
What’s New in Python
Release 3.11.0a7

A. M. Kuchling

April 25, 2022
Python Software Foundation

Email: docs@python.org

Contents

1 Summary – Release highlights 2

2 New Features 3
2.1 Enhanced error locations in tracebacks . 3

3 New Features Related to Type Hints 4
3.1 PEP 646: Variadic generics . 4
3.2 PEP 655: Marking individual TypedDict items as required or not-required 4
3.3 PEP 673: Self type . 5
3.4 PEP 675: Arbitrary literal string type . 5

4 Other Language Changes 6

5 Other CPython Implementation Changes 6

6 New Modules 6

7 Improved Modules 7
7.1 asyncio . 7
7.2 fractions . 7
7.3 functools . 7
7.4 hashlib . 8
7.5 IDLE and idlelib . 8
7.6 inspect . 8
7.7 locale . 8
7.8 math . 8
7.9 operator . 8
7.10 os . 9
7.11 re . 9
7.12 shutil . 9
7.13 socket . 9
7.14 sqlite3 . 9
7.15 sys . 10
7.16 sysconfig . 10
7.17 threading . 10
7.18 time . 10
7.19 unicodedata . 10
7.20 venv . 10
7.21 warnings . 11

1

7.22 zipfile . 11
7.23 fcntl . 11

8 Optimizations 11

9 Faster CPython 11
9.1 Faster Startup . 12
9.2 Faster Runtime . 12
9.3 Misc . 14
9.4 FAQ . 14
9.5 About . 15

10 CPython bytecode changes 15

11 Deprecated 15

12 Removed 17

13 Porting to Python 3.11 18
13.1 Changes in the Python API . 18

14 Build Changes 18

15 C API Changes 19
15.1 New Features . 20
15.2 Porting to Python 3.11 . 21
15.3 Deprecated . 24
15.4 Removed . 24

Index 26

Release 3.11.0a7
Date April 25, 2022

This article explains the new features in Python 3.11, compared to 3.10.
For full details, see the changelog.

Note: Prerelease users should be aware that this document is currently in draft form. It will be updated substantially
as Python 3.11 moves towards release, so it’s worth checking back even after reading earlier versions.

1 Summary – Release highlights

• Python 3.11 is up to 10-60% faster than Python 3.10. On average, we measured a 1.22x speedup on the
standard benchmark suite. See Faster CPython for details.

New syntax features:
• PEP 654: Exception Groups and except*. (Contributed by Irit Katriel in bpo-45292.)

New typing features:
• PEP 646: Variadic generics.
• PEP 655: Marking individual TypedDict items as required or potentially-missing.
• PEP 673: Self type.

2

https://peps.python.org/pep-0654/
https://bugs.python.org/issue?@action=redirect&bpo=45292
https://peps.python.org/pep-0646/
https://peps.python.org/pep-0655/
https://peps.python.org/pep-0673/

• PEP 675: Arbitrary literal string type.

2 New Features

2.1 Enhanced error locations in tracebacks

When printing tracebacks, the interpreter will now point to the exact expression that caused the error instead of just
the line. For example:

Traceback (most recent call last):
File "distance.py", line 11, in <module>
print(manhattan_distance(p1, p2))

^^^^^^^^^^^^^^^^^^^^^^^^^^
File "distance.py", line 6, in manhattan_distance
return abs(point_1.x - point_2.x) + abs(point_1.y - point_2.y)

^^^^^^^^^
AttributeError: 'NoneType' object has no attribute 'x'

Previous versions of the interpreter would point to just the line making it ambiguous which object was None. These
enhanced errors can also be helpful when dealing with deeply nested dictionary objects and multiple function calls,

Traceback (most recent call last):
File "query.py", line 37, in <module>
magic_arithmetic('foo')
^^^^^^^^^^^^^^^^^^^^^^^

File "query.py", line 18, in magic_arithmetic
return add_counts(x) / 25

^^^^^^^^^^^^^
File "query.py", line 24, in add_counts
return 25 + query_user(user1) + query_user(user2)

^^^^^^^^^^^^^^^^^
File "query.py", line 32, in query_user
return 1 + query_count(db, response['a']['b']['c']['user'], retry=True)

~~~~~~~~~~~~~~~~~~^^^^^
TypeError: 'NoneType' object is not subscriptable

as well as complex arithmetic expressions:

Traceback (most recent call last):
File "calculation.py", line 54, in <module>
result = (x / y / z) * (a / b / c)

~~~~~~^~~
ZeroDivisionError: division by zero

See PEP 657 for more details. (Contributed by Pablo Galindo, Batuhan Taskaya and Ammar Askar in bpo-43950.)

Note: This feature requires storing column positions in code objects which may result in a small increase
of disk usage of compiled Python files or interpreter memory usage. To avoid storing the extra information
and/or deactivate printing the extra traceback information, the -X no_debug_ranges command line flag or the
PYTHONNODEBUGRANGES environment variable can be used.

3

https://peps.python.org/pep-0675/
https://peps.python.org/pep-0657/
https://bugs.python.org/issue?@action=redirect&bpo=43950

Column information for code objects

The information used by the enhanced traceback feature is made available as a general API that can be used to
correlate bytecode instructions with source code. This information can be retrieved using:

• The codeobject.co_positions() method in Python.
• The PyCode_Addr2Location() function in the C-API.

The -X no_debug_ranges option and the environment variable PYTHONNODEBUGRANGES can be used to
disable this feature.
See PEP 657 for more details. (Contributed by Pablo Galindo, Batuhan Taskaya and Ammar Askar in bpo-43950.)

Exceptions can be enriched with notes (PEP 678)

The add_note() method was added to BaseException. It can be used to enrich exceptions with context
information which is not available at the time when the exception is raised. The notes added appear in the default
traceback. See PEP 678 for more details. (Contributed by Irit Katriel in bpo-45607.)

3 New Features Related to Type Hints

This section covers major changes affecting PEP 484 type hints and the typing module.

3.1 PEP 646: Variadic generics

PEP 484 introduced TypeVar, enabling creation of generics parameterised with a single type. PEP 646 introduces
TypeVarTuple, enabling parameterisation with an arbitrary number of types. In other words, a TypeVarTuple
is a variadic type variable, enabling variadic generics. This enables a wide variety of use cases. In particular, it allows
the type of array-like structures in numerical computing libraries such as NumPy and TensorFlow to be parameterised
with the array shape. Static type checkers will now be able to catch shape-related bugs in code that uses these libraries.
See PEP 646 for more details.
(Contributed by Matthew Rahtz in bpo-43224, with contributions by Serhiy Storchaka and Jelle Zijlstra. PEP written
by Mark Mendoza, Matthew Rahtz, Pradeep Kumar Srinivasan, and Vincent Siles.)

3.2 PEP 655: Marking individual TypedDict items as required or not-required

Required and NotRequired provide a straightforward way to mark whether individual items in a TypedDict
must be present. Previously this was only possible using inheritance.
Fields are still required by default, unless the total=False parameter is set. For example, the following specifies
a dictionary with one required and one not-required key:

class Movie(TypedDict):
title: str
year: NotRequired[int]

m1: Movie = {"title": "Black Panther", "year": 2018} # ok
m2: Movie = {"title": "Star Wars"} # ok (year is not required)
m3: Movie = {"year": 2022} # error (missing required field title)

The following definition is equivalent:

class Movie(TypedDict, total=False):
title: Required[str]
year: int

4

https://peps.python.org/pep-0657/
https://bugs.python.org/issue?@action=redirect&bpo=43950
https://peps.python.org/pep-0678/
https://bugs.python.org/issue?@action=redirect&bpo=45607
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0646/
https://peps.python.org/pep-0646/
https://bugs.python.org/issue?@action=redirect&bpo=43224

See PEP 655 for more details.
(Contributed by David Foster and Jelle Zijlstra in bpo-47087. PEP written by David Foster.)

3.3 PEP 673: Self type

The new Self annotation provides a simple and intuitive way to annotate methods that return an instance of their
class. This behaves the same as the TypeVar-based approach specified in PEP 484 but is more concise and easier
to follow.
Common use cases include alternative constructors provided as classmethods and __enter__() methods that
return self:

class MyLock:
def __enter__(self) -> Self:

self.lock()
return self

...

class MyInt:
@classmethod
def fromhex(cls, s: str) -> Self:

return cls(int(s, 16))

...

Self can also be used to annotate method parameters or attributes of the same type as their enclosing class.
See PEP 673 for more details.
(Contributed by James Hilton-Balfe in bpo-46534. PEP written by Pradeep Kumar Srinivasan and James Hilton-
Balfe.)

3.4 PEP 675: Arbitrary literal string type

The new LiteralString annotation may be used to indicate that a function parameter can be of any literal string
type. This allows a function to accept arbitrary literal string types, as well as strings created from other literal strings.
Type checkers can then enforce that sensitive functions, such as those that execute SQL statements or shell commands,
are called only with static arguments, providing protection against injection attacks.
For example, a SQL query function could be annotated as follows:

def run_query(sql: LiteralString) -> ...
...

def caller(
arbitrary_string: str,
query_string: LiteralString,
table_name: LiteralString,

) -> None:
run_query("SELECT * FROM students") # ok
run_query(query_string) # ok
run_query("SELECT * FROM " + table_name) # ok
run_query(arbitrary_string) # type checker error
run_query(# type checker error

f"SELECT * FROM students WHERE name = {arbitrary_string}"
)

See PEP 675 for more details.
(Contributed by Jelle Zijlstra in bpo-47088. PEP written by Pradeep Kumar Srinivasan and Graham Bleaney.)

5

https://peps.python.org/pep-0655/
https://bugs.python.org/issue?@action=redirect&bpo=47087
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0673/
https://bugs.python.org/issue?@action=redirect&bpo=46534
https://peps.python.org/pep-0675/
https://bugs.python.org/issue?@action=redirect&bpo=47088

4 Other Language Changes

• Starred expressions can be used in for statements. (See bpo-46725 for more details.)
• Asynchronous comprehensions are now allowed inside comprehensions in asynchronous functions. Outer com-
prehensions implicitly become asynchronous. (Contributed by Serhiy Storchaka in bpo-33346.)

• A TypeError is now raised instead of an AttributeError in contextlib.ExitStack.
enter_context() and contextlib.AsyncExitStack.enter_async_context() for ob-
jects which do not support the context manager or asynchronous context manager protocols correspondingly.
(Contributed by Serhiy Storchaka in bpo-44471.)

• A TypeError is now raised instead of an AttributeError in with and async with statements for
objects which do not support the context manager or asynchronous context manager protocols correspondingly.
(Contributed by Serhiy Storchaka in bpo-12022.)

• Added object.__getstate__() which provides the default implementation of the
__getstate__() method. Copying and pickling instances of subclasses of builtin types
bytearray, set, frozenset, collections.OrderedDict, collections.deque,
weakref.WeakSet, and datetime.tzinfo now copies and pickles instance attributes implemented
as slots. (Contributed by Serhiy Storchaka in bpo-26579.)

5 Other CPython Implementation Changes

• Special methods complex.__complex__() and bytes.__bytes__() are implemented to support
typing.SupportsComplex and typing.SupportsBytes protocols. (Contributed by Mark Dick-
inson and Dong-hee Na in bpo-24234.)

• siphash13 is added as a new internal hashing algorithms. It has similar security properties as siphash24
but it is slightly faster for long inputs. str, bytes, and some other types now use it as default algorithm
for hash(). PEP 552 hash-based pyc files now use siphash13, too. (Contributed by Inada Naoki in
bpo-29410.)

• When an active exception is re-raised by a raise statement with no parameters, the traceback attached to
this exception is now always sys.exc_info()[1].__traceback__. This means that changes made
to the traceback in the current except clause are reflected in the re-raised exception. (Contributed by Irit
Katriel in bpo-45711.)

• The interpreter state’s representation of handled exceptions (a.k.a exc_info, or _PyErr_StackItem) now has
only the exc_value field, exc_type and exc_traceback have been removed as their values can be
derived from exc_value. (Contributed by Irit Katriel in bpo-45711.)

• A new command line option for the Windows installer AppendPath has been added. It behaves similiar to
PrependPath but appends the install and scripts directories instead of prepending them. (Contributed by
Bastian Neuburger in bpo-44934.)

6 New Modules

• A new module, tomllib, was added for parsing TOML. (Contributed by Taneli Hukkinen in bpo-40059.)
• wsgiref.types, containing WSGI-specific types for static type checking, was added. (Contributed by
Sebastian Rittau in bpo-42012.)

6

https://bugs.python.org/issue?@action=redirect&bpo=46725
https://bugs.python.org/issue?@action=redirect&bpo=33346
https://bugs.python.org/issue?@action=redirect&bpo=44471
https://bugs.python.org/issue?@action=redirect&bpo=12022
https://bugs.python.org/issue?@action=redirect&bpo=26579
https://bugs.python.org/issue?@action=redirect&bpo=24234
https://peps.python.org/pep-0552/
https://bugs.python.org/issue?@action=redirect&bpo=29410
https://bugs.python.org/issue?@action=redirect&bpo=45711
https://bugs.python.org/issue?@action=redirect&bpo=45711
https://bugs.python.org/issue?@action=redirect&bpo=44934
https://bugs.python.org/issue?@action=redirect&bpo=40059
https://bugs.python.org/issue?@action=redirect&bpo=42012

7 Improved Modules

7.1 asyncio

• Add raw datagram socket functions to the event loop: sock_sendto(), sock_recvfrom() and
sock_recvfrom_into(). (Contributed by Alex Grönholm in bpo-46805.)

• Add start_tls() method for upgrading existing stream-based connections to TLS. (Contributed by Ian
Good in bpo-34975.)

7.2 fractions

• Support PEP 515-style initialization of Fraction from string. (Contributed by Sergey B Kirpichev in bpo-
44258.)

• Fraction now implements an __int__ method, so that an isinstance(some_fraction,
typing.SupportsInt) check passes. (Contributed by Mark Dickinson in bpo-44547.)

7.3 functools

• functools.singledispatch() now supports types.UnionType and typing.Union as anno-
tations to the dispatch argument.:

>>> from functools import singledispatch
>>> @singledispatch
... def fun(arg, verbose=False):
... if verbose:
... print("Let me just say,", end=" ")
... print(arg)
...
>>> @fun.register
... def _(arg: int | float, verbose=False):
... if verbose:
... print("Strength in numbers, eh?", end=" ")
... print(arg)
...
>>> from typing import Union
>>> @fun.register
... def _(arg: Union[list, set], verbose=False):
... if verbose:
... print("Enumerate this:")
... for i, elem in enumerate(arg):
... print(i, elem)
...

(Contributed by Yurii Karabas in bpo-46014.)

7

https://bugs.python.org/issue?@action=redirect&bpo=46805
https://bugs.python.org/issue?@action=redirect&bpo=34975
https://peps.python.org/pep-0515/
https://bugs.python.org/issue?@action=redirect&bpo=44258
https://bugs.python.org/issue?@action=redirect&bpo=44258
https://bugs.python.org/issue?@action=redirect&bpo=44547
https://bugs.python.org/issue?@action=redirect&bpo=46014

7.4 hashlib

• hashlib.blake2b() and hashlib.blake2s() now prefer libb2 over Python’s vendored copy. (Con-
tributed by Christian Heimes in bpo-47095.)

• The internal _sha3 module with SHA3 and SHAKE algorithms now uses tiny_sha3 instead of the Keccak
Code Package to reduce code and binary size. The hashlib module prefers optimized SHA3 and SHAKE
implementations fromOpenSSL. The change affects only installations without OpenSSL support. (Contributed
by Christian Heimes in bpo-47098.)

7.5 IDLE and idlelib

• Apply syntax highlighting to .pyi files. (Contributed by Alex Waygood and Terry Jan Reedy in bpo-45447.)

7.6 inspect

• Add inspect.getmembers_static(): return all members without triggering dynamic lookup via the
descriptor protocol. (Contributed by Weipeng Hong in bpo-30533.)

• Add inspect.ismethodwrapper() for checking if the type of an object is a MethodWrapperType.
(Contributed by Hakan Çelik in bpo-29418.)

• Change the frame-related functions in the inspect module to return a regular object (that is backwards
compatible with the old tuple-like interface) that include the extended PEP 657 position information (end line
number, column and end column). The affected functions are: inspect.getframeinfo(), inspect.
getouterframes(), inspect.getinnerframes(), inspect.stack() and inspect.
trace(). (Contributed by Pablo Galindo in gh-88116)

7.7 locale

• Add locale.getencoding() to get the current locale encoding. It is similar to locale.
getpreferredencoding(False) but ignores the Python UTF-8 Mode.

7.8 math

• Add math.exp2(): return 2 raised to the power of x. (Contributed by Gideon Mitchell in bpo-45917.)
• Add math.cbrt(): return the cube root of x. (Contributed by Ajith Ramachandran in bpo-44357.)
• The behaviour of two math.pow() corner cases was changed, for consistency with the IEEE 754 specifi-
cation. The operations math.pow(0.0, -math.inf) and math.pow(-0.0, -math.inf) now
return inf. Previously they raised ValueError. (Contributed by Mark Dickinson in bpo-44339.)

• The math.nan value is now always available. (Contributed by Victor Stinner in bpo-46917.)

7.9 operator

• A new function operator.call has been added, such that operator.call(obj, *args,
**kwargs) == obj(*args, **kwargs). (Contributed by Antony Lee in bpo-44019.)

8

https://www.blake2.net/
https://bugs.python.org/issue?@action=redirect&bpo=47095
https://bugs.python.org/issue?@action=redirect&bpo=47098
https://bugs.python.org/issue?@action=redirect&bpo=45447
https://bugs.python.org/issue?@action=redirect&bpo=30533
https://bugs.python.org/issue?@action=redirect&bpo=29418
https://peps.python.org/pep-0657/
https://github.com/python/cpython/issues/88116
https://bugs.python.org/issue?@action=redirect&bpo=45917
https://bugs.python.org/issue?@action=redirect&bpo=44357
https://bugs.python.org/issue?@action=redirect&bpo=44339
https://bugs.python.org/issue?@action=redirect&bpo=46917
https://bugs.python.org/issue?@action=redirect&bpo=44019

7.10 os

• On Windows, os.urandom() now uses BCryptGenRandom(), instead of CryptGenRandom()
which is deprecated. (Contributed by Dong-hee Na in bpo-44611.)

7.11 re

• Atomic grouping ((?>...)) and possessive quantifiers (*+, ++, ?+, {m,n}+) are now supported in regular
expressions. (Contributed by Jeffrey C. Jacobs and Serhiy Storchaka in bpo-433030.)

7.12 shutil

• Add optional parameter dir_fd in shutil.rmtree(). (Contributed by Serhiy Storchaka in bpo-46245.)

7.13 socket

• Add CAN Socket support for NetBSD. (Contributed by Thomas Klausner in bpo-30512.)
• create_connection() has an option to raise, in case of failure to connect, an ExceptionGroup
containing all errors instead of only raising the last error. (Contributed by Irit Katriel in bpo-29980).

7.14 sqlite3

• You can now disable the authorizer by passing None to set_authorizer(). (Contributed by Erlend E.
Aasland in bpo-44491.)

• Collation name create_collation() can now contain any Unicode character. Collation names with in-
valid characters now raise UnicodeEncodeError instead of sqlite3.ProgrammingError. (Con-
tributed by Erlend E. Aasland in bpo-44688.)

• sqlite3 exceptions now include the SQLite extended error code as sqlite_errorcode and the SQLite
error name as sqlite_errorname. (Contributed by Aviv Palivoda, Daniel Shahaf, and Erlend E. Aasland
in bpo-16379 and bpo-24139.)

• Add setlimit() and getlimit() to sqlite3.Connection for setting and getting SQLite limits
by connection basis. (Contributed by Erlend E. Aasland in bpo-45243.)

• sqlite3 now sets sqlite3.threadsafety based on the default threading mode the underlying SQLite
library has been compiled with. (Contributed by Erlend E. Aasland in bpo-45613.)

• sqlite3 C callbacks now use unraisable exceptions if callback tracebacks are enabled. Users can now
register an unraisable hook handler to improve their debug experience. (Contributed by Erlend E.
Aasland in bpo-45828.)

• Fetch across rollback no longer raises InterfaceError. Instead we leave it to the SQLite library to handle
these cases. (Contributed by Erlend E. Aasland in bpo-44092.)

• Add serialize() and deserialize() to sqlite3.Connection for serializing and deserializing
databases. (Contributed by Erlend E. Aasland in bpo-41930.)

• Add create_window_function() to sqlite3.Connection for creating aggregate window func-
tions. (Contributed by Erlend E. Aasland in bpo-34916.)

• Add blobopen() to sqlite3.Connection. sqlite3.Blob allows incremental I/O operations on
blobs. (Contributed by Aviv Palivoda and Erlend E. Aasland in bpo-24905)

9

https://bugs.python.org/issue?@action=redirect&bpo=44611
https://bugs.python.org/issue?@action=redirect&bpo=433030
https://bugs.python.org/issue?@action=redirect&bpo=46245
https://bugs.python.org/issue?@action=redirect&bpo=30512
https://bugs.python.org/issue?@action=redirect&bpo=29980
https://bugs.python.org/issue?@action=redirect&bpo=44491
https://bugs.python.org/issue?@action=redirect&bpo=44688
https://bugs.python.org/issue?@action=redirect&bpo=16379
https://bugs.python.org/issue?@action=redirect&bpo=24139
https://bugs.python.org/issue?@action=redirect&bpo=45243
https://bugs.python.org/issue?@action=redirect&bpo=45613
https://bugs.python.org/issue?@action=redirect&bpo=45828
https://bugs.python.org/issue?@action=redirect&bpo=44092
https://bugs.python.org/issue?@action=redirect&bpo=41930
https://bugs.python.org/issue?@action=redirect&bpo=34916
https://bugs.python.org/issue?@action=redirect&bpo=24905

7.15 sys

• sys.exc_info() now derives the type and traceback fields from the value (the exception instance),
so when an exception is modified while it is being handled, the changes are reflected in the results of subsequent
calls to exc_info(). (Contributed by Irit Katriel in bpo-45711.)

• Add sys.exception() which returns the active exception instance (equivalent to sys.
exc_info()[1]). (Contributed by Irit Katriel in bpo-46328.)

7.16 sysconfig

• Two new installation schemes (posix_venv, nt_venv and venv) were added and are used when Python creates
new virtual environments or when it is running from a virtual environment. The first two schemes (posix_venv
and nt_venv) are OS-specific for non-Windows and Windows, the venv is essentially an alias to one of them
according to the OS Python runs on. This is useful for downstream distributors who modify sysconfig.
get_preferred_scheme(). Third party code that creates new virtual environments should use the new
venv installation scheme to determine the paths, as does venv. (Contributed by Miro Hrončok in bpo-45413.)

7.17 threading

• On Unix, if the sem_clockwait() function is available in the C library (glibc 2.30 and newer), the
threading.Lock.acquire() method now uses the monotonic clock (time.CLOCK_MONOTONIC)
for the timeout, rather than using the system clock (time.CLOCK_REALTIME), to not be affected by system
clock changes. (Contributed by Victor Stinner in bpo-41710.)

7.18 time

• On Unix, time.sleep() now uses the clock_nanosleep() or nanosleep() function, if available,
which has a resolution of 1 nanosecond (10-9 seconds), rather than using select() which has a resolution
of 1 microsecond (10-6 seconds). (Contributed by Benjamin Szőke and Victor Stinner in bpo-21302.)

• On Windows 8.1 and newer, time.sleep() now uses a waitable timer based on high-resolution timers
which has a resolution of 100 nanoseconds (10-7 seconds). Previously, it had a resolution of 1 millisecond
(10-3 seconds). (Contributed by Benjamin Szőke, Dong-hee Na, Eryk Sun and Victor Stinner in bpo-21302
and bpo-45429.)

7.19 unicodedata

• The Unicode database has been updated to version 14.0.0. (bpo-45190).

7.20 venv

• When new Python virtual environments are created, the venv sysconfig installation scheme is used to determine
the paths inside the environment. When Python runs in a virtual environment, the same installation scheme is
the default. That means that downstream distributors can change the default sysconfig install scheme without
changing behavior of virtual environments. Third party code that also creates new virtual environments should
do the same. (Contributed by Miro Hrončok in bpo-45413.)

10

https://bugs.python.org/issue?@action=redirect&bpo=45711
https://bugs.python.org/issue?@action=redirect&bpo=46328
https://bugs.python.org/issue?@action=redirect&bpo=45413
https://bugs.python.org/issue?@action=redirect&bpo=41710
https://bugs.python.org/issue?@action=redirect&bpo=21302
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/high-resolution-timers
https://bugs.python.org/issue?@action=redirect&bpo=21302
https://bugs.python.org/issue?@action=redirect&bpo=45429
https://bugs.python.org/issue?@action=redirect&bpo=45190
https://bugs.python.org/issue?@action=redirect&bpo=45413

7.21 warnings

• warnings.catch_warnings() now accepts arguments for warnings.simplefilter(), provid-
ing a more concise way to locally ignore warnings or convert them to errors. (Contributed by Zac Hatfield-
Dodds in bpo-47074.)

7.22 zipfile

• Added support for specifying member name encoding for reading metadata in the zipfile’s directory and file
headers. (Contributed by Stephen J. Turnbull and Serhiy Storchaka in bpo-28080.)

7.23 fcntl

• On FreeBSD, the F_DUP2FD and F_DUP2FD_CLOEXEC flags respectively are supported, the former equals
to dup2 usage while the latter set the FD_CLOEXEC flag in addition.

8 Optimizations

• Compiler now optimizes simple C-style formatting with literal format containing only format codes %s, %r and
%a and makes it as fast as corresponding f-string expression. (Contributed by Serhiy Storchaka in bpo-28307.)

• “Zero-cost” exceptions are implemented. The cost of try statements is almost eliminated when no exception
is raised. (Contributed by Mark Shannon in bpo-40222.)

• Pure ASCII strings are now normalized in constant time by unicodedata.normalize(). (Contributed
by Dong-hee Na in bpo-44987.)

• math functions comb() and perm() are now up to 10 times or more faster for large arguments (the speed
up is larger for larger k). (Contributed by Serhiy Storchaka in bpo-37295.)

• Dict don’t store hash value when all inserted keys are Unicode objects. This reduces dict size. For exam-
ple, sys.getsizeof(dict.fromkeys("abcdefg")) becomes 272 bytes from 352 bytes on 64bit
platform. (Contributed by Inada Naoki in bpo-46845.)

• re’s regular expression matching engine has been partially refactored, and now uses computed gotos (or
“threaded code”) on supported platforms. As a result, Python 3.11 executes the pyperformance regular ex-
pression benchmarks up to 10% faster than Python 3.10.

9 Faster CPython

CPython 3.11 is on average 1.22x faster than CPython 3.10 when measured with the pyperformance benchmark suite,
and compiled with GCC on Ubuntu Linux. Depending on your workload, the speedup could be up to 10-60% faster.
This project focuses on two major areas in Python: faster startup and faster runtime. Other optimizations not under
this project are listed in Optimizations.

11

https://bugs.python.org/issue?@action=redirect&bpo=47074
https://bugs.python.org/issue?@action=redirect&bpo=28080
https://bugs.python.org/issue?@action=redirect&bpo=28307
https://bugs.python.org/issue?@action=redirect&bpo=40222
https://bugs.python.org/issue?@action=redirect&bpo=44987
https://bugs.python.org/issue?@action=redirect&bpo=37295
https://bugs.python.org/issue?@action=redirect&bpo=46845
https://pyperformance.readthedocs.io/benchmarks.html#regex-dna
https://pyperformance.readthedocs.io/benchmarks.html#regex-dna
https://github.com/faster-cpython/ideas/blob/main/main-vs-310.rst
https://github.com/python/pyperformance

9.1 Faster Startup

Frozen imports / Static code objects

Python caches bytecode in the __pycache__ directory to speed up module loading.
Previously in 3.10, Python module execution looked like this:

Read __pycache__ -> Unmarshal -> Heap allocated code object -> Evaluate

In Python 3.11, the core modules essential for Python startup are “frozen”. This means that their code objects (and
bytecode) are statically allocated by the interpreter. This reduces the steps in module execution process to this:

Statically allocated code object -> Evaluate

Interpreter startup is now 10-15% faster in Python 3.11. This has a big impact for short-running programs using
Python.
(Contributed by Eric Snow, Guido van Rossum and Kumar Aditya in numerous issues.)

9.2 Faster Runtime

Cheaper, lazy Python frames

Python frames are created whenever Python calls a Python function. This frame holds execution information. The
following are new frame optimizations:

• Streamlined the frame creation process.
• Avoided memory allocation by generously re-using frame space on the C stack.
• Streamlined the internal frame struct to contain only essential information. Frames previously held extra de-
bugging and memory management information.

Old-style frame objects are now created only when required by debuggers. For most user code, no frame objects are
created at all. As a result, nearly all Python functions calls have sped up significantly. We measured a 3-7% speedup
in pyperformance.
(Contributed by Mark Shannon in bpo-44590.)

Inlined Python function calls

During a Python function call, Python will call an evaluating C function to interpret that function’s code. This effec-
tively limits pure Python recursion to what’s safe for the C stack.
In 3.11, when CPython detects Python code calling another Python function, it sets up a new frame, and “jumps” to
the new code inside the new frame. This avoids calling the C interpreting function altogether.
Most Python function calls now consume no C stack space. This speeds up most of such calls. In simple recursive
functions like fibonacci or factorial, a 1.7x speedup was observed. This also means recursive functions can recurse
significantly deeper (if the user increases the recursion limit). We measured a 1-3% improvement in pyperformance.
(Contributed by Pablo Galindo and Mark Shannon in bpo-45256.)

12

https://bugs.python.org/issue?@action=redirect&bpo=44590
https://bugs.python.org/issue?@action=redirect&bpo=45256

PEP 659: Specializing Adaptive Interpreter

PEP 659 is one of the key parts of the faster CPython project. The general idea is that while Python is a dynamic
language, most code has regions where objects and types rarely change. This concept is known as type stability.
At runtime, Python will try to look for common patterns and type stability in the executing code. Python will then
replace the current operation with a more specialized one. This specialized operation uses fast paths available only
to those use cases/types, which generally outperform their generic counterparts. This also brings in another concept
called inline caching, where Python caches the results of expensive operations directly in the bytecode.
The specializer will also combine certain common instruction pairs into one superinstruction. This reduces the over-
head during execution.
Python will only specialize when it sees code that is “hot” (executed multiple times). This prevents Python from
wasting time for run-once code. Python can also de-specialize when code is too dynamic or when the use changes.
Specialization is attempted periodically, and specialization attempts are not too expensive. This allows specialization
to adapt to new circumstances.
(PEP written by Mark Shannon, with ideas inspired by Stefan Brunthaler. See PEP 659 for more information.)

Oper-
ation

Form Specialization Oper-
ation
speedup
(up to)

Contributor(s)

Bi-
nary
opera-
tions

x+x;
x*x;
x-x;

Binary add, multiply and subtract for common types such
as int, float, and str take custom fast paths for their
underlying types.

10% Mark Shannon,
Dong-hee Na,
Brandt Bucher,
Dennis Sweeney

Sub-
script

a[i] Subscripting container types such as list, tuple and
dict directly index the underlying data structures.
Subscripting custom __getitem__ is also inlined similar
to Inlined Python function calls.

10-25% Irit Katriel, Mark
Shannon

Store
sub-
script

a[i]
= z

Similar to subscripting specialization above. 10-25% Dennis Sweeney

Calls f(arg)
C(arg)

Calls to common builtin (C) functions and types such as len
and str directly call their underlying C version. This avoids
going through the internal calling convention.

20% Mark Shannon,
Ken Jin

Load
global
vari-
able

print
len

The object’s index in the globals/builtins namespace is
cached. Loading globals and builtins require zero names-
pace lookups.

1 Mark Shannon

Load
at-
tribute

o.
attr

Similar to loading global variables. The attribute’s index in-
side the class/object’s namespace is cached. In most cases,
attribute loading will require zero namespace lookups.

2 Mark Shannon

Load
meth-
ods
for
call

o.
meth()

The actual address of the method is cached. Method loading
now has no namespace lookups – even for classes with long
inheritance chains.

10-20% Ken Jin, Mark
Shannon

Store
at-
tribute

o.
attr
= z

Similar to load attribute optimization. 2% in
pyper-
for-
mance

Mark Shannon

Un-
pack
Se-
quence

*seq Specialized for common containers such as list and
tuple. Avoids internal calling convention.

8% Brandt Bucher

13

https://peps.python.org/pep-0659/
https://peps.python.org/pep-0659/

9.3 Misc

• Objects now require less memory due to lazily created object namespaces. Their namespace dictionaries now
also share keys more freely. (Contributed Mark Shannon in bpo-45340 and bpo-40116.)

• A more concise representation of exceptions in the interpreter reduced the time required for catching an ex-
ception by about 10%. (Contributed by Irit Katriel in bpo-45711.)

9.4 FAQ

Q: How should I write my code to utilize these speedups?

A: You don’t have to change your code. Write Pythonic code that follows common best practices. The Faster
CPython project optimizes for common code patterns we observe.

Q: Will CPython 3.11 use more memory?

A: Maybe not. We don’t expect memory use to exceed 20% more than 3.10. This is offset by memory optimizations
for frame objects and object dictionaries as mentioned above.

Q: I don’t see any speedups in my workload. Why?

A: Certain code won’t have noticeable benefits. If your code spends most of its time on I/O operations, or already
does most of its computation in a C extension library like numpy, there won’t be significant speedup. This project
currently benefits pure-Python workloads the most.

Furthermore, the pyperformance figures are a geometric mean. Even within the pyperformance benchmarks,
certain benchmarks have slowed down slightly, while others have sped up by nearly 2x!

Q: Is there a JIT compiler?

A: No. We’re still exploring other optimizations.

1 A similar optimization already existed since Python 3.8. 3.11 specializes for more forms and reduces some overhead.
2 A similar optimization already existed since Python 3.10. 3.11 specializes for more forms. Furthermore, all attribute loads should be sped

up by bpo-45947.

14

https://bugs.python.org/issue?@action=redirect&bpo=45340
https://bugs.python.org/issue?@action=redirect&bpo=40116
https://bugs.python.org/issue?@action=redirect&bpo=45711
https://bugs.python.org/issue?@action=redirect&bpo=45947

9.5 About

Faster CPython explores optimizations for CPython. The main team is funded by Microsoft to work on this full-time.
Pablo Galindo Salgado is also funded by Bloomberg LP to work on the project part-time. Finally, many contributors
are volunteers from the community.

10 CPython bytecode changes

• Replaced all numeric BINARY_* and INPLACE_* instructions with a single BINARY_OP implementation.
• Replaced the three call instructions: CALL_FUNCTION, CALL_FUNCTION_KW and CALL_METHOD with
PUSH_NULL, PRECALL, CALL, and KW_NAMES. This decouples the argument shifting for methods from
the handling of keyword arguments and allows better specialization of calls.

• Removed COPY_DICT_WITHOUT_KEYS and GEN_START.
• MATCH_CLASS and MATCH_KEYS no longer push an additional boolean value indicating whether the match
succeeded or failed. Instead, they indicate failure withNone (where a tuple of extracted values would otherwise
be).

• Replace several stack manipulation instructions (DUP_TOP, DUP_TOP_TWO, ROT_TWO, ROT_THREE,
ROT_FOUR, and ROT_N) with new COPY and SWAP instructions.

• Replaced JUMP_IF_NOT_EXC_MATCH by CHECK_EXC_MATCH which performs the check but does not
jump.

• Replaced JUMP_IF_NOT_EG_MATCH by CHECK_EG_MATCH which performs the check but does not
jump.

• Replaced JUMP_ABSOLUTE by the relative JUMP_BACKWARD.
• Added JUMP_BACKWARD_NO_INTERRUPT, which is used in certain loops where it is undesirable to handle
interrupts.

• Replaced POP_JUMP_IF_TRUE and POP_JUMP_IF_FALSE by the rel-
ative POP_JUMP_FORWARD_IF_TRUE, POP_JUMP_BACKWARD_IF_TRUE,
POP_JUMP_FORWARD_IF_FALSE and POP_JUMP_BACKWARD_IF_FALSE.

• Added POP_JUMP_FORWARD_IF_NOT_NONE, POP_JUMP_BACKWARD_IF_NOT_NONE,
POP_JUMP_FORWARD_IF_NONE and POP_JUMP_BACKWARD_IF_NONE opcodes to speed up
conditional jumps.

• JUMP_IF_TRUE_OR_POP and JUMP_IF_FALSE_OR_POP are now relative rather than absolute.

11 Deprecated

• The lib2to3 package and 2to3 tool are now deprecated and may not be able to parse Python 3.10 or newer.
See the PEP 617 (New PEG parser for CPython). (Contributed by Victor Stinner in bpo-40360.)

• Undocumented modules sre_compile, sre_constants and sre_parse are now deprecated. (Con-
tributed by Serhiy Storchaka in bpo-47152.)

• webbrowser.MacOSX is deprecated and will be removed in Python 3.13. It is untested and undocumented
and also not used by webbrowser itself. (Contributed by Dong-hee Na in bpo-42255.)

• The behavior of returning a value from a TestCase and IsolatedAsyncioTestCase test methods
(other than the default None value), is now deprecated.

• Deprecated the following unittest functions, scheduled for removal in Python 3.13:

15

https://peps.python.org/pep-0617/
https://bugs.python.org/issue?@action=redirect&bpo=40360
https://bugs.python.org/issue?@action=redirect&bpo=47152
https://bugs.python.org/issue?@action=redirect&bpo=42255

– unittest.findTestCases()

– unittest.makeSuite()

– unittest.getTestCaseNames()

Use TestLoader method instead:
– unittest.TestLoader.loadTestsFromModule()

– unittest.TestLoader.loadTestsFromTestCase()

– unittest.TestLoader.getTestCaseNames()

(Contributed by Erlend E. Aasland in bpo-5846.)
• The turtle.RawTurtle.settiltangle() is deprecated since Python 3.1, it now emits a deprecation
warning and will be removed in Python 3.13. Use turtle.RawTurtle.tiltangle() instead (it was
earlier incorrectly marked as deprecated, its docstring is now corrected). (Contributed by Hugo van Kemenade
in bpo-45837.)

• The delegation of int() to __trunc__() is now deprecated. Calling int(a) when type(a) imple-
ments __trunc__() but not __int__() or __index__() now raises a DeprecationWarning.
(Contributed by Zackery Spytz in bpo-44977.)

• The following have been deprecated in configparser since Python 3.2. Their deprecation warnings have
now been updated to note they will removed in Python 3.12:
– the configparser.SafeConfigParser class
– the configparser.ParsingError.filename property
– the configparser.ParsingError.readfp() method

(Contributed by Hugo van Kemenade in bpo-45173.)
• configparser.LegacyInterpolation has been deprecated in the docstring since Python 3.2. It
now emits a DeprecationWarning and will be removed in Python 3.13. Use configparser.
BasicInterpolation or configparser.ExtendedInterpolation instead. (Contributed by
Hugo van Kemenade in bpo-46607.)

• The locale.getdefaultlocale() function is deprecated and will be removed in Python
3.13. Use locale.setlocale(), locale.getpreferredencoding(False) and locale.
getlocale() functions instead. (Contributed by Victor Stinner in bpo-46659.)

• The asynchat, asyncore and smtpd modules have been deprecated since at least Python 3.6. Their
documentation and deprecation warnings have now been updated to note they will removed in Python 3.12
(PEP 594). (Contributed by Hugo van Kemenade in bpo-47022.)

• PEP 594 led to the deprecations of the following modules which are slated for removal in Python 3.13:
– aifc

– audioop

– cgi

– cgitb

– chunk

– crypt

– imghdr

– msilib

– nis

– nntplib

– ossaudiodev

16

https://bugs.python.org/issue?@action=redirect&bpo=5846
https://bugs.python.org/issue?@action=redirect&bpo=45837
https://bugs.python.org/issue?@action=redirect&bpo=44977
https://bugs.python.org/issue?@action=redirect&bpo=45173
https://bugs.python.org/issue?@action=redirect&bpo=46607
https://bugs.python.org/issue?@action=redirect&bpo=46659
https://peps.python.org/pep-0594/
https://bugs.python.org/issue?@action=redirect&bpo=47022
https://peps.python.org/pep-0594/

– pipes

– sndhdr

– spwd

(Contributed by Brett Cannon in bpo-47061.)

12 Removed

• smtpd.MailmanProxy is now removed as it is unusable without an external module, mailman. (Con-
tributed by Dong-hee Na in bpo-35800.)

• The binhex module, deprecated in Python 3.9, is now removed. The following binascii functions, dep-
recated in Python 3.9, are now also removed:

– a2b_hqx(), b2a_hqx();
– rlecode_hqx(), rledecode_hqx().

The binascii.crc_hqx() function remains available.
(Contributed by Victor Stinner in bpo-45085.)

• The distutils bdist_msi command, deprecated in Python 3.9, is now removed. Use bdist_wheel (wheel
packages) instead. (Contributed by Hugo van Kemenade in bpo-45124.)

• Due to significant security concerns, the reuse_address parameter of asyncio.loop.
create_datagram_endpoint(), disabled in Python 3.9, is now entirely removed. This is because
of the behavior of the socket option SO_REUSEADDR in UDP. (Contributed by Hugo van Kemenade in
bpo-45129.)

• Removed __getitem__()methods of xml.dom.pulldom.DOMEventStream, wsgiref.util.
FileWrapper and fileinput.FileInput, deprecated since Python 3.9. (Contributed by Hugo van
Kemenade in bpo-45132.)

• The following deprecated functions and methods are removed in the gettext module: lgettext(),
ldgettext(), lngettext() and ldngettext().
Function bind_textdomain_codeset(), methods output_charset() and
set_output_charset(), and the codeset parameter of functions translation() and install()
are also removed, since they are only used for the l*gettext() functions. (Contributed by Dong-hee Na
and Serhiy Storchaka in bpo-44235.)

• The @asyncio.coroutine decorator enabling legacy generator-based coroutines to be compatible with
async/await code. The function has been deprecated since Python 3.8 and the removal was initially scheduled
for Python 3.10. Use async def instead. (Contributed by Illia Volochii in bpo-43216.)

• asyncio.coroutines.CoroWrapper used for wrapping legacy generator-based coroutine objects in
the debug mode. (Contributed by Illia Volochii in bpo-43216.)

• Removed the deprecated split() method of _tkinter.TkappType. (Contributed by Erlend E.
Aasland in bpo-38371.)

• Removed from the inspect module:
– the getargspec function, deprecated since Python 3.0; use inspect.signature() or
inspect.getfullargspec() instead.

– the formatargspec function, deprecated since Python 3.5; use the inspect.signature()
function and Signature object directly.

– the undocumented Signature.from_builtin and Signature.from_function functions,
deprecated since Python 3.5; use the Signature.from_callable() method instead.

(Contributed by Hugo van Kemenade in bpo-45320.)

17

https://bugs.python.org/issue?@action=redirect&bpo=47061
https://bugs.python.org/issue?@action=redirect&bpo=35800
https://bugs.python.org/issue?@action=redirect&bpo=45085
https://bugs.python.org/issue?@action=redirect&bpo=45124
https://bugs.python.org/issue?@action=redirect&bpo=45129
https://bugs.python.org/issue?@action=redirect&bpo=45132
https://bugs.python.org/issue?@action=redirect&bpo=44235
https://bugs.python.org/issue?@action=redirect&bpo=43216
https://bugs.python.org/issue?@action=redirect&bpo=43216
https://bugs.python.org/issue?@action=redirect&bpo=38371
https://bugs.python.org/issue?@action=redirect&bpo=45320

• Remove namespace package support from unittest discovery. It was introduced in Python 3.4 but has been
broken since Python 3.7. (Contributed by Inada Naoki in bpo-23882.)

• Remove __class_getitem__ method from pathlib.PurePath, because it was not used and added
by mistake in previous versions. (Contributed by Nikita Sobolev in bpo-46483.)

• Remove the undocumented private float.__set_format__() method, previously known as float.
__setformat__() in Python 3.7. Its docstring said: “You probably don’t want to use this function. It
exists mainly to be used in Python’s test suite.” (Contributed by Victor Stinner in bpo-46852.)

13 Porting to Python 3.11

This section lists previously described changes and other bugfixes that may require changes to your code.

13.1 Changes in the Python API

• Prohibited passing non-concurrent.futures.ThreadPoolExecutor executors to loop.
set_default_executor() following a deprecation in Python 3.8. (Contributed by Illia Volochii in
bpo-43234.)

• open(), io.open(), codecs.open() and fileinput.FileInput no longer accept 'U' (“uni-
versal newline”) in the file mode. This flag was deprecated since Python 3.3. In Python 3, the “universal
newline” is used by default when a file is open in text mode. The newline parameter of open() controls how
universal newlines works. (Contributed by Victor Stinner in bpo-37330.)

• The pdb module now reads the .pdbrc configuration file with the 'utf-8' encoding. (Contributed by
Srinivas Reddy Thatiparthy (���������� ������ ���������) in bpo-41137.)

• When sorting using tuples as keys, the order of the result may differ from earlier releases if the tuple elements
don’t define a total ordering (see expressions-value-comparisons for information on total ordering). It’s gener-
ally true that the result of sorting simply isn’t well-defined in the absence of a total ordering on list elements.

• calendar: The calendar.LocaleTextCalendar and calendar.LocaleHTMLCalendar
classes now use locale.getlocale(), instead of using locale.getdefaultlocale(), if no lo-
cale is specified. (Contributed by Victor Stinner in bpo-46659.)

• Global inline flags (e.g. (?i)) can now only be used at the start of the regular expressions. Using them not at
the start of expression was deprecated since Python 3.6. (Contributed by Serhiy Storchaka in bpo-47066.)

• re module: Fix a few long-standing bugs where, in rare cases, capturing group could get wrong result. So the
result may be different than before. (Contributed by Ma Lin in bpo-35859.)

• The population parameter of random.sample() must be a sequence. Automatic conversion of sets to
lists is no longer supported. If the sample size is larger than the population size, a ValueError is raised.
(Contributed by Raymond Hettinger in bpo-40465.)

14 Build Changes

• Building Python now requires a C11 compiler without optional C11 features. (Contributed by Victor Stinner
in bpo-46656.)

• Building Python now requires support of IEEE 754 floating point numbers. (Contributed by Victor Stinner in
bpo-46917.)

• CPython can now be built with the ThinLTO option via --with-lto=thin. (Contributed by Dong-hee
Na and Brett Holman in bpo-44340.)

• libpython is no longer linked against libcrypt. (Contributed by Mike Gilbert in bpo-45433.)

18

https://bugs.python.org/issue?@action=redirect&bpo=23882
https://bugs.python.org/issue?@action=redirect&bpo=46483
https://bugs.python.org/issue?@action=redirect&bpo=46852
https://bugs.python.org/issue?@action=redirect&bpo=43234
https://bugs.python.org/issue?@action=redirect&bpo=37330
https://bugs.python.org/issue?@action=redirect&bpo=41137
https://bugs.python.org/issue?@action=redirect&bpo=46659
https://bugs.python.org/issue?@action=redirect&bpo=47066
https://bugs.python.org/issue?@action=redirect&bpo=35859
https://bugs.python.org/issue?@action=redirect&bpo=40465
https://bugs.python.org/issue?@action=redirect&bpo=46656
https://bugs.python.org/issue?@action=redirect&bpo=46917
https://bugs.python.org/issue?@action=redirect&bpo=44340
https://bugs.python.org/issue?@action=redirect&bpo=45433

• Building Python now requires a C99 <math.h> header file providing the following functions: copysign(),
hypot(), isfinite(), isinf(), isnan(), round(). (Contributed by Victor Stinner in bpo-
45440.)

• Building Python now requires a C99 <math.h> header file providing a NAN constant, or the
__builtin_nan() built-in function. (Contributed by Victor Stinner in bpo-46640.)

• Building Python now requires support for floating point Not-a-Number (NaN): remove the Py_NO_NAN
macro. (Contributed by Victor Stinner in bpo-46656.)

• Freelists for object structs can now be disabled. A new configure option --without-freelists can
be used to disable all freelists except empty tuple singleton. (Contributed by Christian Heimes in bpo-45522)

• Modules/Setup and Modules/makesetup have been improved and tied up. Extension modules can
now be built through makesetup. All except some test modules can be linked statically into main binary
or library. (Contributed by Brett Cannon and Christian Heimes in bpo-45548, bpo-45570, bpo-45571, and
bpo-43974.)

• Build dependencies, compiler flags, and linker flags for most stdlib extension modules are now detected by
configure. libffi, libnsl, libsqlite3, zlib, bzip2, liblzma, libcrypt, Tcl/Tk libs, and uuid flags are detected
by pkg-config (when available). (Contributed by Christian Heimes and Erlend Egeberg Aasland in bpo-
45847, bpo-45747, and bpo-45763.)

Note: Use the environment variables TCLTK_CFLAGS and TCLTK_LIBS to manually specify the lo-
cation of Tcl/Tk headers and libraries. The configure options --with-tcltk-includes and
--with-tcltk-libs have been removed.

• CPython now has experimental support for cross compiling to WebAssembly platform
wasm32-emscripten. The effort is inspired by previous work like Pyodide. (Contributed by
Christian Heimes and Ethan Smith in bpo-40280.)

• CPython will now use 30-bit digits by default for the Python int implementation. Previously, the default was
to use 30-bit digits on platforms with SIZEOF_VOID_P >= 8, and 15-bit digits otherwise. It’s still possible
to explicitly request use of 15-bit digits via either the--enable-big-digits option to the configure script
or (for Windows) the PYLONG_BITS_IN_DIGIT variable in PC/pyconfig.h, but this option may be
removed at some point in the future. (Contributed by Mark Dickinson in bpo-45569.)

• The tkinter package now requires Tcl/Tk version 8.5.12 or newer. (Contributed by Serhiy Storchaka in
bpo-46996.)

15 C API Changes

• PyErr_SetExcInfo() no longer uses the type and traceback arguments, the interpreter now derives
those values from the exception instance (the value argument). The function still steals references of all three
arguments. (Contributed by Irit Katriel in bpo-45711.)

• PyErr_GetExcInfo() now derives the type and traceback fields of the result from the exception
instance (the value field). (Contributed by Irit Katriel in bpo-45711.)

• _frozen has a new is_package field to indicate whether or not the frozen module is a package. Previ-
ously, a negative value in the size field was the indicator. Now only non-negative values be used for size.
(Contributed by Kumar Aditya in bpo-46608.)

• _PyFrameEvalFunction() now takes _PyInterpreterFrame* as its second parameter, instead
of PyFrameObject*. See PEP 523 for more details of how to use this function pointer type.

• PyCode_New() and PyCode_NewWithPosOnlyArgs() now take an additional
exception_table argument. Using these functions should be avoided, if at all possible. To get a
custom code object: create a code object using the compiler, then get a modified version with the replace
method.

19

https://bugs.python.org/issue?@action=redirect&bpo=45440
https://bugs.python.org/issue?@action=redirect&bpo=45440
https://bugs.python.org/issue?@action=redirect&bpo=46640
https://bugs.python.org/issue?@action=redirect&bpo=46656
https://bugs.python.org/issue?@action=redirect&bpo=45522
https://bugs.python.org/issue?@action=redirect&bpo=45548
https://bugs.python.org/issue?@action=redirect&bpo=45570
https://bugs.python.org/issue?@action=redirect&bpo=45571
https://bugs.python.org/issue?@action=redirect&bpo=43974
https://bugs.python.org/issue?@action=redirect&bpo=45847
https://bugs.python.org/issue?@action=redirect&bpo=45847
https://bugs.python.org/issue?@action=redirect&bpo=45747
https://bugs.python.org/issue?@action=redirect&bpo=45763
https://bugs.python.org/issue?@action=redirect&bpo=40280
https://bugs.python.org/issue?@action=redirect&bpo=45569
https://bugs.python.org/issue?@action=redirect&bpo=46996
https://bugs.python.org/issue?@action=redirect&bpo=45711
https://bugs.python.org/issue?@action=redirect&bpo=45711
https://bugs.python.org/issue?@action=redirect&bpo=46608
https://peps.python.org/pep-0523/

15.1 New Features

• Add a new PyType_GetName() function to get type’s short name. (Contributed by Hai Shi in bpo-42035.)
• Add a new PyType_GetQualName() function to get type’s qualified name. (Contributed by Hai Shi in
bpo-42035.)

• Add new PyThreadState_EnterTracing() and PyThreadState_LeaveTracing() functions
to the limitedCAPI to suspend and resume tracing and profiling. (Contributed byVictor Stinner in bpo-43760.)

• Added the Py_Version constant which bears the same value as PY_VERSION_HEX. (Contributed by
Gabriele N. Tornetta in bpo-43931.)

• Py_buffer and APIs are now part of the limited API and the stable ABI:
– PyObject_CheckBuffer()

– PyObject_GetBuffer()

– PyBuffer_GetPointer()

– PyBuffer_SizeFromFormat()

– PyBuffer_ToContiguous()

– PyBuffer_FromContiguous()

– PyBuffer_CopyData()

– PyBuffer_IsContiguous()

– PyBuffer_FillContiguousStrides()

– PyBuffer_FillInfo()

– PyBuffer_Release()

– PyMemoryView_FromBuffer()

– bf_getbuffer and bf_releasebuffer type slots
(Contributed by Christian Heimes in bpo-45459.)

• Added the PyType_GetModuleByDef function, used to get the module in which a method was defined,
in cases where this information is not available directly (via PyCMethod). (Contributed by Petr Viktorin in
bpo-46613.)

• Add new functions to pack and unpack C double (serialize and deserialize): PyFloat_Pack2(),
PyFloat_Pack4(), PyFloat_Pack8(), PyFloat_Unpack2(), PyFloat_Unpack4() and
PyFloat_Unpack8(). (Contributed by Victor Stinner in bpo-46906.)

• Add new functions to get frame object attributes: PyFrame_GetBuiltins(),
PyFrame_GetGenerator(), PyFrame_GetGlobals(), PyFrame_GetLasti().

• Added two new functions to get and set the active exception instance: PyErr_GetHandledException()
and PyErr_SetHandledException(). These are alternatives to PyErr_SetExcInfo() and
PyErr_GetExcInfo() which work with the legacy 3-tuple representation of exceptions. (Contributed
by Irit Katriel in bpo-46343.)

20

https://bugs.python.org/issue?@action=redirect&bpo=42035
https://bugs.python.org/issue?@action=redirect&bpo=42035
https://bugs.python.org/issue?@action=redirect&bpo=43760
https://bugs.python.org/issue?@action=redirect&bpo=43931
https://bugs.python.org/issue?@action=redirect&bpo=45459
https://bugs.python.org/issue?@action=redirect&bpo=46613
https://bugs.python.org/issue?@action=redirect&bpo=46906
https://bugs.python.org/issue?@action=redirect&bpo=46343

15.2 Porting to Python 3.11

• The old trashcan macros (Py_TRASHCAN_SAFE_BEGIN/Py_TRASHCAN_SAFE_END) are now depre-
cated. They should be replaced by the new macros Py_TRASHCAN_BEGIN and Py_TRASHCAN_END.
A tp_dealloc function that has the old macros, such as:

static void
mytype_dealloc(mytype *p)
{

PyObject_GC_UnTrack(p);
Py_TRASHCAN_SAFE_BEGIN(p);
...
Py_TRASHCAN_SAFE_END

}

should migrate to the new macros as follows:

static void
mytype_dealloc(mytype *p)
{

PyObject_GC_UnTrack(p);
Py_TRASHCAN_BEGIN(p, mytype_dealloc)
...
Py_TRASHCAN_END

}

Note that Py_TRASHCAN_BEGIN has a second argument which should be the deallocation function it is in.
To support older Python versions in the same codebase, you can define the following macros and use them
throughout the code (credit: these were copied from the mypy codebase):

#if PY_MAJOR_VERSION >= 3 && PY_MINOR_VERSION >= 8
define CPy_TRASHCAN_BEGIN(op, dealloc) Py_TRASHCAN_BEGIN(op, dealloc)
define CPy_TRASHCAN_END(op) Py_TRASHCAN_END
#else
define CPy_TRASHCAN_BEGIN(op, dealloc) Py_TRASHCAN_SAFE_BEGIN(op)
define CPy_TRASHCAN_END(op) Py_TRASHCAN_SAFE_END(op)
#endif

• The PyType_Ready() function now raises an error if a type is defined with the Py_TPFLAGS_HAVE_GC
flag set but has no traverse function (PyTypeObject.tp_traverse). (Contributed by Victor Stinner in
bpo-44263.)

• Heap types with the Py_TPFLAGS_IMMUTABLETYPE flag can now inherit thePEP 590 vectorcall protocol.
Previously, this was only possible for static types. (Contributed by Erlend E. Aasland in bpo-43908)

• Since Py_TYPE() is changed to a inline static function, Py_TYPE(obj) = new_typemust be replaced
with Py_SET_TYPE(obj, new_type): see the Py_SET_TYPE() function (available since Python
3.9). For backward compatibility, this macro can be used:

#if PY_VERSION_HEX < 0x030900A4 && !defined(Py_SET_TYPE)
static inline void _Py_SET_TYPE(PyObject *ob, PyTypeObject *type)
{ ob->ob_type = type; }
#define Py_SET_TYPE(ob, type) _Py_SET_TYPE((PyObject*)(ob), type)
#endif

(Contributed by Victor Stinner in bpo-39573.)
• Since Py_SIZE() is changed to a inline static function, Py_SIZE(obj) = new_sizemust be replaced
with Py_SET_SIZE(obj, new_size): see the Py_SET_SIZE() function (available since Python
3.9). For backward compatibility, this macro can be used:

21

https://bugs.python.org/issue?@action=redirect&bpo=44263
https://peps.python.org/pep-0590/
https://bugs.python.org/issue?@action=redirect&bpo=43908
https://bugs.python.org/issue?@action=redirect&bpo=39573

#if PY_VERSION_HEX < 0x030900A4 && !defined(Py_SET_SIZE)
static inline void _Py_SET_SIZE(PyVarObject *ob, Py_ssize_t size)
{ ob->ob_size = size; }
#define Py_SET_SIZE(ob, size) _Py_SET_SIZE((PyVarObject*)(ob), size)
#endif

(Contributed by Victor Stinner in bpo-39573.)
• <Python.h> no longer includes the header files <stdlib.h>, <stdio.h>, <errno.h> and
<string.h> when the Py_LIMITED_API macro is set to 0x030b0000 (Python 3.11) or higher. C
extensions should explicitly include the header files after #include <Python.h>. (Contributed by Vic-
tor Stinner in bpo-45434.)

• The non-limited API files cellobject.h, classobject.h, code.h, context.h, funcobject.
h, genobject.h and longintrepr.h have been moved to the Include/cpython directory. More-
over, the eval.h header file was removed. These files must not be included directly, as they are already
included in Python.h: Include Files. If they have been included directly, consider including Python.h
instead. (Contributed by Victor Stinner in bpo-35134.)

• The PyUnicode_CHECK_INTERNED() macro has been excluded from the limited C API. It was never
usable there, because it used internal structures which are not available in the limited C API. (Contributed by
Victor Stinner in bpo-46007.)

• The PyFrameObject structure members have been removed from the public C API.
While the documentation notes that the PyFrameObject fields are subject to change at any time, they have
been stable for a long time and were used in several popular extensions.
In Python 3.11, the frame struct was reorganized to allow performance optimizations. Some fields were re-
moved entirely, as they were details of the old implementation.
PyFrameObject fields:

– f_back: use PyFrame_GetBack().
– f_blockstack: removed.
– f_builtins: use PyFrame_GetBuiltins().
– f_code: use PyFrame_GetCode().
– f_gen: use PyFrame_GetGenerator().
– f_globals: use PyFrame_GetGlobals().
– f_iblock: removed.
– f_lasti: use PyFrame_GetLasti(). Code using f_lasti with PyCode_Addr2Line()
should use PyFrame_GetLineNumber() instead; it may be faster.

– f_lineno: use PyFrame_GetLineNumber()
– f_locals: use PyFrame_GetLocals().
– f_stackdepth: removed.
– f_state: no public API (renamed to f_frame.f_state).
– f_trace: no public API.
– f_trace_lines: use PyObject_GetAttrString((PyObject*)frame,
"f_trace_lines").

– f_trace_opcodes: use PyObject_GetAttrString((PyObject*)frame,
"f_trace_opcodes").

– f_localsplus: no public API (renamed to f_frame.localsplus).
– f_valuestack: removed.

22

https://bugs.python.org/issue?@action=redirect&bpo=39573
https://bugs.python.org/issue?@action=redirect&bpo=45434
https://bugs.python.org/issue?@action=redirect&bpo=35134
https://bugs.python.org/issue?@action=redirect&bpo=46007

The Python frame object is now created lazily. A side effect is that the f_backmember must not be accessed
directly, since its value is now also computed lazily. The PyFrame_GetBack() function must be called
instead.
Debuggers that accessed the f_locals directly must call PyFrame_GetLocals() instead. They no
longer need to call PyFrame_FastToLocalsWithError() or PyFrame_LocalsToFast(), in
fact they should not call those functions. The necessary updating of the frame is now managed by the vir-
tual machine.
Code defining PyFrame_GetCode() on Python 3.8 and older:

#if PY_VERSION_HEX < 0x030900B1
static inline PyCodeObject* PyFrame_GetCode(PyFrameObject *frame)
{

Py_INCREF(frame->f_code);
return frame->f_code;

}
#endif

Code defining PyFrame_GetBack() on Python 3.8 and older:

#if PY_VERSION_HEX < 0x030900B1
static inline PyFrameObject* PyFrame_GetBack(PyFrameObject *frame)
{

Py_XINCREF(frame->f_back);
return frame->f_back;

}
#endif

Or use the pythoncapi_compat project to get these two functions on older Python versions.
• Changes of the PyThreadState structure members:

– frame: removed, use PyThreadState_GetFrame() (function added to Python 3.9 by bpo-
40429). Warning: the function returns a strong reference, need to call Py_XDECREF().

– tracing: changed, use PyThreadState_EnterTracing() and
PyThreadState_LeaveTracing() (functions added to Python 3.11 by bpo-43760).

– recursion_depth: removed, use (tstate->recursion_limit -
tstate->recursion_remaining) instead.

– stackcheck_counter: removed.
Code defining PyThreadState_GetFrame() on Python 3.8 and older:

#if PY_VERSION_HEX < 0x030900B1
static inline PyFrameObject* PyThreadState_GetFrame(PyThreadState *tstate)
{

Py_XINCREF(tstate->frame);
return tstate->frame;

}
#endif

Code defining PyThreadState_EnterTracing() and PyThreadState_LeaveTracing() on
Python 3.10 and older:

#if PY_VERSION_HEX < 0x030B00A2
static inline void PyThreadState_EnterTracing(PyThreadState *tstate)
{

tstate->tracing++;
#if PY_VERSION_HEX >= 0x030A00A1

tstate->cframe->use_tracing = 0;
#else

(continues on next page)

23

https://github.com/python/pythoncapi_compat
https://bugs.python.org/issue?@action=redirect&bpo=40429
https://bugs.python.org/issue?@action=redirect&bpo=40429
https://bugs.python.org/issue?@action=redirect&bpo=43760

(continued from previous page)
tstate->use_tracing = 0;

#endif
}

static inline void PyThreadState_LeaveTracing(PyThreadState *tstate)
{

int use_tracing = (tstate->c_tracefunc != NULL || tstate->c_profilefunc !=␣
↪→NULL);

tstate->tracing--;
#if PY_VERSION_HEX >= 0x030A00A1

tstate->cframe->use_tracing = use_tracing;
#else

tstate->use_tracing = use_tracing;
#endif
}
#endif

Or use the pythoncapi_compat project to get these functions on old Python functions.
• Distributors are encouraged to build Python with the optimized Blake2 library libb2.

15.3 Deprecated

• Deprecate the following functions to configure the Python initialization:
– PySys_AddWarnOptionUnicode()

– PySys_AddWarnOption()

– PySys_AddXOption()

– PySys_HasWarnOptions()

– Py_SetPath()

– Py_SetProgramName()

– Py_SetPythonHome()

– Py_SetStandardStreamEncoding()

– _Py_SetProgramFullPath()

Use the new PyConfig API of the Python Initialization Configuration instead (PEP 587). (Contributed by
Victor Stinner in bpo-44113.)

• Deprecate the ob_shash member of the PyBytesObject. Use PyObject_Hash() instead. (Con-
tributed by Inada Naoki in bpo-46864.)

15.4 Removed

• PyFrame_BlockSetup() and PyFrame_BlockPop() have been removed. (Contributed by Mark
Shannon in bpo-40222.)

• Remove the following math macros using the errno variable:
– Py_ADJUST_ERANGE1()

– Py_ADJUST_ERANGE2()

– Py_OVERFLOWED()

– Py_SET_ERANGE_IF_OVERFLOW()

– Py_SET_ERRNO_ON_MATH_ERROR()

24

https://github.com/python/pythoncapi_compat
https://www.blake2.net/
https://peps.python.org/pep-0587/
https://bugs.python.org/issue?@action=redirect&bpo=44113
https://bugs.python.org/issue?@action=redirect&bpo=46864
https://bugs.python.org/issue?@action=redirect&bpo=40222

(Contributed by Victor Stinner in bpo-45412.)
• Remove Py_UNICODE_COPY() and Py_UNICODE_FILL() macros, deprecated since Python 3.3. Use
PyUnicode_CopyCharacters() or memcpy() (wchar_t* string), and PyUnicode_Fill()
functions instead. (Contributed by Victor Stinner in bpo-41123.)

• Remove the pystrhex.h header file. It only contains private functions. C extensions should only include
the main <Python.h> header file. (Contributed by Victor Stinner in bpo-45434.)

• Remove the Py_FORCE_DOUBLE() macro. It was used by the Py_IS_INFINITY() macro. (Con-
tributed by Victor Stinner in bpo-45440.)

• The following items are no longer available when Py_LIMITED_API is defined:
– PyMarshal_WriteLongToFile()

– PyMarshal_WriteObjectToFile()

– PyMarshal_ReadObjectFromString()

– PyMarshal_WriteObjectToString()

– the Py_MARSHAL_VERSION macro
These are not part of the limited API.
(Contributed by Victor Stinner in bpo-45474.)

• Exclude PyWeakref_GET_OBJECT() from the limited C API. It never worked since the
PyWeakReference structure is opaque in the limited C API. (Contributed by Victor Stinner in
bpo-35134.)

• Remove the PyHeapType_GET_MEMBERS() macro. It was exposed in the public C API by mistake, it
must only be used by Python internally. Use the PyTypeObject.tp_members member instead. (Con-
tributed by Victor Stinner in bpo-40170.)

• Remove the HAVE_PY_SET_53BIT_PRECISION macro (moved to the internal C API). (Contributed by
Victor Stinner in bpo-45412.)

25

https://bugs.python.org/issue?@action=redirect&bpo=45412
https://bugs.python.org/issue?@action=redirect&bpo=41123
https://bugs.python.org/issue?@action=redirect&bpo=45434
https://bugs.python.org/issue?@action=redirect&bpo=45440
https://bugs.python.org/issue?@action=redirect&bpo=45474
https://bugs.python.org/issue?@action=redirect&bpo=35134
https://bugs.python.org/issue?@action=redirect&bpo=40170
https://bugs.python.org/issue?@action=redirect&bpo=45412

Index
E
environment variable

PYTHONNODEBUGRANGES, 3, 4

P
Python Enhancement Proposals

PEP 484, 4, 5
PEP 515, 7
PEP 523, 19
PEP 552, 6
PEP 587, 24
PEP 590, 21
PEP 594, 16
PEP 617, 15
PEP 646, 2, 4
PEP 654, 2
PEP 655, 2, 5
PEP 657, 3, 4, 8
PEP 659, 13
PEP 673, 2, 5
PEP 675, 3, 5
PEP 678, 4

PYTHONNODEBUGRANGES, 3, 4

26

	Summary – Release highlights
	New Features
	Enhanced error locations in tracebacks
	Column information for code objects
	Exceptions can be enriched with notes (PEP 678)

	New Features Related to Type Hints
	PEP 646: Variadic generics
	PEP 655: Marking individual TypedDict items as required or not-required
	PEP 673: Self type
	PEP 675: Arbitrary literal string type

	Other Language Changes
	Other CPython Implementation Changes
	New Modules
	Improved Modules
	asyncio
	fractions
	functools
	hashlib
	IDLE and idlelib
	inspect
	locale
	math
	operator
	os
	re
	shutil
	socket
	sqlite3
	sys
	sysconfig
	threading
	time
	unicodedata
	venv
	warnings
	zipfile
	fcntl

	Optimizations
	Faster CPython
	Faster Startup
	Frozen imports / Static code objects

	Faster Runtime
	Cheaper, lazy Python frames
	Inlined Python function calls
	PEP 659: Specializing Adaptive Interpreter

	Misc
	FAQ
	About

	CPython bytecode changes
	Deprecated
	Removed
	Porting to Python 3.11
	Changes in the Python API

	Build Changes
	C API Changes
	New Features
	Porting to Python 3.11
	Deprecated
	Removed

	Index

