Python Tutorial
Release 3.11.3

Guido van Rossum and the Python development team

June 06, 2023

Python Software Foundation
Email: docs@python.org

Whetting Your Appetite

Using the Python Interpreter
Invoking the Interpreter
Argument Passing
Interactive Mode
The Interpreter and Its Environment
Source Code Encoding

An Informal Introduction to Python
Using Python as a Calculator

CONTENTS

ListS . . . o e e e e e e 14

First Steps Towards Programming

More Control Flow Tools
if Statements

for Statements
The range () Function
break and continue Statements, and e 1 se Clauses on Loops
pass Statements
match Statements
Defining Functions
More on Defining Functions
Default Argument Values
Keyword Arguments
Special parameters

Arbitrary Argument Lists

Unpacking Argument Lists
Lambda Expressions
Documentation Strings
Function Annotations

Intermezzo: Coding Style

Data Structures
More on Lists
Using Lists as Stacks
Using Lists as Queues
List Comprehensions
Nested List Comprehensions
The del statement

Tuples and Sequences e e e e e e e 38

10

5.6 Looping Techniques i i e e e e e
57 Moreon Conditionsl e e e e e e e e e e e
5.8 Comparing Sequences and Other Types o o i i i v it e it
Modules
6.1 MoreonModules e e e e e
6.1.1 Executingmodules as sCripts o
6.1.2 The Module Search Path
6.1.3 “Compiled” Pythonfiles
6.2 Standard Modules
6.3 Thedir () Function e
6.4 Packages e e e e
6.4.1 Importing * FromaPackage
6.4.2 Intra-package References
6.4.3 Packages in Multiple Directories
Input and Output
7.1 Fancier Output Formatting e
7.1.1 Formatted String Literals
7.1.2 The String format() Method e
7.1.3 Manual String Formatting e
7.1.4 Oldstring formatting e
7.2 Readingand Writing Files
7.2.1 Methodsof File Objects
7.2.2 Saving structured data with Json L e

Errors and Exceptions

8.1 Syntax Errors L e e
8.2 EXCEPHONS v e e e e e e e e e e e e e e e e e e e
8.3 Handling EXxceptions i i i i e e e e e e e e e e
8.4 Raising Exceptions L e
8.5 Exception Chaining L e e
8.6 User-defined EXceptions i i e e
8.7 Defining Clean-up ACtions i i e e e e e e
8.8 Predefined Clean-up ACHONS o v v i i e e e e e e e e e e e e e e e e e
8.9 Raising and Handling Multiple Unrelated Exceptions
8.10 Enriching Exceptions with Notes e
Classes
9.1 A Word About Namesand Objects e
9.2 Python Scopes and Namespaces e
9.2.1 Scopes and Namespaces Example
93 AFirstLookatClasses e
9.3.1 Class Definition Syntax 0 v v i i e e e e e e e e
932 Class ObJects o v v i it e e e e e e e e e e e e
9.33 Instance Objects L e
9.3.4 Method Objects i e e
9.3.5 Classand Instance Variables
94 RandomRemarks
9.5 Imheritance
9.5.1 Multiple Inheritance L
9.6 Private Variables L
9.7 Oddsand Ends e
0.8 Tterators L
0.9 Generatorso e e e
9.10 Generator Expressions L Lo e

Brief Tour of the Standard Library
10.1 Operating System Interface 0 e e

43
44
45
45
46
46
47
48
49
50
50

51
51
52
53
54
55
55
56
57

59
59
59
60
62
63
64
64
65
66
67

69
69
70
71
72
72
72
73
73
74
75
76
77
78
78
79
80
81

83

11

12

13

14

15

16

10.2 File Wildcards e e e e e e 83

10.3 Command Line ATgUMeNts v v v v v it e e e e e e e e e e e e e e e e e 84
10.4 Error Output Redirection and Program Termination 84
10.5 String Pattern Matching L 84
10.6 MathematiCs v v i e 85
10.7 Internet ACCESS . . . v v v v v i e et e e e e e e e e e e e e e 85
10.8 Datesand TImes o o o i it e e e e e e e e e 86
10.9 Data COMPIeSSION . . . v v v v v v v e 86
10.10 Performance Measurement oo e e e e e e e e e 86
10.11 Quality Control e 87
10.12 Batteries Included e e e e e 87
Brief Tour of the Standard Library — Part I1 89
11.1 Output Formatting e e e 89
11.2 Templating e e e e e 90
11.3 Working with Binary Data Record Layouts 91
11.4 Multi-threading o e e e e e e e e e 91
115 Logging v v o o e e e e e e e e e e e 92
11.6 Weak References i i i e e e e e e e 92
11.7 Tools for Working with Lists e 93
11.8 Decimal Floating Point Arithmetic 94
Virtual Environments and Packages 95
12.1 Introduction i i e 95
12.2 Creating Virtual Environments e 95
12.3 Managing Packages withpip L e e e 96
What Now? 99
Interactive Input Editing and History Substitution 101
14.1 Tab Completion and History Editing 101
14.2 Alternatives to the Interactive Interpreter oL 101
Floating Point Arithmetic: Issues and Limitations 103
15.1 Representation Error 105
Appendix 109
16.1 Interactive Mode e e e e e e e e e e e e e 109
16.1.1 ErrorHandling 109
16.1.2 Executable Python Scripts e 109
16.1.3 The Interactive Startup File e 110
16.1.4 The Customization Modules e 110
Glossary 111
About these documents 125
B.1 Contributors to the Python Documentation 125
History and License 127
C.1 Historyof the software e 127
C.2 Terms and conditions for accessing or otherwise using Python 128
C.2.1 PSFLICENSE AGREEMENT FOR PYTHON3.11.3 128
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 129
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 130
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 131

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.3 DOCUMEN-
TATION . . . e e e 131
C.3 Licenses and Acknowledgements for Incorporated Software 132
C.3.1 Mersenne TWISIET o v v i it e e e e e e e e e e e e e e e e 132
C.3.2 Sockets i i e e e e e e e e e e e 133

C33
C34
C35
C3.6
C.3.7
C3.38
C3.9
C.3.10
C3.11
C3.12
C3.13
C3.14
C3.15
C3.16
C3.17
C3.18
C3.19

D Copyright

Index

ASynchronous SOCKEt SEIVICES v v v v v v v e e i e e e e e e e e 133

Cookie Management v v v v e e e e e e e e e e e e e e e e e e e 134
Execution tracing e e e e 134
UUencode and UUdecode functions o v v i i v it it e 135
XML Remote Procedure Calls 135
test_epoll 136
Selectkqueueo e e e e e e e 136
SipHash24 o e e e 137
strtodand dtoa L e e e 137
OpenSSL e 138
EXPAL . o o o e e e e e e e e e e e e e e 140
1§ 5 140
7111 o 141
cfuhash e 141
libmpdec e e e 142
W3C CIANtest Suite o o i e e e e e e e e e e e e e e 142
Audioop e e e e e e e 143

145

147

Python Tutorial, Release 3.11.3

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together with
its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on
most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python web site, https://www.python.org/, and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules, programs and tools, and additional
documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system. It
helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the tutorial
can be read off-line as well.

For a description of standard objects and modules, see library-index. reference-index gives a more formal definition
of the language. To write extensions in C or C++, read extending-index and c-api-index. There are also several books
covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs, and
you will be ready to learn more about the various Python library modules described in library-index.

The Glossary is also worth going through.

CONTENTS 1

https://www.python.org/

Python Tutorial, Release 3.11.3

2 CONTENTS

CHAPTER
ONE

WHETTING YOUR APPETITE

If you do much work on computers, eventually you find that there’s some task you’d like to automate. For example,
you may wish to perform a search-and-replace over a large number of text files, or rename and rearrange a bunch
of photo files in a complicated way. Perhaps you’d like to write a small custom database, or a specialized GUI
application, or a simple game.

If you're a professional software developer, you may have to work with several C/C++/Java libraries but find the usual
write/compile/test/re-compile cycle is too slow. Perhaps you're writing a test suite for such a library and find writing
the testing code a tedious task. Or maybe you’ve written a program that could use an extension language, and you
don’t want to design and implement a whole new language for your application.

Python is just the language for you.

You could write a Unix shell script or Windows batch files for some of these tasks, but shell scripts are best at moving
around files and changing text data, not well-suited for GUI applications or games. You could write a C/C++/Java
program, but it can take a lot of development time to get even a first-draft program. Python is simpler to use, available
on Windows, macOS, and Unix operating systems, and will help you get the job done more quickly.

Python is simple to use, but it is a real programming language, offering much more structure and support for large
programs than shell scripts or batch files can offer. On the other hand, Python also offers much more error checking
than C, and, being a very-high-level language, it has high-level data types built in, such as flexible arrays and dictio-
naries. Because of its more general data types Python is applicable to a much larger problem domain than Awk or
even Perl, yet many things are at least as easy in Python as in those languages.

Python allows you to split your program into modules that can be reused in other Python programs. It comes with a
large collection of standard modules that you can use as the basis of your programs — or as examples to start learning
to program in Python. Some of these modules provide things like file I/O, system calls, sockets, and even interfaces
to graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, which makes it easy to experiment with
features of the language, to write throw-away programs, or to test functions during bottom-up program development.
It is also a handy desk calculator.

Python enables programs to be written compactly and readably. Programs written in Python are typically much
shorter than equivalent C, C++, or Java programs, for several reasons:

* the high-level data types allow you to express complex operations in a single statement;
* statement grouping is done by indentation instead of beginning and ending brackets;
* no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that may
only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you can
link the Python interpreter into an application written in C and use it as an extension or command language for that
application.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing to do with
reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

Python Tutorial, Release 3.11.3

Now that you are all excited about Python, you’ll want to examine it in some more detail. Since the best way to learn
a language is to use it, the tutorial invites you to play with the Python interpreter as you read.

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system through examples, begin-
ning with simple expressions, statements and data types, through functions and modules, and finally touching upon
advanced concepts like exceptions and user-defined classes.

4 Chapter 1. Whetting Your Appetite

CHAPTER
TWO

USING THE PYTHON INTERPRETER

2.1 Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python3.11 on those machines where it is
available; putting /usr/local/bin in your Unix shell’s search path makes it possible to start it by typing the
command:

python3.11

to the shell.! Since the choice of the directory where the interpreter lives is an installation option, other places are
possible; check with your local Python guru or system administrator. (E.g., /usr/local/python is a popular
alternative location.)

On Windows machines where you have installed Python from the Microsoft Store, the python3. 11 command will
be available. If you have the py.exe launcher installed, you can use the py command. See setting-envvars for other
ways to launch Python.

Typing an end-of-file character (Control-D on Unix, Control-Z on Windows) at the primary prompt causes
the interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the following
command: quit ().

The interpreter’s line-editing features include interactive editing, history substitution and code completion on systems
that support the GNU Readline library. Perhaps the quickest check to see whether command line editing is supported
is typing Cont rol1-P to the first Python prompt you get. If it beeps, you have command line editing; see Appendix
Interactive Input Editing and History Substitution for an introduction to the keys. If nothing appears to happen, or if
~P is echoed, command line editing isn’t available; you’ll only be able to use backspace to remove characters from
the current line.

The interpreter operates somewhat like the Unix shell: when called with standard input connected to a tty device, it
reads and executes commands interactively; when called with a file name argument or with a file as standard input, it
reads and executes a script from that file.

A second way of starting the interpreteris python —-c command [arg] ..., whichexecutes the statement(s)
in command, analogous to the shell’s —c option. Since Python statements often contain spaces or other characters
that are special to the shell, it is usually advised to quote command in its entirety.

Some Python modules are also useful as scripts. These can be invoked using python -m module [arg] ...,
which executes the source file for module as if you had spelled out its full name on the command line.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passing —1i before the script.

All command line options are described in using-on-general.

! On Unix, the Python 3.x interpreter is by default not installed with the executable named python, so that it does not conflict with a
simultaneously installed Python 2.x executable.

https://tiswww.case.edu/php/chet/readline/rltop.html

Python Tutorial, Release 3.11.3

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are turned into a list of strings
and assigned to the argv variable in the sys module. You can access this list by executing import sys. The
length of the list is at least one; when no script and no arguments are given, sys.argv [0] is an empty string.
When the script name is given as ' —' (meaning standard input), sys.argv[0] issetto '—"'. When —c command
isused, sys.argv[0] issetto '—c'. When —m module is used, sys.argv [0] is set to the full name of the
located module. Options found after —c command or —m module are not consumed by the Python interpreter’s option
processing but left in sys . argv for the command or module to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be in inferactive mode. In this mode it prompts for
the next command with the primary prompt, usually three greater-than signs (>>>); for continuation lines it prompts
with the secondary prompt, by default three dots (. . .). The interpreter prints a welcome message stating its version
number and a copyright notice before printing the first prompt:

$ python3.11

Python 3.11 (default, April 4 2021, 09:25:04)

[GCC 10.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look at this i f statement:

>>> the_world_is_flat = True
>>> if the_world_is_flat:
print ("Be careful not to fall off!")

Be careful not to fall off!

For more on interactive mode, see Interactive Mode.

2.2 The Interpreter and Its Environment

2.2.1 Source Code Encoding

By default, Python source files are treated as encoded in UTF-8. In that encoding, characters of most languages in
the world can be used simultaneously in string literals, identifiers and comments — although the standard library
only uses ASCII characters for identifiers, a convention that any portable code should follow. To display all these
characters properly, your editor must recognize that the file is UTF-8, and it must use a font that supports all the
characters in the file.

To declare an encoding other than the default one, a special comment line should be added as the first line of the file.
The syntax is as follows:

’# *— coding: encoding —*

where encoding is one of the valid codecs supported by Python.

For example, to declare that Windows-1252 encoding is to be used, the first line of your source code file should be:

’# —-*— coding: cpl252 —*-

One exception to the first line rule is when the source code starts with a UNIX “shebang” line. In this case, the encoding
declaration should be added as the second line of the file. For example:

6 Chapter 2. Using the Python Interpreter

Python Tutorial, Release 3.11.3

#!/usr/bin/env python3
—*- coa cpl252 —*-—

2.2. The Interpreter and Its Environment 7

Python Tutorial, Release 3.11.3

8 Chapter 2. Using the Python Interpreter

CHAPTER
THREE

AN INFORMAL INTRODUCTION TO PYTHON

In the following examples, input and output are distinguished by the presence or absence of prompts (»> and ...):
to repeat the example, you must type everything after the prompt, when the prompt appears; lines that do not begin
with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an example means
you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments
in Python start with the hash character, #, and extend to the end of the physical line. A comment may appear at the
start of a line or following whitespace or code, but not within a string literal. A hash character within a string literal
is just a hash character. Since comments are to clarify code and are not interpreted by Python, they may be omitted
when typing in examples.

Some examples:

this is the first comment

spam = 1 # and this is the second comment
... and now a third!
text = "# This is not a comment because it's inside quotes."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt, >>>. (It shouldn’t
take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operators +, —, * and / work just like in most other languages (for example, Pascal or
C); parentheses (()) can be used for grouping. For example:

>>> 2 + 2

4

>>> 50 - 5*%6

20

>>> (50 — 5*6) / 4

5.0

>>> 8 / 5 # division always returns a floating point number
1.6

The integer numbers (e.g. 2, 4, 20) have type int, the ones with a fractional part (e.g. 5.0, 1.6) have type
float. We will see more about numeric types later in the tutorial.

Division (/) always returns a float. To do floor division and get an integer result you can use the // operator; to
calculate the remainder you can use %:

Python Tutorial, Release 3.11.3

>>> 17 / 3 # classic division returns a float

5.666666666666667

>>>

>>> 17 // 3 # floor division discards the fractional part

5

>>> 17 % 3 # the % operator returns the remainder of the division
2

>>> 5 * 3 + 2 # floored quotient * divisor + remainder

17

With Python, it is possible to use the * * operator to calculate powers':

>>> 5 ** 2 # 5 squared

25

>>> 2 ** 7 # 2 to the power of 7
128

The equal sign (=) is used to assign a value to a variable. Afterwards, no result is displayed before the next interactive
prompt:

>>> width = 20

>>> height = 5 * 9
>>> width * height
900

If a variable is not “defined” (assigned a value), trying to use it will give you an error:

>>> n # try to access an undefined variable
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'n' is not defined

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 4 * 3,75 - 1
14.0

In interactive mode, the last printed expression is assigned to the variable _. This means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price +
113.0625
>>> round(_, 2)
113.06

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create an
independent local variable with the same name masking the built-in variable with its magic behavior.

In addition to int and £ 1oat, Python supports other types of numbers, suchas Decimal and Fraction. Python
also has built-in support for complex numbers, and uses the j or J suffix to indicate the imaginary part (e.g. 3+57).

! Since ** has higher precedence than —, —3**2 will be interpreted as — (3**2) and thus result in —9. To avoid this and get 9, you can use
(=3) **2.

10 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 3.11.3

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be enclosed

in single quotes (' . . . ') or double quotes (" . . . ") with the same result’. \ can be used to escape quotes:
>>> 'spam eggs' # single quotes

'spam eggs'

>>> 'doesn\'t' # use \' to escape the single quote...

"doesn't"

>>> "doesn't" # ...or use double quotes instead

"doesn't"

>>> '"Yes," they said.'

'"Yes," they said.'

>>> "\"vYes, \" they said."
'"Yes, " they said.’

>>> '""Isn\'t," they said.’
'""Isn\'t," they said.'

In the interactive interpreter, the output string is enclosed in quotes and special characters are escaped with back-
slashes. While this might sometimes look different from the input (the enclosing quotes could change), the two strings
are equivalent. The string is enclosed in double quotes if the string contains a single quote and no double quotes,
otherwise it is enclosed in single quotes. The print () function produces a more readable output, by omitting the
enclosing quotes and by printing escaped and special characters:

>>> '""Isn\'t," they said.’

'""Isn\'t," they said.'

>>> print (""Isn\'t," they said.')

"Isn't," they said.

>>> s = 'First line.\nSecond line.' # \n means newline
>>> s # without print(), \n is included in the output
'First line.\nSecond line.'

>>> print (s) # with print (), \n produces a new line
First line.

Second line.

If you don’t want characters prefaced by \ to be interpreted as special characters, you can use raw strings by adding
an r before the first quote:

>>> print ('C:\some\name') # here \n means newline!
C:\some

ame

>>> print (r'C:\some\name"') # note the r before the quote
C:\some\name

There is one subtle aspect to raw strings: a raw string may not end in an odd number of \ characters; see the FAQ
entry for more information and workarounds.

String literals can span multiple lines. One way is using triple-quotes: """ ..."""or '''... """, End of lines
are automatically included in the string, but it’s possible to prevent this by adding a \ at the end of the line. The
following example:

print ("""\

Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

nn vl)

produces the following output (note that the initial newline is not included):

2 Unlike other languages, special characters such as \n have the same meaning with both single (" . . . ') and double (" . . . ™) quotes. The
only difference between the two is that within single quotes you don’t need to escape " (but you have to escape \ ') and vice versa.

3.1. Using Python as a Calculator 11

Python Tutorial, Release 3.11.3

Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

Strings can be concatenated (glued together) with the + operator, and repeated with *:

>>> # 3 times 'un', followed by 'ium'
>>> 3 * 'un' + 'ium'
'unununium’

Two or more string literals (i.e. the ones enclosed between quotes) next to each other are automatically concatenated.

>>> 'Py' 'thon'
'Python'

This feature is particularly useful when you want to break long strings:

>>> text = ('Put several strings within parentheses '
C 'to have them joined together.')

>>> text
'Put several strings within parentheses to have them joined together.'

This only works with two literals though, not with variables or expressions:

>>> prefix = 'Py'
>>> prefix 'thon' # can't concatenate a variable and a string literal
File "<stdin>", line 1
prefix 'thon'

AAAAAAN

SyntaxError: invalid syntax

>>> ('un' * 3) 'ium'
File "<stdin>", line 1
("un' * 3) 'ium'

AAAANA

SyntaxError: invalid syntax

If you want to concatenate variables or a variable and a literal, use +:

>>> prefix + 'thon'
'Python'

Strings can be indexed (subscripted), with the first character having index 0. There is no separate character type; a
character is simply a string of size one:

>>> word = 'Python'

>>> word[0] # character in position 0
IPI

>>> word[5] # character in position 5
lnl

Indices may also be negative numbers, to start counting from the right:

>>> word[—1] # last character

lnl

>>> word[—-2] # second-last character
'O'

>>> word[-6]

IPI

Note that since -0 is the same as 0, negative indices start from -1.

In addition to indexing, slicing is also supported. While indexing is used to obtain individual characters, slicing allows
you to obtain substring:

12 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 3.11.3

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)
le'
>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
'tho'

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the size
of the string being sliced.

>>> word[:2] # character from the beginning to position 2 (excluded)
IPy'

>>> word[4:] # characters from position 4 (included) to the end

lon'

>>> word[—-2:] # characters from the second-last (included) to the end
'OD'

Note how the start is always included, and the end always excluded. This makes sure that s[:1] + s[i:] is
always equal to s:

>>> word[:2] + word[2:]
'Python'’
>>> word[:4] + word[4:]
'Python'

One way to remember how slices work is to think of the indices as pointing between characters, with the left edge of
the first character numbered 0. Then the right edge of the last character of a string of n characters has index n, for
example:

ot —————+
[Pl y |l t |l h|oln|
e i At S
0 1 2 3 4 5 6
-6 -5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...6 in the string; the second row gives the corresponding
negative indices. The slice from i to j consists of all characters between the edges labeled i and j, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For example,
the length of word[1:3] is 2.

Attempting to use an index that is too large will result in an error:

>>> word[42] # the word only has 6 characters
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: string index out of range

However, out of range slice indexes are handled gracefully when used for slicing:

>>> word[4:42]
'Ol’l'
>>> word[42:]

[}

Python strings cannot be changed — they are immutable. Therefore, assigning to an indexed position in the string
results in an error:

>>> word[0] = 'J'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment
>>> word[2:] = 'py'
Traceback (most recent call last):

(continues on next page)

3.1. Using Python as a Calculator 13

Python Tutorial, Release 3.11.3

(continued from previous page)

File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

If you need a different string, you should create a new one:

>>> 'J' + word[1l:]
'Jython'’

>>> word[:2] + 'py'
'"Pypy’

The built-in function 1en () returns the length of a string:

>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34

See also:

textseq Strings are examples of sequence types, and support the common operations supported by such types.
string-methods Strings support a large number of methods for basic transformations and searching.
f-strings String literals that have embedded expressions.

formatstrings Information about string formatting with str. format ().

old-string-formatting The old formatting operations invoked when strings are the left operand of the % operator
are described in more detail here.

3.1.3 Lists

Python knows a number of compound data types, used to group together other values. The most versatile is the /ist,
which can be written as a list of comma-separated values (items) between square brackets. Lists might contain items
of different types, but usually the items all have the same type.

>>> squares = [1, 4, 9, 16, 25]
>>> squares
(1, 4, 9, 1le6, 25]

Like strings (and all other built-in sequence types), lists can be indexed and sliced:

>>> squares[0] # indexing returns the item

1

>>> squares[—1]

25

>>> squares[-3:] # slicing returns a new list
[9, 16, 25]

All slice operations return a new list containing the requested elements. This means that the following slice returns a
shallow copy of the list:

>>> squares|[:]
(1, 4, 9, 16, 25]

Lists also support operations like concatenation:

>>> squares + [36, 49, 64, 81, 100]
(1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Unlike strings, which are immutable, lists are a mutable type, i.e. it is possible to change their content:

14 Chapter 3. An Informal Introduction to Python

Python Tutorial, Release 3.11.3

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here
>>> 4 ** 3 # the cube of 4 is 64, not 65!

64

>>> cubes[3] = 64 # replace the wrong value

>>> cubes
[1, 8, 27, 64, 125]

You can also add new items at the end of the list, by using the append () method (we will see more about methods
later):

>>> cubes.append (216) # add the cube of 6
>>> cubes.append (7 ** 3) # and the cube of 7
>>> cubes

[1, 8, 27, 64, 125, 216, 343]

Assignment to slices is also possible, and this can even change the size of the list or clear it entirely:

>>> letters = ['a', 'b', 'c¢', 'd', 'e', 'f', 'g']
>>> letters

['a', 'b', 'c', 'd', 'e', 'f', 'g'l]

>>> # replace some values

>>> letters([2:5] = ['C', 'D', 'E']

>>> letters

[ta', 'b', 'c', 'n', 'E', 'f', 'g'l

>>> # now remove them

>>> letters[2:5] = []

>>> letters

['a', 'b', '"E', 'g'l]

>>> # clear the list by replacing all the elements with an empty list
>>> letters([:] = []

>>> letters

[]

The built-in function 1en () also applies to lists:

>>> letters = ['a', 'b', 'c', 'd']
>>> len(letters)
4

It is possible to nest lists (create lists containing other lists), for example:

>>> a = ['a', 'b', 'c'l
>>>n = [1, 2, 3]

>>> x = [a, n]

>>> x

[('a', 'b', 'c'l, [1, 2, 3]1]
>>> x[0]

['a', 'b', 'c']

>>> x[0][1]

'bl

3.1. Using Python as a Calculator 15

Python Tutorial, Release 3.11.3

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of the Fibonacci series as follows:

>>> # Fibonacci series:
the sum of two elements defines the next
a, b=20, 1
>>> while a < 10:
print (a)
a, b =Db, atb

Qo Ul w NP PO

This example introduces several new features.

e The first line contains a multiple assignment: the variables a and b simultaneously get the new values 0 and 1.
On the last line this is used again, demonstrating that the expressions on the right-hand side are all evaluated
first before any of the assignments take place. The right-hand side expressions are evaluated from the left to
the right.

* The while loop executes as long as the condition (here: a < 10) remains true. In Python, like in C, any
non-zero integer value is true; zero is false. The condition may also be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequences are false. The test used in the example is a simple
comparison. The standard comparison operators are written the same as in C: < (less than), > (greater than),
== (equal to), <= (less than or equal to), >= (greater than or equal to) and ! = (not equal to).

e The body of the loop is indented: indentation is Python’s way of grouping statements. At the interactive prompt,
you have to type a tab or space(s) for each indented line. In practice you will prepare more complicated input
for Python with a text editor; all decent text editors have an auto-indent facility. When a compound statement
is entered interactively, it must be followed by a blank line to indicate completion (since the parser cannot
guess when you have typed the last line). Note that each line within a basic block must be indented by the
same amount.

e Theprint () function writes the value of the argument(s) it is given. It differs from just writing the expression
you want to write (as we did earlier in the calculator examples) in the way it handles multiple arguments, floating
point quantities, and strings. Strings are printed without quotes, and a space is inserted between items, so you
can format things nicely, like this:

>>> i = 256*%256
>>> print ('The value of i is', 1)
The value of i1 is 65536

The keyword argument end can be used to avoid the newline after the output, or end the output with a different
string:

>>> a, b =20, 1

>>> while a < 1000:
print (a, end=',")
a, b =Db, atb

0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,

16 Chapter 3. An Informal Introduction to Python

https://en.wikipedia.org/wiki/Fibonacci_number

CHAPTER
FOUR

MORE CONTROL FLOW TOOLS

Besides the while statement just introduced, Python uses the usual flow control statements known from other lan-
guages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is the i f statement. For example:

>>> x = int (input ("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:

x = 0

print ('Negative changed to zero')
elif x ==

print ('Zero'")
elif x ==

print ('Single')

else:
print ('More')

More

There can be zero or more e11 f parts, and the e 1 se part is optional. The keyword ‘e11 £’ is short for ‘else if’, and
is useful to avoid excessive indentation. An 1f ... elif ... elif ... sequence is a substitute for the switch or
case statements found in other languages.

If you're comparing the same value to several constants, or checking for specific types or attributes, you may also find
the mat ch statement useful. For more details see match Statements.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating
over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both the iteration
step and halting condition (as C), Python’s for statement iterates over the items of any sequence (a list or a string),
in the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
words = ['cat', 'window', 'defenestrate']
>>> for w in words:
print (w, len(w))
cat 3
window 6
defenestrate 12

17

Python Tutorial, Release 3.11.3

Code that modifies a collection while iterating over that same collection can be tricky to get right. Instead, it is usually
more straight-forward to loop over a copy of the collection or to create a new collection:

Create a sample collection
users = {'Hans': 'active', 'Eléonore': 'inactive', 'BERA': 'active'}

Strategy: Iterate over a copy
for user, status in users.copy () .items{():
if status == 'inactive':
del users[user]

Strategy: Create a new collection
active_users = {}
for user, status in users.items():
if status == 'active':
active_users[user] = status

4.3 The range () Function

If you do need to iterate over a sequence of numbers, the built-in function range () comes in handy. It generates
arithmetic progressions:

>>> for i in range(5):
print (1)

s w N e O

The given end point is never part of the generated sequence; range (10) generates 10 values, the legal indices for
items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the ‘step’):

>>> list (range (5, 10))
[5, 6, 7, 8, 9]

>>> list (range (0, 10, 3))
[0, 3, 6, 9]

>>> list (range(-10, -100, -30))
[-10, -40, -70]

To iterate over the indices of a sequence, you can combine range () and len () as follows:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for 1 in range(len(a)):
print (i, alil)
Mary
had
a

little
lamb

S w N e o

In most such cases, however, it is convenient to use the enumerate () function, see Looping Techniques.

A strange thing happens if you just print a range:

18 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.11.3

>>> range (10)
range (0, 10)

In many ways the object returned by range () behaves as if it is a list, but in fact it isn’t. It is an object which returns
the successive items of the desired sequence when you iterate over it, but it doesn’t really make the list, thus saving
space.

We say such an object is iterable, that is, suitable as a target for functions and constructs that expect something from
which they can obtain successive items until the supply is exhausted. We have seen that the for statement is such a
construct, while an example of a function that takes an iterable is sum () :

>>> sum(range (4)) #0+ 1+ 2 + 3
6

Later we will see more functions that return iterables and take iterables as arguments. In chapter Dara Structures, we
will discuss in more detail about 1ist ().

4.4 break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the innermost enclosing for or while loop.

Loop statements may have an e 1 se clause; it is executed when the loop terminates through exhaustion of the iterable
(with for) or when the condition becomes false (with while), but not when the loop is terminated by a break
statement. This is exemplified by the following loop, which searches for prime numbers:

>>> for n in range (2, 10):
for x in range (2, n):
if n % x == 0:
print (n, 'equals', x, '*', n//x)
break
else:
loop fell through without finding a factor
print(n, 'is a prime number')

is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

O 00 J oy U i W N -

(Yes, this is the correct code. Look closely: the e1se clause belongs to the for loop, not the i f statement.)

When used with a loop, the e 1 se clause has more in common with the e 1 se clause of a t ry statement than it does
with that of i f statements: a t ry statement’s e L se clause runs when no exception occurs, and a loop’s e 1 se clause
runs when no break occurs. For more on the t ry statement and exceptions, see Handling Exceptions.

The cont inue statement, also borrowed from C, continues with the next iteration of the loop:

>>> for num in range (2, 10):
if num % 2 ==
print ("Found an even number", num)
continue

print ("Found an odd number", num)

Found an even number 2
Found an odd number 3
Found an even number 4

(continues on next page)

4.4. break and continue Statements, and else Clauses on Loops 19

Python Tutorial, Release 3.11.3

(continued from previous page)

Found an odd number 5
Found an even number 6
Found an odd number 7
Found an even number 8
Found an odd number 9

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program requires
no action. For example:

>>> while True:
pass # Busy-wait for keyboard interrupt (Ctrl+C)

This is commonly used for creating minimal classes:

>>> class MyEmptyClass:
pass

Another place pass can be used is as a place-holder for a function or conditional body when you are working on
new code, allowing you to keep thinking at a more abstract level. The pass is silently ignored:

>>> def initlog(*args):
pass # Remember to implement this!

4.6 match Statements

A match statement takes an expression and compares its value to successive patterns given as one or more case
blocks. This is superficially similar to a switch statement in C, Java or JavaScript (and many other languages), but it’s
more similar to pattern matching in languages like Rust or Haskell. Only the first pattern that matches gets executed
and it can also extract components (sequence elements or object attributes) from the value into variables.

The simplest form compares a subject value against one or more literals:

def http_error (status):
match status:

case 400:

return "Bad request"
case 404:

return "Not found"
case 418:

return "I'm a teapot"
case _

return "Something's wrong with the internet"

Note the last block: the “variable name” _ acts as a wildcard and never fails to match. If no case matches, none of
the branches is executed.

You can combine several literals in a single pattern using | (“or”):

case 401 | 403 | 404:
return "Not allowed"

Patterns can look like unpacking assignments, and can be used to bind variables:

20 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.11.3

point is an (x, y) tuple
match point:
case (0, 0):
print ("Origin")
case (0, vy):
print (£"Y={y}")
case (x, 0):
print (f"X={x}")
case (x, y):
print (f"X={x}, Y={y}")
case _
raise ValueError ("Not a point")

Study that one carefully! The first pattern has two literals, and can be thought of as an extension of the literal pattern
shown above. But the next two patterns combine a literal and a variable, and the variable binds a value from the subject
(point). The fourth pattern captures two values, which makes it conceptually similar to the unpacking assignment
(x, y) = point.

If you are using classes to structure your data you can use the class name followed by an argument list resembling a
constructor, but with the ability to capture attributes into variables:

class Point:
X: int
y: int

def where_is (point) :
match point:

case Point (x=0, y=0):
print ("Origin")

case Point (x=0, y=y):
print (£"Y={y}")

case Point (x=x, y=0):
print (£"X={x}")

case Point () :
print ("Somewhere else")

case _
print ("Not a point")

You can use positional parameters with some builtin classes that provide an ordering for their attributes (e.g. data-
classes). You can also define a specific position for attributes in patterns by setting the __match_args___ special
attribute in your classes. If it’s set to (“x”, “y”), the following patterns are all equivalent (and all bind the y attribute
to the var variable):

Point (
Point (
Point (
Point (

1, wvar)

1, y=var)
x=1, y=var)
y=var, x=1)

A recommended way to read patterns is to look at them as an extended form of what you would put on the left of
an assignment, to understand which variables would be set to what. Only the standalone names (like var above) are
assigned to by a match statement. Dotted names (like foo . bar), attribute names (the x= and y= above) or class
names (recognized by the “(...)” next to them like Point above) are never assigned to.

Patterns can be arbitrarily nested. For example, if we have a short list of points, we could match it like this:

match points:
case []:
print ("No points")
case [Point (0, 0)]:
print ("The origin")
case [Point(x, y)]:
print (f"Single point {x}, {y/}")

(continues on next page)

4.6. match Statements 21

Python Tutorial, Release 3.11.3

(continued from previous page)

case [Point (0, yl), Point (0, y2)]:

print (f"Two on the Y axis at {yl}, {y2}")
case _

print ("Something else")

We can add an if clause to a pattern, known as a “guard”. If the guard is false, mat ch goes on to try the next case
block. Note that value capture happens before the guard is evaluated:

match point:
case Point(x, y) if x == y:
print (£"Y=X at {x/}")
case Point(x, y):
print (f"Not on the diagonal")

Several other key features of this statement:

* Like unpacking assignments, tuple and list patterns have exactly the same meaning and actually match arbitrary
sequences. An important exception is that they don’t match iterators or strings.

» Sequence patterns support extended unpacking: [x, y, *rest] and (x, y, *rest) work similar to
unpacking assignments. The name after * may also be _, so (x, y, *_) matches a sequence of at least
two items without binding the remaining items.

e Mapping patterns: {"bandwidth": b, "latency": 1} captures the "bandwidth" and
"latency" values from a dictionary. Unlike sequence patterns, extra keys are ignored. An unpacking like
**rest is also supported. (But **__ would be redundant, so it is not allowed.)

 Subpatterns may be captured using the as keyword:

case (Point(x1l, yl1), Point (x2, y2) as p2):

will capture the second element of the input as p2 (as long as the input is a sequence of two points)

* Most literals are compared by equality, however the singletons True, False and None are compared by
identity.

¢ Patterns may use named constants. These must be dotted names to prevent them from being interpreted as
capture variable:

from enum import Enum
class Color (Enum) :

RED = 'red'
GREEN = 'green'
BLUE = 'blue'
color = Color (input ("Enter your choice of 'red', 'blue' or 'green': "))

match color:
case Color.RED:
print ("I see red!")
case Color.GREEN:
print ("Grass is green")
case Color.BLUE:
print ("I'm feeling the blues : (")

For a more detailed explanation and additional examples, you can look into PEP 636 which is written in a tutorial
format.

22 Chapter 4. More Control Flow Tools

https://peps.python.org/pep-0636/

Python Tutorial, Release 3.11.3

4.7 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
"""pPrint a Fibonacci series up to n."""
a, b =20, 1
while a < n:
print (a, end="' ")
a, b = Db, atb
print ()

>>> # Now call the function we just defined:
fib (2000)
0112358 13 21 34 55 89 144 233 377 610 987 1597

The keyword de £ introduces a function definition. It must be followed by the function name and the parenthesized list
of formal parameters. The statements that form the body of the function start at the next line, and must be indented.

The first statement of the function body can optionally be a string literal; this string literal is the function’s documen-
tation string, or docstring. (More about docstrings can be found in the section Documentation Strings.) There are
tools which use docstrings to automatically produce online or printed documentation, or to let the user interactively
browse through code; it’s good practice to include docstrings in code that you write, so make a habit of it.

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely,
all variable assignments in a function store the value in the local symbol table; whereas variable references first look
in the local symbol table, then in the local symbol tables of enclosing functions, then in the global symbol table, and
finally in the table of built-in names. Thus, global variables and variables of enclosing functions cannot be directly
assigned a value within a function (unless, for global variables, named in a global statement, or, for variables of
enclosing functions, named in a nonlocal statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not
the value of the object).! When a function calls another function, or calls itself recursively, a new local symbol table
is created for that call.

A function definition associates the function name with the function object in the current symbol table. The interpreter
recognizes the object pointed to by that name as a user-defined function. Other names can also point to that same
function object and can also be used to access the function:

>>> fib

<function fib at 10042ed0>
>>> f = fib

>>> £(100)

0112 358 13 21 34 55 89

Coming from other languages, you might object that £ib is not a function but a procedure since it doesn’t return a
value. In fact, even functions without a return statement do return a value, albeit a rather boring one. This value
is called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be
the only value written. You can see it if you really want to using print ():

>>> fib (0)
>>> print (£ib(0))
None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2 (n): # return Fibonaccl series up to n
"""Return a list containing the Fibonacci series up to n.

mrn

(continues on next page)

1 Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee
makes to it (items inserted into a list).

4.7. Defining Functions 23

Python Tutorial, Release 3.11.3

(continued from previous page)

result = []

a, b=20, 1

while a < n:
result.append(a) # see below
a, b ="Db, atb

return result

>>> f100 = f£ib2 (100) # call it
>>> £100 # write the result
(o, 12, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

* The return statement returns with a value from a function. return without an expression argument returns
None. Falling off the end of a function also returns None.

e The statement result.append (a) calls a method of the list object result. A method is a function
that ‘belongs’ to an object and is named obj.methodname, where obj is some object (this may be an
expression), and met hodname is the name of a method that is defined by the object’s type. Different types
define different methods. Methods of different types may have the same name without causing ambiguity. (It
is possible to define your own object types and methods, using classes, see Classes) The method append ()
shown in the example is defined for list objects; it adds a new element at the end of the list. In this example it
is equivalent to result = result + [a], but more efficient.

4.8 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

4.8.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be
called with fewer arguments than it is defined to allow. For example:

def ask_ok (prompt, retries=4, reminder='Please try again!'):
while True:
ok = input (prompt)
if ok in ('y', 'ye', 'yes'):
return True

if ok in ('n', 'no', 'nop', 'nope'):
return False
retries = retries - 1

if retries < O:
raise ValueError ('invalid user response')
print (reminder)

This function can be called in several ways:
* giving only the mandatory argument: ask_ok ('Do you really want to quit?')
* giving one of the optional arguments: ask_ok ('OK to overwrite the file?', 2)

e or even giving all arguments: ask_ok ('OK to overwrite the file?', 2, 'Come on,
only yes or no!'")

This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.

The default values are evaluated at the point of function definition in the defining scope, so that

24 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.11.3

def f(arg=1i):
print (arg)

will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the default is a mutable
object such as a list, dictionary, or instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print (£(1))
print (£(2))
print (£(3))
This will print
[11]

[1, 2]

(1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f(a, L=None):
if L is None:
L =11
L.append (a)
return L

4.8.2 Keyword Arguments

Functions can also be called using keyword arguments of the form kwarg=value. For instance, the following
function:

def parrot (voltage, state='a stiff', action='voom', type='Norwegian Blue'):

print ("-— This parrot wouldn't", action, end=' ")
print ("if you put", voltage, "volts through it.")
print ("-- Lovely plumage, the", type)

print ("-—- It's", state, "!")

accepts one required argument (voltage) and three optional arguments (state, action, and type). This
function can be called in any of the following ways:

parrot (1000) # 1 positional argument
parrot (voltage=1000) # 1 keyword argument
parrot (voltage=1000000, action='VOOOOOM") # 2 keyword arguments
parrot (action='VOOOOOM', voltage=1000000) # 2 keyword arguments
parrot('a million', 'bereft of life', '"jump') # 3 positional arguments
parrot ('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword

but all the following calls would be invalid:

4.8. More on Defining Functions 25

Python Tutorial, Release 3.11.3

parrot ()

parrot (voltage=5.0, 'dead")
parrot (110, voltage=220)
parrot (actor="John Cleese')

required argument missing

non-keyword argument after a keyword argument
duplicate value for the same argument

unknown keyword argument

HH W W H

In a function call, keyword arguments must follow positional arguments. All the keyword arguments passed must
match one of the arguments accepted by the function (e.g. actor is not a valid argument for the parrot function),
and their order is not important. This also includes non-optional arguments (e.g. parrot (voltage=1000) is
valid too). No argument may receive a value more than once. Here’s an example that fails due to this restriction:

>>> def function(a):
pass

>>> function (0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: function() got multiple values for argument 'a'

When a final formal parameter of the form * * name is present, it receives a dictionary (see typesmapping) containing
all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal
parameter of the form *name (described in the next subsection) which receives a fuple containing the positional
arguments beyond the formal parameter list. (*name must occur before * *name.) For example, if we define a
function like this:

def cheeseshop(kind, *arguments, **keywords):
print ("-- Do you have any", kind, "?")
print ("-- I'm sorry, we're all out of", kind)
for arg in arguments:
print (arg)

print ("-" * 40)
for kw in keywords:
print (kw, ":", keywords[kw])

It could be called like this:

cheeseshop ("Limburger", "It's very runny, sir.",
"It's really very, VERY runny, sir.",
shopkeeper="Michael Palin",
client="John Cleese",
sketch="Cheese Shop Sketch")

and of course it would print:

—-— Do you have any Limburger ?

-— I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.
shopkeeper : Michael Palin

client : John Cleese

sketch : Cheese Shop Sketch

Note that the order in which the keyword arguments are printed is guaranteed to match the order in which they were
provided in the function call.

26 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.11.3

4.8.3 Special parameters

By default, arguments may be passed to a Python function either by position or explicitly by keyword. For readability
and performance, it makes sense to restrict the way arguments can be passed so that a developer need only look at
the function definition to determine if items are passed by position, by position or keyword, or by keyword.

A function definition may look like:

def f (posl, pos2, /, pos_or_kwd, *, kwdl, kwd2):

| Positional or keyword
| - Keyword only
—-— Positional only

where / and * are optional. If used, these symbols indicate the kind of parameter by how the arguments may be passed
to the function: positional-only, positional-or-keyword, and keyword-only. Keyword parameters are also referred to
as named parameters.

Positional-or-Keyword Arguments

If / and * are not present in the function definition, arguments may be passed to a function by position or by keyword.

Positional-Only Parameters
Looking at this in a bit more detail, it is possible to mark certain parameters as positional-only. If positional-only, the
parameters’ order matters, and the parameters cannot be passed by keyword. Positional-only parameters are placed

before a / (forward-slash). The / is used to logically separate the positional-only parameters from the rest of the
parameters. If there is no / in the function definition, there are no positional-only parameters.

Parameters following the / may be positional-or-keyword or keyword-only.
Keyword-Only Arguments

To mark parameters as keyword-only, indicating the parameters must be passed by keyword argument, place an * in
the arguments list just before the first keyword-only parameter.

Function Examples

Consider the following example function definitions paying close attention to the markers / and *:

>>> def standard_arg(arg):
print (arg)

>>> def pos_only_arg(arg, /):
print (arg)

>>> def kwd_only_arg(*, arg):
print (arg)

>>> def combined_example (pos_only, /, standard, *, kwd_only):
print (pos_only, standard, kwd_only)

The first function definition, st andard_ arg, the most familiar form, places no restrictions on the calling convention
and arguments may be passed by position or keyword:

4.8. More on Defining Functions 27

Python Tutorial, Release 3.11.3

>>> standard_arg(2)
2

>>> standard_arg (arg=2)
2

The second function pos_only_arg is restricted to only use positional parameters as there is a / in the function
definition:

>>> pos_only_arg (1)
1

>>> pos_only_arg(arg=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: pos_only_arg() got some positional-only arguments passed as keyword.
—arguments: 'arg'

The third function kwd_only_args only allows keyword arguments as indicated by a * in the function definition:

>>> kwd_only_arg(3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: kwd_only_arg() takes 0 positional arguments but 1 was given

>>> kwd_only_arg(arg=3)
3

And the last uses all three calling conventions in the same function definition:

>>> combined_example (1, 2, 3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: combined_example () takes 2 positional arguments but 3 were given

>>> combined_example (1, 2, kwd_only=3)
12 3

>>> combined_example (1, standard=2, kwd_only=3)
12 3

>>> combined_example (pos_only=1, standard=2, kwd_only=3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: combined_example () got some positional-only arguments passed as keyword.
—arguments: 'pos_only'

Finally, consider this function definition which has a potential collision between the positional argument name and
**kwds which has name as a key:

def foo (name, **kwds):
return 'name' in kwds

There is no possible call that will make it return True as the keyword ' name ' will always bind to the first parameter.
For example:

>>> foo(l, **{'name': 2})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: foo() got multiple values for argument 'name'
>>>

28 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.11.3

But using / (positional only arguments), it is possible since it allows name as a positional argument and 'name ' as
a key in the keyword arguments:

>>> def foo(name, /, **kwds):
return 'name' in kwds

>>> foo(l, **{'name': 2})
True

In other words, the names of positional-only parameters can be used in * *kwds without ambiguity.

Recap

The use case will determine which parameters to use in the function definition:

def f (posl, pos2, /, pos_or_kwd, *, kwdl, kwd2):

As guidance:

 Use positional-only if you want the name of the parameters to not be available to the user. This is useful when
parameter names have no real meaning, if you want to enforce the order of the arguments when the function
is called or if you need to take some positional parameters and arbitrary keywords.

* Use keyword-only when names have meaning and the function definition is more understandable by being
explicit with names or you want to prevent users relying on the position of the argument being passed.

* For an API, use positional-only to prevent breaking API changes if the parameter’s name is modified in the
future.

4.8.4 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of argu-
ments. These arguments will be wrapped up in a tuple (see Tuples and Sequences). Before the variable number of
arguments, zero or more normal arguments may occur.

def write_multiple_items (file, separator, *args):
file.write (separator.join(args))

Normally, these variadic arguments will be last in the list of formal parameters, because they scoop up all remaining
input arguments that are passed to the function. Any formal parameters which occur after the *args parameter are
‘keyword-only’ arguments, meaning that they can only be used as keywords rather than positional arguments.

>>> def concat (*args, sep="/"):
return sep.join(args)

>>> concat ("earth", "mars", "venus")
'earth/mars/venus'

>>> concat ("earth", "mars", "venus", sep=".")
'earth.mars.venus'

4.8. More on Defining Functions 29

Python Tutorial, Release 3.11.3

4.8.5 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the built-in range () function expects separate start
and stop arguments. If they are not available separately, write the function call with the *-operator to unpack the
arguments out of a list or tuple:

>>> list (range (3, 6)) # normal call with separate arguments

[3, 4, 5]

>>> args = [3, 6]

>>> list (range(*args)) # call with arguments unpacked from a list
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the * *-operator:

>>> def parrot (voltage, state='a stiff', action='voom'):

print ("-— This parrot wouldn't", action, end=' ")
print ("if you put", voltage, "volts through it.", end=' ")
print ("E's", state, "!")
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}

>>> parrot (**d)
—— This parrot wouldn't VOOM if you put four million volts through it. E's bleedin
— ' demised !

4.8.6 Lambda Expressions

Small anonymous functions can be created with the 1ambda keyword. This function returns the sum of its two
arguments: lambda a, b: a+b. Lambda functions can be used wherever function objects are required. They
are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function
definition. Like nested function definitions, lambda functions can reference variables from the containing scope:

>>> def make_incrementor (n) :
return lambda x: x + n

>>> f = make_incrementor (42)
>>> £ (0)

42

>>> f (1)

43

The above example uses a lambda expression to return a function. Another use is to pass a small function as an
argument:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort (key=lambda pair: pair[1l])

>>> pairs

[(4, '"four'), (1, 'one'), (3, 'three'), (2, 'two')]

30 Chapter 4. More Control Flow Tools

Python Tutorial, Release 3.11.3

4.8.7 Documentation Strings

Here are some conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not explicitly
state the object’s name or type, since these are available by other means (except if the name happens to be a verb
describing a function’s operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the summary
from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documen-
tation have to strip indentation if desired. This is done using the following convention. The first non-blank line after
the first line of the string determines the amount of indentation for the entire documentation string. (We can’t use
the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string
literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of the string. Lines that
are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of
whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
"""Do nothing, but document it.

No, really, it doesn't do anything.
mrrn

pass

>>> print (my_function._ _doc_)
Do nothing, but document it.

No, really, it doesn't do anything.

4.8.8 Function Annotations

Function annotations are completely optional metadata information about the types used by user-defined functions
(see PEP 3107 and PEP 484 for more information).

Annotations are stored in the __annotations___ attribute of the function as a dictionary and have no effect on
any other part of the function. Parameter annotations are defined by a colon after the parameter name, followed by
an expression evaluating to the value of the annotation. Return annotations are defined by a literal —>, followed by an
expression, between the parameter list and the colon denoting the end of the de f statement. The following example
has a required argument, an optional argument, and the return value annotated:

>>> def f (ham: str, eggs: str = 'eggs') —-> str:
print ("Annotations:", f.__annotations_)
print ("Arguments:", ham, eggs)
return ham + ' and ' + eggs

>>> f('spam')

Annotations: {'ham': <class 'str'>, 'return': <class 'str'>, 'eggs': <class 'str'>}
Arguments: spam eggs

'spam and eggs'

4.8. More on Defining Functions 31

https://peps.python.org/pep-3107/
https://peps.python.org/pep-0484/

Python Tutorial, Release 3.11.3

4.9

Intermezzo: Coding Style

Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style.
Most languages can be written (or more concise, formatted) in different styles; some are more readable than others.
Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously
for that.

For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and
eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points
extracted for you:

Use 4-space indentation, and no tabs.

4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation
(easier to read). Tabs introduce confusion, and are best left out.

Wrap lines so that they don’t exceed 79 characters.

This helps users with small displays and makes it possible to have several code files side-by-side on larger
displays.

Use blank lines to separate functions and classes, and larger blocks of code inside functions.
When possible, put comments on a line of their own.
Use docstrings.

Use spaces around operators and after commas, but not directly inside bracketing constructs: a = £ (1, 2)
+ 9(3, 4).

Name your classes and functions consistently; the convention is to use UpperCamelCase for classes and
lowercase_with_underscores for functions and methods. Always use self as the name for the first
method argument (see A First Look at Classes for more on classes and methods).

Don’t use fancy encodings if your code is meant to be used in international environments. Python’s default,
UTF-8, or even plain ASCII work best in any case.

Likewise, don’t use non-ASCII characters in identifiers if there is only the slightest chance people speaking a
different language will read or maintain the code.

32

Chapter 4. More Control Flow Tools

https://peps.python.org/pep-0008/

CHAPTER
FIVE

DATA STRUCTURES

This chapter describes some things you've learned about already in more detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

list.append (x)
Add an item to the end of the list. Equivalentto a [len (a) :] = [x].

list.extend (iterable)

Extend the list by appending all the items from the iterable. Equivalentto a[len (a) :] = iterable.

list.insert (i, x)
Insert an item at a given position. The first argument is the index of the element before which to insert,
so a.insert (0, x) inserts at the front of the list, and a. insert (len(a), x) is equivalentto a.
append (x).

list.remove (x)
Remove the first item from the list whose value is equal to x. It raises a ValueError if there is no such item.

list.pop ([i])
Remove the item at the given position in the list, and return it. If no index is specified, a . pop () removes
and returns the last item in the list. (The square brackets around the i in the method signature denote that
the parameter is optional, not that you should type square brackets at that position. You will see this notation
frequently in the Python Library Reference.)

list.clear ()

Remove all items from the list. Equivalentto del af[:].

list.index (x[, start[, end]])
Return zero-based index in the list of the first item whose value is equal to x. Raises a ValueError if there
is no such item.

The optional arguments start and end are interpreted as in the slice notation and are used to limit the search
to a particular subsequence of the list. The returned index is computed relative to the beginning of the full
sequence rather than the start argument.

list.count (x)

Return the number of times x appears in the list.

list.sort (* key=None, reverse=False)
Sort the items of the list in place (the arguments can be used for sort customization, see sorted () for their
explanation).

list.reverse ()

Reverse the elements of the list in place.

33

Python Tutorial, Release 3.11.3

list.copy ()

Return a shallow copy of the list. Equivalenttoa[:].

An example that uses most of the list methods:

>>> fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
>>> fruits.count ('apple')

2

>>> fruits.count ('tangerine')

0

>>> fruits.index ('banana')

3

>>> fruits.index ('banana', 4) # Find next banana starting at position 4

6

>>> fruits.reverse ()

>>> fruits

['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange']

>>> fruits.append('grape')

>>> fruits

['"banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange', 'grape']
>>> fruits.sort ()

>>> fruits

["apple', 'apple', 'banana', 'banana', 'grape', 'kiwi', 'orange', 'pear']
>>> fruits.pop ()

'pear’

You might have noticed that methods like insert, remove or sort that only modify the list have no return value
printed — they return the default None.! This is a design principle for all mutable data structures in Python.

Another thing you might notice is that not all data can be sorted or compared. For instance, [None, 'hello',
107 doesn’t sort because integers can’t be compared to strings and None can’t be compared to other types. Also, there
are some types that don’t have a defined ordering relation. For example, 3+4j < 5+77 isn’t a valid comparison.

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stack, use append () . To retrieve an item from the top of the
stack, use pop () without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack

[3, 4, 5, 6, 7]

>>> stack.pop ()

>>> stack
[3, 4, 5, 6]
>>> stack.pop ()

>>> stack.pop ()

>>> stack
[3, 4]

'OﬂwrhngmgesnmerunnhemumdeMEm,whkhaﬂowsnwﬂmdchﬁnhg,mmhasd—>insert("a")—>remove("b")—>sort();

34 Chapter 5. Data Structures

Python Tutorial, Release 3.11.3

5.1.2 Using Lists as Queues

It is also possible to use a list as a queue, where the first element added is the first element retrieved (“first-in, first-
out”); however, lists are not efficient for this purpose. While appends and pops from the end of list are fast, doing
inserts or pops from the beginning of a list is slow (because all of the other elements have to be shifted by one).

To implement a queue, use collections.deque which was designed to have fast appends and pops from both
ends. For example:

>>> from collections import deque

>>> queue = deque (["Eric", "John", "Michael"])

>>> queue.append ("Terry") # Terry arrives

>>> queue.append ("Graham™) # Graham arrives

>>> queue.popleft () # The first to arrive now leaves
'Eric'

>>> queue.popleft () # The second to arrive now leaves
'John'

>>> queue # Remaining queue in order of arrival
deque (['Michael', 'Terry', 'Graham'])

5.1.3 List Comprehensions

List comprehensions provide a concise way to create lists. Common applications are to make new lists where each
element is the result of some operations applied to each member of another sequence or iterable, or to create a
subsequence of those elements that satisfy a certain condition.

For example, assume we want to create a list of squares, like:

>>> squares []
for x in range(10):

squares.append (x**2)

>>>

>>>
[O,

squares

1, 4, 9, 16, 25, 36, 49, 64, 81]

Note that this creates (or overwrites) a variable named x that still exists after the loop completes. We can calculate
the list of squares without any side effects using:

squares list (map(lambda x: x**2, range(10)))

or, equivalently:

squares [x**2 for x in range (10)]

which is more concise and readable.

A list comprehension consists of brackets containing an expression followed by a for clause, then zero or more for
or if clauses. The result will be a new list resulting from evaluating the expression in the context of the for and i f
clauses which follow it. For example, this listcomp combines the elements of two lists if they are not equal:

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[, 3y, (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]
and it’s equivalent to:
>>> combs = []
>>> for x in [1,2,3]:
for y in [3,1,4]:
if x !I=vy:
combs.append ((x, y))

(continues on next page)

5.1. More on Lists 35

Python Tutorial, Release 3.11.3

(continued from previous page)

>>> combs
[, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

Note how the order of the for and if statements is the same in both these snippets.

If the expression is a tuple (e.g. the (x, y) in the previous example), it must be parenthesized.

>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]
[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
(4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = [' Dbanana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range (6)]
[, 0y, (1, 1), (2, 4), (3, 9, (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error 1s raised
>>> [x, x**2 for x in range (6)]

File "<stdin>", line 1

[x, x**2 for x in range (6)]

SyntaxError: did you forget parentheses around the comprehension target?
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,3]1, [4,5,61, [7,8,9]]
>>> [num for elem in vec for num in elem]
(1, 2, 3, 4, 5, 6, 7, 8, 9]

List comprehensions can contain complex expressions and nested functions:

>>> from math import pi
>>> [str(round(pi, 1)) for i in range(l, 6)]
[*s3.1', '3.14', '3.142', '3.1416', '3.14159"']

5.1.4 Nested List Comprehensions

The initial expression in a list comprehension can be any arbitrary expression, including another list comprehension.

Consider the following example of a 3x4 matrix implemented as a list of 3 lists of length 4:

>>> matrix = [
(1, 2, 3, 41,
[5, 6, 7, 81,
[9, 10, 11, 121,

The following list comprehension will transpose rows and columns:

>>> [[row[i] for row in matrix] for i in range (4)]
ey, 5, 91, 12, 6, 101, I3, 7, 111, [4, 8, 12]]

As we saw in the previous section, the inner list comprehension is evaluated in the context of the for that follows it,
so this example is equivalent to:

36 Chapter 5. Data Structures

Python Tutorial, Release 3.11.3

>>> transposed = []
>>> for i in range(4):
transposed.append([row[i] for row in matrix])

>>> transposed
tts, s, 91, [z, 6, 101, (3, 7, 111, [4, 8, 12]]

which, in turn, is the same as:

>>> transposed = []
>>> for i in range(4):
the following 3 lines implement the nested listcomp
transposed_row = []
for row in matrix:
transposed_row.append (row([i])
transposed.append (transposed_row)

>>> transposed
tts, s, 91, (2, 6, 101, (3, 7, 111, [4, 8, 12]]

In the real world, you should prefer built-in functions to complex flow statements. The zip () function would do a
great job for this use case:

>>> list (zip(*matrix))
[, 5, 9, (2, 6, 10), (3, 7, 11), (4, 8, 12)]

See Unpacking Argument Lists for details on the asterisk in this line.

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value: the de 1 statement. This differs from
the pop () method which returns a value. The del statement can also be used to remove slices from a list or clear
the entire list (which we did earlier by assignment of an empty list to the slice). For example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del al[0]
>>> a

[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]

>>> a

[1, 66.25, 1234.5]

>>> del al:]

>>> a

[]

del can also be used to delete entire variables:

>>> del a

Referencing the name a hereafter is an error (at least until another value is assigned to it). We’ll find other uses for
del later.

5.2. The del statement 37

Python Tutorial, Release 3.11.3

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are two
examples of sequence data types (see typesseq). Since Python is an evolving language, other sequence data types may
be added. There is also another standard sequence data type: the muple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!")
>>> # Tuples may be nested:
u=t, (1, 2, 3, 4, 5)
>>>
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
>>> # Tuples are Immutable:
t[0] = 88888
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> # but they can contain mutable objects:

v = ([1, 2, 31, [3, 2, 11)
>>> v
(rx, 2, 31, 3, 2, 1])

As you see, on output tuples are always enclosed in parentheses, so that nested tuples are interpreted correctly; they
may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if the tuple
is part of a larger expression). It is not possible to assign to the individual items of a tuple, however it is possible to
create tuples which contain mutable objects, such as lists.

Though tuples may seem similar to lists, they are often used in different situations and for different purposes. Tuples
are immutable, and usually contain a heterogeneous sequence of elements that are accessed via unpacking (see later in
this section) or indexing (or even by attribute in the case of namedtuples). Lists are mutable, and their elements
are usually homogeneous and are accessed by iterating over the list.

A special problem is the construction of tuples containing O or 1 items: the syntax has some extra quirks to accom-
modate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is constructed by
following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly, but effective. For
example:

>>> empty = ()

>>> singleton = 'hello', # <-— note trailing comma
>>> len (empty)

0

>>> len(singleton)

1

>>> singleton

('"hello',)

The statement t = 12345, 54321, 'hello!' is an example of fuple packing: the values 12345, 54321
and "hello! ' are packed together in a tuple. The reverse operation is also possible:

>>> x, y, z =t

This is called, appropriately enough, sequence unpacking and works for any sequence on the right-hand side. Sequence
unpacking requires that there are as many variables on the left side of the equals sign as there are elements in the
sequence. Note that multiple assignment is really just a combination of tuple packing and sequence unpacking.

38 Chapter 5. Data Structures

Python Tutorial, Release 3.11.3

5.4 Sets

Python also includes a data type for sefs. A set is an unordered collection with no duplicate elements. Basic uses
include membership testing and eliminating duplicate entries. Set objects also support mathematical operations like
union, intersection, difference, and symmetric difference.

Curly braces or the set () function can be used to create sets. Note: to create an empty set you have to use set (),
not { }; the latter creates an empty dictionary, a data structure that we discuss in the next section.

Here is a brief demonstration:

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}

>>> print (basket) # show that duplicates have been removed
{'orange', 'banana', 'pear',6 'apple'}

>>> 'orange' in basket # fast membership testing

True

>>> 'crabgrass' in basket

False

>>> # Demonstrate set operations on unique letters from two words

>>>

a = set ('abracadabra')
>>> b = set('alacazam')
>>> 3 # unique letters 1in a
{'a', 'r', 'b', 'c', 'd':};
>>> a - b # letters in a but not in b
{'r', 'd', 'b'}
>>> a b letters in a or b or both

\ #
{Va', Vc', ’rV’ ’dV’ lb” lm” 'Z', lll}
>>> a & b #
_{'al, 'C'}’

>>> a ~ b # letters in a or b but not both
{lr" ldl’ lbl’ lm|, IZI, lll}

letters in both a and b

Similarly to list comprehensions, set comprehensions are also supported:

>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{Vrl, le}

5.5 Dictionaries

Another useful data type built into Python is the dictionary (see typesmapping). Dictionaries are sometimes found in
other languages as “associative memories” or “associative arrays”. Unlike sequences, which are indexed by a range
of numbers, dictionaries are indexed by keys, which can be any immutable type; strings and numbers can always be
keys. Tuples can be used as keys if they contain only strings, numbers, or tuples; if a tuple contains any mutable
object either directly or indirectly, it cannot be used as a key. You can’t use lists as keys, since lists can be modified
in place using index assignments, slice assignments, or methods like append () and extend ().

It is best to think of a dictionary as a set of key: value pairs, with the requirement that the keys are unique (within
one dictionary). A pair of braces creates an empty dictionary: { }. Placing a comma-separated list of key:value pairs
within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries are written on output.

The main operations on a dictionary are storing a value with some key and extracting the value given the key. It is also
possible to delete a key:value pair with del. If you store using a key that is already in use, the old value associated
with that key is forgotten. It is an error to extract a value using a non-existent key.

Performing 1ist (d) on a dictionary returns a list of all the keys used in the dictionary, in insertion order (if you
want it sorted, justuse sorted (d) instead). To check whether a single key is in the dictionary, use the in keyword.

Here is a small example using a dictionary:

5.4. Sets 39

Python Tutorial, Release 3.11.3

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['guido'] = 4127

>>> tel

{"jack': 4098, 'sape': 4139, 'guido': 4127}
>>> tel['jack']

4098

>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel

{'"jack': 4098, 'guido': 4127, 'irv': 4127}
>>> list (tel)

["jack', 'guido', 'irv']

>>> sorted(tel)

['guido', 'irv', 'jack']

>>> 'guido' in tel

True

>>> 'jack' not in tel

False

The dict () constructor builds dictionaries directly from sequences of key-value pairs:

>>> dict ([('sape', 4139), ('guido', 4127), ('jack', 4098)1])
{'sape': 4139, 'guido': 4127, 'Jjack': 4098}

In addition, dict comprehensions can be used to create dictionaries from arbitrary key and value expressions:

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

When the keys are simple strings, it is sometimes easier to specify pairs using keyword arguments:

>>> dict (sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'guido': 4127, 'jack': 4098}

5.6 Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the
items () method.

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items{():
print (k, wv)

gallahad the pure
robin the brave

‘When looping through a sequence, the position index and corresponding value can be retrieved at the same time using
the enumerate () function.

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
print (i, wv)

0 tic

1 tac

2 toe

To loop over two or more sequences at the same time, the entries can be paired with the zip () function.

40 Chapter 5. Data Structures

Python Tutorial, Release 3.11.3

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for g, a in zip(questions, answers):
print ('What is your ? It is .'.format (g, a))

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward direction and then call the reversed ()
function.

>>> for i1 in reversed(range(l, 10, 2)):
print (1)

= w o J w0 -

To loop over a sequence in sorted order, use the sorted () function which returns a new sorted list while leaving
the source unaltered.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for i in sorted(basket):
print (1)
apple
apple
banana
orange
orange
pear

Using set () on a sequence eliminates duplicate elements. The use of sorted () in combination with set ()
over a sequence is an idiomatic way to loop over unique elements of the sequence in sorted order.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set (basket)):
print (f)
apple
banana
orange
pear

It is sometimes tempting to change a list while you are looping over it; however, it is often simpler and safer to create
a new list instead.

>>> import math
>>> raw_data = [56.2, float('NaN'), 51.7, 55.3, 52.5, float('NaN'), 47.8]
>>> filtered_data = []
>>> for value in raw_data:
if not math.isnan (value) :
filtered_data.append(value)

>>> filtered_data
[56.2, 51.7, 55.3, 52.5, 47.8]

5.6. Looping Techniques 41

Python Tutorial, Release 3.11.3

5.7 More on Conditions

The conditions used in while and if statements can contain any operators, not just comparisons.

The comparison operators in and not in are membership tests that determine whether a value is in (or not in) a
container. The operators is and is not compare whether two objects are really the same object. All comparison
operators have the same priority, which is lower than that of all numerical operators.

Comparisons can be chained. For example, a < == c tests whether a is less than b and moreover b equals c.

Comparisons may be combined using the Boolean operators and and or, and the outcome of a comparison (or of
any other Boolean expression) may be negated with not. These have lower priorities than comparison operators;
between them, not has the highest priority and or the lowest, so that A and not B or C isequivalentto (A
and (not B)) or C.Asalways, parentheses can be used to express the desired composition.

The Boolean operators and and or are so-called short-circuit operators: their arguments are evaluated from left to
right, and evaluation stops as soon as the outcome is determined. For example, if A and C are true but B is false, A
and B and C does not evaluate the expression C. When used as a general value and not as a Boolean, the return
value of a short-circuit operator is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> stringl, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = stringl or string2 or string3

>>> non_null

'Trondheim'

Note that in Python, unlike C, assignment inside expressions must be done explicitly with the walrus operator : =.
This avoids a common class of problems encountered in C programs: typing = in an expression when == was intended.

5.8 Comparing Sequences and Other Types

Sequence objects typically may be compared to other objects with the same sequence type. The comparison uses
lexicographical ordering: first the first two items are compared, and if they differ this determines the outcome of
the comparison; if they are equal, the next two items are compared, and so on, until either sequence is exhausted.
If two items to be compared are themselves sequences of the same type, the lexicographical comparison is carried
out recursively. If all items of two sequences compare equal, the sequences are considered equal. If one sequence
is an initial sub-sequence of the other, the shorter sequence is the smaller (lesser) one. Lexicographical ordering for
strings uses the Unicode code point number to order individual characters. Some examples of comparisons between
sequences of the same type:

(1, 2, 3) < (1, 2, 4)

[1, 2, 3] < [1, 2, 4]

'ABC' < 'C' < 'Pascal' < 'Python'

(1, 2, 3, 4) < (1, 2, 4)

(1, 2) < (1, 2, -1)

(1, 2, 3) == (1.0, 2.0, 3.0)

(1, 2, ('aa', 'ab")) < (1, 2, ('abc', 'a"), 4)

Note that comparing objects of different types with < or > is legal provided that the objects have appropriate com-
parison methods. For example, mixed numeric types are compared according to their numeric value, so 0 equals 0.0,
etc. Otherwise, rather than providing an arbitrary ordering, the interpreter will raise a TypeError exception.

42 Chapter 5. Data Structures

CHAPTER
SIX

MODULES

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables) are
lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to prepare
the input for the interpreter and running it with that file as input instead. This is known as creating a script. As your
program gets longer, you may want to split it into several files for easier maintenance. You may also want to use a
handy function that you’ve written in several programs without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance of the
interpreter. Such a file is called a module; definitions from a module can be imported into other modules or into the
main module (the collection of variables that you have access to in a script executed at the top level and in calculator
mode).

A module is a file containing Python definitions and statements. The file name is the module name with the suffix
.py appended. Within a module, the module’s name (as a string) is available as the value of the global variable
__name___. For instance, use your favorite text editor to create a file called £ibo . py in the current directory with
the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b=20, 1
while a < n:
print (a, end="' ")
a, b =Db, atb
print ()

def fib2 (n): # return Fibonacci series up to n
result = []
a, b=20, 1
while a < n:
result.append(a)
a, b =Db, atb
return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

This does not add the names of the functions defined in £ ibo directly to the current namespace (see Python Scopes
and Namespaces for more details); it only adds the module name fibo there. Using the module name you can access
the functions:

>>> fibo.fib (1000)

0112 358 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2 (100)

(o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo._ name_

'fibo'

If you intend to use a function often you can assign it to a local name:

43

Python Tutorial, Release 3.11.3

>>> fib = fibo.fib
>>> fib (500)
0112 358 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions. These statements are intended to initialize
the module. They are executed only the first time the module name is encountered in an import statement.' (They
are also run if the file is executed as a script.)

Each module has its own private namespace, which is used as the global namespace by all functions defined in the
module. Thus, the author of a module can use global variables in the module without worrying about accidental
clashes with a user’s global variables. On the other hand, if you know what you are doing you can touch a module’s
global variables with the same notation used to refer to its functions, modname . itemname.

Modules can import other modules. It is customary but not required to place all import statements at the beginning
of a module (or script, for that matter). The imported module names, if placed at the top level of a module (outside
any functions or classes), are added to the module’s global namespace.

There is a variant of the import statement that imports names from a module directly into the importing module’s
namespace. For example:

>>> from fibo import fib, fib2
>>> fib (500)
0112 358 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local namespace (so in the example,
fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib (500)
0112 358 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_). In most cases Python programmers do not use
this facility since it introduces an unknown set of names into the interpreter, possibly hiding some things you have
already defined.

Note that in general the practice of importing * from a module or package is frowned upon, since it often causes
poorly readable code. However, it is okay to use it to save typing in interactive sessions.

If the module name is followed by as, then the name following as is bound directly to the imported module.

>>> import fibo as fib
>>> fib.fib(500)
0112 358 13 21 34 55 89 144 233 377

This is effectively importing the module in the same way that import fibo will do, with the only difference of it
being available as fib.

It can also be used when utilising £ rom with similar effects:

>>> from fibo import fib as fibonacci
>>> fibonacci (500)
0112358 13 21 34 55 89 144 233 377

! In fact function definitions are also ‘statements’ that are ‘executed’; the execution of a module-level function definition adds the function name
to the module’s global namespace.

44 Chapter 6. Modules

Python Tutorial, Release 3.11.3

Note: For efficiency reasons, each module is only imported once per interpreter session. Therefore, if you
change your modules, you must restart the interpreter — or, if it’s just one module you want to test interactively,
use importlib.reload(),e.g import importlib; importlib.reload(modulename).

6.1.1 Executing modules as scripts

When you run a Python module with

python fibo.py <arguments>

the code in the module will be executed, just as if you imported it, but with the __name___setto "__main__".
That means that by adding this code at the end of your module:

n ”.

if _name_ == "_ main_ ":
import sys
fib(int (sys.argv[1]))

you can make the file usable as a script as well as an importable module, because the code that parses the command
line only runs if the module is executed as the “main” file:

$ python fibo.py 50
0112 35813 21 34

If the module is imported, the code is not run:

>>> import fibo
>>>

This is often used either to provide a convenient user interface to a module, or for testing purposes (running the
module as a script executes a test suite).

6.1.2 The Module Search Path

When a module named spam is imported, the interpreter first searches for a built-in module with that name. These
module names are listed in sys.builtin_module_names. If not found, it then searches for a file named
spam. py in a list of directories given by the variable sys.path. sys.path is initialized from these locations:

 The directory containing the input script (or the current directory when no file is specified).
e PYTHONPATH (a list of directory names, with the same syntax as the shell variable PATH).

 The installation-dependent default (by convention including a site-packages directory, handled by the
site module).

More details are at sys-path-init.

Note: On file systems which support symlinks, the directory containing the input script is calculated after the symlink
is followed. In other words the directory containing the symlink is not added to the module search path.

After initialization, Python programs can modify sys . path. The directory containing the script being run is placed
at the beginning of the search path, ahead of the standard library path. This means that scripts in that directory will
be loaded instead of modules of the same name in the library directory. This is an error unless the replacement is
intended. See section Standard Modules for more information.

6.1. More on Modules 45

Python Tutorial, Release 3.11.3

6.1.3 “Compiled” Python files

To speed up loading modules, Python caches the compiled version of each module in the __pycache___ directory
under the name module. version.pyc, where the version encodes the format of the compiled file; it generally
contains the Python version number. For example, in CPython release 3.3 the compiled version of spam.py would be
cached as __pycache__/spam.cpython-33.pyc. This naming convention allows compiled modules from
different releases and different versions of Python to coexist.

Python checks the modification date of the source against the compiled version to see if it’s out of date and needs
to be recompiled. This is a completely automatic process. Also, the compiled modules are platform-independent, so
the same library can be shared among systems with different architectures.

Python does not check the cache in two circumstances. First, it always recompiles and does not store the result for
the module that’s loaded directly from the command line. Second, it does not check the cache if there is no source
module. To support a non-source (compiled only) distribution, the compiled module must be in the source directory,
and there must not be a source module.

Some tips for experts:

* You can use the —O or —00 switches on the Python command to reduce the size of a compiled module. The —O
switch removes assert statements, the —O0 switch removes both assert statements and __doc___ strings. Since
some programs may rely on having these available, you should only use this option if you know what you're
doing. “Optimized” modules have an opt - tag and are usually smaller. Future releases may change the effects
of optimization.

* A program doesn’t run any faster when it is read from a . pyc file than when it is read from a . py file; the
only thing that’s faster about . pyc files is the speed with which they are loaded.

* The module compileall can create .pyc files for all modules in a directory.

¢ There is more detail on this process, including a flow chart of the decisions, in PEP 3147.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate document, the Python Library Reference
(“Library Reference” hereafter). Some modules are built into the interpreter; these provide access to operations
that are not part of the core of the language but are nevertheless built in, either for efficiency or to provide access to
operating system primitives such as system calls. The set of such modules is a configuration option which also depends
on the underlying platform. For example, the winreg module is only provided on Windows systems. One particular
module deserves some attention: sys, which is built into every Python interpreter. The variables sys.ps1 and
sys.ps2 define the strings used as primary and secondary prompts:

>>> import sys
>>> sys.psl
>>> !

>>> sys.ps2

v v

>>> sys.psl = 'C> !
C> print ('Yuck!")
Yuck!

C>

These two variables are only defined if the interpreter is in interactive mode.

The variable sys .path is a list of strings that determines the interpreter’s search path for modules. It is initialized
to a default path taken from the environment variable PYTHONPATH, or from a built-in default if PYTHONPATH is
not set. You can modify it using standard list operations:

>>> import sys
>>> gys.path.append('/ufs/guido/lib/python")

46 Chapter 6. Modules

https://peps.python.org/pep-3147/

Python Tutorial, Release 3.11.3

6.3 The dir () Function

The built-in function dir () is used to find out which names a module defines. It returns a sorted list of strings:

>>> import fibo, sys

>>> dir (fibo)

['_name__', 'fib', 'fib2']
>>> dir(sys)

['"__breakpointhook__"', '__displayhook__"', '__doc__', '__excepthook__"',
'__interactivehook__', '__loader__', '__name__', '__package__', '__spec ',
' _stderr__ ', '__stdin__', '_ _stdout__', '_ unraisablehook__',
'_clear_type_cache', '_current_frames', '_debugmallocstats', '_framework',
'_getframe', '_git', '_home', '_xoptions', 'abiflags', 'addaudithook',

'api_version', 'argv', 'audit', 'base_exec_prefix', 'base_prefix',
'breakpointhook', 'builtin_module_names', 'byteorder', 'call_tracing',
'callstats', 'copyright', 'displayhook', 'dont_write_bytecode', 'exc_info',
'excepthook', 'exec_prefix', 'executable', 'exit', 'flags', 'float_info',
'float_repr_style', 'get_asyncgen_hooks', 'get_coroutine_origin_tracking_depth',
'getallocatedblocks', 'getdefaultencoding', 'getdlopenflags',
'getfilesystemencodeerrors', 'getfilesystemencoding', 'getprofile',
'getrecursionlimit', 'getrefcount', 'getsizeof', 'getswitchinterval',
'gettrace', 'hash_info', 'hexversion', 'implementation', 'int_info',

'intern', 'is_finalizing', 'last_traceback', 'last_type', 'last_value',
'maxsize', 'maxunicode', 'meta_path', 'modules', 'path', 'path_hooks',
'path_importer_cache', 'platform', 'prefix', 'psl', 'ps2', 'pycache_prefix',
'set_asyncgen_hooks', 'set_coroutine_origin_tracking_depth', 'setdlopenflags',
'setprofile', 'setrecursionlimit', 'setswitchinterval', 'settrace', 'stderr',
'stdin', 'stdout', 'thread_info', 'unraisablehook', 'wversion', 'version_info',
'warnoptions']

Without arguments, dir () lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]

>>> import fibo

>>> fib = fibo.fib

>>> dir ()

['__builtins__', '_name__', 'a', 'fib', 'fibo', 'sys']

Note that it lists all types of names: variables, modules, functions, etc.

dir () does not list the names of built-in functions and variables. If you want a list of those, they are defined in the
standard module builtins:

>>> import builtins

>>> dir (builtins)

["ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',
'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',
'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
'FileExistsError', 'FileNotFoundError', 'FloatingPointError',
'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError',
'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError',
'MemoryError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented',
'"NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError',
'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning',
'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',
'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError',
'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',
'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',

(continues on next page)

6.3. The dir () Function 47

Python Tutorial, Release 3.11.3

(continued from previous page)

'ValueError', 'Warning', 'ZeroDivisionError', '_', '__build_class__"',
'__debug__"', ' doc__ ', '__import__', '__name__', '__package ', 'abs',
'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable',
'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits',
'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec',6 'exit',
'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr',
'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass',
'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview',

'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property',
'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',

r , i , r', uper', u , , 'vars',
'sorted’ 'staticmethod’ 'str' 'super’ 'tuple' 'type' 'vars'
'Zip']

v 1

sum',

6.4 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example, the
module name A . B designates a submodule named B in a package named A. Just like the use of modules saves the
authors of different modules from having to worry about each other’s global variable names, the use of dotted module
names saves the authors of multi-module packages like NumPy or Pillow from having to worry about each other’s
module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and sound
data. There are many different sound file formats (usually recognized by their extension, for example: .wav, .
aiff, .au), so you may need to create and maintain a growing collection of modules for the conversion between
the various file formats. There are also many different operations you might want to perform on sound data (such as
mixing, adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition you will be
writing a never-ending stream of modules to perform these operations. Here’s a possible structure for your package
(expressed in terms of a hierarchical filesystem):

sound/ Top-level package
__init__ .py Initialize the sound package
formats/ Subpackage for file format conversions
__init___.py

wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

effects/ Subpackage for sound effects
__init__ .py
echo.py
surround.py
reverse.py

filters/ Subpackage for filters
__init___.py
equalizer.py
vocoder.py
karaoke.py

When importing the package, Python searches through the directories on sys . path looking for the package sub-
directory.

The __init__ .py files are required to make Python treat directories containing the file as packages. This prevents
directories with a common name, such as st ring, from unintentionally hiding valid modules that occur later on

48 Chapter 6. Modules

Python Tutorial, Release 3.11.3

the module search path. In the simplest case, __init__ .py can just be an empty file, but it can also execute
initialization code for the package or setthe __all__ variable, described later.

Users of the package can import individual modules from the package, for example:

’import sound.effects.echo

This loads the submodule sound.effects.echo. It must be referenced with its full name.

’sound.effects‘echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

’from sound.effects import echo

This also loads the submodule echo, and makes it available without its package prefix, so it can be used as follows:

’echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

’from sound.effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function echofilter () directly available:

’echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a submodule (or subpackage) of
the package, or some other name defined in the package, like a function, class or variable. The import statement
first tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it fails
to find it, an ImportError exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item except for the last must
be a package; the last item can be a module or a package but can’t be a class or function or variable defined in the
previous item.

6.4.1 Importing * From a Package

Now what happens when the user writes from sound.effects import *? Ideally, one would hope that this
somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all. This
could take a long time and importing sub-modules might have unwanted side-effects that should only happen when
the sub-module is explicitly imported.

The only solution is for the package author to provide an explicit index of the package. The import statement
uses the following convention: if a package’s __init__ .py code defines a list named __all__, it is taken to
be the list of module names that should be imported when from package import * isencountered. It is up
to the package author to keep this list up-to-date when a new version of the package is released. Package authors
may also decide not to support it, if they don’t see a use for importing * from their package. For example, the file
sound/effects/__init__.py could contain the following code:

all = ["echo", "surround", "reverse"]

This would mean that from sound.effects import * would import the three named submodules of the
sound.effects package.

If __all__ isnotdefined, the statement from sound.effects import * doesnorimport all submodules
from the package sound. e f fect s into the current namespace; it only ensures that the package sound.effects
has been imported (possibly running any initialization code in __init__ .py) and then imports whatever names
are defined in the package. This includes any names defined (and submodules explicitly loaded) by __init__ .py.
It also includes any submodules of the package that were explicitly loaded by previous import statements. Consider
this code:

6.4. Packages 49

Python Tutorial, Release 3.11.3

import sound.effects.echo
import sound.effects.surround
from sound.effects import *

In this example, the echo and surround modules are imported in the current namespace because they are defined
in the sound.effects package when the from. . .import statement is executed. (This also works when
__all__ isdefined.)

Although certain modules are designed to export only names that follow certain patterns when you use import *,
it is still considered bad practice in production code.

Remember, there is nothing wrong with using from package import specific_submodule! In fact,
this is the recommended notation unless the importing module needs to use submodules with the same name from
different packages.

6.4.2 Intra-package References

When packages are structured into subpackages (as with the sound package in the example), you can use absolute
imports to refer to submodules of siblings packages. For example, if the module sound.filters.vocoder
needs to use the echo module in the sound.effects package, it can use from sound.effects import
echo.

You can also write relative imports, with the from module import name form of import statement. These
imports use leading dots to indicate the current and parent packages involved in the relative import. From the
surround module for example, you might use:

from . import echo
from .. import formats
from ..filters import equalizer

Note that relative imports are based on the name of the current module. Since the name of the main module is always
"__main__", modules intended for use as the main module of a Python application must always use absolute
imports.

6.4.3 Packages in Multiple Directories

Packages support one more special attribute, __path__. This is initialized to be a list containing the name of
the directory holding the package’s __init__.py before the code in that file is executed. This variable can be
modified; doing so affects future searches for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules found in a package.

50 Chapter 6. Modules

CHAPTER
SEVEN

INPUT AND OUTPUT

There are several ways to present the output of a program; data can be printed in a human-readable form, or written
to a file for future use. This chapter will discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we’ve encountered two ways of writing values: expression statements and the print () function. (A third way
is using the write () method of file objects; the standard output file can be referenced as sys . stdout. See the
Library Reference for more information on this.)

Often you’ll want more control over the formatting of your output than simply printing space-separated values. There
are several ways to format output.

* To use formatted string literals, begin a string with £ or F before the opening quotation mark or triple quotation
mark. Inside this string, you can write a Python expression between { and } characters that can refer to
variables or literal values.

>>> year = 2016
>>> event = 'Referendum'
>>> f'Results of the {year event }'

'Results of the 2016 Referendum'

e The str.format () method of strings requires more manual effort. You'll still use { and } to mark where
a variable will be substituted and can provide detailed formatting directives, but you’ll also need to provide the
information to be formatted.

>>> yes_votes = 42_572_654

>>> no_votes = 43 132 495

>>> percentage = yes_votes / (yes_votes + no_votes)

>>> ! YES votes '.format (yes_votes, percentage)
' 42572654 YES votes 49.67%'

* Finally, you can do all the string handling yourself by using string slicing and concatenation operations to create
any layout you can imagine. The string type has some methods that perform useful operations for padding
strings to a given column width.

When you don’t need fancy output but just want a quick display of some variables for debugging purposes, you can
convert any value to a string with the repr () or str () functions.

The str () function is meant to return representations of values which are fairly human-readable, while repr ()
is meant to generate representations which can be read by the interpreter (or will force a SyntaxError if there is
no equivalent syntax). For objects which don’t have a particular representation for human consumption, str () will
return the same value as repr (). Many values, such as numbers or structures like lists and dictionaries, have the
same representation using either function. Strings, in particular, have two distinct representations.

Some examples:

51

Python Tutorial, Release 3.11.3

>>> s = 'Hello, world.'

>>> str(s)

'Hello, world.'

>>> repr(s)

"'Hello, world.'"

>>> str(1/7)

'0.14285714285714285"

>>> x = 10 * 3.25

>>> y = 200 * 200

>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'

>>> print (s)

The value of x is 32.5, and y is 40000...

>>> # The repr() of a string adds string quotes and backslashes:
hello = 'hello, world\n'

>>> hellos = repr(hello)

>>> print (hellos)

'hello, world\n'

>>> # The argument to repr () may be any Python object:
repr ((x, y, ('spam', 'eggs')))

"(32.5, 40000, ('spam', 'eggs'))"

The st ring module contains a Template class that offers yet another way to substitute values into strings, using
placeholders like $x and replacing them with values from a dictionary, but offers much less control of the formatting.

7.1.1 Formatted String Literals
Formatted string literals (also called f-strings for short) let you include the value of Python expressions inside a string
by prefixing the string with £ or F and writing expressions as { expression}.

An optional format specifier can follow the expression. This allows greater control over how the value is formatted.
The following example rounds pi to three places after the decimal:

>>> import math
>>> print (f'The value of pi is approximately {math.pi:.3f}.")
The value of pi is approximately 3.142.

Passing an integer after the ' : ' will cause that field to be a minimum number of characters wide. This is useful for
making columns line up.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():

print (f'{name:10} ==> {phone:10d}")
Sjoerd ==> 4127
Jack ==> 4098
Dcab ==> 7678
Other modifiers can be used to convert the value before it is formatted. '!a' applies ascii (), '!s"' applies

str(),and '!r' applies repr ():

>>> animals = 'eels'

>>> print (f'My hovercraft is full of {animals/}.'")
My hovercraft is full of eels.

>>> print (f'My hovercraft is full of {animals ")
My hovercraft is full of 'eels'.

The = specifier can be used to expand an expression to the text of the expression, an equal sign, then the representation
of the evaluated expression:

52 Chapter 7. Input and Output

Python Tutorial, Release 3.11.3

>>> bugs = 'roaches'

>>> count = 13

>>> area = 'living room'

>>> print (f'Debugging {bugs count area=/")

Debugging bugs='roaches' count=13 area='living room'

See self-documenting expressions for more information on the = specifier. For a reference on these format specifi-
cations, see the reference guide for the formatspec.

7.1.2 The String format() Method

Basic usage of the str.format () method looks like this:

>>> print ('We are the who say "{}!"'"._ format ('knights', 'Ni'))
We are the knights who say "Ni!"

The brackets and characters within them (called format fields) are replaced with the objects passed into the str.
format () method. A number in the brackets can be used to refer to the position of the object passed into the
str.format () method.

>>> print (' and '.format ('spam', 'eggs'))
spam and eggs
>>> print (' and '.format ('spam', 'eggs'))

eggs and spam

If keyword arguments are used in the str.format () method, their values are referred to by using the name of
the argument.

>>> print ('This is .. format (
.. food="'spam', adjective='absolutely horrible'))
This spam is absolutely horrible.

Positional and keyword arguments can be arbitrarily combined:

>>> print ('The story of , , and '.format ('Bill', 'Manfred',
Ce. other="Georg'))
The story of Bill, Manfred, and Georg.

If you have a really long format string that you don’t want to split up, it would be nice if you could reference the
variables to be formatted by name instead of by position. This can be done by simply passing the dict and using
square brackets ' [] ' to access the keys.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print ('Jack: ; Sjoerd: H

Ce 'Dcab: '.format (table))

Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This could also be done by passing the t able dictionary as keyword arguments with the * * notation.

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print ('Jack: ; Sjoerd: ; Dcab: '.format (**table))
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the built-in function vars (), which returns a dictionary containing
all local variables.

As an example, the following lines produce a tidily aligned set of columns giving integers and their squares and cubes:

7.1. Fancier Output Formatting 53

Python Tutorial, Release 3.11.3

>>> for x in range (1, 11):

print (' ' format (x, x*x, X*X*x))
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

For a complete overview of string formatting with st r. format (), see formatstrings.

7.1.3 Manual String Formatting

Here’s the same table of squares and cubes, formatted manually:

>>> for x in range (1, 11):
print (repr (x) .rjust (2), repr(x*x).rjust(3), end=" ")
Note use of 'end' on previous line
print (repr (x*x*x) .rjust (4))

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

(Note that the one space between each column was added by the way print () works: it always adds spaces between
its arguments.)

The str.rjust () method of string objects right-justifies a string in a field of a given width by padding it with
spaces on the left. There are similar methods str.1just () and str.center (). These methods do not write
anything, they just return a new string. If the input string is too long, they don’t truncate it, but return it unchanged;
this will mess up your column lay-out but that’s usually better than the alternative, which would be lying about a value.
(If you really want truncation you can always add a slice operation, as in x . 1 just (n) [:n].)

There is another method, str.zfil1l (), which pads a numeric string on the left with zeros. It understands about
plus and minus signs:

>>> '"12'.zfill (5)

'00012"

>>> '-3.14".z£i11(7)
'-003.14"

>>> '3.14159265359"'.z£111(5)
'3.14159265359"

54 Chapter 7. Input and Output

Python Tutorial, Release 3.11.3

7.1.4 Old string formatting

The % operator (modulo) can also be used for string formatting. Given 'string' % wvalues, instances of %
in string are replaced with zero or more elements of values. This operation is commonly known as string
interpolation. For example:

>>> import math
>>> print ('The value of pi is approximately .' % math.pi)
The value of pi is approximately 3.142.

More information can be found in the old-string-formatting section.

7.2 Reading and Writing Files

open () returns a file object, and is most commonly used with two positional arguments and one keyword argument:
open (filename, mode, encoding=None)

>>> f = open('workfile', 'w', encoding="utf-8")

The first argument is a string containing the filename. The second argument is another string containing a few char-
acters describing the way in which the file will be used. mode can be ' r' when the file will only be read, 'w"' for
only writing (an existing file with the same name will be erased), and 'a' opens the file for appending; any data
written to the file is automatically added to the end. 'r+"' opens the file for both reading and writing. The mode
argument is optional; ' r' will be assumed if it’s omitted.

Normally, files are opened in text mode, that means, you read and write strings from and to the file, which are encoded
in a specific encoding. If encoding is not specified, the default is platform dependent (see open ()). Because UTF-8
is the modern de-facto standard, encoding="utf-8" is recommended unless you know that you need to use a
different encoding. Appending a 'b' to the mode opens the file in binary mode. Binary mode data is read and
written as bytes objects. You can not specify encoding when opening file in binary mode.

In text mode, the default when reading is to convert platform-specific line endings (\n on Unix, \ r\n on Windows)
to just \n. When writing in text mode, the default is to convert occurrences of \n back to platform-specific line
endings. This behind-the-scenes modification to file data is fine for text files, but will corrupt binary data like that in
JPEG or EXE files. Be very careful to use binary mode when reading and writing such files.

It is good practice to use the with keyword when dealing with file objects. The advantage is that the file is properly
closed after its suite finishes, even if an exception is raised at some point. Using with is also much shorter than
writing equivalent t ry-finally blocks:

>>> with open('workfile', encoding="utf-8") as f:
read_data = f.read()

>>> # We can check that the file has been automatically closed.
>>> f.closed
True

If you’re not using the with keyword, then you should call £.close () to close the file and immediately free up
any system resources used by it.

Warning: Calling £.write () without using the with keyword or calling £ .close () might result in the
arguments of £.write () not being completely written to the disk, even if the program exits successfully.

After a file object is closed, either by a with statement or by calling £.close (), attempts to use the file object
will automatically fail.

7.2. Reading and Writing Files 55

Python Tutorial, Release 3.11.3

>>> f.close()
>>> f.read()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: I/0O operation on closed file.

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object called f has already been created.

To read a file’s contents, call £.read (size), which reads some quantity of data and returns it as a string (in text
mode) or bytes object (in binary mode). size is an optional numeric argument. When size is omitted or negative, the
entire contents of the file will be read and returned; it’s your problem if the file is twice as large as your machine’s
memory. Otherwise, at most size characters (in text mode) or size bytes (in binary mode) are read and returned. If
the end of the file has been reached, £ . read () will return an empty string (' ').

>>> f.read()
'This is the entire file.\n'
>>> f.read()

[}

f.readline () reads asingle line from the file; a newline character (\n) is left at the end of the string, and is only
omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unambiguous; if
f.readline () returns an empty string, the end of the file has been reached, while a blank line is represented by
'\n', a string containing only a single newline.

>>> f.readline ()

'This is the first line of the file.\n'
>>> f.readline ()

'Second line of the file\n'

>>> f.readline ()
T

For reading lines from a file, you can loop over the file object. This is memory efficient, fast, and leads to simple code:

>>> for line in f:
print (line, end="'")

This is the first line of the file.
Second line of the file

If you want to read all the lines of a file in a list you can alsouse 1ist (f) or £.readlines ().

f.write (string) writes the contents of string to the file, returning the number of characters written.

>>> f.write('This is a test\n')
15

Other types of objects need to be converted — either to a string (in text mode) or a bytes object (in binary mode) —
before writing them:

>>> value = ('the answer', 42)

>>> s = str(value) # convert the tuple to string
>>> f.write(s)

18

f.tell () returns an integer giving the file object’s current position in the file represented as number of bytes from
the beginning of the file when in binary mode and an opaque number when in text mode.

To change the file object’s position, use f.seek (offset, whence). The position is computed from adding
offset to a reference point; the reference point is selected by the whence argument. A whence value of 0 measures

56 Chapter 7. Input and Output

Python Tutorial, Release 3.11.3

from the beginning of the file, 1 uses the current file position, and 2 uses the end of the file as the reference point.
whence can be omitted and defaults to 0, using the beginning of the file as the reference point.

>>> f = open('workfile', 'rb+')

>>> f.write(b'0123456789%abcdef ")

16

>>> f.seek (D) # Go to the 6th byte in the file
5

>>> f.read (1)

b'S5!

>>> f.seek (-3, 2) # Go to the 3rd byte before the end
13

>>> f.read (1)

b'd!’

In text files (those opened without a b in the mode string), only seeks relative to the beginning of the file are allowed
(the exception being seeking to the very file end with seek (0, 2)) and the only valid offser values are those
returned from the £.tell (), or zero. Any other offset value produces undefined behaviour.

File objects have some additional methods, such as isatty () and truncate () which are less frequently used;
consult the Library Reference for a complete guide to file objects.

7.2.2 Saving structured data with json

Strings can easily be written to and read from a file. Numbers take a bit more effort, since the read () method only
returns strings, which will have to be passed to a function like int (), which takes a string like ' 123" and returns
its numeric value 123. When you want to save more complex data types like nested lists and dictionaries, parsing and
serializing by hand becomes complicated.

Rather than having users constantly writing and debugging code to save complicated data types to files, Python allows
you to use the popular data interchange format called JSON (JavaScript Object Notation). The standard module called
json can take Python data hierarchies, and convert them to string representations; this process is called serializing.
Reconstructing the data from the string representation is called deserializing. Between serializing and deserializing,
the string representing the object may have been stored in a file or data, or sent over a network connection to some
distant machine.

Note: The JSON format is commonly used by modern applications to allow for data exchange. Many programmers
are already familiar with it, which makes it a good choice for interoperability.

If you have an object %, you can view its JSON string representation with a simple line of code:

>>> import json

>>> x = [1, 'simple', 'list']
>>> json.dumps (x)

'[1, "simple", "list"]'

Another variant of the dumps () function, called dump () , simply serializes the object to a fext file. So if £ is a text
file object opened for writing, we can do this:

’json.dump(x, f)

To decode the object again, if £ is a binary file or text file object which has been opened for reading:

’x = json.load(f)

Note: JSON files must be encoded in UTF-8. Use encoding="utf-8" when opening JSON file as a text file
for both of reading and writing.

7.2. Reading and Writing Files 57

https://json.org

Python Tutorial, Release 3.11.3

This simple serialization technique can handle lists and dictionaries, but serializing arbitrary class instances in JSON
requires a bit of extra effort. The reference for the json module contains an explanation of this.

See also:
pickle - the pickle module

Contrary to JSON, pickle is a protocol which allows the serialization of arbitrarily complex Python objects. As such,
it is specific to Python and cannot be used to communicate with applications written in other languages. It is also
insecure by default: deserializing pickle data coming from an untrusted source can execute arbitrary code, if the data
was crafted by a skilled attacker.

58 Chapter 7. Input and Output

CHAPTER
EIGHT

ERRORS AND EXCEPTIONS

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have probably
seen some. There are (at least) two distinguishable kinds of errors: synfax errors and exceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you are
still learning Python:

>>> while True print ('Hello world")
File "<stdin>", line 1
while True print ('Hello world')

A

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point in the line where the
error was detected. The error is caused by (or at least detected at) the token preceding the arrow: in the example, the
error is detected at the function print (), since a colon (' : ') is missing before it. File name and line number are
printed so you know where to look in case the input came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute
it. Errors detected during execution are called exceptions and are not unconditionally fatal: you will soon learn how
to handle them in Python programs. Most exceptions are not handled by programs, however, and result in error
messages as shown here:

>>> 10 * (1/0)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

>>> 4 + spam*3

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'spam' is not defined

>>> '2' + 2

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to str

The last line of the error message indicates what happened. Exceptions come in different types, and the type is printed
as part of the message: the types in the example are ZeroDivisionError,NameError and TypeError. The
string printed as the exception type is the name of the built-in exception that occurred. This is true for all built-in
exceptions, but need not be true for user-defined exceptions (although it is a useful convention). Standard exception
names are built-in identifiers (not reserved keywords).

59

Python Tutorial, Release 3.11.3

The rest of the line provides detail based on the type of exception and what caused it.

The preceding part of the error message shows the context where the exception occurred, in the form of a stack
traceback. In general it contains a stack traceback listing source lines; however, it will not display lines read from
standard input.

bltin-exceptions lists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user
for input until a valid integer has been entered, but allows the user to interrupt the program (using Control-C
or whatever the operating system supports); note that a user-generated interruption is signalled by raising the
KeyboardInterrupt exception.

>>> while True:
try:
X = int (input ("Please enter a number: "))
break
except ValueError:
print ("Oops! That was no valid number. Try again...")

The t ry statement works as follows.
* First, the try clause (the statement(s) between the t ry and except keywords) is executed.
* If no exception occurs, the except clause is skipped and execution of the t ry statement is finished.

* If an exception occurs during execution of the t ry clause, the rest of the clause is skipped. Then, if its type
matches the exception named after the except keyword, the except clause is executed, and then execution
continues after the try/except block.

* If an exception occurs which does not match the exception named in the except clause, it is passed on to outer
try statements; if no handler is found, it is an unhandled exception and execution stops with a message as
shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one
handler will be executed. Handlers only handle exceptions that occur in the corresponding #ry clause, not in other
handlers of the same t ry statement. An except clause may name multiple exceptions as a parenthesized tuple, for
example:

except (RuntimeError, TypeError, NameError):
pass

A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not
the other way around — an except clause listing a derived class is not compatible with a base class). For example, the
following code will print B, C, D in that order:

class B (Exception):
pass

class C(B):
pass

class D(C):
pass

for cls in [B, C, D]:
try:
raise cls()

(continues on next page)

60 Chapter 8. Errors and Exceptions

Python Tutorial, Release 3.11.3

(continued from previous page)

except D:
print ("D")

except C:
print ("C")

except B:
print ("B")

Note that if the except clauses were reversed (with except B first), it would have printed B, B, B — the first
matching except clause is triggered.

When an exception occurs, it may have associated values, also known as the exception’s arguments. The presence
and types of the arguments depend on the exception type.

The except clause may specify a variable after the exception name. The variable is bound to the exception instance
which typically has an args attribute that stores the arguments. For convenience, builtin exception types define
__str__ () to print all the arguments without explicitly accessing . args.

>>> try:
raise Exception('spam', 'eggs')
except Exception as inst:

print (type (inst)) # the exception type
print (inst.args) # arguments stored in .args
print (inst) # __str__ allows args to be printed directly,
but may be overridden in exception subclasses
X, y = 1inst.args # unpack args
print ('x =", x)

print('y ="', vy)

<class 'Exception'>
("spam', 'eggs')
('spam', 'eggs')

X = spam

Yy = €ggs

The exception’s __str___ () output is printed as the last part (‘detail’) of the message for unhandled exceptions.

BaseException is the common base class of all exceptions. One of its subclasses, Exception, is the base
class of all the non-fatal exceptions. Exceptions which are not subclasses of Except ion are not typically handled,
because they are used to indicate that the program should terminate. They include Sy stemEx it which is raised by
sys.exit () and KeyboardInterrupt which is raised when a user wishes to interrupt the program.

Exception can be used as a wildcard that catches (almost) everything. However, it is good practice to be as specific
as possible with the types of exceptions that we intend to handle, and to allow any unexpected exceptions to propagate
on.

The most common pattern for handling Exception is to print or log the exception and then re-raise it (allowing a
caller to handle the exception as well):

import sys

try:
f = open('myfile.txt")
s = f.readline()
i = int(s.strip())

except OSError as err:
print ("OS error:", err)
except ValueError:
print ("Could not convert data to an integer.")
except Exception as err:
print (f"Unexpected {err=}, {type(err) ")
raise

8.3. Handling Exceptions 61

Python Tutorial, Release 3.11.3

The try ... except statement has an optional else clause, which, when present, must follow all except clauses. It is
useful for code that must be executed if the 'y clause does not raise an exception. For example:

for arg in sys.argv([l:]:

try:
f = open(arg, 'r')

except OSError:
print ('cannot open', arg)

else:
print (arg, 'has', len(f.readlines()), 'lines')
f.close()

The use of the else clause is better than adding additional code to the t ry clause because it avoids accidentally
catching an exception that wasn’t raised by the code being protected by the try ... except statement.

Exception handlers do not handle only exceptions that occur immediately in the #ry clause, but also those that occur
inside functions that are called (even indirectly) in the try clause. For example:

>>> def this_fails():
x = 1/0

>>> try:
this_fails()

except ZeroDivisionError as err:
print ('Handling run-time error:', err)

Handling run-time error: division by zero

8.4 Raising Exceptions

The raise statement allows the programmer to force a specified exception to occur. For example:

>>> raise NameError ('HiThere')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: HiThere

The sole argument to raise indicates the exception to be raised. This must be either an exception instance or an
exception class (a class that derives from BaseException, such as Exception or one of its subclasses). If an
exception class is passed, it will be implicitly instantiated by calling its constructor with no arguments:

raise ValueError # shorthand for 'raise ValueError()'

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form of the raise
statement allows you to re-raise the exception:

>>> try:
raise NameError ('HiThere')
except NameError:
print ('An exception flew by!'")
raise

An exception flew by!

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

NameError: HiThere

62 Chapter 8. Errors and Exceptions

Python Tutorial, Release 3.11.3

8.5 Exception Chaining

If an unhandled exception occurs inside an except section, it will have the exception being handled attached to it
and included in the error message:

>>> try:
open ("database.sqglite")
except OSError:
raise RuntimeError ("unable to handle error")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
FileNotFoundError: [Errno 2] No such file or directory: 'database.sglite'

During handling of the above exception, another exception occurred:
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
RuntimeError: unable to handle error

To indicate that an exception is a direct consequence of another, the raise statement allows an optional from
clause:

exc must be exception instance or None.
raise RuntimeError from exc

This can be useful when you are transforming exceptions. For example:

>>> def func():
raise ConnectionError

>>> try:

func ()
except ConnectionError as exc:
raise RuntimeError ('Failed to open database') from exc

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File "<stdin>", line 2, in func

ConnectionError

The above exception was the direct cause of the following exception:
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
RuntimeError: Failed to open database

It also allows disabling automatic exception chaining using the from None idiom:

>>> try:
open ('database.sglite')
except OSError:
raise RuntimeError from None

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
RuntimeError

For more information about chaining mechanics, see bltin-exceptions.

8.5. Exception Chaining 63

Python Tutorial, Release 3.11.3

8.6 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class (see Classes for more about Python
classes). Exceptions should typically be derived from the Except ion class, either directly or indirectly.

Exception classes can be defined which do anything any other class can do, but are usually kept simple, often only
offering a number of attributes that allow information about the error to be extracted by handlers for the exception.

Most exceptions are defined with names that end in “Error”, similar to the naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may occur in functions they define.

8.7 Defining Clean-up Actions

The t ry statement has another optional clause which is intended to define clean-up actions that must be executed
under all circumstances. For example:

>>> try:
raise KeyboardInterrupt
finally:
print ('Goodbye, world!")

Goodbye, world!

KeyboardInterrupt

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

Ifafinally clauseis present, the finally clause will execute as the last task before the t ry statement completes.
The finally clause runs whether or not the t ry statement produces an exception. The following points discuss
more complex cases when an exception occurs:

« If an exception occurs during execution of the try clause, the exception may be handled by an except
clause. If the exception is not handled by an except clause, the exception is re-raised after the finally
clause has been executed.

* An exception could occur during execution of an except or else clause. Again, the exception is re-raised
after the finally clause has been executed.

e If the finally clause executes a break, cont inue or return statement, exceptions are not re-raised.

« If the t ry statement reaches a break, cont inue or return statement, the finally clause will execute
just prior to the break, continue or return statement’s execution.

e If a finally clause includes a return statement, the returned value will be the one from the finally
clause’s return statement, not the value from the t ry clause’s return statement.

For example:

>>> def bool_return():
try:
return True
finally:
return False

>>> bool_return ()
False

A more complicated example:

>>> def divide(x, y):
try:
result = x / y

(continues on next page)

64 Chapter 8. Errors and Exceptions

Python Tutorial, Release 3.11.3

(continued from previous page)

except ZeroDivisionError:

print ("division by zero!")
else:

print ("result is", result)
finally:

print ("executing finally clause")

>>> divide (2, 1)

result is 2.0

executing finally clause

>>> divide (2, 0)

division by zero!

executing finally clause

>>> divide("2", "1M)

executing finally clause

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: 'str' and 'str'

As you can see, the finally clause is executed in any event. The TypeError raised by dividing two strings is
not handled by the except clause and therefore re-raised after the finally clause has been executed.

In real world applications, the finally clause is useful for releasing external resources (such as files or network
connections), regardless of whether the use of the resource was successful.

8.8 Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object is no longer needed, regardless of
whether or not the operation using the object succeeded or failed. Look at the following example, which tries to open
a file and print its contents to the screen.

for line in open("myfile.txt"):
print (line, end="")

The problem with this code is that it leaves the file open for an indeterminate amount of time after this part of the
code has finished executing. This is not an issue in simple scripts, but can be a problem for larger applications. The
with statement allows objects like files to be used in a way that ensures they are always cleaned up promptly and
correctly.

with open("myfile.txt") as f:
for line in f:
print (line, end="")

After the statement is executed, the file f is always closed, even if a problem was encountered while processing the
lines. Objects which, like files, provide predefined clean-up actions will indicate this in their documentation.

8.8. Predefined Clean-up Actions 65

Python Tutorial, Release 3.11.3

8.9 Raising and Handling Multiple Unrelated Exceptions

There are situations where it is necessary to report several exceptions that have occurred. This is often the case in
concurrency frameworks, when several tasks may have failed in parallel, but there are also other use cases where it is
desirable to continue execution and collect multiple errors rather than raise the first exception.

The builtin ExceptionGroup wraps a list of exception instances so that they can be raised together. It is an
exception itself, so it can be caught like any other exception.

>>> def f():
excs = [OSError('error 1'), SystemError('error 2')]
raise ExceptionGroup ('there were problems', excs)
>>> f()
+ Exception Group Traceback (most recent call last):
| File "<stdin>", line 1, in <module>
| File "<stdin>", line 3, in £
| ExceptionGroup: there were problems
o 1 ——————
| OSError: error 1

| SystemError: error 2
£()
except Exception as e:

print (f'caught {type(e) }: e')

caught <class 'ExceptionGroup'>: e
>>>

By using except * instead of except, we can selectively handle only the exceptions in the group that match a
certain type. In the following example, which shows a nested exception group, each except * clause extracts from
the group exceptions of a certain type while letting all other exceptions propagate to other clauses and eventually to
be reraised.

>>> def f():
raise ExceptionGroup ("groupl",
[OSError (1),
SystemError (2),
ExceptionGroup ("group2",
[OSError (3), RecursionError(4)])1)
>>> try:
£()
except* OSError as e:
print ("There were OSErrors")
except* SystemError as e:
print ("There were SystemErrors")

There were OSErrors
There were SystemErrors
+ Exception Group Traceback (most recent call last):
| File "<stdin>", line 2, in <module>
| File "<stdin>", line 2, in £
| ExceptionGroup: groupl
+—t— 1 —————

| ExceptionGroup: group?2
ot 1 ——mmmmm
| RecursionError: 4
+ ____________________________________
>>>

66 Chapter 8. Errors and Exceptions

Python Tutorial, Release 3.11.3

Note that the exceptions nested in an exception group must be instances, not types. This is because in practice the
exceptions would typically be ones that have already been raised and caught by the program, along the following
pattern:

>>> excs = []
for test in tests:
try:
test.run ()
except Exception as e:
excs.append (e)

>>> if excs:
raise ExceptionGroup ("Test Failures", excs)

8.10 Enriching Exceptions with Notes

When an exception is created in order to be raised, it is usually initialized with information that describes the error
that has occurred. There are cases where it is useful to add information after the exception was caught. For this
purpose, exceptions have a method add_note (note) that accepts a string and adds it to the exception’s notes list.
The standard traceback rendering includes all notes, in the order they were added, after the exception.

>>> try:
raise TypeError ('bad type')
except Exception as e:
e.add_note ('Add some information')
e.add_note ('Add some more information')
raise

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

TypeError: bad type

Add some information

Add some more information

>>>

For example, when collecting exceptions into an exception group, we may want to add context information for the
individual errors. In the following each exception in the group has a note indicating when this error has occurred.

>>> def f():
raise OSError ('operation failed')

>>> excs = []
>>> for i1 in range(3):
try:
£()
except Exception as e:
e.add_note (f'Happened in Iteration {i+1}')
excs.append (e)

>>> raise ExceptionGroup ('We have some problems', excs)
+ Exception Group Traceback (most recent call last):
| File "<stdin>", line 1, in <module>
| ExceptionGroup: We have some problems (3 sub-exceptions)
o 1 ——————
| Traceback (most recent call last):
| File "<stdin>", line 3, in <module>
| File "<stdin>", line 2, in f
| OSError: operation failed

(continues on next page)

8.10. Enriching Exceptions with Notes 67

Python Tutorial, Release 3.11.3

(continued from previous page)

>>>

Happened in Iteration 1

Traceback (most recent call last):
File "<stdin>", line 3, in <module>
File "<stdin>", line 2, in f

OSError: operation failed

Happened in Iteration 2

Traceback (most recent call last):
File "<stdin>", line 3, in <module>
File "<stdin>", line 2, in f

OSError: operation failed

Happened in Iteration 3

68

Chapter 8. Errors and Exceptions

CHAPTER
NINE

CLASSES

Classes provide a means of bundling data and functionality together. Creating a new class creates a new fype of object,
allowing new instances of that type to be made. Each class instance can have attributes attached to it for maintaining
its state. Class instances can also have methods (defined by its class) for modifying its state.

Compared with other programming languages, Python’s class mechanism adds classes with a minimum of new syntax
and semantics. It is a mixture of the class mechanisms found in C++ and Modula-3. Python classes provide all the
standard features of Object Oriented Programming: the class inheritance mechanism allows multiple base classes, a
derived class can override any methods of its base class or classes, and a method can call the method of a base class
with the same name. Objects can contain arbitrary amounts and kinds of data. As is true for modules, classes partake
of the dynamic nature of Python: they are created at runtime, and can be modified further after creation.

In C++ terminology, normally class members (including the data members) are public (except see below Private
Variables), and all member functions are virtual. As in Modula-3, there are no shorthands for referencing the object’s
members from its methods: the method function is declared with an explicit first argument representing the object,
which is provided implicitly by the call. As in Smalltalk, classes themselves are objects. This provides semantics for
importing and renaming. Unlike C++ and Modula-3, built-in types can be used as base classes for extension by the
user. Also, like in C++, most built-in operators with special syntax (arithmetic operators, subscripting etc.) can be
redefined for class instances.

(Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++
terms. I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++, but
I expect that few readers have heard of it.)

9.1 A Word About Names and Objects

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is known
as aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be safely ignored
when dealing with immutable basic types (numbers, strings, tuples). However, aliasing has a possibly surprising effect
on the semantics of Python code involving mutable objects such as lists, dictionaries, and most other types. This is
usually used to the benefit of the program, since aliases behave like pointers in some respects. For example, passing
an object is cheap since only a pointer is passed by the implementation; and if a function modifies an object passed as
an argument, the caller will see the change — this eliminates the need for two different argument passing mechanisms
as in Pascal.

69

Python Tutorial, Release 3.11.3

9.2 Python Scopes and Namespaces

Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions play some
neat tricks with namespaces, and you need to know how scopes and namespaces work to fully understand what’s going
on. Incidentally, knowledge about this subject is useful for any advanced Python programmer.

Let’s begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are currently implemented as Python dictionaries,
but that’s normally not noticeable in any way (except for performance), and it may change in the future. Examples of
namespaces are: the set of built-in names (containing functions such as abs (), and built-in exception names); the
global names in a module; and the local names in a function invocation. In a sense the set of attributes of an object
also form a namespace. The important thing to know about namespaces is that there is absolutely no relation between
names in different namespaces; for instance, two different modules may both define a function maximize without
confusion — users of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot — for example, in the expression z . real, real
is an attribute of the object z. Strictly speaking, references to names in modules are attribute references: in the
expression modname . funcname, modname is a module object and funcname is an attribute of it. In this case
there happens to be a straightforward mapping between the module’s attributes and the global names defined in the
module: they share the same namespace!'

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes are
writable: you can write modname .the_answer = 42. Writable attributes may also be deleted with the del
statement. For example, del modname.the_answer will remove the attribute the_answer from the object
named by modname.

Namespaces are created at different moments and have different lifetimes. The namespace containing the built-in
names is created when the Python interpreter starts up, and is never deleted. The global namespace for a module
is created when the module definition is read in; normally, module namespaces also last until the interpreter quits.
The statements executed by the top-level invocation of the interpreter, either read from a script file or interactively,
are considered part of a module called __main__, so they have their own global namespace. (The built-in names
actually also live in a module; this is called builtins.)

The local namespace for a function is created when the function is called, and deleted when the function returns or
raises an exception that is not handled within the function. (Actually, forgetting would be a better way to describe
what actually happens.) Of course, recursive invocations each have their own local namespace.

A scope is a textual region of a Python program where a namespace is directly accessible. “Directly accessible” here
means that an unqualified reference to a name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any time during execution, there are 3 or 4
nested scopes whose namespaces are directly accessible:

* the innermost scope, which is searched first, contains the local names

« the scopes of any enclosing functions, which are searched starting with the nearest enclosing scope, contain
non-local, but also non-global names

* the next-to-last scope contains the current module’s global names
* the outermost scope (searched last) is the namespace containing built-in names

If a name is declared global, then all references and assignments go directly to the next-to-last scope containing the
module’s global names. To rebind variables found outside of the innermost scope, the nonlocal statement can be
used; if not declared nonlocal, those variables are read-only (an attempt to write to such a variable will simply create
a new local variable in the innermost scope, leaving the identically named outer variable unchanged).

Usually, the local scope references the local names of the (textually) current function. Outside functions, the local
scope references the same namespace as the global scope: the module’s namespace. Class definitions place yet another
namespace in the local scope.

! Except for one thing. Module objects have a secret read-only attribute called __dict___ which returns the dictionary used to implement
the module’s namespace; the name __dict___is an attribute but not a global name. Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like post-mortem debuggers.

70 Chapter 9. Classes

Python Tutorial, Release 3.11.3

It is important to realize that scopes are determined textually: the global scope of a function defined in a module is
that module’s namespace, no matter from where or by what alias the function is called. On the other hand, the actual
search for names is done dynamically, at run time — however, the language definition is evolving towards static
name resolution, at “compile” time, so don’t rely on dynamic name resolution! (In fact, local variables are already
determined statically.)

A special quirk of Python is that — if no global or nonlocal statement is in effect — assignments to names always
go into the innermost scope. Assignments do not copy data — they just bind names to objects. The same is true
for deletions: the statement del x removes the binding of x from the namespace referenced by the local scope.
In fact, all operations that introduce new names use the local scope: in particular, import statements and function
definitions bind the module or function name in the local scope.

The global statement can be used to indicate that particular variables live in the global scope and should be rebound
there; the nonlocal statement indicates that particular variables live in an enclosing scope and should be rebound
there.

9.2.1 Scopes and Namespaces Example

This is an example demonstrating how to reference the different scopes and namespaces, and how global and
nonlocal affect variable binding:

def scope_test():
def do_local():
spam = "local spam"

def do_nonlocal():
nonlocal spam
spam = "nonlocal spam"

def do_global() :
global spam
spam = "global spam"

spam = "test spam"

do_local ()

print ("After local assignment:", spam)
do_nonlocal ()

print ("After nonlocal assignment:", spam)
do_global ()

print ("After global assignment:", spam)

scope_test ()
print ("In global scope:", spam)

The output of the example code is:

After local assignment: test spam

After nonlocal assignment: nonlocal spam
After global assignment: nonlocal spam
In global scope: global spam

Note how the local assignment (which is default) didn’t change scope_test’s binding of spam. The nonlocal as-
signment changed scope_test’s binding of spam, and the global assignment changed the module-level binding.

You can also see that there was no previous binding for spam before the global assignment.

9.2. Python Scopes and Namespaces 71

Python Tutorial, Release 3.11.3

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>

<statement-N>

Class definitions, like function definitions (de f statements) must be executed before they have any effect. (You could
conceivably place a class definition in a branch of an i f statement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other statements are allowed,
and sometimes useful — we’ll come back to this later. The function definitions inside a class normally have a peculiar
form of argument list, dictated by the calling conventions for methods — again, this is explained later.

When a class definition is entered, a new namespace is created, and used as the local scope — thus, all assignments
to local variables go into this new namespace. In particular, function definitions bind the name of the new function
here.

When a class definition is left normally (via the end), a class object is created. This is basically a wrapper around the
contents of the namespace created by the class definition; we’ll learn more about class objects in the next section. The
original local scope (the one in effect just before the class definition was entered) is reinstated, and the class object is
bound here to the class name given in the class definition header (ClassName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and instantiation.

Attribute references use the standard syntax used for all attribute references in Python: ob7j.name. Valid attribute
names are all the names that were in the class’s namespace when the class object was created. So, if the class definition
looked like this:

class MyClass:
i Sl‘mple example class
i = 12345

mrn

def f(self):
return 'hello world'

thenMyClass.iandMyClass. f are valid attribute references, returning an integer and a function object, respec-
tively. Class attributes can also be assigned to, so you can change the value of MyClass . i by assignment. __doc___
is also a valid attribute, returning the docstring belonging to the class: "A simple example class".

Class instantiation uses function notation. Just pretend that the class object is a parameterless function that returns a
new instance of the class. For example (assuming the above class):

x = MyClass ()

creates a new instance of the class and assigns this object to the local variable x.

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects with
instances customized to a specific initial state. Therefore a class may define a special method named __init__ (),
like this:

72 Chapter 9. Classes

Python Tutorial, Release 3.11.3

def _ init__ (self):
self.data = []

When a class defines an __init__ () method, class instantiation automatically invokes __init__ () for the
newly created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass ()

Of course, the __init__ () method may have arguments for greater flexibility. In that case, arguments given to
the class instantiation operator are passed onto __init__ (). For example,

>>> class Complex:

def _ init_ (self, realpart, imagpart):
self.r = realpart
self.i = imagpart

>>> x = Complex (3.0, —-4.5)
>>> x.r, X.1
(3.0, —-4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are attribute refer-
ences. There are two kinds of valid attribute names: data attributes and methods.

data attributes correspond to “instance variables” in Smalltalk, and to “data members” in C++. Data attributes need
not be declared; like local variables, they spring into existence when they are first assigned to. For example, if x is
the instance of MyClass created above, the following piece of code will print the value 16, without leaving a trace:

x.counter = 1
while x.counter < 10:
x.counter = x.counter * 2

print (x.counter)
del x.counter

The other kind of instance attribute reference is a method. A method is a function that “belongs to” an object. (In
Python, the term method is not unique to class instances: other object types can have methods as well. For example,
list objects have methods called append, insert, remove, sort, and so on. However, in the following discussion, we’ll
use the term method exclusively to mean methods of class instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all attributes of a class that are function
objects define corresponding methods of its instances. So in our example, x . £ is a valid method reference, since
MyClass. f is a function, but x . 1 is not, since MyClass . i is not. But x . f is not the same thing as MyClass.
f — it is a method object, not a function object.

9.3.4 Method Objects

Usually, a method is called right after it is bound:

x.f()

In the MyClass example, this will return the string 'hello world'. However, it is not necessary to call a
method right away: x . £ is a method object, and can be stored away and called at a later time. For example:

xf = x.f
while True:
print (xf())

9.3. A First Look at Classes 73

Python Tutorial, Release 3.11.3

will continue to print hello world until the end of time.

What exactly happens when a method is called? You may have noticed that x . £ () was called without an argument
above, even though the function definition for £ () specified an argument. What happened to the argument? Surely
Python raises an exception when a function that requires an argument is called without any — even if the argument
isn’t actually used...

Actually, you may have guessed the answer: the special thing about methods is that the instance object is passed as the
first argument of the function. In our example, the call x . £ () is exactly equivalent to MyClass. f (x). In general,
calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list
that is created by inserting the method’s instance object before the first argument.

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When
a non-data attribute of an instance is referenced, the instance’s class is searched. If the name denotes a valid class
attribute that is a function object, a method object is created by packing (pointers to) the instance object and the
function object just found together in an abstract object: this is the method object. When the method object is called
with an argument list, a new argument list is constructed from the instance object and the argument list, and the
function object is called with this new argument list.

9.3.5 Class and Instance Variables

Generally speaking, instance variables are for data unique to each instance and class variables are for attributes and
methods shared by all instances of the class:

class Dog:

kind = 'canine' # class variable shared by all instances
def _ init_ (self, name):
self.name = name # instance variable unique to each instance

>>> d = Dog('Fido")
>>> e = Dog('Buddy")

>>> d.kind # shared by all dogs
'canine'

>>> e.kind # shared by all dogs
'canine'

>>> d.name # unique to d

'Fido'

>>> e.name # unique to e
'Buddy’

As discussed in A Word About Names and Objects, shared data can have possibly surprising effects with involving
mutable objects such as lists and dictionaries. For example, the tricks list in the following code should not be used as
a class variable because just a single list would be shared by all Dog instances:

class Dog:
tricks = [] # mistaken use of a class variable

def _ init_ (self, name):
self.name = name

def add_trick(self, trick):
self.tricks.append(trick)

>>> d = Dog('Fido")

>>> e = Dog('Buddy")

>>> d.add_trick('roll over'")
>>> e.add_trick('play dead")

(continues on next page)

74 Chapter 9. Classes

Python Tutorial, Release 3.11.3

(continued from previous page)

>>> d.tricks # unexpectedly shared by all dogs
['roll over', 'play dead']

Correct design of the class should use an instance variable instead:

class Dog:

def _ init_ (self, name):
self.name = name
self.tricks = [] # creates a new empty list for each dog

def add_trick(self, trick):
self.tricks.append(trick)

>>> d = Dog('Fido")

>>> e = Dog('Buddy")

>>> d.add_trick('roll over')
>>> e.add_trick('play dead")

>>> d.tricks
['roll over']
>>> e.tricks
['"play dead']

9.4 Random Remarks

If the same attribute name occurs in both an instance and in a class, then attribute lookup prioritizes the instance:

>>> class Warehouse:

purpose = 'storage'
region = 'west'
>>> wl = Warehouse ()

>>> print (wl.purpose, wl.region)
storage west

>>> w2 = Warehouse ()

>>> w2.region = 'east'

>>> print (w2.purpose, w2.region)
storage east

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object. In other words,
classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce
data hiding — it is all based upon convention. (On the other hand, the Python implementation, written in C, can
completely hide implementation details and control access to an object if necessary; this can be used by extensions
to Python written in C.)

Clients should use data attributes with care — clients may mess up invariants maintained by the methods by stamping
on their data attributes. Note that clients may add data attributes of their own to an instance object without affecting
the validity of the methods, as long as name conflicts are avoided — again, a naming convention can save a lot of
headaches here.

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this
actually increases the readability of methods: there is no chance of confusing local variables and instance variables
when glancing through a method.

Often, the first argument of a method is called self. This is nothing more than a convention: the name self has
absolutely no special meaning to Python. Note, however, that by not following the convention your code may be less
readable to other Python programmers, and it is also conceivable that a class browser program might be written that
relies upon such a convention.

9.4. Random Remarks 75

Python Tutorial, Release 3.11.3

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the
function definition is textually enclosed in the class definition: assigning a function object to a local variable in the
class is also ok. For example:

Function defined outside the class
def fl(self, x, y):
return min(x, x+ty)

class C:
f = f1

def g(self):
return 'hello world'

h =g

Now £, g and h are all attributes of class C that refer to function objects, and consequently they are all methods of
instances of C — h being exactly equivalent to g. Note that this practice usually only serves to confuse the reader of
a program.

Methods may call other methods by using method attributes of the se1f argument:

class Bag:
def _ init__ (self):
self.data = []

def add(self, x):
self.data.append(x)

def addtwice (self, x):
self.add (x)
self.add (x)

Methods may reference global names in the same way as ordinary functions. The global scope associated with a
method is the module containing its definition. (A class is never used as a global scope.) While one rarely encounters
a good reason for using global data in a method, there are many legitimate uses of the global scope: for one thing,
functions and modules imported into the global scope can be used by methods, as well as functions and classes defined
in it. Usually, the class containing the method is itself defined in this global scope, and in the next section we’ll find
some good reasons why a method would want to reference its own class.

Each value is an object, and therefore has a class (also called its rype). It is stored as object.__class__ .

9.5 Inheritance

Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The syntax
for a derived class definition looks like this:

class DerivedClassName (BaseClassName) :
<statement-1>

<statement-N>

The name BaseClassName must be defined in a scope containing the derived class definition. In place of a base
class name, other arbitrary expressions are also allowed. This can be useful, for example, when the base class is
defined in another module:

class DerivedClassName (modname.BaseClassName) :

76 Chapter 9. Classes

Python Tutorial, Release 3.11.3

Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed, the
base class is remembered. This is used for resolving attribute references: if a requested attribute is not found in the
class, the search proceeds to look in the base class. This rule is applied recursively if the base class itself is derived
from some other class.

There’s nothing special about instantiation of derived classes: DerivedClassName () creates a new instance of
the class. Method references are resolved as follows: the corresponding class attribute is searched, descending down
the chain of base classes if necessary, and the method reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges when calling
other methods of the same object, a method of a base class that calls another method defined in the same base class
may end up calling a method of a derived class that overrides it. (For C++ programmers: all methods in Python are
effectively virtual.)

An overriding method in a derived class may in fact want to extend rather than simply replace the base class method
of the same name. There is a simple way to call the base class method directly: just call BaseClassName.
methodname (self, arguments). This is occasionally useful to clients as well. (Note that this only works if
the base class is accessible as BaseClassName in the global scope.)

Python has two built-in functions that work with inheritance:

e Use isinstance () tocheck an instance’s type: isinstance (obj, int) willbe True onlyif obj.
__class___is int or some class derived from int.

e Use issubclass () to check class inheritance: issubclass (bool, int) is True since bool is
a subclass of int. However, issubclass (float, int) is False since £loat is not a subclass of
int.

9.5.1 Multiple Inheritance

Python supports a form of multiple inheritance as well. A class definition with multiple base classes looks like this:

class DerivedClassName (Basel, Base2, Base3):
<statement-1>

<statement-N>

For most purposes, in the simplest cases, you can think of the search for attributes inherited from a parent class as
depth-first, left-to-right, not searching twice in the same class where there is an overlap in the hierarchy. Thus, if an
attribute is not found in DerivedClassName, it is searched for in Basel, then (recursively) in the base classes
of Basel, and if it was not found there, it was searched for in Base?2, and so on.

In fact, it is slightly more complex than that; the method resolution order changes dynamically to support coopera