PyObject *PyLong_FromVoidPtr(void *p)
Return value: New reference. Part of the Stable ABI. Create a Python integer from the pointer p. The pointer value
can be retrieved from the resulting value using PyLong_AsVoidPtr().

long PyLong_AsLong(PyObject *obj)
Part of the Stable ABI. Return a C long representation of obj. If obj is not an instance of PyLongObject, first
call its __index__() method (if present) to convert it to a PyLongObject.
Raise OverflowError if the value of obj is out of range for a long.

120 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

Returns -1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.8: Use __index__() if available.
Changed in version 3.10: This function will no longer use __int__().

long PyLong_AsLongAndOverflow(PyObject *obj, int *overflow)
Part of the Stable ABI. Return a C long representation of obj. If obj is not an instance of PyLongObject, first
call its __index__() method (if present) to convert it to a PyLongObject.
If the value of obj is greater than LONG_MAX or less than LONG_MIN, set *overflow to 1 or -1, respectively, and
return -1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1 as usual.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.8: Use __index__() if available.
Changed in version 3.10: This function will no longer use __int__().

long long PyLong_AsLongLong(PyObject *obj)
Part of the Stable ABI. Return a C long long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__() method (if present) to convert it to a PyLongObject.
Raise OverflowError if the value of obj is out of range for a long long.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.8: Use __index__() if available.
Changed in version 3.10: This function will no longer use __int__().

long long PyLong_AsLongLongAndOverflow(PyObject *obj, int *overflow)
Part of the Stable ABI. Return a C long long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__() method (if present) to convert it to a PyLongObject.
If the value of obj is greater than LLONG_MAX or less than LLONG_MIN, set *overflow to 1 or -1, respectively,
and return -1; otherwise, set *overflow to 0. If any other exception occurs set *overflow to 0 and return -1 as
usual.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.
New in version 3.2.
Changed in version 3.8: Use __index__() if available.
Changed in version 3.10: This function will no longer use __int__().

Py_ssize_t PyLong_AsSsize_t(PyObject *pylong)
Part of the Stable ABI. Return a C Py_ssize_t representation of pylong. pylong must be an instance of
PyLongObject.
Raise OverflowError if the value of pylong is out of range for a Py_ssize_t.
Returns -1 on error. Use PyErr_Occurred() to disambiguate.

unsigned long PyLong_AsUnsignedLong(PyObject *pylong)
Part of the Stable ABI. Return a C unsigned long representation of pylong. pylong must be an instance of
PyLongObject.
Raise OverflowError if the value of pylong is out of range for a unsigned long.
Returns (unsigned long)-1 on error. Use PyErr_Occurred() to disambiguate.

8.2. Numeric Objects 121

The Python/C API, Release 3.11.4

size_t PyLong_AsSize_t(PyObject *pylong)
Part of the Stable ABI. Return a C size_t representation of pylong. pylong must be an instance of
PyLongObject.
Raise OverflowError if the value of pylong is out of range for a size_t.
Returns (size_t)-1 on error. Use PyErr_Occurred() to disambiguate.

unsigned long long PyLong_AsUnsignedLongLong(PyObject *pylong)
Part of the Stable ABI.Return a C unsigned long long representation of pylong. pylongmust be an instance
of PyLongObject.
Raise OverflowError if the value of pylong is out of range for an unsigned long long.
Returns (unsigned long long)-1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.1: A negative pylong now raises OverflowError, not TypeError.

unsigned long PyLong_AsUnsignedLongMask(PyObject *obj)
Part of the Stable ABI. Return a C unsigned long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__() method (if present) to convert it to a PyLongObject.
If the value of obj is out of range for anunsigned long, return the reduction of that valuemoduloULONG_MAX
+ 1.
Returns (unsigned long)-1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.8: Use __index__() if available.
Changed in version 3.10: This function will no longer use __int__().

unsigned long long PyLong_AsUnsignedLongLongMask(PyObject *obj)
Part of the Stable ABI. Return a C unsigned long long representation of obj. If obj is not an instance of
PyLongObject, first call its __index__() method (if present) to convert it to a PyLongObject.
If the value of obj is out of range for an unsigned long long, return the reduction of that value modulo
ULLONG_MAX + 1.
Returns (unsigned long long)-1 on error. Use PyErr_Occurred() to disambiguate.
Changed in version 3.8: Use __index__() if available.
Changed in version 3.10: This function will no longer use __int__().

double PyLong_AsDouble(PyObject *pylong)
Part of the Stable ABI. Return a C double representation of pylong. pylong must be an instance of
PyLongObject.
Raise OverflowError if the value of pylong is out of range for a double.
Returns -1.0 on error. Use PyErr_Occurred() to disambiguate.

void *PyLong_AsVoidPtr(PyObject *pylong)
Part of the Stable ABI. Convert a Python integer pylong to a C void pointer. If pylong cannot be converted, an
OverflowError will be raised. This is only assured to produce a usable void pointer for values created with
PyLong_FromVoidPtr().
Returns NULL on error. Use PyErr_Occurred() to disambiguate.

122 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

8.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two booleans, Py_False and Py_True.
As such, the normal creation and deletion functions don’t apply to booleans. The following macros are available, however.

PyTypeObject PyBool_Type
Part of the Stable ABI. This instance of PyTypeObject represents the Python boolean type; it is the same object
as bool in the Python layer.

int PyBool_Check(PyObject *o)
Return true if o is of type PyBool_Type. This function always succeeds.

PyObject *Py_False
The Python False object. This object has no methods. It needs to be treated just like any other object with respect
to reference counts.

PyObject *Py_True
The Python True object. This object has no methods. It needs to be treated just like any other object with respect
to reference counts.

Py_RETURN_FALSE

Return Py_False from a function, properly incrementing its reference count.
Py_RETURN_TRUE

Return Py_True from a function, properly incrementing its reference count.
PyObject *PyBool_FromLong(long v)

Return value: New reference. Part of the StableABI.Return a new reference toPy_True orPy_False depending
on the truth value of v.

8.2.3 Floating Point Objects

type PyFloatObject
This subtype of PyObject represents a Python floating point object.

PyTypeObject PyFloat_Type

Part of the Stable ABI. This instance of PyTypeObject represents the Python floating point type. This is the
same object as float in the Python layer.

int PyFloat_Check(PyObject *p)
Return true if its argument is a PyFloatObject or a subtype of PyFloatObject. This function always
succeeds.

int PyFloat_CheckExact(PyObject *p)
Return true if its argument is a PyFloatObject, but not a subtype of PyFloatObject. This function always
succeeds.

PyObject *PyFloat_FromString(PyObject *str)
Return value: New reference. Part of the Stable ABI. Create a PyFloatObject object based on the string value
in str, or NULL on failure.

PyObject *PyFloat_FromDouble(double v)
Return value: New reference. Part of the Stable ABI. Create a PyFloatObject object from v, or NULL on
failure.

8.2. Numeric Objects 123

The Python/C API, Release 3.11.4

double PyFloat_AsDouble(PyObject *pyfloat)
Part of the Stable ABI. Return a C double representation of the contents of pyfloat. If pyfloat is not a Python
floating point object but has a __float__() method, this method will first be called to convert pyfloat into a
float. If __float__() is not defined then it falls back to __index__(). This method returns -1.0 upon
failure, so one should call PyErr_Occurred() to check for errors.
Changed in version 3.8: Use __index__() if available.

double PyFloat_AS_DOUBLE(PyObject *pyfloat)
Return a C double representation of the contents of pyfloat, but without error checking.

PyObject *PyFloat_GetInfo(void)
Return value: New reference. Part of the Stable ABI. Return a structseq instance which contains information about
the precision, minimum and maximum values of a float. It’s a thin wrapper around the header file float.h.

double PyFloat_GetMax()
Part of the Stable ABI. Return the maximum representable finite float DBL_MAX as C double.

double PyFloat_GetMin()
Part of the Stable ABI. Return the minimum normalized positive float DBL_MIN as C double.

Pack and Unpack functions

The pack and unpack functions provide an efficient platform-independent way to store floating-point values as byte strings.
The Pack routines produce a bytes string from a C double, and the Unpack routines produce a C double from such
a bytes string. The suffix (2, 4 or 8) specifies the number of bytes in the bytes string.
On platforms that appear to use IEEE 754 formats these functions work by copying bits. On other platforms, the 2-byte
format is identical to the IEEE 754 binary16 half-precision format, the 4-byte format (32-bit) is identical to the IEEE
754 binary32 single precision format, and the 8-byte format to the IEEE 754 binary64 double precision format, although
the packing of INFs and NaNs (if such things exist on the platform) isn’t handled correctly, and attempting to unpack a
bytes string containing an IEEE INF or NaN will raise an exception.
On non-IEEE platforms with more precision, or larger dynamic range, than IEEE 754 supports, not all values can be
packed; on non-IEEE platforms with less precision, or smaller dynamic range, not all values can be unpacked. What
happens in such cases is partly accidental (alas).
New in version 3.11.

Pack functions

The pack routines write 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if you want the bytes string in
little-endian format (exponent last, at p+1, p+3, or p+6 p+7), zero if you want big-endian format (exponent first, at p).
The PY_BIG_ENDIAN constant can be used to use the native endian: it is equal to 1 on big endian processor, or 0 on
little endian processor.
Return value: 0 if all is OK, -1 if error (and an exception is set, most likely OverflowError).
There are two problems on non-IEEE platforms:

• What this does is undefined if x is a NaN or infinity.
• -0.0 and +0.0 produce the same bytes string.

int PyFloat_Pack2(double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary16 half-precision format.

124 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

int PyFloat_Pack4(double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary32 single precision format.

int PyFloat_Pack8(double x, unsigned char *p, int le)
Pack a C double as the IEEE 754 binary64 double precision format.

Unpack functions

The unpack routines read 2, 4 or 8 bytes, starting at p. le is an int argument, non-zero if the bytes string is in little-endian
format (exponent last, at p+1, p+3 or p+6 and p+7), zero if big-endian (exponent first, at p). The PY_BIG_ENDIAN
constant can be used to use the native endian: it is equal to 1 on big endian processor, or 0 on little endian processor.
Return value: The unpacked double. On error, this is -1.0 and PyErr_Occurred() is true (and an exception is set,
most likely OverflowError).
Note that on a non-IEEE platform this will refuse to unpack a bytes string that represents a NaN or infinity.
double PyFloat_Unpack2(const unsigned char *p, int le)

Unpack the IEEE 754 binary16 half-precision format as a C double.
double PyFloat_Unpack4(const unsigned char *p, int le)

Unpack the IEEE 754 binary32 single precision format as a C double.
double PyFloat_Unpack8(const unsigned char *p, int le)

Unpack the IEEE 754 binary64 double precision format as a C double.

8.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the Python
object exposed to Python programs, and the other is a C structure which represents the actual complex number value.
The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as results do so by value rather than
dereferencing them through pointers. This is consistent throughout the API.
type Py_complex

The C structure which corresponds to the value portion of a Python complex number object. Most of the functions
for dealing with complex number objects use structures of this type as input or output values, as appropriate. It is
defined as:

typedef struct {
double real;
double imag;

} Py_complex;

Py_complex _Py_c_sum(Py_complex left, Py_complex right)
Return the sum of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_diff(Py_complex left, Py_complex right)
Return the difference between two complex numbers, using the C Py_complex representation.

8.2. Numeric Objects 125

The Python/C API, Release 3.11.4

Py_complex _Py_c_neg(Py_complex num)
Return the negation of the complex number num, using the C Py_complex representation.

Py_complex _Py_c_prod(Py_complex left, Py_complex right)
Return the product of two complex numbers, using the C Py_complex representation.

Py_complex _Py_c_quot(Py_complex dividend, Py_complex divisor)
Return the quotient of two complex numbers, using the C Py_complex representation.
If divisor is null, this method returns zero and sets errno to EDOM.

Py_complex _Py_c_pow(Py_complex num, Py_complex exp)
Return the exponentiation of num by exp, using the C Py_complex representation.
If num is null and exp is not a positive real number, this method returns zero and sets errno to EDOM.

Complex Numbers as Python Objects

type PyComplexObject
This subtype of PyObject represents a Python complex number object.

PyTypeObject PyComplex_Type
Part of the Stable ABI. This instance of PyTypeObject represents the Python complex number type. It is the
same object as complex in the Python layer.

int PyComplex_Check(PyObject *p)
Return true if its argument is a PyComplexObject or a subtype of PyComplexObject. This function always
succeeds.

int PyComplex_CheckExact(PyObject *p)
Return true if its argument is a PyComplexObject, but not a subtype of PyComplexObject. This function
always succeeds.

PyObject *PyComplex_FromCComplex(Py_complex v)
Return value: New reference. Create a new Python complex number object from a C Py_complex value.

PyObject *PyComplex_FromDoubles(double real, double imag)
Return value: New reference. Part of the Stable ABI. Return a new PyComplexObject object from real and
imag.

double PyComplex_RealAsDouble(PyObject *op)
Part of the Stable ABI. Return the real part of op as a C double.

double PyComplex_ImagAsDouble(PyObject *op)
Part of the Stable ABI. Return the imaginary part of op as a C double.

Py_complex PyComplex_AsCComplex(PyObject *op)
Return the Py_complex value of the complex number op.
If op is not a Python complex number object but has a __complex__() method, this method will first be
called to convert op to a Python complex number object. If __complex__() is not defined then it falls back
to __float__(). If __float__() is not defined then it falls back to __index__(). Upon failure, this
method returns -1.0 as a real value.
Changed in version 3.8: Use __index__() if available.

126 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

8.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific kinds
of sequence objects that are intrinsic to the Python language.

8.3.1 Bytes Objects

These functions raise TypeError when expecting a bytes parameter and called with a non-bytes parameter.
type PyBytesObject

This subtype of PyObject represents a Python bytes object.
PyTypeObject PyBytes_Type

Part of the Stable ABI. This instance of PyTypeObject represents the Python bytes type; it is the same object
as bytes in the Python layer.

int PyBytes_Check(PyObject *o)
Return true if the object o is a bytes object or an instance of a subtype of the bytes type. This function always
succeeds.

int PyBytes_CheckExact(PyObject *o)
Return true if the object o is a bytes object, but not an instance of a subtype of the bytes type. This function always
succeeds.

PyObject *PyBytes_FromString(const char *v)
Return value: New reference. Part of the Stable ABI. Return a new bytes object with a copy of the string v as value
on success, and NULL on failure. The parameter v must not be NULL; it will not be checked.

PyObject *PyBytes_FromStringAndSize(const char *v, Py_ssize_t len)
Return value: New reference. Part of the Stable ABI. Return a new bytes object with a copy of the string v as value
and length len on success, and NULL on failure. If v is NULL, the contents of the bytes object are uninitialized.

PyObject *PyBytes_FromFormat(const char *format, ...)
Return value: New reference. Part of the Stable ABI. Take a C printf()-style format string and a variable
number of arguments, calculate the size of the resulting Python bytes object and return a bytes object with the
values formatted into it. The variable arguments must be C types and must correspond exactly to the format
characters in the format string. The following format characters are allowed:

Format Characters Type Comment
%% n/a The literal % character.
%c int A single byte, represented as a C int.
%d int Equivalent to printf("%d").1
%u unsigned int Equivalent to printf("%u").Page 128, 1
%ld long Equivalent to printf("%ld").Page 128, 1
%lu unsigned long Equivalent to printf("%lu").Page 128, 1
%zd Py_ssize_t Equivalent to printf("%zd").Page 128, 1
%zu size_t Equivalent to printf("%zu").Page 128, 1
%i int Equivalent to printf("%i").Page 128, 1
%x int Equivalent to printf("%x").Page 128, 1
%s const char* A null-terminated C character array.
%p const void* The hex representation of a C pointer. Mostly equivalent to

printf("%p") except that it is guaranteed to start with the
literal 0x regardless of what the platform’s printf yields.

8.3. Sequence Objects 127

The Python/C API, Release 3.11.4

An unrecognized format character causes all the rest of the format string to be copied as-is to the result object, and
any extra arguments discarded.

PyObject *PyBytes_FromFormatV(const char *format, va_list vargs)
Return value: New reference. Part of the Stable ABI. Identical to PyBytes_FromFormat() except that it takes
exactly two arguments.

PyObject *PyBytes_FromObject(PyObject *o)
Return value: New reference. Part of the Stable ABI. Return the bytes representation of object o that implements
the buffer protocol.

Py_ssize_t PyBytes_Size(PyObject *o)
Part of the Stable ABI. Return the length of the bytes in bytes object o.

Py_ssize_t PyBytes_GET_SIZE(PyObject *o)
Similar to PyBytes_Size(), but without error checking.

char *PyBytes_AsString(PyObject *o)
Part of the Stable ABI. Return a pointer to the contents of o. The pointer refers to the internal buffer of o,
which consists of len(o) + 1 bytes. The last byte in the buffer is always null, regardless of whether there
are any other null bytes. The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize(NULL, size). It must not be deallocated. If o is not a bytes object at
all, PyBytes_AsString() returns NULL and raises TypeError.

char *PyBytes_AS_STRING(PyObject *string)
Similar to PyBytes_AsString(), but without error checking.

int PyBytes_AsStringAndSize(PyObject *obj, char **buffer, Py_ssize_t *length)
Part of the Stable ABI. Return the null-terminated contents of the object obj through the output variables buffer
and length.
If length is NULL, the bytes object may not contain embedded null bytes; if it does, the function returns -1 and a
ValueError is raised.
The buffer refers to an internal buffer of obj, which includes an additional null byte at the end (not
counted in length). The data must not be modified in any way, unless the object was just created using
PyBytes_FromStringAndSize(NULL, size). It must not be deallocated. If obj is not a bytes object at
all, PyBytes_AsStringAndSize() returns -1 and raises TypeError.
Changed in version 3.5: Previously, TypeError was raised when embedded null bytes were encountered in the
bytes object.

void PyBytes_Concat(PyObject **bytes, PyObject *newpart)
Part of the Stable ABI. Create a new bytes object in *bytes containing the contents of newpart appended to bytes;
the caller will own the new reference. The reference to the old value of bytes will be stolen. If the new object
cannot be created, the old reference to bytes will still be discarded and the value of *bytes will be set to NULL; the
appropriate exception will be set.

void PyBytes_ConcatAndDel(PyObject **bytes, PyObject *newpart)
Part of the Stable ABI. Create a new bytes object in *bytes containing the contents of newpart appended to bytes.
This version releases the strong reference to newpart (i.e. decrements its reference count).

int _PyBytes_Resize(PyObject **bytes, Py_ssize_t newsize)
A way to resize a bytes object even though it is “immutable”. Only use this to build up a brand new bytes object;
don’t use this if the bytes may already be known in other parts of the code. It is an error to call this function if
the refcount on the input bytes object is not one. Pass the address of an existing bytes object as an lvalue (it may
be written into), and the new size desired. On success, *bytes holds the resized bytes object and 0 is returned;

1 For integer specifiers (d, u, ld, lu, zd, zu, i, x): the 0-conversion flag has effect even when a precision is given.

128 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

the address in *bytes may differ from its input value. If the reallocation fails, the original bytes object at *bytes is
deallocated, *bytes is set to NULL, MemoryError is set, and -1 is returned.

8.3.2 Byte Array Objects

type PyByteArrayObject
This subtype of PyObject represents a Python bytearray object.

PyTypeObject PyByteArray_Type
Part of the Stable ABI. This instance of PyTypeObject represents the Python bytearray type; it is the same
object as bytearray in the Python layer.

Type check macros

int PyByteArray_Check(PyObject *o)
Return true if the object o is a bytearray object or an instance of a subtype of the bytearray type. This function
always succeeds.

int PyByteArray_CheckExact(PyObject *o)
Return true if the object o is a bytearray object, but not an instance of a subtype of the bytearray type. This function
always succeeds.

Direct API functions

PyObject *PyByteArray_FromObject(PyObject *o)
Return value: New reference. Part of the Stable ABI. Return a new bytearray object from any object, o, that
implements the buffer protocol.

PyObject *PyByteArray_FromStringAndSize(const char *string, Py_ssize_t len)
Return value: New reference. Part of the Stable ABI. Create a new bytearray object from string and its length, len.
On failure, NULL is returned.

PyObject *PyByteArray_Concat(PyObject *a, PyObject *b)
Return value: New reference. Part of the Stable ABI. Concat bytearrays a and b and return a new bytearray with
the result.

Py_ssize_t PyByteArray_Size(PyObject *bytearray)
Part of the Stable ABI. Return the size of bytearray after checking for a NULL pointer.

char *PyByteArray_AsString(PyObject *bytearray)
Part of the Stable ABI. Return the contents of bytearray as a char array after checking for a NULL pointer. The
returned array always has an extra null byte appended.

int PyByteArray_Resize(PyObject *bytearray, Py_ssize_t len)
Part of the Stable ABI. Resize the internal buffer of bytearray to len.

8.3. Sequence Objects 129

The Python/C API, Release 3.11.4

Macros

These macros trade safety for speed and they don’t check pointers.
char *PyByteArray_AS_STRING(PyObject *bytearray)

Similar to PyByteArray_AsString(), but without error checking.
Py_ssize_t PyByteArray_GET_SIZE(PyObject *bytearray)

Similar to PyByteArray_Size(), but without error checking.

8.3.3 Unicode Objects and Codecs

Unicode Objects

Since the implementation of PEP 393 in Python 3.3, Unicode objects internally use a variety of representations, in order
to allow handling the complete range of Unicode characters while staying memory efficient. There are special cases for
strings where all code points are below 128, 256, or 65536; otherwise, code points must be below 1114112 (which is the
full Unicode range).
Py_UNICODE* and UTF-8 representations are created on demand and cached in the Unicode object. The
Py_UNICODE* representation is deprecated and inefficient.
Due to the transition between the old APIs and the new APIs, Unicode objects can internally be in two states depending
on how they were created:

• “canonical” Unicode objects are all objects created by a non-deprecated Unicode API. They use the most efficient
representation allowed by the implementation.

• “legacy” Unicode objects have been created through one of the deprecated APIs (typically
PyUnicode_FromUnicode()) and only bear the Py_UNICODE* representation; you will have to call
PyUnicode_READY() on them before calling any other API.

Note: The “legacy” Unicode object will be removed in Python 3.12 with deprecated APIs. All Unicode objects will be
“canonical” since then. See PEP 623 for more information.

Unicode Type

These are the basic Unicode object types used for the Unicode implementation in Python:
type Py_UCS4
type Py_UCS2
type Py_UCS1

Part of the Stable ABI. These types are typedefs for unsigned integer types wide enough to contain characters of
32 bits, 16 bits and 8 bits, respectively. When dealing with single Unicode characters, use Py_UCS4.
New in version 3.3.

type Py_UNICODE
This is a typedef of wchar_t, which is a 16-bit type or 32-bit type depending on the platform.
Changed in version 3.3: In previous versions, this was a 16-bit type or a 32-bit type depending on whether you
selected a “narrow” or “wide” Unicode version of Python at build time.

type PyASCIIObject

130 Chapter 8. Concrete Objects Layer

https://peps.python.org/pep-0393/
https://peps.python.org/pep-0623/

The Python/C API, Release 3.11.4

type PyCompactUnicodeObject
type PyUnicodeObject

These subtypes of PyObject represent a Python Unicode object. In almost all cases, they shouldn’t be used
directly, since all API functions that deal with Unicode objects take and return PyObject pointers.
New in version 3.3.

PyTypeObject PyUnicode_Type
Part of the Stable ABI. This instance of PyTypeObject represents the Python Unicode type. It is exposed to
Python code as str.

The following APIs are C macros and static inlined functions for fast checks and access to internal read-only data of
Unicode objects:
int PyUnicode_Check(PyObject *o)

Return true if the object o is a Unicode object or an instance of a Unicode subtype. This function always succeeds.
int PyUnicode_CheckExact(PyObject *o)

Return true if the object o is a Unicode object, but not an instance of a subtype. This function always succeeds.
int PyUnicode_READY(PyObject *o)

Ensure the string object o is in the “canonical” representation. This is required before using any of the access
macros described below.
Returns 0 on success and -1 with an exception set on failure, which in particular happens if memory allocation
fails.
New in version 3.3.
Deprecated since version 3.10, will be removed in version 3.12: This API will be removed with
PyUnicode_FromUnicode().

Py_ssize_t PyUnicode_GET_LENGTH(PyObject *o)
Return the length of the Unicode string, in code points. o has to be a Unicode object in the “canonical” represen-
tation (not checked).
New in version 3.3.

Py_UCS1 *PyUnicode_1BYTE_DATA(PyObject *o)
Py_UCS2 *PyUnicode_2BYTE_DATA(PyObject *o)
Py_UCS4 *PyUnicode_4BYTE_DATA(PyObject *o)

Return a pointer to the canonical representation cast to UCS1, UCS2 or UCS4 integer types for direct char-
acter access. No checks are performed if the canonical representation has the correct character size; use
PyUnicode_KIND() to select the right macro. Make sure PyUnicode_READY() has been called before
accessing this.
New in version 3.3.

PyUnicode_WCHAR_KIND

PyUnicode_1BYTE_KIND

PyUnicode_2BYTE_KIND

PyUnicode_4BYTE_KIND

Return values of the PyUnicode_KIND() macro.
New in version 3.3.
Deprecated since version 3.10, will be removed in version 3.12: PyUnicode_WCHAR_KIND is deprecated.

8.3. Sequence Objects 131

The Python/C API, Release 3.11.4

int PyUnicode_KIND(PyObject *o)
Return one of the PyUnicode kind constants (see above) that indicate how many bytes per character this Unicode
object uses to store its data. o has to be a Unicode object in the “canonical” representation (not checked).
New in version 3.3.

void *PyUnicode_DATA(PyObject *o)
Return a void pointer to the raw Unicode buffer. o has to be a Unicode object in the “canonical” representation
(not checked).
New in version 3.3.

void PyUnicode_WRITE(int kind, void *data, Py_ssize_t index, Py_UCS4 value)
Write into a canonical representation data (as obtained with PyUnicode_DATA()). This function performs
no sanity checks, and is intended for usage in loops. The caller should cache the kind value and data pointer as
obtained from other calls. index is the index in the string (starts at 0) and value is the new code point value which
should be written to that location.
New in version 3.3.

Py_UCS4 PyUnicode_READ(int kind, void *data, Py_ssize_t index)
Read a code point from a canonical representation data (as obtained with PyUnicode_DATA()). No checks or
ready calls are performed.
New in version 3.3.

Py_UCS4 PyUnicode_READ_CHAR(PyObject *o, Py_ssize_t index)
Read a character from a Unicode object o, which must be in the “canonical” representation. This is less efficient
than PyUnicode_READ() if you do multiple consecutive reads.
New in version 3.3.

Py_UCS4 PyUnicode_MAX_CHAR_VALUE(PyObject *o)
Return the maximum code point that is suitable for creating another string based on o, which must be in the
“canonical” representation. This is always an approximation but more efficient than iterating over the string.
New in version 3.3.

Py_ssize_t PyUnicode_GET_SIZE(PyObject *o)
Return the size of the deprecated Py_UNICODE representation, in code units (this includes surrogate pairs as 2
units). o has to be a Unicode object (not checked).
Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode_GET_LENGTH().

Py_ssize_t PyUnicode_GET_DATA_SIZE(PyObject *o)
Return the size of the deprecatedPy_UNICODE representation in bytes. o has to be aUnicode object (not checked).
Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode_GET_LENGTH().

Py_UNICODE *PyUnicode_AS_UNICODE(PyObject *o)
const char *PyUnicode_AS_DATA(PyObject *o)

Return a pointer to a Py_UNICODE representation of the object. The returned buffer is always terminated with an
extra null code point. It may also contain embedded null code points, which would cause the string to be truncated
when used in most C functions. The AS_DATA form casts the pointer to const char*. The o argument has to
be a Unicode object (not checked).
Changed in version 3.3: This function is now inefficient – because in many cases the Py_UNICODE representation
does not exist and needs to be created – and can fail (return NULLwith an exception set). Try to port the code to use
the new PyUnicode_nBYTE_DATA() macros or use PyUnicode_WRITE() or PyUnicode_READ().

132 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using the PyUnicode_nBYTE_DATA() family of macros.

int PyUnicode_IsIdentifier(PyObject *o)
Part of the Stable ABI. Return 1 if the string is a valid identifier according to the language definition, section
identifiers. Return 0 otherwise.
Changed in version 3.9: The function does not call Py_FatalError() anymore if the string is not ready.

Unicode Character Properties

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.
int Py_UNICODE_ISSPACE(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a whitespace character.
int Py_UNICODE_ISLOWER(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a lowercase character.
int Py_UNICODE_ISUPPER(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is an uppercase character.
int Py_UNICODE_ISTITLE(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a titlecase character.
int Py_UNICODE_ISLINEBREAK(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a linebreak character.
int Py_UNICODE_ISDECIMAL(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a decimal character.
int Py_UNICODE_ISDIGIT(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a digit character.
int Py_UNICODE_ISNUMERIC(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a numeric character.
int Py_UNICODE_ISALPHA(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is an alphabetic character.
int Py_UNICODE_ISALNUM(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is an alphanumeric character.
int Py_UNICODE_ISPRINTABLE(Py_UCS4 ch)

Return 1 or 0 depending on whether ch is a printable character. Nonprintable characters are those characters
defined in the Unicode character database as “Other” or “Separator”, excepting the ASCII space (0x20) which is
considered printable. (Note that printable characters in this context are those which should not be escaped when
repr() is invoked on a string. It has no bearing on the handling of strings written to sys.stdout or sys.
stderr.)

These APIs can be used for fast direct character conversions:
Py_UCS4 Py_UNICODE_TOLOWER(Py_UCS4 ch)

Return the character ch converted to lower case.
Deprecated since version 3.3: This function uses simple case mappings.

8.3. Sequence Objects 133

The Python/C API, Release 3.11.4

Py_UCS4 Py_UNICODE_TOUPPER(Py_UCS4 ch)
Return the character ch converted to upper case.
Deprecated since version 3.3: This function uses simple case mappings.

Py_UCS4 Py_UNICODE_TOTITLE(Py_UCS4 ch)
Return the character ch converted to title case.
Deprecated since version 3.3: This function uses simple case mappings.

int Py_UNICODE_TODECIMAL(Py_UCS4 ch)
Return the character ch converted to a decimal positive integer. Return -1 if this is not possible. This macro does
not raise exceptions.

int Py_UNICODE_TODIGIT(Py_UCS4 ch)
Return the character ch converted to a single digit integer. Return -1 if this is not possible. This macro does not
raise exceptions.

double Py_UNICODE_TONUMERIC(Py_UCS4 ch)
Return the character ch converted to a double. Return -1.0 if this is not possible. This macro does not raise
exceptions.

These APIs can be used to work with surrogates:
Py_UNICODE_IS_SURROGATE(ch)

Check if ch is a surrogate (0xD800 <= ch <= 0xDFFF).
Py_UNICODE_IS_HIGH_SURROGATE(ch)

Check if ch is a high surrogate (0xD800 <= ch <= 0xDBFF).
Py_UNICODE_IS_LOW_SURROGATE(ch)

Check if ch is a low surrogate (0xDC00 <= ch <= 0xDFFF).
Py_UNICODE_JOIN_SURROGATES(high, low)

Join two surrogate characters and return a single Py_UCS4 value. high and low are respectively the leading and
trailing surrogates in a surrogate pair.

Creating and accessing Unicode strings

To create Unicode objects and access their basic sequence properties, use these APIs:
PyObject *PyUnicode_New(Py_ssize_t size, Py_UCS4 maxchar)

Return value: New reference. Create a new Unicode object. maxchar should be the true maximum code point to
be placed in the string. As an approximation, it can be rounded up to the nearest value in the sequence 127, 255,
65535, 1114111.
This is the recommended way to allocate a newUnicode object. Objects created using this function are not resizable.
New in version 3.3.

PyObject *PyUnicode_FromKindAndData(int kind, const void *buffer, Py_ssize_t size)
Return value: New reference. Create a new Unicode object with the given kind (possible values are
PyUnicode_1BYTE_KIND etc., as returned by PyUnicode_KIND()). The buffer must point to an array
of size units of 1, 2 or 4 bytes per character, as given by the kind.
If necessary, the input buffer is copied and transformed into the canonical representation. For example, if the buffer
is a UCS4 string (PyUnicode_4BYTE_KIND) and it consists only of codepoints in the UCS1 range, it will be
transformed into UCS1 (PyUnicode_1BYTE_KIND).

134 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

New in version 3.3.
PyObject *PyUnicode_FromStringAndSize(const char *u, Py_ssize_t size)

Return value: New reference. Part of the Stable ABI. Create a Unicode object from the char buffer u. The bytes
will be interpreted as being UTF-8 encoded. The buffer is copied into the new object. If the buffer is not NULL,
the return value might be a shared object, i.e. modification of the data is not allowed.
If u is NULL, this function behaves like PyUnicode_FromUnicode() with the buffer set to NULL. This usage
is deprecated in favor of PyUnicode_New(), and will be removed in Python 3.12.

PyObject *PyUnicode_FromString(const char *u)
Return value: New reference. Part of the Stable ABI. Create a Unicode object from a UTF-8 encoded null-
terminated char buffer u.

PyObject *PyUnicode_FromFormat(const char *format, ...)
Return value: New reference. Part of the Stable ABI. Take a C printf()-style format string and a variable
number of arguments, calculate the size of the resulting Python Unicode string and return a string with the values
formatted into it. The variable arguments must be C types and must correspond exactly to the format characters in
the format ASCII-encoded string. The following format characters are allowed:

Format Characters Type Comment
%% n/a The literal % character.
%c int A single character, represented as a C int.
%d int Equivalent to printf("%d").1
%u unsigned int Equivalent to printf("%u").1
%ld long Equivalent to printf("%ld").1
%li long Equivalent to printf("%li").1
%lu unsigned long Equivalent to printf("%lu").1
%lld long long Equivalent to printf("%lld").1
%lli long long Equivalent to printf("%lli").1
%llu unsigned long long Equivalent to printf("%llu").1
%zd Py_ssize_t Equivalent to printf("%zd").1
%zi Py_ssize_t Equivalent to printf("%zi").1
%zu size_t Equivalent to printf("%zu").1
%i int Equivalent to printf("%i").1
%x int Equivalent to printf("%x").1
%s const char* A null-terminated C character array.
%p const void* The hex representation of a C pointer. Mostly equivalent to

printf("%p") except that it is guaranteed to start with
the literal 0x regardless of what the platform’s printf
yields.

%A PyObject* The result of calling ascii().
%U PyObject* A Unicode object.
%V PyObject*, const char* A Unicode object (which may be NULL) and a

null-terminated C character array as a second parameter
(which will be used, if the first parameter is NULL).

%S PyObject* The result of calling PyObject_Str().
%R PyObject* The result of calling PyObject_Repr().

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string, and
any extra arguments discarded.

1 For integer specifiers (d, u, ld, li, lu, lld, lli, llu, zd, zi, zu, i, x): the 0-conversion flag has effect even when a precision is given.

8.3. Sequence Objects 135

The Python/C API, Release 3.11.4

Note: The width formatter unit is number of characters rather than bytes. The precision formatter unit is number
of bytes for "%s" and "%V" (if the PyObject* argument is NULL), and a number of characters for "%A",
"%U", "%S", "%R" and "%V" (if the PyObject* argument is not NULL).

Changed in version 3.2: Support for "%lld" and "%llu" added.
Changed in version 3.3: Support for "%li", "%lli" and "%zi" added.
Changed in version 3.4: Support width and precision formatter for "%s", "%A", "%U", "%V", "%S", "%R"
added.

PyObject *PyUnicode_FromFormatV(const char *format, va_list vargs)
Return value: New reference. Part of the Stable ABI. Identical to PyUnicode_FromFormat() except that it
takes exactly two arguments.

PyObject *PyUnicode_FromObject(PyObject *obj)
Return value: New reference. Part of the Stable ABI. Copy an instance of a Unicode subtype to a new true Unicode
object if necessary. If obj is already a true Unicode object (not a subtype), return a new strong reference to the
object.
Objects other than Unicode or its subtypes will cause a TypeError.

PyObject *PyUnicode_FromEncodedObject(PyObject *obj, const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Decode an encoded object obj to a Unicode object.
bytes, bytearray and other bytes-like objects are decoded according to the given encoding and using the error
handling defined by errors. Both can be NULL to have the interface use the default values (see Built-in Codecs for
details).
All other objects, including Unicode objects, cause a TypeError to be set.
The API returns NULL if there was an error. The caller is responsible for decref’ing the returned objects.

Py_ssize_t PyUnicode_GetLength(PyObject *unicode)
Part of the Stable ABI since version 3.7. Return the length of the Unicode object, in code points.
New in version 3.3.

Py_ssize_t PyUnicode_CopyCharacters(PyObject *to, Py_ssize_t to_start, PyObject *from, Py_ssize_t
from_start, Py_ssize_t how_many)

Copy characters from oneUnicode object into another. This function performs character conversionwhen necessary
and falls back to memcpy() if possible. Returns -1 and sets an exception on error, otherwise returns the number
of copied characters.
New in version 3.3.

Py_ssize_t PyUnicode_Fill(PyObject *unicode, Py_ssize_t start, Py_ssize_t length, Py_UCS4 fill_char)
Fill a string with a character: write fill_char into unicode[start:start+length].
Fail if fill_char is bigger than the string maximum character, or if the string has more than 1 reference.
Return the number of written character, or return -1 and raise an exception on error.
New in version 3.3.

int PyUnicode_WriteChar(PyObject *unicode, Py_ssize_t index, Py_UCS4 character)
Part of the Stable ABI since version 3.7. Write a character to a string. The string must have been created through
PyUnicode_New(). Since Unicode strings are supposed to be immutable, the string must not be shared, or
have been hashed yet.

136 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

This function checks that unicode is a Unicode object, that the index is not out of bounds, and that the object can
be modified safely (i.e. that it its reference count is one).
New in version 3.3.

Py_UCS4 PyUnicode_ReadChar(PyObject *unicode, Py_ssize_t index)
Part of the Stable ABI since version 3.7. Read a character from a string. This function checks that unicode is a
Unicode object and the index is not out of bounds, in contrast to PyUnicode_READ_CHAR(), which performs
no error checking.
New in version 3.3.

PyObject *PyUnicode_Substring(PyObject *str, Py_ssize_t start, Py_ssize_t end)
Return value: New reference. Part of the Stable ABI since version 3.7. Return a substring of str, from character
index start (included) to character index end (excluded). Negative indices are not supported.
New in version 3.3.

Py_UCS4 *PyUnicode_AsUCS4(PyObject *u, Py_UCS4 *buffer, Py_ssize_t buflen, int copy_null)
Part of the Stable ABI since version 3.7. Copy the string u into a UCS4 buffer, including a null character, if copy_null
is set. Returns NULL and sets an exception on error (in particular, a SystemError if buflen is smaller than the
length of u). buffer is returned on success.
New in version 3.3.

Py_UCS4 *PyUnicode_AsUCS4Copy(PyObject *u)
Part of the Stable ABI since version 3.7. Copy the string u into a new UCS4 buffer that is allocated using
PyMem_Malloc(). If this fails, NULL is returned with a MemoryError set. The returned buffer always
has an extra null code point appended.
New in version 3.3.

Deprecated Py_UNICODE APIs

Deprecated since version 3.3, will be removed in version 3.12.
These API functions are deprecated with the implementation of PEP 393. Extension modules can continue using them,
as they will not be removed in Python 3.x, but need to be aware that their use can now cause performance and memory
hits.
PyObject *PyUnicode_FromUnicode(const Py_UNICODE *u, Py_ssize_t size)

Return value: New reference. Create a Unicode object from the Py_UNICODE buffer u of the given size. u may
be NULL which causes the contents to be undefined. It is the user’s responsibility to fill in the needed data. The
buffer is copied into the new object.
If the buffer is not NULL, the return value might be a shared object. Therefore, modification of the resulting
Unicode object is only allowed when u is NULL.
If the buffer is NULL, PyUnicode_READY()must be called once the string content has been filled before using
any of the access macros such as PyUnicode_KIND().
Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate to
using PyUnicode_FromKindAndData(), PyUnicode_FromWideChar(), or PyUnicode_New().

Py_UNICODE *PyUnicode_AsUnicode(PyObject *unicode)
Return a read-only pointer to the Unicode object’s internal Py_UNICODE buffer, or NULL on error. This will
create the Py_UNICODE* representation of the object if it is not yet available. The buffer is always terminated
with an extra null code point. Note that the resulting Py_UNICODE string may also contain embedded null code
points, which would cause the string to be truncated when used in most C functions.

8.3. Sequence Objects 137

https://peps.python.org/pep-0393/

The Python/C API, Release 3.11.4

Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode_AsUCS4(), PyUnicode_AsWideChar(), PyUnicode_ReadChar() or similar
new APIs.

Py_UNICODE *PyUnicode_AsUnicodeAndSize(PyObject *unicode, Py_ssize_t *size)
Like PyUnicode_AsUnicode(), but also saves the Py_UNICODE() array length (excluding the extra null
terminator) in size. Note that the resulting Py_UNICODE* string may contain embedded null code points, which
would cause the string to be truncated when used in most C functions.
New in version 3.3.
Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode_AsUCS4(), PyUnicode_AsWideChar(), PyUnicode_ReadChar() or similar
new APIs.

Py_ssize_t PyUnicode_GetSize(PyObject *unicode)
Part of the Stable ABI. Return the size of the deprecated Py_UNICODE representation, in code units (this includes
surrogate pairs as 2 units).
Deprecated since version 3.3, will be removed in version 3.12: Part of the old-style Unicode API, please migrate
to using PyUnicode_GET_LENGTH().

Locale Encoding

The current locale encoding can be used to decode text from the operating system.
PyObject *PyUnicode_DecodeLocaleAndSize(const char *str, Py_ssize_t len, const char *errors)

Return value: New reference. Part of the Stable ABI since version 3.7. Decode a string from UTF-8 on Android and
VxWorks, or from the current locale encoding on other platforms. The supported error handlers are "strict"
and "surrogateescape" (PEP 383). The decoder uses "strict" error handler if errors is NULL. str must
end with a null character but cannot contain embedded null characters.
Use PyUnicode_DecodeFSDefaultAndSize() to decode a string from
Py_FileSystemDefaultEncoding (the locale encoding read at Python startup).
This function ignores the Python UTF-8 Mode.
See also:
The Py_DecodeLocale() function.
New in version 3.3.
Changed in version 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py_DecodeLocale() was used for the surrogateescape,
and the current locale encoding was used for strict.

PyObject *PyUnicode_DecodeLocale(const char *str, const char *errors)
Return value: New reference. Part of the Stable ABI since version 3.7. Similar to
PyUnicode_DecodeLocaleAndSize(), but compute the string length using strlen().
New in version 3.3.

PyObject *PyUnicode_EncodeLocale(PyObject *unicode, const char *errors)
Return value: New reference. Part of the Stable ABI since version 3.7. Encode a Unicode object to UTF-8 on
Android and VxWorks, or to the current locale encoding on other platforms. The supported error handlers are
"strict" and "surrogateescape" (PEP 383). The encoder uses "strict" error handler if errors is
NULL. Return a bytes object. unicode cannot contain embedded null characters.

138 Chapter 8. Concrete Objects Layer

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/

The Python/C API, Release 3.11.4

UsePyUnicode_EncodeFSDefault() to encode a string toPy_FileSystemDefaultEncoding (the
locale encoding read at Python startup).
This function ignores the Python UTF-8 Mode.
See also:
The Py_EncodeLocale() function.
New in version 3.3.
Changed in version 3.7: The function now also uses the current locale encoding for the surrogateescape
error handler, except on Android. Previously, Py_EncodeLocale() was used for the surrogateescape,
and the current locale encoding was used for strict.

File System Encoding

To encode and decode file names and other environment strings, Py_FileSystemDefaultEncoding should be
used as the encoding, and Py_FileSystemDefaultEncodeErrors should be used as the error handler (PEP
383 and PEP 529). To encode file names to bytes during argument parsing, the "O&" converter should be used,
passing PyUnicode_FSConverter() as the conversion function:
int PyUnicode_FSConverter(PyObject *obj, void *result)

Part of the Stable ABI. ParseTuple converter: encode str objects – obtained directly or through the os.
PathLike interface – to bytes using PyUnicode_EncodeFSDefault(); bytes objects are output
as-is. result must be a PyBytesObject* which must be released when it is no longer used.
New in version 3.1.
Changed in version 3.6: Accepts a path-like object.

To decode file names to str during argument parsing, the "O&" converter should be used, passing
PyUnicode_FSDecoder() as the conversion function:
int PyUnicode_FSDecoder(PyObject *obj, void *result)

Part of the Stable ABI. ParseTuple converter: decode bytes objects – obtained either directly or indirectly through
the os.PathLike interface – to str using PyUnicode_DecodeFSDefaultAndSize(); str objects
are output as-is. result must be a PyUnicodeObject* which must be released when it is no longer used.
New in version 3.2.
Changed in version 3.6: Accepts a path-like object.

PyObject *PyUnicode_DecodeFSDefaultAndSize(const char *s, Py_ssize_t size)
Return value: New reference. Part of the Stable ABI.Decode a string from the filesystem encoding and error handler.
If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and can-
not be modified later. If you need to decode a string from the current locale encoding, use
PyUnicode_DecodeLocaleAndSize().
See also:
The Py_DecodeLocale() function.
Changed in version 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

8.3. Sequence Objects 139

https://peps.python.org/pep-0383/
https://peps.python.org/pep-0383/
https://peps.python.org/pep-0529/

The Python/C API, Release 3.11.4

PyObject *PyUnicode_DecodeFSDefault(const char *s)
Return value: New reference. Part of the Stable ABI. Decode a null-terminated string from the filesystem encoding
and error handler.
If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Use PyUnicode_DecodeFSDefaultAndSize() if you know the string length.
Changed in version 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

PyObject *PyUnicode_EncodeFSDefault(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object to
Py_FileSystemDefaultEncoding with the Py_FileSystemDefaultEncodeErrors error
handler, and return bytes. Note that the resulting bytes object may contain null bytes.
If Py_FileSystemDefaultEncoding is not set, fall back to the locale encoding.
Py_FileSystemDefaultEncoding is initialized at startup from the locale encoding and cannot be modified
later. If you need to encode a string to the current locale encoding, use PyUnicode_EncodeLocale().
See also:
The Py_EncodeLocale() function.
New in version 3.2.
Changed in version 3.6: Use Py_FileSystemDefaultEncodeErrors error handler.

wchar_t Support

wchar_t support for platforms which support it:
PyObject *PyUnicode_FromWideChar(const wchar_t *w, Py_ssize_t size)

Return value: New reference. Part of the Stable ABI. Create a Unicode object from the wchar_t buffer w of the
given size. Passing -1 as the size indicates that the function must itself compute the length, using wcslen. Return
NULL on failure.

Py_ssize_t PyUnicode_AsWideChar(PyObject *unicode, wchar_t *w, Py_ssize_t size)
Part of the Stable ABI. Copy the Unicode object contents into the wchar_t buffer w. At most size wchar_t
characters are copied (excluding a possibly trailing null termination character). Return the number of wchar_t
characters copied or -1 in case of an error. Note that the resulting wchar_t* string may or may not be null-
terminated. It is the responsibility of the caller to make sure that the wchar_t* string is null-terminated in case
this is required by the application. Also, note that the wchar_t* string might contain null characters, which would
cause the string to be truncated when used with most C functions.

wchar_t *PyUnicode_AsWideCharString(PyObject *unicode, Py_ssize_t *size)
Part of the Stable ABI since version 3.7. Convert the Unicode object to a wide character string. The output string
always ends with a null character. If size is not NULL, write the number of wide characters (excluding the trailing
null termination character) into *size. Note that the resulting wchar_t string might contain null characters, which
would cause the string to be truncated when used with most C functions. If size is NULL and the wchar_t* string
contains null characters a ValueError is raised.
Returns a buffer allocated by PyMem_New (use PyMem_Free() to free it) on success. On error, returns NULL
and *size is undefined. Raises a MemoryError if memory allocation is failed.
New in version 3.2.
Changed in version 3.7: Raises a ValueError if size is NULL and the wchar_t* string contains null characters.

140 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

Built-in Codecs

Python provides a set of built-in codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.
Many of the following APIs take two arguments encoding and errors, and they have the same semantics as the ones of
the built-in str() string object constructor.
Setting encoding to NULL causes the default encoding to be used which is UTF-8. The file sys-
tem calls should use PyUnicode_FSConverter() for encoding file names. This uses the variable
Py_FileSystemDefaultEncoding internally. This variable should be treated as read-only: on some systems,
it will be a pointer to a static string, on others, it will change at run-time (such as when the application invokes setlocale).
Error handling is set by errors which may also be set to NULL meaning to use the default handling defined for the codec.
Default error handling for all built-in codecs is “strict” (ValueError is raised).
The codecs all use a similar interface. Only deviations from the following generic ones are documented for simplicity.

Generic Codecs

These are the generic codec APIs:
PyObject *PyUnicode_Decode(const char *s, Py_ssize_t size, const char *encoding, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the encoded
string s. encoding and errors have the same meaning as the parameters of the same name in the str() built-in
function. The codec to be used is looked up using the Python codec registry. Return NULL if an exception was
raised by the codec.

PyObject *PyUnicode_AsEncodedString(PyObject *unicode, const char *encoding, const char *errors)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object and return the result as Python bytes
object. encoding and errors have the same meaning as the parameters of the same name in the Unicode encode()
method. The codec to be used is looked up using the Python codec registry. Return NULL if an exception was
raised by the codec.

UTF-8 Codecs

These are the UTF-8 codec APIs:
PyObject *PyUnicode_DecodeUTF8(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the UTF-8
encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF8Stateful(const char *s, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Return value: New reference. Part of the Stable ABI. If consumed is NULL, behave like
PyUnicode_DecodeUTF8(). If consumed is not NULL, trailing incomplete UTF-8 byte sequences
will not be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded
will be stored in consumed.

PyObject *PyUnicode_AsUTF8String(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using UTF-8 and return the result
as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

8.3. Sequence Objects 141

The Python/C API, Release 3.11.4

const char *PyUnicode_AsUTF8AndSize(PyObject *unicode, Py_ssize_t *size)
Part of the Stable ABI since version 3.10. Return a pointer to the UTF-8 encoding of the Unicode object, and store
the size of the encoded representation (in bytes) in size. The size argument can be NULL; in this case no size will
be stored. The returned buffer always has an extra null byte appended (not included in size), regardless of whether
there are any other null code points.
In the case of an error, NULL is returned with an exception set and no size is stored.
This caches the UTF-8 representation of the string in the Unicode object, and subsequent calls will return a pointer
to the same buffer. The caller is not responsible for deallocating the buffer. The buffer is deallocated and pointers
to it become invalid when the Unicode object is garbage collected.
New in version 3.3.
Changed in version 3.7: The return type is now const char * rather of char *.
Changed in version 3.10: This function is a part of the limited API.

const char *PyUnicode_AsUTF8(PyObject *unicode)
As PyUnicode_AsUTF8AndSize(), but does not store the size.
New in version 3.3.
Changed in version 3.7: The return type is now const char * rather of char *.

UTF-32 Codecs

These are the UTF-32 codec APIs:
PyObject *PyUnicode_DecodeUTF32(const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Part of the Stable ABI. Decode size bytes from a UTF-32 encoded buffer string and
return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first four bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1 or
1, any byte order mark is copied to the output.
After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF32Stateful(const char *s, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Return value: New reference. Part of the Stable ABI. If consumed is NULL, behave like
PyUnicode_DecodeUTF32(). If consumed is not NULL, PyUnicode_DecodeUTF32Stateful()
will not treat trailing incomplete UTF-32 byte sequences (such as a number of bytes not divisible by four) as an
error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in consumed.

PyObject *PyUnicode_AsUTF32String(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Return a Python byte string using the UTF-32 encoding
in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return NULL if an
exception was raised by the codec.

142 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

UTF-16 Codecs

These are the UTF-16 codec APIs:
PyObject *PyUnicode_DecodeUTF16(const char *s, Py_ssize_t size, const char *errors, int *byteorder)

Return value: New reference. Part of the Stable ABI. Decode size bytes from a UTF-16 encoded buffer string and
return the corresponding Unicode object. errors (if non-NULL) defines the error handling. It defaults to “strict”.
If byteorder is non-NULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1: big endian

If *byteorder is zero, and the first two bytes of the input data are a byte order mark (BOM), the decoder
switches to this byte order and the BOM is not copied into the resulting Unicode string. If *byteorder is -1 or
1, any byte order mark is copied to the output (where it will result in either a \ufeff or a \ufffe character).
After completion, *byteorder is set to the current byte order at the end of input data.
If byteorder is NULL, the codec starts in native order mode.
Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF16Stateful(const char *s, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed)

Return value: New reference. Part of the Stable ABI. If consumed is NULL, behave like
PyUnicode_DecodeUTF16(). If consumed is not NULL, PyUnicode_DecodeUTF16Stateful()
will not treat trailing incomplete UTF-16 byte sequences (such as an odd number of bytes or a split surrogate pair)
as an error. Those bytes will not be decoded and the number of bytes that have been decoded will be stored in
consumed.

PyObject *PyUnicode_AsUTF16String(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Return a Python byte string using the UTF-16 encoding
in native byte order. The string always starts with a BOM mark. Error handling is “strict”. Return NULL if an
exception was raised by the codec.

UTF-7 Codecs

These are the UTF-7 codec APIs:
PyObject *PyUnicode_DecodeUTF7(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the UTF-7
encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeUTF7Stateful(const char *s, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Return value: New reference. Part of the Stable ABI. If consumed is NULL, behave like
PyUnicode_DecodeUTF7(). If consumed is not NULL, trailing incomplete UTF-7 base-64 sections
will not be treated as an error. Those bytes will not be decoded and the number of bytes that have been decoded
will be stored in consumed.

8.3. Sequence Objects 143

The Python/C API, Release 3.11.4

Unicode-Escape Codecs

These are the “Unicode Escape” codec APIs:
PyObject *PyUnicode_DecodeUnicodeEscape(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI.Create a Unicode object by decoding size bytes of the Unicode-
Escape encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using Unicode-Escape and return
the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

Raw-Unicode-Escape Codecs

These are the “Raw Unicode Escape” codec APIs:
PyObject *PyUnicode_DecodeRawUnicodeEscape(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the Raw-
Unicode-Escape encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsRawUnicodeEscapeString(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using Raw-Unicode-Escape and
return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

Latin-1 Codecs

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted by
the codecs during encoding.
PyObject *PyUnicode_DecodeLatin1(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the Latin-1
encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsLatin1String(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using Latin-1 and return the result
as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

ASCII Codecs

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.
PyObject *PyUnicode_DecodeASCII(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the ASCII
encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_AsASCIIString(PyObject *unicode)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using ASCII and return the result
as Python bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.

144 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

Character Map Codecs

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included in the encodings package). The codec uses mappings to encode and
decode characters. The mapping objects provided must support the __getitem__() mapping interface; dictionaries
and sequences work well.
These are the mapping codec APIs:
PyObject *PyUnicode_DecodeCharmap(const char *data, Py_ssize_t size, PyObject *mapping, const char

*errors)
Return value: New reference. Part of the Stable ABI. Create a Unicode object by decoding size bytes of the encoded
string s using the given mapping object. Return NULL if an exception was raised by the codec.
Ifmapping is NULL, Latin-1 decoding will be applied. Elsemappingmust map bytes ordinals (integers in the range
from 0 to 255) to Unicode strings, integers (which are then interpreted as Unicode ordinals) or None. Unmapped
data bytes – ones which cause a LookupError, as well as ones which get mapped to None, 0xFFFE or '\
ufffe', are treated as undefined mappings and cause an error.

PyObject *PyUnicode_AsCharmapString(PyObject *unicode, PyObject *mapping)
Return value: New reference. Part of the Stable ABI. Encode a Unicode object using the given mapping object and
return the result as a bytes object. Error handling is “strict”. Return NULL if an exception was raised by the codec.
The mapping object must map Unicode ordinal integers to bytes objects, integers in the range from 0 to 255 or
None. Unmapped character ordinals (ones which cause a LookupError) as well as mapped to None are treated
as “undefined mapping” and cause an error.

The following codec API is special in that maps Unicode to Unicode.
PyObject *PyUnicode_Translate(PyObject *str, PyObject *table, const char *errors)

Return value: New reference. Part of the Stable ABI. Translate a string by applying a character mapping table to it
and return the resulting Unicode object. Return NULL if an exception was raised by the codec.
The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).
Mapping tables need only provide the __getitem__() interface; dictionaries and sequences work well. Un-
mapped character ordinals (ones which cause a LookupError) are left untouched and are copied as-is.
errors has the usual meaning for codecs. It may be NULL which indicates to use the default error handling.

MBCS codecs for Windows

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding is
defined by the user settings on the machine running the codec.
PyObject *PyUnicode_DecodeMBCS(const char *s, Py_ssize_t size, const char *errors)

Return value: New reference. Part of the Stable ABI on Windows since version 3.7. Create a Unicode object by
decoding size bytes of the MBCS encoded string s. Return NULL if an exception was raised by the codec.

PyObject *PyUnicode_DecodeMBCSStateful(const char *s, Py_ssize_t size, const char *errors, Py_ssize_t
*consumed)

Return value: New reference. Part of the Stable ABI on Windows since version 3.7. If consumed is NULL, behave
like PyUnicode_DecodeMBCS(). If consumed is not NULL, PyUnicode_DecodeMBCSStateful()
will not decode trailing lead byte and the number of bytes that have been decoded will be stored in consumed.

8.3. Sequence Objects 145

The Python/C API, Release 3.11.4

PyObject *PyUnicode_AsMBCSString(PyObject *unicode)
Return value: New reference. Part of the Stable ABI on Windows since version 3.7. Encode a Unicode object using
MBCS and return the result as Python bytes object. Error handling is “strict”. Return NULL if an exception was
raised by the codec.

PyObject *PyUnicode_EncodeCodePage(int code_page, PyObject *unicode, const char *errors)
Return value: New reference. Part of the Stable ABI on Windows since version 3.7. Encode the Unicode object
using the specified code page and return a Python bytes object. Return NULL if an exception was raised by the
codec. Use CP_ACP code page to get the MBCS encoder.
New in version 3.3.

Methods & Slots

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as appropriate.
They all return NULL or -1 if an exception occurs.
PyObject *PyUnicode_Concat(PyObject *left, PyObject *right)

Return value: New reference. Part of the Stable ABI. Concat two strings giving a new Unicode string.
PyObject *PyUnicode_Split(PyObject *s, PyObject *sep, Py_ssize_t maxsplit)

Return value: New reference. Part of the Stable ABI. Split a string giving a list of Unicode strings. If sep is NULL,
splitting will be done at all whitespace substrings. Otherwise, splits occur at the given separator. At most maxsplit
splits will be done. If negative, no limit is set. Separators are not included in the resulting list.

PyObject *PyUnicode_Splitlines(PyObject *s, int keepend)
Return value: New reference. Part of the Stable ABI. Split a Unicode string at line breaks, returning a list of Unicode
strings. CRLF is considered to be one line break. If keepend is 0, the line break characters are not included in the
resulting strings.

PyObject *PyUnicode_Join(PyObject *separator, PyObject *seq)
Return value: New reference. Part of the Stable ABI. Join a sequence of strings using the given separator and return
the resulting Unicode string.

Py_ssize_t PyUnicode_Tailmatch(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Part of the Stable ABI. Return 1 if substr matches str[start:end] at the given tail end (direction == -1
means to do a prefix match, direction == 1 a suffix match), 0 otherwise. Return -1 if an error occurred.

Py_ssize_t PyUnicode_Find(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direction)
Part of the Stable ABI.Return the first position of substr in str[start:end] using the given direction (direction
== 1 means to do a forward search, direction == -1 a backward search). The return value is the index of the first
match; a value of -1 indicates that no match was found, and -2 indicates that an error occurred and an exception
has been set.

Py_ssize_t PyUnicode_FindChar(PyObject *str, Py_UCS4 ch, Py_ssize_t start, Py_ssize_t end, int direction)
Part of the Stable ABI since version 3.7. Return the first position of the character ch in str[start:end] using
the given direction (direction == 1 means to do a forward search, direction == -1 a backward search). The return
value is the index of the first match; a value of -1 indicates that no match was found, and -2 indicates that an error
occurred and an exception has been set.
New in version 3.3.
Changed in version 3.7: start and end are now adjusted to behave like str[start:end].

146 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

Py_ssize_t PyUnicode_Count(PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end)
Part of the Stable ABI. Return the number of non-overlapping occurrences of substr in str[start:end].
Return -1 if an error occurred.

PyObject *PyUnicode_Replace(PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t maxcount)
Return value: New reference. Part of the Stable ABI. Replace at most maxcount occurrences of substr in str with
replstr and return the resulting Unicode object. maxcount == -1 means replace all occurrences.

int PyUnicode_Compare(PyObject *left, PyObject *right)
Part of the Stable ABI. Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.
This function returns -1 upon failure, so one should call PyErr_Occurred() to check for errors.

int PyUnicode_CompareWithASCIIString(PyObject *uni, const char *string)
Part of the Stable ABI. Compare a Unicode object, uni, with string and return -1, 0, 1 for less than, equal, and
greater than, respectively. It is best to pass only ASCII-encoded strings, but the function interprets the input string
as ISO-8859-1 if it contains non-ASCII characters.
This function does not raise exceptions.

PyObject *PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
Return value: New reference. Part of the Stable ABI. Rich compare two Unicode strings and return one of the
following:

• NULL in case an exception was raised
• Py_True or Py_False for successful comparisons
• Py_NotImplemented in case the type combination is unknown

Possible values for op are Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, and Py_LE.
PyObject *PyUnicode_Format(PyObject *format, PyObject *args)

Return value: New reference. Part of the Stable ABI. Return a new string object from format and args; this is
analogous to format % args.

int PyUnicode_Contains(PyObject *container, PyObject *element)
Part of the Stable ABI. Check whether element is contained in container and return true or false accordingly.
element has to coerce to a one element Unicode string. -1 is returned if there was an error.

void PyUnicode_InternInPlace(PyObject **string)
Part of the Stable ABI. Intern the argument *string in place. The argument must be the address of a pointer variable
pointing to a Python Unicode string object. If there is an existing interned string that is the same as *string, it sets
*string to it (releasing the reference to the old string object and creating a new strong reference to the interned string
object), otherwise it leaves *string alone and interns it (creating a new strong reference). (Clarification: even though
there is a lot of talk about references, think of this function as reference-neutral; you own the object after the call
if and only if you owned it before the call.)

PyObject *PyUnicode_InternFromString(const char *v)
Return value: New reference. Part of the Stable ABI. A combination of PyUnicode_FromString() and
PyUnicode_InternInPlace(), returning either a new Unicode string object that has been interned, or a
new (“owned”) reference to an earlier interned string object with the same value.

8.3. Sequence Objects 147

The Python/C API, Release 3.11.4

8.3.4 Tuple Objects

type PyTupleObject
This subtype of PyObject represents a Python tuple object.

PyTypeObject PyTuple_Type

Part of the Stable ABI. This instance of PyTypeObject represents the Python tuple type; it is the same object
as tuple in the Python layer.

int PyTuple_Check(PyObject *p)
Return true if p is a tuple object or an instance of a subtype of the tuple type. This function always succeeds.

int PyTuple_CheckExact(PyObject *p)
Return true if p is a tuple object, but not an instance of a subtype of the tuple type. This function always succeeds.

PyObject *PyTuple_New(Py_ssize_t len)
Return value: New reference. Part of the Stable ABI. Return a new tuple object of size len, or NULL on failure.

PyObject *PyTuple_Pack(Py_ssize_t n, ...)
Return value: New reference. Part of the Stable ABI. Return a new tuple object of size n, or NULL on failure. The
tuple values are initialized to the subsequent n C arguments pointing to Python objects. PyTuple_Pack(2,
a, b) is equivalent to Py_BuildValue("(OO)", a, b).

Py_ssize_t PyTuple_Size(PyObject *p)
Part of the Stable ABI. Take a pointer to a tuple object, and return the size of that tuple.

Py_ssize_t PyTuple_GET_SIZE(PyObject *p)
Return the size of the tuple p, which must be non-NULL and point to a tuple; no error checking is performed.

PyObject *PyTuple_GetItem(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Part of the Stable ABI. Return the object at position pos in the tuple pointed to
by p. If pos is negative or out of bounds, return NULL and set an IndexError exception.

PyObject *PyTuple_GET_ITEM(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Like PyTuple_GetItem(), but does no checking of its arguments.

PyObject *PyTuple_GetSlice(PyObject *p, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Part of the Stable ABI. Return the slice of the tuple pointed to by p between low and
high, or NULL on failure. This is the equivalent of the Python expression p[low:high]. Indexing from the end
of the list is not supported.

int PyTuple_SetItem(PyObject *p, Py_ssize_t pos, PyObject *o)
Part of the Stable ABI. Insert a reference to object o at position pos of the tuple pointed to by p. Return 0 on
success. If pos is out of bounds, return -1 and set an IndexError exception.

Note: This function “steals” a reference to o and discards a reference to an item already in the tuple at the affected
position.

void PyTuple_SET_ITEM(PyObject *p, Py_ssize_t pos, PyObject *o)
Like PyTuple_SetItem(), but does no error checking, and should only be used to fill in brand new tuples.

Note: This function “steals” a reference to o, and, unlike PyTuple_SetItem(), does not discard a reference
to any item that is being replaced; any reference in the tuple at position pos will be leaked.

148 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

int _PyTuple_Resize(PyObject **p, Py_ssize_t newsize)
Can be used to resize a tuple. newsize will be the new length of the tuple. Because tuples are supposed to be
immutable, this should only be used if there is only one reference to the object. Do not use this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of
this as destroying the old tuple and creating a new one, only more efficiently. Returns 0 on success. Client code
should never assume that the resulting value of *p will be the same as before calling this function. If the object
referenced by *p is replaced, the original *p is destroyed. On failure, returns -1 and sets *p to NULL, and raises
MemoryError or SystemError.

8.3.5 Struct Sequence Objects

Struct sequence objects are the C equivalent of namedtuple() objects, i.e. a sequence whose items can also be
accessed through attributes. To create a struct sequence, you first have to create a specific struct sequence type.
PyTypeObject *PyStructSequence_NewType(PyStructSequence_Desc *desc)

Return value: New reference. Part of the Stable ABI. Create a new struct sequence type from the data in desc,
described below. Instances of the resulting type can be created with PyStructSequence_New().

void PyStructSequence_InitType(PyTypeObject *type, PyStructSequence_Desc *desc)
Initializes a struct sequence type type from desc in place.

int PyStructSequence_InitType2(PyTypeObject *type, PyStructSequence_Desc *desc)
The same as PyStructSequence_InitType, but returns 0 on success and -1 on failure.
New in version 3.4.

type PyStructSequence_Desc
Part of the Stable ABI (including all members). Contains the meta information of a struct sequence type to create.
const char *name

Name of the struct sequence type.
const char *doc

Pointer to docstring for the type or NULL to omit.
PyStructSequence_Field *fields

Pointer to NULL-terminated array with field names of the new type.
int n_in_sequence

Number of fields visible to the Python side (if used as tuple).
type PyStructSequence_Field

Part of the Stable ABI (including all members). Describes a field of a struct sequence. As a struct se-
quence is modeled as a tuple, all fields are typed as PyObject*. The index in the fields array of the
PyStructSequence_Desc determines which field of the struct sequence is described.
const char *name

Name for the field or NULL to end the list of named fields, set to PyStructSequence_UnnamedField
to leave unnamed.

const char *doc
Field docstring or NULL to omit.

const char *const PyStructSequence_UnnamedField
Part of the Stable ABI since version 3.11. Special value for a field name to leave it unnamed.
Changed in version 3.9: The type was changed from char *.

8.3. Sequence Objects 149

The Python/C API, Release 3.11.4

PyObject *PyStructSequence_New(PyTypeObject *type)
Return value: New reference. Part of the Stable ABI. Creates an instance of type, which must have been created
with PyStructSequence_NewType().

PyObject *PyStructSequence_GetItem(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Part of the Stable ABI. Return the object at position pos in the struct sequence
pointed to by p. No bounds checking is performed.

PyObject *PyStructSequence_GET_ITEM(PyObject *p, Py_ssize_t pos)
Return value: Borrowed reference. Macro equivalent of PyStructSequence_GetItem().

void PyStructSequence_SetItem(PyObject *p, Py_ssize_t pos, PyObject *o)
Part of the Stable ABI. Sets the field at index pos of the struct sequence p to value o. Like
PyTuple_SET_ITEM(), this should only be used to fill in brand new instances.

Note: This function “steals” a reference to o.

void PyStructSequence_SET_ITEM(PyObject *p, Py_ssize_t *pos, PyObject *o)
Similar to PyStructSequence_SetItem(), but implemented as a static inlined function.

Note: This function “steals” a reference to o.

8.3.6 List Objects

type PyListObject
This subtype of PyObject represents a Python list object.

PyTypeObject PyList_Type
Part of the Stable ABI. This instance of PyTypeObject represents the Python list type. This is the same object
as list in the Python layer.

int PyList_Check(PyObject *p)
Return true if p is a list object or an instance of a subtype of the list type. This function always succeeds.

int PyList_CheckExact(PyObject *p)
Return true if p is a list object, but not an instance of a subtype of the list type. This function always succeeds.

PyObject *PyList_New(Py_ssize_t len)
Return value: New reference. Part of the Stable ABI. Return a new list of length len on success, or NULL on failure.

Note: If len is greater than zero, the returned list object’s items are set to NULL. Thus you cannot use abstract
API functions such as PySequence_SetItem() or expose the object to Python code before setting all items
to a real object with PyList_SetItem().

Py_ssize_t PyList_Size(PyObject *list)
Part of the Stable ABI. Return the length of the list object in list; this is equivalent to len(list) on a list object.

Py_ssize_t PyList_GET_SIZE(PyObject *list)
Similar to PyList_Size(), but without error checking.

150 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

PyObject *PyList_GetItem(PyObject *list, Py_ssize_t index)
Return value: Borrowed reference. Part of the Stable ABI. Return the object at position index in the list pointed
to by list. The position must be non-negative; indexing from the end of the list is not supported. If index is out of
bounds (<0 or >=len(list)), return NULL and set an IndexError exception.

PyObject *PyList_GET_ITEM(PyObject *list, Py_ssize_t i)
Return value: Borrowed reference. Similar to PyList_GetItem(), but without error checking.

int PyList_SetItem(PyObject *list, Py_ssize_t index, PyObject *item)
Part of the Stable ABI. Set the item at index index in list to item. Return 0 on success. If index is out of bounds,
return -1 and set an IndexError exception.

Note: This function “steals” a reference to item and discards a reference to an item already in the list at the affected
position.

void PyList_SET_ITEM(PyObject *list, Py_ssize_t i, PyObject *o)
Macro form of PyList_SetItem()without error checking. This is normally only used to fill in new lists where
there is no previous content.

Note: This macro “steals” a reference to item, and, unlike PyList_SetItem(), does not discard a reference
to any item that is being replaced; any reference in list at position i will be leaked.

int PyList_Insert(PyObject *list, Py_ssize_t index, PyObject *item)
Part of the Stable ABI. Insert the item item into list list in front of index index. Return 0 if successful; return -1
and set an exception if unsuccessful. Analogous to list.insert(index, item).

int PyList_Append(PyObject *list, PyObject *item)
Part of the Stable ABI. Append the object item at the end of list list. Return 0 if successful; return -1 and set an
exception if unsuccessful. Analogous to list.append(item).

PyObject *PyList_GetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high)
Return value: New reference. Part of the Stable ABI.Return a list of the objects in list containing the objects between
low and high. Return NULL and set an exception if unsuccessful. Analogous to list[low:high]. Indexing
from the end of the list is not supported.

int PyList_SetSlice(PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itemlist)
Part of the Stable ABI. Set the slice of list between low and high to the contents of itemlist. Analogous to
list[low:high] = itemlist. The itemlist may be NULL, indicating the assignment of an empty list (slice
deletion). Return 0 on success, -1 on failure. Indexing from the end of the list is not supported.

int PyList_Sort(PyObject *list)
Part of the Stable ABI. Sort the items of list in place. Return 0 on success, -1 on failure. This is equivalent to
list.sort().

int PyList_Reverse(PyObject *list)
Part of the Stable ABI. Reverse the items of list in place. Return 0 on success, -1 on failure. This is the equivalent
of list.reverse().

PyObject *PyList_AsTuple(PyObject *list)
Return value: New reference. Part of the Stable ABI. Return a new tuple object containing the contents of list;
equivalent to tuple(list).

8.3. Sequence Objects 151

The Python/C API, Release 3.11.4

8.4 Container Objects

8.4.1 Dictionary Objects

type PyDictObject
This subtype of PyObject represents a Python dictionary object.

PyTypeObject PyDict_Type

Part of the Stable ABI. This instance of PyTypeObject represents the Python dictionary type. This is the same
object as dict in the Python layer.

int PyDict_Check(PyObject *p)
Return true if p is a dict object or an instance of a subtype of the dict type. This function always succeeds.

int PyDict_CheckExact(PyObject *p)
Return true if p is a dict object, but not an instance of a subtype of the dict type. This function always succeeds.

PyObject *PyDict_New()
Return value: New reference. Part of the Stable ABI. Return a new empty dictionary, or NULL on failure.

PyObject *PyDictProxy_New(PyObject *mapping)
Return value: New reference. Part of the Stable ABI. Return a types.MappingProxyType object for a map-
ping which enforces read-only behavior. This is normally used to create a view to prevent modification of the
dictionary for non-dynamic class types.

void PyDict_Clear(PyObject *p)
Part of the Stable ABI. Empty an existing dictionary of all key-value pairs.

int PyDict_Contains(PyObject *p, PyObject *key)
Part of the Stable ABI. Determine if dictionary p contains key. If an item in p is matches key, return 1, otherwise
return 0. On error, return -1. This is equivalent to the Python expression key in p.

PyObject *PyDict_Copy(PyObject *p)
Return value: New reference. Part of the Stable ABI. Return a new dictionary that contains the same key-value
pairs as p.

int PyDict_SetItem(PyObject *p, PyObject *key, PyObject *val)
Part of the Stable ABI. Insert val into the dictionary p with a key of key. key must be hashable; if it isn’t,
TypeError will be raised. Return 0 on success or -1 on failure. This function does not steal a reference to
val.

int PyDict_SetItemString(PyObject *p, const char *key, PyObject *val)
Part of the Stable ABI. Insert val into the dictionary p using key as a key. key should be a const char*. The key
object is created using PyUnicode_FromString(key). Return 0 on success or -1 on failure. This function
does not steal a reference to val.

int PyDict_DelItem(PyObject *p, PyObject *key)
Part of the Stable ABI.Remove the entry in dictionary pwith key key. keymust be hashable; if it isn’t, TypeError
is raised. If key is not in the dictionary, KeyError is raised. Return 0 on success or -1 on failure.

int PyDict_DelItemString(PyObject *p, const char *key)
Part of the Stable ABI. Remove the entry in dictionary p which has a key specified by the string key. If key is not
in the dictionary, KeyError is raised. Return 0 on success or -1 on failure.

152 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

PyObject *PyDict_GetItem(PyObject *p, PyObject *key)
Return value: Borrowed reference. Part of the Stable ABI. Return the object from dictionary p which has a key key.
Return NULL if the key key is not present, but without setting an exception.

Note: Exceptions that occur while this calls __hash__() and __eq__()methods are silently ignored. Prefer
the PyDict_GetItemWithError() function instead.

Changed in version 3.10: Calling this API without GIL held had been allowed for historical reason. It is no longer
allowed.

PyObject *PyDict_GetItemWithError(PyObject *p, PyObject *key)
Return value: Borrowed reference. Part of the Stable ABI.Variant ofPyDict_GetItem() that does not suppress
exceptions. Return NULL with an exception set if an exception occurred. Return NULL without an exception set
if the key wasn’t present.

PyObject *PyDict_GetItemString(PyObject *p, const char *key)
Return value: Borrowed reference. Part of the Stable ABI. This is the same as PyDict_GetItem(), but key is
specified as a const char*, rather than a PyObject*.

Note: Exceptions that occur while this calls __hash__() and __eq__() methods or while creating the tem-
porary str object are silently ignored. Prefer using the PyDict_GetItemWithError() function with your
own PyUnicode_FromString() key instead.

PyObject *PyDict_SetDefault(PyObject *p, PyObject *key, PyObject *defaultobj)
Return value: Borrowed reference. This is the same as the Python-level dict.setdefault(). If present,
it returns the value corresponding to key from the dictionary p. If the key is not in the dict, it is inserted with
value defaultobj and defaultobj is returned. This function evaluates the hash function of key only once, instead of
evaluating it independently for the lookup and the insertion.
New in version 3.4.

PyObject *PyDict_Items(PyObject *p)
Return value: New reference. Part of the Stable ABI. Return a PyListObject containing all the items from the
dictionary.

PyObject *PyDict_Keys(PyObject *p)
Return value: New reference. Part of the Stable ABI. Return a PyListObject containing all the keys from the
dictionary.

PyObject *PyDict_Values(PyObject *p)
Return value: New reference. Part of the Stable ABI. Return a PyListObject containing all the values from the
dictionary p.

Py_ssize_t PyDict_Size(PyObject *p)
Part of the Stable ABI. Return the number of items in the dictionary. This is equivalent to len(p) on a dictionary.

int PyDict_Next(PyObject *p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
Part of the Stable ABI. Iterate over all key-value pairs in the dictionary p. The Py_ssize_t referred to by ppos
must be initialized to 0 prior to the first call to this function to start the iteration; the function returns true for each
pair in the dictionary, and false once all pairs have been reported. The parameters pkey and pvalue should either
point to PyObject* variables that will be filled in with each key and value, respectively, or may be NULL. Any
references returned through them are borrowed. ppos should not be altered during iteration. Its value represents
offsets within the internal dictionary structure, and since the structure is sparse, the offsets are not consecutive.
For example:

8.4. Container Objects 153

The Python/C API, Release 3.11.4

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
/* do something interesting with the values... */
...

}

The dictionary p should not be mutated during iteration. It is safe to modify the values of the keys as you iterate
over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
Py_ssize_t pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
long i = PyLong_AsLong(value);
if (i == -1 && PyErr_Occurred()) {

return -1;
}
PyObject *o = PyLong_FromLong(i + 1);
if (o == NULL)

return -1;
if (PyDict_SetItem(self->dict, key, o) < 0) {

Py_DECREF(o);
return -1;

}
Py_DECREF(o);

}

int PyDict_Merge(PyObject *a, PyObject *b, int override)
Part of the Stable ABI. Iterate over mapping object b adding key-value pairs to dictionary a. bmay be a dictionary,
or any object supporting PyMapping_Keys() and PyObject_GetItem(). If override is true, existing pairs
in a will be replaced if a matching key is found in b, otherwise pairs will only be added if there is not a matching
key in a. Return 0 on success or -1 if an exception was raised.

int PyDict_Update(PyObject *a, PyObject *b)
Part of the Stable ABI. This is the same as PyDict_Merge(a, b, 1) in C, and is similar to a.update(b)
in Python except that PyDict_Update() doesn’t fall back to the iterating over a sequence of key value pairs if
the second argument has no “keys” attribute. Return 0 on success or -1 if an exception was raised.

int PyDict_MergeFromSeq2(PyObject *a, PyObject *seq2, int override)
Part of the Stable ABI.Update or merge into dictionary a, from the key-value pairs in seq2. seq2must be an iterable
object producing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the last wins
if override is true, else the first wins. Return 0 on success or -1 if an exception was raised. Equivalent Python
(except for the return value):

def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:

if override or key not in a:
a[key] = value

154 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

8.4.2 Set Objects

This section details the public API for set and frozenset objects. Any functionality not listed be-
low is best accessed using either the abstract object protocol (including PyObject_CallMethod(),
PyObject_RichCompareBool(), PyObject_Hash(), PyObject_Repr(), PyObject_IsTrue(),
PyObject_Print(), and PyObject_GetIter()) or the abstract number protocol (includ-
ing PyNumber_And(), PyNumber_Subtract(), PyNumber_Or(), PyNumber_Xor(),
PyNumber_InPlaceAnd(), PyNumber_InPlaceSubtract(), PyNumber_InPlaceOr(), and
PyNumber_InPlaceXor()).
type PySetObject

This subtype of PyObject is used to hold the internal data for both set and frozenset objects. It is like
a PyDictObject in that it is a fixed size for small sets (much like tuple storage) and will point to a separate,
variable sized block of memory for medium and large sized sets (much like list storage). None of the fields of
this structure should be considered public and all are subject to change. All access should be done through the
documented API rather than by manipulating the values in the structure.

PyTypeObject PySet_Type
Part of the Stable ABI. This is an instance of PyTypeObject representing the Python set type.

PyTypeObject PyFrozenSet_Type
Part of the Stable ABI. This is an instance of PyTypeObject representing the Python frozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work with
any iterable Python object.
int PySet_Check(PyObject *p)

Return true if p is a set object or an instance of a subtype. This function always succeeds.
int PyFrozenSet_Check(PyObject *p)

Return true if p is a frozenset object or an instance of a subtype. This function always succeeds.
int PyAnySet_Check(PyObject *p)

Return true if p is a set object, a frozenset object, or an instance of a subtype. This function always succeeds.
int PySet_CheckExact(PyObject *p)

Return true if p is a set object but not an instance of a subtype. This function always succeeds.
New in version 3.10.

int PyAnySet_CheckExact(PyObject *p)
Return true if p is a set object or a frozenset object but not an instance of a subtype. This function always
succeeds.

int PyFrozenSet_CheckExact(PyObject *p)
Return true if p is a frozenset object but not an instance of a subtype. This function always succeeds.

PyObject *PySet_New(PyObject *iterable)
Return value: New reference. Part of the Stable ABI. Return a new set containing objects returned by the iterable.
The iterable may be NULL to create a new empty set. Return the new set on success or NULL on failure. Raise
TypeError if iterable is not actually iterable. The constructor is also useful for copying a set (c=set(s)).

PyObject *PyFrozenSet_New(PyObject *iterable)
Return value: New reference. Part of the Stable ABI. Return a new frozenset containing objects returned by
the iterable. The iterable may be NULL to create a new empty frozenset. Return the new set on success or NULL
on failure. Raise TypeError if iterable is not actually iterable.

The following functions and macros are available for instances of set or frozenset or instances of their subtypes.

8.4. Container Objects 155

The Python/C API, Release 3.11.4

Py_ssize_t PySet_Size(PyObject *anyset)
Part of the Stable ABI. Return the length of a set or frozenset object. Equivalent to len(anyset). Raises
a SystemError if anyset is not a set, frozenset, or an instance of a subtype.

Py_ssize_t PySet_GET_SIZE(PyObject *anyset)
Macro form of PySet_Size() without error checking.

int PySet_Contains(PyObject *anyset, PyObject *key)
Part of the Stable ABI. Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the
Python __contains__() method, this function does not automatically convert unhashable sets into tempo-
rary frozensets. Raise a TypeError if the key is unhashable. Raise SystemError if anyset is not a set,
frozenset, or an instance of a subtype.

int PySet_Add(PyObject *set, PyObject *key)
Part of the Stable ABI. Add key to a set instance. Also works with frozenset instances (like
PyTuple_SetItem() it can be used to fill in the values of brand new frozensets before they are exposed
to other code). Return 0 on success or -1 on failure. Raise a TypeError if the key is unhashable. Raise a
MemoryError if there is no room to grow. Raise a SystemError if set is not an instance of set or its
subtype.

The following functions are available for instances of set or its subtypes but not for instances of frozenset or its
subtypes.
int PySet_Discard(PyObject *set, PyObject *key)

Part of the Stable ABI. Return 1 if found and removed, 0 if not found (no action taken), and -1 if an error is
encountered. Does not raise KeyError for missing keys. Raise a TypeError if the key is unhashable. Unlike
the Python discard() method, this function does not automatically convert unhashable sets into temporary
frozensets. Raise SystemError if set is not an instance of set or its subtype.

PyObject *PySet_Pop(PyObject *set)
Return value: New reference. Part of the Stable ABI. Return a new reference to an arbitrary object in the set,
and removes the object from the set. Return NULL on failure. Raise KeyError if the set is empty. Raise a
SystemError if set is not an instance of set or its subtype.

int PySet_Clear(PyObject *set)
Part of the Stable ABI. Empty an existing set of all elements.

8.5 Function Objects

8.5.1 Function Objects

There are a few functions specific to Python functions.
type PyFunctionObject

The C structure used for functions.
PyTypeObject PyFunction_Type

This is an instance of PyTypeObject and represents the Python function type. It is exposed to Python program-
mers as types.FunctionType.

int PyFunction_Check(PyObject *o)
Return true if o is a function object (has type PyFunction_Type). The parameter must not be NULL. This
function always succeeds.

156 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

PyObject *PyFunction_New(PyObject *code, PyObject *globals)
Return value: New reference. Return a new function object associated with the code object code. globals must be
a dictionary with the global variables accessible to the function.
The function’s docstring and name are retrieved from the code object. __module__ is retrieved from globals. The
argument defaults, annotations and closure are set to NULL. __qualname__ is set to the same value as the code
object’s co_qualname field.

PyObject *PyFunction_NewWithQualName(PyObject *code, PyObject *globals, PyObject *qualname)
Return value: New reference. As PyFunction_New(), but also allows setting the function object’s
__qualname__ attribute. qualname should be a unicode object or NULL; if NULL, the __qualname__
attribute is set to the same value as the code object’s co_qualname field.
New in version 3.3.

PyObject *PyFunction_GetCode(PyObject *op)
Return value: Borrowed reference. Return the code object associated with the function object op.

PyObject *PyFunction_GetGlobals(PyObject *op)
Return value: Borrowed reference. Return the globals dictionary associated with the function object op.

PyObject *PyFunction_GetModule(PyObject *op)
Return value: Borrowed reference. Return a borrowed reference to the __module__ attribute of the function object
op. It can be NULL.
This is normally a string containing the module name, but can be set to any other object by Python code.

PyObject *PyFunction_GetDefaults(PyObject *op)
Return value: Borrowed reference. Return the argument default values of the function object op. This can be a
tuple of arguments or NULL.

int PyFunction_SetDefaults(PyObject *op, PyObject *defaults)
Set the argument default values for the function object op. defaults must be Py_None or a tuple.
Raises SystemError and returns -1 on failure.

PyObject *PyFunction_GetClosure(PyObject *op)
Return value: Borrowed reference. Return the closure associated with the function object op. This can be NULL or
a tuple of cell objects.

int PyFunction_SetClosure(PyObject *op, PyObject *closure)
Set the closure associated with the function object op. closure must be Py_None or a tuple of cell objects.
Raises SystemError and returns -1 on failure.

PyObject *PyFunction_GetAnnotations(PyObject *op)
Return value: Borrowed reference. Return the annotations of the function object op. This can be a mutable dictio-
nary or NULL.

int PyFunction_SetAnnotations(PyObject *op, PyObject *annotations)
Set the annotations for the function object op. annotations must be a dictionary or Py_None.
Raises SystemError and returns -1 on failure.

8.5. Function Objects 157

The Python/C API, Release 3.11.4

8.5.2 Instance Method Objects

An instance method is a wrapper for a PyCFunction and the new way to bind a PyCFunction to a class object. It
replaces the former call PyMethod_New(func, NULL, class).
PyTypeObject PyInstanceMethod_Type

This instance of PyTypeObject represents the Python instance method type. It is not exposed to Python pro-
grams.

int PyInstanceMethod_Check(PyObject *o)
Return true if o is an instance method object (has type PyInstanceMethod_Type). The parameter must not
be NULL. This function always succeeds.

PyObject *PyInstanceMethod_New(PyObject *func)
Return value: New reference. Return a new instance method object, with func being any callable object. func is the
function that will be called when the instance method is called.

PyObject *PyInstanceMethod_Function(PyObject *im)
Return value: Borrowed reference. Return the function object associated with the instance method im.

PyObject *PyInstanceMethod_GET_FUNCTION(PyObject *im)
Return value: Borrowed reference. Macro version of PyInstanceMethod_Function() which avoids error
checking.

8.5.3 Method Objects

Methods are bound function objects. Methods are always bound to an instance of a user-defined class. Unbound methods
(methods bound to a class object) are no longer available.
PyTypeObject PyMethod_Type

This instance of PyTypeObject represents the Python method type. This is exposed to Python programs as
types.MethodType.

int PyMethod_Check(PyObject *o)
Return true if o is a method object (has type PyMethod_Type). The parameter must not be NULL. This function
always succeeds.

PyObject *PyMethod_New(PyObject *func, PyObject *self)
Return value: New reference. Return a new method object, with func being any callable object and self the instance
the method should be bound. func is the function that will be called when the method is called. self must not be
NULL.

PyObject *PyMethod_Function(PyObject *meth)
Return value: Borrowed reference. Return the function object associated with the method meth.

PyObject *PyMethod_GET_FUNCTION(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Function() which avoids error checking.

PyObject *PyMethod_Self(PyObject *meth)
Return value: Borrowed reference. Return the instance associated with the method meth.

PyObject *PyMethod_GET_SELF(PyObject *meth)
Return value: Borrowed reference. Macro version of PyMethod_Self() which avoids error checking.

158 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

8.5.4 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the cells
from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used instead
of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code; these are
not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.
type PyCellObject

The C structure used for cell objects.
PyTypeObject PyCell_Type

The type object corresponding to cell objects.
int PyCell_Check(PyObject *ob)

Return true if ob is a cell object; ob must not be NULL. This function always succeeds.
PyObject *PyCell_New(PyObject *ob)

Return value: New reference. Create and return a new cell object containing the value ob. The parameter may be
NULL.

PyObject *PyCell_Get(PyObject *cell)
Return value: New reference. Return the contents of the cell cell.

PyObject *PyCell_GET(PyObject *cell)
Return value: Borrowed reference. Return the contents of the cell cell, but without checking that cell is non-NULL
and a cell object.

int PyCell_Set(PyObject *cell, PyObject *value)
Set the contents of the cell object cell to value. This releases the reference to any current content of the cell. value
may be NULL. cellmust be non-NULL; if it is not a cell object, -1 will be returned. On success, 0 will be returned.

void PyCell_SET(PyObject *cell, PyObject *value)
Sets the value of the cell object cell to value. No reference counts are adjusted, and no checks are made for safety;
cell must be non-NULL and must be a cell object.

8.5.5 Code Objects

Code objects are a low-level detail of the CPython implementation. Each one represents a chunk of executable code that
hasn’t yet been bound into a function.
type PyCodeObject

The C structure of the objects used to describe code objects. The fields of this type are subject to change at any
time.

PyTypeObject PyCode_Type
This is an instance of PyTypeObject representing the Python code type.

int PyCode_Check(PyObject *co)
Return true if co is a code object. This function always succeeds.

int PyCode_GetNumFree(PyCodeObject *co)
Return the number of free variables in co.

8.5. Function Objects 159

The Python/C API, Release 3.11.4

PyCodeObject *PyCode_New(int argcount, int kwonlyargcount, int nlocals, int stacksize, int flags, PyObject *code,
PyObject *consts, PyObject *names, PyObject *varnames, PyObject *freevars, PyObject
*cellvars, PyObject *filename, PyObject *name, PyObject *qualname, int firstlineno,
PyObject *linetable, PyObject *exceptiontable)

Return value: New reference. Return a new code object. If you need a dummy code object to create a frame, use
PyCode_NewEmpty() instead. Calling PyCode_New() directly will bind you to a precise Python version
since the definition of the bytecode changes often. The many arguments of this function are inter-dependent in
complex ways, meaning that subtle changes to values are likely to result in incorrect execution or VM crashes. Use
this function only with extreme care.
Changed in version 3.11: Added qualname and exceptiontable parameters.

PyCodeObject *PyCode_NewWithPosOnlyArgs(int argcount, int posonlyargcount, int kwonlyargcount, int
nlocals, int stacksize, int flags, PyObject *code, PyObject
*consts, PyObject *names, PyObject *varnames, PyObject
*freevars, PyObject *cellvars, PyObject *filename, PyObject
*name, PyObject *qualname, int firstlineno, PyObject *linetable,
PyObject *exceptiontable)

Return value: New reference. Similar to PyCode_New(), but with an extra “posonlyargcount” for positional-only
arguments. The same caveats that apply to PyCode_New also apply to this function.
New in version 3.8.
Changed in version 3.11: Added qualname and exceptiontable parameters.

PyCodeObject *PyCode_NewEmpty(const char *filename, const char *funcname, int firstlineno)
Return value: New reference. Return a new empty code object with the specified filename, function name, and first
line number. The resulting code object will raise an Exception if executed.

int PyCode_Addr2Line(PyCodeObject *co, int byte_offset)
Return the line number of the instruction that occurs on or before byte_offset and ends after it. If you just
need the line number of a frame, use PyFrame_GetLineNumber() instead.
For efficiently iterating over the line numbers in a code object, use the API described in PEP 626.

int PyCode_Addr2Location(PyObject *co, int byte_offset, int *start_line, int *start_column, int *end_line, int
*end_column)

Sets the passed int pointers to the source code line and column numbers for the instruction at byte_offset.
Sets the value to 0 when information is not available for any particular element.
Returns 1 if the function succeeds and 0 otherwise.
New in version 3.11.

PyObject *PyCode_GetCode(PyCodeObject *co)
Equivalent to the Python code getattr(co, 'co_code'). Returns a strong reference to a
PyBytesObject representing the bytecode in a code object. On error, NULL is returned and an exception
is raised.
This PyBytesObject may be created on-demand by the interpreter and does not necessarily represent the
bytecode actually executed by CPython. The primary use case for this function is debuggers and profilers.
New in version 3.11.

PyObject *PyCode_GetVarnames(PyCodeObject *co)
Equivalent to the Python code getattr(co, 'co_varnames'). Returns a new reference to a
PyTupleObject containing the names of the local variables. On error, NULL is returned and an exception
is raised.
New in version 3.11.

160 Chapter 8. Concrete Objects Layer

https://peps.python.org/pep-0626/#out-of-process-debuggers-and-profilers

The Python/C API, Release 3.11.4

PyObject *PyCode_GetCellvars(PyCodeObject *co)
Equivalent to the Python code getattr(co, 'co_cellvars'). Returns a new reference to a
PyTupleObject containing the names of the local variables that are referenced by nested functions. On er-
ror, NULL is returned and an exception is raised.
New in version 3.11.

PyObject *PyCode_GetFreevars(PyCodeObject *co)
Equivalent to the Python code getattr(co, 'co_freevars'). Returns a new reference to a
PyTupleObject containing the names of the free variables. On error, NULL is returned and an exception
is raised.
New in version 3.11.

8.6 Other Objects

8.6.1 File Objects

These APIs are a minimal emulation of the Python 2 C API for built-in file objects, which used to rely on the buffered
I/O (FILE*) support from the C standard library. In Python 3, files and streams use the new io module, which defines
several layers over the low-level unbuffered I/O of the operating system. The functions described below are convenience
C wrappers over these new APIs, and meant mostly for internal error reporting in the interpreter; third-party code is
advised to access the io APIs instead.
PyObject *PyFile_FromFd(int fd, const char *name, const char *mode, int buffering, const char *encoding, const

char *errors, const char *newline, int closefd)
Return value: New reference. Part of the Stable ABI.Create a Python file object from the file descriptor of an already
opened file fd. The arguments name, encoding, errors and newline can be NULL to use the defaults; buffering can
be -1 to use the default. name is ignored and kept for backward compatibility. Return NULL on failure. For a more
comprehensive description of the arguments, please refer to the io.open() function documentation.

Warning: Since Python streams have their own buffering layer, mixing them with OS-level file descriptors
can produce various issues (such as unexpected ordering of data).

Changed in version 3.2: Ignore name attribute.
int PyObject_AsFileDescriptor(PyObject *p)

Part of the Stable ABI. Return the file descriptor associated with p as an int. If the object is an integer, its value
is returned. If not, the object’s fileno() method is called if it exists; the method must return an integer, which
is returned as the file descriptor value. Sets an exception and returns -1 on failure.

PyObject *PyFile_GetLine(PyObject *p, int n)
Return value: New reference. Part of the Stable ABI. Equivalent to p.readline([n]), this function reads one
line from the object p. pmay be a file object or any object with a readline()method. If n is 0, exactly one line
is read, regardless of the length of the line. If n is greater than 0, no more than n bytes will be read from the file; a
partial line can be returned. In both cases, an empty string is returned if the end of the file is reached immediately.
If n is less than 0, however, one line is read regardless of length, but EOFError is raised if the end of the file is
reached immediately.

int PyFile_SetOpenCodeHook(Py_OpenCodeHookFunction handler)
Overrides the normal behavior of io.open_code() to pass its parameter through the provided handler.

8.6. Other Objects 161

The Python/C API, Release 3.11.4

The handler is a function of type PyObject *(*)(PyObject *path, void *userData), where path
is guaranteed to be PyUnicodeObject.
The userData pointer is passed into the hook function. Since hook functions may be called from different runtimes,
this pointer should not refer directly to Python state.
As this hook is intentionally used during import, avoid importing new modules during its execution unless they are
known to be frozen or available in sys.modules.
Once a hook has been set, it cannot be removed or replaced, and later calls to PyFile_SetOpenCodeHook()
will fail. On failure, the function returns -1 and sets an exception if the interpreter has been initialized.
This function is safe to call before Py_Initialize().
Raises an auditing event setopencodehook with no arguments.
New in version 3.8.

int PyFile_WriteObject(PyObject *obj, PyObject *p, int flags)
Part of the Stable ABI. Write object obj to file object p. The only supported flag for flags is Py_PRINT_RAW;
if given, the str() of the object is written instead of the repr(). Return 0 on success or -1 on failure; the
appropriate exception will be set.

int PyFile_WriteString(const char *s, PyObject *p)
Part of the Stable ABI.Write string s to file object p. Return 0 on success or -1 on failure; the appropriate exception
will be set.

8.6.2 Module Objects

PyTypeObject PyModule_Type
Part of the Stable ABI. This instance of PyTypeObject represents the Python module type. This is exposed to
Python programs as types.ModuleType.

int PyModule_Check(PyObject *p)
Return true if p is a module object, or a subtype of a module object. This function always succeeds.

int PyModule_CheckExact(PyObject *p)
Return true if p is a module object, but not a subtype of PyModule_Type. This function always succeeds.

PyObject *PyModule_NewObject(PyObject *name)
Return value: New reference. Part of the Stable ABI since version 3.7. Return a new module object with the
__name__ attribute set to name. The module’s __name__, __doc__, __package__, and __loader__
attributes are filled in (all but __name__ are set to None); the caller is responsible for providing a __file__
attribute.
New in version 3.3.
Changed in version 3.4: __package__ and __loader__ are set to None.

PyObject *PyModule_New(const char *name)
Return value: New reference. Part of the Stable ABI. Similar to PyModule_NewObject(), but the name is a
UTF-8 encoded string instead of a Unicode object.

PyObject *PyModule_GetDict(PyObject *module)
Return value: Borrowed reference. Part of the Stable ABI. Return the dictionary object that implements module’s
namespace; this object is the same as the __dict__ attribute of the module object. If module is not a module
object (or a subtype of a module object), SystemError is raised and NULL is returned.

162 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

It is recommended extensions use other PyModule_* and PyObject_* functions rather than directly manip-
ulate a module’s __dict__.

PyObject *PyModule_GetNameObject(PyObject *module)
Return value: New reference. Part of the Stable ABI since version 3.7. Return module’s __name__ value. If the
module does not provide one, or if it is not a string, SystemError is raised and NULL is returned.
New in version 3.3.

const char *PyModule_GetName(PyObject *module)
Part of the Stable ABI. Similar to PyModule_GetNameObject() but return the name encoded to 'utf-8'.

void *PyModule_GetState(PyObject *module)
Part of the Stable ABI. Return the “state” of the module, that is, a pointer to the block of memory allocated at
module creation time, or NULL. See PyModuleDef.m_size.

PyModuleDef *PyModule_GetDef(PyObject *module)
Part of the Stable ABI. Return a pointer to the PyModuleDef struct from which the module was created, or
NULL if the module wasn’t created from a definition.

PyObject *PyModule_GetFilenameObject(PyObject *module)
Return value: New reference. Part of the Stable ABI. Return the name of the file from which module was loaded
using module’s __file__ attribute. If this is not defined, or if it is not a unicode string, raise SystemError
and return NULL; otherwise return a reference to a Unicode object.
New in version 3.2.

const char *PyModule_GetFilename(PyObject *module)
Part of the Stable ABI. Similar to PyModule_GetFilenameObject() but return the filename encoded to
‘utf-8’.
Deprecated since version 3.2: PyModule_GetFilename() raises UnicodeEncodeError on unencodable
filenames, use PyModule_GetFilenameObject() instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function), or
compiled-in modules (where the initialization function is added using PyImport_AppendInittab()). See building
or extending-with-embedding for details.
The initialization function can either pass a module definition instance to PyModule_Create(), and return the re-
sulting module object, or request “multi-phase initialization” by returning the definition struct itself.
type PyModuleDef

Part of the Stable ABI (including all members). The module definition struct, which holds all information needed
to create a module object. There is usually only one statically initialized variable of this type for each module.
PyModuleDef_Base m_base

Always initialize this member to PyModuleDef_HEAD_INIT.
const char *m_name

Name for the new module.
const char *m_doc

Docstring for the module; usually a docstring variable created with PyDoc_STRVAR is used.

8.6. Other Objects 163

The Python/C API, Release 3.11.4

Py_ssize_t m_size
Module state may be kept in a per-module memory area that can be retrieved with
PyModule_GetState(), rather than in static globals. This makes modules safe for use in multi-
ple sub-interpreters.
This memory area is allocated based on m_size on module creation, and freed when the module object is
deallocated, after the m_free function has been called, if present.
Setting m_size to -1 means that the module does not support sub-interpreters, because it has global state.
Setting it to a non-negative value means that the module can be re-initialized and specifies the additional
amount of memory it requires for its state. Non-negative m_size is required for multi-phase initialization.
See PEP 3121 for more details.

PyMethodDef *m_methods
A pointer to a table of module-level functions, described by PyMethodDef values. Can be NULL if no
functions are present.

PyModuleDef_Slot *m_slots
An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When using
single-phase initialization, m_slots must be NULL.
Changed in version 3.5: Prior to version 3.5, this member was always set to NULL, and was defined as:

inquiry m_reload

traverseproc m_traverse
A traversal function to call during GC traversal of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case imme-
diately after the module is created and before the module is executed (Py_mod_exec function). More
precisely, this function is not called if m_size is greater than 0 and the module state (as returned by
PyModule_GetState()) is NULL.
Changed in version 3.9: No longer called before the module state is allocated.

inquiry m_clear
A clear function to call during GC clearing of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case imme-
diately after the module is created and before the module is executed (Py_mod_exec function). More
precisely, this function is not called if m_size is greater than 0 and the module state (as returned by
PyModule_GetState()) is NULL.
Like PyTypeObject.tp_clear, this function is not always called before a module is deallocated. For
example, when reference counting is enough to determine that an object is no longer used, the cyclic garbage
collector is not involved and m_free is called directly.
Changed in version 3.9: No longer called before the module state is allocated.

freefunc m_free
A function to call during deallocation of the module object, or NULL if not needed.
This function is not called if the module state was requested but is not allocated yet. This is the case imme-
diately after the module is created and before the module is executed (Py_mod_exec function). More
precisely, this function is not called if m_size is greater than 0 and the module state (as returned by
PyModule_GetState()) is NULL.
Changed in version 3.9: No longer called before the module state is allocated.

164 Chapter 8. Concrete Objects Layer

https://peps.python.org/pep-3121/

The Python/C API, Release 3.11.4

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as “single-phase
initialization”, and uses one of the following two module creation functions:
PyObject *PyModule_Create(PyModuleDef *def)

Return value: New reference. Create a new module object, given the definition in def. This behaves like
PyModule_Create2() with module_api_version set to PYTHON_API_VERSION.

PyObject *PyModule_Create2(PyModuleDef *def, int module_api_version)
Return value: New reference. Part of the Stable ABI. Create a new module object, given the definition in def,
assuming the API versionmodule_api_version. If that version does not match the version of the running interpreter,
a RuntimeWarning is emitted.

Note: Most uses of this function should be using PyModule_Create() instead; only use this if you are sure
you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using functions
like PyModule_AddObjectRef().

Multi-phase initialization

An alternate way to specify extensions is to request “multi-phase initialization”. Extensionmodules created this way behave
more like Python modules: the initialization is split between the creation phase, when the module object is created, and
the execution phase, when it is populated. The distinction is similar to the __new__() and __init__() methods of
classes.
Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry is
removed and the module is re-imported, a new module object is created, and the old module is subject to normal garbage
collection – as with Pythonmodules. By default, multiple modules created from the same definition should be independent:
changes to one should not affect the others. This means that all state should be specific to the module object (using e.g.
using PyModule_GetState()), or its contents (such as the module’s __dict__ or individual classes created with
PyType_FromSpec()).
All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple mod-
ules are independent is typically enough to achieve this.
To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef instance
with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with the following
function:
PyObject *PyModuleDef_Init(PyModuleDef *def)

Return value: Borrowed reference. Part of the Stable ABI since version 3.5. Ensures a module definition is a properly
initialized Python object that correctly reports its type and reference count.
Returns def cast to PyObject*, or NULL if an error occurred.
New in version 3.5.

The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:
type PyModuleDef_Slot

int slot
A slot ID, chosen from the available values explained below.

8.6. Other Objects 165

The Python/C API, Release 3.11.4

void *value
Value of the slot, whose meaning depends on the slot ID.

New in version 3.5.
The m_slots array must be terminated by a slot with id 0.
The available slot types are:
Py_mod_create

Specifies a function that is called to create the module object itself. The value pointer of this slot must point to a
function of the signature:
PyObject *create_module(PyObject *spec, PyModuleDef *def)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should return
a new module object, or set an error and return NULL.
This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import
the same module again may result in an infinite loop.
Multiple Py_mod_create slots may not be specified in one module definition.
If Py_mod_create is not specified, the import machinery will create a normal module object using
PyModule_New(). The name is taken from spec, not the definition, to allow extension modules to dynami-
cally adjust to their place in the module hierarchy and be imported under different names through symlinks, all
while sharing a single module definition.
There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be used, as
long as it supports setting and getting import-related attributes. However, only PyModule_Type instances may
be returned if the PyModuleDef has non-NULL m_traverse, m_clear, m_free; non-zero m_size; or
slots other than Py_mod_create.

Py_mod_exec

Specifies a function that is called to execute the module. This is equivalent to executing the code of a Pythonmodule:
typically, this function adds classes and constants to the module. The signature of the function is:
int exec_module(PyObject *module)

If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.
See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used di-
rectly, for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and
PyModule_ExecDef must be called to fully initialize a module.
PyObject *PyModule_FromDefAndSpec(PyModuleDef *def, PyObject *spec)

Return value: New reference. Create a newmodule object, given the definition in def and theModuleSpec spec. This
behaves like PyModule_FromDefAndSpec2() with module_api_version set to PYTHON_API_VERSION.
New in version 3.5.

PyObject *PyModule_FromDefAndSpec2(PyModuleDef *def, PyObject *spec, int module_api_version)
Return value: New reference. Part of the Stable ABI since version 3.7. Create a new module object, given the
definition in def and the ModuleSpec spec, assuming the API version module_api_version. If that version does not
match the version of the running interpreter, a RuntimeWarning is emitted.

166 Chapter 8. Concrete Objects Layer

https://peps.python.org/pep-0451/
https://peps.python.org/pep-0489/

The Python/C API, Release 3.11.4

Note: Most uses of this function should be using PyModule_FromDefAndSpec() instead; only use this if
you are sure you need it.

New in version 3.5.
int PyModule_ExecDef(PyObject *module, PyModuleDef *def)

Part of the Stable ABI since version 3.7. Process any execution slots (Py_mod_exec) given in def.
New in version 3.5.

int PyModule_SetDocString(PyObject *module, const char *docstring)
Part of the Stable ABI since version 3.7. Set the docstring for module to docstring. This function is
called automatically when creating a module from PyModuleDef, using either PyModule_Create or
PyModule_FromDefAndSpec.
New in version 3.5.

int PyModule_AddFunctions(PyObject *module, PyMethodDef *functions)
Part of the Stable ABI since version 3.7. Add the functions from the NULL terminated functions array to module.
Refer to the PyMethodDef documentation for details on individual entries (due to the lack of a shared module
namespace, module level “functions” implemented in C typically receive the module as their first parameter, making
them similar to instance methods on Python classes). This function is called automatically when creating a module
from PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.
New in version 3.5.

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution slot
(if using multi-phase initialization), can use the following functions to help initialize the module state:
int PyModule_AddObjectRef(PyObject *module, const char *name, PyObject *value)

Part of the Stable ABI since version 3.10. Add an object to module as name. This is a convenience function which
can be used from the module’s initialization function.
On success, return 0. On error, raise an exception and return -1.
Return NULL if value is NULL. It must be called with an exception raised in this case.
Example usage:

static int
add_spam(PyObject *module, int value)
{

PyObject *obj = PyLong_FromLong(value);
if (obj == NULL) {

return -1;
}
int res = PyModule_AddObjectRef(module, "spam", obj);
Py_DECREF(obj);
return res;

}

The example can also be written without checking explicitly if obj is NULL:

8.6. Other Objects 167

The Python/C API, Release 3.11.4

static int
add_spam(PyObject *module, int value)
{

PyObject *obj = PyLong_FromLong(value);
int res = PyModule_AddObjectRef(module, "spam", obj);
Py_XDECREF(obj);
return res;

}

Note that Py_XDECREF() should be used instead of Py_DECREF() in this case, since obj can be NULL.
New in version 3.10.

int PyModule_AddObject(PyObject *module, const char *name, PyObject *value)
Part of the Stable ABI. Similar to PyModule_AddObjectRef(), but steals a reference to value on success (if
it returns 0).
The new PyModule_AddObjectRef() function is recommended, since it is easy to introduce reference leaks
by misusing the PyModule_AddObject() function.

Note: Unlike other functions that steal references, PyModule_AddObject() only releases the reference to
value on success.
This means that its return value must be checked, and calling code must Py_DECREF() valuemanually on error.

Example usage:

static int
add_spam(PyObject *module, int value)
{

PyObject *obj = PyLong_FromLong(value);
if (obj == NULL) {

return -1;
}
if (PyModule_AddObject(module, "spam", obj) < 0) {

Py_DECREF(obj);
return -1;

}
// PyModule_AddObject() stole a reference to obj:
// Py_DECREF(obj) is not needed here
return 0;

}

The example can also be written without checking explicitly if obj is NULL:

static int
add_spam(PyObject *module, int value)
{

PyObject *obj = PyLong_FromLong(value);
if (PyModule_AddObject(module, "spam", obj) < 0) {

Py_XDECREF(obj);
return -1;

}
// PyModule_AddObject() stole a reference to obj:
// Py_DECREF(obj) is not needed here
return 0;

}

168 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

Note that Py_XDECREF() should be used instead of Py_DECREF() in this case, since obj can be NULL.
int PyModule_AddIntConstant(PyObject *module, const char *name, long value)

Part of the Stable ABI. Add an integer constant to module as name. This convenience function can be used from
the module’s initialization function. Return -1 on error, 0 on success.

int PyModule_AddStringConstant(PyObject *module, const char *name, const char *value)
Part of the Stable ABI. Add a string constant to module as name. This convenience function can be used from the
module’s initialization function. The string value must be NULL-terminated. Return -1 on error, 0 on success.

PyModule_AddIntMacro(module, macro)
Add an int constant to module. The name and the value are taken from macro. For example
PyModule_AddIntMacro(module, AF_INET) adds the int constant AF_INET with the value of
AF_INET to module. Return -1 on error, 0 on success.

PyModule_AddStringMacro(module, macro)
Add a string constant to module.

int PyModule_AddType(PyObject *module, PyTypeObject *type)
Part of the Stable ABI since version 3.10. Add a type object to module. The type object is finalized by calling
internally PyType_Ready(). The name of the type object is taken from the last component of tp_name after
dot. Return -1 on error, 0 on success.
New in version 3.9.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter. This
allows the module object to be retrieved later with only a reference to the module definition.
These functions will not work on modules created using multi-phase initialization, since multiple such modules can be
created from a single definition.
PyObject *PyState_FindModule(PyModuleDef *def)

Return value: Borrowed reference. Part of the Stable ABI. Returns the module object that was created from def for
the current interpreter. This method requires that the module object has been attached to the interpreter state with
PyState_AddModule() beforehand. In case the corresponding module object is not found or has not been
attached to the interpreter state yet, it returns NULL.

int PyState_AddModule(PyObject *module, PyModuleDef *def)
Part of the Stable ABI since version 3.3. Attaches the module object passed to the function to the interpreter state.
This allows the module object to be accessible via PyState_FindModule().
Only effective on modules created using single-phase initialization.
Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but harmless)
to call it from module initialization code. An explicit call is needed only if the module’s own init code subsequently
calls PyState_FindModule. The function is mainly intended for implementing alternative import mechanisms
(either by calling it directly, or by referring to its implementation for details of the required state updates).
The caller must hold the GIL.
Return 0 on success or -1 on failure.
New in version 3.3.

8.6. Other Objects 169

The Python/C API, Release 3.11.4

int PyState_RemoveModule(PyModuleDef *def)
Part of the Stable ABI since version 3.3. Removes the module object created from def from the interpreter state.
Return 0 on success or -1 on failure.
The caller must hold the GIL.
New in version 3.3.

8.6.3 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the __getitem__() method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.
PyTypeObject PySeqIter_Type

Part of the Stable ABI. Type object for iterator objects returned by PySeqIter_New() and the one-argument
form of the iter() built-in function for built-in sequence types.

int PySeqIter_Check(PyObject *op)
Return true if the type of op is PySeqIter_Type. This function always succeeds.

PyObject *PySeqIter_New(PyObject *seq)
Return value: New reference. Part of the Stable ABI. Return an iterator that works with a general sequence object,
seq. The iteration ends when the sequence raises IndexError for the subscripting operation.

PyTypeObject PyCallIter_Type
Part of the Stable ABI. Type object for iterator objects returned by PyCallIter_New() and the two-argument
form of the iter() built-in function.

int PyCallIter_Check(PyObject *op)
Return true if the type of op is PyCallIter_Type. This function always succeeds.

PyObject *PyCallIter_New(PyObject *callable, PyObject *sentinel)
Return value: New reference. Part of the Stable ABI. Return a new iterator. The first parameter, callable, can be
any Python callable object that can be called with no parameters; each call to it should return the next item in the
iteration. When callable returns a value equal to sentinel, the iteration will be terminated.

8.6.4 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.
PyTypeObject PyProperty_Type

Part of the Stable ABI. The type object for the built-in descriptor types.
PyObject *PyDescr_NewGetSet(PyTypeObject *type, struct PyGetSetDef *getset)

Return value: New reference. Part of the Stable ABI.
PyObject *PyDescr_NewMember(PyTypeObject *type, struct PyMemberDef *meth)

Return value: New reference. Part of the Stable ABI.
PyObject *PyDescr_NewMethod(PyTypeObject *type, struct PyMethodDef *meth)

Return value: New reference. Part of the Stable ABI.
PyObject *PyDescr_NewWrapper(PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped)

Return value: New reference.

170 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

PyObject *PyDescr_NewClassMethod(PyTypeObject *type, PyMethodDef *method)
Return value: New reference. Part of the Stable ABI.

int PyDescr_IsData(PyObject *descr)
Return non-zero if the descriptor objects descr describes a data attribute, or 0 if it describes a method. descr must
be a descriptor object; there is no error checking.

PyObject *PyWrapper_New(PyObject*, PyObject*)
Return value: New reference. Part of the Stable ABI.

8.6.5 Slice Objects

PyTypeObject PySlice_Type

Part of the Stable ABI. The type object for slice objects. This is the same as slice in the Python layer.
int PySlice_Check(PyObject *ob)

Return true if ob is a slice object; ob must not be NULL. This function always succeeds.
PyObject *PySlice_New(PyObject *start, PyObject *stop, PyObject *step)

Return value: New reference. Part of the Stable ABI. Return a new slice object with the given values. The start,
stop, and step parameters are used as the values of the slice object attributes of the same names. Any of the values
may be NULL, in which case the None will be used for the corresponding attribute. Return NULL if the new object
could not be allocated.

int PySlice_GetIndices(PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
Part of the Stable ABI. Retrieve the start, stop and step indices from the slice object slice, assuming a sequence of
length length. Treats indices greater than length as errors.
Returns 0 on success and -1 on error with no exception set (unless one of the indices was not None and failed to
be converted to an integer, in which case -1 is returned with an exception set).
You probably do not want to use this function.
Changed in version 3.2: The parameter type for the slice parameter was PySliceObject* before.

int PySlice_GetIndicesEx(PyObject *slice, Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t
*step, Py_ssize_t *slicelength)

Part of the Stable ABI. Usable replacement for PySlice_GetIndices(). Retrieve the start, stop, and step
indices from the slice object slice assuming a sequence of length length, and store the length of the slice in slicelength.
Out of bounds indices are clipped in a manner consistent with the handling of normal slices.
Returns 0 on success and -1 on error with exception set.

Note: This function is considered not safe for resizable sequences. Its invocation should be replaced by a combi-
nation of PySlice_Unpack() and PySlice_AdjustIndices() where

if (PySlice_GetIndicesEx(slice, length, &start, &stop, &step, &slicelength) < 0) {
// return error

}

is replaced by

if (PySlice_Unpack(slice, &start, &stop, &step) < 0) {
// return error

}
slicelength = PySlice_AdjustIndices(length, &start, &stop, step);

8.6. Other Objects 171

The Python/C API, Release 3.11.4

Changed in version 3.2: The parameter type for the slice parameter was PySliceObject* before.
Changed in version 3.6.1: If Py_LIMITED_API is not set or set to the value between 0x03050400 and
0x03060000 (not including) or 0x03060100 or higher PySlice_GetIndicesEx() is implemented as a
macro using PySlice_Unpack() and PySlice_AdjustIndices(). Arguments start, stop and step are
evaluated more than once.
Deprecated since version 3.6.1: If Py_LIMITED_API is set to the value less than 0x03050400 or between
0x03060000 and 0x03060100 (not including) PySlice_GetIndicesEx() is a deprecated function.

int PySlice_Unpack(PyObject *slice, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step)
Part of the Stable ABI since version 3.7. Extract the start, stop and step data members from a slice object as C
integers. Silently reduce values larger than PY_SSIZE_T_MAX to PY_SSIZE_T_MAX, silently boost the start
and stop values less than PY_SSIZE_T_MIN to PY_SSIZE_T_MIN, and silently boost the step values less than
-PY_SSIZE_T_MAX to -PY_SSIZE_T_MAX.
Return -1 on error, 0 on success.
New in version 3.6.1.

Py_ssize_t PySlice_AdjustIndices(Py_ssize_t length, Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t step)
Part of the Stable ABI since version 3.7. Adjust start/end slice indices assuming a sequence of the specified length.
Out of bounds indices are clipped in a manner consistent with the handling of normal slices.
Return the length of the slice. Always successful. Doesn’t call Python code.
New in version 3.6.1.

Ellipsis Object

PyObject *Py_Ellipsis
The Python Ellipsis object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts. Like Py_None it is a singleton object.

8.6.6 MemoryView objects

A memoryview object exposes the C level buffer interface as a Python object which can then be passed around like any
other object.
PyObject *PyMemoryView_FromObject(PyObject *obj)

Return value: New reference. Part of the Stable ABI. Create a memoryview object from an object that provides
the buffer interface. If obj supports writable buffer exports, the memoryview object will be read/write, otherwise
it may be either read-only or read/write at the discretion of the exporter.

PyObject *PyMemoryView_FromMemory(char *mem, Py_ssize_t size, int flags)
Return value: New reference. Part of the Stable ABI since version 3.7. Create a memoryview object using mem as
the underlying buffer. flags can be one of PyBUF_READ or PyBUF_WRITE.
New in version 3.3.

PyObject *PyMemoryView_FromBuffer(const Py_buffer *view)
Return value: New reference. Part of the Stable ABI since version 3.11. Create a memoryview object wrapping
the given buffer structure view. For simple byte buffers, PyMemoryView_FromMemory() is the preferred
function.

172 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

PyObject *PyMemoryView_GetContiguous(PyObject *obj, int buffertype, char order)
Return value: New reference. Part of the Stable ABI.Create a memoryview object to a contiguous chunk of memory
(in either ‘C’ or ‘F’ortran order) from an object that defines the buffer interface. If memory is contiguous, the
memoryview object points to the original memory. Otherwise, a copy is made and the memoryview points to a
new bytes object.

int PyMemoryView_Check(PyObject *obj)
Return true if the object obj is a memoryview object. It is not currently allowed to create subclasses of
memoryview. This function always succeeds.

Py_buffer *PyMemoryView_GET_BUFFER(PyObject *mview)
Return a pointer to the memoryview’s private copy of the exporter’s buffer. mviewmust be a memoryview instance;
this macro doesn’t check its type, you must do it yourself or you will risk crashes.

PyObject *PyMemoryView_GET_BASE(PyObject *mview)
Return either a pointer to the exporting object that the memoryview is based on or NULL if
the memoryview has been created by one of the functions PyMemoryView_FromMemory() or
PyMemoryView_FromBuffer(). mview must be a memoryview instance.

8.6.7 Weak Reference Objects

Python supports weak references as first-class objects. There are two specific object types which directly implement weak
references. The first is a simple reference object, and the second acts as a proxy for the original object as much as it can.
int PyWeakref_Check(PyObject *ob)

Return true if ob is either a reference or proxy object. This function always succeeds.
int PyWeakref_CheckRef(PyObject *ob)

Return true if ob is a reference object. This function always succeeds.
int PyWeakref_CheckProxy(PyObject *ob)

Return true if ob is a proxy object. This function always succeeds.
PyObject *PyWeakref_NewRef(PyObject *ob, PyObject *callback)

Return value: New reference. Part of the Stable ABI. Return a weak reference object for the object ob. This will
always return a new reference, but is not guaranteed to create a new object; an existing reference object may be
returned. The second parameter, callback, can be a callable object that receives notification when ob is garbage
collected; it should accept a single parameter, which will be the weak reference object itself. callback may also be
None or NULL. If ob is not a weakly referencable object, or if callback is not callable, None, or NULL, this will
return NULL and raise TypeError.

PyObject *PyWeakref_NewProxy(PyObject *ob, PyObject *callback)
Return value: New reference. Part of the Stable ABI. Return a weak reference proxy object for the object ob. This
will always return a new reference, but is not guaranteed to create a new object; an existing proxy object may be
returned. The second parameter, callback, can be a callable object that receives notification when ob is garbage
collected; it should accept a single parameter, which will be the weak reference object itself. callback may also be
None or NULL. If ob is not a weakly referencable object, or if callback is not callable, None, or NULL, this will
return NULL and raise TypeError.

PyObject *PyWeakref_GetObject(PyObject *ref)
Return value: Borrowed reference. Part of the Stable ABI. Return the referenced object from a weak reference, ref.
If the referent is no longer live, returns Py_None.

8.6. Other Objects 173

The Python/C API, Release 3.11.4

Note: This function returns a borrowed reference to the referenced object. This means that you should always call
Py_INCREF() on the object except when it cannot be destroyed before the last usage of the borrowed reference.

PyObject *PyWeakref_GET_OBJECT(PyObject *ref)
Return value: Borrowed reference. Similar to PyWeakref_GetObject(), but does no error checking.

void PyObject_ClearWeakRefs(PyObject *object)
Part of the Stable ABI. This function is called by the tp_dealloc handler to clear weak references.
This iterates through the weak references for object and calls callbacks for those references which have one. It
returns when all callbacks have been attempted.

8.6.8 Capsules

Refer to using-capsules for more information on using these objects.
New in version 3.1.
type PyCapsule

This subtype of PyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (as a void* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to access
C APIs defined in dynamically loaded modules.

type PyCapsule_Destructor
Part of the Stable ABI. The type of a destructor callback for a capsule. Defined as:

typedef void (*PyCapsule_Destructor)(PyObject *);

See PyCapsule_New() for the semantics of PyCapsule_Destructor callbacks.
int PyCapsule_CheckExact(PyObject *p)

Return true if its argument is a PyCapsule. This function always succeeds.
PyObject *PyCapsule_New(void *pointer, const char *name, PyCapsule_Destructor destructor)

Return value: New reference. Part of the Stable ABI. Create a PyCapsule encapsulating the pointer. The pointer
argument may not be NULL.
On failure, set an exception and return NULL.
The name string may either be NULL or a pointer to a valid C string. If non-NULL, this string must outlive the
capsule. (Though it is permitted to free it inside the destructor.)
If the destructor argument is not NULL, it will be called with the capsule as its argument when it is destroyed.
If this capsule will be stored as an attribute of a module, the name should be specified as modulename.
attributename. This will enable other modules to import the capsule using PyCapsule_Import().

void *PyCapsule_GetPointer(PyObject *capsule, const char *name)
Part of the Stable ABI. Retrieve the pointer stored in the capsule. On failure, set an exception and return NULL.
The name parameter must compare exactly to the name stored in the capsule. If the name stored in the capsule is
NULL, the name passed in must also be NULL. Python uses the C function strcmp() to compare capsule names.

174 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

PyCapsule_Destructor PyCapsule_GetDestructor(PyObject *capsule)
Part of the Stable ABI. Return the current destructor stored in the capsule. On failure, set an exception and return
NULL.
It is legal for a capsule to have a NULL destructor. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

void *PyCapsule_GetContext(PyObject *capsule)
Part of the Stable ABI. Return the current context stored in the capsule. On failure, set an exception and return
NULL.
It is legal for a capsule to have a NULL context. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

const char *PyCapsule_GetName(PyObject *capsule)
Part of the Stable ABI.Return the current name stored in the capsule. On failure, set an exception and return NULL.
It is legal for a capsule to have a NULL name. This makes a NULL return code somewhat ambiguous; use
PyCapsule_IsValid() or PyErr_Occurred() to disambiguate.

void *PyCapsule_Import(const char *name, int no_block)
Part of the Stable ABI. Import a pointer to a C object from a capsule attribute in a module. The name parameter
should specify the full name to the attribute, as in module.attribute. The name stored in the capsule must
match this string exactly.
Return the capsule’s internal pointer on success. On failure, set an exception and return NULL.
Changed in version 3.3: no_block has no effect anymore.

int PyCapsule_IsValid(PyObject *capsule, const char *name)
Part of the Stable ABI. Determines whether or not capsule is a valid capsule. A valid capsule is non-NULL, passes
PyCapsule_CheckExact(), has a non-NULL pointer stored in it, and its internal name matches the name
parameter. (See PyCapsule_GetPointer() for information on how capsule names are compared.)
In other words, if PyCapsule_IsValid() returns a true value, calls to any of the accessors (any function
starting with PyCapsule_Get) are guaranteed to succeed.
Return a nonzero value if the object is valid and matches the name passed in. Return 0 otherwise. This function
will not fail.

int PyCapsule_SetContext(PyObject *capsule, void *context)
Part of the Stable ABI. Set the context pointer inside capsule to context.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetDestructor(PyObject *capsule, PyCapsule_Destructor destructor)
Part of the Stable ABI. Set the destructor inside capsule to destructor.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetName(PyObject *capsule, const char *name)
Part of the Stable ABI. Set the name inside capsule to name. If non-NULL, the name must outlive the capsule. If
the previous name stored in the capsule was not NULL, no attempt is made to free it.
Return 0 on success. Return nonzero and set an exception on failure.

int PyCapsule_SetPointer(PyObject *capsule, void *pointer)
Part of the Stable ABI. Set the void pointer inside capsule to pointer. The pointer may not be NULL.
Return 0 on success. Return nonzero and set an exception on failure.

8.6. Other Objects 175

The Python/C API, Release 3.11.4

8.6.9 Frame Objects

type PyFrameObject
Part of the Limited API (as an opaque struct). The C structure of the objects used to describe frame objects.
There are no public members in this structure.
Changed in version 3.11: The members of this structure were removed from the public C API. Refer to the What’s
New entry for details.

The PyEval_GetFrame() and PyThreadState_GetFrame() functions can be used to get a frame object.
See also Reflection.
PyTypeObject PyFrame_Type

The type of frame objects. It is the same object as types.FrameType in the Python layer.
Changed in version 3.11: Previously, this type was only available after including <frameobject.h>.

int PyFrame_Check(PyObject *obj)
Return non-zero if obj is a frame object.
Changed in version 3.11: Previously, this function was only available after including <frameobject.h>.

PyFrameObject *PyFrame_GetBack(PyFrameObject *frame)
Get the frame next outer frame.
Return a strong reference, or NULL if frame has no outer frame.
New in version 3.9.

PyObject *PyFrame_GetBuiltins(PyFrameObject *frame)
Get the frame’s f_builtins attribute.
Return a strong reference. The result cannot be NULL.
New in version 3.11.

PyCodeObject *PyFrame_GetCode(PyFrameObject *frame)
Part of the Stable ABI since version 3.10. Get the frame code.
Return a strong reference.
The result (frame code) cannot be NULL.
New in version 3.9.

PyObject *PyFrame_GetGenerator(PyFrameObject *frame)
Get the generator, coroutine, or async generator that owns this frame, or NULL if this frame is not owned by a
generator. Does not raise an exception, even if the return value is NULL.
Return a strong reference, or NULL.
New in version 3.11.

PyObject *PyFrame_GetGlobals(PyFrameObject *frame)
Get the frame’s f_globals attribute.
Return a strong reference. The result cannot be NULL.
New in version 3.11.

176 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

int PyFrame_GetLasti(PyFrameObject *frame)
Get the frame’s f_lasti attribute.
Returns -1 if frame.f_lasti is None.
New in version 3.11.

PyObject *PyFrame_GetLocals(PyFrameObject *frame)
Get the frame’s f_locals attribute (dict).
Return a strong reference.
New in version 3.11.

int PyFrame_GetLineNumber(PyFrameObject *frame)
Part of the Stable ABI since version 3.10. Return the line number that frame is currently executing.

8.6.10 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating over a
function that yields values, rather than explicitly calling PyGen_New() or PyGen_NewWithQualName().
type PyGenObject

The C structure used for generator objects.
PyTypeObject PyGen_Type

The type object corresponding to generator objects.
int PyGen_Check(PyObject *ob)

Return true if ob is a generator object; ob must not be NULL. This function always succeeds.
int PyGen_CheckExact(PyObject *ob)

Return true if ob’s type is PyGen_Type; ob must not be NULL. This function always succeeds.
PyObject *PyGen_New(PyFrameObject *frame)

Return value: New reference. Create and return a new generator object based on the frame object. A reference to
frame is stolen by this function. The argument must not be NULL.

PyObject *PyGen_NewWithQualName(PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new generator object based on the frame object, with __name__
and __qualname__ set to name and qualname. A reference to frame is stolen by this function. The frame
argument must not be NULL.

8.6.11 Coroutine Objects

New in version 3.5.
Coroutine objects are what functions declared with an async keyword return.
type PyCoroObject

The C structure used for coroutine objects.
PyTypeObject PyCoro_Type

The type object corresponding to coroutine objects.
int PyCoro_CheckExact(PyObject *ob)

Return true if ob’s type is PyCoro_Type; ob must not be NULL. This function always succeeds.

8.6. Other Objects 177

The Python/C API, Release 3.11.4

PyObject *PyCoro_New(PyFrameObject *frame, PyObject *name, PyObject *qualname)
Return value: New reference. Create and return a new coroutine object based on the frame object, with __name__
and __qualname__ set to name and qualname. A reference to frame is stolen by this function. The frame
argument must not be NULL.

8.6.12 Context Variables Objects

Changed in version 3.7.1:

Note: In Python 3.7.1 the signatures of all context variables C APIs were changed to use PyObject pointers instead
of PyContext, PyContextVar, and PyContextToken, e.g.:

// in 3.7.0:
PyContext *PyContext_New(void);

// in 3.7.1+:
PyObject *PyContext_New(void);

See bpo-34762 for more details.

New in version 3.7.
This section details the public C API for the contextvars module.
type PyContext

The C structure used to represent a contextvars.Context object.
type PyContextVar

The C structure used to represent a contextvars.ContextVar object.
type PyContextToken

The C structure used to represent a contextvars.Token object.
PyTypeObject PyContext_Type

The type object representing the context type.
PyTypeObject PyContextVar_Type

The type object representing the context variable type.
PyTypeObject PyContextToken_Type

The type object representing the context variable token type.
Type-check macros:
int PyContext_CheckExact(PyObject *o)

Return true if o is of type PyContext_Type. o must not be NULL. This function always succeeds.
int PyContextVar_CheckExact(PyObject *o)

Return true if o is of type PyContextVar_Type. o must not be NULL. This function always succeeds.
int PyContextToken_CheckExact(PyObject *o)

Return true if o is of type PyContextToken_Type. o must not be NULL. This function always succeeds.
Context object management functions:

178 Chapter 8. Concrete Objects Layer

https://bugs.python.org/issue?@action=redirect&bpo=34762

The Python/C API, Release 3.11.4

PyObject *PyContext_New(void)
Return value: New reference. Create a new empty context object. Returns NULL if an error has occurred.

PyObject *PyContext_Copy(PyObject *ctx)
Return value: New reference. Create a shallow copy of the passed ctx context object. Returns NULL if an error has
occurred.

PyObject *PyContext_CopyCurrent(void)
Return value: New reference. Create a shallow copy of the current thread context. Returns NULL if an error has
occurred.

int PyContext_Enter(PyObject *ctx)
Set ctx as the current context for the current thread. Returns 0 on success, and -1 on error.

int PyContext_Exit(PyObject *ctx)
Deactivate the ctx context and restore the previous context as the current context for the current thread. Returns 0
on success, and -1 on error.

Context variable functions:
PyObject *PyContextVar_New(const char *name, PyObject *def)

Return value: New reference. Create a new ContextVar object. The name parameter is used for introspection
and debug purposes. The def parameter specifies a default value for the context variable, or NULL for no default.
If an error has occurred, this function returns NULL.

int PyContextVar_Get(PyObject *var, PyObject *default_value, PyObject **value)
Get the value of a context variable. Returns -1 if an error has occurred during lookup, and 0 if no error occurred,
whether or not a value was found.
If the context variable was found, value will be a pointer to it. If the context variable was not found, value will
point to:

• default_value, if not NULL;
• the default value of var, if not NULL;
• NULL

Except for NULL, the function returns a new reference.
PyObject *PyContextVar_Set(PyObject *var, PyObject *value)

Return value: New reference. Set the value of var to value in the current context. Returns a new token object for
this change, or NULL if an error has occurred.

int PyContextVar_Reset(PyObject *var, PyObject *token)
Reset the state of the var context variable to that it was in before PyContextVar_Set() that returned the token
was called. This function returns 0 on success and -1 on error.

8.6.13 DateTime Objects

Various date and time objects are supplied by the datetime module. Before using any of these functions, the header
file datetime.h must be included in your source (note that this is not included by Python.h), and the macro
PyDateTime_IMPORTmust be invoked, usually as part of the module initialisation function. The macro puts a pointer
to a C structure into a static variable, PyDateTimeAPI, that is used by the following macros.
type PyDateTime_Date

This subtype of PyObject represents a Python date object.

8.6. Other Objects 179

The Python/C API, Release 3.11.4

type PyDateTime_DateTime
This subtype of PyObject represents a Python datetime object.

type PyDateTime_Time
This subtype of PyObject represents a Python time object.

type PyDateTime_Delta
This subtype of PyObject represents the difference between two datetime values.

PyTypeObject PyDateTime_DateType
This instance of PyTypeObject represents the Python date type; it is the same object as datetime.date in
the Python layer.

PyTypeObject PyDateTime_DateTimeType
This instance of PyTypeObject represents the Python datetime type; it is the same object as datetime.
datetime in the Python layer.

PyTypeObject PyDateTime_TimeType
This instance of PyTypeObject represents the Python time type; it is the same object as datetime.time in
the Python layer.

PyTypeObject PyDateTime_DeltaType
This instance of PyTypeObject represents Python type for the difference between two datetime values; it is the
same object as datetime.timedelta in the Python layer.

PyTypeObject PyDateTime_TZInfoType
This instance of PyTypeObject represents the Python time zone info type; it is the same object as datetime.
tzinfo in the Python layer.

Macro for access to the UTC singleton:
PyObject *PyDateTime_TimeZone_UTC

Returns the time zone singleton representing UTC, the same object as datetime.timezone.utc.
New in version 3.7.

Type-check macros:
int PyDate_Check(PyObject *ob)

Return true if ob is of type PyDateTime_DateType or a subtype of PyDateTime_DateType. ob must
not be NULL. This function always succeeds.

int PyDate_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateType. ob must not be NULL. This function always succeeds.

int PyDateTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType or a subtype of PyDateTime_DateTimeType.
ob must not be NULL. This function always succeeds.

int PyDateTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DateTimeType. ob must not be NULL. This function always suc-
ceeds.

int PyTime_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType or a subtype of PyDateTime_TimeType. ob must
not be NULL. This function always succeeds.

int PyTime_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TimeType. ob must not be NULL. This function always succeeds.

180 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

int PyDelta_Check(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType or a subtype of PyDateTime_DeltaType. obmust
not be NULL. This function always succeeds.

int PyDelta_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_DeltaType. ob must not be NULL. This function always succeeds.

int PyTZInfo_Check(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType or a subtype of PyDateTime_TZInfoType. ob
must not be NULL. This function always succeeds.

int PyTZInfo_CheckExact(PyObject *ob)
Return true if ob is of type PyDateTime_TZInfoType. obmust not be NULL. This function always succeeds.

Macros to create objects:
PyObject *PyDate_FromDate(int year, int month, int day)

Return value: New reference. Return a datetime.date object with the specified year, month and day.
PyObject *PyDateTime_FromDateAndTime(int year, int month, int day, int hour, int minute, int second, int

usecond)
Return value: New reference. Return a datetime.datetime object with the specified year, month, day, hour,
minute, second and microsecond.

PyObject *PyDateTime_FromDateAndTimeAndFold(int year, int month, int day, int hour, int minute, int
second, int usecond, int fold)

Return value: New reference. Return a datetime.datetime object with the specified year, month, day, hour,
minute, second, microsecond and fold.
New in version 3.6.

PyObject *PyTime_FromTime(int hour, int minute, int second, int usecond)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second and
microsecond.

PyObject *PyTime_FromTimeAndFold(int hour, int minute, int second, int usecond, int fold)
Return value: New reference. Return a datetime.time object with the specified hour, minute, second, mi-
crosecond and fold.
New in version 3.6.

PyObject *PyDelta_FromDSU(int days, int seconds, int useconds)
Return value: New reference. Return a datetime.timedelta object representing the given number of days,
seconds and microseconds. Normalization is performed so that the resulting number of microseconds and seconds
lie in the ranges documented for datetime.timedelta objects.

PyObject *PyTimeZone_FromOffset(PyObject *offset)
Return value: New reference. Return a datetime.timezone object with an unnamed fixed offset represented
by the offset argument.
New in version 3.7.

PyObject *PyTimeZone_FromOffsetAndName(PyObject *offset, PyObject *name)
Return value: New reference. Return a datetime.timezone object with a fixed offset represented by the offset
argument and with tzname name.
New in version 3.7.

Macros to extract fields from date objects. The argument must be an instance of PyDateTime_Date, including sub-
classes (such as PyDateTime_DateTime). The argument must not be NULL, and the type is not checked:

8.6. Other Objects 181

The Python/C API, Release 3.11.4

int PyDateTime_GET_YEAR(PyDateTime_Date *o)
Return the year, as a positive int.

int PyDateTime_GET_MONTH(PyDateTime_Date *o)
Return the month, as an int from 1 through 12.

int PyDateTime_GET_DAY(PyDateTime_Date *o)
Return the day, as an int from 1 through 31.

Macros to extract fields from datetime objects. The argument must be an instance of PyDateTime_DateTime, in-
cluding subclasses. The argument must not be NULL, and the type is not checked:
int PyDateTime_DATE_GET_HOUR(PyDateTime_DateTime *o)

Return the hour, as an int from 0 through 23.
int PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime *o)

Return the minute, as an int from 0 through 59.
int PyDateTime_DATE_GET_SECOND(PyDateTime_DateTime *o)

Return the second, as an int from 0 through 59.
int PyDateTime_DATE_GET_MICROSECOND(PyDateTime_DateTime *o)

Return the microsecond, as an int from 0 through 999999.
int PyDateTime_DATE_GET_FOLD(PyDateTime_DateTime *o)

Return the fold, as an int from 0 through 1.
New in version 3.6.

PyObject *PyDateTime_DATE_GET_TZINFO(PyDateTime_DateTime *o)
Return the tzinfo (which may be None).
New in version 3.10.

Macros to extract fields from time objects. The argument must be an instance of PyDateTime_Time, including sub-
classes. The argument must not be NULL, and the type is not checked:
int PyDateTime_TIME_GET_HOUR(PyDateTime_Time *o)

Return the hour, as an int from 0 through 23.
int PyDateTime_TIME_GET_MINUTE(PyDateTime_Time *o)

Return the minute, as an int from 0 through 59.
int PyDateTime_TIME_GET_SECOND(PyDateTime_Time *o)

Return the second, as an int from 0 through 59.
int PyDateTime_TIME_GET_MICROSECOND(PyDateTime_Time *o)

Return the microsecond, as an int from 0 through 999999.
int PyDateTime_TIME_GET_FOLD(PyDateTime_Time *o)

Return the fold, as an int from 0 through 1.
New in version 3.6.

PyObject *PyDateTime_TIME_GET_TZINFO(PyDateTime_Time *o)
Return the tzinfo (which may be None).
New in version 3.10.

Macros to extract fields from time delta objects. The argument must be an instance of PyDateTime_Delta, including
subclasses. The argument must not be NULL, and the type is not checked:

182 Chapter 8. Concrete Objects Layer

The Python/C API, Release 3.11.4

int PyDateTime_DELTA_GET_DAYS(PyDateTime_Delta *o)
Return the number of days, as an int from -999999999 to 999999999.
New in version 3.3.

int PyDateTime_DELTA_GET_SECONDS(PyDateTime_Delta *o)
Return the number of seconds, as an int from 0 through 86399.
New in version 3.3.

int PyDateTime_DELTA_GET_MICROSECONDS(PyDateTime_Delta *o)
Return the number of microseconds, as an int from 0 through 999999.
New in version 3.3.

Macros for the convenience of modules implementing the DB API:
PyObject *PyDateTime_FromTimestamp(PyObject *args)

Return value: New reference. Create and return a new datetime.datetime object given an argument tuple
suitable for passing to datetime.datetime.fromtimestamp().

PyObject *PyDate_FromTimestamp(PyObject *args)
Return value: New reference. Create and return a new datetime.date object given an argument tuple suitable
for passing to datetime.date.fromtimestamp().

8.6.14 Objects for Type Hinting

Various built-in types for type hinting are provided. Currently, two types exist – GenericAlias and Union. Only
GenericAlias is exposed to C.
PyObject *Py_GenericAlias(PyObject *origin, PyObject *args)

Part of the Stable ABI since version 3.9. Create a GenericAlias object. Equivalent to calling the Python
class types.GenericAlias. The origin and args arguments set the GenericAlias‘s __origin__ and
__args__ attributes respectively. origin should be a PyTypeObject*, and args can be a PyTupleObject*
or any PyObject*. If args passed is not a tuple, a 1-tuple is automatically constructed and __args__ is set
to (args,). Minimal checking is done for the arguments, so the function will succeed even if origin is not a
type. The GenericAlias‘s __parameters__ attribute is constructed lazily from __args__. On failure,
an exception is raised and NULL is returned.
Here’s an example of how to make an extension type generic:

...
static PyMethodDef my_obj_methods[] = {

// Other methods.
...
{"__class_getitem__", Py_GenericAlias, METH_O|METH_CLASS, "See PEP 585"}
...

}

See also:
The data model method __class_getitem__().
New in version 3.9.

PyTypeObject Py_GenericAliasType
Part of the Stable ABI since version 3.9. The C type of the object returned by Py_GenericAlias(). Equivalent
to types.GenericAlias in Python.
New in version 3.9.

8.6. Other Objects 183

The Python/C API, Release 3.11.4

184 Chapter 8. Concrete Objects Layer

CHAPTER

NINE

INITIALIZATION, FINALIZATION, AND THREADS

See also Python Initialization Configuration.

9.1 Before Python Initialization

In an application embedding Python, the Py_Initialize() function must be called before using any other Python/C
API functions; with the exception of a few functions and the global configuration variables.
The following functions can be safely called before Python is initialized:

• Configuration functions:
– PyImport_AppendInittab()

– PyImport_ExtendInittab()

– PyInitFrozenExtensions()

– PyMem_SetAllocator()

– PyMem_SetupDebugHooks()

– PyObject_SetArenaAllocator()

– Py_SetPath()

– Py_SetProgramName()

– Py_SetPythonHome()

– Py_SetStandardStreamEncoding()

– PySys_AddWarnOption()

– PySys_AddXOption()

– PySys_ResetWarnOptions()

• Informative functions:
– Py_IsInitialized()

– PyMem_GetAllocator()

– PyObject_GetArenaAllocator()

– Py_GetBuildInfo()

– Py_GetCompiler()

– Py_GetCopyright()

185

The Python/C API, Release 3.11.4

– Py_GetPlatform()

– Py_GetVersion()

• Utilities:
– Py_DecodeLocale()

• Memory allocators:
– PyMem_RawMalloc()

– PyMem_RawRealloc()

– PyMem_RawCalloc()

– PyMem_RawFree()

Note: The following functions should not be called before Py_Initialize(): Py_EncodeLocale(),
Py_GetPath(), Py_GetPrefix(), Py_GetExecPrefix(), Py_GetProgramFullPath(),
Py_GetPythonHome(), Py_GetProgramName() and PyEval_InitThreads().

9.2 Global configuration variables

Python has variables for the global configuration to control different features and options. By default, these flags are
controlled by command line options.
When a flag is set by an option, the value of the flag is the number of times that the option was set. For example, -b sets
Py_BytesWarningFlag to 1 and -bb sets Py_BytesWarningFlag to 2.
int Py_BytesWarningFlag

Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error if greater
or equal to 2.
Set by the -b option.

int Py_DebugFlag
Turn on parser debugging output (for expert only, depending on compilation options).
Set by the -d option and the PYTHONDEBUG environment variable.

int Py_DontWriteBytecodeFlag
If set to non-zero, Python won’t try to write .pyc files on the import of source modules.
Set by the -B option and the PYTHONDONTWRITEBYTECODE environment variable.

int Py_FrozenFlag
Suppress error messages when calculating the module search path in Py_GetPath().
Private flag used by _freeze_module and frozenmain programs.

int Py_HashRandomizationFlag
Set to 1 if the PYTHONHASHSEED environment variable is set to a non-empty string.
If the flag is non-zero, read the PYTHONHASHSEED environment variable to initialize the secret hash seed.

186 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.11.4

int Py_IgnoreEnvironmentFlag
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.
Set by the -E and -I options.

int Py_InspectFlag
When a script is passed as first argument or the -c option is used, enter interactive mode after executing the script
or the command, even when sys.stdin does not appear to be a terminal.
Set by the -i option and the PYTHONINSPECT environment variable.

int Py_InteractiveFlag
Set by the -i option.

int Py_IsolatedFlag
Run Python in isolated mode. In isolated mode sys.path contains neither the script’s directory nor the user’s
site-packages directory.
Set by the -I option.
New in version 3.4.

int Py_LegacyWindowsFSEncodingFlag
If the flag is non-zero, use the mbcs encoding with replace error handler, instead of the UTF-8 encoding with
surrogatepass error handler, for the filesystem encoding and error handler.
Set to 1 if the PYTHONLEGACYWINDOWSFSENCODING environment variable is set to a non-empty string.
See PEP 529 for more details.
Availability: Windows.

int Py_LegacyWindowsStdioFlag
If the flag is non-zero, use io.FileIO instead of io._WindowsConsoleIO for sys standard streams.
Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
See PEP 528 for more details.
Availability: Windows.

int Py_NoSiteFlag
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails. Also
disable these manipulations if site is explicitly imported later (call site.main() if you want them to be
triggered).
Set by the -S option.

int Py_NoUserSiteDirectory
Don’t add the user site-packages directory to sys.path.
Set by the -s and -I options, and the PYTHONNOUSERSITE environment variable.

int Py_OptimizeFlag
Set by the -O option and the PYTHONOPTIMIZE environment variable.

int Py_QuietFlag
Don’t display the copyright and version messages even in interactive mode.
Set by the -q option.
New in version 3.2.

9.2. Global configuration variables 187

https://peps.python.org/pep-0529/
https://peps.python.org/pep-0528/

The Python/C API, Release 3.11.4

int Py_UnbufferedStdioFlag
Force the stdout and stderr streams to be unbuffered.
Set by the -u option and the PYTHONUNBUFFERED environment variable.

int Py_VerboseFlag
Print a message each time a module is initialized, showing the place (filename or built-in module) from which it is
loaded. If greater or equal to 2, print a message for each file that is checked for when searching for a module. Also
provides information on module cleanup at exit.
Set by the -v option and the PYTHONVERBOSE environment variable.

9.3 Initializing and finalizing the interpreter

void Py_Initialize()
Part of the Stable ABI. Initialize the Python interpreter. In an application embedding Python, this should be called
before using any other Python/C API functions; see Before Python Initialization for the few exceptions.
This initializes the table of loaded modules (sys.modules), and creates the fundamental modules builtins,
__main__ and sys. It also initializes the module search path (sys.path). It does not set sys.
argv; use PySys_SetArgvEx() for that. This is a no-op when called for a second time (without calling
Py_FinalizeEx() first). There is no return value; it is a fatal error if the initialization fails.

Note: On Windows, changes the console mode from O_TEXT to O_BINARY, which will also affect non-Python
uses of the console using the C Runtime.

void Py_InitializeEx(int initsigs)
Part of the Stable ABI. This function works like Py_Initialize() if initsigs is 1. If initsigs is 0, it skips
initialization registration of signal handlers, which might be useful when Python is embedded.

int Py_IsInitialized()
Part of the Stable ABI. Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not.
After Py_FinalizeEx() is called, this returns false until Py_Initialize() is called again.

int Py_FinalizeEx()
Part of the Stable ABI since version 3.6. Undo all initializations made by Py_Initialize() and subsequent
use of Python/C API functions, and destroy all sub-interpreters (see Py_NewInterpreter() below) that were
created and not yet destroyed since the last call to Py_Initialize(). Ideally, this frees all memory allocated
by the Python interpreter. This is a no-op when called for a second time (without calling Py_Initialize()
again first). Normally the return value is 0. If there were errors during finalization (flushing buffered data), -1 is
returned.
This function is provided for a number of reasons. An embedding application might want to restart Python without
having to restart the application itself. An application that has loaded the Python interpreter from a dynamically
loadable library (or DLL) might want to free all memory allocated by Python before unloading the DLL. During
a hunt for memory leaks in an application a developer might want to free all memory allocated by Python before
exiting from the application.
Bugs and caveats: The destruction of modules and objects in modules is done in random order; this may cause
destructors (__del__() methods) to fail when they depend on other objects (even functions) or modules. Dy-
namically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated by
the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular references
between objects is not freed. Some memory allocated by extension modules may not be freed. Some extensions

188 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.11.4

may not work properly if their initialization routine is called more than once; this can happen if an application calls
Py_Initialize() and Py_FinalizeEx() more than once.
Raises an auditing event cpython._PySys_ClearAuditHooks with no arguments.
New in version 3.6.

void Py_Finalize()
Part of the Stable ABI. This is a backwards-compatible version of Py_FinalizeEx() that disregards the return
value.

9.4 Process-wide parameters

int Py_SetStandardStreamEncoding(const char *encoding, const char *errors)
This API is kept for backward compatibility: setting PyConfig.stdio_encoding and PyConfig.
stdio_errors should be used instead, see Python Initialization Configuration.
This function should be called before Py_Initialize(), if it is called at all. It specifies which encoding and
error handling to use with standard IO, with the same meanings as in str.encode().
It overrides PYTHONIOENCODING values, and allows embedding code to control IO encoding when the environ-
ment variable does not work.
encoding and/or errors may be NULL to use PYTHONIOENCODING and/or default values (depending on other
settings).
Note that sys.stderr always uses the “backslashreplace” error handler, regardless of this (or any other) setting.
If Py_FinalizeEx() is called, this function will need to be called again in order to affect subsequent calls to
Py_Initialize().
Returns 0 if successful, a nonzero value on error (e.g. calling after the interpreter has already been initialized).
New in version 3.4.
Deprecated since version 3.11.

void Py_SetProgramName(const wchar_t *name)
Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.program_name should
be used instead, see Python Initialization Configuration.
This function should be called before Py_Initialize() is called for the first time, if it is called at all. It
tells the interpreter the value of the argv[0] argument to the main() function of the program (converted to
wide characters). This is used by Py_GetPath() and some other functions below to find the Python run-time
libraries relative to the interpreter executable. The default value is 'python'. The argument should point to
a zero-terminated wide character string in static storage whose contents will not change for the duration of the
program’s execution. No code in the Python interpreter will change the contents of this storage.
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
Deprecated since version 3.11.

wchar_t *Py_GetProgramName()
Part of the Stable ABI.Return the program name set withPy_SetProgramName(), or the default. The returned
string points into static storage; the caller should not modify its value.
This function should not be called before Py_Initialize(), otherwise it returns NULL.
Changed in version 3.10: It now returns NULL if called before Py_Initialize().

9.4. Process-wide parameters 189

The Python/C API, Release 3.11.4

wchar_t *Py_GetPrefix()
Part of the Stable ABI. Return the prefix for installed platform-independent files. This is derived through a number
of complicated rules from the program name set with Py_SetProgramName() and some environment vari-
ables; for example, if the program name is'/usr/local/bin/python', the prefix is'/usr/local'. The
returned string points into static storage; the caller should not modify its value. This corresponds to the prefix
variable in the top-level Makefile and the --prefix argument to the configure script at build time. The
value is available to Python code as sys.prefix. It is only useful on Unix. See also the next function.
This function should not be called before Py_Initialize(), otherwise it returns NULL.
Changed in version 3.10: It now returns NULL if called before Py_Initialize().

wchar_t *Py_GetExecPrefix()
Part of the Stable ABI. Return the exec-prefix for installed platform-dependent files. This is derived through a
number of complicated rules from the program name set with Py_SetProgramName() and some environ-
ment variables; for example, if the program name is '/usr/local/bin/python', the exec-prefix is '/
usr/local'. The returned string points into static storage; the caller should not modify its value. This corre-
sponds to the exec_prefix variable in the top-level Makefile and the --exec-prefix argument to the
configure script at build time. The value is available to Python code as sys.exec_prefix. It is only useful
on Unix.
Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and shared
libraries) are installed in a different directory tree. In a typical installation, platform dependent files may be installed
in the /usr/local/plat subtree while platform independent may be installed in /usr/local.
Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines running
the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x are
another platform, and Intel machines running Linux are yet another platform. Different major revisions of the
same operating system generally also form different platforms. Non-Unix operating systems are a different story;
the installation strategies on those systems are so different that the prefix and exec-prefix are meaningless, and set
to the empty string. Note that compiled Python bytecode files are platform independent (but not independent from
the Python version by which they were compiled!).
System administrators will know how to configure the mount or automount programs to share /usr/local
between platforms while having /usr/local/plat be a different filesystem for each platform.
This function should not be called before Py_Initialize(), otherwise it returns NULL.
Changed in version 3.10: It now returns NULL if called before Py_Initialize().

wchar_t *Py_GetProgramFullPath()
Part of the Stable ABI. Return the full program name of the Python executable; this is computed as a side-effect of
deriving the default module search path from the program name (set by Py_SetProgramName() above). The
returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.executable.
This function should not be called before Py_Initialize(), otherwise it returns NULL.
Changed in version 3.10: It now returns NULL if called before Py_Initialize().

wchar_t *Py_GetPath()
Part of the Stable ABI. Return the default module search path; this is computed from the program name (set by
Py_SetProgramName() above) and some environment variables. The returned string consists of a series of
directory names separated by a platform dependent delimiter character. The delimiter character is ':' on Unix
and macOS, ';' onWindows. The returned string points into static storage; the caller should not modify its value.
The list sys.path is initialized with this value on interpreter startup; it can be (and usually is) modified later to
change the search path for loading modules.
This function should not be called before Py_Initialize(), otherwise it returns NULL.

190 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.11.4

Changed in version 3.10: It now returns NULL if called before Py_Initialize().
void Py_SetPath(const wchar_t*)

Part of the Stable ABI since version 3.7. This API is kept for backward compatibility: setting PyConfig.
module_search_paths and PyConfig.module_search_paths_set should be used instead, see
Python Initialization Configuration.
Set the default module search path. If this function is called before Py_Initialize(), then Py_GetPath()
won’t attempt to compute a default search path but uses the one provided instead. This is useful if Python is
embedded by an application that has full knowledge of the location of all modules. The path components should
be separated by the platform dependent delimiter character, which is ':' on Unix and macOS, ';' on Windows.
This also causes sys.executable to be set to the program full path (see Py_GetProgramFullPath())
and for sys.prefix and sys.exec_prefix to be empty. It is up to the caller to modify these if required
after calling Py_Initialize().
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
The path argument is copied internally, so the caller may free it after the call completes.
Changed in version 3.8: The program full path is now used for sys.executable, instead of the program name.
Deprecated since version 3.11.

const char *Py_GetVersion()
Part of the Stable ABI. Return the version of this Python interpreter. This is a string that looks something like

"3.0a5+ (py3k:63103M, May 12 2008, 00:53:55) \n[GCC 4.2.3]"

The first word (up to the first space character) is the current Python version; the first characters are the major and
minor version separated by a period. The returned string points into static storage; the caller should not modify its
value. The value is available to Python code as sys.version.
See also the Py_Version constant.

const char *Py_GetPlatform()
Part of the Stable ABI. Return the platform identifier for the current platform. On Unix, this is formed from the
“official” name of the operating system, converted to lower case, followed by the major revision number; e.g.,
for Solaris 2.x, which is also known as SunOS 5.x, the value is 'sunos5'. On macOS, it is 'darwin'. On
Windows, it is 'win'. The returned string points into static storage; the caller should not modify its value. The
value is available to Python code as sys.platform.

const char *Py_GetCopyright()
Part of the Stable ABI. Return the official copyright string for the current Python version, for example
'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam'

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as sys.copyright.

const char *Py_GetCompiler()
Part of the Stable ABI. Return an indication of the compiler used to build the current Python version, in square
brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

9.4. Process-wide parameters 191

The Python/C API, Release 3.11.4

const char *Py_GetBuildInfo()
Part of the Stable ABI. Return information about the sequence number and build date and time of the current
Python interpreter instance, for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to Python
code as part of the variable sys.version.

void PySys_SetArgvEx(int argc, wchar_t **argv, int updatepath)
Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.argv, PyConfig.
parse_argv and PyConfig.safe_path should be used instead, see Python Initialization Configuration.
Set sys.argv based on argc and argv. These parameters are similar to those passed to the program’s main()
function with the difference that the first entry should refer to the script file to be executed rather than the executable
hosting the Python interpreter. If there isn’t a script that will be run, the first entry in argv can be an empty string.
If this function fails to initialize sys.argv, a fatal condition is signalled using Py_FatalError().
If updatepath is zero, this is all the function does. If updatepath is non-zero, the function also modifies sys.path
according to the following algorithm:

• If the name of an existing script is passed in argv[0], the absolute path of the directory where the script
is located is prepended to sys.path.

• Otherwise (that is, if argc is 0 or argv[0] doesn’t point to an existing file name), an empty string is
prepended to sys.path, which is the same as prepending the current working directory (".").

Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
See also PyConfig.orig_argv and PyConfig.argv members of the Python Initialization Configuration.

Note: It is recommended that applications embedding the Python interpreter for purposes other than executing a
single script pass 0 as updatepath, and update sys.path themselves if desired. See CVE-2008-5983.
On versions before 3.1.3, you can achieve the same effect by manually popping the first sys.path element after
having called PySys_SetArgv(), for example using:

PyRun_SimpleString("import sys; sys.path.pop(0)\n");

New in version 3.1.3.
Deprecated since version 3.11.

void PySys_SetArgv(int argc, wchar_t **argv)
Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.argv and PyConfig.
parse_argv should be used instead, see Python Initialization Configuration.
This function works like PySys_SetArgvEx() with updatepath set to 1 unless the python interpreter was
started with the -I.
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
See also PyConfig.orig_argv and PyConfig.argv members of the Python Initialization Configuration.
Changed in version 3.4: The updatepath value depends on -I.
Deprecated since version 3.11.

192 Chapter 9. Initialization, Finalization, and Threads

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

The Python/C API, Release 3.11.4

void Py_SetPythonHome(const wchar_t *home)
Part of the Stable ABI. This API is kept for backward compatibility: setting PyConfig.home should be used
instead, see Python Initialization Configuration.
Set the default “home” directory, that is, the location of the standard Python libraries. See PYTHONHOME for the
meaning of the argument string.
The argument should point to a zero-terminated character string in static storage whose contents will not change for
the duration of the program’s execution. No code in the Python interpreter will change the contents of this storage.
Use Py_DecodeLocale() to decode a bytes string to get a wchar_* string.
Deprecated since version 3.11.

wchar_t *Py_GetPythonHome()
Part of the Stable ABI. Return the default “home”, that is, the value set by a previous call to
Py_SetPythonHome(), or the value of the PYTHONHOME environment variable if it is set.
This function should not be called before Py_Initialize(), otherwise it returns NULL.
Changed in version 3.10: It now returns NULL if called before Py_Initialize().

9.5 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global lock,
called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python objects.
Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example, when
two threads simultaneously increment the reference count of the same object, the reference count could end up being
incremented only once instead of twice.
Therefore, the rule exists that only the thread that has acquired the GIL may operate on Python objects or call Python/C
API functions. In order to emulate concurrency of execution, the interpreter regularly tries to switch threads (see sys.
setswitchinterval()). The lock is also released around potentially blocking I/O operations like reading or writing
a file, so that other Python threads can run in the meantime.
The Python interpreter keeps some thread-specific bookkeeping information inside a data structure called
PyThreadState. There’s also one global variable pointing to the current PyThreadState: it can be retrieved
using PyThreadState_Get().

9.5.1 Releasing the GIL from extension code

Most extension code manipulating the GIL has the following simple structure:

Save the thread state in a local variable.
Release the global interpreter lock.
... Do some blocking I/O operation ...
Reacquire the global interpreter lock.
Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
... Do some blocking I/O operation ...
Py_END_ALLOW_THREADS

9.5. Thread State and the Global Interpreter Lock 193

The Python/C API, Release 3.11.4

The Py_BEGIN_ALLOW_THREADS macro opens a new block and declares a hidden local variable; the
Py_END_ALLOW_THREADS macro closes the block.
The block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
... Do some blocking I/O operation ...
PyEval_RestoreThread(_save);

Here is how these functions work: the global interpreter lock is used to protect the pointer to the current thread state.
When releasing the lock and saving the thread state, the current thread state pointer must be retrieved before the lock is
released (since another thread could immediately acquire the lock and store its own thread state in the global variable).
Conversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread
state pointer.

Note: Calling system I/O functions is the most common use case for releasing the GIL, but it can also be useful before
calling long-running computations which don’t need access to Python objects, such as compression or cryptographic
functions operating over memory buffers. For example, the standard zlib and hashlib modules release the GIL
when compressing or hashing data.

9.5.2 Non-Python created threads

When threads are created using the dedicated Python APIs (such as the threading module), a thread state is auto-
matically associated to them and the code showed above is therefore correct. However, when threads are created from
C (for example by a third-party library with its own thread management), they don’t hold the GIL, nor is there a thread
state structure for them.
If you need to call Python code from these threads (often this will be part of a callbackAPI provided by the aforementioned
third-party library), you must first register these threads with the interpreter by creating a thread state data structure, then
acquiring the GIL, and finally storing their thread state pointer, before you can start using the Python/C API. When you
are done, you should reset the thread state pointer, release the GIL, and finally free the thread state data structure.
The PyGILState_Ensure() and PyGILState_Release() functions do all of the above automatically. The
typical idiom for calling into Python from a C thread is:

PyGILState_STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result or handle exception */

/* Release the thread. No Python API allowed beyond this point. */
PyGILState_Release(gstate);

Note that the PyGILState_* functions assume there is only one global interpreter (created automatically by
Py_Initialize()). Python supports the creation of additional interpreters (using Py_NewInterpreter()),
but mixing multiple interpreters and the PyGILState_* API is unsupported.

194 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.11.4

9.5.3 Cautions about fork()

Another important thing to note about threads is their behaviour in the face of the C fork() call. On most systems with
fork(), after a process forks only the thread that issued the fork will exist. This has a concrete impact both on how
locks must be handled and on all stored state in CPython’s runtime.
The fact that only the “current” thread remains means any locks held by other threads will never be released. Python solves
this for os.fork() by acquiring the locks it uses internally before the fork, and releasing them afterwards. In addition, it
resets any lock-objects in the child. When extending or embedding Python, there is no way to inform Python of additional
(non-Python) locks that need to be acquired before or reset after a fork. OS facilities such as pthread_atfork()
would need to be used to accomplish the same thing. Additionally, when extending or embedding Python, callingfork()
directly rather than through os.fork() (and returning to or calling into Python) may result in a deadlock by one of
Python’s internal locks being held by a thread that is defunct after the fork. PyOS_AfterFork_Child() tries to
reset the necessary locks, but is not always able to.
The fact that all other threads go away also means that CPython’s runtime state there must be cleaned up properly, which
os.fork() does. This means finalizing all other PyThreadState objects belonging to the current interpreter and
all other PyInterpreterState objects. Due to this and the special nature of the “main” interpreter, fork() should
only be called in that interpreter’s “main” thread, where the CPython global runtime was originally initialized. The only
exception is if exec() will be called immediately after.

9.5.4 High-level API

These are the most commonly used types and functions when writing C extension code, or when embedding the Python
interpreter:
type PyInterpreterState

Part of the Limited API (as an opaque struct). This data structure represents the state shared by a number of
cooperating threads. Threads belonging to the same interpreter share their module administration and a few other
internal items. There are no public members in this structure.
Threads belonging to different interpreters initially share nothing, except process state like available memory, open
file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which interpreter
they belong.

type PyThreadState
Part of the Limited API (as an opaque struct). This data structure represents the state of a single thread. The only
public data member is:
PyInterpreterState *interp

This thread’s interpreter state.
void PyEval_InitThreads()

Part of the Stable ABI. Deprecated function which does nothing.
In Python 3.6 and older, this function created the GIL if it didn’t exist.
Changed in version 3.9: The function now does nothing.
Changed in version 3.7: This function is now called by Py_Initialize(), so you don’t have to call it yourself
anymore.
Changed in version 3.2: This function cannot be called before Py_Initialize() anymore.
Deprecated since version 3.9.

9.5. Thread State and the Global Interpreter Lock 195

The Python/C API, Release 3.11.4

int PyEval_ThreadsInitialized()
Part of the Stable ABI. Returns a non-zero value if PyEval_InitThreads() has been called. This function
can be called without holding the GIL, and therefore can be used to avoid calls to the locking API when running
single-threaded.
Changed in version 3.7: The GIL is now initialized by Py_Initialize().
Deprecated since version 3.9.

PyThreadState *PyEval_SaveThread()
Part of the Stable ABI.Release the global interpreter lock (if it has been created) and reset the thread state to NULL,
returning the previous thread state (which is not NULL). If the lock has been created, the current thread must have
acquired it.

void PyEval_RestoreThread(PyThreadState *tstate)
Part of the Stable ABI. Acquire the global interpreter lock (if it has been created) and set the thread state to tstate,
which must not be NULL. If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues.

Note: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

PyThreadState *PyThreadState_Get()
Part of the Stable ABI. Return the current thread state. The global interpreter lock must be held. When the current
thread state is NULL, this issues a fatal error (so that the caller needn’t check for NULL).

PyThreadState *PyThreadState_Swap(PyThreadState *tstate)
Part of the Stable ABI. Swap the current thread state with the thread state given by the argument tstate, which may
be NULL. The global interpreter lock must be held and is not released.

The following functions use thread-local storage, and are not compatible with sub-interpreters:
PyGILState_STATE PyGILState_Ensure()

Part of the Stable ABI. Ensure that the current thread is ready to call the Python CAPI regardless of the current state
of Python, or of the global interpreter lock. This may be called as many times as desired by a thread as long as each
call is matched with a call to PyGILState_Release(). In general, other thread-related APIs may be used
betweenPyGILState_Ensure() andPyGILState_Release() calls as long as the thread state is restored
to its previous state before the Release(). For example, normal usage of the Py_BEGIN_ALLOW_THREADS and
Py_END_ALLOW_THREADS macros is acceptable.
The return value is an opaque “handle” to the thread state when PyGILState_Ensure() was called, and must
be passed to PyGILState_Release() to ensure Python is left in the same state. Even though recursive calls
are allowed, these handles cannot be shared - each unique call to PyGILState_Ensure()must save the handle
for its call to PyGILState_Release().
When the function returns, the current thread will hold the GIL and be able to call arbitrary Python code. Failure
is a fatal error.

Note: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

196 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.11.4

void PyGILState_Release(PyGILState_STATE)
Part of the Stable ABI. Release any resources previously acquired. After this call, Python’s state will be the same
as it was prior to the corresponding PyGILState_Ensure() call (but generally this state will be unknown to
the caller, hence the use of the GILState API).
Every call to PyGILState_Ensure()must be matched by a call to PyGILState_Release() on the same
thread.

PyThreadState *PyGILState_GetThisThreadState()
Part of the Stable ABI. Get the current thread state for this thread. May return NULL if no GILState API has been
used on the current thread. Note that the main thread always has such a thread-state, even if no auto-thread-state
call has been made on the main thread. This is mainly a helper/diagnostic function.

int PyGILState_Check()
Return 1 if the current thread is holding the GIL and 0 otherwise. This function can be called from any thread
at any time. Only if it has had its Python thread state initialized and currently is holding the GIL will it return 1.
This is mainly a helper/diagnostic function. It can be useful for example in callback contexts or memory allocation
functions when knowing that the GIL is locked can allow the caller to perform sensitive actions or otherwise behave
differently.
New in version 3.4.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.
Py_BEGIN_ALLOW_THREADS

Part of the Stable ABI. This macro expands to { PyThreadState *_save; _save =
PyEval_SaveThread();. Note that it contains an opening brace; it must be matched with a follow-
ing Py_END_ALLOW_THREADS macro. See above for further discussion of this macro.

Py_END_ALLOW_THREADS

Part of the Stable ABI. This macro expands to PyEval_RestoreThread(_save); }. Note that it contains
a closing brace; it must be matched with an earlier Py_BEGIN_ALLOW_THREADS macro. See above for further
discussion of this macro.

Py_BLOCK_THREADS

Part of the Stable ABI. This macro expands to PyEval_RestoreThread(_save);: it is equivalent to
Py_END_ALLOW_THREADS without the closing brace.

Py_UNBLOCK_THREADS

Part of the Stable ABI. This macro expands to _save = PyEval_SaveThread();: it is equivalent to
Py_BEGIN_ALLOW_THREADS without the opening brace and variable declaration.

9.5.5 Low-level API

All of the following functions must be called after Py_Initialize().
Changed in version 3.7: Py_Initialize() now initializes the GIL.
PyInterpreterState *PyInterpreterState_New()

Part of the Stable ABI. Create a new interpreter state object. The global interpreter lock need not be held, but may
be held if it is necessary to serialize calls to this function.
Raises an auditing event cpython.PyInterpreterState_New with no arguments.

9.5. Thread State and the Global Interpreter Lock 197

The Python/C API, Release 3.11.4

void PyInterpreterState_Clear(PyInterpreterState *interp)
Part of the Stable ABI. Reset all information in an interpreter state object. The global interpreter lock must be held.
Raises an auditing event cpython.PyInterpreterState_Clear with no arguments.

void PyInterpreterState_Delete(PyInterpreterState *interp)
Part of the Stable ABI. Destroy an interpreter state object. The global interpreter lock need not be held. The
interpreter state must have been reset with a previous call to PyInterpreterState_Clear().

PyThreadState *PyThreadState_New(PyInterpreterState *interp)
Part of the Stable ABI. Create a new thread state object belonging to the given interpreter object. The global
interpreter lock need not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState_Clear(PyThreadState *tstate)
Part of the Stable ABI. Reset all information in a thread state object. The global interpreter lock must be held.
Changed in version 3.9: This function now calls the PyThreadState.on_delete callback. Previously, that
happened in PyThreadState_Delete().

void PyThreadState_Delete(PyThreadState *tstate)
Part of the Stable ABI. Destroy a thread state object. The global interpreter lock need not be held. The thread state
must have been reset with a previous call to PyThreadState_Clear().

void PyThreadState_DeleteCurrent(void)
Destroy the current thread state and release the global interpreter lock. Like PyThreadState_Delete(),
the global interpreter lock need not be held. The thread state must have been reset with a previous call to
PyThreadState_Clear().

PyFrameObject *PyThreadState_GetFrame(PyThreadState *tstate)
Part of the Stable ABI since version 3.10. Get the current frame of the Python thread state tstate.
Return a strong reference. Return NULL if no frame is currently executing.
See also PyEval_GetFrame().
tstate must not be NULL.
New in version 3.9.

uint64_t PyThreadState_GetID(PyThreadState *tstate)
Part of the Stable ABI since version 3.10. Get the unique thread state identifier of the Python thread state tstate.
tstate must not be NULL.
New in version 3.9.

PyInterpreterState *PyThreadState_GetInterpreter(PyThreadState *tstate)
Part of the Stable ABI since version 3.10. Get the interpreter of the Python thread state tstate.
tstate must not be NULL.
New in version 3.9.

void PyThreadState_EnterTracing(PyThreadState *tstate)
Suspend tracing and profiling in the Python thread state tstate.
Resume them using the PyThreadState_LeaveTracing() function.
New in version 3.11.

198 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.11.4

void PyThreadState_LeaveTracing(PyThreadState *tstate)
Resume tracing and profiling in the Python thread state tstate suspended by the
PyThreadState_EnterTracing() function.
See also PyEval_SetTrace() and PyEval_SetProfile() functions.
New in version 3.11.

PyInterpreterState *PyInterpreterState_Get(void)
Part of the Stable ABI since version 3.9. Get the current interpreter.
Issue a fatal error if there no current Python thread state or no current interpreter. It cannot return NULL.
The caller must hold the GIL.
New in version 3.9.

int64_t PyInterpreterState_GetID(PyInterpreterState *interp)
Part of the Stable ABI since version 3.7. Return the interpreter’s unique ID. If there was any error in doing so then
-1 is returned and an error is set.
The caller must hold the GIL.
New in version 3.7.

PyObject *PyInterpreterState_GetDict(PyInterpreterState *interp)
Part of the Stable ABI since version 3.8. Return a dictionary in which interpreter-specific data may be stored. If
this function returns NULL then no exception has been raised and the caller should assume no interpreter-specific
dict is available.
This is not a replacement for PyModule_GetState(), which extensions should use to store interpreter-specific
state information.
New in version 3.8.

typedef PyObject *(*_PyFrameEvalFunction)(PyThreadState *tstate, _PyInterpreterFrame *frame, int throwflag)
Type of a frame evaluation function.
The throwflag parameter is used by the throw()method of generators: if non-zero, handle the current exception.
Changed in version 3.9: The function now takes a tstate parameter.
Changed in version 3.11: The frame parameter changed from PyFrameObject* to
_PyInterpreterFrame*.

_PyFrameEvalFunction _PyInterpreterState_GetEvalFrameFunc(PyInterpreterState *interp)
Get the frame evaluation function.
See the PEP 523 “Adding a frame evaluation API to CPython”.
New in version 3.9.

void _PyInterpreterState_SetEvalFrameFunc(PyInterpreterState *interp, _PyFrameEvalFunction
eval_frame)

Set the frame evaluation function.
See the PEP 523 “Adding a frame evaluation API to CPython”.
New in version 3.9.

9.5. Thread State and the Global Interpreter Lock 199

https://peps.python.org/pep-0523/
https://peps.python.org/pep-0523/

The Python/C API, Release 3.11.4

PyObject *PyThreadState_GetDict()
Return value: Borrowed reference. Part of the Stable ABI. Return a dictionary in which extensions can store thread-
specific state information. Each extension should use a unique key to use to store state in the dictionary. It is okay
to call this function when no current thread state is available. If this function returns NULL, no exception has been
raised and the caller should assume no current thread state is available.

int PyThreadState_SetAsyncExc(unsigned long id, PyObject *exc)
Part of the Stable ABI.Asynchronously raise an exception in a thread. The id argument is the thread id of the target
thread; exc is the exception object to be raised. This function does not steal any references to exc. To prevent naive
misuse, you must write your own C extension to call this. Must be called with the GIL held. Returns the number
of thread states modified; this is normally one, but will be zero if the thread id isn’t found. If exc is NULL, the
pending exception (if any) for the thread is cleared. This raises no exceptions.
Changed in version 3.7: The type of the id parameter changed from long to unsigned long.

void PyEval_AcquireThread(PyThreadState *tstate)
Part of the Stable ABI. Acquire the global interpreter lock and set the current thread state to tstate, which must not
be NULL. The lock must have been created earlier. If this thread already has the lock, deadlock ensues.

Note: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

Changed in version 3.8: Updated to be consistent with PyEval_RestoreThread(),
Py_END_ALLOW_THREADS(), and PyGILState_Ensure(), and terminate the current thread if
called while the interpreter is finalizing.
PyEval_RestoreThread() is a higher-level function which is always available (even when threads have not
been initialized).

void PyEval_ReleaseThread(PyThreadState *tstate)
Part of the Stable ABI. Reset the current thread state to NULL and release the global interpreter lock. The lock
must have been created earlier and must be held by the current thread. The tstate argument, which must not be
NULL, is only used to check that it represents the current thread state — if it isn’t, a fatal error is reported.
PyEval_SaveThread() is a higher-level function which is always available (even when threads have not been
initialized).

void PyEval_AcquireLock()
Part of the Stable ABI. Acquire the global interpreter lock. The lock must have been created earlier. If this thread
already has the lock, a deadlock ensues.
Deprecated since version 3.2: This function does not update the current thread state. Please use
PyEval_RestoreThread() or PyEval_AcquireThread() instead.

Note: Calling this function from a thread when the runtime is finalizing will terminate the thread, even if the
thread was not created by Python. You can use _Py_IsFinalizing() or sys.is_finalizing() to
check if the interpreter is in process of being finalized before calling this function to avoid unwanted termination.

Changed in version 3.8: Updated to be consistent with PyEval_RestoreThread(),
Py_END_ALLOW_THREADS(), and PyGILState_Ensure(), and terminate the current thread if
called while the interpreter is finalizing.

200 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.11.4

void PyEval_ReleaseLock()
Part of the Stable ABI. Release the global interpreter lock. The lock must have been created earlier.
Deprecated since version 3.2: This function does not update the current thread state. Please use
PyEval_SaveThread() or PyEval_ReleaseThread() instead.

9.6 Sub-interpreter support

While in most uses, you will only embed a single Python interpreter, there are cases where you need to create several
independent interpreters in the same process and perhaps even in the same thread. Sub-interpreters allow you to do that.
The “main” interpreter is the first one created when the runtime initializes. It is usually the only Python interpreter in a
process. Unlike sub-interpreters, the main interpreter has unique process-global responsibilities like signal handling. It is
also responsible for execution during runtime initialization and is usually the active interpreter during runtime finalization.
The PyInterpreterState_Main() function returns a pointer to its state.
You can switch between sub-interpreters using the PyThreadState_Swap() function. You can create and destroy
them using the following functions:
PyThreadState *Py_NewInterpreter()

Part of the Stable ABI. Create a new sub-interpreter. This is an (almost) totally separate environment for the
execution of Python code. In particular, the new interpreter has separate, independent versions of all imported
modules, including the fundamental modules builtins, __main__ and sys. The table of loaded modules
(sys.modules) and the module search path (sys.path) are also separate. The new environment has no
sys.argv variable. It has new standard I/O stream file objects sys.stdin, sys.stdout and sys.stderr
(however these refer to the same underlying file descriptors).
The return value points to the first thread state created in the new sub-interpreter. This thread state is made in the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation
of the new interpreter is unsuccessful, NULL is returned; no exception is set since the exception state is stored in
the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the
global interpreter lock must be held before calling this function and is still held when it returns; however, unlike
most other Python/C API functions, there needn’t be a current thread state on entry.)
Extension modules are shared between (sub-)interpreters as follows:

• For modules using multi-phase initialization, e.g. PyModule_FromDefAndSpec(), a separate mod-
ule object is created and initialized for each interpreter. Only C-level static and global variables are shared
between these module objects.

• For modules using single-phase initialization, e.g. PyModule_Create(), the first time a particular exten-
sion is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away.
When the same extension is imported by another (sub-)interpreter, a new module is initialized and filled with
the contents of this copy; the extension’s init function is not called. Objects in the module’s dictionary thus
end up shared across (sub-)interpreters, which might cause unwanted behavior (see Bugs and caveats below).
Note that this is different from what happens when an extension is imported after the interpreter has been
completely re-initialized by calling Py_FinalizeEx() and Py_Initialize(); in that case, the ex-
tension’s initmodule function is called again. As with multi-phase initialization, this means that only
C-level static and global variables are shared between these modules.

void Py_EndInterpreter(PyThreadState *tstate)
Part of the Stable ABI. Destroy the (sub-)interpreter represented by the given thread state. The given thread state
must be the current thread state. See the discussion of thread states below. When the call returns, the current
thread state is NULL. All thread states associated with this interpreter are destroyed. (The global interpreter lock
must be held before calling this function and is still held when it returns.) Py_FinalizeEx() will destroy all
sub-interpreters that haven’t been explicitly destroyed at that point.

9.6. Sub-interpreter support 201

The Python/C API, Release 3.11.4

9.6.1 Bugs and caveats

Because sub-interpreters (and the main interpreter) are part of the same process, the insulation between them isn’t perfect
— for example, using low-level file operations likeos.close() they can (accidentally or maliciously) affect each other’s
open files. Because of the way extensions are shared between (sub-)interpreters, some extensions may not work properly;
this is especially likely when using single-phase initialization or (static) global variables. It is possible to insert objects
created in one sub-interpreter into a namespace of another (sub-)interpreter; this should be avoided if possible.
Special care should be taken to avoid sharing user-defined functions, methods, instances or classes between sub-
interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dictionary of
loaded modules. It is equally important to avoid sharing objects from which the above are reachable.
Also note that combining this functionality withPyGILState_*APIs is delicate, because these APIs assume a bijection
between Python thread states and OS-level threads, an assumption broken by the presence of sub-interpreters. It is
highly recommended that you don’t switch sub-interpreters between a pair of matching PyGILState_Ensure() and
PyGILState_Release() calls. Furthermore, extensions (such as ctypes) using these APIs to allow calling of
Python code from non-Python created threads will probably be broken when using sub-interpreters.

9.7 Asynchronous Notifications

A mechanism is provided to make asynchronous notifications to the main interpreter thread. These notifications take the
form of a function pointer and a void pointer argument.
int Py_AddPendingCall(int (*func)(void*), void *arg)

Part of the Stable ABI. Schedule a function to be called from the main interpreter thread. On success, 0 is returned
and func is queued for being called in the main thread. On failure, -1 is returned without setting any exception.
When successfully queued, func will be eventually called from the main interpreter thread with the argument arg.
It will be called asynchronously with respect to normally running Python code, but with both these conditions met:

• on a bytecode boundary;
• with the main thread holding the global interpreter lock (func can therefore use the full C API).

funcmust return 0 on success, or -1 on failure with an exception set. func won’t be interrupted to perform another
asynchronous notification recursively, but it can still be interrupted to switch threads if the global interpreter lock
is released.
This function doesn’t need a current thread state to run, and it doesn’t need the global interpreter lock.
To call this function in a subinterpreter, the caller must hold the GIL. Otherwise, the function func can be scheduled
to be called from the wrong interpreter.

Warning: This is a low-level function, only useful for very special cases. There is no guarantee that func will
be called as quick as possible. If the main thread is busy executing a system call, func won’t be called before
the system call returns. This function is generally not suitable for calling Python code from arbitrary C threads.
Instead, use the PyGILState API.

Changed in version 3.9: If this function is called in a subinterpreter, the function func is now scheduled to be called
from the subinterpreter, rather than being called from the main interpreter. Each subinterpreter now has its own
list of scheduled calls.
New in version 3.1.

202 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.11.4

9.8 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These are
used for profiling, debugging, and coverage analysis tools.
This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level callable objects,
making a direct C function call instead. The essential attributes of the facility have not changed; the interface allows trace
functions to be installed per-thread, and the basic events reported to the trace function are the same as had been reported
to the Python-level trace functions in previous versions.
typedef int (*Py_tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)

The type of the trace function registered using PyEval_SetProfile() and PyEval_SetTrace(). The
first parameter is the object passed to the registration function as obj, frame is the frame object to which the event
pertains, what is one of the constants PyTrace_CALL, PyTrace_EXCEPTION , PyTrace_LINE,
PyTrace_RETURN , PyTrace_C_CALL, PyTrace_C_EXCEPTION , PyTrace_C_RETURN , or
PyTrace_OPCODE, and arg depends on the value of what:

Value of what Meaning of arg
PyTrace_CALL Always Py_None.
PyTrace_EXCEPTION Exception information as returned by sys.exc_info().
PyTrace_LINE Always Py_None.
PyTrace_RETURN Value being returned to the caller, or NULL if caused by an exception.
PyTrace_C_CALL Function object being called.
PyTrace_C_EXCEPTION Function object being called.
PyTrace_C_RETURN Function object being called.
PyTrace_OPCODE Always Py_None.

int PyTrace_CALL
The value of the what parameter to a Py_tracefunc function when a new call to a function or method is being
reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is not
reported as there is no control transfer to the Python bytecode in the corresponding frame.

int PyTrace_EXCEPTION
The value of the what parameter to a Py_tracefunc function when an exception has been raised. The callback
function is called with this value for what when after any bytecode is processed after which the exception becomes
set within the frame being executed. The effect of this is that as exception propagation causes the Python stack to
unwind, the callback is called upon return to each frame as the exception propagates. Only trace functions receives
these events; they are not needed by the profiler.

int PyTrace_LINE
The value passed as the what parameter to a Py_tracefunc function (but not a profiling function) when a
line-number event is being reported. It may be disabled for a frame by setting f_trace_lines to 0 on that
frame.

int PyTrace_RETURN
The value for the what parameter to Py_tracefunc functions when a call is about to return.

int PyTrace_C_CALL
The value for the what parameter to Py_tracefunc functions when a C function is about to be called.

int PyTrace_C_EXCEPTION
The value for the what parameter to Py_tracefunc functions when a C function has raised an exception.

9.8. Profiling and Tracing 203

The Python/C API, Release 3.11.4

int PyTrace_C_RETURN
The value for the what parameter to Py_tracefunc functions when a C function has returned.

int PyTrace_OPCODE
The value for the what parameter to Py_tracefunc functions (but not profiling functions) when a new op-
code is about to be executed. This event is not emitted by default: it must be explicitly requested by setting
f_trace_opcodes to 1 on the frame.

void PyEval_SetProfile(Py_tracefunc func, PyObject *obj)
Set the profiler function to func. The obj parameter is passed to the function as its first parameter, and may be
any Python object, or NULL. If the profile function needs to maintain state, using a different value for obj for each
thread provides a convenient and thread-safe place to store it. The profile function is called for all monitored events
except PyTrace_LINE PyTrace_OPCODE and PyTrace_EXCEPTION .
See also the sys.setprofile() function.
The caller must hold the GIL.

void PyEval_SetTrace(Py_tracefunc func, PyObject *obj)
Set the tracing function to func. This is similar to PyEval_SetProfile(), except the tracing function does
receive line-number events and per-opcode events, but does not receive any event related to C function objects
being called. Any trace function registered using PyEval_SetTrace() will not receive PyTrace_C_CALL,
PyTrace_C_EXCEPTION or PyTrace_C_RETURN as a value for the what parameter.
See also the sys.settrace() function.
The caller must hold the GIL.

9.9 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.
PyInterpreterState *PyInterpreterState_Head()

Return the interpreter state object at the head of the list of all such objects.
PyInterpreterState *PyInterpreterState_Main()

Return the main interpreter state object.
PyInterpreterState *PyInterpreterState_Next(PyInterpreterState *interp)

Return the next interpreter state object after interp from the list of all such objects.
PyThreadState *PyInterpreterState_ThreadHead(PyInterpreterState *interp)

Return the pointer to the first PyThreadState object in the list of threads associated with the interpreter interp.
PyThreadState *PyThreadState_Next(PyThreadState *tstate)

Return the next thread state object after tstate from the list of all such objects belonging to the same
PyInterpreterState object.

204 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.11.4

9.10 Thread Local Storage Support

The Python interpreter provides low-level support for thread-local storage (TLS) which wraps the underlying native TLS
implementation to support the Python-level thread local storage API (threading.local). The CPython C level APIs
are similar to those offered by pthreads and Windows: use a thread key and functions to associate a void* value per
thread.
The GIL does not need to be held when calling these functions; they supply their own locking.
Note that Python.h does not include the declaration of the TLS APIs, you need to include pythread.h to use
thread-local storage.

Note: None of these API functions handle memory management on behalf of the void* values. You need to allo-
cate and deallocate them yourself. If the void* values happen to be PyObject*, these functions don’t do refcount
operations on them either.

9.10.1 Thread Specific Storage (TSS) API

TSS API is introduced to supersede the use of the existing TLS API within the CPython interpreter. This API uses a new
type Py_tss_t instead of int to represent thread keys.
New in version 3.7.
See also:
“A New C-API for Thread-Local Storage in CPython” (PEP 539)
type Py_tss_t

This data structure represents the state of a thread key, the definition of which may depend on the underlying TLS
implementation, and it has an internal field representing the key’s initialization state. There are no public members
in this structure.
When Py_LIMITED_API is not defined, static allocation of this type by Py_tss_NEEDS_INIT is allowed.

Py_tss_NEEDS_INIT

This macro expands to the initializer for Py_tss_t variables. Note that this macro won’t be defined with
Py_LIMITED_API.

Dynamic Allocation

Dynamic allocation of the Py_tss_t, required in extension modules built with Py_LIMITED_API, where static alloca-
tion of this type is not possible due to its implementation being opaque at build time.
Py_tss_t *PyThread_tss_alloc()

Part of the Stable ABI since version 3.7. Return a value which is the same state as a value initialized with
Py_tss_NEEDS_INIT, or NULL in the case of dynamic allocation failure.

void PyThread_tss_free(Py_tss_t *key)
Part of the Stable ABI since version 3.7. Free the given key allocated by PyThread_tss_alloc(), after first
calling PyThread_tss_delete() to ensure any associated thread locals have been unassigned. This is a
no-op if the key argument is NULL.

Note: A freed key becomes a dangling pointer. You should reset the key to NULL.

9.10. Thread Local Storage Support 205

https://peps.python.org/pep-0539/

The Python/C API, Release 3.11.4

Methods

The parameter key of these functions must not be NULL. Moreover, the behaviors of PyThread_tss_set()
and PyThread_tss_get() are undefined if the given Py_tss_t has not been initialized by
PyThread_tss_create().
int PyThread_tss_is_created(Py_tss_t *key)

Part of the Stable ABI since version 3.7. Return a non-zero value if the given Py_tss_t has been initialized by
PyThread_tss_create().

int PyThread_tss_create(Py_tss_t *key)
Part of the Stable ABI since version 3.7. Return a zero value on successful initialization of a TSS key. The behavior
is undefined if the value pointed to by the key argument is not initialized by Py_tss_NEEDS_INIT. This function
can be called repeatedly on the same key – calling it on an already initialized key is a no-op and immediately returns
success.

void PyThread_tss_delete(Py_tss_t *key)
Part of the Stable ABI since version 3.7. Destroy a TSS key to forget the values associated with the key across all
threads, and change the key’s initialization state to uninitialized. A destroyed key is able to be initialized again by
PyThread_tss_create(). This function can be called repeatedly on the same key – calling it on an already
destroyed key is a no-op.

int PyThread_tss_set(Py_tss_t *key, void *value)
Part of the Stable ABI since version 3.7. Return a zero value to indicate successfully associating a void* value
with a TSS key in the current thread. Each thread has a distinct mapping of the key to a void* value.

void *PyThread_tss_get(Py_tss_t *key)
Part of the Stable ABI since version 3.7. Return the void* value associated with a TSS key in the current thread.
This returns NULL if no value is associated with the key in the current thread.

9.10.2 Thread Local Storage (TLS) API

Deprecated since version 3.7: This API is superseded by Thread Specific Storage (TSS) API.

Note: This version of the API does not support platforms where the native TLS key is defined in a way that cannot be
safely cast to int. On such platforms, PyThread_create_key() will return immediately with a failure status, and
the other TLS functions will all be no-ops on such platforms.

Due to the compatibility problem noted above, this version of the API should not be used in new code.
int PyThread_create_key()

Part of the Stable ABI.
void PyThread_delete_key(int key)

Part of the Stable ABI.
int PyThread_set_key_value(int key, void *value)

Part of the Stable ABI.
void *PyThread_get_key_value(int key)

Part of the Stable ABI.
void PyThread_delete_key_value(int key)

Part of the Stable ABI.

206 Chapter 9. Initialization, Finalization, and Threads

The Python/C API, Release 3.11.4

void PyThread_ReInitTLS()
Part of the Stable ABI.

9.10. Thread Local Storage Support 207

The Python/C API, Release 3.11.4

208 Chapter 9. Initialization, Finalization, and Threads

CHAPTER

TEN

PYTHON INITIALIZATION CONFIGURATION

New in version 3.8.
Python can be initialized with Py_InitializeFromConfig() and the PyConfig structure. It can be preinitial-
ized with Py_PreInitialize() and the PyPreConfig structure.
There are two kinds of configuration:

• The Python Configuration can be used to build a customized Python which behaves as the regular Python. For
example, environment variables and command line arguments are used to configure Python.

• The Isolated Configuration can be used to embed Python into an application. It isolates Python from the system.
For example, environment variables are ignored, the LC_CTYPE locale is left unchanged and no signal handler is
registered.

The Py_RunMain() function can be used to write a customized Python program.
See also Initialization, Finalization, and Threads.
See also:
PEP 587 “Python Initialization Configuration”.

10.1 Example

Example of customized Python always running in isolated mode:

int main(int argc, char **argv)
{

PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);
config.isolated = 1;

/* Decode command line arguments.
Implicitly preinitialize Python (in isolated mode). */

status = PyConfig_SetBytesArgv(&config, argc, argv);
if (PyStatus_Exception(status)) {

goto exception;
}

status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception(status)) {

goto exception;

(continues on next page)

209

https://peps.python.org/pep-0587/

The Python/C API, Release 3.11.4

(continued from previous page)
}
PyConfig_Clear(&config);

return Py_RunMain();

exception:
PyConfig_Clear(&config);
if (PyStatus_IsExit(status)) {

return status.exitcode;
}
/* Display the error message and exit the process with

non-zero exit code */
Py_ExitStatusException(status);

}

10.2 PyWideStringList

type PyWideStringList
List of wchar_t* strings.
If length is non-zero, items must be non-NULL and all strings must be non-NULL.
Methods:
PyStatus PyWideStringList_Append(PyWideStringList *list, const wchar_t *item)

Append item to list.
Python must be preinitialized to call this function.

PyStatus PyWideStringList_Insert(PyWideStringList *list, Py_ssize_t index, const wchar_t *item)
Insert item into list at index.
If index is greater than or equal to list length, append item to list.
index must be greater than or equal to 0.
Python must be preinitialized to call this function.

Structure fields:
Py_ssize_t length

List length.
wchar_t **items

List items.

210 Chapter 10. Python Initialization Configuration

The Python/C API, Release 3.11.4

10.3 PyStatus

type PyStatus
Structure to store an initialization function status: success, error or exit.
For an error, it can store the C function name which created the error.
Structure fields:
int exitcode

Exit code. Argument passed to exit().
const char *err_msg

Error message.
const char *func

Name of the function which created an error, can be NULL.
Functions to create a status:
PyStatus PyStatus_Ok(void)

Success.
PyStatus PyStatus_Error(const char *err_msg)

Initialization error with a message.
err_msg must not be NULL.

PyStatus PyStatus_NoMemory(void)
Memory allocation failure (out of memory).

PyStatus PyStatus_Exit(int exitcode)
Exit Python with the specified exit code.

Functions to handle a status:
int PyStatus_Exception(PyStatus status)

Is the status an error or an exit? If true, the exception must be handled; by calling
Py_ExitStatusException() for example.

int PyStatus_IsError(PyStatus status)
Is the result an error?

int PyStatus_IsExit(PyStatus status)
Is the result an exit?

void Py_ExitStatusException(PyStatus status)
Call exit(exitcode) if status is an exit. Print the error message and exit with a non-zero exit code if
status is an error. Must only be called if PyStatus_Exception(status) is non-zero.

Note: Internally, Python uses macros which set PyStatus.func, whereas functions to create a status set func to
NULL.

Example:

10.3. PyStatus 211

The Python/C API, Release 3.11.4

PyStatus alloc(void **ptr, size_t size)
{

*ptr = PyMem_RawMalloc(size);
if (*ptr == NULL) {

return PyStatus_NoMemory();
}
return PyStatus_Ok();

}

int main(int argc, char **argv)
{

void *ptr;
PyStatus status = alloc(&ptr, 16);
if (PyStatus_Exception(status)) {

Py_ExitStatusException(status);
}
PyMem_Free(ptr);
return 0;

}

10.4 PyPreConfig

type PyPreConfig
Structure used to preinitialize Python.
Function to initialize a preconfiguration:
void PyPreConfig_InitPythonConfig(PyPreConfig *preconfig)

Initialize the preconfiguration with Python Configuration.
void PyPreConfig_InitIsolatedConfig(PyPreConfig *preconfig)

Initialize the preconfiguration with Isolated Configuration.
Structure fields:
int allocator

Name of the Python memory allocators:
• PYMEM_ALLOCATOR_NOT_SET (0): don’t change memory allocators (use defaults).
• PYMEM_ALLOCATOR_DEFAULT (1): default memory allocators.
• PYMEM_ALLOCATOR_DEBUG (2): default memory allocators with debug hooks.
• PYMEM_ALLOCATOR_MALLOC (3): use malloc() of the C library.
• PYMEM_ALLOCATOR_MALLOC_DEBUG (4): force usage of malloc() with debug hooks.
• PYMEM_ALLOCATOR_PYMALLOC (5): Python pymalloc memory allocator.
• PYMEM_ALLOCATOR_PYMALLOC_DEBUG (6): Python pymalloc memory allocatorwith debug hooks.

PYMEM_ALLOCATOR_PYMALLOC and PYMEM_ALLOCATOR_PYMALLOC_DEBUG are not supported if
Python is configured using --without-pymalloc.
See Memory Management.
Default: PYMEM_ALLOCATOR_NOT_SET.

212 Chapter 10. Python Initialization Configuration

The Python/C API, Release 3.11.4

int configure_locale
Set the LC_CTYPE locale to the user preferred locale.
If equals to 0, set coerce_c_locale and coerce_c_locale_warn members to 0.
See the locale encoding.
Default: 1 in Python config, 0 in isolated config.

int coerce_c_locale
If equals to 2, coerce the C locale.
If equals to 1, read the LC_CTYPE locale to decide if it should be coerced.
See the locale encoding.
Default: -1 in Python config, 0 in isolated config.

int coerce_c_locale_warn
If non-zero, emit a warning if the C locale is coerced.
Default: -1 in Python config, 0 in isolated config.

int dev_mode
Python Development Mode: see PyConfig.dev_mode.
Default: -1 in Python mode, 0 in isolated mode.

int isolated
Isolated mode: see PyConfig.isolated.
Default: 0 in Python mode, 1 in isolated mode.

int legacy_windows_fs_encoding
If non-zero:
• Set PyPreConfig.utf8_mode to 0,
• Set PyConfig.filesystem_encoding to "mbcs",
• Set PyConfig.filesystem_errors to "replace".

Initialized the from PYTHONLEGACYWINDOWSFSENCODING environment variable value.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
Default: 0.

int parse_argv
If non-zero, Py_PreInitializeFromArgs() and Py_PreInitializeFromBytesArgs()
parse their argv argument the same way the regular Python parses command line arguments: see Com-
mand Line Arguments.
Default: 1 in Python config, 0 in isolated config.

int use_environment
Use environment variables? See PyConfig.use_environment.
Default: 1 in Python config and 0 in isolated config.

10.4. PyPreConfig 213

The Python/C API, Release 3.11.4

int utf8_mode
If non-zero, enable the Python UTF-8 Mode.
Set to 0 or 1 by the -X utf8 command line option and the PYTHONUTF8 environment variable.
Also set to 1 if the LC_CTYPE locale is C or POSIX.
Default: -1 in Python config and 0 in isolated config.

10.5 Preinitialize Python with PyPreConfig

The preinitialization of Python:
• Set the Python memory allocators (PyPreConfig.allocator)
• Configure the LC_CTYPE locale (locale encoding)
• Set the Python UTF-8 Mode (PyPreConfig.utf8_mode)

The current preconfiguration (PyPreConfig type) is stored in _PyRuntime.preconfig.
Functions to preinitialize Python:
PyStatus Py_PreInitialize(const PyPreConfig *preconfig)

Preinitialize Python from preconfig preconfiguration.
preconfig must not be NULL.

PyStatus Py_PreInitializeFromBytesArgs(const PyPreConfig *preconfig, int argc, char *const *argv)
Preinitialize Python from preconfig preconfiguration.
Parse argv command line arguments (bytes strings) if parse_argv of preconfig is non-zero.
preconfig must not be NULL.

PyStatus Py_PreInitializeFromArgs(const PyPreConfig *preconfig, int argc, wchar_t *const *argv)
Preinitialize Python from preconfig preconfiguration.
Parse argv command line arguments (wide strings) if parse_argv of preconfig is non-zero.
preconfig must not be NULL.

The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception() and
Py_ExitStatusException().
For Python Configuration (PyPreConfig_InitPythonConfig()), if Python is initialized with command line
arguments, the command line arguments must also be passed to preinitialize Python, since they have an effect on the
pre-configuration like encodings. For example, the -X utf8 command line option enables the Python UTF-8 Mode.
PyMem_SetAllocator() can be called after Py_PreInitialize() and before
Py_InitializeFromConfig() to install a custom memory allocator. It can be called before
Py_PreInitialize() if PyPreConfig.allocator is set to PYMEM_ALLOCATOR_NOT_SET.
Python memory allocation functions like PyMem_RawMalloc() must not be used before the Python preinitialization,
whereas calling directly malloc() and free() is always safe. Py_DecodeLocale() must not be called before
the Python preinitialization.
Example using the preinitialization to enable the Python UTF-8 Mode:

214 Chapter 10. Python Initialization Configuration

The Python/C API, Release 3.11.4

PyStatus status;
PyPreConfig preconfig;
PyPreConfig_InitPythonConfig(&preconfig);

preconfig.utf8_mode = 1;

status = Py_PreInitialize(&preconfig);
if (PyStatus_Exception(status)) {

Py_ExitStatusException(status);
}

/* at this point, Python speaks UTF-8 */

Py_Initialize();
/* ... use Python API here ... */
Py_Finalize();

10.6 PyConfig

type PyConfig
Structure containing most parameters to configure Python.
When done, the PyConfig_Clear() function must be used to release the configuration memory.
Structure methods:
void PyConfig_InitPythonConfig(PyConfig *config)

Initialize configuration with the Python Configuration.
void PyConfig_InitIsolatedConfig(PyConfig *config)

Initialize configuration with the Isolated Configuration.
PyStatus PyConfig_SetString(PyConfig *config, wchar_t *const *config_str, const wchar_t *str)

Copy the wide character string str into *config_str.
Preinitialize Python if needed.

PyStatus PyConfig_SetBytesString(PyConfig *config, wchar_t *const *config_str, const char *str)
Decode str using Py_DecodeLocale() and set the result into *config_str.
Preinitialize Python if needed.

PyStatus PyConfig_SetArgv(PyConfig *config, int argc, wchar_t *const *argv)
Set command line arguments (argv member of config) from the argv list of wide character strings.
Preinitialize Python if needed.

PyStatus PyConfig_SetBytesArgv(PyConfig *config, int argc, char *const *argv)
Set command line arguments (argv member of config) from the argv list of bytes strings. Decode bytes
using Py_DecodeLocale().
Preinitialize Python if needed.

PyStatus PyConfig_SetWideStringList(PyConfig *config, PyWideStringList *list, Py_ssize_t length,
wchar_t **items)

Set the list of wide strings list to length and items.
Preinitialize Python if needed.

10.6. PyConfig 215

The Python/C API, Release 3.11.4

PyStatus PyConfig_Read(PyConfig *config)
Read all Python configuration.
Fields which are already initialized are left unchanged.
Fields for path configuration are no longer calculated or modified when calling this function, as of Python
3.11.
The PyConfig_Read() function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are strippped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.
Preinitialize Python if needed.
Changed in version 3.10: The PyConfig.argv arguments are now only parsed once, PyConfig.
parse_argv is set to 2 after arguments are parsed, and arguments are only parsed if PyConfig.
parse_argv equals 1.
Changed in version 3.11: PyConfig_Read() no longer calculates all paths, and so fields listed under
Python Path Configuration may no longer be updated until Py_InitializeFromConfig() is called.

void PyConfig_Clear(PyConfig *config)
Release configuration memory.

Most PyConfig methods preinitialize Python if needed. In that case, the Python preinitialization configuration
(PyPreConfig) in based on the PyConfig. If configuration fields which are in common with PyPreConfig
are tuned, they must be set before calling a PyConfig method:

• PyConfig.dev_mode

• PyConfig.isolated

• PyConfig.parse_argv

• PyConfig.use_environment

Moreover, if PyConfig_SetArgv() or PyConfig_SetBytesArgv() is used, this method must be
called before other methods, since the preinitialization configuration depends on command line arguments (if
parse_argv is non-zero).
The caller of these methods is responsible to handle exceptions (error or exit) using PyStatus_Exception()
and Py_ExitStatusException().
Structure fields:
PyWideStringList argv

Command line arguments: sys.argv.
Set parse_argv to 1 to parse argv the same way the regular Python parses Python command line argu-
ments and then to strip Python arguments from argv.
If argv is empty, an empty string is added to ensure that sys.argv always exists and is never empty.
Default: NULL.
See also the orig_argv member.

int safe_path
If equals to zero, Py_RunMain() prepends a potentially unsafe path to sys.path at startup:
• If argv[0] is equal to L"-m" (python -m module), prepend the current working directory.
• If running a script (python script.py), prepend the script’s directory. If it’s a symbolic link,
resolve symbolic links.

216 Chapter 10. Python Initialization Configuration

The Python/C API, Release 3.11.4

• Otherwise (python -c code and python), prepend an empty string, which means the current
working directory.

Set to 1 by the -P command line option and the PYTHONSAFEPATH environment variable.
Default: 0 in Python config, 1 in isolated config.
New in version 3.11.

wchar_t *base_exec_prefix
sys.base_exec_prefix.
Default: NULL.
Part of the Python Path Configuration output.

wchar_t *base_executable
Python base executable: sys._base_executable.
Set by the __PYVENV_LAUNCHER__ environment variable.
Set from PyConfig.executable if NULL.
Default: NULL.
Part of the Python Path Configuration output.

wchar_t *base_prefix
sys.base_prefix.
Default: NULL.
Part of the Python Path Configuration output.

int buffered_stdio
If equals to 0 and configure_c_stdio is non-zero, disable buffering on the C streams stdout and stderr.
Set to 0 by the -u command line option and the PYTHONUNBUFFERED environment variable.
stdin is always opened in buffered mode.
Default: 1.

int bytes_warning
If equals to 1, issue a warning when comparing bytes or bytearray with str, or comparing bytes
with int.
If equal or greater to 2, raise a BytesWarning exception in these cases.
Incremented by the -b command line option.
Default: 0.

int warn_default_encoding
If non-zero, emit a EncodingWarning warning when io.TextIOWrapper uses its default encoding.
See io-encoding-warning for details.
Default: 0.
New in version 3.10.

10.6. PyConfig 217

The Python/C API, Release 3.11.4

int code_debug_ranges
If equals to 0, disables the inclusion of the end line and column mappings in code objects. Also disables
traceback printing carets to specific error locations.
Set to 0 by the PYTHONNODEBUGRANGES environment variable and by the -X no_debug_ranges
command line option.
Default: 1.
New in version 3.11.

wchar_t *check_hash_pycs_mode
Control the validation behavior of hash-based .pyc files: value of the --check-hash-based-pycs
command line option.
Valid values:
• L"always": Hash the source file for invalidation regardless of value of the ‘check_source’ flag.
• L"never": Assume that hash-based pycs always are valid.
• L"default": The ‘check_source’ flag in hash-based pycs determines invalidation.

Default: L"default".
See also PEP 552 “Deterministic pycs”.

int configure_c_stdio
If non-zero, configure C standard streams:
• On Windows, set the binary mode (O_BINARY) on stdin, stdout and stderr.
• If buffered_stdio equals zero, disable buffering of stdin, stdout and stderr streams.
• If interactive is non-zero, enable stream buffering on stdin and stdout (only stdout on Windows).

Default: 1 in Python config, 0 in isolated config.
int dev_mode

If non-zero, enable the Python Development Mode.
Set to 1 by the -X dev option and the PYTHONDEVMODE environment variable.
Default: -1 in Python mode, 0 in isolated mode.

int dump_refs
Dump Python references?
If non-zero, dump all objects which are still alive at exit.
Set to 1 by the PYTHONDUMPREFS environment variable.
Need a special build of Python with the Py_TRACE_REFS macro defined: see the configure
--with-trace-refs option.
Default: 0.

wchar_t *exec_prefix
The site-specific directory prefix where the platform-dependent Python files are installed: sys.
exec_prefix.
Default: NULL.
Part of the Python Path Configuration output.

218 Chapter 10. Python Initialization Configuration

https://peps.python.org/pep-0552/

The Python/C API, Release 3.11.4

wchar_t *executable
The absolute path of the executable binary for the Python interpreter: sys.executable.
Default: NULL.
Part of the Python Path Configuration output.

int faulthandler
Enable faulthandler?
If non-zero, call faulthandler.enable() at startup.
Set to 1 by -X faulthandler and the PYTHONFAULTHANDLER environment variable.
Default: -1 in Python mode, 0 in isolated mode.

wchar_t *filesystem_encoding
Filesystem encoding: sys.getfilesystemencoding().
On macOS, Android and VxWorks: use "utf-8" by default.
On Windows: use "utf-8" by default, or "mbcs" if legacy_windows_fs_encoding of
PyPreConfig is non-zero.
Default encoding on other platforms:
• "utf-8" if PyPreConfig.utf8_mode is non-zero.
• "ascii" if Python detects thatnl_langinfo(CODESET) announces theASCII encoding, whereas
the mbstowcs() function decodes from a different encoding (usually Latin1).

• "utf-8" if nl_langinfo(CODESET) returns an empty string.
• Otherwise, use the locale encoding: nl_langinfo(CODESET) result.

At Python startup, the encoding name is normalized to the Python codec name. For example, "ANSI_X3.
4-1968" is replaced with "ascii".
See also the filesystem_errors member.

wchar_t *filesystem_errors
Filesystem error handler: sys.getfilesystemencodeerrors().
On Windows: use "surrogatepass" by default, or "replace" if
legacy_windows_fs_encoding of PyPreConfig is non-zero.
On other platforms: use "surrogateescape" by default.
Supported error handlers:
• "strict"

• "surrogateescape"

• "surrogatepass" (only supported with the UTF-8 encoding)
See also the filesystem_encoding member.

unsigned long hash_seed

int use_hash_seed
Randomized hash function seed.
If use_hash_seed is zero, a seed is chosen randomly at Python startup, and hash_seed is ignored.
Set by the PYTHONHASHSEED environment variable.

10.6. PyConfig 219

The Python/C API, Release 3.11.4

Default use_hash_seed value: -1 in Python mode, 0 in isolated mode.
wchar_t *home

Python home directory.
If Py_SetPythonHome() has been called, use its argument if it is not NULL.
Set by the PYTHONHOME environment variable.
Default: NULL.
Part of the Python Path Configuration input.

int import_time
If non-zero, profile import time.
Set the 1 by the -X importtime option and the PYTHONPROFILEIMPORTTIME environment variable.
Default: 0.

int inspect
Enter interactive mode after executing a script or a command.
If greater than 0, enable inspect: when a script is passed as first argument or the -c option is used, enter
interactive mode after executing the script or the command, even when sys.stdin does not appear to be
a terminal.
Incremented by the -i command line option. Set to 1 if the PYTHONINSPECT environment variable is
non-empty.
Default: 0.

int install_signal_handlers
Install Python signal handlers?
Default: 1 in Python mode, 0 in isolated mode.

int interactive
If greater than 0, enable the interactive mode (REPL).
Incremented by the -i command line option.
Default: 0.

int isolated
If greater than 0, enable isolated mode:
• Set safe_path to 1: don’t prepend a potentially unsafe path to sys.path at Python startup.
• Set use_environment to 0.
• Set user_site_directory to 0: don’t add the user site directory to sys.path.
• Python REPL doesn’t import readline nor enable default readline configuration on interactive
prompts.

Set to 1 by the -I command line option.
Default: 0 in Python mode, 1 in isolated mode.
See also PyPreConfig.isolated.

220 Chapter 10. Python Initialization Configuration

The Python/C API, Release 3.11.4

int legacy_windows_stdio
If non-zero, use io.FileIO instead of io._WindowsConsoleIO for sys.stdin, sys.stdout
and sys.stderr.
Set to 1 if the PYTHONLEGACYWINDOWSSTDIO environment variable is set to a non-empty string.
Only available on Windows. #ifdef MS_WINDOWS macro can be used for Windows specific code.
Default: 0.
See also the PEP 528 (Change Windows console encoding to UTF-8).

int malloc_stats
If non-zero, dump statistics on Python pymalloc memory allocator at exit.
Set to 1 by the PYTHONMALLOCSTATS environment variable.
The option is ignored if Python is configured using the --without-pymalloc option.
Default: 0.

wchar_t *platlibdir
Platform library directory name: sys.platlibdir.
Set by the PYTHONPLATLIBDIR environment variable.
Default: value of the PLATLIBDIR macro which is set by the configure --with-platlibdir
option (default: "lib", or "DLLs" on Windows).
Part of the Python Path Configuration input.
New in version 3.9.
Changed in version 3.11: This macro is now used on Windows to locate the standard library extension mod-
ules, typically under DLLs. However, for compatibility, note that this value is ignored for any non-standard
layouts, including in-tree builds and virtual environments.

wchar_t *pythonpath_env
Module search paths (sys.path) as a string separated by DELIM (os.pathsep).
Set by the PYTHONPATH environment variable.
Default: NULL.
Part of the Python Path Configuration input.

PyWideStringList module_search_paths

int module_search_paths_set
Module search paths: sys.path.
If module_search_paths_set is equal to 0, Py_InitializeFromConfig() will replace
module_search_paths and sets module_search_paths_set to 1.
Default: empty list (module_search_paths) and 0 (module_search_paths_set).
Part of the Python Path Configuration output.

int optimization_level
Compilation optimization level:
• 0: Peephole optimizer, set __debug__ to True.
• 1: Level 0, remove assertions, set __debug__ to False.
• 2: Level 1, strip docstrings.

10.6. PyConfig 221

https://peps.python.org/pep-0528/

The Python/C API, Release 3.11.4

Incremented by the -O command line option. Set to the PYTHONOPTIMIZE environment variable value.
Default: 0.

PyWideStringList orig_argv
The list of the original command line arguments passed to the Python executable: sys.orig_argv.
If orig_argv list is empty and argv is not a list only containing an empty string, PyConfig_Read()
copies argv into orig_argv before modifying argv (if parse_argv is non-zero).
See also the argv member and the Py_GetArgcArgv() function.
Default: empty list.
New in version 3.10.

int parse_argv
Parse command line arguments?
If equals to 1, parse argv the same way the regular Python parses command line arguments, and strip Python
arguments from argv.
The PyConfig_Read() function only parses PyConfig.argv arguments once: PyConfig.
parse_argv is set to 2 after arguments are parsed. Since Python arguments are strippped from
PyConfig.argv, parsing arguments twice would parse the application options as Python options.
Default: 1 in Python mode, 0 in isolated mode.
Changed in version 3.10: The PyConfig.argv arguments are now only parsed if PyConfig.
parse_argv equals to 1.

int parser_debug
Parser debug mode. If greater than 0, turn on parser debugging output (for expert only, depending on com-
pilation options).
Incremented by the -d command line option. Set to the PYTHONDEBUG environment variable value.
Default: 0.

int pathconfig_warnings
If non-zero, calculation of path configuration is allowed to log warnings into stderr. If equals to 0, suppress
these warnings.
Default: 1 in Python mode, 0 in isolated mode.
Part of the Python Path Configuration input.
Changed in version 3.11: Now also applies on Windows.

wchar_t *prefix
The site-specific directory prefix where the platform independent Python files are installed: sys.prefix.
Default: NULL.
Part of the Python Path Configuration output.

wchar_t *program_name
Program name used to initialize executable and in early error messages during Python initialization.
• If Py_SetProgramName() has been called, use its argument.
• On macOS, use PYTHONEXECUTABLE environment variable if set.
• If the WITH_NEXT_FRAMEWORK macro is defined, use __PYVENV_LAUNCHER__ environment
variable if set.

222 Chapter 10. Python Initialization Configuration

The Python/C API, Release 3.11.4

• Use argv[0] of argv if available and non-empty.
• Otherwise, use L"python" on Windows, or L"python3" on other platforms.

Default: NULL.
Part of the Python Path Configuration input.

wchar_t *pycache_prefix
Directory where cached .pyc files are written: sys.pycache_prefix.
Set by the -X pycache_prefix=PATH command line option and the PYTHONPYCACHEPREFIX en-
vironment variable.
If NULL, sys.pycache_prefix is set to None.
Default: NULL.

int quiet
Quiet mode. If greater than 0, don’t display the copyright and version at Python startup in interactive mode.
Incremented by the -q command line option.
Default: 0.

wchar_t *run_command
Value of the -c command line option.
Used by Py_RunMain().
Default: NULL.

wchar_t *run_filename
Filename passed on the command line: trailing command line argument without -c or -m. It is used by the
Py_RunMain() function.
For example, it is set to script.py by the python3 script.py arg command line.
See also the PyConfig.skip_source_first_line option.
Default: NULL.

wchar_t *run_module
Value of the -m command line option.
Used by Py_RunMain().
Default: NULL.

int show_ref_count
Show total reference count at exit?
Set to 1 by -X showrefcount command line option.
Need a debug build of Python (the Py_REF_DEBUG macro must be defined).
Default: 0.

int site_import
Import the site module at startup?
If equal to zero, disable the import of the module site and the site-dependent manipulations of sys.path
that it entails.
Also disable these manipulations if the sitemodule is explicitly imported later (call site.main() if you
want them to be triggered).

10.6. PyConfig 223

The Python/C API, Release 3.11.4

Set to 0 by the -S command line option.
sys.flags.no_site is set to the inverted value of site_import.
Default: 1.

int skip_source_first_line
If non-zero, skip the first line of the PyConfig.run_filename source.
It allows the usage of non-Unix forms of #!cmd. This is intended for a DOS specific hack only.
Set to 1 by the -x command line option.
Default: 0.

wchar_t *stdio_encoding

wchar_t *stdio_errors
Encoding and encoding errors of sys.stdin, sys.stdout and sys.stderr (but sys.stderr
always uses "backslashreplace" error handler).
If Py_SetStandardStreamEncoding() has been called, use its error and errors arguments if they
are not NULL.
Use the PYTHONIOENCODING environment variable if it is non-empty.
Default encoding:
• "UTF-8" if PyPreConfig.utf8_mode is non-zero.
• Otherwise, use the locale encoding.

Default error handler:
• On Windows: use "surrogateescape".
• "surrogateescape" if PyPreConfig.utf8_mode is non-zero, or if the LC_CTYPE locale
is “C” or “POSIX”.

• "strict" otherwise.
int tracemalloc

Enable tracemalloc?
If non-zero, call tracemalloc.start() at startup.
Set by -X tracemalloc=N command line option and by the PYTHONTRACEMALLOC environment vari-
able.
Default: -1 in Python mode, 0 in isolated mode.

int use_environment
Use environment variables?
If equals to zero, ignore the environment variables.
Set to 0 by the -E environment variable.
Default: 1 in Python config and 0 in isolated config.

int user_site_directory
If non-zero, add the user site directory to sys.path.
Set to 0 by the -s and -I command line options.
Set to 0 by the PYTHONNOUSERSITE environment variable.

224 Chapter 10. Python Initialization Configuration

The Python/C API, Release 3.11.4

Default: 1 in Python mode, 0 in isolated mode.
int verbose

Verbose mode. If greater than 0, print a message each time a module is imported, showing the place (filename
or built-in module) from which it is loaded.
If greater or equal to 2, print a message for each file that is checked for when searching for a module. Also
provides information on module cleanup at exit.
Incremented by the -v command line option.
Set to the PYTHONVERBOSE environment variable value.
Default: 0.

PyWideStringList warnoptions

Options of the warnings module to build warnings filters, lowest to highest priority: sys.
warnoptions.
The warnings module adds sys.warnoptions in the reverse order: the last PyConfig.
warnoptions item becomes the first item of warnings.filters which is checked first (highest pri-
ority).
The -W command line options adds its value to warnoptions, it can be used multiple times.
The PYTHONWARNINGS environment variable can also be used to add warning options. Multiple options
can be specified, separated by commas (,).
Default: empty list.

int write_bytecode
If equal to 0, Python won’t try to write .pyc files on the import of source modules.
Set to 0 by the -B command line option and the PYTHONDONTWRITEBYTECODE environment variable.
sys.dont_write_bytecode is initialized to the inverted value of write_bytecode.
Default: 1.

PyWideStringList xoptions
Values of the -X command line options: sys._xoptions.
Default: empty list.

If parse_argv is non-zero, argv arguments are parsed the same way the regular Python parses command line argu-
ments, and Python arguments are stripped from argv.
The xoptions options are parsed to set other options: see the -X command line option.
Changed in version 3.9: The show_alloc_count field has been removed.

10.7 Initialization with PyConfig

Function to initialize Python:
PyStatus Py_InitializeFromConfig(const PyConfig *config)

Initialize Python from config configuration.
The caller is responsible to handle exceptions (error or exit) using PyStatus_Exception() and
Py_ExitStatusException().

10.7. Initialization with PyConfig 225

The Python/C API, Release 3.11.4

If PyImport_FrozenModules(), PyImport_AppendInittab() or PyImport_ExtendInittab()
are used, they must be set or called after Python preinitialization and before the Python initialization. If Python is
initialized multiple times, PyImport_AppendInittab() or PyImport_ExtendInittab() must be called
before each Python initialization.
The current configuration (PyConfig type) is stored in PyInterpreterState.config.
Example setting the program name:

void init_python(void)
{

PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);

/* Set the program name. Implicitly preinitialize Python. */
status = PyConfig_SetString(&config, &config.program_name,

L"/path/to/my_program");
if (PyStatus_Exception(status)) {

goto exception;
}

status = Py_InitializeFromConfig(&config);
if (PyStatus_Exception(status)) {

goto exception;
}
PyConfig_Clear(&config);
return;

exception:
PyConfig_Clear(&config);
Py_ExitStatusException(status);

}

More complete example modifying the default configuration, read the configuration, and then override some parameters.
Note that since 3.11, many parameters are not calculated until initialization, and so values cannot be read from the
configuration structure. Any values set before initialize is called will be left unchanged by initialization:

PyStatus init_python(const char *program_name)
{

PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);

/* Set the program name before reading the configuration
(decode byte string from the locale encoding).

Implicitly preinitialize Python. */
status = PyConfig_SetBytesString(&config, &config.program_name,

program_name);
if (PyStatus_Exception(status)) {

goto done;
}

/* Read all configuration at once */
status = PyConfig_Read(&config);

(continues on next page)

226 Chapter 10. Python Initialization Configuration

The Python/C API, Release 3.11.4

(continued from previous page)
if (PyStatus_Exception(status)) {

goto done;
}

/* Specify sys.path explicitly */
/* If you want to modify the default set of paths, finish

initialization first and then use PySys_GetObject("path") */
config.module_search_paths_set = 1;
status = PyWideStringList_Append(&config.module_search_paths,

L"/path/to/stdlib");
if (PyStatus_Exception(status)) {

goto done;
}
status = PyWideStringList_Append(&config.module_search_paths,

L"/path/to/more/modules");
if (PyStatus_Exception(status)) {

goto done;
}

/* Override executable computed by PyConfig_Read() */
status = PyConfig_SetString(&config, &config.executable,

L"/path/to/my_executable");
if (PyStatus_Exception(status)) {

goto done;
}

status = Py_InitializeFromConfig(&config);

done:
PyConfig_Clear(&config);
return status;

}

10.8 Isolated Configuration

PyPreConfig_InitIsolatedConfig() and PyConfig_InitIsolatedConfig() functions create a
configuration to isolate Python from the system. For example, to embed Python into an application.
This configuration ignores global configuration variables, environment variables, command line arguments (PyConfig.
argv is not parsed) and user site directory. The C standard streams (ex: stdout) and the LC_CTYPE locale are left
unchanged. Signal handlers are not installed.
Configuration files are still used with this configuration to determine paths that are unspecified. Ensure PyConfig.
home is specified to avoid computing the default path configuration.

10.8. Isolated Configuration 227

The Python/C API, Release 3.11.4

10.9 Python Configuration

PyPreConfig_InitPythonConfig() and PyConfig_InitPythonConfig() functions create a configu-
ration to build a customized Python which behaves as the regular Python.
Environments variables and command line arguments are used to configure Python, whereas global configuration variables
are ignored.
This function enables C locale coercion (PEP 538) and Python UTF-8 Mode (PEP 540) depending on the LC_CTYPE
locale, PYTHONUTF8 and PYTHONCOERCECLOCALE environment variables.

10.10 Python Path Configuration

PyConfig contains multiple fields for the path configuration:
• Path configuration inputs:

– PyConfig.home

– PyConfig.platlibdir

– PyConfig.pathconfig_warnings

– PyConfig.program_name

– PyConfig.pythonpath_env

– current working directory: to get absolute paths
– PATH environment variable to get the program full path (from PyConfig.program_name)
– __PYVENV_LAUNCHER__ environment variable
– (Windows only) Application paths in the registry under “SoftwarePythonPythonCoreX.YPythonPath” of
HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE (where X.Y is the Python version).

• Path configuration output fields:
– PyConfig.base_exec_prefix

– PyConfig.base_executable

– PyConfig.base_prefix

– PyConfig.exec_prefix

– PyConfig.executable

– PyConfig.module_search_paths_set, PyConfig.module_search_paths
– PyConfig.prefix

If at least one “output field” is not set, Python calculates the path configuration to fill unset fields.
If module_search_paths_set is equal to 0, module_search_paths is overridden and
module_search_paths_set is set to 1.
It is possible to completely ignore the function calculating the default path configuration by setting explicitly all path
configuration output fields listed above. A string is considered as set even if it is non-empty. module_search_paths
is considered as set if module_search_paths_set is set to 1. In this case, module_search_paths will be
used without modification.
Set pathconfig_warnings to 0 to suppress warnings when calculating the path configuration (Unix only, Windows
does not log any warning).

228 Chapter 10. Python Initialization Configuration

https://peps.python.org/pep-0538/
https://peps.python.org/pep-0540/

The Python/C API, Release 3.11.4

If base_prefix or base_exec_prefix fields are not set, they inherit their value from prefix and
exec_prefix respectively.
Py_RunMain() and Py_Main() modify sys.path:

• If run_filename is set and is a directory which contains a __main__.py script, prepend run_filename
to sys.path.

• If isolated is zero:
– If run_module is set, prepend the current directory to sys.path. Do nothing if the current directory
cannot be read.

– If run_filename is set, prepend the directory of the filename to sys.path.
– Otherwise, prepend an empty string to sys.path.

If site_import is non-zero, sys.path can be modified by the site module. If user_site_directory
is non-zero and the user’s site-package directory exists, the site module appends the user’s site-package directory to
sys.path.
The following configuration files are used by the path configuration:

• pyvenv.cfg

• ._pth file (ex: python._pth)
• pybuilddir.txt (Unix only)

If a ._pth file is present:
• Set isolated to 1.
• Set use_environment to 0.
• Set site_import to 0.
• Set safe_path to 1.

The __PYVENV_LAUNCHER__ environment variable is used to set PyConfig.base_executable

10.11 Py_RunMain()

int Py_RunMain(void)
Execute the command (PyConfig.run_command), the script (PyConfig.run_filename) or themodule
(PyConfig.run_module) specified on the command line or in the configuration.
By default and when if -i option is used, run the REPL.
Finally, finalizes Python and returns an exit status that can be passed to the exit() function.

See Python Configuration for an example of customized Python always running in isolated mode using Py_RunMain().

10.11. Py_RunMain() 229

The Python/C API, Release 3.11.4

10.12 Py_GetArgcArgv()

void Py_GetArgcArgv(int *argc, wchar_t ***argv)
Get the original command line arguments, before Python modified them.
See also PyConfig.orig_argv member.

10.13 Multi-Phase Initialization Private Provisional API

This section is a private provisional API introducing multi-phase initialization, the core feature of PEP 432:
• “Core” initialization phase, “bare minimum Python”:

– Builtin types;
– Builtin exceptions;
– Builtin and frozen modules;
– The sys module is only partially initialized (ex: sys.path doesn’t exist yet).

• “Main” initialization phase, Python is fully initialized:
– Install and configure importlib;
– Apply the Path Configuration;
– Install signal handlers;
– Finish sys module initialization (ex: create sys.stdout and sys.path);
– Enable optional features like faulthandler and tracemalloc;
– Import the site module;
– etc.

Private provisional API:
• PyConfig._init_main: if set to 0, Py_InitializeFromConfig() stops at the “Core” initialization
phase.

• PyConfig._isolated_interpreter: if non-zero, disallow threads, subprocesses and fork.
PyStatus _Py_InitializeMain(void)

Move to the “Main” initialization phase, finish the Python initialization.
No module is imported during the “Core” phase and the importlib module is not configured: the Path Configuration
is only applied during the “Main” phase. It may allow to customize Python in Python to override or tune the Path
Configuration, maybe install a custom sys.meta_path importer or an import hook, etc.
It may become possible to calculatin the Path Configuration in Python, after the Core phase and before the Main phase,
which is one of the PEP 432 motivation.
The “Core” phase is not properly defined: what should be and what should not be available at this phase is not specified
yet. The API is marked as private and provisional: the API can be modified or even be removed anytime until a proper
public API is designed.
Example running Python code between “Core” and “Main” initialization phases:

230 Chapter 10. Python Initialization Configuration

https://peps.python.org/pep-0432/
https://peps.python.org/pep-0432/

The Python/C API, Release 3.11.4

void init_python(void)
{

PyStatus status;

PyConfig config;
PyConfig_InitPythonConfig(&config);
config._init_main = 0;

/* ... customize 'config' configuration ... */

status = Py_InitializeFromConfig(&config);
PyConfig_Clear(&config);
if (PyStatus_Exception(status)) {

Py_ExitStatusException(status);
}

/* Use sys.stderr because sys.stdout is only created
by _Py_InitializeMain() */

int res = PyRun_SimpleString(
"import sys; "
"print('Run Python code before _Py_InitializeMain', "

"file=sys.stderr)");
if (res < 0) {

exit(1);
}

/* ... put more configuration code here ... */

status = _Py_InitializeMain();
if (PyStatus_Exception(status)) {

Py_ExitStatusException(status);
}

}

10.13. Multi-Phase Initialization Private Provisional API 231

The Python/C API, Release 3.11.4

232 Chapter 10. Python Initialization Configuration

CHAPTER

ELEVEN

MEMORY MANAGEMENT

11.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The manage-
ment of this private heap is ensured internally by the Python memory manager. The Python memory manager has different
components which deal with various dynamic storage management aspects, like sharing, segmentation, preallocation or
caching.
At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all Python-
related data by interacting with the memory manager of the operating system. On top of the rawmemory allocator, several
object-specific allocators operate on the same heap and implement distinct memory management policies adapted to the
peculiarities of every object type. For example, integer objects are managed differently within the heap than strings, tuples
or dictionaries because integers imply different storage requirements and speed/space tradeoffs. The Python memory
manager thus delegates some of the work to the object-specific allocators, but ensures that the latter operate within the
bounds of the private heap.
It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if they regularly manipulate object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document.
To avoid memory corruption, extension writers should never try to operate on Python objects with the functions exported
by the C library: malloc(), calloc(), realloc() and free(). This will result in mixed calls between the
C allocator and the Python memory manager with fatal consequences, because they implement different algorithms and
operate on different heaps. However, one may safely allocate and release memory blocks with the C library allocator for
individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

...Do some I/O operation involving buf...
res = PyBytes_FromString(buf);
free(buf); /* malloc'ed */
return res;

In this example, the memory request for the I/O buffer is handled by the C library allocator. The Python memory manager
is involved only in the allocation of the bytes object returned as a result.
In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with new
object types written in C. Another reason for using the Python heap is the desire to inform the Python memory manager
about the memory needs of the extension module. Even when the requested memory is used exclusively for internal,

233

The Python/C API, Release 3.11.4

highly specific purposes, delegating all memory requests to the Python memory manager causes the interpreter to have a
more accurate image of its memory footprint as a whole. Consequently, under certain circumstances, the Python memory
manager may or may not trigger appropriate actions, like garbage collection, memory compaction or other preventive
procedures. Note that by using the C library allocator as shown in the previous example, the allocated memory for the
I/O buffer escapes completely the Python memory manager.
See also:
The PYTHONMALLOC environment variable can be used to configure the memory allocators used by Python.
The PYTHONMALLOCSTATS environment variable can be used to print statistics of the pymalloc memory allocator every
time a new pymalloc object arena is created, and on shutdown.

11.2 Allocator Domains

All allocating functions belong to one of three different “domains” (see also PyMemAllocatorDomain). These do-
mains represent different allocation strategies and are optimized for different purposes. The specific details on how every
domain allocates memory or what internal functions each domain calls is considered an implementation detail, but for
debugging purposes a simplified table can be found at here. There is no hard requirement to use the memory returned
by the allocation functions belonging to a given domain for only the purposes hinted by that domain (although this is the
recommended practice). For example, one could use the memory returned by PyMem_RawMalloc() for allocating
Python objects or the memory returned by PyObject_Malloc() for allocating memory for buffers.
The three allocation domains are:

• Raw domain: intended for allocating memory for general-purpose memory buffers where the allocation must go to
the system allocator or where the allocator can operate without the GIL. The memory is requested directly to the
system.

• “Mem” domain: intended for allocating memory for Python buffers and general-purpose memory buffers where
the allocation must be performed with the GIL held. The memory is taken from the Python private heap.

• Object domain: intended for allocating memory belonging to Python objects. The memory is taken from the Python
private heap.

When freeing memory previously allocated by the allocating functions belonging to a given domain,the matching specific
deallocating functions must be used. For example, PyMem_Free() must be used to free memory allocated using
PyMem_Malloc().

11.3 Raw Memory Interface

The following function sets are wrappers to the system allocator. These functions are thread-safe, the GIL does not need
to be held.
The default raw memory allocator uses the following functions: malloc(), calloc(), realloc() and free();
call malloc(1) (or calloc(1, 1)) when requesting zero bytes.
New in version 3.4.
void *PyMem_RawMalloc(size_t n)

Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_RawMalloc(1) had been
called instead. The memory will not have been initialized in any way.

234 Chapter 11. Memory Management

The Python/C API, Release 3.11.4

void *PyMem_RawCalloc(size_t nelem, size_t elsize)
Allocates nelem elements each whose size in bytes is elsize and returns a pointer of type void* to the allocated
memory, or NULL if the request fails. The memory is initialized to zeros.
Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_RawCalloc(1, 1) had been called instead.
New in version 3.5.

void *PyMem_RawRealloc(void *p, size_t n)
Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to the minimum of the old
and the new sizes.
If p is NULL, the call is equivalent to PyMem_RawMalloc(n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyMem_RawMalloc(),
PyMem_RawRealloc() or PyMem_RawCalloc().
If the request fails, PyMem_RawRealloc() returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_RawFree(void *p)
Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_RawMalloc(), PyMem_RawRealloc() or PyMem_RawCalloc(). Otherwise, or if
PyMem_RawFree(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

11.4 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.
The default memory allocator uses the pymalloc memory allocator.

Warning: The GIL must be held when using these functions.

Changed in version 3.6: The default allocator is now pymalloc instead of system malloc().
void *PyMem_Malloc(size_t n)

Part of the Stable ABI. Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL
if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyMem_Malloc(1) had been called
instead. The memory will not have been initialized in any way.

void *PyMem_Calloc(size_t nelem, size_t elsize)
Part of the Stable ABI since version 3.7. Allocates nelem elements each whose size in bytes is elsize and returns a
pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to zeros.
Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyMem_Calloc(1, 1) had been called instead.
New in version 3.5.

11.4. Memory Interface 235

The Python/C API, Release 3.11.4

void *PyMem_Realloc(void *p, size_t n)
Part of the Stable ABI. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to
the minimum of the old and the new sizes.
If p is NULL, the call is equivalent to PyMem_Malloc(n); else if n is equal to zero, the memory block is resized
but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyMem_Malloc(), PyMem_Realloc()
or PyMem_Calloc().
If the request fails, PyMem_Realloc() returns NULL and p remains a valid pointer to the previous memory
area.

void PyMem_Free(void *p)
Part of the Stable ABI. Frees the memory block pointed to by p, which must have been returned by a previous call to
PyMem_Malloc(), PyMem_Realloc() or PyMem_Calloc(). Otherwise, or if PyMem_Free(p) has
been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Note that TYPE refers to any C type.
PyMem_New(TYPE, n)

Same as PyMem_Malloc(), but allocates (n * sizeof(TYPE)) bytes of memory. Returns a pointer cast
to TYPE*. The memory will not have been initialized in any way.

PyMem_Resize(p, TYPE, n)
Same as PyMem_Realloc(), but the memory block is resized to (n * sizeof(TYPE)) bytes. Returns a
pointer cast to TYPE*. On return, p will be a pointer to the new memory area, or NULL in the event of failure.
This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing memory when
handling errors.

void PyMem_Del(void *p)
Same as PyMem_Free().

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving the
C API functions listed above. However, note that their use does not preserve binary compatibility across Python versions
and is therefore deprecated in extension modules.

• PyMem_MALLOC(size)

• PyMem_NEW(type, size)

• PyMem_REALLOC(ptr, size)

• PyMem_RESIZE(ptr, type, size)

• PyMem_FREE(ptr)

• PyMem_DEL(ptr)

236 Chapter 11. Memory Management

The Python/C API, Release 3.11.4

11.5 Object allocators

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes, are
available for allocating and releasing memory from the Python heap.

Note: There is no guarantee that the memory returned by these allocators can be successfully cast to a Python object
when intercepting the allocating functions in this domain by the methods described in the Customize Memory Allocators
section.

The default object allocator uses the pymalloc memory allocator.

Warning: The GIL must be held when using these functions.

void *PyObject_Malloc(size_t n)
Part of the Stable ABI. Allocates n bytes and returns a pointer of type void* to the allocated memory, or NULL
if the request fails.
Requesting zero bytes returns a distinct non-NULL pointer if possible, as if PyObject_Malloc(1) had been
called instead. The memory will not have been initialized in any way.

void *PyObject_Calloc(size_t nelem, size_t elsize)
Part of the Stable ABI since version 3.7. Allocates nelem elements each whose size in bytes is elsize and returns a
pointer of type void* to the allocated memory, or NULL if the request fails. The memory is initialized to zeros.
Requesting zero elements or elements of size zero bytes returns a distinct non-NULL pointer if possible, as if
PyObject_Calloc(1, 1) had been called instead.
New in version 3.5.

void *PyObject_Realloc(void *p, size_t n)
Part of the Stable ABI. Resizes the memory block pointed to by p to n bytes. The contents will be unchanged to
the minimum of the old and the new sizes.
If p is NULL, the call is equivalent to PyObject_Malloc(n); else if n is equal to zero, the memory block is
resized but is not freed, and the returned pointer is non-NULL.
Unless p is NULL, it must have been returned by a previous call to PyObject_Malloc(),
PyObject_Realloc() or PyObject_Calloc().
If the request fails, PyObject_Realloc() returns NULL and p remains a valid pointer to the previous memory
area.

void PyObject_Free(void *p)
Part of the Stable ABI. Frees the memory block pointed to by p, which must have been returned by a previ-
ous call to PyObject_Malloc(), PyObject_Realloc() or PyObject_Calloc(). Otherwise, or if
PyObject_Free(p) has been called before, undefined behavior occurs.
If p is NULL, no operation is performed.

11.5. Object allocators 237

The Python/C API, Release 3.11.4

11.6 Default Memory Allocators

Default memory allocators:

Configuration Name PyMem_RawMallocPyMem_Malloc PyOb-
ject_Malloc

Release build "pymalloc" malloc pymalloc pymalloc
Debug build "pymalloc_debug"malloc + debug pymalloc + de-

bug
pymalloc + de-
bug

Release build, without py-
malloc

"malloc" malloc malloc malloc

Debug build, without py-
malloc

"malloc_debug" malloc + debug malloc + debug malloc + debug

Legend:
• Name: value for PYTHONMALLOC environment variable.
• malloc: system allocators from the standard C library, C functions: malloc(), calloc(), realloc()
and free().

• pymalloc: pymalloc memory allocator.
• “+ debug”: with debug hooks on the Python memory allocators.
• “Debug build”: Python build in debug mode.

11.7 Customize Memory Allocators

New in version 3.4.
type PyMemAllocatorEx

Structure used to describe a memory block allocator. The structure has the following fields:

Field Meaning
void *ctx user context passed as first argument
void* malloc(void *ctx, size_t size) allocate a memory block
void* calloc(void *ctx, size_t nelem, size_t
elsize)

allocate amemory block initialized with
zeros

void* realloc(void *ctx, void *ptr, size_t
new_size)

allocate or resize a memory block

void free(void *ctx, void *ptr) free a memory block

Changed in version 3.5: The PyMemAllocator structure was renamed to PyMemAllocatorEx and a new
calloc field was added.

type PyMemAllocatorDomain
Enum used to identify an allocator domain. Domains:
PYMEM_DOMAIN_RAW

Functions:
• PyMem_RawMalloc()

• PyMem_RawRealloc()

238 Chapter 11. Memory Management

The Python/C API, Release 3.11.4

• PyMem_RawCalloc()

• PyMem_RawFree()

PYMEM_DOMAIN_MEM

Functions:
• PyMem_Malloc(),
• PyMem_Realloc()

• PyMem_Calloc()

• PyMem_Free()

PYMEM_DOMAIN_OBJ

Functions:
• PyObject_Malloc()

• PyObject_Realloc()

• PyObject_Calloc()

• PyObject_Free()

void PyMem_GetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Get the memory block allocator of the specified domain.

void PyMem_SetAllocator(PyMemAllocatorDomain domain, PyMemAllocatorEx *allocator)
Set the memory block allocator of the specified domain.
The new allocator must return a distinct non-NULL pointer when requesting zero bytes.
For the PYMEM_DOMAIN_RAW domain, the allocator must be thread-safe: the GIL is not held when the allocator
is called.
If the new allocator is not a hook (does not call the previous allocator), the PyMem_SetupDebugHooks()
function must be called to reinstall the debug hooks on top on the new allocator.
See also PyPreConfig.allocator and Preinitialize Python with PyPreConfig.

Warning: PyMem_SetAllocator() does have the following contract:
• It can be called after Py_PreInitialize() and before Py_InitializeFromConfig() to
install a custom memory allocator. There are no restrictions over the installed allocator other than the
ones imposed by the domain (for instance, the Raw Domain allows the allocator to be called without the
GIL held). See the section on allocator domains for more information.

• If called after Python has finish initializing (after Py_InitializeFromConfig() has been called)
the allocatormust wrap the existing allocator. Substituting the current allocator for some other arbitrary
one is not supported.

void PyMem_SetupDebugHooks(void)
Setup debug hooks in the Python memory allocators to detect memory errors.

11.7. Customize Memory Allocators 239

The Python/C API, Release 3.11.4

11.8 Debug hooks on the Python memory allocators

When Python is built in debug mode, the PyMem_SetupDebugHooks() function is called at the Python preinitial-
ization to setup debug hooks on Python memory allocators to detect memory errors.
The PYTHONMALLOC environment variable can be used to install debug hooks on a Python compiled in release mode
(ex: PYTHONMALLOC=debug).
The PyMem_SetupDebugHooks() function can be used to set debug hooks after calling
PyMem_SetAllocator().
These debug hooks fill dynamically allocated memory blocks with special, recognizable bit patterns. Newly al-
located memory is filled with the byte 0xCD (PYMEM_CLEANBYTE), freed memory is filled with the byte
0xDD (PYMEM_DEADBYTE). Memory blocks are surrounded by “forbidden bytes” filled with the byte 0xFD
(PYMEM_FORBIDDENBYTE). Strings of these bytes are unlikely to be valid addresses, floats, or ASCII strings.
Runtime checks:

• Detect API violations. For example, detect if PyObject_Free() is called on a memory block allocated by
PyMem_Malloc().

• Detect write before the start of the buffer (buffer underflow).
• Detect write after the end of the buffer (buffer overflow).
• Check that the GIL is held when allocator functions of PYMEM_DOMAIN_OBJ (ex: PyObject_Malloc())
and PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) domains are called.

On error, the debug hooks use the tracemalloc module to get the traceback where a memory block was allocated.
The traceback is only displayed if tracemalloc is tracing Python memory allocations and the memory block was
traced.
Let S = sizeof(size_t). 2*S bytes are added at each end of each block of N bytes requested. The memory layout
is like so, where p represents the address returned by a malloc-like or realloc-like function (p[i:j] means the slice of
bytes from *(p+i) inclusive up to *(p+j) exclusive; note that the treatment of negative indices differs from a Python
slice):
p[-2*S:-S] Number of bytes originally asked for. This is a size_t, big-endian (easier to read in a memory dump).
p[-S] API identifier (ASCII character):

• 'r' for PYMEM_DOMAIN_RAW .
• 'm' for PYMEM_DOMAIN_MEM .
• 'o' for PYMEM_DOMAIN_OBJ .

p[-S+1:0] Copies of PYMEM_FORBIDDENBYTE. Used to catch under- writes and reads.
p[0:N] The requested memory, filled with copies of PYMEM_CLEANBYTE, used to catch reference to uninitial-

ized memory. When a realloc-like function is called requesting a larger memory block, the new excess bytes
are also filled with PYMEM_CLEANBYTE. When a free-like function is called, these are overwritten with
PYMEM_DEADBYTE, to catch reference to freed memory. When a realloc- like function is called requesting a
smaller memory block, the excess old bytes are also filled with PYMEM_DEADBYTE.

p[N:N+S] Copies of PYMEM_FORBIDDENBYTE. Used to catch over- writes and reads.
p[N+S:N+2*S] Only used if the PYMEM_DEBUG_SERIALNO macro is defined (not defined by default).

A serial number, incremented by 1 on each call to a malloc-like or realloc-like function. Big-endian size_t. If
“bad memory” is detected later, the serial number gives an excellent way to set a breakpoint on the next run, to
capture the instant at which this block was passed out. The static function bumpserialno() in obmalloc.c is the only
place the serial number is incremented, and exists so you can set such a breakpoint easily.

240 Chapter 11. Memory Management

The Python/C API, Release 3.11.4

A realloc-like or free-like function first checks that the PYMEM_FORBIDDENBYTE bytes at each end are intact. If
they’ve been altered, diagnostic output is written to stderr, and the program is aborted via Py_FatalError(). The other
main failure mode is provoking a memory error when a program reads up one of the special bit patterns and tries to use
it as an address. If you get in a debugger then and look at the object, you’re likely to see that it’s entirely filled with
PYMEM_DEADBYTE (meaning freed memory is getting used) or PYMEM_CLEANBYTE (meaning uninitialized
memory is getting used).
Changed in version 3.6: The PyMem_SetupDebugHooks() function now also works on Python compiled in release
mode. On error, the debug hooks now use tracemalloc to get the traceback where a memory block was allocated. The
debug hooks now also check if the GIL is held when functions of PYMEM_DOMAIN_OBJ and PYMEM_DOMAIN_MEM
domains are called.
Changed in version 3.8: Byte patterns 0xCB (PYMEM_CLEANBYTE), 0xDB (PYMEM_DEADBYTE) and 0xFB
(PYMEM_FORBIDDENBYTE) have been replaced with 0xCD, 0xDD and 0xFD to use the same values than Windows
CRT debug malloc() and free().

11.9 The pymalloc allocator

Python has a pymalloc allocator optimized for small objects (smaller or equal to 512 bytes) with a short lifetime. It
uses memory mappings called “arenas” with a fixed size of 256 KiB. It falls back to PyMem_RawMalloc() and
PyMem_RawRealloc() for allocations larger than 512 bytes.
pymalloc is the default allocator of the PYMEM_DOMAIN_MEM (ex: PyMem_Malloc()) and PYMEM_DOMAIN_OBJ
(ex: PyObject_Malloc()) domains.
The arena allocator uses the following functions:

• VirtualAlloc() and VirtualFree() on Windows,
• mmap() and munmap() if available,
• malloc() and free() otherwise.

This allocator is disabled if Python is configured with the --without-pymalloc option. It can also be disabled at
runtime using the PYTHONMALLOC environment variable (ex: PYTHONMALLOC=malloc).

11.9.1 Customize pymalloc Arena Allocator

New in version 3.4.
type PyObjectArenaAllocator

Structure used to describe an arena allocator. The structure has three fields:

Field Meaning
void *ctx user context passed as first argument
void* alloc(void *ctx, size_t size) allocate an arena of size bytes
void free(void *ctx, void *ptr, size_t size) free an arena

void PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator)
Get the arena allocator.

void PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator)
Set the arena allocator.

11.9. The pymalloc allocator 241

The Python/C API, Release 3.11.4

11.10 tracemalloc C API

New in version 3.7.
int PyTraceMalloc_Track(unsigned int domain, uintptr_t ptr, size_t size)

Track an allocated memory block in the tracemalloc module.
Return 0 on success, return -1 on error (failed to allocate memory to store the trace). Return -2 if tracemalloc is
disabled.
If memory block is already tracked, update the existing trace.

int PyTraceMalloc_Untrack(unsigned int domain, uintptr_t ptr)
Untrack an allocated memory block in the tracemalloc module. Do nothing if the block was not tracked.
Return -2 if tracemalloc is disabled, otherwise return 0.

11.11 Examples

Here is the example from section Overview, rewritten so that the I/O buffer is allocated from the Python heap by using
the first function set:

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for I/O */

if (buf == NULL)
return PyErr_NoMemory();

/* ...Do some I/O operation involving buf... */
res = PyBytes_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed, it
is required to use the same memory API family for a given memory block, so that the risk of mixing different allocators
is reduced to a minimum. The following code sequence contains two errors, one of which is labeled as fatal because it
mixes two different allocators operating on different heaps.

char *buf1 = PyMem_New(char, BUFSIZ);
char *buf2 = (char *) malloc(BUFSIZ);
char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
...
PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); /* Right -- allocated via malloc() */
free(buf1); /* Fatal -- should be PyMem_Del() */

242 Chapter 11. Memory Management

The Python/C API, Release 3.11.4

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are allocated
and released with PyObject_New, PyObject_NewVar and PyObject_Del().
These will be explained in the next chapter on defining and implementing new object types in C.

11.11. Examples 243

The Python/C API, Release 3.11.4

244 Chapter 11. Memory Management

CHAPTER

TWELVE

OBJECT IMPLEMENTATION SUPPORT

This chapter describes the functions, types, and macros used when defining new object types.

12.1 Allocating Objects on the Heap

PyObject *_PyObject_New(PyTypeObject *type)
Return value: New reference.

PyVarObject *_PyObject_NewVar(PyTypeObject *type, Py_ssize_t size)
Return value: New reference.

PyObject *PyObject_Init(PyObject *op, PyTypeObject *type)
Return value: Borrowed reference. Part of the Stable ABI. Initialize a newly allocated object op with its type and
initial reference. Returns the initialized object. If type indicates that the object participates in the cyclic garbage
detector, it is added to the detector’s set of observed objects. Other fields of the object are not affected.

PyVarObject *PyObject_InitVar(PyVarObject *op, PyTypeObject *type, Py_ssize_t size)
Return value: Borrowed reference. Part of the Stable ABI. This does everything PyObject_Init() does, and
also initializes the length information for a variable-size object.

PyObject_New(TYPE, typeobj)
Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject*). Fields not defined by the Python object header are not initialized. The caller will own the
only reference to the object (i.e. its reference count will be one). The size of the memory allocation is determined
from the tp_basicsize field of the type object.

PyObject_NewVar(TYPE, typeobj, size)
Allocate a new Python object using the C structure type TYPE and the Python type object typeobj
(PyTypeObject*). Fields not defined by the Python object header are not initialized. The allocated mem-
ory allows for the TYPE structure plus size (Py_ssize_t) fields of the size given by the tp_itemsize field of
typeobj. This is useful for implementing objects like tuples, which are able to determine their size at construction
time. Embedding the array of fields into the same allocation decreases the number of allocations, improving the
memory management efficiency.

void PyObject_Del(void *op)
Releases memory allocated to an object using PyObject_New or PyObject_NewVar. This is normally called
from the tp_dealloc handler specified in the object’s type. The fields of the object should not be accessed after
this call as the memory is no longer a valid Python object.

PyObject _Py_NoneStruct

Object which is visible in Python as None. This should only be accessed using the Py_None macro, which
evaluates to a pointer to this object.

245

The Python/C API, Release 3.11.4

See also:
PyModule_Create() To allocate and create extension modules.

12.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section describes
these structures and how they are used.

12.2.1 Base object types and macros

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by the PyObject and PyVarObject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.
type PyObject

Part of the Limited API. (Only some members are part of the stable ABI.) All object types are extensions of this
type. This is a type which contains the information Python needs to treat a pointer to an object as an object. In a
normal “release” build, it contains only the object’s reference count and a pointer to the corresponding type object.
Nothing is actually declared to be a PyObject, but every pointer to a Python object can be cast to a PyObject*.
Access to the members must be done by using the macros Py_REFCNT and Py_TYPE.

type PyVarObject
Part of the Limited API. (Only some members are part of the stable ABI.) This is an extension of PyObject that
adds the ob_size field. This is only used for objects that have some notion of length. This type does not often
appear in the Python/C API. Access to the members must be done by using the macros Py_REFCNT, Py_TYPE,
and Py_SIZE.

PyObject_HEAD

This is a macro used when declaring new types which represent objects without a varying length. The PyOb-
ject_HEAD macro expands to:

PyObject ob_base;

See documentation of PyObject above.
PyObject_VAR_HEAD

This is a macro used when declaring new types which represent objects with a length that varies from instance to
instance. The PyObject_VAR_HEAD macro expands to:

PyVarObject ob_base;

See documentation of PyVarObject above.
int Py_Is(PyObject *x, PyObject *y)

Part of the Stable ABI since version 3.10. Test if the x object is the y object, the same as x is y in Python.
New in version 3.10.

int Py_IsNone(PyObject *x)
Part of the Stable ABI since version 3.10. Test if an object is the None singleton, the same as x is None in
Python.
New in version 3.10.

246 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

int Py_IsTrue(PyObject *x)
Part of the Stable ABI since version 3.10. Test if an object is the True singleton, the same as x is True in
Python.
New in version 3.10.

int Py_IsFalse(PyObject *x)
Part of the Stable ABI since version 3.10. Test if an object is the False singleton, the same as x is False in
Python.
New in version 3.10.

PyTypeObject *Py_TYPE(PyObject *o)
Get the type of the Python object o.
Return a borrowed reference.
Use the Py_SET_TYPE() function to set an object type.
Changed in version 3.11: Py_TYPE() is changed to an inline static function. The parameter type is no longer
const PyObject*.

int Py_IS_TYPE(PyObject *o, PyTypeObject *type)
Return non-zero if the object o type is type. Return zero otherwise. Equivalent to: Py_TYPE(o) == type.
New in version 3.9.

void Py_SET_TYPE(PyObject *o, PyTypeObject *type)
Set the object o type to type.
New in version 3.9.

Py_ssize_t Py_REFCNT(PyObject *o)
Get the reference count of the Python object o.
Use the Py_SET_REFCNT() function to set an object reference count.
Changed in version 3.11: The parameter type is no longer const PyObject*.
Changed in version 3.10: Py_REFCNT() is changed to the inline static function.

void Py_SET_REFCNT(PyObject *o, Py_ssize_t refcnt)
Set the object o reference counter to refcnt.
New in version 3.9.

Py_ssize_t Py_SIZE(PyVarObject *o)
Get the size of the Python object o.
Use the Py_SET_SIZE() function to set an object size.
Changed in version 3.11: Py_SIZE() is changed to an inline static function. The parameter type is no longer
const PyVarObject*.

void Py_SET_SIZE(PyVarObject *o, Py_ssize_t size)
Set the object o size to size.
New in version 3.9.

PyObject_HEAD_INIT(type)
This is a macro which expands to initialization values for a new PyObject type. This macro expands to:

12.2. Common Object Structures 247

The Python/C API, Release 3.11.4

_PyObject_EXTRA_INIT
1, type,

PyVarObject_HEAD_INIT(type, size)
This is a macro which expands to initialization values for a new PyVarObject type, including the ob_size
field. This macro expands to:

_PyObject_EXTRA_INIT
1, type, size,

12.2.2 Implementing functions and methods

type PyCFunction
Part of the Stable ABI. Type of the functions used to implement most Python callables in C. Functions of this type
take two PyObject* parameters and return one such value. If the return value is NULL, an exception shall have
been set. If not NULL, the return value is interpreted as the return value of the function as exposed in Python. The
function must return a new reference.
The function signature is:

PyObject *PyCFunction(PyObject *self,
PyObject *args);

type PyCFunctionWithKeywords
Part of the Stable ABI. Type of the functions used to implement Python callables in C with signature
METH_VARARGS | METH_KEYWORDS. The function signature is:

PyObject *PyCFunctionWithKeywords(PyObject *self,
PyObject *args,
PyObject *kwargs);

type _PyCFunctionFast
Type of the functions used to implement Python callables in C with signature METH_FASTCALL. The function
signature is:

PyObject *_PyCFunctionFast(PyObject *self,
PyObject *const *args,
Py_ssize_t nargs);

type _PyCFunctionFastWithKeywords
Type of the functions used to implement Python callables in C with signature METH_FASTCALL |
METH_KEYWORDS. The function signature is:

PyObject *_PyCFunctionFastWithKeywords(PyObject *self,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames);

type PyCMethod
Type of the functions used to implement Python callables in C with signature METH_METHOD |
METH_FASTCALL | METH_KEYWORDS. The function signature is:

248 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

PyObject *PyCMethod(PyObject *self,
PyTypeObject *defining_class,
PyObject *const *args,
Py_ssize_t nargs,
PyObject *kwnames)

New in version 3.9.
type PyMethodDef

Part of the Stable ABI (including all members). Structure used to describe a method of an extension type. This
structure has four fields:
const char *ml_name

Name of the method.
PyCFunction ml_meth

Pointer to the C implementation.
int ml_flags

Flags bits indicating how the call should be constructed.
const char *ml_doc

Points to the contents of the docstring.
The ml_meth is a C function pointer. The functions may be of different types, but they always return PyObject*.
If the function is not of the PyCFunction, the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter as PyObject*, it is common that the method implementation uses the
specific C type of the self object.
The ml_flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention.
There are these calling conventions:
METH_VARARGS

This is the typical calling convention, where the methods have the type PyCFunction. The function expects two
PyObject* values. The first one is the self object for methods; for module functions, it is the module object.
The second parameter (often called args) is a tuple object representing all arguments. This parameter is typically
processed using PyArg_ParseTuple() or PyArg_UnpackTuple().

METH_KEYWORDS

Can only be used in certain combinations with other flags: METH_VARARGS | METH_KEYWORDS,
METH_FASTCALL | METH_KEYWORDS and METH_METHOD | METH_FASTCALL | METH_KEYWORDS.

METH_VARARGS | METH_KEYWORDS Methods with these flags must be of type
PyCFunctionWithKeywords. The function expects three parameters: self, args, kwargs where kwargs is a
dictionary of all the keyword arguments or possibly NULL if there are no keyword arguments. The parameters are
typically processed using PyArg_ParseTupleAndKeywords().

METH_FASTCALL

Fast calling convention supporting only positional arguments. The methods have the type _PyCFunctionFast.
The first parameter is self, the second parameter is a C array of PyObject* values indicating the arguments and
the third parameter is the number of arguments (the length of the array).
New in version 3.7.
Changed in version 3.10: METH_FASTCALL is now part of the stable ABI.

12.2. Common Object Structures 249

The Python/C API, Release 3.11.4

METH_FASTCALL | METH_KEYWORDS Extension of METH_FASTCALL supporting also keyword arguments, with
methods of type _PyCFunctionFastWithKeywords. Keyword arguments are passed the same way as in the
vectorcall protocol: there is an additional fourth PyObject* parameter which is a tuple representing the names
of the keyword arguments (which are guaranteed to be strings) or possibly NULL if there are no keywords. The
values of the keyword arguments are stored in the args array, after the positional arguments.
New in version 3.7.

METH_METHOD

Can only be used in the combination with other flags: METH_METHOD | METH_FASTCALL |
METH_KEYWORDS.

METH_METHOD | METH_FASTCALL | METH_KEYWORDS Extension of METH_FASTCALL |
METH_KEYWORDS supporting the defining class, that is, the class that contains the method in question.
The defining class might be a superclass of Py_TYPE(self).
The method needs to be of type PyCMethod, the same as for METH_FASTCALL | METH_KEYWORDS with
defining_class argument added after self.
New in version 3.9.

METH_NOARGS

Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGS flag. They need to be of type PyCFunction. The first parameter is typically named self
and will hold a reference to the module or object instance. In all cases the second parameter will be NULL.
The function must have 2 parameters. Since the second parameter is unused, Py_UNUSED can be used to prevent
a compiler warning.

METH_O

Methods with a single object argument can be listed with the METH_O flag, instead of invoking
PyArg_ParseTuple() with a "O" argument. They have the type PyCFunction, with the self parame-
ter, and a PyObject* parameter representing the single argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.
METH_CLASS

The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to create class methods, similar to what is created when using the classmethod() built-in function.

METH_STATIC

The method will be passed NULL as the first parameter rather than an instance of the type. This is used to create
static methods, similar to what is created when using the staticmethod() built-in function.

One other constant controls whether a method is loaded in place of another definition with the same method name.
METH_COEXIST

The method will be loaded in place of existing definitions. Without METH_COEXIST, the default is to skip re-
peated definitions. Since slot wrappers are loaded before the method table, the existence of a sq_contains slot,
for example, would generate a wrapped method named __contains__() and preclude the loading of a corre-
sponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded in place of the
wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions are optimized more
than wrapper object calls.

250 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

12.2.3 Accessing attributes of extension types

type PyMemberDef
Part of the Stable ABI (including all members). Structure which describes an attribute of a type which corresponds
to a C struct member. Its fields are:

Field C Type Meaning
name const char * name of the member
type int the type of the member in the C struct
offset Py_ssize_t the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable
doc const char * points to the contents of the docstring

type can be one of many T_ macros corresponding to various C types. When the member is accessed in Python,
it will be converted to the equivalent Python type.

Macro name C type
T_SHORT short
T_INT int
T_LONG long
T_FLOAT float
T_DOUBLE double
T_STRING const char *
T_OBJECT PyObject *
T_OBJECT_EX PyObject *
T_CHAR char
T_BYTE char
T_UBYTE unsigned char
T_UINT unsigned int
T_USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG unsigned long long
T_PYSSIZET Py_ssize_t

T_OBJECT and T_OBJECT_EX differ in that T_OBJECT returns None if the member is NULL and
T_OBJECT_EX raises an AttributeError. Try to use T_OBJECT_EX over T_OBJECT because
T_OBJECT_EX handles use of the del statement on that attribute more correctly than T_OBJECT.
flags can be 0 for write and read access or READONLY for read-only access. Using T_STRING for type
implies READONLY. T_STRING data is interpreted as UTF-8. Only T_OBJECT and T_OBJECT_EX members
can be deleted. (They are set to NULL).
Heap allocated types (created using PyType_FromSpec() or similar), PyMemberDefmay contain definitions
for the special members __dictoffset__, __weaklistoffset__ and __vectorcalloffset__,
corresponding to tp_dictoffset, tp_weaklistoffset and tp_vectorcall_offset in type ob-
jects. These must be defined with T_PYSSIZET and READONLY, for example:

static PyMemberDef spam_type_members[] = {
{"__dictoffset__", T_PYSSIZET, offsetof(Spam_object, dict), READONLY},
{NULL} /* Sentinel */

};

12.2. Common Object Structures 251

The Python/C API, Release 3.11.4

PyObject *PyMember_GetOne(const char *obj_addr, struct PyMemberDef *m)
Get an attribute belonging to the object at address obj_addr. The attribute is described by PyMemberDef m.
Returns NULL on error.

int PyMember_SetOne(char *obj_addr, struct PyMemberDef *m, PyObject *o)
Set an attribute belonging to the object at address obj_addr to object o. The attribute to set is described by
PyMemberDef m. Returns 0 if successful and a negative value on failure.

type PyGetSetDef
Part of the Stable ABI (including all members). Structure to define property-like access for a type. See also de-
scription of the PyTypeObject.tp_getset slot.

Field C Type Meaning
name const char * attribute name
get getter C function to get the attribute
set setter optional C function to set or delete the attribute, if omitted the attribute is readonly
doc const char * optional docstring
closure void * optional function pointer, providing additional data for getter and setter

The get function takes one PyObject* parameter (the instance) and a function pointer (the associated
closure):

typedef PyObject *(*getter)(PyObject *, void *);

It should return a new reference on success or NULL with a set exception on failure.
set functions take two PyObject* parameters (the instance and the value to be set) and a function pointer (the
associated closure):

typedef int (*setter)(PyObject *, PyObject *, void *);

In case the attribute should be deleted the second parameter is NULL. Should return 0 on success or -1 with a set
exception on failure.

12.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type: the
PyTypeObject structure. Type objects can be handled using any of the PyObject_* or PyType_* functions, but
do not offer much that’s interesting to most Python applications. These objects are fundamental to how objects behave,
so they are very important to the interpreter itself and to any extension module that implements new types.
Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object stores
a large number of values, mostly C function pointers, each of which implements a small part of the type’s functionality.
The fields of the type object are examined in detail in this section. The fields will be described in the order in which they
occur in the structure.
In addition to the following quick reference, the Examples section provides at-a-glance insight into the meaning and use
of PyTypeObject.

252 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

12.3.1 Quick Reference

“tp slots”

PyTypeObject SlotPage 254, 1 Type special methods/attrs InfoPage 254, 2
O T D I

<R> tp_name const char * __name__ X X
tp_basicsize Py_ssize_t X X X
tp_itemsize Py_ssize_t X X
tp_dealloc destructor X X X
tp_vectorcall_offset Py_ssize_t X X
(tp_getattr) getattrfunc __getattribute__, __getattr__ G
(tp_setattr) setattrfunc __setattr__, __delattr__ G
tp_as_async PyAsyncMethods * sub-slots %
tp_repr reprfunc __repr__ X X X
tp_as_number PyNumberMethods * sub-slots %
tp_as_sequence PySequenceMethods * sub-slots %
tp_as_mapping PyMappingMethods * sub-slots %
tp_hash hashfunc __hash__ X G
tp_call ternaryfunc __call__ X X
tp_str reprfunc __str__ X X
tp_getattro getattrofunc __getattribute__, __getattr__ X X G
tp_setattro setattrofunc __setattr__, __delattr__ X X G
tp_as_buffer PyBufferProcs * %
tp_flags unsigned long X X ?
tp_doc const char * __doc__ X X
tp_traverse traverseproc X G
tp_clear inquiry X G
tp_richcompare richcmpfunc __lt__, __le__, __eq__, __ne__,

__gt__, __ge__
X G

tp_weaklistoffset Py_ssize_t X ?
tp_iter getiterfunc __iter__ X
tp_iternext iternextfunc __next__ X
tp_methods PyMethodDef [] X X
tp_members PyMemberDef [] X
tp_getset PyGetSetDef [] X X
tp_base PyTypeObject * __base__ X
tp_dict PyObject * __dict__ ?
tp_descr_get descrgetfunc __get__ X
tp_descr_set descrsetfunc __set__, __delete__ X
tp_dictoffset Py_ssize_t X ?
tp_init initproc __init__ X X X
tp_alloc allocfunc X ? ?
tp_new newfunc __new__ X X ? ?
tp_free freefunc X X ? ?
tp_is_gc inquiry X X
<tp_bases> PyObject * __bases__ ~
<tp_mro> PyObject * __mro__ ~
[tp_cache] PyObject *
[tp_subclasses] PyObject * __subclasses__

continues on next page

12.3. Type Objects 253

The Python/C API, Release 3.11.4

Table 1 – continued from previous page
PyTypeObject SlotPage 254, 1 Type special methods/attrs InfoPage 254, 2

O T D I
[tp_weaklist] PyObject *
(tp_del) destructor
[tp_version_tag] unsigned int
tp_finalize destructor __del__ X
tp_vectorcall vectorcallfunc

sub-slots

Slot Type special methods
am_await unaryfunc __await__
am_aiter unaryfunc __aiter__
am_anext unaryfunc __anext__
am_send sendfunc

nb_add binaryfunc __add__ __radd__
nb_inplace_add binaryfunc __iadd__
nb_subtract binaryfunc __sub__ __rsub__
nb_inplace_subtract binaryfunc __isub__
nb_multiply binaryfunc __mul__ __rmul__
nb_inplace_multiply binaryfunc __imul__
nb_remainder binaryfunc __mod__ __rmod__
nb_inplace_remainder binaryfunc __imod__
nb_divmod binaryfunc __divmod__ __rdiv-

mod__
nb_power ternaryfunc __pow__ __rpow__
nb_inplace_power ternaryfunc __ipow__
nb_negative unaryfunc __neg__
nb_positive unaryfunc __pos__
nb_absolute unaryfunc __abs__

continues on next page
1 (): A slot name in parentheses indicates it is (effectively) deprecated.
<>: Names in angle brackets should be initially set to NULL and treated as read-only.
[]: Names in square brackets are for internal use only.
<R> (as a prefix) means the field is required (must be non-NULL).
2 Columns:
“O”: set on PyBaseObject_Type
“T”: set on PyType_Type
“D”: default (if slot is set to NULL)

X - PyType_Ready sets this value if it is NULL
~ - PyType_Ready always sets this value (it should be NULL)
? - PyType_Ready may set this value depending on other slots

Also see the inheritance column ("I").

“I”: inheritance
X - type slot is inherited via *PyType_Ready* if defined with a *NULL* value
% - the slots of the sub-struct are inherited individually
G - inherited, but only in combination with other slots; see the slot's description
? - it's complicated; see the slot's description

Note that some slots are effectively inherited through the normal attribute lookup chain.

254 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

Table 2 – continued from previous page
Slot Type special methods
nb_bool inquiry __bool__
nb_invert unaryfunc __invert__
nb_lshift binaryfunc __lshift__ __rlshift__
nb_inplace_lshift binaryfunc __ilshift__
nb_rshift binaryfunc __rshift__ __rrshift__
nb_inplace_rshift binaryfunc __irshift__
nb_and binaryfunc __and__ __rand__
nb_inplace_and binaryfunc __iand__
nb_xor binaryfunc __xor__ __rxor__
nb_inplace_xor binaryfunc __ixor__
nb_or binaryfunc __or__ __ror__
nb_inplace_or binaryfunc __ior__
nb_int unaryfunc __int__
nb_reserved void *
nb_float unaryfunc __float__
nb_floor_divide binaryfunc __floordiv__
nb_inplace_floor_divide binaryfunc __ifloordiv__
nb_true_divide binaryfunc __truediv__
nb_inplace_true_divide binaryfunc __itruediv__
nb_index unaryfunc __index__
nb_matrix_multiply binaryfunc __matmul__ __rmat-

mul__
nb_inplace_matrix_multiply binaryfunc __imatmul__

mp_length lenfunc __len__
mp_subscript binaryfunc __getitem__
mp_ass_subscript objobjargproc __setitem__,

__delitem__

sq_length lenfunc __len__
sq_concat binaryfunc __add__
sq_repeat ssizeargfunc __mul__
sq_item ssizeargfunc __getitem__
sq_ass_item ssizeobjargproc __setitem__

__delitem__
sq_contains objobjproc __contains__
sq_inplace_concat binaryfunc __iadd__
sq_inplace_repeat ssizeargfunc __imul__

bf_getbuffer getbufferproc()
bf_releasebuffer releasebufferproc()

12.3. Type Objects 255

The Python/C API, Release 3.11.4

256 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

slot typedefs

typedef Parameter Types Return Type
allocfunc

PyTypeObject *
Py_ssize_t

PyObject *

destructor void * void
freefunc void * void
traverseproc

void *
visitproc

void *

int

newfunc

PyObject *
PyObject *
PyObject *

PyObject *

initproc

PyObject *
PyObject *
PyObject *

int

reprfunc PyObject * PyObject *
getattrfunc

PyObject *
const char *

PyObject *

setattrfunc

PyObject *
const char *
PyObject *

int

getattrofunc

PyObject *
PyObject *

PyObject *

setattrofunc

PyObject *
PyObject *
PyObject *

int

descrgetfunc

PyObject *
PyObject *
PyObject *

PyObject *

descrsetfunc

PyObject *
PyObject *
PyObject *

int

hashfunc PyObject * Py_hash_t
richcmpfunc

PyObject *
PyObject *
int

PyObject *

getiterfunc PyObject * PyObject *
iternextfunc PyObject * PyObject *
lenfunc PyObject * Py_ssize_t
getbufferproc

PyObject *
Py_buffer *
int

int

releasebufferproc

PyObject *
Py_buffer *

void

inquiry void * int
unaryfunc

PyObject *

PyObject *

binaryfunc

PyObject *
PyObject *

PyObject *

ternaryfunc

PyObject *
PyObject *
PyObject *

PyObject *

ssizeargfunc

PyObject *
Py_ssize_t

PyObject *

ssizeobjargproc

PyObject *
Py_ssize_t

PyObject *

int

objobjproc

PyObject *
PyObject *

int

objobjargproc

PyObject *
PyObject *
PyObject *

int

12.3. Type Objects 257

The Python/C API, Release 3.11.4

See Slot Type typedefs below for more detail.

12.3.2 PyTypeObject Definition

The structure definition for PyTypeObject can be found in Include/object.h. For convenience of reference,
this repeats the definition found there:

typedef struct _typeobject {
PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
Py_ssize_t tp_vectorcall_offset;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
PyAsyncMethods *tp_as_async; /* formerly known as tp_compare (Python 2)

or tp_reserved (Python 3) */
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
unsigned long tp_flags;

const char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
/* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
Py_ssize_t tp_weaklistoffset;

(continues on next page)

258 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

(continued from previous page)

/* Iterators */
getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;
struct PyMemberDef *tp_members;
struct PyGetSetDef *tp_getset;
// Strong reference on a heap type, borrowed reference on a static type
struct _typeobject *tp_base;
PyObject *tp_dict;
descrgetfunc tp_descr_get;
descrsetfunc tp_descr_set;
Py_ssize_t tp_dictoffset;
initproc tp_init;
allocfunc tp_alloc;
newfunc tp_new;
freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;
PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;
PyObject *tp_subclasses;
PyObject *tp_weaklist;
destructor tp_del;

/* Type attribute cache version tag. Added in version 2.6 */
unsigned int tp_version_tag;

destructor tp_finalize;
vectorcallfunc tp_vectorcall;

} PyTypeObject;

12.3.3 PyObject Slots

The type object structure extends the PyVarObject structure. The ob_size field is used for dynamic types (cre-
ated by type_new(), usually called from a class statement). Note that PyType_Type (the metatype) initializes
tp_itemsize, which means that its instances (i.e. type objects) must have the ob_size field.
Py_ssize_t PyObject.ob_refcnt

Part of the Stable ABI. This is the type object’s reference count, initialized to 1 by the PyObject_HEAD_INIT
macro. Note that for statically allocated type objects, the type’s instances (objects whose ob_type points back to
the type) do not count as references. But for dynamically allocated type objects, the instances do count as references.
Inheritance:
This field is not inherited by subtypes.

PyTypeObject *PyObject.ob_type
Part of the Stable ABI. This is the type’s type, in other words its metatype. It is initialized by the argument to the
PyObject_HEAD_INITmacro, and its value should normally be &PyType_Type. However, for dynamically
loadable extension modules that must be usable onWindows (at least), the compiler complains that this is not a valid
initializer. Therefore, the convention is to pass NULL to the PyObject_HEAD_INITmacro and to initialize this
field explicitly at the start of the module’s initialization function, before doing anything else. This is typically done
like this:

12.3. Type Objects 259

The Python/C API, Release 3.11.4

Foo_Type.ob_type = &PyType_Type;

This should be done before any instances of the type are created. PyType_Ready() checks if ob_type is
NULL, and if so, initializes it to the ob_type field of the base class. PyType_Ready() will not change this
field if it is non-zero.
Inheritance:
This field is inherited by subtypes.

PyObject *PyObject._ob_next
PyObject *PyObject._ob_prev

These fields are only present when the macro Py_TRACE_REFS is defined (see the configure
--with-trace-refs option).
Their initialization to NULL is taken care of by the PyObject_HEAD_INIT macro. For statically allocated
objects, these fields always remain NULL. For dynamically allocated objects, these two fields are used to link the
object into a doubly linked list of all live objects on the heap.
This could be used for various debugging purposes; currently the only uses are the sys.getobjects() function
and to print the objects that are still alive at the end of a run when the environment variable PYTHONDUMPREFS
is set.
Inheritance:
These fields are not inherited by subtypes.

12.3.4 PyVarObject Slots

Py_ssize_t PyVarObject.ob_size
Part of the Stable ABI. For statically allocated type objects, this should be initialized to zero. For dynamically
allocated type objects, this field has a special internal meaning.
Inheritance:
This field is not inherited by subtypes.

12.3.5 PyTypeObject Slots

Each slot has a section describing inheritance. If PyType_Ready() may set a value when the field is set to NULL
then there will also be a “Default” section. (Note that many fields set on PyBaseObject_Type and PyType_Type
effectively act as defaults.)
const char *PyTypeObject.tp_name

Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module globals,
the string should be the full module name, followed by a dot, followed by the type name; for built-in types, it should
be just the type name. If the module is a submodule of a package, the full package name is part of the full module
name. For example, a type named T defined in module M in subpackage Q in package P should have the tp_name
initializer "P.Q.M.T".
For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored in
the type dict as the value for key '__module__'.
For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot is made
accessible as the __module__ attribute, and everything after the last dot is made accessible as the __name__
attribute.

260 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

If no dot is present, the entire tp_name field is made accessible as the __name__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle. Additionally, it will not be listed in module documentations created with
pydoc.
This field must not be NULL. It is the only required field in PyTypeObject() (other than potentially
tp_itemsize).
Inheritance:
This field is not inherited by subtypes.

Py_ssize_t PyTypeObject.tp_basicsize
Py_ssize_t PyTypeObject.tp_itemsize

These fields allow calculating the size in bytes of instances of the type.
There are two kinds of types: types with fixed-length instances have a zero tp_itemsize field, types with
variable-length instances have a non-zero tp_itemsize field. For a type with fixed-length instances, all instances
have the same size, given in tp_basicsize.
For a type with variable-length instances, the instances must have an ob_size field, and the instance size is
tp_basicsize plus N times tp_itemsize, where N is the “length” of the object. The value of N is typically
stored in the instance’s ob_size field. There are exceptions: for example, ints use a negative ob_size to
indicate a negative number, and N is abs(ob_size) there. Also, the presence of an ob_size field in the
instance layout doesn’t mean that the instance structure is variable-length (for example, the structure for the list
type has fixed-length instances, yet those instances have a meaningful ob_size field).
The basic size includes the fields in the instance declared by the macro PyObject_HEAD or
PyObject_VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and _ob_next fields if they are present. This means that the only correct way to get an initializer
for the tp_basicsize is to use the sizeof operator on the struct used to declare the instance layout. The
basic size does not include the GC header size.
A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value of tp_basicsize. Example: suppose a type implements an array of double. tp_itemsize
is sizeof(double). It is the programmer’s responsibility that tp_basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirement for double).
For any type with variable-length instances, this field must not be NULL.
Inheritance:
These fields are inherited separately by subtypes. If the base type has a non-zero tp_itemsize, it is generally not
safe to set tp_itemsize to a different non-zero value in a subtype (though this depends on the implementation
of the base type).

destructor PyTypeObject.tp_dealloc
A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singletons None and Ellipsis). The function signature
is:

void tp_dealloc(PyObject *self);

The destructor function is called by the Py_DECREF() and Py_XDECREF() macros when the new reference
count is zero. At this point, the instance is still in existence, but there are no references to it. The destructor
function should free all references which the instance owns, free all memory buffers owned by the instance (using the
freeing function corresponding to the allocation function used to allocate the buffer), and call the type’s tp_free
function. If the type is not subtypable (doesn’t have the Py_TPFLAGS_BASETYPE flag bit set), it is permissible
to call the object deallocator directly instead of via tp_free. The object deallocator should be the one used to
allocate the instance; this is normally PyObject_Del() if the instance was allocated using PyObject_New

12.3. Type Objects 261

The Python/C API, Release 3.11.4

or PyObject_NewVar, or PyObject_GC_Del() if the instance was allocated using PyObject_GC_New
or PyObject_GC_NewVar.
If the type supports garbage collection (has the Py_TPFLAGS_HAVE_GC flag bit set), the destructor should call
PyObject_GC_UnTrack() before clearing any member fields.

static void foo_dealloc(foo_object *self) {
PyObject_GC_UnTrack(self);
Py_CLEAR(self->ref);
Py_TYPE(self)->tp_free((PyObject *)self);

}

Finally, if the type is heap allocated (Py_TPFLAGS_HEAPTYPE), the deallocator should release the owned refer-
ence to its type object (via Py_DECREF()) after calling the type deallocator. In order to avoid dangling pointers,
the recommended way to achieve this is:

static void foo_dealloc(foo_object *self) {
PyTypeObject *tp = Py_TYPE(self);
// free references and buffers here
tp->tp_free(self);
Py_DECREF(tp);

}

Inheritance:
This field is inherited by subtypes.

Py_ssize_t PyTypeObject.tp_vectorcall_offset
An optional offset to a per-instance function that implements calling the object using the vectorcall protocol, a more
efficient alternative of the simpler tp_call.
This field is only used if the flag Py_TPFLAGS_HAVE_VECTORCALL is set. If so, this must be a positive integer
containing the offset in the instance of a vectorcallfunc pointer.
The vectorcallfunc pointer may be NULL, in which case the instance behaves as if
Py_TPFLAGS_HAVE_VECTORCALL was not set: calling the instance falls back to tp_call.
Any class that sets Py_TPFLAGS_HAVE_VECTORCALLmust also set tp_call and make sure its behaviour is
consistent with the vectorcallfunc function. This can be done by setting tp_call to PyVectorcall_Call().

Warning: It is not recommended for mutable heap types to implement the vectorcall protocol. When a
user sets __call__ in Python code, only tp_call is updated, likely making it inconsistent with the vectorcall
function.

Changed in version 3.8: Before version 3.8, this slot was named tp_print. In Python 2.x, it was used for printing
to a file. In Python 3.0 to 3.7, it was unused.
Inheritance:
This field is always inherited. However, the Py_TPFLAGS_HAVE_VECTORCALL flag is not always inherited. If
it’s not, then the subclass won’t use vectorcall, except when PyVectorcall_Call() is explicitly called. This
is in particular the case for types without the Py_TPFLAGS_IMMUTABLETYPE flag set (including subclasses
defined in Python).

getattrfunc PyTypeObject.tp_getattr
An optional pointer to the get-attribute-string function.
This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_getattro
function, but taking a C string instead of a Python string object to give the attribute name.

262 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

Inheritance:
Group: tp_getattr, tp_getattro
This field is inherited by subtypes together with tp_getattro: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.

setattrfunc PyTypeObject.tp_setattr

An optional pointer to the function for setting and deleting attributes.
This field is deprecated. When it is defined, it should point to a function that acts the same as the tp_setattro
function, but taking a C string instead of a Python string object to give the attribute name.
Inheritance:
Group: tp_setattr, tp_setattro
This field is inherited by subtypes together with tp_setattro: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattr and tp_setattro are both NULL.

PyAsyncMethods *PyTypeObject.tp_as_async
Pointer to an additional structure that contains fields relevant only to objects which implement awaitable and asyn-
chronous iterator protocols at the C-level. See Async Object Structures for details.
New in version 3.5: Formerly known as tp_compare and tp_reserved.
Inheritance:
The tp_as_async field is not inherited, but the contained fields are inherited individually.

reprfunc PyTypeObject.tp_repr
An optional pointer to a function that implements the built-in function repr().
The signature is the same as for PyObject_Repr():

PyObject *tp_repr(PyObject *self);

The function must return a string or a Unicode object. Ideally, this function should return a string that, when passed
to eval(), given a suitable environment, returns an object with the same value. If this is not feasible, it should
return a string starting with '<' and ending with '>' from which both the type and the value of the object can be
deduced.
Inheritance:
This field is inherited by subtypes.
Default:
When this field is not set, a string of the form <%s object at %p> is returned, where %s is replaced by the
type name, and %p by the object’s memory address.

PyNumberMethods *PyTypeObject.tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number protocol.
These fields are documented in Number Object Structures.
Inheritance:
The tp_as_number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods *PyTypeObject.tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence protocol.
These fields are documented in Sequence Object Structures.
Inheritance:

12.3. Type Objects 263

The Python/C API, Release 3.11.4

The tp_as_sequence field is not inherited, but the contained fields are inherited individually.
PyMappingMethods *PyTypeObject.tp_as_mapping

Pointer to an additional structure that contains fields relevant only to objects which implement the mapping protocol.
These fields are documented in Mapping Object Structures.
Inheritance:
The tp_as_mapping field is not inherited, but the contained fields are inherited individually.

hashfunc PyTypeObject.tp_hash
An optional pointer to a function that implements the built-in function hash().
The signature is the same as for PyObject_Hash():

Py_hash_t tp_hash(PyObject *);

The value -1 should not be returned as a normal return value; when an error occurs during the computation of the
hash value, the function should set an exception and return -1.
When this field is not set (and tp_richcompare is not set), an attempt to take the hash of the object raises
TypeError. This is the same as setting it to PyObject_HashNotImplemented().
This field can be set explicitly to PyObject_HashNotImplemented() to block inheritance of the hash
method from a parent type. This is interpreted as the equivalent of __hash__ = None at the Python level,
causing isinstance(o, collections.Hashable) to correctly return False. Note that the converse
is also true - setting __hash__ = None on a class at the Python level will result in the tp_hash slot being set
to PyObject_HashNotImplemented().
Inheritance:
Group: tp_hash, tp_richcompare
This field is inherited by subtypes together with tp_richcompare: a subtype inherits both of
tp_richcompare and tp_hash, when the subtype’s tp_richcompare and tp_hash are both NULL.

ternaryfunc PyTypeObject.tp_call
An optional pointer to a function that implements calling the object. This should be NULL if the object is not
callable. The signature is the same as for PyObject_Call():

PyObject *tp_call(PyObject *self, PyObject *args, PyObject *kwargs);

Inheritance:
This field is inherited by subtypes.

reprfunc PyTypeObject.tp_str

An optional pointer to a function that implements the built-in operation str(). (Note that str is a type now,
and str() calls the constructor for that type. This constructor calls PyObject_Str() to do the actual work,
and PyObject_Str() will call this handler.)
The signature is the same as for PyObject_Str():

PyObject *tp_str(PyObject *self);

The function must return a string or a Unicode object. It should be a “friendly” string representation of the object,
as this is the representation that will be used, among other things, by the print() function.
Inheritance:
This field is inherited by subtypes.

264 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

Default:
When this field is not set, PyObject_Repr() is called to return a string representation.

getattrofunc PyTypeObject.tp_getattro
An optional pointer to the get-attribute function.
The signature is the same as for PyObject_GetAttr():

PyObject *tp_getattro(PyObject *self, PyObject *attr);

It is usually convenient to set this field to PyObject_GenericGetAttr(), which implements the normal way
of looking for object attributes.
Inheritance:
Group: tp_getattr, tp_getattro
This field is inherited by subtypes together with tp_getattr: a subtype inherits both tp_getattr and
tp_getattro from its base type when the subtype’s tp_getattr and tp_getattro are both NULL.
Default:
PyBaseObject_Type uses PyObject_GenericGetAttr().

setattrofunc PyTypeObject.tp_setattro
An optional pointer to the function for setting and deleting attributes.
The signature is the same as for PyObject_SetAttr():

int tp_setattro(PyObject *self, PyObject *attr, PyObject *value);

In addition, setting value to NULL to delete an attribute must be supported. It is usually convenient to set this field
to PyObject_GenericSetAttr(), which implements the normal way of setting object attributes.
Inheritance:
Group: tp_setattr, tp_setattro
This field is inherited by subtypes together with tp_setattr: a subtype inherits both tp_setattr and
tp_setattro from its base type when the subtype’s tp_setattr and tp_setattro are both NULL.
Default:
PyBaseObject_Type uses PyObject_GenericSetAttr().

PyBufferProcs *PyTypeObject.tp_as_buffer
Pointer to an additional structure that contains fields relevant only to objects which implement the buffer interface.
These fields are documented in Buffer Object Structures.
Inheritance:
The tp_as_buffer field is not inherited, but the contained fields are inherited individually.

unsigned long PyTypeObject.tp_flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; others are used
to indicate that certain fields in the type object (or in the extension structures referenced via tp_as_number,
tp_as_sequence, tp_as_mapping, and tp_as_buffer) that were historically not always present are
valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be considered to have a zero
or NULL value instead.
Inheritance:

12.3. Type Objects 265

The Python/C API, Release 3.11.4

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has a flag
bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly inherited if
the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the subtype together
with a pointer to the extension structure. The Py_TPFLAGS_HAVE_GC flag bit is inherited together with the
tp_traverse and tp_clear fields, i.e. if the Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype and
the tp_traverse and tp_clear fields in the subtype exist and have NULL values.
Default:
PyBaseObject_Type uses Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE.
Bit Masks:
The following bit masks are currently defined; these can be ORed together using the | operator to form the value of
the tp_flags field. The macro PyType_HasFeature() takes a type and a flags value, tp and f, and checks
whether tp->tp_flags & f is non-zero.
Py_TPFLAGS_HEAPTYPE

This bit is set when the type object itself is allocated on the heap, for example, types created dynamically
using PyType_FromSpec(). In this case, the ob_type field of its instances is considered a reference
to the type, and the type object is INCREF’ed when a new instance is created, and DECREF’ed when an
instance is destroyed (this does not apply to instances of subtypes; only the type referenced by the instance’s
ob_type gets INCREF’ed or DECREF’ed).
Inheritance:
???

Py_TPFLAGS_BASETYPE

This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a “final” class in Java).
Inheritance:
???

Py_TPFLAGS_READY

This bit is set when the type object has been fully initialized by PyType_Ready().
Inheritance:
???

Py_TPFLAGS_READYING

This bit is set while PyType_Ready() is in the process of initializing the type object.
Inheritance:
???

Py_TPFLAGS_HAVE_GC

This bit is set when the object supports garbage collection. If this bit is set, instances must be created
using PyObject_GC_New and destroyed using PyObject_GC_Del(). More information in section
Supporting Cyclic Garbage Collection. This bit also implies that the GC-related fields tp_traverse and
tp_clear are present in the type object.
Inheritance:
Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear
ThePy_TPFLAGS_HAVE_GC flag bit is inherited together with thetp_traverse andtp_clear fields,
i.e. if the Py_TPFLAGS_HAVE_GC flag bit is clear in the subtype and the tp_traverse and tp_clear
fields in the subtype exist and have NULL values.

266 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

Py_TPFLAGS_DEFAULT

This is a bitmask of all the bits that pertain to the existence of certain fields in the type object and its extension
structures. Currently, it includes the following bits: Py_TPFLAGS_HAVE_STACKLESS_EXTENSION.
Inheritance:
???

Py_TPFLAGS_METHOD_DESCRIPTOR

This bit indicates that objects behave like unbound methods.
If this flag is set for type(meth), then:
• meth.__get__(obj, cls)(*args, **kwds) (with obj not None) must be equivalent to
meth(obj, *args, **kwds).

• meth.__get__(None, cls)(*args, **kwds) must be equivalent to meth(*args,
**kwds).

This flag enables an optimization for typical method calls like obj.meth(): it avoids creating a temporary
“bound method” object for obj.meth.
New in version 3.8.
Inheritance:
This flag is never inherited by types without the Py_TPFLAGS_IMMUTABLETYPE flag set. For extension
types, it is inherited whenever tp_descr_get is inherited.

Py_TPFLAGS_LONG_SUBCLASS

Py_TPFLAGS_LIST_SUBCLASS

Py_TPFLAGS_TUPLE_SUBCLASS

Py_TPFLAGS_BYTES_SUBCLASS

Py_TPFLAGS_UNICODE_SUBCLASS

Py_TPFLAGS_DICT_SUBCLASS

Py_TPFLAGS_BASE_EXC_SUBCLASS

Py_TPFLAGS_TYPE_SUBCLASS

These flags are used by functions such as PyLong_Check() to quickly determine if a type is a subclass
of a built-in type; such specific checks are faster than a generic check, like PyObject_IsInstance().
Custom types that inherit from built-ins should have their tp_flags set appropriately, or the code that
interacts with such types will behave differently depending on what kind of check is used.

Py_TPFLAGS_HAVE_FINALIZE

This bit is set when the tp_finalize slot is present in the type structure.
New in version 3.4.
Deprecated since version 3.8: This flag isn’t necessary anymore, as the interpreter assumes the
tp_finalize slot is always present in the type structure.

Py_TPFLAGS_HAVE_VECTORCALL

This bit is set when the class implements the vectorcall protocol. See tp_vectorcall_offset for
details.
Inheritance:

12.3. Type Objects 267

The Python/C API, Release 3.11.4

This bit is inherited for types with the Py_TPFLAGS_IMMUTABLETYPE flag set, if tp_call is also
inherited.
New in version 3.9.

Py_TPFLAGS_IMMUTABLETYPE

This bit is set for type objects that are immutable: type attributes cannot be set nor deleted.
PyType_Ready() automatically applies this flag to static types.
Inheritance:
This flag is not inherited.
New in version 3.10.

Py_TPFLAGS_DISALLOW_INSTANTIATION

Disallow creating instances of the type: set tp_new to NULL and don’t create the __new__ key in the
type dictionary.
The flag must be set before creating the type, not after. For example, it must be set before
PyType_Ready() is called on the type.
The flag is set automatically on static types iftp_base is NULL or&PyBaseObject_Type andtp_new
is NULL.
Inheritance:
This flag is not inherited. However, subclasses will not be instantiable unless they provide a non-NULL
tp_new (which is only possible via the C API).

Note: To disallow instantiating a class directly but allow instantiating its subclasses (e.g. for an abstract base
class), do not use this flag. Instead, make tp_new only succeed for subclasses.

New in version 3.10.
Py_TPFLAGS_MAPPING

This bit indicates that instances of the class maymatch mapping patterns when used as the subject of a match
block. It is automatically set when registering or subclassing collections.abc.Mapping, and unset
when registering collections.abc.Sequence.

Note: Py_TPFLAGS_MAPPING and Py_TPFLAGS_SEQUENCE are mutually exclusive; it is an error to
enable both flags simultaneously.

Inheritance:
This flag is inherited by types that do not already set Py_TPFLAGS_SEQUENCE.
See also:
PEP 634 – Structural Pattern Matching: Specification
New in version 3.10.

Py_TPFLAGS_SEQUENCE

This bit indicates that instances of the class maymatch sequence patterns when used as the subject of a match
block. It is automatically set when registering or subclassing collections.abc.Sequence, and unset
when registering collections.abc.Mapping.

268 Chapter 12. Object Implementation Support

https://peps.python.org/pep-0634/

The Python/C API, Release 3.11.4

Note: Py_TPFLAGS_MAPPING and Py_TPFLAGS_SEQUENCE are mutually exclusive; it is an error to
enable both flags simultaneously.

Inheritance:
This flag is inherited by types that do not already set Py_TPFLAGS_MAPPING.
See also:
PEP 634 – Structural Pattern Matching: Specification
New in version 3.10.

const char *PyTypeObject.tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as the
__doc__ attribute on the type and instances of the type.
Inheritance:
This field is not inherited by subtypes.

traverseproc PyTypeObject.tp_traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS_HAVE_GC flag bit is set. The signature is:

int tp_traverse(PyObject *self, visitproc visit, void *arg);

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.
The tp_traverse pointer is used by the garbage collector to detect reference cycles. A typical implementation
of a tp_traverse function simply calls Py_VISIT() on each of the instance’s members that are Python
objects that the instance owns. For example, this is function local_traverse() from the _thread extension
module:

static int
local_traverse(localobject *self, visitproc visit, void *arg)
{

Py_VISIT(self->args);
Py_VISIT(self->kw);
Py_VISIT(self->dict);
return 0;

}

Note that Py_VISIT() is called only on those members that can participate in reference cycles. Although there
is also a self->keymember, it can only be NULL or a Python string and therefore cannot be part of a reference
cycle.
On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may want to
visit it anyway just so the gc module’s get_referents() function will include it.

Warning: When implementing tp_traverse, only the members that the instance owns (by having strong
references to them) must be visited. For instance, if an object supports weak references via the tp_weaklist
slot, the pointer supporting the linked list (what tp_weaklist points to) must not be visited as the instance does
not directly own the weak references to itself (the weakreference list is there to support the weak reference
machinery, but the instance has no strong reference to the elements inside it, as they are allowed to be removed
even if the instance is still alive).

12.3. Type Objects 269

https://peps.python.org/pep-0634/

The Python/C API, Release 3.11.4

Note that Py_VISIT() requires the visit and arg parameters to local_traverse() to have these specific
names; don’t name them just anything.
Instances of heap-allocated types hold a reference to their type. Their traversal function must therefore either visit
Py_TYPE(self), or delegate this responsibility by calling tp_traverse of another heap-allocated type (such
as a heap-allocated superclass). If they do not, the type object may not be garbage-collected.
Changed in version 3.9: Heap-allocated types are expected to visit Py_TYPE(self) in tp_traverse. In
earlier versions of Python, due to bug 40217, doing this may lead to crashes in subclasses.
Inheritance:
Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear
This field is inherited by subtypes together with tp_clear and the Py_TPFLAGS_HAVE_GC flag bit: the flag
bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

inquiry PyTypeObject.tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the Py_TPFLAGS_HAVE_GC
flag bit is set. The signature is:

int tp_clear(PyObject *);

The tp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, all tp_clear functions in the system must combine to break all reference cycles. This
is subtle, and if in any doubt supply a tp_clear function. For example, the tuple type does not implement a
tp_clear function, because it’s possible to prove that no reference cycle can be composed entirely of tuples.
Therefore the tp_clear functions of other types must be sufficient to break any cycle containing a tuple. This
isn’t immediately obvious, and there’s rarely a good reason to avoid implementing tp_clear.
Implementations of tp_clear should drop the instance’s references to those of its members that may be Python
objects, and set its pointers to those members to NULL, as in the following example:

static int
local_clear(localobject *self)
{

Py_CLEAR(self->key);
Py_CLEAR(self->args);
Py_CLEAR(self->kw);
Py_CLEAR(self->dict);
return 0;

}

The Py_CLEAR() macro should be used, because clearing references is delicate: the reference to the contained
object must not be released (via Py_DECREF()) until after the pointer to the contained object is set to NULL. This
is because releasing the reference may cause the contained object to become trash, triggering a chain of reclamation
activity that may include invoking arbitrary Python code (due to finalizers, or weakref callbacks, associated with the
contained object). If it’s possible for such code to reference self again, it’s important that the pointer to the contained
object be NULL at that time, so that self knows the contained object can no longer be used. The Py_CLEAR()
macro performs the operations in a safe order.
Note that tp_clear is not always called before an instance is deallocated. For example, when reference count-
ing is enough to determine that an object is no longer used, the cyclic garbage collector is not involved and
tp_dealloc is called directly.
Because the goal of tp_clear functions is to break reference cycles, it’s not necessary to clear contained ob-
jects like Python strings or Python integers, which can’t participate in reference cycles. On the other hand, it
may be convenient to clear all contained Python objects, and write the type’s tp_dealloc function to invoke
tp_clear.

270 Chapter 12. Object Implementation Support

https://bugs.python.org/issue40217

The Python/C API, Release 3.11.4

More information about Python’s garbage collection scheme can be found in section Supporting Cyclic Garbage
Collection.
Inheritance:
Group: Py_TPFLAGS_HAVE_GC, tp_traverse, tp_clear
This field is inherited by subtypes together with tp_traverse and the Py_TPFLAGS_HAVE_GC flag bit: the
flag bit, tp_traverse, and tp_clear are all inherited from the base type if they are all zero in the subtype.

richcmpfunc PyTypeObject.tp_richcompare
An optional pointer to the rich comparison function, whose signature is:

PyObject *tp_richcompare(PyObject *self, PyObject *other, int op);

The first parameter is guaranteed to be an instance of the type that is defined by PyTypeObject.
The function should return the result of the comparison (usually Py_True or Py_False). If the comparison
is undefined, it must return Py_NotImplemented, if another error occurred it must return NULL and set an
exception condition.
The following constants are defined to be used as the third argument for tp_richcompare and for
PyObject_RichCompare():

Constant Comparison

Py_LT
<

Py_LE
<=

Py_EQ
==

Py_NE
!=

Py_GT
>

Py_GE
>=

The following macro is defined to ease writing rich comparison functions:
Py_RETURN_RICHCOMPARE(VAL_A, VAL_B, op)

Return Py_True or Py_False from the function, depending on the result of a comparison. VAL_A and
VAL_B must be orderable by C comparison operators (for example, they may be C ints or floats). The third
argument specifies the requested operation, as for PyObject_RichCompare().
The returned value is a new strong reference.
On error, sets an exception and returns NULL from the function.
New in version 3.7.

Inheritance:

12.3. Type Objects 271

The Python/C API, Release 3.11.4

Group: tp_hash, tp_richcompare
This field is inherited by subtypes together with tp_hash: a subtype inherits tp_richcompare and tp_hash
when the subtype’s tp_richcompare and tp_hash are both NULL.
Default:
PyBaseObject_Type provides a tp_richcompare implementation, which may be inherited. However, if
only tp_hash is defined, not even the inherited function is used and instances of the type will not be able to
participate in any comparisons.

Py_ssize_t PyTypeObject.tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used by
PyObject_ClearWeakRefs() and the PyWeakref_* functions. The instance structure needs to include
a field of type PyObject* which is initialized to NULL.
Do not confuse this field with tp_weaklist; that is the list head for weak references to the type object itself.
Inheritance:
This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found via
tp_weaklistoffset, this should not be a problem.
When a type defined by a class statement has no __slots__ declaration, and none of its base types are weakly
referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance layout
and setting the tp_weaklistoffset of that slot’s offset.
When a type’s __slots__ declaration contains a slot named __weakref__, that slot becomes the weak ref-
erence list head for instances of the type, and the slot’s offset is stored in the type’s tp_weaklistoffset.
When a type’s __slots__ declaration does not contain a slot named __weakref__, the type inherits its
tp_weaklistoffset from its base type.

getiterfunc PyTypeObject.tp_iter
An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function).
This function has the same signature as PyObject_GetIter():

PyObject *tp_iter(PyObject *self);

Inheritance:
This field is inherited by subtypes.

iternextfunc PyTypeObject.tp_iternext
An optional pointer to a function that returns the next item in an iterator. The signature is:

PyObject *tp_iternext(PyObject *self);

When the iterator is exhausted, it must return NULL; a StopIteration exception may or may not be set. When
another error occurs, it must return NULL too. Its presence signals that the instances of this type are iterators.
Iterator types should also define the tp_iter function, and that function should return the iterator instance itself
(not a new iterator instance).
This function has the same signature as PyIter_Next().
Inheritance:
This field is inherited by subtypes.

272 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

struct PyMethodDef *PyTypeObject.tp_methods
An optional pointer to a static NULL-terminated array of PyMethodDef structures, declaring regular methods
of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a method
descriptor.
Inheritance:
This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef *PyTypeObject.tp_members
An optional pointer to a static NULL-terminated array of PyMemberDef structures, declaring regular data mem-
bers (fields or slots) of instances of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a member
descriptor.
Inheritance:
This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef *PyTypeObject.tp_getset
An optional pointer to a staticNULL-terminated array ofPyGetSetDef structures, declaring computed attributes
of instances of this type.
For each entry in the array, an entry is added to the type’s dictionary (see tp_dict below) containing a getset
descriptor.
Inheritance:
This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).

PyTypeObject *PyTypeObject.tp_base
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

Note: Slot initialization is subject to the rules of initializing globals. C99 requires the initializers to be “address
constants”. Function designators like PyType_GenericNew(), with implicit conversion to a pointer, are valid
C99 address constants.
However, the unary ‘&’ operator applied to a non-static variable like PyBaseObject_Type is not required to
produce an address constant. Compilers may support this (gcc does), MSVC does not. Both compilers are strictly
standard conforming in this particular behavior.
Consequently, tp_base should be set in the extension module’s init function.

Inheritance:
This field is not inherited by subtypes (obviously).
Default:
This field defaults to &PyBaseObject_Type (which to Python programmers is known as the type object).

PyObject *PyTypeObject.tp_dict
The type’s dictionary is stored here by PyType_Ready().
This field should normally be initialized to NULL before PyType_Ready is called; it may also be initialized to
a dictionary containing initial attributes for the type. Once PyType_Ready() has initialized the type, extra

12.3. Type Objects 273

The Python/C API, Release 3.11.4

attributes for the type may be added to this dictionary only if they don’t correspond to overloaded operations (like
__add__()).
Inheritance:
This field is not inherited by subtypes (though the attributes defined in here are inherited through a different mech-
anism).
Default:
If this field is NULL, PyType_Ready() will assign a new dictionary to it.

Warning: It is not safe to use PyDict_SetItem() on or otherwise modify tp_dict with the dictionary
C-API.

descrgetfunc PyTypeObject.tp_descr_get
An optional pointer to a “descriptor get” function.
The function signature is:

PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);

Inheritance:
This field is inherited by subtypes.

descrsetfunc PyTypeObject.tp_descr_set
An optional pointer to a function for setting and deleting a descriptor’s value.
The function signature is:

int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

The value argument is set to NULL to delete the value.
Inheritance:
This field is inherited by subtypes.

Py_ssize_t PyTypeObject.tp_dictoffset
If the instances of this type have a dictionary containing instance variables, this field is non-zero and con-
tains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr().
Do not confuse this field with tp_dict; that is the dictionary for attributes of the type object itself.
If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If the value
is less than zero, it specifies the offset from the end of the instance structure. A negative offset is more expensive to
use, and should only be used when the instance structure contains a variable-length part. This is used for example
to add an instance variable dictionary to subtypes of str or tuple. Note that the tp_basicsize field should
account for the dictionary added to the end in that case, even though the dictionary is not included in the basic
object layout. On a system with a pointer size of 4 bytes, tp_dictoffset should be set to -4 to indicate that
the dictionary is at the very end of the structure.
The tp_dictoffset should be regarded as write-only. To get the pointer to the dictionary call
PyObject_GenericGetDict(). Calling PyObject_GenericGetDict() may need to allocate mem-
ory for the dictionary, so it is may be more efficient to call PyObject_GetAttr() when accessing an attribute
on the object.
Inheritance:

274 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means that
the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is always
found via tp_dictoffset, this should not be a problem.
When a type defined by a class statement has no __slots__ declaration, and none of its base types has an instance
variable dictionary, a dictionary slot is added to the instance layout and the tp_dictoffset is set to that slot’s
offset.
When a type defined by a class statement has a __slots__ declaration, the type inherits its tp_dictoffset
from its base type.
(Adding a slot named __dict__ to the __slots__ declaration does not have the expected effect, it just causes
confusion. Maybe this should be added as a feature just like __weakref__ though.)
Default:
This slot has no default. For static types, if the field is NULL then no __dict__ gets created for instances.

initproc PyTypeObject.tp_init

An optional pointer to an instance initialization function.
This function corresponds to the __init__()method of classes. Like __init__(), it is possible to create an
instance without calling __init__(), and it is possible to reinitialize an instance by calling its __init__()
method again.
The function signature is:

int tp_init(PyObject *self, PyObject *args, PyObject *kwds);

The self argument is the instance to be initialized; the args and kwds arguments represent positional and keyword
arguments of the call to __init__().
The tp_init function, if not NULL, is called when an instance is created normally by calling its type, after the
type’s tp_new function has returned an instance of the type. If the tp_new function returns an instance of some
other type that is not a subtype of the original type, no tp_init function is called; if tp_new returns an instance
of a subtype of the original type, the subtype’s tp_init is called.
Returns 0 on success, -1 and sets an exception on error.
Inheritance:
This field is inherited by subtypes.
Default:
For static types this field does not have a default.

allocfunc PyTypeObject.tp_alloc
An optional pointer to an instance allocation function.
The function signature is:

PyObject *tp_alloc(PyTypeObject *self, Py_ssize_t nitems);

Inheritance:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement).
Default:
For dynamic subtypes, this field is always set to PyType_GenericAlloc(), to force a standard heap allocation
strategy.

12.3. Type Objects 275

The Python/C API, Release 3.11.4

For static subtypes, PyBaseObject_Type uses PyType_GenericAlloc(). That is the recommended
value for all statically defined types.

newfunc PyTypeObject.tp_new
An optional pointer to an instance creation function.
The function signature is:

PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds);

The subtype argument is the type of the object being created; the args and kwds arguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose tp_new
function is called; it may be a subtype of that type (but not an unrelated type).
The tp_new function should call subtype->tp_alloc(subtype, nitems) to allocate space for the
object, and then do only as much further initialization as is absolutely necessary. Initialization that can safely be
ignored or repeated should be placed in the tp_init handler. A good rule of thumb is that for immutable types,
all initialization should take place in tp_new, while for mutable types, most initialization should be deferred to
tp_init.
Set the Py_TPFLAGS_DISALLOW_INSTANTIATION flag to disallow creating instances of the type in Python.
Inheritance:
This field is inherited by subtypes, except it is not inherited by static types whose tp_base is NULL or
&PyBaseObject_Type.
Default:
For static types this field has no default. This means if the slot is defined as NULL, the type cannot be called to
create new instances; presumably there is some other way to create instances, like a factory function.

freefunc PyTypeObject.tp_free
An optional pointer to an instance deallocation function. Its signature is:

void tp_free(void *self);

An initializer that is compatible with this signature is PyObject_Free().
Inheritance:
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement)
Default:
In dynamic subtypes, this field is set to a deallocator suitable to match PyType_GenericAlloc() and the
value of the Py_TPFLAGS_HAVE_GC flag bit.
For static subtypes, PyBaseObject_Type uses PyObject_Del().

inquiry PyTypeObject.tp_is_gc

An optional pointer to a function called by the garbage collector.
The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient to
look at the object’s type’s tp_flags field, and check the Py_TPFLAGS_HAVE_GC flag bit. But some types have
a mixture of statically and dynamically allocated instances, and the statically allocated instances are not collectible.
Such types should define this function; it should return 1 for a collectible instance, and 0 for a non-collectible
instance. The signature is:

int tp_is_gc(PyObject *self);

276 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

(The only example of this are types themselves. The metatype, PyType_Type, defines this function to distinguish
between statically and dynamically allocated types.)
Inheritance:
This field is inherited by subtypes.
Default:
This slot has no default. If this field is NULL, Py_TPFLAGS_HAVE_GC is used as the functional equivalent.

PyObject *PyTypeObject.tp_bases
Tuple of base types.
This field should be set to NULL and treated as read-only. Python will fill it in when the type is initialized.
For dynamically created classes, the Py_tp_bases slot can be used instead of the bases argument of
PyType_FromSpecWithBases(). The argument form is preferred.

Warning: Multiple inheritance does not work well for statically defined types. If you set tp_bases to a
tuple, Python will not raise an error, but some slots will only be inherited from the first base.

Inheritance:
This field is not inherited.

PyObject *PyTypeObject.tp_mro
Tuple containing the expanded set of base types, starting with the type itself and ending with object, in Method
Resolution Order.
This field should be set to NULL and treated as read-only. Python will fill it in when the type is initialized.
Inheritance:
This field is not inherited; it is calculated fresh by PyType_Ready().

PyObject *PyTypeObject.tp_cache
Unused. Internal use only.
Inheritance:
This field is not inherited.

PyObject *PyTypeObject.tp_subclasses
List of weak references to subclasses. Internal use only.
Inheritance:
This field is not inherited.

PyObject *PyTypeObject.tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.
Inheritance:
This field is not inherited.

destructor PyTypeObject.tp_del
This field is deprecated. Use tp_finalize instead.

12.3. Type Objects 277

The Python/C API, Release 3.11.4

unsigned int PyTypeObject.tp_version_tag
Used to index into the method cache. Internal use only.
Inheritance:
This field is not inherited.

destructor PyTypeObject.tp_finalize
An optional pointer to an instance finalization function. Its signature is:

void tp_finalize(PyObject *self);

If tp_finalize is set, the interpreter calls it once when finalizing an instance. It is called either from the garbage
collector (if the instance is part of an isolated reference cycle) or just before the object is deallocated. Either way,
it is guaranteed to be called before attempting to break reference cycles, ensuring that it finds the object in a sane
state.
tp_finalize should not mutate the current exception status; therefore, a recommended way to write a non-
trivial finalizer is:

static void
local_finalize(PyObject *self)
{

PyObject *error_type, *error_value, *error_traceback;

/* Save the current exception, if any. */
PyErr_Fetch(&error_type, &error_value, &error_traceback);

/* ... */

/* Restore the saved exception. */
PyErr_Restore(error_type, error_value, error_traceback);

}

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the
thread which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a
garbage collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc
is called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects
from some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which
called tp_dealloc will not violate any assumptions of the library.
Inheritance:
This field is inherited by subtypes.
New in version 3.4.
Changed in version 3.8: Before version 3.8 it was necessary to set the Py_TPFLAGS_HAVE_FINALIZE flags
bit in order for this field to be used. This is no longer required.
See also:
“Safe object finalization” (PEP 442)

vectorcallfunc PyTypeObject.tp_vectorcall

Vectorcall function to use for calls of this type object. In other words, it is used to implement vectorcall for
type.__call__. If tp_vectorcall is NULL, the default call implementation using __new__() and
__init__() is used.
Inheritance:

278 Chapter 12. Object Implementation Support

https://peps.python.org/pep-0442/

The Python/C API, Release 3.11.4

This field is never inherited.
New in version 3.9: (the field exists since 3.8 but it’s only used since 3.9)

12.3.6 Static Types

Traditionally, types defined in C code are static, that is, a static PyTypeObject structure is defined directly in code and
initialized using PyType_Ready().
This results in types that are limited relative to types defined in Python:

• Static types are limited to one base, i.e. they cannot use multiple inheritance.
• Static type objects (but not necessarily their instances) are immutable. It is not possible to add or modify the type
object’s attributes from Python.

• Static type objects are shared across sub-interpreters, so they should not include any subinterpreter-specific state.
Also, since PyTypeObject is only part of the Limited API as an opaque struct, any extension modules using static
types must be compiled for a specific Python minor version.

12.3.7 Heap Types

An alternative to static types is heap-allocated types, or heap types for short, which correspond closely to classes created
by Python’s class statement. Heap types have the Py_TPFLAGS_HEAPTYPE flag set.
This is done by filling a PyType_Spec structure and calling PyType_FromSpec(),
PyType_FromSpecWithBases(), or PyType_FromModuleAndSpec().

12.4 Number Object Structures

type PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol. Each function
is used by the function of similar name documented in the Number Protocol section.
Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_bool;
unaryfunc nb_invert;
binaryfunc nb_lshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;
unaryfunc nb_int;

(continues on next page)

12.4. Number Object Structures 279

The Python/C API, Release 3.11.4

(continued from previous page)
void *nb_reserved;
unaryfunc nb_float;

binaryfunc nb_inplace_add;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_lshift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

unaryfunc nb_index;

binaryfunc nb_matrix_multiply;
binaryfunc nb_inplace_matrix_multiply;

} PyNumberMethods;

Note: Binary and ternary functions must check the type of all their operands, and implement the necessary
conversions (at least one of the operands is an instance of the defined type). If the operation is not defined for the
given operands, binary and ternary functions must return Py_NotImplemented, if another error occurred they
must return NULL and set an exception.

Note: The nb_reserved field should always be NULL. It was previously called nb_long, and was renamed
in Python 3.0.1.

binaryfunc PyNumberMethods.nb_add

binaryfunc PyNumberMethods.nb_subtract

binaryfunc PyNumberMethods.nb_multiply

binaryfunc PyNumberMethods.nb_remainder

binaryfunc PyNumberMethods.nb_divmod

ternaryfunc PyNumberMethods.nb_power

unaryfunc PyNumberMethods.nb_negative

unaryfunc PyNumberMethods.nb_positive

unaryfunc PyNumberMethods.nb_absolute

inquiry PyNumberMethods.nb_bool

280 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

unaryfunc PyNumberMethods.nb_invert

binaryfunc PyNumberMethods.nb_lshift

binaryfunc PyNumberMethods.nb_rshift

binaryfunc PyNumberMethods.nb_and

binaryfunc PyNumberMethods.nb_xor

binaryfunc PyNumberMethods.nb_or

unaryfunc PyNumberMethods.nb_int

void *PyNumberMethods.nb_reserved

unaryfunc PyNumberMethods.nb_float

binaryfunc PyNumberMethods.nb_inplace_add

binaryfunc PyNumberMethods.nb_inplace_subtract

binaryfunc PyNumberMethods.nb_inplace_multiply

binaryfunc PyNumberMethods.nb_inplace_remainder

ternaryfunc PyNumberMethods.nb_inplace_power

binaryfunc PyNumberMethods.nb_inplace_lshift

binaryfunc PyNumberMethods.nb_inplace_rshift

binaryfunc PyNumberMethods.nb_inplace_and

binaryfunc PyNumberMethods.nb_inplace_xor

binaryfunc PyNumberMethods.nb_inplace_or

binaryfunc PyNumberMethods.nb_floor_divide

binaryfunc PyNumberMethods.nb_true_divide

binaryfunc PyNumberMethods.nb_inplace_floor_divide

binaryfunc PyNumberMethods.nb_inplace_true_divide

unaryfunc PyNumberMethods.nb_index

binaryfunc PyNumberMethods.nb_matrix_multiply

binaryfunc PyNumberMethods.nb_inplace_matrix_multiply

12.4. Number Object Structures 281

The Python/C API, Release 3.11.4

12.5 Mapping Object Structures

type PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It has three
members:

lenfunc PyMappingMethods.mp_length

This function is used by PyMapping_Size() and PyObject_Size(), and has the same signature. This slot
may be set to NULL if the object has no defined length.

binaryfunc PyMappingMethods.mp_subscript
This function is used by PyObject_GetItem() and PySequence_GetSlice(), and has the same signa-
ture as PyObject_GetItem(). This slot must be filled for the PyMapping_Check() function to return 1,
it can be NULL otherwise.

objobjargproc PyMappingMethods.mp_ass_subscript

This function is used by PyObject_SetItem(), PyObject_DelItem(), PySequence_SetSlice()
and PySequence_DelSlice(). It has the same signature as PyObject_SetItem(), but v can also be
set to NULL to delete an item. If this slot is NULL, the object does not support item assignment and deletion.

12.6 Sequence Object Structures

type PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc PySequenceMethods.sq_length
This function is used by PySequence_Size() and PyObject_Size(), and has the same signature. It is
also used for handling negative indices via the sq_item and the sq_ass_item slots.

binaryfunc PySequenceMethods.sq_concat
This function is used by PySequence_Concat() and has the same signature. It is also used by the + operator,
after trying the numeric addition via the nb_add slot.

ssizeargfunc PySequenceMethods.sq_repeat
This function is used by PySequence_Repeat() and has the same signature. It is also used by the * operator,
after trying numeric multiplication via the nb_multiply slot.

ssizeargfunc PySequenceMethods.sq_item

This function is used by PySequence_GetItem() and has the same signature. It is also used by
PyObject_GetItem(), after trying the subscription via the mp_subscript slot. This slot must be filled
for the PySequence_Check() function to return 1, it can be NULL otherwise.
Negative indexes are handled as follows: if the sq_length slot is filled, it is called and the sequence length is
used to compute a positive index which is passed to sq_item. If sq_length is NULL, the index is passed as
is to the function.

ssizeobjargproc PySequenceMethods.sq_ass_item

This function is used by PySequence_SetItem() and has the same signature. It is also used by
PyObject_SetItem() and PyObject_DelItem(), after trying the item assignment and deletion via the
mp_ass_subscript slot. This slot may be left to NULL if the object does not support item assignment and
deletion.

282 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

objobjproc PySequenceMethods.sq_contains
This function may be used by PySequence_Contains() and has the same signature. This slot may be left to
NULL, in this case PySequence_Contains() simply traverses the sequence until it finds a match.

binaryfunc PySequenceMethods.sq_inplace_concat
This function is used by PySequence_InPlaceConcat() and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceConcat() will
fall back to PySequence_Concat(). It is also used by the augmented assignment +=, after trying numeric
in-place addition via the nb_inplace_add slot.

ssizeargfunc PySequenceMethods.sq_inplace_repeat

This function is used by PySequence_InPlaceRepeat() and has the same signature. It should modify its
first operand, and return it. This slot may be left to NULL, in this case PySequence_InPlaceRepeat() will
fall back to PySequence_Repeat(). It is also used by the augmented assignment *=, after trying numeric
in-place multiplication via the nb_inplace_multiply slot.

12.7 Buffer Object Structures

type PyBufferProcs
This structure holds pointers to the functions required by the Buffer protocol. The protocol defines how an exporter
object can expose its internal data to consumer objects.

getbufferproc PyBufferProcs.bf_getbuffer
The signature of this function is:

int (PyObject *exporter, Py_buffer *view, int flags);

Handle a request to exporter to fill in view as specified by flags. Except for point (3), an implementation of this
function MUST take these steps:
(1) Check if the request can be met. If not, raise BufferError, set view->obj to NULL and return -1.
(2) Fill in the requested fields.
(3) Increment an internal counter for the number of exports.
(4) Set view->obj to exporter and increment view->obj.
(5) Return 0.
If exporter is part of a chain or tree of buffer providers, two main schemes can be used:

• Re-export: Each member of the tree acts as the exporting object and sets view->obj to a new reference to
itself.

• Redirect: The buffer request is redirected to the root object of the tree. Here, view->obj will be a new
reference to the root object.

The individual fields of view are described in section Buffer structure, the rules how an exporter must react to specific
requests are in section Buffer request types.
All memory pointed to in the Py_buffer structure belongs to the exporter and must remain valid until there are
no consumers left. format, shape, strides, suboffsets and internal are read-only for the consumer.
PyBuffer_FillInfo() provides an easy way of exposing a simple bytes buffer while dealing correctly with
all request types.
PyObject_GetBuffer() is the interface for the consumer that wraps this function.

12.7. Buffer Object Structures 283

The Python/C API, Release 3.11.4

releasebufferproc PyBufferProcs.bf_releasebuffer
The signature of this function is:

void (PyObject *exporter, Py_buffer *view);

Handle a request to release the resources of the buffer. If no resources need to be released, PyBufferProcs.
bf_releasebuffer may be NULL. Otherwise, a standard implementation of this function will take these
optional steps:
(1) Decrement an internal counter for the number of exports.
(2) If the counter is 0, free all memory associated with view.
The exporter MUST use the internal field to keep track of buffer-specific resources. This field is guaranteed
to remain constant, while a consumer MAY pass a copy of the original buffer as the view argument.
This functionMUSTNOT decrement view->obj, since that is done automatically in PyBuffer_Release()
(this scheme is useful for breaking reference cycles).
PyBuffer_Release() is the interface for the consumer that wraps this function.

12.8 Async Object Structures

New in version 3.5.
type PyAsyncMethods

This structure holds pointers to the functions required to implement awaitable and asynchronous iterator objects.
Here is the structure definition:

typedef struct {
unaryfunc am_await;
unaryfunc am_aiter;
unaryfunc am_anext;
sendfunc am_send;

} PyAsyncMethods;

unaryfunc PyAsyncMethods.am_await
The signature of this function is:

PyObject *am_await(PyObject *self);

The returned object must be an iterator, i.e. PyIter_Check() must return 1 for it.
This slot may be set to NULL if an object is not an awaitable.

unaryfunc PyAsyncMethods.am_aiter

The signature of this function is:

PyObject *am_aiter(PyObject *self);

Must return an asynchronous iterator object. See __anext__() for details.
This slot may be set to NULL if an object does not implement asynchronous iteration protocol.

unaryfunc PyAsyncMethods.am_anext
The signature of this function is:

284 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

PyObject *am_anext(PyObject *self);

Must return an awaitable object. See __anext__() for details. This slot may be set to NULL.
sendfunc PyAsyncMethods.am_send

The signature of this function is:

PySendResult am_send(PyObject *self, PyObject *arg, PyObject **result);

See PyIter_Send() for details. This slot may be set to NULL.
New in version 3.10.

12.9 Slot Type typedefs

typedef PyObject *(*allocfunc)(PyTypeObject *cls, Py_ssize_t nitems)
Part of the Stable ABI. The purpose of this function is to separate memory allocation frommemory initialization. It
should return a pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to
zeros, but with ob_refcnt set to 1 and ob_type set to the type argument. If the type’s tp_itemsize is non-
zero, the object’s ob_size field should be initialized to nitems and the length of the allocatedmemory block should
be tp_basicsize + nitems*tp_itemsize, rounded up to a multiple of sizeof(void*); otherwise,
nitems is not used and the length of the block should be tp_basicsize.
This function should not do any other instance initialization, not even to allocate additional memory; that should be
done by tp_new.

typedef void (*destructor)(PyObject*)
Part of the Stable ABI.

typedef void (*freefunc)(void*)
See tp_free.

typedef PyObject *(*newfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI. See tp_new.

typedef int (*initproc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI. See tp_init.

typedef PyObject *(*reprfunc)(PyObject*)
Part of the Stable ABI. See tp_repr.

typedef PyObject *(*getattrfunc)(PyObject *self, char *attr)
Part of the Stable ABI. Return the value of the named attribute for the object.

typedef int (*setattrfunc)(PyObject *self, char *attr, PyObject *value)
Part of the Stable ABI. Set the value of the named attribute for the object. The value argument is set to NULL to
delete the attribute.

typedef PyObject *(*getattrofunc)(PyObject *self, PyObject *attr)
Part of the Stable ABI. Return the value of the named attribute for the object.
See tp_getattro.

12.9. Slot Type typedefs 285

The Python/C API, Release 3.11.4

typedef int (*setattrofunc)(PyObject *self, PyObject *attr, PyObject *value)
Part of the Stable ABI. Set the value of the named attribute for the object. The value argument is set to NULL to
delete the attribute.
See tp_setattro.

typedef PyObject *(*descrgetfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI. See tp_descr_get.

typedef int (*descrsetfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI. See tp_descr_set.

typedef Py_hash_t (*hashfunc)(PyObject*)
Part of the Stable ABI. See tp_hash.

typedef PyObject *(*richcmpfunc)(PyObject*, PyObject*, int)
Part of the Stable ABI. See tp_richcompare.

typedef PyObject *(*getiterfunc)(PyObject*)
Part of the Stable ABI. See tp_iter.

typedef PyObject *(*iternextfunc)(PyObject*)
Part of the Stable ABI. See tp_iternext.

typedef Py_ssize_t (*lenfunc)(PyObject*)
Part of the Stable ABI.

typedef int (*getbufferproc)(PyObject*, Py_buffer*, int)

typedef void (*releasebufferproc)(PyObject*, Py_buffer*)

typedef PyObject *(*unaryfunc)(PyObject*)
Part of the Stable ABI.

typedef PyObject *(*binaryfunc)(PyObject*, PyObject*)
Part of the Stable ABI.

typedef PySendResult (*sendfunc)(PyObject*, PyObject*, PyObject**)
See am_send.

typedef PyObject *(*ternaryfunc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI.

typedef PyObject *(*ssizeargfunc)(PyObject*, Py_ssize_t)
Part of the Stable ABI.

typedef int (*ssizeobjargproc)(PyObject*, Py_ssize_t, PyObject*)
Part of the Stable ABI.

typedef int (*objobjproc)(PyObject*, PyObject*)
Part of the Stable ABI.

typedef int (*objobjargproc)(PyObject*, PyObject*, PyObject*)
Part of the Stable ABI.

286 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

12.10 Examples

The following are simple examples of Python type definitions. They include common usage you may encounter. Some
demonstrate tricky corner cases. For more examples, practical info, and a tutorial, see defining-new-types and new-types-
topics.
A basic static type:

typedef struct {
PyObject_HEAD
const char *data;

} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof(MyObject),
.tp_doc = PyDoc_STR("My objects"),
.tp_new = myobj_new,
.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,

};

You may also find older code (especially in the CPython code base) with a more verbose initializer:

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"mymod.MyObject", /* tp_name */
sizeof(MyObject), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)myobj_dealloc, /* tp_dealloc */
0, /* tp_vectorcall_offset */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_as_async */
(reprfunc)myobj_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
0, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
0, /* tp_flags */
PyDoc_STR("My objects"), /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */

(continues on next page)

12.10. Examples 287

The Python/C API, Release 3.11.4

(continued from previous page)
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
myobj_new, /* tp_new */

};

A type that supports weakrefs, instance dicts, and hashing:

typedef struct {
PyObject_HEAD
const char *data;
PyObject *inst_dict;
PyObject *weakreflist;

} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof(MyObject),
.tp_doc = PyDoc_STR("My objects"),
.tp_weaklistoffset = offsetof(MyObject, weakreflist),
.tp_dictoffset = offsetof(MyObject, inst_dict),
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC,
.tp_new = myobj_new,
.tp_traverse = (traverseproc)myobj_traverse,
.tp_clear = (inquiry)myobj_clear,
.tp_alloc = PyType_GenericNew,
.tp_dealloc = (destructor)myobj_dealloc,
.tp_repr = (reprfunc)myobj_repr,
.tp_hash = (hashfunc)myobj_hash,
.tp_richcompare = PyBaseObject_Type.tp_richcompare,

};

A str subclass that cannot be subclassed and cannot be called to create instances (e.g. uses a separate factory func) using
Py_TPFLAGS_DISALLOW_INSTANTIATION flag:

typedef struct {
PyUnicodeObject raw;
char *extra;

} MyStr;

static PyTypeObject MyStr_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyStr",
.tp_basicsize = sizeof(MyStr),
.tp_base = NULL, // set to &PyUnicode_Type in module init
.tp_doc = PyDoc_STR("my custom str"),
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION,
.tp_repr = (reprfunc)myobj_repr,

};

The simplest static type with fixed-length instances:

288 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

typedef struct {
PyObject_HEAD

} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",

};

The simplest static type with variable-length instances:

typedef struct {
PyObject_VAR_HEAD
const char *data[1];

} MyObject;

static PyTypeObject MyObject_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mymod.MyObject",
.tp_basicsize = sizeof(MyObject) - sizeof(char *),
.tp_itemsize = sizeof(char *),

};

12.11 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are “containers” for other objects which may also be containers. Types which do not store references to other
objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any explicit
support for garbage collection.
To create a container type, the tp_flags field of the type object must include the Py_TPFLAGS_HAVE_GC and
provide an implementation of the tp_traverse handler. If instances of the type are mutable, a tp_clear imple-
mentation must also be provided.
Py_TPFLAGS_HAVE_GC Objects with a type with this flag set must conform with the rules documented here. For

convenience these objects will be referred to as container objects.
Constructors for container types must conform to two rules:

1. The memory for the object must be allocated using PyObject_GC_New or PyObject_GC_NewVar.
2. Once all the fields which may contain references to other containers are initialized, it must call

PyObject_GC_Track().
Similarly, the deallocator for the object must conform to a similar pair of rules:

1. Before fields which refer to other containers are invalidated, PyObject_GC_UnTrack() must be called.
2. The object’s memory must be deallocated using PyObject_GC_Del().

Warning: If a type adds the Py_TPFLAGS_HAVE_GC, then it must implement at least a tp_traverse
handler or explicitly use one from its subclass or subclasses.
When calling PyType_Ready() or some of the APIs that indirectly call it like
PyType_FromSpecWithBases() or PyType_FromSpec() the interpreter will automatically
populate the tp_flags, tp_traverse and tp_clear fields if the type inherits from a class that

12.11. Supporting Cyclic Garbage Collection 289

The Python/C API, Release 3.11.4

implements the garbage collector protocol and the child class does not include the Py_TPFLAGS_HAVE_GC
flag.

PyObject_GC_New(TYPE, typeobj)
Analogous to PyObject_New but for container objects with the Py_TPFLAGS_HAVE_GC flag set.

PyObject_GC_NewVar(TYPE, typeobj, size)
Analogous to PyObject_NewVar but for container objects with the Py_TPFLAGS_HAVE_GC flag set.

TYPE *PyObject_GC_Resize(TYPE, PyVarObject *op, Py_ssize_t newsize)
Resize an object allocated by PyObject_NewVar. Returns the resized object or NULL on failure. op must not
be tracked by the collector yet.

void PyObject_GC_Track(PyObject *op)
Part of the Stable ABI. Adds the object op to the set of container objects tracked by the collector. The collector
can run at unexpected times so objects must be valid while being tracked. This should be called once all the fields
followed by the tp_traverse handler become valid, usually near the end of the constructor.

int PyObject_IS_GC(PyObject *obj)
Returns non-zero if the object implements the garbage collector protocol, otherwise returns 0.
The object cannot be tracked by the garbage collector if this function returns 0.

int PyObject_GC_IsTracked(PyObject *op)
Part of the Stable ABI since version 3.9. Returns 1 if the object type of op implements the GC protocol and op is
being currently tracked by the garbage collector and 0 otherwise.
This is analogous to the Python function gc.is_tracked().
New in version 3.9.

int PyObject_GC_IsFinalized(PyObject *op)
Part of the Stable ABI since version 3.9. Returns 1 if the object type of op implements the GC protocol and op has
been already finalized by the garbage collector and 0 otherwise.
This is analogous to the Python function gc.is_finalized().
New in version 3.9.

void PyObject_GC_Del(void *op)
Part of the Stable ABI. Releases memory allocated to an object using PyObject_GC_New or
PyObject_GC_NewVar.

void PyObject_GC_UnTrack(void *op)
Part of the Stable ABI. Remove the object op from the set of container objects tracked by the collector. Note that
PyObject_GC_Track() can be called again on this object to add it back to the set of tracked objects. The deal-
locator (tp_dealloc handler) should call this for the object before any of the fields used by the tp_traverse
handler become invalid.

Changed in version 3.8: The _PyObject_GC_TRACK() and _PyObject_GC_UNTRACK() macros have been
removed from the public C API.
The tp_traverse handler accepts a function parameter of this type:
typedef int (*visitproc)(PyObject *object, void *arg)

Part of the Stable ABI. Type of the visitor function passed to the tp_traverse handler. The function should
be called with an object to traverse as object and the third parameter to the tp_traverse handler as arg. The
Python core uses several visitor functions to implement cyclic garbage detection; it’s not expected that users will
need to write their own visitor functions.

290 Chapter 12. Object Implementation Support

The Python/C API, Release 3.11.4

The tp_traverse handler must have the following type:
typedef int (*traverseproc)(PyObject *self, visitproc visit, void *arg)

Part of the Stable ABI. Traversal function for a container object. Implementations must call the visit function
for each object directly contained by self, with the parameters to visit being the contained object and the arg value
passed to the handler. The visit function must not be called with a NULL object argument. If visit returns a non-zero
value that value should be returned immediately.

To simplify writing tp_traverse handlers, a Py_VISIT() macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exactly visit and arg:
void Py_VISIT(PyObject *o)

If o is not NULL, call the visit callback, with arguments o and arg. If visit returns a non-zero value, then return it.
Using this macro, tp_traverse handlers look like:

static int
my_traverse(Noddy *self, visitproc visit, void *arg)
{

Py_VISIT(self->foo);
Py_VISIT(self->bar);
return 0;

}

The tp_clear handler must be of the inquiry type, or NULL if the object is immutable.
typedef int (*inquiry)(PyObject *self)

Part of the Stable ABI. Drop references that may have created reference cycles. Immutable objects do not have
to define this method since they can never directly create reference cycles. Note that the object must still be valid
after calling this method (don’t just call Py_DECREF() on a reference). The collector will call this method if it
detects that this object is involved in a reference cycle.

12.11.1 Controlling the Garbage Collector State

The C-API provides the following functions for controlling garbage collection runs.
Py_ssize_t PyGC_Collect(void)

Part of the Stable ABI. Perform a full garbage collection, if the garbage collector is enabled. (Note that gc.
collect() runs it unconditionally.)
Returns the number of collected + unreachable objects which cannot be collected. If the garbage collector is
disabled or already collecting, returns 0 immediately. Errors during garbage collection are passed to sys.
unraisablehook. This function does not raise exceptions.

int PyGC_Enable(void)
Part of the Stable ABI since version 3.10. Enable the garbage collector: similar to gc.enable(). Returns the
previous state, 0 for disabled and 1 for enabled.
New in version 3.10.

int PyGC_Disable(void)
Part of the Stable ABI since version 3.10. Disable the garbage collector: similar to gc.disable(). Returns the
previous state, 0 for disabled and 1 for enabled.
New in version 3.10.

12.11. Supporting Cyclic Garbage Collection 291

The Python/C API, Release 3.11.4

int PyGC_IsEnabled(void)
Part of the Stable ABI since version 3.10. Query the state of the garbage collector: similar to gc.isenabled().
Returns the current state, 0 for disabled and 1 for enabled.
New in version 3.10.

292 Chapter 12. Object Implementation Support

CHAPTER

THIRTEEN

API AND ABI VERSIONING

CPython exposes its version number in the following macros. Note that these correspond to the version code is builtwith,
not necessarily the version used at run time.
See C API Stability for a discussion of API and ABI stability across versions.
PY_MAJOR_VERSION

The 3 in 3.4.1a2.
PY_MINOR_VERSION

The 4 in 3.4.1a2.
PY_MICRO_VERSION

The 1 in 3.4.1a2.
PY_RELEASE_LEVEL

The a in 3.4.1a2. This can be 0xA for alpha, 0xB for beta, 0xC for release candidate or 0xF for final.
PY_RELEASE_SERIAL

The 2 in 3.4.1a2. Zero for final releases.
PY_VERSION_HEX

The Python version number encoded in a single integer.
The underlying version information can be found by treating it as a 32 bit number in the following manner:

Bytes Bits (big endian order) Meaning Value for 3.4.1a2
1 1-8 PY_MAJOR_VERSION 0x03
2 9-16 PY_MINOR_VERSION 0x04
3 17-24 PY_MICRO_VERSION 0x01
4 25-28 PY_RELEASE_LEVEL 0xA

29-32 PY_RELEASE_SERIAL 0x2

Thus 3.4.1a2 is hexversion 0x030401a2 and 3.10.0 is hexversion 0x030a00f0.
Use this for numeric comparisons, e.g. #if PY_VERSION_HEX >=
This version is also available via the symbol Py_Version.

const unsigned long Py_Version
Part of the Stable ABI since version 3.11. The Python runtime version number encoded in a single constant integer,
with the same format as the PY_VERSION_HEX macro. This contains the Python version used at run time.
New in version 3.11.

All the given macros are defined in Include/patchlevel.h.

293

https://github.com/python/cpython/tree/3.11/Include/patchlevel.h

The Python/C API, Release 3.11.4

294 Chapter 13. API and ABI Versioning

APPENDIX

A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed interactively
in the interpreter.

... Can refer to:
• The default Python prompt of the interactive shell when entering the code for an indented code block, when
within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes),
or after specifying a decorator.

• The Ellipsis built-in constant.
2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can

be detected by parsing the source and traversing the parse tree.
2to3 is available in the standard library as lib2to3; a standalone entry point is provided as Tools/scripts/
2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr()would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance() and
issubclass(); see the abcmodule documentation. Python comes with many built-in ABCs for data structures
(in the collections.abc module), numbers (in the numbers module), streams (in the io module), import
finders and loaders (in the importlib.abc module). You can create your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a type hint.
Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes,
and functions are stored in the __annotations__ special attribute of modules, classes, and functions, respec-
tively.
See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality. Also see
annotations-howto for best practices on working with annotations.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:
• keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by **. For example, 3 and 5 are both keyword arguments in the following calls to
complex():

complex(real=3, imag=5)
complex(**{'real': 3, 'imag': 5})

• positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

295

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python/C API, Release 3.11.4

complex(3, 5)
complex(*(3, 5))

Arguments are assigned to the named local variables in a function body. See the calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.
See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters, and
PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter__() and __aexit__() methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a coroutine function
defined with async def except that it contains yield expressions for producing a series of values usable in an
async for loop.
Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some
contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.
An asynchronous generator function may contain await expressions as well as async for, and async with
statements.

asynchronous generator iterator An object created by a asynchronous generator function.
This is an asynchronous iterator which when called using the __anext__() method returns an awaitable object
which will execute the body of the asynchronous generator function until the next yield expression.
Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__(), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
from its __aiter__() method. Introduced by PEP 492.

asynchronous iterator An object that implements the __aiter__() and __anext__() methods.
__anext__() must return an awaitable object. async for resolves the awaitables returned by an asyn-
chronous iterator’s __anext__() method until it raises a StopAsyncIteration exception. Introduced by
PEP 492.

attribute A value associated with an object which is usually referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.
It is possible to give an object an attribute whose name is not an identifier as defined by identifiers, for example
using setattr(), if the object allows it. Such an attribute will not be accessible using a dotted expression, and
would instead need to be retrieved with getattr().

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an __await__()
method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.
binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode

('rb', 'wb' or 'rb+'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.BytesIO
and gzip.GzipFile.
See also text file for a file object able to read and write str objects.

borrowed reference In Python’s C API, a borrowed reference is a reference to an object, where the code using the
object does not own the reference. It becomes a dangling pointer if the object is destroyed. For example, a garbage
collection can remove the last strong reference to the object and so destroy it.

296 Appendix A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

The Python/C API, Release 3.11.4

Calling Py_INCREF() on the borrowed reference is recommended to convert it to a strong reference in-place,
except when the object cannot be destroyed before the last usage of the borrowed reference. The Py_NewRef()
function can be used to create a new strong reference.

bytes-like object An object that supports the Buffer Protocol and can export a C-contiguous buffer. This includes all
bytes, bytearray, and array.array objects, as well as many common memoryview objects. Bytes-like
objects can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.
Some operations need the binary data to be mutable. The documentation often refers to these as “read-write bytes-
like objects”. Examplemutable buffer objects includebytearray and amemoryview of abytearray. Other
operations require the binary data to be stored in immutable objects (“read-only bytes-like objects”); examples of
these include bytes and a memoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in .pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a virtual
machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not expected
to work between different Python virtual machines, nor to be stable between Python releases.
A list of bytecode instructions can be found in the documentation for the dis module.

callable A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:

callable(argument1, argument2, argumentN)

A function, and by extension a method, is a callable. An instance of a class that implements the __call__()
method is also a callable.

callback A subroutine function which is passed as an argument to be executed at some point in the future.
class A template for creating user-defined objects. Class definitions normally contain method definitions which operate

on instances of the class.
class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the

class).
complex number An extension of the familiar real number system in which all numbers are expressed as a sum of a real

part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of -1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+1j. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__() and
__exit__() methods. See PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-Local
Storage in which each execution thread may have a different value for a variable. However, with context variables,
there may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each
other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index
varies the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first
index varies the fastest.

297

https://peps.python.org/pep-0343/

The Python/C API, Release 3.11.4

coroutine Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the async
def statement, and may contain await, async for, and async with keywords. These were introduced by
PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod() and staticmethod().
The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f(arg):
...

f = staticmethod(f)

@staticmethod
def f(arg):

...

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any object which defines the methods __get__(), __set__(), or __delete__(). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the
respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.
For more information about descriptors’ methods, see descriptors or the Descriptor How To Guide.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__() and __eq__() methods. Called a hash in Perl.

dictionary comprehension A compact way to process all or part of the elements in an iterable and return a dictionary
with the results. results = {n: n ** 2 for n in range(10)} generates a dictionary containing
key n mapped to value n ** 2. See comprehensions.

dictionary view The objects returned from dict.keys(), dict.values(), and dict.items() are called
dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary
changes, the view reflects these changes. To force the dictionary view to become a full list uselist(dictview).
See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc__ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must
be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by
allowing polymorphic substitution. Duck-typing avoids tests using type() or isinstance(). (Note, however,
that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr() tests
or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized

298 Appendix A. Glossary

https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python/C API, Release 3.11.4

by the presence of many try and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.
f-string String literals prefixed with 'f' or 'F' are commonly called “f-strings” which is short for formatted string

literals. See also PEP 498.
file object An object exposing a file-oriented API (with methods such as read() or write()) to an underlying re-

source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.
There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their interfaces
are defined in the io module. The canonical way to create a file object is by using the open() function.

file-like object A synonym for file object.
filesystem encoding and error handler Encoding and error handler used by Python to decode bytes from the operating

system and encode Unicode to the operating system.
The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.
The sys.getfilesystemencoding() and sys.getfilesystemencodeerrors() functions can
be used to get the filesystem encoding and error handler.
The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read() function:
see filesystem_encoding and filesystem_errors members of PyConfig.
See also the locale encoding.

finder An object that tries to find the loader for a module that is being imported.
Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path entry
finders for use with sys.path_hooks.
See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11)
// 4 is -3 because that is -2.75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An annotation of a function parameter or return value.
Function annotations are usually used for type hints: for example, this function is expected to take two int argu-
ments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.
See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

299

https://peps.python.org/pep-0498/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

The Python/C API, Release 3.11.4

__future__ A future statement, from __future__ import <feature>, directs the compiler to compile
the current module using syntax or semantics that will become standard in a future release of Python. The
__future__ module documents the possible values of feature. By importing this module and evaluating its
variables, you can see when a new feature was first added to the language and when it will (or did) become the
default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage
collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next() function.
Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where the
intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.
Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for clause
defining a loop variable, range, and an optional if clause. The combined expression generates values for an en-
closing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed ofmultiple functions implementing the same operation for different types. Which
implementation should be used during a call is determined by the dispatch algorithm.
See also the single dispatch glossary entry, the functools.singledispatch() decorator, and PEP 443.

generic type A type that can be parameterized; typically a container class such as list or dict. Used for type hints
and annotations.
For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the typing module.

GIL See global interpreter lock.
global interpreter lock The mechanism used by the CPython interpreter to assure that only one thread executes Python

bytecode at a time. This simplifies the CPython implementation by making the object model (including critical
built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it
easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded bymulti-processor
machines.
However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally intensive tasks such as compression or hashing. Also, the GIL is always released when doing I/O.
Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source
file to determine its validity. See pyc-invalidation.

300 Appendix A. Glossary

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python/C API, Release 3.11.4

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__()method). Hashable objects which compare
equal must have the same hash value.
Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash
value internally.
Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not;
immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable. Objects which
are instances of user-defined classes are hashable by default. They all compare unequal (except with themselves),
and their hash value is derived from their id().

IDLE An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter environ-
ment which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sys.path, but for subpackages it may also come from the parent
package’s __path__ attribute.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.
interactive Python has an interactive interpreter which means you can enter statements and expressions at the interpreter

prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly creating
an executable which is then run. Interpreted languages typically have a shorter development/debug cycle than
compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually releases
all allocated resources, such as modules and various critical internal structures. It also makes several calls to the
garbage collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code
executed during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).
The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define with an __iter__() method or with a __getitem__() method that implements sequence semantics.
Iterables can be used in a for loop and in many other places where a sequence is needed (zip(), map(), …).
When an iterable object is passed as an argument to the built-in function iter(), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter() or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__() method (or passing
it to the built-in function next()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
to its __next__()method just raise StopIteration again. Iterators are required to have an __iter__()

301

The Python/C API, Release 3.11.4

method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a list) produces a fresh new iterator each time you pass it to the iter() function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.
More information can be found in typeiter.
CPython implementation detail: CPython does not consistently apply the requirement that an iterator define
__iter__().

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.
A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min(), max(), sorted(), list.sort(), heapq.merge(), heapq.nsmallest(), heapq.
nlargest(), and itertools.groupby().
There are several ways to create a key function. For example. the str.lower() method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a lambda expression such as
lambda r: (r[0], r[2]). Also, operator.attrgetter(), operator.itemgetter(), and
operator.methodcaller() are three key function constructors. See the Sorting HOW TO for examples of
how to create and use key functions.

keyword argument See argument.
lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.

The syntax to create a lambda function is lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many if statements.
In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the looking”
and “the leaping”. For example, the code, if key in mapping: return mapping[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

locale encoding On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.
setlocale(locale.LC_CTYPE, new_locale).
On Windows, it is the ANSI code page (ex: "cp1252").
On Android and VxWorks, Python uses "utf-8" as the locale encoding.
locale.getencoding() can be used to get the locale encoding.
See also the filesystem encoding and error handler.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ['{:#04x}'.format(x) for x in range(256) if x % 2 == 0] generates a list
of strings containing even hex numbers (0x..) in the range from 0 to 255. The if clause is optional. If omitted,
all elements in range(256) are processed.

loader An object that loads a module. It must define a method named load_module(). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method An informal synonym for special method.
mapping A container object that supports arbitrary key lookups and implements the methods specified in the

collections.abc.Mapping or collections.abc.MutableMapping abstract base classes.

302 Appendix A. Glossary

https://peps.python.org/pep-0302/

The Python/C API, Release 3.11.4

Examples include dict, collections.defaultdict, collections.OrderedDict and
collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but different
from path entry finders.
See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented program-
ming languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.
More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called self). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.
See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their id(). See also immutable.
named tuple The term “named tuple” applies to any type or class that inherits from tuple and whose indexable elements

are also accessible using named attributes. The type or class may have other features as well.
Several built-in types are named tuples, including the values returned by time.localtime() and os.
stat(). Another example is sys.float_info:

>>> sys.float_info[1] # indexed access
1024
>>> sys.float_info.max_exp # named field access
1024
>>> isinstance(sys.float_info, tuple) # kind of tuple
True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple(). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity by
preventing naming conflicts. For instance, the functions builtins.open and os.open() are distinguished
by their namespaces. Namespaces also aid readability and maintainability by making it clear which module im-
plements a function. For instance, writing random.seed() or itertools.islice() makes it clear that
those functions are implemented by the random and itertools modules, respectively.

303

https://www.python.org/download/releases/2.3/mro/

The Python/C API, Release 3.11.4

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they have no __init__.
py file.
See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference and
not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables read and
write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like __slots__, descriptors, properties,
__getattribute__(), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package APythonmodulewhich can contain submodules or recursively, subpackages. Technically, a package is a Python
module with a __path__ attribute.
See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

• positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func(foo, bar=None): ...

• positional-only: specifies an argument that can be supplied only by position. Positional-only parameters can
be defined by including a / character in the parameter list of the function definition after them, for example
posonly1 and posonly2 in the following:

def func(posonly1, posonly2, /, positional_or_keyword): ...

• keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can be
defined by including a single var-positional parameter or bare * in the parameter list of the function definition
before them, for example kw_only1 and kw_only2 in the following:

def func(arg, *, kw_only1, kw_only2): ...

• var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs): ...

• var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with **, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.
See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, the
inspect.Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.

304 Appendix A. Glossary

https://peps.python.org/pep-0420/
https://peps.python.org/pep-0362/

The Python/C API, Release 3.11.4

path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to
locate modules given a path entry.
See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.
path-like object An object representing a file system path. A path-like object is either a str or bytes object represent-

ing a path, or an object implementing the os.PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os.fspath() function; os.
fsdecode() and os.fsencode() can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.
PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible
for building consensus within the community and documenting dissenting opinions.
See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as defined
in PEP 420.

positional argument See argument.
provisional API A provisional API is one which has been deliberately excluded from the standard library’s backwards

compatibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if deemed
necessary by core developers. Such changes will not be made gratuitously – they will occur only if serious funda-
mental flaws are uncovered that were missed prior to the inclusion of the API.
Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every attempt
will still be made to find a backwards compatible resolution to any identified problems.
This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.
Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in

the distant future.) This is also abbreviated “Py3k”.
Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than

implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print(food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print(piece)

305

https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

The Python/C API, Release 3.11.4

qualified name A dotted name showing the “path” from a module’s global scope to a class, function or method defined
in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:
... class D:
... def meth(self):
... pass
...
>>> C.__qualname__
'C'
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__qualname__
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including any
parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text.__name__
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. Programmers can call the sys.getrefcount() function to return the reference count for a
particular object.

regular package A traditional package, such as a directory containing an __init__.py file.
See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

sequence An iterable which supports efficient element access using integer indices via the __getitem__() special
method and defines a __len__() method that returns the length of the sequence. Some built-in sequence types
are list, str, tuple, and bytes. Note that dict also supports __getitem__() and __len__(), but is
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.
The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__() and __len__(), adding count(), index(), __contains__(), and
__reversed__(). Types that implement this expanded interface can be registered explicitly using
register().

set comprehension A compact way to process all or part of the elements in an iterable and return a set with the
results. results = {c for c in 'abracadabra' if c not in 'abc'} generates the set of
strings {'r', 'd'}. See comprehensions.

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a single
argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name[1:3:5]. The bracket (subscript)
notation uses slice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addi-
tion. Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

306 Appendix A. Glossary

https://peps.python.org/pep-3155/

The Python/C API, Release 3.11.4

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

strong reference In Python’s C API, a strong reference is a reference to an object which is owned by the code holding
the reference. The strong reference is taken by calling Py_INCREF() when the reference is created and released
with Py_DECREF() when the reference is deleted.
The Py_NewRef() function can be used to create a strong reference to an object. Usually, the Py_DECREF()
function must be called on the strong reference before exiting the scope of the strong reference, to avoid leaking
one reference.
See also borrowed reference.

text encoding A string in Python is a sequence of Unicode code points (in range U+0000–U+10FFFF). To store or
transfer a string, it needs to be serialized as a sequence of bytes.
Serializing a string into a sequence of bytes is known as “encoding”, and recreating the string from the sequence
of bytes is known as “decoding”.
There are a variety of different text serialization codecs, which are collectively referred to as “text encodings”.

text file A file object able to read and write str objects. Often, a text file actually accesses a byte-oriented datastream
and handles the text encoding automatically. Examples of text files are files opened in text mode ('r' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.
See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (”) or an apostrophe (‘).
While they don’t provide any functionality not available with single-quoted strings, they are useful for a number of
reasons. They allow you to include unescaped single and double quotes within a string and they can span multiple
lines without the use of the continuation character, making them especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible as its __class__ attribute or can be retrieved with type(obj).

type alias A synonym for a type, created by assigning the type to an identifier.
Type aliases are useful for simplifying type hints. For example:

def remove_gray_shades(
colors: list[tuple[int, int, int]]) -> list[tuple[int, int, int]]:

pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:
pass

See typing and PEP 484, which describe this functionality.
type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return

value.
Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs
with code completion and refactoring.
Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().
See typing and PEP 484, which describe this functionality.

307

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/

The Python/C API, Release 3.11.4

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention '\n', the Windows convention '\r\n', and the old Macintosh convention '\
r'. See PEP 278 and PEP 3116, as well as bytes.splitlines() for an additional use.

variable annotation An annotation of a variable or a class attribute.
When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.
See function annotation, PEP 484 and PEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to install
and upgrade Python distribution packages without interfering with the behaviour of other Python applications
running on the same system.
See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted by
the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

308 Appendix A. Glossary

https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

APPENDIX

B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.
Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!
Many thanks go to:

• Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
• the Docutils project for creating reStructuredText and the Docutils suite;
• Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation. See
Misc/ACKS in the Python source distribution for a partial list of contributors.
It is only with the input and contributions of the Python community that Python has such wonderful documentation –
Thank You!

309

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.11/Misc/ACKS

The Python/C API, Release 3.11.4

310 Appendix B. About these documents

APPENDIX

C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
//www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.
In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
//www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.
All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the GPL,
let you distribute a modified version without making your changes open source. The GPL-compatible licenses make it
possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

311

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python/C API, Release 3.11.4

C.2 Terms and conditions for accessing or otherwise using Python

Python software and documentation are licensed under the PSF License Agreement.
Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.
Some software incorporated into Python is under different licenses. The licenses are listed with code falling under that
license. See Licenses and Acknowledgements for Incorporated Software for an incomplete list of these licenses.

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.11.4

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSF"),␣
↪→and

the Individual or Organization ("Licensee") accessing and otherwise using␣
↪→Python

3.11.4 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to␣

↪→reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.11.4 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice␣

↪→of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All␣

↪→Rights
Reserved" are retained in Python 3.11.4 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.11.4 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee␣

↪→hereby
agrees to include in any such work a brief summary of the changes made to␣

↪→Python
3.11.4.

4. PSF is making Python 3.11.4 available to Licensee on an "AS IS" basis.
PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION␣

↪→OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT␣

↪→THE
USE OF PYTHON 3.11.4 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.11.4
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT␣

↪→OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.11.4, OR ANY␣

↪→DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

312 Appendix C. History and License

The Python/C API, Release 3.11.4

6. This License Agreement will automatically terminate upon a material breach␣
↪→of

its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any␣
↪→relationship

of agency, partnership, or joint venture between PSF and Licensee. This␣
↪→License

Agreement does not grant permission to use PSF trademarks or trade name in␣
↪→a

trademark sense to endorse or promote products or services of Licensee, or␣
↪→any

third party.

8. By copying, installing or otherwise using Python 3.11.4, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 313

The Python/C API, Release 3.11.4

(continued from previous page)
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of

(continues on next page)

314 Appendix C. History and License

The Python/C API, Release 3.11.4

(continued from previous page)
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 ZERO-CLAUSEBSD LICENSE FORCODE IN THE PYTHON 3.11.4 DOCUMEN-
TATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.2. Terms and conditions for accessing or otherwise using Python 315

The Python/C API, Release 3.11.4

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

316 Appendix C. History and License

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python/C API, Release 3.11.4

C.3.2 Sockets

The socket module uses the functions, getaddrinfo(), and getnameinfo(), which are coded in separate
source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing

All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 317

https://www.wide.ad.jp/

The Python/C API, Release 3.11.4

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>

All Rights Reserved

Permission to use, copy, modify, and distribute this software
and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.
Author: Zooko O'Whielacronx
http://zooko.com/
mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

318 Appendix C. History and License

The Python/C API, Release 3.11.4

C.3.6 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:
- Use binascii module to do the actual line-by-line conversion

between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 319

The Python/C API, Release 3.11.4

(continued from previous page)
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test.test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(continues on next page)

320 Appendix C. History and License

The Python/C API, Release 3.11.4

(continued from previous page)
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash.c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algorithm. It
contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod and dtoa

The file Python/dtoa.c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/web/
20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains the fol-
lowing copyright and licensing notice:

/**
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 321

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python/C API, Release 3.11.4

(continued from previous page)
*
***/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here. For the OpenSSL 3.0 release, and later releases derived from
that, the Apache License v2 applies:

Apache License
Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,

(continues on next page)

322 Appendix C. History and License

The Python/C API, Release 3.11.4

(continued from previous page)
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 323

The Python/C API, Release 3.11.4

(continued from previous page)
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the

(continues on next page)

324 Appendix C. History and License

The Python/C API, Release 3.11.4

(continued from previous page)
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
--with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 325

The Python/C API, Release 3.11.4

C.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
--with-system-libffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The zlib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old
to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

326 Appendix C. History and License

The Python/C API, Release 3.11.4

C.3.16 cfuhash

The implementation of the hash table used by the tracemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
--with-system-libmpdec:

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 327

The Python/C API, Release 3.11.4

(continued from previous page)
THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from theW3C
website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

328 Appendix C. History and License

https://www.w3.org/TR/xml-c14n2-testcases/

The Python/C API, Release 3.11.4

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project:

Programming the AdLib/Sound Blaster
FM Music Chips
Version 2.0 (24 Feb 1992)
Copyright (c) 1991, 1992 by Jeffrey S. Lee
jlee@smylex.uucp
Warranty and Copyright Policy
This document is provided on an "as-is" basis, and its author makes
no warranty or representation, express or implied, with respect to
its quality performance or fitness for a particular purpose. In no
event will the author of this document be liable for direct, indirect,
special, incidental, or consequential damages arising out of the use
or inability to use the information contained within. Use of this
document is at your own risk.
This file may be used and copied freely so long as the applicable
copyright notices are retained, and no modifications are made to the
text of the document. No money shall be charged for its distribution
beyond reasonable shipping, handling and duplication costs, nor shall
proprietary changes be made to this document so that it cannot be
distributed freely. This document may not be included in published
material or commercial packages without the written consent of its
author.

C.3. Licenses and Acknowledgements for Incorporated Software 329

The Python/C API, Release 3.11.4

330 Appendix C. History and License

APPENDIX

D

COPYRIGHT

Python and this documentation is:
Copyright © 2001-2023 Python Software Foundation. All rights reserved.
Copyright © 2000 BeOpen.com. All rights reserved.
Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

331

The Python/C API, Release 3.11.4

332 Appendix D. Copyright

INDEX

Non-alphabetical
..., 295
2to3, 295
>>>, 295
__all__ (package variable), 70
__dict__ (module attribute), 162
__doc__ (module attribute), 162
__file__ (module attribute), 162, 163
__future__, 300
__import__

built-in function, 71
__loader__ (module attribute), 162
__main__

module, 12, 188, 201
__name__ (module attribute), 162, 163
__package__ (module attribute), 162
__PYVENV_LAUNCHER__, 217, 222
__slots__, 306
_frozen (C struct), 73
_inittab (C struct), 74
_inittab.name (C member), 74
_Py_c_diff (C function), 125
_Py_c_neg (C function), 125
_Py_c_pow (C function), 126
_Py_c_prod (C function), 126
_Py_c_quot (C function), 126
_Py_c_sum (C function), 125
_Py_InitializeMain (C function), 230
_Py_NoneStruct (C var), 245
_PyBytes_Resize (C function), 128
_PyCFunctionFast (C type), 248
_PyCFunctionFastWithKeywords (C type), 248
_PyFrameEvalFunction (C type), 199
_PyInterpreterState_GetEvalFrameFunc (C

function), 199
_PyInterpreterState_SetEvalFrameFunc (C

function), 199
_PyObject_GetDictPtr (C function), 91
_PyObject_New (C function), 245
_PyObject_NewVar (C function), 245
_PyTuple_Resize (C function), 148
_thread

module, 195

A
abort(), 70
abs

built-in function, 99
abstract base class, 295
allocfunc (C type), 285
annotation, 295
argument, 295
argv (in module sys), 192
ascii

built-in function, 91
asynchronous context manager, 296
asynchronous generator, 296
asynchronous generator iterator, 296
asynchronous iterable, 296
asynchronous iterator, 296
attribute, 296
awaitable, 296

B
BDFL, 296
binary file, 296
binaryfunc (C type), 286
borrowed reference, 296
buffer interface

(see buffer protocol), 106
buffer object

(see buffer protocol), 106
buffer protocol, 106
built-in function

__import__, 71
abs, 99
ascii, 91
bytes, 92
classmethod, 250
compile, 72
divmod, 99
float, 101
hash, 92, 264
int, 101

333

The Python/C API, Release 3.11.4

len, 93, 102, 104, 150, 153, 156
pow, 99, 100
repr, 91, 263
staticmethod, 250
tuple, 103, 151
type, 92

builtins
module, 12, 188, 201

bytearray
object, 129

bytecode, 297
bytes

built-in function, 92
object, 127

bytes-like object, 297

C
callable, 297
callback, 297
calloc(), 233
Capsule

object, 174
C-contiguous, 109, 297
class, 297
class variable, 297
classmethod

built-in function, 250
cleanup functions, 70
close() (in module os), 201
CO_FUTURE_DIVISION (C var), 47
code object, 159
compile

built-in function, 72
complex number, 297

object, 125
context manager, 297
context variable, 297
contiguous, 109, 297
copyright (in module sys), 191
coroutine, 298
coroutine function, 298
CPython, 298

D
decorator, 298
descrgetfunc (C type), 286
descriptor, 298
descrsetfunc (C type), 286
destructor (C type), 285
dictionary, 298

object, 152
dictionary comprehension, 298
dictionary view, 298
divmod

built-in function, 99
docstring, 298
duck-typing, 298

E
EAFP, 298
environment variable

__PYVENV_LAUNCHER__, 217, 222
PATH, 12
PYTHONCOERCECLOCALE, 228
PYTHONDEBUG, 186, 222
PYTHONDEVMODE, 218
PYTHONDONTWRITEBYTECODE, 186, 225
PYTHONDUMPREFS, 218, 260
PYTHONEXECUTABLE, 222
PYTHONFAULTHANDLER, 219
PYTHONHASHSEED, 186, 219
PYTHONHOME, 12, 187, 193, 220
PYTHONINSPECT, 187, 220
PYTHONIOENCODING, 189, 224
PYTHONLEGACYWINDOWSFSENCODING, 187,

213
PYTHONLEGACYWINDOWSSTDIO, 187, 221
PYTHONMALLOC, 234, 238, 240, 241
PYTHONMALLOCSTATS, 221, 234
PYTHONNODEBUGRANGES, 218
PYTHONNOUSERSITE, 187, 224
PYTHONOPTIMIZE, 187, 222
PYTHONPATH, 12, 187, 221
PYTHONPLATLIBDIR, 221
PYTHONPROFILEIMPORTTIME, 220
PYTHONPYCACHEPREFIX, 223
PYTHONSAFEPATH, 217
PYTHONTRACEMALLOC, 224
PYTHONUNBUFFERED, 188, 217
PYTHONUTF8, 214, 228
PYTHONVERBOSE, 188, 225
PYTHONWARNINGS, 225

EOFError (built-in exception), 161
exc_info() (in module sys), 10
executable (in module sys), 190
exit(), 70
expression, 299
extension module, 299

F
f-string, 299
file

object, 161
file object, 299
file-like object, 299
filesystem encoding and error handler,

299
finder, 299

334 Index

The Python/C API, Release 3.11.4

float
built-in function, 101

floating point
object, 123

floor division, 299
Fortran contiguous, 109, 297
free(), 233
freefunc (C type), 285
freeze utility, 73
frozenset

object, 155
function, 299

object, 156
function annotation, 299

G
garbage collection, 300
generator, 300
generator expression, 300
generator iterator, 300
generic function, 300
generic type, 300
getattrfunc (C type), 285
getattrofunc (C type), 285
getbufferproc (C type), 286
getiterfunc (C type), 286
GIL, 300
global interpreter lock, 193, 300

H
hash

built-in function, 92, 264
hash-based pyc, 300
hashable, 301
hashfunc (C type), 286

I
IDLE, 301
immutable, 301
import path, 301
importer, 301
importing, 301
incr_item(), 11, 12
initproc (C type), 285
inquiry (C type), 291
instancemethod

object, 158
int

built-in function, 101
integer

object, 119
interactive, 301
interpreted, 301
interpreter lock, 193

interpreter shutdown, 301
iterable, 301
iterator, 301
iternextfunc (C type), 286

K
key function, 302
KeyboardInterrupt (built-in exception), 58
keyword argument, 302

L
lambda, 302
LBYL, 302
len

built-in function, 93, 102, 104, 150, 153,
156

lenfunc (C type), 286
list, 302

object, 150
list comprehension, 302
loader, 302
locale encoding, 302
lock, interpreter, 193
long integer

object, 119
LONG_MAX, 120

M
magic

method, 302
magic method, 302
main(), 189, 192
malloc(), 233
mapping, 302

object, 152
memoryview

object, 172
meta path finder, 303
metaclass, 303
METH_CLASS (C macro), 250
METH_COEXIST (C macro), 250
METH_FASTCALL (C macro), 249
METH_KEYWORDS (C macro), 249
METH_METHOD (C macro), 250
METH_NOARGS (C macro), 250
METH_O (C macro), 250
METH_STATIC (C macro), 250
METH_VARARGS (C macro), 249
method, 303

magic, 302
object, 158
special, 306

method resolution order, 303
MethodType (in module types), 156, 158

Index 335

The Python/C API, Release 3.11.4

module, 303
__main__, 12, 188, 201
_thread, 195
builtins, 12, 188, 201
object, 162
search path, 12, 188, 190, 191
signal, 58
sys, 12, 188, 201

module spec, 303
modules (in module sys), 70, 188
ModuleType (in module types), 162
MRO, 303
mutable, 303

N
named tuple, 303
namespace, 303
namespace package, 304
nested scope, 304
new-style class, 304
newfunc (C type), 285
None

object, 119
numeric

object, 119

O
object, 304

bytearray, 129
bytes, 127
Capsule, 174
code, 159
complex number, 125
dictionary, 152
file, 161
floating point, 123
frozenset, 155
function, 156
instancemethod, 158
integer, 119
list, 150
long integer, 119
mapping, 152
memoryview, 172
method, 158
module, 162
None, 119
numeric, 119
sequence, 127
set, 155
tuple, 148
type, 6, 115

objobjargproc (C type), 286
objobjproc (C type), 286

OverflowError (built-in exception), 120122

P
package, 304
package variable

__all__, 70
parameter, 304
PATH, 12
path

module search, 12, 188, 190, 191
path (in module sys), 12, 188, 190, 191
path based finder, 305
path entry, 304
path entry finder, 305
path entry hook, 305
path-like object, 305
PEP, 305
platform (in module sys), 191
portion, 305
positional argument, 305
pow

built-in function, 99, 100
provisional API, 305
provisional package, 305
Py_ABS (C macro), 4
Py_AddPendingCall (C function), 202
Py_AddPendingCall(), 202
Py_ALWAYS_INLINE (C macro), 4
Py_AtExit (C function), 70
Py_BEGIN_ALLOW_THREADS, 194
Py_BEGIN_ALLOW_THREADS (C macro), 197
Py_BLOCK_THREADS (C macro), 197
Py_buffer (C type), 107
Py_buffer.buf (C member), 107
Py_buffer.format (C member), 107
Py_buffer.internal (C member), 108
Py_buffer.itemsize (C member), 107
Py_buffer.len (C member), 107
Py_buffer.ndim (C member), 107
Py_buffer.obj (C member), 107
Py_buffer.readonly (C member), 107
Py_buffer.shape (C member), 107
Py_buffer.strides (C member), 108
Py_buffer.suboffsets (C member), 108
Py_BuildValue (C function), 81
Py_BytesMain (C function), 43
Py_BytesWarningFlag (C var), 186
Py_CHARMASK (C macro), 4
Py_CLEAR (C function), 50
Py_CompileString (C function), 45
Py_CompileString(), 46
Py_CompileStringExFlags (C function), 46
Py_CompileStringFlags (C function), 45
Py_CompileStringObject (C function), 45

336 Index

The Python/C API, Release 3.11.4

Py_complex (C type), 125
Py_DebugFlag (C var), 186
Py_DecodeLocale (C function), 66
Py_DECREF (C function), 49
Py_DecRef (C function), 50
Py_DECREF(), 7
Py_DEPRECATED (C macro), 4
Py_DontWriteBytecodeFlag (C var), 186
Py_Ellipsis (C var), 172
Py_EncodeLocale (C function), 67
Py_END_ALLOW_THREADS, 194
Py_END_ALLOW_THREADS (C macro), 197
Py_EndInterpreter (C function), 201
Py_EnterRecursiveCall (C function), 61
Py_EQ (C macro), 271
Py_eval_input (C var), 46
Py_Exit (C function), 70
Py_ExitStatusException (C function), 211
Py_False (C var), 123
Py_FatalError (C function), 70
Py_FatalError(), 192
Py_FdIsInteractive (C function), 65
Py_file_input (C var), 46
Py_Finalize (C function), 189
Py_FinalizeEx (C function), 188
Py_FinalizeEx(), 70, 188, 201
Py_FrozenFlag (C var), 186
Py_GE (C macro), 271
Py_GenericAlias (C function), 183
Py_GenericAliasType (C var), 183
Py_GetArgcArgv (C function), 230
Py_GetBuildInfo (C function), 191
Py_GetCompiler (C function), 191
Py_GetCopyright (C function), 191
Py_GETENV (C macro), 5
Py_GetExecPrefix (C function), 190
Py_GetExecPrefix(), 12
Py_GetPath (C function), 190
Py_GetPath(), 12, 189, 191
Py_GetPlatform (C function), 191
Py_GetPrefix (C function), 189
Py_GetPrefix(), 12
Py_GetProgramFullPath (C function), 190
Py_GetProgramFullPath(), 12
Py_GetProgramName (C function), 189
Py_GetPythonHome (C function), 193
Py_GetVersion (C function), 191
Py_GT (C macro), 271
Py_HashRandomizationFlag (C var), 186
Py_IgnoreEnvironmentFlag (C var), 186
Py_INCREF (C function), 49
Py_IncRef (C function), 50
Py_INCREF(), 7
Py_Initialize (C function), 188

Py_Initialize(), 12, 189, 201
Py_InitializeEx (C function), 188
Py_InitializeFromConfig (C function), 225
Py_InspectFlag (C var), 187
Py_InteractiveFlag (C var), 187
Py_Is (C function), 246
Py_IS_TYPE (C function), 247
Py_IsFalse (C function), 247
Py_IsInitialized (C function), 188
Py_IsInitialized(), 12
Py_IsNone (C function), 246
Py_IsolatedFlag (C var), 187
Py_IsTrue (C function), 246
Py_LE (C macro), 271
Py_LeaveRecursiveCall (C function), 61
Py_LegacyWindowsFSEncodingFlag (C var), 187
Py_LegacyWindowsStdioFlag (C var), 187
Py_LIMITED_API (C macro), 15
Py_LT (C macro), 271
Py_Main (C function), 43
PY_MAJOR_VERSION (C macro), 293
Py_MAX (C macro), 5
Py_MEMBER_SIZE (C macro), 5
PY_MICRO_VERSION (C macro), 293
Py_MIN (C macro), 5
PY_MINOR_VERSION (C macro), 293
Py_mod_create (C macro), 166
Py_mod_exec (C macro), 166
Py_NE (C macro), 271
Py_NewInterpreter (C function), 201
Py_NewRef (C function), 49
Py_NO_INLINE (C macro), 5
Py_None (C var), 119
Py_NoSiteFlag (C var), 187
Py_NotImplemented (C var), 89
Py_NoUserSiteDirectory (C var), 187
Py_OptimizeFlag (C var), 187
Py_PreInitialize (C function), 214
Py_PreInitializeFromArgs (C function), 214
Py_PreInitializeFromBytesArgs (C function),

214
Py_PRINT_RAW, 162
Py_QuietFlag (C var), 187
Py_REFCNT (C function), 247
PY_RELEASE_LEVEL (C macro), 293
PY_RELEASE_SERIAL (C macro), 293
Py_ReprEnter (C function), 61
Py_ReprLeave (C function), 61
Py_RETURN_FALSE (C macro), 123
Py_RETURN_NONE (C macro), 119
Py_RETURN_NOTIMPLEMENTED (C macro), 89
Py_RETURN_RICHCOMPARE (C macro), 271
Py_RETURN_TRUE (C macro), 123
Py_RunMain (C function), 229

Index 337

The Python/C API, Release 3.11.4

Py_SET_REFCNT (C function), 247
Py_SET_SIZE (C function), 247
Py_SET_TYPE (C function), 247
Py_SetPath (C function), 191
Py_SetPath(), 190
Py_SetProgramName (C function), 189
Py_SetProgramName(), 12, 188190
Py_SetPythonHome (C function), 192
Py_SetStandardStreamEncoding (C function),

189
Py_single_input (C var), 46
Py_SIZE (C function), 247
Py_ssize_t (C type), 10
PY_SSIZE_T_MAX, 121
Py_STRINGIFY (C macro), 5
Py_TPFLAGS_BASE_EXC_SUBCLASS (C macro), 267
Py_TPFLAGS_BASETYPE (C macro), 266
Py_TPFLAGS_BYTES_SUBCLASS (C macro), 267
Py_TPFLAGS_DEFAULT (C macro), 266
Py_TPFLAGS_DICT_SUBCLASS (C macro), 267
Py_TPFLAGS_DISALLOW_INSTANTIATION (C

macro), 268
Py_TPFLAGS_HAVE_FINALIZE (C macro), 267
Py_TPFLAGS_HAVE_GC (C macro), 266
Py_TPFLAGS_HAVE_VECTORCALL (C macro), 267
Py_TPFLAGS_HEAPTYPE (C macro), 266
Py_TPFLAGS_IMMUTABLETYPE (C macro), 268
Py_TPFLAGS_LIST_SUBCLASS (C macro), 267
Py_TPFLAGS_LONG_SUBCLASS (C macro), 267
Py_TPFLAGS_MAPPING (C macro), 268
Py_TPFLAGS_METHOD_DESCRIPTOR (C macro), 267
Py_TPFLAGS_READY (C macro), 266
Py_TPFLAGS_READYING (C macro), 266
Py_TPFLAGS_SEQUENCE (C macro), 268
Py_TPFLAGS_TUPLE_SUBCLASS (C macro), 267
Py_TPFLAGS_TYPE_SUBCLASS (C macro), 267
Py_TPFLAGS_UNICODE_SUBCLASS (C macro), 267
Py_tracefunc (C type), 203
Py_True (C var), 123
Py_tss_NEEDS_INIT (C macro), 205
Py_tss_t (C type), 205
Py_TYPE (C function), 247
Py_UCS1 (C type), 130
Py_UCS2 (C type), 130
Py_UCS4 (C type), 130
Py_UNBLOCK_THREADS (C macro), 197
Py_UnbufferedStdioFlag (C var), 187
Py_UNICODE (C type), 130
Py_UNICODE_IS_HIGH_SURROGATE (C macro), 134
Py_UNICODE_IS_LOW_SURROGATE (C macro), 134
Py_UNICODE_IS_SURROGATE (C macro), 134
Py_UNICODE_ISALNUM (C function), 133
Py_UNICODE_ISALPHA (C function), 133
Py_UNICODE_ISDECIMAL (C function), 133

Py_UNICODE_ISDIGIT (C function), 133
Py_UNICODE_ISLINEBREAK (C function), 133
Py_UNICODE_ISLOWER (C function), 133
Py_UNICODE_ISNUMERIC (C function), 133
Py_UNICODE_ISPRINTABLE (C function), 133
Py_UNICODE_ISSPACE (C function), 133
Py_UNICODE_ISTITLE (C function), 133
Py_UNICODE_ISUPPER (C function), 133
Py_UNICODE_JOIN_SURROGATES (C macro), 134
Py_UNICODE_TODECIMAL (C function), 134
Py_UNICODE_TODIGIT (C function), 134
Py_UNICODE_TOLOWER (C function), 133
Py_UNICODE_TONUMERIC (C function), 134
Py_UNICODE_TOTITLE (C function), 134
Py_UNICODE_TOUPPER (C function), 133
Py_UNREACHABLE (C macro), 5
Py_UNUSED (C macro), 5
Py_VaBuildValue (C function), 83
PY_VECTORCALL_ARGUMENTS_OFFSET (C macro),

94
Py_VerboseFlag (C var), 188
Py_Version (C var), 293
PY_VERSION_HEX (C macro), 293
Py_VISIT (C function), 291
Py_XDECREF (C function), 50
Py_XDECREF(), 12
Py_XINCREF (C function), 49
Py_XNewRef (C function), 49
PyAIter_Check (C function), 105
PyAnySet_Check (C function), 155
PyAnySet_CheckExact (C function), 155
PyArg_Parse (C function), 80
PyArg_ParseTuple (C function), 80
PyArg_ParseTupleAndKeywords (C function), 80
PyArg_UnpackTuple (C function), 81
PyArg_ValidateKeywordArguments (C func-

tion), 80
PyArg_VaParse (C function), 80
PyArg_VaParseTupleAndKeywords (C function),

80
PyASCIIObject (C type), 130
PyAsyncMethods (C type), 284
PyAsyncMethods.am_aiter (C member), 284
PyAsyncMethods.am_anext (C member), 284
PyAsyncMethods.am_await (C member), 284
PyAsyncMethods.am_send (C member), 285
PyBool_Check (C function), 123
PyBool_FromLong (C function), 123
PyBool_Type (C var), 123
PyBUF_ANY_CONTIGUOUS (C macro), 110
PyBUF_C_CONTIGUOUS (C macro), 110
PyBUF_CONTIG (C macro), 110
PyBUF_CONTIG_RO (C macro), 110
PyBUF_F_CONTIGUOUS (C macro), 110

338 Index

The Python/C API, Release 3.11.4

PyBUF_FORMAT (C macro), 109
PyBUF_FULL (C macro), 110
PyBUF_FULL_RO (C macro), 110
PyBUF_INDIRECT (C macro), 109
PyBUF_MAX_NDIM (C macro), 108
PyBUF_ND (C macro), 109
PyBUF_RECORDS (C macro), 110
PyBUF_RECORDS_RO (C macro), 110
PyBUF_SIMPLE (C macro), 109
PyBUF_STRIDED (C macro), 110
PyBUF_STRIDED_RO (C macro), 110
PyBUF_STRIDES (C macro), 109
PyBUF_WRITABLE (C macro), 109
PyBuffer_FillContiguousStrides (C func-

tion), 113
PyBuffer_FillInfo (C function), 113
PyBuffer_FromContiguous (C function), 112
PyBuffer_GetPointer (C function), 112
PyBuffer_IsContiguous (C function), 112
PyBuffer_Release (C function), 112
PyBuffer_SizeFromFormat (C function), 112
PyBuffer_ToContiguous (C function), 113
PyBufferProcs, 106
PyBufferProcs (C type), 283
PyBufferProcs.bf_getbuffer (C member), 283
PyBufferProcs.bf_releasebuffer (Cmember),

283
PyByteArray_AS_STRING (C function), 130
PyByteArray_AsString (C function), 129
PyByteArray_Check (C function), 129
PyByteArray_CheckExact (C function), 129
PyByteArray_Concat (C function), 129
PyByteArray_FromObject (C function), 129
PyByteArray_FromStringAndSize (C function),

129
PyByteArray_GET_SIZE (C function), 130
PyByteArray_Resize (C function), 129
PyByteArray_Size (C function), 129
PyByteArray_Type (C var), 129
PyByteArrayObject (C type), 129
PyBytes_AS_STRING (C function), 128
PyBytes_AsString (C function), 128
PyBytes_AsStringAndSize (C function), 128
PyBytes_Check (C function), 127
PyBytes_CheckExact (C function), 127
PyBytes_Concat (C function), 128
PyBytes_ConcatAndDel (C function), 128
PyBytes_FromFormat (C function), 127
PyBytes_FromFormatV (C function), 128
PyBytes_FromObject (C function), 128
PyBytes_FromString (C function), 127
PyBytes_FromStringAndSize (C function), 127
PyBytes_GET_SIZE (C function), 128
PyBytes_Size (C function), 128

PyBytes_Type (C var), 127
PyBytesObject (C type), 127
PyCallable_Check (C function), 98
PyCallIter_Check (C function), 170
PyCallIter_New (C function), 170
PyCallIter_Type (C var), 170
PyCapsule (C type), 174
PyCapsule_CheckExact (C function), 174
PyCapsule_Destructor (C type), 174
PyCapsule_GetContext (C function), 175
PyCapsule_GetDestructor (C function), 174
PyCapsule_GetName (C function), 175
PyCapsule_GetPointer (C function), 174
PyCapsule_Import (C function), 175
PyCapsule_IsValid (C function), 175
PyCapsule_New (C function), 174
PyCapsule_SetContext (C function), 175
PyCapsule_SetDestructor (C function), 175
PyCapsule_SetName (C function), 175
PyCapsule_SetPointer (C function), 175
PyCell_Check (C function), 159
PyCell_GET (C function), 159
PyCell_Get (C function), 159
PyCell_New (C function), 159
PyCell_SET (C function), 159
PyCell_Set (C function), 159
PyCell_Type (C var), 159
PyCellObject (C type), 159
PyCFunction (C type), 248
PyCFunctionWithKeywords (C type), 248
PyCMethod (C type), 248
PyCode_Addr2Line (C function), 160
PyCode_Addr2Location (C function), 160
PyCode_Check (C function), 159
PyCode_GetCellvars (C function), 160
PyCode_GetCode (C function), 160
PyCode_GetFreevars (C function), 161
PyCode_GetNumFree (C function), 159
PyCode_GetVarnames (C function), 160
PyCode_New (C function), 159
PyCode_NewEmpty (C function), 160
PyCode_NewWithPosOnlyArgs (C function), 160
PyCode_Type (C var), 159
PyCodec_BackslashReplaceErrors (C func-

tion), 87
PyCodec_Decode (C function), 85
PyCodec_Decoder (C function), 86
PyCodec_Encode (C function), 85
PyCodec_Encoder (C function), 86
PyCodec_IgnoreErrors (C function), 87
PyCodec_IncrementalDecoder (C function), 86
PyCodec_IncrementalEncoder (C function), 86
PyCodec_KnownEncoding (C function), 85
PyCodec_LookupError (C function), 86

Index 339

The Python/C API, Release 3.11.4

PyCodec_NameReplaceErrors (C function), 87
PyCodec_Register (C function), 85
PyCodec_RegisterError (C function), 86
PyCodec_ReplaceErrors (C function), 87
PyCodec_StreamReader (C function), 86
PyCodec_StreamWriter (C function), 86
PyCodec_StrictErrors (C function), 86
PyCodec_Unregister (C function), 85
PyCodec_XMLCharRefReplaceErrors (C func-

tion), 87
PyCodeObject (C type), 159
PyCompactUnicodeObject (C type), 130
PyCompilerFlags (C struct), 46
PyCompilerFlags.cf_feature_version (C

member), 47
PyCompilerFlags.cf_flags (C member), 46
PyComplex_AsCComplex (C function), 126
PyComplex_Check (C function), 126
PyComplex_CheckExact (C function), 126
PyComplex_FromCComplex (C function), 126
PyComplex_FromDoubles (C function), 126
PyComplex_ImagAsDouble (C function), 126
PyComplex_RealAsDouble (C function), 126
PyComplex_Type (C var), 126
PyComplexObject (C type), 126
PyConfig (C type), 215
PyConfig_Clear (C function), 216
PyConfig_InitIsolatedConfig (C function), 215
PyConfig_InitPythonConfig (C function), 215
PyConfig_Read (C function), 216
PyConfig_SetArgv (C function), 215
PyConfig_SetBytesArgv (C function), 215
PyConfig_SetBytesString (C function), 215
PyConfig_SetString (C function), 215
PyConfig_SetWideStringList (C function), 215
PyConfig.argv (C member), 216
PyConfig.base_exec_prefix (C member), 217
PyConfig.base_executable (C member), 217
PyConfig.base_prefix (C member), 217
PyConfig.buffered_stdio (C member), 217
PyConfig.bytes_warning (C member), 217
PyConfig.check_hash_pycs_mode (C member),

218
PyConfig.code_debug_ranges (C member), 217
PyConfig.configure_c_stdio (C member), 218
PyConfig.dev_mode (C member), 218
PyConfig.dump_refs (C member), 218
PyConfig.exec_prefix (C member), 218
PyConfig.executable (C member), 218
PyConfig.faulthandler (C member), 219
PyConfig.filesystem_encoding (C member),

219
PyConfig.filesystem_errors (C member), 219
PyConfig.hash_seed (C member), 219

PyConfig.home (C member), 220
PyConfig.import_time (C member), 220
PyConfig.inspect (C member), 220
PyConfig.install_signal_handlers (C mem-

ber), 220
PyConfig.interactive (C member), 220
PyConfig.isolated (C member), 220
PyConfig.legacy_windows_stdio (C member),

220
PyConfig.malloc_stats (C member), 221
PyConfig.module_search_paths (C member),

221
PyConfig.module_search_paths_set (C mem-

ber), 221
PyConfig.optimization_level (C member), 221
PyConfig.orig_argv (C member), 222
PyConfig.parse_argv (C member), 222
PyConfig.parser_debug (C member), 222
PyConfig.pathconfig_warnings (C member),

222
PyConfig.platlibdir (C member), 221
PyConfig.prefix (C member), 222
PyConfig.program_name (C member), 222
PyConfig.pycache_prefix (C member), 223
PyConfig.pythonpath_env (C member), 221
PyConfig.quiet (C member), 223
PyConfig.run_command (C member), 223
PyConfig.run_filename (C member), 223
PyConfig.run_module (C member), 223
PyConfig.safe_path (C member), 216
PyConfig.show_ref_count (C member), 223
PyConfig.site_import (C member), 223
PyConfig.skip_source_first_line (C mem-

ber), 224
PyConfig.stdio_encoding (C member), 224
PyConfig.stdio_errors (C member), 224
PyConfig.tracemalloc (C member), 224
PyConfig.use_environment (C member), 224
PyConfig.use_hash_seed (C member), 219
PyConfig.user_site_directory (C member),

224
PyConfig.verbose (C member), 225
PyConfig.warn_default_encoding (Cmember),

217
PyConfig.warnoptions (C member), 225
PyConfig.write_bytecode (C member), 225
PyConfig.xoptions (C member), 225
PyContext (C type), 178
PyContext_CheckExact (C function), 178
PyContext_Copy (C function), 179
PyContext_CopyCurrent (C function), 179
PyContext_Enter (C function), 179
PyContext_Exit (C function), 179
PyContext_New (C function), 178

340 Index

The Python/C API, Release 3.11.4

PyContext_Type (C var), 178
PyContextToken (C type), 178
PyContextToken_CheckExact (C function), 178
PyContextToken_Type (C var), 178
PyContextVar (C type), 178
PyContextVar_CheckExact (C function), 178
PyContextVar_Get (C function), 179
PyContextVar_New (C function), 179
PyContextVar_Reset (C function), 179
PyContextVar_Set (C function), 179
PyContextVar_Type (C var), 178
PyCoro_CheckExact (C function), 177
PyCoro_New (C function), 177
PyCoro_Type (C var), 177
PyCoroObject (C type), 177
PyDate_Check (C function), 180
PyDate_CheckExact (C function), 180
PyDate_FromDate (C function), 181
PyDate_FromTimestamp (C function), 183
PyDateTime_Check (C function), 180
PyDateTime_CheckExact (C function), 180
PyDateTime_Date (C type), 179
PyDateTime_DATE_GET_FOLD (C function), 182
PyDateTime_DATE_GET_HOUR (C function), 182
PyDateTime_DATE_GET_MICROSECOND (C func-

tion), 182
PyDateTime_DATE_GET_MINUTE (C function), 182
PyDateTime_DATE_GET_SECOND (C function), 182
PyDateTime_DATE_GET_TZINFO (C function), 182
PyDateTime_DateTime (C type), 179
PyDateTime_DateTimeType (C var), 180
PyDateTime_DateType (C var), 180
PyDateTime_Delta (C type), 180
PyDateTime_DELTA_GET_DAYS (C function), 182
PyDateTime_DELTA_GET_MICROSECONDS (C

function), 183
PyDateTime_DELTA_GET_SECONDS (C function),

183
PyDateTime_DeltaType (C var), 180
PyDateTime_FromDateAndTime (C function), 181
PyDateTime_FromDateAndTimeAndFold (C

function), 181
PyDateTime_FromTimestamp (C function), 183
PyDateTime_GET_DAY (C function), 182
PyDateTime_GET_MONTH (C function), 182
PyDateTime_GET_YEAR (C function), 181
PyDateTime_Time (C type), 180
PyDateTime_TIME_GET_FOLD (C function), 182
PyDateTime_TIME_GET_HOUR (C function), 182
PyDateTime_TIME_GET_MICROSECOND (C func-

tion), 182
PyDateTime_TIME_GET_MINUTE (C function), 182
PyDateTime_TIME_GET_SECOND (C function), 182
PyDateTime_TIME_GET_TZINFO (C function), 182

PyDateTime_TimeType (C var), 180
PyDateTime_TimeZone_UTC (C var), 180
PyDateTime_TZInfoType (C var), 180
PyDelta_Check (C function), 180
PyDelta_CheckExact (C function), 181
PyDelta_FromDSU (C function), 181
PyDescr_IsData (C function), 171
PyDescr_NewClassMethod (C function), 170
PyDescr_NewGetSet (C function), 170
PyDescr_NewMember (C function), 170
PyDescr_NewMethod (C function), 170
PyDescr_NewWrapper (C function), 170
PyDict_Check (C function), 152
PyDict_CheckExact (C function), 152
PyDict_Clear (C function), 152
PyDict_Contains (C function), 152
PyDict_Copy (C function), 152
PyDict_DelItem (C function), 152
PyDict_DelItemString (C function), 152
PyDict_GetItem (C function), 152
PyDict_GetItemString (C function), 153
PyDict_GetItemWithError (C function), 153
PyDict_Items (C function), 153
PyDict_Keys (C function), 153
PyDict_Merge (C function), 154
PyDict_MergeFromSeq2 (C function), 154
PyDict_New (C function), 152
PyDict_Next (C function), 153
PyDict_SetDefault (C function), 153
PyDict_SetItem (C function), 152
PyDict_SetItemString (C function), 152
PyDict_Size (C function), 153
PyDict_Type (C var), 152
PyDict_Update (C function), 154
PyDict_Values (C function), 153
PyDictObject (C type), 152
PyDictProxy_New (C function), 152
PyDoc_STR (C macro), 6
PyDoc_STRVAR (C macro), 6
PyErr_BadArgument (C function), 52
PyErr_BadInternalCall (C function), 54
PyErr_CheckSignals (C function), 58
PyErr_Clear (C function), 51
PyErr_Clear(), 10, 12
PyErr_ExceptionMatches (C function), 55
PyErr_ExceptionMatches(), 12
PyErr_Fetch (C function), 56
PyErr_Format (C function), 52
PyErr_FormatV (C function), 52
PyErr_GetExcInfo (C function), 57
PyErr_GetHandledException (C function), 56
PyErr_GivenExceptionMatches (C function), 55
PyErr_NewException (C function), 59
PyErr_NewExceptionWithDoc (C function), 59

Index 341

The Python/C API, Release 3.11.4

PyErr_NoMemory (C function), 52
PyErr_NormalizeException (C function), 56
PyErr_Occurred (C function), 55
PyErr_Occurred(), 10
PyErr_Print (C function), 51
PyErr_PrintEx (C function), 51
PyErr_ResourceWarning (C function), 55
PyErr_Restore (C function), 56
PyErr_SetExcFromWindowsErr (C function), 53
PyErr_SetExcFromWindowsErrWithFilename

(C function), 54
PyErr_SetExcFromWindowsErrWithFilenameObject

(C function), 53
PyErr_SetExcFromWindowsErrWithFilenameObjects

(C function), 53
PyErr_SetExcInfo (C function), 57
PyErr_SetFromErrno (C function), 52
PyErr_SetFromErrnoWithFilename (C func-

tion), 53
PyErr_SetFromErrnoWithFilenameObject (C

function), 53
PyErr_SetFromErrnoWithFilenameObjects

(C function), 53
PyErr_SetFromWindowsErr (C function), 53
PyErr_SetFromWindowsErrWithFilename (C

function), 53
PyErr_SetHandledException (C function), 57
PyErr_SetImportError (C function), 54
PyErr_SetImportErrorSubclass (C function),

54
PyErr_SetInterrupt (C function), 58
PyErr_SetInterruptEx (C function), 58
PyErr_SetNone (C function), 52
PyErr_SetObject (C function), 52
PyErr_SetString (C function), 52
PyErr_SetString(), 10
PyErr_SyntaxLocation (C function), 54
PyErr_SyntaxLocationEx (C function), 54
PyErr_SyntaxLocationObject (C function), 54
PyErr_WarnEx (C function), 54
PyErr_WarnExplicit (C function), 55
PyErr_WarnExplicitObject (C function), 55
PyErr_WarnFormat (C function), 55
PyErr_WriteUnraisable (C function), 51
PyEval_AcquireLock (C function), 200
PyEval_AcquireThread (C function), 200
PyEval_AcquireThread(), 195
PyEval_EvalCode (C function), 46
PyEval_EvalCodeEx (C function), 46
PyEval_EvalFrame (C function), 46
PyEval_EvalFrameEx (C function), 46
PyEval_GetBuiltins (C function), 85
PyEval_GetFrame (C function), 85
PyEval_GetFuncDesc (C function), 85

PyEval_GetFuncName (C function), 85
PyEval_GetGlobals (C function), 85
PyEval_GetLocals (C function), 85
PyEval_InitThreads (C function), 195
PyEval_InitThreads(), 188
PyEval_MergeCompilerFlags (C function), 46
PyEval_ReleaseLock (C function), 200
PyEval_ReleaseThread (C function), 200
PyEval_ReleaseThread(), 195
PyEval_RestoreThread (C function), 196
PyEval_RestoreThread(), 194, 195
PyEval_SaveThread (C function), 196
PyEval_SaveThread(), 194, 195
PyEval_SetProfile (C function), 204
PyEval_SetTrace (C function), 204
PyEval_ThreadsInitialized (C function), 195
PyExc_ArithmeticError, 61
PyExc_AssertionError, 61
PyExc_AttributeError, 61
PyExc_BaseException, 61
PyExc_BlockingIOError, 61
PyExc_BrokenPipeError, 61
PyExc_BufferError, 61
PyExc_BytesWarning, 63
PyExc_ChildProcessError, 61
PyExc_ConnectionAbortedError, 61
PyExc_ConnectionError, 61
PyExc_ConnectionRefusedError, 61
PyExc_ConnectionResetError, 61
PyExc_DeprecationWarning, 63
PyExc_EnvironmentError, 63
PyExc_EOFError, 61
PyExc_Exception, 61
PyExc_FileExistsError, 61
PyExc_FileNotFoundError, 61
PyExc_FloatingPointError, 61
PyExc_FutureWarning, 63
PyExc_GeneratorExit, 61
PyExc_ImportError, 61
PyExc_ImportWarning, 63
PyExc_IndentationError, 61
PyExc_IndexError, 61
PyExc_InterruptedError, 61
PyExc_IOError, 63
PyExc_IsADirectoryError, 61
PyExc_KeyboardInterrupt, 61
PyExc_KeyError, 61
PyExc_LookupError, 61
PyExc_MemoryError, 61
PyExc_ModuleNotFoundError, 61
PyExc_NameError, 61
PyExc_NotADirectoryError, 61
PyExc_NotImplementedError, 61
PyExc_OSError, 61

342 Index

The Python/C API, Release 3.11.4

PyExc_OverflowError, 61
PyExc_PendingDeprecationWarning, 63
PyExc_PermissionError, 61
PyExc_ProcessLookupError, 61
PyExc_RecursionError, 61
PyExc_ReferenceError, 61
PyExc_ResourceWarning, 63
PyExc_RuntimeError, 61
PyExc_RuntimeWarning, 63
PyExc_StopAsyncIteration, 61
PyExc_StopIteration, 61
PyExc_SyntaxError, 61
PyExc_SyntaxWarning, 63
PyExc_SystemError, 61
PyExc_SystemExit, 61
PyExc_TabError, 61
PyExc_TimeoutError, 61
PyExc_TypeError, 61
PyExc_UnboundLocalError, 61
PyExc_UnicodeDecodeError, 61
PyExc_UnicodeEncodeError, 61
PyExc_UnicodeError, 61
PyExc_UnicodeTranslateError, 61
PyExc_UnicodeWarning, 63
PyExc_UserWarning, 63
PyExc_ValueError, 61
PyExc_Warning, 63
PyExc_WindowsError, 63
PyExc_ZeroDivisionError, 61
PyException_GetCause (C function), 59
PyException_GetContext (C function), 59
PyException_GetTraceback (C function), 59
PyException_SetCause (C function), 59
PyException_SetContext (C function), 59
PyException_SetTraceback (C function), 59
PyFile_FromFd (C function), 161
PyFile_GetLine (C function), 161
PyFile_SetOpenCodeHook (C function), 161
PyFile_WriteObject (C function), 162
PyFile_WriteString (C function), 162
PyFloat_AS_DOUBLE (C function), 124
PyFloat_AsDouble (C function), 123
PyFloat_Check (C function), 123
PyFloat_CheckExact (C function), 123
PyFloat_FromDouble (C function), 123
PyFloat_FromString (C function), 123
PyFloat_GetInfo (C function), 124
PyFloat_GetMax (C function), 124
PyFloat_GetMin (C function), 124
PyFloat_Pack2 (C function), 124
PyFloat_Pack4 (C function), 124
PyFloat_Pack8 (C function), 125
PyFloat_Type (C var), 123
PyFloat_Unpack2 (C function), 125

PyFloat_Unpack4 (C function), 125
PyFloat_Unpack8 (C function), 125
PyFloatObject (C type), 123
PyFrame_Check (C function), 176
PyFrame_GetBack (C function), 176
PyFrame_GetBuiltins (C function), 176
PyFrame_GetCode (C function), 176
PyFrame_GetGenerator (C function), 176
PyFrame_GetGlobals (C function), 176
PyFrame_GetLasti (C function), 176
PyFrame_GetLineNumber (C function), 177
PyFrame_GetLocals (C function), 177
PyFrame_Type (C var), 176
PyFrameObject (C type), 176
PyFrozenSet_Check (C function), 155
PyFrozenSet_CheckExact (C function), 155
PyFrozenSet_New (C function), 155
PyFrozenSet_Type (C var), 155
PyFunction_Check (C function), 156
PyFunction_GetAnnotations (C function), 157
PyFunction_GetClosure (C function), 157
PyFunction_GetCode (C function), 157
PyFunction_GetDefaults (C function), 157
PyFunction_GetGlobals (C function), 157
PyFunction_GetModule (C function), 157
PyFunction_New (C function), 156
PyFunction_NewWithQualName (C function), 157
PyFunction_SetAnnotations (C function), 157
PyFunction_SetClosure (C function), 157
PyFunction_SetDefaults (C function), 157
PyFunction_Type (C var), 156
PyFunctionObject (C type), 156
PyGC_Collect (C function), 291
PyGC_Disable (C function), 291
PyGC_Enable (C function), 291
PyGC_IsEnabled (C function), 291
PyGen_Check (C function), 177
PyGen_CheckExact (C function), 177
PyGen_New (C function), 177
PyGen_NewWithQualName (C function), 177
PyGen_Type (C var), 177
PyGenObject (C type), 177
PyGetSetDef (C type), 252
PyGILState_Check (C function), 197
PyGILState_Ensure (C function), 196
PyGILState_GetThisThreadState (C function),

197
PyGILState_Release (C function), 196
PyImport_AddModule (C function), 72
PyImport_AddModuleObject (C function), 71
PyImport_AppendInittab (C function), 74
PyImport_ExecCodeModule (C function), 72
PyImport_ExecCodeModuleEx (C function), 72

Index 343

The Python/C API, Release 3.11.4

PyImport_ExecCodeModuleObject (C function),
72

PyImport_ExecCodeModuleWithPathnames (C
function), 72

PyImport_ExtendInittab (C function), 74
PyImport_FrozenModules (C var), 73
PyImport_GetImporter (C function), 73
PyImport_GetMagicNumber (C function), 72
PyImport_GetMagicTag (C function), 73
PyImport_GetModule (C function), 73
PyImport_GetModuleDict (C function), 73
PyImport_Import (C function), 71
PyImport_ImportFrozenModule (C function), 73
PyImport_ImportFrozenModuleObject (C

function), 73
PyImport_ImportModule (C function), 70
PyImport_ImportModuleEx (C function), 71
PyImport_ImportModuleLevel (C function), 71
PyImport_ImportModuleLevelObject (C func-

tion), 71
PyImport_ImportModuleNoBlock (C function),

70
PyImport_ReloadModule (C function), 71
PyIndex_Check (C function), 101
PyInstanceMethod_Check (C function), 158
PyInstanceMethod_Function (C function), 158
PyInstanceMethod_GET_FUNCTION (C function),

158
PyInstanceMethod_New (C function), 158
PyInstanceMethod_Type (C var), 158
PyInterpreterState (C type), 195
PyInterpreterState_Clear (C function), 197
PyInterpreterState_Delete (C function), 198
PyInterpreterState_Get (C function), 199
PyInterpreterState_GetDict (C function), 199
PyInterpreterState_GetID (C function), 199
PyInterpreterState_Head (C function), 204
PyInterpreterState_Main (C function), 204
PyInterpreterState_New (C function), 197
PyInterpreterState_Next (C function), 204
PyInterpreterState_ThreadHead (C function),

204
PyIter_Check (C function), 105
PyIter_Next (C function), 105
PyIter_Send (C function), 105
PyList_Append (C function), 151
PyList_AsTuple (C function), 151
PyList_Check (C function), 150
PyList_CheckExact (C function), 150
PyList_GET_ITEM (C function), 151
PyList_GET_SIZE (C function), 150
PyList_GetItem (C function), 150
PyList_GetItem(), 9
PyList_GetSlice (C function), 151

PyList_Insert (C function), 151
PyList_New (C function), 150
PyList_Reverse (C function), 151
PyList_SET_ITEM (C function), 151
PyList_SetItem (C function), 151
PyList_SetItem(), 7
PyList_SetSlice (C function), 151
PyList_Size (C function), 150
PyList_Sort (C function), 151
PyList_Type (C var), 150
PyListObject (C type), 150
PyLong_AsDouble (C function), 122
PyLong_AsLong (C function), 120
PyLong_AsLongAndOverflow (C function), 121
PyLong_AsLongLong (C function), 121
PyLong_AsLongLongAndOverflow (C function),

121
PyLong_AsSize_t (C function), 121
PyLong_AsSsize_t (C function), 121
PyLong_AsUnsignedLong (C function), 121
PyLong_AsUnsignedLongLong (C function), 122
PyLong_AsUnsignedLongLongMask (C function),

122
PyLong_AsUnsignedLongMask (C function), 122
PyLong_AsVoidPtr (C function), 122
PyLong_Check (C function), 119
PyLong_CheckExact (C function), 119
PyLong_FromDouble (C function), 120
PyLong_FromLong (C function), 119
PyLong_FromLongLong (C function), 120
PyLong_FromSize_t (C function), 120
PyLong_FromSsize_t (C function), 120
PyLong_FromString (C function), 120
PyLong_FromUnicodeObject (C function), 120
PyLong_FromUnsignedLong (C function), 120
PyLong_FromUnsignedLongLong (C function), 120
PyLong_FromVoidPtr (C function), 120
PyLong_Type (C var), 119
PyLongObject (C type), 119
PyMapping_Check (C function), 104
PyMapping_DelItem (C function), 104
PyMapping_DelItemString (C function), 104
PyMapping_GetItemString (C function), 104
PyMapping_HasKey (C function), 104
PyMapping_HasKeyString (C function), 104
PyMapping_Items (C function), 104
PyMapping_Keys (C function), 104
PyMapping_Length (C function), 104
PyMapping_SetItemString (C function), 104
PyMapping_Size (C function), 104
PyMapping_Values (C function), 104
PyMappingMethods (C type), 282
PyMappingMethods.mp_ass_subscript (C

member), 282

344 Index

The Python/C API, Release 3.11.4

PyMappingMethods.mp_length (C member), 282
PyMappingMethods.mp_subscript (C member),

282
PyMarshal_ReadLastObjectFromFile (C func-

tion), 75
PyMarshal_ReadLongFromFile (C function), 74
PyMarshal_ReadObjectFromFile (C function),

75
PyMarshal_ReadObjectFromString (C func-

tion), 75
PyMarshal_ReadShortFromFile (C function), 75
PyMarshal_WriteLongToFile (C function), 74
PyMarshal_WriteObjectToFile (C function), 74
PyMarshal_WriteObjectToString (C function),

74
PyMem_Calloc (C function), 235
PyMem_Del (C function), 236
PYMEM_DOMAIN_MEM (C macro), 239
PYMEM_DOMAIN_OBJ (C macro), 239
PYMEM_DOMAIN_RAW (C macro), 238
PyMem_Free (C function), 236
PyMem_GetAllocator (C function), 239
PyMem_Malloc (C function), 235
PyMem_New (C macro), 236
PyMem_RawCalloc (C function), 234
PyMem_RawFree (C function), 235
PyMem_RawMalloc (C function), 234
PyMem_RawRealloc (C function), 235
PyMem_Realloc (C function), 235
PyMem_Resize (C macro), 236
PyMem_SetAllocator (C function), 239
PyMem_SetupDebugHooks (C function), 239
PyMemAllocatorDomain (C type), 238
PyMemAllocatorEx (C type), 238
PyMember_GetOne (C function), 251
PyMember_SetOne (C function), 252
PyMemberDef (C type), 251
PyMemoryView_Check (C function), 173
PyMemoryView_FromBuffer (C function), 172
PyMemoryView_FromMemory (C function), 172
PyMemoryView_FromObject (C function), 172
PyMemoryView_GET_BASE (C function), 173
PyMemoryView_GET_BUFFER (C function), 173
PyMemoryView_GetContiguous (C function), 172
PyMethod_Check (C function), 158
PyMethod_Function (C function), 158
PyMethod_GET_FUNCTION (C function), 158
PyMethod_GET_SELF (C function), 158
PyMethod_New (C function), 158
PyMethod_Self (C function), 158
PyMethod_Type (C var), 158
PyMethodDef (C type), 249
PyMethodDef.ml_doc (C member), 249
PyMethodDef.ml_flags (C member), 249

PyMethodDef.ml_meth (C member), 249
PyMethodDef.ml_name (C member), 249
PyModule_AddFunctions (C function), 167
PyModule_AddIntConstant (C function), 169
PyModule_AddIntMacro (C macro), 169
PyModule_AddObject (C function), 168
PyModule_AddObjectRef (C function), 167
PyModule_AddStringConstant (C function), 169
PyModule_AddStringMacro (C macro), 169
PyModule_AddType (C function), 169
PyModule_Check (C function), 162
PyModule_CheckExact (C function), 162
PyModule_Create (C function), 165
PyModule_Create2 (C function), 165
PyModule_ExecDef (C function), 167
PyModule_FromDefAndSpec (C function), 166
PyModule_FromDefAndSpec2 (C function), 166
PyModule_GetDef (C function), 163
PyModule_GetDict (C function), 162
PyModule_GetFilename (C function), 163
PyModule_GetFilenameObject (C function), 163
PyModule_GetName (C function), 163
PyModule_GetNameObject (C function), 163
PyModule_GetState (C function), 163
PyModule_New (C function), 162
PyModule_NewObject (C function), 162
PyModule_SetDocString (C function), 167
PyModule_Type (C var), 162
PyModuleDef (C type), 163
PyModuleDef_Init (C function), 165
PyModuleDef_Slot (C type), 165
PyModuleDef_Slot.slot (C member), 165
PyModuleDef_Slot.value (C member), 165
PyModuleDef.m_base (C member), 163
PyModuleDef.m_clear (C member), 164
PyModuleDef.m_doc (C member), 163
PyModuleDef.m_free (C member), 164
PyModuleDef.m_methods (C member), 164
PyModuleDef.m_name (C member), 163
PyModuleDef.m_size (C member), 163
PyModuleDef.m_slots (C member), 164
PyModuleDef.m_slots.m_reload (C member),

164
PyModuleDef.m_traverse (C member), 164
PyNumber_Absolute (C function), 99
PyNumber_Add (C function), 98
PyNumber_And (C function), 99
PyNumber_AsSsize_t (C function), 101
PyNumber_Check (C function), 98
PyNumber_Divmod (C function), 99
PyNumber_Float (C function), 101
PyNumber_FloorDivide (C function), 99
PyNumber_Index (C function), 101
PyNumber_InPlaceAdd (C function), 100

Index 345

The Python/C API, Release 3.11.4

PyNumber_InPlaceAnd (C function), 101
PyNumber_InPlaceFloorDivide (C function), 100
PyNumber_InPlaceLshift (C function), 100
PyNumber_InPlaceMatrixMultiply (C func-

tion), 100
PyNumber_InPlaceMultiply (C function), 100
PyNumber_InPlaceOr (C function), 101
PyNumber_InPlacePower (C function), 100
PyNumber_InPlaceRemainder (C function), 100
PyNumber_InPlaceRshift (C function), 100
PyNumber_InPlaceSubtract (C function), 100
PyNumber_InPlaceTrueDivide (C function), 100
PyNumber_InPlaceXor (C function), 101
PyNumber_Invert (C function), 99
PyNumber_Long (C function), 101
PyNumber_Lshift (C function), 99
PyNumber_MatrixMultiply (C function), 98
PyNumber_Multiply (C function), 98
PyNumber_Negative (C function), 99
PyNumber_Or (C function), 100
PyNumber_Positive (C function), 99
PyNumber_Power (C function), 99
PyNumber_Remainder (C function), 99
PyNumber_Rshift (C function), 99
PyNumber_Subtract (C function), 98
PyNumber_ToBase (C function), 101
PyNumber_TrueDivide (C function), 99
PyNumber_Xor (C function), 99
PyNumberMethods (C type), 279
PyNumberMethods.nb_absolute (C member), 280
PyNumberMethods.nb_add (C member), 280
PyNumberMethods.nb_and (C member), 281
PyNumberMethods.nb_bool (C member), 280
PyNumberMethods.nb_divmod (C member), 280
PyNumberMethods.nb_float (C member), 281
PyNumberMethods.nb_floor_divide (C mem-

ber), 281
PyNumberMethods.nb_index (C member), 281
PyNumberMethods.nb_inplace_add (Cmember),

281
PyNumberMethods.nb_inplace_and (Cmember),

281
PyNumberMethods.nb_inplace_floor_divide

(C member), 281
PyNumberMethods.nb_inplace_lshift (C

member), 281
PyNumberMethods.nb_inplace_matrix_multiply

(C member), 281
PyNumberMethods.nb_inplace_multiply (C

member), 281
PyNumberMethods.nb_inplace_or (C member),

281
PyNumberMethods.nb_inplace_power (C mem-

ber), 281

PyNumberMethods.nb_inplace_remainder (C
member), 281

PyNumberMethods.nb_inplace_rshift (C
member), 281

PyNumberMethods.nb_inplace_subtract (C
member), 281

PyNumberMethods.nb_inplace_true_divide
(C member), 281

PyNumberMethods.nb_inplace_xor (Cmember),
281

PyNumberMethods.nb_int (C member), 281
PyNumberMethods.nb_invert (C member), 280
PyNumberMethods.nb_lshift (C member), 281
PyNumberMethods.nb_matrix_multiply (C

member), 281
PyNumberMethods.nb_multiply (C member), 280
PyNumberMethods.nb_negative (C member), 280
PyNumberMethods.nb_or (C member), 281
PyNumberMethods.nb_positive (C member), 280
PyNumberMethods.nb_power (C member), 280
PyNumberMethods.nb_remainder (C member),

280
PyNumberMethods.nb_reserved (C member), 281
PyNumberMethods.nb_rshift (C member), 281
PyNumberMethods.nb_subtract (C member), 280
PyNumberMethods.nb_true_divide (Cmember),

281
PyNumberMethods.nb_xor (C member), 281
PyObject (C type), 246
PyObject_AsCharBuffer (C function), 113
PyObject_ASCII (C function), 91
PyObject_AsFileDescriptor (C function), 161
PyObject_AsReadBuffer (C function), 113
PyObject_AsWriteBuffer (C function), 114
PyObject_Bytes (C function), 91
PyObject_Call (C function), 96
PyObject_CallFunction (C function), 97
PyObject_CallFunctionObjArgs (C function),

97
PyObject_CallMethod (C function), 97
PyObject_CallMethodNoArgs (C function), 97
PyObject_CallMethodObjArgs (C function), 97
PyObject_CallMethodOneArg (C function), 97
PyObject_CallNoArgs (C function), 96
PyObject_CallObject (C function), 96
PyObject_Calloc (C function), 237
PyObject_CallOneArg (C function), 96
PyObject_CheckBuffer (C function), 112
PyObject_CheckReadBuffer (C function), 113
PyObject_ClearWeakRefs (C function), 174
PyObject_CopyData (C function), 113
PyObject_Del (C function), 245
PyObject_DelAttr (C function), 90
PyObject_DelAttrString (C function), 90

346 Index

The Python/C API, Release 3.11.4

PyObject_DelItem (C function), 93
PyObject_Dir (C function), 93
PyObject_Format (C function), 91
PyObject_Free (C function), 237
PyObject_GC_Del (C function), 290
PyObject_GC_IsFinalized (C function), 290
PyObject_GC_IsTracked (C function), 290
PyObject_GC_New (C macro), 290
PyObject_GC_NewVar (C macro), 290
PyObject_GC_Resize (C function), 290
PyObject_GC_Track (C function), 290
PyObject_GC_UnTrack (C function), 290
PyObject_GenericGetAttr (C function), 90
PyObject_GenericGetDict (C function), 90
PyObject_GenericSetAttr (C function), 90
PyObject_GenericSetDict (C function), 90
PyObject_GetAIter (C function), 93
PyObject_GetArenaAllocator (C function), 241
PyObject_GetAttr (C function), 89
PyObject_GetAttrString (C function), 90
PyObject_GetBuffer (C function), 112
PyObject_GetItem (C function), 93
PyObject_GetIter (C function), 93
PyObject_HasAttr (C function), 89
PyObject_HasAttrString (C function), 89
PyObject_Hash (C function), 92
PyObject_HashNotImplemented (C function), 92
PyObject_HEAD (C macro), 246
PyObject_HEAD_INIT (C macro), 247
PyObject_Init (C function), 245
PyObject_InitVar (C function), 245
PyObject_IS_GC (C function), 290
PyObject_IsInstance (C function), 92
PyObject_IsSubclass (C function), 92
PyObject_IsTrue (C function), 92
PyObject_Length (C function), 93
PyObject_LengthHint (C function), 93
PyObject_Malloc (C function), 237
PyObject_New (C macro), 245
PyObject_NewVar (C macro), 245
PyObject_Not (C function), 92
PyObject._ob_next (C member), 260
PyObject._ob_prev (C member), 260
PyObject_Print (C function), 89
PyObject_Realloc (C function), 237
PyObject_Repr (C function), 91
PyObject_RichCompare (C function), 91
PyObject_RichCompareBool (C function), 91
PyObject_SetArenaAllocator (C function), 241
PyObject_SetAttr (C function), 90
PyObject_SetAttrString (C function), 90
PyObject_SetItem (C function), 93
PyObject_Size (C function), 93
PyObject_Str (C function), 91

PyObject_Type (C function), 92
PyObject_TypeCheck (C function), 92
PyObject_VAR_HEAD (C macro), 246
PyObject_Vectorcall (C function), 97
PyObject_VectorcallDict (C function), 98
PyObject_VectorcallMethod (C function), 98
PyObjectArenaAllocator (C type), 241
PyObject.ob_refcnt (C member), 259
PyObject.ob_type (C member), 259
PyOS_AfterFork (C function), 66
PyOS_AfterFork_Child (C function), 66
PyOS_AfterFork_Parent (C function), 65
PyOS_BeforeFork (C function), 65
PyOS_CheckStack (C function), 66
PyOS_double_to_string (C function), 84
PyOS_FSPath (C function), 65
PyOS_getsig (C function), 66
PyOS_InputHook (C var), 44
PyOS_ReadlineFunctionPointer (C var), 44
PyOS_setsig (C function), 66
PyOS_snprintf (C function), 83
PyOS_stricmp (C function), 84
PyOS_string_to_double (C function), 84
PyOS_strnicmp (C function), 84
PyOS_vsnprintf (C function), 83
PyPreConfig (C type), 212
PyPreConfig_InitIsolatedConfig (C func-

tion), 212
PyPreConfig_InitPythonConfig (C function),

212
PyPreConfig.allocator (C member), 212
PyPreConfig.coerce_c_locale (C member), 213
PyPreConfig.coerce_c_locale_warn (C mem-

ber), 213
PyPreConfig.configure_locale (C member),

212
PyPreConfig.dev_mode (C member), 213
PyPreConfig.isolated (C member), 213
PyPreConfig.legacy_windows_fs_encoding

(C member), 213
PyPreConfig.parse_argv (C member), 213
PyPreConfig.use_environment (C member), 213
PyPreConfig.utf8_mode (C member), 213
PyProperty_Type (C var), 170
PyRun_AnyFile (C function), 43
PyRun_AnyFileEx (C function), 43
PyRun_AnyFileExFlags (C function), 43
PyRun_AnyFileFlags (C function), 43
PyRun_File (C function), 45
PyRun_FileEx (C function), 45
PyRun_FileExFlags (C function), 45
PyRun_FileFlags (C function), 45
PyRun_InteractiveLoop (C function), 44
PyRun_InteractiveLoopFlags (C function), 44

Index 347

The Python/C API, Release 3.11.4

PyRun_InteractiveOne (C function), 44
PyRun_InteractiveOneFlags (C function), 44
PyRun_SimpleFile (C function), 44
PyRun_SimpleFileEx (C function), 44
PyRun_SimpleFileExFlags (C function), 44
PyRun_SimpleString (C function), 44
PyRun_SimpleStringFlags (C function), 44
PyRun_String (C function), 45
PyRun_StringFlags (C function), 45
PySendResult (C type), 105
PySeqIter_Check (C function), 170
PySeqIter_New (C function), 170
PySeqIter_Type (C var), 170
PySequence_Check (C function), 102
PySequence_Concat (C function), 102
PySequence_Contains (C function), 103
PySequence_Count (C function), 102
PySequence_DelItem (C function), 102
PySequence_DelSlice (C function), 102
PySequence_Fast (C function), 103
PySequence_Fast_GET_ITEM (C function), 103
PySequence_Fast_GET_SIZE (C function), 103
PySequence_Fast_ITEMS (C function), 103
PySequence_GetItem (C function), 102
PySequence_GetItem(), 9
PySequence_GetSlice (C function), 102
PySequence_Index (C function), 103
PySequence_InPlaceConcat (C function), 102
PySequence_InPlaceRepeat (C function), 102
PySequence_ITEM (C function), 103
PySequence_Length (C function), 102
PySequence_List (C function), 103
PySequence_Repeat (C function), 102
PySequence_SetItem (C function), 102
PySequence_SetSlice (C function), 102
PySequence_Size (C function), 102
PySequence_Tuple (C function), 103
PySequenceMethods (C type), 282
PySequenceMethods.sq_ass_item (C member),

282
PySequenceMethods.sq_concat (C member), 282
PySequenceMethods.sq_contains (C member),

282
PySequenceMethods.sq_inplace_concat (C

member), 283
PySequenceMethods.sq_inplace_repeat (C

member), 283
PySequenceMethods.sq_item (C member), 282
PySequenceMethods.sq_length (C member), 282
PySequenceMethods.sq_repeat (C member), 282
PySet_Add (C function), 156
PySet_Check (C function), 155
PySet_CheckExact (C function), 155
PySet_Clear (C function), 156

PySet_Contains (C function), 156
PySet_Discard (C function), 156
PySet_GET_SIZE (C function), 156
PySet_New (C function), 155
PySet_Pop (C function), 156
PySet_Size (C function), 155
PySet_Type (C var), 155
PySetObject (C type), 155
PySignal_SetWakeupFd (C function), 58
PySlice_AdjustIndices (C function), 172
PySlice_Check (C function), 171
PySlice_GetIndices (C function), 171
PySlice_GetIndicesEx (C function), 171
PySlice_New (C function), 171
PySlice_Type (C var), 171
PySlice_Unpack (C function), 172
PyState_AddModule (C function), 169
PyState_FindModule (C function), 169
PyState_RemoveModule (C function), 169
PyStatus (C type), 211
PyStatus_Error (C function), 211
PyStatus_Exception (C function), 211
PyStatus_Exit (C function), 211
PyStatus_IsError (C function), 211
PyStatus_IsExit (C function), 211
PyStatus_NoMemory (C function), 211
PyStatus_Ok (C function), 211
PyStatus.err_msg (C member), 211
PyStatus.exitcode (C member), 211
PyStatus.func (C member), 211
PyStructSequence_Desc (C type), 149
PyStructSequence_Desc.doc (C member), 149
PyStructSequence_Desc.fields (C member),

149
PyStructSequence_Desc.n_in_sequence (C

member), 149
PyStructSequence_Desc.name (C member), 149
PyStructSequence_Field (C type), 149
PyStructSequence_Field.doc (C member), 149
PyStructSequence_Field.name (C member), 149
PyStructSequence_GET_ITEM (C function), 150
PyStructSequence_GetItem (C function), 150
PyStructSequence_InitType (C function), 149
PyStructSequence_InitType2 (C function), 149
PyStructSequence_New (C function), 149
PyStructSequence_NewType (C function), 149
PyStructSequence_SET_ITEM (C function), 150
PyStructSequence_SetItem (C function), 150
PyStructSequence_UnnamedField (C var), 149
PySys_AddAuditHook (C function), 69
PySys_AddWarnOption (C function), 68
PySys_AddWarnOptionUnicode (C function), 68
PySys_AddXOption (C function), 69
PySys_Audit (C function), 69

348 Index

The Python/C API, Release 3.11.4

PySys_FormatStderr (C function), 69
PySys_FormatStdout (C function), 69
PySys_GetObject (C function), 68
PySys_GetXOptions (C function), 69
PySys_ResetWarnOptions (C function), 68
PySys_SetArgv (C function), 192
PySys_SetArgv(), 188
PySys_SetArgvEx (C function), 192
PySys_SetArgvEx(), 188
PySys_SetObject (C function), 68
PySys_SetPath (C function), 68
PySys_WriteStderr (C function), 68
PySys_WriteStdout (C function), 68
Python 3000, 305
Python Enhancement Proposals

PEP 1, 305
PEP 7, 3, 6
PEP 238, 47, 299
PEP 278, 308
PEP 302, 299, 302
PEP 343, 297
PEP 353, 10
PEP 362, 296, 304
PEP 383, 138, 139
PEP 387, 15
PEP 393, 130, 137
PEP 411, 305
PEP 420, 299, 304, 305
PEP 432, 230
PEP 442, 278
PEP 443, 300
PEP 451, 166, 299
PEP 483, 300
PEP 484, 295, 299, 300, 307, 308
PEP 489, 166
PEP 492, 296, 298
PEP 498, 299
PEP 519, 305
PEP 523, 199
PEP 525, 296
PEP 526, 295, 308
PEP 528, 187, 221
PEP 529, 139, 187
PEP 538, 228
PEP 539, 205
PEP 540, 228
PEP 552, 218
PEP 578, 70
PEP 585, 300
PEP 587, 209
PEP 590, 94
PEP 623, 130
PEP 634, 268, 269
PEP 3116, 308

PEP 3119, 92
PEP 3121, 164
PEP 3147, 73
PEP 3151, 63
PEP 3155, 306

PYTHONCOERCECLOCALE, 228
PYTHONDEBUG, 186, 222
PYTHONDEVMODE, 218
PYTHONDONTWRITEBYTECODE, 186, 225
PYTHONDUMPREFS, 218, 260
PYTHONEXECUTABLE, 222
PYTHONFAULTHANDLER, 219
PYTHONHASHSEED, 186, 219
PYTHONHOME, 12, 187, 193, 220
Pythonic, 305
PYTHONINSPECT, 187, 220
PYTHONIOENCODING, 189, 224
PYTHONLEGACYWINDOWSFSENCODING, 187, 213
PYTHONLEGACYWINDOWSSTDIO, 187, 221
PYTHONMALLOC, 234, 238, 240, 241
PYTHONMALLOCSTATS, 221, 234
PYTHONNODEBUGRANGES, 218
PYTHONNOUSERSITE, 187, 224
PYTHONOPTIMIZE, 187, 222
PYTHONPATH, 12, 187, 221
PYTHONPLATLIBDIR, 221
PYTHONPROFILEIMPORTTIME, 220
PYTHONPYCACHEPREFIX, 223
PYTHONSAFEPATH, 217
PYTHONTRACEMALLOC, 224
PYTHONUNBUFFERED, 188, 217
PYTHONUTF8, 214, 228
PYTHONVERBOSE, 188, 225
PYTHONWARNINGS, 225
PyThread_create_key (C function), 206
PyThread_delete_key (C function), 206
PyThread_delete_key_value (C function), 206
PyThread_get_key_value (C function), 206
PyThread_ReInitTLS (C function), 206
PyThread_set_key_value (C function), 206
PyThread_tss_alloc (C function), 205
PyThread_tss_create (C function), 206
PyThread_tss_delete (C function), 206
PyThread_tss_free (C function), 205
PyThread_tss_get (C function), 206
PyThread_tss_is_created (C function), 206
PyThread_tss_set (C function), 206
PyThreadState, 193
PyThreadState (C type), 195
PyThreadState_Clear (C function), 198
PyThreadState_Delete (C function), 198
PyThreadState_DeleteCurrent (C function), 198
PyThreadState_EnterTracing (C function), 198
PyThreadState_Get (C function), 196

Index 349

The Python/C API, Release 3.11.4

PyThreadState_GetDict (C function), 199
PyThreadState_GetFrame (C function), 198
PyThreadState_GetID (C function), 198
PyThreadState_GetInterpreter (C function),

198
PyThreadState_LeaveTracing (C function), 198
PyThreadState_New (C function), 198
PyThreadState_Next (C function), 204
PyThreadState_SetAsyncExc (C function), 200
PyThreadState_Swap (C function), 196
PyThreadState.interp (C member), 195
PyTime_Check (C function), 180
PyTime_CheckExact (C function), 180
PyTime_FromTime (C function), 181
PyTime_FromTimeAndFold (C function), 181
PyTimeZone_FromOffset (C function), 181
PyTimeZone_FromOffsetAndName (C function),

181
PyTrace_C_CALL (C var), 203
PyTrace_C_EXCEPTION (C var), 203
PyTrace_C_RETURN (C var), 203
PyTrace_CALL (C var), 203
PyTrace_EXCEPTION (C var), 203
PyTrace_LINE (C var), 203
PyTrace_OPCODE (C var), 204
PyTrace_RETURN (C var), 203
PyTraceMalloc_Track (C function), 242
PyTraceMalloc_Untrack (C function), 242
PyTuple_Check (C function), 148
PyTuple_CheckExact (C function), 148
PyTuple_GET_ITEM (C function), 148
PyTuple_GET_SIZE (C function), 148
PyTuple_GetItem (C function), 148
PyTuple_GetSlice (C function), 148
PyTuple_New (C function), 148
PyTuple_Pack (C function), 148
PyTuple_SET_ITEM (C function), 148
PyTuple_SetItem (C function), 148
PyTuple_SetItem(), 7
PyTuple_Size (C function), 148
PyTuple_Type (C var), 148
PyTupleObject (C type), 148
PyType_Check (C function), 115
PyType_CheckExact (C function), 115
PyType_ClearCache (C function), 115
PyType_FromModuleAndSpec (C function), 117
PyType_FromSpec (C function), 118
PyType_FromSpecWithBases (C function), 117
PyType_GenericAlloc (C function), 116
PyType_GenericNew (C function), 116
PyType_GetFlags (C function), 115
PyType_GetModule (C function), 117
PyType_GetModuleByDef (C function), 117
PyType_GetModuleState (C function), 117

PyType_GetName (C function), 116
PyType_GetQualName (C function), 116
PyType_GetSlot (C function), 116
PyType_HasFeature (C function), 116
PyType_IS_GC (C function), 116
PyType_IsSubtype (C function), 116
PyType_Modified (C function), 116
PyType_Ready (C function), 116
PyType_Slot (C type), 118
PyType_Slot.PyType_Slot.pfunc (C member),

119
PyType_Slot.PyType_Slot.slot (C member),

118
PyType_Spec (C type), 118
PyType_Spec.PyType_Spec.basicsize (C

member), 118
PyType_Spec.PyType_Spec.flags (C member),

118
PyType_Spec.PyType_Spec.itemsize (C mem-

ber), 118
PyType_Spec.PyType_Spec.name (C member),

118
PyType_Spec.PyType_Spec.slots (C member),

118
PyType_Type (C var), 115
PyTypeObject (C type), 115
PyTypeObject.tp_alloc (C member), 275
PyTypeObject.tp_as_async (C member), 263
PyTypeObject.tp_as_buffer (C member), 265
PyTypeObject.tp_as_mapping (C member), 264
PyTypeObject.tp_as_number (C member), 263
PyTypeObject.tp_as_sequence (C member), 263
PyTypeObject.tp_base (C member), 273
PyTypeObject.tp_bases (C member), 277
PyTypeObject.tp_basicsize (C member), 261
PyTypeObject.tp_cache (C member), 277
PyTypeObject.tp_call (C member), 264
PyTypeObject.tp_clear (C member), 270
PyTypeObject.tp_dealloc (C member), 261
PyTypeObject.tp_del (C member), 277
PyTypeObject.tp_descr_get (C member), 274
PyTypeObject.tp_descr_set (C member), 274
PyTypeObject.tp_dict (C member), 273
PyTypeObject.tp_dictoffset (C member), 274
PyTypeObject.tp_doc (C member), 269
PyTypeObject.tp_finalize (C member), 278
PyTypeObject.tp_flags (C member), 265
PyTypeObject.tp_free (C member), 276
PyTypeObject.tp_getattr (C member), 262
PyTypeObject.tp_getattro (C member), 265
PyTypeObject.tp_getset (C member), 273
PyTypeObject.tp_hash (C member), 264
PyTypeObject.tp_init (C member), 275
PyTypeObject.tp_is_gc (C member), 276

350 Index

The Python/C API, Release 3.11.4

PyTypeObject.tp_itemsize (C member), 261
PyTypeObject.tp_iter (C member), 272
PyTypeObject.tp_iternext (C member), 272
PyTypeObject.tp_members (C member), 273
PyTypeObject.tp_methods (C member), 272
PyTypeObject.tp_mro (C member), 277
PyTypeObject.tp_name (C member), 260
PyTypeObject.tp_new (C member), 276
PyTypeObject.tp_repr (C member), 263
PyTypeObject.tp_richcompare (C member), 271
PyTypeObject.tp_setattr (C member), 263
PyTypeObject.tp_setattro (C member), 265
PyTypeObject.tp_str (C member), 264
PyTypeObject.tp_subclasses (C member), 277
PyTypeObject.tp_traverse (C member), 269
PyTypeObject.tp_vectorcall (C member), 278
PyTypeObject.tp_vectorcall_offset (C

member), 262
PyTypeObject.tp_version_tag (C member), 277
PyTypeObject.tp_weaklist (C member), 277
PyTypeObject.tp_weaklistoffset (Cmember),

272
PyTZInfo_Check (C function), 181
PyTZInfo_CheckExact (C function), 181
PyUnicode_1BYTE_DATA (C function), 131
PyUnicode_1BYTE_KIND (C macro), 131
PyUnicode_2BYTE_DATA (C function), 131
PyUnicode_2BYTE_KIND (C macro), 131
PyUnicode_4BYTE_DATA (C function), 131
PyUnicode_4BYTE_KIND (C macro), 131
PyUnicode_AS_DATA (C function), 132
PyUnicode_AS_UNICODE (C function), 132
PyUnicode_AsASCIIString (C function), 144
PyUnicode_AsCharmapString (C function), 145
PyUnicode_AsEncodedString (C function), 141
PyUnicode_AsLatin1String (C function), 144
PyUnicode_AsMBCSString (C function), 145
PyUnicode_AsRawUnicodeEscapeString (C

function), 144
PyUnicode_AsUCS4 (C function), 137
PyUnicode_AsUCS4Copy (C function), 137
PyUnicode_AsUnicode (C function), 137
PyUnicode_AsUnicodeAndSize (C function), 138
PyUnicode_AsUnicodeEscapeString (C func-

tion), 144
PyUnicode_AsUTF8 (C function), 142
PyUnicode_AsUTF8AndSize (C function), 141
PyUnicode_AsUTF8String (C function), 141
PyUnicode_AsUTF16String (C function), 143
PyUnicode_AsUTF32String (C function), 142
PyUnicode_AsWideChar (C function), 140
PyUnicode_AsWideCharString (C function), 140
PyUnicode_Check (C function), 131
PyUnicode_CheckExact (C function), 131

PyUnicode_Compare (C function), 147
PyUnicode_CompareWithASCIIString (C func-

tion), 147
PyUnicode_Concat (C function), 146
PyUnicode_Contains (C function), 147
PyUnicode_CopyCharacters (C function), 136
PyUnicode_Count (C function), 147
PyUnicode_DATA (C function), 132
PyUnicode_Decode (C function), 141
PyUnicode_DecodeASCII (C function), 144
PyUnicode_DecodeCharmap (C function), 145
PyUnicode_DecodeFSDefault (C function), 139
PyUnicode_DecodeFSDefaultAndSize (C func-

tion), 139
PyUnicode_DecodeLatin1 (C function), 144
PyUnicode_DecodeLocale (C function), 138
PyUnicode_DecodeLocaleAndSize (C function),

138
PyUnicode_DecodeMBCS (C function), 145
PyUnicode_DecodeMBCSStateful (C function),

145
PyUnicode_DecodeRawUnicodeEscape (C func-

tion), 144
PyUnicode_DecodeUnicodeEscape (C function),

144
PyUnicode_DecodeUTF7 (C function), 143
PyUnicode_DecodeUTF7Stateful (C function),

143
PyUnicode_DecodeUTF8 (C function), 141
PyUnicode_DecodeUTF8Stateful (C function),

141
PyUnicode_DecodeUTF16 (C function), 143
PyUnicode_DecodeUTF16Stateful (C function),

143
PyUnicode_DecodeUTF32 (C function), 142
PyUnicode_DecodeUTF32Stateful (C function),

142
PyUnicode_EncodeCodePage (C function), 146
PyUnicode_EncodeFSDefault (C function), 140
PyUnicode_EncodeLocale (C function), 138
PyUnicode_Fill (C function), 136
PyUnicode_Find (C function), 146
PyUnicode_FindChar (C function), 146
PyUnicode_Format (C function), 147
PyUnicode_FromEncodedObject (C function), 136
PyUnicode_FromFormat (C function), 135
PyUnicode_FromFormatV (C function), 136
PyUnicode_FromKindAndData (C function), 134
PyUnicode_FromObject (C function), 136
PyUnicode_FromString (C function), 135
PyUnicode_FromString(), 152
PyUnicode_FromStringAndSize (C function), 135
PyUnicode_FromUnicode (C function), 137
PyUnicode_FromWideChar (C function), 140

Index 351

The Python/C API, Release 3.11.4

PyUnicode_FSConverter (C function), 139
PyUnicode_FSDecoder (C function), 139
PyUnicode_GET_DATA_SIZE (C function), 132
PyUnicode_GET_LENGTH (C function), 131
PyUnicode_GET_SIZE (C function), 132
PyUnicode_GetLength (C function), 136
PyUnicode_GetSize (C function), 138
PyUnicode_InternFromString (C function), 147
PyUnicode_InternInPlace (C function), 147
PyUnicode_IsIdentifier (C function), 133
PyUnicode_Join (C function), 146
PyUnicode_KIND (C function), 131
PyUnicode_MAX_CHAR_VALUE (C function), 132
PyUnicode_New (C function), 134
PyUnicode_READ (C function), 132
PyUnicode_READ_CHAR (C function), 132
PyUnicode_ReadChar (C function), 137
PyUnicode_READY (C function), 131
PyUnicode_Replace (C function), 147
PyUnicode_RichCompare (C function), 147
PyUnicode_Split (C function), 146
PyUnicode_Splitlines (C function), 146
PyUnicode_Substring (C function), 137
PyUnicode_Tailmatch (C function), 146
PyUnicode_Translate (C function), 145
PyUnicode_Type (C var), 131
PyUnicode_WCHAR_KIND (C macro), 131
PyUnicode_WRITE (C function), 132
PyUnicode_WriteChar (C function), 136
PyUnicodeDecodeError_Create (C function), 60
PyUnicodeDecodeError_GetEncoding (C func-

tion), 60
PyUnicodeDecodeError_GetEnd (C function), 60
PyUnicodeDecodeError_GetObject (C func-

tion), 60
PyUnicodeDecodeError_GetReason (C func-

tion), 60
PyUnicodeDecodeError_GetStart (C function),

60
PyUnicodeDecodeError_SetEnd (C function), 60
PyUnicodeDecodeError_SetReason (C func-

tion), 60
PyUnicodeDecodeError_SetStart (C function),

60
PyUnicodeEncodeError_GetEncoding (C func-

tion), 60
PyUnicodeEncodeError_GetEnd (C function), 60
PyUnicodeEncodeError_GetObject (C func-

tion), 60
PyUnicodeEncodeError_GetReason (C func-

tion), 60
PyUnicodeEncodeError_GetStart (C function),

60
PyUnicodeEncodeError_SetEnd (C function), 60

PyUnicodeEncodeError_SetReason (C func-
tion), 60

PyUnicodeEncodeError_SetStart (C function),
60

PyUnicodeObject (C type), 130
PyUnicodeTranslateError_GetEnd (C func-

tion), 60
PyUnicodeTranslateError_GetObject (C

function), 60
PyUnicodeTranslateError_GetReason (C

function), 60
PyUnicodeTranslateError_GetStart (C func-

tion), 60
PyUnicodeTranslateError_SetEnd (C func-

tion), 60
PyUnicodeTranslateError_SetReason (C

function), 60
PyUnicodeTranslateError_SetStart (C func-

tion), 60
PyVarObject (C type), 246
PyVarObject_HEAD_INIT (C macro), 248
PyVarObject.ob_size (C member), 260
PyVectorcall_Call (C function), 95
PyVectorcall_Function (C function), 95
PyVectorcall_NARGS (C function), 95
PyWeakref_Check (C function), 173
PyWeakref_CheckProxy (C function), 173
PyWeakref_CheckRef (C function), 173
PyWeakref_GET_OBJECT (C function), 174
PyWeakref_GetObject (C function), 173
PyWeakref_NewProxy (C function), 173
PyWeakref_NewRef (C function), 173
PyWideStringList (C type), 210
PyWideStringList_Append (C function), 210
PyWideStringList_Insert (C function), 210
PyWideStringList.items (C member), 210
PyWideStringList.length (C member), 210
PyWrapper_New (C function), 171

Q
qualified name, 306

R
realloc(), 233
reference count, 306
regular package, 306
releasebufferproc (C type), 286
repr

built-in function, 91, 263
reprfunc (C type), 285
richcmpfunc (C type), 286

S
sdterr

352 Index

The Python/C API, Release 3.11.4

stdin stdout, 189
search

path, module, 12, 188, 190, 191
sendfunc (C type), 286
sequence, 306

object, 127
set

object, 155
set comprehension, 306
set_all(), 8
setattrfunc (C type), 285
setattrofunc (C type), 285
setswitchinterval() (in module sys), 193
SIGINT, 58
signal

module, 58
single dispatch, 306
SIZE_MAX, 122
slice, 306
special

method, 306
special method, 306
ssizeargfunc (C type), 286
ssizeobjargproc (C type), 286
statement, 307
staticmethod

built-in function, 250
stderr (in module sys), 201
stdin

stdout sdterr, 189
stdin (in module sys), 201
stdout

sdterr, stdin, 189
stdout (in module sys), 201
strerror(), 52
string

PyObject_Str (C function), 91
strong reference, 307
sum_list(), 9
sum_sequence(), 10, 11
sys

module, 12, 188, 201
SystemError (built-in exception), 163

T
ternaryfunc (C type), 286
text encoding, 307
text file, 307
traverseproc (C type), 291
triple-quoted string, 307
tuple

built-in function, 103, 151
object, 148

type, 307

built-in function, 92
object, 6, 115

type alias, 307
type hint, 307

U
ULONG_MAX, 121
unaryfunc (C type), 286
universal newlines, 308

V
variable annotation, 308
vectorcallfunc (C type), 94
version (in module sys), 191, 192
virtual environment, 308
virtual machine, 308
visitproc (C type), 290

Z
Zen of Python, 308

Index 353

	Introduction
	Coding standards
	Include Files
	Useful macros
	Objects, Types and Reference Counts
	Reference Counts
	Reference Count Details

	Types

	Exceptions
	Embedding Python
	Debugging Builds

	C API Stability
	Stable Application Binary Interface
	Limited API Scope and Performance
	Limited API Caveats

	Platform Considerations
	Contents of Limited API

	The Very High Level Layer
	Reference Counting
	Exception Handling
	Printing and clearing
	Raising exceptions
	Issuing warnings
	Querying the error indicator
	Signal Handling
	Exception Classes
	Exception Objects
	Unicode Exception Objects
	Recursion Control
	Standard Exceptions
	Standard Warning Categories

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	Parsing arguments
	Strings and buffers
	Numbers
	Other objects
	API Functions

	Building values

	String conversion and formatting
	Reflection
	Codec registry and support functions
	Codec lookup API
	Registry API for Unicode encoding error handlers

	Abstract Objects Layer
	Object Protocol
	Call Protocol
	The tp_call Protocol
	The Vectorcall Protocol
	Recursion Control
	Vectorcall Support API

	Object Calling API
	Call Support API

	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol
	Buffer structure
	Buffer request types
	request-independent fields
	readonly, format
	shape, strides, suboffsets
	contiguity requests
	compound requests

	Complex arrays
	NumPy-style: shape and strides
	PIL-style: shape, strides and suboffsets

	Buffer-related functions

	Old Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Type Objects
	Creating Heap-Allocated Types

	The None Object

	Numeric Objects
	Integer Objects
	Boolean Objects
	Floating Point Objects
	Pack and Unpack functions
	Pack functions
	Unpack functions

	Complex Number Objects
	Complex Numbers as C Structures
	Complex Numbers as Python Objects

	Sequence Objects
	Bytes Objects
	Byte Array Objects
	Type check macros
	Direct API functions
	Macros

	Unicode Objects and Codecs
	Unicode Objects
	Unicode Type
	Unicode Character Properties
	Creating and accessing Unicode strings
	Deprecated Py_UNICODE APIs
	Locale Encoding
	File System Encoding
	wchar_t Support

	Built-in Codecs
	Generic Codecs
	UTF-8 Codecs
	UTF-32 Codecs
	UTF-16 Codecs
	UTF-7 Codecs
	Unicode-Escape Codecs
	Raw-Unicode-Escape Codecs
	Latin-1 Codecs
	ASCII Codecs
	Character Map Codecs
	MBCS codecs for Windows
	Methods & Slots

	Methods and Slot Functions

	Tuple Objects
	Struct Sequence Objects
	List Objects

	Container Objects
	Dictionary Objects
	Set Objects

	Function Objects
	Function Objects
	Instance Method Objects
	Method Objects
	Cell Objects
	Code Objects

	Other Objects
	File Objects
	Module Objects
	Initializing C modules
	Single-phase initialization
	Multi-phase initialization
	Low-level module creation functions
	Support functions

	Module lookup

	Iterator Objects
	Descriptor Objects
	Slice Objects
	Ellipsis Object

	MemoryView objects
	Weak Reference Objects
	Capsules
	Frame Objects
	Generator Objects
	Coroutine Objects
	Context Variables Objects
	DateTime Objects
	Objects for Type Hinting

	Initialization, Finalization, and Threads
	Before Python Initialization
	Global configuration variables
	Initializing and finalizing the interpreter
	Process-wide parameters
	Thread State and the Global Interpreter Lock
	Releasing the GIL from extension code
	Non-Python created threads
	Cautions about fork()
	High-level API
	Low-level API

	Sub-interpreter support
	Bugs and caveats

	Asynchronous Notifications
	Profiling and Tracing
	Advanced Debugger Support
	Thread Local Storage Support
	Thread Specific Storage (TSS) API
	Dynamic Allocation
	Methods

	Thread Local Storage (TLS) API

	Python Initialization Configuration
	Example
	PyWideStringList
	PyStatus
	PyPreConfig
	Preinitialize Python with PyPreConfig
	PyConfig
	Initialization with PyConfig
	Isolated Configuration
	Python Configuration
	Python Path Configuration
	Py_RunMain()
	Py_GetArgcArgv()
	Multi-Phase Initialization Private Provisional API

	Memory Management
	Overview
	Allocator Domains
	Raw Memory Interface
	Memory Interface
	Object allocators
	Default Memory Allocators
	Customize Memory Allocators
	Debug hooks on the Python memory allocators
	The pymalloc allocator
	Customize pymalloc Arena Allocator

	tracemalloc C API
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Base object types and macros
	Implementing functions and methods
	Accessing attributes of extension types

	Type Objects
	Quick Reference
	“tp slots”
	sub-slots
	slot typedefs

	PyTypeObject Definition
	PyObject Slots
	PyVarObject Slots
	PyTypeObject Slots
	Static Types
	Heap Types

	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Async Object Structures
	Slot Type typedefs
	Examples
	Supporting Cyclic Garbage Collection
	Controlling the Garbage Collector State

	API and ABI Versioning
	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	PSF LICENSE AGREEMENT FOR PYTHON 3.11.4
	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.4 DOCUMENTATION

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister
	Sockets
	Asynchronous socket services
	Cookie management
	Execution tracing
	UUencode and UUdecode functions
	XML Remote Procedure Calls
	test_epoll
	Select kqueue
	SipHash24
	strtod and dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite
	Audioop

	Copyright
	Index

