Python Setup and Usage
Release 3.11.3

Guido van Rossum and the Python development team

June 06, 2023

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Command line and environment 3
1.1 Commandline e 3
1.1.1 Imnterface options L e 3

1.1.2 Generic Options v v vt e e e e e e e e e e e e 5

1.1.3 Miscellaneous Options v v v v v i e e e e e e e e e e e e e e 6

1.1.4 Options you shouldn’tuse o i i i it e e e e 9

1.2 Environment variables oL e 10
1.2.1 Debug-mode variables 14

2 Using Python on Unix platforms 17
2.1 Getting and installing the latest version of Python 17
21,1 OnLinuxo e e e e e e 17

2.1.2 OnFreeBSDandOpenBSD e 17

2.1.3 0 OnOpenSolaris i e e e e e e e e e e e e 18

2.2 Building Python. e e e e e 18
2.3 Python-related pathsand files e 18
24 Miscellaneous e e e e e e e e e e e 18
25 CustomOpenSSL e 19
3 Configure Python 21
3.1 Configure Options o oL e e e e e e e e e e e e e e 21
311 General Options o o b L e e e e e e 21

3.1.2 WebAssembly Options v i e e e e e e e e e 23

3,13 Install Optons v v v v e e e e e e e e e e e e e e e e e 23

3.1.4 Performance options e e e 24

3.1.5 PythonDebugBuild 24

3.1.6 Debugoptionsl e e e e 25

317 LAnKer options o . . e e e e e e e e e e e e e e e e e e e 26

3.1.8 LibrarieS Options i e e e e e e e e e e e e e e e e e 26

3.1.9 Security Options oL e e e e e e e e e e e e e 27
3.1.10 macOS Options o v v o v e e e e e e e e e e e e e e e 28
3.1.11 Cross Compiling Options 28

3.2 PythonBuild System e 29
3.2.1 Mainfilesof thebuildsystem e 29

3222 Mainbuild Steps e e e e e e e e e e e e 29

323 Main Makefile targets 29

324 Cextensions . . . v v v vttt e 30

3.3 Compiler and linker flags 30
3.3.1 Preprocessor flags e e e 30

332 Compilerflags e e e e e 31

333 Linkerflags o L e e e 32

4 Using Python on Windows 35
4.1 Thefullinstaller e e e e e e 35

4.1.1 Installation StePs« o oLt e e e e e e e e e e e

4.1.2 Removing the MAX_PATH Limitation
4.1.3 Installing Without UL 0 e
4.1.4 Installing Without Downloading
4.1.5 Modifyinganinstall L
4.2 The Microsoft Store package e e e
421 Knownissues
4.3 Thenuget.org packages v i v i e e e e e e e e e e e e e
44 Theembeddable package L. e
4.4.1 Python Application e e e
442 EmbeddingPython e
45 Alternativebundles Lo
4.6 Configuring Python e e e e
4.6.1 Excursus: Setting environment variables o oL,
4.6.2 Finding the Python executable
47 UTF-8mode o e e e e e e e
4.8 Python Launcher for Windows e
4.8.1 Gettingstarted e e e e e e e e e e e e
482 Shebang Lines e e e e e e
4.8.3 Argumentsinshebanglines oL L.
4.8.4 Customization v v v vttt e e e e e e e e e e e
4.8.5 Diagnostics e
486 DryRun e e e e
487 Installondemand
4.8.8 Returncodes e
49 Findingmodules
4.10 Additional modules L. e e
4.10.1 PyWiIn32 . . . e e
4.10.2 cx_Freeze e e e
4.11 Compiling Pythonon Windows L e
4.12 Other Platforms e e e e
Using Python on a Mac
5.1 Getting and Installing MacPython L o
5.1.1 HowtorunaPythonscript e
5.1.2 Runningscripts witha GUIL
5.1.3 Configurationl e e e e e
52 ThelIDE
5.3 Installing Additional Python Packages
54 GUIProgrammingonthe Mac e
5.5 Distributing Python Applicationsonthe Mac.
5.6 OtherResources i
Editors and IDEs
Glossary

About these documents

B.1

Contributors to the Python Documentation

History and License

C.1
C2

History of the software e e e e e
Terms and conditions for accessing or otherwise using Python
C.2.1 PSFLICENSE AGREEMENT FORPYTHON 3.11.3
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.3 DOCUMEN-
TATION . . . e e

53
53
53
54
54
54
54
54
55
55

57

59

73
73

C.3 Licenses and Acknowledgements for Incorporated Software 80

C3.1
C32
C33
C34
C35
C3.6
C3.7
C3.8
C39
C.3.10
C3.11
C3.12
C3.13
C3.14
C3.15
C3.16
C3.17
C3.18
C3.19

D Copyright

Index

Mersenne TWISter o o oL e e e e 80
SoCKkets e e e 81
Asynchronous socket Servicesol e 81
Cookie management i i i e e e e e 82
Execution tracingo e e e e e 82
UUencode and UUdecode functions 83
XML Remote Procedure Calls 83
test_epoll oL e e e e 84
Selectkqueue e 84
SipHash24 e 85
strtodanddtoa. Ll e e 85
OpenSSL e e e e 86
EXPAL . v e 88
Libffi . . . 88
zZHb e 89
cfuhash e 89
libmpdec e e e e e 90
W3C CIANtest SUite o v v vttt e e e e e e e e e e e e e e e 90
Audioop e 91

93

95

Python Setup and Usage, Release 3.11.3

This part of the documentation is devoted to general information on the setup of the Python environment on different
platforms, the invocation of the interpreter and things that make working with Python easier.

CONTENTS 1

Python Setup and Usage, Release 3.11.3

2 CONTENTS

CHAPTER
ONE

COMMAND LINE AND ENVIRONMENT

The CPython interpreter scans the command line and the environment for various settings.

CPython implementation detail: Other implementations’ command line schemes may differ. See implementations
for further resources.

1.1

Command line

When invoking Python, you may specify any of these options:

’python [-bBdEhiIOgsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

’python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:

When called with standard input connected to a tty device, it prompts for commands and executes them until
an EOF (an end-of-file character, you can produce that with Ctr1-D on UNIX or Ctrl-Z, Enter on
Windows) is read.

When called with a file name argument or with a file as standard input, it reads and executes a script from that
file.

When called with a directory name argument, it reads and executes an appropriately named script from that
directory.

When called with —c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

When called with -m module-name, the given module is located on the Python module path and executed
as a script.

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end
up in sys.argv — note that the first element, subscript zero (sys.argv [01]), is a string reflecting the program’s
source.

-c <command>

Execute the Python code in command. command can be one or more statements separated by newlines, with
significant leading whitespace as in normal module code.

If this option is given, the first element of sys.argv will be "—~c" and the current directory will be added
to the start of sys.path (allowing modules in that directory to be imported as top level modules).

Python Setup and Usage, Release 3.11.3

Raises an auditing event cpython . run_command with argument command.

-m <module—name>

Search sys.path for the named module and execute its contents as the __main__ module.

Since the argument is a module name, you must not give a file extension (. py). The module name should be
a valid absolute Python module name, but the implementation may not always enforce this (e.g. it may allow
you to use a name that includes a hyphen).

Package names (including namespace packages) are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main___ as the main module. This behaviour
is deliberately similar to the handling of directories and zipfiles that are passed to the interpreter as the script
argument.

Note: This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source
file is not available.

If this option is given, the first element of sys . argv will be the full path to the module file (while the module
file is being located, the first element will be set to "—-m"). As with the —c option, the current directory will
be added to the start of sys.path.

—TI option can be used to run the script in isolated mode where sy s . path contains neither the current direc-
tory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -m timeit -s 'setup here' 'benchmarked code here'
python -m timeit -h # for details

Raises an auditing event cpython. run_module with argument module—name.

See also:
runpy . run_module () Equivalent functionality directly available to Python code

PEP 338 — Executing modules as scripts
Changed in version 3.1: Supply the package name to runa __main___ submodule.

Changed in version 3.4: namespace packages are also supported

Read commands from standard input (sys . stdin). If standard input is a terminal, -1 is implied.

If this option is given, the first element of sys.argv will be "-" and the current directory will be added to
the start of sys.path.

Raises an auditing event cpython . run_stdin with no arguments.

<script>

Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring
to either a Python file, a directory containinga __main__ .py file, or a zipfile containinga __main__ .py
file.

If this option is given, the first element of sys . argv will be the script name as given on the command line.

If the script name refers directly to a Python file, the directory containing that file is added to the start of
sys.path, and the file is executed as the __main__ module.

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
__main__ .py file in that location is executed as the __main___ module.

4 Chapter 1. Command line and environment

https://peps.python.org/pep-0338/

Python Setup and Usage, Release 3.11.3

—TI option can be used to run the script in isolated mode where sy s . path contains neither the script’s direc-
tory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Raises an auditing event cpython.run_file with argument £ilename.

See also:
runpy . run_path () Equivalent functionality directly available to Python code

If no interface option is given, —1 is implied, sys.argv [0] is an empty string (" ") and the current directory will
be added to the start of sys.path. Also, tab-completion and history editing is automatically enabled, if available
on your platform (see rlcompleter-config).

See also:
tut-invoking

Changed in version 3.4: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-2
-h
——help
Print a short description of all command line options and corresponding environment variables and exit.
——help-env
Print a short description of Python-specific environment variables and exit.
New in version 3.11.
—-help—-xoptions
Print a description of implementation-specific —X options and exit.
New in version 3.11.
—--help-all
Print complete usage information and exit.
New in version 3.11.
-V
——-version

Print the Python version number and exit. Example output could be:

Python 3.8.0b2+

When given twice, print more information about the build, like:

Python 3.8.0b2+ (3.8:0c076caaa8, Apr 20 2019, 21:55:00)
[GCC 6.2.0 20161005]

New in version 3.6: The —VV option.

1.1. Command line 5

Python Setup and Usage, Release 3.11.3

1.1.3 Miscellaneous options

-b

Issue a warning when comparing bytes or bytearray with str or bytes with int. Issue an error when
the option is given twice (-bb).

Changed in version 3.5: Affects comparisons of bytes with int.

If given, Python wont try to write .pyc files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE.

——-check-hash-based-pycs default|always|never

Control the validation behavior of hash-based .pyc files. See pyc-invalidation. When set to default,
checked and unchecked hash-based bytecode cache files are validated according to their default semantics.
When set to always, all hash-based . pyc files, whether checked or unchecked, are validated against their
corresponding source file. When set to never, hash-based . pyc files are not validated against their corre-
sponding source files.

The semantics of timestamp-based . pyc files are unaffected by this option.

-d
Turn on parser debugging output (for expert only, depending on compilation options). See also
PYTHONDEBUG.

-E
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.
See also the —P and - (isolated) options.

-i
When a script is passed as first argument or the —c option is used, enter interactive mode after executing the
script or the command, even when sys . stdin does not appear to be a terminal. The PYTHONSTARTUP
file is not read.
This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

-1
Run Python in isolated mode. This also implies —E, —P and —s options.
In isolated mode sys . path contains neither the script’s directory nor the user’s site-packages directory. All
PYTHON* environment variables are ignored, too. Further restrictions may be imposed to prevent the user
from injecting malicious code.
New in version 3.4.

-0
Remove assert statements and any code conditional on the value of ___debug__. Augment the filename
for compiled (bytecode) files by adding .opt—1 before the .pyc extension (see PEP 488). See also
PYTHONOPTIMIZE.
Changed in version 3.5: Modify . pyc filenames according to PEP 488.

-00
Do -0 and also discard docstrings. Augment the filename for compiled (byfecode) files by adding . opt -2
before the . pyc extension (see PEP 488).
Changed in version 3.5: Modify . pyc filenames according to PEP 488.

-P
Don’t prepend a potentially unsafe path to sys.path:

e python -m module command line: Don’t prepend the current working directory.
6 Chapter 1. Command line and environment

https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/
https://peps.python.org/pep-0488/

Python Setup and Usage, Release 3.11.3

* python script.py command line: Don’t prepend the script’s directory. If it’s a symbolic link,
resolve symbolic links.

* python -c code and python (REPL) command lines: Don’t prepend an empty string, which
means the current working directory.

See also the PYTHONSAFEPATH environment variable, and —E and —T (isolated) options.

New in version 3.11.

-q
Don’t display the copyright and version messages even in interactive mode.
New in version 3.2.

-R
Turn on hash randomization. This option only has an effect if the PYTHONHASHSEED environment variable
is set to 0, since hash randomization is enabled by default.
On previous versions of Python, this option turns on hash randomization, so that the __hash__ () values of
str and bytes objects are “salted” with an unpredictable random value. Although they remain constant within
an individual Python process, they are not predictable between repeated invocations of Python.
Hash randomization is intended to provide protection against a denial-of-service caused by carefully chosen
inputs that exploit the worst case performance of a dict construction, O(n?) complexity. See http://ocert.org/
advisories/ocert-2011-003.html for details.
PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.
Changed in version 3.7: The option is no longer ignored.
New in version 3.2.3.

-s
Don’t add the user site-packages directoryto sys.path.
See also:
PEP 370 — Per user site-packages directory

-s
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main () if you want them
to be triggered).

-u
Force the stdout and stderr streams to be unbuffered. This option has no effect on the stdin stream.
See also PYTHONUNBUFFERED.
Changed in version 3.7: The text layer of the stdout and stderr streams now is unbuffered.

-v
Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. When given twice (-vv), print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit.
Changed in version 3.10: The site module reports the site-specific paths and . pth files being processed.
See also PYTHONVERBOSE.

-W arg

Warning control. Python’s warning machinery by default prints warning messages to sys.stderr.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those
that are otherwise ignored by default):

1.1. Command line 7

http://ocert.org/advisories/ocert-2011-003.html
http://ocert.org/advisories/ocert-2011-003.html
https://peps.python.org/pep-0370/

Python Setup and Usage, Release 3.11.3

-X

-Wdefault # Warn once per call location
-Werror # Convert to exceptions
-Walways # Warn every time

—Wmodule # Warn once per calling module
-Wonce # Warn once per Python process
-Wignore # Never warn

The action names can be abbreviated as desired and the interpreter will resolve them to the appropriate action
name. For example, —Wi is the same as ~-Wignore.

The full form of argument is:

action:message:category:module:lineno

Empty fields match all values; trailing empty fields may be omitted. For example -W
ignore: :DeprecationWarning ignores all DeprecationWarning warnings.

The action field is as explained above but only applies to warnings that match the remaining fields.
The message field must match the whole warning message; this match is case-insensitive.

The category field matches the warning category (ex: DeprecationWarning). This must be a class name;
the match test whether the actual warning category of the message is a subclass of the specified warning cate-
gory.

The module field matches the (fully qualified) module name; this match is case-sensitive.

The lineno field matches the line number, where zero matches all line numbers and is thus equivalent to an
omitted line number.

Multiple —7 options can be given; when a warning matches more than one option, the action for the last
matching option is performed. Invalid - options are ignored (though, a warning message is printed about
invalid options when the first warning is issued).

Warnings can also be controlled using the PY THONWARNINGS environment variable and from within a Python
program using the warnings module. For example, the warnings.filterwarnings () function can
be used to use a regular expression on the warning message.

See warning-filter and describing-warning-filters for more details.

Skip the first line of the source, allowing use of non-Unix forms of # ! cmd. This is intended for a DOS specific
hack only.

Reserved for various implementation-specific options. CPython currently defines the following possible values:
e —-X faulthandler toenable faulthandler. See also PYTHONFAULTHANDLER.

* —-X showrefcount to output the total reference count and number of used memory blocks when the
program finishes or after each statement in the interactive interpreter. This only works on debug builds.

e -X tracemalloc to start tracing Python memory allocations using the tracemalloc mod-
ule. By default, only the most recent frame is stored in a traceback of a trace. Use -X
tracemalloc=NFRAME to start tracing with a traceback limit of NFRAME frames. See
tracemalloc.start () and PYTHONTRACEMALLOC for more information.

e -X int_max_str_digits configures the integer string conversion length limitation. See also
PYTHONINTMAXSTRDIGITS

e —-X importtime toshow how longeach import takes. It shows module name, cumulative time (includ-
ing nested imports) and self time (excluding nested imports). Note that its output may be broken in multi-
threaded application. Typical usage is python3 -X importtime -c 'import asyncio'.
See also PYTHONPROFILEIMPORTTIME.

Chapter 1. Command line and environment

Python Setup and Usage, Release 3.11.3

e —X dev: enable Python Development Mode, introducing additional runtime checks that are too expen-
sive to be enabled by default.

e —X ut£8 enablesthe Python UTF-8 Mode. -X ut £8=0 explicitly disables Python UTF-8 Mode (even
when it would otherwise activate automatically). See also PYTHONUTF 8.

* —-X pycache_prefix=PATH enables writing . pyc files to a parallel tree rooted at the given direc-
tory instead of to the code tree. See also PYTHONPYCACHEPREFIX.

e -X warn_default_encodingissues a EncodingWarning when the locale-specific default en-
coding is used for opening files. See also PYTHONWARNDEFAULTENCODING.

* —-X no_debug_ranges disables the inclusion of the tables mapping extra location information (end
line, start column offset and end column offset) to every instruction in code objects. This is useful when
smaller code objects and pyc files are desired as well as suppressing the extra visual location indicators
when the interpreter displays tracebacks. See also PYTHONNODEBUGRANGES.

e —X frozen_modules determines whether or not frozen modules are ignored by the import machin-
ery. A value of “on” means they get imported and “off” means they are ignored. The default is “on” if
this is an installed Python (the normal case). If it’s under development (running from the source tree)
then the default is “off”. Note that the “importlib_bootstrap” and “importlib_bootstrap_external” frozen
modules are always used, even if this flag is set to “off”.

It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.
Changed in version 3.2: The —X option was added.

New in version 3.3: The -X faulthandler option.

New in version 3.4: The -X showrefcount and -X tracemalloc options.

New in version 3.6: The -X showalloccount option.

New in version 3.7: The -X importtime, -X devand —X utf8 options.

New in version 3.8: The -X pycache_prefix option. The —X dev option now logs close () excep-
tions in 10 .IO0Base destructor.

Changed in version 3.9: Using -X dewv option, check encoding and errors arguments on string encoding and
decoding operations.

The -X showalloccount option has been removed.

New in version 3.10: The -X warn_default_encoding option.

Deprecated since version 3.9, removed in version 3.10: The -X oldparser option.
New in version 3.11: The -X no_debug_ranges option.

New in version 3.11: The -X frozen_modules option.

New in version 3.11: The -X int_max_str_digits option.

1.1.4 Options you shouldn’t use

-J
Reserved for use by Jython.

1.1. Command line 9

https://www.jython.org/

Python Setup and Usage, Release 3.11.3

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E or -I. It is customary that command-line switches override environmental variables where there is a conflict.

PYTHONHOME

Change the location of the standard Python libraries. By default, the libraries are searched in prefix/1ib/
pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix
are installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefix and exec_prefix. To
specify different values for these, set PYTHONHOME to prefix:exec_prefix.

PYTHONPATH

Augment the default search path for module files. The format is the same as the shell’s PATH: one or more
directory pathnames separated by os.pathsep (e.g. colons on Unix or semicolons on Windows). Non-
existent directories are silently ignored.

In addition to normal directories, individual PYTHONPATH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.

The default search path is installation dependent, but generally begins with prefix/lib/
pythonversion (see PYTHONHOME above). It is always appended to PYTHONPATH.

An additional directory will be inserted in the search path in front of PYTHONPATH as described above under
Interface options. The search path can be manipulated from within a Python program as the variable sys.
path.

PYTHONSAFEPATH

If this is set to a non-empty string, don’t prepend a potentially unsafe path to sys.path: see the —P option
for details.

New in version 3.11.

PYTHONPLATLIBDIR

If this is set to a non-empty string, it overrides the sys.platlibdir value.

New in version 3.9.

PYTHONSTARTUP

If this is the name of a readable file, the Python commands in that file are executed before the first prompt is
displayed in interactive mode. The file is executed in the same namespace where interactive commands are
executed so that objects defined or imported in it can be used without qualification in the interactive session.
You can also change the prompts sys.ps1 and sys.ps2 and the hook sys.__interactivehook___
in this file.

Raises an auditing event coython . run_startup with the filename as the argument when called on startup.

PYTHONOPTIMIZE

If this is set to a non-empty string it is equivalent to specifying the —O option. If set to an integer, it is equivalent
to specifying —O multiple times.

PYTHONBREAKPOINT

If this is set, it names a callable using dotted-path notation. The module containing the callable will be
imported and then the callable will be run by the default implementation of sys.breakpointhook ()
which itself is called by built-in breakpoint (). If not set, or set to the empty string, it is equiva-
lent to the value “pdb.set_trace”. Setting this to the string “0” causes the default implementation of sys.
breakpointhook () to do nothing but return immediately.

New in version 3.7.

10

Chapter 1. Command line and environment

Python Setup and Usage, Release 3.11.3

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the —d option. If set to an integer, it is equivalent
to specifying —d multiple times.
PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the —1 option.
This variable can also be modified by Python code using os.environ to force inspect mode on program
termination.
PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the —u option.
PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the —v option. If set to an integer, it is equivalent
to specifying —v multiple times.
PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows and macOS.
PYTHONDONTWRITEBYTECODE
If this is set to a non-empty string, Python won’t try to write . pyc files on the import of source modules. This
is equivalent to specifying the —B option.
PYTHONPYCACHEPREFIX

If this is set, Python will write . pyc files in a mirror directory tree at this path, instead of in __pycache___
directories within the source tree. This is equivalent to specifying the -X pycache_prefix=PATH option.

New in version 3.8.
PYTHONHASHSEED
If this variable is not set or set to random, a random value is used to seed the hashes of str and bytes objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the types
covered by the hash randomization.

Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.

The integer must be a decimal number in the range [0,4294967295]. Specifying the value O will disable hash
randomization.

New in version 3.2.3.

PYTHONINTMAXSTRDIGITS

If this variable is set to an integer, it is used to configure the interpreter’s global integer string conversion length
limitation.

New in version 3.11.

PYTHONIOENCODING

If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in the syn-
tax encodingname:errorhandler. Both the encodingname and the : errorhandler parts are
optional and have the same meaning as in str.encode ().

For stderr, the : errorhandler part is ignored; the handler will always be 'backslashreplace’.
Changed in version 3.4: The encodingname part is now optional.

Changed in version 3.6: On Windows, the encoding specified by this variable is ignored for interactive console
buffers unless PYTHONLEGACYWINDOWSSTDIO is also specified. Files and pipes redirected through the
standard streams are not affected.

1.2. Environment variables 11

Python Setup and Usage, Release 3.11.3

PYTHONNOUSERSITE
If this is set, Python won’t add the user site-packages directorytosys.path.
See also:
PEP 370 — Per user site-packages directory

PYTHONUSERBASE

Defines the user base directory, whichisused to compute the path of the user site-packages
directory and Distutils installation paths for python setup.py install --user.

See also:
PEP 370 — Per user site-packages directory

PYTHONEXECUTABLE

If this environment variable is set, sys.argv [0] will be set to its value instead of the value got through the
C runtime. Only works on macOS.

PYTHONWARNINGS
This is equivalent to the —v option. If set to a comma separated string, it is equivalent to specifying —w multiple
times, with filters later in the list taking precedence over those earlier in the list.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those
that are otherwise ignored by default):

RNINGS=default Warn once per call location
Convert to exceptions

Warn every time

Warn once per calling module

Warn once per Python process

Ho¥ W ¥ W W

RNINGS=ignore Never warn

See warning-filter and describing-warning-filters for more details.

PYTHONFAULTHANDLER

If this environment variable is set to a non-empty string, faulthandler.enable () is called at startup:
install a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python
traceback. This is equivalent to —X faulthandler option.

New in version 3.3.

PYTHONTRACEMALLOC

If this environment variable is set to a non-empty string, start tracing Python memory allocations using the
tracemalloc module. The value of the variable is the maximum number of frames stored in a traceback of a
trace. For example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See the t racemalloc.
start () function for more information. This is equivalent to setting the —X t racemalloc option.

New in version 3.4.

PYTHONPROFILEIMPORTTIME

If this environment variable is set to a non-empty string, Python will show how long each import takes. This
is equivalent to setting the —X importtime option.

New in version 3.7.

PYTHONASYNCIODEBUG

If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.
New in version 3.4.

PYTHONMALLOC

Set the Python memory allocators and/or install debug hooks.

Set the family of memory allocators used by Python:

12 Chapter 1. Command line and environment

https://peps.python.org/pep-0370/
https://peps.python.org/pep-0370/

Python Setup and Usage, Release 3.11.3

e default: use the default memory allocators.

* malloc: use the malloc () function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

e pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_OBJ do-
mains and use the malloc () function for the PYMEM DOMAIN_RAW domain.

Install debug hooks:

* debug: install debug hooks on top of the default memory allocators.

* malloc_debug: same as malloc but also install debug hooks.

* pymalloc_debug: same as pymalloc but also install debug hooks.
Changed in version 3.7: Added the "default" allocator.
New in version 3.6.

PYTHONMALLOCSTATS

If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time a new
pymalloc object arena is created, and on shutdown.

This variable is ignored if the PYTHONMALLOC environment variable is used to force themalloc () allocator
of the C library, or if Python is configured without pymalloc support.

Changed in version 3.6: This variable can now also be used on Python compiled in release mode. It now has
no effect if set to an empty string.

PYTHONLEGACYWINDOWSFSENCODING

If set to a non-empty string, the default filesystem encoding and error handler mode will revert to their pre-3.6
values of ‘mbcs’ and ‘replace’, respectively. Otherwise, the new defaults ‘utf-8” and ‘surrogatepass’ are used.

This may also be enabled at runtime with sys._enablelegacywindowsfsencoding ().
Availability: Windows.
New in version 3.6: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO

If set to a non-empty string, does not use the new console reader and writer. This means that Unicode characters
will be encoded according to the active console code page, rather than using utf-8.

This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring to console
buffers.

Availability: Windows.
New in version 3.6.

PYTHONCOERCECLOCALE

If set to the value 0, causes the main Python command line application to skip coercing the legacy ASCII-based
C and POSIX locales to a more capable UTF-8 based alternative.

If this variable is not set (or is set to a value other than 0), the LC_ALL locale override environment variable is
also not set, and the current locale reported for the LC_CTYPE category is either the default C locale, or else
the explicitly ASCII-based POSIX locale, then the Python CLI will attempt to configure the following locales
for the LC_CTYPE category in the order listed before loading the interpreter runtime:

e C.UTF-8
e C.utf8
e UTF-8

If setting one of these locale categories succeeds, then the LC_CTYPE environment variable will also be set
accordingly in the current process environment before the Python runtime is initialized. This ensures that in
addition to being seen by both the interpreter itself and other locale-aware components running in the same
process (such as the GNU readline library), the updated setting is also seen in subprocesses (regardless

1.2. Environment variables 13

https://peps.python.org/pep-0529/

Python Setup and Usage, Release 3.11.3

of whether or not those processes are running a Python interpreter), as well as in operations that query the
environment rather than the current C locale (such as Python’s own 1locale.getdefaultlocale ()).

Configuring one of these locales (either explicitly or via the above implicit locale coercion) automatically en-
ables the surrogateescape error handler for sys. stdinand sys. stdout (sys. stderr continues
touse backslashreplace as it does in any other locale). This stream handling behavior can be overridden
using PYTHONIOENCODING as usual.

For debugging purposes, setting PYTHONCOERCECLOCALE=warn will cause Python to emit warning mes-
sages on stderr if either the locale coercion activates, or else if a locale that would have triggered coercion
is still active when the Python runtime is initialized.

Also note that even when locale coercion is disabled, or when it fails to find a suitable target locale,
PYTHONUTF 8 will still activate by default in legacy ASCII-based locales. Both features must be disabled
in order to force the interpreter to use ASCIT instead of UTF -8 for system interfaces.

Auvailability: Unix.

New in version 3.7: See PEP 538 for more details.

PYTHONDEVMODE

If this environment variable is set to a non-empty string, enable Python Development Mode, introducing addi-
tional runtime checks that are too expensive to be enabled by default. This is equivalent to setting the —X dev
option.

New in version 3.7.

PYTHONUTFS8

If set to 1, enable the Python UTF-8 Mode.
If set to 0, disable the Python UTF-8 Mode.
Setting any other non-empty string causes an error during interpreter initialisation.

New in version 3.7.

PYTHONWARNDEFAULTENCODING

If this environment variable is set to a non-empty string, issue a EncodingWarning when the locale-specific
default encoding is used.

See io-encoding-warning for details.

New in version 3.10.

PYTHONNODEBUGRANGES

If this variable is set, it disables the inclusion of the tables mapping extra location information (end line, start
column offset and end column offset) to every instruction in code objects. This is useful when smaller code
objects and pyc files are desired as well as suppressing the extra visual location indicators when the interpreter
displays tracebacks.

New in version 3.11.

1.2.1 Debug-mode variables

PYTHONTHREADDEBUG

If set, Python will print threading debug info into stdout.
Need a debug build of Python.

Deprecated since version 3.10, will be removed in version 3.12.

PYTHONDUMPREF'S

If set, Python will dump objects and reference counts still alive after shutting down the interpreter.

Need Python configured with the ——with-trace—-refs build option.

14

Chapter 1. Command line and environment

https://peps.python.org/pep-0538/

Python Setup and Usage, Release 3.11.3

PYTHONDUMPREF SFILE=FILENAME

If set, Python will dump objects and reference counts still alive after shutting down the interpreter into a file
called FILENAME.

Need Python configured with the ——with-trace-refs build option.

New in version 3.11.

1.2. Environment variables 15

Python Setup and Usage, Release 3.11.3

16 Chapter 1. Command line and environment

CHAPTER
TWO

USING PYTHON ON UNIX PLATFORMS

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there
are certain features you might want to use that are not available on your distro’s package. You can easily compile the
latest version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages
for your own distro. Have a look at the following links:

See also:
https://www.debian.org/doc/manuals/maint-guide/first.en.html for Debian users
https://en.opensuse.org/Portal:Packaging for OpenSuse users

https://docs-old.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
for Fedora users

http://www.slackbook.org/html/package-management-making-packages.html for Slackware users

2.1.2 On FreeBSD and OpenBSD

* FreeBSD users, to add the package use:

pkg install python3

¢ OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your.
—architecture here>/python-<version>.tgz

For example 1386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

17

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs-old.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
http://www.slackbook.org/html/package-management-making-packages.html

Python Setup and Usage, Release 3.11.3

2.1.3 On OpenSolaris

You can get Python from OpenCSW. Various versions of Python are available and can be installed with e.g.
pkgutil -i python27.

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)

The build process consists of the usual commands:

./configure
make
make install

Configuration options and caveats for specific Unix platforms are extensively documented in the README.rst file in
the root of the Python source tree.

Warning: make install can overwrite or masquerade the python3 binary. make altinstall
is therefore recommended instead of make install since it only installs exec_prefix/bin/
pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix and exec_prefix are
installation-dependent and should be interpreted as for GNU software; they may be the same.

For example, on most Linux systems, the default for both is /usr.

File/directory Meaning

exec_prefix/bin/python3 Recommended location of the interpreter.
prefix/lib/pythonversion, Recommended locations of the directories containing the standard
exec_prefix/lib/ modules.

pythonversion

prefix/include/pythonversion, | Recommended locations of the directories containing the include
exec_prefix/include/ files needed for developing Python extensions and embedding the
pythonversion interpreter.

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

’$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is usually

’#]/usr/bin/env python3

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python3 as the interpreter path.

To use shell commands in your Python scripts, look at the subprocess module.

18 Chapter 2. Using Python on Unix platforms

https://www.opencsw.org/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#get-the-source-code
https://github.com/python/cpython/tree/3.11/README.rst

Python Setup and Usage, Release 3.11.3

2.5 Custom OpenSSL

1. To use your vendor’s OpenSSL configuration and system trust store, locate the directory with openssl.cnf
file or symlink in /etc. On most distribution the file is either in /etc/ssl or /etc/pki/tls. The
directory should also contain a cert . pem file and/or a cert s directory.

$ find /etc/ —name openssl.cnf —-printf "$h\n"
/etc/ssl

2. Download, build, and install OpenSSL. Make sure you use install_sw and not install. The
install_sw target does not override openssl.cnf.

curl -O https://www.openssl.org/source/openssl-VERSION.tar.gz

tar xzf openssl-VERSION

pushd openssl-VERSION

./config \
——prefix=/usr/local/custom-openssl \
—-libdir=1ib \
—-openssldir=/etc/ssl

make -jl1 depend

make —-38

make install_sw

popd

«“r v v

v » v n

3. Build Python with custom OpenSSL (see the configure --with-openssl and
--with-openssl-rpath options)

$ pushd python-3.x.x

$./configure -C \
——with-openssl=/usr/local/custom-openssl \
—-—with-openssl-rpath=auto \
—-prefix=/usr/local/python-3.x.x

$ make -78

$ make altinstall

Note: Patch releases of OpenSSL have a backwards compatible ABI. You don’t need to recompile Python to update
OpenSSL. It’s sufficient to replace the custom OpenSSL installation with a newer version.

2.5. Custom OpenSSL 19

Python Setup and Usage, Release 3.11.3

20

Chapter 2. Using Python on Unix platforms

CHAPTER
THREE

CONFIGURE PYTHON

3.1 Configure Options

Listall . /configure script options using:

’ ./configure --help

See also the Misc/SpecialBuilds.txt in the Python source distribution.

3.1.1 General Options

——enable-loadable-sqglite—extensions

Support loadable extensions in the _sglite extension module (default is no).
See the sglite3.Connection.enable_load_extension () method of the sqlite3 module.
New in version 3.6.
——disable-ipv6
Disable IPv6 support (enabled by default if supported), see the socket module.

——enable-big-digits=[15]|30]
Define the size in bits of Python int digits: 15 or 30 bits.

By default, the digit size is 30.

Define the PYLONG_BITS_IN_DIGIT to 15 or 30.

See sys.int_info.bits_per_digit.
—--with-cxx-main

——with-cxx-main=COMPILER

Compile the Python main () function and link Python executable with C++ compiler: $CXX, or COMPILER
if specified.

——with-suffix=SUFFIX
Set the Python executable suffix to SUFFIX.

The default suffix is . exe on Windows and macOS (python . exe executable), . js on Emscripten node, .
html on Emscripten browser, . wasmon WASI, and an empty string on other platforms (pyt hon executable).

Changed in version 3.11: The default suffix on WASM platform is one of . js, .html or .wasm.

——with-tzpath=<list of absolute paths separated by pathsep>
Select the default time zone search path for zoneinfo.TZPATH. See the Compile-time configuration of the
zoneinfo module.

Default: /usr/share/zoneinfo:/usr/lib/zoneinfo:/usr/share/lib/zoneinfo:/
etc/zoneinfo.

21

Python Setup and Usage, Release 3.11.3

See os.pathsep path separator.
New in version 3.9.

——without-decimal-contextvar

Build the _decimal extension module using a thread-local context rather than a coroutine-local context
(default), see the decimal module.

See decimal.HAVE_CONTEXTVAR and the contextvars module.
New in version 3.9.

——with-dbmliborder=<list of backend names>

Override order to check db backends for the dbm module

A valid value is a colon (:) separated string with the backend names:
* ndbm;
e gdbm;
¢ bdb.

——without-c-locale-coercion

Disable C locale coercion to a UTF-8 based locale (enabled by default).
Don’t define the PY_ COERCE_C_LOCALE macro.
See PYTHONCOERCECLOCALE and the PEP 538.

——with-platlibdir=DIRNAME
Python library directory name (default is 1ib).

Fedora and SuSE use 1ib64 on 64-bit platforms.
See sys.platlibdir.
New in version 3.9.
——with-wheel-pkg-dir=PATH
Directory of wheel packages used by the ensurepip module (none by default).

Some Linux distribution packaging policies recommend against bundling dependencies. For example, Fe-
dora installs wheel packages in the /usr/share/python-wheels/ directory and don’t install the
ensurepip._bundled package.

New in version 3.10.
—-with-pkg-config=[check|yes|no]
Whether configure should use pkg—config to detect build dependencies.
¢ check (default): pkg—config is optional
* yes: pkg—config is mandatory
* no: configure does not use pkg—config even when present
New in version 3.11.

——enable-pystats

Turn on internal statistics gathering.

The statistics will be dumped to a arbitrary (probably unique) file in /tmp/py_stats/, or C: \temp\
py_stats\ on Windows.

Use Tools/scripts/summarize_stats.py to read the stats.

New in version 3.11.

22 Chapter 3. Configure Python

https://peps.python.org/pep-0538/

Python Setup and Usage, Release 3.11.3

3.1.2 WebAssembly Options

—--with-emscripten-target=[browser|node]

Set build flavor for wasm32-emscripten.
¢ browser (default): preload minimal stdlib, default MEMFS.
* node: NODERAWES and pthread support.

New in version 3.11.

——enable-wasm—-dynamic-linking

Turn on dynamic linking support for WASM.

Dynamic linking enables d1open. File size of the executable increases due to limited dead code elimination
and additional features.

New in version 3.11.

——enable-wasm—-pthreads

Turn on pthreads support for WASM.

New in version 3.11.

3.1.3 Install Options

——prefix=PREFIX
Install architecture-independent files in PREFIX. On Unix, it defaults to /usr/local.

This value can be retrived at runtime using sys.prefix.
As an example, one can use ——prefix="$HOME/.local/" to install a Python in its home directory.

——exec-prefix=EPREFIX
Install architecture-dependent files in EPREFIX, defaults to ——prefix.

This value can be retrived at runtime using sys .exec_prefix.

——disable-test—-modules

Don’t build nor install test modules, like the test package or the _testcapi extension module (built and
installed by default).

New in version 3.10.

——with-ensurepip=[upgrade|install|no]

Select the ensurepip command run on Python installation:
e upgrade (default): run python -m ensurepip --altinstall --upgrade command.
e install:run python -m ensurepip —--altinstall command;
* no: don’t run ensurepip;

New in version 3.6.

3.1. Configure Options 23

Python Setup and Usage, Release 3.11.3

3.1.4 Performance options
Configuring Python using ——enable-optimizations —--with-1to (PGO +LTO)is recommended for best
performance.

——enable-optimizations
Enable Profile Guided Optimization (PGO) using PROFILE_TASK (disabled by default).

The C compiler Clang requires 1 1vm—-profdata program for PGO. On macOS, GCC also requires it: GCC
is just an alias to Clang on macOS.

Disable also semantic interposition in libpython if —-enable-shared and GCC is used: add
—-fno-semantic-interposition to the compiler and linker flags.

New in version 3.6.
Changed in version 3.10: Use —~fno-semantic-interposition on GCC.

PROFILE_TASK

Environment variable used in the Makefile: Python command line arguments for the PGO generation task.
Default: -m test --pgo ——-timeout=$ (TESTTIMEOUT).
New in version 3.8.

——with-1lto=[full|thin|no|yes]
Enable Link Time Optimization (LTO) in any build (disabled by default).

The C compiler Clang requires 1 1 vm—ar for LTO (ar on macOS), as well as an LTO-aware linker (1d.gold
or 11d).

New in version 3.6.
New in version 3.11: To use ThinLTO feature, use ——with-1to=thin on Clang.

——with—-computed—-gotos

Enable computed gotos in evaluation loop (enabled by default on supported compilers).

——without-pymalloc
Disable the specialized Python memory allocator pymalloc (enabled by default).

See also PYTHONMALLOC environment variable.

—-without—-doc-strings

Disable static documentation strings to reduce the memory footprint (enabled by default). Documentation
strings defined in Python are not affected.

Don’t define the WITH_DOC_STRINGS macro.
See the PyDoc_STRVAR () macro.

——enable-profiling

Enable C-level code profiling with gprof (disabled by default).

3.1.5 Python Debug Build

A debug build is Python built with the ——with-pydebug configure option.

Effects of a debug build:
* Display all warnings by default: the list of default warning filters is empty in the warnings module.
e Adddto sys.abiflags.
* Add sys.gettotalrefcount () function.

* Add -X showrefcount command line option.

24 Chapter 3. Configure Python

Python Setup and Usage, Release 3.11.3

e Add PYTHONTHREADDEBUG environment variable.

e Add support for the __11trace__ variable: enable low-level tracing in the bytecode evaluation loop if the
variable is defined.

* Install debug hooks on memory allocators to detect buffer overflow and other memory errors.
¢ Define Py_DEBUG and Py_REF_DEBUG macros.

e Add runtime checks: code surrounded by #ifdef Py_DEBUG and #endif. Enable assert (.
.) and _PyObject_ASSERT(...) assertions: don’t set the NDEBUG macro (see also the
-—with-assertions configure option). Main runtime checks:

— Add sanity checks on the function arguments.

— Unicode and int objects are created with their memory filled with a pattern to detect usage of uninitialized
objects.

— Ensure that functions which can clear or replace the current exception are not called with an exception
raised.

— Check that deallocator functions don’t change the current exception.
— The garbage collector (gc.collect () function) runs some basic checks on objects consistency.

— The Py_SAFE_DOWNCAST () macro checks for integer underflow and overflow when downcasting
from wide types to narrow types.

See also the Python Development Mode and the ——with-trace-refs configure option.

Changed in version 3.8: Release builds and debug builds are now ABI compatible: defining the Py_DEBUG macro
no longer implies the Py_ TRACE_REFS macro (see the ——with-trace-refs option), which introduces the
only ABI incompatibility.

3.1.6 Debug options

——with-pydebug
Build Python in debug mode: define the Py_DEBUG macro (disabled by default).

——with-trace-refs

Enable tracing references for debugging purpose (disabled by default).
Effects:

¢ Define the Py_TRACE_REF'S macro.

¢ Add sys.getobjects () function.

* Add PYTHONDUMPREEF'S environment variable.

This build is not ABI compatible with release build (default build) or debug build (Py_DEBUG and
Py_REF_DEBUG macros).

New in version 3.8.

——with—-assertions

Build with C assertions enabled (default is no): assert (...); and _PyObject_ASSERT (...) ;.
If set, the NDEBUG macro is not defined in the OP T compiler variable.
See also the ——with-pydebug option (debug build) which also enables assertions.
New in version 3.6.
--with-valgrind
Enable Valgrind support (default is no).

3.1. Configure Options 25

Python Setup and Usage, Release 3.11.3

——with-dtrace

Enable DTrace support (default is no).
See Instrumenting CPython with DTrace and SystemTap.
New in version 3.6.

——with—-address—-sanitizer

Enable AddressSanitizer memory error detector, asan (default is no).
New in version 3.6.

——with-memory—-sanitizer

Enable MemorySanitizer allocation error detector, msan (default is no).
New in version 3.6.

——with-undefined-behavior-sanitizer

Enable UndefinedBehaviorSanitizer undefined behaviour detector, ubsan (default is no).

New in version 3.6.

3.1.7 Linker options

——enable-shared
Enable building a shared Python library: 1ibpython (default is no).

——without-static-libpython
Do not build 1 ibpythonMAJOR.MINOR. a and do not install python . o (built and enabled by default).

New in version 3.10.

3.1.8 Libraries options

——with-1libs='1ibl ...'

Link against additional libraries (default is no).
—-with-system-expat

Build the pyexpat module using an installed expat library (default is no).
—--with-system—-ffi

Build the _ctypes extension module using an installed ££i library, see the ct ypes module (default is
system-dependent).

—-with-system-libmpdec

Build the _decimal extension module using an installed mpdec library, see the decimal module (default
is no).

New in version 3.3.

——with-readline=editline

Use editline library for backend of the readline module.
Define the WITH_EDITLINE macro.
New in version 3.10.

——without-readline
Don’t build the readline module (built by default).

Don’t define the HAVE_LIBREADLINE macro.

New in version 3.10.

26 Chapter 3. Configure Python

Python Setup and Usage, Release 3.11.3

——with-1ibm=STRING
Override 11ibm math library to STRING (default is system-dependent).

——with-1ibc=STRING

Override 1ibc C library to STRING (default is system-dependent).
——with-openssl=DIR

Root of the OpenSSL directory.

New in version 3.7.

—--with-openssl-rpath=[no|auto|DIR]
Set runtime library directory (rpath) for OpenSSL libraries:

¢ no (default): don’t set rpath;
e auto: auto-detect rpath from ——with-openssl and pkg-config;
* DIR: set an explicit rpath.

New in version 3.10.

3.1.9 Security Options

—-with-hash-algorithm=[fnv|siphashl3|siphash24]
Select hash algorithm for use in Python/pyhash. c:

¢ siphashi13 (default);
* siphash24;
e fnv.
New in version 3.4.
New in version 3.11: siphash1 3 is added and it is the new default.

——with-builtin-hashlib-hashes=md5, shal, sha256, sha512, sha3,blake?2
Built-in hash modules:

e mdb;
e shal;
e sha256;
e shab12;
¢ sha3 (with shake);
* blake2.
New in version 3.9.

—-with-ssl-default-suites=[python|openssl|STRING]
Override the OpenSSL default cipher suites string:

* python (default): use Python’s preferred selection;
e openssl: leave OpenSSL’s defaults untouched;
e STRING: use a custom string

See the ss1 module.

New in version 3.7.

Changed in version 3.10: The settings python and STRING also set TLS 1.2 as minimum protocol version.

3.1. Configure Options 27

Python Setup and Usage, Release 3.11.3

3.1.10 macOS Options

See Mac/README. rst.
——enable-universalsdk

——enable-universalsdk=SDKDIR

Create a universal binary build. SDKDIR specifies which macOS SDK should be used to perform the build
(default is no).

——enable-framework

——enable-framework=INSTALLDIR

Create a Python.framework rather than a traditional Unix install. Optional INSTALLDIR specifies the installa-
tion path (default is no).

——with-universal—-archs=ARCH

Specify the kind of universal binary that should be created. @ This option is only valid when
——enable-universalsdk is set.

Options:
e universal?;
e 32-bit;
¢ 64-bit;
s 3-way;
e intel;
e intel-32;
e intel-64;
e all.

——with-framework—name=FRAMEWORK

Specify the name for the python framework on macOS only valid when ——enable-framework is set
(default: Python).

3.1.11 Cross Compiling Options

Cross compiling, also known as cross building, can be used to build Python for another CPU architecture or platform.
Cross compiling requires a Python interpreter for the build platform. The version of the build Python must match
the version of the cross compiled host Python.

—-build=BUILD
configure for building on BUILD, usually guessed by config. guess.

—--host=HOST
cross-compile to build programs to run on HOST (target platform)

——with-build-python=path/to/python
path to build python binary for cross compiling

New in version 3.11.

CONFIG_SITE=file

An environment variable that points to a file with configure overrides.

Example config.site file:

28 Chapter 3. Configure Python

Python Setup and Usage, Release 3.11.3

config.site—aarché64
ac_cv_buggy_getaddrinfo=no
ac_cv_file__ dev_ptmx=yes
ac_cv_£file__dev_ptc=no

Cross compiling example:

CONFIG_SITE=config.site—aarch64 ../configure \

——build=x86_64-pc-linux—-gnu \
—-host=aarch64-unknown-linux—gnu \
——with-build-python=../x86_64/python

3.2 Python Build System

3.2.1 Main files of the build system

e configure.ac=>configure;

* Makefile.pre.in=>Makefile (created by configure);

e pyconfig.h (created by configure);

* Modules/Setup: C extensions built by the Makefile using Module/makesetup shell script;

* setup.py: C extensions built using the distutils module.

3.2.2 Main build steps

¢ Cfiles (. c) are built as object files (. 0).
e Astatic 1ibpython library (. a) is created from objects files.
e python.o and the static 1 ibpython library are linked into the final python program.

¢ C extensions are built by the Makefile (see Modules/Setup)and python setup.py build.

3.2.3 Main Makefile targets

* make: Build Python with the standard library.

make platform:: build the python program, but don’t build the standard library extension modules.

make profile-opt: build Python using Profile Guided Optimization (PGO). You can use the configure
——enable-optimizations option to make this the default target of the make command (make all
or just make).

make buildbottest: Build Python and run the Python test suite, the same way than buildbots test Python.
Set TESTTIMEOUT variable (in seconds) to change the test timeout (1200 by default: 20 minutes).

* make install: Build and install Python.

make regen-all: Regenerate (almost) all generated files; make regen-stdlib-module—-names
and autoconf must be run separately for the remaining generated files.

make clean: Remove built files.

make distclean: Same than make clean, but remove also files created by the configure script.

3.2.

Python Build System 29

Python Setup and Usage, Release 3.11.3

3.2.4 C extensions

Some C extensions are built as built-in modules, like the sys module. They are built with the
Py_BUILD_CORE_BUILTIN macro defined. Built-in modules haveno __file_ attribute:

>>> import sys

>>> sys
<module 'sys' (built-in)>
>>> sys.__ _file_
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: module 'sys' has no attribute '__ _file_ '

Other C extensions are built as dynamic libraries, like the _asyncio module. They are built with the
Py_BUILD_CORE_MODULE macro defined. Example on Linux x86-64:

>>> import _asyncio

>>> _asyncio

<module '_asyncio' from '/usr/lib64/python3.9/1lib-dynload/_asyncio.cpython-39-x86_
—~64-1linux-gnu.so'>

>>> _asyncio. file
'/usr/1lib64/python3.9/1lib-dynload/_asyncio.cpython-39-x86_64-1inux—-gnu.so'

Modules/Setup is used to generate Makefile targets to build C extensions. At the beginning of the files, C exten-
sions are built as built-in modules. Extensions defined after the * shared* marker are built as dynamic libraries.

The setup. py script only builds C extensions as shared libraries using the distutils module.

The PyAPI_FUNC (), PyAPI_API () and PyMODINIT_FUNC () macros of Include/pyport.h are de-
fined differently depending if the Py_BUILD_CORE_MODULE macro is defined:

e Use Py_EXPORTED_SYMBOL if the Py_ BUILD_CORE_MODULE is defined
e Use Py_IMPORTED_SYMBOL otherwise.

If the Py_BUILD_CORE_BUILTIN macro is used by mistake on a C extension built as a shared library, its
PyInit_xxx () function is not exported, causing an ImportError on import.

3.3 Compiler and linker flags

Options set by the . /configure script and environment variables and used by Makefile.

3.3.1 Preprocessor flags

CONFIGURE_CPPFLAGS
Value of CPPFLAGS variable passed to the . /configure script.
New in version 3.6.

CPPFLAGS

(Objective) C/C++ preprocessor flags, e.g. ~-I<include dir> if you have headers in a nonstandard direc-
tory <include dir>.

Both CPPFLAGS and LDFLAGS need to contain the shell’s value for setup.py to be able to build extension
modules using the directories specified in the environment variables.

BASECPPFLAGS

New in version 3.4.

30 Chapter 3. Configure Python

Python Setup and Usage, Release 3.11.3

PY_CPPFLAGS

Extra preprocessor flags added for building the interpreter object files.

Default: $ (BASECPPFLAGS) -I. -IS$(srcdir)/Include $(CONFIGURE_CPPFLAGS)
$ (CPPFLAGS).

New in version 3.2.

3.3.2 Compiler flags

CcC
C compiler command.
Example: gcc -pthread.
MAINCC
C compiler command used to build the main () function of programs like python.
Variable set by the ——with-cxx-main option of the configure script.
Default: $ (CC).
CXX
C++ compiler command.
Used if the ——with—-cxx-main option is used.
Example: g++ -pthread.
CFLAGS
C compiler flags.

CFLAGS_NODIST

CFLAGS_NODIST is used for building the interpreter and stdlib C extensions. Use it when a compiler flag
should not be part of the distutils CFLAGS once Python is installed (bpo-21121).

In particular, CFLAGS should not contain:

* the compiler flag — I (for setting the search path for include files). The —T flags are processed from left
to right, and any flags in CFLAGS would take precedence over user- and package-supplied —T flags.

* hardening flags such as -Werror because distributions cannot control whether packages installed by
users conform to such heightened standards.

New in version 3.5.
EXTRA_CFLAGS
Extra C compiler flags.
CONFIGURE_CFLAGS
Value of CFLAGS variable passed to the . /configure script.
New in version 3.2.
CONFIGURE_CFLAGS_NODIST
Value of CFLAGS_NODIST variable passed to the . /configure script.
New in version 3.5.
BASECFLAGS
Base compiler flags.

OPT

Optimization flags.

3.3. Compiler and linker flags 31

https://bugs.python.org/issue?@action=redirect&bpo=21121

Python Setup and Usage, Release 3.11.3

CFLAGS_ALIASING

Strict or non-strict aliasing flags used to compile Python/dtoa.c.

New in version 3.7.

CCSHARED

Compiler flags used to build a shared library.

For example, ~fPIC is used on Linux and on BSD.

CFLAGSFORSHARED

Extra C flags added for building the interpreter object files.

Default: $ (CCSHARED) when ——enable—-shared is used, or an empty string otherwise.

PY_CFLAGS

Default: $ (BASECFLAGS) $(OPT) $(CONFIGURE_CFLAGS) S (CFLAGS)
S (EXTRA_CFLAGS).

PY CFLAGS_NODIST

Default: S (CONFIGURE_CFLAGS_NODIST) $(CFLAGS_NODIST) -IS$S(srcdir)/Include/
internal.

New in version 3.5.

PY_STDMODULE_CFLAGS

C flags used for building the interpreter object files.

Default: S (PY_CFLAGS) $(PY_CFLAGS_NODIST) $(PY_CPPFLAGS)
S (CFLAGSFORSHARED) .

New in version 3.7.

PY_CORE_CFLAGS

Default: $ (PY_STDMODULE_CFLAGS) -DPy_BUILD_CORE

New in version 3.2.

PY_BUILTIN_MODULE_CFLAGS

Compiler flags to build a standard library extension module as a built-in module, like the posix module.
Default: $ (PY_STDMODULE_CFLAGS) -DPy_BUILD_CORE_BUILTIN.

New in version 3.8.

PURIFY

Purify command. Purify is a memory debugger program.

Default: empty string (not used).

3.3.3 Linker flags

LINKCC

Linker command used to build programs like python and _testembed.

Default: $ (PURIFY) $ (MAINCC).

CONFIGURE_LDFLAGS

Value of LDFLAGS variable passed to the . /configure script.

Avoid assigning CFLAGS, LDFLAGS, etc. so users can use them on the command line to append to these
values without stomping the pre-set values.

New in version 3.2.

32

Chapter 3. Configure Python

Python Setup and Usage, Release 3.11.3

LDFLAGS_NODIST

LDFLAGS_NODIST is used in the same manner as CFLAGS_NODIST. Use it when a linker flag should not
be part of the distutils LDFLAGS once Python is installed (bpo-35257).

In particular, LDFLAGS should not contain:

* the compiler flag —L (for setting the search path for libraries). The —L flags are processed from left to
right, and any flags in LDFLAGS would take precedence over user- and package-supplied —L flags.

CONFIGURE_LDFLAGS_NODIST
Value of LDFLAGS_NODIST variable passed to the . /configure script.

New in version 3.8.

LDFLAGS

Linker flags, e.g. ~-L<1ib dir> if you have libraries in a nonstandard directory <1ib dir>.

Both CPPFLAGS and LDFLAGS need to contain the shell’s value for setup.py to be able to build extension
modules using the directories specified in the environment variables.

LIBS

Linker flags to pass libraries to the linker when linking the Python executable.
Example: -1rt.

LDSHARED
Command to build a shared library.

Default: QRLDSHARED@ $ (PY_LDFLAGS).

BLDSHARED
Command to build 1ibpython shared library.

Default: @BLDSHAREDQ@ $ (PY_CORE_LDFLAGS).

PY_LDFLAGS
Default: $ (CONFIGURE_LDFLAGS) $ (LDFLAGS).

PY_LDFLAGS_NODIST
Default: $ (CONFIGURE_LDFLAGS_NODIST) $ (LDFLAGS_NODIST).

New in version 3.8.

PY_CORE_LDFLAGS
Linker flags used for building the interpreter object files.

New in version 3.8.

3.3. Compiler and linker flags 33

https://bugs.python.org/issue?@action=redirect&bpo=35257

Python Setup and Usage, Release 3.11.3

34

Chapter 3. Configure Python

CHAPTER
FOUR

USING PYTHON ON WINDOWS

This document aims to give an overview of Windows-specific behaviour you should know about when using Python
on Microsoft Windows.

Unlike most Unix systems and services, Windows does not include a system supported installation of Python. To
make Python available, the CPython team has compiled Windows installers (MSI packages) with every release for
many years. These installers are primarily intended to add a per-user installation of Python, with the core interpreter
and library being used by a single user. The installer is also able to install for all users of a single machine, and a
separate ZIP file is available for application-local distributions.

As specified in PEP 11, a Python release only supports a Windows platform while Microsoft considers the platform
under extended support. This means that Python 3.11 supports Windows 8.1 and newer. If you require Windows 7
support, please install Python 3.8.

There are a number of different installers available for Windows, each with certain benefits and downsides.
The full installer contains all components and is the best option for developers using Python for any kind of project.

The Microsoft Store package is a simple installation of Python that is suitable for running scripts and packages, and
using IDLE or other development environments. It requires Windows 10 and above, but can be safely installed without
corrupting other programs. It also provides many convenient commands for launching Python and its tools.

The nuget.org packages are lightweight installations intended for continuous integration systems. It can be used to
build Python packages or run scripts, but is not updateable and has no user interface tools.

The embeddable package is a minimal package of Python suitable for embedding into a larger application.

4.1 The full installer

4.1.1 Installation steps

Four Python 3.11 installers are available for download - two each for the 32-bit and 64-bit versions of the interpreter.
The web installer is a small initial download, and it will automatically download the required components as neces-
sary. The offline installer includes the components necessary for a default installation and only requires an internet
connection for optional features. See Installing Without Downloading for other ways to avoid downloading during
installation.

After starting the installer, one of two options may be selected:

35

https://www.python.org/download/releases/
https://peps.python.org/pep-0011/

Python Setup and Usage, Release 3.11.3

&5 Python 2.8.0 (64-bit) Setup — 4

pgthfqn

Wiﬂd()WS [] Add Python 3.8 to PATH Trred

Install Python 3.8.0 (64-bit)

Select Install Mow to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
Ch\Users' ol AppData\Local\Programs\Python'\Python38

Includes IDLE, pip and decumentaticn
Creates shortcuts and file associations

— Customize installation
Choose location and features

Install launcher for all users (recommended)

If you select “Install Now”:

You will not need to be an administrator (unless a system update for the C Runtime Library is required or you
install the Python Launcher for Windows for all users)

Python will be installed into your user directory

The Python Launcher for Windows will be installed according to the option at the bottom of the first page
The standard library, test suite, launcher and pip will be installed

If selected, the install directory will be added to your PATH

Shortcuts will only be visible for the current user

Selecting “Customize installation” will allow you to select the features to install, the installation location and other
options or post-install actions. To install debugging symbols or binaries, you will need to use this option.

To perform an all-users installation, you should select “Customize installation”. In this case:

You may be required to provide administrative credentials or approval

Python will be installed into the Program Files directory

The Python Launcher for Windows will be installed into the Windows directory
Optional features may be selected during installation

The standard library can be pre-compiled to bytecode

If selected, the install directory will be added to the system PATH

Shortcuts are available for all users

36

Chapter 4. Using Python on Windows

Python Setup and Usage, Release 3.11.3

4.1.2 Removing the MAX_PATH Limitation

Windows historically has limited path lengths to 260 characters. This meant that paths longer than this would not
resolve and errors would result.

In the latest versions of Windows, this limitation can be expanded to approximately 32,000 characters. Your admin-
istrator will need to activate the “Enable Win32 long paths” group policy, or set LongPathsEnabled to 1 in the
registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystemn.

This allows the open () function, the os module and most other path functionality to accept and return paths longer
than 260 characters.

After changing the above option, no further configuration is required.

Changed in version 3.6: Support for long paths was enabled in Python.

4.1.3 Installing Without Ul

All of the options available in the installer UI can also be specified from the command line, allowing scripted in-
stallers to replicate an installation on many machines without user interaction. These options may also be set without
suppressing the Ul in order to change some of the defaults.

To completely hide the installer UI and install Python silently, pass the /quiet option. To skip past the user
interaction but still display progress and errors, pass the /passive option. The /uninstall option may be
passed to immediately begin removing Python - no confirmation prompt will be displayed.

All other options are passed as name=value, where the value is usually 0 to disable a feature, 1 to enable a feature,
or a path. The full list of available options is shown below.

4.1. The full installer 37

Python Setup and Usage, Release 3.11.3

Name Description Default
Instal- Perform a system-wide installa- | O
1Al- tion.
1Users
Target- The installation directory Selected based on InstallAllUsers
Dir
Default- | The default installation directory | $ProgramFiles$\Python X.Y or
AllUser- | for all-user installs $ProgramFiles (x86)%$\Python X.Y
sTarget-
Dir
De- The default install directory for | $LocalAppData%$\Programs\Python\PythonXY or
faultJust- | just-for-me installs $LocalAppData%$\Programs\Python\PythonXY-32
ForMeTar- or $LocalAppData%$\Programs\Python\
getDir PythonXY-64
Default- | The default custom install direc- | (empty)
Custom- | tory displayed in the Ul
Target-
Dir
Associ- Create file associations if the | 1
ateFiles launcher is also installed.
Com- Compile all .py filesto .pyc. | 0
pileAll
Prepend- | Prepend install and Scripts di- | O
Path rectories to PATH and add .PY
to PATHEXT
Append- | Append install and Scripts direc- | 0
Path tories to PATH and add .PY to
PATHEXT
Short- Create shortcuts for the inter- | 1
cuts preter, documentation and IDLE
if installed.
In- Install Python manual 1
clude_doc
In- Install debug binaries 0
clude_debug
In- Install developer headers and li- | 1
clude_dev| braries. Omitting this may lead
to an unusable installation.
In- Install python.exe and re- | 1
clude_exe | lated files. Omitting this may
lead to an unusable installation.
In- Install Python Launcher for | 1
clude_launchétindows.
Install- Installs the launcher for | 1
Launcher-| all wusers. Also requires
AllUsers | Include_launcher to be
setto 1
In- Install standard library and ex- | 1
clude_lib | tension modules. Omitting this
may lead to an unusable installa-
tion.
In- Install bundled pip and setup- | 1
clude_pip | tools
In- Install debugging symbols (*. | O
clude_sympaisib)
In- Install Tcl/Tk support and IDLE | 1
clude_tcltk
In- Install standard library test suite | 1
agiude—[eﬂ ChaniarAd— llei H
“¥h- Install utility scripts 1 Chapter-4.—Using Python-on-Windows
clude_tools
LauncherOnfnly installs the launcher. This | 0

will override most other options.

Python Setup and Usage, Release 3.11.3

For example, to silently install a default, system-wide Python installation, you could use the following command (from
an elevated command prompt):

python-3.9.0.exe /quiet InstallAllUsers=1 PrependPath=1 Include_test=0

To allow users to easily install a personal copy of Python without the test suite, you could provide a shortcut with the
following command. This will display a simplified initial page and disallow customization:

python-3.9.0.exe InstallAllUsers=0 Include_launcher=0 Include_test=0
SimpleInstall=1 SimplelInstallDescription="Just for me, no test suite."

(Note that omitting the launcher also omits file associations, and is only recommended for per-user installs when there
is also a system-wide installation that included the launcher.)

The options listed above can also be provided in a file named unattend.xml alongside the executable. This file
specifies a list of options and values. When a value is provided as an attribute, it will be converted to a number if
possible. Values provided as element text are always left as strings. This example file sets the same options as the
previous example:

<Options>

<Option Name="InstallAllUsers" Value="no" />

<Option Name="Include_launcher" Value="0" />

<Option Name="Include_test" Value="no" />

<Option Name="SimpleInstall" Value="yes" />

<Option Name="SimplelInstallDescription">Just for me, no test suite</Option>
</Options>

4.1.4 Installing Without Downloading

As some features of Python are not included in the initial installer download, selecting those features may require an
internet connection. To avoid this need, all possible components may be downloaded on-demand to create a complete
layout that will no longer require an internet connection regardless of the selected features. Note that this download
may be bigger than required, but where a large number of installations are going to be performed it is very useful to
have a locally cached copy.

Execute the following command from Command Prompt to download all possible required files. Remember to
substitute python-3. 9. 0. exe for the actual name of your installer, and to create layouts in their own directories
to avoid collisions between files with the same name.

python-3.9.0.exe /layout [optional target directory]

You may also specify the /quiet option to hide the progress display.

4.1.5 Modifying an install

Once Python has been installed, you can add or remove features through the Programs and Features tool that is part
of Windows. Select the Python entry and choose “Uninstall/Change” to open the installer in maintenance mode.

“Modify” allows you to add or remove features by modifying the checkboxes - unchanged checkboxes will not install
or remove anything. Some options cannot be changed in this mode, such as the install directory; to modify these, you
will need to remove and then reinstall Python completely.

“Repair” will verify all the files that should be installed using the current settings and replace any that have been
removed or modified.

“Uninstall” will remove Python entirely, with the exception of the Python Launcher for Windows, which has its own
entry in Programs and Features.

4.1. The full installer 39

Python Setup and Usage, Release 3.11.3

4.2 The Microsoft Store package

New in version 3.7.2.

The Microsoft Store package is an easily installable Python interpreter that is intended mainly for interactive use, for
example, by students.

To install the package, ensure you have the latest Windows 10 updates and search the Microsoft Store app for “Python
3.11”. Ensure that the app you select is published by the Python Software Foundation, and install it.

Warning: Python will always be available for free on the Microsoft Store. If you are asked to pay for it, you
have not selected the correct package.

After installation, Python may be launched by finding it in Start. Alternatively, it will be available from any Command
Prompt or PowerShell session by typing python. Further, pip and IDLE may be used by typingpip or idle. IDLE
can also be found in Start.

All three commands are also available with version number suffixes, for example, as python3.exeand python3.
x.exeaswellaspython.exe (where 3. x is the specific version you want to launch, such as 3.11). Open “Manage
App Execution Aliases” through Start to select which version of Python is associated with each command. It is
recommended to make sure that pip and id1le are consistent with whichever version of python is selected.

Virtual environments can be created with python -m venv and activated and used as normal.

If you have installed another version of Python and added it to your PATH variable, it will be available as python.
exe rather than the one from the Microsoft Store. To access the new installation, use python3.exe orpython3.
X.exe.

The py . exe launcher will detect this Python installation, but will prefer installations from the traditional installer.

To remove Python, open Settings and use Apps and Features, or else find Python in Start and right-click to select
Uninstall. Uninstalling will remove all packages you installed directly into this Python installation, but will not remove
any virtual environments

4.2.1 Known issues

Redirection of local data, registry, and temporary paths

Because of restrictions on Microsoft Store apps, Python scripts may not have full write access to shared locations such
as TEMP and the registry. Instead, it will write to a private copy. If your scripts must modify the shared locations,
you will need to install the full installer.

At runtime, Python will use a private copy of well-known Windows folders and the registry. For example,
if the environment variable $APPDATA% is c:\Users\<user>\AppData\, then when writing to C:\
Users\<user>\AppData\Local will write to C:\Users\<user>\AppData\Local\Packages\
PythonSoftwareFoundation.Python.3.8_gbz5n2kfra8p0\LocalCache\Local\.

When reading files, Windows will return the file from the private folder, or if that does not exist, the real Windows
directory. For example reading C: \Windows\System32 returns the contents of C: \Windows\System32
plus the contents of C: \Program Files\WindowsApps\package_name\VEFS\SystemX86.

You can find the real path of any existing file using os.path.realpath ():

>>> import os

>>> test_file = 'C:\\Users\\example\\AppData\\Local\\test.txt"

>>> os.path.realpath(test_file)
'C:\\Users\\example\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.8_
—gbz5n2kfra8p0\\LocalCache\\Local\\test.txt"

When writing to the Windows Registry, the following behaviors exist:

40 Chapter 4. Using Python on Windows

Python Setup and Usage, Release 3.11.3

* Reading from HKLM\\Software is allowed and results are merged with the registry.dat file in the
package.

» Writing to HKLM\ \ Software is not allowed if the corresponding key/value exists, i.e. modifying existing
keys.

* Writing to HKLM\ \Software is allowed as long as a corresponding key/value does not exist in the package
and the user has the correct access permissions.

For more detail on the technical basis for these limitations, please consult Microsoft’s documentation on packaged
full-trust apps, currently available at docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-
scenes

4.3 The nuget.org packages

New in version 3.5.2.

The nuget.org package is a reduced size Python environment intended for use on continuous integration and build
systems that do not have a system-wide install of Python. While nuget is “the package manager for .NET”, it also
works perfectly fine for packages containing build-time tools.

Visit nuget.org for the most up-to-date information on using nuget. What follows is a summary that is sufficient for
Python developers.

The nuget . exe command line tool may be downloaded directly from https://aka.ms/nugetclidl, for
example, using curl or PowerShell. With the tool, the latest version of Python for 64-bit or 32-bit machines is installed
using:

nuget.exe install python -ExcludeVersion -OutputDirectory .
nuget.exe install pythonx86 -ExcludeVersion -OutputDirectory .

To select a particular version, add a ~Version 3.x.y. The output directory may be changed from ., and the
package will be installed into a subdirectory. By default, the subdirectory is named the same as the package, and
without the ~-ExcludeVersion option this name will include the specific version installed. Inside the subdirectory
is a tools directory that contains the Python installation:

Without -ExcludeVersion
> .\python.3.5.2\tools\python.exe -V
Python 3.5.2

With -ExcludeVersion
> .\python\tools\python.exe -V
Python 3.5.2

In general, nuget packages are not upgradeable, and newer versions should be installed side-by-side and referenced
using the full path. Alternatively, delete the package directory manually and install it again. Many CI systems will do
this automatically if they do not preserve files between builds.

Alongside the t ools directory is a build\native directory. This contains a MSBuild properties file python.
props that can be used in a C++ project to reference the Python install. Including the settings will automatically
use the headers and import libraries in your build.

The package information pages on nuget.org are www.nuget.org/packages/python for the 64-bit version and
www.nuget.org/packages/pythonx86 for the 32-bit version.

4.3. The nuget.org packages 41

https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://www.nuget.org/
https://www.nuget.org/packages/python
https://www.nuget.org/packages/pythonx86

Python Setup and Usage, Release 3.11.3

4.4 The embeddable package

New in version 3.5.

The embedded distribution is a ZIP file containing a minimal Python environment. It is intended for acting as part
of another application, rather than being directly accessed by end-users.

When extracted, the embedded distribution is (almost) fully isolated from the user’s system, including environment
variables, system registry settings, and installed packages. The standard library is included as pre-compiled and
optimized .pyc files in a ZIP, and python3.d11, python37.d1l1, python.exe and pythonw.exe are
all provided. Tcl/tk (including all dependents, such as Idle), pip and the Python documentation are not included.

Note: The embedded distribution does not include the Microsoft C Runtime and it is the responsibility of the
application installer to provide this. The runtime may have already been installed on a user’s system previously or
automatically via Windows Update, and can be detected by finding ucrtbase.d11 in the system directory.

Third-party packages should be installed by the application installer alongside the embedded distribution. Using pip
to manage dependencies as for a regular Python installation is not supported with this distribution, though with some
care it may be possible to include and use pip for automatic updates. In general, third-party packages should be
treated as part of the application (“vendoring”) so that the developer can ensure compatibility with newer versions
before providing updates to users.

The two recommended use cases for this distribution are described below.

4.4.1 Python Application

An application written in Python does not necessarily require users to be aware of that fact. The embedded distribution
may be used in this case to include a private version of Python in an install package. Depending on how transparent
it should be (or conversely, how professional it should appear), there are two options.

Using a specialized executable as a launcher requires some coding, but provides the most transparent experience for
users. With a customized launcher, there are no obvious indications that the program is running on Python: icons
can be customized, company and version information can be specified, and file associations behave properly. In most
cases, a custom launcher should simply be able to call Py_Main with a hard-coded command line.

The simpler approach is to provide a batch file or generated shortcut that directly calls the python.exe or
pythonw.exe with the required command-line arguments. In this case, the application will appear to be Python
and not its actual name, and users may have trouble distinguishing it from other running Python processes or file
associations.

With the latter approach, packages should be installed as directories alongside the Python executable to ensure they
are available on the path. With the specialized launcher, packages can be located in other locations as there is an
opportunity to specify the search path before launching the application.

4.4.2 Embedding Python

Applications written in native code often require some form of scripting language, and the embedded Python distri-
bution can be used for this purpose. In general, the majority of the application is in native code, and some part will
either invoke python . exe or directly use python3.d11. For either case, extracting the embedded distribution
to a subdirectory of the application installation is sufficient to provide a loadable Python interpreter.

As with the application use, packages can be installed to any location as there is an opportunity to specify search
paths before initializing the interpreter. Otherwise, there is no fundamental differences between using the embedded
distribution and a regular installation.

42 Chapter 4. Using Python on Windows

https://docs.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist#visual-studio-2015-2017-2019-and-2022

Python Setup and Usage, Release 3.11.3

4.5 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The fol-
lowing is a list of popular versions and their key features:

ActivePython Installer with multi-platform compatibility, documentation, PyWin32

Anaconda Popular scientific modules (such as numpy, scipy and pandas) and the conda package manager.

Enthought Deployment Manager “The Next Generation Python Environment and Package Manager”.
Previously Enthought provided Canopy, but it reached end of life in 2016.

WinPython Windows-specific distribution with prebuilt scientific packages and tools for building packages.

Note that these packages may not include the latest versions of Python or other libraries, and are not maintained or
supported by the core Python team.

4.6 Configuring Python

To run Python conveniently from a command prompt, you might consider changing some default environment vari-
ables in Windows. While the installer provides an option to configure the PATH and PATHEXT variables for you,
this is only reliable for a single, system-wide installation. If you regularly use multiple versions of Python, consider
using the Python Launcher for Windows.

4.6.1 Excursus: Setting environment variables

Windows allows environment variables to be configured permanently at both the User level and the System level, or
temporarily in a command prompt.

To temporarily set environment variables, open Command Prompt and use the set command:

C:\>set PATH=C:\Program Files\Python 3.9;%PATHS
C:\>set PYTHONPATH=%PYTHONPATHS%;C:\My_python_1lib
C:\>python

These changes will apply to any further commands executed in that console, and will be inherited by any applications
started from the console.

Including the variable name within percent signs will expand to the existing value, allowing you to add your new value
at either the start or the end. Modifying PATH by adding the directory containing python.exe to the start is a
common way to ensure the correct version of Python is launched.

To permanently modify the default environment variables, click Start and search for ‘edit environment variables’, or
open System properties, Advanced system settings and click the Environment Variables button. In this dialog, you
can add or modify User and System variables. To change System variables, you need non-restricted access to your
machine (i.e. Administrator rights).

Note: Windows will concatenate User variables affer System variables, which may cause unexpected results when
modifying PATH.

The PYTHONPATH variable is used by all versions of Python, so you should not permanently configure it unless the
listed paths only include code that is compatible with all of your installed Python versions.

See also:

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables Overview of environ-
ment variables on Windows

4.5. Alternative bundles 43

https://www.activestate.com/products/python/
https://www.anaconda.com/download/
https://www.enthought.com/edm/
https://support.enthought.com/hc/en-us/articles/360038600051-Canopy-GUI-end-of-life-transition-to-the-Enthought-Deployment-Manager-EDM-and-Visual-Studio-Code
https://winpython.github.io/
https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables

Python Setup and Usage, Release 3.11.3

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1 The set
command, for temporarily modifying environment variables

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx The setx
command, for permanently modifying environment variables

4.6.2 Finding the Python executable

Changed in version 3.5.

Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python
in the command prompt. The installer has an option to set that up for you.

On the first page of the installer, an option labelled “Add Python to PATH” may be selected to have the installer
add the install location into the PATH. The location of the Scripts\ folder is also added. This allows you to type
python to run the interpreter, and pip for the package installer. Thus, you can also execute your scripts with
command line options, see Command line documentation.

If you don’t enable this option at install time, you can always re-run the installer, select Modify, and enable it. Alterna-
tively, you can manually modify the PATH using the directions in Excursus: Setting environment variables. You need
to set your PATH environment variable to include the directory of your Python installation, delimited by a semicolon
from other entries. An example variable could look like this (assuming the first two entries already existed):

’ C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Python 3.9

4.7 UTF-8 mode

New in version 3.7.

Windows still uses legacy encodings for the system encoding (the ANSI Code Page). Python uses it for the default
encoding of text files (e.g. locale.getencoding ()).

This may cause issues because UTF-8 is widely used on the internet and most Unix systems, including WSL (Windows
Subsystem for Linux).

You can use the Python UTF-8 Mode to change the default text encoding to UTF-8. You can enable the Python UTF-
8 Mode via the -X ut £8 command line option, or the PYTHONUTF 8=1 environment variable. See PYTHONUTF'8
for enabling UTF-8 mode, and Excursus: Setting environment variables for how to modify environment variables.

When the Python UTF-8 Mode is enabled, you can still use the system encoding (the ANSI Code Page) via the
“mbcs” codec.

Note that adding PYTHONUTF8=1 to the default environment variables will affect all Python 3.7+ applications on
your system. If you have any Python 3.7+ applications which rely on the legacy system encoding, it is recommended
to set the environment variable temporarily or use the —X ut £8 command line option.

Note: Even when UTF-8 mode is disabled, Python uses UTF-8 by default on Windows for:
¢ Console I/0 including standard I/O (see PEP 528 for details).
¢ The filesystem encoding (see PEP 529 for details).

44 Chapter 4. Using Python on Windows

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx
https://peps.python.org/pep-0528/
https://peps.python.org/pep-0529/

Python Setup and Usage, Release 3.11.3

4.8 Python Launcher for Windows

New in version 3.3.

The Python launcher for Windows is a utility which aids in locating and executing of different Python versions. It
allows scripts (or the command-line) to indicate a preference for a specific Python version, and will locate and execute
that version.

Unlike the PATH variable, the launcher will correctly select the most appropriate version of Python. It will prefer per-
user installations over system-wide ones, and orders by language version rather than using the most recently installed
version.

The launcher was originally specified in PEP 397.

4.8.1 Getting started

From the command-line

Changed in version 3.6.

System-wide installations of Python 3.3 and later will put the launcher on your PATH. The launcher is compatible
with all available versions of Python, so it does not matter which version is installed. To check that the launcher is
available, execute the following command in Command Prompt:

19

You should find that the latest version of Python you have installed is started - it can be exited as normal, and any
additional command-line arguments specified will be sent directly to Python.

If you have multiple versions of Python installed (e.g., 3.7 and 3.11) you will have noticed that Python 3.11 was
started - to launch Python 3.7, try the command:

’py -3.7

If you want the latest version of Python 2 you have installed, try the command:

’py -2

If you see the following error, you do not have the launcher installed:

'py' is not recognized as an internal or external command,
operable program or batch file.

The command:

py ——list

displays the currently installed version(s) of Python.

The —x . y argument is the short form of the -V : Company /Tag argument, which allows selecting a specific Python
runtime, including those that may have come from somewhere other than python.org. Any runtime registered by
following PEP 514 will be discoverable. The ——11st command lists all available runtimes using the -V : format.

When using the —V: argument, specifying the Company will limit selection to runtimes from that provider, while
specifying only the Tag will select from all providers. Note that omitting the slash implies a tag:

Select any '3.*' tagged runtime
py —-V:3

Select any 'PythonCore' released runtime
py —-V:PythonCore/

(continues on next page)

4.8. Python Launcher for Windows 45

https://peps.python.org/pep-0397/
https://peps.python.org/pep-0514/

Python Setup and Usage, Release 3.11.3

(continued from previous page)

Select PythonCore's latest Python 3 runtime
py -V:PythonCore/3

The short form of the argument (- 3) only ever selects from core Python releases, and not other distributions. However,
the longer form (-V : 3) will select from any.

The Company is matched on the full string, case-insenitive. The Tag is matched oneither the full string, or a prefix,
provided the next character is a dot or a hyphen. This allows —V: 3.1 to match 3.1-32, but not 3.10. Tags are
sorted using numerical ordering (3 . 10 is newer than 3. 1), but are compared using text (-V: 3. 01 does not match
3.1).

Virtual environments

New in version 3.5.

If the launcher is run with no explicit Python version specification, and a virtual environment (created with the standard
library venv module or the external virtualenv tool) active, the launcher will run the virtual environment’s
interpreter rather than the global one. To run the global interpreter, either deactivate the virtual environment, or
explicitly specify the global Python version.

From a script

Let’s create a test Python script - create a file called hello . py with the following contents

#! python
import sys
sys.stdout.write("hello from Python \n" % (sys.version,))

From the directory in which hello.py lives, execute the command:

’py hello.py

You should notice the version number of your latest Python 2.x installation is printed. Now try changing the first line
to be:

’ #! python3

Re-executing the command should now print the latest Python 3.x information. As with the above command-line
examples, you can specify a more explicit version qualifier. Assuming you have Python 3.7 installed, try changing
the first line to #! python3.7 and you should find the 3.7 version information printed.

Note that unlike interactive use, a bare “python” will use the latest version of Python 2.x that you have installed.
This is for backward compatibility and for compatibility with Unix, where the command python typically refers to
Python 2.

From file associations

The launcher should have been associated with Python files (i.e. .py, .pyw, .pyc files) when it was installed.
This means that when you double-click on one of these files from Windows explorer the launcher will be used, and
therefore you can use the same facilities described above to have the script specify the version which should be used.

The key benefit of this is that a single launcher can support multiple Python versions at the same time depending on
the contents of the first line.

46 Chapter 4. Using Python on Windows

Python Setup and Usage, Release 3.11.3

4.8.2 Shebang Lines

If the first line of a script file starts with # !, it is known as a “shebang” line. Linux and other Unix like operating
systems have native support for such lines and they are commonly used on such systems to indicate how a script should
be executed. This launcher allows the same facilities to be used with Python scripts on Windows and the examples
above demonstrate their use.

To allow shebang lines in Python scripts to be portable between Unix and Windows, this launcher supports a number
of ‘virtual’ commands to specify which interpreter to use. The supported virtual commands are:

e /usr/bin/env

* /usr/bin/python

* /usr/local/bin/python
* python

For example, if the first line of your script starts with

#! J/usr/bin/python

The default Python will be located and used. As many Python scripts written to work on Unix will already have this
line, you should find these scripts can be used by the launcher without modification. If you are writing a new script
on Windows which you hope will be useful on Unix, you should use one of the shebang lines starting with /usr.

Any of the above virtual commands can be suffixed with an explicit version (either just the major version, or the
major and minor version). Furthermore the 32-bit version can be requested by adding “-32” after the minor version.
Le. /usr/bin/python3.7-32 will request usage of the 32-bit python 3.7.

New in version 3.7: Beginning with python launcher 3.7 it is possible to request 64-bit version by the “-64” suffix.
Furthermore it is possible to specify a major and architecture without minor (i.e. /usr/bin/python3-64).

Changed in version 3.11: The “-64” suffix is deprecated, and now implies “any architecture that is not provably
1386/32-bit”. To request a specific environment, use the new —V : <TAG> argument with the complete tag.

The /usr/bin/env form of shebang line has one further special property. Before looking for installed Python
interpreters, this form will search the executable PATH for a Python executable matching the name provided
as the first argument. This corresponds to the behaviour of the Unix env program, which performs a PATH
search. If an executable matching the first argument after the env command cannot be found, but the argument
starts with python, it will be handled as described for the other virtual commands. The environment variable
PYLAUNCHER_NO_SEARCH_PATH may be set (to any value) to skip this search of PATH.

Shebang lines that do not match any of these patterns are looked up in the [commands] section of the launcher’s
.INI file. This may be used to handle certain commands in a way that makes sense for your system. The name of the
command must be a single argument (no spaces in the shebang executable), and the value substituted is the full path
to the executable (additional arguments specified in the .INI will be quoted as part of the filename).

[commands]
/bin/xpython=C:\Program Files\XPython\python.exe

Any commands not found in the .INI file are treated as Windows executable paths that are absolute or relative to the
directory containing the script file. This is a convenience for Windows-only scripts, such as those generated by an
installer, since the behavior is not compatible with Unix-style shells. These paths may be quoted, and may include
multiple arguments, after which the path to the script and any additional arguments will be appended.

4.8. Python Launcher for Windows 47

Python Setup and Usage, Release 3.11.3

4.8.3 Arguments in shebang lines

The shebang lines can also specify additional options to be passed to the Python interpreter. For example, if you have
a shebang line:

#! J/usr/bin/python -v

Then Python will be started with the —v option

4.8.4 Customization

Customization via INI files

Two .ini files will be searched by the launcher - py.ini in the current user’s application data directory
($LOCALAPPDATA% or $env:LocalAppData)and py.ini in the same directory as the launcher. The same
.ini files are used for both the ‘console’ version of the launcher (i.e. py.exe) and for the ‘windows’ version (i.e.
pyw.exe).

Customization specified in the “application directory” will have precedence over the one next to the executable, so a
user, who may not have write access to the .ini file next to the launcher, can override commands in that global .ini
file.

Customizing default Python versions

In some cases, a version qualifier can be included in a command to dictate which version of Python will be used by
the command. A version qualifier starts with a major version number and can optionally be followed by a period (*.’)
and a minor version specifier. Furthermore it is possible to specify if a 32 or 64 bit implementation shall be requested
by adding “-32” or “-64”.

For example, a shebang line of # ! python has no version qualifier, while # ! pyt hon3 has a version qualifier which
specifies only a major version.

If no version qualifiers are found in a command, the environment variable PY_PYTHON can be set to specify the
default version qualifier. If it is not set, the default is “3”. The variable can specify any value that may be passed on
the command line, such as “3”, “3.7”, “3.7-32” or “3.7-64”. (Note that the “-64” option is only available with the
launcher included with Python 3.7 or newer.)

If no minor version qualifiers are found, the environment variable PY_PYTHON{major} (where {major} is the
current major version qualifier as determined above) can be set to specify the full version. If no such option is found,
the launcher will enumerate the installed Python versions and use the latest minor release found for the major version,
which is likely, although not guaranteed, to be the most recently installed version in that family.

On 64-bit Windows with both 32-bit and 64-bit implementations of the same (major.minor) Python version installed,
the 64-bit version will always be preferred. This will be true for both 32-bit and 64-bit implementations of the
launcher - a 32-bit launcher will prefer to execute a 64-bit Python installation of the specified version if available.
This is so the behavior of the launcher can be predicted knowing only what versions are installed on the PC and
without regard to the order in which they were installed (i.e., without knowing whether a 32 or 64-bit version of
Python and corresponding launcher was installed last). As noted above, an optional “-32” or “-64” suffix can be used
on a version specifier to change this behaviour.

Examples:

* If no relevant options are set, the commands python and python2 will use the latest Python 2.x version
installed and the command python3 will use the latest Python 3.x installed.

e The command python3. 7 will not consult any options at all as the versions are fully specified.
e If PY_PYTHON=3, the commands python and python3 will both use the latest installed Python 3 version.

e If PY_PYTHON=3.7-32, the command python will use the 32-bit implementation of 3.7 whereas the
command python3 will use the latest installed Python (PY_PYTHON was not considered at all as a major
version was specified.)

48 Chapter 4. Using Python on Windows

Python Setup and Usage, Release 3.11.3

e If PY_PYTHON=3 and PY_PYTHON3=3. 7, the commands python and python3 will both use specifi-
cally 3.7

In addition to environment variables, the same settings can be configured in the .INI file used by the launcher. The
section in the INI file is called [defaults] and the key name will be the same as the environment variables
without the leading PY__ prefix (and note that the key names in the INI file are case insensitive.) The contents of an
environment variable will override things specified in the INI file.

For example:

» Setting PY_PYTHON=3. 7 is equivalent to the INI file containing:

[defaults]
python=3.7

¢ Setting PY_PYTHON=3 and PY_PYTHON3=3. 7 is equivalent to the INI file containing:

[defaults]
python=3
python3=3.7

4.8.5 Diagnostics

If an environment variable PYLAUNCHER_DEBUG is set (to any value), the launcher will print diagnostic information
to stderr (i.e. to the console). While this information manages to be simultaneously verbose and terse, it should allow
you to see what versions of Python were located, why a particular version was chosen and the exact command-line
used to execute the target Python. It is primarily intended for testing and debugging.

4.8.6 Dry Run

If an environment variable PYLAUNCHER_DRYRUN is set (to any value), the launcher will output the command it
would have run, but will not actually launch Python. This may be useful for tools that want to use the launcher to
detect and then launch Python directly. Note that the command written to standard output is always encoded using
UTF-8, and may not render correctly in the console.

4.8.7 Install on demand

If an environment variable PYLAUNCHER_ALLOW_INSTALL is set (to any value), and the requested Python version
is not installed but is available on the Microsoft Store, the launcher will attempt to install it. This may require user
interaction to complete, and you may need to run the command again.

An additional PYLAUNCHER_ALWAYS_ INSTALL variable causes the launcher to always try to install Python, even
if it is detected. This is mainly intended for testing (and should be used with PYLAUNCHER_DRYRUN).

4.8.8 Return codes
The following exit codes may be returned by the Python launcher. Unfortunately, there is no way to distinguish these
from the exit code of Python itself.

The names of codes are as used in the sources, and are only for reference. There is no way to access or resolve them
apart from reading this page. Entries are listed in alphabetical order of names.

4.8. Python Launcher for Windows 49

Python Setup and Usage, Release 3.11.3

Name Value | Description

RC_BAD_VENV_CFG 107 A pyvenv.cfg was found but is corrupt.

RC_CREATE_PROCESS | 101 Failed to launch Python.

RC_INSTALLING 111 An install was started, but the command will need to be re-run after it

completes.

RC_INTERNAL_ERROR | 109 Unexpected error. Please report a bug.

RC_NO_COMMANDLINE 108 Unable to obtain command line from the operating system.

RC_NO_PYTHON 103 Unable to locate the requested version.

RC_NO_VENV_CFG 106 A pyvenv.cfg was required but not found.

4.9

Finding modules

These notes supplement the description at sys-path-init with detailed Windows notes.

When no ._pth file is found, this is how sys . path is populated on Windows:

An empty entry is added at the start, which corresponds to the current directory.

If the environment variable PYTHONPATH exists, as described in Environment variables, its entries are added
next. Note that on Windows, paths in this variable must be separated by semicolons, to distinguish them from
the colon used in drive identifiers (C: \ etc.).

Additional “application paths” can be added in the registry as subkeys of \SOFTWARE\
Python\PythonCore{version}\PythonPath under both the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE hives. Subkeys which have semicolon-delimited path strings as their default value
will cause each path to be added to sys.path. (Note that all known installers only use HKLM, so HKCU is
typically empty.)

If the environment variable PYTHONHOME is set, it is assumed as “Python Home”. Otherwise, the path of
the main Python executable is used to locate a “landmark file” (either Lib\os.py or pythonXY.zip) to
deduce the “Python Home”. If a Python home is found, the relevant sub-directories added to sys.path
(Lib, plat-win, etc) are based on that folder. Otherwise, the core Python path is constructed from the
PythonPath stored in the registry.

If the Python Home cannot be located, no PYTHONPATH is specified in the environment, and no registry
entries can be found, a default path with relative entries is used (e.g. . \Lib; . \plat-win, etc).

If apyvenv. cfg file is found alongside the main executable or in the directory one level above the executable, the
following variations apply:

If home is an absolute path and PYTHONHOME is not set, this path is used instead of the path to the main
executable when deducing the home location.

The end result of all this is:

When running python . exe, or any other .exe in the main Python directory (either an installed version, or
directly from the PCbuild directory), the core path is deduced, and the core paths in the registry are ignored.
Other “application paths” in the registry are always read.

When Python is hosted in another .exe (different directory, embedded via COM, etc), the “Python Home” will
not be deduced, so the core path from the registry is used. Other “application paths” in the registry are always
read.

If Python can’t find its home and there are no registry value (frozen .exe, some very strange installation setup)
you get a path with some default, but relative, paths.

For those who want to bundle Python into their application or distribution, the following advice will prevent conflicts
with other installations:

Include a . _pth file alongside your executable containing the directories to include. This will ignore paths
listed in the registry and environment variables, and also ignore site unless import site is listed.

50

Chapter 4. Using Python on Windows

Python Setup and Usage, Release 3.11.3

e If you are loading python3.dll or python37.dll in your own executable, explicitly call
Py_SetPath () or (atleast) Py_SetProgramName () before Py_Initialize ().

* Clear and/or overwrite PYTHONPATH and set PYTHONHOME before launching python.exe from your
application.

 If you cannot use the previous suggestions (for example, you are a distribution that allows people to run
python.exe directly), ensure that the landmark file (Lib\os.py) exists in your install directory. (Note
that it will not be detected inside a ZIP file, but a correctly named ZIP file will be detected instead.)

These will ensure that the files in a system-wide installation will not take precedence over the copy of the standard
library bundled with your application. Otherwise, your users may experience problems using your application. Note
that the first suggestion is the best, as the others may still be susceptible to non-standard paths in the registry and user
site-packages.

Changed in version 3.6:

¢ Adds ._pth file support and removes applocal option from pyvenv.cfg.

¢ Adds pythonXX. zip as a potential landmark when directly adjacent to the executable.
Deprecated since version 3.6:

Modules specified in the registry under Modules (not PythonPath) may be imported by
importlib.machinery.WindowsRegistryFinder. This finder is enabled on Windows in
3.6.0 and earlier, but may need to be explicitly added to sys .meta_path in the future.

4.10 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique to Windows. A couple
of modules, both in the standard library and external, and snippets exist to use these features.

The Windows-specific standard modules are documented in mswin-specific-services.

4.10.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support. This
includes utilities for:

* Component Object Model (COM)
e Win32 API calls
* Registry
* Event log
¢ Microsoft Foundation Classes (MFC) user interfaces
PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in debugger.
See also:
Win32 How Do I...? by Tim Golden
Python and COM by David and Paul Boddie

4.10. Additional modules 51

https://pypi.org/project/pywin32
https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications
https://web.archive.org/web/20060524042422/https://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
https://www.boddie.org.uk/python/COM.html

Python Setup and Usage, Release 3.11.3

4.10.2 cx_Freeze

cx_Freezeisa distutils extension (see extending-distutils) which wraps Python scripts into executable Windows
programs (*. exe files). When you have done this, you can distribute your application without requiring your users
to install Python.

4.11 Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh checkout.

The source tree contains a build solution and project files for Microsoft Visual Studio, which is the compiler used to
build the official Python releases. These files are in the PCbui 1d directory.

Check PCbuild/readme. txt for general information on the build process.

For extension modules, consult building-on-windows.

4.12 Other Platforms

With ongoing development of Python, some platforms that used to be supported earlier are no longer supported (due
to the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

e Windows CE is no longer supported since Python 3 (if it ever was).
¢ The Cygwin installer offers to install the Python interpreter as well

See Python for Windows for detailed information about platforms with pre-compiled installers.

52 Chapter 4. Using Python on Windows

https://cx-freeze.readthedocs.io/en/latest/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#get-the-source-code
https://peps.python.org/pep-0011/
https://pythonce.sourceforge.net/
https://github.com/python/cpython/issues/71542
https://cygwin.com/
https://cygwin.com/packages/summary/python3.html
https://www.python.org/downloads/windows/

CHAPTER
FIVE

USING PYTHON ON A MAC

Author Bob Savage <bobsavage @mac.com>

Python on a Mac running macOS is in principle very similar to Python on any other Unix platform, but there are a
number of additional features such as the IDE and the Package Manager that are worth pointing out.

5.1 Getting and Installing MacPython

macOS used to come with Python 2.7 pre-installed between versions 10.8 and 12.3. You are invited to install the
most recent version of Python 3 from the Python website (https://www.python.org). A current “universal binary”
build of Python, which runs natively on the Mac’s new Intel and legacy PPC CPU's, is available there.

What you get after installing is a number of things:

* APython 3.12 folder in your Applications folder. In here you find IDLE, the development envi-
ronment that is a standard part of official Python distributions; and PythonLauncher, which handles double-
clicking Python scripts from the Finder.

e A framework /Library/Frameworks/Python. framework, which includes the Python executable
and libraries. The installer adds this location to your shell path. To uninstall MacPython, you can simply
remove these three things. A symlink to the Python executable is placed in /usr/local/bin/.

The Apple-provided build of Python is installed in /System/Library/Frameworks/Python. framework
and /usr/bin/python, respectively. You should never modify or delete these, as they are Apple-controlled and
are used by Apple- or third-party software. Remember that if you choose to install a newer Python version from
python.org, you will have two different but functional Python installations on your computer, so it will be important
that your paths and usages are consistent with what you want to do.

IDLE includes a help menu that allows you to access Python documentation. If you are completely new to Python
you should start reading the tutorial introduction in that document.

If you are familiar with Python on other Unix platforms you should read the section on running Python scripts from
the Unix shell.

5.1.1 How to run a Python script

Your best way to get started with Python on macOS is through the IDLE integrated development environment, see
section The IDE and use the Help menu when the IDE is running.

If you want to run Python scripts from the Terminal window command line or from the Finder you first need an editor
to create your script. macOS comes with a number of standard Unix command line editors, vim and emacs among
them. If you want a more Mac-like editor, BBEdit or TextWrangler from Bare Bones Software (see http://www.
barebones.com/products/bbedit/index.html) are good choices, as is TextMate (see https://macromates.com/).
Other editors include Gvim (https://macvim.org/macvim/) and Aquamacs (http://aquamacs.org/).

To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell search
path.

To run your script from the Finder you have two options:

53

mailto:bobsavage@mac.com
https://developer.apple.com/documentation/macos-release-notes/macos-12_3-release-notes#Python
https://www.python.org
http://www.barebones.com/products/bbedit/index.html
http://www.barebones.com/products/bbedit/index.html
https://macromates.com/
https://macvim.org/macvim/
http://aquamacs.org/

Python Setup and Usage, Release 3.11.3

e Drag it to PythonLauncher

* Select PythonLauncher as the default application to open your script (or any .py script) through the finder
Info window and double-click it. PythonLauncher has various preferences to control how your script is
launched. Option-dragging allows you to change these for one invocation, or use its Preferences menu to change
things globally.

5.1.2 Running scripts with a GUI

With older versions of Python, there is one macOS quirk that you need to be aware of: programs that talk to the Aqua
window manager (in other words, anything that has a GUI) need to be run in a special way. Use pythonw instead
of python to start such scripts.

With Python 3.9, you can use either python or pythonw.

5.1.3 Configuration

Python on macOS honors all standard Unix environment variables such as PYTHONPATH, but setting these variables
for programs started from the Finder is non-standard as the Finder does not read your .profile or .cshrc
at startup. You need to create a file ~/ .MacOSX/environment.plist. See Apple’s Technical Document
QA1067 for details.

For more information on installation Python packages in MacPython, see section Installing Additional Python Pack-
ages.

5.2 The IDE

MacPython ships with the standard IDLE development environment. A good introduction to using IDLE can be
found at http://www.hashcollision.org/hkn/python/idle_intro/index.html.

5.3 Installing Additional Python Packages

There are several methods to install additional Python packages:
» Packages can be installed via the standard Python distutils mode (python setup.py install).

¢ Many packages can also be installed via the setuptools extension or pip wrapper, see https://pip.pypa.io/.

5.4 GUI Programming on the Mac

There are several options for building GUI applications on the Mac with Python.

PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is the foundation of most modern Mac
development. Information on PyObjC is available from https://pypi.org/project/pyobjc/.

The standard Python GUI toolkit is tkinter, based on the cross-platform Tk toolkit (https://www.tcl.tk). An
Aqua-native version of Tk is bundled with OS X by Apple, and the latest version can be downloaded and installed
from https://www.activestate.com; it can also be built from source.

wxPython is another popular cross-platform GUI toolkit that runs natively on macOS. Packages and documentation
are available from https://www.wxpython.org.

PyQr is another popular cross-platform GUI toolkit that runs natively on macOS. More information can be found at
https://riverbankcomputing.com/sof tware/pyqt/intro.

54 Chapter 5. Using Python on a Mac

http://www.hashcollision.org/hkn/python/idle_intro/index.html
https://pip.pypa.io/
https://pypi.org/project/pyobjc/
https://www.tcl.tk
https://www.activestate.com
https://www.wxpython.org
https://riverbankcomputing.com/software/pyqt/intro

Python Setup and Usage, Release 3.11.3

5.5 Distributing Python Applications on the Mac

The standard tool for deploying standalone Python applications on the Mac is py2app. More information on in-
stalling and using py2app can be found at https://pypi.org/project/py2app/.

5.6 Other Resources

The MacPython mailing list is an excellent support resource for Python users and developers on the Mac:
https://www.python.org/community/sigs/current/pythonmac-sig/
Another useful resource is the MacPython wiki:

https://wiki.python.org/moin/MacPython

5.5. Distributing Python Applications on the Mac 55

https://pypi.org/project/py2app/
https://www.python.org/community/sigs/current/pythonmac-sig/
https://wiki.python.org/moin/MacPython

Python Setup and Usage, Release 3.11.3

56

Chapter 5. Using Python on a Mac

CHAPTER
SIX

EDITORS AND IDES

There are a number of IDEs that support Python programming language. Many editors and IDEs provide syntax
highlighting, debugging tools, and PEP 8 checks.

Please go to Python Editors and Integrated Development Environments for a comprehensive list.

57

https://peps.python.org/pep-0008/
https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Python Setup and Usage, Release 3.11.3

58

Chapter 6. Editors and IDEs

APPENDIX
A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

Can refer to:

* The default Python prompt of the interactive shell when entering the code for an indented code block,
when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

e The E11ipsis built-in constant.

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as 1ib2to3; a standalone entry point is provided as Tools/
scripts/2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when
other techniques like hasattzr () would be clumsy or subtly wrong (for example with magic methods).
ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance () and issubclass (); see the abc module documentation. Python comes with many
built-in ABCs for data structures (in the collections . abc module), numbers (in the numbe rs module),
streams (in the i o module), import finders and loaders (in the importlib.abc module). You can create
your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by
convention as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class at-
tributes, and functions are stored in the __annotations___ special attribute of modules, classes, and func-
tions, respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality. Also
see annotations-howto for best practices on working with annotations.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:

* keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a
value in a dictionary preceded by * *. For example, 3 and 5 are both keyword arguments in the following
calls to complex ():

complex (real=3, imag=b5)
complex (**{'real': 3, 'imag': 5})

e positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3
and 5 are both positional arguments in the following calls:

complex (3, 5)
complex (* (3, 5))

59

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Python Setup and Usage, Release 3.11.3

Arguments are assigned to the named local variables in a function body. See the calls section for the rules
governing this assignment. Syntactically, any expression can be used to represent an argument; the evaluated
value is assigned to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters,
and PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter__ () and __aexit__ () methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. 1t looks like a coroutine
function defined with async def except that it contains y ie 1d expressions for producing a series of values
usable in an async for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in
some contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain await expressions as well as async for, and async
with statements.

asynchronous generator iterator An object created by a asynchronous generator function.

This is an asynchronous iterator which when called using the __anext__ () method returns an awaitable
object which will execute the body of the asynchronous generator function until the next yield expression.

Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the asynchronous generator iterator effectively resumes with another
awaitable returned by ___anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous
iterator from its __aiter__ () method. Introduced by PEP 492.

asynchronous iterator An object that implements the _ aiter_ () and __anext__ () methods.
__anext___ must return an awaitable object. async for resolves the awaitables returned by an
asynchronous iterator’s __anext__ () method until it raises a StopAsyncIteration exception.
Introduced by PEP 492.

attribute A value associated with an object which is usually referenced by name using dotted expressions. For
example, if an object o has an attribute a it would be referenced as o.a.

It is possible to give an object an attribute whose name is not an identifier as defined by identifiers, for example
using setattr (), if the object allows it. Such an attribute will not be accessible using a dotted expression,
and would instead need to be retrieved with getattr ().

awaitable An object that can be used in an await expression. Can be a coroutine or an object with an
__await__ () method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary
mode ("rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout.buffer, and instances of io.
BytesIOand gzip.GzipFile.

See also text file for a file object able to read and write st r objects.

borrowed reference In Python’s C API, a borrowed reference is a reference to an object. It does not modify the
object reference count. It becomes a dangling pointer if the object is destroyed. For example, a garbage
collection can remove the last strong reference to the object and so destroy it.

Calling Py__INCREF () on the borrowed reference is recommended to convert it to a strong reference in-
place, except when the object cannot be destroyed before the last usage of the borrowed reference. The
Py_NewRef () function can be used to create a new strong reference.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all
bytes, bytearray,and array.array objects, as well as many common memoryview objects. Bytes-
like objects can be used for various operations that work with binary data; these include compression, saving
to a binary file, and sending over a socket.

60 Appendix A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

Python Setup and Usage, Release 3.11.3

Some operations need the binary data to be mutable. The documentation often refers to these as “read-
write bytes-like objects”. Example mutable buffer objects include bytearray and a memoryview of a
bytearray. Other operations require the binary data to be stored in immutable objects (“read-only bytes-
like objects™); examples of these include bytes and a memoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
CPython interpreter. The bytecode is also cached in . pyc files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said
to run on a virtual machine that executes the machine code corresponding to each bytecode. Do note that
bytecodes are not expected to work between different Python virtual machines, nor to be stable between Python
releases.

A list of bytecode instructions can be found in the documentation for the dis module.

callable A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:

callable (argumentl, argument2, argumentN)

A function, and by extension a method, is a callable. An instance of a class that implements the __call__ ()
method is also a callable.

callback A subroutine function which is passed as an argument to be executed at some point in the future.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of
the class).

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of
a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root
of —1), often written i in mathematics or j in engineering. Python has built-in support for complex numbers,
which are written with this latter notation; the imaginary part is written with a j suffix, e.g., 3+17. To get
access to complex equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced
mathematical feature. If you're not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a with statement by defining __enter__ ()
and __exit__ () methods. See PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-
Local Storage in which each execution thread may have a different value for a variable. However, with context
variables, there may be several contexts in one execution thread and the main usage for context variables is to
keep track of variables in concurrent asynchronous tasks. See contextvars.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-
dimensional buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in
memory next to each other, in order of increasing indexes starting from zero. In multidimensional C-contiguous
arrays, the last index varies the fastest when visiting items in order of memory address. However, in Fortran
contiguous arrays, the first index varies the fastest.

coroutine Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited
at another point. Coroutines can be entered, exited, and resumed at many different points. They can be
implemented with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the
async def statement, and may contain await, async for, and async with keywords. These were
introduced by PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The
term “CPython” is used when necessary to distinguish this implementation from others such as Jython or
IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod () and staticmethod ().

61

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

Python Setup and Usage, Release 3.11.3

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equiv-
alent:

def f (arg):
f = staticmethod (f)

@staticmethod
def f (arqg):

The same concept exists for classes, but is less commonly used there. See the documentation for function
definitions and class definitions for more about decorators.

descriptor Any object which defines the methods __get__ (),__set__ (),or__delete__ (). Whenaclass
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor,
the respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of
Python because they are the basis for many features including functions, methods, properties, class methods,
static methods, and reference to super classes.

For more information about descriptors’ methods, see descriptors or the Descriptor How To Guide.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eqg__ () methods. Called a hash in Perl.

dictionary comprehension A compact way to process all or part of the elements in an iterable and return a dic-
tionary with the results. results = {n: n ** 2 for n in range (10) } generates a dictionary
containing key n mapped to value n ** 2. See comprehensions.

dictionary view The objects returned from dict .keys (),dict.values (),anddict.items () arecalled
dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dic-
tionary changes, the view reflects these changes. To force the dictionary view to become a full list use
list (dictview). See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the __doc___ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation of
the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must
be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility
by allowing polymorphic substitution. Duck-typing avoids tests using t ype () or isinstance (). (Note,
however, that duck-typing can be complemented with abstract base classes.) Instead, it typically employs
hasattr () tests or FAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of
valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many t ry and except statements. The technique contrasts with the LBYL
style common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements
which cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string String literals prefixed with ' £' or 'F ' are commonly called “f-strings” which is short for formatted string
literals. See also PEP 498.

file object An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying
resource. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another

62 Appendix A. Glossary

https://peps.python.org/pep-0498/

Python Setup and Usage, Release 3.11.3

type of storage or communication device (for example standard input/output, in-memory buffers, sockets,
pipes, etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and text files. Their
interfaces are defined in the 1o module. The canonical way to create a file object is by using the open ()
function.

file-like object A synonym for file object.

filesystem encoding and error handler Encoding and error handler used by Python to decode bytes from the op-
erating system and encode Unicode to the operating system.

The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.

The sys.getfilesystemencoding () and sys.getfilesystemencodeerrors () functions
can be used to get the filesystem encoding and error handler.

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read () func-
tion: see filesystem_encodingand filesystem_errors members of PyConfig.

See also the locale encoding.
finder An object that tries to find the /oader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys.meta_path, and path
entry finders for use with sys.path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is //. For
example, the expression 11 // 4 evaluates to 2 in contrast to the 2 . 75 returned by float true division. Note
that (-11) // 4 is —3 because thatis —2 .75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. See also parameter, method, and the function section.

function annotation An annotation of a function parameter or return value.

Function annotations are usually used for type hints: for example, this function is expected to take two int
arguments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) -> int:
return a + b

Function annotation syntax is explained in section function.

See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

__future__ A future statement, from __future__ import <feature>, directs the compiler to compile
the current module using syntax or semantics that will become standard in a future release of Python. The
__future__ module documents the possible values of feature. By importing this module and evaluating its
variables, you can see when a new feature was first added to the language and when it will (or did) become the

default:
>>> import __ future_
>>> _ future__ .division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The
garbage collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function.

63

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

Python Setup and Usage, Release 3.11.3

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where
the intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.

Each yield temporarily suspends processing, remembering the location execution state (including local vari-
ables and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast
to functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for
clause defining a loop variable, range, and an optional if clause. The combined expression generates values
for an enclosing function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed of multiple functions implementing the same operation for different types.
Which implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch () decorator, and PEP
443.

generic type A rype that can be parameterized; typically a container class such as 1ist or dict. Used for rype
hints and annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the t yping module.
GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPyrhon interpreter to assure that only one thread executes
Python bytecode at a time. This simplifies the CPython implementation by making the object model (including
critical built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter
makes it easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by
multi-processor machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when
doing computationally intensive tasks such as compression or hashing. Also, the GIL is always released when
doing 1/0.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity)
have not been successful because performance suffered in the common single-processor case. It is believed
that overcoming this performance issue would make the implementation much more complicated and therefore
costlier to maintain.

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding
source file to determine its validity. See pyc-invalidation.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (it needs an __eq___ () method). Hashable
objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries)
are not; immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable.
Objects which are instances of user-defined classes are hashable by default. They all compare unequal (except
with themselves), and their hash value is derived from their id ().

IDLE An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter
environment which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

64 Appendix A. Glossary

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

Python Setup and Usage, Release 3.11.3

import path A list of locations (or path entries) that are searched by the path based finder for modules to import.
During import, this list of locations usually comes from sys.path, but for subpackages it may also come
from the parent package’s __path___ attribute.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the in-
terpreter prompt, immediately execute them and see their results. Just launch python with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or
inspect modules and packages (remember help (x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry be-
cause of the presence of the bytecode compiler. This means that source files can be run directly without explic-
itly creating an executable which is then run. Interpreted languages typically have a shorter development/debug
cycle than compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually
releases all allocated resources, such as modules and various critical internal structures. It also makes several
calls to the garbage collector. This can trigger the execution of code in user-defined destructors or weakref
callbacks. Code executed during the shutdown phase can encounter various exceptions as the resources it
relies on may not function anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the __main__ module or the script being run has finished
executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence
types (such as 1ist, str, and tuple) and some non-sequence types like dict, file objects, and objects of
any classes you define withan __iter__ () method or witha __getitem__ () method that implements
sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (),
...). When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator
for the object. This iterator is good for one pass over the set of values. When using iterables, it is usually not
necessary tocall iter () or deal with iterator objects yourself. The for statement does that automatically for
you, creating a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator,
sequence, and generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s ___next___ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available
a StopIteration exception is raised instead. At this point, the iterator object is exhausted and any fur-
ther calls to its __next__ () method just raise StopIteration again. Iterators are required to have an
__iter__ () method that returns the iterator object itself so every iterator is also iterable and may be used
in most places where other iterables are accepted. One notable exception is code which attempts multiple
iteration passes. A container object (such as a 11st) produces a fresh new iterator each time you pass it to the
iter () function or use it in a for loop. Attempting this with an iterator will just return the same exhausted
iterator object used in the previous iteration pass, making it appear like an empty container.

More information can be found in typeiter.

CPython implementation detail: CPython does not consistently apply the requirement that an iterator define
__iter_ ().

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() isused to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They include
min (), max(), sorted(), list.sort (), heapg.merge (), heapg.nsmallest (), heapqg.
nlargest (),and itertools.groupby ().

There are several ways to create a key function. For example. the str. lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a 1 ambda expression such as
lambda r: (r[0], r[2]). Also, operator.attrgetter (), operator.itemgetter (),

65

Python Setup and Usage, Release 3.11.3

and operator.methodcaller () are three key function constructors. See the Sorting HOW TO for
examples of how to create and use key functions.

keyword argument See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is
called. The syntax to create a lambda function is Lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with the EAFP approach and is characterized by the presence of many i f statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the
looking” and “the leaping”. For example, the code, 1f key in mapping: return mapping[key]
can fail if another thread removes key from mapping after the test, but before the lookup. This issue can be
solved with locks or by using the EAFP approach.

locale encoding On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.
setlocale(locale.LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: "cpl1252™").

On Android and VxWorks, Python uses "ut £-8" as the locale encoding.
locale.getencoding () can be used to get the locale encoding.

See also the filesystem encoding and error handler.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list
since access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the re-
sults. result = ['{:#04x}'.format (x) for x in range (256) if x % == 0] gen-
erates a list of strings containing even hex numbers (0x..) in the range from O to 255. The i f clause is optional.

If omitted, all elements in range (256) are processed.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically
returned by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method An informal synonym for special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified
in the collections.abc.Mapping or collections.abc.MutableMapping abstract base
classes. Examples include dict, collections.defaultdict,collections.OrderedDict and
collections.Counter.

meta path finder A finder returned by a search of sys .meta_path. Meta path finders are related to, but different
from path entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible to
create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide
powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety, tracking
object creation, implementing singletons, and many other tasks.

More information can be found in metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its first argument (which is usually called se1f). See function and nested
scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member
during lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python
interpreter since the 2.3 release.

66 Appendix A. Glossary

https://peps.python.org/pep-0302/
https://www.python.org/download/releases/2.3/mro/

Python Setup and Usage, Release 3.11.3

module An object that serves as an organizational unit of Python code. Modules have a namespace containing
arbitrary Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their id () . See also immutable.

named tuple The term “named tuple” applies to any type or class that inherits from tuple and whose indexable
elements are also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

>>> sys.float_info[l] # indexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be
written by hand or it can be created with the factory function collections.namedtuple (). The latter
technique also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local,
global and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support
modularity by preventing naming conflicts. For instance, the functions builtins.open and os.open ()
are distinguished by their namespaces. Namespaces also aid readability and maintainability by making it clear
which module implements a function. For instance, writing random. seed () oritertools.islice ()
makes it clear that those functions are implemented by the random and itertools modules, respectively.

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages
may have no physical representation, and specifically are not like a regular package because they have no
__init__ .pyfile.

See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes by default work only for
reference and not for assignment. Local variables both read and write in the innermost scope. Likewise, global
variables read and write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like ___slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package is a
Python module witha __path___ attribute.

See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, argu-
ments) that the function can accept. There are five kinds of parameter:

e positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argu-
ment. This is the default kind of parameter, for example foo and bar in the following:

67

https://peps.python.org/pep-0420/

Python Setup and Usage, Release 3.11.3

def func(foo, bar=None):

e positional-only: specifies an argument that can be supplied only by position. Positional-only parameters
can be defined by including a / character in the parameter list of the function definition after them, for
example posonlyl and posonly2 in the following:

def func(posonlyl, posonly2, /, positional_or_keyword) :

* keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can
be defined by including a single var-positional parameter or bare * in the parameter list of the function
definition before them, for example kw_onlyl and kw_only?2 in the following:

def func(arg, *, kw_onlyl, kw_only2):

* var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition
to any positional arguments already accepted by other parameters). Such a parameter can be defined by
prepending the parameter name with *, for example args in the following:

def func(*args, **kwargs):

* var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with * *, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional
arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters,
the inspect .Parameter class, the function section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.

path entry finder A finder returned by a callable on sy s . path_hooks (i.e. a path entry hook) which knows how
to locate modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.

path-like object An object representing a file system path. A path-like object is either a str or bytes object
representing a path, or an object implementing the os . PathLike protocol. An object that supports the os .
PathLike protocol can be converted to a str or bytes file system path by calling the os . fspath ()
function; os . fsdecode () and os. fsencode () canbe used to guarantee a st r or by tes result instead,
respectively. Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community
input on an issue, and for documenting the design decisions that have gone into Python. The PEP author is
responsible for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as
defined in PEP 420.

positional argument See argument.

provisional API A provisional API is one which has been deliberately excluded from the standard library’s back-
wards compatibility guarantees. While major changes to such interfaces are not expected, as long as they are

68 Appendix A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/

Python Setup and Usage, Release 3.11.3

marked provisional, backwards incompatible changes (up to and including removal of the interface) may occur
if deemed necessary by core developers. Such changes will not be made gratuitously — they will occur only if
serious fundamental flaws are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every
attempt will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something
in the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather
than implementing code using concepts common to other languages. For example, a common idiom in Python
is to loop over all elements of an iterable using a for statement. Many other languages don’t have this type of
construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print (food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print (piece)

qualified name A dotted name showing the “path” from a module’s global scope to a class, function or method
defined in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the
same as the object’s name:

>>> class C:
class D:
def meth (self):
pass

>>> C.__qualname_

ICI

>>> C.D.__qgualname___
'C.D'

>>> C.D.meth. qgualname_
'C.D.meth'

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including
any parent packages, e.g. email.mime.text:

>>> import email.mime.text
>>> email.mime.text. name
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. Programmers can call the sys.getrefcount () function to return the reference count
for a particular object.

regular package A traditional package, such as a directory containing an __init__ .py file.
See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminat-
ing instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-critical application.

69

https://peps.python.org/pep-0411/
https://peps.python.org/pep-3155/

Python Setup and Usage, Release 3.11.3

sequence An iferable which supports efficient element access using integer indices via the __getitem__ () spe-
cial method and defines a __len__ () method that returns the length of the sequence. Some built-in se-
quence types are 1ist, str, tuple, and bytes. Note that dict also supports __getitem__ () and
__len__ (), butisconsidered a mapping rather than a sequence because the lookups use arbitrary immutable
keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just __getitem__ () and __len__ (), adding count (), index (), __contains__ (), and
__reversed__ (). Types that implement this expanded interface can be registered explicitly using
register ().

set comprehension A compact way to process all or part of the elements in an iterable and return a set with the
results. results = {c for c in 'abracadabra' if c not in 'abc'} generates the set
of strings { 'r', 'd'}. See comprehensions.

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a
single argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such as in variable_name [1:3:5]. The bracket (sub-
script) notation uses s1ice objects internally.

special method A method thatis called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in
specialnames.

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one of several
constructs with a keyword, such as 1 f, while or for.

strong reference In Python’s C API, a strong reference is a reference to an object which increments the object’s
reference count when it is created and decrements the object’s reference count when it is deleted.

The Py_NewRef () function can be used to create a strong reference to an object. Usually, the
Py_DECREF () function must be called on the strong reference before exiting the scope of the strong refer-
ence, to avoid leaking one reference.

See also borrowed reference.

text encoding A string in Python is a sequence of Unicode code points (in range U+0000-U+10FFFF). To store
or transfer a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as “encoding”, and recreating the string from the sequence
of bytes is known as “decoding”.

There are a variety of different text serialization codecs, which are collectively referred to as “text encodings”.

text file A file object able to read and write st r objects. Often, a text file actually accesses a byte-oriented datastream
and handles the fext encoding automatically. Examples of text files are files opened in text mode (' ' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.

See also binary file for a file object able to read and write bytes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (”) or an apostrophe
(). While they don’t provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they can
span multiple lines without the use of the continuation character, making them especially useful when writing
docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits ___class___ attribute or can be retrieved with type (ob7).

type alias A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying rype hints. For example:

70 Appendix A. Glossary

Python Setup and Usage, Release 3.11.3

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplel[int, int, int]]:
pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades (colors: list[Color]) -> list[Color]:
pass

See typing and PEP 484, which describe this functionality.

type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or
return value.

Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid
IDEs with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints ().

See typing and PEP 484, which describe this functionality.

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending
a line: the Unix end-of-line convention '\n"', the Windows convention '\r\n', and the old Macintosh
convention '\r'. See PEP 278 and PEP 3116, as well as bytes.splitlines () for an additional use.

variable annotation An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for 7ype hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section annassign.

See function annotation, PEP 484 and PEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to
install and upgrade Python distribution packages without interfering with the behaviour of other Python appli-
cations running on the same system.

See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the bytecode emitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

7

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

Python Setup and Usage, Release 3.11.3

72

Appendix A. Glossary

APPENDIX
B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you
want to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers
are always welcome!

Many thanks go to:
e Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
* the Docutils project for creating reStructuredText and the Docutils suite;

* Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation.
See Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation
— Thank You!

73

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.11/Misc/ACKS

Python Setup and Usage, Release 3.11.3

74

Appendix B. About these documents

APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https:
/Iwww.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see https://www.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/pst/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation
is a sponsoring member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from | Year Owner GPL compatible?
0.9.0thru1.2 | n/a 1991-1995 | CWI yes
1.3thrul5.2 | 1.2 1995-1999 | CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.13 2.1.2 2002 PSF yes
2.2 and above | 2.1.1 2001-now | PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

75

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

Python Setup and Usage, Release 3.11.3

C.2 Terms and conditions for accessing or otherwise using
Python

Python software and documentation are licensed under the PSF' License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under
that license. See Licenses and Acknowledgements for Incorporated Software for an incomplete list of these licenses.

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.11.3

1. This LICENSE AGREEMENT is between the Python Software Foundation.
—~ ("PSF"), and

the Individual or Organization ("Licensee") accessing and otherwise.
—using Python

3.11.3 software in source or binary form and its associated.
—documentation.

2. Subject to the terms and conditions of this License Agreement, PSF._
—hereby

grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,

analyze, test, perform and/or display publicly, prepare derivative.
—works,

distribute, and otherwise use Python 3.11.3 alone or in any derivative

version, provided, however, that PSF's License Agreement and PSF's.
—notice of

copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All_
—Rights

Reserved" are retained in Python 3.11.3 alone or in any derivative.
—version

prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.11.3 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made.

—~to Python
3.11.3.

4. PSF is making Python 3.11.3 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY..
—OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY.
—REPRESENTATION OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR.
—THAT THE

USE OF PYTHON 3.11.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.11.3
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A.
—RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.11.3, OR ANY.
—~DERIVATIVE

76 Appendix C. History and License

Python Setup and Usage, Release 3.11.3

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOEF.

6. This License Agreement will automatically terminate upon a material.
—breach of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. _
—This License

Agreement does not grant permission to use PSF trademarks or trade name.
—~in a

trademark sense to endorse or promote products or services of Licensee, .
—O0r any

third party.

8. By copying, installing or otherwise using Python 3.11.3, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOEF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 77

Python Setup and Usage, Release 3.11.3

(continued from previous page)

7.

By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

(continues on next page)

78

Appendix C. History and License

Python Setup and Usage, Release 3.11.3

(continued from previous page)

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.3 DOCU-
MENTATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.2. Terms and conditions for accessing or otherwise using Python 79

Python Setup and Usage, Release 3.11.3

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated
in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/
MT/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

80 Appendix C. History and License

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

Python Setup and Usage, Release 3.11.3

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ""AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 81

https://www.wide.ad.jp/

Python Setup and Usage, Release 3.11.3

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

82 Appendix C. History and License

Python Setup and Usage, Release 3.11.3

C.3.6 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software

83

Python Setup and Usage, Release 3.11.3

C.3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "~ "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

84 Appendix C. History and License

Python Setup and Usage, Release 3.11.3

C.3.10 SipHash24

Thefile Python/pyhash. c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algorithm.
It contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod and dtoa

The file Python/dtoa. ¢, which supplies C functions dtoa and strtod for conversion of C doubles to and from
strings, is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/
web/20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains
the following copyright and licensing notice:

/**

*

* The author of this software is David M. Gay.
*

* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*

*

Permission to use, copy, modify, and distribute this software for any

* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy

* or modification of this software and in all copies of the supporting

* documentation for such software.

* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. 1IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY

* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

***/

C.3. Licenses and Acknowledgements for Incorporated Software 85

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

Python Setup and Usage, Release 3.11.3

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available
by the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the
OpenSSL libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corelopenssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

FE R ST T S N S R TR S N S S S S S S N S S e T S S S S N SRS N S T S T S

(continues on next page)

86 Appendix C. History and License

Python Setup and Usage, Release 3.11.3

(continued from previous page)

L I S T I

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eayl@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

ERE I A B S S N S N S S SN ST S S N SN T S ST S S N S S T e R e N T N S N S

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:
"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).
4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 87

Python Setup and Usage, Release 3.11.3

(continued from previous page)

* QUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*

* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence

* [including the GNU Public Licence.]

*/

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
——with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINEFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.14 libffi

The _ctypes extension is built using an included copy of the libffi sources unless the build is configured
——with-system-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "~ "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

(continues on next page)

88 Appendix C. History and License

Python Setup and Usage, Release 3.11.3

(continued from previous page)

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too
old to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean—-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3.16 cfuhash

The implementation of the hash table used by the t racemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 89

Python Setup and Usage, Release 3.11.3

(continued from previous page)

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
——with-system-1libmpdec

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/c14n-20/) was retrieved from the
W3C website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

(continues on next page)

90 Appendix C. History and License

https://www.w3.org/TR/xml-c14n2-testcases/

Python Setup and Usage, Release 3.11.3

(continued from previous page)

* Redistributions of works must retain the original copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the original copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project:

Programming the AdLib/Sound Blaster

FM Music Chips

Version 2.0 (24 Feb 1992)

Copyright (c) 1991, 1992 by Jeffrey S. Lee

jlee@smylex.uucp

Warranty and Copyright Policy

This document is provided on an "as-is" basis, and its author makes
no warranty or representation, express or implied, with respect to
its quality performance or fitness for a particular purpose. In no
event will the author of this document be liable for direct, indirect,
special, incidental, or consequential damages arising out of the use
or inability to use the information contained within. Use of this
document is at your own risk.

This file may be used and copied freely so long as the applicable
copyright notices are retained, and no modifications are made to the
text of the document. No money shall be charged for its distribution
beyond reasonable shipping, handling and duplication costs, nor shall
proprietary changes be made to this document so that it cannot be
distributed freely. This document may not be included in published
material or commercial packages without the written consent of its
author.

C.3. Licenses and Acknowledgements for Incorporated Software 91

Python Setup and Usage, Release 3.11.3

92

Appendix C. History and License

APPENDIX
D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

93

Python Setup and Usage, Release 3.11.3

94

Appendix D. Copyright

INDEX

Non-alphabetical

class variable, 61

...59 command line option

_? -?2,5
command line option,5 -B,6

SAPPDATAS, 40 ~b, 6
2t03,59 ——build, 28
>>>, 59 -c, 3

future 63 —-check-hash-based-pycs, 6
" slots _’69 CONFIG_SITE, 28

A

abstract base class, 59
annotation, 59

argument, 59

asynchronous context manager, 60
asynchronous generator, 60
asynchronous generator iterator, 60
asynchronous iterable, 60
asynchronous iterator, 60
attribute, 60

awaitable, 60

B
-B

command line option,6
-b

command line option,6
BDFL, 60
binary file, 60
borrowed reference, 60
--build

command line option,28
bytecode, 61
bytes-like object, 60

C

-c
command line option,3

callable, 61

callback, 61

C-contiguous, 61

CFLAGS, 31, 32

CFLAGS_NODIST, 31, 33

——check-hash-based-pycs
command line option,6

class, 61

-d, 6

——disable-ipve6, 21
——disable-test-modules, 23
-E, 6
—-—enable-big-digits, 21
——enable—-framework, 28

——enable-loadable-sglite-extensions,

21
—-—enable-optimizations, 24
——enable-profiling, 24
—-—enable-pystats, 22
——enable-shared, 26
--enable-universalsdk, 28
——enable-wasm-dynamic-linking, 23
—-—enable-wasm-pthreads, 23
—-—exec-prefix, 23
-h, 5
--help, 5
—--help-all,>5
—-help-env, 5
—--help-xoptions,5
—-host, 28
-1,6
-i,6
-J,9
-m, 4
-0, 6
-00, 6
-P,6
——prefix, 23
-q, 7
-R,7
-S,7
-s,7
-u, 7
-V, 5
-v, 7

95

Python Setup and Usage, Release 3.11.3

—--—version, 5

-W, 7
——with-address—-sanitizer, 26
--with-assertions, 25
—-with-build-python, 28

——with-builtin-hashlib-hashes, 27

——with-computed-gotos, 24
—-with-cxx-main, 21
—-—with-dbmliborder, 22
—-—with-dtrace, 25
-—with-emscripten-target, 23
——with-ensurepip, 23
——with-framework—-name, 28
—-—-with-hash-algorithm, 27
——with-1libc, 27
——with-1ibm, 26
——with-1ibs, 26
—--with-1to, 24
——with-memory-sanitizer, 26
-—-with-openssl, 27
--with-openssl-rpath, 27

——without-c—-locale-coercion, 22
——without-decimal-contextvar, 22

—-without-doc-strings, 24
—--without-pymalloc, 24
—--without-readline, 26

——without-static—-1libpython, 26

--with-pkg-config, 22
——with-platlibdir, 22
—--with-pydebug, 25
——with-readline, 26

——with-ssl-default-suites, 27

——with-suffix, 21
-—with-system—-expat, 26
——with-system-ffi, 26
-—with-system-libmpdec, 26
—-—with-trace-refs, 25
-—with-tzpath, 21

——with-undefined-behavior—-sanitizer,

26
——with-universal-archs, 28
—-—with-valgrind, 25
—-—with-wheel-pkg-dir, 22
-X, 8
-x,8

complex number, 61
CONFIG_SITE

command line option, 28

context manager, 61
context variable, 61
contiguous, 61
coroutine, 61
coroutine function, 61
CPPFLAGS, 30, 33

command line option,6
decorator, 61
descriptor, 62
dictionary, 62
dictionary comprehension, 62
dictionary view, 62
——disable-ipv6

command line option, 2l
——disable-test-modules

command line option,?23
docstring, 62
duck-typing, 62

E
-E
command line option,6
EAFP, 62
—-—enable-big-digits
command line option,2l
——enable-framework
command line option,28

——enable-loadable-sglite-extensions

command line option, 21
——enable-optimizations

command line option, 24
——enable-profiling

command line option, 24
—-—enable-pystats

command line option, 22
——enable-shared

command line option, 26
——enable-universalsdk

command line option, 28

——enable-wasm-dynamic-1linking

command line option,?23
——enable-wasm-pthreads
command line option,?23
environment variable
$APPDATA%, 40
BASECFLAGS, 31
BASECPPFLAGS, 30
BLDSHARED, 33
Cc, 31
CCSHARED, 32
CFLAGS, 31, 32
CFLAGS_ALIASING, 31
CFLAGS_NODIST, 31,33
CFLAGSFORSHARED, 32
CONFIGURE_CFLAGS, 31

CONFIGURE_CFLAGS_NODIST, 31

CONFIGURE_CPPFLAGS, 30
CONFIGURE_LDFLAGS, 32

CONFIGURE_LDFLAGS_NODIST, 33

CPPFLAGS, 30, 33

CPython, 61 CxXX, 31
EXTRA_CFLAGS, 31
D LDFLAGS, 30, 32, 33
-d LDFLAGS_NODIST, 32, 33
96 Index

Python Setup and Usage, Release 3.11.3

LDSHARED, 33

LIBS, 33

LINKCC, 32

MAINCC, 31

OPT, 25, 31

PATH, 10, 18, 36, 38, 4345, 47
PATHEXT, 38

PROFILE_TASK, 24

PURIFY, 32
PY_BUILTIN_MODULE_CFLAGS, 32
PY_CFLAGS, 32
PY_CFLAGS_NODIST, 32
PY_CORE_CFLAGS, 32
PY_CORE_LDFLAGS, 33
PY_CPPFLAGS, 30

PY_LDFLAGS, 33
PY_LDFLAGS_NODIST, 33
PY_PYTHON, 48
PY_STDMODULE_CFLAGS, 32
PYLAUNCHER_ALLOW_INSTALL, 49
PYLAUNCHER_ALWAYS_INSTALL, 49
PYLAUNCHER_DEBUG, 49
PYLAUNCHER_DRYRUN, 49
PYLAUNCHER_NO_SEARCH_PATH, 47
PYTHON*, 46
PYTHONASYNCIODEBRUG, 12
PYTHONBREAKPOINT, 10
PYTHONCASEOK, 11
PYTHONCOERCECLOCALE, 13, 22
PYTHONDEBRUG, 6, 10
PYTHONDEVMODE, 14
PYTHONDONTWRITEBYTECODE, 6, 11
PYTHONDUMPREFS, 14, 25
PYTHONDUMPREFSFILE=FILENAME, 14
PYTHONEXECUTABLE, 12
PYTHONFAULTHANDLER, 8, 12
PYTHONHASHSEED, 7, 11
PYTHONHOME, 6, 10, 50, 51
PYTHONINSPECT, 6, 11
PYTHONINTMAXSTRDIGITS,S, 11
PYTHONIOENCODING, 11, 14
PYTHONLEGACYWINDOWSEFSENCODING, 13
PYTHONLEGACYWINDOWSSTDIO, 11, 13
PYTHONMALLOC, 12, 13, 24
PYTHONMALLOCSTATS, 13
PYTHONNODEBUGRANGES, 9, 14
PYTHONNOUSERSITE, 11
PYTHONOPTIMIZE, 6, 10
PYTHONPATH, 6, 10, 43, 50, 51, 54
PYTHONPLATLIBDIR, 10
PYTHONPROFILEIMPORTTIME, 8, 12
PYTHONPYCACHEPREFIX,9, 11
PYTHONSAFEPATH, 7, 10
PYTHONSTARTUP, 6, 10
PYTHONTHREADDERUG, 14, 25
PYTHONTRACEMALLOC, 8, 12
PYTHONUNBUFFERED, 7, 11
PYTHONUSERBASE, 12

PYTHONUTFS, 9, 14, 44
PYTHONVERBOSE, 7, 11
PYTHONWARNDEFAULTENCODING, 9, 14
PYTHONWARNINGS, 8, 12
TEMP, 40
—-—exec-prefix
command line option,?23
expression, 62
extension module, 62

F

f-string, 62

file object, 62

file-like object, 63

filesystem encoding and error
handler, 63

finder, 63

floor division, 63

Fortran contiguous, 61

function, 63

function annotation, 63

G

garbage collection, 63
generator, 63

generator expression, 64
generator iterator, 64
generic function, 64
generic type, 64

GIL, 64

global interpreter lock, 64

Fl
-h

command line option,5
hash-based pyc, 64
hashable, 64
—--help

command line option,S5
——help-all

command line option,5
——-help-env

command line option,5
——help-xoptions

command line option,5
——host

command line option, 28

-1
command line option,6

command line option,6
IDLE, 64
immutable, 64
import path, 65
importer, 65
importing, 65

Index

97

Python Setup and Usage, Release 3.11.3

interactive, 65 P
interpreted, 65 -p
interpreter shutdown, 65

command line option,6
iterable, 65

package, 67
iterator, 65 parameter, 67
J PATH, 10, 18, 36, 38, 4345, 47
path based finder, 68
-J path entry, 68
command line option,9 path entry finder, 68
path entry hook, 68
K path-like object, 68
key function, 65 PATHEXT, 38
keyword argument, 66 PEP, 68
portion, 68
L positional argument, 68
lambda, 66 —-prefix
LBYL, 66 command line option,?23
LDFLAGS, 30, 32, 33 PROFILE_TASK, 24
LDFLAGS_NODIST, 33 provisional API, 68
list, 66 provisional package, 69
list comprehension, 66 PY_PYTHON, 48
loader, 66 PYLAUNCHER_ALLOW_INSTALL, 49
locale encoding, 66 PYLAUNCHER_ALWAYS_INSTALL, 49
PYLAUNCHER_DEBUG, 49
“A PYLAUNCHER_DRYRUN, 49

PYLAUNCHER_NO_SEARCH_PATH, 47

-m
command line option,4 Python 3000, 69
magic Python Enhancement Proposals
method, 66 PEP 1,68
magic method, 66 PEP 8,57
mapping, 66 PEP 11, 35,52
meta path finder, 66 PEP 238,03
metaclass, 66 PEP 278,71
method, 66 PEP 302, 63, 66
mac_;ic 66 PEP 338,4
special, 70 PEP 343,61
method resolution order, 66 PEP 362,060, 68
module, 67 PEP 370,7,12
module spec, 67 PEP 397,45
MRO, 67 PEP 411,69
mut,able 67 PEP 420,63, 67,68
’ PEP 443, 64
N PEP 451,63
PEP 483,64
named tuple, 67 ’
namespacz 67 PEP 484,59, 63, 64,71
’ PEP 488,6
namespace package, 67
PEP 492,60, 61
nested scope, 67
PEP 498,62
new-style class, 67
PEP 514,45
@) PEP 519,68
PEP 525,60
- . . PEP 526,59, 71
'comma;nd line option,6 PEP 528 44
object, 6 PEP 529, 13,44
00 . , PEP 538, 14,22
command line option,6 PED 585,64
oF 2 PEP 3116,71
PEP 3155, 69

98 Index

Python Setup and Usage, Release 3.11.3

PYTHON*, 46
PYTHONCOERCECLOCALE, 22
PYTHONDEBUG, 6
PYTHONDONTWRITEBYTECODE, 6
PYTHONDUMPREFS, 25
PYTHONFAULTHANDLER, 8
PYTHONHASHSEED, 7, 11
PYTHONHOME, 6, 10, 50, 51
Pythonic, 69
PYTHONINSPECT, 6
PYTHONINTMAXSTRDIGITS, 8
PYTHONIOENCODING, 14
PYTHONLEGACYWINDOWSSTDIO, |1
PYTHONMALLOC, 13, 24
PYTHONNODEBUGRANGES, 9
PYTHONOPTIMIZE, 6
PYTHONPATH, 6, 10, 43, 50, 51, 54
PYTHONPROFILEIMPORTTIME, 8
PYTHONPYCACHEPREFIX, 9
PYTHONSAFEPATH, 7
PYTHONSTARTUP, 6
PYTHONTHREADDEBUG, 25
PYTHONTRACEMALLOC, 8
PYTHONUNBUFFERED, 7
PYTHONUTEFS, 9, 14, 44
PYTHONVERBOSE, 7
PYTHONWARNDEFAULTENCODING, 9
PYTHONWARNINGS, 8

—-q
command line option,7
qualified name, 69

-R

command line option,7
reference count, 69
regular package, 69

S
-5

command line option,7
-s

command line option,7
sequence, 70
set comprehension, 70
single dispatch, 70
slice, 70
special

method, 70
special method, 70
statement, 70
strong reference, 70

T

TEMP, 40
text encoding, 70

text file, 70
triple—-quoted string, 70
type, 70

type alias, 70

type hint,71

-u
command line option,7
universal newlines, 71

Vv
-V

command line option,5
-v

command line option,7
variable annotation,71
—-—-version

command line option,5
virtual environment, 71
virtual machine, 71

W
-W
command line option,7
—--with-address—-sanitizer
command line option, 26
-—-with-assertions
command line option, 25
—-—with-build-python
command line option,28

——with-builtin-hashlib-hashes

command line option, 27
—-—with-computed-gotos

command line option, 24
——with-cxx-main

command line option, 2l
——with-dbmliborder

command line option,?22
—--with-dtrace

command line option,?25
—--with-emscripten-target

command line option,?23
—-—with-ensurepip

command line option, 23
——with-framework—-name

command line option,28
——with-hash—-algorithm

command line option, 27
-—with-1libc

command line option, 27
——with-1libm

command line option,26
-—with-1libs

command line option, 26
—-—with-1to

command line option, 24
——with-memory-sanitizer

Index

Python Setup and Usage, Release 3.11.3

command line option, 26
—--with-openssl

command line option, 27
——with-openssl-rpath

command line option, 27
—-—without-c-locale-coercion

command line option,?22
—--without-decimal-contextvar

command line option, 22
—--without-doc-strings

command line option, 24
—-—-without-pymalloc

command line option, 24
—--without-readline

command line option, 26
——without-static-libpython

command line option, 26
—-with-pkg-config

command line option, 22
——with-platlibdir

command line option, 22
—-—with-pydebug

command line option,25
—--with-readline

command line option, 26
—-with-ssl-default-suites

command line option, 27
——with-suffix

command line option, 2l
—--with-system-expat

command line option, 26
——-with-system—-£ffi

command line option, 26
——with-system-libmpdec

command line option, 26
—--with-trace-refs

command line option,25
-——with-tzpath

command line option, 2l

——with-undefined-behavior—-sanitizer

command line option, 26
——with-universal-archs

command line option, 28
-—with-valgrind

command line option,25
——with-wheel-pkg-dir

command line option, 22

-X
command line option,8

command line option, 8

Z

Zen of Python,71

100

Index

	Command line and environment
	Command line
	Interface options
	Generic options
	Miscellaneous options
	Options you shouldn’t use

	Environment variables
	Debug-mode variables

	Using Python on Unix platforms
	Getting and installing the latest version of Python
	On Linux
	On FreeBSD and OpenBSD
	On OpenSolaris

	Building Python
	Python-related paths and files
	Miscellaneous
	Custom OpenSSL

	Configure Python
	Configure Options
	General Options
	WebAssembly Options
	Install Options
	Performance options
	Python Debug Build
	Debug options
	Linker options
	Libraries options
	Security Options
	macOS Options
	Cross Compiling Options

	Python Build System
	Main files of the build system
	Main build steps
	Main Makefile targets
	C extensions

	Compiler and linker flags
	Preprocessor flags
	Compiler flags
	Linker flags

	Using Python on Windows
	The full installer
	Installation steps
	Removing the MAX_PATH Limitation
	Installing Without UI
	Installing Without Downloading
	Modifying an install

	The Microsoft Store package
	Known issues
	Redirection of local data, registry, and temporary paths

	The nuget.org packages
	The embeddable package
	Python Application
	Embedding Python

	Alternative bundles
	Configuring Python
	Excursus: Setting environment variables
	Finding the Python executable

	UTF-8 mode
	Python Launcher for Windows
	Getting started
	From the command-line
	Virtual environments
	From a script
	From file associations

	Shebang Lines
	Arguments in shebang lines
	Customization
	Customization via INI files
	Customizing default Python versions

	Diagnostics
	Dry Run
	Install on demand
	Return codes

	Finding modules
	Additional modules
	PyWin32
	cx_Freeze

	Compiling Python on Windows
	Other Platforms

	Using Python on a Mac
	Getting and Installing MacPython
	How to run a Python script
	Running scripts with a GUI
	Configuration

	The IDE
	Installing Additional Python Packages
	GUI Programming on the Mac
	Distributing Python Applications on the Mac
	Other Resources

	Editors and IDEs
	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	PSF LICENSE AGREEMENT FOR PYTHON 3.11.3
	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.3 DOCUMENTATION

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister
	Sockets
	Asynchronous socket services
	Cookie management
	Execution tracing
	UUencode and UUdecode functions
	XML Remote Procedure Calls
	test_epoll
	Select kqueue
	SipHash24
	strtod and dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite
	Audioop

	Copyright
	Index

