Argument Clinic How-To

Release 3.11.4

Guido van Rossum and the Python development team

Contents

1 Background
1.1 Basicconcepts

2 Reference
2.1 Terminology
2.2 Command-line interface
2.3 Classes for extending Argument Clinic

3 Tutorial

4 How-to guides

August 24, 2023

Python Software Foundation
Email: docs@python.org

4.1 How to rename C functions and variables generated by Argument Clinic
4.2 How to convert functions using PyArg_UnpackTuple

4.3 How to use optional groups

4.4 How to use real Argument Clinic converters, instead of “legacy converters”

4.5 How to use the Py_buf fer converter
4.6 How to use advanced converters

47 How to assign default values to parametero e

4.8 How to use return converters
4.9 How to clone existing functions
4.10 How to call Pythoncode
4.11 How to use the “self converter”

4.12 How to use the “defining class” converter e

4.13 How to write a custom converter . . .
4.14 How to write a custom return converter

4.15 How to convert METH_O and METH_NOARGS functions
4.16 How to convert tp_newand tp_init functions,
4.17 How to change and redirect Clinic’soutput o . v v v vt it e e e

4.18 How to use the #ifdef trick

4.19 How to use Argument Clinic in Pythonfiles,

4.20 How to override the generated signature
Python Module Index

Index

10
10
11
14
14
14
16
17
17
18
18
19
20
20
20
20
23
24
25

26

27

author Larry Hastings

Source code: Tools/clinic/clinic.py.

Abstract

Argument Clinic is a preprocessor for CPython C files. It was introduced in Python 3.4 with PEP 436, in order to
provide introspection signatures, and to generate performant and tailor-made boilerplate code for argument parsing
in CPython builtins, module level functions, and class methods. This document is divided in four major sections:

* Background talks about the basic concepts and goals of Argument Clinic.
* Reference describes the command-line interface and Argument Clinic terminology.

* Tutorial guides you through all the steps required to adapt an existing C function to Argument Clinic.

* How-to guides details how to handle specific tasks.

Note: Argument Clinic is considered internal-only for CPython. Its use is not supported for files outside CPython,
and no guarantees are made regarding backwards compatibility for future versions. In other words: if you maintain
an external C extension for CPython, you’re welcome to experiment with Argument Clinic in your own code. But the
version of Argument Clinic that ships with the next version of CPython could be totally incompatible and break all
your code.

1 Background

1.1 Basic concepts

When Argument Clinic is run on a file, either via the Command-line interface or via make clinic, it will scan
over the input files looking for start lines:

’/*[clinic input] ‘

When it finds one, it reads everything up to the end line:

’[clinic start generated code]*/ ‘

Everything in between these two lines is Argument Clinic inpur. When Argument Clinic parses input, it generates
output. The output is rewritten into the C file immediately after the input, followed by a checksum line. All of these
lines, including the start line and checksum line, are collectively called an Argument Clinic block:

/*[clinic input]
clinic input goes here
[clinic start generated code]*/
clinic output goes here
/*[clinic end generated code: ...]%*/

If you run Argument Clinic on the same file a second time, Argument Clinic will discard the old oufpur and write out
the new output with a fresh checksum line. If the input hasn’t changed, the output won’t change either.

Note: You should never modify the output of an Argument Clinic block, as any change will be lost in future
Argument Clinic runs; Argument Clinic will detect an output checksum mismatch and regenerate the correct output.
If you are not happy with the generated output, you should instead change the input until it produces the output you
want.

https://github.com/python/cpython/tree/3.11/Tools/clinic/clinic.py
https://peps.python.org/pep-0436/

2 Reference

2.1 Terminology
start line The line /* [clinic input]. This line marks the beginning of Argument Clinic input. Note that the
start line opens a C block comment.

end line Theline [clinic start generated code]*/. The end line marks the _end_ of Argument Clinic
input, but at the same time marks the _start_ of Argument Clinic oufput, thus the text “clinic start start generated
code” Note that the end line closes the C block comment opened by the start line.

checksum A hash to distinguish unique inputs and outputs.

checksum line A line thatlookslike /* [clinic end generated code: ...]*/. The three dots will be
replaced by a checksum generated from the input, and a checksum generated from the output. The checksum
line marks the end of Argument Clinic generated code, and is used by Argument Clinic to determine if it needs
to regenerate output.

input The text between the start line and the end line. Note that the start and end lines open and close a C block
comment; the input is thus a part of that same C block comment.

output The text between the end line and the checksum line.
block All text from the start line to the checksum line inclusively.

2.2 Command-line interface

The Argument Clinic CLI (Command-Line Interface) is typically used to process a single source file, like this:

$ python3 ./Tools/clinic/clinic.py foo.c

The CLI supports the following options:

-h, —--help
Print CLI usage.
-£f, ——force

Force output regeneration.
-o, ——output OUTPUT

Redirect file output to OUTPUT
-v, —-verbose

Enable verbose mode.
—-—converters

Print a list of all supported converters and return converters.
—--make

Walk —-srcdirto run over all relevant files.
——-srcdir SRCDIR

The directory tree to walk in ——make mode.

FILE

The list of files to process.

2.3 Classes for extending Argument Clinic

class clinic.CConverter

The base class for all converters. See How to write a custom converter for how to subclass this class.

type
The C type to use for this variable. t ype should be a Python string specifying the type, e.g. 'int'. If
this is a pointer type, the type string should end with ' *'.

default
The Python default value for this parameter, as a Python value. Or the magic value unspecified if
there is no default.

py_default

default as it should appear in Python code, as a string. Or None if there is no default.

c_default

default as it should appear in C code, as a string. Or None if there is no default.

c_ignored_default

The default value used to initialize the C variable when there is no default, but not specifying a default may
result in an “uninitialized variable” warning. This can easily happen when using option groups—although
properly written code will never actually use this value, the variable does get passed in to the impl, and
the C compiler will complain about the “use” of the uninitialized value. This value should always be a
non-empty string.

converter

The name of the C converter function, as a string.

impl_by_ reference
A boolean value. If true, Argument Clinic will add a & in front of the name of the variable when passing
it into the impl function.

parse_by_reference

A boolean value. If true, Argument Clinic will add a & in front of the name of the variable when passing
itinto PyArg_ParseTuple ().

3 Tutorial

The best way to get a sense of how Argument Clinic works is to convert a function to work with it. Here, then, are
the bare minimum steps you'd need to follow to convert a function to work with Argument Clinic. Note that for code
you plan to check in to CPython, you really should take the conversion farther, using some of the advanced concepts
you’ll see later on in the document, like How fo use return converters and How fo use the “self converter”. But we’ll
keep it simple for this walkthrough so you can learn.

First, make sure you're working with a freshly updated checkout of the CPython trunk.

Next, find a Python builtin that calls either PyArg_ParseTuple () or
PyArg_ParseTupleAndKeywords (), and hasn’t been converted to work with Argument Clinic yet.
For this tutorial, we’ll be using _pickle.Pickler.dump.

If the call to the PyArg_Parse* () function uses any of the following format units...:

06&
0!
es
es#
et
et#

... or if it has multiple calls to PyArg_ParseTuple (), you should choose a different function. (See How fo use
advanced converters for those scenarios.)

Also, if the function has multiple calls to PyArg_ParseTuple () or PyArg_ParseTupleAndKeywords ()
where it supports different types for the same argument, or if the function uses something besides
PyArg_Parse* () functions to parse its arguments, it probably isn’t suitable for conversion to Argument Clinic.
Argument Clinic doesn’t support generic functions or polymorphic parameters.

Next, add the following boilerplate above the function, creating our input block:

/*[clinic input]
[clinic start generated code]*/

Cut the docstring and paste it in between the [c1inic] lines, removing all the junk that makes it a properly quoted
C string. When you’re done you should have just the text, based at the left margin, with no line wider than 80
characters. Argument Clinic will preserve indents inside the docstring.

If the old docstring had a first line that looked like a function signature, throw that line away; The docstring doesn’t
need it anymore — when you use he1p () on your builtin in the future, the first line will be built automatically based
on the function’s signature.

Example docstring summary line:

/*[clinic input]
Write a pickled representation of obj to the open file.
[clinic start generated code]*/

If your docstring doesn’t have a “summary” line, Argument Clinic will complain, so let’s make sure it has one. The
“summary” line should be a paragraph consisting of a single 80-column line at the beginning of the docstring. (See
PEP 257 regarding docstring conventions.)

Our example docstring consists solely of a summary line, so the sample code doesn’t have to change for this step.

Now, above the docstring, enter the name of the function, followed by a blank line. This should be the Python name
of the function, and should be the full dotted path to the function — it should start with the name of the module,
include any sub-modules, and if the function is a method on a class it should include the class name too.

In our example, _pickle is the module, Pickler is the class, and dump () is the method, so the name becomes
_pickle.Pickler.dump():

/*[clinic input]
_pickle.Pickler.dump

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

If this is the first time that module or class has been used with Argument Clinic in this C file, you must declare the
module and/or class. Proper Argument Clinic hygiene prefers declaring these in a separate block somewhere near
the top of the C file, in the same way that include files and statics go at the top. In our sample code we’ll just show
the two blocks next to each other.

The name of the class and module should be the same as the one seen by Python. Check the name defined in the
PyModuleDef or PyTypeObject as appropriate.

When you declare a class, you must also specify two aspects of its type in C: the type declaration you'd use for a
pointer to an instance of this class, and a pointer to the PyTypeObject for this class:

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "gPickler Type"
[clinic start generated code]*/

/*[clinic input]
_pickle.Pickler.dump

(continues on next page)

https://peps.python.org/pep-0257/

(continued from previous page)

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

Declare each of the parameters to the function. Each parameter should get its own line. All the parameter lines should
be indented from the function name and the docstring. The general form of these parameter lines is as follows:

’name_of_parameter: converter

If the parameter has a default value, add that after the converter:

’name_of_parameter: converter = default_value

Argument Clinic’s support for “default values” is quite sophisticated; see How fo assign default values to parameter
for more information.

Next, add a blank line below the parameters.

What’s a “converter”? It establishes both the type of the variable used in C, and the method to convert the Python
value into a C value at runtime. For now you're going to use what’s called a “legacy converter” — a convenience
syntax intended to make porting old code into Argument Clinic easier.

For each parameter, copy the “format unit” for that parameter from the PyArg_Parse () format argument and
specify that as its converter, as a quoted string. The “format unit” is the formal name for the one-to-three character
substring of the format parameter that tells the argument parsing function what the type of the variable is and how
to convert it. For more on format units please see arg-parsing.

For multicharacter format units like z#, use the entire two-or-three character string.

Sample:

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "gPickler Type"
[clinic start generated code]*/

/*[clinic input]
_pickle.Pickler.dump

obj: 'O'

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

If your function has | in the format string, meaning some parameters have default values, you can ignore it. Argument
Clinic infers which parameters are optional based on whether or not they have default values.

If your function has $ in the format string, meaning it takes keyword-only arguments, specify * on a line by itself
before the first keyword-only argument, indented the same as the parameter lines.

_pickle.Pickler.dump () has neither, so our sample is unchanged.

Next, if the existing C function calls PyArg_ParseTuple () (as opposed to
PyArg_ParseTupleAndKeywords ()), then all its arguments are positional-only.

To mark parameters as positional-only in Argument Clinic, add a / on a line by itself after the last positional-only
parameter, indented the same as the parameter lines.

Sample:

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "&Pickler Type"
[clinic start generated code]*/

(continues on next page)

(continued from previous page)

/*[clinic input]
_pickle.Pickler.dump

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

It can be helpful to write a per-parameter docstring for each parameter. Since per-parameter docstrings are optional,
you can skip this step if you prefer.

Nevertheless, here’s how to add a per-parameter docstring. The first line of the per-parameter docstring must be
indented further than the parameter definition. The left margin of this first line establishes the left margin for the
whole per-parameter docstring; all the text you write will be outdented by this amount. You can write as much text
as you like, across multiple lines if you wish.

Sample:

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "&Pickler Type"
[clinic start generated code]*/

/*[clinic input]
_pickle.Pickler.dump

obj: 'O
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

Save and close the file, then run Tools/clinic/clinic.py onit. With luck everything worked—ryour block
now has output, and a . c . h file has been generated! Reload the file in your text editor to see the generated code:

/*[clinic input]
_pickle.Pickler.dump

obj: 'O
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

static PyObject *
_pickle_Pickler_dump (PicklerObject *self, PyObject *obj)
/*[clinic end generated code: output=87ecadll2élel2ac77 input=552eblc0f52260d9]*/

Obviously, if Argument Clinic didn’t produce any output, it’s because it found an error in your input. Keep fixing
your errors and retrying until Argument Clinic processes your file without complaint.

For readability, most of the glue code has been generated to a . c . h file. You'll need to include that in your original
. ¢ file, typically right after the clinic module block:

#include "clinic/_pickle.c.h"

Double-check that the argument-parsing code Argument Clinic generated looks basically the same as the existing
code.

First, ensure both places use the same argument-parsing function. The existing code must call either
PyArg_ParseTuple () or PyArg_ParseTupleAndKeywords (); ensure that the code generated by Ar-
gument Clinic calls the exact same function.

Second, the format string passed in to PyArg_ParseTuple () or PyArg_ParseTupleAndKeywords ()
should be exactly the same as the hand-written one in the existing function, up to the colon or semi-colon.

Argument Clinic always generates its format strings with a : followed by the name of the function. If the existing
code’s format string ends with ; , to provide usage help, this change is harmless — don’t worry about it.

Third, for parameters whose format units require two arguments, like a length variable, an encoding string, or a
pointer to a conversion function, ensure that the second argument is exactly the same between the two invocations.

Fourth, inside the output portion of the block, you’ll find a preprocessor macro defining the appropriate static
PyMethodDef structure for this builtin:

#define _ PICKLE_PICKLER DUMP_METHODDEF \
{"dump", (PyCFunction)__pickle_Pickler_dump, METH_O, __pickle_ Pickler_dump__doc__},

This static structure should be exactly the same as the existing static PyMethodDe £ structure for this builtin.

If any of these items differ in any way, adjust your Argument Clinic function specification and rerun Tools/
clinic/clinic.py until they are the same.

Notice that the last line of its output is the declaration of your “impl” function. This is where the builtin’s implemen-
tation goes. Delete the existing prototype of the function you’re modifying, but leave the opening curly brace. Now
delete its argument parsing code and the declarations of all the variables it dumps the arguments into. Notice how
the Python arguments are now arguments to this impl function; if the implementation used different names for these
variables, fix it.

Let’s reiterate, just because it’s kind of weird. Your code should now look like this:

static return_type
your_function_impl(...)
/*[clinic end generated code: input=..., output=...]%*/

{

Argument Clinic generated the checksum line and the function prototype just above it. You should write the opening
and closing curly braces for the function, and the implementation inside.

Sample:

/*[clinic input]

module _pickle

class _pickle.Pickler "PicklerObject *" "gPickler Type"

[clinic start generated code]*/

/*[clinic end generated code: checksum=da39a3eeb5e6b4b0d3255bfef95601890afd80709]*/

/*[clinic input]
_pickle.Pickler.dump

obj: 'O'
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

PyDoc_STRVAR(__pickle_Pickler_dump__doc
"Write a pickled representation of obj to the open file.\n"
u\nn

—

static PyObject *

(continues on next page)

(continued from previous page)

_pickle_Pickler_dump_impl (PicklerObject *self, PyObject *obj)
/*[clinic end generated code: checksum=3bd30745bf206a48f8b576al1da3d90f55a0a4187]*/
{

/* Check whether the Pickler was initialized correctly (issue3664).

Developers often forget to call __init___ () in their subclasses, which
would trigger a segfault without this check. */
if (self->write == NULL) {
PyErr_Format (PicklingError,
"Pickler.__init__ () was not called by %s.__init__ ()",

Py_TYPE (self) ->tp_name);
return NULL;

if (_Pickler_ClearBuffer(self) < 0) {
return NULL;

Remember the macro with the PyMethodDef structure for this function? Find the existing PyMet hodDe £ struc-
ture for this function and replace it with a reference to the macro. If the builtin is at module scope, this will probably
be very near the end of the file; if the builtin is a class method, this will probably be below but relatively near to the
implementation.

Note that the body of the macro contains a trailing comma; when you replace the existing static PyMethodDef
structure with the macro, don’t add a comma to the end.

Sample:

static struct PyMethodDef Pickler_methods[] = {
_ PICKLE_PICKLER_DUMP_METHODDEF
_ PICKLE_PICKLER_CLEAR_MEMO_METHODDEF
{NULL, NULL} /* sentinel */
bi

Finally, compile, then run the relevant portions of the regression-test suite. This change should not introduce any new
compile-time warnings or errors, and there should be no externally visible change to Python’s behavior, except for
one difference: inspect.signature () run on your function should now provide a valid signature!

Congratulations, you’ve ported your first function to work with Argument Clinic!

4 How-to guides

4.1 How to rename C functions and variables generated by Argument Clinic

Argument Clinic automatically names the functions it generates for you. Occasionally this may cause a problem, if
the generated name collides with the name of an existing C function. There’s an easy solution: override the names
used for the C functions. Just add the keyword "as" to your function declaration line, followed by the function name
you wish to use. Argument Clinic will use that function name for the base (generated) function, then add "_impl1"
to the end and use that for the name of the impl function.

For example, if we wanted to rename the C function names generated for pickle.Pickler.dump (), it'd look
like this:

/*[clinic input]
pickle.Pickler.dump as pickler_dumper

The base function would now be named pickler_dumper (), and the impl function would now be named
pickler_dumper_impl ().

Similarly, you may have a problem where you want to give a parameter a specific Python name, but that name may
be inconvenient in C. Argument Clinic allows you to give a parameter different names in Python and in C, using the
same "as" syntax:

/*[clinic input]
pickle.Pickler.dump

obj: object
file as file_obj: object
protocol: object = NULL

*

fix_imports: bool = True

Here, the name used in Python (in the signature and the keywords array) would be file, but the C variable would
be named file_obj.

You can use this to rename the self parameter too!

4.2 How to convert functions using PyArg_UnpackTuple

To convert a function parsing its arguments with PyArg_UnpackTuple (), simply write out all the arguments,
specifying each as an object. You may specify the fype argument to cast the type as appropriate. All arguments
should be marked positional-only (add a / on a line by itself after the last argument).

Currently the generated code will use PyArg_ParseTuple (), but this will change soon.

4.3 How to use optional groups

Some legacy functions have a tricky approach to parsing their arguments: they count the number of positional argu-
ments, then use a switch statement to call one of several different PyArg_ParseTuple () calls depending on
how many positional arguments there are. (These functions cannot accept keyword-only arguments.) This approach
was used to simulate optional arguments back before PyArg_ParseTupleAndKeywords () was created.

While functions using this approach can often be converted to use PyArg_ParseTupleAndKeywords (),
optional arguments, and default values, it’s not always possible. Some of these legacy functions have behaviors
PyArg_ParseTupleAndKeywords () doesn’t directly support. The most obvious example is the builtin func-
tion range (), which has an optional argument on the left side of its required argument! Another example is
curses.window.addch (), which has a group of two arguments that must always be specified together. (The
arguments are called x and y; if you call the function passing in x, you must also pass in y — and if you don’t pass in
X you may not pass in y either.)

In any case, the goal of Argument Clinic is to support argument parsing for all existing CPython builtins without
changing their semantics. Therefore Argument Clinic supports this alternate approach to parsing, using what are
called optional groups. Optional groups are groups of arguments that must all be passed in together. They can be to
the left or the right of the required arguments. They can only be used with positional-only parameters.

Note: Optional groups are only intended for use when converting functions that make multiple calls to
PyArg_ParseTuple () ! Functions that use any other approach for parsing arguments should almost never be
converted to Argument Clinic using optional groups. Functions using optional groups currently cannot have accu-
rate signatures in Python, because Python just doesn’t understand the concept. Please avoid using optional groups
wherever possible.

To specify an optional group, add a [on a line by itself before the parameters you wish to group together, and a]
on a line by itself after these parameters. As an example, here’s how curses.window.addch () uses optional
groups to make the first two parameters and the last parameter optional:

10

/*[clinic input]

curses.window.addch

[

x: int

X—-coordinate.

y: int

Y-coordinate.

]

ch: object

Character to add.

[
attr: long

Attributes for the character.

—

Notes:

For every optional group, one additional parameter will be passed into the impl function representing the group.
The parameter will be an int named group_{direction}_{number}, where {direction} is either
right or left depending on whether the group is before or after the required parameters, and { number}
is a monotonically increasing number (starting at 1) indicating how far away the group is from the required
parameters. When the impl is called, this parameter will be set to zero if this group was unused, and set to
non-zero if this group was used. (By used or unused, I mean whether or not the parameters received arguments
in this invocation.)

If there are no required arguments, the optional groups will behave as if they’re to the right of the required
arguments.

In the case of ambiguity, the argument parsing code favors parameters on the left (before the required param-
eters).

Optional groups can only contain positional-only parameters.

Optional groups are only intended for legacy code. Please do not use optional groups for new code.

4.4 How to use real Argument Clinic converters, instead of “legacy converters”

To save time, and to minimize how much you need to learn to achieve your first port to Argument Clinic, the walk-
through above tells you to use “legacy converters”. “Legacy converters” are a convenience, designed explicitly to
make porting existing code to Argument Clinic easier. And to be clear, their use is acceptable when porting code for
Python 3.4.

However, in the long term we probably want all our blocks to use Argument Clinic’s real syntax for converters. Why?
A couple reasons:

The proper converters are far easier to read and clearer in their intent.

There are some format units that are unsupported as “legacy converters”, because they require arguments, and
the legacy converter syntax doesn’t support specifying arguments.

In the future we may have a new argument parsing library that isn’t restricted to what
PyArg_ParseTuple () supports; this flexibility won’t be available to parameters using legacy con-
verters.

Therefore, if you don’t mind a little extra effort, please use the normal converters instead of legacy converters.

11

In a nutshell, the syntax for Argument Clinic (non-legacy) converters looks like a Python function call. However, if
there are no explicit arguments to the function (all functions take their default values), you may omit the parentheses.
Thus bool and bool () are exactly the same converters.

All arguments to Argument Clinic converters are keyword-only. All Argument Clinic converters accept the following
arguments:

¢_default The default value for this parameter when defined in C. Specifically, this will be the initializer
for the variable declared in the “parse function”. See the section on default values for how to use
this. Specified as a string.

annotation The annotation value for this parameter. Not currently supported, because PEP 8 mandates
that the Python library may not use annotations.

In addition, some converters accept additional arguments. Here is a list of these arguments, along with their meanings:

accept A set of Python types (and possibly pseudo-types); this restricts the allowable Python argument
to values of these types. (This is not a general-purpose facility; as a rule it only supports specific
lists of types as shown in the legacy converter table.)

To accept None, add NoneType to this set.

bitwise Only supported for unsigned integers. The native integer value of this Python argument will be
written to the parameter without any range checking, even for negative values.

converter Only supported by the object converter. Specifies the name of a C “converter function” to
use to convert this object to a native type.

encoding Only supported for strings. Specifies the encoding to use when converting this string from a
Python str (Unicode) value into a C char * value.

subclass_of Only supported for the object converter. Requires that the Python value be a subclass
of a Python type, as expressed in C.

type Only supported for the object and self converters. Specifies the C type that will be used to
declare the variable. Default value is "PyObject *".

zeroes Only supported for strings. If true, embedded NUL bytes (' \\0 ') are permitted inside the
value. The length of the string will be passed in to the impl function, just after the string parameter,
as a parameter named <parameter_name>_length.

Please note, not every possible combination of arguments will work. Usually these arguments are implemented by
specific PyArg_ParseTuple () format units, with specific behavior. For example, currently you cannot call
unsigned_short without also specifying bitwise=True. Although it’s perfectly reasonable to think this
would work, these semantics don’t map to any existing format unit. So Argument Clinic doesn’t support it. (Or, at
least, not yet.)

Below is a table showing the mapping of legacy converters into real Argument Clinic converters. On the left is the
legacy converter, on the right is the text you’d replace it with.

'B' unsigned_char (bitwise=True)

'b! unsigned_char

'c! char

'C!' int (accept={str})

'd’ double

'D' Py_complex

'es' str (encoding='name_of_encoding')

'es#'! str (encoding='name_of_encoding', zeroes=True)

‘et str (encoding='name_of_encoding', accept={bytes, bytearray, str})
'et#' | str(encoding="'name_of_encoding', accept={bytes, bytearray, str}, zeroes=True)
£ float

'h' short

'H' unsigned_short (bitwise=True)

continues on next page

12

https://peps.python.org/pep-0008/

Table 1 - continued from previous page

it int

'T! unsigned_int (bitwise=True)

k! unsigned_long (bitwise=True)

'K!' unsigned_long_long (bitwise=True)

'l long

'L long long

'n' Py_ssize_t

'o! object

'Ol object (subclass_of="'&PySomething_Type')
'O&! object (converter="'name_of_c_function')
'p! bool

'S! PyBytesObject

's' str

's#' str (zeroes=True)

's*! Py_buffer (accept={buffer, str})

'u! unicode

'u! Py_UNICODE

'u#! Py_UNICODE (zeroes=True)

'wx! Py_buffer (accept={rwbuffer})

'Yy! PyByteArrayObject

'y! str (accept={bytes})

'y#! str (accept={robuffer}, zeroes=True)

ty*! Py_buffer

'z Py_UNICODE (accept={str, NoneType})

7% Py_UNICODE (accept={str, NoneType}, zeroes=True)
'z! str (accept={str, NoneType})

'z str (accept={str, NoneType}, zeroes=True)
tzx! Py_buffer (accept={buffer, str, NoneType})

As an example, here’s our sample pickle.Pickler.dump using the proper converter:

/*[clinic input]
pickle.Pickler.dump

obj: object
The object to be pickled.
/

Write a pickled representation of obj to the open file.
[clinic start generated code]*/

One advantage of real converters is that they’re more flexible than legacy converters. For example, the
unsigned_int converter (and all the unsigned_ converters) can be specified without bitwise=True. Their
default behavior performs range checking on the value, and they won’t accept negative numbers. You just can’t do
that with a legacy converter!

Argument Clinic will show you all the converters it has available. For each converter it'll show you all the pa-
rameters it accepts, along with the default value for each parameter. Just run Tools/clinic/clinic.py
—-—converters to see the full list.

13

4.5 How to use the Py_buffer converter

When using the Py_buffer converter (or the 's*', 'w*', '*y' or 'z*' legacy converters), you must not
call PyBuffer_Release () on the provided buffer. Argument Clinic generates code that does it for you (in the
parsing function).

4.6 How to use advanced converters

Remember those format units you skipped for your first time because they were advanced? Here’s how to handle
those too.

The trick is, all those format units take arguments—either conversion functions, or types, or strings specifying an
encoding. (But “legacy converters” don’t support arguments. That’s why we skipped them for your first function.)
The argument you specified to the format unit is now an argument to the converter; this argument is either converter
(for 0&), subclass_of (for O!), or encoding (for all the format units that start with e).

When using subclass_of, you may also want to use the other custom argument for object (): type, which lets
you set the type actually used for the parameter. For example, if you want to ensure that the object is a subclass
of PyUnicode_Type, you probably want to use the converter object (type='PyUnicodeObject *',
subclass_of='&PyUnicode_Type').

One possible problem with using Argument Clinic: it takes away some possible flexibility for the format units starting
with e. When writing a PyArg_Parse* () call by hand, you could theoretically decide at runtime what encoding
string to pass to that call. But now this string must be hard-coded at Argument-Clinic-preprocessing-time. This
limitation is deliberate; it made supporting this format unit much easier, and may allow for future optimizations.
This restriction doesn’t seem unreasonable; CPython itself always passes in static hard-coded encoding strings for
parameters whose format units start with e.

4.7 How to assign default values to parameter

Default values for parameters can be any of a number of values. At their simplest, they can be string, int, or float
literals:

foo: str = "abc"
bar: int = 123
bat: float = 45.6

They can also use any of Python’s built-in constants:

yep: bool = True
nope: bool = False
nada: object = None

There’s also special support for a default value of NULL, and for simple expressions, documented in the following
sections.

The NULL default value

For string and object parameters, you can set them to None to indicate that there’s no default. However, that means
the C variable will be initialized to Py_None. For convenience’s sakes, there’s a special value called NULL for just
this reason: from Python’s perspective it behaves like a default value of None, but the C variable is initialized with
NULL.

14

Symbolic default values
The default value you provide for a parameter can’t be any arbitrary expression. Currently the following are explicitly
supported:

¢ Numeric constants (integer and float)

* String constants

e True, False, and None

» Simple symbolic constants like sy s .maxs1ize, which must start with the name of the module

(In the future, this may need to get even more elaborate, to allow full expressions like CONSTANT - 1.)

Expressions as default values

The default value for a parameter can be more than just a literal value. It can be an entire expression, using math
operators and looking up attributes on objects. However, this support isn’t exactly simple, because of some non-
obvious semantics.

Consider the following example:

foo: Py_ssize_t = sys.maxsize - 1

sys.maxsize can have different values on different platforms. Therefore Argument Clinic can’t simply evaluate
that expression locally and hard-code it in C. So it stores the default in such a way that it will get evaluated at runtime,
when the user asks for the function’s signature.

‘What namespace is available when the expression is evaluated? It’s evaluated in the context of the module the builtin
came from. So, if your module has an attribute called max_widgets, you may simply use it:

foo: Py_ssize_t = max_widgets

If the symbol isn’t found in the current module, it fails over to looking in sys.modules. That’s how it can find
sys.maxsize for example. (Since you don’t know in advance what modules the user will load into their interpreter,
it’s best to restrict yourself to modules that are preloaded by Python itself.)

Evaluating default values only at runtime means Argument Clinic can’t compute the correct equivalent C default value.
So you need to tell it explicitly. When you use an expression, you must also specify the equivalent expression in C,
using the c_default parameter to the converter:

foo: Py_ssize_t (c_default="PY_SSIZE_T_MAX - 1") = sys.maxsize - 1

Another complication: Argument Clinic can’t know in advance whether or not the expression you supply is valid. It
parses it to make sure it looks legal, but it can’t actually know. You must be very careful when using expressions to
specify values that are guaranteed to be valid at runtime!

Finally, because expressions must be representable as static C values, there are many restrictions on legal expressions.
Here’s a list of Python features you're not permitted to use:

* Function calls.

¢ Inline if statements (3 if foo else 5).

¢ Automatic sequence unpacking (* [1, 2, 31).

* List/set/dict comprehensions and generator expressions.

* Tuple/list/set/dict literals.

15

4.8 How to use return converters

By default, the impl function Argument Clinic generates for you returns PyObject *. But your C function often
computes some C type, then converts it into the PyObject * at the last moment. Argument Clinic handles con-
verting your inputs from Python types into native C types—why not have it convert your return value from a native
C type into a Python type too?

That’s what a “return converter” does. It changes your impl function to return some C type, then adds code to the
generated (non-impl) function to handle converting that value into the appropriate PyObject *.

The syntax for return converters is similar to that of parameter converters. You specify the return converter like it
was a return annotation on the function itself, using —> notation.

For example:

/*[clinic input]
add —-> int

a: int
b: int
/

[clinic start generated code]*/

Return converters behave much the same as parameter converters; they take arguments, the arguments are all
keyword-only, and if you’re not changing any of the default arguments you can omit the parentheses.

(If you use both "as" and a return converter for your function, the "as" should come before the return converter.)

There’s one additional complication when using return converters: how do you indicate an error has occurred? Nor-
mally, a function returns a valid (non-NULL) pointer for success, and NULL for failure. But if you use an integer
return converter, all integers are valid. How can Argument Clinic detect an error? Its solution: each return con-
verter implicitly looks for a special value that indicates an error. If you return that value, and an error has been set
(c:func:PyErr_Occurred returns a true value), then the generated code will propagate the error. Otherwise it will
encode the value you return like normal.

Currently Argument Clinic supports only a few return converters:

bool

double

float

int

long
Py_ssize_t
size_t
unsigned int
unsigned long

None of these take parameters. For all of these, return —1 to indicate error.

(There’s also an experimental None Type converter, which lets you return Py_ None on success or NULL on failure,
without having to increment the reference count on Py_None. I'm not sure it adds enough clarity to be worth using.)

To see all the return converters Argument Clinic supports, along with their parameters (if any), just run Tools/
clinic/clinic.py —-converters for the full list.

16

4.9 How to clone existing functions
If you have a number of functions that look similar, you may be able to use Clinic’s “clone” feature. When you clone
an existing function, you reuse:

* its parameters, including

their names,

their converters, with all parameters,

their default values,

their per-parameter docstrings,

their kind (whether they’re positional only, positional or keyword, or keyword only), and
* its return converter.
The only thing not copied from the original function is its docstring; the syntax allows you to specify a new docstring.

Here’s the syntax for cloning a function:

/*[clinic input]
module.class.new_function [as c_basename] = module.class.existing_function

Docstring for new_function goes here.
[clinic start generated code]*/

(The functions can be in different modules or classes. I wrote module.class in the sample just to illustrate that
you must use the full path to both functions.)

Sorry, there’s no syntax for partially cloning a function, or cloning a function then modifying it. Cloning is an all-or
nothing proposition.

Also, the function you are cloning from must have been previously defined in the current file.

4.10 How to call Python code

The rest of the advanced topics require you to write Python code which lives inside your C file and modifies Argument
Clinic’s runtime state. This is simple: you simply define a Python block.

A Python block uses different delimiter lines than an Argument Clinic function block. It looks like this:

/*[python input]
python code goes here
[python start generated code]*/

All the code inside the Python block is executed at the time it’s parsed. All text written to stdout inside the block is
redirected into the “output” after the block.

As an example, here’s a Python block that adds a static integer variable to the C code:

/*[python input]

print ('static int __ignored_unused_variable _ = 0;"')
[python start generated code]*/

static int __ _ignored_unused_variable__ = 0;
/*[python checksum:...]*/

17

4.11 How to use the “self converter”

Argument Clinic automatically adds a “self” parameter for you using a default converter. It automatically sets the
type of this parameter to the “pointer to an instance” you specified when you declared the type. However, you
can override Argument Clinic’s converter and specify one yourself. Just add your own self parameter as the first
parameter in a block, and ensure that its converter is an instance of self_converter or a subclass thereof.

What's the point? This lets you override the type of self, or give it a different default name.

How do you specify the custom type you want to cast se1f to? If you only have one or two functions with the same
type for self, you can directly use Argument Clinic’s existing se1f converter, passing in the type you want to use
as the type parameter:

/*[clinic input]
_pickle.Pickler.dump
self: self (type="PicklerObject *")

obj: object
/

Write a pickled representation of the given object to the open file.
[clinic start generated code]*/

On the other hand, if you have a lot of functions that will use the same type for self, it’s best to create your own
converter, subclassing self_converter but overwriting the t ype member:

/*[python input]

class PicklerObject_converter (self_converter):
type = "PicklerObject *"

[python start generated code]*/

/*[clinic input]

_pickle.Pickler.dump
self: PicklerObject
obj: object

/

Write a pickled representation of the given object to the open file.
[clinic start generated code]*/

4.12 How to use the “defining class” converter

Argument Clinic facilitates gaining access to the defining class of a method. This is useful for heap type methods
that need to fetch module level state. Use PyType_FromModuleAndSpec () to associate a new heap type with
a module. You can now use PyType_GetModuleState () on the defining class to fetch the module state, for
example from a module method.

Example from Modules/zlibmodule.c. First, defining_class is added to the clinic input:

/*[clinic input]
z1lib.Compress.compress

cls: defining class
data: Py_buffer
Binary data to be compressed.

/

After running the Argument Clinic tool, the following function signature is generated:

18

https://github.com/python/cpython/tree/3.11/Modules/zlibmodule.c

/*[clinic start generated code]*/
static PyObject *
z1lib_Compress_compress_impl (compobject *self, PyTypeObject *cls,
Py_buffer *data)
/*[clinic end generated code: output=6731b3f0ff357ca6 input=04d00f65ab01d260]*/

The following code can now use PyType_GetModuleState (cls) to fetch the module state:

zlibstate *state = PyType_GetModuleState (cls);

Each method may only have one argument using this converter, and it must appear after self, or, if self is not
used, as the first argument. The argument will be of type PyTypeObject *. The argument will not appear in the
__text_signature_ .

The defining_class converter is not compatible with __init__ () and__new___ () methods, which cannot
use the METH_METHOD convention.

It is not possible touse defining_class with slot methods. In order to fetch the module state from such methods,
use PyType_GetModuleByDef () to look up the module and then PyModule_GetState () to fetch the
module state. Example from the setattro slot method in Modules/_threadmodule.c:

static int

local_setattro(localobject *self, PyObject *name, PyObject *v)

{
PyObject *module = PyType_GetModuleByDef (Py_TYPE (self), &thread_module);
thread_module_state *state = get_thread_state (module);

See also PEP 573.

4.13 How to write a custom converter

A converter is a Python class that inherits from CConverter. The main purpose of a custom converter, is for
parameters parsed with the O& format unit — parsing such a parameter means calling a PyArg_ParseTuple ()
“converter function”.

Your converter class should be named ConverterName_converter. By following this convention, your con-
verter class will be automatically registered with Argument Clinic, with its converter name being the name of your
converter class with the _converter suffix stripped off.

Instead of subclassing CConverter._ _init__ (), write a converter_init () method.
converter_init () always accepts a self parameter. After self, all additional parameters must be keyword-only.
Any arguments passed to the converter in Argument Clinic will be passed along to your converter_init ()
method. See CConverter for a list of members you may wish to specify in your subclass.

Here’s the simplest example of a custom converter, from Modules/zlibmodule.c:

/*[python input]

class ssize_ t_converter (CConverter) :
type = 'Py_ssize_t'
converter = 'ssize_t_converter'

[python start generated code]*/
/*[python end generated code: output=da39a3ee5e6b4b0d input=35521e4e733823c7]*/

This block adds a converter named ssize_t to Argument Clinic. Parameters declared as ssize_t will
be declared with type Py_ssize_t, and will be parsed by the 'O&' format unit, which will call the
ssize_t_converter () converter C function. ssize_t variables automatically support default values.

19

https://github.com/python/cpython/tree/3.11/Modules/_threadmodule.c
https://peps.python.org/pep-0573/
https://github.com/python/cpython/tree/3.11/Modules/zlibmodule.c

More sophisticated custom converters can insert custom C code to handle initialization and cleanup. You can see
more examples of custom converters in the CPython source tree; grep the C files for the string CConverter.

4.14 How to write a custom return converter
Writing a custom return converter is much like writing a custom converter. Except it’s somewhat simpler, because
return converters are themselves much simpler.

Return converters must subclass CReturnConverter. There are no examples yet of custom return converters,
because they are not widely used yet. If you wish to write your own return converter, please read Tools/clinic/clinic.py,
specifically the implementation of CReturnConverter and all its subclasses.

4.15 How to convert METH_O and METH_NOARGS functions

To convert a function using METH_ O, make sure the function’s single argument is using the object converter, and
mark the arguments as positional-only:

/*[clinic input]
meth_o_sample

argument: object
/

[clinic start generated code]*/

To convert a function using METH_NOARGS, just don’t specify any arguments.

You can still use a self converter, a return converter, and specify a type argument to the object converter for METH_O.

4.16 How to convert tp_new and tp_init functions
You can convert tp_new and tp_init functions. Just name them __new__ or __init__ as appropriate.
Notes:

¢ The function name generated for __new___ doesn’t end in __new___ like it would by default. It’s just the
name of the class, converted into a valid C identifier.

* No PyMethodDef #define is generated for these functions.
e _ init__ functions return int, not PyObject *.
* Use the docstring as the class docstring.

e Although __new__and__init__ functions must always accept both the args and kwargs objects, when
converting you may specify any signature for these functions that you like. (If your function doesn’t support
keywords, the parsing function generated will throw an exception if it receives any.)

4.17 How to change and redirect Clinic’s output

It can be inconvenient to have Clinic’s output interspersed with your conventional hand-edited C code. Luckily, Clinic
is configurable: you can buffer up its output for printing later (or earlier!), or write its output to a separate file. You
can also add a prefix or suffix to every line of Clinic’s generated output.

While changing Clinic’s output in this manner can be a boon to readability, it may result in Clinic code using types
before they are defined, or your code attempting to use Clinic-generated code before it is defined. These problems
can be easily solved by rearranging the declarations in your file, or moving where Clinic’s generated code goes. (This
is why the default behavior of Clinic is to output everything into the current block; while many people consider this
hampers readability, it will never require rearranging your code to fix definition-before-use problems.)

Let’s start with defining some terminology:

20

https://github.com/python/cpython/tree/3.11/Tools/clinic/clinic.py

field A field, in this context, is a subsection of Clinic’s output. For example, the #define for the PyMethodDef
structure is a field, called met hoddef_define. Clinic has seven different fields it can output per function
definition:

docstring_prototype
docstring_definition
methoddef_define
impl_prototype
parser_prototype
parser_definition
impl_definition

All the names are of the form "<a>_", where "<a>" is the semantic object represented (the parsing
function, the impl function, the docstring, or the methoddef structure) and "" represents what kind of
statement the field is. Field names that end in "_prototype" represent forward declarations of that thing,
without the actual body/data of the thing; field names that end in "_definition" represent the actual
definition of the thing, with the body/data of the thing. ("methoddef" is special, it’s the only one that ends
with "_define", representing that it’s a preprocessor #define.)

destination A destination is a place Clinic can write output to. There are five built-in destinations:
block The default destination: printed in the output section of the current Clinic block.

buffer A text buffer where you can save text for later. Text sent here is appended to the end of any existing
text. It’s an error to have any text left in the buffer when Clinic finishes processing a file.

file A separate “clinic file” that will be created automatically by Clinic. The filename chosen for the file
is {basename}.clinic{extension}, where basename and extension were assigned the
output from os.path.splitext () run on the current file. (Example: the £ile destination for
_pickle.c would be written to _pickle.clinic.c.)

Important: When using a £i1le destination, you must check in the generated file!

two-pass A buffer like buf fer. However, a two-pass buffer can only be dumped once, and it prints out
all text sent to it during all processing, even from Clinic blocks affer the dumping point.

suppress The text is suppressed—thrown away.
Clinic defines five new directives that let you reconfigure its output.

The first new directive is dump:

dump <destination>

This dumps the current contents of the named destination into the output of the current block, and empties it. This
only works with buf fer and two-pass destinations.

The second new directive is output. The most basic form of output is like this:

output <field> <destination>

This tells Clinic to output field to destination. output also supports a special meta-destination, called
everything, which tells Clinic to output al/ fields to that destination.

output has a number of other functions:

output push
output pop
output preset <preset>

output pushand output pop allow you to push and pop configurations on an internal configuration stack, so
that you can temporarily modify the output configuration, then easily restore the previous configuration. Simply push
before your change to save the current configuration, then pop when you wish to restore the previous configuration.

output preset sets Clinic’s output to one of several built-in preset configurations, as follows:

21

block Clinic’s original starting configuration. Writes everything immediately after the input block.

Suppress the parser_prototype and docstring_prototype, write everything else to
block.

file Designed to write everything to the “clinic file” that it can. You then #include this file near
the top of your file. You may need to rearrange your file to make this work, though usually this
just means creating forward declarations for various t ypedef and PyTypeObject definitions.

Suppress the parser_prototype and docstring_prototype, write the
impl_definition to block, and write everything else to file.

The default filename is " {dirname}/clinic/{basename}.h".

buffer Save up most of the output from Clinic, to be written into your file near the end. For Python
files implementing modules or builtin types, it’s recommended that you dump the buffer just above
the static structures for your module or builtin type; these are normally very near the end. Using
buf fer may require even more editing than £ile, if your file has static PyMethodDe £ arrays
defined in the middle of the file.

Suppress the parser_prototype, impl_prototype, and docstring_prototype,
write the impl_definition to block, and write everything else to file.

two-pass Similar to the buf fer preset, but writes forward declarations to the two—-pass buffer,
and definitions to the buf fer. This is similar to the buf fer preset, but may require less editing
than buffer. Dump the two-pass buffer near the top of your file, and dump the buffer
near the end just like you would when using the buf fer preset.

Suppresses the impl_prototype, write the impl_definition to block, write
docstring_prototype, methoddef_define, and parser_prototype to
two-pass, write everything else to buffer.

partial-buffer Similar to the buf fer preset, but writes more things to b1 ock, only writing the
really big chunks of generated code to buf fer. This avoids the definition-before-use problem of
buffer completely, at the small cost of having slightly more stuff in the block’s output. Dump
the buf fer near the end, just like you would when using the buf fer preset.

Suppresses the impl_prototype, write the docstring_definition and
parser_definition to buffer, write everything else to block.

The third new directive is destination:

destination <name> <command> [...]

This performs an operation on the destination named name.
There are two defined subcommands: new and clear.

The new subcommand works like this:

destination <name> new <type>

This creates a new destination with name <name> and type <type>.

There are five destination types:
suppress Throws the text away.
block Writes the text to the current block. This is what Clinic originally did.
buffer A simple text buffer, like the “buffer” builtin destination above.

file A text file. The file destination takes an extra argument, a template to use for building the file-
name, like so:

destination <name> new <type> <file_template>

The template can use three strings internally that will be replaced by bits of the filename:

22

{path} The full path to the file, including directory and full filename.
{dirname} The name of the directory the file is in.
{basename} Just the name of the file, not including the directory.

{basename_root} Basename with the extension clipped off (everything up to but not
including the last *.’).

{basename_extension} The last *.” and everything after it. If the basename does not
contain a period, this will be the empty string.

If there are no periods in the filename, {basename} and {filename} are the same, and {extension}
is empty. “{basename}{extension}” is always exactly the same as “{filename}”.”

two—-pass A two-pass buffer, like the “two-pass” builtin destination above.

The clear subcommand works like this:

destination <name> clear

It removes all the accumulated text up to this point in the destination. (I don’t know what you’d need this for, but I
thought maybe it'd be useful while someone’s experimenting.)

The fourth new directive is set:

set line_prefix "string"
set line_suffix "string"

set lets you set two internal variables in Clinic. 1ine_prefix is a string that will be prepended to every line of
Clinic’s output; 1ine_suffix is a string that will be appended to every line of Clinic’s output.

Both of these support two format strings:
{block comment start} Turns into the string /*, the start-comment text sequence for C files.
{block comment end} Turns into the string * /, the end-comment text sequence for C files.

The final new directive is one you shouldn’t need to use directly, called preserve:

preserve

This tells Clinic that the current contents of the output should be kept, unmodified. This is used internally by Clinic
when dumping output into £1 1e files; wrapping it in a Clinic block lets Clinic use its existing checksum functionality
to ensure the file was not modified by hand before it gets overwritten.

4.18 How to use the #ifdef trick

If you’re converting a function that isn’t available on all platforms, there’s a trick you can use to make life a little
easier. The existing code probably looks like this:

#1fdef HAVE_FUNCTIONNAME
static module_functionname(...)

{

}
#endif /* HAVE_FUNCTIONNAME */

And then in the PyMethodDe £ structure at the bottom the existing code will have:

#ifdef HAVE_FUNCTIONNAME
{'functionname', ... },
#endif /* HAVE_FUNCTIONNAME */

In this scenario, you should enclose the body of your impl function inside the #ifdef, like so:

23

#ifdef HAVE_FUNCTIONNAME
/*[clinic input]
module. functionname

[clinic start generated code]*/
static module_functionname (...)

{

}
#endif /* HAVE_FUNCTIONNAME */

Then, remove those three lines from the PyMethodDef structure, replacing them with the macro Argument Clinic
generated:

MODULE_FUNCTIONNAME_METHODDEF

(You can find the real name for this macro inside the generated code. Or you can calculate it yourself: it’s the name
of your function as defined on the first line of your block, but with periods changed to underscores, uppercased, and
"_METHODDEF" added to the end.)

Perhaps youre wondering: what if HAVE_FUNCTIONNAME isn’t defined? The
MODULE_FUNCTIONNAME_METHODDEF macro won't be defined either!

Here’s where Argument Clinic gets very clever. It actually detects that the Argument Clinic block might be deactivated
by the #1fdef. When that happens, it generates a little extra code that looks like this:

#ifndef MODULE_FUNCTIONNAME METHODDEF
#define MODULE_FUNCTIONNAME_METHODDEF
#endif /* !defined (MODULE_FUNCTIONNAME_METHODDEF) */

That means the macro always works. If the function is defined, this turns into the correct structure, including the
trailing comma. If the function is undefined, this turns into nothing.

However, this causes one ticklish problem: where should Argument Clinic put this extra code when using the “block”
output preset? It can’t go in the output block, because that could be deactivated by the #ifdef. (That’s the whole
point!)

In this situation, Argument Clinic writes the extra code to the “buffer” destination. This may mean that you get a
complaint from Argument Clinic:

Warning in file "Modules/posixmodule.c" on line 12357:
Destination buffer 'buffer' not empty at end of file, emptying.

When this happens, just open your file, find the dump buffer block that Argument Clinic added to your file (it’ll
be at the very bottom), then move it above the PyMethodDe £ structure where that macro is used.

4.19 How to use Argument Clinic in Python files

It’s actually possible to use Argument Clinic to preprocess Python files. There’s no point to using Argument Clinic
blocks, of course, as the output wouldn’t make any sense to the Python interpreter. But using Argument Clinic to run
Python blocks lets you use Python as a Python preprocessor!

Since Python comments are different from C comments, Argument Clinic blocks embedded in Python files look
slightly different. They look like this:

#/*[python input]

#print ("def foo(): pass'")
#[python start generated code]*/
def foo(): pass

#/* [python checksum:...]*/

24

4.20 How to override the generated signature

You can use the @text_signature directive to override the default generated signature in the docstring. This
can be useful for complex signatures that Argument Clinic cannot handle. The @text__signature directive takes
one argument: the custom signature as a string. The provided signature is copied verbatim to the generated docstring.

Example from Objects/codeobject.c:

/*[clinic input]
@text_signature " ($self, /, **changes)"

code.replace
*

co_argcount: int (c_default="self->co_argcount'") = unchanged
co_posonlyargcount: int (c_default="self->co_posonlyargcount") = unchanged
etc

Return a copy of the code object with new values for the specified fields.
[clinic start generated output]*/

The generated docstring ends up looking like this:

replace ($self, /, **changes)

Return a copy of the code object with new values for the specified fields.

25

https://github.com/python/cpython/tree/3.11/Objects/codeobject.c

Python Module Index

C

clinic, 4

26

Index

Non-alphabetical

./Tools/clinic/clinic.py-[-h]-[-f]-[-0—OQOUTPUT]

./Tools/clinic/clinic.py—[-h]-[-f]-[-0-OUTPUT FOMIGNA\ 1ine. opfd Phads] - [~—make] - [-—srcdir-

command line option
—-—converters, 3
-£,3
FILE,3
—-—force, 3
-h,3
—-—help,3
—-—-make, 3
-0,3
—-—output, 3
——-srcdir, 3
-v, 3
--verbose, 3

B

block, 3

C

c_default (clinic. CConverter attribute), 4
c_ignored_default (clinic. CConverter attribute), 4

CConverter (class in clinic), 4
checksum, 3
checksum line, 3
clinic
module, 4

converter (clinic. CConverter attribute), 4

impl_by_reference (clinic. CConverter attribute), 4
input, 3

M

—-—-make
./Tools/clinic/clinic.py-[-h]-[-f]-[-0-OUTPUT]
command line option,3
module
clinic,4

O
e
./Tools/clinic/clinic.py-[-h]-[-f]-[-0-OUTPUT]
command line option,3
output, 3
——output
./Tools/clinic/clinic.py-[-h]-[-f]-[-0-OUTPUT]
command line option,3

P

parse_by_reference (clinic.CConverter attribute),
4

py_default (clinic. CConverter attribute), 4

Python Enhancement Proposals

——converters PEP 8.12
./Tools/clinic/clinic.py—[-h]-[-f]-[-08QIPJE] 5[-v]I-\-[-—-converters]-[--make]-[-—src
command line option,3 PEP 436.2
D PEP 573,19
default (clinic.CConverter attribute), 4 S
E —-—-srcdir
./Tools/clinic/clinic.py-[-h]-[-f]-[-0—OUTPUT]

end line,3

F

command line option,3
start line,3

T

-f
./Tools/clinic/clinic.py~[~h]~-[-f]-{ypeQUEREECodvertdrarriburey,@nverters] - [--make] - [--src
command line option,3
FILE \V
./Tools/clinic/clinic.py—[—h]—[—f]—L;o—OUTPUT]—[—v]—\—[——converters]—[——make]—[——src
command line option,3 ./Tools/clinic/clinic.py-[-h]-[-f]-[-0-OUTPUT]
——force o o command line option,3
./Tools/cllnlc/cllnlc.py—[—h]—[—f]—L:%%Q‘%Eg;]—[—v]—\—[——converters]—[——make]—[——src
command line option,3 ./Tools/clinic/clinic.py—[-h]-[-£]-[-0—-OUTPUT]

Fl

-h

command line option,3

./Tools/clinic/clinic.py—-[-h]-[-f]-[-0-OUTPUT]-[-v]-\-[-—-converters]-[-—-make]—-[-—-srcC

command line option,3
—--help

27

	Background
	Basic concepts

	Reference
	Terminology
	Command-line interface
	Classes for extending Argument Clinic

	Tutorial
	How-to guides
	How to rename C functions and variables generated by Argument Clinic
	How to convert functions using PyArg_UnpackTuple
	How to use optional groups
	How to use real Argument Clinic converters, instead of “legacy converters”
	How to use the Py_buffer converter
	How to use advanced converters
	How to assign default values to parameter
	The NULL default value
	Symbolic default values
	Expressions as default values

	How to use return converters
	How to clone existing functions
	How to call Python code
	How to use the “self converter”
	How to use the “defining class” converter
	How to write a custom converter
	How to write a custom return converter
	How to convert METH_O and METH_NOARGS functions
	How to convert tp_new and tp_init functions
	How to change and redirect Clinic’s output
	How to use the #ifdef trick
	How to use Argument Clinic in Python files
	How to override the generated signature

	Python Module Index
	Index

