Python Frequently Asked Questions
Release 3.11.4

Guido van Rossum and the Python development team

August 24, 2023

Python Software Foundation
Email: docs@python.org

CONTENTS

1 General Python FAQ
General Information e e e e e e e e e e

1.1

1.2

1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.1.6
1.1.7
1.1.8
1.1.9
1.1.10
1.1.11
1.1.12
1.1.13
1.1.14
1.1.15
1.1.16
1.1.17

What is the Python Software Foundation?
Are there copyright restrictions on the use of Python?,
Why was Python created in the first place?
What is Python good for? oo
How does the Python version numbering scheme work?
How do I obtain a copy of the Python source?
How do I get documentation on Python?
I've never programmed before. Is there a Python tutorial?

Do I have to like “Monty Python’s Flying Circus™?

Pythoninthereal world

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6

What new developments are expected for Python in the future?
Is it reasonable to propose incompatible changes to Python?
Is Python a good language for beginning programmers?

2 Programming FAQ
General QUESHIONS L e e e e e e e

2.1

22

2.1.1
2.1.2
2.13
2.14

Is there a source code level debugger with breakpoints, single-stepping, etc.?

How can I create a stand-alone binary from a Python script?
Are there coding standards or a style guide for Python programs?

Core Language o . e e e e e

221
222
223
224
225
226
227
228
229
2.2.10

How do I share global variables across modules?
What are the “best practices” for using import in a module?
Why are default values shared between objects?

What is the difference between arguments and parameters?
Why did changing list ‘y’ also change list X’?
How do I write a function with output parameters (call by reference)?

— e

23

24

2.5

2.6

2.7

2.2.11
22.12
2213
22.14
2.2.15
2.2.16
22.17
2.2.18

How can I find the methods or attributes of an object?
How can my code discover the name of an object?
What'’s up with the comma operator’s precedence?
Is there an equivalent of C’s “?:” ternary operator?
Is it possible to write obfuscated one-liners in Python?
What does the slash(/) in the parameter list of a function mean?

Numbers and Strings e e

2.3.1 How do I specify hexadecimal and octal integers?
232 Whydoes-22//10return-37 L. e e e
2.3.3 How do I get int literal attribute instead of SyntaxError?
234 HowdolIconvertastringtoanumber?
2.3.5 HowdolIconvertanumbertoastring?
2.3.6 HowdoImodify astringinplace?
2.3.7 How do I use strings to call functions/methods?
2.3.8 Is there an equivalent to Perl’s chomp() for removing trailing newlines from strings?
2.3.9 Isthere a scanf() or sscanf() equivalent?
2.3.10 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?
2.3.11 CanlIend a raw string with an odd number of backslashes?
Performance L
24.1 My program is too slow. Howdo I'speeditup?
2.4.2 What is the most efficient way to concatenate many strings together?

Sequences (Tuples/Lists) o o v i i e e e e e e e e e

2.5.1
252
253
254
255
2.5.6
2.5.7
258
259
2.5.10
2511
Objects
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8
2.6.9
2.6.10
2.6.11
2.6.12
2.6.13
2.6.14
2.6.15
2.6.16

Modules

271
272
273
274

How do I convert between tuples and lists?
What's a negative index? e e e e
How do I iterate over a sequence in reverse order?
How do you remove duplicates fromalist?
How do you remove multiple items fromalist
How do you make an array in Python?
How do I create a multidimensional list?

Why does a_tuple[i] += [‘item’] raise an exception when the addition works?
I want to do a complicated sort: can you do a Schwartzian Transform in Python?

What is delegation? e
How do I call a method defined in a base class from a derived class that extends it?

How can I organize my code to make it easier to change the base class?
How do I create static class data and static class methods?
How can I overload constructors (or methods) in Python?
I try to use __spam and I get an error about _SomeClassName__spam.
My class defines __del__ but it is not called when I delete the object.

When can I rely on identity tests with the is operator?
How can a subclass control what data is stored in an immutable instance?

HowdoIcreatea .pycfile? e
How do I find the current module name?
How can I have modules that mutually import each other?
__import__(*x.y.z)) returns <module x’>; howdo I getz?

17
17

2.7.5 When I edit an imported module and reimport it, the changes don’t show up. Why does

thishappen? o e e e e e e 38

3 Design and History FAQ 39

3.1 Why does Python use indentation for grouping of statements? 39

3.2 Why am I getting strange results with simple arithmetic operations? 39

3.3 Why are floating-point calculations so inaccurate? oL 39

3.4 Why are Python strings immutable? 0oL o 40

3.5 Why must ‘self” be used explicitly in method definitions and calls? 40

3.6 Why can’t I use an assignment in an expression? oo o i e e e e e 41
3.7 Why does Python use methods for some functionality (e.g. list.index()) but functions for other (e.g.

len(list))? e 41

3.8 Why is join() a string method instead of a list or tuple method? 41

3.9 Howfastare exceptions? i i i e e e e e e e 42

3.10 Why isn’t there a switch or case statement in Python? 42

3.11 Can’t youemulate threads in the interpreter instead of relying on an OS-specific thread implementation? 43

3.12 Why can’t lambda expressions contain statements? oL .ol e e 43

3.13 Can Python be compiled to machine code, C or some other language? 43

3.14 How does Python manage memory? 43

3.15 Why doesn’t CPython use a more traditional garbage collection scheme? 44

3.16 Why isn’t all memory freed when CPython exits? 44

3.17 Why are there separate tuple and list data types? e 44

3.18 How are lists implemented in CPython? 45

3.19 How are dictionaries implemented in CPython? 45

3.20 Why must dictionary keys be immutable? oL oL 45

3.21 Why doesn’t list.sort() return the sorted list? Lo 46

3.22 How do you specify and enforce an interface spec in Python? 46

3.23 Whyisthere no goto? o o o i i e e e e e e e e e e e e 47

3.24 Why can’t raw strings (r-strings) end with a backslash? oo 47

3.25 Why doesn’t Python have a “with” statement for attribute assignments? 48

3.26 Why don’t generators support the with statement? 49

3.27 Why are colons required for the if/while/def/class statements? 49

3.28 Why does Python allow commas at the end of lists and tuples? 49

4 Library and Extension FAQ 51

4.1 General Library QUeStions v i i i e e e e e e e e e e e e 51

4.1.1 How do I find a module or application to perform task X? 51

4.1.2 Where is the math.py (socket.py, regex.py, etc.) source file? 51

4.1.3 How do I make a Python script executable on Unix? 51

4.1.4 Is there a curses/termcap package for Python? 52

4.1.5 Isthere an equivalent to C’s onexit() in Python? 52

4.1.6 Why don’t my signal handlers work? 52

42 Commontasks 52

4.2.1 How do Itest a Python program or component? 52

4.2.2 How do I create documentation from doc strings? 53

423 HowdoIgetasingle keypressatatime? 53

43 Threads 53

43.1 Howdolprogram using threads? 53

4.3.2 None of my threads seem torun: why? 53

4.3.3 How do I parcel out work among a bunch of worker threads? 54

4.3.4 What kinds of global value mutation are thread-safe? 55

4.3.5 Can’t we getrid of the Global Interpreter Lock? 56

44 Inputand OULPUL L 0 i e e e e e e e e e e e e e 56

44.1 How doI delete a file? (And other file questions...) 56

442 Howdolcopyafile? 57

443 HowdoIread (or write) binary data? 57

4.4.4 Tcant seem to use os.read() on a pipe created with os.popen(); why? 57

4.4.5 How do I access the serial (RS232) port? 57

4.4.6 Why doesn’t closing sys.stdout (stdin, stderr) really close it? 57

4.5 Network/Internet Programming e e e e e 58
4.5.1 What WWW tools are there for Python? 58
4.5.2 How can I mimic CGI form submission (METHOD=POST)? 58
4.5.3 What module should I use to help with generating HTML? 59
4.5.4 HowdolIsend mail from a Pythonscript? 59
4.5.5 How do I avoid blocking in the connect() method of a socket? 59
4.6 Databases e e 60
4.6.1 Are there any interfaces to database packages in Python? 60
4.6.2 How do you implement persistent objects in Python? 60
4.7 Mathematics and NUMEIICS o i v vt e e e e e 60
4.7.1 How do I generate random numbers in Python? 60
5 Extending/Embedding FAQ 61
5.1 Canlcreate my own functions in C? e 61
5.2 Canlcreate my own functions in C++? e e e e 61
5.3 Writing C is hard; are there any alternatives? e 61
5.4 How can I execute arbitrary Python statements from C? 61
5.5 How can I evaluate an arbitrary Python expression from C? 62
5.6 How do I extract C values from a Python object? 62
5.7 How do I use Py_BuildValue() to create a tuple of arbitrary length? 62
5.8 HowdoIcall an object’s method from C? 62
5.9 How do I catch the output from PyErr_Print() (or anything that prints to stdout/stderr)? 63
5.10 How do I access a module written in Python from C? 63
5.11 How do Iinterface to C++ objects from Python?, 64
5.12 Tadded a module using the Setup file and the make fails; why? 64
5.13 How doIdebugan extension? i i v it i it e e e e e e 64
5.14 T want to compile a Python module on my Linux system, but some files are missing. Why? 64
5.15 How do I tell “incomplete input” from “invalid input”™? 64
5.16 How do I find undefined g++ symbols __builtin_new or __pure_virtual? 65
5.17 CanIcreate an object class with some methods implemented in C and others in Python (e.g. through
INhEritance)? o e e e e e e e e e e e e 65
6 Python on Windows FAQ 67
6.1 How do I run a Python program under Windows? 67
6.2 How do I make Python scripts executable? e 68
6.3 Why does Python sometimes take so longtostart? 68
6.4 How do I make an executable from a Python script? 68
6.5 Isa*.pydfilethesameasaDLL? 68
6.6 How can I embed Python into a Windows application? 69
6.7 How do I keep editors from inserting tabs into my Python source? 70
6.8 How do I check for a keypress without blocking? 70
6.9 How do I solve the missing api-ms-win-crt-runtime-11-1-0.dll error? 70
7 Graphic User Interface FAQ 71
7.1 General GUIQUEStIONS o v ittt e e e e e e e e e 71
7.2 What GUI toolkits exist for Python? o oo 71
7.3 TKInter qUESLIONS v i i e i e e e e e e e e e e e e e e 71
7.3.1 How do I freeze Tkinter applications? 71
7.3.2 CanI have Tk events handled while waiting for /O? 71
7.3.3 Ican’t get key bindings to work in Tkinter: why? 72
8 “Why is Python Installed on my Computer?” FAQ 73
8.1 Whatis Python? e e e e e e e e 73
8.2 Why is Python installed on my machine?o 73
83 Canldelete Python? e 73
A Glossary 75

B About these documents 89

B.1 Contributors to the Python Documentation 89
C History and License 91
C.1 Historyof the software i e e e e e e e e e 91
C.2 Terms and conditions for accessing or otherwise using Python 92
C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.114 92
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 93
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 94
C.24 CWILICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 95

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.4 DOCUMEN-
TATION e 95
C.3 Licenses and Acknowledgements for Incorporated Software 96
C3.1 Mersenne TWIStET o v v i i e e e e e e e e e e e e e e e e e e 96
C.3.2 Sockets i e e e e e e e e 97
C.3.3 Asynchronous Socket ServiCes v v v v v v v i e e e e e e e e e e e 97
C.3.4 Cookiemanagement v v v v i e e e e e e e e e e e e e e e 98
C3.5 ExecutiontraCing it e e e e e e 98
C.3.6 UUencode and UUdecode functions v v v i vt i i e e 99
C.3.7 XML Remote Procedure Callst 99
C3.8 test_epoll e e e 100
C.3.9 Selectkqueue e e e e e e e e e 100
C3.10 SipHash24 0 e e 101
C3.11 strtodanddtoa. 0 o i e e e e e e e e e e e 101
C3.12 OpenSSL . . . o o e e 102
C3I3 eXPal. . o o o ot e e e e e e e 105
C3.04 Lbfli . . . e e 105
C3.05 zlib . . e e e 106
C3.16 cfuhash 106
C3.17 Hibmpdec e e 107
C.3.18 WI3C CIANTEStSUItE . & v v v v e e o e 107
C3.19 Audioop o v e e e 108
D Copyright 109
Index 111

vi

CHAPTER
ONE

GENERAL PYTHON FAQ

1.1 General Information

1.1.1 What is Python?

Python is an interpreted, interactive, object-oriented programming language. It incorporates modules, exceptions,
dynamic typing, very high level dynamic data types, and classes. It supports multiple programming paradigms beyond
object-oriented programming, such as procedural and functional programming. Python combines remarkable power
with very clear syntax. It has interfaces to many system calls and libraries, as well as to various window systems,
and is extensible in C or C++. It is also usable as an extension language for applications that need a programmable
interface. Finally, Python is portable: it runs on many Unix variants including Linux and macOS, and on Windows.

To find out more, start with tutorial-index. The Beginner’s Guide to Python links to other introductory tutorials and
resources for learning Python.

1.1.2 What is the Python Software Foundation?

The Python Software Foundation is an independent non-profit organization that holds the copyright on Python versions
2.1 and newer. The PSF’s mission is to advance open source technology related to the Python programming language
and to publicize the use of Python. The PSF’s home page is at https://www.python.org/psf/.

Donations to the PSF are tax-exempt in the US. If you use Python and find it helpful, please contribute via the PSF
donation page.

1.1.3 Are there copyright restrictions on the use of Python?

You can do anything you want with the source, as long as you leave the copyrights in and display those copyrights
in any documentation about Python that you produce. If you honor the copyright rules, it’s OK to use Python for
commercial use, to sell copies of Python in source or binary form (modified or unmodified), or to sell products that
incorporate Python in some form. We would still like to know about all commercial use of Python, of course.

See the license page to find further explanations and the full text of the PSF License.

The Python logo is trademarked, and in certain cases permission is required to use it. Consult the Trademark Usage
Policy for more information.

https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/psf/
https://www.python.org/psf/donations/
https://www.python.org/psf/donations/
https://docs.python.org/3/license.html
https://www.python.org/psf/trademarks/
https://www.python.org/psf/trademarks/

Python Frequently Asked Questions, Release 3.11.4

1.1.4 Why was Python created in the first place?

Here’s a very brief summary of what started it all, written by Guido van Rossum:

I had extensive experience with implementing an interpreted language in the ABC group at CWI, and
from working with this group I had learned a lot about language design. This is the origin of many Python
features, including the use of indentation for statement grouping and the inclusion of very-high-level data
types (although the details are all different in Python).

I had a number of gripes about the ABC language, but also liked many of its features. It was impossi-
ble to extend the ABC language (or its implementation) to remedy my complaints — in fact its lack of
extensibility was one of its biggest problems. I had some experience with using Modula-2+ and talked
with the designers of Modula-3 and read the Modula-3 report. Modula-3 is the origin of the syntax and
semantics used for exceptions, and some other Python features.

I was working in the Amoeba distributed operating system group at CWI. We needed a better way to
do system administration than by writing either C programs or Bourne shell scripts, since Amoeba had
its own system call interface which wasn’t easily accessible from the Bourne shell. My experience with
error handling in Amoeba made me acutely aware of the importance of exceptions as a programming
language feature.

It occurred to me that a scripting language with a syntax like ABC but with access to the Amoeba system
calls would fill the need. I realized that it would be foolish to write an Amoeba-specific language, so I
decided that I needed a language that was generally extensible.

During the 1989 Christmas holidays, I had a lot of time on my hand, so I decided to give it a try. During
the next year, while still mostly working on it in my own time, Python was used in the Amoeba project
with increasing success, and the feedback from colleagues made me add many early improvements.

In February 1991, after just over a year of development, I decided to post to USENET. The rest is in
the Misc/HISTORY file.

1.1.5 What is Python good for?

Python is a high-level general-purpose programming language that can be applied to many different classes of prob-
lems.

The language comes with a large standard library that covers areas such as string processing (regular expressions,
Unicode, calculating differences between files), internet protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP),
software engineering (unit testing, logging, profiling, parsing Python code), and operating system interfaces (system
calls, filesystems, TCP/IP sockets). Look at the table of contents for library-index to get an idea of what’s available.
A wide variety of third-party extensions are also available. Consult the Python Package Index to find packages of
interest to you.

1.1.6 How does the Python version numbering scheme work?

Python versions are numbered “A.B.C” or “A.B™:
* A is the major version number — it is only incremented for really major changes in the language.
* B is the minor version number — it is incremented for less earth-shattering changes.
e (is the micro version number — it is incremented for each bugfix release.

See PEP 6 for more information about bugfix releases.

Not all releases are bugfix releases. In the run-up to a new feature release, a series of development releases are made,
denoted as alpha, beta, or release candidate. Alphas are early releases in which interfaces aren’t yet finalized; it’s
not unexpected to see an interface change between two alpha releases. Betas are more stable, preserving existing
interfaces but possibly adding new modules, and release candidates are frozen, making no changes except as needed
to fix critical bugs.

Alpha, beta and release candidate versions have an additional suffix:

2 Chapter 1. General Python FAQ

https://pypi.org
https://peps.python.org/pep-0006/

Python Frequently Asked Questions, Release 3.11.4

* The suffix for an alpha version is “aN” for some small number N.
¢ The suffix for a beta version is “bN” for some small number .
¢ The suffix for a release candidate version is “rcN” for some small number N.

In other words, all versions labeled 2.0aN precede the versions labeled 2.0bN, which precede versions labeled 2.0rcN,
and those precede 2.0.

You may also find version numbers with a “+” suffix, e.g. “2.2+”. These are unreleased versions, built directly from
the CPython development repository. In practice, after a final minor release is made, the version is incremented to
the next minor version, which becomes the “a0” version, e.g. “2.4a0”.

See also the documentation for sys.version, sys.hexversion,and sys.version_info.

1.1.7 How do | obtain a copy of the Python source?
The latest Python source distribution is always available from python.org, at https://www.python.org/downloads/.
The latest development sources can be obtained at https://github.com/python/cpython/.

The source distribution is a gzipped tar file containing the complete C source, Sphinx-formatted documentation,
Python library modules, example programs, and several useful pieces of freely distributable software. The source
will compile and run out of the box on most UNIX platforms.

Consult the Getting Started section of the Python Developer’s Guide for more information on getting the source code
and compiling it.

1.1.8 How do | get documentation on Python?
The standard documentation for the current stable version of Python is available at https://docs.python.org/3/. PDF,
plain text, and downloadable HTML versions are also available at https://docs.python.org/3/download.html.

The documentation is written in reStructuredText and processed by the Sphinx documentation tool. The reStruc-
turedText source for the documentation is part of the Python source distribution.

1.1.9 I've never programmed before. Is there a Python tutorial?

There are numerous tutorials and books available. The standard documentation includes tutorial-index.

Consult the Beginner’s Guide to find information for beginning Python programmers, including lists of tutorials.

1.1.10 Is there a newsgroup or mailing list devoted to Python?

There is a newsgroup, comp . lang.python, and a mailing list, python-list. The newsgroup and mailing list are
gatewayed into each other — if you can read news it’s unnecessary to subscribe to the mailing list. comp. lang.
python is high-traffic, receiving hundreds of postings every day, and Usenet readers are often more able to cope
with this volume.

Announcements of new software releases and events can be found in comp.lang.python.announce, a low-traffic mod-
erated list that receives about five postings per day. It’s available as the python-announce mailing list.

More info about other mailing lists and newsgroups can be found at https://www.python.org/community/lists/.

1.1. General Information 3

https://www.python.org/downloads/
https://github.com/python/cpython/
https://devguide.python.org/setup/
https://docs.python.org/3/
https://docs.python.org/3/download.html
https://www.sphinx-doc.org/
https://wiki.python.org/moin/BeginnersGuide
https://mail.python.org/mailman/listinfo/python-list
https://mail.python.org/mailman3/lists/python-announce-list.python.org/
https://www.python.org/community/lists/

Python Frequently Asked Questions, Release 3.11.4

1.1.11 How do | get a beta test version of Python?
Alpha and beta releases are available from https://www.python.org/downloads/. All releases are announced on the

comp.lang.python and comp.lang.python.announce newsgroups and on the Python home page at https://www.python.
org/; an RSS feed of news is available.

You can also access the development version of Python through Git. See The Python Developer’s Guide for details.

1.1.12 How do | submit bug reports and patches for Python?

To report a bug or submit a patch, use the issue tracker at https://github.com/python/cpython/issues.

For more information on how Python is developed, consult the Python Developer’s Guide.

1.1.13 Are there any published articles about Python that | can reference?

It’s probably best to cite your favorite book about Python.
The very first article about Python was written in 1991 and is now quite outdated.

Guido van Rossum and Jelke de Boer, “Interactively Testing Remote Servers Using the Python Pro-
gramming Language”, CWI Quarterly, Volume 4, Issue 4 (December 1991), Amsterdam, pp 283-303.

1.1.14 Are there any books on Python?

Yes, there are many, and more are being published. See the python.org wiki at https://wiki.python.org/moin/
PythonBooks for a list.

You can also search online bookstores for “Python” and filter out the Monty Python references; or perhaps search for
“Python” and “language”.

1.1.15 Where in the world is www.python.org located?

The Python project’s infrastructure is located all over the world and is managed by the Python Infrastructure Team.
Details here.

1.1.16 Why is it called Python?

When he began implementing Python, Guido van Rossum was also reading the published scripts from “Monty
Python’s Flying Circus”, a BBC comedy series from the 1970s. Van Rossum thought he needed a name that was
short, unique, and slightly mysterious, so he decided to call the language Python.

1.1.17 Do | have to like “Monty Python’s Flying Circus”?

No, but it helps. :)

4 Chapter 1. General Python FAQ

https://www.python.org/downloads/
https://www.python.org/
https://www.python.org/
https://devguide.python.org/
https://github.com/python/cpython/issues
https://devguide.python.org/
https://ir.cwi.nl/pub/18204
https://wiki.python.org/moin/PythonBooks
https://wiki.python.org/moin/PythonBooks
https://infra.psf.io
https://en.wikipedia.org/wiki/Monty_Python
https://en.wikipedia.org/wiki/Monty_Python

Python Frequently Asked Questions, Release 3.11.4

1.2 Python in the real world

1.2.1 How stable is Python?

Very stable. New, stable releases have been coming out roughly every 6 to 18 months since 1991, and this seems
likely to continue. As of version 3.9, Python will have a new feature release every 12 months (PEP 602).

The developers issue bugfix releases of older versions, so the stability of existing releases gradually improves. Bugfix
releases, indicated by a third component of the version number (e.g. 3.5.3, 3.6.2), are managed for stability; only
fixes for known problems are included in a bugfix release, and it’s guaranteed that interfaces will remain the same
throughout a series of bugfix releases.

The latest stable releases can always be found on the Python download page. There are two production-ready versions
of Python: 2.x and 3.x. The recommended version is 3.x, which is supported by most widely used libraries. Although
2.x is still widely used, it is not maintained anymore.

1.2.2 How many people are using Python?

There are probably millions of users, though it’s difficult to obtain an exact count.

Python is available for free download, so there are no sales figures, and it’s available from many different sites and
packaged with many Linux distributions, so download statistics don’t tell the whole story either.

The comp.lang.python newsgroup is very active, but not all Python users post to the group or even read it.

1.2.3 Have any significant projects been done in Python?

See https://www.python.org/about/success for a list of projects that use Python. Consulting the proceedings for past
Python conferences will reveal contributions from many different companies and organizations.

High-profile Python projects include the Mailman mailing list manager and the Zope application server. Several Linux
distributions, most notably Red Hat, have written part or all of their installer and system administration software in
Python. Companies that use Python internally include Google, Yahoo, and Lucasfilm Ltd.

1.2.4 What new developments are expected for Python in the future?

See https://peps.python.org/ for the Python Enhancement Proposals (PEPs). PEPs are design documents describing
a suggested new feature for Python, providing a concise technical specification and a rationale. Look for a PEP titled
“Python X.Y Release Schedule”, where X.Y is a version that hasn’t been publicly released yet.

New development is discussed on the python-dev mailing list.

1.2.5 Is it reasonable to propose incompatible changes to Python?

In general, no. There are already millions of lines of Python code around the world, so any change in the language
that invalidates more than a very small fraction of existing programs has to be frowned upon. Even if you can provide
a conversion program, there’s still the problem of updating all documentation; many books have been written about
Python, and we don’t want to invalidate them all at a single stroke.

Providing a gradual upgrade path is necessary if a feature has to be changed. PEP 5 describes the procedure followed
for introducing backward-incompatible changes while minimizing disruption for users.

1.2. Python in the real world 5

https://peps.python.org/pep-0602/
https://www.python.org/downloads/
https://peps.python.org/pep-0373/
https://www.python.org/about/success
https://www.python.org/community/workshops/
https://www.python.org/community/workshops/
https://www.list.org
https://www.zope.dev
https://www.redhat.com
https://peps.python.org/
https://mail.python.org/mailman3/lists/python-dev.python.org/
https://peps.python.org/pep-0005/

Python Frequently Asked Questions, Release 3.11.4

1.2.6 Is Python a good language for beginning programmers?

Yes.

It is still common to start students with a procedural and statically typed language such as Pascal, C, or a subset of
C++ or Java. Students may be better served by learning Python as their first language. Python has a very simple and
consistent syntax and a large standard library and, most importantly, using Python in a beginning programming course
lets students concentrate on important programming skills such as problem decomposition and data type design. With
Python, students can be quickly introduced to basic concepts such as loops and procedures. They can probably even
work with user-defined objects in their very first course.

For a student who has never programmed before, using a statically typed language seems unnatural. It presents
additional complexity that the student must master and slows the pace of the course. The students are trying to learn
to think like a computer, decompose problems, design consistent interfaces, and encapsulate data. While learning
to use a statically typed language is important in the long term, it is not necessarily the best topic to address in the
students’ first programming course.

Many other aspects of Python make it a good first language. Like Java, Python has a large standard library so
that students can be assigned programming projects very early in the course that do something. Assignments aren’t
restricted to the standard four-function calculator and check balancing programs. By using the standard library,
students can gain the satisfaction of working on realistic applications as they learn the fundamentals of programming.
Using the standard library also teaches students about code reuse. Third-party modules such as PyGame are also
helpful in extending the students’ reach.

Python’s interactive interpreter enables students to test language features while they’re programming. They can keep
a window with the interpreter running while they enter their program’s source in another window. If they can’t
remember the methods for a list, they can do something like this:

>>> L = []

>>> dir (L)

['_add__"', '__class__', '_ _contains__ ', '_ _delattr_ ', '_ delitem__ "',
' dir_ ', '__doc__', '_eq ', '__format__', '__ge__"',

' __getattribute__', '__getitem__', '_gt__ ', '__hash__', '__iadd__"',
' dimuwl_ ', ' dinit_ ', '__diter_ ', '_le_ ', '_len_ ', '__1t_ "',

' mul_ ', '_ne_ ', '_new__', '__reduce_ ', '_ _reduce_ex_ ',

' _repr__ ', '__reversed__ ', '_rmul__ ', '__ setattr ', '__setitem__ ',
' sizeof_ ', '__str__', '__subclasshook__', 'append', 'clear',

'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',

'reverse', 'sort']

>>> [d for d in dir (L) if '_ ' not in d]

["append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
—'reverse', 'sort']

>>> help (L.append)
Help on built-in function append:

append (...)
L.append (object) -> None —-- append object to end

>>> L.append (1)
>>> L,

[1]

With the interpreter, documentation is never far from the student as they are programming.

There are also good IDEs for Python. IDLE is a cross-platform IDE for Python that is written in Python using
Tkinter. Emacs users will be happy to know that there is a very good Python mode for Emacs. All of these pro-
gramming environments provide syntax highlighting, auto-indenting, and access to the interactive interpreter while
coding. Consult the Python wiki for a full list of Python editing environments.

If you want to discuss Python’s use in education, you may be interested in joining the edu-sig mailing list.

6 Chapter 1. General Python FAQ

https://wiki.python.org/moin/PythonEditors
https://www.python.org/community/sigs/current/edu-sig

CHAPTER
TWO

PROGRAMMING FAQ

2.1 General Questions

2.1.1 Is there a source code level debugger with breakpoints, single-stepping,
etc.?

Yes.

Several debuggers for Python are described below, and the built-in function breakpoint () allows you to drop
into any of them.

The pdb module is a simple but adequate console-mode debugger for Python. It is part of the standard Python library,
and is documented in the Library Reference Manual. You can also write your own debugger by
using the code for pdb as an example.

The IDLE interactive development environment, which is part of the standard Python distribution (normally available
as Tools/scripts/idle3), includes a graphical debugger.

PythonWin is a Python IDE that includes a GUI debugger based on pdb. The PythonWin debugger colors breakpoints
and has quite a few cool features such as debugging non-PythonWin programs. PythonWin is available as part of
pywin32 project and as a part of the ActivePython distribution.

Eric is an IDE built on PyQt and the Scintilla editing component.
trepan3k is a gdb-like debugger.
Visual Studio Code is an IDE with debugging tools that integrates with version-control software.
There are a number of commercial Python IDEs that include graphical debuggers. They include:
* Wing IDE
e Komodo IDE
e PyCharm

2.1.2 Are there tools to help find bugs or perform static analysis?

Yes.
Pylint and Pyflakes do basic checking that will help you catch bugs sooner.
Static type checkers such as Mypy, Pyre, and Pytype can check type hints in Python source code.

https://github.com/python/cpython/blob/main/Tools/scripts/idle3
https://github.com/mhammond/pywin32
https://www.activestate.com/products/python/
https://eric-ide.python-projects.org/
https://github.com/rocky/python3-trepan/
https://code.visualstudio.com/
https://wingware.com/
https://www.activestate.com/products/komodo-ide/
https://www.jetbrains.com/pycharm/
https://pylint.pycqa.org/en/latest/index.html
https://github.com/PyCQA/pyflakes
https://mypy-lang.org/
https://pyre-check.org/
https://github.com/google/pytype

Python Frequently Asked Questions, Release 3.11.4

2.1.3 How can | create a stand-alone binary from a Python script?

You don’t need the ability to compile Python to C code if all you want is a stand-alone program that users can
download and run without having to install the Python distribution first. There are a number of tools that determine
the set of modules required by a program and bind these modules together with a Python binary to produce a single
executable.

One is to use the freeze tool, which is included in the Python source tree as Tools/freeze. It converts Python byte
code to C arrays; with a C compiler you can embed all your modules into a new program, which is then linked with
the standard Python modules.

It works by scanning your source recursively for import statements (in both forms) and looking for the modules in the
standard Python path as well as in the source directory (for built-in modules). It then turns the bytecode for modules
written in Python into C code (array initializers that can be turned into code objects using the marshal module) and
creates a custom-made config file that only contains those built-in modules which are actually used in the program.
It then compiles the generated C code and links it with the rest of the Python interpreter to form a self-contained
binary which acts exactly like your script.

The following packages can help with the creation of console and GUI executables:
* Nuitka (Cross-platform)
* Pylnstaller (Cross-platform)
¢ PyOxidizer (Cross-platform)
¢ cx_Freeze (Cross-platform)
e py2app (macOS only)
* py2Zexe (Windows only)

2.1.4 Are there coding standards or a style guide for Python programs?

Yes. The coding style required for standard library modules is documented as PEP 8.

2.2 Core Language

2.2.1 Why am | getting an UnboundLocalError when the variable has a value?

It can be a surprise to get the UnboundLocalError in previously working code when it is modified by adding an
assignment statement somewhere in the body of a function.

This code:

>>> x = 10

>>> def bar():
print (x)

>>> bar ()

10

works, but this code:

>>> x = 10

>>> def fool():
print (x)
x += 1

results in an UnboundLocalError:

8 Chapter 2. Programming FAQ

https://github.com/python/cpython/tree/main/Tools/freeze
https://nuitka.net/
https://pyinstaller.org/
https://pyoxidizer.readthedocs.io/en/stable/
https://marcelotduarte.github.io/cx_Freeze/
https://github.com/ronaldoussoren/py2app
https://www.py2exe.org/
https://peps.python.org/pep-0008/

Python Frequently Asked Questions, Release 3.11.4

>>> foo ()
Traceback (most recent call last):

UnboundLocalError: local variable 'x' referenced before assignment

This is because when you make an assignment to a variable in a scope, that variable becomes local to that scope
and shadows any similarly named variable in the outer scope. Since the last statement in foo assigns a new value to
%, the compiler recognizes it as a local variable. Consequently when the earlier print (x) attempts to print the
uninitialized local variable and an error results.

In the example above you can access the outer scope variable by declaring it global:

>>> x = 10

>>> def foobar():
global x
print (x)
x += 1

>>> foobar ()
10

This explicit declaration is required in order to remind you that (unlike the superficially analogous situation with class
and instance variables) you are actually modifying the value of the variable in the outer scope:

>>> print (x)
11

You can do a similar thing in a nested scope using the nonlocal keyword:

>>> def fool():

x = 10
def bar():
nonlocal x
print (x)
x +=1
bar ()
print (x)
>>> foo ()
10
11

2.2.2 What are the rules for local and global variables in Python?

In Python, variables that are only referenced inside a function are implicitly global. If a variable is assigned a value
anywhere within the function’s body, it’s assumed to be a local unless explicitly declared as global.

Though a bit surprising at first, a moment’s consideration explains this. On one hand, requiring global for assigned
variables provides a bar against unintended side-effects. On the other hand, if global was required for all global
references, you'd be using global all the time. You'd have to declare as global every reference to a built-in function
or to a component of an imported module. This clutter would defeat the usefulness of the global declaration for
identifying side-effects.

2.2. Core Language 9

Python Frequently Asked Questions, Release 3.11.4

2.2.3 Why do lambdas defined in a loop with different values all return the same
result?

Assume you use a for loop to define a few different lambdas (or even plain functions), e.g.:

>>> squares = []
>>> for x in range(5):
squares.append (lambda: x**2)

This gives you a list that contains 5 lambdas that calculate x**2. You might expect that, when called, they would
return, respectively, 0, 1, 4, 9, and 1 6. However, when you actually try you will see that they all return 1 6:

>>> squares[2] ()
16
>>> squares[4] ()
16

This happens because x is not local to the lambdas, but is defined in the outer scope, and it is accessed when the
lambda is called — not when it is defined. At the end of the loop, the value of x is 4, so all the functions now return
4**2 i.e. 16. You can also verify this by changing the value of x and see how the results of the lambdas change:

>>> x = 8
>>> squares[2] ()
64

In order to avoid this, you need to save the values in variables local to the lambdas, so that they don’t rely on the value
of the global x:

>>> squares = []
>>> for x in range(5):
squares.append (lambda n=x: n**2)

Here, n=x creates a new variable n local to the lambda and computed when the lambda is defined so that it has the
same value that x had at that point in the loop. This means that the value of n will be O in the first lambda, 1 in the
second, 2 in the third, and so on. Therefore each lambda will now return the correct result:

>>> squares|[2] ()
4

>>> squares[4] ()
16

Note that this behaviour is not peculiar to lambdas, but applies to regular functions too.

2.2.4 How do | share global variables across modules?

The canonical way to share information across modules within a single program is to create a special module (often
called config or cfg). Just import the config module in all modules of your application; the module then becomes
available as a global name. Because there is only one instance of each module, any changes made to the module
object get reflected everywhere. For example:

config.py:

x =0 # Default value of the 'x' configuration setting
mod.py:

import config

config.x = 1

main.py:

10 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.11.4

import config
import mod
print (config.x)

Note that using a module is also the basis for implementing the singleton design pattern, for the same reason.

2.2.5 What are the “best practices” for using import in a module?

In general, don’t use from modulename import *. Doing so clutters the importer’s namespace, and makes it
much harder for linters to detect undefined names.

Import modules at the top of a file. Doing so makes it clear what other modules your code requires and avoids
questions of whether the module name is in scope. Using one import per line makes it easy to add and delete module
imports, but using multiple imports per line uses less screen space.

It’s good practice if you import modules in the following order:
1. standard library modules — e.g. sys, os, argparse, re

2. third-party library modules (anything installed in Python’s site-packages directory) — e.g. dateutil,
requests,PIL.Image

3. locally developed modules

It is sometimes necessary to move imports to a function or class to avoid problems with circular imports. Gordon
McMillan says:

Circular imports are fine where both modules use the “import <module>" form of import. They fail
when the 2nd module wants to grab a name out of the first (“from module import name”) and the import
is at the top level. That’s because names in the 1st are not yet available, because the first module is busy
importing the 2nd.

In this case, if the second module is only used in one function, then the import can easily be moved into that function.
By the time the import is called, the first module will have finished initializing, and the second module can do its
import.

It may also be necessary to move imports out of the top level of code if some of the modules are platform-specific.
In that case, it may not even be possible to import all of the modules at the top of the file. In this case, importing the
correct modules in the corresponding platform-specific code is a good option.

Only move imports into a local scope, such as inside a function definition, if it’s necessary to solve a problem such
as avoiding a circular import or are trying to reduce the initialization time of a module. This technique is especially
helpful if many of the imports are unnecessary depending on how the program executes. You may also want to
move imports into a function if the modules are only ever used in that function. Note that loading a module the first
time may be expensive because of the one time initialization of the module, but loading a module multiple times
is virtually free, costing only a couple of dictionary lookups. Even if the module name has gone out of scope, the
module is probably available in sys .modules.

2.2.6 Why are default values shared between objects?

This type of bug commonly bites neophyte programmers. Consider this function:

def foo (mydict={}): # Danger: shared reference to one dict for all calls
compute something ...
mydict [key] = value

return mydict

The first time you call this function, mydict contains a single item. The second time, mydict contains two items
because when foo () begins executing, mydict starts out with an item already in it.

2.2. Core Language 11

Python Frequently Asked Questions, Release 3.11.4

It is often expected that a function call creates new objects for default values. This is not what happens. Default values
are created exactly once, when the function is defined. If that object is changed, like the dictionary in this example,
subsequent calls to the function will refer to this changed object.

By definition, immutable objects such as numbers, strings, tuples, and None, are safe from change. Changes to
mutable objects such as dictionaries, lists, and class instances can lead to confusion.

Because of this feature, it is good programming practice to not use mutable objects as default values. In-
stead, use None as the default value and inside the function, check if the parameter is None and create a new
list/dictionary/whatever if it is. For example, don’t write:

def foo(mydict={}):

but:

def foo (mydict=None) :
if mydict is None:
mydict = {} # create a new dict for local namespace

This feature can be useful. When you have a function that’s time-consuming to compute, a common technique is
to cache the parameters and the resulting value of each call to the function, and return the cached value if the same
value is requested again. This is called “memoizing”, and can be implemented like this:

Callers can only provide two parameters and optionally pass _cache by keyword
def expensive(argl, arg2, *, _cache={}):
if (argl, arg2) in _cache:
return _cache[(argl, arg2)]

Calculate the value

result = ... expensive computation

_cache|[(argl, arg2)] = result # Store result in the cache
return result

You could use a global variable containing a dictionary instead of the default value; it’s a matter of taste.

2.2.7 How can | pass optional or keyword parameters from one function to an-
other?

Collect the arguments using the * and ** specifiers in the function’s parameter list; this gives you the positional
arguments as a tuple and the keyword arguments as a dictionary. You can then pass these arguments when calling
another function by using * and **:

def f(x, *args, **kwargs):
kwargs['width'] = "14.3c’

g(x, *args, **kwargs)

12 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.11.4

2.2.8 What is the difference between arguments and parameters?

Parameters are defined by the names that appear in a function definition, whereas arguments are the values actually
passed to a function when calling it. Parameters define what kind of arguments a function can accept. For example,
given the function definition:

def func(foo, bar=None, **kwargs):
pass

foo, bar and kwargs are parameters of func. However, when calling func, for example:

func (42, bar=314, extra=somevar)

the values 42, 314, and somevar are arguments.

2.2.9 Why did changing list ‘y’ also change list ‘x’?

If you wrote code like:

>>>

= Il
>>> = X
>>> .append (10)
>>>
[10]
>>> x

[10]

MKOKRRX

you might be wondering why appending an element to y changed x too.
There are two factors that produce this result:

1) Variables are simply names that refer to objects. Doing y = x doesn’t create a copy of the list — it creates a
new variable y that refers to the same object x refers to. This means that there is only one object (the list), and
both x and y refer to it.

2) Lists are mutable, which means that you can change their content.

After the call to append (), the content of the mutable object has changed from [] to [10]. Since both the
variables refer to the same object, using either name accesses the modified value [10].

If we instead assign an immutable object to x:

>>> = 5 # ints are immutable

>>> = X

>>> =x + 1 # 5 can't be mutated, we are creating a new object here

XXX

>>>
6
>>> y

we can see that in this case x and y are not equal anymore. This is because integers are immutable, and when we do
x = x + 1 we are not mutating the int 5 by incrementing its value; instead, we are creating a new object (the int
6) and assigning it to x (that is, changing which object x refers to). After this assignment we have two objects (the
ints 6 and 5) and two variables that refer to them (x now refers to 6 but y still refers to 5).

Some operations (for example y . append (10) and y.sort ()) mutate the object, whereas superficially similar
operations (for example y = y + [10] and sorted (y)) create a new object. In general in Python (and in all
cases in the standard library) a method that mutates an object will return None to help avoid getting the two types
of operations confused. So if you mistakenly write v .sort () thinking it will give you a sorted copy of y, you'll
instead end up with None, which will likely cause your program to generate an easily diagnosed error.

However, there is one class of operations where the same operation sometimes has different behaviors with different
types: the augmented assignment operators. For example, += mutates lists but not tuples or ints (a_list +=

2.2. Core Language 13

Python Frequently Asked Questions, Release 3.11.4

[1, 2, 3] isequivalentto a_list.extend([1, 2, 3]) and mutates a_1list, whereas some_tuple
+= (1, 2, 3) and some_int += 1 create new objects).

In other words:

 If we have a mutable object (1ist, dict, set, etc.), we can use some specific operations to mutate it and
all the variables that refer to it will see the change.

* If we have an immutable object (str, int, tuple, etc.), all the variables that refer to it will always see the
same value, but operations that transform that value into a new value always return a new object.

If you want to know if two variables refer to the same object or not, you can use the is operator, or the built-in
function id ().

2.2.10 How do | write a function with output parameters (call by reference)?

Remember that arguments are passed by assignment in Python. Since assignment just creates references to objects,
there’s no alias between an argument name in the caller and callee, and so no call-by-reference per se. You can achieve
the desired effect in a number of ways.

1) By returning a tuple of the results:

>>> def funcl(a, b):

a = 'new-value' # a and b are local names
b =Db + 1 # assigned to new objects
return a, b # return new values

>>> x, y = 'old-value', 99

>>> funcl (x, V)
("new-value', 100)

This is almost always the clearest solution.
2) By using global variables. This isn’t thread-safe, and is not recommended.

3) By passing a mutable (changeable in-place) object:

>>> def func2(a):

al[0] = '"new-value' # 'a' references a mutable 1ist
all] = a[l1] + 1 # changes a shared object
>>> args = ['old-value', 99]

>>> func?2 (args)
>>> args
['new-value', 100]

4) By passing in a dictionary that gets mutated:

>>> def func3(args):

args['a'] = 'new-value' # args 1is a mutable dictionary
args['b'] = args['b'] + 1 # change it in-place
>>> args = {'a': 'old-value', 'b': 99}

>>> func3(args)
>>> args
{'a': '"nmew-value', 'b': 100}

5) Or bundle up values in a class instance:

>>> class Namespace:
def __init__ (self, /, **args):
for key, value in args.items():
setattr(self, key, wvalue)

(continues on next page)

14 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.11.4

(continued from previous page)

>>> def funcéd (args):
args.a = 'new-value' # args is a mutable Namespace
args.b = args.b + 1 # change object in-place

>>> args = Namespace (a='old-value', b=99)
>>> funcéd (args)

>>> vars (args)

{'a': '"nmew-value', 'b': 100}

There’s almost never a good reason to get this complicated.
Your best choice is to return a tuple containing the multiple results.

2.2.11 How do you make a higher order function in Python?

You have two choices: you can use nested scopes or you can use callable objects. For example, suppose you wanted
to define 1inear (a,b) which returns a function £ (x) that computes the value a * x+b. Using nested scopes:

def linear(a, b):

def result (x):
return a * x + b

return result

Or using a callable object:

class linear:

def _ init_ (self, a, b):
self.a, self.b = a, b

def _ call_ (self, x):
return self.a * x + self.b

In both cases,

taxes = linear (0.3, 2)

gives a callable object where taxes (10e6) == 0.3 * 10e6 + 2.

The callable object approach has the disadvantage that it is a bit slower and results in slightly longer code. However,
note that a collection of callables can share their signature via inheritance:

class exponential (linear):
__init__ inherited
def _ call_ (self, x):
return self.a * (x ** self.b)

Object can encapsulate state for several methods:

class counter:

value = 0

def set (self, x):
self.value = x

def up(self):
self.value = self.value + 1

(continues on next page)

2.2. Core Language 15

Python Frequently Asked Questions, Release 3.11.4

(continued from previous page)

def down (self):
self.value = self.value - 1
count = counter ()
inc, dec, reset = count.up, count.down, count.set

Here inc (), dec () and reset () act like functions which share the same counting variable.

2.2.12 How do | copy an object in Python?

In general, try copy.copy () or copy.deepcopy () for the general case. Not all objects can be copied, but
most can.

Some objects can be copied more easily. Dictionaries have a copy () method:

’newdict = olddict.copy ()

Sequences can be copied by slicing:

’new_l = 1[:]

2.2.13 How can | find the methods or attributes of an object?

For an instance x of a user-defined class, dir (x) returns an alphabetized list of the names containing the instance
attributes and methods and attributes defined by its class.

2.2.14 How can my code discover the nhame of an object?

Generally speaking, it can’t, because objects don’t really have names. Essentially, assignment always binds a name to
a value; the same is true of de f and c1ass statements, but in that case the value is a callable. Consider the following
code:

>>> class A:

pass
>>> B = A
>>> a = B()
>>> b = a

>>> print (b)
<__main__.A object at 0x16D07CC>
>>> print (a)
<__main__ .A object at 0x16D07CC>

Arguably the class has a name: even though it is bound to two names and invoked through the name B the created
instance is still reported as an instance of class A. However, it is impossible to say whether the instance’s name is a
or b, since both names are bound to the same value.

Generally speaking it should not be necessary for your code to “know the names” of particular values. Unless you are
deliberately writing introspective programs, this is usually an indication that a change of approach might be beneficial.

In comp.lang.python, Fredrik Lundh once gave an excellent analogy in answer to this question:

The same way as you get the name of that cat you found on your porch: the cat (object) itself cannot
tell you its name, and it doesn’t really care — so the only way to find out what it’s called is to ask all your
neighbours (namespaces) if it’s their cat (object). ..

....and don’t be surprised if you'll find that it’s known by many names, or no name at all!

16 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.11.4

2.2.15 What’s up with the comma operator’s precedence?

Comma is not an operator in Python. Consider this session:

>>> "all ln llbll, "all
(False, 'a')

Since the comma is not an operator, but a separator between expressions the above is evaluated as if you had entered:

’(nan in llbll), ngn ‘

not:

’na" in ("b", nan) ‘

The same is true of the various assignment operators (=, += etc). They are not truly operators but syntactic delimiters
in assignment statements.

2.2.16 Is there an equivalent of C’s “?:” ternary operator?

Yes, there is. The syntax is as follows:

[on_true] if [expression] else [on_false]

x, y = 50, 25
small = x if x < y else y

Before this syntax was introduced in Python 2.5, a common idiom was to use logical operators:

[expression] and [on_true] or [on_false]

However, this idiom is unsafe, as it can give wrong results when on_true has a false boolean value. Therefore, it is
always better tousethe . .. 1if ... else ... form.

2.2.17 lIs it possible to write obfuscated one-liners in Python?

Yes. Usually this is done by nesting 1ambda within 1ambda. See the following three examples, slightly adapted
from Ulf Bartelt:

from functools import reduce

Primes < 1000
print (list (filter (None,map (lambda y:y*reduce (lambda x,y:x*y!=0,
map (lambda x,y=y:y%x,range (2, int (pow(y,0.5)+1))), 1), range(2,1000)))))

First 10 Fibonacci numbers
print (list (map (lambda x, f=lambda x,f: (f(x-1,f)+f(x-2,£f)) if x>1 else 1:
f(x,f), range(10))))

Mandelbrot set

print ((lambda Ru,Ro, Iu,Io,IM,Sx,Sy:reduce (lambda x,y:x+'\n'+y,map (lambda vy,
Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda yc, Iu=Iu, Io=Io,Ru=Ru,Ro=Ro,i=IM,
Sx=Sx, Sy=Sy:reduce (lambda x,y:x+ty,map (lambda x,xc=Ru,yc=yc,Ru=Ru, Ro=Ro,
i=i, Sx=Sx,F=lambda xc,yc,x,Vv,k, f=lambda xc,yc,x,y,k,f: (k<=0)or (x*x+ty*y
>=4.0) or 1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc,yc,x,y,k,f):chr(

64+F (Ru+x* (Ro-Ru) /Sx,yc,0,0,1)), range(Sx))) :L(Iut+y* (Io-Iu)/Sy), range (Sy
y))) (=2.1, 0.7, -1.2, 1.2, 30, 80, 24))

_ _ / /] / |__ lines on screen

v 1%4 / / columns on screen

(continues on next page)

2.2. Core Language 17

Python Frequently Asked Questions, Release 3.11.4

(continued from previous page)

/ / / maximum of "iterations"
/ / range on y axis
/ range on x axis

Don't try this at home, kids!

2.2.18 What does the slash(/) in the parameter list of a function mean?

A slash in the argument list of a function denotes that the parameters prior to it are positional-only. Positional-only
parameters are the ones without an externally usable name. Upon calling a function that accepts positional-only
parameters, arguments are mapped to parameters based solely on their position. For example, divmod () is a
function that accepts positional-only parameters. Its documentation looks like this:

>>> help (divmod)
Help on built-in function divmod in module builtins:

divmod(x, y, /)
Return the tuple (x//y, x%y). Invariant: div*y + mod == x.

The slash at the end of the parameter list means that both parameters are positional-only. Thus, calling divmod ()
with keyword arguments would lead to an error:

>>> divmod (x=3, y=4)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: divmod() takes no keyword arguments

2.3 Numbers and strings

2.3.1 How do | specify hexadecimal and octal integers?

To specify an octal digit, precede the octal value with a zero, and then a lower or uppercase “o”. For example, to set
the variable “a” to the octal value “10” (8 in decimal), type:

>>> a = 0010
>>> a
8

[Tt}

Hexadecimal is just as easy. Simply precede the hexadecimal number with a zero, and then a lower or uppercase “x”.
Hexadecimal digits can be specified in lower or uppercase. For example, in the Python interpreter:

>>> a = 0Oxab
>>> g
165
>>> b
>>> Db
178

0XB2

18 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.11.4

2.3.2 Why does -22 // 10 return -3?

It’s primarily driven by the desire that i % J have the same sign as j. If you want that, and also want:

i==(// 3 *3+ (1 %3

then integer division has to return the floor. C also requires that identity to hold, and then compilers that truncate i
// Jjneedtomake i % 7J have the same sign as i.

There are few real use cases for 1 % J when j is negative. When 7 is positive, there are many, and in virtually all
of them it’s more useful for i % j tobe >= 0. If the clock says 10 now, what did it say 200 hours ago? -190 %
12 == 2isuseful; -190 % 12 == -10 is a bug waiting to bite.

2.3.3 How do | get int literal attribute instead of SyntaxError?

Trying to lookup an int literal attribute in the normal manner gives a SyntaxError because the period is seen
as a decimal point:

>>> 1. class___
File "<stdin>", line 1
1.__class_

A

SyntaxError: invalid decimal literal

The solution is to separate the literal from the period with either a space or parentheses.

>>> 1 ._ class_
<class 'int'>
>>> (1)._ _class_

<class 'int'>

2.3.4 How do | convert a string to a number?

For integers, use the built-in int () type constructor,e.g. int ('144"') == 144. Similarly, float () converts
to floating-point, e.g. float ('144"') == 144.0.

By default, these interpret the number as decimal, so that int ('0144') == 144 holds true, and
int ('0x144") raises ValueError. int (string, base) takes the base to convert from as a second op-
tional argument, so int ('0x144"', 16) == 324. If the base is specified as 0, the number is interpreted using
Python’s rules: a leading ‘0o’ indicates octal, and ‘Ox’ indicates a hex number.

Do not use the built-in function eval () if all you need is to convert strings to numbers. eval () will be significantly
slower and it presents a security risk: someone could pass you a Python expression that might have unwanted side
effects. For example, someone could pass __import__ ('os') .system("rm -rf S$HOME") which would
erase your home directory.

eval () also has the effect of interpreting numbers as Python expressions, so thate.g. eval ('09") gives a syntax
error because Python does not allow leading ‘0’ in a decimal number (except ‘0’).

2.3. Numbers and strings 19

Python Frequently Asked Questions, Release 3.11.4

2.3.5 How do | convert a number to a string?

To convert, e.g., the number 144 to the string ' 144", use the built-in type constructor str (). If you want a hex-
adecimal or octal representation, use the built-in functions hex () or oct () . For fancy formatting, see the f-strings
and formatstrings sections, e.g. "{:04d}".format (144) yields '0144"' and "{:.3f}".format (1.0/
3.0) yields '0.333"'.

2.3.6 How do | modify a string in place?

You can’t, because strings are immutable. In most situations, you should simply construct a new string from the various
parts you want to assemble it from. However, if you need an object with the ability to modify in-place unicode data,
try using an 10.StringIO object or the array module:

>>> import io

>>> s = "Hello, world"
>>> sio = i0.StringIO(s)
>>> sio.getvalue ()
'Hello, world'

>>> sio.seek (7)

7

>>> sio.write ("there!")
6

>>> sio.getvalue ()
'Hello, there!'!

>>> import array

>>> a = array.array('u', s)
>>> print (a)

array('u', 'Hello, world'")
>>> a[0] = 'y’

>>> print (a)

array('u', 'yello, world'")
>>> a.tounicode ()

'vello, world'

2.3.7 How do | use strings to call functions/methods?

There are various techniques.

» The best is to use a dictionary that maps strings to functions. The primary advantage of this technique is that
the strings do not need to match the names of the functions. This is also the primary technique used to emulate
a case construct:

def al():
pass

def b():
pass

dispatch = {'go': a, 'stop': b} # Note lack of parens for funcs

dispatch([get_input ()] () # Note trailing parens to call function

¢ Use the built-in function getattr ():

import foo
getattr (foo, 'bar') ()

Note that getattr () works on any object, including classes, class instances, modules, and so on.

20 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.11.4

This is used in several places in the standard library, like this:

class Foo:
def do_foo(self):

def do_bar (self):

f = getattr(foo_instance, 'do_' + opname)
£0

Use 1locals () to resolve the function name:

def myFunc () :
print ("hello™)

fname = "myFunc"
f = locals () [fname]
£0

2.3.8 Isthere an equivalent to Perl’s chomp() for removing trailing newlines from
strings?

Youcanuse S.rstrip ("\r\n") toremove all occurrences of any line terminator from the end of the string S
without removing other trailing whitespace. If the string S represents more than one line, with several empty lines at
the end, the line terminators for all the blank lines will be removed:

>>> lines = ("line 1 \r\n"
"\r\n"

- "\r\n")

>>> lines.rstrip ("\n\z")

'line 1 "'

Since this is typically only desired when reading text one line at a time, using S.rstrip () this way works well.

2.3.9 Is there a scanf() or sscanf() equivalent?

Not as such.

For simple input parsing, the easiest approach is usually to split the line into whitespace-delimited words using the
split () method of string objects and then convert decimal strings to numeric values using int () or float ().
split () supports an optional “sep” parameter which is useful if the line uses something other than whitespace as
a separator.

For more complicated input parsing, regular expressions are more powerful than C’s sscanf and better suited for
the task.

2.3. Numbers and strings 21

Python Frequently Asked Questions, Release 3.11.4

2.3.10 What does ‘UnicodeDecodeError’ or ‘UnicodeEncodeError’ error mean?

See the unicode-howto.

2.3.11 Can | end a raw string with an odd number of backslashes?

A raw string ending with an odd number of backslashes will escape the string’s quote:

>>> r'C:\this\will\not\work\"
File "<stdin>", line 1
r'C:\this\will\not\work\"

A~

SyntaxError: unterminated string literal (detected at line 1)

There are several workarounds for this. One is to use regular strings and double the backslashes:

>>> 'C:\\this\\will\\work\\'
"C:\\this\\will\\work\\"

Another is to concatenate a regular string containing an escaped backslash to the raw string:

>>> r'C:\this\will\work"' "\\'
"C:\\this\\will\\work\\'

It is also possible to use os.path.join () to append a backslash on Windows:

>>> os.path.join(r'C:\this\will\work', '")
'C:\\this\\will\\work\\"

Note that while a backslash will “escape” a quote for the purposes of determining where the raw string ends, no
escaping occurs when interpreting the value of the raw string. That is, the backslash remains present in the value of
the raw string:

>>> r'backslash\'preserved'
"backslash\\'preserved"

Also see the specification in the language reference.

2.4 Performance

2.4.1 My program is too slow. How do | speed it up?

That’s a tough one, in general. First, here are a list of things to remember before diving further:
 Performance characteristics vary across Python implementations. This FAQ focuses on CPython.
¢ Behaviour can vary across operating systems, especially when talking about I/O or multi-threading.

* You should always find the hot spots in your program before attempting to optimize any code (see the profile
module).

» Writing benchmark scripts will allow you to iterate quickly when searching for improvements (see the t imeit
module).

e It is highly recommended to have good code coverage (through unit testing or any other technique) before
potentially introducing regressions hidden in sophisticated optimizations.

That being said, there are many tricks to speed up Python code. Here are some general principles which go a long
way towards reaching acceptable performance levels:

22 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.11.4

* Making your algorithms faster (or changing to faster ones) can yield much larger benefits than trying to sprinkle
micro-optimization tricks all over your code.

* Use the right data structures. Study documentation for the bltin-types and the collections module.

¢ When the standard library provides a primitive for doing something, it is likely (although not guaranteed) to
be faster than any alternative you may come up with. This is doubly true for primitives written in C, such as
builtins and some extension types. For example, be sure to use either the 1ist.sort () built-in method or
the related sorted () function to do sorting (and see the sortinghowto for examples of moderately advanced
usage).

 Abstractions tend to create indirections and force the interpreter to work more. If the levels of indirection
outweigh the amount of useful work done, your program will be slower. You should avoid excessive abstraction,
especially under the form of tiny functions or methods (which are also often detrimental to readability).

If you have reached the limit of what pure Python can allow, there are tools to take you further away. For example,
Cython can compile a slightly modified version of Python code into a C extension, and can be used on many different
platforms. Cython can take advantage of compilation (and optional type annotations) to make your code significantly
faster than when interpreted. If you are confident in your C programming skills, you can also write a C extension
module yourself.

See also:

The wiki page devoted to performance tips.

2.4.2 What is the most efficient way to concatenate many strings together?
str and bytes objects are immutable, therefore concatenating many strings together is inefficient as each concate-
nation creates a new object. In the general case, the total runtime cost is quadratic in the total string length.

To accumulate many st r objects, the recommended idiom is to place them into a list and call str. join () atthe
end:

chunks = []

for s in my_strings:
chunks.append (s)

result = ''.join (chunks)

(another reasonably efficient idiom is to use 1o.StringIO)

To accumulate many bytes objects, the recommended idiom is to extend a bytearray object using in-place
concatenation (the += operator):

result = bytearray()
for b in my_bytes_objects:
result += Db

2.5 Sequences (Tuples/Lists)

2.5.1 How do | convert between tuples and lists?

The type constructor tuple (seq) converts any sequence (actually, any iterable) into a tuple with the same items
in the same order.

For example, tuple ([1, 2, 3]) yields (1, 2, 3) andtuple('abc') yields ('a', 'b', 'c").If
the argument is a tuple, it does not make a copy but returns the same object, so it is cheap to call tuple () when
you aren’t sure that an object is already a tuple.

The type constructor 1ist (seq) converts any sequence or iterable into a list with the same items in the same order.
For example, 1ist ((1, 2, 3)) yields [1, 2, 3]andlist('abc') yields['a', 'b', 'c'].Ifthe
argument is a list, it makes a copy just like seq[:] would.

2.5. Sequences (Tuples/Lists) 23

https://cython.org
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Python Frequently Asked Questions, Release 3.11.4

2.5.2 What’s a negative index?

Python sequences are indexed with positive numbers and negative numbers. For positive numbers 0 is the first index
1 is the second index and so forth. For negative indices -1 is the last index and -2 is the penultimate (next to last)
index and so forth. Think of seq[—-n] as the same as seg[len (seq) -n].

Using negative indices can be very convenient. For example S [:—-1] is all of the string except for its last character,
which is useful for removing the trailing newline from a string.

2.5.3 How do | iterate over a sequence in reverse order?

Use the reversed () built-in function:

for x in reversed(sequence) :
do something with x ...

This won’t touch your original sequence, but build a new copy with reversed order to iterate over.

2.5.4 How do you remove duplicates from a list?

See the Python Cookbook for a long discussion of many ways to do this:
https://code.activestate.com/recipes/52560/

If you don’t mind reordering the list, sort it and then scan from the end of the list, deleting duplicates as you go:

if mylist:
mylist.sort ()
last = mylist[-1]
for i in range(len(mylist)-2, -1, -1):
if last == mylist[i]:
del mylist[i]
else:
last = mylist[i]

If all elements of the list may be used as set keys (i.e. they are all hashable) this is often faster

mylist = list (set(mylist))

This converts the list into a set, thereby removing duplicates, and then back into a list.

2.5.5 How do you remove multiple items from a list

As with removing duplicates, explicitly iterating in reverse with a delete condition is one possibility. However, it is
easier and faster to use slice replacement with an implicit or explicit forward iteration. Here are three variations.:

mylist[:] = filter (keep_function, mylist)
mylist[:] = (x for x in mylist if keep_condition)
mylist[:] = [x for x in mylist if keep_condition]

The list comprehension may be fastest.

24 Chapter 2. Programming FAQ

https://code.activestate.com/recipes/52560/

Python Frequently Asked Questions, Release 3.11.4

2.5.6 How do you make an array in Python?

Use a list:

["thj.S", 1, "j.S", llanu, "array"]

Lists are equivalent to C or Pascal arrays in their time complexity; the primary difference is that a Python list can
contain objects of many different types.

The array module also provides methods for creating arrays of fixed types with compact representations, but they
are slower to index than lists. Also note that NumPy and other third party packages define array-like structures with
various characteristics as well.

To get Lisp-style linked lists, you can emulate cons cells using tuples:

lisp_list = ("like", ("this", ("example", None)))

If mutability is desired, you could use lists instead of tuples. Here the analogue of a Lisp car is 1isp_1ist [0]
and the analogue of cdris 1isp_list [1]. Only do this if you’re sure you really need to, because it’s usually a lot
slower than using Python lists.

2.5.7 How do | create a multidimensional list?

You probably tried to make a multidimensional array like this:

>>> A = [[None] * 2] * 3

This looks correct if you print it:

>>> A
[[None, None], [None, None], [None, None]]

But when you assign a value, it shows up in multiple places:

>>> A[0][0] = 5
>>> A
[[5, None], [5, None], [5, None]]

The reason is that replicating a list with * doesn’t create copies, it only creates references to the existing objects. The
* 3 creates a list containing 3 references to the same list of length two. Changes to one row will show in all rows,
which is almost certainly not what you want.

The suggested approach is to create a list of the desired length first and then fill in each element with a newly created
list:

A = [None] * 3
for i in range(3):
A[i] = [None] * 2

This generates a list containing 3 different lists of length two. You can also use a list comprehension:

w, h =2, 3
A = [[None] * w for i in range (h)]

Or, you can use an extension that provides a matrix datatype; NumPy is the best known.

2.5. Sequences (Tuples/Lists) 25

https://numpy.org/
https://numpy.org/

Python Frequently Asked Questions, Release 3.11.4

2.5.8 How do | apply a method or function to a sequence of objects?

To call a method or function and accumulate the return values is a list, a list comprehension is an elegant solution:

result = [obj.method() for obj in mylist]

result = [function(obj) for obj in mylist]

To just run the method or function without saving the return values, a plain for loop will suffice:

for obj in mylist:
obj.method ()

for obj in mylist:
function (obj)

2.5.9 Why does a_tuple[i] += [‘item’] raise an exception when the addition
works?

This is because of a combination of the fact that augmented assignment operators are assignment operators, and the
difference between mutable and immutable objects in Python.

This discussion applies in general when augmented assignment operators are applied to elements of a tuple that point
to mutable objects, but we'll use a 1ist and += as our exemplar.

If you wrote:

>>> a_tuple = (1, 2)
>>> a_tuple[0] += 1
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The reason for the exception should be immediately clear: 1 is added to the object a_tuple[0] points to (1),
producing the result object, 2, but when we attempt to assign the result of the computation, 2, to element 0 of the
tuple, we get an error because we can’t change what an element of a tuple points to.

Under the covers, what this augmented assignment statement is doing is approximately this:

>>> result = a_tuple[0] + 1
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

It is the assignment part of the operation that produces the error, since a tuple is immutable.

When you write something like:

>>> a_tuple = (['foo']l, 'bar'")
>>> a_tuple[0] += ['item']
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The exception is a bit more surprising, and even more surprising is the fact that even though there was an error, the
append worked:

>>> a_tuple[0]
['foo', 'item']

26 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.11.4

To see why this happens, you need to know that (a) if an object implements an __iadd__ () magic method, it
gets called when the += augmented assignment is executed, and its return value is what gets used in the assignment
statement; and (b) for lists, __iadd__ () isequivalent to calling extend () on the list and returning the list. That’s
why we say that for lists, += is a “shorthand” for 1ist .extend ():

>>> a_list = []
>>> a_list += [1]
>>> a_list

[1]

This is equivalent to:

>>> result = a_list.__diadd__ ([1])
>>> a_list = result

The object pointed to by a_list has been mutated, and the pointer to the mutated object is assigned back to a_list.
The end result of the assignment is a no-op, since it is a pointer to the same object that a_1ist was previously
pointing to, but the assignment still happens.

Thus, in our tuple example what is happening is equivalent to:

>>> result = a_tuple[0].__iadd__(['item'])
>>> a_tuple[0] = result
Traceback (most recent call last):

TypeError: 'tuple' object does not support item assignment

The __iadd__ () succeeds, and thus the list is extended, but even though result points to the same object that
a_tuple [0] already points to, that final assignment still results in an error, because tuples are immutable.

2.5.10 | want to do a complicated sort: can you do a Schwartzian Transform in
Python?

The technique, attributed to Randal Schwartz of the Perl community, sorts the elements of a list by a metric which
maps each element to its “sort value”. In Python, use the key argument for the 1ist . sort () method:

Isorted = L[:]
Isorted.sort (key=lambda s: int(s[10:15]))

2.5.11 How can | sort one list by values from another list?

Merge them into an iterator of tuples, sort the resulting list, and then pick out the element you want.

>>> listl = ["what", "I'm", "sorting", "by"]

>>> list2 = ["something", "else", "to", "sort"]

>>> pairs = zip(listl, list2)

>>> pairs = sorted(pairs)

>>> pairs

[("I'm", 'else'), ('by', 'sort'), ('sorting', 'to'), ('what', 'something')]
>>> result = [x[1] for x in pairs]

>>> result
Al |]]] Al | 1]
14 ’ 14
[Telse sort to something']

2.5. Sequences (Tuples/Lists) 27

Python Frequently Asked Questions, Release 3.11.4

2.6 Objects

2.6.1 What is a class?

A class is the particular object type created by executing a class statement. Class objects are used as templates to
create instance objects, which embody both the data (attributes) and code (methods) specific to a datatype.

A class can be based on one or more other classes, called its base class(es). It then inherits the attributes and meth-
ods of its base classes. This allows an object model to be successively refined by inheritance. You might have a
generic Mailbox class that provides basic accessor methods for a mailbox, and subclasses such as MboxMailbox,
MaildirMailbox, OutlookMailbox that handle various specific mailbox formats.

2.6.2 What is a method?

A method is a function on some object x that you normally call as x.name (arguments...). Methods are
defined as functions inside the class definition:

class C:
def meth(self, arg):
return arg * 2 + self.attribute

2.6.3 What is self?

Self is merely a conventional name for the first argument of a method. A method defined asmeth (self, a, b,
c) should be called as x.meth (a, b, c) for some instance x of the class in which the definition occurs; the
called method will think it is called as meth (x, a, b, c).

See also Why must ‘self’ be used explicitly in method definitions and calls?.

2.6.4 How do I check if an object is an instance of a given class or of a subclass
of it?

Use the built-in function isinstance (obj, cls). Youcan check if an object is an instance of any of a number
of classes by providing a tuple instead of a single class, e.g. isinstance (obj, (classl, class2,

)), and can also check whether an object is one of Python’s built-in types, e.g. isinstance (obj, str) or
isinstance (obj, (int, float, complex)).

Note that isinstance () also checks for virtual inheritance from an abstract base class. So, the test will return
True for a registered class even if hasn’t directly or indirectly inherited from it. To test for “true inheritance”, scan
the MRO of the class:

from collections.abc import Mapping

class P:
pass

class C(P):
pass

Mapping.register (P)

>>> ¢ = C()

>>> isinstance(c, C) # direct
True

>>> isinstance(c, P) # Iindirect
True

(continues on next page)

28 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.11.4

(continued from previous page)

>>> isinstance(c, Mapping) # virtual
True

Actual inheritance chain
>>> type(c).__mro___
(<class 'C'>, <class 'P'>, <class 'object'>)

Test for "true inheritance"
>>> Mapping in type(c).__mro
False

Note that most programs do not use isinstance () on user-defined classes very often. If you are developing the
classes yourself, a more proper object-oriented style is to define methods on the classes that encapsulate a particular
behaviour, instead of checking the object’s class and doing a different thing based on what class it is. For example, if
you have a function that does something:

def search (obj):
if isinstance (obj, Mailbox):
code to search a mailbox
elif isinstance (obj, Document) :
. # code to search a document
elif

A better approach is to define a search () method on all the classes and just call it:

class Mailbox:
def search(self):
code to search a mailbox

class Document:
def search(self):

code to search a document

obj.search()

2.6.5 What is delegation?

Delegation is an object oriented technique (also called a design pattern). Let’s say you have an object x and want to
change the behaviour of just one of its methods. You can create a new class that provides a new implementation of
the method you're interested in changing and delegates all other methods to the corresponding method of x.

Python programmers can easily implement delegation. For example, the following class implements a class that
behaves like a file but converts all written data to uppercase:

class UpperOut:

def _ init_ (self, outfile):
self. outfile = outfile

def write(self, s):
self._outfile.write(s.upper())

def _ _getattr__ (self, name):
return getattr(self._outfile, name)

Here the UpperOut class redefines the write () method to convert the argument string to uppercase before
calling the underlying self._outfile.write () method. All other methods are delegated to the underlying
self._outfile object. The delegation is accomplished viathe __getattr__ () method; consult the language
reference for more information about controlling attribute access.

2.6. Objects 29

Python Frequently Asked Questions, Release 3.11.4

Note that for more general cases delegation can get trickier. When attributes must be set as well as retrieved,
the class must define a __setattr__ () method too, and it must do so carefully. The basic implementation
of __setattr__ () isroughly equivalent to the following:

class X:

def _ setattr_ (self, name, value):
self. dict [name] = value

Most__setattr__ () implementations must modify self.__dict__ tostore local state for self without caus-
ing an infinite recursion.

2.6.6 How do | call a method defined in a base class from a derived class that
extends it?

Use the built-in super () function:

class Derived (Base) :
def meth (self):
super () .meth () # calls Base.meth

In the example, super () will automatically determine the instance from which it was called (the se 1 f value), look
up the method resolution order (MRO) with type (self) .__mro__, and return the next in line after Derived
in the MRO: Base.

2.6.7 How can | organize my code to make it easier to change the base class?

You could assign the base class to an alias and derive from the alias. Then all you have to change is the value assigned
to the alias. Incidentally, this trick is also handy if you want to decide dynamically (e.g. depending on availability of
resources) which base class to use. Example:

class Base:

BaseAlias = Base

class Derived (BaseAlias):

2.6.8 How do | create static class data and static class methods?

Both static data and static methods (in the sense of C++ or Java) are supported in Python.

For static data, simply define a class attribute. To assign a new value to the attribute, you have to explicitly use the
class name in the assignment:

class C:
count = 0 # number of times C.__init___ called

def _ init_ (self):
C.count = C.count + 1

def getcount (self):
return C.count # or return self.count

c.count also refers to C. count for any ¢ such that isinstance (¢, C) holds, unless overridden by c itself
or by some class on the base-class search path from c.__class__ back to C.

30 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.11.4

Caution: within a method of C, an assignment like sel1f.count = 42 createsanew and unrelated instance named
“count” in self’s own dict. Rebinding of a class-static data name must always specify the class whether inside a
method or not:

C.count = 314

Static methods are possible:

class C:
@staticmethod
def static(argl, arg2, arg3):
No 'self' parameter!

However, a far more straightforward way to get the effect of a static method is via a simple module-level function:

def getcount () :
return C.count

If your code is structured so as to define one class (or tightly related class hierarchy) per module, this supplies the
desired encapsulation.

2.6.9 How can | overload constructors (or methods) in Python?

This answer actually applies to all methods, but the question usually comes up first in the context of constructors.

In C++ you'd write

class C |
C() { cout << "No arguments\n"; }
C(int i) { cout << "Argument is " << i << "\n"; }

In Python you have to write a single constructor that catches all cases using default arguments. For example:

class C:
def _ init_ (self, i=None):
if i is None:
print ("No arguments")
else:
print ("Argument is", 1i)

This is not entirely equivalent, but close enough in practice.

You could also try a variable-length argument list, e.g.

def _ init__ (self, *args):

The same approach works for all method definitions.

2.6. Objects 31

Python Frequently Asked Questions, Release 3.11.4

2.6.10 I try to use __spam and | get an error about _SomeClassName__spam.

Variable names with double leading underscores are “mangled” to provide a simple but effective way to define class
private variables. Any identifier of the form ___spam (at least two leading underscores, at most one trailing under-
score) is textually replaced with _classname__spam, where classname is the current class name with any
leading underscores stripped.

This doesn’t guarantee privacy: an outside user can still deliberately access the “_classname__spam” attribute, and
private values are visible in the object’s __dict___. Many Python programmers never bother to use private variable
names at all.

2.6.11 My class defines __del__ but it is not called when | delete the object.

There are several possible reasons for this.

The del statement does not necessarily call __del__ () — it simply decrements the object’s reference count, and
if this reaches zero ___del__ () is called.

If your data structures contain circular links (e.g. a tree where each child has a parent reference and each parent has
a list of children) the reference counts will never go back to zero. Once in a while Python runs an algorithm to detect
such cycles, but the garbage collector might run some time after the last reference to your data structure vanishes, so
your __del__ () method may be called at an inconvenient and random time. This is inconvenient if you're trying
to reproduce a problem. Worse, the order in which object’s __del__ () methods are executed is arbitrary. You can
rungc.collect () to force a collection, but there are pathological cases where objects will never be collected.

Despite the cycle collector, it’s still a good idea to define an explicit close () method on objects to be called
whenever you’re done with them. The close () method can then remove attributes that refer to subobjects. Don’t
call __del__ () directly — __del__ () should call close () and close () should make sure that it can be
called more than once for the same object.

Another way to avoid cyclical references is to use the weak re £ module, which allows you to point to objects without
incrementing their reference count. Tree data structures, for instance, should use weak references for their parent and
sibling references (if they need them!).

Finally, if your __del__ () method raises an exception, a warning message is printed to sys.stderr.

2.6.12 How do | get a list of all instances of a given class?

Python does not keep track of all instances of a class (or of a built-in type). You can program the class’s constructor
to keep track of all instances by keeping a list of weak references to each instance.

2.6.13 Why does the result of id () appear to be not unique?

The id () builtin returns an integer that is guaranteed to be unique during the lifetime of the object. Since in
CPython, this is the object’s memory address, it happens frequently that after an object is deleted from memory, the
next freshly created object is allocated at the same position in memory. This is illustrated by this example:

>>> 1d(1000)
13901272
>>> 1d(2000)
13901272

The two ids belong to different integer objects that are created before, and deleted immediately after execution of the
id () call. To be sure that objects whose id you want to examine are still alive, create another reference to the object:

>>> a = 1000; b = 2000
>>> id(a)
13901272

(continues on next page)

32 Chapter 2. Programming FAQ

Python Frequently Asked Questions, Release 3.11.4

(continued from previous page)

>>> id(b)
13891296

2.6.14 When can | rely on identity tests with the is operator?

The is operator tests for object identity. The testa is bisequivalentto id (a) == id(b).

The most important property of an identity test is that an object is always identical to itself, a is a always returns
True. Identity tests are usually faster than equality tests. And unlike equality tests, identity tests are guaranteed to
return a boolean True or False.

However, identity tests can only be substituted for equality tests when object identity is assured. Generally, there are
three circumstances where identity is guaranteed:

1) Assignments create new names but do not change object identity. After the assignment new = old, it is guar-
anteed that new is old.

2) Putting an object in a container that stores object references does not change object identity. After the list assign-
ment s [0] = x,itis guaranteed that s[0] is x.

3) If an object is a singleton, it means that only one instance of that object can exist. After the assignments a =
None and b = None, it is guaranteed that a is b because None is a singleton.

In most other circumstances, identity tests are inadvisable and equality tests are preferred. In particular, identity tests
should not be used to check constants such as int and st r which aren’t guaranteed to be singletons:

>>> a = 1000

>>> b = 500

>>> ¢ = b + 500
>>> a is c

False

>>> a = 'Python'
>>> b = 'Py'

>>> ¢ = b + 'thon'
>>> a is c

False

Likewise, new instances of mutable containers are never identical:

>>> a = []
>>> b = []
>>> a is b
False

In the standard library code, you will see several common patterns for correctly using identity tests:

1) As recommended by PEP 8, an identity test is the preferred way to check for None. This reads like plain English
in code and avoids confusion with other objects that may have boolean values that evaluate to false.

2) Detecting optional arguments can be tricky when None is a valid input value. In those situations, you can create
a singleton sentinel object guaranteed to be distinct from other objects. For example, here is how to implement a
method that behaves like dict . pop () :

_sentinel = object ()

def pop(self, key, default=_sentinel):
if key in self:
value = self[key]
del self[key]
return value

(continues on next page)

2.6. Objects 33

https://peps.python.org/pep-0008/

Python Frequently Asked Questions, Release 3.11.4

(continued from previous page)

if default is _sentinel:
raise KeyError (key)
return default

3) Container implementations sometimes need to augment equality tests with identity tests. This prevents the code

from being confused by objects such as f1oat ('NaN"') that are not equal to themselves.

For example, here is the implementation of collections.abc.Sequence.__contains__ ():
def _ contains__ (self, value):
for v in self:
if v is value or v == value:

return True
return False

2.6.15 How can a subclass control what data is stored in an immutable in-

stance?

When subclassing an immutable type, override the __new__ () method instead of the __init__ () method. The
latter only runs affer an instance is created, which is too late to alter data in an immutable instance.

All of these immutable classes have a different signature than their parent class:

from datetime import date

class FirstOfMonthDate (date) :
"Always choose the first day of the month"
def _ _new__ (cls, year, month, day):
return super().__new__(cls, year, month, 1)

class NamedInt (int) :
"Allow text names for some numbers"

xlat = {'zero': 0, 'one': 1, 'ten': 10}
def _ new__ (cls, value):
value = cls.xlat.get (value, value)

return super(). new__ (cls, value)

class TitleStr (str):
"Convert str to name suitable for a URL path"
def _ new_ (cls, s):

s = s.lower().replace(' ', '-")
s = '"'".join([c for ¢ in s if c.isalnum() or c == "'-"])
return super().__new__ (cls, s)

The classes can be used like this:

>>> FirstOfMonthDate (2012, 2, 14)
FirstOfMonthDate (2012, 2, 1)

>>> NamedInt ('ten')

10

>>> NamedInt (20)

20

>>> TitleStr('Blog: Why Python Rocks')
'blog-why-python-rocks'

34 Chapter 2.

Programming FAQ

Python Frequently Asked Questions, Release 3.11.4

2.6.16 How do | cache method calls?
The two principal tools for caching methods are functools.cached_property () and functools.
lru_cache (). The former stores results at the instance level and the latter at the class level.

The cached_property approach only works with methods that do not take any arguments. It does not create a reference
to the instance. The cached method result will be kept only as long as the instance is alive.

The advantage is that when an instance is no longer used, the cached method result will be released right away. The
disadvantage is that if instances accumulate, so too will the accumulated method results. They can grow without
bound.

The Iru_cache approach works with methods that have hashable arguments. It creates a reference to the instance
unless special efforts are made to pass in weak references.

The advantage of the least recently used algorithm is that the cache is bounded by the specified maxsize. The disad-
vantage is that instances are kept alive until they age out of the cache or until the cache is cleared.

This example shows the various techniques:

class Weather:
"Lookup weather information on a government website"

def _ init_ (self, station_id):
self. _station_id = station_id
The _station_id is private and immutable

def current_temperature (self):
"Latest hourly observation"
Do not cache this because old results
can be out of date.

@cached_property

def location(self):
"Return the longitude/latitude coordinates of the station"
Result only depends on the station_id

@lru_cache (maxsize=20)

def historic_rainfall(self, date, units='mm'):
"Rainfall on a given date"
Depends on the station_id, date, and units.

The above example assumes that the station_id never changes. If the relevant instance attributes are mutable, the
cached_property approach can’t be made to work because it cannot detect changes to the attributes.

To make the lru_cache approach work when the station_id is mutable, the class needs to define the __eqg_ () and
__hash__ () methods so that the cache can detect relevant attribute updates:

class Weather:
"Example with a mutable station identifier"

def _ init_ (self, station_id):
self.station_id = station_id

def change_station(self, station_id):
self.station_id = station_id

def __eqg (self, other):
return self.station_id == other.station_id

def _ hash__ (self):
return hash(self.station_id)

@lru_cache (maxsize=20)

(continues on next page)

2.6. Objects 35

Python Frequently Asked Questions, Release 3.11.4

(continued from previous page)

def historic_rainfall (self, date, units='cm'):
'Rainfall on a given date'
Depends on the station_id, date, and units.

2.7 Modules

2.7.1 How do | create a .pyc file?

When a module is imported for the first time (or when the source file has changed since the current compiled file
was created) a . pyc file containing the compiled code should be created in a __pycache___ subdirectory of the
directory containing the . py file. The . pyc file will have a filename that starts with the same name as the . py file,
and ends with . pyc, with a middle component that depends on the particular python binary that created it. (See
PEP 3147 for details.)

One reason that a . pyc file may not be created is a permissions problem with the directory containing the source
file, meaning that the __pycache___ subdirectory cannot be created. This can happen, for example, if you develop
as one user but run as another, such as if you are testing with a web server.

Unless the PYTHONDONTWRITEBYTECODE environment variable is set, creation of a .pyc file is automatic if you’re
importing a module and Python has the ability (permissions, free space, etc...) to create a ___pycache__ subdi-
rectory and write the compiled module to that subdirectory.

Running Python on a top level script is not considered an import and no . pyc will be created. For example, if you
have a top-level module foo . py that imports another module xyz . py, when you run foo (by typing python
foo.py as a shell command), a . pyc will be created for xyz because xyz is imported, but no . pyc file will be
created for foo since foo.py isn’t being imported.

If you need to create a . pyc file for foo — that is, to create a . pyc file for a module that is not imported — you can,
using the py_compile and compileall modules.

The py_compile module can manually compile any module. One way is to use the compile () function in that
module interactively:

>>> import py_compile
>>> py_compile.compile('foo.py")

This will write the .pyc toa __pycache___ subdirectory in the same location as foo . py (or you can override
that with the optional parameter cfile).

You can also automatically compile all files in a directory or directories using the compileall module. You can
do it from the shell prompt by running compileall.py and providing the path of a directory containing Python
files to compile:

python -m compileall

2.7.2 How do | find the current module name?

A module can find out its own module name by looking at the predefined global variable ___name__. If this has the
value '__main__ ', the program is running as a script. Many modules that are usually used by importing them also
provide a command-line interface or a self-test, and only execute this code after checking __name__:

def main () :
print ('Running test...')

if name == " main '

main ()

36 Chapter 2. Programming FAQ

https://peps.python.org/pep-3147/

Python Frequently Asked Questions, Release 3.11.4

2.7.3 How can | have modules that mutually import each other?

Suppose you have the following modules:

foo.py:

from bar import bar_var
foo_var = 1

bar.py:

from foo import foo_var
bar_var = 2

The problem is that the interpreter will perform the following steps:
* main imports foo
¢ Empty globals for foo are created
* foo is compiled and starts executing
e foo imports bar
* Empty globals for bar are created
* bar is compiled and starts executing
* bar imports foo (which is a no-op since there already is a module named foo)
* The import mechanism tries to read foo_var from foo globals, tosetbar. foo_var = foo.foo_var

The last step fails, because Python isn’t done with interpreting foo yet and the global symbol dictionary for foo is
still empty.

The same thing happens when you use import foo, and then try to access foo. foo_var in global code.
There are (at least) three possible workarounds for this problem.

Guido van Rossum recommends avoiding all uses of from <module> import .. .,and placing all code inside
functions. Initializations of global variables and class variables should use constants or built-in functions only. This
means everything from an imported module is referenced as <module>.<name>.

Jim Roskind suggests performing steps in the following order in each module:

* exports (globals, functions, and classes that don’t need imported base classes)

* import statements

* active code (including globals that are initialized from imported values).
Van Rossum doesn’t like this approach much because the imports appear in a strange place, but it does work.
Matthias Urlichs recommends restructuring your code so that the recursive import is not necessary in the first place.

These solutions are not mutually exclusive.

2.7.4 __import__(‘x.y.z’) returns <module ‘x’>; how do | get z?

Consider using the convenience function import_module () from importlib instead:

z = importlib.import_module('x.y.z")

2.7. Modules 37

Python Frequently Asked Questions, Release 3.11.4

2.7.5 When | edit an imported module and reimport it, the changes don’t show
up. Why does this happen?

For reasons of efficiency as well as consistency, Python only reads the module file on the first time a module is
imported. If it didn’t, in a program consisting of many modules where each one imports the same basic module, the
basic module would be parsed and re-parsed many times. To force re-reading of a changed module, do this:

import importlib
import modname
importlib.reload (modname)

Warning: this technique is not 100% fool-proof. In particular, modules containing statements like

from modname import some_objects

will continue to work with the old version of the imported objects. If the module contains class definitions, existing
class instances will not be updated to use the new class definition. This can result in the following paradoxical
behaviour:

>>> import importlib

>>> import cls

>>> ¢ = cls.C() # Create an instance of C
>>> importlib.reload(cls)

<module 'cls' from 'cls.py'>

>>> isinstance(c, cls.C) # isinstance 1is false?!?
False

The nature of the problem is made clear if you print out the “identity” of the class objects:

>>> hex (id(c.__class_))
'0x7352a0"

>>> hex (id(cls.C))
'0x4198d0"

38 Chapter 2. Programming FAQ

CHAPTER
THREE

DESIGN AND HISTORY FAQ

3.1 Why does Python use indentation for grouping of statements?

Guido van Rossum believes that using indentation for grouping is extremely elegant and contributes a lot to the clarity
of the average Python program. Most people learn to love this feature after a while.

Since there are no begin/end brackets there cannot be a disagreement between grouping perceived by the parser and
the human reader. Occasionally C programmers will encounter a fragment of code like this:

if (x <= vy)
X++5
Y7
zZ++;

Only the x++ statement is executed if the condition is true, but the indentation leads many to believe otherwise. Even
experienced C programmers will sometimes stare at it a long time wondering as to why vy is being decremented even
forx > y.

Because there are no begin/end brackets, Python is much less prone to coding-style conflicts. In C there are many
different ways to place the braces. After becoming used to reading and writing code using a particular style, it is
normal to feel somewhat uneasy when reading (or being required to write) in a different one.

Many coding styles place begin/end brackets on a line by themselves. This makes programs considerably longer and
wastes valuable screen space, making it harder to get a good overview of a program. Ideally, a function should fit on
one screen (say, 20-30 lines). 20 lines of Python can do a lot more work than 20 lines of C. This is not solely due to
the lack of begin/end brackets — the lack of declarations and the high-level data types are also responsible — but the
indentation-based syntax certainly helps.

3.2 Why am | getting strange results with simple arithmetic oper-
ations?

See the next question.

3.3 Why are floating-point calculations so inaccurate?

Users are often surprised by results like this:

>> 1.2 - 1.0
0.19999999999999996

and think it is a bug in Python. It’s not. This has little to do with Python, and much more to do with how the underlying
platform handles floating-point numbers.

39

Python Frequently Asked Questions, Release 3.11.4

The float type in CPython uses a C double for storage. A f1oat object’s value is stored in binary floating-point
with a fixed precision (typically 53 bits) and Python uses C operations, which in turn rely on the hardware implemen-
tation in the processor, to perform floating-point operations. This means that as far as floating-point operations are
concerned, Python behaves like many popular languages including C and Java.

Many numbers that can be written easily in decimal notation cannot be expressed exactly in binary floating-point.
For example, after:

’>>> x = 1.2

the value stored for x is a (very good) approximation to the decimal value 1.2, but is not exactly equal to it. On a
typical machine, the actual stored value is:

’1.0011001100llOOl1001100110011001100110011001100110011 (binary)

which is exactly:

’1.1999999999999999555910790149937383830547332763671875 (decimal)

The typical precision of 53 bits provides Python floats with 15-16 decimal digits of accuracy.

For a fuller explanation, please see the floating point arithmetic chapter in the Python tutorial.

3.4 Why are Python strings immutable?

There are several advantages.

One is performance: knowing that a string is immutable means we can allocate space for it at creation time, and the
storage requirements are fixed and unchanging. This is also one of the reasons for the distinction between tuples and
lists.

Another advantage is that strings in Python are considered as “elemental” as numbers. No amount of activity will
change the value 8 to anything else, and in Python, no amount of activity will change the string “eight” to anything
else.

3.5 Why must ‘self’ be used explicitly in method definitions and
calls?

The idea was borrowed from Modula-3. It turns out to be very useful, for a variety of reasons.

First, it’s more obvious that you are using a method or instance attribute instead of a local variable. Reading se1f.x
or self.meth () makes it absolutely clear that an instance variable or method is used even if you don’t know the
class definition by heart. In C++, you can sort of tell by the lack of a local variable declaration (assuming globals are
rare or easily recognizable) — but in Python, there are no local variable declarations, so you’d have to look up the class
definition to be sure. Some C++ and Java coding standards call for instance attributes to have an m__ prefix, so this
explicitness is still useful in those languages, too.

Second, it means that no special syntax is necessary if you want to explicitly reference or call the method from a
particular class. In C++, if you want to use a method from a base class which is overridden in a derived class,
you have to use the : : operator — in Python you can write baseclass.methodname (self, <argument
1list>). Thisis particularly useful for__init__ () methods, and in general in cases where a derived class method
wants to extend the base class method of the same name and thus has to call the base class method somehow.

Finally, for instance variables it solves a syntactic problem with assignment: since local variables in Python are (by
definition!) those variables to which a value is assigned in a function body (and that aren’t explicitly declared global),
there has to be some way to tell the interpreter that an assignment was meant to assign to an instance variable instead
of to alocal variable, and it should preferably be syntactic (for efficiency reasons). C++ does this through declarations,
but Python doesn’t have declarations and it would be a pity having to introduce them just for this purpose. Using the

40 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.11.4

explicit self . var solves this nicely. Similarly, for using instance variables, having to write se1f . var means that
references to unqualified names inside a method don’t have to search the instance’s directories. To put it another way,
local variables and instance variables live in two different namespaces, and you need to tell Python which namespace
to use.

3.6 Why can’t | use an assignment in an expression?

Starting in Python 3.8, you can!

Assignment expressions using the walrus operator : = assign a variable in an expression:

while chunk := fp.read(200):
print (chunk)

See PEP 572 for more information.

3.7 Why does Python use methods for some functionality (e.g.
list.index()) but functions for other (e.g. len(list))?

As Guido said:

(a) For some operations, prefix notation just reads better than postfix — prefix (and infix!) operations have
a long tradition in mathematics which likes notations where the visuals help the mathematician thinking
about a problem. Compare the easy with which we rewrite a formula like x*(a+b) into x*a + x*b to the
clumsiness of doing the same thing using a raw OO notation.

(b) When I read code that says len(x) I know that it is asking for the length of something. This tells
me two things: the result is an integer, and the argument is some kind of container. To the contrary,
when I read x.len(), I have to already know that x is some kind of container implementing an interface
or inheriting from a class that has a standard len(). Witness the confusion we occasionally have when a
class that is not implementing a mapping has a get() or keys() method, or something that isn’t a file has
a write() method.

—https://mail.python.org/pipermail/python-3000/2006-November/004643.html

3.8 Why is join() a string method instead of a list or tuple method?

Strings became much more like other standard types starting in Python 1.6, when methods were added which give
the same functionality that has always been available using the functions of the string module. Most of these new
methods have been widely accepted, but the one which appears to make some programmers feel uncomfortable is:

H, ".join(['l', |2v, 141, '8', '16'])

which gives the result:

"1, 2, 4, 8, 16"

There are two common arguments against this usage.

The first runs along the lines of: “It looks really ugly using a method of a string literal (string constant)”, to which the
answer is that it might, but a string literal is just a fixed value. If the methods are to be allowed on names bound to
strings there is no logical reason to make them unavailable on literals.

The second objection is typically cast as: “I am really telling a sequence to join its members together with a string
constant”. Sadly, you aren’t. For some reason there seems to be much less difficulty with having split () asastring
method, since in that case it is easy to see that

3.6. Why can’t | use an assignment in an expression? 41

https://peps.python.org/pep-0572/
https://mail.python.org/pipermail/python-3000/2006-November/004643.html

Python Frequently Asked Questions, Release 3.11.4

"1, 2, 4, 8, 16".split (", ")

is an instruction to a string literal to return the substrings delimited by the given separator (or, by default, arbitrary
runs of white space).

join () is astring method because in using it you are telling the separator string to iterate over a sequence of strings
and insert itself between adjacent elements. This method can be used with any argument which obeys the rules for
sequence objects, including any new classes you might define yourself. Similar methods exist for bytes and bytearray
objects.

3.9 How fast are exceptions?

A try/except block is extremely efficient if no exceptions are raised. Actually catching an exception is expensive. In
versions of Python prior to 2.0 it was common to use this idiom:

try:
value = mydict [key]

except KeyError:
mydict [key] = getvalue (key)
value = mydict [key]

This only made sense when you expected the dict to have the key almost all the time. If that wasn’t the case, you
coded it like this:

if key in mydict:
value = mydict[key]
else:
value = mydict[key] = getvalue (key)

For this specific case, you could alsouse value = dict.setdefault (key, getvalue (key)), butonly
if the getvalue () call is cheap enough because it is evaluated in all cases.

3.10 Why isn’t there a switch or case statement in Python?

You can do this easily enough with a sequence of if... elif... elif... else. For literal values, or
constants within a namespace, you can also use amatch ... case statement.

For cases where you need to choose from a very large number of possibilities, you can create a dictionary mapping
case values to functions to call. For example:

functions = {'a': function_1,
'b': function_2,
'c': self.method_1}

func = functions[value]
func ()

For calling methods on objects, you can simplify yet further by using the getattr () built-in to retrieve methods
with a particular name:

class MyVisitor:
def visit_a(self):

def dispatch(self, wvalue):

method_name = 'visit ' + str(value)
method = getattr(self, method_name)
method ()

42 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.11.4

It’s suggested that you use a prefix for the method names, such as visit_ in this example. Without such a prefix, if
values are coming from an untrusted source, an attacker would be able to call any method on your object.

3.11 Can’t you emulate threads in the interpreter instead of relying
on an OS-specific thread implementation?

Answer 1: Unfortunately, the interpreter pushes at least one C stack frame for each Python stack frame. Also,
extensions can call back into Python at almost random moments. Therefore, a complete threads implementation
requires thread support for C.

Answer 2: Fortunately, there is Stackless Python, which has a completely redesigned interpreter loop that avoids the
C stack.

3.12 Why can’t lambda expressions contain statements?

Python lambda expressions cannot contain statements because Python’s syntactic framework can’t handle statements
nested inside expressions. However, in Python, this is not a serious problem. Unlike lambda forms in other languages,
where they add functionality, Python lambdas are only a shorthand notation if you’re too lazy to define a function.

Functions are already first class objects in Python, and can be declared in a local scope. Therefore the only advantage
of using a lambda instead of a locally defined function is that you don’t need to invent a name for the function —
but that’s just a local variable to which the function object (which is exactly the same type of object that a lambda
expression yields) is assigned!

3.13 Can Python be compiled to machine code, C or some other
language?

Cython compiles a modified version of Python with optional annotations into C extensions. Nuitka is an up-and-
coming compiler of Python into C++ code, aiming to support the full Python language.

3.14 How does Python manage memory?

The details of Python memory management depend on the implementation. The standard implementation of Python,
CPython, uses reference counting to detect inaccessible objects, and another mechanism to collect reference cycles,
periodically executing a cycle detection algorithm which looks for inaccessible cycles and deletes the objects involved.
The gc module provides functions to perform a garbage collection, obtain debugging statistics, and tune the collector’s
parameters.

Other implementations (such as Jython or PyPy), however, can rely on a different mechanism such as a full-blown
garbage collector. This difference can cause some subtle porting problems if your Python code depends on the
behavior of the reference counting implementation.

In some Python implementations, the following code (which is fine in CPython) will probably run out of file descrip-
tors:

for file in very_long_list_of_ files:
f = open(file)
c = f.read (1)

Indeed, using CPython’s reference counting and destructor scheme, each new assignment to f closes the previous file.
With a traditional GC, however, those file objects will only get collected (and closed) at varying and possibly long
intervals.

3.11. Can’t you emulate threads in the interpreter instead of relying on an OS-specific thread3
implementation?

https://github.com/stackless-dev/stackless/wiki
https://cython.org/
https://www.nuitka.net/
https://www.jython.org
https://www.pypy.org

Python Frequently Asked Questions, Release 3.11.4

If you want to write code that will work with any Python implementation, you should explicitly close the file or use
the with statement; this will work regardless of memory management scheme:

for file in very_long_list_of_files:
with open(file) as f:
c = f.read(l)

3.15 Why doesn’t CPython use a more traditional garbage collec-
tion scheme?

For one thing, this is not a C standard feature and hence it’s not portable. (Yes, we know about the Boehm GC library.
It has bits of assembler code for most common platforms, not for all of them, and although it is mostly transparent,
it isn’t completely transparent; patches are required to get Python to work with it.)

Traditional GC also becomes a problem when Python is embedded into other applications. While in a standalone
Python it’s fine to replace the standard malloc() and free() with versions provided by the GC library, an application
embedding Python may want to have its own substitute for malloc() and free(), and may not want Python’s. Right
now, CPython works with anything that implements malloc() and free() properly.

3.16 Why isn’t all memory freed when CPython exits?

Objects referenced from the global namespaces of Python modules are not always deallocated when Python exits.
This may happen if there are circular references. There are also certain bits of memory that are allocated by the C
library that are impossible to free (e.g. a tool like Purify will complain about these). Python is, however, aggressive
about cleaning up memory on exit and does try to destroy every single object.

If you want to force Python to delete certain things on deallocation use the atexit module to run a function that
will force those deletions.

3.17 Why are there separate tuple and list data types?

Lists and tuples, while similar in many respects, are generally used in fundamentally different ways. Tuples can be
thought of as being similar to Pascal records or C structs; they’re small collections of related data which may be of
different types which are operated on as a group. For example, a Cartesian coordinate is appropriately represented
as a tuple of two or three numbers.

Lists, on the other hand, are more like arrays in other languages. They tend to hold a varying number of objects all
of which have the same type and which are operated on one-by-one. For example, os.listdir ('.") returnsa
list of strings representing the files in the current directory. Functions which operate on this output would generally
not break if you added another file or two to the directory.

Tuples are immutable, meaning that once a tuple has been created, you can’t replace any of its elements with a new
value. Lists are mutable, meaning that you can always change a list’s elements. Only immutable elements can be used
as dictionary keys, and hence only tuples and not lists can be used as keys.

44 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.11.4

3.18 How are lists implemented in CPython?

CPython’s lists are really variable-length arrays, not Lisp-style linked lists. The implementation uses a contiguous
array of references to other objects, and keeps a pointer to this array and the array’s length in a list head structure.

This makes indexing a list a [i] an operation whose cost is independent of the size of the list or the value of the
index.

When items are appended or inserted, the array of references is resized. Some cleverness is applied to improve the
performance of appending items repeatedly; when the array must be grown, some extra space is allocated so the next
few times don’t require an actual resize.

3.19 How are dictionaries implemented in CPython?

CPython’s dictionaries are implemented as resizable hash tables. Compared to B-trees, this gives better performance
for lookup (the most common operation by far) under most circumstances, and the implementation is simpler.

Dictionaries work by computing a hash code for each key stored in the dictionary using the hash () built-in function.
The hash code varies widely depending on the key and a per-process seed; for example, “Python” could hash to -
539294296 while “python”, a string that differs by a single bit, could hash to 1142331976. The hash code is then
used to calculate a location in an internal array where the value will be stored. Assuming that you’re storing keys that
all have different hash values, this means that dictionaries take constant time — O(1), in Big-O notation — to retrieve
a key.

3.20 Why must dictionary keys be immutable?

The hash table implementation of dictionaries uses a hash value calculated from the key value to find the key. If the
key were a mutable object, its value could change, and thus its hash could also change. But since whoever changes
the key object can’t tell that it was being used as a dictionary key, it can’t move the entry around in the dictionary.
Then, when you try to look up the same object in the dictionary it won’t be found because its hash value is different.
If you tried to look up the old value it wouldn’t be found either, because the value of the object found in that hash bin
would be different.

If you want a dictionary indexed with a list, simply convert the list to a tuple first; the function tuple (L) creates a
tuple with the same entries as the list L. Tuples are immutable and can therefore be used as dictionary keys.

Some unacceptable solutions that have been proposed:

» Hash lists by their address (object ID). This doesn’t work because if you construct a new list with the same
value it won’t be found; e.g.:

mydict = {[1, 2]: '"12"}
print (mydict[[1, 2]])

would raise a KeyError exception because the id of the [1, 2] used in the second line differs from that
in the first line. In other words, dictionary keys should be compared using ==, not using i s.

e Make a copy when using a list as a key. This doesn’t work because the list, being a mutable object, could
contain a reference to itself, and then the copying code would run into an infinite loop.

* Allow lists as keys but tell the user not to modify them. This would allow a class of hard-to-track bugs in pro-
grams when you forgot or modified a list by accident. It also invalidates an important invariant of dictionaries:
every value in d.keys () is usable as a key of the dictionary.

* Mark lists as read-only once they are used as a dictionary key. The problem is that it’s not just the top-level
object that could change its value; you could use a tuple containing a list as a key. Entering anything as a key into
a dictionary would require marking all objects reachable from there as read-only — and again, self-referential
objects could cause an infinite loop.

3.18. How are lists implemented in CPython? 45

Python Frequently Asked Questions, Release 3.11.4

There is a trick to get around this if you need to, but use it at your own risk: You can wrap a mutable structure inside
a class instance whichhasbotha __eq () anda__hash__ () method. You must then make sure that the hash
value for all such wrapper objects that reside in a dictionary (or other hash based structure), remain fixed while the
object is in the dictionary (or other structure).

class ListWrapper:
def _ init_ (self, the_list):
self.the_list = the_list

def __eqg (self, other):
return self.the_list == other.the_list

def _ hash__ (self):
1 = self.the_list
result = 98767 - len(l)*555
for i, el in enumerate(l):
try:
result = result + (hash(el) % 9999999) * 1001 + 1
except Exception:
result = (result % 7777777) + i * 333
return result

Note that the hash computation is complicated by the possibility that some members of the list may be unhashable
and also by the possibility of arithmetic overflow.

Furthermore it must always be the case thatif o1 == o2 (ieol.__eq__ (02) is True)thenhash (ol) ==
hash (02) (ie, o1.__hash__ () == 02.__hash__ ()), regardless of whether the object is in a dictionary
or not. If you fail to meet these restrictions dictionaries and other hash based structures will misbehave.

In the case of ListWrapper, whenever the wrapper object is in a dictionary the wrapped list must not change to avoid
anomalies. Don’t do this unless you are prepared to think hard about the requirements and the consequences of not
meeting them correctly. Consider yourself warned.

3.21 Why doesn'’t list.sort() return the sorted list?

In situations where performance matters, making a copy of the list just to sort it would be wasteful. Therefore,
list.sort () sorts the list in place. In order to remind you of that fact, it does not return the sorted list. This
way, you won’t be fooled into accidentally overwriting a list when you need a sorted copy but also need to keep the
unsorted version around.

If you want to return a new list, use the built-in sorted () function instead. This function creates a new list from
a provided iterable, sorts it and returns it. For example, here’s how to iterate over the keys of a dictionary in sorted
order:

for key in sorted (mydict):
do whatever with mydict [key]...

3.22 How do you specify and enforce an interface spec in Python?

An interface specification for a module as provided by languages such as C++ and Java describes the prototypes for
the methods and functions of the module. Many feel that compile-time enforcement of interface specifications helps
in the construction of large programs.

Python 2.6 adds an abc module that lets you define Abstract Base Classes (ABCs). You can then use
isinstance () and issubclass () to check whether an instance or a class implements a particular ABC.
The collections.abc module defines a set of useful ABCs such as Iterable, Container, and
MutableMapping.

46 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.11.4

For Python, many of the advantages of interface specifications can be obtained by an appropriate test discipline for
components.

A good test suite for a module can both provide a regression test and serve as a module interface specification and a
set of examples. Many Python modules can be run as a script to provide a simple “self test.” Even modules which use
complex external interfaces can often be tested in isolation using trivial “stub” emulations of the external interface.
The doctest and unittest modules or third-party test frameworks can be used to construct exhaustive test
suites that exercise every line of code in a module.

An appropriate testing discipline can help build large complex applications in Python as well as having interface
specifications would. In fact, it can be better because an interface specification cannot test certain properties of a
program. For example, the 1ist .append () method is expected to add new elements to the end of some internal
list; an interface specification cannot test that your 1ist . append () implementation will actually do this correctly,
but it’s trivial to check this property in a test suite.

Writing test suites is very helpful, and you might want to design your code to make it easily tested. One increasingly
popular technique, test-driven development, calls for writing parts of the test suite first, before you write any of the
actual code. Of course Python allows you to be sloppy and not write test cases at all.

3.23 Why is there no goto?

In the 1970s people realized that unrestricted goto could lead to messy “spaghetti” code that was hard to understand
and revise. In a high-level language, it is also unneeded as long as there are ways to branch (in Python, with if
statements and or, and, and 1 f-e1se expressions) and loop (with while and for statements, possibly containing
continue and break).

One can also use exceptions to provide a “structured goto” that works even across function calls. Many feel that
exceptions can conveniently emulate all reasonable uses of the “go” or “goto” constructs of C, Fortran, and other
languages. For example:

class label (Exception): pass # declare a label

try:

if condition: raise label () # goto label
except label: # where to goto

pass

This doesn’t allow you to jump into the middle of a loop, but that’s usually considered an abuse of goto anyway. Use
sparingly.

3.24 Why can’t raw strings (r-strings) end with a backslash?

More precisely, they can’t end with an odd number of backslashes: the unpaired backslash at the end escapes the
closing quote character, leaving an unterminated string.

Raw strings were designed to ease creating input for processors (chiefly regular expression engines) that want to do
their own backslash escape processing. Such processors consider an unmatched trailing backslash to be an error
anyway, so raw strings disallow that. In return, they allow you to pass on the string quote character by escaping it
with a backslash. These rules work well when r-strings are used for their intended purpose.

If you’re trying to build Windows pathnames, note that all Windows system calls accept forward slashes too:

f = open("/mydir/file.txt") # works fine!

If you’re trying to build a pathname for a DOS command, try e.g. one of

3.23. Why is there no goto? 47

Python Frequently Asked Questions, Release 3.11.4

dir = r"\this\is\my\dos\dir" "\\"
dir = r"\this\is\my\dos\dir\ "[:-1]
dir = "\\this\\is\\my\\dos\\dir\\"

3.25 Why doesn’t Python have a “with” statement for attribute as-
signments?

Python has a ‘with’ statement that wraps the execution of a block, calling code on the entrance and exit from the
block. Some languages have a construct that looks like this:

with obj:
a =1 # equivalent to obj.a = 1
total = total + 1 # obj.total = obj.total + 1

In Python, such a construct would be ambiguous.

Other languages, such as Object Pascal, Delphi, and C++, use static types, so it’s possible to know, in an unambiguous
way, what member is being assigned to. This is the main point of static typing — the compiler always knows the scope
of every variable at compile time.

Python uses dynamic types. Itis impossible to know in advance which attribute will be referenced at runtime. Member
attributes may be added or removed from objects on the fly. This makes it impossible to know, from a simple reading,
what attribute is being referenced: a local one, a global one, or a member attribute?

For instance, take the following incomplete snippet:

def foo(a):
with a:
print (x)

@,

The snippet assumes that “a” must have a member attribute called “x”. However, there is nothing in Python that tells

the interpreter this. What should happen if “a” is, let us say, an integer? If there is a global variable named “x”, will
it be used inside the with block? As you see, the dynamic nature of Python makes such choices much harder.

The primary benefit of “with” and similar language features (reduction of code volume) can, however, easily be
achieved in Python by assignment. Instead of:

function(args) .mydict[index] [index].a = 21
function (args) .mydict [index] [index] .b = 42
function (args) .mydict [index] [index].c = 63

write this:

ref = function(args) .mydict[index] [index]
=21
= 42
= 63

ref.
ref.
ref.

Q O o

This also has the side-effect of increasing execution speed because name bindings are resolved at run-time in Python,
and the second version only needs to perform the resolution once.

48 Chapter 3. Design and History FAQ

Python Frequently Asked Questions, Release 3.11.4

3.26 Why don’t generators support the with statement?

For technical reasons, a generator used directly as a context manager would not work correctly. When, as is most
common, a generator is used as an iterator run to completion, no closing is needed. When it is, wrap it as “con-
textlib.closing(generator)” in the ‘with’ statement.

3.27 Why are colons required for the if/while/def/class state-
ments?

The colon is required primarily to enhance readability (one of the results of the experimental ABC language). Con-
sider this:

if a == Db
print (a)

Versus

if a ==
print (a)

Notice how the second one is slightly easier to read. Notice further how a colon sets off the example in this FAQ
answer; it’s a standard usage in English.

Another minor reason is that the colon makes it easier for editors with syntax highlighting; they can look for colons to
decide when indentation needs to be increased instead of having to do a more elaborate parsing of the program text.

3.28 Why does Python allow commas at the end of lists and tu-
ples?

Python lets you add a trailing comma at the end of lists, tuples, and dictionaries:

[, 2, 3,1
(‘a', 'b', 'c',)
d = {
"A": [1, 51,
"B": [6, 7], # last trailing comma is optional but good style

There are several reasons to allow this.

When you have a literal value for a list, tuple, or dictionary spread across multiple lines, it’s easier to add more
elements because you don’t have to remember to add a comma to the previous line. The lines can also be reordered
without creating a syntax error.

Accidentally omitting the comma can lead to errors that are hard to diagnose. For example:

x = [
"fee",
"fie"
"foo",
" fumll

]

This list looks like it has four elements, but it actually contains three: “fee”, “fiefoo” and “fum”. Always adding the
comma avoids this source of error.

Allowing the trailing comma may also make programmatic code generation easier.

3.26. Why don’t generators support the with statement? 49

Python Frequently Asked Questions, Release 3.11.4

50

Chapter 3. Design and History FAQ

CHAPTER
FOUR

LIBRARY AND EXTENSION FAQ

4.1 General Library Questions

4.1.1 How do | find a module or application to perform task X?
Check the Library Reference to see if there’s a relevant standard library module. (Eventually you'll learn what’s in
the standard library and will be able to skip this step.)

For third-party packages, search the Python Package Index or try Google or another web search engine. Searching
for “Python” plus a keyword or two for your topic of interest will usually find something helpful.

4.1.2 Where is the math.py (socket.py, regex.py, etc.) source file?

If you can’t find a source file for a module it may be a built-in or dynamically loaded module implemented in C, C++ or
other compiled language. In this case you may not have the source file or it may be something like mathmodule. c,
somewhere in a C source directory (not on the Python Path).

There are (at least) three kinds of modules in Python:
1) modules written in Python (.py);
2) modules written in C and dynamically loaded (.dll, .pyd, .so, .sl, etc);

3) modules written in C and linked with the interpreter; to get a list of these, type:

import sys
print (sys.builtin_module_names)

4.1.3 How do | make a Python script executable on Unix?

You need to do two things: the script file’s mode must be executable and the first line must begin with # ! followed
by the path of the Python interpreter.

The first is done by executing chmod +x scriptfile or perhaps chmod 755 scriptfile.

The second can be done in a number of ways. The most straightforward way is to write

#!/usr/local/bin/python

as the very first line of your file, using the pathname for where the Python interpreter is installed on your platform.

If you would like the script to be independent of where the Python interpreter lives, you can use the env program.
Almost all Unix variants support the following, assuming the Python interpreter is in a directory on the user’s PATH:

#!/usr/bin/env python

51

https://pypi.org
https://www.google.com

Python Frequently Asked Questions, Release 3.11.4

Don’t do this for CGI scripts. The PATH variable for CGI scripts is often very minimal, so you need to use the actual
absolute pathname of the interpreter.

Occasionally, a user’s environment is so full that the /usr/bin/env program fails; or there’s no env program at
all. In that case, you can try the following hack (due to Alex Rezinsky):

#! /bin/sh

nmww.n

exec python $0 1+ms@"

The minor disadvantage is that this defines the script’s __doc___ string. However, you can fix that by adding

doc = """ . .Whatever..."""

4.1.4 Is there a curses/termcap package for Python?

For Unix variants: The standard Python source distribution comes with a curses module in the Modules subdirectory,
though it’s not compiled by default. (Note that this is not available in the Windows distribution — there is no curses
module for Windows.)

The curses module supports basic curses features as well as many additional functions from ncurses and SYSV
curses such as colour, alternative character set support, pads, and mouse support. This means the module isn’t com-
patible with operating systems that only have BSD curses, but there don’t seem to be any currently maintained OSes
that fall into this category.

4.1.5 Is there an equivalent to C’s onexit() in Python?

The atexit module provides a register function that is similar to C’s onexit ().

4.1.6 Why don’t my signal handlers work?

The most common problem is that the signal handler is declared with the wrong argument list. It is called as

handler (signum, frame)

so it should be declared with two parameters:

def handler (signum, frame):

4.2 Common tasks

4.2.1 How do | test a Python program or component?

Python comes with two testing frameworks. The doctest module finds examples in the docstrings for a module
and runs them, comparing the output with the expected output given in the docstring.

The unittest module is a fancier testing framework modelled on Java and Smalltalk testing frameworks.

To make testing easier, you should use good modular design in your program. Your program should have almost all
functionality encapsulated in either functions or class methods — and this sometimes has the surprising and delightful
effect of making the program run faster (because local variable accesses are faster than