The Python Language Reference
Release 3.11.1

Guido van Rossum and the Python development team

February 08, 2023

Python Software Foundation
Email: docs@python.org

2

3

CONTENTS

1 Introduction 3
1.1 Alternate Implementations e 3
1.2 Notation e e e e e e e e e e e e 4
Lexical analysis 5
2.1 LInestructure o e e e e e e e 5

2.1.1 Logical lines L L 5
2.1.2 Physicallines e e 5
2.1.3 0 Comments ovov ot e e e e e e e e e e e e e e e e e e 5
2.1.4 Encoding declarations e e e e e e e e e e e e 6
2.1.5 Explicitline joining e 6
2.1.6 Implicitline joining L e 6
2.1.7 Blanklines. 7
2.1.8 Indentation Ll e e e 7
2.1.9 Whitespace between tokens o e e e e e e 8
22 Othertokens e e e e 8
2.3 Identifiersand keywords Lo e 8
231 Keywords e 9
232 SoftKeywordso e 9
2.3.3 Reserved classes of identifiers L. L 9
24 Literals e e 10
24.1 Stringand Bytes literals oL e 10
2.4.2 String literal concatenation L L. oL e e e e e e e e e e e e e 12
2.4.3 Formatted string literals L. 13
244 Numericliterals L 15
245 Integerliterals L . oL e e e e e e e e e 15
24.6 Floating pointliterals L e 15
247 Imaginary literals e 16
2.5 OPErators . . . o v v v it e e e e e e e e e e e 16
2.6 Delimiters. o v e e e e e e e e e e 16
Data model 19
3.1 Objects, values and types o o oo e e e e e e e e e e 19
3.2 Thestandard type hierarchy e e e 20
3.3 Special method names e e e e e e e e e e 29
3.3.1 Basiccustomizationo e e e e e e e e 29
3.3.2 Customizing attribute access L. oo e 33
3.3.3 Customizing class Creationl e e e e e e e 37
3.3.4 Customizing instance and subclasschecks o o oL 40
3.3.5 Emulating generiC tyPes . . « . v v v v v e e e e e e e e e e e e e e e e e e e 40

34

3.3.6 Emulating callable objects e e e e

3.3.7 Emulating container types« v v i i e e e e e e e e e e e e e e e e e
3.3.8 Emulating numeric types o it i i e e e e e e e e e e e e e e e e e e
3.3.9 With Statement Context Managers e
3.3.10 Customizing positional arguments in class pattern matching
3.3.11 Special method lookup
Coroutines i i e e
341 Awaitable ObJects o o e e e e e e e e e e e e e
342 Coroutine ObJects o o vt e e e e e e e
343 Asynchronous Iterators Lo e e e e
3.4.4 Asynchronous Context Managers o ittt e e e

Execution model

4.1
4.2

4.3

Structure of @ program L e e e e e e e e e e e e e e e
Naming and binding L e e e
42.1 Bindingof names e e e e e e e e e e
422 Resolutionof names e
4.2.3 Builtins and restricted execution oLl oo
4.2.4 Interaction with dynamic features L oL o
EXCeptions e e

The import system

5.1 importlib e e e e e e e e e
52 Packages e
5.2.1 Regular packages o e e e e e e e e e e e
5.2.2 Namespace packages e e e e e e e e
5.3 Searching o L e e e e e e e
5.3.1 Themodulecache e
5.3.2 Findersandloaders e e e e e e
5.33 Import hooks o . . e e e e e e e e e e
534 Themetapath e e e e e e e e e
54 Loading L. e e e e e e e
5401 Loaders e e e e e e e e
542 Submodules L e e e
543 Module Spec e e e e e e e e e e e e e e e
5.4.4 TImport-related module attributes L. Lo e e e e
545 module.__path__ . . . L e e e e e
54.6 Modulereprs L e e e e e e e e e e e
5477 Cached bytecode invalidation L e
5.5 ThePathBased Finder e e
5.5.1 Pathentryfinders e e e e e
5.5.2 Pathentry finder protocol e e e
5.6 Replacing the standard import system oL e
5.7 Package Relative Imports L e e
5.8 Special considerations for __main__ oL e
5.8.1 CMAIMN__ o SPEC__ v v e
59 References e e
Expressions
6.1 Arithmetic conversions i e e e e e e e
6.2 AWOMS o e e e e e e e e
6.2.1 Identifiers (Names) o i i i i e e e e e e e e e e e e
6.2.2 Literals e e e e e e e e e e e e e e e e e
6.2.3 Parenthesized forms e e e e

51
51
51
51
52
53
53
53

55
55
56
56
56
57
57
57
58
58
59
60
61
61
61
62
63
63
64
64
65
66
66
67
67
67

6.3

6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11
6.12
6.13
6.14
6.15
6.16
6.17

6.2.4 Displays for lists, sets and dictionaries ot e e e e
6.2.5 Listdisplays oo e e e e e e e e e e e
6.2.6 Setdisplays e e e e e e e
6.2.7 Dictionary displays L. e
6.2.8 Generator EXpressions v i e e e e e e e e e e e e e e e e e e e
6.2.9 Yield exXpressions L. e e e e e e
Primaries e e
6.3.1 Attributereferences L.
6.3.2 SubSCriptionS e e e e e e e e e e e e e e
6.3.3 SHCINGS e e e e e e e e
6.3.4 Calls L e
AWAIt BXPIESSION .« v v v v v e
The POWET OPETALOT v v v v v e
Unary arithmetic and bitwise operationst e
Binary arithmetic operations Lo e e e e e e e e
Shifting Operations o o it e e e e e e e e e e e e e
Binary bitwise Operations« v v v vt e
COMPATISONS & v v v v v e
6.10.1 Value compariSOns e e e e e e e e e e
6.10.2 Membership test Operations L. e e
6.10.3 Identity cCOMPAriSONS vt v v i bt e e e e e e e e e e e e
Boolean operations L e e e e e

Expression lists oL e e e e e e e e
Evaluationorder L e e
Operator precedence v v i e

Simple statements

7.1
7.2

7.3
7.4
1.5
7.6
7.7
7.8
7.9
7.10
7.11

7.12
7.13

EXpression Statements e e e e e e e e e e e e e e e e e e
ASSIgNMENt SLALEMENES v v v v v v e
7.2.1 Augmented assignment StatemMents e e e e e e e e e e e e e e
7.2.2 Annotated assignment Statementso oL e e e e e e
The assert statement. o it i e e e e e e e e e e e e e e e e e e e
The pass statement o i e e e e e e e e e e e e e e e e e
The del StatemMent v v v v e
The return Statement o v v v i e
The yieldstatement o v v v v it e e e e e e e e e e e e e e
The raisestatement i i v it e e e e e e e e e e e e e e e e e e e
The break statement o i e e e e e e e e e e e e e e e e e e
The continue StatemMent v v v v v i e e e e e e e e e e e e e e e e e e e
The import statement i e
7111 Future StatementS o v v v v v e
The global Statement v v v v ot e
The nonlocal statement o v i v i e e e e e e e e e e e e e e e e e

Compound statements

8.1
8.2
8.3
8.4

The ifstatement e e e e e e e e e e e e e e
The whilestatement i i i i i et e e et e e e e e e e e e e e e
The for statement i i e e e e e e e e e e e e e e e e e
The try statement o e e e e e e e e e e e e e e e e e e e
8.4.1 exceptclause e e e e e e e
842 except*clause e e e e e e e e e

100
101
102

103
104
104
104
105
105
106

10

843 elseclause e e e e 107

844 finallyclause e e e e e e e e 107
8.5 Thewithstatement v i v i e et e 108
8.6 Thematchstatement i i i it et e e e e e e e e e e e e 110
8.6.1 OVErVIEW e e e e 110
8.6.2 Guards. e e e e 111
8.6.3 Trrefutable Case Blocks e e 111
8.6.4 Patterns e e e e e e e e e e 112
8.7 Function definitions L. e e e e e e e e e e e e e e e e e 118
8.8 Classdefinitions i e e e e e e e e e e 120
8.9 Coroutines o i e e e e e e e e 121
8.9.1 Coroutine function definition e 121
8.9.2 Theasync forstatement i i vt it e e e e e e e 122
8.9.3 Theasync withstatement v v i vt et e e e e e e e e 122
Top-level components 125
9.1 Complete Python programst vt i i e e e e e e e e e 125
0.2 Fileinput o L e e e e e e e e e e 125
9.3 Interactive INPUL L o e 126
0.4 EXpPression inPUE v v v vttt e e e e e e e e e e e e e e e e e e 126
Full Grammar specification 127
Glossary 143
About these documents 157
B.1 Contributors to the Python Documentation i 157
History and License 159
C.1 Historyof thesoftware e 159
C.2 Terms and conditions for accessing or otherwise using Python 160
C.2.1 PSFLICENSE AGREEMENT FOR PYTHON3.11.1 160
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 161
C.2.3 CNRI LICENSE AGREEMENT FORPYTHON 1.6.1 162
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 163
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.1 DOCUMENTATION 163
C.3 Licenses and Acknowledgements for Incorporated Software 164
C.3.1 Mersenne TWIStET v i v i e 164
C.3.2 Sockets e e e e e e e 165
C.3.3 Asynchronous socket SEIViCes o v v it v vttt e e e e 165
C34 Cookie management v i e e e e e e e e e e e e e e 166
C.3.5 EXecution traCing v v v v v i e 166
C.3.6 UUencode and UUdecode functions i v i i i it e e 167
C.3.7 XML Remote Procedure Calls i 167
C.3.8 test_epoll e e e e e e 168
C39 Selectkqueue e e 168
C.3.10 SipHash24 e e e e e e e e 169
C3.11 strtodand dtoa. o e e e e e e e e e e e e e e e 169
C.3.12 OpenSSL o e e 170
C3U3 expat. . . . o v e e e e e e e e 172
C3.14 Tbfhi e e e e e e 173
C3.15 zIib . . . e e 173
C.3.16 cfuhash e e e 174
C3.17 Hbmpdec e e e e e e e e 174
C3.18 WI3CCIANTESt SUIte v o o o i e e e e e e e e e e e e e e e e e e 175

C.3.19 Audioop
D Copyright

Index

Vi

The Python Language Reference, Release 3.11.1

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be exact and
complete. The semantics of non-essential built-in object types and of the built-in functions and modules are described
in library-index. For an informal introduction to the language, see tutorial-index. For C or C++ programmers, two
additional manuals exist: extending-index describes the high-level picture of how to write a Python extension module,
and the c-api-index describes the interfaces available to C/C++ programmers in detail.

CONTENTS 1

The Python Language Reference, Release 3.11.1

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, I chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but will
leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python from this
document alone, you might have to guess things and in fact you would probably end up implementing quite a different
language. On the other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal definition of the
language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, CPython is the one
Python implementation in widespread use (although alternate implementations continue to gain support), and its partic-
ular quirks are sometimes worth being mentioned, especially where the implementation imposes additional limitations.
Therefore, you’ll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented in library-
index. A few built-in modules are mentioned when they interact in a significant way with the language definition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate implementations
which are of particular interest to different audiences.

Known implementations include:

CPython This is the original and most-maintained implementation of Python, written in C. New language features gen-
erally appear here first.

Jython Python implemented in Java. This implementation can be used as a scripting language for Java applications, or
can be used to create applications using the Java class libraries. It is also often used to create tests for Java libraries.
More information can be found at the Jython website.

Python for .NET This implementation actually uses the CPython implementation, but is a managed .NET application
and makes .NET libraries available. It was created by Brian Lloyd. For more information, see the Python for NET
home page.

IronPython An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that generates
IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the original creator of
Jython. For more information, see the IronPython website.

PyPy An implementation of Python written completely in Python. It supports several advanced features not found in
other implementations like stackless support and a Just in Time compiler. One of the goals of the project is to

https://www.jython.org/
https://pythonnet.github.io/
https://pythonnet.github.io/
https://ironpython.net/

The Python Language Reference, Release 3.11.1

encourage experimentation with the language itself by making it easier to modify the interpreter (since it is written
in Python). Additional information is available on the PyPy project’s home page.

Each of these implementations varies in some way from the language as documented in this manual, or introduces specific
information beyond what’s covered in the standard Python documentation. Please refer to the implementation-specific
documentation to determine what else you need to know about the specific implementation you're using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style of
definition:

name = lc_letter (lc_letter | "_")~*

lc_letter = "av..."z"

The first line says that a name is an 1c_letter followed by a sequence of zero or more 1 c_lettersand underscores.
An lc_letter inturnis any of the single characters 'a' through 'z '. (This rule is actually adhered to for the names
defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and : :=. A vertical bar (|) is used to separate
alternatives; it is the least binding operator in this notation. A star (*) means zero or more repetitions of the preceding
item; likewise, a plus (+) means one or more repetitions, and a phrase enclosed in square brackets ([]) means zero
or one occurrences (in other words, the enclosed phrase is optional). The * and + operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively with
each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by three
dots mean a choice of any single character in the given (inclusive) range of ASCII characters. A phrase between angular
brackets (<. . . >) gives an informal description of the symbol defined; e.g., this could be used to describe the notion of
‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and syntactic
definitions: a lexical definition operates on the individual characters of the input source, while a syntax definition operates
on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter (“Lexical Analysis”) are
lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Chapter 1. Introduction

https://pypy.org/

CHAPTER
TWO

LEXICAL ANALYSIS

A Python program is read by a parser. Input to the parser is a stream of fokens, generated by the lexical analyzer. This
chapter describes how the lexical analyzer breaks a file into tokens.

Python reads program text as Unicode code points; the encoding of a source file can be given by an encoding declaration
and defaults to UTF-8, see PEP 3120 for details. If the source file cannot be decoded, a SyntaxError is raised.

2.1 Line structure

A Python program is divided into a number of logical lines.

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries ex-
cept where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line is
constructed from one or more physical lines by following the explicit or implicit line joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files and strings, any of the
standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows form
using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII CR (return)
character. All of these forms can be used equally, regardless of platform. The end of input also serves as an implicit
terminator for the final physical line.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions for
newline characters (the \n character, representing ASCII LF, is the line terminator).

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored by
the syntax.

https://peps.python.org/pep-3120/

The Python Language Reference, Release 3.11.1

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression coding [=:]\s* ([-\w.
1+), this comment is processed as an encoding declaration; the first group of this expression names the encoding of the
source code file. The encoding declaration must appear on a line of its own. If it is the second line, the first line must also
be a comment-only line. The recommended forms of an encoding expression are

’# —*— coding: <encoding-name> —*-

which is recognized also by GNU Emacs, and

’# vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM.

If no encoding declaration is found, the default encoding is UTF-8. In addition, if the first bytes of the file are the UTF-
8 byte-order mark (b'\xef\xbb\xbf"'), the declared file encoding is UTF-8 (this is supported, among others, by
Microsoft’s notepad).

If an encoding is declared, the encoding name must be recognized by Python (see standard-encodings). The encoding is
used for all lexical analysis, including string literals, comments and identifiers.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\), as follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does not
continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines using
a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = ['Januari', 'Februari', 'Maart', # These are the
'April', 'Mei', 'Juni', # Dutch names
'Juli', 'Augustus', 'September', # for the months
'Oktober', 'November', 'December'] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank con-
tinuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued lines
can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

6 Chapter 2. Lexical analysis

The Python Language Reference, Release 3.11.1

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE token is
generated). During interactive input of statements, handling of a blank line may differ depending on the implementation
of the read-eval-print loop. In the standard interactive interpreter, an entirely blank logical line (i.e. one containing not
even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

Tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and including
the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The total number of spaces
preceding the first non-blank character then determines the line’s indentation. Indentation cannot be split over multiple
physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Indentation is rejected as inconsistent if a source file mixes tabs and spaces in a way that makes the meaning dependent
on the worth of a tab in spaces; a TabError is raised in that case.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use a
mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms may
explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may reset
the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical line,
the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is pushed
on the stack, and one INDENT token is generated. If it is smaller, it must be one of the numbers occurring on the stack;
all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is generated.
At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of 1
if len(l) <= 1:
return [1]
r =[]
for i in range(len(l)):
s = 1[:1] + 1[4i+1:]
p = perm(s)
for x in p:
r.append (1[i:1+1] + x)
return r

The following example shows various indentation errors:

def perm(l) : # error: first line indented
for i in range(len(l)): # error: not indented
s = 1[:1] + 1[i+1:]
p = perm(1l[:i] + 1[i+1:]) # error: unexpected indent

(continues on next page)

2.1. Line structure 7

The Python Language Reference, Release 3.11.1

(continued from previous page)

for x in p:
r.append (1[i:1+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation of return r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be used
interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could otherwise
be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist: identifiers, keywords, literals,
operators, and delimiters. Whitespace characters (other than line terminators, discussed earlier) are not tokens, but serve
to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token, when
read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to as names) are described by the following lexical definitions.

The syntax of identifiers in Python is based on the Unicode standard annex UAX-31, with elaboration and changes as
defined below; see also PEP 3131 for further details.

Within the ASCII range (U+0001..U+007F), the valid characters for identifiers are the same as in Python 2.x: the up-
percase and lowercase letters A through Z, the underscore _ and, except for the first character, the digits O through 9.

Python 3.0 introduces additional characters from outside the ASCII range (see PEP 3131). For these characters, the
classification uses the version of the Unicode Character Database as included in the unicodedata module.

Identifiers are unlimited in length. Case is significant.

identifier n= xid_start xid_continue*

id_start n= <all characters in general categories Lu, L1, Lt, Lm, Lo, N1, the under

id_continue
xid_start = <all characters in id_start whose NFKC normalization is in
xid_continue

The Unicode category codes mentioned above stand for:
* Lu - uppercase letters
e LI - lowercase letters
e Lt - titlecase letters
e Lm - modifier letters

e Lo - other letters

8 Chapter 2. Lexical analysis

<all characters in id_start, plus characters in the categories Mn, Mc,

"id_start =xi

<all characters in id_continue whose NFKC normalization is in "id_cont]

https://peps.python.org/pep-3131/
https://peps.python.org/pep-3131/

The Python Language Reference, Release 3.11.1

* NI - letter numbers
* Mn - nonspacing marks
* Mec - spacing combining marks
¢ Nd - decimal numbers
* Pc - connector punctuations
o Other_ID_Start - explicit list of characters in PropList.txt to support backwards compatibility
e Other_ID_Continue - likewise
All identifiers are converted into the normal form NFKC while parsing; comparison of identifiers is based on NFKC.

A non-normative HTML file listing all valid identifier characters for Unicode 14.0.0 can be found at https://www.unicode.
org/Public/14.0.0/ucd/DerivedCoreProperties.txt

2.3.1 Keywords

The following identifiers are used as reserved words, or keywords of the language, and cannot be used as ordinary iden-
tifiers. They must be spelled exactly as written here:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if or yield

2.3.2 Soft Keywords

New in version 3.10.

Some identifiers are only reserved under specific contexts. These are known as soft keywords. The identifiers match,
case and _ can syntactically act as keywords in contexts related to the pattern matching statement, but this distinction
is done at the parser level, not when tokenizing.

As soft keywords, their use with pattern matching is possible while still preserving compatibility with existing code that
uses match, case and _ as identifier names.

2.3.3 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns of
leading and trailing underscore characters:

_* Notimported by from module import *.

_ Ina case pattern within a mat ch statement, _is a soft keyword that denotes a wildcard.

Separately, the interactive interpreter makes the result of the last evaluation available in the variable _. (It is stored
in the builtins module, alongside built-in functions like print.)

Elsewhere, _ is a regular identifier. It is often used to name “special” items, but it is not special to Python itself.

2.3. Identifiers and keywords 9

https://www.unicode.org/Public/14.0.0/ucd/PropList.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt
https://www.unicode.org/Public/14.0.0/ucd/DerivedCoreProperties.txt

The Python Language Reference, Release 3.11.1

Note: The name _ is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

It is also commonly used for unused variables.

* __ System-defined names, informally known as “dunder” names. These names are defined by the interpreter and its
implementation (including the standard library). Current system names are discussed in the Special method names
section and elsewhere. More will likely be defined in future versions of Python. Any use of __*___ names, in any
context, that does not follow explicitly documented use, is subject to breakage without warning.

* (Class-private names. Names in this category, when used within the context of a class definition, are re-written to
use a mangled form to help avoid name clashes between “private” attributes of base and derived classes. See section
Identifiers (Names).

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String and Bytes literals

String literals are described by the following lexical definitions:

stringliteral = [stringprefix] (shortstring | longstring)
stringprefix i= "r" | "u" | "R" | "U" | "f£" | "EF"

| "fxr" | "Fr" | "fR" | "FR" | "rf" | "rF" | "Rf" | "RE"
shortstring u= "'" shortstringitem* "'" | '"' shortstringitem* '"'
longstring = "' Jongstringitem* "'''" | '"""' Jongstringitem* '"""'
shortstringitem := shortstringchar | stringescapeseq
longstringitem = longstringchar | stringescapeseq
shortstringchar := <any source character except "\" or newline or the quote>
longstringchar = <any source character except "\">
stringescapeseq = "\" <any source character>
bytesliteral RES bytesprefix(shortbytes | longbytes)
bytesprefix = "b" | "B" | "br" | "Br" | "bR" | "BR" | "rb" | "rB" | "Rb"
shortbytes = "'" shortbytesitem* "'" | '"' shortbytesitem* '"'
longbytes = "t longbytesitem* "'''" | '"""' Jongbytesitem* '"""!'
shortbytesitem = shortbyteschar | bytesescapeseq
longbytesitem = longbyteschar | bytesescapeseq
shortbyteschar = <any ASCII character except "\" or newline or the quote>
longbyteschar = <any ASCII character except "\">
bytesescapeseqg = "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix or bytesprefix and the rest of the literal. The source character set is defined by the encoding
declaration; it is UTF-8 if no encoding declaration is given in the source file; see section Encoding declarations.

In plain English: Both types of literals can be enclosed in matching single quotes (') or double quotes ("). They can also
be enclosed in matching groups of three single or double quotes (these are generally referred to as triple-quoted strings).

10 Chapter 2. Lexical analysis

n RB n

The Python Language Reference, Release 3.11.1

The backslash (\) character is used to escape characters that otherwise have a special meaning, such as newline, backslash
itself, or the quote character.

Bytes literals are always prefixed with 'b ' or 'B"'; they produce an instance of the bytes type instead of the st r type.
They may only contain ASCII characters; bytes with a numeric value of 128 or greater must be expressed with escapes.

Both string and bytes literals may optionally be prefixed with a letter 'r' or 'R'; such strings are called raw strings
and treat backslashes as literal characters. As a result, in string literals, ' \U' and '\u' escapes in raw strings are not
treated specially. Given that Python 2.x’s raw unicode literals behave differently than Python 3.x’s the 'ur ' syntax is not
supported.

New in version 3.3: The 'rb' prefix of raw bytes literals has been added as a synonym of 'br'.

New in version 3.3: Support for the unicode legacy literal (u'value ') was reintroduced to simplify the maintenance of
dual Python 2.x and 3.x codebases. See PEP 414 for more information.

A string literal with ' £' or 'F' in its prefix is a formatted string literal; see Formatted string literals. The ' £' may be
combined with 'r', but not with 'b ' or 'u', therefore raw formatted strings are possible, but formatted bytes literals
are not.

In triple-quoted literals, unescaped newlines and quotes are allowed (and are retained), except that three unescaped quotes
in a row terminate the literal. (A “quote” is the character used to open the literal, i.e. either ' or ".)

Unless an 'r' or 'R' prefix is present, escape sequences in string and bytes literals are interpreted according to rules
similar to those used by Standard C. The recognized escape sequences are:

Escape Sequence | Meaning Notes
\<newline> Backslash and newline ignored | (1)
AR Backslash (\)

\' Single quote (')

A" Double quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ooo Character with octal value ooo | (2,4)
\xhh Character with hex value hh (3.4)

Escape sequences only recognized in string literals are:

Escape Sequence | Meaning Notes
\N{name} Character named name in the Unicode database | (5)
\UXXXX Character with 16-bit hex value xxxx (6)
\UXXXXXXXX Character with 32-bit hex value xxxooooxx @)

Notes:

(1) A backslash can be added at the end of a line to ignore the newline:

>>> 'This string will not include \
. backslashes or newline characters.'
'This string will not include backslashes or newline characters.'

The same result can be achieved using friple-quoted strings, or parentheses and string literal concatenation.

2.4. Literals 11

https://peps.python.org/pep-0414/

The Python Language Reference, Release 3.11.1

(2) Asin Standard C, up to three octal digits are accepted.

Changed in version 3.11: Octal escapes with value larger than 00377 produce a DeprecationWarning. Ina
future Python version they will be a SyntaxWarning and eventually a SyntaxError.

(3) Unlike in Standard C, exactly two hex digits are required.

(4) In a bytes literal, hexadecimal and octal escapes denote the byte with the given value. In a string literal, these
escapes denote a Unicode character with the given value.

(5) Changed in version 3.3: Support for name aliases' has been added.
(6) Exactly four hex digits are required.
(7) Any Unicode character can be encoded this way. Exactly eight hex digits are required.

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e., the backslash is left in the
result. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences only recognized in string literals fall into the
category of unrecognized escapes for bytes literals.

Changed in version 3.6: Unrecognized escape sequences produce a DeprecationWarning. In a future
Python version they will be a SyntaxWarning and eventually a SyntaxError.

Even in a raw literal, quotes can be escaped with a backslash, but the backslash remains in the result; for example, "\ " "
is a valid string literal consisting of two characters: a backslash and a double quote; r" \ " is not a valid string literal (even
a raw string cannot end in an odd number of backslashes). Specifically, a raw literal cannot end in a single backslash
(since the backslash would escape the following quote character). Note also that a single backslash followed by a newline
is interpreted as those two characters as part of the literal, not as a line continuation.

2.4.2 String literal concatenation

Multiple adjacent string or bytes literals (delimited by whitespace), possibly using different quoting conventions,
are allowed, and their meaning is the same as their concatenation. Thus, "hello" 'world' is equivalent to
"helloworld". This feature can be used to reduce the number of backslashes needed, to split long strings conve-
niently across long lines, or even to add comments to parts of strings, for example:

re.compile (" [A-Za—-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+” operator must be used
to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles for each
component (even mixing raw strings and triple quoted strings), and formatted string literals may be concatenated with
plain string literals.

! https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

12 Chapter 2. Lexical analysis

https://www.unicode.org/Public/11.0.0/ucd/NameAliases.txt

The Python Language Reference, Release 3.11.1

2.4.3 Formatted string literals

New in version 3.6.

A formatted string literal or f-string is a string literal that is prefixed with ' £ ' or 'F '. These strings may contain replace-
ment fields, which are expressions delimited by curly braces { }. While other string literals always have a constant value,
formatted strings are really expressions evaluated at run time.

Escape sequences are decoded like in ordinary string literals (except when a literal is also marked as a raw string). After
decoding, the grammar for the contents of the string is:

f_string = (literal_char | "{{" | "}}" | replacement_field)™*
replacement_field = "{" f _expression ["="] ["!" conversion] [":" format_spec]
f_expression = (conditional_expression | "*" or_expr)

("," conditional_expression | "," "*" or expr)* [","]

| yield expression
conversion = "s" | "r"™ | "a"
format_spec = (literal_char | NULL | replacement_field)™*
literal_char n= <any code point except "{", "}" or NULL>

The parts of the string outside curly braces are treated literally, except that any doubled curly braces ' {{' or '} } ' are
replaced with the corresponding single curly brace. A single opening curly bracket ' { ' marks a replacement field, which
starts with a Python expression. To display both the expression text and its value after evaluation, (useful in debugging),
an equal sign '="' may be added after the expression. A conversion field, introduced by an exclamation point ' ! ' may
follow. A format specifier may also be appended, introduced by a colon ' : '. A replacement field ends with a closing
curly bracket '} '.

Expressions in formatted string literals are treated like regular Python expressions surrounded by parentheses, with a few
exceptions. An empty expression is not allowed, and both Iambda and assignment expressions : = must be surrounded
by explicit parentheses. Replacement expressions can contain line breaks (e.g. in triple-quoted strings), but they cannot
contain comments. Each expression is evaluated in the context where the formatted string literal appears, in order from
left to right.

Changed in version 3.7: Prior to Python 3.7, an await expression and comprehensions containing an async for
clause were illegal in the expressions in formatted string literals due to a problem with the implementation.

When the equal sign '=" is provided, the output will have the expression text, the '=" and the evaluated value. Spaces
after the opening brace ' { ', within the expression and after the '=" are all retained in the output. By default, the '="
causes the repr () of the expression to be provided, unless there is a format specified. When a format is specified it
defaults to the st r () of the expression unless a conversion ' ! r' is declared.

New in version 3.8: The equal sign '=".

If a conversion is specified, the result of evaluating the expression is converted before formatting. Conversion ' ! s ' calls
str () ontheresult, ' 'r"' calls repr (),and '!'a' callsascii ().

The result is then formatted using the format () protocol. The format specifier is passed to the ___format__ ()
method of the expression or conversion result. An empty string is passed when the format specifier is omitted. The
formatted result is then included in the final value of the whole string.

Top-level format specifiers may include nested replacement fields. These nested fields may include their own conversion
fields and format specifiers, but may not include more deeply nested replacement fields. The format specifier mini-
language is the same as that used by the str. format () method.

Formatted string literals may be concatenated, but replacement fields cannot be split across literals.

Some examples of formatted string literals:

2.4. Literals 13

"}"

The Python Language Reference, Release 3.11.1

>>> name = "Fred"

>>> f"He said his name is {name L

"He said his name is 'Fred'."

>>> f"He said his name is {repr (name) }." # repr() is equivalent to !r
"He said his name is 'Fred'."

>>> width = 10

>>> precision = 4

>>> value = decimal.Decimal ("12.34567")

>>> f'"result: {value:{width/. {precision} /" # nested fields
'result: 12.35"

>>> today = datetime (year=2017, month=1, day=27)

>>> f"{today:%B %d, $Y}" # using date format specifier

'January 27, 2017'
>>> f"{today=:%B %d, %Y }" # using date format specifier and debugging
'today=January 27, 2017'

>>> number = 1024

>>> f"{number:#0x}" # using integer format specifier
'0x400"

>>> foo = "bar"

>>> f"/ foo " # preserves whitespace
" foo = 'bar'"

>>> line = "The mill's closed"

>>> f"{line "

'line = "The mill\'s closed"'

>>> f"/line 20"

"line = The mill's closed "

>>> f"{line 20"

'line = "The mill\'s closed" '

A consequence of sharing the same syntax as regular string literals is that characters in the replacement fields must not
conflict with the quoting used in the outer formatted string literal:

f"abc {al"
f'abc {fal'

"1} def" # error: outer string literal ended prematurely

X
x']} def" # workaround: use different quoting

Backslashes are not allowed in format expressions and will raise an error:

f"newline: ord('\n'") }" # raises SyntaxError

To include a value in which a backslash escape is required, create a temporary variable.

>>> newline = ord('\n"'")
>>> f'"newline: {newline/}"
'newline: 10'

Formatted string literals cannot be used as docstrings, even if they do not include expressions.

>>> def fool():
f"Not a docstring"”

>>> foo._ doc__ is None
True

See also PEP 498 for the proposal that added formatted string literals, and st r . format (), which uses a related format
string mechanism.

14 Chapter 2. Lexical analysis

https://peps.python.org/pep-0498/

The Python Language Reference, Release 3.11.1

2.4.4 Numeric literals

There are three types of numeric literals: integers, floating point numbers, and imaginary numbers. There are no complex
literals (complex numbers can be formed by adding a real number and an imaginary number).

Note that numeric literals do not include a sign; a phrase like -1 is actually an expression composed of the unary operator
‘=" and the literal 1.

2.4.5 Integer literals

Integer literals are described by the following lexical definitions:

integer u= decinteger | bininteger | octinteger | hexinteger
decinteger = nonzerodigit (["_"1 digit)* | "O0"+ (["_"] "Q")*
bininteger = "o" ("b" | "B") (["_"] bindigit)+

octinteger = "o" ("o" | "O") (["_"] octdigit)+

hexinteger = "o ("x" | "X") (["_"] hexdigit)+

nonzerodigit = mr.L.L"on

digit = "om..."on"

bindigit = "om | omin

octdigit u= "om...mm

hexdigit = digit | "a"..."f" | "A"..."F"

There is no limit for the length of integer literals apart from what can be stored in available memory.

Underscores are ignored for determining the numeric value of the literal. They can be used to group digits for enhanced
readability. One underscore can occur between digits, and after base specifiers like 0x.

Note that leading zeros in a non-zero decimal number are not allowed. This is for disambiguation with C-style octal
literals, which Python used before version 3.0.

Some examples of integer literals:

7 2147483647 00177 0b100110111
3 79228162514264337593543950336 00377 Oxdeadbeef
100_000_000_000 Ob_1110_0101

Changed in version 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.6 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber u= pointfloat | exponentfloat
pointfloat = [digitpart] fraction | digitpart "."
exponentfloat = (digitpart | pointfloat) exponent
digitpart = digit (["_"] digit)™*

fraction = "." digitpart

exponent = ("e" | "E") ["+" | "-"] digitpart

Note that the integer and exponent parts are always interpreted using radix 10. For example, 077010 is legal, and
denotes the same number as 77e10. The allowed range of floating point literals is implementation-dependent. As in

2.4. Literals 15

The Python Language Reference, Release 3.11.1

integer literals, underscores are supported for digit grouping.

Some examples of floating point literals:

3.14 10. .001 lel00 3.14e-10 0e0 3.14_15_93

Changed in version 3.6: Underscores are now allowed for grouping purposes in literals.

2.4.7 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber = (floatnumber | digitpart) ("j3" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.g., (3+4 7). Some examples of imaginary literals:

3.1475 10.7 107 .00173 1e1007 3.14e-1073 3.14_15_933
J J J J J J J

2.5 Operators

The following tokens are operators:

+ - * ok / // % @
<< >> & | ~ ~ =
< > <= >= == 1=
2.6 Delimiters
The following tokens serve as delimiters in the grammar:
() [] { }
’ i = —->
+= -= *= /= //= %= @=
&= |= ~= >>= << * k=

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning as
an ellipsis literal. The second half of the list, the augmented assignment operators, serve lexically as delimiters, but also
perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant to the
lexical analyzer:

v n # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

16 Chapter 2. Lexical analysis

The Python Language Reference, Release 3.11.1

2.6. Delimiters

17

The Python Language Reference, Release 3.11.1

18 Chapter 2. Lexical analysis

CHAPTER
THREE

DATA MODEL

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations be-
tween objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer”, code is also
represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may
think of it as the object’s address in memory. The ‘i s’ operator compares the identity of two objects; the id () function
returns an integer representing its identity.

CPython implementation detail: For CPython, id (x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., “does it have a length?”) and also defines the
possible values for objects of that type. The type () function returns an object’s type (which is an object itself). Like
its identity, an object’s fype is also unchangeable. !

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value
is unchangeable once they are created are called immutable. (The value of an immutable container object that contains
a reference to a mutable object can change when the latter’s value is changed; however the container is still considered
immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same as
having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance, numbers,
strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation quality
how garbage collection is implemented, as long as no objects are collected that are still reachable.

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed detection
of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to
collect garbage containing circular references. See the documentation of the gc module for information on controlling
the collection of cyclic garbage. Other implementations act differently and CPython may change. Do not depend on
immediate finalization of objects when they become unreachable (so you should always close files explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally be
collectable. Also note that catching an exception with a ‘t ry...except’ statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these resources
are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen, such objects also
provide an explicit way to release the external resource, usually a close () method. Programs are strongly recommended
to explicitly close such objects. The ‘t ry... finally’ statement and the ‘with’ statement provide convenient ways to
do this.

! It is possible in some cases to change an object’s type, under certain controlled conditions. It generally isn’t a good idea though, since it can lead
to some very strange behaviour if it is handled incorrectly.

19

The Python Language Reference, Release 3.11.1

Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists and
dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a container, we
imply the values, not the identities of the contained objects; however, when we talk about the mutability of a container,
only the identities of the immediately contained objects are implied. So, if an immutable container (like a tuple) contains
a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for
immutable types, operations that compute new values may actually return a reference to any existing object with the same
type and value, while for mutable objects this is not allowed. E.g., aftera = 1; b = 1, a and b may or may not refer
to the same object with the value one, depending on the implementation, but after ¢ = []; d = [], c and d are
guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object
to both ¢ and d.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages, depending
on the implementation) can define additional types. Future versions of Python may add types to the type hierarchy (e.g.,
rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be provided via the standard
library instead.

Some of the type descriptions below contain a paragraph listing ‘special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

None This type has a single value. There is a single object with this value. This object is accessed through the built-in
name None. It is used to signify the absence of a value in many situations, e.g., it is returned from functions that
don’t explicitly return anything. Its truth value is false.

NotImplemented This type has a single value. There is a single object with this value. This object is accessed through
the built-in name Not Implemented. Numeric methods and rich comparison methods should return this value
if they do not implement the operation for the operands provided. (The interpreter will then try the reflected
operation, or some other fallback, depending on the operator.) It should not be evaluated in a boolean context.

See implementing-the-arithmetic-operations for more details.

Changed in version 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of
Python.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the literal
. or the built-in name E11ipsis. Its truth value is true.

numbers .Number These are created by numeric literals and returned as results by arithmetic operators and arithmetic
built-in functions. Numeric objects are immutable; once created their value never changes. Python numbers are
of course strongly related to mathematical numbers, but subject to the limitations of numerical representation in
computers.

The string representations of the numeric classes, computed by __repr__ () and __str__ (), have the fol-
lowing properties:

¢ They are valid numeric literals which, when passed to their class constructor, produce an object having the
value of the original numeric.

» The representation is in base 10, when possible.
» Leading zeros, possibly excepting a single zero before a decimal point, are not shown.
e Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.

A sign is shown only when the number is negative.

20 Chapter 3. Data model

The Python Language Reference, Release 3.11.1

Python distinguishes between integers, floating point numbers, and complex numbers:
numbers .Integral These represent elements from the mathematical set of integers (positive and negative).
There are two types of integers:

Integers (int) These represent numbers in an unlimited range, subject to available (virtual) memory only.
For the purpose of shift and mask operations, a binary representation is assumed, and negative numbers
are represented in a variant of 2’s complement which gives the illusion of an infinite string of sign bits
extending to the left.

Booleans (bool) These represent the truth values False and True. The two objects representing the values
False and True are the only Boolean objects. The Boolean type is a subtype of the integer type, and
Boolean values behave like the values 0 and 1, respectively, in almost all contexts, the exception being
that when converted to a string, the strings "False" or "True" are returned, respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and mask
operations involving negative integers.

numbers .Real (float) These represent machine-level double precision floating point numbers. You are at
the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range
and handling of overflow. Python does not support single-precision floating point numbers; the savings in
processor and memory usage that are usually the reason for using these are dwarfed by the overhead of using
objects in Python, so there is no reason to complicate the language with two kinds of floating point numbers.

numbers .Complex (complex) These represent complex numbers as a pair of machine-level double precision
floating point numbers. The same caveats apply as for floating point numbers. The real and imaginary parts
of a complex number z can be retrieved through the read-only attributes z . real and z . imag.

Sequences These represent finite ordered sets indexed by non-negative numbers. The built-in function 1en () returns
the number of items of a sequence. When the length of a sequence is n, the index set contains the numbers O, 1,
..., n-1. Item i of sequence a is selected by a [1].

Sequences also support slicing: a[1i:7j] selects all items with index k such that i <= k < j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it starts at
0.

Some sequences also support “extended slicing” with a third “step” parameter: a [1:j:k] selects all items of a
with index x where x = i + n*k,n>=0andi<=x <.

Sequences are distinguished according to their mutability:

Immutable sequences An object of an immutable sequence type cannot change once it is created. (If the object
contains references to other objects, these other objects may be mutable and may be changed; however, the
collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings A string is a sequence of values that represent Unicode code points. All the code points in the range
U+0000 — U+10FFFF can be represented in a string. Python doesn’t have a char type; instead,
every code point in the string is represented as a string object with length 1. The built-in function ord ()
converts a code point from its string form to an integer in the range 0 - 10FFFF; chr () converts
an integer in the range 0 — 10FFFF to the corresponding length 1 string object. str.encode ()
can be used to convert a st r to bytes using the given text encoding, and bytes.decode () can be
used to achieve the opposite.

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-
separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affixing a comma to an
expression (an expression by itself does not create a tuple, since parentheses must be usable for grouping
of expressions). An empty tuple can be formed by an empty pair of parentheses.

3.2. The standard type hierarchy 21

The Python Language Reference, Release 3.11.1

Bytes A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range 0
<= X < 256. Bytes literals (like b ' abc ') and the built-in bytes () constructor can be used to create
bytes objects. Also, bytes objects can be decoded to strings via the decode () method.

Mutable sequences Mutable sequences can be changed after they are created. The subscription and slicing nota-
tions can be used as the target of assignment and de 1 (delete) statements.

There are currently two intrinsic mutable sequence types:

Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of
expressions in square brackets. (Note that there are no special cases needed to form lists of length O or

1)

Byte Arrays A bytearray object is a mutable array. They are created by the built-in bytearray () con-
structor. Aside from being mutable (and hence unhashable), byte arrays otherwise provide the same
interface and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type, as does the
collections module.

Set types These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any
subscript. However, they can be iterated over, and the built-in function 1en () returns the number of items in
a set. Common uses for sets are fast membership testing, removing duplicates from a sequence, and computing
mathematical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal
rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1. 0), only one of them can be contained
in a set.

There are currently two intrinsic set types:

Sets These represent a mutable set. They are created by the built-in set () constructor and can be modified
afterwards by several methods, such as add () .

Frozen sets These represent an immutable set. They are created by the built-in frozenset () constructor. As
a frozenset is immutable and hashable, it can be used again as an element of another set, or as a dictionary
key.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a [k] selects the
item indexed by k from the mapping a; this can be used in expressions and as the target of assignments or del
statements. The built-in function 1en () returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of values not
acceptable as keys are values containing lists or dictionaries or other mutable types that are compared by value
rather than by object identity, the reason being that the efficient implementation of dictionaries requires a key’s
hash value to remain constant. Numeric types used for keys obey the normal rules for numeric comparison:
if two numbers compare equal (e.g., 1 and 1. 0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were added
sequentially over the dictionary. Replacing an existing key does not change the order, however removing a
key and re-inserting it will add it to the end instead of keeping its old place.

Dictionaries are mutable; they can be created by the { . . . } notation (see section Dictionary displays).

The extension modules dlbom . ndbm and dbm. gnu provide additional examples of mapping types, as does
the collections module.

Changed in version 3.7: Dictionaries did not preserve insertion order in versions of Python before 3.6. In
CPython 3.6, insertion order was preserved, but it was considered an implementation detail at that time rather

22 Chapter 3. Data model

The Python Language Reference, Release 3.11.1

than a language guarantee.

Callable types These are the types to which the function call operation (see section Calls) can be applied:

User-defined functions A user-defined function object is created by a function definition (see section Function

definitions). It should be called with an argument list containing the same number of items as the function’s
formal parameter list.

Special attributes:

Attribute Meaning

__doc___ The function’s documentation string, or None if unavailable; ‘Writable
not inherited by subclasses.

__name___ The function’s name. Writable

__gqualname_ The function’s qualified name. Writable
New in version 3.3.

_ _module_ The name of the module the function was defined in, or None Weritable
if unavailable.

__defaults__ A tuple containing default argument values for those arguments | Writable
that have defaults, or None if no arguments have a default value.

__code___ The code object representing the compiled function body. Writable

_ _globals___ A reference to the dictionary that holds the function’s global Read-only

variables — the global namespace of the module in which the
function was defined.

__dict__ The namespace supporting arbitrary function attributes. Writable
__closure___ None or a tuple of cells that contain bindings for the function’s | Read-only
free variables. See below for information on the
cell contents attribute.
__annotations__ | A dict containing annotations of parameters. The keys of the Writable
dict are the parameter names, and ' return"' for the return
annotation, if provided. For more information on working with
this attribute, see annotations-howto.

__kwdefaults__ A dict containing defaults for keyword-only parameters. Writable

Most of the attributes labelled “Writable” check the type of the assigned value.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to
attach metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note that
the current implementation only supports function attributes on user-defined functions. Function attributes on
built-in functions may be supported in the future.

A cell object has the attribute ce11_contents. This can be used to get the value of the cell, as well as set
the value.

Additional information about a function’s definition can be retrieved from its code object; see the description
of internal types below. The cell type can be accessed in the t ypes module.

Instance methods An instance method object combines a class, a class instance and any callable object (normally

a user-defined function).

Special read-only attributes: __self__ is the class instance object, func__ is the function object;
_ doc___is the method’s documentation (same as __ func__._ doc_); _ name__ is the method
name (sameas___func__._ name_);_ module___isthe name of the module the method was defined

in, or None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function
object.

3.2. The standard type hierarchy 23

The Python Language Reference, Release 3.11.1

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of
that class), if that attribute is a user-defined function object or a class method object.

When an instance method object is created by retrieving a user-defined function object from a class via one
of its instances, its __self___ attribute is the instance, and the method object is said to be bound. The new
method’s ___func___ attribute is the original function object.

When an instance method object is created by retrieving a class method object from a class or instance, its
__self__ attributeis the classitself, and its___func___ attribute is the function object underlying the class
method.

When an instance method object is called, the underlying function (__func__) is called, inserting the class
instance (__self__)infront of the argument list. For instance, when C is a class which contains a definition
for a function f (), and x is an instance of C, calling x. £ (1) is equivalent to calling C.f (x, 1).

When an instance method object is derived from a class method object, the “class instance” stored in
__self__ willactually be the class itself, so that calling either x . £ (1) or C. £ (1) is equivalent to calling
£ (C, 1) where f is the underlying function.

Note that the transformation from function object to instance method object happens each time the attribute
is retrieved from the instance. In some cases, a fruitful optimization is to assign the attribute to a local variable
and call that local variable. Also notice that this transformation only happens for user-defined functions; other
callable objects (and all non-callable objects) are retrieved without transformation. It is also important to note
that user-defined functions which are attributes of a class instance are not converted to bound methods; this
only happens when the function is an attribute of the class.

Generator functions A function or method which uses the yield statement (see section The yield statement)
is called a generator function. Such a function, when called, always returns an iferator object which can be
used to execute the body of the function: calling the iterator’s iterator.__next__ () method will cause
the function to execute until it provides a value using the yield statement. When the function executes a
return statement or falls off the end, a StopIteration exception is raised and the iterator will have
reached the end of the set of values to be returned.

Coroutine functions A function or method which is defined using async def is called a coroutine function.
Such a function, when called, returns a coroutine object. It may contain awa i t expressions, as well as async
withand async for statements. See also the Coroutine Objects section.

Asynchronous generator functions A function or method which is defined using async def and which uses
the yield statement is called a asynchronous generator function. Such a function, when called, returns an
asynchronous iterator object which can be used in an async for statement to execute the body of the
function.

Calling the asynchronous iterator’s ai terator.___anext__ method will return an awaitable which when
awaited will execute until it provides a value using the yield expression. When the function executes an
empty return statement or falls off the end, a StopAsyncIteration exception is raised and the asyn-
chronous iterator will have reached the end of the set of values to be yielded.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in functions are
len () and math.sin () (math is a standard built-in module). The number and type of the arguments
are determined by the C function. Special read-only attributes: __doc___ is the function’s documentation
string, or None if unavailable; __name___is the function’s name; __self__ is set to None (but see the
next item); _ module__is the name of the module the function was defined in or None if unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an object passed
to the C function as an implicit extra argument. An example of a built-in method is alist .append (),
assuming alist is a list object. In this case, the special read-only attribute __self__ is set to the object
denoted by alist.

Classes Classes are callable. These objects normally act as factories for new instances of themselves, but variations
are possible for class types that override __new___ (). The arguments of the call are passed to __new___ ()

24 Chapter 3. Data model

The Python Language Reference, Release 3.11.1

and, in the typical case,to ___init__ () to initialize the new instance.

Class Instances Instances of arbitrary classes can be made callable by defininga ___call__ () method in their
class.

Modules Modules are a basic organizational unit of Python code, and are created by the import system as invoked ei-
ther by the import statement, or by calling functions such as importlib.import_module () and built-in
__import__ (). A module object has a namespace implemented by a dictionary object (this is the dictionary
referenced by the ___globals___ attribute of functions defined in the module). Attribute references are trans-
lated to lookups in this dictionary, e.g., m.x is equivalent tom.__dict__ ["x"]. A module object does not
contain the code object used to initialize the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.
__dict__["x"] = 1.

Predefined (writable) attributes:
__name__ The module’s name.
__doc__ The module’s documentation string, or None if unavailable.

__file__ The pathname of the file from which the module was loaded, if it was loaded from a file.
The _ file attribute may be missing for certain types of modules, such as C modules that
are statically linked into the interpreter. For extension modules loaded dynamically from a shared
library, it’s the pathname of the shared library file.

__annotations__ A dictionary containing variable annotations collected during module body ex-
ecution. For best practices on working with __annotations__, please see annotations-howto.

Special read-only attribute: ___dict___ is the module’s namespace as a dictionary object.

CPython implementation detail: Because of the way CPython clears module dictionaries, the module dictionary
will be cleared when the module falls out of scope even if the dictionary still has live references. To avoid this,
copy the dictionary or keep the module around while using its dictionary directly.

Custom classes Custom class types are typically created by class definitions (see section Class definitions). A class
has a namespace implemented by a dictionary object. Class attribute references are translated to lookups in this
dictionary, e.g., C.x is translated to C.__dict__ ["x"] (although there are a number of hooks which allow
for other means of locating attributes). When the attribute name is not found there, the attribute search continues
in the base classes. This search of the base classes uses the C3 method resolution order which behaves correctly
even in the presence of ‘diamond’ inheritance structures where there are multiple inheritance paths leading back
to a common ancestor. Additional details on the C3 MRO used by Python can be found in the documentation
accompanying the 2.3 release at https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C, say) would yield a class method object, it is transformed into an instance
method object whose ___self__ attribute is C. When it would yield a static method object, it is transformed into
the object wrapped by the static method object. See section Implementing Descriptors for another way in which
attributes retrieved from a class may differ from those actually contained inits __dict__.

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.
A class object can be called (see above) to yield a class instance (see below).
Special attributes:
__name___ The class name.
__module___ The name of the module in which the class was defined.
__dict__ The dictionary containing the class’s namespace.
__bases__ A tuple containing the base classes, in the order of their occurrence in the base class list.

__doc___ The class’s documentation string, or None if undefined.

3.2. The standard type hierarchy 25

https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Release 3.11.1

__annotations__ A dictionary containing variable annotations collected during class body exe-
cution. For best practices on working with __annotations__, please see annotations-howto.

Class instances A class instance is created by calling a class object (see above). A class instance has a namespace

implemented as a dictionary which is the first place in which attribute references are searched. When an attribute is
not found there, and the instance’s class has an attribute by that name, the search continues with the class attributes.
If a class attribute is found that is a user-defined function object, it is transformed into an instance method object
whose ___self__ attribute is the instance. Static method and class method objects are also transformed; see above
under “Classes”. See section Implementing Descriptors for another way in which attributes of a class retrieved via
its instances may differ from the objects actually stored in the class’s __dict__. If no class attribute is found,
and the object’s class hasa ___getattr__ () method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has
a__setattr__ () or __delattr__ () method, this is called instead of updating the instance dictionary
directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names.
See section Special method names.

Special attributes: ___dict___is the attribute dictionary; ___class___is the instance’s class.

I/O objects (also known as file objects) A file object represents an open file. Various shortcuts are available to create

file objects: the open () built-in function, and also os.popen (), os.fdopen (), and the makefile ()
method of socket objects (and perhaps by other functions or methods provided by extension modules).

The objects sys.stdin, sys.stdout and sys.stderr are initialized to file objects corresponding to the
interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow the
interface defined by the io. Text IOBase abstract class.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may change with

future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represent byte-compiled executable Python code, or byfecode. The difference between
a code object and a function object is that the function object contains an explicit reference to the function’s
globals (the module in which it was defined), while a code object contains no context; also the default argument
values are stored in the function object, not in the code object (because they represent values calculated at run-
time). Unlike function objects, code objects are immutable and contain no references (directly or indirectly)
to mutable objects.

Special read-only attributes: co_name gives the function name; co_qualname gives the fully qualified
function name; co_argcount is the total number of positional arguments (including positional-only argu-
ments and arguments with default values); co_posonlyargcount is the number of positional-only argu-
ments (including arguments with default values); co_kwonlyargcount is the number of keyword-only
arguments (including arguments with default values); co_nlocals is the number of local variables used
by the function (including arguments); co_varnames is a tuple containing the names of the local variables
(starting with the argument names); co_cellvars is a tuple containing the names of local variables that are
referenced by nested functions; co_freevars is a tuple containing the names of free variables; co_code
is a string representing the sequence of bytecode instructions; co_consts is a tuple containing the literals
used by the bytecode; co_names is a tuple containing the names used by the bytecode; co_filename is
the filename from which the code was compiled; co_firstlineno is the first line number of the func-
tion; co_1lnotab is a string encoding the mapping from bytecode offsets to line numbers (for details see
the source code of the interpreter); co_stacksize is the required stack size; co_flags is an integer
encoding a number of flags for the interpreter.

The following flag bits are defined for co_flags: bit 0x04 is set if the function uses the *arguments
syntax to accept an arbitrary number of positional arguments; bit 0x08 is set if the function uses the
**keywords syntax to accept arbitrary keyword arguments; bit 0x20 is set if the function is a genera-
tor.

26

Chapter 3. Data model

The Python Language Reference, Release 3.11.1

Future feature declarations (from __ future_ import division) also use bitsin co_flags to
indicate whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if the
function was compiled with future division enabled; bits 0x10 and 0x1 000 were used in earlier versions of
Python.

Other bits in co_flags are reserved for internal use.

If a code object represents a function, the first item in co_consts is the documentation string of the func-
tion, or None if undefined.

codeobject.co_positions ()
Returns an iterable over the source code positions of each bytecode instruction in the code object.

The iterator returns tuples containing the (start_line, end_line, start_column,
end_column). The i-th tuple corresponds to the position of the source code that compiled to the
i-th instruction. Column information is O-indexed utf-8 byte offsets on the given source line.

This positional information can be missing. A non-exhaustive lists of cases where this may happen:
* Running the interpreter with —X no_debug_ranges.
* Loading a pyc file compiled while using ~X no_debug_ranges.
* Position tuples corresponding to artificial instructions.
* Line and column numbers that can’t be represented due to implementation specific limitations.
When this occurs, some or all of the tuple elements can be None.

New in version 3.11.

Note: This feature requires storing column positions in code objects which may result in a small in-
crease of disk usage of compiled Python files or interpreter memory usage. To avoid storing the extra
information and/or deactivate printing the extra traceback information, the —X no_debug_ranges
command line flag or the PYTHONNODEBUGRANGES environment variable can be used.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see below), and
are also passed to registered trace functions.

Special read-only attributes: £_back is to the previous stack frame (towards the caller), or None if this is the
bottom stack frame; £_code is the code object being executed in this frame; £_1ocals is the dictionary
used to look up local variables; £_globals is used for global variables; £_builtins is used for built-in
(intrinsic) names; £_lasti gives the precise instruction (this is an index into the bytecode string of the code
object).

Accessing f_code raises an auditing event object.__getattr__ with arguments obj and
"f_code".

Special writable attributes: £_trace, if not None, is a function called for various events during code ex-
ecution (this is used by the debugger). Normally an event is triggered for each new source line - this can be
disabled by setting f_trace_linestoFalse.

Implementations may allow per-opcode events to be requested by setting £_trace_opcodes to True.
Note that this may lead to undefined interpreter behaviour if exceptions raised by the trace function escape
to the function being traced.

f_lineno is the current line number of the frame — writing to this from within a trace function jumps to
the given line (only for the bottom-most frame). A debugger can implement a Jump command (aka Set Next
Statement) by writing to f_lineno.

Frame objects support one method:

3.2. The standard type hierarchy 27

The Python Language Reference, Release 3.11.1

frame.clear ()

This method clears all references to local variables held by the frame. Also, if the frame belonged to
a generator, the generator is finalized. This helps break reference cycles involving frame objects (for
example when catching an exception and storing its traceback for later use).

RuntimeError is raised if the frame is currently executing.
New in version 3.4.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is implicitly
created when an exception occurs, and may also be explicitly created by calling t ypes . TracebackType.

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at
each unwound level a traceback object is inserted in front of the current traceback. When an exception handler
is entered, the stack trace is made available to the program. (See section The try statement.) It is accessible
as the third item of the tuple returned by sys.exc_info (), and as the __traceback___ attribute of
the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard
error stream; if the interpreter is interactive, it is also made available to the useras sys . last_traceback.

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next
attributes should be linked to form a full stack trace.

Special read-only attributes: tb_frame points to the execution frame of the current level; tb_lineno
gives the line number where the exception occurred; tb_lasti indicates the precise instruction. The line
number and last instruction in the traceback may differ from the line number of its frame object if the exception
occurred in a t ry statement with no matching except clause or with a finally clause.

Accessing tb_frame raises an auditing event object.__getattr__ with arguments obj and
"tb_frame".

Special writable attribute: tb_next is the next level in the stack trace (towards the frame where the exception
occurred), or None if there is no next level.

Changed in version 3.7: Traceback objects can now be explicitly instantiated from Python code, and the
tb_next attribute of existing instances can be updated.

Slice objects Slice objects are used to represent slices for __getitem _ () methods. They are also created by
the built-in s1ice () function.

Special read-only attributes: start is the lower bound; stop is the upper bound; step is the step value;
each is None if omitted. These attributes can have any type.

Slice objects support one method:

slice.indices (self, length)

This method takes a single integer argument length and computes information about the slice that the
slice object would describe if applied to a sequence of length items. It returns a tuple of three integers;
respectively these are the start and stop indices and the step or stride length of the slice. Missing or
out-of-bounds indices are handled in a manner consistent with regular slices.

Static method objects Static method objects provide a way of defeating the transformation of function objects to
method objects described above. A static method object is a wrapper around any other object, usually a user-
defined method object. When a static method object is retrieved from a class or a class instance, the object
actually returned is the wrapped object, which is not subject to any further transformation. Static method
objects are also callable. Static method objects are created by the built-in staticmethod () constructor.

Class method objects A class method object, like a static method object, is a wrapper around another object
that alters the way in which that object is retrieved from classes and class instances. The behaviour of class
method objects upon such retrieval is described above, under “User-defined methods”. Class method objects
are created by the built-in classmethod () constructor.

28 Chapter 3. Data model

The Python Language Reference, Release 3.11.1

3.3 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or sub-
scripting and slicing) by defining methods with special names. This is Python’s approach to operator overloading,
allowing classes to define their own behavior with respect to language operators. For instance, if a class defines a
method named ___getitem__ (), and x is an instance of this class, then x [1] is roughly equivalent to type (x) .
__getitem__ (x, 1i). Except where mentioned, attempts to execute an operation raise an exception when no ap-
propriate method is defined (typically AttributeError or TypeError).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class sets
__iter__ () toNone, the class is not iterable, so calling iter () on its instances will raise a TypeError (without
falling back to__getitem _ ()).

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented to the
degree that it makes sense for the object being modelled. For example, some sequences may work well with retrieval of
individual elements, but extracting a slice may not make sense. (One example of this is the NodeList interface in the
W3C’s Document Object Model.)

3.3.1 Basic customization

object.__new___ (cls[,])
Called to create a new instance of class cls. __new__ () is a static method (special-cased so you need not declare
it as such) that takes the class of which an instance was requested as its first argument. The remaining arguments are
those passed to the object constructor expression (the call to the class). The return value of __new__ () should
be the new object instance (usually an instance of cls).

Typical implementations create a new instance of the class by invoking the superclass’s __new__ () method
using super () .__new__ (cls[, ...]) withappropriate arguments and then modifying the newly created
instance as necessary before returning it.

If _ new__ () is invoked during object construction and it returns an instance of cls, then the new instance’s
__init__ () method will be invoked like __init__ (self[, ...]), where self is the new instance and
the remaining arguments are the same as were passed to the object constructor.

If _ new__ () does not return an instance of cls, then the new instance’s __ init__ () method will not be
invoked.

___new___ () isintended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize instance
creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

object.__init__ (self[,])
Called after the instance has been created (by ___new___ ()), but before it is returned to the caller. The arguments
are those passed to the class constructor expression. If a base class has an ___init__ () method, the derived
class’s ___init__ () method, if any, must explicitly call it to ensure proper initialization of the base class part of
the instance; for example: super () .__init__ ([args...]).

Because _ _new__ () and __init__ () work together in constructing objects (__new___ () to create it, and
__init__ () to customize it), no non-None value may be returned by __init__ (); doing so will cause a
TypeError to be raised at runtime.

object.__del__ (self)

Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If a
base class hasa ___del__ () method, the derived class’s ___del___ () method, if any, must explicitly call it to
ensure proper deletion of the base class part of the instance.

2The hash (), iter (), reversed (),and _contains__ () methods have special handling for this; others will still raise
a TypeError, but may do so by relying on the behavior that None is not callable.

3.3. Special method names 29

The Python Language Reference, Release 3.11.1

It is possible (though not recommended!) for the _ del_ () method to postpone destruction of the instance
by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether
__del__ () is called a second time when a resurrected object is about to be destroyed; the current CPython
implementation only calls it once.

It is not guaranteed that ___del__ () methods are called for objects that still exist when the interpreter exits.

Note: del x doesn’tdirectly call x.___del__ () — the former decrements the reference count for x by one,
and the latter is only called when x’s reference count reaches zero.

CPython implementation detail: It is possible for a reference cycle to prevent the reference count of an object
from going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector. A
common cause of reference cycles is when an exception has been caught in a local variable. The frame’s locals then
reference the exception, which references its own traceback, which references the locals of all frames caught in the
traceback.

See also:

Documentation for the gc module.

Warning: Due to the precarious circumstances under which ___del__ () methods are invoked, exceptions
that occur during their execution are ignored, and a warning is printed to sys . stderr instead. In particular:

If _ _del () needs to take a lock or invoke any other blocking resource, it may deadlock as the
resource may already be taken by the code that gets interrupted to execute __del__ ().

. del__ () canbe invoked when arbitrary code is being executed, including from any arbitrary thread.

e del__ () can be executed during interpreter shutdown. As a consequence, the global variables it
needs to access (including other modules) may already have been deleted or set to None. Python guar-
antees that globals whose name begins with a single underscore are deleted from their module before other
globals are deleted; if no other references to such globals exist, this may help in assuring that imported

modules are still available at the time whenthe del () method is called.

object.__repr__ (self)

Called by the repr () built-in function to compute the “official” string representation of an object. If at all possible,
this should look like a valid Python expression that could be used to recreate an object with the same value (given an
appropriate environment). If this is not possible, a string of the form <. . .some useful description.
. .> should be returned. The return value must be a string object. If a class defines ___repr () but not
__str__(),then___repr__ () is also used when an “informal” string representation of instances of that class
is required.

This is typically used for debugging, so it is important that the representation is information-rich and unambiguous.

object.__str__ (self)

Called by str (object) and the built-in functions format () and print () to compute the “informal” or
nicely printable string representation of an object. The return value must be a string object.

This method differs from object.___repr () inthat there is no expectation that ___str_ () return a valid
Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object._ repr ().

object.__bytes__ (self)
Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

30 Chapter 3. Data model

The Python Language Reference, Release 3.11.1

object.__format___ (self, format_spec)

Called by the format () built-in function, and by extension, evaluation of formatted string literals and the str .
format () method, to produce a “formatted” string representation of an object. The format_spec argument is a
string that contains a description of the formatting options desired. The interpretation of the format_spec argument
is up to the type implementing __ format___ (), however most classes will either delegate formatting to one of
the built-in types, or use a similar formatting option syntax.

See formatspec for a description of the standard formatting syntax.
The return value must be a string object.

Changed in version 3.4: The __format__ method of object itself raises a TypeError if passed any non-empty

string.
Changed in version 3.7: object._ format__ (x, '') is now equivalent to str (x) rather than
format (str(x), '').

object.__1t__ (self, other)

object.__le__ (self, other)

object.__eq (self, other)

object.__ne__ (self, other)

object.__gt__ (self, other)

object.__ge___ (self, other)
These are the so-called “rich comparison” methods. The correspondence between operator symbols and method
names is as follows: x<ycallsx.__ 1t_ (y),x<=ycallsx._ le_ (y),x==ycallsx.__eq_ (y),x!=y

callsx._ ne_ (y),x>ycallsx._ gt_ (y),and x>=ycallsx._ _ge_ (y).

A rich comparison method may return the singleton Not Implemented if it does not implement the operation for
a given pair of arguments. By convention, False and True are returned for a successful comparison. However,
these methods can return any value, so if the comparison operator is used in a Boolean context (e.g., in the condition
of an i f statement), Python will call boo1l () on the value to determine if the result is true or false.

By default, object implements __eqg () by using is, returning Not Implemented in the case of a false
comparison: True if x is y else NotImplemented. For _ _ne__ (), by default it delegates to
__eqg__ () and inverts the result unless it is Not Implemented. There are no other implied relationships
among the comparison operators or default implementations; for example, the truth of (x<y or x==y) does
not imply x<=y. To automatically generate ordering operations from a single root operation, see functools.
total_ordering().

See the paragraphon ___hash__ () for some important notes on creating hashable objects which support custom
comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support the
operation but the right argument does); rather, 1t ()and___gt__ () areeach other’sreflection, _1e_ ()
and __ge__ () are each other’s reflection, and __eq () and __ne__ () are their own reflection. If the
operands are of different types, and right operand’s type is a direct or indirect subclass of the left operand’s type,
the reflected method of the right operand has priority, otherwise the left operand’s method has priority. Virtual
subclassing is not considered.

object.__hash__ (self)

Called by built-in function hash () and for operations on members of hashed collections including set,
frozenset, and dict. The __hash__ () method should return an integer. The only required property is
that objects which compare equal have the same hash value; it is advised to mix together the hash values of the
components of the object that also play a part in comparison of objects by packing them into a tuple and hashing
the tuple. Example:

3.3. Special method names 31

The Python Language Reference, Release 3.11.1

def _ hash__ (self):
return hash((self.name, self.nick, self.color))

Note: hash () truncates the value returned from an object’s custom ___hash__ () method to the size of a
Py_ssize_t. Thisis typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s___hash__ ()
must interoperate on builds of different bit sizes, be sure to check the width on all supported builds. An easy way
to do this is with python —-c "import sys; print (sys.hash_info.width)".

If aclass does not definean __eqg___ () method it should not definea ___hash___ () operation either; if it defines
__eq () butnot ___hash__ (), its instances will not be usable as items in hashable collections. If a class
defines mutable objects and implements an __eqg___ () method, it should not implement ___hash___ (), since
the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s hash value
changes, it will be in the wrong hash bucket).

User-defined classes have __eq__ () and __hash__ () methods by default; with them, all objects compare
unequal (except with themselves) and x.__hash__ () returns an appropriate value such that x == y implies
boththat x is yand hash (x) == hash(y).

A class that overrides __eqg () and does not define __hash__ () will have its __hash__ () implicitly set
to None. When the ___hash__ () method of a class is None, instances of the class will raise an appropriate
TypeError when a program attempts to retrieve their hash value, and will also be correctly identified as unhash-
able when checking isinstance (obj, collections.abc.Hashable).

If a class that overrides __eqg__ () needs to retain the implementation of ___hash__ () from a parent class, the
interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__ .

If a class that does not override __eqg__ () wishes to suppress hash support, it should include __hash__ =
None in the class definition. A class which defines its own ___hash__ () that explicitly raises a TypeError
would be incorrectly identified as hashable by an isinstance (obj, collections.abc.Hashable)
call.

Note: By default, the ___hash__ () values of str and bytes objects are “salted” with an unpredictable random
value. Although they remain constant within an individual Python process, they are not predictable between re-
peated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that ex-
ploit the worst case performance of a dict insertion, O(n?) complexity. See http://www.ocert.org/advisories/
ocert-2011-003.html for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering (and
it typically varies between 32-bit and 64-bit builds).

See also PYTHONHASHSEED.

Changed in version 3.3: Hash randomization is enabled by default.

object.__bool__ (self)

Called to implement truth value testing and the built-in operation boo1 () ; should return False or True. When
this method is not defined, __1en__ () is called, if it is defined, and the object is considered true if its result is
nonzero. If a class defines neither __7en_ () nor __bool__ (), all its instances are considered true.

32

Chapter 3. Data model

http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html

The Python Language Reference, Release 3.11.1

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion of
x . name) for class instances.

object.__getattr__ (self, name)

Called when the default attribute access fails with an AttributeError (either _ getattribute__ ()
raises an At t ributeError because name is not an instance attribute or an attribute in the class tree for self;
or__get__ () of aname property raises At t ributeError). This method should either return the (computed)
attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, ___getattr__ () is not called. (This is an
intentional asymmetry between __getattr__ () and __setattr__ ().) This is done both for efficiency
reasons and because otherwise ___getattr__ () would have no way to access other attributes of the instance.
Note that at least for instance variables, you can fake total control by not inserting any values in the instance attribute
dictionary (but instead inserting them in another object). See the _ getattribute _ () method below for a
way to actually get total control over attribute access.

object.__getattribute_ (self, name)

Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr__ (), the latter will not be called unless __ getattribute__ () either calls it explicitly
or raises an AttributeError. This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation should
always call the base class method with the same name to access any attributes it needs, for example, object .
__getattribute__ (self, name).

Note: This method may still be bypassed when looking up special methods as the result of implicit invocation via
language syntax or built-in functions. See Special method lookup.

For certain sensitive attribute accesses, raises an auditing event object .__getattr__ with arguments obj
and name.
object.__setattr__ (self, name, value)

Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store the
value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If __setattr__ () wants to assign to an instance attribute, it should call the base class method with the same
name, for example, object.__setattr__ (self, name, value).

For certain sensitive attribute assignments, raises an auditing event object .__setattr__ with arguments
ob7j, name, value.
object.__delattr__ (self, name)

Like __setattr__ () butfor attribute deletion instead of assignment. This should only be implemented if de 1
obj.name is meaningful for the object.

For certain sensitive attribute deletions, raises an auditing event object .__delattr__ with arguments obj
and name.
object.__dir__ (self)

Called when dir () is called on the object. A sequence must be returned. dir () converts the returned sequence
to a list and sorts it.

3.3. Special method names 33

The Python Language Reference, Release 3.11.1

Customizing module attribute access

Special names __getattr___ and __dir___ can be also used to customize access to module attributes. The
__getattr__ function at the module level should accept one argument which is the name of an attribute and re-
turn the computed value or raise an AttributeError. If an attribute is not found on a module object through the
normal lookup, i.e. object.__getattribute__ (),then__getattr__ issearched in the module __dict_
before raising an AttributeError. If found, it is called with the attribute name and the result is returned.

The __dir__ function should accept no arguments, and return a sequence of strings that represents the names accessible
on module. If present, this function overrides the standard dir () search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the
__class__ attribute of a module object to a subclass of types.ModuleType. For example:

import sys
from types import ModuleType

class VerboseModule (ModuleType) :
def _ _repr__ (self):
return f'Verbose {self._ name__ }'

def _ setattr_ (self, attr, value):
print (f'Setting {attr}...")

super () .__setattr__ (attr, wvalue)

sys.modules|[name]. class_ = VerboseModule

Note: Defining module ___getattr__ and setting module ___class__ only affect lookups made using the attribute
access syntax — directly accessing the module globals (whether by code within the module, or via a reference to the
module’s globals dictionary) is unaffected.

Changed in version 3.5: __class___ module attribute is now writable.
New in version 3.7: __getattr_ _and __ dir__ module attributes.
See also:

PEP 562 - Module __getattr__ and __dir__ Describes the __getattr___and __dir__ functions on modules.

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a so-called descriptor class)
appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one
of its parents). In the examples below, “the attribute” refers to the attribute whose name is the key of the property in the
owner class’ __dict__.

object.__get__ (self, instance, owner=None)

Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance attribute
access). The optional owner argument is the owner class, while instance is the instance that the attribute was
accessed through, or None when the attribute is accessed through the owner.

This method should return the computed attribute value or raise an AttributeError exception.

PEP 252 specifies that ___get__ () is callable with one or two arguments. Python’s own built-in descriptors
support this specification; however, it is likely that some third-party tools have descriptors that require both argu-
ments. Python’s own ___getattribute__ () implementation always passes in both arguments whether they
are required or not.

34 Chapter 3. Data model

https://peps.python.org/pep-0562/
https://peps.python.org/pep-0252/

The Python Language Reference, Release 3.11.1

object.__set__ (self, instance, value)
Called to set the attribute on an instance instance of the owner class to a new value, value.
Note,adding __set__ () or__delete__ () changes the kind of descriptor to a “data descriptor”. See Invoking
Descriptors for more details.
object.__delete__ (self, instance)
Called to delete the attribute on an instance instance of the owner class.
The attribute __objclass__ is interpreted by the inspect module as specifying the class where this object was
defined (setting this appropriately can assist in runtime introspection of dynamic class attributes). For callables, it may

indicate that an instance of the given type (or a subclass) is expected or required as the first positional argument (for
example, CPython sets this attribute for unbound methods that are implemented in C).

Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden by
methods in the descriptor protocol: ___get__ (), set__(),and __delete__ (). If any of those methods are
defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance, a . x
has a lookup chain starting with a.__dict__ ['x"'], then type (a) .__dict__['x"'], and continuing through
the base classes of type (a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which
descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a . x. How the arguments are assembled depends on a:

Direct Call The simplest and least common call is when user code directly invokes a descriptor method: x.
__get__(a).

Instance Binding If binding to an object instance, a . x is transformed into the call: type (a) .__dict_ ['x'].
__get_ (a, type(a)).

Class Binding If binding to a class, A . x is transformed into the call: A.__dict__ ['x'].__get__ (None, A).

Super Binding A dotted lookup such as super (A, a).xsearchesa.__class__._ _mro__ for a base class B
following A and then returns B.___dict__ ['x'].__get__ (a, A).If not a descriptor, x is returned un-
changed.

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined. A
descriptor can define any combination of __get__ (), __set__ () and __delete__ (). If it does not define
__get__ (), then accessing the attribute will return the descriptor object itself unless there is a value in the object’s
instance dictionary. If the descriptor defines __set__ () and/or __delete__ (), it is a data descriptor; if it de-
fines neither, it is a non-data descriptor. Normally, data descriptors define both __get__ () and __set__ (), while
non-data descriptors have just the __get__ () method. Data descriptors with __get__ () and __set__ () (and/or
__delete__ ()) defined always override a redefinition in an instance dictionary. In contrast, non-data descriptors can
be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod) are implemented as non-
data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to acquire
behaviors that differ from other instances of the same class.

The property () function is implemented as a data descriptor. Accordingly, instances cannot override the behavior of
a property.

3.3. Special method names 35

The Python Language Reference, Release 3.11.1

__slots__

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of __dict__ and
__weakref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using ___dict__ can be significant. Attribute lookup speed can be significantly improved as well.

object.__slots__

This class variable can be assigned a string, iterable, or sequence of strings with variable names used by in-
stances. __slots__ reserves space for the declared variables and prevents the automatic creation of __dict_
and __weakref__ for each instance.

Notes on using __slots

When inheriting from a class without __slots__, the __dict__ and __weakref__ attribute of the instances will
always be accessible.

Without a ___dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition.
Attempts to assign to an unlisted variable name raises AttributeError. If dynamic assignment of new vari-
ables is desired, thenadd '__dict__ ' to the sequence of strings in the __slots__ declaration.

Without a __weakref__ variable for each instance, classes defining __slots__do not support weak references
to its instances. If weak reference support is needed, then add '__weakref__ ' to the sequence of strings in the
__slots__declaration.

__slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class
attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class
attribute would overwrite the descriptor assignment.

The action of a __slots__ declaration is not limited to the class where it is defined. __slots__ declared in parents
are available in child classes. However, child subclasses will geta ___dict___ and __ weakref__ unless they also
define __slots__ (which should only contain names of any additional slots).

If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is inaccessible
(except by retrieving its descriptor directly from the base class). This renders the meaning of the program undefined.
In the future, a check may be added to prevent this.

Nonempty __slots__ does not work for classes derived from “variable-length” built-in types such as int, bytes
and tuple.

Any non-string iterable may be assigned to __slots__.

If adictionary is used to assign __slots__, the dictionary keys will be used as the slot names. The values of
the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect .getdoc ()
and displayed in the output of help ().

__class___ assignment works only if both classes have the same __slots__.

Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have attributes
created by slots (the other bases must have empty slot layouts) - violations raise TypeError.

If an iterator is used for __slots___then a descriptor is created for each of the iterator’s values. However, the __slots__
attribute will be an empty iterator.

36

Chapter 3. Data model

The Python Language Reference, Release 3.11.1

3.3.3 Customizing class creation

Whenever a class inherits from another class, __init_subclass__ () is called on the parent class. This way, it is
possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but where class
decorators only affect the specific class they’re applied to, __init_subclass__ solely applies to future subclasses of
the class defining the method.

classmethod object.__init_subclass__ (cls)

This method is called whenever the containing class is subclassed. cls is then the new subclass. If defined as a
normal instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent’s class __init_subclass__.
For compatibility with other classes using __init_subclass__, one should take out the needed keyword
arguments and pass the others over to the base class, as in:

class Philosopher:
def __ _init_subclass__(cls, /, default_name, **kwargs):
super () .__init_subclass__ (**kwargs)
cls.default_name = default_name

class AustralianPhilosopher (Philosopher, default_name="Bruce"):
pass

The default implementation object.__init_subclass__ does nothing, but raises an error if it is called
with any arguments.

Note: The metaclass hint metaclass is consumed by the rest of the type machinery, and is never passed to
__init_subclass___ implementations. The actual metaclass (rather than the explicit hint) can be accessed as
type (cls).

New in version 3.6.

When a class is created, type._ _new__ () scans the class variables and makes callbacks to those with a
__set_name___ () hook.

object.__set_name__ (self, owner, name)
Automatically called at the time the owning class owner is created. The object has been assigned to name in that
class:
class A:
x = C{() # Automatically calls: x.__set_name__ (A, 'x'")

If the class variable is assigned after the class is created, __set_name___ () will not be called automatically. If

needed, _set_name__ () can be called directly:
class A:
pass
c =C0
A.x = C # The hook is not called
c.__set_name__ (A, 'x'") # Manually invoke the hook

See Creating the class object for more details.

New in version 3.6.

3.3. Special method names 37

The Python Language Reference, Release 3.11.1

Metaclasses

By default, classes are constructed using t ype () . The class body is executed in a new namespace and the class name is
bound locally to the result of type (name, bases, namespace).

The class creation process can be customized by passing the metaclass keyword argument in the class definition line,
or by inheriting from an existing class that included such an argument. In the following example, both MyClass and
MySubclass are instances of Meta:

class Meta (type):
pass

class MyClass (metaclass=Meta) :
pass

class MySubclass (MyClass) :
pass

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations
described below.

When a class definition is executed, the following steps occur:
* MRO entries are resolved,;
* the appropriate metaclass is determined;
* the class namespace is prepared;
* the class body is executed;

* the class object is created.

Resolving MRO entries

If a base that appears in class definition is not an instance of type, thenan __mro_entries__ method is searched on
it. If found, it is called with the original bases tuple. This method must return a tuple of classes that will be used instead
of this base. The tuple may be empty, in such case the original base is ignored.

See also:

PEP 560 - Core support for typing module and generic types

Determining the appropriate metaclass

The appropriate metaclass for a class definition is determined as follows:
* if no bases and no explicit metaclass are given, then type () is used;
* if an explicit metaclass is given and it is not an instance of t ype (), then it is used directly as the metaclass;

« if an instance of type () is given as the explicit metaclass, or bases are defined, then the most derived metaclass
is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e.
type (cls)) of all specified base classes. The most derived metaclass is one which is a subtype of all of these can-
didate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail with
TypeError.

38 Chapter 3. Data model

https://peps.python.org/pep-0560/

The Python Language Reference, Release 3.11.1

Preparing the class hamespace

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass
has a __prepare__ attribute, it is called as namespace = metaclass.__prepare__ (name, bases,
**kwds) (where the additional keyword arguments, if any, come from the class definition). The _ _prepare_
method should be implemented as a classmethod. The namespace returned by __prepare__ is passed in to
__new___, but when the final class object is created the namespace is copied into a new dict.

If the metaclass hasno __prepare___ attribute, then the class namespace is initialised as an empty ordered mapping.
See also:

PEP 3115 - Metaclasses in Python 3000 Introduced the __prepare__ namespace hook

Executing the class body

The class body is executed (approximately) as exec (body, globals (), namespace). The key difference from
anormal call to exec () is that lexical scoping allows the class body (including any methods) to reference names from
the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see names
defined at the class scope. Class variables must be accessed through the first parameter of instance or class methods, or
through the implicit lexically scoped __class__ reference described in the next section.

Creating the class object

Once the class namespace has been populated by executing the class body, the class object is created by calling
metaclass (name, bases, namespace, **kwds) (the additional keywords passed here are the same as
those passed to __prepare_).

This class object is the one that will be referenced by the zero-argument form of super (). __class___isan implicit
closure reference created by the compiler if any methods in a class body refer to either __class__ or super. This
allows the zero argument form of super () to correctly identify the class being defined based on lexical scoping, while
the class or instance that was used to make the current call is identified based on the first argument passed to the method.

CPython implementation detail: In CPython 3.6 and later, the __ _class__ cell is passed to the metaclass as a
__classcell___ entry in the class namespace. If present, this must be propagated up to the type.___new__ callin
order for the class to be initialised correctly. Failing to do so will result in a Runt imeError in Python 3.8.

When using the default metaclass t ype, or any metaclass that ultimately calls t ype . ___new___, the following additional
customization steps are invoked after creating the class object:

1) The type.__new__ method collects all of the attributes in the class namespace that define a
__set_name___ () method;

2) Those ___set_name__ methods are called with the class being defined and the assigned name of that particular
attribute;

3) The __init_subclass__ () hook is called on the immediate parent of the new class in its method resolution
order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the resulting
object is bound in the local namespace as the defined class.

When a new class is created by type .___new__, the object provided as the namespace parameter is copied to a new
ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which becomes the
__dict___ attribute of the class object.

See also:

3.3. Special method names 39

https://peps.python.org/pep-3115/

The Python Language Reference, Release 3.11.1

PEP 3135 - New super Describes the implicit __class___ closure reference

Uses for metaclasses

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging, inter-
face checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource lock-
ing/synchronization.

3.3.4 Customizing instance and subclass checks
The following methods are used to override the default behavior of the isinstance () and issubclass () built-in
functions.

In particular, the metaclass abc . ABCMeta implements these methods in order to allow the addition of Abstract Base
Classes (ABCs) as “virtual base classes” to any class or type (including built-in types), including other ABCs.

class.__instancecheck__ (self, instance)

Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to implement
isinstance (instance, class).

class.__subclasscheck___ (self, subclass)

Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to implement
issubclass (subclass, class).

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods in
the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case the
instance is itself a class.

See also:

PEP 3119 - Introducing Abstract Base Classes Includes the specification for customizing isinstance () and
issubclass () behavior through _ instancecheck__ () and __subclasscheck__ (), with moti-
vation for this functionality in the context of adding Abstract Base Classes (see the abc module) to the language.

3.3.5 Emulating generic types

When using type annotations, it is often useful to parameterize a generic type using Python’s square-brackets notation. For
example, the annotation 1ist [int] might be used to signify a 11 st in which all the elements are of type int.

See also:

PEP 484 - Type Hints Introducing Python’s framework for type annotations

Generic Alias Types Documentation for objects representing parameterized generic classes

Generics, user-defined generics and typing.Generic Documentation on how to implement generic classes that
can be parameterized at runtime and understood by static type-checkers.

A class can generally only be parameterized if it defines the special class method __class_getitem__ ().

classmethod object.__class_getitem__ (cls, key)

Return an object representing the specialization of a generic class by type arguments found in key.

When defined on a class, __class_getitem__ () is automatically a class method. As such, there is no need
for it to be decorated with @classmethod when it is defined.

40 Chapter 3. Data model

https://peps.python.org/pep-3135/
https://peps.python.org/pep-3119/
https://peps.python.org/pep-0484/

The Python Language Reference, Release 3.11.1

The purpose of __class_getitem _

The purpose of __class_getitem__ () is to allow runtime parameterization of standard-library generic classes in
order to more easily apply type hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers, users
should either inherit from a standard library class that already implements __class_getitem _ (), or inherit from
typing.Generic, which has its own implementation of __class_getitem__ ().

Custom implementations of ___class_getitem__ () on classes defined outside of the standard library may not be
understood by third-party type-checkers such as mypy. Using _ class_getitem__ () on any class for purposes
other than type hinting is discouraged.

__class_getitem__ versus __getitem _

Usually, the subscription of an object using square brackets will call the __getitem () instance method defined on
the object’s class. However, if the object being subscribed is itself a class, the class method __class_getitem _ ()
may be called instead. __class_getitem__ () should return a GenericAlias object if it is properly defined.

Presented with the expression ob7j [x], the Python interpreter follows something like the following process to decide
whether _ _getitem () or__class_getitem _ () should be called:

from inspect import isclass

def subscribe (obj, x):
"""Return the result of the expression 'obj[x]'"""

class_of_obj = type (obj)

If the class of obj defines __getitem _,
call class_of_obj.__getitem _ (obj, x)

if hasattr(class_of_obj, ' _getitem__'):
return class_of_obj.__getitem__ (obj, x)
Else, 1f obj is a class and defines __class_getitem__,
call obj.__class_getitem__ (x)
elif isclass(obj) and hasattr(obj, '__ _class_getitem__ "):
return obj.__class_getitem__ (x)

Else, raise an exception
else:
raise TypeError (
f"'"{class_of_obj.__name__}' object is not subscriptable"

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s metaclass, and
most classes have the t ype class as their metaclass. type does notdefine__getitem _ (), meaning that expressions
suchas 1ist [int],dict[str, float] and tuple[str, bytes] allresultin__ class_getitem _ ()
being called:

>>> # 1list has class "type" as its metaclass, like most classes:
>>> type(list)
<class 'type'>

>>> type(dict) == type(list) == type(tuple) == type(str) == type(bytes)
True
>>> # "list[int]" calls "list.__class_getitem__ (int)"

>>> list[int]

(continues on next page)

3.3. Special method names 41

The Python Language Reference, Release 3.11.1

(continued from previous page)

list[int]

>>> # list.__class_getitem __ returns a GenericAlias object:
>>> type(list[int])

<class 'types.GenericAlias'>

However, if a class has a custom metaclass that defines __getitem (), subscribing the class may result in different
behaviour. An example of this can be found in the enum module:

>>> from enum import Enum

>>> class Menu (Enum) :
""rA breakfast menu"""
SPAM = 'spam'
BACON = 'bacon'

>>> # Enum classes have a custom metaclass:

>>> type (Menu)

<class 'enum.EnumMeta'>

>>> # EnumMeta defines __getitem__,

>>> # so __class_getitem__ 1is not called,

>>> # and the result is not a GenericAlias object:
>>> Menu['SPAM']

<Menu.SPAM: 'spam'>

>>> type (Menu['SPAM'])

<enum 'Menu'>

See also:

PEP 560 - Core Support for typing module and generic types Introducing_ class_getitem__ (),andoutlin-
ing when a subscription results in __class_getitem__ () being called instead of ___getitem _ ()

3.3.6 Emulating callable objects

object.__call__ (self[, args...])

Called when the instance is “called” as a function; if this method is defined, x (argl, arg2, ...) roughly
translates to type (x) .__call__ (x, argl, ...).

3.3.7 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such as 1ists
or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of methods
is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys
should be the integers k for which 0 <= k < N where N is the length of the sequence, or s11ice objects, which define
arange of items. It is also recommended that mappings provide the methods keys (), values (), items (), get (),
clear (), setdefault (),pop(),popitem(), copy (),and update () behaving similar to those for Python’s
standard dictionary objects. The collections.abc module provides a MutableMapping abstract base
class to help create those methods from a base setof __getitem (), _setitem__ (), __delitem__ (),and
keys (). Mutable sequences should provide methods append (), count (), index (), extend (), insert (),
pop (), remove (), reverse () and sort (), like Python standard 1ist objects. Finally, sequence types
should implement addition (meaning concatenation) and multiplication (meaning repetition) by defining the methods
__add__ (), radd__ (), iadd (), mul (), rmul () and __ imul () described below;
they should not define other numerical operators. It is recommended that both mappings and sequences implement
the contains__ () method to allow efficient use of the in operator; for mappings, in should search the mapping’s
keys; for sequences, it should search through the values. It is further recommended that both mappings and sequences

42 Chapter 3. Data model

https://peps.python.org/pep-0560/

The Python Language Reference, Release 3.11.1

implement the __iter_ () method to allow efficient iteration through the container; for mappings,
should iterate through the object’s keys; for sequences, it should iterate through the values.

iter_ ()

object.__len__ (self)
Called to implement the built-in function 1en (). Should return the length of the object, an integer >= 0. Also,
an object that doesn’t definea ___bool__ () method and whose ___1en__ () method returns zero is considered
to be false in a Boolean context.

CPython implementation detail: In CPython, the length is required to be at most sy s .maxsize. If the length
is larger than sys .maxsize some features (such as 1en ()) may raise OverflowError. To prevent raising
OverflowError by truth value testing, an object must definea ___bool__ () method.

object.__length_hint__ (self)
Called to implement operator.length_hint (). Should return an estimated length for the object (which
may be greater or less than the actual length). The length must be an integer >= 0. The return value may also be

Not Implemented, which is treated the same as if the __1ength_hint__ method didn’t exist at all. This
method is purely an optimization and is never required for correctness.

New in version 3.4.

Note: Slicing is done exclusively with the following three methods. A call like

’a[1:2] = Db

is translated to

’a[slice(l, 2, None)] =D

and so forth. Missing slice items are always filled in with None.

object.__getitem__ (self, key)

Called to implement evaluation of self [key]. For sequence types, the accepted keys should be integers and slice
objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a sequence type) is
uptothe getitem () method. If key is of an inappropriate type, TypeError may be raised; if of a value
outside the set of indexes for the sequence (after any special interpretation of negative values), IndexError
should be raised. For mapping types, if key is missing (not in the container), KeyError should be raised.

Note: for loops expect that an IndexError will be raised for illegal indexes to allow proper detection of the
end of the sequence.

Note: When subscripting a class, the special class method ___class_getitem _ () may be called instead of
__getitem__ (). See _ class_getitem__ versus __getitem__ for more details.

object.__setitem__ (self, key, value)

Called to implement assignment to self [key]. Same note as for __getitem (). This should only be
implemented for mappings if the objects support changes to the values for keys, or if new keys can be added, or
for sequences if elements can be replaced. The same exceptions should be raised for improper key values as for the
_ _getitem _ () method.

object.__delitem__ (self, key)

Called to implement deletion of self [key]. Same note as for __getitem _ (). This should only be imple-
mented for mappings if the objects support removal of keys, or for sequences if elements can be removed from the
sequence. The same exceptions should be raised for improper key values as for the __getitem () method.

3.3. Special method names 43

The Python Language Reference, Release 3.11.1

object.__missing__ (self, key)
Called by dict._ _getitem__ () toimplement self [key] for dict subclasses when key is not in the dictio-
nary.
object.__iter__ (self)
This method is called when an iterator is required for a container. This method should return a new iterator object
that can iterate over all the objects in the container. For mappings, it should iterate over the keys of the container.
object.__reversed__ (self)
Called (if present) by the reversed () built-in to implement reverse iteration. It should return a new iterator
object that iterates over all the objects in the container in reverse order.

If the _ reversed__ () method is not provided, the reversed () built-in will fall back to using the se-
quence protocol (__Ien__ () and __getitem__ ()). Objects that support the sequence protocol should only
provide __reversed__ () if they can provide an implementation that is more efficient than the one provided
by reversed ().

The membership test operators (i nand not 1n)are normally implemented as an iteration through a container. However,
container objects can supply the following special method with a more efficient implementation, which also does not
require the object be iterable.
object.__contains__ (self, item)
Called to implement membership test operators. Should return true if ifem is in self, false otherwise. For mapping
objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

For objects that don’t define __contains__ (), the membership test first tries iterationvia___iter__ (), then
the old sequence iteration protocol via___getitem _ (), see this section in the language reference.

3.3.8 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are not
supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers) should be
left undefined.

object.__add__ (self, other)

object.__sub__ (self, other)

object.__mul__ (self, other)

object.__matmul___ (self, other)

object.__truediv__ (self, other)

object.__floordiv___ (self, other)

object.__mod___ (self, other)

object .__divmod___ (self, other)

object.__pow___ (self, other[, modulo])

object.__lshift__ (self, other)

object.__rshift__ (self, other)

object.__and__ (self, other)

object.__xor__ (self, other)

object.__oxr__ (self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod (), pow (),
**x <<, >> &, ~, |). For instance, to evaluate the expression x + vy, where x is an instance of a class that has
an___add__ () method, type (x) .__add__ (x, y) iscalled. The _divmod _ () method should be the
equivalent to using __ floordiv__ () and __mod__ ();it should not be related to __truediv__ (). Note

44 Chapter 3. Data model

The Python Language Reference, Release 3.11.1

that __pow__ () should be defined to accept an optional third argument if the ternary version of the built-in

pow () function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return

NotImplemented.

object.__radd__ (self, other)
object.__rsub__ (self, other)

object.__rmul__ (self, other)
object.__rmatmul__ (self, other)
object.__rtruediv___ (self, other)

object._ _rfloordiv__ (self, other)
object.__rmod___ (self, other)
object.__rdivmod___ (self, other)
object.__rpow__ (self, other[, modulo])
object.__rlshift__ (self, other)
object.__rrshift__ (self, other)
object.__rand__ (self, other)
object.__rxor__ (self, other)

object.__ror__ (self, other)

These methods are called to implement the binary arithmetic operations (+, -, *, @, /, //, %, divmod (), pow (),
** <<, >>, &, ~, |) with reflected (swapped) operands. These functions are only called if the left operand does
not support the corresponding operation® and the operands are of different types.* For instance, to evaluate the ex-
pression x — vy, where yis an instance of a class thathasan___rsub__ () method, type (y) ._rsub__ (v,
x) iscalled if type (x) .__sub__ (%, vy) returns NotImplemented.

Note that ternary pow () will not try calling __ rpow___ () (the coercion rules would become too complicated).

Note: If the right operand’s type is a subclass of the left operand’s type and that subclass provides a different
implementation of the reflected method for the operation, this method will be called before the left operand’s

non-reflected method. This behavior allows subclasses to override their ancestors’ operations.

object.__iadd__ (self, other)
object.__isub__ (self, other)
object.__imul__ (self, other)
object.__imatmul__ (self, other)
object.__itruediv__ (self, other)
object.__ifloordiv__ (self, other)
object.__imod___ (self, other)
object.__ipow__ (self, other[, modulo])
object.__ilshift__ (self, other)
object.__irshift__ (self, other)
object.__iand___ (self, other)

object.__ixor__ (self, other)

3 “Does not support” here means that the class has no such method, or the method returns Not Implemented. Do not set the method to None if

you want to force fallback to the right operand’s reflected method—that will instead have the opposite effect of explicitly blocking such fallback.

4 For operands of the same type, it is assumed that if the non-reflected method — such as __add__ () — fails then the overall operation is not

supported, which is why the reflected method is not called.

3.3. Special method names

The Python Language Reference, Release 3.11.1

object.__ior__ (self, other)

These methods are called to implement the augmented arithmetic assignments (+=, —=, *=, @=, /=, / /=, %=, **=,
<<=, >>=, &=, *=, | =). These methods should attempt to do the operation in-place (modifying self)) and return the

result (which could be, but does not have to be, self). If a specific method is not defined, the augmented assignment
falls back to the normal methods. For instance, if x is an instance of a class with an _ iadd () method,
x += yisequivalentto x = x.__iadd__ (y) . Otherwise, x.__add__ (y) and y.__radd__ (x) are
considered, as with the evaluation of x + y. In certain situations, augmented assignment can result in unexpected
errors (see faq-augmented-assignment-tuple-error), but this behavior is in fact part of the data model.

object.__neg__ (self)

object.__pos__ (self)

object.__abs__ (self)

object.__invert__ (self)

Called to implement the unary arithmetic operations (-, +, abs () and ~).

object.__complex__ (self)

object.__int__ (self)

object.__float__ (self)
Called to implement the built-in functions complex (), int () and £loat (). Should return a value of the
appropriate type.

object.__index__ (self)

Called to implement operator.index (), and whenever Python needs to losslessly convert the numeric object
to an integer object (such as in slicing, or in the built-in bin (), hex () and oct () functions). Presence of this
method indicates that the numeric object is an integer type. Must return an integer.

If int_ (),___float__ () and __ _complex__ () are not defined then corresponding built-in functions
int (), float () and complex () fallbackto ___index__ ().

object.__round__ (self[, ndigits])
object.__trunc__ (self)
object.__floor__ (self)
object.__ceil__ (self)

Called to implement the built-in function round () and math functions trunc (), floor () and ceil ().
Unless ndigits is passed to __round___ () all these methods should return the value of the object truncated to an
Integral (typically an int).

The built-in function int () fallsbackto_ trunc__ () ifneither ___int_ () nor___index__ () is defined.

Changed in version 3.11: The delegation of int () to__ trunc__ () is deprecated.

3.3.9 With Statement Context Managers

A context manager is an object that defines the runtime context to be established when executing a w1 t h statement. The
context manager handles the entry into, and the exit from, the desired runtime context for the execution of the block of
code. Context managers are normally invoked using the with statement (described in section 7The with statement), but
can also be used by directly invoking their methods.

Typical uses of context managers include saving and restoring various kinds of global state, locking and unlocking re-
sources, closing opened files, etc.

For more information on context managers, see typecontextmanager.

46 Chapter 3. Data model

The Python Language Reference, Release 3.11.1

object.__enter__ (self)

Enter the runtime context related to this object. The with statement will bind this method’s return value to the
target(s) specified in the as clause of the statement, if any.

object.__exit__ (self, exc_type, exc_value, traceback)

Exit the runtime context related to this object. The parameters describe the exception that caused the context to be
exited. If the context was exited without an exception, all three arguments will be None.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being propagated),
it should return a true value. Otherwise, the exception will be processed normally upon exit from this method.

Note that __exit__ () methods should not reraise the passed-in exception; this is the caller’s responsibility.
See also:

PEP 343 - The “with” statement The specification, background, and examples for the Python wi t h statement.

3.3.10 Customizing positional arguments in class pattern matching

When using a class name in a pattern, positional arguments in the pattern are not allowed by default, i.e. case
MyClass (x, y) is typically invalid without special support in MyClass. To be able to use that kind of pattern,
the class needs to define a __match_args__ attribute.

object.__match_args___

This class variable can be assigned a tuple of strings. When this class is used in a class pattern with positional
arguments, each positional argument will be converted into a keyword argument, using the corresponding value in
__match_args__ as the keyword. The absence of this attribute is equivalent to setting it to () .

For example, if MyClass.__match_args__is ("left", "center", "right") that means that case
MyClass (x, y) isequivalentto case MyClass (left=x, center=y). Note that the number of arguments
in the pattern must be smaller than or equal to the number of elements in __match_args__; if it is larger, the pattern
match attempt will raise a TypeError.

New in version 3.10.
See also:

PEP 634 - Structural Pattern Matching The specification for the Python mat ch statement.

3.3.11 Special method lookup

For custom classes, implicit invocations of special methods are only guaranteed to work correctly if defined on an object’s
type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises an exception:

>>> class C:

pass
>>> ¢ = C()
>>> ¢c.__len_ = lambda: 5

>>> len(c)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods such as ___hash__ () and __repr__ ()
that are implemented by all objects, including type objects. If the implicit lookup of these methods used the conventional
lookup process, they would fail when invoked on the type object itself:

3.3. Special method names 47

https://peps.python.org/pep-0343/
https://peps.python.org/pep-0634/

The Python Language Reference, Release 3.11.1

>>> 1 . _hash__ () == hash(1l)
True
>>> int._ _hash__ () == hash(int)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: descriptor '__hash_ ' of 'int' object needs an argument

Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as ‘metaclass confusion’,
and is avoided by bypassing the instance when looking up special methods:

>>> type(l).__hash__ (1) == hash(1)

True

>>> type(int).__hash__ (int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup generally
also bypasses the _getattribute () method even of the object’s metaclass:

>>> class Meta (type):
def __getattribute__ (*args):
print ("Metaclass getattribute invoked")
return type._ _getattribute__ (*args)

>>> class C(object, metaclass=Meta):
def = len_ (self):
return 10
def _ _getattribute__ (*args):
print ("Class getattribute invoked")

return object.__getattribute__ (*args)
>>> ¢ = C()
>>> c.__len__ () # Explicit lookup via instance
Class getattribute invoked
10
>>> type(c).__len__ (c) # Explicit lookup via type
Metaclass getattribute invoked
10
>>> len(c) # Implicit lookup
10

Bypassing the ___getattribute__ () machinery in this fashion provides significant scope for speed optimisations
within the interpreter, at the cost of some flexibility in the handling of special methods (the special method must be set
on the class object itself in order to be consistently invoked by the interpreter).

3.4 Coroutines

3.4.1 Awaitable Objects

An awaitable object generally implements an __await__ () method. Coroutine objects returned from async def
functions are awaitable.

Note: The generator iterator objects returned from generators decorated with t ypes.coroutine () are also await-
able, but they do not implement ___await__ ().

48 Chapter 3. Data model

The Python Language Reference, Release 3.11.1

object.__await__ (self)

Must return an iferator. Should be used to implement awaitable objects. For instance, asyncio.Future im-
plements this method to be compatible with the awa it expression.

Note: The language doesn’t place any restriction on the type or value of the objects yielded by the iterator re-
turned by __await_ , as this is specific to the implementation of the asynchronous execution framework (e.g.
asyncio) that will be managing the awaitable object.

New in version 3.5.
See also:

PEP 492 for additional information about awaitable objects.

3.4.2 Coroutine Objects

Coroutine objects are awaitable objects. A coroutine’s execution can be controlled by calling __await__ () anditerating
over the result. When the coroutine has finished executing and returns, the iterator raises StopIteration, and the
exception’s value attribute holds the return value. If the coroutine raises an exception, it is propagated by the iterator.
Coroutines should not directly raise unhandled StopIteration exceptions.

Coroutines also have the methods listed below, which are analogous to those of generators (see Generator-iterator meth-
ods). However, unlike generators, coroutines do not directly support iteration.

Changed in version 3.5.2: Itis a Runt imeError to await on a coroutine more than once.

coroutine.send (value)

Starts or resumes execution of the coroutine. If value is None, this is equivalent to advancing the iterator returned
by___await__ (). If valueis not None, this method delegates to the send () method of the iterator that caused
the coroutine to suspend. The result (return value, StopIteration, or other exception) is the same as when
iterating over the __await__ () return value, described above.

coroutine.throw (value)

coroutine.throw (type[, value[, traceback]])

Raises the specified exception in the coroutine. This method delegates to the t hrow () method of the iterator
that caused the coroutine to suspend, if it has such a method. Otherwise, the exception is raised at the suspension
point. The result (return value, StopIteration, or other exception) is the same as when iterating over the
__await___ () return value, described above. If the exception is not caught in the coroutine, it propagates back
to the caller.

coroutine.close ()

Causes the coroutine to clean itself up and exit. If the coroutine is suspended, this method first delegates to the
close () method of the iterator that caused the coroutine to suspend, if it has such a method. Then it raises
GeneratorExit at the suspension point, causing the coroutine to immediately clean itself up. Finally, the
coroutine is marked as having finished executing, even if it was never started.

Coroutine objects are automatically closed using the above process when they are about to be destroyed.

3.4. Coroutines 49

https://peps.python.org/pep-0492/

The Python Language Reference, Release 3.11.1

3.4.3 Asynchronous lterators

An asynchronous iterator can call asynchronous code inits __anext___ method.
Asynchronous iterators can be used in an async for statement.
object.__aiter__ (self)

Must return an asynchronous iterator object.

object.__anext__ (self)

Must return an awaitable resulting in a next value of the iterator. Should raise a StopAsyncIteration error
when the iteration is over.

An example of an asynchronous iterable object:

class Reader:
async def readline(self):

def _ aiter_ (self):
return self

async def _ _anext_ (self):
val = await self.readline()
if val == b'':

raise StopAsynclteration
return val

New in version 3.5.

Changed in version 3.7: Prior to Python 3.7,
chronous iterator.

aiter__ () could return an awaitable that would resolve to an asyn-

Starting with Python 3.7, _ aiter () must return an asynchronous iterator object. Returning anything else will
result ina TypeError error.

3.4.4 Asynchronous Context Managers

An asynchronous context manager is a context manager that is able to suspend execution in its __aenter__ and
__aexit__ methods.

Asynchronous context managers can be used in an async with statement.

object.__aenter__ (self)

Semantically similar to__enter__ (), the only difference being that it must return an awaitable.

object.__aexit__ (self, exc_type, exc_value, traceback)

Semantically similar to__exit__ (), the only difference being that it must return an awaitable.

An example of an asynchronous context manager class:

class AsyncContextManager:
async def __ _aenter_ (self):
await log('entering context')

async def _ _aexit__ (self, exc_type, exc, tb):
await log('exiting context')

New in version 3.5.

50 Chapter 3. Data model

CHAPTER
FOUR

EXECUTION MODEL

4.1 Structure of a program

A Python program is constructed from code blocks. A block is a piece of Python program text that is executed as a unit.
The following are blocks: a module, a function body, and a class definition. Each command typed interactively is a block.
A script file (a file given as standard input to the interpreter or specified as a command line argument to the interpreter)
is a code block. A script command (a command specified on the interpreter command line with the —c option) is a code
block. A module run as a top level script (as module __main__) from the command line using a —m argument is also a
code block. The string argument passed to the built-in functions eval () and exec () is a code block.

A code block is executed in an execution frame. A frame contains some administrative information (used for debugging)
and determines where and how execution continues after the code block’s execution has completed.

4.2 Naming and binding

4.2.1 Binding of names

Names refer to objects. Names are introduced by name binding operations.
The following constructs bind names:

* formal parameters to functions,

e class definitions,

¢ function definitions,

* assignment expressions,

* targets that are identifiers if occurring in an assignment:

— for loop header,

— after as in a with statement, except clause, except * clause, or in the as-pattern in structural pattern
matching,

— in a capture pattern in structural pattern matching
* import statements.

The import statement of the form from ... import * binds all names defined in the imported module, except
those beginning with an underscore. This form may only be used at the module level.

A target occurring in a de 1 statement is also considered bound for this purpose (though the actual semantics are to unbind
the name).

51

The Python Language Reference, Release 3.11.1

Each assignment or import statement occurs within a block defined by a class or function definition or at the module level
(the top-level code block).

If a name is bound in a block, it is a local variable of that block, unless declared as nonlocal or global. If a name
is bound at the module level, it is a global variable. (The variables of the module code block are local and global.) If a
variable is used in a code block but not defined there, it is a free variable.

Each occurrence of a name in the program text refers to the binding of that name established by the following name
resolution rules.

4.2.2 Resolution of names

A scope defines the visibility of a name within a block. If a local variable is defined in a block, its scope includes that
block. If the definition occurs in a function block, the scope extends to any blocks contained within the defining one,
unless a contained block introduces a different binding for the name.

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes visible
to a code block is called the block’s environment.

When a name is not found at all, a NameError exception is raised. If the current scope is a function scope, and
the name refers to a local variable that has not yet been bound to a value at the point where the name is used, an
UnboundLocalError exception is raised. UnboundLocalError is a subclass of NameError.

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as
references to the current block. This can lead to errors when a name is used within a block before it is bound. This rule is
subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code block. The local
variables of a code block can be determined by scanning the entire text of the block for name binding operations. See
the FAQ entry on UnboundLocalError for examples.

If the global statement occurs within a block, all uses of the names specified in the statement refer to the bindings
of those names in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtins namespace, the namespace of
the module builtins. The global namespace is searched first. If the names are not found there, the builtins namespace
is searched. The global statement must precede all uses of the listed names.

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing scope
for a free variable contains a global statement, the free variable is treated as a global.

The nonlocal statement causes corresponding names to refer to previously bound variables in the nearest enclosing
function scope. SyntaxError is raised at compile time if the given name does not exist in any enclosing function
scope.

The namespace for a module is automatically created the first time a module is imported. The main module for a script
is always called __main__.

Class definition blocks and arguments to exec () and eval () are special in the context of name resolution. A class
definition is an executable statement that may use and define names. These references follow the normal rules for name
resolution with an exception that unbound local variables are looked up in the global namespace. The namespace of the
class definition becomes the attribute dictionary of the class. The scope of names defined in a class block is limited to the
class block; it does not extend to the code blocks of methods — this includes comprehensions and generator expressions
since they are implemented using a function scope. This means that the following will fail:

class A:
a = 42
b = list(a + 1 for 1 in range(10))

52 Chapter 4. Execution model

The Python Language Reference, Release 3.11.1

4.2.3 Builtins and restricted execution

CPython implementation detail: Users shouldnottouch ___builtins__;itis strictly an implementation detail. Users
wanting to override values in the builtins namespace should import the builtins module and modify its attributes
appropriately.

The builtins namespace associated with the execution of a code block is actually found by looking up the name
__builtins__ inits global namespace; this should be a dictionary or a module (in the latter case the module’s dictio-
nary is used). By default, when in the __main__ module, __builtins___is the built-in module builtins; when
in any other module, __builtins___is an alias for the dictionary of the builtins module itself.

4.2.4 Interaction with dynamic features

Name resolution of free variables occurs at runtime, not at compile time. This means that the following code will print
42:

i =10

def f():
print (1)

i =42

£0)

The eval () and exec () functions do not have access to the full environment for resolving names. Names may be
resolved in the local and global namespaces of the caller. Free variables are not resolved in the nearest enclosing names-
pace, but in the global namespace.! The exec () and eval () functions have optional arguments to override the global
and local namespace. If only one namespace is specified, it is used for both.

4.3 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or other ex-
ceptional conditions. An exception is raised at the point where the error is detected; it may be handled by the surrounding
code block or by any code block that directly or indirectly invoked the code block where the error occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python program
can also explicitly raise an exception with the raise statement. Exception handlers are specified with the try ...
except statement. The finally clause of such a statement can be used to specify cleanup code which does not
handle the exception, but is executed whether an exception occurred or not in the preceding code.

Python uses the “termination” model of error handling: an exception handler can find out what happened and continue
execution at an outer level, but it cannot repair the cause of the error and retry the failing operation (except by re-entering
the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program, or returns to its interactive
main loop. In either case, it prints a stack traceback, except when the exception is SystemExit.

Exceptions are identified by class instances. The except clause is selected depending on the class of the instance: it
must reference the class of the instance or a non-virtual base class thereof. The instance can be received by the handler
and can carry additional information about the exceptional condition.

Note: Exception messages are not part of the Python API. Their contents may change from one version of Python to
the next without warning and should not be relied on by code which will run under multiple versions of the interpreter.

! This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

4.3. Exceptions 53

The Python Language Reference, Release 3.11.1

See also the description of the try statement in section The try statement and raise statement in section The raise
statement.

54 Chapter 4. Execution model

CHAPTER
FIVE

THE IMPORT SYSTEM

Python code in one module gains access to the code in another module by the process of importing it. The import
statement is the most common way of invoking the import machinery, but it is not the only way. Functions such as
importlib.import_module () and built-in __import__ () can also be used to invoke the import machinery.

The import statement combines two operations; it searches for the named module, then it binds the results of that search
to a name in the local scope. The search operation of the import statement is defined as a call to the __import__ ()
function, with the appropriate arguments. The return value of __import__ () is used to perform the name binding
operation of the import statement. See the import statement for the exact details of that name binding operation.

A directcallto __import__ () performs only the module search and, if found, the module creation operation. While
certain side-effects may occur, such as the importing of parent packages, and the updating of various caches (including
sys.modules), only the import statement performs a name binding operation.

When an import statement is executed, the standard builtin ___import__ () function is called. Other mechanisms
for invoking the import system (such as importlib.import_module ()) may choose to bypass ___import__ ()
and use their own solutions to implement import semantics.

When a module is first imported, Python searches for the module and if found, it creates a module object', initializing it.
If the named module cannot be found, a ModuleNotFoundError is raised. Python implements various strategies to
search for the named module when the import machinery is invoked. These strategies can be modified and extended by
using various hooks described in the sections below.

Changed in version 3.3: The import system has been updated to fully implement the second phase of PEP 302. There
is no longer any implicit import machinery - the full import system is exposed through sys .meta_path. In addition,
native namespace package support has been implemented (see PEP 420).

5.1 importlib

The importlib module provides a rich API for interacting with the import system. For example importlib.
import_module () provides a recommended, simpler API than built-in __import__ () for invoking the import
machinery. Refer to the import1ib library documentation for additional detail.

' See types.ModuleType.

55

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/

The Python Language Reference, Release 3.11.1

5.2 Packages

Python has only one type of module object, and all modules are of this type, regardless of whether the module is imple-
mented in Python, C, or something else. To help organize modules and provide a naming hierarchy, Python has a concept
of packages.

You can think of packages as the directories on a file system and modules as files within directories, but don’t take this
analogy too literally since packages and modules need not originate from the file system. For the purposes of this docu-
mentation, we’ll use this convenient analogy of directories and files. Like file system directories, packages are organized
hierarchically, and packages may themselves contain subpackages, as well as regular modules.

It’s important to keep in mind that all packages are modules, but not all modules are packages. Or put another way,
packages are just a special kind of module. Specifically, any module that contains a __path___ attribute is considered
a package.

All modules have a name. Subpackage names are separated from their parent package name by a dot, akin to Python’s
standard attribute access syntax. Thus you might have a package called email, which in turn has a subpackage called
email.mime and a module within that subpackage called email.mime.text.

5.2.1 Regular packages

Python defines two types of packages, regular packages and namespace packages. Regular packages are traditional pack-
ages as they existed in Python 3.2 and earlier. A regular package is typically implemented as a directory containing
an __init__ .py file. When a regular package is imported, this __init__ .py file is implicitly executed, and the
objects it defines are bound to names in the package’s namespace. The __init__ .py file can contain the same Python
code that any other module can contain, and Python will add some additional attributes to the module when it is imported.

For example, the following file system layout defines a top level parent package with three subpackages:

parent/

__init__ .py
one/

__init__ .py
two/

__init__ .py
three/

__init__ .py

Importing parent .one will implicitly execute parent/__init__ .py and parent/one/__init__ .py.
Subsequent imports of parent.two or parent.three will execute parent/two/__init__ .py and
parent/three/__init__.py respectively.

5.2.2 Namespace packages

A namespace package is a composite of various portions, where each portion contributes a subpackage to the parent
package. Portions may reside in different locations on the file system. Portions may also be found in zip files, on the
network, or anywhere else that Python searches during import. Namespace packages may or may not correspond directly
to objects on the file system; they may be virtual modules that have no concrete representation.

Namespace packages do not use an ordinary list for their __path___ attribute. They instead use a custom iterable type
which will automatically perform a new search for package portions on the next import attempt within that package if the
path of their parent package (or sys . path for a top level package) changes.

With namespace packages, there isnoparent/___init__ .py file. In fact, there may be multiple parent directories
found during import search, where each one is provided by a different portion. Thus parent /one may not be physically

56 Chapter 5. The import system

The Python Language Reference, Release 3.11.1

located next to parent /two. In this case, Python will create a namespace package for the top-level parent package
whenever it or one of its subpackages is imported.

See also PEP 420 for the namespace package specification.

5.3 Searching

To begin the search, Python needs the fully qualified name of the module (or package, but for the purposes of this
discussion, the difference is immaterial) being imported. This name may come from various arguments to the import
statement, or from the parameters to the importlib.import_module () or __import__ () functions.

This name will be used in various phases of the import search, and it may be the dotted path to a submodule, e.g. foo.
bar.baz. In this case, Python first tries to import foo, then foo.bar, and finally foo.bar.baz. If any of the
intermediate imports fail, a ModuleNotFoundError is raised.

5.3.1 The module cache

The first place checked during import search is sys.modules. This mapping serves as a cache of all modules that
have been previously imported, including the intermediate paths. So if foo.bar .baz was previously imported, sys .
modules will contain entries for foo, foo.bar,and foo.bar.baz. Each key will have as its value the correspond-
ing module object.

During import, the module name is looked up in sys.modules and if present, the associated value is the module
satisfying the import, and the process completes. However, if the value is None, then a ModuleNotFoundError is
raised. If the module name is missing, Python will continue searching for the module.

sys.modules is writable. Deleting a key may not destroy the associated module (as other modules may hold refer-
ences to it), but it will invalidate the cache entry for the named module, causing Python to search anew for the named
module upon its next import. The key can also be assigned to None, forcing the next import of the module to result in a
ModuleNotFoundError.

Beware though, as if you keep a reference to the module object, invalidate its cache entry in sys.modules, and then
re-import the named module, the two module objects will not be the same. By contrast, importlib.reload () will
reuse the same module object, and simply reinitialise the module contents by rerunning the module’s code.

5.3.2 Finders and loaders

If the named module is not found in sys.modules, then Python’s import protocol is invoked to find and load the
module. This protocol consists of two conceptual objects, finders and loaders. A finder’s job is to determine whether it
can find the named module using whatever strategy it knows about. Objects that implement both of these interfaces are
referred to as importers - they return themselves when they find that they can load the requested module.

Python includes a number of default finders and importers. The first one knows how to locate built-in modules, and the
second knows how to locate frozen modules. A third default finder searches an import path for modules. The import
path is a list of locations that may name file system paths or zip files. It can also be extended to search for any locatable
resource, such as those identified by URLs.

The import machinery is extensible, so new finders can be added to extend the range and scope of module searching.

Finders do not actually load modules. If they can find the named module, they return a module spec, an encapsulation of
the module’s import-related information, which the import machinery then uses when loading the module.

The following sections describe the protocol for finders and loaders in more detail, including how you can create and
register new ones to extend the import machinery.

5.3. Searching 57

https://peps.python.org/pep-0420/

The Python Language Reference, Release 3.11.1

Changed in version 3.4: In previous versions of Python, finders returned loaders directly, whereas now they return module
specs which contain loaders. Loaders are still used during import but have fewer responsibilities.

5.3.3 Import hooks

The import machinery is designed to be extensible; the primary mechanism for this are the import hooks. There are two
types of import hooks: meta hooks and import path hooks.

Meta hooks are called at the start of import processing, before any other import processing has occurred, other than
sys.modules cache look up. This allows meta hooks to override sys.path processing, frozen modules, or even
built-in modules. Meta hooks are registered by adding new finder objects to sys .meta_path, as described below.

Import path hooks are called as part of sys.path (or package.__path__) processing, at the point where their
associated path item is encountered. Import path hooks are registered by adding new callables to sys.path_hooks
as described below.

5.3.4 The meta path

When the named module is not found in sys.modules, Python next searches sys.meta_path, which contains a
list of meta path finder objects. These finders are queried in order to see if they know how to handle the named module.
Meta path finders must implement a method called find_spec () which takes three arguments: a name, an import
path, and (optionally) a target module. The meta path finder can use any strategy it wants to determine whether it can
handle the named module or not.

If the meta path finder knows how to handle the named module, it returns a spec object. If it cannot handle the named
module, it returns None. If sys.meta_path processing reaches the end of its list without returning a spec, then
a ModuleNotFoundError is raised. Any other exceptions raised are simply propagated up, aborting the import
process.

The find_spec () method of meta path finders is called with two or three arguments. The first is the fully qualified
name of the module being imported, for example foo.bar .baz. The second argument is the path entries to use for
the module search. For top-level modules, the second argument is None, but for submodules or subpackages, the second
argument is the value of the parent package’s __path___ attribute. If the appropriate __path___ attribute cannot be
accessed, a ModuleNotFoundError is raised. The third argument is an existing module object that will be the target
of loading later. The import system passes in a target module only during reload.

The meta path may be traversed multiple times for a single import request. For example, assuming none of the mod-
ules involved has already been cached, importing foo.bar .baz will first perform a top level import, calling mpf .
find_spec ("foo", None, None) on each meta path finder (mpf). After foo has been imported, foo.
bar will be imported by traversing the meta path a second time, calling mpf.find_spec ("foo.bar", foo.
__path__, None). Once foo.bar has been imported, the final traversal will call mpf.find_spec ("foo.
bar.baz", foo.bar._ _path_ , None).

Some meta path finders only support top level imports. These importers will always return None when anything other
than None is passed as the second argument.

Python’s default sys . meta_path has three meta path finders, one that knows how to import built-in modules, one that
knows how to import frozen modules, and one that knows how to import modules from an import path (i.e. the path based
finder).

Changed in version 3.4: The find_spec () method of meta path finders replaced £ind_module (), which is now
deprecated. While it will continue to work without change, the import machinery will try it only if the finder does not
implement £ind_spec ().

Changed in version 3.10: Use of £ind_module () by the import system now raises ImportWarning.

58 Chapter 5. The import system

The Python Language Reference, Release 3.11.1

5.4 Loading

If and when a module spec is found, the import machinery will use it (and the loader it contains) when loading the module.
Here is an approximation of what happens during the loading portion of import:

module = None
if spec.loader is not None and hasattr (spec.loader, 'create_module'):
It 1is assumed 'exec_module' will also be defined on the loader.

module = spec.loader.create_module (spec)
if module is None:
module = ModuleType (spec.name)

The import-related module attributes get set here:
_init_module_attrs (spec, module)

if spec.loader is None:
unsupported
raise ImportError

if spec.origin is None and spec.submodule_search_locations is not None:
namespace package

sys.modules[spec.name] = module
elif not hasattr (spec.loader, 'exec_module'):
module = spec.loader.load_module (spec.name)
Set __loader___ and __package__ 1f missing.
else:
sys.modules[spec.name] = module
try:

spec.loader.exec_module (module)
except BaseException:
try:
del sys.modules|[spec.name]
except KeyError:
pass
raise
return sys.modules[spec.name]

Note the following details:
* If there is an existing module object with the given name in sy s .modules, import will have already returned it.

¢ The module will exist in sys .modules before the loader executes the module code. This is crucial because the
module code may (directly or indirectly) import itself; adding it to sy s . modules beforehand prevents unbounded
recursion in the worst case and multiple loading in the best.

¢ If loading fails, the failing module — and only the failing module — gets removed from sys .modules. Any module
already in the sys .modules cache, and any module that was successfully loaded as a side-effect, must remain
in the cache. This contrasts with reloading where even the failing module is left in sys .modules.

 After the module is created but before execution, the import machinery sets the import-related module attributes
(“_init_module_attrs” in the pseudo-code example above), as summarized in a later section.

* Module execution is the key moment of loading in which the module’s namespace gets populated. Execution is
entirely delegated to the loader, which gets to decide what gets populated and how.

+ The module created during loading and passed to exec_module() may not be the one returned at the end of import”.

2 The importlib implementation avoids using the return value directly. Instead, it gets the module object by looking the module name up in sys .
modules. The indirect effect of this is that an imported module may replace itself in sys.modules. This is implementation-specific behavior that
is not guaranteed to work in other Python implementations.

5.4. Loading 59

The Python Language Reference, Release 3.11.1

Changed in version 3.4: The import system has taken over the boilerplate responsibilities of loaders. These were previously
performed by the importlib.abc.Loader.load_module () method.

5.4.1 Loaders

Module loaders provide the critical function of loading: module execution. The import machinery calls the importlib.
abc.Loader.exec_module () method with a single argument, the module object to execute. Any value returned
from exec_module () is ignored.

Loaders must satisfy the following requirements:

« If the module is a Python module (as opposed to a built-in module or a dynamically loaded extension), the loader
should execute the module’s code in the module’s global name space (module.__dict_).

* If the loader cannot execute the module, it should raise an ImportError, although any other exception raised
during exec_module () will be propagated.

In many cases, the finder and loader can be the same object; in such cases the find_spec () method would just return
a spec with the loader set to self.

Module loaders may opt in to creating the module object during loading by implementing a create_module ()
method. It takes one argument, the module spec, and returns the new module object to use during loading.
create_module () does not need to set any attributes on the module object. If the method returns None, the import
machinery will create the new module itself.

New in version 3.4: The create_module () method of loaders.

Changed in version 3.4: The 1oad_module () method was replaced by exec_module () and the import machinery
assumed all the boilerplate responsibilities of loading.

For compatibility with existing loaders, the import machinery will use the 1oad_module () method of loaders if it
exists and the loader does not also implement exec_module (). However, Load_module () has been deprecated
and loaders should implement exec_module () instead.

The 1oad_module () method must implement all the boilerplate loading functionality described above in addition to
executing the module. All the same constraints apply, with some additional clarification:

« If there is an existing module object with the given name in sys.modules, the loader must use that existing
module. (Otherwise, importlib.reload () will not work correctly.) If the named module does not exist in
sys.modules, the loader must create a new module object and add it to sys.modules.

* The module must exist in sys.modules before the loader executes the module code, to prevent unbounded
recursion or multiple loading.

¢ If loading fails, the loader must remove any modules it has inserted into sy s .modules, but it must remove only
the failing module(s), and only if the loader itself has loaded the module(s) explicitly.

Changed in version 3.5: A DeprecationWarning is raised when exec_module () is defined but
create_module () is not.

Changed in version 3.6: An ImportError is raised when exec_module () is defined but create_module () is
not.

Changed in version 3.10: Use of 1load_module () will raise ImportWarning.

60 Chapter 5. The import system

The Python Language Reference, Release 3.11.1

5.4.2 Submodules

When a submodule is loaded using any mechanism (e.g. import1lib APIs, the import or import—from statements,
or built-in__import__ ())abinding is placed in the parent module’s namespace to the submodule object. For example,
if package spam has a submodule foo, after importing spam. foo, spam will have an attribute £oo which is bound
to the submodule. Let’s say you have the following directory structure:

spam/
__init__ .py
foo.py

and spam/__init__ .py has the following line in it:

from .foo import Foo

then executing the following puts name bindings for foo and Foo in the spam module:

>>> import spam

>>> spam. foo

<module 'spam.foo' from '/tmp/imports/spam/foo.py'>
>>> spam.Foo

<class 'spam.foo.Foo'>

Given Python’s familiar name binding rules this might seem surprising, but it’s actually a fundamental feature of the import
system. The invariant holding is that if you have sys.modules['spam'] and sys.modules|['spam.foo"]
(as you would after the above import), the latter must appear as the foo attribute of the former.

5.4.3 Module spec

The import machinery uses a variety of information about each module during import, especially before loading. Most
of the information is common to all modules. The purpose of a module’s spec is to encapsulate this import-related
information on a per-module basis.

Using a spec during import allows state to be transferred between import system components, e.g. between the finder that
creates the module spec and the loader that executes it. Most importantly, it allows the import machinery to perform the
boilerplate operations of loading, whereas without a module spec the loader had that responsibility.

The module’s spec is exposed as the ___spec___ attribute on a module object. See ModuleSpec for details on the
contents of the module spec.

New in version 3.4.

5.4.4 Import-related module attributes

The import machinery fills in these attributes on each module object during loading, based on the module’s spec, before
the loader executes the module.

__name__
The __name___ attribute must be set to the fully qualified name of the module. This name is used to uniquely
identify the module in the import system.

__loader___

The __loader___ attribute must be set to the loader object that the import machinery used when loading the
module. This is mostly for introspection, but can be used for additional loader-specific functionality, for example
getting data associated with a loader.

5.4. Loading 61

The Python Language Reference, Release 3.11.1

package___
The module’s __package___ attribute must be set. Its value must be a string, but it can be the same value
as its __name__. When the module is a package, its __package___ value should be set to its ___name__.

When the module is not a package, __package___should be set to the empty string for top-level modules, or for
submodules, to the parent package’s name. See PEP 366 for further details.

This attribute is used instead of ___name___ to calculate explicit relative imports for main modules, as defined in
PEP 366. It is expected to have the same value as ___spec___.parent.

Changed in version 3.6: The value of ___package___is expected to be the same as __spec___.parent.
—_Spec__

The ___spec___ attribute must be set to the module spec that was used when importing the module. Setting
___spec___ appropriately applies equally to modules initialized during interpreter startup. The one exception is
__main__,where ___spec__is set to None in some cases.

When ___package___isnotdefined, _ _spec_ .parent is used as a fallback.

New in version 3.4.
Changed in version 3.6: ___spec___.parent is used as a fallback when __package___ is not defined.

path__
If the module is a package (either regular or namespace), the module object’s __path___ attribute must be set.
The value must be iterable, but may be empty if __path__ has no further significance. If _ _path__ is not
empty, it must produce strings when iterated over. More details on the semantics of __path___ are given below.

Non-package modules should not have a __path___ attribute.

__file__

__cached__

__file__ isoptional (if set, value must be a string). It indicates the pathname of the file from which the module
was loaded (if loaded from a file), or the pathname of the shared library file for extension modules loaded dynam-
ically from a shared library. It might be missing for certain types of modules, such as C modules that are statically
linked into the interpreter, and the import system may opt to leave it unset if it has no semantic meaning (e.g. a
module loaded from a database).

If _ _file_ issetthenthe __ cached__ attribute might also be set, which is the path to any compiled version
of the code (e.g. byte-compiled file). The file does not need to exist to set this attribute; the path can simply point
to where the compiled file would exist (see PEP 3147).

Note that ___cached__ may be set even if __file__ is not set. However, that scenario is quite atypical.
Ultimately, the loader is what makes use of the module spec provided by the finder (from which __file and
__cached__ arederived). So if a loader can load from a cached module but otherwise does not load from a file,
that atypical scenario may be appropriate.

5.4.5 module.__path__

By definition, if a module hasa __path___ attribute, it is a package.

A package’s __path___ attribute is used during imports of its subpackages. Within the import machinery, it func-
tions much the same as sys.path, i.e. providing a list of locations to search for modules during import. However,
__path___is typically much more constrained than sys.path.

__path__ mustbe an iterable of strings, but it may be empty. The same rules used for sy s . path also apply to a pack-
age’s __path__,and sys.path_hooks (described below) are consulted when traversing a package’s ___path__.

62 Chapter 5. The import system

https://peps.python.org/pep-0366/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-3147/

The Python Language Reference, Release 3.11.1

A package’s __init__ .py file may set or alter the package’s _ _path___ attribute, and this was typically the way
namespace packages were implemented prior to PEP 42(0. With the adoption of PEP 420, namespace packages no longer
need tosupply __init__ .py files containingonly __path__ manipulation code; the import machinery automatically
sets __path__ correctly for the namespace package.

5.4.6 Module reprs

By default, all modules have a usable repr, however depending on the attributes set above, and in the module’s spec, you
can more explicitly control the repr of module objects.

If the module has a spec (__spec__), the import machinery will try to generate a repr from it. If that fails or there is no
spec, the import system will craft a default repr using whatever information is available on the module. It will try to use
the module._ _name_ ,module.__file_ ,and module.__loader__ as input into the repr, with defaults
for whatever information is missing.

Here are the exact rules used:

 If the module has a ___spec___ attribute, the information in the spec is used to generate the repr. The “name”,

9«

“loader”, “origin”, and “has_location” attributes are consulted.

 If the module hasa ___file___attribute, this is used as part of the module’s repr.

e If the module hasno __file__ butdoes have a __ loader__ thatis not None, then the loader’s repr is used
as part of the module’s repr.

¢ Otherwise, just use the module’s __name___in the repr.

Changed in version 3.4: Use of loader.module_repr () has been deprecated and the module spec is now used by
the import machinery to generate a module repr.

For backward compatibility with Python 3.3, the module repr will be generated by calling the loader’s module_repr ()
method, if defined, before trying either approach described above. However, the method is deprecated.

Changed in version 3.10: Calling module_repr () now occurs after trying to use a module’s __spec___ attribute but
before falling back on __file_ . Use of module_repr () is slated to stop in Python 3.12.

5.4.7 Cached bytecode invalidation

Before Python loads cached bytecode from a . pyc file, it checks whether the cache is up-to-date with the source .py
file. By default, Python does this by storing the source’s last-modified timestamp and size in the cache file when writing
it. At runtime, the import system then validates the cache file by checking the stored metadata in the cache file against
the source’s metadata.

Python also supports “hash-based” cache files, which store a hash of the source file’s contents rather than its metadata.
There are two variants of hash-based . pyc files: checked and unchecked. For checked hash-based .pyc files, Python
validates the cache file by hashing the source file and comparing the resulting hash with the hash in the cache file. If a
checked hash-based cache file is found to be invalid, Python regenerates it and writes a new checked hash-based cache
file. For unchecked hash-based . pyc files, Python simply assumes the cache file is valid if it exists. Hash-based . pyc
files validation behavior may be overridden with the ——~check-hash-based-pycs flag.

Changed in version 3.7: Added hash-based . pyc files. Previously, Python only supported timestamp-based invalidation
of bytecode caches.

5.4. Loading 63

https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/

The Python Language Reference, Release 3.11.1

5.5 The Path Based Finder

As mentioned previously, Python comes with several default meta path finders. One of these, called the path based finder
(PathFinder), searches an import path, which contains a list of path entries. Each path entry names a location to search
for modules.

The path based finder itself doesn’t know how to import anything. Instead, it traverses the individual path entries, asso-
ciating each of them with a path entry finder that knows how to handle that particular kind of path.

The default set of path entry finders implement all the semantics for finding modules on the file system, handling special
file types such as Python source code (. py files), Python byte code (.pyc files) and shared libraries (e.g. . so files).
When supported by the zipimport module in the standard library, the default path entry finders also handle loading
all of these file types (other than shared libraries) from zipfiles.

Path entries need not be limited to file system locations. They can refer to URLs, database queries, or any other location
that can be specified as a string.

The path based finder provides additional hooks and protocols so that you can extend and customize the types of searchable
path entries. For example, if you wanted to support path entries as network URLSs, you could write a hook that implements
HTTP semantics to find modules on the web. This hook (a callable) would return a path entry finder supporting the
protocol described below, which was then used to get a loader for the module from the web.

A word of warning: this section and the previous both use the term finder, distinguishing between them by using the terms
meta path finder and path entry finder. These two types of finders are very similar, support similar protocols, and function
in similar ways during the import process, but it’s important to keep in mind that they are subtly different. In particular,
meta path finders operate at the beginning of the import process, as keyed off the sys .meta_path traversal.

By contrast, path entry finders are in a sense an implementation detail of the path based finder, and in fact, if the path
based finder were to be removed from sys .meta_path, none of the path entry finder semantics would be invoked.

5.5.1 Path entry finders

The path based finder is responsible for finding and loading Python modules and packages whose location is specified
with a string path entry. Most path entries name locations in the file system, but they need not be limited to this.

As a meta path finder, the path based finder implements the find_spec () protocol previously described, however it
exposes additional hooks that can be used to customize how modules are found and loaded from the import path.

Three variables are used by the path based finder, sys.path, sys.path_hooks and sys.
path_importer_cache. The __path__ attributes on package objects are also used. These provide additional
ways that the import machinery can be customized.

sys.path contains a list of strings providing search locations for modules and packages. It is initialized from the
PYTHONPATH environment variable and various other installation- and implementation-specific defaults. Entries in
sys.path can name directories on the file system, zip files, and potentially other “locations” (see the site module)
that should be searched for modules, such as URLSs, or database queries. Only strings should be present on sys.path;
all other data types are ignored.

The path based finder is a meta path finder, so the import machinery begins the import path search by calling the path
based finder’s find_spec () method as described previously. When the path argument to find_spec () is given,
it will be a list of string paths to traverse - typically a package’s __path___ attribute for an import within that package.
If the path argument is None, this indicates a top level import and sy s .path is used.

The path based finder iterates over every entry in the search path, and for each of these, looks for an appropriate path
entry finder (PathEntryFinder) for the path entry. Because this can be an expensive operation (e.g. there may be
stat () call overheads for this search), the path based finder maintains a cache mapping path entries to path entry finders.
This cache is maintained in sys .path_importer_cache (despite the name, this cache actually stores finder objects
rather than being limited to importer objects). In this way, the expensive search for a particular path entry location’s path

64 Chapter 5. The import system

The Python Language Reference, Release 3.11.1

entry finder need only be done once. User code is free to remove cache entries from sys.path_importer_cache
forcing the path based finder to perform the path entry search again’.

If the path entry is not present in the cache, the path based finder iterates over every callable in sys.path_hooks.
Each of the path entry hooks in this list is called with a single argument, the path entry to be searched. This callable may
either return a path entry finder that can handle the path entry, or it may raise ImportError. An ImportError is
used by the path based finder to signal that the hook cannot find a path entry finder for that path entry. The exception is
ignored and import path iteration continues. The hook should expect either a string or bytes object; the encoding of bytes
objects is up to the hook (e.g. it may be a file system encoding, UTF-8, or something else), and if the hook cannot decode
the argument, it should raise ImportError.

If sys.path_hooks iteration ends with no path entry finder being returned, then the path based finder’s
find_spec () method will store None in sys.path_importer_cache (to indicate that there is no finder for
this path entry) and return None, indicating that this meta path finder could not find the module.

If a path entry finder is returned by one of the path entry hook callables on sys.path_hooks, then the following
protocol is used to ask the finder for a module spec, which is then used when loading the module.

The current working directory — denoted by an empty string — is handled slightly differently from other en-
tries on sys.path. First, if the current working directory is found to not exist, no value is stored in sys.
path_importer_cache. Second, the value for the current working directory is looked up fresh for each module
lookup. Third, the path used for sys.path_importer_cache and returned by importlib.machinery.
PathFinder. find_spec () will be the actual current working directory and not the empty string.

5.5.2 Path entry finder protocol

In order to support imports of modules and initialized packages and also to contribute portions to namespace packages,
path entry finders must implement the find_spec () method.

find_spec () takes two arguments: the fully qualified name of the module being imported, and the (optional) target
module. £ind_spec () returns a fully populated spec for the module. This spec will always have “loader” set (with
one exception).

To indicate to the import machinery that the spec represents a namespace portion, the path entry finder sets “submod-
ule_search_locations” to a list containing the portion.

Changed in version 3.4: find_spec () replaced find_loader () and find_module (), both of which are now
deprecated, but will be used if £ind_spec () is not defined.

Older path entry finders may implement one of these two deprecated methods instead of £ind_spec (). The methods
are still respected for the sake of backward compatibility. However, if find_spec () is implemented on the path entry
finder, the legacy methods are ignored.

find_loader () takes one argument, the fully qualified name of the module being imported. find_loader ()
returns a 2-tuple where the first item is the loader and the second item is a namespace portion.

For backwards compatibility with other implementations of the import protocol, many path entry finders also sup-
port the same, traditional find_module () method that meta path finders support. However path entry finder
find_module () methods are never called with a path argument (they are expected to record the appropriate path
information from the initial call to the path hook).

The find_module () method on path entry finders is deprecated, as it does not allow the path entry finder to contribute
portions to namespace packages. If both find_loader () and find_module () exist on a path entry finder, the
import system will always call find_loader () in preference to find_module ().

Changed in version 3.10: Calls to find_module () and find_loader () by the import system will raise
ImportWarning.

3 In legacy code, it is possible to find instances of imp.NullImporter inthe sys.path_importer_cache. It is recommended that code
be changed to use None instead. See portingpythoncode for more details.

5.5. The Path Based Finder 65

The Python Language Reference, Release 3.11.1

5.6 Replacing the standard import system

The most reliable mechanism for replacing the entire import system is to delete the default contents of sy s .meta_path,
replacing them entirely with a custom meta path hook.

If it is acceptable to only alter the behaviour of import statements without affecting other APIs that access the import
system, then replacing the builtin __import__ () function may be sufficient. This technique may also be employed at
the module level to only alter the behaviour of import statements within that module.

To selectively prevent the import of some modules from a hook early on the meta path (rather than disabling the standard
import system entirely), it is sufficient to raise ModuleNotFoundError directly from find_spec () instead of
returning None. The latter indicates that the meta path search should continue, while raising an exception terminates it
immediately.

5.7 Package Relative Imports

Relative imports use leading dots. A single leading dot indicates a relative import, starting with the current package. Two
or more leading dots indicate a relative import to the parent(s) of the current package, one level per dot after the first. For
example, given the following package layout:

package/

__init__ .py

subpackagel/
__init__.py
moduleX.py
moduleY.py

subpackage?2/
__init__ .py
moduleZ.py

moduleA.py

Ineither subpackagel/moduleX.pyor subpackagel/__init__ .py, the following are valid relative imports:

from .moduleY import spam

from .moduleY import spam as ham

from . import moduleY

from ..subpackagel import moduleY

from ..subpackage2.moduleZ import eggs
from ..moduleA import foo

Absolute imports may use either the import <> or from <> import <> syntax, but relative imports may only
use the second form; the reason for this is that:

import XXX.YYY.ZZZ

should expose XXX .YYY.ZZZ as a usable expression, but .moduleY is not a valid expression.

66 Chapter 5. The import system

The Python Language Reference, Release 3.11.1

5.8 Special considerations for __main__

The __main__ module is a special case relative to Python’s import system. As noted elsewhere, the __main___ module
is directly initialized at interpreter startup, much like sys and builtins. However, unlike those two, it doesn’t strictly
qualify as a built-in module. This is because the manner in which __main___isinitialized depends on the flags and other
options with which the interpreter is invoked.

5.8.1 _ _main__. spec__

Depending on how __main__ isinitialized, _main__.__spec___ gets set appropriately or to None.

When Python is started with the —m option, __spec___is set to the module spec of the corresponding module or package.
__spec___is also populated when the __main__ module is loaded as part of executing a directory, zipfile or other
sys.path entry.

In the remaining cases __main__.___spec__ issetto None, as the code used to populate the __main___ does not
correspond directly with an importable module:

* interactive prompt

e —c option

* running from stdin

* running directly from a source or bytecode file

Notethat __main__._ spec__ isalways None in the last case, even if the file could technically be imported directly
as a module instead. Use the —m switch if valid module metadata is desired in __main__ .

Note also that even when __main___ corresponds with an importable module and __main__.__spec___ is set ac-
cordingly, they’re still considered distinct modules. This is due to the fact that blocks guarded by 1f _ name ==
"__main__": checks only execute when the module is used to populate the __main__ namespace, and not during
normal import.

5.9 References

The import machinery has evolved considerably since Python’s early days. The original specification for packages is still
available to read, although some details have changed since the writing of that document.

The original specification for sys.meta_path was PEP 302, with subsequent extension in PEP 420).

PEP 420 introduced namespace packages for Python 3.3. PEP 420 also introduced the find_loader () protocol as
an alternative to £ind_module ().

PEP 366 describes the addition of the __package___ attribute for explicit relative imports in main modules.

PEP 328 introduced absolute and explicit relative imports and initially proposed __name___ for semantics PEP 366
would eventually specify for __package__.

PEP 338 defines executing modules as scripts.

PEP 451 adds the encapsulation of per-module import state in spec objects. It also off-loads most of the boilerplate
responsibilities of loaders back onto the import machinery. These changes allow the deprecation of several APIs in the
import system and also addition of new methods to finders and loaders.

5.8. Special considerations for __main__ 67

https://www.python.org/doc/essays/packages/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0328/
https://peps.python.org/pep-0366/
https://peps.python.org/pep-0338/
https://peps.python.org/pep-0451/

The Python Language Reference, Release 3.11.1

68 Chapter 5. The import system

CHAPTER
SIX

EXPRESSIONS

This chapter explains the meaning of the elements of expressions in Python.

Syntax Notes: In this and the following chapters, extended BNF notation will be used to describe syntax, not lexical
analysis. When (one alternative of) a syntax rule has the form

name = othername

and no semantics are given, the semantics of this form of name are the same as for othername.

6.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a common
type”, this means that the operator implementation for built-in types works as follows:

« If either argument is a complex number, the other is converted to complex;
* otherwise, if either argument is a floating point number, the other is converted to floating point;
* otherwise, both must be integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string as a left argument to the ‘%’ operator). Extensions must
define their own conversion behavior.

6.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed in
parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for atoms is:

atom = identifier | literal | enclosure
enclosure = parenth_form | 1list_display | dict_display | set_display
| generator_expression | yield _atom

69

The Python Language Reference, Release 3.11.1

6.2.1 Identifiers (Names)

An identifier occurring as an atom is a name. See section Identifiers and keywords for lexical definition and section Naming
and binding for documentation of naming and binding.

When the name is bound to an object, evaluation of the atom yields that object. When a name is not bound, an attempt
to evaluate it raises a NameError exception.

Private name mangling: When an identifier that textually occurs in a class definition begins with two or more underscore
characters and does not end in two or more underscores, it is considered a private name of that class. Private names are
transformed to a longer form before code is generated for them. The transformation inserts the class name, with leading
underscores removed and a single underscore inserted, in front of the name. For example, the identifier ___spam occurring
in a class named Ham will be transformed to _Ham___spam. This transformation is independent of the syntactical context
in which the identifier is used. If the transformed name is extremely long (longer than 255 characters), implementation
defined truncation may happen. If the class name consists only of underscores, no transformation is done.

6.2.2 Literals

Python supports string and bytes literals and various numeric literals:

literal = stringliteral | bytesliteral
| integer | floatnumber | imagnumber

Evaluation of a literal yields an object of the given type (string, bytes, integer, floating point number, complex number)
with the given value. The value may be approximated in the case of floating point and imaginary (complex) literals. See
section Literals for details.

All literals correspond to immutable data types, and hence the object’s identity is less important than its value. Multiple
evaluations of literals with the same value (either the same occurrence in the program text or a different occurrence) may
obtain the same object or a different object with the same value.

6.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form := "(" [starred_expression] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma, it yields
a tuple; otherwise, it yields the single expression that makes up the expression list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the same rules as for literals apply
(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma. The exception is the empty tuple, for
which parentheses are required — allowing unparenthesized “nothing” in expressions would cause ambiguities and allow
common typos to pass uncaught.

70 Chapter 6. Expressions

The Python Language Reference, Release 3.11.1

6.2.4 Displays for lists, sets and dictionaries

For constructing a list, a set or a dictionary Python provides special syntax called “displays”, each of them in two flavors:
« either the container contents are listed explicitly, or
* they are computed via a set of looping and filtering instructions, called a comprehension.

Common syntax elements for comprehensions are:

comprehension = assignment_expression comp_for

comp_for = ["async"] "for" target_1list "in" or_test [comp_iter]
comp_iter = comp_for | comp_if

comp_if = "if" or_test [comp_iter]

The comprehension consists of a single expression followed by at least one for clause and zero or more for or if
clauses. In this case, the elements of the new container are those that would be produced by considering each of the
for or if clauses a block, nesting from left to right, and evaluating the expression to produce an element each time the
innermost block is reached.

However, aside from the iterable expression in the leftmost for clause, the comprehension is executed in a separate
implicitly nested scope. This ensures that names assigned to in the target list don’t “leak” into the enclosing scope.

The iterable expression in the leftmost for clause is evaluated directly in the enclosing scope and then passed as an
argument to the implicitly nested scope. Subsequent for clauses and any filter condition in the leftmost for clause
cannot be evaluated in the enclosing scope as they may depend on the values obtained from the leftmost iterable. For
example: [x*y for x in range(10) for y in range(x, x+10)].

To ensure the comprehension always results in a container of the appropriate type, yieldand yield from expressions
are prohibited in the implicitly nested scope.

Since Python 3.6, in an async def function, an async for clause may be used to iterate over a asynchronous
iterator. A comprehension in an async def function may consist of either a for or async for clause following
the leading expression, may contain additional for or async for clauses, and may also use await expressions. If
a comprehension contains either async for clauses or await expressions or other asynchronous comprehensions it
is called an asynchronous comprehension. An asynchronous comprehension may suspend the execution of the coroutine
function in which it appears. See also PEP 530.

New in version 3.6: Asynchronous comprehensions were introduced.
Changed in version 3.8: yield and yield from prohibited in the implicitly nested scope.

Changed in version 3.11: Asynchronous comprehensions are now allowed inside comprehensions in asynchronous func-
tions. Outer comprehensions implicitly become asynchronous.

6.2.5 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display = "[" [starred_list | comprehension] "]"

A list display yields a new list object, the contents being specified by either a list of expressions or a comprehension.
When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and placed into the
list object in that order. When a comprehension is supplied, the list is constructed from the elements resulting from the
comprehension.

6.2. Atoms 71

https://peps.python.org/pep-0530/

The Python Language Reference, Release 3.11.1

6.2.6 Set displays

A set display is denoted by curly braces and distinguishable from dictionary displays by the lack of colons separating keys
and values:

set_display := "{" (starred_list | comprehension) "}"

A set display yields a new mutable set object, the contents being specified by either a sequence of expressions or a
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to right and
added to the set object. When a comprehension is supplied, the set is constructed from the elements resulting from the
comprehension.

An empty set cannot be constructed with { }; this literal constructs an empty dictionary.

6.2.7 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display = "{" [key_datum_list | dict_comprehension] "}"
key_datum_list n= key_datum ("," key_datum)* [","]
key_datum = expression ":" expression | "**" or_expr

dict_comprehension expression ":" expression comp_for

A dictionary display yields a new dictionary object.

If a comma-separated sequence of key/datum pairs is given, they are evaluated from left to right to define the entries of
the dictionary: each key object is used as a key into the dictionary to store the corresponding datum. This means that you
can specify the same key multiple times in the key/datum list, and the final dictionary’s value for that key will be the last
one given.

A double asterisk ** denotes dictionary unpacking. Its operand must be a mapping. Each mapping item is added to the
new dictionary. Later values replace values already set by earlier key/datum pairs and earlier dictionary unpackings.

New in version 3.5: Unpacking into dictionary displays, originally proposed by PEP 448.

A dict comprehension, in contrast to list and set comprehensions, needs two expressions separated with a colon followed
by the usual “for” and “if” clauses. When the comprehension is run, the resulting key and value elements are inserted in
the new dictionary in the order they are produced.

Restrictions on the types of the key values are listed earlier in section The standard type hierarchy. (To summarize, the
key type should be hashable, which excludes all mutable objects.) Clashes between duplicate keys are not detected; the
last datum (textually rightmost in the display) stored for a given key value prevails.

Changed in version 3.8: Prior to Python 3.8, in dict comprehensions, the evaluation order of key and value was not well-
defined. In CPython, the value was evaluated before the key. Starting with 3.8, the key is evaluated before the value, as
proposed by PEP 572.

72 Chapter 6. Expressions

https://peps.python.org/pep-0448/
https://peps.python.org/pep-0572/

The Python Language Reference, Release 3.11.1

6.2.8 Generator expressions

A generator expression is a compact generator notation in parentheses:

generator_expression = "(" expression comp_for ")"

A generator expression yields a new generator object. Its syntax is the same as for comprehensions, except that it is
enclosed in parentheses instead of brackets or curly braces.

Variables used in the generator expression are evaluated lazily when the __next__ () method is called for the gen-
erator object (in the same fashion as normal generators). However, the iterable expression in the leftmost for clause
is immediately evaluated, so that an error produced by it will be emitted at the point where the generator expression is
defined, rather than at the point where the first value is retrieved. Subsequent for clauses and any filter condition in
the leftmost for clause cannot be evaluated in the enclosing scope as they may depend on the values obtained from the
leftmost iterable. For example: (x*y for x in range(10) for y in range(x, x+10)).

The parentheses can be omitted on calls with only one argument. See section Calls for details.

To avoid interfering with the expected operation of the generator expressionitself, yieldand yield fromexpressions
are prohibited in the implicitly defined generator.

If a generator expression contains either async for clauses or awa i t expressions it is called an asynchronous generator
expression. An asynchronous generator expression returns a new asynchronous generator object, which is an asynchronous
iterator (see Asynchronous Iterators).

New in version 3.6: Asynchronous generator expressions were introduced.

Changed in version 3.7: Prior to Python 3.7, asynchronous generator expressions could only appear in async def
coroutines. Starting with 3.7, any function can use asynchronous generator expressions.

Changed in version 3.8: yield and yield from prohibited in the implicitly nested scope.

6.2.9 Yield expressions

yield_atom = "(" yield expression ")"
yield_expression = "yield" [expression_list | "from" expression]

The yield expression is used when defining a generator function or an asynchronous generator function and thus can only
be used in the body of a function definition. Using a yield expression in a function’s body causes that function to be a
generator function, and using it in an async de £ function’s body causes that coroutine function to be an asynchronous
generator function. For example:

def gen(): # defines a generator function
yield 123

async def agen(): # defines an asynchronous generator function
yield 123

Due to their side effects on the containing scope, yield expressions are not permitted as part of the implicitly defined
scopes used to implement comprehensions and generator expressions.

Changed in version 3.8: Yield expressions prohibited in the implicitly nested scopes used to implement comprehensions
and generator expressions.

Generator functions are described below, while asynchronous generator functions are described separately in section
Asynchronous generator functions.

6.2. Atoms 73

The Python Language Reference, Release 3.11.1

When a generator function is called, it returns an iterator known as a generator. That generator then controls the execution
of the generator function. The execution starts when one of the generator’s methods is called. At that time, the execution
proceeds to the first yield expression, where it is suspended again, returning the value of expression_list to the
generator’s caller, or None if expression_1ist is omitted. By suspended, we mean that all local state is retained,
including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state of any
exception handling. When the execution is resumed by calling one of the generator’s methods, the function can proceed
exactly as if the yield expression were just another external call. The value of the yield expression after resuming depends
on the method which resumed the execution. If __next__ () isused (typically via either a for or the next () builtin)
then the result is None. Otherwise, if send () is used, then the result will be the value passed in to that method.

All of this makes generator functions quite similar to coroutines; they yield multiple times, they have more than one entry
point and their execution can be suspended. The only difference is that a generator function cannot control where the
execution should continue after it yields; the control is always transferred to the generator’s caller.

Yield expressions are allowed anywhere in a t ry construct. If the generator is not resumed before it is finalized (by
reaching a zero reference count or by being garbage collected), the generator-iterator’s c1ose () method will be called,
allowing any pending £inally clauses to execute.

When yield from <expr> is used, the supplied expression must be an iterable. The values produced by iterating
that iterable are passed directly to the caller of the current generator’s methods. Any values passed in with send () and
any exceptions passed in with throw () are passed to the underlying iterator if it has the appropriate methods. If this is
not the case, then send () will raise AttributeError or TypeError, while throw () will just raise the passed
in exception immediately.

When the underlying iterator is complete, the value attribute of the raised StopIteration instance becomes the
value of the yield expression. It can be either set explicitly when raising StopIteration, or automatically when the
subiterator is a generator (by returning a value from the subgenerator).

Changed in version 3.3: Added yield from <expr> to delegate control flow to a subiterator.

The parentheses may be omitted when the yield expression is the sole expression on the right hand side of an assignment
statement.

See also:
PEP 255 - Simple Generators The proposal for adding generators and the yie1d statement to Python.

PEP 342 - Coroutines via Enhanced Generators The proposal to enhance the API and syntax of generators, making
them usable as simple coroutines.

PEP 380 - Syntax for Delegating to a Subgenerator The proposal to introduce the yield_ from syntax, making
delegation to subgenerators easy.

PEP 525 - Asynchronous Generators The proposal that expanded on PEP 492 by adding generator capabilities to
coroutine functions.

Generator-iterator methods

This subsection describes the methods of a generator iterator. They can be used to control the execution of a generator
function.

Note that calling any of the generator methods below when the generator is already executing raises a ValueError
exception.

generator.__next__ ()

Starts the execution of a generator function or resumes it at the last executed yield expression. When a generator
function is resumed with a ___next___ () method, the current yield expression always evaluates to None. The
execution then continues to the next yield expression, where the generator is suspended again, and the value of the

74 Chapter 6. Expressions

https://peps.python.org/pep-0255/
https://peps.python.org/pep-0342/
https://peps.python.org/pep-0380/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Language Reference, Release 3.11.1

expression_listisreturnedto __ next__ ()’scaller. If the generator exits without yielding another value,
a StopIteration exception is raised.

This method is normally called implicitly, e.g. by a for loop, or by the built-in next () function.

generator.send (value)

Resumes the execution and “sends” a value into the generator function. The value argument becomes the result
of the current yield expression. The send () method returns the next value yielded by the generator, or raises
StopIteration if the generator exits without yielding another value. When send () is called to start the
generator, it must be called with None as the argument, because there is no yield expression that could receive the
value.

generator.throw (value)

generator.throw (type[, value[, traceback]])

Raises an exception at the point where the generator was paused, and returns the next value yielded by the gener-
ator function. If the generator exits without yielding another value, a StopIteration exception is raised. If
the generator function does not catch the passed-in exception, or raises a different exception, then that exception
propagates to the caller.

In typical use, this is called with a single exception instance similar to the way the raise keyword is used.

For backwards compatibility, however, the second signature is supported, following a convention from older ver-
sions of Python. The fype argument should be an exception class, and value should be an exception instance. If
the value is not provided, the fype constructor is called to get an instance. If fraceback is provided, it is set on the
exception, otherwise any existing __traceback___ attribute stored in value may be cleared.

generator.close()

Raises a GeneratorExit at the point where the generator function was paused. If the generator function then
exits gracefully, is already closed, or raises GeneratorExit (by not catching the exception), close returns to its
caller. If the generator yields a value, a RuntimeError is raised. If the generator raises any other exception,
it is propagated to the caller. close () does nothing if the generator has already exited due to an exception or
normal exit.

Examples

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo (value=None) :

print ("Execution starts when 'next()' is called for the first time.")
try:
while True:
try:
value = (yield value)
except Exception as e:
value = e
finally:
print ("Don't forget to clean up when 'close()' is called.")
>>> generator = echo (1)

>>> print (next (generator))

Execution starts when 'next()' is called for the first time.
1

>>> print (next (generator))

None

>>> print (generator.send(2))

2

(continues on next page)

6.2. Atoms 75

The Python Language Reference, Release 3.11.1

(continued from previous page)

>>> generator.throw (TypeError, "spam")

TypeError ('spam',)

>>> generator.close()

Don't forget to clean up when 'close()' is called.

For examples using yield from, see pep-380 in “What’s New in Python.”

Asynchronous generator functions

The presence of a yield expression in a function or method defined using async def further defines the function as an
asynchronous generator function.

When an asynchronous generator function is called, it returns an asynchronous iterator known as an asynchronous gen-
erator object. That object then controls the execution of the generator function. An asynchronous generator object is
typically used in an async for statement in a coroutine function analogously to how a generator object would be used
ina for statement.

Calling one of the asynchronous generator’s methods returns an awaitable object, and the execution starts when this object
is awaited on. At that time, the execution proceeds to the first yield expression, where it is suspended again, returning the
value of expression_11ist to the awaiting coroutine. As with a generator, suspension means that all local state is
retained, including the current bindings of local variables, the instruction pointer, the internal evaluation stack, and the state
of any exception handling. When the execution is resumed by awaiting on the next object returned by the asynchronous
generator’s methods, the function can proceed exactly as if the yield expression were just another external call. The value
of the yield expression after resuming depends on the method which resumed the execution. If __anext__ () is used
then the result is None. Otherwise, if asend () is used, then the result will be the value passed in to that method.

If an asynchronous generator happens to exit early by break, the caller task being cancelled, or other exceptions, the
generator’s async cleanup code will run and possibly raise exceptions or access context variables in an unexpected context—
perhaps after the lifetime of tasks it depends, or during the event loop shutdown when the async-generator garbage col-
lection hook is called. To prevent this, the caller must explicitly close the async generator by calling aclose () method
to finalize the generator and ultimately detach it from the event loop.

In an asynchronous generator function, yield expressions are allowed anywhere in a try construct. However, if an
asynchronous generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage
collected), then a yield expression within a t ry construct could result in a failure to execute pending £ inal 1y clauses. In
this case, it is the responsibility of the event loop or scheduler running the asynchronous generator to call the asynchronous
generator-iterator’s aclose () method and run the resulting coroutine object, thus allowing any pending finally
clauses to execute.

To take care of finalization upon event loop termination, an event loop should define a finalizer function which takes
an asynchronous generator-iterator and presumably calls acZose () and executes the coroutine. This finalizer may be
registered by calling sys.set_asyncgen_hooks (). When first iterated over, an asynchronous generator-iterator
will store the registered finalizer to be called upon finalization. For a reference example of a finalizer method see the
implementation of asyncio.Loop.shutdown_asyncgens in Lib/asyncio/base_events.py.

The expression yield from <expr> isa syntax error when used in an asynchronous generator function.

76 Chapter 6. Expressions

https://github.com/python/cpython/tree/3.11/Lib/asyncio/base_events.py

The Python Language Reference, Release 3.11.1

Asynchronous generator-iterator methods

This subsection describes the methods of an asynchronous generator iterator, which are used to control the execution of
a generator function.

coroutine agen.__anext__ ()

Returns an awaitable which when run starts to execute the asynchronous generator or resumes it at the last exe-
cuted yield expression. When an asynchronous generator function is resumed with an __anext__ () method,
the current yield expression always evaluates to None in the returned awaitable, which when run will continue
to the next yield expression. The value of the expression_1list of the yield expression is the value of the
StopIteration exception raised by the completing coroutine. If the asynchronous generator exits without
yielding another value, the awaitable instead raises a StopAsyncIteration exception, signalling that the
asynchronous iteration has completed.

This method is normally called implicitly by a async for loop.

coroutine agen.asend (value)

Returns an awaitable which when run resumes the execution of the asynchronous generator. As with the send ()
method for a generator, this “sends” a value into the asynchronous generator function, and the value argu-
ment becomes the result of the current yield expression. The awaitable returned by the asend () method
will return the next value yielded by the generator as the value of the raised StopIteration, or raises
StopAsyncIteration if the asynchronous generator exits without yielding another value. When asend ()
is called to start the asynchronous generator, it must be called with None as the argument, because there is no yield
expression that could receive the value.

coroutine agen.athrow (type[, value[, traceback]])

Returns an awaitable that raises an exception of type type at the point where the asynchronous generator was
paused, and returns the next value yielded by the generator function as the value of the raised StopIteration
exception. If the asynchronous generator exits without yielding another value, a StopAsyncIteration ex-
ception is raised by the awaitable. If the generator function does not catch the passed-in exception, or raises a
different exception, then when the awaitable is run that exception propagates to the caller of the awaitable.

coroutine agen.aclose ()

Returns an awaitable that when run will throw a GeneratorExit into the asynchronous generator func-
tion at the point where it was paused. If the asynchronous generator function then exits gracefully, is already
closed, or raises GeneratorExit (by not catching the exception), then the returned awaitable will raise a
StopIteration exception. Any further awaitables returned by subsequent calls to the asynchronous generator
will raise a St opAsyncIteration exception. If the asynchronous generator yields a value, a Runt imeError
is raised by the awaitable. If the asynchronous generator raises any other exception, it is propagated to the caller
of the awaitable. If the asynchronous generator has already exited due to an exception or normal exit, then further
calls to aclose () will return an awaitable that does nothing.

6.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary = atom | attributeref | subscription | slicing | call

6.3. Primaries 77

The Python Language Reference, Release 3.11.1

6.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref = primary "." identifier

The primary must evaluate to an object of a type that supports attribute references, which most objects do. This object
is then asked to produce the attribute whose name is the identifier. This production can be customized by overriding the
__getattr__ () method. If this attribute is not available, the exception AttributeError is raised. Otherwise,
the type and value of the object produced is determined by the object. Multiple evaluations of the same attribute reference
may yield different objects.

6.3.2 Subscriptions

The subscription of an instance of a container class will generally select an element from the container. The subscription
of a generic class will generally return a GenericAlias object.

subscription = primary "[" expression_list "]"

When an object is subscripted, the interpreter will evaluate the primary and the expression list.

The primary must evaluate to an object that supports subscription. An object may support subscription through defining
one or bothof _ _getitem () and __class_getitem__ (). When the primary is subscripted, the evaluated
result of the expression list will be passed to one of these methods. For more details on when ___class_getitem_
is called instead of __getitem__, see __ class_getitem__ versus __getitem__.

If the expression list contains at least one comma, it will evaluate to a tuple containing the items of the expression list.
Otherwise, the expression list will evaluate to the value of the list’s sole member.

For built-in objects, there are two types of objects that support subscription via___getitem _ ():

1. Mappings. If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys
of the mapping, and the subscription selects the value in the mapping that corresponds to that key. An example of
a builtin mapping class is the dict class.

2. Sequences. If the primary is a sequence, the expression list must evaluate to an int or a s1ice (as discussed in
the following section). Examples of builtin sequence classes include the str, 1ist and tuple classes.

The formal syntax makes no special provision for negative indices in sequences. However, built-in sequences all provide
a__getitem__ () method that interprets negative indices by adding the length of the sequence to the index so that,
for example, x [-1] selects the last item of x. The resulting value must be a nonnegative integer less than the number
of items in the sequence, and the subscription selects the item whose index is that value (counting from zero). Since
the support for negative indices and slicing occurs in the object’s __getitem__ () method, subclasses overriding this
method will need to explicitly add that support.

A stringis a special kind of sequence whose items are characters. A character is not a separate data type but a string
of exactly one character.

78 Chapter 6. Expressions

The Python Language Reference, Release 3.11.1

6.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as expressions or
as targets in assignment or de 1 statements. The syntax for a slicing:

slicing = primary "[" slice_list "]"

slice_list n= slice_item ("," slice_item)* [","]

slice_item = expression | proper_slice

proper_slice = [lower_bound] ":" [upper_bound] [":" [stride]]
lower_bound = expression

upper_bound = expression

stride = expression

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice list, so any
subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is disambiguated by defining
that in this case the interpretation as a subscription takes priority over the interpretation as a slicing (this is the case if the
slice list contains no proper slice).

The semantics for a slicing are as follows. The primary is indexed (using the same __getitem__ () method as normal
subscription) with a key that is constructed from the slice list, as follows. If the slice list contains at least one comma, the
key is a tuple containing the conversion of the slice items; otherwise, the conversion of the lone slice item is the key. The
conversion of a slice item that is an expression is that expression. The conversion of a proper slice is a slice object (see
section The standard type hierarchy) whose start, stop and step attributes are the values of the expressions given
as lower bound, upper bound and stride, respectively, substituting None for missing expressions.

6.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call u= primary " (" [argument_list [","] | comprehension] ")"

argument_list = positional_arguments ["," starred_and _keywords]
["," keywords_arguments]
| starred_and_keywords ["," keywords_arguments]
| keywords_arguments

positional_arguments = positional_item ("," positional_item)*
positional_item u= assignment_expression | "*" expression
starred_and_keywords = ("*" expression | keyword_item)

("," "*" expression | "," keyword_item)*
keywords_arguments = (keyword_item | "**" expression)

("," keyword_item | "," "**" expression)*
keyword_item = identifier "=" expression

An optional trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in objects,
class objects, methods of class instances, and all objects having a __call__ () method are callable). All argument
expressions are evaluated before the call is attempted. Please refer to section Function definitions for the syntax of formal
parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of unfilled
slots is created for the formal parameters. If there are N positional arguments, they are placed in the first N slots. Next,
for each keyword argument, the identifier is used to determine the corresponding slot (if the identifier is the same as the

6.3. Primaries 79

The Python Language Reference, Release 3.11.1

first formal parameter name, the first slot is used, and so on). If the slot is already filled, a TypeError exception is
raised. Otherwise, the argument is placed in the slot, filling it (even if the expression is None, it fills the slot). When
all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value from the
function definition. (Default values are calculated, once, when the function is defined; thus, a mutable object such as a list
or dictionary used as default value will be shared by all calls that don’t specify an argument value for the corresponding
slot; this should usually be avoided.) If there are any unfilled slots for which no default value is specified, a TypeError
exception is raised. Otherwise, the list of filled slots is used as the argument list for the call.

CPython implementation detail: An implementation may provide built-in functions whose positional parameters do
not have names, even if they are ‘named’ for the purpose of documentation, and which therefore cannot be supplied by
keyword. In CPython, this is the case for functions implemented in C that use PyArg_ParseTuple () to parse their
arguments.

If there are more positional arguments than there are formal parameter slots, a TypeError exception is raised, unless
a formal parameter using the syntax *identifier is present; in this case, that formal parameter receives a tuple
containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, a TypeError exception is raised, unless a
formal parameter using the syntax **identifier is present; in this case, that formal parameter receives a dictionary
containing the excess keyword arguments (using the keywords as keys and the argument values as corresponding values),
or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax *expression appears in the function call, expression must evaluate to an iferable. Elements from
these iterables are treated as if they were additional positional arguments. For the call £ (x1, x2, *y, x3, x4),
if y evaluates to a sequence yl, ..., yM, this is equivalent to a call with M+4 positional arguments x/, x2, y1, ..., yM, x3,
x4.

A consequence of this is that although the *expression syntax may appear after explicit keyword arguments, it is
processed before the keyword arguments (and any * *expression arguments — see below). So:

>>> def f(a, b):
print (a, b)

>>> f(b=1, *(2,))
2 1
>>> f(a=1, *(2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: f£() got multiple values for keyword argument 'a'
>>> £(1, *(2,))
12

It is unusual for both keyword arguments and the *expression syntax to be used in the same call, so in practice this
confusion does not often arise.

If the syntax **expression appears in the function call, expression must evaluate to a mapping, the contents of
which are treated as additional keyword arguments. If a parameter matching a key has already been given a value (by an
explicit keyword argument, or from another unpacking), a TypeError exception is raised.

When **expression is used, each key in this mapping must be a string. Each value from the mapping is assigned to
the first formal parameter eligible for keyword assignment whose name is equal to the key. A key need not be a Python
identifier (e.g. "max-temp °F" is acceptable, although it will not match any formal parameter that could be declared).
If there is no match to a formal parameter the key-value pair is collected by the * * parameter, if there is one, or if there
is not, a TypeError exception is raised.

Formal parameters using the syntax *identifier or **identifier cannot be used as positional argument slots
or as keyword argument names.

Changed in version 3.5: Function calls accept any number of * and ** unpackings, positional arguments may follow
iterable unpackings (*), and keyword arguments may follow dictionary unpackings (* *). Originally proposed by PEP

80 Chapter 6. Expressions

https://peps.python.org/pep-0448/
https://peps.python.org/pep-0448/

The Python Language Reference, Release 3.11.1

448.

A call always returns some value, possibly None, unless it raises an exception. How this value is computed depends on
the type of the callable object.

If it is—

a user-defined function: The code block for the function is executed, passing it the argument list. The first thing the
code block will do is bind the formal parameters to the arguments; this is described in section Function definitions.
When the code block executes a return statement, this specifies the return value of the function call.

a built-in function or method: The result is up to the interpreter; see built-in-funcs for the descriptions of built-in
functions and methods.

a class object: A new instance of that class is returned.

a class instance method: The corresponding user-defined function is called, with an argument list that is one longer than
the argument list of the call: the instance becomes the first argument.

a class instance: The classmustdefinea ___call () method; the effect is then the same as if that method was called.

6.4 Await expression

Suspend the execution of coroutine on an awaitable object. Can only be used inside a coroutine function.

await_expr = "await" primary

New in version 3.5.

6.5 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators on its
right. The syntax is:

power = (await_expr | primary) ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left (this
does not constrain the evaluation order for the operands): —1 * * 2 results in —1.

The power operator has the same semantics as the built-in pow () function, when called with two arguments: it yields
its left argument raised to the power of its right argument. The numeric arguments are first converted to a common type,
and the result is of that type.

For int operands, the result has the same type as the operands unless the second argument is negative; in that case, all
arguments are converted to float and a float result is delivered. For example, 10**2 returns 100, but 10** -2 returns
0.01.

Raising 0. O to a negative power results in a ZeroDivisionError. Raising a negative number to a fractional power
results in a complex number. (In earlier versions it raised a ValueError.)

This operation can be customized using the special __pow___ () method.

6.5. The power operator 81

https://peps.python.org/pep-0448/
https://peps.python.org/pep-0448/

The Python Language Reference, Release 3.11.1

6.6 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:

u_expr = power | "-" u_expr | "+" u_expr | "~" u_expr
The unary — (minus) operator yields the negation of its numeric argument; the operation can be overridden with the
__neg__ () special method.

The unary + (plus) operator yields its numeric argument unchanged; the operation can be overridden with the
__pos___ () special method.

The unary ~ (invert) operator yields the bitwise inversion of its integer argument. The bitwise inversion of x is defined
as — (x+1). It only applies to integral numbers or to custom objects that override the __invert__ () special method.

In all three cases, if the argument does not have the proper type, a TypeError exception is raised.

6.7 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also apply to
certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative operators and
one for additive operators:

m_expr = u_expr | m_expr "*" u_expr | m_expr "Q@" m _expr |
m _expr "//" u_expr | m_expr "/" u_expr |
m_expr "$" u_expr

a_expr = m_expr | a_expr "+" m_expr | a_expr "-" m_expr

The * (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer and the other must be a sequence. In the former case, the numbers are converted to
a common type and then multiplied together. In the latter case, sequence repetition is performed; a negative repetition
factor yields an empty sequence.

This operation can be customized using the special __mul__ () and __rmul__ () methods.
The @ (at) operator is intended to be used for matrix multiplication. No builtin Python types implement this operator.
New in version 3.5.

The / (division) and // (floor division) operators yield the quotient of their arguments. The numeric arguments are first
converted to a common type. Division of integers yields a float, while floor division of integers results in an integer;
the result is that of mathematical division with the ‘floor’ function applied to the result. Division by zero raises the
ZeroDivisionError exception.

This operation can be customized using the special __truediv__ () and __floordiv__ () methods.

The % (modulo) operator yields the remainder from the division of the first argument by the second. The numeric argu-
ments are first converted to a common type. A zero right argument raises the ZeroDivisionError exception. The
arguments may be floating point numbers, e.g., 3.14%0.7 equals 0.34 (since 3.14 equals 4*0.7 + 0.34.) The
modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value of the result
is strictly smaller than the absolute value of the second operand'.

I While abs (x%y) < abs (y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and assuming
a platform on which a Python float is an IEEE 754 double-precision number, in order that ~-1e-100 % 1e100 have the same sign as 1e100, the
computed result is ~-1e-100 + 1e100, which is numerically exactly equal to 1e100. The function math.fmod () returns a result whose sign

82 Chapter 6. Expressions

The Python Language Reference, Release 3.11.1

The floor division and modulo operators are connected by the following identity: x == (x//y)*y + (x%y).
Floor division and modulo are also connected with the built-in function divmod () : divmod (x, y) == (x//y,
x%y) 2.

In addition to performing the modulo operation on numbers, the % operator is also overloaded by string objects to perform
old-style string formatting (also known as interpolation). The syntax for string formatting is described in the Python
Library Reference, section old-string-formatting.

The modulo operation can be customized using the special __mod___ () method.

The floor division operator, the modulo operator, and the divmod () function are not defined for complex numbers.
Instead, convert to a floating point number using the abs () function if appropriate.

The + (addition) operator yields the sum of its arguments. The arguments must either both be numbers or both be
sequences of the same type. In the former case, the numbers are converted to a common type and then added together.
In the latter case, the sequences are concatenated.

This operation can be customized using the special __add__ () and __radd__ () methods.

The - (subtraction) operator yields the difference of its arguments. The numeric arguments are first converted to a
common type.

This operation can be customized using the special __sub___ () method.

6.8 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr = a_expr | shift_expr ("<<" | ">>") a_expr

These operators accept integers as arguments. They shift the first argument to the left or right by the number of bits given
by the second argument.

This operation can be customized using the special __1shift__ () and __rshift__ () methods.

A right shift by n bits is defined as floor division by pow (2, n). A left shift by » bits is defined as multiplication with
pow (2,n).

6.9 Binary bitwise operations

Each of the three bitwise operations has a different priority level:

and_expr = shift_expr | and_expr "&" shift_expr

nmAmn

XOYr_expr

and_expr | xor_expr and_expr

or_expr xor_expr | or_expr "|" xor_expr

The & operator yields the bitwise AND of its arguments, which must be integers or one of them must be a custom object
overriding __and__ () or __rand___ () special methods.

The ~ operator yields the bitwise XOR (exclusive OR) of its arguments, which must be integers or one of them must be

matches the sign of the first argument instead, and so returns —1e-100 in this case. Which approach is more appropriate depends on the application.
2 If x is very close to an exact integer multiple of y, it’s possible for x//y to be one larger than (x-x%y) //y due to rounding. In such cases,
Python returns the latter result, in order to preserve that divmod (x,y) [0] * y + x % y be very close to x.

6.9. Binary bitwise operations 83

The Python Language Reference, Release 3.11.1

a custom object overriding __xor__ () or __rxor__ () special methods.

The | operator yields the bitwise (inclusive) OR of its arguments, which must be integers or one of them must be a custom
object overriding __or__ () or __ror__ () special methods.

6.10 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic, shift-
ing or bitwise operation. Also unlike C, expressions like a < b < c have the interpretation that is conventional in
mathematics:

comparison n= or_expr (comp_operator or_expr)*
comp Operator - nen ‘ nsn I n__mn | ns—n ‘ ne—m | nyp_n
I "isll ["not"] ‘ ["not"] "in"

Comparisons yield boolean values: True or False. Custom rich comparison methods may return non-boolean values.
In this case Python will call bool () on such value in boolean contexts.

Comparisons can be chained arbitrarily, e.g., x < y <= zisequivalentto x < y and y <= z, except that y is
evaluated only once (but in both cases z is not evaluated at all when x < vy is found to be false).

Formally, if a, b, c, ..., y, z are expressions and opl, op2, ..., opN are comparison operators, then a opl b op2
c ... y opN zisequivalenttoa opl b and b op2 ¢ and ... y opN z,exceptthat each expression is
evaluated at most once.

Note that a opl b op2 c doesn’t imply any kind of comparison between a and c, so that, e.g., x < y > zis
perfectly legal (though perhaps not pretty).

6.10.1 Value comparisons

The operators <, >, ==, >=, <=, and ! = compare the values of two objects. The objects do not need to have the same
type.

Chapter Objects, values and types states that objects have a value (in addition to type and identity). The value of an object
is a rather abstract notion in Python: For example, there is no canonical access method for an object’s value. Also, there
is no requirement that the value of an object should be constructed in a particular way, e.g. comprised of all its data
attributes. Comparison operators implement a particular notion of what the value of an object is. One can think of them
as defining the value of an object indirectly, by means of their comparison implementation.

Because all types are (direct or indirect) subtypes of ob ject, they inherit the default comparison behavior from object.
Types can customize their comparison behavior by implementing rich comparison methods like __1t__ (), described
in Basic customization.

The default behavior for equality comparison (== and ! =) is based on the identity of the objects. Hence, equality compar-
ison of instances with the same identity results in equality, and equality comparison of instances with different identities
results in inequality. A motivation for this default behavior is the desire that all objects should be reflexive (i.e. x is y
implies x == y).

A default order comparison (<, >, <=, and >=) is not provided; an attempt raises TypeError. A motivation for this
default behavior is the lack of a similar invariant as for equality.

The behavior of the default equality comparison, that instances with different identities are always unequal, may be in
contrast to what types will need that have a sensible definition of object value and value-based equality. Such types will
need to customize their comparison behavior, and in fact, a number of built-in types have done that.

84 Chapter 6. Expressions

The Python Language Reference, Release 3.11.1

The following list describes the comparison behavior of the most important built-in types.

* Numbers of built-in numeric types (typesnumeric) and of the standard library types fractions.Fraction
and decimal.Decimal can be compared within and across their types, with the restriction that complex num-
bers do not support order comparison. Within the limits of the types involved, they compare mathematically
(algorithmically) correct without loss of precision.

The not-a-number values f1loat ('NaN') and decimal .Decimal ('NaN"') are special. Any ordered com-
parison of a number to a not-a-number value is false. A counter-intuitive implication is that not-a-number values
are not equal to themselves. For example, if x = float ('NaN'),3 < x,x < 3and x == x are all false,
while x != x is true. This behavior is compliant with IEEE 754.

* None and Not Implemented are singletons. PEP 8 advises that comparisons for singletons should always be
done with is or is not, never the equality operators.

 Binary sequences (instances of bytes or bytearray) can be compared within and across their types. They
compare lexicographically using the numeric values of their elements.

« Strings (instances of str) compare lexicographically using the numerical Unicode code points (the result of the
built-in function ord ()) of their characters.’

Strings and binary sequences cannot be directly compared.

* Sequences (instances of tuple, 1ist, or range) can be compared only within each of their types, with the
restriction that ranges do not support order comparison. Equality comparison across these types results in inequality,
and ordering comparison across these types raises TypeError.

Sequences compare lexicographically using comparison of corresponding elements. The built-in containers typi-
cally assume identical objects are equal to themselves. That lets them bypass equality tests for identical objects to
improve performance and to maintain their internal invariants.

Lexicographical comparison between built-in collections works as follows:

— For two collections to compare equal, they must be of the same type, have the same length, and each pair of
corresponding elements must compare equal (for example, [1,2] == (1, 2) is false because the type is
not the same).

— Collections that support order comparison are ordered the same as their first unequal elements (for example,
[1,2,x] <= [1,2,y] hasthe same value as x <= y). If a corresponding element does not exist, the
shorter collection is ordered first (for example, [1,2] < [1,2, 3] istrue).

* Mappings (instances of dict) compare equal if and only if they have equal (key, value) pairs. Equality
comparison of the keys and values enforces reflexivity.

Order comparisons (<, >, <=, and >=) raise TypeError.
* Sets (instances of set or frozenset) can be compared within and across their types.

They define order comparison operators to mean subset and superset tests. Those relations do not define total
orderings (for example, the two sets {1, 2} and {2, 3} are not equal, nor subsets of one another, nor supersets
of one another). Accordingly, sets are not appropriate arguments for functions which depend on total ordering (for
example, min (), max (), and sorted () produce undefined results given a list of sets as inputs).

Comparison of sets enforces reflexivity of its elements.

3 The Unicode standard distinguishes between code points (e.g. U+0041) and abstract characters (e.g. “LATIN CAPITAL LETTER A”). While most
abstract characters in Unicode are only represented using one code point, there is a number of abstract characters that can in addition be represented using
a sequence of more than one code point. For example, the abstract character “LATIN CAPITAL LETTER C WITH CEDILLA” can be represented as
a single precomposed character at code position U+00C7, or as a sequence of a base character at code position U+0043 (LATIN CAPITAL LETTER
C), followed by a combining character at code position U+0327 (COMBINING CEDILLA).

The comparison operators on strings compare at the level of Unicode code points. This may be counter-intuitive to humans. For example, "\
u00C7" == "\u0043\u0327" is False, even though both strings represent the same abstract character “LATIN CAPITAL LETTER C WITH
CEDILLA”.

To compare strings at the level of abstract characters (that is, in a way intuitive to humans), use unicodedata.normalize ().

6.10. Comparisons 85

https://peps.python.org/pep-0008/

The Python Language Reference, Release 3.11.1

* Most other built-in types have no comparison methods implemented, so they inherit the default comparison behav-
ior.

User-defined classes that customize their comparison behavior should follow some consistency rules, if possible:
¢ Equality comparison should be reflexive. In other words, identical objects should compare equal:
x 1s vy implies x ==
* Comparison should be symmetric. In other words, the following expressions should have the same result:
x == yandy == x
x != yandy != x
x < yandy > x
x <= yandy >= x
¢ Comparison should be transitive. The following (non-exhaustive) examples illustrate that:
x >y and y > zimpliesx > z
x <y and y <= zimpliesx < z

* Inverse comparison should result in the boolean negation. In other words, the following expressions should have
the same result:

x == yandnot x !=y
x < yandnot x >= vy (for total ordering)
x > yandnot x <= vy (for total ordering)

The last two expressions apply to totally ordered collections (e.g. to sequences, but not to sets or mappings). See
also the total_ordering () decorator.

e The hash () result should be consistent with equality. Objects that are equal should either have the same hash
value, or be marked as unhashable.

Python does not enforce these consistency rules. In fact, the not-a-number values are an example for not following these
rules.

6.10.2 Membership test operations

The operators in and not in test for membership. x in s evaluates to True if x is a member of s, and False
otherwise. x not in s returns the negation of x in s. All built-in sequences and set types support this as well as
dictionary, for which in tests whether the dictionary has a given key. For container types such as list, tuple, set, frozenset,
dict, or collections.deque, the expression x in yisequivalentto any (x is e or x == e for e in y).

For the string and bytes types, x in vy is True if and only if x is a substring of y. An equivalent testis y.find (x)
!= —1. Empty strings are always considered to be a substring of any other string, so "" in "abc" will return True.

For user-defined classes which define the _ contains_ () method, x in y returns True if vy.
___contains__ (x) returns a true value, and False otherwise.

For user-defined classes which do not define __contains__ () butdo define __iter__ (), x in yis True if
some value z, for which the expressionx is z or x == zistrue,is produced while iterating over y. If an exception
is raised during the iteration, it is as if in raised that exception.

Lastly, the old-style iteration protocol is tried: if a class defines __getitem__ (), x in vy is True if and only if
there is a non-negative integer index i such that x is y[i] or x == y[i], and no lower integer index raises the
IndexError exception. (If any other exception is raised, it is as if in raised that exception).

86 Chapter 6. Expressions

The Python Language Reference, Release 3.11.1

The operator not 1in is defined to have the inverse truth value of in.

6.10.3 Identity comparisons

The operators is and is not test for an object’s identity: x is v is true if and only if x and y are the same object.
An Object’s identity is determined using the 1d () function. x is not vy yields the inverse truth value.*

6.11 Boolean operations

or_test = and_test | or_test "or" and test
and_test = not_test | and _test "and" not_test
not_test = comparison | "not" not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the following values
are interpreted as false: False, None, numeric zero of all types, and empty strings and containers (including strings,
tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. User-defined objects can customize
their truth value by providinga __bool__ () method.

The operator not yields True if its argument is false, False otherwise.

The expression x and vy first evaluates x; if x is false, its value is returned; otherwise, y is evaluated and the resulting
value is returned.

The expression x or vy first evaluates x; if x is true, its value is returned; otherwise, y is evaluated and the resulting value
is returned.

Note that neither and nor or restrict the value and type they return to False and True, but rather return the last
evaluated argument. This is sometimes useful, e.g., if s is a string that should be replaced by a default value if it is empty,
the expression s or 'foo' yields the desired value. Because not has to create a new value, it returns a boolean value
regardless of the type of its argument (for example, not 'foo' produces False rather than ' '.)

6.12 Assignment expressions

assignment_expression = [identifier ":="] expression

An assignment expression (sometimes also called a “named expression” or “walrus”) assigns an expression to an
identifier, while also returning the value of the expression.

One common use case is when handling matched regular expressions:

if matching := pattern.search (data):
do_something (matching)

Or, when processing a file stream in chunks:

while chunk := file.read(9000):
process (chunk)

Assignment expressions must be surrounded by parentheses when used as sub-expressions in slicing, conditional, lambda,

4 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in certain uses
of the is operator, like those involving comparisons between instance methods, or constants. Check their documentation for more info.

6.12. Assignment expressions 87

The Python Language Reference, Release 3.11.1

keyword-argument, and comprehension-if expressions and in assert and with statements. In all other places where
they can be used, parentheses are not required, including in i f and while statements.

New in version 3.8: See PEP 572 for more details about assignment expressions.

6.13 Conditional expressions

conditional_expression = or_test ["if" or_test "else" expression]
expression conditional expression | lambda_expr

Conditional expressions (sometimes called a “ternary operator”) have the lowest priority of all Python operations.

The expression x if C else vy first evaluates the condition, C rather than x. If C is true, x is evaluated and its value
is returned; otherwise, y is evaluated and its value is returned.

See PEP 308 for more details about conditional expressions.

6.14 Lambdas

lambda_expr = "lambda" [parameter_list] ":" expression

Lambda expressions (sometimes called lambda forms) are used to create anonymous functions. The expression 1ambda
parameters: expression yields a function object. The unnamed object behaves like a function object defined
with:

def <lambda> (parameters) :
return expression

See section Function definitions for the syntax of parameter lists. Note that functions created with lambda expressions
cannot contain statements or annotations.

6.15 Expression lists

expression_list n= expression ("," expression)* [","]
starred_list L= starred_item ("," starred item)* [","]
starred_expression = expression | (starred_item ",")* [starred_item]
starred_item = assignment_expression | "*" or_expr

Except when part of a list or set display, an expression list containing at least one comma yields a tuple. The length of the
tuple is the number of expressions in the list. The expressions are evaluated from left to right.

An asterisk * denotes iterable unpacking. Its operand must be an iterable. The iterable is expanded into a sequence of
items, which are included in the new tuple, list, or set, at the site of the unpacking.

New in version 3.5: Iterable unpacking in expression lists, originally proposed by PEP 448.

The trailing comma is required only to create a single tuple (a.k.a. a singleton); it is optional in all other cases. A single
expression without a trailing comma doesn’t create a tuple, but rather yields the value of that expression. (To create an
empty tuple, use an empty pair of parentheses: ().)

88 Chapter 6. Expressions

https://peps.python.org/pep-0572/
https://peps.python.org/pep-0308/
https://peps.python.org/pep-0448/

The Python Language Reference, Release 3.11.1

6.16 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is evaluated
before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, expr4
(exprl, expr2, expr3, expr4)
{exprl: expr2, expr3: expréd}

exprl + expr2 * (expr3 - exprd)
exprl (expr2, expr3, *exprd4, **expr))
expr3, exprd4 = exprl, expr2

6.17 Operator precedence

The following table summarizes the operator precedence in Python, from highest precedence (most binding) to lowest
precedence (least binding). Operators in the same box have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators in the same box group left to right (except for exponentiation and conditional expressions,
which group from right to left).

Note that comparisons, membership tests, and identity tests, all have the same precedence and have a left-to-right chaining
feature as described in the Comparisons section.

Operator Description

(expressions...), Binding or parenthesized expression, list display,

[expressions...], {key: value...}, | dictionary display, set display

{expressions...}

x [index], x[index:index], x (arguments...), x. | Subscription, slicing, call, attribute reference

attribute

await x Await expression

o Exponentiation’

+x, —%, ~X Positive, negative, bitwise NOT

*Q,/,//,% Multiplication, matrix multiplication, division,
floor division, remainder®

+, — Addition and subtraction

<<, >> Shifts

& Bitwise AND

~ Bitwise XOR

| Bitwise OR

in,not in, is,1s not,<,<=,>,>=, 1= == Comparisons, including membership tests and
identity tests

not x Boolean NOT

and Boolean AND

or Boolean OR

if—else Conditional expression

lambda Lambda expression

1= Assignment expression

5 The power operator * * binds less tightly than an arithmetic or bitwise unary operator on its right, that is, 2**~1is 0. 5.
6 The % operator is also used for string formatting; the same precedence applies.

6.16. Evaluation order 89

The Python Language Reference, Release 3.11.1

90 Chapter 6. Expressions

CHAPTER
SEVEN

SIMPLE STATEMENTS

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated
by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt
| assert_stmt

| assignment_stmt

| augmented_assignment_stmt
| annotated_assignment_stmt
| pass_stmt

| del_stmt

| return_stmt

| yield stmt

| raise_stmt

| break_stmt

| continue_stmt

| import_stmt

| future_stmt

| global_stmt

| nonlocal_stmt

7.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a
function that returns no meaningful result; in Python, procedures return the value None). Other uses of expression
statements are allowed and occasionally useful. The syntax for an expression statement is:

expression_stmt = starred_expression

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None, it is converted to a string using the built-in repr () function and the
resulting string is written to standard output on a line by itself (except if the result is None, so that procedure calls do not
cause any output.)

91

The Python Language Reference, Release 3.11.1

7.2 Assighment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

assignment_stmt = (target_1list "=")+ (starred_expression | yield_expression)
target_list n= target ("," target)* [","]
target = identifier

| "(" [target_list] "™)"
"[" [target_list] "1"
attributeref

|
|
| subscription
| slicing

| "*" target

(See section Primaries for the syntax definitions for attributeref, subscription, and slicing.)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated
list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an
attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about
its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the
exceptions raised are given with the definition of the object types (see section The standard type hierarchy).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as
follows.

« If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that
target.

¢ Else:

— If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must be
an iterable with at least as many items as there are targets in the target list, minus one. The first items of the
iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable
are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned
to the starred target (the list can be empty).

— Else: The object must be an iterable with the same number of items as there are targets in the target list, and
the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.
* If the target is an identifier (name):

— If the name does not occur in a global or nonlocal statement in the current code block: the name is
bound to the object in the current local namespace.

— Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by
nonlocal, respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously bound
to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

« If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object
with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the
assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not
necessarily AttributeError).

92 Chapter 7. Simple statements

The Python Language Reference, Release 3.11.1

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator,
the right-hand side expression, a . x can access either an instance attribute or (if no instance attribute exists) a class
attribute. The left-hand side target a . x is always set as an instance attribute, creating it if necessary. Thus, the
two occurrences of a . x do not necessarily refer to the same attribute: if the right-hand side expression refers to a
class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

class Cls:
x = 3 # class variable
inst = Cls()
inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3

This description does not necessarily apply to descriptor attributes, such as properties created with property ().

« If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a muta-
ble sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is
evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the
sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length,
and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range,
IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the
mapping’s key type, and the mapping is then asked to create a key/datum pair which maps the subscript to the
assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value
pair (if no key with the same value existed).

For user-defined objects, the __setitem__ () method is called with appropriate arguments.

« If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence
object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper
bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds
should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds
are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace
the slice with the items of the assigned sequence. The length of the slice may be different from the length of the
assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same as for
expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are ‘simul-
taneous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables occur
left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2]:

1, 2 # 1 1is updated, then x[i] is updated

See also:

PEP 3132 - Extended Iterable Unpacking The specification for the *target feature.

7.2. Assignment statements 93

https://peps.python.org/pep-3132/

The Python Language Reference, Release 3.11.1

7.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

augmented_assignment_stmt = augtarget augop (expression_list | yield expression)

augtarget = identifier | attributeref | subscription | slicing

augop = ny—mn | n__m ‘ Wx_—n | n@:" | n/:u I "//:n | no—mn | Wk k—N
| nss=n | Neg=m | ne="m ‘ nA_mN | "|="

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking)
and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns
the result to the original target. The target is only evaluated once.

An augmented assignment expression like x += 1 can be rewrittenas x = x + 1 to achieve a similar, but not exactly
equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed
in-place, meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For
example, a[1] += £ (x) first looks-up a [1], then it evaluates f (x) and performs the addition, and lastly, it writes
the result back toa [1].

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented
assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible
in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveatr about class and instance attributes applies as for regular as-
signments.

7.2.2 Annotated assignment statements

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional
assignment statement:

annotated_assignment_stmt = augtarget ":" expression
["=" (starred_expression | yield expression)]

The difference from normal Assignment statements is that only a single target is allowed.

For simple names as assignment targets, if in class or module scope, the annotations are evaluated and stored in a special
class or module attribute __annotations___thatis a dictionary mapping from variable names (mangled if private) to
evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution,
if annotations are found statically.

For expressions as assignment targets, the annotations are evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and
stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations
(where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target
except for the last __setitem__ () or __setattr__ () call

See also:

94 Chapter 7. Simple statements

The Python Language Reference, Release 3.11.1

PEP 526 - Syntax for Variable Annotations The proposal that added syntax for annotating the types of variables (in-
cluding class variables and instance variables), instead of expressing them through comments.

PEP 484 - Type hints The proposal that added the t yping module to provide a standard syntax for type annotations
that can be used in static analysis tools and IDEs.

Changed in version 3.8: Now annotated assignments allow the same expressions in the right hand side as regular assign-
ments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

assert_stmt = "assert" expression ["," expression]

The simple form, assert expression, is equivalent to

if debug__:
if not expression: raise AssertionError

The extended form, assert expressionl, expression?2, isequivalent to

if _ _debug__:
if not expressionl: raise AssertionError (expression2)

These equivalences assume that __debug___ and AssertionError refer to the built-in variables with those names.
In the current implementation, the built-in variable __debug___ is True under normal circumstances, False when
optimization is requested (command line option —0). The current code generator emits no code for an assert statement
when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression
that failed in the error message; it will be displayed as part of the stack trace.

Assignments to ___debug___ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4 The pass statement

pass_stmt = "pass"

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required
syntactically, but no code needs to be executed, for example:

def f(arg): pass # a function that does nothing (yet)

class C: pass # a class with no methods (yet)

7.4. The pass statement 95

https://peps.python.org/pep-0526/
https://peps.python.org/pep-0484/

The Python Language Reference, Release 3.11.1

7.5 The del statement

del_stmt = "del" target_1list

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details,
here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name
occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is
in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

Changed in version 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable
in a nested block.

7.6 The return statement

return_stmt = "return" [expression_list]
return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, else None is substituted.
return leaves the current function call with the expression list (or None) as return value.

When return passes control out of a t ry statement with a £inally clause, that finally clause is executed before
really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration
to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the
StopIteration.value attribute.

In an asynchronous generator function, an empty ret urn statement indicates that the asynchronous generator is done and
will cause StopAsyncIteration toberaised. A non-empty return statement is a syntax error in an asynchronous
generator function.

7.7 The yield statement

yield_stmt = yield expression

A yield statement is semantically equivalent to a yield expression. The yield statement can be used to omit the paren-
theses that would otherwise be required in the equivalent yield expression statement. For example, the yield statements

yield <expr>
yield from <expr>

are equivalent to the yield expression statements

(yield <expr>)
(yield from <expr>)

96 Chapter 7. Simple statements

The Python Language Reference, Release 3.11.1

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the
generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function
instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8 The raise statement

raise_stmt = "raise" [expression ["from" expression]]

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as the
active exception. If there isn’t currently an active exception, a Runt imeError exception is raised indicating that this is
an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance of
BaseException. If it is a class, the exception instance will be obtained when needed by instantiating the class with
no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the
__traceback___ attribute, which is writable. You can create an exception and set your own traceback in one step
using the with_traceback () exception method (which returns the same exception instance, with its traceback set
to its argument), like so:

raise Exception("foo occurred") .with_traceback (tracebackobij)

The from clause is used for exception chaining: if given, the second expression must be another exception class or
instance. If the second expression is an exception instance, it will be attached to the raised exception as the __cause___
attribute (which is writable). If the expression is an exception class, the class will be instantiated and the resulting exception
instance will be attached to the raised exception as the ___cause___ attribute. If the raised exception is not handled,
both exceptions will be printed:

>>> try:
print (1 / 0)
except Exception as exc:
raise RuntimeError ("Something bad happened") from exc

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

The above exception was the direct cause of the following exception:
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An
exception may be handled when an except or finally clause, or a with statement, is used. The previous exception
is then attached as the new exception’s __context___ attribute:

>>> try:
print (1 / 0)
except:

(continues on next page)

7.8. The raise statement 97

The Python Language Reference, Release 3.11.1

(continued from previous page)

raise RuntimeError ("Something bad happened")

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
ZeroDivisionError: division by zero

During handling of the above exception, another exception occurred:
Traceback (most recent call last):

File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Exception chaining can be explicitly suppressed by specifying None in the £rom clause:

>>> try:
print (1 / 0)
except:
raise RuntimeError ("Something bad happened") £from None

Traceback (most recent call last):
File "<stdin>", line 4, in <module>
RuntimeError: Something bad happened

Additional information on exceptions can be found in section Exceptions, and information about handling exceptions is in
section The try statement.

Changed in version 3.3: None is now permitted as Y in raise X from Y.
New in version 3.3: The ___suppress_context___ attribute to suppress automatic display of the exception context.

Changed in version 3.11: If the traceback of the active exception is modified in an except clause, a subsequent raise
statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with the traceback
it had when it was caught.

7.9 The break statement

break_stmt = "break"

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition
within that loop.

It terminates the nearest enclosing loop, skipping the optional e1se clause if the loop has one.
If a for loop is terminated by break, the loop control target keeps its current value.

When break passes control out of a t ry statement with a finally clause, that finally clause is executed before
really leaving the loop.

98 Chapter 7. Simple statements

The Python Language Reference, Release 3.11.1

7.10 The continue statement

continue_stmt = "continue"

cont inue may only occur syntactically nested in a for or whiIe loop, but not nested in a function or class definition
within that loop. It continues with the next cycle of the nearest enclosing loop.

When cont inue passes control out of a try statement with a finally clause, that finally clause is executed
before really starting the next loop cycle.

7.11 The import statement

import_stmt

"import" module ["as" identifier] ("," module ["as" identifier])*
| "from" relative _module "import" identifier ["as" identifier]
("," identifier ["as" identifier])*

| "from" relative_module "import" " (" identifier ["as" identifier]
("," identifier ["as" identifier])* [","] ™))"

| "from" relative_module "import" "*"

(identifier ".")* identifier

n . mwx module ‘ "w . "+

module =
relative_module

The basic import statement (no £rom clause) is executed in two steps:
1. find a module, loading and initializing it if necessary
2. define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each
clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import system,
which also describes the various types of packages and modules that can be imported, as well as all the hooks that can
be used to customize the import system. Note that failures in this step may indicate either that the module could not be
located, or that an error occurred while initializing the module, which includes execution of the module’s code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three ways:
¢ If the module name is followed by as, then the name following a s is bound directly to the imported module.

* If no other name is specified, and the module being imported is a top level module, the module’s name is bound in
the local namespace as a reference to the imported module

« If the module being imported is not a top level module, then the name of the top level package that contains the
module is bound in the local namespace as a reference to the top level package. The imported module must be
accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:
1. find the module specified in the from clause, loading and initializing it if necessary;
2. for each of the identifiers specified in the import clauses:
1. check if the imported module has an attribute by that name

2. if not, attempt to import a submodule with that name and then check the imported module again for that
attribute

3. if the attribute is not found, ImportError is raised.

7.11. The import statement 99

The Python Language Reference, Release 3.11.1

4. otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if it is
present, otherwise using the attribute name

Examples:
import foo # foo imported and bound locally
import foo.bar.baz # foo, foo.bar, and foo.bar.baz imported, foo bound locally

import foo.bar.baz as fbb # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
—bound as fbb

from foo.bar import baz # foo, foo.bar, and foo.bar.baz imported, foo.bar.baz.
—~bound as baz
from foo import attr # foo imported and foo.attr bound as attr

If the list of identifiers is replaced by a star (' * '), all public names defined in the module are bound in the local namespace
for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named
__all__;if defined, it must be a sequence of strings which are names defined or imported by that module. The names
givenin __all___ are all considered public and are required to exist. If __all___ isnot defined, the set of public names
includes all names found in the module’s namespace which do not begin with an underscore character (' _'). __all_
should contain the entire public APL. It is intended to avoid accidentally exporting items that are not part of the API (such
as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting to
use it in class or function definitions will raise a SyntaxError.

When specifying what module to import you do not have to specify the absolute name of the module. When a module or
package is contained within another package it is possible to make a relative import within the same top package without
having to mention the package name. By using leading dots in the specified module or package after from you can
specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means
the current package where the module making the import exists. Two dots means up one package level. Three dots is
up two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end
up importing pkg.mod. If you execute from ..subpkg2 import mod from within pkg.subpkgl you will
import pkg . subpkg2 .mod. The specification for relative imports is contained in the Package Relative Imports section.

importlib.import_module () is provided to support applications that determine dynamically the modules to be
loaded.

Raises an auditing event import with arguments module, filename, sys.path, sys.meta_path, sys.
path_hooks.

7.11.1 Future statements

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics
that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to
the language. It allows use of the new features on a per-module basis before the release in which the feature becomes
standard.

"from" "__ future_ " "import" feature ["as" identifier]

("," feature ["as" identifier])*

future_stmt

| "from" "__ future_ " "import" " (" feature ["as" identifier]
("," feature ["as" identifier])* [","] ™)"
feature = identifier

100 Chapter 7. Simple statements

The Python Language Reference, Release 3.11.1

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:
¢ the module docstring (if any),
e comments,
¢ blank lines, and
* other future statements.
The only feature that requires using the future statement is annotations (see PEP 563).

All historical features enabled by the future statement are still recognized by Python 3. The list in-
cludes absolute_import, division, generators, generator_stop, unicode_literals,
print_function, nested_scopes and with_statement. They are all redundant because they are
always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are
often implemented by generating different code. It may even be the case that a new feature introduces new incompatible
syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions
cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a
future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__,
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

import __ future__ [as name]

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec () and compile () that occur in a module M containing a future
statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled
by optional arguments to compile () — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an
interpreter is started with the —1 option, is passed a script name to execute, and the script includes a future statement, it
will be in effect in the interactive session started after the script is executed.

See also:

PEP 236 - Back to the __future__ The original proposal for the __ future_ mechanism.

7.12 The global statement

global_stmt = "global" identifier ("," identifier)™*

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers
are to be interpreted as globals. It would be impossible to assign to a global variable without global, although free
variables may refer to globals without being declared global.

Names listed in a g1 oba I statement must not be used in the same code block textually preceding that g1l obal statement.

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements or
except clauses, orina for targetlist, c I ass definition, function definition, i mport statement, or variable annotation.

7.12. The global statement 101

https://peps.python.org/pep-0563/
https://peps.python.org/pep-0236/

The Python Language Reference, Release 3.11.1

CPython implementation detail: The current implementation does not enforce some of these restrictions, but programs
should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

Programmer’s note: g1obal is adirective to the parser. It applies only to code parsed at the same time as the global
statement. In particular, a global statement contained in a string or code object supplied to the built-in exec ()
function does not affect the code block containing the function call, and code contained in such a string is unaffected
by global statements in the code containing the function call. The same applies to the eval () and compile ()
functions.

7.13 The nonlocal statement

nonlocal_stmt = "nonlocal" identifier ("," identifier)*

The nonlocal statement causes the listed identifiers to refer to previously bound variables in the nearest enclosing scope
excluding globals. This is important because the default behavior for binding is to search the local namespace first. The
statement allows encapsulated code to rebind variables outside of the local scope besides the global (module) scope.

Names listed in a nonlocal statement, unlike those listed in a global statement, must refer to pre-existing bindings
in an enclosing scope (the scope in which a new binding should be created cannot be determined unambiguously).

Names listed in a nonlocal statement must not collide with pre-existing bindings in the local scope.
See also:

PEP 3104 - Access to Names in Outer Scopes The specification for the nonlocal statement.

102 Chapter 7. Simple statements

https://peps.python.org/pep-3104/

CHAPTER
EIGHT

COMPOUND STATEMENTS

Compound statements contain (groups of) other statements; they affect or control the execution of those other statements
in some way. In general, compound statements span multiple lines, although in simple incarnations a whole compound
statement may be contained in one line.

The if, while and for statements implement traditional control flow constructs. try specifies exception handlers
and/or cleanup code for a group of statements, while the w1 t h statement allows the execution of initialization and final-
ization code around a block of code. Function and class definitions are also syntactically compound statements.

A compound statement consists of one or more ‘clauses.” A clause consists of a header and a ‘suite.” The clause headers
of a particular compound statement are all at the same indentation level. Each clause header begins with a uniquely
identifying keyword and ends with a colon. A suite is a group of statements controlled by a clause. A suite can be one or
more semicolon-separated simple statements on the same line as the header, following the header’s colon, or it can be one
or more indented statements on subsequent lines. Only the latter form of a suite can contain nested compound statements;
the following is illegal, mostly because it wouldn’t be clear to which i £ clause a following e I se clause would belong:

’if testl: if test2: print (x)

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either all or
none of the print () calls are executed:

’if x <y < z: print(x); print(y); print(z)

Summarizing:

compound_stmt = if _stmt
| while_ stmt
| for_stmt
| try_stmt
| with_stmt
| match_stmt
| funcdef
| classdef
| async_with_stmt
| async_for_stmt
| async_funcdef
suite = stmt_1list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement = stmt_1list NEWLINE | compound_stmt
stmt_list = simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in a NEWLINE possibly followed by a DEDENT. Also note that optional continuation
clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the ‘dangling e 1s¢e’

103

The Python Language Reference, Release 3.11.1

problem is solved in Python by requiring nested i £ statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

8.1 The if statement

The i r statement is used for conditional execution:

if_stmt o= "if" assignment_expression ":" suite
("elif" assignment_expression ":" suite)*
["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see section
Boolean operations for the definition of true and false); then that suite is executed (and no other part of the i statement
is executed or evaluated). If all expressions are false, the suite of the e I se clause, if present, is executed.

8.2 The while statement

The whi1e statement is used for repeated execution as long as an expression is true:

wm.nmn

while_stmt = "while" assignment_expression suite

["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may be the
first time it is tested) the suite of the e1se clause, if present, is executed and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
cont inue statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

8.3 The for statement

The for statement is used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt = "for" target_list "in" starred list ":" suite
["else" ":" suite]

The starred_list expression is evaluated once; it should yield an iterable object. An iterator is created for that
iterable. The first item provided by the iterator is then assigned to the target list using the standard rules for assignments
(see Assignment statements), and the suite is executed. This repeats for each item provided by the iterator. When the
iterator is exhausted, the suite in the e 1 se clause, if present, is executed, and the loop terminates.

A break statement executed in the first suite terminates the loop without executing the else clause’s suite. A
continue statement executed in the first suite skips the rest of the suite and continues with the next item, or with
the el se clause if there is no next item.

The for-loop makes assignments to the variables in the target list. This overwrites all previous assignments to those
variables including those made in the suite of the for-loop:

104 Chapter 8. Compound statements

The Python Language Reference, Release 3.11.1

for i in range (10):
print (i)
i=25 # this will not affect the for-loop
because 1 will be overwritten with the next
index in the range

Names in the target list are not deleted when the loop is finished, but if the sequence is empty, they will not have been
assigned to at all by the loop. Hint: the built-in type range () represents immutable arithmetic sequences of integers.
For instance, iterating range (3) successively yields O, 1, and then 2.

Changed in version 3.11: Starred elements are now allowed in the expression list.

8.4 The try statement

The t ry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt = tryl_stmt | tryZ_stmt | try3 _stmt
tryl_stmt = "try" ":" suite
("except" [expression ["as" identifier]] ":" suite)+
["else" ":" suite]
["finally"™ ":" suite]
try2_stmt = "try" ":" suite
("except" "*" expression ["as" identifier] ":" suite)+
["else" ":" suite]
["finally" ":" suite]
try3_stmt = "try" ":" suite
"finally" ":" suite

Additional information on exceptions can be found in section Exceptions, and information on using the ra i se statement
to generate exceptions may be found in section The raise statement.

8.4.1 except clause

The except clause(s) specify one or more exception handlers. When no exception occurs in the t ry clause, no exception
handler is executed. When an exception occurs in the t ry suite, a search for an exception handler is started. This search
inspects the except clauses in turn until one is found that matches the exception. An expression-less except clause,
if present, must be last; it matches any exception. For an except clause with an expression, that expression is evaluated,
and the clause matches the exception if the resulting object is “compatible” with the exception. An object is compatible
with an exception if the object is the class or a non-virtual base class of the exception object, or a tuple containing an item
that is the class or a non-virtual base class of the exception object.

If no except clause matches the exception, the search for an exception handler continues in the surrounding code and
on the invocation stack.!

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a handler
is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is treated as if the
entire t ry statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified after the as keyword in that
except clause, if present, and the except clause’s suite is executed. All except clauses must have an executable

! The exception is propagated to the invocation stack unless there is a finally clause which happens to raise another exception. That new
exception causes the old one to be lost.

8.4. The try statement 105

The Python Language Reference, Release 3.11.1

block. When the end of this block is reached, execution continues normally after the entire t ry statement. (This means
that if two nested handlers exist for the same exception, and the exception occurs in the t ry clause of the inner handler,
the outer handler will not handle the exception.)

When an exception has been assigned using as target, it is cleared at the end of the except clause. This is as if

except E as N:
foo

was translated to

except E as N:
try:
foo
finally:
del N

This means the exception must be assigned to a different name to be able to refer to it after the except clause. Exceptions
are cleared because with the traceback attached to them, they form a reference cycle with the stack frame, keeping all
locals in that frame alive until the next garbage collection occurs.

Before an except clause’s suite is executed, details about the exception are stored in the sy s module and can be accessed
via sys.exc_info (). sys.exc_info () returns a 3-tuple consisting of the exception class, the exception instance
and a traceback object (see section The standard type hierarchy) identifying the point in the program where the exception
occurred. The details about the exception accessed via sys.exc_info () are restored to their previous values when
leaving an exception handler:

>>> print (sys.exc_info())
(None, None, None)
>>> try:
raise TypeError
except:
print (sys.exc_info())
try:
raise ValueError
except:
print (sys.exc_info())
print (sys.exc_info())

(<class 'TypeError'>, TypeError(), <traceback object at 0x10efad080>)
(<class 'ValueError'>, ValueError (), <traceback object at 0x10efad040>)
(<class 'TypeError'>, TypeError (), <traceback object at 0x10efad080>)
>>> print (sys.exc_info())

(None, None, None)

8.4.2 except* clause

The except * clause(s) are used for handling ExceptionGroups. The exception type for matching is interpreted as
in the case of except, but in the case of exception groups we can have partial matches when the type matches some of
the exceptions in the group. This means that multiple except * clauses can execute, each handling part of the exception
group. Each clause executes at most once and handles an exception group of all matching exceptions. Each exception in
the group is handled by at most one except * clause, the first that matches it.

>>> try:
raise ExceptionGroup ("eg",
[ValueError (1), TypeError(2), OSError(3), OSError(4)])

(continues on next page)

106 Chapter 8. Compound statements

The Python Language Reference, Release 3.11.1

(continued from previous page)

except* TypeError as e:

print (f'caught {type(e) } with nested {e.exceptions/')
except* OSError as e:

print (f'caught {type(e)} with nested {e.exceptions}')

caught <class 'ExceptionGroup'> with nested (TypeError(2),)
caught <class 'ExceptionGroup'> with nested (OSError (3), OSError(4))
+ Exception Group Traceback (most recent call last):
| File "<stdin>", line 2, in <module>
| ExceptionGroup: eg
-t] ————
| ValueError: 1

Any remaining exceptions that were not handled by any except * clause are re-raised at the end, combined into an
exception group along with all exceptions that were raised from within except * clauses.

If the raised exception is not an exception group and its type matches one of the except* clauses, it is caught and
wrapped by an exception group with an empty message string.

>>> try:
raise BlockingIOError
except* BlockingIOError as e:
print (repr(e))

ExceptionGroup('', (BlockingIOError()))

An except * clause must have a matching type, and this type cannot be a subclass of BaseExceptionGroup. Itis
not possible to mix except and except* in the same try. break, continue and return cannot appear in an
except* clause.

8.4.3 else clause

The optional e 1se clause is executed if the control flow leaves the ¢ ry suite, no exception was raised, and no return,
continue, or break statement was executed. Exceptions in the else clause are not handled by the preceding
except clauses.

8.4.4 finally clause

If finally is present, it specifies a ‘cleanup’ handler. The t ry clause is executed, including any except and else
clauses. If an exception occurs in any of the clauses and is not handled, the exception is temporarily saved. The finally
clause is executed. If there is a saved exception it is re-raised at the end of the finally clause. If the finally clause
raises another exception, the saved exception is set as the context of the new exception. If the finally clause executes
a return, break or cont inue statement, the saved exception is discarded:

>>> def f():
try:
1/0
finally:
return 42
>>> f()
42

8.4. The try statement 107

The Python Language Reference, Release 3.11.1

The exception information is not available to the program during execution of the finally clause.

When a return, break or cont inue statement is executed in the ¢ ry suite of a try...finally statement, the
finally clause is also executed ‘on the way out.’

The return value of a function is determined by the last ret urn statement executed. Since the finally clause always
executes, a return statement executed in the £inally clause will always be the last one executed:

>>> def fool():
try:
return 'try'
finally:
return 'finally'
>>> foo ()
'finally'

Changed in version 3.8: Prior to Python 3.8, a cont i nue statement was illegal in the final1ly clause due to a problem
with the implementation.

8.5 The with statement

The with statement is used to wrap the execution of a block with methods defined by a context manager (see section
With Statement Context Managers). This allows common try...except...finally usage patterns to be encapsulated
for convenient reuse.

with_stmt
with_stmt_contents
with_item

"with" (" (" with_stmt_contents ","? ")" | with_stmt_contents) '
with_item ("," with_item)*
expression ["as" target]

The execution of the with statement with one “item” proceeds as follows:
1. The context expression (the expression given in the with_item) is evaluated to obtain a context manager.
2. The context manager’s __enter__ () is loaded for later use.
3. The context manager’s __exit__ () isloaded for later use.
4. The context manager’s __enter__ () method is invoked.
5

. If a target was included in the wi t h statement, the return value from __enter__ () is assigned to it.

Note: The with statement guarantees that if the __enter__ () method returns without an error, then
__exit__ () will always be called. Thus, if an error occurs during the assignment to the target list, it will
be treated the same as an error occurring within the suite would be. See step 7 below.

6. The suite is executed.

7. The context manager’s __exit__ () method is invoked. If an exception caused the suite to be exited, its type,
value, and traceback are passed as arguments to __exit__ (). Otherwise, three None arguments are supplied.

If the suite was exited due to an exception, and the return value from the __exit__ () method was false, the
exception is reraised. If the return value was true, the exception is suppressed, and execution continues with the
statement following the wi t h statement.

108 Chapter 8. Compound statements

The Python Language Reference, Release 3.11.1

If the suite was exited for any reason other than an exception, the return value from __exit__ () isignored, and
execution proceeds at the normal location for the kind of exit that was taken.

The following code:

with EXPRESSION as TARGET:
SUITE

is semantically equivalent to:

manager = (EXPRESSION)

enter = type(manager) .__enter_
exit = type (manager) .__exit_
value = enter (manager)

hit_except = False

try:
TARGET = wvalue
SUITE
except:
hit_except = True
if not exit (manager, *sys.exc_info()):
raise
finally:

if not hit_except:
exit (manager, None, None, None)

With more than one item, the context managers are processed as if multiple wi t h statements were nested:

with A() as a, B() as b:
SUITE

is semantically equivalent to:

with A() as a:
with B() as b:
SUITE

You can also write multi-item context managers in multiple lines if the items are surrounded by parentheses. For example:

with (
A() as a,
B() as b,
)t
SUITE

Changed in version 3.1: Support for multiple context expressions.
Changed in version 3.10: Support for using grouping parentheses to break the statement in multiple lines.
See also:

PEP 343 - The “with” statement The specification, background, and examples for the Python wi ¢t h statement.

8.5. The with statement 109

https://peps.python.org/pep-0343/

The Python Language Reference, Release 3.11.1

8.6 The match statement

New in version 3.10.

The match statement is used for pattern matching. Syntax:

match_stmt u= 'match' subject_expr ":" NEWLINE INDENT case_block+ DEDENT
subject_expr = star_named_expression "," star_named_expressions?

| named_expression
case_block = 'case' patterns [guard] ":" block

Note: This section uses single quotes to denote soft keywords.

Pattern matching takes a pattern as input (following case) and a subject value (following mat ch). The pattern (which
may contain subpatterns) is matched against the subject value. The outcomes are:

* A match success or failure (also termed a pattern success or failure).

* Possible binding of matched values to a name. The prerequisites for this are further discussed below.
The match and case keywords are soft keywords.
See also:

e PEP 634 — Structural Pattern Matching: Specification

¢ PEP 636 — Structural Pattern Matching: Tutorial

8.6.1 Overview

Here’s an overview of the logical flow of a match statement:

1. The subject expression subject_expr is evaluated and a resulting subject value obtained. If the subject ex-
pression contains a comma, a tuple is constructed using the standard rules.

2. Each pattern in a case_block is attempted to match with the subject value. The specific rules for success or
failure are described below. The match attempt can also bind some or all of the standalone names within the pattern.
The precise pattern binding rules vary per pattern type and are specified below. Name bindings made during a
successful pattern match outlive the executed block and can be used after the match statement.

Note: During failed pattern matches, some subpatterns may succeed. Do not rely on bindings being
made for a failed match. Conversely, do not rely on variables remaining unchanged after a failed match.
The exact behavior is dependent on implementation and may vary. This is an intentional decision made
to allow different implementations to add optimizations.

3. If the pattern succeeds, the corresponding guard (if present) is evaluated. In this case all name bindings are guar-
anteed to have happened.

« If the guard evaluates as true or is missing, the block inside case_block is executed.
¢ Otherwise, the next case_block is attempted as described above.

« If there are no further case blocks, the match statement is completed.

110 Chapter 8. Compound statements

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, Release 3.11.1

Note: Users should generally never rely on a pattern being evaluated. Depending on implementation, the interpreter
may cache values or use other optimizations which skip repeated evaluations.

A sample match statement:

>>> flag = False
>>> match (100, 200):
case (100, 300): # Mismatch: 200 != 300
print ('Case 1")
case (100, 200) if flag: # Successful match, but guard fails
print ('Case 2'")
case (100, y): # Matches and binds y to 200
print (f'Case 3, y: {y}")
case _: # Pattern not attempted
print ('Case 4, I match anything!')

Case 3, y: 200

In this case, 1f flagis a guard. Read more about that in the next section.

8.6.2 Guards

guard = "if" named_expression

A guard (which is part of the case) must succeed for code inside the case block to execute. It takes the form: 77
followed by an expression.

The logical flow of a case block with a guard follows:

1. Check that the pattern in the case block succeeded. If the pattern failed, the guard is not evaluated and the next
case block is checked.

2. If the pattern succeeded, evaluate the guard.
¢ If the guard condition evaluates as true, the case block is selected.
¢ If the guard condition evaluates as false, the case block is not selected.
« If the guard raises an exception during evaluation, the exception bubbles up.

Guards are allowed to have side effects as they are expressions. Guard evaluation must proceed from the first to the last
case block, one at a time, skipping case blocks whose pattern(s) don’t all succeed. (I.e., guard evaluation must happen in
order.) Guard evaluation must stop once a case block is selected.

8.6.3 Irrefutable Case Blocks

An irrefutable case block is a match-all case block. A match statement may have at most one irrefutable case block, and
it must be last.

A case block is considered irrefutable if it has no guard and its pattern is irrefutable. A pattern is considered irrefutable
if we can prove from its syntax alone that it will always succeed. Only the following patterns are irrefutable:

¢ AS Patterns whose left-hand side is irrefutable
* OR Patterns containing at least one irrefutable pattern

* Capture Patterns

8.6. The match statement 111

The Python Language Reference, Release 3.11.1

e Wildcard Patterns

* parenthesized irrefutable patterns

8.6.4 Patterns

Note: This section uses grammar notations beyond standard EBNF:
* the notation SEP . RULE+ is shorthand for RULE (SEP RULE) *

* the notation ! RULE is shorthand for a negative lookahead assertion

The top-level syntax for patterns is:

patterns = open_sequence_pattern | pattern
pattern = as_pattern | or_pattern
closed_pattern = | literal_pattern

| capture_pattern
| wildcard_ pattern
| value_pattern

| group_pattern

| sequence_pattern
| mapping_pattern
| class_pattern

The descriptions below will include a description “in simple terms” of what a pattern does for illustration purposes (credits
to Raymond Hettinger for a document that inspired most of the descriptions). Note that these descriptions are purely for
illustration purposes and may not reflect the underlying implementation. Furthermore, they do not cover all valid forms.

OR Patterns

An OR pattern is two or more patterns separated by vertical bars |. Syntax:

or_pattern = "|".closed _pattern+

Only the final subpattern may be irrefutable, and each subpattern must bind the same set of names to avoid ambiguity.

An OR pattern matches each of its subpatterns in turn to the subject value, until one succeeds. The OR pattern is then
considered successful. Otherwise, if none of the subpatterns succeed, the OR pattern fails.

In simple terms, P1 | P2 | ... will try to match P1, if it fails it will try to match P2, succeeding immediately if
any succeeds, failing otherwise.

112 Chapter 8. Compound statements

The Python Language Reference, Release 3.11.1

AS Patterns

An AS pattern matches an OR pattern on the left of the a s keyword against a subject. Syntax:

as_pattern = or_pattern "as" capture_pattern

If the OR pattern fails, the AS pattern fails. Otherwise, the AS pattern binds the subject to the name on the right of the
as keyword and succeeds. capture_pattern cannotbeaa _.

In simple terms P as NAME will match with P, and on success it will set NAME = <subject>.

Literal Patterns

A literal pattern corresponds to most literals in Python. Syntax:

literal_pattern = signed_number
| signed_number "+" NUMBER

| signed_number "-" NUMBER

| strings

| "None"

| "True"

| "False"

| signed_number: NUMBER | "-" NUMBER

The rule strings and the token NUMBER are defined in the standard Python grammar. Triple-quoted strings are
supported. Raw strings and byte strings are supported. Formartted string literals are not supported.

The forms signed_number '+' NUMBER and signed_number '—' NUMBER are for expressing complex
numbers; they require a real number on the left and an imaginary number on the right. E.g. 3 + 47.

In simple terms, LITERAL will succeed only if <subject> == LITERAL. For the singletons None, True and
False, the is operator is used.

Capture Patterns

A capture pattern binds the subject value to a name. Syntax:

capture_pattern = !''_' NAME

A single underscore _ is not a capture pattern (this is what !'_' expresses). It is instead treated as a
wildcard pattern

In a given pattern, a given name can only be bound once. E.g. case x, x: ... isinvalid while case [x] | x:

. is allowed.

Capture patterns always succeed. The binding follows scoping rules established by the assignment expression operator in
PEP 572; the name becomes a local variable in the closest containing function scope unless there’s an applicable g1oba 1
or nonlocal statement.

In simple terms NAME will always succeed and it will set NAME = <subject>.

8.6. The match statement 113

https://peps.python.org/pep-0572/

The Python Language Reference, Release 3.11.1

Wildcard Patterns

A wildcard pattern always succeeds (matches anything) and binds no name. Syntax:

wildcard_pattern =

_is a soft keyword within any pattern, but only within patterns. It is an identifier, as usual, even within mat ch subject
expressions, guards, and case blocks.

In simple terms, _ will always succeed.

Value Patterns

A value pattern represents a named value in Python. Syntax:
attr

name_or_attr "." NAME
attr | NAME

value_pattern
attr
name_or_attr

The dotted name in the pattern is looked up using standard Python name resolution rules. The pattern succeeds if the
value found compares equal to the subject value (using the == equality operator).

In simple terms NAME 1 . NAME?2 will succeed only if <subject> == NAME1.NAME2

Note: If the same value occurs multiple times in the same match statement, the interpreter may cache the first value
found and reuse it rather than repeat the same lookup. This cache is strictly tied to a given execution of a given match
statement.

Group Patterns
A group pattern allows users to add parentheses around patterns to emphasize the intended grouping. Otherwise, it has

no additional syntax. Syntax:

group_pattern = "(" pattern ")"

In simple terms (P) has the same effect as P.

Sequence Patterns

A sequence pattern contains several subpatterns to be matched against sequence elements. The syntax is similar to the
unpacking of a list or tuple.

sequence_pattern = "[" [maybe_sequence_pattern] "]"

| "(" [open_sequence_pattern] ")"
open_sequence_pattern u= maybe_star_pattern "," [maybe_sequence_pattern]
maybe_sequence_pattern = ", ".maybe_star_patternt ","?
maybe_star_pattern = star_pattern | pattern

114 Chapter 8. Compound statements

The Python Language Reference, Release 3.11.1

star_pattern = "*" (capture_pattern | wildcard_pattern)
There is no difference if parentheses or square brackets are used for sequence patterns (i.e. (...) vs [...]).
Note: A single pattern enclosed in parentheses without a trailing comma (e.g. (3 | 4))is a group pattern. While a

single pattern enclosed in square brackets (e.g. [3 | 4]) is still a sequence pattern.

At most one star subpattern may be in a sequence pattern. The star subpattern may occur in any position. If no star
subpattern is present, the sequence pattern is a fixed-length sequence pattern; otherwise it is a variable-length sequence
pattern.

The following is the logical flow for matching a sequence pattern against a subject value:
1. If the subject value is not a sequence”, the sequence pattern fails.
2. If the subject value is an instance of str, bytes or bytearray the sequence pattern fails.
3. The subsequent steps depend on whether the sequence pattern is fixed or variable-length.
If the sequence pattern is fixed-length:
1. If the length of the subject sequence is not equal to the number of subpatterns, the sequence pattern fails

2. Subpatterns in the sequence pattern are matched to their corresponding items in the subject sequence from
left to right. Matching stops as soon as a subpattern fails. If all subpatterns succeed in matching their corre-
sponding item, the sequence pattern succeeds.

Otherwise, if the sequence pattern is variable-length:

1. If the length of the subject sequence is less than the number of non-star subpatterns, the sequence pattern
fails.

2. The leading non-star subpatterns are matched to their corresponding items as for fixed-length sequences.

3. If the previous step succeeds, the star subpattern matches a list formed of the remaining subject items, ex-
cluding the remaining items corresponding to non-star subpatterns following the star subpattern.

4. Remaining non-star subpatterns are matched to their corresponding subject items, as for a fixed-length se-
quence.

Note: The length of the subject sequence is obtained via 1en () (i.e. viathe __len__ () protocol). This length
may be cached by the interpreter in a similar manner as value patterns.

In simple terms [P1, P2, P3, ..., P<N>] matches only if all the following happens:

2 In pattern matching, a sequence is defined as one of the following:

¢ a class that inherits from collections.abc.Sequence
« a Python class that has been registered as collections.abc.Sequence
 a builtin class that has its (CPython) Py_TPFLAGS_SEQUENCE bit set
« aclass that inherits from any of the above

The following standard library classes are sequences:
* array.array
e collections.deque
e list
* memoryview
e range
e tuple

Note: Subject values of type str, bytes, and bytearray do not match sequence patterns.

8.6. The match statement 115

The Python Language Reference, Release 3.11.1

* check <subject> is a sequence

e len(subject) == <N>

e P1 matches <subject>[0] (note that this match can also bind names)

e P2 matches <subject>[1] (note that this match can also bind names)

¢ ... and so on for the corresponding pattern/element.

Mapping Patterns

A mapping pattern contains one or more key-value patterns. The syntax is similar to the construction of a dictionary.

Syntax:

mappil’lg_pattern = mym

[items_pattern]

key_value_pattern (literal_pattern |

LR ||

double_star_pattern capture_pattern

"w } "w
items_pattern I ", ".key_value_pattern+t+
value_pattern) ":
| double_star_pattern

"o
P

" pattern

At most one double star pattern may be in a mapping pattern. The double star pattern must be the last subpattern in the

mapping pattern.

Duplicate keys in mapping patterns are disallowed. Duplicate literal keys will raise a SyntaxError. Two keys that

otherwise have the same value will raise a ValueError at runtime.

The following is the logical flow for matching a mapping pattern against a subject value:

1. If the subject value is not a mapping®,the mapping pattern fails.

2. If every key given in the mapping pattern is present in the subject mapping, and the pattern for each key matches
the corresponding item of the subject mapping, the mapping pattern succeeds.

3. If duplicate keys are detected in the mapping pattern, the pattern is considered invalid. A SyntaxError is raised
for duplicate literal values; or a ValueError for named keys of the same value.

Note:

Key-value pairs are matched using the two-argument form of the mapping subject’s get () method.

Matched key-value pairs must already be present in the mapping, and not created on-the-fly via _ missing__ ()

or__getitem__ ().

In simple terms {KEY1: P1, KEY2: P2,
* check <subject> is a mapping

e KEY]1l in <subject>

¢ P1 matches <subject>[KEY1]

* ... and so on for the corresponding KEY/pattern pair.

3 In pattern matching, a mapping is defined as one of the following:
¢ aclass that inherits from collections.abc.Mapping
¢ a Python class that has been registered as collections.abc.Mapping
 a builtin class that has its (CPython) Py_TPFLAGS_MAPPING bit set
« aclass that inherits from any of the above
The standard library classes dict and types.MappingProxyType are mappings.

} matches only if all the following happens:

116

Chapter 8

. Compound statements

The Python Language Reference, Release 3.11.1

Class Patterns

A class pattern represents a class and its positional and keyword arguments (if any). Syntax:

class_pattern
pattern_arguments

positional_patterns
keyword_patterns
keyword_pattern

name_or_attr " (" [pattern_arguments ","?] ")"
positional_patterns ["," keyword patterns]

| keyword_patterns

", ".patternt+

", ".keyword_pattern+

NAME "=" pattern

The same keyword should not be repeated in class patterns.

The following is the logical flow for matching a class pattern against a subject value:

1. If name_or_attr is not an instance of the builtin t ype , raise TypeError.

2. If the subject value is not an instance of name_or_attr (tested via isinstance ()), the class pattern fails.

3. If no pattern arguments are present, the pattern succeeds. Otherwise, the subsequent steps depend on whether

keyword or positional argument patterns are present.

For a number of built-in types (specified below), a single positional subpattern is accepted which will match the
entire subject; for these types keyword patterns also work as for other types.

If only keyword patterns are present, they are processed as follows, one by one:

I. The keyword is looked up as an attribute on the subject.
« If this raises an exception other than AttributeError, the exception bubbles up.
e If this raises Att ributeError, the class pattern has failed.

* Else, the subpattern associated with the keyword pattern is matched against the subject’s attribute value. If
this fails, the class pattern fails; if this succeeds, the match proceeds to the next keyword.

IL. If all keyword patterns succeed, the class pattern succeeds.

If any positional patterns are present, they are converted to keyword patterns using the __match_args__ at-
tribute on the class name_or_attr before matching:

I. The equivalent of getattr (cls, "__match_args__ ", ()) iscalled.
« If this raises an exception, the exception bubbles up.
* If the returned value is not a tuple, the conversion fails and TypeError is raised.

* If there are more positional patterns than len (cls.__match_args
raised.

), TypeError is

¢ Otherwise, positional pattern i is converted to a keyword pattern using __match_args__ [1i]
as the keyword. __match_args__ [1i] must be a string; if not TypeError is raised.

* If there are duplicate keywords, TypeError is raised.
See also:
Customizing positional arguments in class pattern matching

I1. Once all positional patterns have been converted to keyword patterns, the match proceeds as if there
were only keyword patterns.

For the following built-in types the handling of positional subpatterns is different:

8.6. The match statement 117

The Python Language Reference, Release 3.11.1

* bool

* bytearray
* bytes

e dict

e float

e frozenset
e int

e list

* set

* str

e tuple

These classes accept a single positional argument, and the pattern there is matched against the whole object rather
than an attribute. For example int (0| 1) matches the value 0, but not the value 0. 0.

In simple terms CLS (P1, attr=P2) matches only if the following happens:
* isinstance (<subject>, CLS)
¢ convert P1 to a keyword pattern using CLS.__match_args___
* For each keyword argument attr=P2:
— hasattr (<subject>, "attzr")
— P2 matches <subject>.attr
¢ ... and so on for the corresponding keyword argument/pattern pair.
See also:
¢ PEP 634 — Structural Pattern Matching: Specification
e PEP 636 — Structural Pattern Matching: Tutorial

8.7 Function definitions

A function definition defines a user-defined function object (see section The standard type hierarchy):

funcdef = [decorators] "def" funcname
["->" expression] ":" suite

decorators = decorator+

decorator n= "@" assignment_expression NEWLINE

parameter_list = defparameter ("," defparameter)*

[parameter_1list]

[parameter._.

| parameter_list_no_posonly

parameter_list_no_posonly = defparameter (","
| parameter_list_starargs
parameter_list_starargs = "*" [parameter] ("," defparameter)*
| "**" parameter [","]
parameter = identifier [":" expression]
defparameter = parameter ["=" expression]

defparameter) * [parameter_list_stai

["**" parameter

118 Chapter 8. Compound statements

https://peps.python.org/pep-0634/
https://peps.python.org/pep-0636/

The Python Language Reference, Release 3.11.1

funcname n= identifier

A function definition is an executable statement. Its execution binds the function name in the current local namespace to
a function object (a wrapper around the executable code for the function). This function object contains a reference to
the current global namespace as the global namespace to be used when the function is called.

The function definition does not execute the function body; this gets executed only when the function is called.*

A function definition may be wrapped by one or more decorator expressions. Decorator expressions are evaluated when
the function is defined, in the scope that contains the function definition. The result must be a callable, which is invoked
with the function object as the only argument. The returned value is bound to the function name instead of the function
object. Multiple decorators are applied in nested fashion. For example, the following code

Qfl (arqg)
Qf2
def func(): pass

is roughly equivalent to

def func(): pass
func = £l (arg) (£2 (func))

except that the original function is not temporarily bound to the name func.

Changed in version 3.9: Functions may be decorated with any valid assignment_expression. Previously, the
grammar was much more restrictive; see PEP 614 for details.

When one or more parameters have the form parameter = expression, the function is said to have “default parameter
values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in which case the
parameter’s default value is substituted. If a parameter has a default value, all following parameters up until the “*” must
also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated from left to right when the function definition is executed. This means
that the expression is evaluated once, when the function is defined, and that the same “pre-computed” value is used for
each call. This is especially important to understand when a default parameter value is a mutable object, such as a list or a
dictionary: if the function modifies the object (e.g. by appending an item to a list), the default parameter value is in effect
modified. This is generally not what was intended. A way around this is to use None as the default, and explicitly test for
it in the body of the function, e.g.:

def whats_on_the_telly (penguin=None) :
if penguin is None:
penguin = []
penguin.append ("property of the zoo")
return penguin

Function call semantics are described in more detail in section Calls. A function call always assigns values to all parameters
mentioned in the parameter list, either from positional arguments, from keyword arguments, or from default values. If the
form “*identifier” is present, it is initialized to a tuple receiving any excess positional parameters, defaulting to the
empty tuple. If the form “**identifier” is present, it is initialized to a new ordered mapping receiving any excess
keyword arguments, defaulting to a new empty mapping of the same type. Parameters after “*” or “*identifier”
are keyword-only parameters and may only be passed by keyword arguments. Parameters before “/” are positional-only
parameters and may only be passed by positional arguments.

Changed in version 3.8: The / function parameter syntax may be used to indicate positional-only parameters. See PEP
570 for details.

4 A string literal appearing as the first statement in the function body is transformed into the function’s __doc___ attribute and therefore the
function’s docstring.

8.7. Function definitions 119

https://peps.python.org/pep-0614/
https://peps.python.org/pep-0570/
https://peps.python.org/pep-0570/

The Python Language Reference, Release 3.11.1

Parameters may have an annotation of the form “: expression” following the parameter name. Any parameter
may have an annotation, even those of the form *identifier or **identifier. Functions may have “return”
annotation of the form “~> expression” after the parameter list. These annotations can be any valid Python expres-
sion. The presence of annotations does not change the semantics of a function. The annotation values are available as
values of a dictionary keyed by the parameters’ names in the __annotations___ attribute of the function object. If
the annotations import from __future__ is used, annotations are preserved as strings at runtime which enables
postponed evaluation. Otherwise, they are evaluated when the function definition is executed. In this case annotations
may be evaluated in a different order than they appear in the source code.

It is also possible to create anonymous functions (functions not bound to a name), for immediate use in expressions.
This uses lambda expressions, described in section Lambdas. Note that the lambda expression is merely a shorthand for
a simplified function definition; a function defined in a “de £” statement can be passed around or assigned to another
name just like a function defined by a lambda expression. The “de £” form is actually more powerful since it allows the
execution of multiple statements and annotations.

Programmer’s note: Functions are first-class objects. A “def” statement executed inside a function definition defines
a local function that can be returned or passed around. Free variables used in the nested function can access the local
variables of the function containing the def. See section Naming and binding for details.

See also:
PEP 3107 - Function Annotations The original specification for function annotations.
PEP 484 - Type Hints Definition of a standard meaning for annotations: type hints.

PEP 526 - Syntax for Variable Annotations Ability to type hint variable declarations, including class variables and
instance variables

PEP 563 - Postponed Evaluation of Annotations Support for forward references within annotations by preserving an-
notations in a string form at runtime instead of eager evaluation.

8.8 Class definitions

A class definition defines a class object (see section The standard type hierarchy):

classdef = [decorators] "class" classname [inheritance] ":" suite
inheritance = "(" [argument_1list] ")"
classname n= identifier

A class definition is an executable statement. The inheritance list usually gives a list of base classes (see Metaclasses for
more advanced uses), so each item in the list should evaluate to a class object which allows subclassing. Classes without
an inheritance list inherit, by default, from the base class object; hence,

class Foo:
pass

is equivalent to

class Foo(object):
pass

The class’s suite is then executed in a new execution frame (see Naming and binding), using a newly created local names-
pace and the original global namespace. (Usually, the suite contains mostly function definitions.) When the class’s suite
finishes execution, its execution frame is discarded but its local namespace is saved.’ A class object is then created using

5 A string literal appearing as the first statement in the class body is transformed into the namespace’s __doc__ item and therefore the class’s

120 Chapter 8. Compound statements

https://peps.python.org/pep-3107/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/
https://peps.python.org/pep-0563/

The Python Language Reference, Release 3.11.1

the inheritance list for the base classes and the saved local namespace for the attribute dictionary. The class name is
bound to this class object in the original local namespace.

The order in which attributes are defined in the class body is preserved in the new class’s __dict__ . Note that this is
reliable only right after the class is created and only for classes that were defined using the definition syntax.

Class creation can be customized heavily using metaclasses.

Classes can also be decorated: just like when decorating functions,

Qfl (arg)
Qf2
class Foo: pass

is roughly equivalent to

class Foo: pass
Foo = fl(arg) (f2 (Foo))

The evaluation rules for the decorator expressions are the same as for function decorators. The result is then bound to the
class name.

Changed in version 3.9: Classes may be decorated with any valid assignment_expression. Previously, the gram-
mar was much more restrictive; see PEP 614 for details.

Programmer’s note: Variables defined in the class definition are class attributes; they are shared by instances. Instance
attributes can be set in a method with self.name = wvalue. Both class and instance attributes are accessible through
the notation “self .name”, and an instance attribute hides a class attribute with the same name when accessed in this
way. Class attributes can be used as defaults for instance attributes, but using mutable values there can lead to unexpected
results. Descriptors can be used to create instance variables with different implementation details.

See also:

PEP 3115 - Metaclasses in Python 3000 The proposal that changed the declaration of metaclasses to the current syn-
tax, and the semantics for how classes with metaclasses are constructed.

PEP 3129 - Class Decorators The proposal that added class decorators. Function and method decorators were intro-
duced in PEP 318.

8.9 Coroutines

New in version 3.5.

8.9.1 Coroutine function definition

async_funcdef = [decorators] "async" "def" funcname " (" [parameter_list] ")"
["->" expression] ":" suite

Execution of Python coroutines can be suspended and resumed at many points (see coroutine). await expressions,
async forand async with can only be used in the body of a coroutine function.

Functions defined with async def syntax are always coroutine functions, even if they do not contain await or async
keywords.

Itisa SyntaxErrortouseayield from expression inside the body of a coroutine function.

docstring.

8.9. Coroutines 121

https://peps.python.org/pep-0614/
https://peps.python.org/pep-3115/
https://peps.python.org/pep-3129/
https://peps.python.org/pep-0318/

The Python Language Reference, Release 3.11.1

An example of a coroutine function:

async def func(paraml, param2):
do_stuff ()
await some_coroutine ()

Changed in version 3.7: await and async are now keywords; previously they were only treated as such inside the body
of a coroutine function.

8.9.2 The async for statement

async_for_stmt = "async" for_stmt

An asynchronous iterable provides an __aiter__ method that directly returns an asynchronous iterator, which can call
asynchronous code in its __anext___ method.

The async for statement allows convenient iteration over asynchronous iterables.

The following code:

async for TARGET in ITER:
SUITE

else:
SUITEZ2

Is semantically equivalent to:

iter (ITER)
iter = type(iter).__aiter__ (iter)
running = True

while running:
try:
TARGET = await type(iter).__anext__ (iter)
except StopAsyncIteration:
running = False
else:
SUITE
else:
SUITEZ2

Seealso aiter ()and_ _anext () for details.

Itisa SyntaxError touse an async for statement outside the body of a coroutine function.

8.9.3 The async with statement

async_with_stmt = "async" with_stmt
An asynchronous context manager is a context manager that is able to suspend execution in its enfer and exit methods.

The following code:

async with EXPRESSION as TARGET:
SUITE

122 Chapter 8. Compound statements

The Python Language Reference, Release 3.11.1

is semantically equivalent to:

manager = (EXPRESSION)

aenter = type (manager) ._ _aenter_
aexit = type (manager) .__aexit___
value = await aenter (manager)

hit_except = False

try:
TARGET = value
SUITE

except:
hit_except = True

if not await aexit (manager, *sys.exc_info()):
raise
finally:
if not hit_except:
await aexit (manager, None, None, None)

Seealso__aenter__ () and__aexit__ () for details.
Itisa SyntaxError touse an async with statement outside the body of a coroutine function.
See also:

PEP 492 - Coroutines with async and await syntax The proposal that made coroutines a proper standalone concept
in Python, and added supporting syntax.

8.9. Coroutines 123

https://peps.python.org/pep-0492/

The Python Language Reference, Release 3.11.1

124 Chapter 8. Compound statements

CHAPTER
NINE

TOP-LEVEL COMPONENTS

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or as
program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in these
cases.

9.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have a notion of
a complete Python program. A complete Python program is executed in a minimally initialized environment: all built-in
and standard modules are available, but none have been initialized, except for sy s (various system services), builtins
(built-in functions, exceptions and None) and __main__. The latter is used to provide the local and global namespace
for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and execute a complete program but
reads and executes one statement (possibly compound) at a time. The initial environment is identical to that of a complete
program; each statement is executed in the namespace of __main_ .

A complete program can be passed to the interpreter in three forms: with the —c string command line option, as a file
passed as the first command line argument, or as standard input. If the file or standard input is a tty device, the interpreter
enters interactive mode; otherwise, it executes the file as a complete program.

9.2 File input

All input read from non-interactive files has the same form:

file_input = (NEWLINE | statement)*

This syntax is used in the following situations:
* when parsing a complete Python program (from a file or from a string);
¢ when parsing a module;

* when parsing a string passed to the exec () function;

125

The Python Language Reference, Release 3.11.1

9.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input = [stmt_1list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed to help
the parser detect the end of the input.

9.4 Expression input

eval () is used for expression input. It ignores leading whitespace. The string argument to eval () must have the
following form:

eval_input = expression_list NEWLINE*

126 Chapter 9. Top-level components

CHAPTER
TEN

FULL GRAMMAR SPECIFICATION

This is the full Python grammar, derived directly from the grammar used to generate the CPython parser (see Gram-
mar/python.gram). The version here omits details related to code generation and error recovery.

The notation is a mixture of EBNF and PEG. In particular, & followed by a symbol, token or parenthesized group indicates
a positive lookahead (i.e., is required to match but not consumed), while ! indicates a negative lookahead (i.e., is required
not to match). We use the | separator to mean PEG’s “ordered choice” (written as / in traditional PEG grammars). See
PEP 617 for more details on the grammar’s syntax.

PEG grammar for Python

General grammatical elements and rules:

* Strings with double quotes (") denote SOFT KEYWORDS

* Strings with single quotes (') denote KEYWORDS

* Upper case names (NAME) denote tokens in the Grammar/Tokens file

* Rule names starting with "invalid " are used for specialized syntax errors

— These rules are NOT used in the first pass of the parser.

— Only if the first pass fails to parse, a second pass including the invalid
rules will be executed.

- If the parser fails in the second phase with a generic syntax error, the
location of the generic failure of the first pass will be used (this avoids
reporting incorrect locations due to the invalid rules).

- The order of the alternatives involving invalid rules matter
(like any rule in PEG).

Grammar Syntax (see PEP 617 for more information):

rule_name: expression
Optionally, a type can be included right after the rule name, which
specifies the return type of the C or Python function corresponding to the
rule:

rule_name [return_type]: expression
If the return type is omitted, then a void * is returned in C and an Any 1in
Python.

el ez
Match el, then match eZ2.

el | e2
Match el or eZ2.
The first alternative can also appear on the line after the rule name for
formatting purposes. In that case, a | must be used before the first

S o R T R Y T R Y T R Y e R P R R P R R T HR R T HR R R HR %

(continues on next page)

127

https://github.com/python/cpython/tree/3.11/Grammar/python.gram
https://github.com/python/cpython/tree/3.11/Grammar/python.gram
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://peps.python.org/pep-0617/

The Python Language Reference, Release 3.11.1

(continued from previous page)

alternative, 1like so:
rule_name[return_type]:
| first_alt
| second_alt
(e)
Match e (allows also to use other operators in the group like '(e)*')
[e] or e?
Optionally match e.
e*
Match zero or more occurrences of e.
e+
Match one or more occurrences of e.
s.e+
Match one or more occurrences of e, separated by s. The generated parse tree
does not include the separator. This is otherwise identical to (e (s e)*).
&e
Succeed if e can be parsed, without consuming any input.
le
Fail if e can be parsed, without consuming any iInput.

Commit to the current alternative, even 1if it fails to parse.

S oH O R R H R R O R R W O R W S R W H R W

STARTING RULES

file: [statements] ENDMARKER

interactive: statement_newline

eval: expressions NEWLINE* ENDMARKER

func_type: '(' [type_expressions] ')' '->' expression NEWLINE* ENDMARKER
fstring: star_expressions

GENERAL STATEMENTS
== ——

statements: statement+
statement: compound_stmt | simple_stmts

statement_newline:
| compound_stmt NEWLINE
| simple_stmts
| NEWLINE
| ENDMARKER

simple_stmts:
| simple_stmt !';' NEWLINE # Not needed, there for speedup
[';'.simple_stmt+ [';'] NEWLINE

NOTE: assignment MUST precede expression, else parsing a simple assignment
will throw a SyntaxError.
simple_stmt:

| assignment

| star_expressions

| return_stmt

| import_stmt

| raise_stmt

(continues on next page)

128 Chapter 10. Full Grammar specification

The Python Language Reference, Release 3.11.1

(continued from previous page)

| 'pass'

| del_stmt

| yield_stmt

| assert_stmt

| 'break'

| 'continue'

| global_stmt

| nonlocal_stmt

compound_stmt:

| function_def
| if_stmt
| class_def
| with_stmt
| for_stmt
| try_stmt
| while_stmt
| match_stmt

SIMPLE STATEMENTS

NOTE: annotated_rhs may start with 'yield'; yield expr must start with 'yield'

assignment:
| NAME ':' expression ['=' annotated_rhs]
[("('" single_target ')'
| single_subscript_attribute_target) ':' expression ['=' annotated_rhs]
| (star_targets '=')+ (yield_expr | star_expressions) !'=' [TYPE_COMMENT]
| single_target augassign ~ (yield_expr | star_expressions)
annotated_rhs: yield_expr | star_expressions
augassign:
[T+="
[—
[Tx="
[re="
I v/=l
['s="
[r&="
I V|=l
| TA_
| <=1
| Ts>=1
| rHRx=
[r//="

return_stmt:
| 'return' [star_expressions]

raise_stmt:
i Xpr i Xpr i
| 'raise' e ession ['from' e ession |
| 'raise'

global_stmt: 'global' ','.NAME+

nonlocal_stmt: 'nonlocal' ', ' .NAME+

(continues on next page)

129

The Python Language Reference, Release 3.11.1

(continued from previous page)

del_stmt:
| 'del' del_targets &(';' | NEWLINE)

yield_stmt: yield_expr
assert_stmt: 'assert' expression [',' expression]
import_stmt: import_name | import_from

Import statements

import_name: 'import' dotted_as_names
note below: the ('.' | '...') is necessary because '...' is tokenized as ELLIPSIS
import_from:
| '"from' ('.' | '...')* dotted_name 'import' import_from_targets
["from' ('.' | '...")t+ 'import' import_from_targets
import_from_targets:
['"('" import_from_as_names [','] ")'
| import_from_as_names !','
‘ Tk
import_from_as_names:
[', '".import_from_as_name+
import_from_as_name:
| NAME ['as' NAME]
dotted_as_names:
| ','".dotted_as_name+
dotted_as_name:
| dotted_name ['as' NAME]
dotted_name:
| dotted_name '.' NAME
| NAME

COMPOUND STATEMENTS

,,,,,,,,,,,,,,,
block:
| NEWLINE INDENT statements DEDENT
| simple_stmts
decorators: ('@' named_expression NEWLINE)+

Class definitions

class_def:
| decorators class_def_raw
| class_def_ raw

class_def_raw:
| 'elass' NAME [' (' [arguments] ')'] ':' block

Function definitions

(continues on next page)

130 Chapter 10. Full Grammar specification

The Python Language Reference, Release 3.11.1

(continued from previous page)

function_def:
| decorators function_def raw
| function_def_ raw

function_def raw:
| 'def' NAME '(' [params] ')' ['->' expression] ':' [func_type_comment] block
| ASYNC 'def' NAME ' (' [params] ')' ['->' expression] ':' [func_type_comment].
—Dblock

Function parameters

,,,,,,,,,,,,,,,,,,,
params:
| parameters
parameters:
| slash_no_default param_no_default* param _with_default* [star_etc]
| slash_with_default param_with_default* [star_etc]
| param_no_default+ param_with_default* [star_etc]
| param_with_default+ [star_etc]
| star_etc
Some duplication here because we can't write (',' | &')"),

which is because we don't support empty alternatives (yet).

slash_no_default:
| param_no_default+ '/' ',
| param_no_default+ '/' &")'
slash_with_default:
| param_no_default* param_with_default+ '/' ',
| param_no_default* param_with_default+ '/' &')'

star_etc:
| '"*' param_no_default param_maybe_default* [kwds]
| '"*' param_no_default_star_annotation param_ maybe_default* [kwds]
|
|

'x1' ', ' param_maybe_default+ [kwds]

kwds
kwds:

["**' param_no_default

One parameter. This *includes* a following comma and type comment.
#
There are three styles:
— No default
— With default
— Maybe with default
#
There are two alternative forms of each, to deal with type comments:
— Ends in a comma followed by an optional type comment
— No comma, optional type comment, must be followed by close paren
The latter form is for a final parameter without trailing comma.
#

param_no_default:

(continues on next page)

131

The Python Language Reference, Release 3.11.1

(continued from previous page)

| param ',' TYPE_COMMENT?

| param TYPE_COMMENT? &')'
param_no_default_star_annotation:

| param_star_annotation ',' TYPE_COMMENT?

| param_star_annotation TYPE_COMMENT? &')'
param_with_default:

| param default ',' TYPE_COMMENT?

| param default TYPE_COMMENT? &')'
param_maybe_default:

| param default? ',' TYPE_COMMENT?

| param default? TYPE_COMMENT? &')'
param: NAME annotation?
param_star_annotation: NAME star_annotation

annotation: ':' expression
star_annotation: ':' star_expression
default: '=' expression | invalid_default

If statement

,,,,,,,,,,,,
if_stmt:

| '"if' named_expression ':' block elif_stmt

| "if' named_expression ':' block [else_block]
elif_stmt:

| 'elif' named_expression ':' block elif_stmt

| 'elif' named_expression ':' block [else_block]
else_block:

| 'else' ':' block

While statement

while_stmt:
| 'while' named_expression ':' block [else_block]

For statement

,,,,,,,,,,,,,
for_stmt:
| '"for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_block]
| ASYNC 'for' star_targets 'in' ~ star_expressions ':' [TYPE_COMMENT] block [else_
<—>blOCk]

With statement

,,,,,,,,,,,,,,
with_stmt:
| 'with' ' (' ','.with_item+ ','? ")' ':' block
| 'with' ','.with_item+ ':' [TYPE_COMMENT] block
| ASYNC 'with' '(' ','.with_item+ ','?2 '")' ':' block
| ASYNC 'with' ','.with_item+ ':' [TYPE_COMMENT] block

with_item:
| expression 'as' star_target &(',' | ")'" | ':")
| expression

Try statement

(continues on next page)

132 Chapter 10. Full Grammar specification

The Python Language Reference, Release 3.11.1

(continued from previous page)

,,,,,,,,,,,,,
try_stmt:
| 'try' ':' block finally_block
| 'try' ':' block except_block+ [else_block] [finally_block]
| 'try' ':' block except_star_block+ [else_block] [finally_block]

Except statement

except_block:

| 'except' expression ['as' NAME] ':' block

| 'except' ':' block
except_star_block:

| 'except' '*' expression ['as' NAME] ':' block
finally_block:

| '"finally' ':' block

Match statement

match_stmt:
| "match" subject_expr ':' NEWLINE INDENT case_block+ DEDENT

subject_expr:
| star_named_expression ',' star_named_expressions?
| named_expression

case_block:
| "case" patterns guard? ':' block

guard: 'if' named_expression

patterns:
| open_sequence_pattern
| pattern

pattern:
| as_pattern
| or_pattern

as_pattern:
| or_pattern 'as' pattern_capture_target

or_pattern:
| "|'.closed_pattern+

closed_pattern:

| literal_pattern
| capture_pattern

| wildcard_pattern
| value_pattern

| group_pattern

| sequence_pattern
| mapping_pattern

| class_pattern

(continues on next page)

133

The Python Language Reference, Release 3.11.1

(continued from previous page)

Literal patterns are used for equality and identity constraints

literal_pattern:

| signed_number ! ('+' | '-")
| complex_number
| strings
| '"None'
| 'True'
| 'False'

Literal expressions are used to restrict permitted mapping pattern

literal_expr:

| signed_number ! ('+' | '-")
| complex_number
| strings
| '"None'
| 'True'
| 'False'

complex_number:
| signed_real_number '+' imaginary_number
| signed_real_number '-' imaginary_number

signed_number:
| NUMBER
| '"-'" NUMBER

signed_real_number:
| real_number
| '"-'" real_number

real_number:
| NUMBER

imaginary_number:
| NUMBER

capture_pattern:
| pattern_capture_target

pattern_capture_target:
‘ !Il n NAME !(l.l ‘ l(l ‘ l:l)

wildcard_pattern:
‘ " "

value_pattern:
Lattr L.t] =)

attr:
| name_or_attr '.' NAME

name_or_attr:
| attr
| NAME

group_pattern:

keys

(continues on next page)

134 Chapter 10. Full Grammar specification

The Python Language Reference, Release 3.11.1

(continued from previous page)

["(' pattern ")'

sequence_pattern:
| '"[' maybe_sequence_pattern? ']’
| '"(' open_sequence_pattern? ')'

open_sequence_pattern:
| maybe_star_pattern ',' maybe_sequence_pattern?

maybe_sequence_pattern:
| ', '".maybe_star_patternt+ ','?

maybe_star_pattern:
| star_pattern
| pattern

star_pattern:
| '"*' pattern_capture_target
| '*' wildcard_pattern

mapping_pattern:
‘ l{l l}l
| '{'" double_star_pattern ','? '}’
["{'" items_pattern ',' double_star_pattern ','? '}'
| '{'" items_pattern ','? '}’

items_pattern:
| ', '.key_value_pattern+

key_value_pattern:
| (literal_expr | attr) ':' pattern

double_star_pattern:
["**' pattern_capture_target

class_pattern:
| name_or_attr '(' ")
| name_or_attr '(' positional_patterns ','? ')'
| name_or_attr '(' keyword_patterns ','? ')'
| name_or_attr '(' positional_patterns ',' keyword_patterns ','? ')'

positional_patterns:
[', '".pattern+

keyword_patterns:
| '",'.keyword_pattern+

keyword_pattern:
| NAME '=' pattern

EXPRESSIONS

expressions:
| expression (',' expression)+ [',']
Al L}

| expression ',
| expression

(continues on next page)

135

The Python Language Reference, Release 3.11.1

(continued from previous page)

expression:
| disjunction 'if' disjunction 'else' expression
| disjunction
| lambdef

yield_expr:
| 'yield' 'from' expression
| 'yield' [star_expressions]

star_expressions:
| star_expression (',' star_expression)+ [',']
| star_expression ','
| star_expression

star_expression:
| "' bitwise_or
| expression

star_named_expressions: ','.star_named_expression+ [', ']

star_named_expression:
| "' bitwise_or
| named_expression

assignment_expression:
| NAME ':=' ~ expression

named_expression:
| assignment_expression
| expression !':="'

disjunction:
| conjunction ('or' conjunction)+
| conjunction

conjunction:
| inversion ('and' inversion)+
| inversion

inversion:
| "mot' inversion
| comparison

Comparison operators

comparison:
| bitwise_or compare_op_bitwise_or_pair+
| bitwise_or

compare_op_bitwise_or_pair:
| eq_bitwise_or
| noteg bitwise_or
| lte_bitwise_or
| 1lt_bitwise_or
| gte_bitwise_or

(continues on next page)

136 Chapter 10. Full Grammar specification

The Python Language Reference, Release 3.11.1

(continued from previous page)

| gt_bitwise_or
| notin_bitwise_or
| in_bitwise_or
| isnot_bitwise_or
| is_bitwise_or

eg _bitwise_or: '==' bitwise_or
noteq_bitwise_or:

| ('!='") bitwise_or
lte_bitwise_or: '<=' bitwise_or
lt_bitwise_or: '<' bitwise_or
gte_bitwise_or: '>=' bitwise_or
gt_bitwise_or: '>' bitwise_or
notin_bitwise_or: 'mot' 'in' bitwise_or
in_bitwise_or: 'in' bitwise_or
isnot_bitwise_or: 'is' 'not' bitwise_or
is_bitwise_or: 'is' bitwise_or

Bitwise operators

bitwise_or:
| bitwise_or '|' bitwise_xor
| bitwise_xor

bitwise_xor:
| bitwise_xor '”~' bitwise_and
| bitwise_and

bitwise_and:
| bitwise_and '&' shift_expr
| shift_expr

shift_expr:
| shift_expr '<<' sum
| shift_expr '>>' sum
| sum

Arithmetic operators

,,,,,,,,,,,,,,,,,,,,

sum:
| sum '+' term
| sum '-' term
| term

term:
| term '*' factor
| term '/' factor
| term '//' factor
| term '$%' factor
| term '@' factor
| factor

factor:

| '"+' factor
| '=-' factor

(continues on next page)

137

The Python Language Reference, Release 3.11.1

(continued from previous page)

factor
| power

power:

Tk T

| await_primary factor

| await_primary

Primary elements

Primary elements are things like
—"obj (something)'", "obj"

"obj.something.something”,

await_primary:
| AWAIT primary
| primary

primary:

| primary '.' NAME
primary genexp
primary ' (' [arguments]
primary '[' e
atom

|
\ ')
| slices
|
slices:

| slice !',"

['",'".(slice | starred_expression)+

']

| [expression] ':'
| named_expression

[expression] [':' [expression]]

(tuple |
(list |
(dict |

group | genexp)
listcomp)

set | dictcomp | setcomp)

(yield_expr |

named_expression)

Lambda functions

lambdef:

| 'lambda' [lambda_params] ':' expression

lambda_params:
| lambda_parameters

lambda_parameters etc.

"obj[something]",

duplicates parameters but without annotations

(continues on next page)

138

Chapter 10. Full Grammar specification

The Python Language Reference, Release 3.11.1

(continued from previous page)

or type comments, and if there's no comma after a parameter, we expect
a colon, not a close parenthesis. (For more, see parameters above.)
#
lambda_parameters:
| lambda_slash_no_default lambda_param_no_default* lambda_param_with_default*.
— [lambda_star_etc]
| lambda_slash_with_default lambda_param_with_default* [lambda_star_etc]
| lambda_param_no_default+ lambda_param_with_default* [lambda_star_etc]
| lambda_param_with_default+ [lambda_star_etc]
| lambda_star_etc

lambda_slash_no_default:
| lambda_param_no_default+ '/' ', '
| lambda_param_no_default+ '/' &':'

lambda_slash_with_default:
| lambda_param_no_default* lambda_param_with_default+ '/' ','
| lambda_param_no_default* lambda_param_with_default+ '/' &':'

lambda_star_etc:
['"*' lambda_param_no_default lambda_param_maybe_default* [lambda_kwds]
['*' ', ' lambda_param_maybe_default+ [lambda_kwds]
| lambda_kwds

lambda_kwds:
| '**' lambda_param_no_default

lambda_param_no_default:

| lambda_param ','

| lambda_param &':'
lambda_param_with_default:

| lambda_param default ','

| lambda_param default &':'
lambda_param_maybe_default:

| lambda_param default? ','

| lambda_param default? &':
lambda_param: NAME

LITERALS

strings: STRING+

list:
| '"['" [star_named_expressions] ']'
tuple:
| '('" [star_named_expression ',' [star_named_expressions] 1T ")
set: '{' star_named_expressions '}'
Dicts
,,,,,
dict
| '"{'" [double_starred_kvpairs] '}'

(continues on next page)

139

The Python Language Reference, Release 3.11.1

(continued from previous page)

double_starred_kvpairs: ','.double_starred_kvpair+ [',']
double_starred_kvpair:
| "**' bitwise_or
| kvpair
kvpair: expression ':' expression
Comprehensions & Generators
for_if_ clauses:

| for_if clause+

for_if_clause:

| ASYNC 'for' star_targets 'in' ~ disjunction ('if' disjunction)*
| "for' star_targets 'in' ~ disjunction ('if' disjunction)*
listcomp:

| '"[' named_expression for_if_clauses ']'

setcomp:
| '"{' named_expression for_if_clauses '}'

genexp:

["('" (assignment_expression | expression !':=') for_if_ clauses ')'

dictcomp:
| '"{'" kvpair for_if_clauses '}'

FUNCTION CALL ARGUMENTS

mm=mmmmmm—m—e—m—e— e
arguments:
| args [','] &")'
args:
| ','".(starred_expression | (assignment_expression | expression !':=') !'=")+ [',
— ' kwargs |
| kwargs
kwargs:
| '",'".kwarg_or_starred+ ',' ','.kwarg_or_double_starred+

| ', '".kwarg_or_starred+
| '",'.kwarg_or_double_starred+

starred_expression:
| '*' expression

kwarg_or_starred:
| NAME '=' expression
| starred_expression

kwarg_or_double_starred:
| NAME '=' expression
| "**' expression

(continues on next page)

140 Chapter 10. Full Grammar specification

The Python Language Reference, Release 3.11.1

(continued from previous page)

ASSIGNMENT TARGETS

NOTE: star_targets may contain *bitwise_or, targets may not.
star_targets:

| star_target !','

| star_target (',' star_target)* [',']

star_targets_list_seq: ','.star_target+ [',"']

star_targets_tuple_seq:
| star_target (',' star_target)+ [',']
| star_target ','

star_target:
['x' (!'*' star_target)
| target_with_star_atom

target_with_star_atom:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead
| star_atom

star_atom:

| NAME

| '"(' target_with_star_atom ')'

["(' [star_targets_tuple_seq] ')'
| '['" [star_targets_list_seq] ']'

single_target:
| single_subscript_attribute_target
| NAME
| "(' single_target ')'

single_subscript_attribute_target:
| t_primary '.' NAME !t_lookahead
| t_primary '[' slices ']' !t_lookahead

t_primary:
| t_primary '.' NAME &t_lookahead
| t_primary '[' slices ']' &t_lookahead
| t_primary genexp &t_lookahead
| t_primary '(' [arguments] ')' &t_lookahead
| atom &t_lookahead

t_lookahead: "(' | "['" | '."'

Targets for del statements

del_targets: ','.del_target+ [',']

del_target:
| t_primary '.' NAME !t_lookahead

(continues on next page)

14

The Python Language Reference, Release 3.11.1

(continued from previous page)

| t_primary '[' slices ']' !t_lookahead
| del_t_atom

del_t_atom:
| NAME
["('" del_target '")'
["('" [del_targets] '")'
| '[" [del_targets] ']'

TYPING ELEMENTS

type_expressions allow */** but ignore them
type_expressions:

', '.expressiont ',' '*' expression ',' '**' expression
', '.expressiont ',' '*' expression
', '.expressiont ',' '"**' expression

|
\
\
| '"*' expression ',' '"**' expression
| '"*' expression
| "**' expression
| '",'.expression+
func_type_comment:
| NEWLINE TYPE_COMMENT & (NEWLINE INDENT) # Must be followed by indented block
| TYPE_COMMENT

142 Chapter 10. Full Grammar specification

APPENDIX
A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed interactively
in the interpreter.

. Can refer to:

* The default Python prompt of the interactive shell when entering the code for an indented code block, when
within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or triple quotes),
or after specifying a decorator.

e The E11ipsis built-in constant.

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which can
be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as 1 ib2t 03; a standalone entry point is provided as Tools/scripts/
2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when other
techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods). ABCs introduce
virtual subclasses, which are classes that don’t inherit from a class but are still recognized by isinstance () and
issubclass () ;see the abc module documentation. Python comes with many built-in ABCs for data structures
(in the collections.abc module), numbers (in the numbers module), streams (in the i o module), import
finders and loaders (in the import1lib.abc module). You can create your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by convention
as a rype hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class attributes,
and functions are stored in the __annotations___ special attribute of modules, classes, and functions, respec-
tively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality. Also see
annotations-howto for best practices on working with annotations.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:

e keyword argument: an argument preceded by an identifier (e.g. name=) in a function call or passed as a value
in a dictionary preceded by * *. For example, 3 and 5 are both keyword arguments in the following calls to
complex ():

complex (real=3, imag=b5)
complex (**{'real': 3, 'imag': 5})

* positional argument: an argument that is not a keyword argument. Positional arguments can appear at the
beginning of an argument list and/or be passed as elements of an iterable preceded by *. For example, 3 and
5 are both positional arguments in the following calls:

143

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

The Python Language Reference, Release 3.11.1

complex (3, D5)
complex (* (3, 5))

Arguments are assigned to the named local variables in a function body. See the Calls section for the rules governing
this assignment. Syntactically, any expression can be used to represent an argument; the evaluated value is assigned
to the local variable.

See also the parameter glossary entry, the FAQ question on the difference between arguments and parameters, and
PEP 362.

asynchronous context manager An object which controls the environment seen in an async with statement by
defining __aenter__ () and __aexit__ () methods. Introduced by PEP 492.

asynchronous generator A function which returns an asynchronous generator iterator. It looks like a coroutine function
defined with async def except that it contains yie1d expressions for producing a series of values usable in an
async for loop.

Usually refers to an asynchronous generator function, but may refer to an asynchronous generator iterator in some
contexts. In cases where the intended meaning isn’t clear, using the full terms avoids ambiguity.

An asynchronous generator function may contain awa i t expressions as well as async for,and async with
Statements.

asynchronous generator iterator An object created by a asynchronous generator function.

This is an asynchronous iterator which when called using the __anext__ () method returns an awaitable object
which will execute the body of the asynchronous generator function until the next y i e 1d expression.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the asynchronous generator iterator effectively resumes with another awaitable
returned by __anext__ (), it picks up where it left off. See PEP 492 and PEP 525.

asynchronous iterable An object, that can be used in an async for statement. Must return an asynchronous iterator
fromits __aiter__ () method. Introduced by PEP 492.

asynchronous iterator An object that implements the __aiter_ () and __anext__ () methods. __anext_
must return an awaitable object. async for resolves the awaitables returned by an asynchronous iterator’s
__anext__ () method until it raises a StopAsyncIteration exception. Introduced by PEP 492.

attribute A value associated with an object which is usually referenced by name using dotted expressions. For example,
if an object o has an attribute a it would be referenced as o.a.

It is possible to give an object an attribute whose name is not an identifier as defined by Identifiers and keywords,
for example using setattr (), if the object allows it. Such an attribute will not be accessible using a dotted
expression, and would instead need to be retrieved with getattr ().

awaitable An object that can be used in an awa 1 t expression. Can be a coroutine or an object withan __await__ ()
method. See also PEP 492.

BDFL Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python’s creator.

binary file A file object able to read and write bytes-like objects. Examples of binary files are files opened in binary mode
("rb', 'wb' or 'rb+"'), sys.stdin.buffer, sys.stdout .buffer, and instances of 10.BytesIO
and gzip.GzipFile.

See also rext file for a file object able to read and write st r objects.

borrowed reference In Python’s C API, a borrowed reference is a reference to an object. It does not modify the object
reference count. It becomes a dangling pointer if the object is destroyed. For example, a garbage collection can
remove the last strong reference to the object and so destroy it.

144 Appendix A. Glossary

https://peps.python.org/pep-0362/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://gvanrossum.github.io/

The Python Language Reference, Release 3.11.1

Calling Py_INCREF () on the borrowed reference is recommended to convert it to a strong reference in-place,
except when the object cannot be destroyed before the last usage of the borrowed reference. The Py_NewRef ()
function can be used to create a new strong reference.

bytes-like object An object that supports the bufferobjects and can export a C-contiguous buffer. This includes all
bytes,bytearray,and array.array objects, as well as many common memoryview objects. Bytes-like
objects can be used for various operations that work with binary data; these include compression, saving to a binary
file, and sending over a socket.

Some operations need the binary data to be mutable. The documentation often refers to these as “read-write bytes-
like objects”. Example mutable buffer objects include bytearrayandamemoryviewof abytearray. Other
operations require the binary data to be stored in immutable objects (“read-only bytes-like objects”); examples of
these include bytes and amemoryview of a bytes object.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the CPython
interpreter. The bytecode is also cached in . pyc files so that executing the same file is faster the second time
(recompilation from source to bytecode can be avoided). This “intermediate language” is said to run on a virfual
machine that executes the machine code corresponding to each bytecode. Do note that bytecodes are not expected
to work between different Python virtual machines, nor to be stable between Python releases.

A list of bytecode instructions can be found in the documentation for the dis module.

callable A callable is an object that can be called, possibly with a set of arguments (see argument), with the following
syntax:

callable (argumentl, argument2, ...)

A function, and by extension a method, is a callable. An instance of a class that implements the ___call__ ()
method is also a callable.

callback A subroutine function which is passed as an argument to be executed at some point in the future.

class A template for creating user-defined objects. Class definitions normally contain method definitions which operate
on instances of the class.

class variable A variable defined in a class and intended to be modified only at class level (i.e., not in an instance of the
class).

complex number An extension of the familiar real number system in which all numbers are expressed as a sum of a real
part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square root of —1),
often written i in mathematics or j in engineering. Python has built-in support for complex numbers, which are
written with this latter notation; the imaginary part is written with a Jj suffix, e.g., 3+17. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a fairly advanced mathematical feature.
If you’re not aware of a need for them, it’s almost certain you can safely ignore them.

context manager An object which controls the environment seen in a wi t h statement by defining __enter__ () and
__exit__ () methods. See PEP 343.

context variable A variable which can have different values depending on its context. This is similar to Thread-Local
Storage in which each execution thread may have a different value for a variable. However, with context variables,
there may be several contexts in one execution thread and the main usage for context variables is to keep track of
variables in concurrent asynchronous tasks. See contextvars.

contiguous A buffer is considered contiguous exactly if it is either C-contiguous or Fortran contiguous. Zero-dimensional
buffers are C and Fortran contiguous. In one-dimensional arrays, the items must be laid out in memory next to each
other, in order of increasing indexes starting from zero. In multidimensional C-contiguous arrays, the last index
varies the fastest when visiting items in order of memory address. However, in Fortran contiguous arrays, the first
index varies the fastest.

145

https://peps.python.org/pep-0343/

The Python Language Reference, Release 3.11.1

coroutine Coroutines are a more generalized form of subroutines. Subroutines are entered at one point and exited at
another point. Coroutines can be entered, exited, and resumed at many different points. They can be implemented
with the async def statement. See also PEP 492.

coroutine function A function which returns a coroutine object. A coroutine function may be defined with the async
de £ statement, and may contain await, async for,and async with keywords. These were introduced by
PEP 492.

CPython The canonical implementation of the Python programming language, as distributed on python.org. The term
“CPython” is used when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the @wrapper
syntax. Common examples for decorators are classmethod () and staticmethod ().

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically equivalent:

def f (arg):
f = staticmethod (f)

@staticmethod
def f (arqg):

The same concept exists for classes, but is less commonly used there. See the documentation for function definitions
and class definitions for more about decorators.

descriptor Any object which defines the methods __get__ (), set_ (),or __delete__ (). When a class
attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Normally, using a.b to
get, set or delete an attribute looks up the object named b in the class dictionary for a, but if b is a descriptor, the
respective descriptor method gets called. Understanding descriptors is a key to a deep understanding of Python
because they are the basis for many features including functions, methods, properties, class methods, static methods,
and reference to super classes.

For more information about descriptors’ methods, see Implementing Descriptors or the Descriptor How To Guide.

dictionary An associative array, where arbitrary keys are mapped to values. The keys can be any object with
__hash__ () and __eqg__ () methods. Called a hash in Perl.

dictionary comprehension A compact way to process all or part of the elements in an iterable and return a dictionary
with the results. results = {n: n ** 2 for n in range (10) } generates a dictionary containing
key n mapped to value n ** 2. See Displays for lists, sets and dictionaries.

dictionary view The objects returned from dict.keys (), dict.values (), and dict.items () are called
dictionary views. They provide a dynamic view on the dictionary’s entries, which means that when the dictionary
changes, the view reflects these changes. To force the dictionary view to become a full listuse 1ist (dictview).
See dict-views.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into the ___doc___ attribute of the enclosing class,
function or module. Since it is available via introspection, it is the canonical place for documentation of the object.

duck-typing A programming style which does not look at an object’s type to determine if it has the right interface;
instead, the method or attribute is simply called or used (“If it looks like a duck and quacks like a duck, it must
be a duck.”) By emphasizing interfaces rather than specific types, well-designed code improves its flexibility by
allowing polymorphic substitution. Duck-typing avoids tests using t ype () or isinstance (). (Note, however,
that duck-typing can be complemented with abstract base classes.) Instead, it typically employs hasattr () tests
or EAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence of valid
keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is characterized

146 Appendix A. Glossary

https://peps.python.org/pep-0492/
https://peps.python.org/pep-0492/
https://www.python.org

The Python Language Reference, Release 3.11.1

by the presence of many ¢t ry and except statements. The technique contrasts with the LBYL style common to
many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an accumulation
of expression elements like literals, names, attribute access, operators or function calls which all return a value.
In contrast to many other languages, not all language constructs are expressions. There are also statements which
cannot be used as expressions, such as while. Assignments are also statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user code.

f-string String literals prefixed with ' £' or 'F' are commonly called “f-strings” which is short for formatted string
literals. See also PEP 498.

file object An object exposing a file-oriented API (with methods such as read () or write ()) to an underlying re-
source. Depending on the way it was created, a file object can mediate access to a real on-disk file or to another
type of storage or communication device (for example standard input/output, in-memory buffers, sockets, pipes,
etc.). File objects are also called file-like objects or streams.

There are actually three categories of file objects: raw binary files, buffered binary files and fext files. Their interfaces
are defined in the i o module. The canonical way to create a file object is by using the open () function.

file-like object A synonym for file object.

filesystem encoding and error handler Encoding and error handler used by Python to decode bytes from the operating
system and encode Unicode to the operating system.

The filesystem encoding must guarantee to successfully decode all bytes below 128. If the file system encoding
fails to provide this guarantee, API functions can raise UnicodeError.

The sys.getfilesystemencoding () and sys.getfilesystemencodeerrors () functions can
be used to get the filesystem encoding and error handler.

The filesystem encoding and error handler are configured at Python startup by the PyConfig_Read () function:
see filesystem_encodingand filesystem_errors members of PyConfig.

See also the locale encoding.
finder An object that tries to find the loader for a module that is being imported.

Since Python 3.3, there are two types of finder: meta path finders for use with sys .meta_path, and path entry
finders for use with sys .path_hooks.

See PEP 302, PEP 420 and PEP 451 for much more detail.

floor division Mathematical division that rounds down to nearest integer. The floor division operator is / /. For example,
the expression 11 // 4 evaluates to 2 in contrast to the 2. 75 returned by float true division. Note that (-11)
// 4is -3 because that is —2 . 75 rounded downward. See PEP 238.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments which
may be used in the execution of the body. See also parameter, method, and the Function definitions section.

function annotation An annotation of a function parameter or return value.

Function annotations are usually used for rype hints: for example, this function is expected to take two int argu-
ments and is also expected to have an int return value:

def sum_two_numbers(a: int, b: int) —-> int:
return a + b

Function annotation syntax is explained in section Function definitions.

See variable annotation and PEP 484, which describe this functionality. Also see annotations-howto for best
practices on working with annotations.

147

https://peps.python.org/pep-0498/
https://peps.python.org/pep-0302/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0451/
https://peps.python.org/pep-0238/
https://peps.python.org/pep-0484/

The Python Language Reference, Release 3.11.1

__future__ A future statement, from __future__ import <feature>, directs the compiler to compile the
current module using syntax or semantics that will become standard in a future release of Python. The
__future__ module documents the possible values of feature. By importing this module and evaluating its
variables, you can see when a new feature was first added to the language and when it will (or did) become the

default:
>>> import __ future_
>>> _ future_ .division

_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage collection
via reference counting and a cyclic garbage collector that is able to detect and break reference cycles. The garbage
collector can be controlled using the gc module.

generator A function which returns a generator iterator. It looks like a normal function except that it contains yield
expressions for producing a series of values usable in a for-loop or that can be retrieved one at a time with the
next () function.

Usually refers to a generator function, but may refer to a generator iterator in some contexts. In cases where the
intended meaning isn’t clear, using the full terms avoids ambiguity.

generator iterator An object created by a generator function.

Each yield temporarily suspends processing, remembering the location execution state (including local variables
and pending try-statements). When the generator iterator resumes, it picks up where it left off (in contrast to
functions which start fresh on every invocation).

generator expression An expression that returns an iterator. It looks like a normal expression followed by a for clause
defining a loop variable, range, and an optional if clause. The combined expression generates values for an en-
closing function:

>>> sum(i*i for i in range (10)) # sum of squares 0, 1, 4, ... 81
285

generic function A function composed of multiple functions implementing the same operation for different types. Which
implementation should be used during a call is determined by the dispatch algorithm.

See also the single dispatch glossary entry, the functools.singledispatch () decorator, and PEP 443.

generic type A rype that can be parameterized; typically a container class such as 1ist or dict. Used for type hints
and annotations.

For more details, see generic alias types, PEP 483, PEP 484, PEP 585, and the t yping module.
GIL See global interpreter lock.

global interpreter lock The mechanism used by the CPyrhon interpreter to assure that only one thread executes Python
bytecode at a time. This simplifies the CPython implementation by making the object model (including critical
built-in types such as dict) implicitly safe against concurrent access. Locking the entire interpreter makes it
easier for the interpreter to be multi-threaded, at the expense of much of the parallelism afforded by multi-processor
machines.

However, some extension modules, either standard or third-party, are designed so as to release the GIL when doing
computationally intensive tasks such as compression or hashing. Also, the GIL is always released when doing 1/O.

Past efforts to create a “free-threaded” interpreter (one which locks shared data at a much finer granularity) have not
been successful because performance suffered in the common single-processor case. It is believed that overcoming
this performance issue would make the implementation much more complicated and therefore costlier to maintain.

hash-based pyc A bytecode cache file that uses the hash rather than the last-modified time of the corresponding source
file to determine its validity. See Cached bytecode invalidation.

148 Appendix A. Glossary

https://peps.python.org/pep-0443/
https://peps.python.org/pep-0483/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python Language Reference, Release 3.11.1

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needsa __hash__ ()
method), and can be compared to other objects (itneedsan __eq___ () method). Hashable objects which compare
equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash
value internally.

Most of Python’s immutable built-in objects are hashable; mutable containers (such as lists or dictionaries) are not;
immutable containers (such as tuples and frozensets) are only hashable if their elements are hashable. Objects which
are instances of user-defined classes are hashable by default. They all compare unequal (except with themselves),
and their hash value is derived from their id ().

IDLE An Integrated Development and Learning Environment for Python. idle is a basic editor and interpreter environ-
ment which ships with the standard distribution of Python.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object cannot
be altered. A new object has to be created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a dictionary.

import path A list of locations (or path entries) that are searched by the path based finder for modules to import. During
import, this list of locations usually comes from sy s . path, but for subpackages it may also come from the parent
package’s __path___ attribute.

importing The process by which Python code in one module is made available to Python code in another module.
importer An object that both finds and loads a module; both a finder and loader object.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the interpreter
prompt, immediately execute them and see their results. Just launch python with no arguments (possibly by
selecting it from your computer’s main menu). It is a very powerful way to test out new ideas or inspect modules
and packages (remember help (x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be blurry because
of the presence of the bytecode compiler. This means that source files can be run directly without explicitly creating
an executable which is then run. Interpreted languages typically have a shorter development/debug cycle than
compiled ones, though their programs generally also run more slowly. See also interactive.

interpreter shutdown When asked to shut down, the Python interpreter enters a special phase where it gradually releases
all allocated resources, such as modules and various critical internal structures. It also makes several calls to the
garbage collector. This can trigger the execution of code in user-defined destructors or weakref callbacks. Code
executed during the shutdown phase can encounter various exceptions as the resources it relies on may not function
anymore (common examples are library modules or the warnings machinery).

The main reason for interpreter shutdown is that the _ _main__ module or the script being run has finished
executing.

iterable An object capable of returning its members one at a time. Examples of iterables include all sequence types (such
as list, str, and tuple) and some non-sequence types like dict, file objects, and objects of any classes you
define withan __iter__ () method or witha __getitem__ () method that implements sequence semantics.

Iterables can be used in a for loop and in many other places where a sequence is needed (zip (), map (), ...).
When an iterable object is passed as an argument to the built-in function iter (), it returns an iterator for the
object. This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary to
call iter () or deal with iterator objects yourself. The for statement does that automatically for you, creating
a temporary unnamed variable to hold the iterator for the duration of the loop. See also iterator, sequence, and
generator.

iterator An object representing a stream of data. Repeated calls to the iterator’s __next__ () method (or passing
it to the built-in function next ()) return successive items in the stream. When no more data are available a
StopIteration exception is raised instead. At this point, the iterator object is exhausted and any further calls
toits__next__ () method justraise StopIteration again. Iterators are required tohavean __iter_ ()

149

The Python Language Reference, Release 3.11.1

method that returns the iterator object itself so every iterator is also iterable and may be used in most places where
other iterables are accepted. One notable exception is code which attempts multiple iteration passes. A container
object (such as a 1ist) produces a fresh new iterator each time you pass it to the iter () function or use it in a
for loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found in typeiter.

CPython implementation detail: CPython does not consistently apply the requirement that an iterator define
__iter__ ().

key function A key function or collation function is a callable that returns a value used for sorting or ordering. For
example, locale.strxfrm() is used to produce a sort key that is aware of locale specific sort conventions.

A number of tools in Python accept key functions to control how elements are ordered or grouped. They in-
clude min (), max (), sorted (), list.sort (), heapg.merge (), heapg.nsmallest (), heapq.
nlargest (),and itertools.groupby ().

There are several ways to create a key function. For example. the str.lower () method can serve as a key
function for case insensitive sorts. Alternatively, a key function can be built from a Iambda expression such as
lambda r: (r[0], r[2]). Also, operator.attrgetter (), operator.itemgetter (), and
operator.methodcaller () are three key function constructors. See the Sorting HOW TO for examples of
how to create and use key functions.

keyword argument See argument.

lambda An anonymous inline function consisting of a single expression which is evaluated when the function is called.
The syntax to create a lambda function is Lambda [parameters]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups. This
style contrasts with the EAFP approach and is characterized by the presence of many i f statements.

In a multi-threaded environment, the LBYL approach can risk introducing a race condition between “the looking”
and “the leaping”. For example, the code, 1f key in mapping: return mappingl[key] can fail if
another thread removes key from mapping after the test, but before the lookup. This issue can be solved with locks
or by using the EAFP approach.

locale encoding On Unix, it is the encoding of the LC_CTYPE locale. It can be set with locale.
setlocale(locale.LC_CTYPE, new_locale).

On Windows, it is the ANSI code page (ex: "cpl252™").

On Android and VxWorks, Python uses "ut £-8" as the locale encoding.
locale.getencoding () can be used to get the locale encoding.

See also the filesystem encoding and error handler.

list A built-in Python sequence. Despite its name it is more akin to an array in other languages than to a linked list since
access to elements is O(1).

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the results.
result = ['{:#04x}'.format (x) for x in range(256) if x % 2 == 0] generates a list
of strings containing even hex numbers (0x..) in the range from O to 255. The i f clause is optional. If omitted,
all elements in range (256) are processed.

loader An object that loads a module. It must define a method named 1oad_module (). A loader is typically returned
by a finder. See PEP 302 for details and importlib.abc.Loader for an abstract base class.

magic method An informal synonym for special method.

mapping A container object that supports arbitrary key lookups and implements the methods specified in the
collections.abc.Mapping or collections.abc.MutableMapping abstract base classes.

150 Appendix A. Glossary

https://peps.python.org/pep-0302/

The Python Language Reference, Release 3.11.1

Examples include dict, collections.defaultdict, collections.OrderedDict and
collections.Counter.

meta path finder A finder returned by a search of sys.meta_path. Meta path finders are related to, but different
from path entry finders.

See importlib.abc.MetaPathFinder for the methods that meta path finders implement.

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes. The
metaclass is responsible for taking those three arguments and creating the class. Most object oriented program-
ming languages provide a default implementation. What makes Python special is that it is possible to create custom
metaclasses. Most users never need this tool, but when the need arises, metaclasses can provide powerful, ele-
gant solutions. They have been used for logging attribute access, adding thread-safety, tracking object creation,
implementing singletons, and many other tasks.

More information can be found in Metaclasses.

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the method
will get the instance object as its first argument (which is usually called se1f). See function and nested scope.

method resolution order Method Resolution Order is the order in which base classes are searched for a member during
lookup. See The Python 2.3 Method Resolution Order for details of the algorithm used by the Python interpreter
since the 2.3 release.

module An object that serves as an organizational unit of Python code. Modules have a namespace containing arbitrary
Python objects. Modules are loaded into Python by the process of importing.

See also package.

module spec A namespace containing the import-related information used to load a module. An instance of
importlib.machinery.ModuleSpec.

MRO See method resolution order.
mutable Mutable objects can change their value but keep their id () . See also immutable.

named tuple The term “named tuple” applies to any type or class that inherits from tuple and whose indexable elements
are also accessible using named attributes. The type or class may have other features as well.

Several built-in types are named tuples, including the values returned by time.localtime () and os.
stat (). Another example is sys.float_info:

>>> sys.float_info[l] # Iindexed access
1024

>>> sys.float_info.max_exp # named field access
1024

>>> isinstance(sys.float_info, tuple) # kind of tuple

True

Some named tuples are built-in types (such as the above examples). Alternatively, a named tuple can be created
from a regular class definition that inherits from tuple and that defines named fields. Such a class can be written
by hand or it can be created with the factory function collections.namedtuple (). The latter technique
also adds some extra methods that may not be found in hand-written or built-in named tuples.

namespace The place where a variable is stored. Namespaces are implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces in objects (in methods). Namespaces support modularity by
preventing naming conflicts. For instance, the functions builtins.open and os.open () are distinguished
by their namespaces. Namespaces also aid readability and maintainability by making it clear which module im-
plements a function. For instance, writing random.seed () or itertools.islice () makes it clear that
those functions are implemented by the random and itertools modules, respectively.

151

https://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Release 3.11.1

namespace package A PEP 420 package which serves only as a container for subpackages. Namespace packages may
have no physical representation, and specifically are not like a regular package because they haveno __init__.
py file.

See also module.

nested scope The ability to refer to a variable in an enclosing definition. For instance, a function defined inside another
function can refer to variables in the outer function. Note that nested scopes by default work only for reference and
not for assignment. Local variables both read and write in the innermost scope. Likewise, global variables read and
write to the global namespace. The nonlocal allows writing to outer scopes.

new-style class Old name for the flavor of classes now used for all class objects. In earlier Python versions,
only new-style classes could use Python’s newer, versatile features like _ slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of any
new-style class.

package A Python module which can contain submodules or recursively, subpackages. Technically, a package is a Python
module witha __path__ attribute.

See also regular package and namespace package.

parameter A named entity in a function (or method) definition that specifies an argument (or in some cases, arguments)
that the function can accept. There are five kinds of parameter:

e positional-or-keyword: specifies an argument that can be passed either positionally or as a keyword argument.
This is the default kind of parameter, for example foo and bar in the following:

def func (foo, bar=None) :

e positional-only: specifies an argument that can be supplied only by position. Positional-only parameters can
be defined by including a / character in the parameter list of the function definition after them, for example
posonlyl and posonly? in the following:

’def func (posonlyl, posonly2, /, positional_or_keyword) :

* keyword-only: specifies an argument that can be supplied only by keyword. Keyword-only parameters can be
defined by including a single var-positional parameter or bare * in the parameter list of the function definition
before them, for example kw_onlyl and kw_only2 in the following:

def func(arg, *, kw_onlyl, kw_only2):

* var-positional: specifies that an arbitrary sequence of positional arguments can be provided (in addition to any
positional arguments already accepted by other parameters). Such a parameter can be defined by prepending
the parameter name with *, for example args in the following:

def func(*args, **kwargs):

* var-keyword: specifies that arbitrarily many keyword arguments can be provided (in addition to any key-
word arguments already accepted by other parameters). Such a parameter can be defined by prepending the
parameter name with * *, for example kwargs in the example above.

Parameters can specify both optional and required arguments, as well as default values for some optional arguments.

See also the argument glossary entry, the FAQ question on the difference between arguments and parameters, the
inspect.Parameter class, the Function definitions section, and PEP 362.

path entry A single location on the import path which the path based finder consults to find modules for importing.

152 Appendix A. Glossary

https://peps.python.org/pep-0420/
https://peps.python.org/pep-0362/

The Python Language Reference, Release 3.11.1

path entry finder A finder returned by a callable on sys.path_hooks (i.e. a path entry hook) which knows how to
locate modules given a path entry.

See importlib.abc.PathEntryFinder for the methods that path entry finders implement.

path entry hook A callable on the sys.path_hook list which returns a path entry finder if it knows how to find
modules on a specific path entry.

path based finder One of the default meta path finders which searches an import path for modules.

path-like object An object representing a file system path. A path-like object is either a st r or byt es object represent-
ing a path, or an object implementing the os .PathLike protocol. An object that supports the os.PathLike
protocol can be converted to a str or bytes file system path by calling the os. fspath () function; os.
fsdecode () and os.fsencode () can be used to guarantee a str or bytes result instead, respectively.
Introduced by PEP 519.

PEP Python Enhancement Proposal. A PEP is a design document providing information to the Python community,
or describing a new feature for Python or its processes or environment. PEPs should provide a concise technical
specification and a rationale for proposed features.

PEPs are intended to be the primary mechanisms for proposing major new features, for collecting community input
on an issue, and for documenting the design decisions that have gone into Python. The PEP author is responsible
for building consensus within the community and documenting dissenting opinions.

See PEP 1.

portion A set of files in a single directory (possibly stored in a zip file) that contribute to a namespace package, as defined
in PEP 420.

positional argument See argument.

provisional API A provisional API is one which has been deliberately excluded from the standard library’s backwards
compatibility guarantees. While major changes to such interfaces are not expected, as long as they are marked
provisional, backwards incompatible changes (up to and including removal of the interface) may occur if deemed
necessary by core developers. Such changes will not be made gratuitously — they will occur only if serious funda-
mental flaws are uncovered that were missed prior to the inclusion of the API.

Even for provisional APIs, backwards incompatible changes are seen as a “solution of last resort” - every attempt
will still be made to find a backwards compatible resolution to any identified problems.

This process allows the standard library to continue to evolve over time, without locking in problematic design
errors for extended periods of time. See PEP 411 for more details.

provisional package See provisional API.

Python 3000 Nickname for the Python 3.x release line (coined long ago when the release of version 3 was something in
the distant future.) This is also abbreviated “Py3k”.

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language, rather than
implementing code using concepts common to other languages. For example, a common idiom in Python is to loop
over all elements of an iterable using a for statement. Many other languages don’t have this type of construct, so
people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food)):
print (food[i])

As opposed to the cleaner, Pythonic method:

for piece in food:
print (piece)

153

https://peps.python.org/pep-0519/
https://peps.python.org/pep-0001/
https://peps.python.org/pep-0420/
https://peps.python.org/pep-0411/

The Python Language Reference, Release 3.11.1

qualified name A dotted name showing the “path” from a module’s global scope to a class, function or method defined
in that module, as defined in PEP 3155. For top-level functions and classes, the qualified name is the same as the
object’s name:

>>> class C:
class D:
def meth (self):
pass

>>> C._ _qualname___

YC’

>>> C.D.__qgqualname___
'C.D'

>>> C.D.meth._gqualname_
'C.D.meth'’

When used to refer to modules, the fully qualified name means the entire dotted path to the module, including any
parent packages, e.g. email .mime.text:

>>> import email.mime.text
>>> email.mime.text. name_
'email.mime.text'

reference count The number of references to an object. When the reference count of an object drops to zero, it is
deallocated. Reference counting is generally not visible to Python code, but it is a key element of the CPython
implementation. Programmers can call the sys.getrefcount () function to return the reference count for a
particular object.

regular package A traditional package, such as a directory containingan __init__ .py file.
See also namespace package.

__slots__ A declaration inside a class that saves memory by pre-declaring space for instance attributes and eliminating
instance dictionaries. Though popular, the technique is somewhat tricky to get right and is best reserved for rare
cases where there are large numbers of instances in a memory-critical application.

sequence An iferable which supports efficient element access using integer indices via the __getitem__ () special
method and defines a ___len__ () method that returns the length of the sequence. Some built-in sequence types
are 1ist, str,tuple,and bytes. Note that dict also supports __getitem__ () and __len__ (), butis
considered a mapping rather than a sequence because the lookups use arbitrary immutable keys rather than integers.

The collections.abc.Sequence abstract base class defines a much richer interface that goes be-
yond just _ getitem__ () and _ _len__ (), adding count (), index (), contains__ (), and
__reversed__ (). Types that implement this expanded interface can be registered explicitly using
register ().

set comprehension A compact way to process all or part of the elements in an iterable and return a set with the
results. results = {c for c in 'abracadabra' if c not in 'abc'} generates the set of
strings { 'r', 'd'}. See Displays for lists, sets and dictionaries.

single dispatch A form of generic function dispatch where the implementation is chosen based on the type of a single
argument.

slice An object usually containing a portion of a sequence. A slice is created using the subscript notation, [] with
colons between numbers when several are given, such asin variable_name [1:3:5]. The bracket (subscript)
notation uses s11ice objects internally.

special method A method that is called implicitly by Python to execute a certain operation on a type, such as addition.
Such methods have names starting and ending with double underscores. Special methods are documented in Special
method names.

154 Appendix A. Glossary

https://peps.python.org/pep-3155/

The Python Language Reference, Release 3.11.1

statement A statement is part of a suite (a “block” of code). A statement is either an expression or one of several
constructs with a keyword, such as i f, whileor for.

strong reference In Python’s C API, a strong reference is a reference to an object which increments the object’s reference
count when it is created and decrements the object’s reference count when it is deleted.

The Py_NewRef () function can be used to create a strong reference to an object. Usually, the Py_DECREF ()
function must be called on the strong reference before exiting the scope of the strong reference, to avoid leaking
one reference.

See also borrowed reference.

text encoding A string in Python is a sequence of Unicode code points (in range U+0000-U+10FFFF). To store or
transfer a string, it needs to be serialized as a sequence of bytes.

Serializing a string into a sequence of bytes is known as “encoding”, and recreating the string from the sequence
of bytes is known as “decoding”.

There are a variety of different text serialization codecs, which are collectively referred to as “text encodings”.

text file A file object able to read and write st r objects. Often, a text file actually accesses a byte-oriented datastream
and handles the fext encoding automatically. Examples of text files are files opened in text mode ('r"' or 'w'),
sys.stdin, sys.stdout, and instances of io.StringIO.

See also binary file for a file object able to read and write byfes-like objects.

triple-quoted string A string which is bound by three instances of either a quotation mark (”) or an apostrophe (°).
While they don’t provide any functionality not available with single-quoted strings, they are useful for a number of
reasons. They allow you to include unescaped single and double quotes within a string and they can span multiple
lines without the use of the continuation character, making them especially useful when writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits ___class___ attribute or can be retrieved with type (ob7).

type alias A synonym for a type, created by assigning the type to an identifier.

Type aliases are useful for simplifying rype hints. For example:

def remove_gray_shades (
colors: list[tuple[int, int, int]]) -> list[tuplel[int, int, int]]:
pass

could be made more readable like this:

Color = tuple[int, int, int]

def remove_gray_shades(colors: list[Color]) -> list[Color]:
pass

See typing and PEP 484, which describe this functionality.

type hint An annotation that specifies the expected type for a variable, a class attribute, or a function parameter or return
value.

Type hints are optional and are not enforced by Python but they are useful to static type analysis tools, and aid IDEs
with code completion and refactoring.

Type hints of global variables, class attributes, and functions, but not local variables, can be accessed using
typing.get_type_hints().

See typing and PEP 484, which describe this functionality.

155

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/

The Python Language Reference, Release 3.11.1

universal newlines A manner of interpreting text streams in which all of the following are recognized as ending a line:
the Unix end-of-line convention ' \n', the Windows convention '\r\n"', and the old Macintosh convention '\
r'. See PEP 278 and PEP 3116, as well as bytes.splitlines () for an additional use.

variable annotation An annotation of a variable or a class attribute.

When annotating a variable or a class attribute, assignment is optional:

class C:
field: 'annotation'

Variable annotations are usually used for type hints: for example this variable is expected to take int values:

count: int = 0

Variable annotation syntax is explained in section Annotated assignment statements.

See function annotation, PEP 484 and PEP 526, which describe this functionality. Also see annotations-howto
for best practices on working with annotations.

virtual environment A cooperatively isolated runtime environment that allows Python users and applications to install
and upgrade Python distribution packages without interfering with the behaviour of other Python applications
running on the same system.

See also venv.

virtual machine A computer defined entirely in software. Python’s virtual machine executes the byrecode emitted by
the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using the
language. The listing can be found by typing “import this” at the interactive prompt.

156 Appendix A. Glossary

https://peps.python.org/pep-0278/
https://peps.python.org/pep-3116/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0526/

APPENDIX
B

ABOUT THESE DOCUMENTS

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written for
the Python documentation.

Development of the documentation and its toolchain is an entirely volunteer effort, just like Python itself. If you want
to contribute, please take a look at the reporting-bugs page for information on how to do so. New volunteers are always
welcome!

Many thanks go to:
* Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the content;
* the Docutils project for creating reStructuredText and the Docutils suite;

* Fredrik Lundh for his Alternative Python Reference project from which Sphinx got many good ideas.

B.1 Contributors to the Python Documentation

Many people have contributed to the Python language, the Python standard library, and the Python documentation. See
Misc/ACKS in the Python source distribution for a partial list of contributors.

It is only with the input and contributions of the Python community that Python has such wonderful documentation —
Thank You!

157

https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/
https://docutils.sourceforge.io/
https://github.com/python/cpython/tree/3.11/Misc/ACKS

The Python Language Reference, Release 3.11.1

158 Appendix B. About these documents

APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see https://www.
cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see https:
/Iwww.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see https:
/lwww.zope.org/). In 2001, the Python Software Foundation (PSF, see https://www.python.org/psf/) was formed, a non-
profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a sponsoring
member of the PSF.

All Python releases are Open Source (see https://opensource.org/ for the Open Source Definition). Historically, most,
but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from | Year Owner GPL compatible?
0.9.0thru 1.2 | n/a 1991-1995 | CWI yes
1.3thrul.52 | 1.2 1995-1999 | CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com | no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.142.0.1 2001 PSF yes
2.12 2.1.1 2002 PSF yes
213 2.1.2 2002 PSF yes
2.2 and above | 2.1.1 2001-now | PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the GPL,
let you distribute a modified version without making your changes open source. The GPL-compatible licenses make it
possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

159

https://www.cwi.nl/
https://www.cwi.nl/
https://www.cnri.reston.va.us/
https://www.cnri.reston.va.us/
https://www.zope.org/
https://www.zope.org/
https://www.python.org/psf/
https://opensource.org/

The Python Language Reference, Release 3.11.1

C.2 Terms and conditions for accessing or otherwise using Python

Python software and documentation are licensed under the PSF License Agreement.

Starting with Python 3.8.6, examples, recipes, and other code in the documentation are dual licensed under the PSF
License Agreement and the Zero-Clause BSD license.

Some software incorporated into Python is under different licenses. The licenses are listed with code falling under that
license. See Licenses and Acknowledgements for Incorporated Software for an incomplete list of these licenses.

C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 3.11.1

1. This LICENSE AGREEMENT is between the Python Software Foundation ("PSE"),.
—and

the Individual or Organization ("Licensee") accessing and otherwise using.
—Python

3.11.1 software in source or binary form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to.
—reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 3.11.1 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice.
—of
copyright, i.e., "Copyright © 2001-2023 Python Software Foundation; All_
—Rights
Reserved" are retained in Python 3.11.1 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 3.11.1 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee.

—hereby
agrees to include in any such work a brief summary of the changes made to.

—Python
3.11.1.

4. PSF is making Python 3.11.1 available to Licensee on an "AS IS" basis.

PSEF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF

EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION..
—~OR

WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT.
—THE

USE OF PYTHON 3.11.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 3.11.1

FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT.
—OF

MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 3.11.1, OR ANY.
—DERIVATIVE

THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

160 Appendix C. History and License

The Python Language Reference, Release 3.11.1

6. This License Agreement will automatically terminate upon a material breach.
—~of
its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any.
—relationship

of agency, partnership, or joint venture between PSF and Licensee. This.
—~License

Agreement does not grant permission to use PSF trademarks or trade name in.
—a

trademark sense to endorse or promote products or services of Licensee, or.
—any

third party.

8. By copying, installing or otherwise using Python 3.11.1, Licensee agrees
to be bound by the terms and conditions of this License Agreement.

C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an office at
160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or Organization
("Licensee") accessing and otherwise using this software in source or binary
form and its associated documentation ("the Software").

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF
EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE
USE OF THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a
trademark sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions

(continues on next page)

C.2. Terms and conditions for accessing or otherwise using Python 161

The Python Language Reference, Release 3.11.1

(continued from previous page)

granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

C.2.3 CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research
Initiatives, having an office at 1895 Preston White Drive, Reston, VA 20191
("CNRI"), and the Individual or Organization ("Licensee") accessing and
otherwise using Python 1.6.1 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python 1.6.1 alone or in any derivative version,
provided, however, that CNRI's License Agreement and CNRI's notice of copyright,
i.e., "Copyright © 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved" are retained in Python 1.6.1 alone or in any derivative version
prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): "Python 1.6.1
is made available subject to the terms and conditions in CNRI's License
Agreement. This Agreement together with Python 1.6.1 may be located on the
internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
internet using the following URL: http://hdl.handle.net/1895.22/1013."

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS" basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE,
BUT NOT LIMITATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright
law, and, to the extent such U.S. federal law does not apply, by the law of the
Commonwealth of Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based on Python
1.6.1 that incorporate non-separable material that was previously distributed
under the GNU General Public License (GPL), the law of the Commonwealth of

(continues on next page)

162 Appendix C. History and License

The Python Language Reference, Release 3.11.1

(continued from previous page)

Virginia shall govern this License Agreement only as to issues arising under or
with respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in
this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third
party.

8. By clicking on the "ACCEPT" button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising or
publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.1 DOCUMEN-
TATION

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.2. Terms and conditions for accessing or otherwise using Python 163

The Python Language Reference, Release 3.11.1

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incorporated in
the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand (seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)

164 Appendix C. History and License

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

The Python Language Reference, Release 3.11.1

C.3.2 Sockets

The socket module uses the functions, getaddrinfo (), and getnameinfo (), which are coded in separate
source files from the WIDE Project, https://www.wide.ad.jp/.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ""AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.3 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3. Licenses and Acknowledgements for Incorporated Software 165

https://www.wide.ad.jp/

The Python Language Reference, Release 3.11.1

C.3.4 Cookie management

The http.cookies module contains the following notice:

Copyright 2000 by Timothy O'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O'Malley not be used in advertising or publicity

pertaining to distribution of the software without specific, written
prior permission.

Timothy O'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.5 Execution tracing

The t race module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the

Python 2.2 license.

Author: Zooko O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

166 Appendix C. History and License

The Python Language Reference, Release 3.11.1

C.3.6 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

— Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with Python standard

C.3.7 XML Remote Procedure Calls

The xmlrpc.client module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 167

The Python Language Reference, Release 3.11.1

(continued from previous page)

ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

C.3.8 test_epoll

The test_epoll module contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.9 Select kqueue

The select module contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

(continues on next page)

168 Appendix C. History and License

The Python Language Reference, Release 3.11.1

(continued from previous page)

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.10 SipHash24

The file Python/pyhash. c contains Marek Majkowski’ implementation of Dan Bernstein’s SipHash24 algorithm. It
contains the following note:

<MIT License>
Copyright (c) 2013 Marek Majkowski <marek@popcount.org>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
</MIT License>

Original location:
https://github.com/majek/csiphash/

Solution inspired by code from:
Samuel Neves (supercop/crypto_auth/siphash24/1little)
djb (supercop/crypto_auth/siphash24/little2)
Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)

C.3.11 strtod and dtoa

The file Python/dtoa. c, which supplies C functions dtoa and strtod for conversion of C doubles to and from strings,
is derived from the file of the same name by David M. Gay, currently available from https://web.archive.org/web/
20220517033456/http://www.netlib.org/fp/dtoa.c. The original file, as retrieved on March 16, 2009, contains the fol-
lowing copyright and licensing notice:

/**

The author of this software is David M. Gay.

* % of

Copyright (c) 1991, 2000, 2001 by Lucent Technologies.

* % o

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

* % ok X

*

*

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY

* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

*

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 169

https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c
https://web.archive.org/web/20220517033456/http://www.netlib.org/fp/dtoa.c

The Python Language Reference, Release 3.11.1

(continued from previous page)

*

k*/

C.3.12 OpenSSL

The modules hashlib, posix, ssl, crypt use the OpenSSL library for added performance if made available by
the operating system. Additionally, the Windows and macOS installers for Python may include a copy of the OpenSSL
libraries, so we include a copy of the OpenSSL license here:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-corelopenssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
endorse or promote products derived from this software without
prior written permission. For written permission, please contact
openssl-corelopenssl.org.

5. Products derived from this software may not be called "OpenSSL"
nor may "OpenSSL" appear in their names without prior written
permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following
acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)"

L S R T I R S N S S S S N S N S R e S S S N

(continues on next page)

170 Appendix C. History and License

The Python Language Reference, Release 3.11.1

(continued from previous page)

o S S S N S N S N .

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT " "AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com).

Original SSLeay License

L S A S S N IS S N S S S S e N N S N S N TS T SN S N S

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written
by Eric Young (eaylcryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as
the following conditions are aheared to. The following conditions
apply to all code found in this distribution, be it the RC4, RSA,
lhash, DES, etc., code; not just the SSL code. The SSL documentation
included with this distribution is covered by the same copyright terms
except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in

the code are not to be removed.

If this package is used in a product, Eric Young should be given attribution
as the author of the parts of the library used.

This can be in the form of a textual message at program startup or

in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement:

"This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library

(continues on next page)

C.3. Licenses and Acknowledgements for Incorporated Software 171

The Python Language Reference, Release 3.11.1

(continued from previous page)

being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG " "AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]
/

EE T R S R S N N SR S N S S SR S

C.3.13 expat

The pyexpat extension is built using an included copy of the expat sources unless the build is configured
——-with-system-expat:

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

172 Appendix C. History and License

The Python Language Reference, Release 3.11.1

C.3.14 libffi

The _ctypes extension is built using an included copy of the libfli sources unless the build is configured

——with-system-1ibffi:

Copyright (c) 1996-2008 Red Hat, Inc and others.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘*Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED " "AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C.3.15 zlib

The z11ib extension is built using an included copy of the zlib sources if the zlib version found on the system is too old

to be used for the build:

Copyright (C) 1995-2011 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

C.3. Licenses and Acknowledgements for Incorporated Software

173

The Python Language Reference, Release 3.11.1

C.3.16 cfuhash

The implementation of the hash table used by the t racemalloc is based on the cfuhash project:

Copyright (c) 2005 Don Owens
All rights reserved.

This code is released under the BSD license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the author nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

C.3.17 libmpdec

The _decimal module is built using an included copy of the libmpdec library unless the build is configured
——with-system-libmpdec

Copyright (c) 2008-2020 Stefan Krah. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(continues on next page)

174 Appendix C. History and License

The Python Language Reference, Release 3.11.1

(continued from previous page)

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3.18 W3C C14N test suite

The C14N 2.0 test suite in the test package (Lib/test/xmltestdata/cl14n-20/) was retrieved from the W3C
website at https://www.w3.org/TR/xml-c14n2-testcases/ and is distributed under the 3-clause BSD license:

Copyright (c) 2013 W3C(R) (MIT, ERCIM, Keio, Beihang),
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of works must retain the original copyright notice,

this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the original copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of the W3C nor the names of its contributors may be
used to endorse or promote products derived from this work without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 175

https://www.w3.org/TR/xml-c14n2-testcases/

The Python Language Reference, Release 3.11.1

C.3.19 Audioop

The audioop module uses the code base in g771.c file of the SoX project:

Programming the AdLib/Sound Blaster

FM Music Chips

Version 2.0 (24 Feb 1992)

Copyright (c) 1991, 1992 by Jeffrey S. Lee

jlee@smylex.uucp

Warranty and Copyright Policy

This document is provided on an "as-is" basis, and its author makes
no warranty or representation, express or implied, with respect to
its quality performance or fitness for a particular purpose. In no
event will the author of this document be liable for direct, indirect,
special, incidental, or consequential damages arising out of the use
or inability to use the information contained within. Use of this
document is at your own risk.

This file may be used and copied freely so long as the applicable
copyright notices are retained, and no modifications are made to the
text of the document. No money shall be charged for its distribution
beyond reasonable shipping, handling and duplication costs, nor shall
proprietary changes be made to this document so that it cannot be
distributed freely. This document may not be included in published
material or commercial packages without the written consent of its
author.

176 Appendix C. History and License

APPENDIX
D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2023 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See History and License for complete license and permissions information.

177

The Python Language Reference, Release 3.11.1

178 Appendix D. Copyright

INDEX

Non-alphabetical * (asterisk)
., 143 function definition, 119
ellipsis literal, 20 import statement, 100
v in assignment target list,92
string literal, 10 in expression lists, 88
{} (curly brackets) in function calls, 80

dictionary expression, 72 operator, 82

in formatted string literal, 12 _ S
set expression,72 function definition, 119

. (dot) in dictionary displays, 72
in function calls, 80
operator, 81

* *

attribute reference, 78
in numeric literal, 15

! (exclamation) =
in formatted string literal, 12 augmented assignment, 94
— (minus) *=
binary operator, 83 augmented assignment, 94
unary operator, 82 + (plus)
' (single quote) binary operator, 83
string literal, 10 unary operator, 82
+=

! patterns, 112
" (double quote) augmented assignment, 94

string literal, 10 » (comma), 10
wun argument list,79
string literal, 10 expression list, 71,72, 88,95, 120
(hash) identifier 1list, 101,102
import statement, 99
in dictionary displays,72

comment, 5
source encoding declaration,6

% (percent) in target 1list,92
operator, 82 parameter list, 118
o= slicing, 79
augmented assignment, 94 with statement, 108
& (ampersand) / (slash)
operator, 83 function definition, 119
&= operator, 82
augmented assignment, 94 ’/
() (parentheses) operator, 82
call,79 //=
class definition, 120 augmented assignment, 94
function definition, 118 /=

generator expression,73 augmented assignment, 94

in assignment target list,92
tuple display, 70

Ob
integer literal, 15

179

The Python Language Reference, Release 3.11.1

0o
integer literal, 15

0x
integer literal, 15

2to3, 143

: (colon)
annotated variable, 94
compound statement, 104, 105, 108, 110, 118,

120

function annotations, 119
in dictionary expressions, 72
in formatted string literal, 12
lambda expression, 88
slicing, 79

: = (colon equals), 87

; (semicolon), 103

< (less)
operator, 84

<<
operator, 83

<<=
augmented assignment, 94

<=
operator, 84

operator, 84

augmented assignment, 94
= (equals)
assignment statement, 92
class definition, 38
for help in debugging using string
literals, 12
function definition, 119
in function calls, 79

operator, 84

function annotations, 119
> (greater)
operator, 84
>=
operator, 84
>>
operator, 83
>>=
augmented assignment, 94
>>> 143
@ (at)
class definition, 121
function definition, 119
operator, 82
[1 (square brackets)
in assignment target list,92

list expression, 71

subscription, 78
\ (backslash)

escape
AN\

escape
\a

escape
\b

escape
\f

escape
\N

escape
\n

escape
\r

escape
\t

escape
\U

escape
\u

escape
\v

escape
\x

escape
~ (caret)

operator, 83

sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11
sequence, 11

sequence, 11

augmented assignment, 94
_ (underscore)

in numeric literal, I5
_, lidentifiers,9
__, lidentifiers,9

__abs__ () (object method), 46
__add__ () (object method), 44
__aenter__ () (object method), 50
__aexit__ () (object method), 50
__aiter__ () (object method), 50
__all__ (optional module attribute), 100
__and__ () (object method), 44
__anext__ () (agen method), 77
__anext__ () (object method), 50

__annotations__ (class attribute), 25
__annotations__ (function attribute), 23
__annotations__ (module attribute), 25

__await__ () (object method), 48
__bases__ (class attribute), 25
__bool__ () (object method), 32, 43
__bytes__ () (object method), 30
__cached__,62

__call__ () (object method), 42, 81

180

Index

The Python Language Reference, Release 3.11.1

__cause___ (exception attribute), 97

__ceil__ () (object method), 46

_class___ (instance attribute), 26

__class___ (method cell), 39

__class___ (module attribute), 34
__class_getitem__ () (object class method), 40
__classcell__ (class namespace entry), 39
__closure__ (function attribute), 23

___code___ (function attribute), 23

__complex__ () (object method), 46
__contains__ () (object method), 44
__context___ (exception attribute), 97
_ debug_ ,95

__defaults__ (function attribute), 23
__del__ () (object method), 29
__delattr__ () (object method), 33
__delete__ () (object method), 35
__delitem__ () (object method), 43

_dict__ (class attribute), 25
__dict__ (function attribute), 23
__dict__ (instance attribute), 26
__dict__ (module attribute), 25
_ dir__ (module attribute), 34
__dir__ () (object method), 33
__divmod__ () (object method), 44
__doc__ (class attribute), 25
__doc__ (function attribute), 23
__doc__ (method attribute), 23
__doc__ (module attribute), 25

__enter__ () (object method), 46
__eq__ () (object method), 31
__exit__ () (object method), 47

_ file_ ,62

_ file_ (module attribute), 25
__float__ () (object method), 46
__floor__ () (object method), 46

_ floordiv__ () (object method), 44
_ format__ () (object method), 30

__func__ (method attribute), 23
_ future_ , 148

future statement, 100
__ge__ () (object method), 31
__get__ () (object method), 34
__getattr__ (module attribute), 34
__getattr__ () (object method), 33
__getattribute__ () (object method), 33
__getitem__ () (mapping object method), 29
__getitem__ () (object method), 43
__globals__ (function attribute), 23
__gt___ () (object method), 31
__hash__ () (object method), 31
__iadd__ () (object method), 45
__iand__ () (object method), 45
__ifloordiv__ () (object method), 45

__ilshift__ () (object method), 45
__imatmul__ () (object method), 45
__imod__ () (object method), 45
__imul__ () (object method), 45
__index__ () (object method), 46
__init__ () (object method), 29
__init_subclass__ () (object class method), 37
__instancecheck__ () (class method), 40
__int__ () (object method), 46
__invert__ () (object method), 46
__dor__ () (object method), 45
__ipow___ () (object method), 45
__irshift__ () (object method), 45
__isub__ () (object method), 45
__iter__ () (object method), 44
__itruediv__ () (object method), 45
__ixor__ () (object method), 45
__kwdefaults___ (function attribute), 23
__le__ () (object method), 31
__len__ () (mapping object method), 32
__len__ () (object method), 43
__length_hint__ () (object method), 43
__loader__, 61
__1shift__ () (object method), 44
__1t__ () (object method), 31
_ _main_

module, 52, 125
__matmul__ () (object method), 44
__missing__ () (object method), 44
__mod__ () (object method), 44

__module__ (class attribute), 25
__module__ (function attribute), 23
__module__ (method attribute), 23
__mul__ () (object method), 44
__name__, 061

_ name___ (class attribute), 25
__name___ (function attribute), 23
__name___ (method attribute), 23
__name___ (module attribute), 25

__ne__ () (object method), 31
__neg__ () (object method), 46
__new__ () (object method), 29
__next__ () (generator method), T4
__or___() (object method), 44
__package_ , 61

__path_ ,62

__pos___() (object method), 46
__pow__ () (object method), 44
__prepare__ (metaclass method), 39
__radd___() (object method), 45
__rand__ () (object method), 45
__rdivmod__ () (object method), 45
__repr__ () (object method), 30
__reversed__ () (object method), 44

Index

181

The Python Language Reference, Release 3.11.1

__rfloordiv__ () (object method), 45 arithmetic
__rlshift__ () (object method), 45 conversion, 69
__rmatmul__ () (object method), 45 operation,binary, 82
__rmod__ () (object method), 45 operation, unary, 82
__rmul__ () (object method), 45 array
__ror__ () (object method), 45 module, 22
__round___ () (object method), 46 as
__rpow___() (object method), 45 except clause, 105
__rrshift__ () (object method), 45 import statement, 99
__rshift__ () (object method), 44 keyword, 99, 105, 108, 110
__rsub__ () (object method), 45 match statement, 110
__rtruediv___ () (object method), 45 with statement, 108
__rxor___() (object method), 45 AS pattern, OR pattern, capture
__self__ (method attribute), 23 pattern, wildcard pattern, 112
__set__ () (object method), 35 ASCII, 4,10
__set_name__ () (object method), 37 asend () (agen method), 77
__setattr__ () (object method), 33 assert
__setitem__ () (object method), 43 statement, 95
__slots_ ,154 AssertionError
__spec__,62 exception, 95
__str__ () (object method), 30 assertions
__sub__ () (object method), 44 debugging, 95
__subclasscheck__ () (class method), 40 assignment
__traceback___ (exception attribute), 97 annotated, 94
__truediv__ () (object method), 44 attribute, 92
__trunc__ () (object method), 46 augmented, 94
_ xor__ () (object method), 44 class attribute, 25
| (vertical bar) class instance attribute, 26
operator, 84 slicing, 93
| = statement, 22,92
augmented assignment, 94 subscription, 93
~ (tilde) target list, 92
operator, 82 assignment expression, 87
async
A keyword, 121
abs async def
built-in function, 46 statement, 121
abstract base class, 143 async for
aclose () (agen method), 77 in comprehensions, 7l
addition, 83 statement, 122
and async with
bitwise, 83 statement, 122
operator, 87 asynchronous context manager, 144
annotated asynchronous generator, 144
assignment, 94 asynchronous iterator, 24
annotation, 143 function, 24
annotations asynchronous generator iterator, 144
function, 119 asynchronous iterable, 144
anonymous asynchronous iterator, 144
function, 88 asynchronous—generator
argument, 143 object, 76
call semantics,79 athrow () (agen method), 77
function, 23 atom, 69
function definition, 119 attribute, 20, 144

182 Index

The Python Language Reference, Release 3.11.1

assignment, 92
assignment, class, 25

assignment, class instance, 26

class, 25
class instance, 26
deletion, 96
generic special, 20
reference, 78
special, 20
AttributeError
exception, 78
augmented
assignment, 94
await
in comprehensions, 71
keyword, 81, 121
awaitable, 144

B
b'
bytes literal, 11
b"
bytes literal, 1l
backslash character,6
BDFL, 144
binary
arithmetic operation, 82
bitwise operation, 83
binary file, 144
binary literal, 15
binding
global name, 101
name, 51, 92,99, 118, 120
bitwise
and, 83
operation, binary, 83
operation, unary, 82
or, 84
xor, 83
blank line,7
block, 51
code, 51
BNF, 4, 69
Boolean
object, 21
operation, 87
borrowed reference, 144

call, 81
chr, 21
compile, 102
complex, 46
divmod, 44, 45
eval, 102, 126
exec, 102
float, 46
hash, 31
id, 19
int, 46
len, 21,22,43
object, 24, 81
open, 26
ord, 21
pow, 44, 45
print, 30
range, 105
repr, 91
round, 46
slice, 28
type, 19, 38
built-in method
call, 8l
object, 24, 81
builtins
module, 125
byte, 22
bytearray, 22
bytecode, 26, 145
bytes, 22
built-in function, 30
bytes literal, 10
bytes—-like object, 145

C

c, 11
language, 20, 21, 24, 84

call, 79
built-in function, 81
built-in method, 81
class instance, 81
class object, 25, 81
function, 23, 81
instance, 42, 81
method, 81
procedure, 91

break user—defined function, 81
statement, 98, 104, 107, 108 callable, 145
built-in object, 23,79
method, 24 callback, 145
built-in function case
abs, 46 keyword, 110
bytes, 30 match, 110
Index 183

The Python Language Reference, Release 3.11.1

case block, 111 comment, 5
C-contiguous, 145 comparison, 84
chaining comparisons, 31
comparisons, 84 chaining, 84
exception, 97 compile
character, 21,78 built-in function, 102
chr complex
built-in function, 21 built-in function, 46
class, 145 number, 21
attribute, 25 object, 21
attribute assignment, 25 complex literal, 15
body, 39 complex number, 145
constructor, 29 compound
definition, 96, 120 statement, 103
instance, 26 comprehensions, 71
name, 120 dictionary, 72
object, 25, 81, 120 list, 71
statement, 120 set, 72
class instance Conditional
attribute, 26 expression, 87
attribute assignment, 26 conditional
call, 81 expression, 88
object, 25, 26, 81 constant, 10
class object constructor
call, 25, 81 class, 29
class variable, 145 container, 19, 25
clause, 103 context manager, 46, 145
clear () (frame method), 27 context variable, 145
close () (coroutine method), 49 contiguous, 145
close () (generator method), 75 continue
co_argcount (code object attribute), 26 statement, 99, 104, 107, 108
co_cellvars (code object attribute), 26 conversion
co_code (code object attribute), 26 arithmetic, 69
co_consts (code object attribute), 26 string, 30,91
co_filename (code object attribute), 26 coroutine, 48, 74, 146
co_firstlineno (code object attribute), 26 function, 24
co_flags (code object attribute), 26 coroutine function, 146
co_freevars (code object attribute), 26 CPython, 146
co_kwonlyargcount (code object attribute), 26
co_lnotab (code object attribute), 26 D
co_name (code object attribute), 26 dangling
co_names (code object attribute), 26 else, 103
co_nlocals (code object attribute), 26 data, 19
co_positions () (codeobject method), 27 type, 20
co_posonlyargcount (code object attribute), 26 type, immutable, 70
co_qualname (code object attribute), 26 datum, 72
co_stacksize (code object attribute), 26 dbm. gnu
co_varnames (code object attribute), 26 module, 22
code dbm.ndbm
block, 51 module, 22
code object, 26 debugging
comma, 70 assertions, 95
trailing, 88 decimal literal, 15
command line, 125 decorator, 146

184 Index

The Python Language Reference, Release 3.11.1

DEDENT token, 7, 103 error handling, 53
def errors, 53
statement, 118 escape sequence, |1
default eval
parameter value, 119 built-in function, 102, 126
definition evaluation
class, 96, 120 order, 89
function, 96, 118 exc_info (in module sys), 28
del except
statement, 29, 96 keyword, 105
deletion except_star
attribute, 96 keyword, 106
target, 96 exception, 53,97
target list, 96 AssertionError, 95
delimiters, 16 AttributeError, 78
descriptor, 146 chaining, 97
destructor, 29, 92 GeneratorExit, 75,77
dictionary, 146 handler, 28
comprehensions, 72 ImportError, 99
display, 72 NameError, 70
object, 22,25,31,72,78,93 raising, 97
dictionary comprehension, 146 StopAsyncIteration, 77
dictionary view, 146 StopIteration, 74, 96
display TypeError, 82
dictionary, 72 ValueError, 83
list, 71 ZeroDivisionError, 82
set, 72 exception handler, 53
division, 82 exclusive
divmod or, 83
built-in function, 44,45 exec
docstring, 120, 146 built-in function, 102
documentation string, 27 execution
duck-typing, 146 frame, 51, 120
restricted, 53
E stack, 28
e execution model, 51
in numeric literal, 15 expression, 69, 147
EAFP, 146 Conditional, 87
elif conditional, 88
keyword, 104 generator, 73
Ellipsis lambda, 88, 120
object, 20 list, 88,91
else statement, 91
conditional expression, 88 yield, 73
dangling, 103 extension
keyword, 98, 104, 105, 107 module, 20
empty extension module, 147
list,71 F
tuple, 21,70
encoding declarations (source file), 6 £
environment, 52 formatted string literal, 1l
environment variable £
PYTHONHASHSEED, 32 formatted string literal, Il
PYTHONNODEBUGRANGES, 27 f-string, 147

Index 185

The Python Language Reference, Release 3.11.1

f_back (frame attribute), 27
f_builtins (frame attribute), 27
f_code (frame attribute), 27
f_globals (frame attribute), 277
f_lasti (frame attribute), 27
f_lineno (frame attribute), 277
f_locals (frame attribute), 277
f_trace (frame attribute), 27
f_trace_lines (frame attribute), 27
f_trace_opcodes (frame attribute), 27
False, 21
file object, 147
file-like object, 147
filesystem encoding and error handler,
147

finalizer, 29
finally

keyword, 96, 98, 99, 105, 107
find_spec

finder, 58
finder, 57, 147

find_spec, 58
float

built-in function, 46
floating point

number, 21

object, 21
floating point literal, 15
floor division, 147
for

in comprehensions, 71

statement, 98, 99, 104

form
lambda, 88
format () (built-in function)

__str__ () (object method), 30
formatted string literal, 12
Fortran contiguous, 145
frame

execution, 51, 120

object, 27
free

variable, 52
from

import statement, 51,99

keyword, 73, 99

yield from expression, 74
frozenset

object, 22
fstring, 12
f-string, 12
function, 147

annotations, 119

anonymous, 88

argument, 23

call, 23, 81

call,user—-defined, 81

definition, 96, 118

generator, 73, 96

name, 118

object, 23,24, 81,118

user—-defined, 23
function annotation, 147
future

statement, 100

G

garbage collection, 19, 148
generator, 148
expression, 73
function, 24, 73, 96
iterator, 24, 96
object, 26,73, 74
generator expression, 148
generator iterator, 148
GeneratorExit
exception, 75,77
generic
special attribute, 20
generic function, 148
generic type, 148
GIL, 148
global
name binding, 101
namespace, 23
statement, 96, 101
global interpreter lock, 148
grammar, 4
grouping, 7
guard, 111

Fi

handle an exception,53
handler

exception, 28
hash

built-in function, 31
hash character,5
hash-based pyc, 148
hashable, 72, 149
hexadecimal literal, 15
hierarchy

type, 20
hooks

import, 58

meta, 58

path, 58

186

Index

The Python Language Reference, Release 3.11.1

|
id
built-in function, 19
identifier, 8,70
identity
test, 87
identity of an object, 19
IDLE, 149
if
conditional expression, 88
in comprehensions, 71
keyword, 110
statement, 104
imaginary literal, I5
immutable, 149
data type, 70
object, 21,70, 72
immutable object, 19
immutable sequence
object, 21
immutable types
subclassing, 29
import
hooks, 58
statement, 25, 99
import hooks, 58
import machinery, 55
import path, 149
importer, 149
ImportError
exception, 99
importing, 149

in
keyword, 104
operator, 86

inclusive

or, 84
INDENT token,7
indentation, 7
index operation,?2l
indices () (slice method), 28
inheritance, 120
input, 126
instance
call,42,8l1
class, 26
object, 25, 26, 81
int
built—-in function, 46
integer, 21
object, 21
representation, 21
integer literal, 15
interactive, 149

interactive mode, 125
internal type, 26
interpolated string literal, 12
interpreted, 149
interpreter, 125
interpreter shutdown, 149
inversion, 82
invocation, 23
io

module, 26
irrefutable case block, 111
is

operator, 87
is not

operator, 87
item

sequence, 78

string, 78
item selection,?21
iterable, 149

unpacking, 88
iterator, 149

J

in numeric literal, 16
Java

language, 21

K

key, 72
key function, 150
key/datum pair, 72
keyword, 9
as, 99, 105, 108, 110
async, 121
await, 81, 121
case, 110
elif, 104
else, 98, 104, 105, 107
except, 105
except_star, 106
finally, 96,98, 99, 105, 107
from, 73, 99
if, 110
in, 104
yield, 73
keyword argument, 150

L

lambda, 150
expression, 88, 120
form, 88

language

Index

187

The Python Language Reference, Release 3.11.1

C, 20, 21, 24, 84
Java, 21
last_traceback (in module sys), 28
LBYL, 150
leading whitespace, 7
len
built—-in function, 21, 22,43
lexical analysis,5S
lexical definitions,4
line continuation,6
line joining,5,6
line structure,5
list, 150
assignment, target, 92
comprehensions, 71
deletion target, 96
display, 71
empty, 71
expression, 88,91
object, 22,71,78,79,93
target, 92, 104
list comprehension, 150
literal, 10,70
loader, 57, 150
locale encoding, 150
logical 1line,5
loop
statement, 98, 99, 104
loop control
target, 98

M

magic
method, 150
magic method, 150
makefile () (socket method), 26
mangling
name, 70
mapping, 150
object, 22, 26,78,93
match
case, 110
statement, 110
matrix multiplication, 82
membership
test, 86
meta
hooks, 58
meta hooks, 58
meta path finder, 151
metaclass, 38, 151
metaclass hint, 38
method, 151
built-in, 24

call, 81
magic, 150
object, 23, 24, 81
special, 154
user—defined, 23
method resolution order, 151
minus, 82
module, 151
_ _main
array, 22
builtins, 125
dbm. gnu, 22
dbm . ndbm, 22
extension, 20
importing, 99
io, 26
namespace, 25
object, 25,78
sys, 106, 125
module spec, 57, 151
modulo, 82
MRO, 151
multiplication, 82
mutable, 151
object, 22,92,93
mutable object, 19
mutable sequence
object, 22

N

name, 8, 51, 70
binding, 51, 92,99, 118, 120
binding, global, 101
class, 120
function, 118
mangling, 70
rebinding, 92
unbinding, 96

named expression, 87

named tuple, 151

NameError
exception, 70

NameError (built-in exception), 52

names
private, 70

namespace, 51, 151
global, 23
module, 25
package, 56

namespace package, 152

negation, 82

nested scope, 152

new-style class, 152

NEWLINE token,5, 103

, 52,125

188

Index

The Python Language Reference, Release 3.11.1

None
object, 20,91
nonlocal
statement, 102
not
operator, 87
not in
operator, 86
notation, 4
NotImplemented
object, 20
null
operation, 95
number, 15
complex, 21
floating point, 21
numeric
object, 20, 26
numeric literal, 15

O

object, 19,152
asynchronous—generator, 76
Boolean, 21
built-in function, 24, 81
built-in method, 24, 81
callable, 23,79
class, 25, 81, 120
class instance, 25, 26, 81
code, 26
complex, 21
dictionary, 22, 25,31, 72,78, 93
Ellipsis, 20
floating point, 21
frame, 27
frozenset, 22
function, 23, 24, 81, 118
generator, 26, 73, 74
immutable, 21, 70, 72
immutable sequence, 21
instance, 25, 26, 81
integer, 21
list,22,71,78,79,93
mapping, 22, 26, 78, 93
method, 23, 24, 81
module, 25, 78
mutable, 22,92, 93
mutable sequence, 22
None, 20, 91
NotImplemented, 20
numeric, 20, 26

sequence, 21, 26, 78, 79, 86, 93, 104

set, 22,72
set type, 22

slice, 43

string, 78,79

traceback, 28, 97, 106

tuple, 21, 78,79, 88

user—defined function, 23, 81,118

user—defined method, 23
object._ match_args__ (built-in variable), 47
object._ slots__ (built-in variable), 36
octal literal, 15
open

built-in function, 26
operation

binary arithmetic, 82

binary bitwise, 83

Boolean, 87

null, 95

power, 81

shifting, 83

unary arithmetic, 82

unary bitwise, 82
operator

— (minus), 82, 83

% (percent), 82

& (ampersand), 83

* (asterisk), 82

*% 8]

+ (plus), 82, 83

/ (slash), 82

//,82

< (less), 84

<<, 83

<=, 84

1=, 84

==, 84

> (greater), 84

>=, 84

>>, 83

@ (at), 82

~ (caret), 83

| (vertical bar), 84

~ (tilde), 82

and, 87

in, 86

is, 87

is not, 87

not, 87

not in, 86

or, 87

overloading, 29

precedence, 89

ternary, 88
operators, 16
or

bitwise, 84

Index

189

The Python Language Reference, Release 3.11.1

exclusive, 83
inclusive, 84
operator, 87
ord
built-in function, 21
order
evaluation, 89
output, 91
standard, 91
overloading
operator, 29

P

package, 56, 152
namespace, 56
portion, 56
regular, 56

parameter, 152
call semantics, 79
function definition, 118
value, default, 119

parenthesized form, 70

parser, 5

pass
statement, 95

path
hooks, 58

path based finder, 64, 153

path entry, 152

path entry finder, 153

path entry hook, 153

path hooks, 58

path-like object, 153

pattern matching, 110

PEP, 153

physical line,5,6,11

plus, 82

popen () (in module os), 26

portion, 153
package, 56

positional argument, 153

pow
built-in function, 44,45

power
operation, 81

precedence
operator, 89

primary, 77

print
built-in function, 30

print () (built-in function)
__str__ () (object method), 30

private
names, 70

procedure
call,9l
program, 125
provisional API, 153
provisional package, 153

Python

3000, 153

Python Enhancement Proposals

PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP
PEP

1,153

8,85

236, 101

238, 147
252,34

255,74

278, 156

302, 55, 67, 147, 150
308, 88
318,121
328,67

338,67

342,74
343,47, 109, 145
362, 144, 152
366,62, 67

380, 74
411,153
414,11

420, 55,57, 63,67, 147, 152, 153
443,148
448,72, 80, 88
451,67, 147
483, 148

484, 40, 95, 120, 143, 147, 148, 155, 156

492,49, 74, 123, 144, 146
498, 14, 147
519,153
525,74, 144
526, 95, 120, 143, 156
530,71

560, 38,42
562,34

563, 101, 120
570, 119
572,72,88, 113
585, 148
614,119,121
617,127
634,47,110, 118
636, 110, 118
3104, 102
3107, 120
3115,39, 121
3116, 156
3119,40
3120,5

190

Index

The Python Language Reference, Release 3.11.1

PEP 3129, 121

PEP 3131,8

PEP 3132,93

PEP 3135,40

PEP 3147,62

PEP 3155, 154
PYTHONHASHSEED, 32
Pythonic, 153
PYTHONNODEBUGRANGES, 27
PYTHONPATH, 64

Q

qualified name, 154

R

r'

raw string literal, 11
r"

raw string literal, 1l
raise

statement, 97
raise an exception,53
raising

exception, 97
range

built-in function, 105
raw string, 10
rebinding

name, 92
reference

attribute, 78
reference count, 154
reference counting, 19

regular

package, 56
regular package, 154
relative

import, 100
repr

built-in function, 91
repr () (built-in function)
__repr___() (object method), 30
representation
integer, 21
reserved word,9
restricted
execution, 53
return
statement, 96, 107, 108
round
built-in function, 46

S

scope, 51, 52

send () (coroutine method), 49
send () (generator method), 75
sequence, 154

item, 78

object, 21, 26, 78, 79, 86, 93, 104

set
comprehensions, 72
display, 72
object, 22,72
set comprehension, 154
set type
object, 22
shifting
operation, 83
simple
statement, 91
single dispatch, 154
singleton
tuple, 21
slice, 79,154
built-in function, 28
object,43
slicing,21,22,79
assignment, 93
soft keyword,9
source character set,6
space, 7
special
attribute, 20
attribute, generic, 20
method, 154
special method, 154
stack
execution, 28
trace, 28
standard
output, 91
Standard C, 11
standard input, 125
start (slice object attribute), 28, 79
statement, 155
assert, 95
assignment, 22, 92
assignment, annotated, 94
assignment, augmented, 94
async def, 121
async for, 122
async with, 122
break, 98, 104, 107, 108
class, 120
compound, 103
continue, 99, 104, 107, 108
def, 118
del, 29, 96

Index

191

The Python Language Reference, Release 3.11.1

expression, 91

for, 98, 99, 104

future, 100

global, 96, 101

if, 104

import, 25, 99

loop, 98, 99, 104

match, 110

nonlocal, 102

pass, 95

raise, 97

return, 96, 107, 108

simple, 91

try, 28, 105

while, 98,99, 104

with, 46, 108

yield, 96
statement grouping,7
stderr (in module sys), 26
stdin (in module sys), 26
stdio, 26
stdout (in module sys), 26
step (slice object attribute), 28, 79
stop (slice object attribute), 28, 79
StopAsyncIteration

exception, 77
Stoplteration

exception, 74, 96
string

__format__ () (object method), 30

__str__ () (object method), 30

conversion, 30, 91

formatted literal, 12

immutable sequences, 21

interpolated literal, 12

item, 78

object, 78,79
string literal, 10
strong reference, 155
subclassing

immutable types, 29
subscription, 21, 22,78

assignment, 93
subtraction, 83

suite, 103
syntax, 4
sys

module, 106, 125
sys.exc_info, 28
sys.last_traceback, 28
sys.meta_path, 58
sys.modules, 57
sys.path, 64
sys.path_hooks, 64

sys.path_importer_cache, 64
sys.stderr, 26

sys.stdin, 26

sys.stdout, 26
SystemExit (built-in exception), 53

T

tab, 7
target, 92
deletion, 96
list, 92,104
list assignment, 92
list,deletion, 96
loop control, 98
tb_ frame (traceback attribute), 28
tb_lasti (traceback attribute), 28
tb_1lineno (traceback attribute), 28
tb_next (traceback attribute), 28
termination model, 53
ternary
operator, 88
test
identity, 87
membership, 86
text encoding, 155
text file, 155
throw () (coroutine method), 49
throw () (generator method), 75
token, 5
trace
stack, 28
traceback
object, 28, 97, 106
trailing
comma, 88
triple-quoted string, 155
triple—-quoted string, 10
True, 21
try
statement, 28, 105
tuple
empty, 21,70
object, 21,78,79, 88
singleton, 21
type, 20, 155
built-in function, 19, 38
data, 20
hierarchy, 20
immutable data, 70
type alias, 155
type hint, 155
type of an object, 19
TypeError
exception, 82

192

Index

The Python Language Reference, Release 3.11.1

types, internal, 26

U

u'

string literal, 10

u"
string literal, 10

unary

arithmetic operation, §2

bitwise operation, 82
unbinding

name, 96
UnboundLocalError, 52
Unicode, 21
Unicode Consortium, 10
universal newlines, 156
UNIX, 125
unpacking

dictionary, 72

in function calls, 80

iterable, 88
unreachable object, 19

unrecognized escape sequence, 12

user-defined
function, 23
functioncall, 81
method, 23

user—-defined function
object, 23,81, 118

user-defined method
object, 23

\Y

value

default parameter, 119
value of an object, 19
ValueError

exception, 83
values

writing, 91
variable

free, 52
variable annotation, 156
virtual environment, 156
virtual machine, 156

W

walrus operator, 87
while
statement, 98, 99, 104
Windows, 125
with
statement, 46, 108
writing

values, 91

X

xXor
bitwise, 83

Y

yield
examples, 75
expression, 73
keyword, 73
statement, 96

Z

Zen of Python, 156
ZeroDivisionError
exception, 82

Index

	Introduction
	Alternate Implementations
	Notation

	Lexical analysis
	Line structure
	Logical lines
	Physical lines
	Comments
	Encoding declarations
	Explicit line joining
	Implicit line joining
	Blank lines
	Indentation
	Whitespace between tokens

	Other tokens
	Identifiers and keywords
	Keywords
	Soft Keywords
	Reserved classes of identifiers

	Literals
	String and Bytes literals
	String literal concatenation
	Formatted string literals
	Numeric literals
	Integer literals
	Floating point literals
	Imaginary literals

	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	Special method names
	Basic customization
	Customizing attribute access
	Customizing module attribute access
	Implementing Descriptors
	Invoking Descriptors
	__slots__
	Notes on using __slots__

	Customizing class creation
	Metaclasses
	Resolving MRO entries
	Determining the appropriate metaclass
	Preparing the class namespace
	Executing the class body
	Creating the class object
	Uses for metaclasses

	Customizing instance and subclass checks
	Emulating generic types
	The purpose of __class_getitem__
	__class_getitem__ versus __getitem__

	Emulating callable objects
	Emulating container types
	Emulating numeric types
	With Statement Context Managers
	Customizing positional arguments in class pattern matching
	Special method lookup

	Coroutines
	Awaitable Objects
	Coroutine Objects
	Asynchronous Iterators
	Asynchronous Context Managers

	Execution model
	Structure of a program
	Naming and binding
	Binding of names
	Resolution of names
	Builtins and restricted execution
	Interaction with dynamic features

	Exceptions

	The import system
	importlib
	Packages
	Regular packages
	Namespace packages

	Searching
	The module cache
	Finders and loaders
	Import hooks
	The meta path

	Loading
	Loaders
	Submodules
	Module spec
	Import-related module attributes
	module.__path__
	Module reprs
	Cached bytecode invalidation

	The Path Based Finder
	Path entry finders
	Path entry finder protocol

	Replacing the standard import system
	Package Relative Imports
	Special considerations for __main__
	__main__.__spec__

	References

	Expressions
	Arithmetic conversions
	Atoms
	Identifiers (Names)
	Literals
	Parenthesized forms
	Displays for lists, sets and dictionaries
	List displays
	Set displays
	Dictionary displays
	Generator expressions
	Yield expressions
	Generator-iterator methods
	Examples
	Asynchronous generator functions
	Asynchronous generator-iterator methods

	Primaries
	Attribute references
	Subscriptions
	Slicings
	Calls

	Await expression
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Value comparisons
	Membership test operations
	Identity comparisons

	Boolean operations
	Assignment expressions
	Conditional expressions
	Lambdas
	Expression lists
	Evaluation order
	Operator precedence

	Simple statements
	Expression statements
	Assignment statements
	Augmented assignment statements
	Annotated assignment statements

	The assert statement
	The pass statement
	The del statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	Future statements

	The global statement
	The nonlocal statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	except clause
	except* clause
	else clause
	finally clause

	The with statement
	The match statement
	Overview
	Guards
	Irrefutable Case Blocks
	Patterns
	OR Patterns
	AS Patterns
	Literal Patterns
	Capture Patterns
	Wildcard Patterns
	Value Patterns
	Group Patterns
	Sequence Patterns
	Mapping Patterns
	Class Patterns

	Function definitions
	Class definitions
	Coroutines
	Coroutine function definition
	The async for statement
	The async with statement

	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Full Grammar specification
	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	PSF LICENSE AGREEMENT FOR PYTHON 3.11.1
	BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
	CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
	CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
	ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.1 DOCUMENTATION

	Licenses and Acknowledgements for Incorporated Software
	Mersenne Twister
	Sockets
	Asynchronous socket services
	Cookie management
	Execution tracing
	UUencode and UUdecode functions
	XML Remote Procedure Calls
	test_epoll
	Select kqueue
	SipHash24
	strtod and dtoa
	OpenSSL
	expat
	libffi
	zlib
	cfuhash
	libmpdec
	W3C C14N test suite
	Audioop

	Copyright
	Index

