Extending and Embedding Python
Release 3.11.3

Guido van Rossum and the Python development team

June 06, 2023

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Recommended third party tools 3
2 Creating extensions without third party tools 5
2.1 Extending Python with Cor C++ o e e e e e 5
2.1.1 ASimple Example e e e e 5

2.1.2 Intermezzo: Errors and Exceptions o oL 6

2.1.3 Backtothe Example o 8

2.1.4 The Module’s Method Table and Initialization Function 9

2.1.5 Compilationand Linkage i e e e 11

2.1.6 Calling Python Functions from C 11

2.1.7 Extracting Parameters in Extension Functions, ... 13

2.1.8 Keyword Parameters for Extension Functions 14

2.1.9 Building Arbitrary Values L 15
2.1.10 Reference Counts e 16
2.1.11 Writing Extensions in C++ e 19
2.1.12 Providing a C API for an Extension Module 19

2.2 Defining Extension Types: Tutorial 23
221 TheBasics o e e 23

2.2.2 Adding data and methods to the Basicexample 26

2.2.3 Providing finer control over data attributes L oL 33

2.2.4 Supporting cyclic garbage collection L. Lo e 38

225 Subclassingother types L e 43

2.3 Defining Extension Types: Assorted Topicso 45
2.3.1 Finalization and De-allocation 47

2.3.2 Object Presentation o i i e e e e e e e e e e 49

2.3.3 Attribute Management e e e e e e e e e e e 49

234 Object CompariSOn o v v it e e e e e e e e 51

2.3.5 Abstract Protocol Support 52

2.3.6 Weak Reference Support L 54

2377 More Suggestions i a e e e e e e e e e e e e e e e e e 55

2.4 Building C and C++ EXtensions o v v v v it e e e e e e e e e e 55
2.4.1 Building C and C++ Extensions with distutils 56

2.4.2 Distributing your extensionmodules oo Lo oL 57

2.5 Building C and C++ Extensions on Windows 57
2.5.1 A Cookbook Approach L e 58

2.5.2 Differences Between Unix and Windows 58

2.53 UsingDLLsinPractice it e 58

3 Embedding the CPython runtime in a larger application 61
3.1 Embedding Python in Another Application. 61
3.1.1 VeryHigh Level Embedding 61

3.1.2 Beyond Very High Level Embedding: Anoverview 62

3.1.3 Pure Embedding 63

3.1.4 Extending Embedded Python 65

3.1.5 Embedding Pythonin C++ 66
3.1.6 Compiling and Linking under Unix-like systems 66
A Glossary 67
B About these documents 81
B.1 Contributors to the Python Documentation 81
C History and License 83
C.1 Historyof the software e 83
C.2 Terms and conditions for accessing or otherwise using Python 84
C.2.1 PSFLICENSE AGREEMENT FORPYTHON3.11.3 84
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 85
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 86
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 87
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.3 DOCUMEN-
TATION e 87
C.3 Licenses and Acknowledgements for Incorporated Software 88
C3.1 Mersenne TWiSter oo 88
C3.2 Sockets 89
C.3.3 Asynchronous socket Serviceso e 89
C3.4 Cookiemanagementottt t e e e e e e 90
C3.5 Execution traCing v v v v it i e e e e e e e e e 90
C.3.6 UUencode and UUdecode functions 91
C3.7 XMLRemote Procedure Calls 91
C3.8 test_epoll e 92
C39 Selectkqueue e 92
C3.10 SipHash24 93
C3.11 strtodanddtoa. L. 93
C3.12 OpenSSL o e 94
C3U3 expat. . . . o v e e e e e e 96
C3.14 Lbfli . . . o o e e 96
C3.15 zlib . . . 97
C3.16 cfuhash 97
C3.017 Hbmpdec e e e e e e e e e e 98
C3.18 W3CCIANTesStSuite v v v ittt e e e e e e e e e e e e 98
C3.19 Audioop e 99
D Copyright 101
Index 103

Extending and Embedding Python, Release 3.11.3

This document describes how to write modules in C or C++ to extend the Python interpreter with new modules.
Those modules can not only define new functions but also new object types and their methods. The document also
describes how to embed the Python interpreter in another application, for use as an extension language. Finally,
it shows how to compile and link extension modules so that they can be loaded dynamically (at run time) into the
interpreter, if the underlying operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the language, see tutorial-
index. reference-index gives a more formal definition of the language. library-index documents the existing object
types, functions and modules (both built-in and written in Python) that give the language its wide application range.

For a detailed description of the whole Python/C API, see the separate c-api-index.

CONTENTS 1

Extending and Embedding Python, Release 3.11.3

2 CONTENTS

CHAPTER
ONE

RECOMMENDED THIRD PARTY TOOLS

This guide only covers the basic tools for creating extensions provided as part of this version of CPython. Third party
tools like Cython, cffi, SWIG and Numba offer both simpler and more sophisticated approaches to creating C and
C++ extensions for Python.

See also:

Python Packaging User Guide: Binary Extensions The Python Packaging User Guide not only covers several
available tools that simplify the creation of binary extensions, but also discusses the various reasons why creating
an extension module may be desirable in the first place.

https://cython.org/
https://cffi.readthedocs.io
https://www.swig.org
https://numba.pydata.org/
https://packaging.python.org/guides/packaging-binary-extensions/

Extending and Embedding Python, Release 3.11.3

4 Chapter 1. Recommended third party tools

CHAPTER
TWO

CREATING EXTENSIONS WITHOUT THIRD PARTY TOOLS

This section of the guide covers creating C and C++ extensions without assistance from third party tools. It is intended
primarily for creators of those tools, rather than being a recommended way to create your own C extensions.

2.1 Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension modules can
do two things that can’t be done directly in Python: they can implement new built-in object types, and they can call
C library functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C
source file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on your system setup; details are given
in later chapters.

Note: The C extension interface is specific to CPython, and extension modules do not work on other Python
implementations. In many cases, it is possible to avoid writing C extensions and preserve portability to other imple-
mentations. For example, if your use case is calling C library functions or system calls, you should consider using
the ct ypes module or the cffi library rather than writing custom C code. These modules let you write Python code
to interface with C code and are more portable between implementations of Python than writing and compiling a C
extension module.

2.1.1 A Simple Example

Let’s create an extension module called spam (the favorite food of Monty Python fans...) and let’s say we want to
create a Python interface to the C library function system () I This function takes a null-terminated character
string as argument and returns an integer. We want this function to be callable from Python as follows:

>>> import spam
>>> status = spam.system("ls —-1")

Begin by creating a file spammodule. c. (Historically, if a module is called spam, the C file containing its imple-
mentation is called spammodule. c; if the module name is very long, like spammi fy, the module name can be
just spammify.c.)

The first two lines of our file can be:

#define PY_SSIZE_T CLEAN
#include <Python.h>

! An interface for this function already exists in the standard module os — it was chosen as a simple and straightforward example.

https://cffi.readthedocs.io/

Extending and Embedding Python, Release 3.11.3

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice
if you like).

Note: Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must include Python . h before any standard headers are included.

Itis recommended to always define PY_SSIZE_T_CLEAN before including Python . h. See Extracting Parameters
in Extension Functions for a description of this macro.

All user-visible symbols defined by Python . h have a prefix of Py or PY, except those defined in standard header
files. For convenience, and since they are used extensively by the Python interpreter, "Python.h" includes a few
standard header files: <stdio.h>,<string.h>, <errno.h>,and <stdlib.h>. If the latter header file does
not exist on your system, it declares the functions malloc (), free () and realloc () directly.

The next thing we add to our module file is the C function that will be called when the Python expression spam.
system (string) is evaluated (we’ll see shortly how it ends up being called):

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

return PylLong_FromLong (sts);

There is a straightforward translation from the argument list in Python (for example, the single expression "1s -1")
to the arguments passed to the C function. The C function always has two arguments, conventionally named self and
args.

The self argument points to the module object for module-level functions; for a method it would point to the object
instance.

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple
corresponds to an argument in the call’s argument list. The arguments are Python objects — in order to do anything
with them in our C function we have to convert them to C values. The function PyArg_ParseTuple () in the
Python API checks the argument types and converts them to C values. It uses a template string to determine the
required types of the arguments as well as the types of the C variables into which to store the converted values. More
about this later.

PyArg_ParseTuple () returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In
the latter case it also raises an appropriate exception so the calling function can return NULL immediately (as we saw
in the example).

2.1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an
exception condition and return an error value (usually —1 or a NULL pointer). Exception information is stored in
three members of the interpreter’s thread state. These are NULL if there is no exception. Otherwise they are the
C equivalents of the members of the Python tuple returned by sys.exc_info (). These are the exception type,
exception instance, and a traceback object. It is important to know about them to understand how errors are passed
around.

The Python API defines a number of functions to set various types of exceptions.

6 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.11.3

The most common one is PyErr_SetString (). Its arguments are an exception object and a C string. The
exception object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates the
cause of the error and is converted to a Python string object and stored as the “associated value” of the exception.

Another useful function is PyErr_SetFromErrno (), which only takes an exception argument and constructs the
associated value by inspection of the global variable er rno. The most general functionis PyErr_SetObject (),
which takes two object arguments, the exception and its associated value. You don’t need to Py_ INCREF () the
objects passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_Occurred () . This returns the cur-
rent exception object, or NULL if no exception has occurred. You normally don’t need tocallPyErr_Occurred ()
to see whether an error occurred in a function call, since you should be able to tell from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an error value (usually
NULL or —-1). It should not call one of the PyErr_* functions — one has already been called by g. f’s caller is
then supposed to also return an error indication to its caller, again without calling PyErr_*, and so on — the most
detailed cause of the error was already reported by the function that first detected it. Once the error reaches the
Python interpreter’s main loop, this aborts the currently executing Python code and tries to find an exception handler
specified by the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another PyErr_ *
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause
information about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr_Clear (). The only time C code should call PyErr_Clear () is if it doesn’t want to pass the error on
to the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing
went wrong).

Every failingmalloc () call must be turned into an exception — the direct caller of malloc () (or realloc ())
must call PyErr_NoMemory () and return a failure indicator itself. All the object-creating functions (for example,
PyLong_FromLong ()) already do this, so this note is only relevant to those who callmalloc () directly.

Also note that, with the important exception of PyArg_ParseTuple () and friends, functions that return an
integer status usually return a positive value or zero for success and -1 for failure, like Unix system calls.

Finally, be careful to clean up garbage (by making Py_XDECREF () or Py_DECREF () calls for objects you have
already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of course, you should
choose exceptions wisely — don’t use PyExc_TypeError to mean that a file couldn’t be opened (that should prob-
ably be PyExc_IOError). If something’s wrong with the argument list, the PyArg_ParseTuple () function
usually raises PyExc_TypeError. If you have an argument whose value must be in a particular range or must
satisfy other conditions, PyExc_ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable
at the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization function (PyInit_spam ()) with an exception object:

PyMODINIT_FUNC
PyInit_spam(void)
{

PyObject *m;

m = PyModule_Create (&spammodule) ;
if (m == NULL)
return NULL;

SpamError = PyErr_NewException("spam.error", NULL, NULL);
Py_XINCREF (SpamError) ;

(continues on next page)

2.1. Extending Python with C or C++ 7

Extending and Embedding Python, Release 3.11.3

(continued from previous page)

if (PyModule_AddObject (m, "error", SpamError) < 0) {
Py_XDECREF (SpamError) ;
Py_CLEAR (SpamError) ;
Py_DECREF (m) ;
return NULL;

return m;

Note that the Python name for the exception object is spam.error. The PyErr_NewException () func-
tion may create a class with the base class being Except ion (unless another class is passed in instead of NULL),
described in bltin-exceptions.

Note also that the SpamError variable retains a reference to the newly created exception class; this is intentional!
Since the exception could be removed from the module by external code, an owned reference to the class is needed to
ensure that it will not be discarded, causing SpamError to become a dangling pointer. Should it become a dangling
pointer, C code which raises the exception could cause a core dump or other unintended side effects.

We discuss the use of PyMODINIT_FUNC as a function return type later in this sample.

The spam.error exception can be raised in your extension module using a call to PyErr_SetString () as
shown below:

static PyObject *
spam_system (PyObject *self, PyObject *args)
{

const char *command;

int sts;

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

sts = system(command) ;

if (sts < 0) A
PyErr_SetString(SpamError, "System command failed");
return NULL;

}

return PyLong_FromLong (sts);

2.1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the argument
list, relying on the exception set by PyArg_ParseTuple (). Otherwise the string value of the argument has
been copied to the local variable command. This is a pointer assignment and you are not supposed to modify the
string to which it points (so in Standard C, the variable command should properly be declared as const char
*command).

The next statement is a call to the Unix function system (), passing it the string we just got from
PyArg_ParseTuple():

sts = system(command) ;

Our spam.system () function must return the value of sts as a Python object. This is done using the function
PyLong_FromLong ().

8 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.11.3

return PyLong_FromLong(sts);

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function returning void), the corresponding Python
function must return None. You need this idiom to do so (which is implemented by the Py_ RETURN_NONE macro):

Py_INCREF (Py_None) ;
return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a NULL
pointer, which means “error” in most contexts, as we have seen.

2.1.4 The Module’s Method Table and Initialization Function

I promised to show how spam_system () is called from Python programs. First, we need to list its name and
address in a “method table”:

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, 0, NULL} /* Sentinel */
bi

Note the third entry (METH_VARARGS). This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always be METH_VARARGS or METH_VARARGS | METH_KEYWORDS; a value
of 0 means that an obsolete variant of PyArg_ParseTuple () is used.

When using only METH_ VARARGS, the function should expect the Python-level parameters to be passed in as a tuple
acceptable for parsing via PyArg_ParseTuple () ; more information on this function is provided below.

The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the function. In
this case, the C function should accept a third PyObject * parameter which will be a dictionary of keywords. Use
PyArg_ParseTupleAndKeywords () to parse the arguments to such a function.

The method table must be referenced in the module definition structure:

static struct PyModuleDef spammodule = {
PyModuleDef_ HEAD_INIT,

"spam", /* name of module */
spam_doc, /* module documentation, may be NULL */
-1, /* size of per-interpreter state of the module,

or -1 if the module keeps state in global variables. */
SpamMethods
bi

This structure, in turn, must be passed to the interpreter in the module’s initialization function. The initialization
function must be named PyInit_name (), where name is the name of the module, and should be the only non-
static item defined in the module file:

PyMODINIT_FUNC
PyInit_spam(void)
{

return PyModule_Create (&spammodule) ;

Note that PyMODINIT_FUNC declares the function as PyObject * return type, declares any special linkage
declarations required by the platform, and for C++ declares the function as extern "C".

2.1. Extending Python with C or C++ 9

Extending and Embedding Python, Release 3.11.3

When the Python program imports module spam for the first time, PyInit_spam() is called. (See below for
comments about embedding Python.) It calls PyModule_Create (), which returns a module object, and inserts
built-in function objects into the newly created module based upon the table (an array of PyMethodDef structures)
found in the module definition. PyModule_Create () returns a pointer to the module object that it creates. It
may abort with a fatal error for certain errors, or return NULL if the module could not be initialized satisfactorily.
The init function must return the module object to its caller, so that it then gets inserted into sys .modules.

When embedding Python, the PyInit_spam () function is not called automatically unless there’s an entry in the
PyImport_Inittab table. To add the module to the initialization table, use Py Import_AppendInittab (),
optionally followed by an import of the module:

int
main (int argc, char *argv[])
{
wchar_t *program = Py_DecodeLocale(argv[0], NULL);
if (program == NULL) {
fprintf (stderr, "Fatal error: cannot decode argv[0]\n");
exit (1);

/* Add a built—-in module, before Py_Initialize */

if (PyImport_AppendInittab ("spam", PyInit_spam) == -1) {
fprintf (stderr, "Error: could not extend in-built modules table\n");
exit (1);

/* Pass argv[0] to the Python interpreter */
Py_SetProgramName (program) ;

/* Initialize the Python interpreter. Required.
If this step fails, it will be a fatal error. */
Py_Initialize();

/* Optionally import the module; alternatively,
import can be deferred until the embedded script
imports it. */
PyObject *pmodule = PyImport_ImportModule ("spam");
if (!pmodule) {
PyErr_Print ();
fprintf (stderr, "Error: could not import module 'spam'\n");

PyMem_RawFree (program) ;
return O;

Note: Removing entries from sys.modules or importing compiled modules into multiple interpreters within a
process (or following a fork () without an intervening exec ()) can create problems for some extension modules.
Extension module authors should exercise caution when initializing internal data structures.

A more substantial example module is included in the Python source distribution as Modules/xxmodule. c. This
file may be used as a template or simply read as an example.

Note: Unlike our spam example, xxmodule uses multi-phase initialization (new in Python 3.5), where a PyMod-
uleDef structure is returned from PyInit_spam, and creation of the module is left to the import machinery. For
details on multi-phase initialization, see PEP 489.

10 Chapter 2. Creating extensions without third party tools

https://peps.python.org/pep-0489/

Extending and Embedding Python, Release 3.11.3

2.1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python
system. If you use dynamic loading, the details may depend on the style of dynamic loading your system uses; see the
chapters about building extension modules (chapter Building C and C++ Extensions) and additional information that
pertains only to building on Windows (chapter Building C and C++ Extensions on Windows) for more information
about this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter,
you will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple on Unix: just
place your file (spammodule . c for example) in the Modules/ directory of an unpacked source distribution, add
a line to the file Modules/Setup. local describing your file:

spam spammodule.o

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the Modules/
subdirectory, but then you must first rebuild Makefile there by running ‘make Makefile’. (This is necessary each
time you change the Setup file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well,
for instance:

spam spammodule.o —-1X11

2.1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called “callback” functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python program-
mer; the implementation will require calling the Python callback functions from a C callback. Other uses are also
imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python
function. (I won’t dwell on how to call the Python parser with a particular string as input — if you're interested, have
a look at the implementation of the —c command line option in Modules/main. c from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object.
You should provide a function (or some other interface) to do this. When this function is called, save a pointer to
the Python function object (be careful to Py_ INCREF () it!) in a global variable — or wherever you see fit. For
example, the following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback (PyObject *dummy, PyObject *args)
{

PyObject *result = NULL;

PyObject *temp;

if (PyArg_ParseTuple (args, "O:set_callback", &temp)) |
if (!PyCallable_Check (temp)) {
PyErr_SetString (PyExc_TypeError, "parameter must be callable");
return NULL;
}

Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */

/* Boilerplate to return "None" */
Py_INCREF (Py_None) ;
result = Py_None;

(continues on next page)

2.1. Extending Python with C or C++ 11

Extending and Embedding Python, Release 3.11.3

(continued from previous page)

}

return result;

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in section 7he
Module’s Method Table and Initialization Function. The PyArg_ParseTuple () function and its arguments are
documented in section Extracting Parameters in Extension Functions.

The macros Py_XINCREF () and Py_XDECREF () increment/decrement the reference count of an object and are
safe in the presence of NULL pointers (but note that zemp will not be NULL in this context). More info on them in
section Reference Counts.

Later, when it is time to call the function, you call the C function PyObject_CallObject (). This function has
two arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument
list must always be a tuple object, whose length is the number of arguments. To call the Python function with no ar-
guments, pass in NULL, or an empty tuple; to call it with one argument, pass a singleton tuple. Py_BuildValue ()
returns a tuple when its format string consists of zero or more format codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

/* Time to call the callback */

arglist = Py_Buildvalue (" (i)", arg);

result = PyObject_CallObject (my_callback, arglist);
Py_DECREF (arglist);

PyObject_CallObject () returns a Python object pointer: this is the return value of the Python func-
tion. PyObject_CallObject () is “reference-count-neutral” with respect to its arguments. In the exam-
ple a new tuple was created to serve as the argument list, which is Py_DECREF () -ed immediately after the
PyObject_CallObject () call

The return value of PyObject_CallObject () is “new”: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py_DECREF () the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’t NULL. If it is, the Python function
terminated by raising an exception. If the C code that called PyObject_CallObject () is called from Python,
it should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr_Clear (). For example:

if (result == NULL)

return NULL; /* Pass error back */
...use result...
Py_DECREF (result) ;

Depending on the desired interface to the Python callback function, you may also have to provide an argument list
to PyObject_CallObject (). Insome cases the argument list is also provided by the Python program, through
the same interface that specified the callback function. It can then be saved and used in the same manner as the
function object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way
to do this is to call Py_Buildvalue (). For example, if you want to pass an integral event code, you might use
the following code:

PyObject *arglist;

arglist = Py_BuildValue (" (1)", eventcode);
result = PyObject_CallObject (my_callback, arglist);

(continues on next page)

12 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.11.3

(continued from previous page)

Py_DECREF (arglist);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

Note the placement of Py_DECREF (arglist) immediately after the call, before the error check! Also note
that strictly speaking this code is not complete: Py_BuildValue () may run out of memory, and this should be
checked.

You may also call a function with keyword arguments by using PyObject_Call (), which supports arguments
and keyword arguments. As in the above example, we use Py_BuildValue () to construct the dictionary.

PyObject *dict;

dict = Py_Buildvalue("{s:1}", "name", val);
result = PyObject_Call (my_callback, NULL, dict);
Py_DECREF (dict) ;
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

2.1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple () function is declared as follows:

int PyArg_ParseTuple (PyObject *arg, const char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C function. The format
argument must be a format string, whose syntax is explained in arg-parsing in the Python/C API Reference Manual.
The remaining arguments must be addresses of variables whose type is determined by the format string.

Note that while PyArg_ParseTuple () checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably
crash or at least overwrite random bits in memory. So be careful!

Note that any Python object references which are provided to the caller are borrowed references; do not decrement
their reference count!

Some example calls:

#define PY_SSIZE_ T CLEAN /* Make "s#" use Py ssize_t rather than int. */
#include <Python.h>

int ok;

int 1, J;

long k, 1;

const char *s;
Py_ssize_t size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: f() */

ok = PyArg_ParseTuple (args, "s", &s); /* A string */
/* Possible Python call: f('whoops!') */

ok = PyArg_ParseTuple (args, "11s", &k, &1, &s); /* Two longs and a string */
/* Possible Python call: f(1, 2, 'three') */

2.1. Extending Python with C or C++ 13

Extending and Embedding Python, Release 3.11.3

ok = PyArg_ParseTuple (args, " (ii)s#", &i, &3j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: f((1, 2), 'three') */
Yy

const char *file;
const char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

f('spam')

f('spam', 'w')

f('spam', 'wb', 100000) */

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, " ((ii) (ii)) (ii)",
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
£(((0, 0), (400, 300)), (10, 10)) */

Py_complex c;

ok = PyArg_ParseTuple (args, "D:myfunction", &c);

/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction (1+27) */

2.1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords () function is declared as follows:

int PyArg_ParseTupleAndKeywords (PyObject *arg, PyObject *kwdict,
const char *format, char *kwlist[], ...);

The arg and format parameters are identical to those of the PyArg_ParseTuple () function. The kwdict param-
eter is the dictionary of keywords received as the third parameter from the Python runtime. The kwlist parameter is
a NULL-terminated list of strings which identify the parameters; the names are matched with the type information
from format from left to right. On success, PyArg_ParseTupleAndKeywords () returns true, otherwise it
returns false and raises an appropriate exception.

Note: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are
not present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick (philbrick@hks.com):

#define PY_SSIZE_T CLEAN /* Make "s#'" use Py_ssize_t rather than int. */
#include <Python.h>

static PyObject *
keywdarg_parrot (PyObject *self, PyObject *args, PyObject *keywds)
{

int voltage;

(continues on next page)

14 Chapter 2. Creating extensions without third party tools

mailto:philbrick@hks.com

Extending and Embedding Python, Release 3.11.3

(continued from previous page)

const char *state = "a stiff";

const char *action = "voom";

const char *type = "Norwegian Blue";

static char *kwlist[] = {"voltage", "state", "action", "type", NULL};

if (!PyArg_ParseTupleAndKeywords (args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;

printf ("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf ("-- Lovely plumage, the %s —- It's %s!\n", type, state);

Py_RETURN_NONE;

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function i1s necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg_parrot () takes
* three.
*/
{"parrot", (PyCFunction) (void (*) (void))keywdarg_parrot, METH_VARARGS | METH_
—~KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0O, NULL} /* sentinel */
bi

static struct PyModuleDef keywdargmodule = {
PyModuleDef_ HEAD_INIT,
"keywdarg",
NULL,
-1,
keywdarg_methods
bi

PyMODINIT_FUNC
PyInit_keywdarg (void)
{

return PyModule_Create (&keywdargmodule) ;

2.1.9 Building Arbitrary Values

This function is the counterpart to PyArg_ParseTuple (). Itis declared as follows:

PyObject *Py_BuildValue (const char *format, ...);

It recognizes a set of format units similar to the ones recognized by PyArg_ParseTuple (), but the arguments
(which are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable
for returning from a C function called from Python.

One difference with PyArg_ParseTuple () : while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internally), Py_BuildValue () does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If the format string is empty, it returns
None; if it contains exactly one format unit, it returns whatever object is described by that format unit. To force it to
return a tuple of size O or one, parenthesize the format string.

Examples (to the left the call, to the right the resulting Python value):

2.1. Extending Python with C or C++ 15

Extending and Embedding Python, Release 3.11.3

Py_Buildvalue ("") None
Py_Buildvalue ("i", 123) 123
Py_Buildvalue ("iii", 123, 456, 789) (123, 456, 789)
Py_Buildvalue("s", "hello") 'hello'
Py_Buildvalue ("y", "hello") b'hello'
Py_Buildvalue ("ss", "hello", "world") ('"hello', 'world')
Py_BuildvValue ("s#", "hello", 4) 'hell'
Py_BuildValue("y#" "hello", 4) b'hell'!
Py_Buildvalue (" () ()
Py_Buildvalue (" (1)", 123) (123,)
Py_BuildValue (" (ii)", 123, 456) (123, 456)
Py_Buildvalue (" (i,1)", 123, 456) (123, 4506)
Py_Buildvalue("[i,i]", 123, 456) [123, 456]
Py_Buildvalue ("{s:i,s:i}",

"abc", 123, "def", 456) {'abc': 123, 'def': 456}
Py_Buildvalue (" ((ii) (ii)) (ii)"

1, 2, 3, 4, 5, 6) (1, 2), (3, 4)), (5, 6))

2.1.10 Reference Counts

In languages like C or C++, the programmer is responsible for dynamic allocation and deallocation of memory on
the heap. In C, this is done using the functions malloc () and free (). In C++, the operators new and delete
are used with essentially the same meaning and we’ll restrict the following discussion to the C case.

Every block of memory allocated with malloc () should eventually be returned to the pool of available memory
by exactly one call to free (). Itis important to call free () at the right time. If a block’s address is forgotten but
free () is not called for it, the memory it occupies cannot be reused until the program terminates. This is called
a memory leak. On the other hand, if a program calls free () for a block and then continues to use the block, it
creates a conflict with re-use of the block through another malloc () call. This is called using freed memory. It has
the same bad consequences as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block
of memory, do some calculation, and then free the block again. Now a change in the requirements for the function
may add a test to the calculation that detects an error condition and can return prematurely from the function. It’s
easy to forget to free the allocated memory block when taking this premature exit, especially when it is added later
to the code. Such leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small
fraction of all calls, and most modern machines have plenty of virtual memory, so the leak only becomes apparent
in a long-running process that uses the leaking function frequently. Therefore, it’s important to prevent leaks from
happening by having a coding convention or strategy that minimizes this kind of errors.

Since Python makes heavy use of malloc () and free (), it needs a strategy to avoid memory leaks as well as the
use of freed memory. The chosen method is called reference counting. The principle is simple: every object contains
a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when
a reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the
object is freed.

An alternative strategy is called automatic garbage collection. (Sometimes, reference counting is also referred to as
a garbage collection strategy, hence my use of “automatic” to distinguish the two.) The big advantage of automatic
garbage collection is that the user doesn’t need to call free () explicitly. (Another claimed advantage is an improve-
ment in speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is no truly
portable automatic garbage collector, while reference counting can be implemented portably (as long as the functions
malloc () and free () are available — which the C Standard guarantees). Maybe some day a sufficiently portable
automatic garbage collector will be available for C. Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to
detect reference cycles. This allows applications to not worry about creating direct or indirect circular references;
these are the weakness of garbage collection implemented using only reference counting. Reference cycles consist
of objects which contain (possibly indirect) references to themselves, so that each object in the cycle has a reference
count which is non-zero. Typical reference counting implementations are not able to reclaim the memory belonging

16 Chapter 2. Creating extensions without third party tools

Extending and Embedding Python, Release 3.11.3

to any objects in a reference cycle, or referenced from the objects in the cycle, even though there are no further
references to the cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them. The gc module exposes a way to run
the detector (the collect () function), as well as configuration interfaces and the ability to disable the detector at
runtime.

Reference Counting in Python

There are two macros, Py_INCREF (x) and Py_DECREF (x), which handle the incrementing and decrementing
of the reference count. Py_DECREF () also frees the object when the count reaches zero. For flexibility, it doesn’t
call free () directly — rather, it makes a call through a function pointer in the object’s type object. For this purpose
(and others), every object also contains a pointer to its type object.

The big question now remains: when to use Py_INCREF (x) and Py_DECREF (x) ? Let’s first introduce some
terms. Nobody “owns” an object; however, you can own a reference to an object. An object’s reference count is now
defined as the number of owned references to it. The owner of a reference is responsible for calling Py_DECREF ()
when the reference is no longer needed. Ownership of a reference can be transferred. There are three ways to
dispose of an owned reference: pass it on, store it, or call Py_DECREF (). Forgetting to dispose of an owned
reference creates a memory leak.

It is also possible to borrow* a reference to an object. The borrower of a reference should not call Py_DECREF ().
The borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed
reference after the owner has disposed of it risks using freed memory and should be avoided completely”.

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference
on all possible paths through the code — in other words, with a borrowed reference you don’t run the risk of leaking
when a premature exit is taken. The disadvantage of borrowing over owning is that there are some subtle situations
where in seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has
in fact disposed of it.

A borrowed reference can be changed into an owned reference by calling Py_ INCREF (). This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification
whether ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions
whose function it is to create a new object, such as PyLong_FromLong () and Py_Buildvalue (), pass own-
ership to the receiver. Even if the object is not actually new, you still receive ownership of a new reference to that
object. For instance, PyLong_FromLong () maintains a cache of popular values and can return a reference to a
cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for in-
stance PyObject_GetAttrString (). The picture is less clear, here, however, since a few com-
mon routines are exceptions: PyTuple_GetItem(), PyList_GetItem(), PyDict_GetItem(), and
PyDict_GetItemString () all return references that you borrow from the tuple, list or dictionary.

The function Py Import_AddModule () also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is stored in sys .modules.

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will use Py_ INCREF () to become an independent owner. There are exactly two important
exceptions to this rule: PyTuple_SetItem() and PyList_SetItem (). These functions take over ownership

2 The metaphor of “borrowing” a reference is not completely correct: the owner still has a copy of the reference.
3 Checking that the reference count is at least 1 does not work — the reference count itself could be in freed memory and may thus be reused
for another object!

2.1. Extending Python with C or C++ 17

Extending and Embedding Python, Release 3.11.3

of the item passed to them — even if they fail! (Note that PyDict_SetItem() and friends don’t take over
ownership — they are “normal.”)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference by calling Py_INCREF () .

The object reference returned from a C function that is called from Python must be an owned reference — ownership
is transferred from the function to its caller.

Thin Ice
There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all
have to do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is using Py_ DECREF () on an unrelated object while borrowing a
reference to a list item. For instance:

void
bug (PyObject *1list)
{
PyObject *item = PyList_GetItem(list, 0);

PyList_SetItem(list, 1, PyLong_FromLong (0L));
PyObject_Print (item, stdout, 0); /* BUG! */

This function first borrows a reference to 1ist [0], then replaces 1ist [1] with the value 0, and finally prints the
borrowed reference. Looks harmless, right? But it’s not!

Let’s follow the control flow into PyList_SetItem (). The list owns references to all its items, so when item
1 is replaced, it has to dispose of the original item 1. Now let’s suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class defined a __del__ () method. If this class instance has
a reference count of 1, dispos